

Gadi Evron David Maynor
Noam Rathaus Charlie Miller
Robert Fly Yoav Naveh
Aviram Jenik

This page intentionally left blank

Elsevier, Inc., the author(s), and any person or fi rm involved in the writing, editing, or production (collectively
“Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is
sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profi ts, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and fi les.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” “Ask the Author
UPDATE®,” and “Hack Proofi ng®,” are registered trademarks of Elsevier, Inc. “Syngress: The Defi nition of
a Serious Security Library”™, “Mission Critical™,” and “The Only Way to Stop a Hacker is to Think Like
One™” are trademarks of Elsevier, Inc. Brands and product names mentioned in this book are trademarks
or service marks of their respective companies.

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.
30 Corporate Drive
Burlington, MA 01803
Open Source Fuzzing Tools
Copyright © 2007 by Elsevier, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher, with the exception that the program listings may be entered,
stored, and executed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 0

ISBN 13: 978-1-59749-195-2

Publisher: Amorette Pedersen Cover Designer: SPi
Acquisitions Editor: Patrice Rapalus Page Layout and Art: SPi

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director
and Rights, at Syngress Publishing; email m.pedersen@elsevier.com.

This page intentionally left blank

Gadi Evron is Security Evangelist for Beyond Security, chief editor of the
SecuriTeam portal and recognized globally for his work and leadership in
Internet security operations. He is the founder of the Zeroday Emergency
Response Team (ZERT), organizes and chairs worldwide conferences,
working groups and task forces. He is considered an expert on corporate
security and counterespionage, botnets, e-fraud and phishing. Previously,
Gadi was CISO at the Israeli government ISP (eGovernment project) and
founded the Israeli Government CERT. He has authored two books on
information security and is a frequent lecturer.

Noam Rathaus is the co-founder and CTO of Beyond Security. He holds
an electrical engineering degree from Ben Gurion University and has been
checking the security of computer systems from the age of 13. He is also
the editor-in-chief of SecuriTeam.com, one of the largest vulnerability
databases and security portals on the Internet.

Robert Fly is a Director of Product Security at Salesforce.com where he
works with the great folks there to help deliver a service that the world can
trust. At Salesforce.com he heads up the company-wide effort for building
security into the development lifecycle. Prior to Salesforce.com Robert
worked at Microsoft for about eight years, the last few spent in the Real
Time Collaboration Group as a Software Security Lead heading up a team
of very talented individuals responsible for ensuring the security of those
products.

Aviram Jenik is CEO of Beyond Security and contributor to
SecuriTeam.com

David Maynor is CTO of Errata Security, a consulting and product
testing cybersecurity company.

Charlie Miller spent fi ve years as a Global Network Exploitation Analyst
for the National Security Agency. During this time, he identifi ed weaknesses

Contributing Authors

v

and vulnerabilities in computer networks and executed numerous successful
computer network exploitations against foreign targets. He sought and
discovered vulnerabilities against security critical network code, including
web servers and web applications. Since then, he has worked as a Senior
Security Architect for a fi nancial fi rm and currently works as a Principal
Security Analyst for Independent Security Evaluators, a security fi rm. He
has spoken at the Workshop on the Economics of Information Security,
Black Hat, and DEFCON.

He has a B.S. from Truman State University and a Ph.D. from the
University of Notre Dame.

Yoav Naveh works as an R&D team leader for McLean based Beyond
Security, and one of the chief developers of the beSTORM fuzzing framework.
He is a security researcher with 8 years of experience. He holds the rank of
Captain in the Israeli Defense Force (ret.) and is a leading authority in the
blackbox testing fi eld.

vi

Contents

Chapter 1 Introduction to Vulnerability Research . 1
Statement of Scope . 2
Off-by-One Errors . 3
Programming Language Use Errors . 5
Integer Overfl ows . 5
Bugs and Vulnerabilities . 7
The Vaunted Buffer Overfl ow . 7
Finding Bugs and Vulnerabilities . 9

Source Code Review . 9
Black Box Testing . 10
Glass Box Testing . 10

Chapter 2 Fuzzing—What’s That? . 11
Introduction . 12
Introduction to Fuzzing . 12
Milestones in Fuzzing . 14
Fuzzing Technology . 16

Traffi c Sniffi ng . 18
Prepared Template. 19

Second-Generation Fuzzing . 19
File Fuzzing . 22
Host-side Monitoring . 22
Vulnerability Scanners as Fuzzers . 22
Uses of Fuzzing . 23
Open Source Fuzzers . 24
Commercial-Grade Fuzzers . 24
What Comes Next . 25
The Software Development Life Cycle . 25

Chapter 3 Building a Fuzzing Environment . 27
Introduction . 28

Knowing What to Ask… . 28
Basic Tools and Setup . 34
Data Points . 34
Crash Dumps . 34
Fuzzer Output . 36

vii

viii Contents

Debuggers . 37
Recon Tools . 40
Linux . 41
OSX . 42

Summary . 44

Chapter 4 Open Source Fuzzing Tools . 45
Introduction . 46

Frameworks . 46
Special-Purpose Tools . 48
General-Purpose Tools . 52

Chapter 5 Commercial Fuzzing Solutions . 55
Introduction . 56

Chapter 6 Build Your Own Fuzzer . 67
Hold Your Horses . 68
Fuzzer Building Blocks . 70

One or More Valid Data Sets . 70
Understanding What Each Bytein the Data Set Means 71
Change the Values of the Data Sets While Maintaining

the Integrity ofthe Data Being Sent . 72
Recreate the Same Malformed DataSet Time and Time Again 72
An Arsenal of Malformed Values, or the Abilityto Create

a Variety of Malformed Outputs . 73
Maintain a Form of a State Machine . 74
Summarize . 75

Down to Business . 75
Simplest Fuzz Testing Find Issues . 88

Chapter 7 Integration of Fuzzing in the Development Cycle 91
Introduction . 92
Why Is Fuzzing Important to Include

in a Software Development Cycle? . 93
Security Testing Workload . 93

Setting Expectations for Fuzzers in a Software Development Lifecycle 101
Fuzzing as a Panacea . 101
Fuzzing Tools versus … . 103

Setting the Plan for Implementing Fuzzers into a Software
Development Lifecycle . 103

Setting Goals . 104
Building and Executing on the Plan . 111

Understanding How to Increase Effectiveness of Fuzzers,
and Avoiding Any Big Gotchas . 115

 Contents ix

Hidden Costs . 116
Finding More Vulnerabilities . 119

Summary . 126
Solutions Fast Track . 126
Frequently Asked Questions . 130

Chapter 8 Standardization and Certifi cation . 133
Fuzzing and the Corporate Environment . 134
Software Security Testing, the Challenges . 134
Testing for Security . 135

Fuzzing as a Viable Option . 137
Business Pressure . 138
Software Security Certifi cation . 139
Meeting Standards and Compliance . 139
Tester Certifi cation . 140
Industry Pressure . 140
Antivirus Product Testing and Certifi cation . 140

Chapter 9 What Is a File? . 143
Introduction . 144
Are File Fuzzers Special? . 145
Analyzing and Building Files . 149

Textual Files . 150
Binary Files . 151
Running the Test . 156
Monitoring the Application with the Test Cases . 161

Chapter 10 Code Coverage and Fuzzing . 163
Introduction . 164
Code Coverage . 164

Obtaining Code Coverage . 167
Instrumenting the Binary . 167
Monitoring a Closed Source Application . 169
Improving Fuzzing with Code Coverage . 171
Manual Improvements . 174
Dynamically Generating Code Coverage Improvements 181
Statically Generating Code Coverage . 185
Weaknesses of Code Coverage . 188

Summary . 190
Solutions Fast Track . 190
Frequently Asked Questions . 192

Index . 193

1

Chapter 1

Introduction to
Vulnerability
Research

Solutions in this chapter:

■ Statement of Scope

■ Off-by-One Errors

■ Programming Language Use Errors

■ Integer Overfl ows

■ Bugs and Vulnerabilities

■ The Vaunted Buffer Overfl ow

■ Finding Bugs and Vulnerabilities

2 Chapter 1 • Introduction to Vulnerability Research

Statement of Scope
Entire books exist on the topic of computer vulnerabilities and software testing, and it is
beyond the scope of this chapter to provide the in-depth knowledge needed to perform
software security testing. While fuzzing is one important way to test software for bugs
and vulnerabilities, it is important to understand exactly what we are testing for.

This chapter is an introduction to software testing in general, and as such must
describe some of the ways software errors come about. While this material is most-likely
review, it will at least provide a common starting point for the less-experienced or
novice vulnerability researcher.

A computer in and of itself is nothing more than a paperweight, a useless collection
of components and circuitry. For the computer to do anything, a person must give it a
set of instructions the computer can understand. This, in essence, is the art of computer
programming.

But it’s not that simple. In reality, there is a vast difference between the instructions
a computer can act on and the instructions the average person can understand. While
it is entirely possible for humans to learn to issue commands in the language of the
computer, this process is an extremely ineffi cient and time-consuming chore.
(A statement to which anyone who owned one of the early IMSAI 8080 computers
can attest. The earliest IMSAIs accepted only this type of input.)

And, of course, the computer has no corresponding capability to learn a language
that humans can understand—it’s a one-way street from intelligence to utility.
Consequently, “interpreters” (and compilers, which do the same thing as interpreters,
but consider the instructions as whole instead of processing them one at a time) were
developed that can take English-like phrases and translate them into the specifi c
binary language a computer can act on.

Humans deal very well with abstraction, but computers choke on it. If you tell a
three-year-old child to put on his shoes and socks, you will never see him fi rst put
on his shoes and then put on his socks—he will instead put his socks on and then his
shoes, because he has learned the abstract concept of footwear: your socks go on before

NOTE

The best laid schemes o’ mice an’ men gang aft a-gley.
Robert Burns (“To a Mouse”)

 Introduction to Vulnerability Research • Chapter 1 3

your shoes. A computer has no understanding of even the simplest abstraction, and will
proceed only as instructed. The greater the degree of abstraction from the minutia of
what the computer can understand, the “higher” the language level is. In this regard, not
all languages are created equally—some are far more abstract (higher level) than others.

The language with the closest approximation to the language upon which a computer
can operate is “assembly language,” which is a one-to-one mnemonic representation
of machine codes and values upon which the computer can operate. C, and its
successor C++, are the most common programming languages in use for commercial
application development today, and are far more abstract than assembly is. Other
languages are higher level still.

Lost in Translation(s):

“I know that you believe you understand what you think I said, but I’m not sure
you realize that what you heard is not what I meant.”—Robert McClosky

Translation is the root cause of most programming errors. For example, a project
manager translates the requirements from the desired end to the programming
team, which members translate to individual programming assignments, which
programmers translate the assignment into the proper syntax for the programming
language (written by someone else), which programming language interpreter
translates that into the corresponding machine code. All those translations are
sources of potential programming errors, some of which we will cover in detail
next. Keep in mind that the following descriptions of programming errors are not
intended to cover all conceivable ways a programming error can lead to problems,
but rather to provide a fl avor of the topic.

Off-by-One Errors
Although at fi rst blush, it would seem that anyone who cannot count should not
program, this error does not exist in the programmer’s inability to count, but rather
in the way he counts. A particular example of this is the “fencepost” error. How many

4 Chapter 1 • Introduction to Vulnerability Research

fence posts are needed to build a fence 25 feet long with posts placed every 5 feet?
Well, you can compute this by dividing 25 by 5, getting the answer of 5. While this is
the correct answer for the number of fence sections you need (S-1 though S-5), it is not
the correct answer for the number of posts needed. That answer is 6 (P-1 though P-6),
as shown in Figure 1.1.

Figure 1.1 Off-by-One Error

Another error in the off-by-one genre is the use of the wrong comparison operator,
such as the “less than” operator (<) instead of the “less than or equal to” operator (<=).
For example, an error in a routine printing the numbers 1 to 10 could manifest itself as:
#include <stdio.h>

int main(void)

{

int Count = 1;

while (Count <10)

 {

printf(“%d”,Count);

 ++Count ;

 }

return 0;

}

This would instead print the numbers less than 10, in this case the numbers
1 through 9. Changing the “while” statement to:
while (Count <=10)

corrects this problem.
Off-by-one errors are an example of the programmer translating a concept to the

proper algorithm.

 Introduction to Vulnerability Research • Chapter 1 5

Programming Language Use Errors
The function strcpy can be used to make a copy of a string in a new location. To do
this, it copies each byte from the source address to the destination address, stopping
after it copies the special character that signifi es the end of the string. Unfortunately,
this is all it does. There are no checks that the source or destination are actually valid
addresses, no checks that the destination has enough space to hold the source string,
and no checks that the locations don’t overlap. Provided the programmer uses this
function in a safe way, ensuring that the source and destination are valid and that
destination can hold all of the source string, no problems will occur. However, if the
source string is longer than the space allocated for it, the function will still do exactly
what it has been designed to do: copy all the bytes between the start and end of the
string to the destination address, including those that are outside of the memory
allocated for the second string. While this is probably not what the programmer
meant, it is exactly what he asked the computer to do.

The use of strcpy has been banned by many programming shops in an effort to
minimize the errors its misuse may cause. There is a safer (but not completely safe)
function named strncpy, which limits the length of the copy to a specifi ed number
of bytes. While this sounds better, there are still some “gotchas”: the specifi cation only
guarantees that it will “null terminate” the string if there is room left at the end.
If the programmer doesn’t explicitly put the end-of-string null character in, it may be
longer than he intended. As an interesting aside, in places where strcpy use was
banned, programmers sometimes wrote their own functions that duplicated its behavior,
right down to its capability to write out of bounds.

Programming language use errors such as this stem from programmers not
considering exceptional circumstances.

Integer Overfl ows
An important data type in any programming language is the integer. Integers can be
either signed (with a plus or minus sign) or unsigned.

In a 32-bit operating system, an unsigned integer can range from 0 to +4,294,967,295;
the binary representation of those values is shown here:

6 Chapter 1 • Introduction to Vulnerability Research

0 0000 0000 0000 0000 0000 0000 0000 0000

4,294,967,295 1111 1111 1111 1111 1111 1111 1111 1111

Adding 1 to 4,294,967,295 will not give 4,294,967,295, but will instead give 0.
To store a larger number would require 33 bits (a 1 followed by 32 0s). The CPU
simply stores the lowest 32 bits and makes a note that the number was too big.
Multiplying numbers together may also cause an integer overfl ow. If the programmer
assumes that adding or multiplying any two numbers will make a bigger number
(which “just makes sense”), and doesn’t check for integer overfl ows, he may
introduce a vulnerability. For example, to hold n items that are each m bytes long, the
programmer may tell the program to allocate n∗m bytes. If m∗n is larger than the
biggest number that can be represented, less memory will be allocated than intended.
This may lead to a buffer overfl ow.

In the case of a signed integer, which can range from −2,147,483,648 to
+2,147,483,647, it becomes a bit more complicated, because the leftmost bit of the
32-bit is the sign bit—0 for positive and 1 for negative—and the numbers are
represented as “two’s complements.” The binary representation of these values is
shown here:

+2,147,483,647 0111 1111 1111 1111 1111 1111 1111 1111

−2,147,483,648 1000 0000 0000 0000 0000 0000 0000 0000

Two’s complement representation is the most common means of representing
negative numbers, and has many advantages, such as being able to add positive and
negative numbers without worrying about the sign bit.

If a programmer assumes that a variable contains only positive integers, but if the
integer in question is actually a signed integer, arithmetic operations can cause the
overwrite of the leftmost bit and make the results a negative number, possibly leading
to exploitable behavior. This scenario is illustrated here:

Unsigned Integer Calculation

2,147,483,647 0111 1111 1111 1111 1111 1111 1111 1111

+1 0000 0000 0000 0000 0000 0000 0000 0001

2,147,483,648 1000 0000 0000 0000 0000 0000 0000 0000

Note the equivalence of the unsigned 2,147,483,648 to the signed −2,147,483,648!

 Introduction to Vulnerability Research • Chapter 1 7

Bugs and Vulnerabilities
Not all programming errors are created equally. Some allow attackers to gain some
thing or ability they didn’t already have. They may be able to deny other users access
to the program by crashing it, or access information they shouldn’t be able to. In some
cases, they may be able to cause the program to execute any command they tell it.
These errors are vulnerabilities.

Other errors, while they may have the same causes, won’t give attackers any access
they didn’t already have.

So, the fi rst task for a vulnerability researcher is to determine if the programming
error is merely a bug or if it can lead to exploitation. If a bug can lead to exploitation,
either by itself or when used in concert with other bugs, it is indeed a vulnerability.

The Vaunted Buffer Overfl ow
Most of the vulnerabilities discovered by security researchers are buffer overfl ows.
These overfl ows are caused by bugs that allow the code to write past the end of a buffer.
So, what is a buffer? A buffer is a fi xed-size region of memory, set aside for a
particular use, usually in the same general location in memory as other values the
program uses.

Some vulnerabilities are caused by the application not checking space availability
before copying untrusted data into the buffer. Other overfl ows are more complicated
and, while a buffer overfl ow may be the fi nal effect, the initial cause is usually a bug
or series of bugs (e.g., the m∗n integer overfl ows mentioned earlier, off-by-one errors,
etc.) somewhere else in the code.

Regardless of the initial cause, without enough space to hold the copied data,
the contents of memory outside the buffer will be overwritten. As a result, the next
time the program looks at that memory; it sees data from the overfl ow instead of
the original data. If the program tries to use values from that area, it will most likely
not see what it expects, the consequences of which can range from a crash of the
program to other, more potentially dangerous actions, as shown in Figure 1.2. The
address 007e9e0 contains a pointer to the previous stack frame, and 007e9e4 contains
the address to execute on return (7e42593f). If a buffer overfl ow overwrote the
contents of 007e9e4 with another address, the program would execute that address
when it returned. To understand why this happens, it is fi rst necessary to defi ne a bit
more jargon.

8 Chapter 1 • Introduction to Vulnerability Research

When a program is running, it requires that the system be in a consistent state.
To achieve this, all control structures must contain valid data for the program to
work as intended. One such control structure, the “stack,” is a section of memory
that programs use to record previous activity. When the program calls a function,
it must record where it was in the process by storing values on the stack. If attackers
can overwrite these values with their own values, when the function ends, it will
carry on execution from where they tell it, instead of where it was.

Before proceeding, a confusing subtlety must fi rst be clarifi ed. On mailing lists,
sometimes people report a particular crash as a “stack overfl ow” and suggest that with
a little work it could be turned into an exploit, while in reality their issue is (at best)
a denial-of-service (DoS) vulnerability. The confusion arises because at least two things
can be described as a stack overfl ow—stack-based buffer overfl ows and unbounded
recursion—both of which are capable of crashing a program.

Buffer Overf low on the Stack (aka Stack-based
Buffer Overf low)
In this scenario, the program tries to store more data in a buffer located on the stack
than it can accommodate. Ultimately, the program tries to use a value that has been
overwritten and crashes.

Stack Overf low (aka Unbounded Recursion)
This situation often occurs when a program calls a function that endlessly calls
itself (i.e., recursion). Eventually, the “what I was doing” data (found on the stack)

Figure 1.2 Part of the Stack in Notepad.exe While Opening a File

 Introduction to Vulnerability Research • Chapter 1 9

from the previous calls consumes all the available stack space. When the program
attempts to call the function again, as there is no space left to store it,
it crashes.

While these defi nitions may sound similar and both cases involve accessing invalid
memory, they are very different. A stack-based buffer overfl ow can allow attackers to
execute code on the victim’s computer, as it overwrites memory addresses that will
be used later, while a “stack overfl ow” typically results in a DoS, as it tries to write
to memory that isn’t available.

In any case, the buffer overfl ow is among the most insidious errors security
researchers can fi nd. In fact, the fi rst (known) exploited buffer overfl ow was in the
fi ngerd service in the Unix systems exploited by the Morris worm. Other notable
examples are the Code Red worm that exploiter Microsoft IIS 5.0 and the SQL
Slammer worm that exploited MS SQL Server 2000, but researchers have found
buffer overfl ows in practically every program written.

Finding Bugs and Vulnerabilities
Given the multitudinous ways programmers can make mistakes, looking for bugs
and vulnerabilities in a piece of software should be an integral part of the development
process. Until recently, that has not been the case—a software product is released without
any security testing, and it was left up to independent security researchers to fi nd the
errors and report them to the vendor for repair. Now, most software faces some kind
of security review prior to its release, and many vendors now consider security from
the onset of the development project, as is the case with Microsoft’s Secure Development
Process. But testing the security of a particular product can be an expensive proposition,
and vendors must weight that expense with the other cost factors involved in releasing
the product to its customers. Because of this, even software developed in an environment
stringently cognizant of security risks is most likely released without full testing. Once
again, the burden of testing falls upon security researchers. Fortunately, security researchers
have a vast array of tools and techniques to locate bugs and vulnerabilities.

Source Code Review
An effective way to fi nd vulnerabilities in software for which the source code is
available (such as with open-source software) is manual code review. For example,
a researcher may search the source code for instances of the strcpy function mentioned
earlier, examining each portion of code that uses that function to make sure the function
will respect the bounds of the program. While this will show all cases where strcpy is

10 Chapter 1 • Introduction to Vulnerability Research

improperly used, it will not show cases where a programmer uses a similar technique
or function to accomplish the same results.

While this approach has yielded a good many vulnerabilities in the past, its results
are predicated on looking for instances of a known language problem or for instances
of commonly used statements that are known to exist and cause problems.

Black Box Testing
As the name implies, black box testing does not take into account the actual programming
of the application, but rather the input specifi cations of the program (what data
the program is meant to receive) and output specifi cation of the program (what the
program is supposed to do with the input data). Black box testing is intended to gauge
whether the program complies with the design goals.

From a security perspective, it is important in black box testing to provide the
program with input the program normally would not expect, to see how the program
deals with this input.

Black box testing can be done manually, or its input and analysis of its output can
be automated.

Glass Box Testing
Glass box testing is performed in a similar manner to black box testing, but the testers
have a view of the program structure and data fl ow requirements. With this type of
testing, it is easier to make sure the program will function as intended, as it is possible to
directly test conditionals in the program fl ow. With glass box testing, it is possible to craft
input that allows every line of code to be executed and tested.

From a security perspective, it is important in glass box testing to provide the
program with input the program normally would not expect in order to see how the
program deals with this input.

Glass box testing can be done manually or its input can be automated, but the
automation is predicated on making sure each of the fl ows in the program will be
exercised.

11

Chapter 2

Fuzzing—What’s
That?

Solutions in this chapter:

■ Introduction to Fuzzing

■ Milestones in Fuzzing

■ Fuzzing Technology

■ Second-Generation Fuzzing

■ File Fuzzing

■ Host-side Monitoring

■ Vulnerability Scanners as Fuzzers

■ Uses of Fuzzing

■ Open Source Fuzzers

■ Commercial-Grade Fuzzers

■ What Comes Next

■ The Software Development Life Cycle

12 Chapter 2 • Fuzzing—What’s That?

Introduction
In this chapter, we describe in detail what fuzz testing, also known as fuzzing, is and
how it works.

The purpose of this chapter is to reach common ground and establish basic
terminology for the evolving fi eld of fuzzing, and describe the advances made recently
in Protocol-based Fuzzing with the introduction of commercial fuzzing products into the
market. By the end of this chapter, you will have a good understanding of how fuzzing
works, and some steps you can take to implement and use fuzzing.

Fuzzing is often described as a black-box software testing technique. It works by
automatically feeding a program multiple input iterations that are specially constructed
in an attempt to trigger an internal error indicative of a bug, and potentially crash it.

Such program errors and crashes are indicative of the existence of a security
vulnerability, which can later be researched and fi xed.

We begin with a short summary of the state of the practice of fuzzing and a quick
overview of fuzzing history. We continue with a detailed description of how fuzzing
works. We then describe new advances made with fuzzing technology, introduce
second-generation fuzzing, and try to assess the usability of fuzzing and what the
future holds for this new market.

Fuzzing as a black box testing fi eld, in our opinion, is going to turn into a
signifi cant portion of the vulnerabilities and software/application security markets
from all ends, prevention to countermeasures.

Fuzzing is not a perfect solution, but when done effi ciently it can eliminate many
vulnerabilities in the code-space and provide a return-on-investment that far outweighs
its implementation costs.

Introduction to Fuzzing
Fuzzing has several dictionary defi nitions, the most applicable of which is “to become
blurred or obscure”; meaning to alter something so it becomes less obvious, or rather
confusing. The relation of the term with fuzz testing in computer science is basic at best.

The story of how fuzzing got to be the term describing a “black box testing technique”
varies depending on who you ask. (Black box testing is testing without prior knowledge
or source code. Fuzzing is sometimes referred to as gray box testing, as some information
about the internal system design can be used in conjunction with the test). Some say
that when Professor Barton Miller wrote fuzz, he named it after the way they used to
test electrical lines. Another story is that fuzzing comes from fuzzy logic.

 Fuzzing—What’s That? • Chapter 2 13

Professor Barton Miller spoke of the history in an e-mail conversation with Gadi Evron:
“In the fall of 1989, I was on a dial-up modem to my campus computer. There

was a big, Midwest thunderstorm that was causing noise on the phone line (this was
before error-correction modems), so it was a race to type a command before a stream
of nonsense characters would interfere. I was surprised that these seemingly random
characters would occasionally cause Unix utilities to crash. So, as one of my suggested
projects in my graduate OS class (CS736), I assigned a project of writing a random
character generator and testing as many Unix utility programs as possible. I called this
random stream “fuzz,” named after the noise on the phone line. It had nothing to do
with fuzzy logic or any other fi eld. And I’m not sure why I picked the particular
word fuzz.”

Fuzzing, fault injection, assumption violating, and other terms were used in the past
to describe this technique. What it does is send input to a program (software or
hardware) in an attempt to trigger an error indicative of a bug, and potentially a
vulnerability (a successful test case). (In software testing, test cases pass or fail—rather
than succeed—as defi ned at the offset.)

In this chapter, we use the term fuzzing to describe a continuous (automated)
brute-force attack of mutated input iterations, attempting to break a program by
using the right iteration or combination.

Testing operates under a few assumptions:

■ Testing can only prove the presence of bugs, not their absence—Edsger
Dijkstra

■ Due to Turing completeness, testing may never fi nish.

■ Fuzzing operates under two more specifi c assumptions regardless of their
correctness.

■ There are vulnerabilities to be found in the program.

■ Given enough input, these vulnerabilities will surface.

This can be a lengthy process; analogies to demonstrate this are drilling into a wall,
driving up a hill, and water eroding a stone.

None of these analogies is perfect, as the parameters for them can vary considerably
depending on the condition of the wall, road, or stone, and specifi cation of the drill,
car, or river.

Fuzzing is better comparable to lock picking, trying all possible keys that may or
may not fi t, smaller keys, often-used keys, a combination of rods and strings, etc.

14 Chapter 2 • Fuzzing—What’s That?

Fuzzing is dependent on technological parameters ranging from how well the
code was written and how advanced the fuzzer is, to the strength of the CPU running
the fuzzer. If the drill from our fi rst analogy was used on the weakest spot in the
concrete wall fi rst, results may come quickly.

Wikipedia defi nes fuzzing as:
“Fuzz testing or fuzzing is a software testing technique. The basic idea is to attach the inputs

of a program to a source of random data (“fuzz”). If the program fails (for example, by crashing,
or by failing built-in code assertions), then there are defects to correct.

The great advantage of fuzz testing is that the test design is extremely simple, and free of
preconceptions about system behavior.”

If we are to fi ne-tune this defi nition:
Fuzzing is a software testing technique that by providing a program with malformed input,

attempts to reach an error indicating a potential vulnerability. Fuzzing does not require previous
knowledge about the program tested such as its design or source code, although it can make use
of them (black box and gray box testing).

Simplifi ed further, fuzzing is:
Creating malformed input for the program tested and seeing what happens.
This applies to a network service as much as it would to a CPU, a cell phone,

program parameters, an API, a Web browser, or a fi le type.
Many different types of test software can be considered fuzzers by that defi nition,

but not very effi cient ones. As an example, stress testing is a form of fuzzing, but an
extremely limited and primitive one that measures the stability of the program by
emulating a DoS attack.

Any program receiving input can be fuzzed.

Milestones in Fuzzing
Fuzzing has been around for a long time but was commonly referred to as “fault injection”
(mostly used in the hardware world).

Fuzzing in the context of the security world was introduced in 1989 by Professor
Barton Miller and his students at the University of Wisconsin Madison with the
creation of fuzz. They have this to say about it:

“Fuzz testing is a simple technique for feeding random input to applications. While
random testing is a time-honored technique, our approach has three characteristics that,
when taken together, makes it somewhat different from other approaches.

 Fuzzing—What’s That? • Chapter 2 15

1. The input is random. We do not use any model of program behavior,
application type, or system description. This is sometimes called black box
testing. In the command-line studies (1990, 1995, and 2006), the random
input was simply random ASCII character streams. For our X-Window
study (1995), Windows NT study (2000), and Mac OS X study (2006),
the random input included cases that had only valid keyboard and mouse
events.

2. Our reliability criteria are simple: if the application crashes or hangs, it is
considered to fail the test; otherwise, it passes. Note that the application
does not have to respond in a sensible manner to the input, and it can
even quietly exit.

3. As a result of the fi rst two characteristics, fuzz testing can be automated to
a high degree and results can be compared across applications, operating
systems, and vendors.”

In other words, fuzz was used to send random input to the application until it
crashed or hanged.

Skipping a decade ahead, in 2002, Dave Aitel released a paper called “The
Advantages of Block-Based Protocol Analysis for Security Testing” along with
a fuzzing tool named SPIKE.

What was new about SPIKE’s approach was that the random data generated was
tied in to regular input the application would expect to see. That in itself wasn’t
completely new. What was new is that the randomness was tied in to specifi c parts of
the input. Further, SPIKE offered a framework by which new data-set templates
could be added to it so that other protocols can be fuzzed.

As an example, a basic protocol request Data-set template would look like this:
GET /fi le.name HTTP/1.1

The block-based approach could tell the fuzzer to send random data at a certain
point, such as this block signifi ed by []s:
GET /[]fi le.name HTTP/1.1

In 2004, two block-based fuzzing tools named Peach and smudge (which are very
similar to SPIKE) were released. The big advantage of Peach and smudge was that
they presented an easy-to-use framework for quick development, adapting them
to fuzz anything anyone could set his mind to.

16 Chapter 2 • Fuzzing—What’s That?

They are both very similar to SPIKE (being data-set based and using block-based
fuzzing), with two main differences:

■ The framework and engine were built more robustly and for easier
development.

■ They were built in Python (while SPIKE was built in C).

In the past year (2006), second-generation fuzzing was introduced with the
appearance of several commercial-grade fuzzers.

If we are to quantify milestones in fuzzing, the main ones are:

■ Combining random input generation with application monitoring (fuzz)

■ Tying the random input generation with a data-set template (SPIKE)

■ Protocol-based fuzzing (beginning of “Second-Generation Fuzzing”)

Fuzzing Technology
Fuzzing works in mysterious ways, but there is not much magic to it. Fuzzing can be
divided into three main components:

■ Fuzzing baseline

■ Input generation

■ Application monitoring

Input being sent is generated from the fuzzy baseline. There are two main approaches
as to where this information is taken from:

■ Traffi c sniffi ng

■ Protocol template

Traffi c sniffi ng means that the fuzzer has a sniffer component or knows how to read
a sample of a packet capture and generate the input iterations from what it observes
being used.

Protocol template means that the fuzzer has at least some previous knowledge about
the protocol implementation, and the input iterations are generated from what the
protocol specifi es. This mostly applies to (and is more known as) protocol-based fuzzing,
to distinguish from data-set based templates.

 Fuzzing—What’s That? • Chapter 2 17

The input generation (which generates attack vectors of legal, semi-legal, and completely
broken input) is done by the engine using two main approaches:

■ Value manipulation

■ Protocol manipulation

Value manipulation is what SPIKE, Peach, smudge, and most fuzzers available as
open source basically do. It bases the iterations of input generated on the data-set
based template it is provided with using block-based fuzzing.

With SPIKE, for example, this request can become a template:
“GET /blah.[] HTTP/1.1”

Unrelated to SPIKE, a good example for a template to manipulate is the TCP
packet header format:

TCP HEADER FORMAT

OCTET 1,2 Source Port (SRC_PORT)

OCTET 3,4 Destination Port (DEST_PORT)

OCTET 5,6,7,8 Sequence Number (SEQ)

OCTET 9,10,11,12 Acknowledgement Number (ACK)

OCTET 13,14 Data Offset (4 bit)+ Reserved
 (6 bit)+ Control Flags(6 bit) (DTO, FLG)

OCTET 15,16 Window (WIN)

OCTET 17,18 Checksum (TCP_SUM)

OCTET 19,20 Urgent Pointer (URP)

OCTET 21,22,23 Options (OPT)

OCTET 24 Padding

OCTET 25,26… Data

As an example for the preceding, we may choose to send a legal TCP packet and
manipulate one fi eld to be malformed, such as the source port (SRC_PORT), which
could be a negative number, a number higher than the allowed range as specifi ed in
the RFC, etc.

Pre-chosen fi elds are being manipulated. These are then being manipulated mainly
for fi eld length and allowed input-type (such as a character vs. a Boolean value vs. an
integer vs. a real value, etc.), and so on.

Protocol manipulation is a new technique that currently only seems to be available
mainly in commercial products. It is based on the engine having a previous knowledge
of the protocol specifi cation, beyond the data-set templates of Value manipulation. (Some open

18 Chapter 2 • Fuzzing—What’s That?

source products use multiple data-set templates to individually fuzz different aspects
of a protocol, independently of one another. This is not protocol-based fuzzing).

For example, if the engine knows what HTTP looks like, it can then proceed to
create input iterations such as:

“GET GET GET blah.blah HTTP/1.1”

“GET /blah.blah /blah.blah FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”

The application monitoring tells the fuzzer whether it was successful (pass or fail).
After all, unless the fuzzer knows that an input sent caused a crash or another similar
error, the whole exercise is pointless.

Application monitoring can vary from a watchdog that sees if the program is still running,
to a remote check to see if the service is still available and responding, all the way to more
advanced techniques like watching with a debugger for an anticipated exception.

Where fuzzing does become almost magical is by its actual capability to provide
results. As fuzzing is based on generating often-random data as input until something
actually happens (visualize while(1)), it can potentially run for eternity without ever
causing a program crash.

The difference between fuzzers begins with their approach to fuzzing, as discussed
previously.

Traffi c Sniffi ng
Network sniffers only see traffi c that was generated by a client communicating with
a server. Whatever their engine may be able to produce, if a certain part of the protocol
was never used it would never be tested, which is why they are likely to cover a
signifi cantly small part of the possible input iterations for the protocol space to fi nd potential
vulnerabilities. After all, you don’t know what you don’t know—and it’s those “dark”
sections of the protocol implementation nobody ever thinks about where the cruel
bugs are hiding.

NOTE

The bottom line: What differentiates fuzzers is their capability to cause
that crash.

 Fuzzing—What’s That? • Chapter 2 19

Prepared Template
Based on the prepared template, the fuzzer may lack some information about what
the traffi c generated by the implementation tested looks like. However, its Achilles
heel is that running over the entire space of possible input iterations can take
a signifi cant amount of time, if not forever, especially if the template is a protocol-based
representation rather than a simple data-set template for value manipulation.

Further differences between the effi ciency of fuzzers are determined by the
algorithms used to create the input iterations.

■ If value manipulation is used, only a specifi c data-set template can be tested
and only for specifi c value changes.

■ If protocol manipulation is used, only the protocol structure implementation is
tested. However, fuzzers that implement protocol manipulation often also
implement value manipulation. How these are used and if they are combined
will eventually determine how successful the attack iterations will be.

Beyond that point, many different technologies and techniques can be used, but
they are based on these basic ones. The main difference between fuzzers using all
these technologies and techniques would be what types of combinations they would
produce, what algorithms would be used, and how effi cient the engine would be.

It is often impressive how a fuzzing engine can fuzz something new, mostly without
requiring new algorithms or tricks but only the fuzzing baseline to base itself on.

Using protocol-based fuzzing certainly takes the fi eld to the next level, but
there are many other advances achieved over the last year with the introduction
of second-generation fuzzing.

Second-Generation Fuzzing
In the past year, with the introduction of second-generation fuzzing by commercial
companies, major advancements in fuzzing have occurred.

These advances begin where we left off at the previous paragraph, with the wide
acceptance and success of protocol-based fuzzing.

The rest of the advances brought forth by second-generation fuzzing are divided
into two main categories:

■ Robustness

■ Technical advances

20 Chapter 2 • Fuzzing—What’s That?

Robustness
Robustness simply means the fuzzer is stable. These new fuzzers, unlike some of the
early tools, don’t crash every few minutes (or seconds) and actually deliver results
(i.e., fi nd vulnerabilities).

By far, the fi eld of fuzzing has been dominated by either academic research or
homegrown tools developed by researchers to perform specifi c tasks. As interesting and
important to the development of this fi eld as these early efforts were, they were just that,
early and perhaps at times even amateurish. This in turn slowed the wide adoption of
these tools.

Technical Advances
Learning from the early fuzzing tools, the second-generation fuzzers use protocol
manipulation as a framework for their operations. They add value manipulation on
top of that to iterate more combinations of attacks to fi nd more potential vulnerabilities
(“successful” test cases, meaning a pass result).

Attacking the way the protocol is implemented is the next step second-generation
fuzzers are taking.

Being able to attack the actual implementation of the protocol by generating
attack vectors that target basic coding errors such as mishandling of input validation or
boundary checking (defensive programming errors), design fl aws (logical, design
specifi cation, and similar), and the implementation of the protocol itself, is how these
fuzzers achieve better results.

The main problem with that is that the amount of possible attack combinations
increases by a signifi cant factor, making the time-to-result (crash or similar) impractical
in some cases. This problem is solved by using advanced algorithms in an attempt to
utilize attacks that are more likely to cause an error fi rst, and then proceed to cover
the entire combination space.

Still, these algorithms are not easy to develop. On some occasions, trying to exploit
a large buffer or to send input of the wrong data-type makes for easy catches, but the
more the fuzzer advances in its search, the more signifi cant the effi ciency of the
algorithms used by individual fuzzers matters.

The use of more advanced manipulations based on the basic two types (value manipulation
and protocol manipulation) also considerably impacts the capability of today’s fuzzers to provide
results. For example, trying to exploit a logical fl aw in the program by sending a login
request twice and then combining it into the melting pot of attacks increases the number
of combinations required, and the success rate (pass results to the tests).

 Fuzzing—What’s That? • Chapter 2 21

Being able to work with more advanced protocols, requiring the fuzzer to wait
for a response before sending the next request (basically establishing sessions with the
attacked application—session-based fuzzing) is another step in fuzzing.

Some more advanced manipulation techniques based on the basic sets further
increase bottom-line results and the success of the fuzzing. One such advanced
technique is logic manipulation. Based on protocol manipulation, the fuzzer attempts to fi nd
logical programming errors resulting in a potential vulnerability. An example would be
a login request sent twice, or in SMTP, RCPT-TO: being sent before EHLO.

Another advanced technique is session manipulation (also based on protocol manipulation),
which manipulates the actual session. For example, sending a request for a key to be
issued, and then when it is received using another one or proceeding without
it can cause other types of potential errors.

The main challenge faced by second-generation fuzzers when they employ these
new techniques is the time required to cover the combination space exhaustively.

Some exotic vulnerabilities in a product can be located at the very end of the
combination space. Developing the technology to try to fi nd the most likely attack
vectors to trigger likely vulnerabilities in the shortest time possible is critical.

A good example for a vulnerability hiding in a not-often used function is the IIS
ISAPI printer extension vulnerability (CVE-2001-0241) from 2001.

Although a vulnerability may still hide at the very end of the combination space
and it is important to eliminate it during the test rather than wait for an attacker
to do the same, effi ciency is an issue.

As a fuzzer can potentially run over the protocol space for eternity, the time
frame within which a vulnerability will be found needs to be practical.

There are several technological solutions currently in use to handle this issue.
One is the 80/20 rule.

The 80/20 rule stands for “Fuzzing What Counts, First.” Employing the 80/20 rule
means combinations likely to cause an error are tried fi rst, and the fuzzer advances to explore
less likely and more complex attack vectors as it advances through the combination space.
Further, as new attack vectors are being attempted, they can be organized by buffers-based
(or branches-based) fuzzing, from most likely to least likely following the same standard.

Another interesting technique is the application of distributed computing for the use
of fuzzing (distributed fuzzing). After exhausting some of the smarter algorithms for fuzzing,
brute force became the next viable option. Using the power of distributed computing, the
fuzzing jobs can be divided between different attacking clients and servers (depending on
resources and software capability on both ends), covering more of the combination space
in a signifi cantly shorter time frame.

22 Chapter 2 • Fuzzing—What’s That?

File Fuzzing
Fuzz testing as a concept speaks of input and its manipulation. Much like with network
protocols where the fuzzed program can be a client or a server, applications that take
fi les as input can also be fuzzed.

When speaking of fi le fuzzing, there are two considerations:

■ Handling of the fi le itself

■ The standard under which the fi le is built

For the fi rst, a prime example would be a ZIP archive. If the ZIP fi le is too large
for the application to be able to handle, an error may occur.

For the second, different parts of the fi le, whether the header in a Windows PE
binary or some fi eld in a DOC fi le, could be malformed.

In some cases, applications could be fuzzed in many different ways. A Web browser
could be fuzzed using fi le fuzzing (loading fi les such as HTML) and client fuzzing
(having it connect to a server that will feed it malformed data).

Host-side Monitoring
As a best practice when fuzzing, the use of a debugger to catch exceptions in the fuzzed
application is suggested. There are some other ways to monitor applications, some of
which are now being developed on the forefront of fuzzing technology, including:

■ Using a profi ling and code coverage tools

■ Monitoring for memory leaks

■ CPU usage and memory usage monitoring

All can help fi ne-tune the fuzzing process, and assist in pinpointing the vulnerability
point in the investigation that will follow.

Vulnerability Scanners as Fuzzers
Vulnerability assessment tools are considered by some to do a similar job as fuzzers do,
but of a very basic form. Much like with stress testers, they make for rather primitive
fuzzers.

They do not mutate or create any iteration of attack vectors other than what was
predetermined for them to do in a bounded-group of test cases. Stress testers as

 Fuzzing—What’s That? • Chapter 2 23

another example would only check for the stability of the application, and how
much input it can handle.

Scanners such as Nessus are effi cient at mapping a computer or a network of
computers for known vulnerabilities—if a vulnerability is already known, a scan for
it will detect whether you are vulnerable, and for example, let you know whether
you need to update your software or risk attackers breaking in.

In some cases, tools such as Nessus have been known to trigger vulnerabilities in
a new application unrelated to the one they were originally built to exploit. Still, as
much as these tests are a good basic test for an application, they do not attempt to
exploit it specifi cally unless they already know of a vulnerability for it that was
released to the public.

Other similar scanners are test case based. These may not attempt to trigger known
vulnerabilities, but rather test cases known to have caused problems in other imple-
mentations of the same protocol in the past. These provide a good basic indication as
to the security of the tested software, but do not guarantee (or offer) in any way to
test the application being scanned for new, yet unknown vulnerabilities (“0-days”).

Uses of Fuzzing
At its most basic, fuzzing is used for black-box testing. What that testing is, what it is
used for, and by whom are the main differences.

Fuzzing can be used for anything from stability and reliability testing, to security
auditing, to QA security testing during development—any place code is developed
and for anyone who touches code.

Fuzzing can be used for and by:

■ Automated QA security

■ Vulnerability research

■ Product testing

■ Vulnerability testing before deployment

■ Testing third-party products

■ Auditors

■ Developers

Where programs are being developed and security is a concern, fuzzing can be
used as a low-cost and effi cient alternative or supplement.

24 Chapter 2 • Fuzzing—What’s That?

Open Source Fuzzers
There are many open source fuzzers available. These are either built for a specifi c
protocol, or are a framework with which one can develop modules for fuzzing
specifi c protocols.

We cover several open source fuzzing tools later in the book.
For lists of available fuzzers, visit:

■ www.scadasec.net/secwiki/FuzzingTools

■ www.infosecinstitute.com/blog/2005/12/fuzzers-ultimate-list.html

Commercial-Grade Fuzzers
Commercial fuzzing is a new market trend. Several vendors announced commercial
products that are supposed to use some of the advanced techniques described earlier,
and their own proprietary technologies, to reach the goal of automated black-box
software security testing by the use of fuzzing, and reaching results.

These different vendors employ several different approaches and techniques,
diverting from the main ones described previously (traffi c sniffers, protocol-based
fuzzing, etc.).

Open source fuzzing today still provides interesting tools and frameworks with
which to work, but does not at this point stand at par with what some of the commercial
products have to offer.

There are some in-house built (homegrown) fuzzing tools developed by
specifi c software vendors, but these are often built for a specifi c target and are
not public.

Three leading vendors in this fi eld today have their own approach to what fuzzing
means and how it is done.

Codenomicon
Codenomicon’s approach is that bugs should be located in the shortest time possible.
Their product searches for a set of predetermined test cases they have found problematic
with implementations of a certain protocol. They perform fuzzing to fi nd these test
cases, but their product provides a fast way of testing a product’s robustness against
these (www.codenomicon.com).

 Fuzzing—What’s That? • Chapter 2 25

Beyond Security
Beyond Security’s beSTORM is an exhaustive fuzzer. Although it supports testing for
predetermined test cases and tries to exploit more likely vulnerabilities before
continuing with the full test, their main objective is to allow for the most complete
testing that will cover as much of the protocol space as possible. With beSTORM,
it is also possible to write custom modules for proprietary protocols using XML
(www.beyondsecurity.com) (demo download available).

muSecurity
muSecurity’s mu4000 uses the man-in-the-middle or proxy approach; it sits on the
network, learns the traffi c, and tries to manipulate the traffi c in a way that will
trigger a vulnerability (www.musecurity.com).

What Comes Next
In the future, fuzzers will become much more advanced in regard to what techniques
they use. Further, as experience is gathered by their authors, the algorithms for these
techniques will be fi ne-tuned for a much higher success rate and effi ciency.

New techniques to use application monitoring (also known as host monitoring), and
different types of network monitoring, will be implemented to fi nd new types of
vulnerabilities and to optimize the current techniques.

The Software Development Life Cycle
With vendors announcing new fuzzing products every few months during 2006 and
the increased awareness of different software companies for the need for security,
fuzzing seems to be right on target.

Today, there are limited options for vendors to test their software:

■ Secure coding education for their developers

■ Source code and static analysis tools

■ Vulnerabilities being found and exploited once the product is in the market

None of these options is perfect, and neither is fuzzing. The main difference
is that the preceding techniques require a signifi cant investment of resources.

26 Chapter 2 • Fuzzing—What’s That?

Whether in eliminating false positives, educating staff, or handling patching
(development, technical support, and PR) costs, fuzzing offers an alternative that is
automated and requires little to no human interaction until the point the error is
found.

One of the interesting things about fuzzing is that under normal running conditions,
fuzzers have no false positives in what they do fi nd. Meaning, when an error is received
it may not be an exploitable vulnerability, but something bad did happen with the
code that at the very least affected the software stability, such as a DoS attack.

Fuzzing as a black-box testing fi eld, in our opinion, is going to turn into a
signifi cant portion of the vulnerabilities and software/application security markets
from all ends, prevention to countermeasures.

Fuzzing is not a perfect solution and it isn’t the silver bullet, but when done
effi ciently it can help eliminate many vulnerabilities in the code space and provide
a return-on-investment that far outweighs its implementation costs.

Although fuzzing stands by itself as an effi cient software testing technique, it is
indeed not the silver bullet. Using fuzzing together with other techniques such as
static analysis, whether in the same process or as separate tools, would yield better
results with more secure applications.

The implementation of fuzzing in the software development life cycle has been
accepted by many software development companies, ranging from Microsoft and
Cisco, to Mozilla and Redhat.

27

Chapter 3

Building a Fuzzing
Environment

Solutions in this chapter:

■ Basic Tools and Setup

■ Data Points

■ Crash Dumps

■ Fuzzer Output

■ Debuggers

˛ Summary

28 Chapter 3 • Building a Fuzzing Environment

Introduction
Fuzzing is a funny thing and often misunderstood. A fuzzer is a tool used to produce
a result, not the result itself, although often the development of the fuzzer is treated
as the end of the story. The intended result of a fuzzer is to expose some sort of fl aw
in a software application that can be used to twist the internal workings and application
of the operating system. To make the most of the consequences of a fuzzer run,
a researcher must be able to gather all the information possible about the state of the
application, the output a fuzzer produces, and other seemingly small pieces of information
that can prove the difference between a successful exploit discovery and just another
software bug. To properly do this, a researcher must have a well-constructed environment
that allows the capture of as much useful information as possible. An environment like
this is not built by accident; instead, it requires a lot of time and conscious thought fi rst.
Although informative steps to build a good fuzzer in a variety of different methods have
been discussed, there has yet to be a good document on how to build a good fuzzing
environment.

Knowing What to Ask…
Before you confi gure the operating system or even write a basic tool, the fi rst thing to
do is consider the goal or intent of the testing. One of the basic questions to answer
fi rst is, what is being tested? The type of code to be tested will have a large impact on
how the environment is constructed. Enough information must be gathered to insure
any fault uncovered will be able to be diagnosed and repeatable. This is a dangerous line
because it is easy to increase the amount of data collected to the point of uselessness.
The information overload state has been reached if more time is consumed sifting
through the data of a fuzzer run than analyzing the potential fl aw and duplicating it.

Several different types of applications can be fuzzed, in many different ways, and
a variety of different problems can be uncovered. For the sake of clarity in this chapter,
everything will fi t into three different classes: local, network, and Web application.

The local class contains everything that does not require network access to test.
Examples of this are media players, word processors, and e-mail applications. Although
many of these applications have a network client portion, almost all the same code
paths can be reached by loading fi les locally. For instance, an e-mail client can receive
e-mail from a server or it can be loaded locally from a fi le.

 Building a Fuzzing Environment • Chapter 3 29

The network class contains all the applications and servers that require network
access and have no other way to exercise the code branches. Examples of this are
DNS servers, Web servers, and operating system network stacks.

Web applications are technically a subset of the network class but have enough unique
and special considerations to have their own class. These could be Web applications available
on machine on the same subnet, or a hosted application that is not distributed, like Google
mail. These are diffi cult to test because often a debugger cannot be attached if the only
feedback that may be received is cryptic error messages.

After determining the goal, the next logical question to answer is, what class is
the application? Having a network-based app, such as a Voice over IP (VoIP) softphone,
means there is another stream of data to record, all network-based traffi c. This is not
hard to do with available tools such as tcpdump and Wireshark. The difference between
successfully analyzing this traffi c and a time sink is fi nding which packet or string
of packets caused the fault and which can be ignored.

Since Web-based applications are under the same type of scrutiny as any other,
considerations for this class have to be made when determining how to build a fuzzer
strategy. Since these applications are often remotely hosted, they require a way to
determine if an error has occurred, how severe it is, and what could be done with it.

The best question to answer is, how do you know if a fuzzer run is not being
wasted? A Web server is a good example of this; what simple things can be done to verify
that code branches are actually being exercised with the fuzzer and to assure the traffi c is
not being discarded by an initial input validation function. This can be done with a
variety of code coverage techniques like profi lers, and problems can be examined and
corrected with debuggers. It’s kind of like a nightclub: it doesn’t matter if you are the best
dancer if you can’t get past the doorman.

TIP

It is good to trace through a couple of iterations of a fuzzing run to make
sure the data created is actually getting parsed and not dropped. This can
be done with tools like profi lers or even using the trace command of some
debuggers.

30 Chapter 3 • Building a Fuzzing Environment

With these basic questions answered, it time to begin construction of the environment.
There are two major schools of thoughts on how to build the underpinnings of a good
fuzzer environment, and the distinction is virtualization. Schools of thought may be a
polite label; it is more in the area of holy war much like vi versus Emacs.

Some researchers are fans of using native machines as the basis and when necessary
connecting with several machines with Ethernet or Wi-Fi. The upside of a native
solution is a good strategy considering many fuzzing targets are devices that can’t be
virtualized. Examples include routers, mobile devices (like cellular phones and mobile
media players), and operating systems that can’t be or supposed to be virtualized, like
VxWorks or Apple’s OSX. There is also a problem with new anti-exploitation technology
built in to many machines that may make vulnerabilities that may trigger with the
same software version on lesser hardware platforms. An example of this technology
is the No-eXecute (NX) technology that prevents certain regions of code from
executing. If a vulnerability triggers this feature, the operating system may handle it
quietly without any notifi cation to the user, which means there may be no indication
that the fuzzer was successful.

Other researchers are of the mindset that virtualization is the best path for using
a fuzzer. Virtualization tools like VMware, Virtual PC, and xen are among the most popular
virtualization solutions. Tools like these offer the capability to have many different operating
systems in an easy to manage solution. One of the most useful features of a virtualization
tool like VMware is the capability to create snapshots of the state a machine is in and
return to that state quickly (Figure 3.1). This is incredibly useful if the fuzzing target
requires a certain state. It is also useful for saving time: repeatedly triggering a vulnerability
that may cause a machine to continually need to be restarted or rebooted can waste a lot
of time waiting for actions to complete. Being able to revert quickly to a saved snapshot
can save a lot of time and assure that re-runs of the fuzzer are targeting the same
problem in subsequent runs.

The downside of this approach is the limited amounts of targets. Limiting the scope
of research to just a virtualized operating system can rule out many devices, like network
cards and their drivers. There is also a problem with the way some virtualization solutions
run the operating system and the accompanying low-level code. This could cause
undetermined and quirky results in the attempts of exploitation.

 Building a Fuzzing Environment • Chapter 3 31

The answer advocated here is that both methods have strengths and weaknesses
and should be used where appropriate. For application level vulnerabilities, and even
vulnerabilities in basic operating system services, using a virtualization-based solution
is timely and effi cient. A repeatable test bed is very important, but if a researcher has
to spend more time getting the target to run in a VM, a native solution may be
better suited.

Figure 3.1 A Typical VMware Setup with Images for a Variety
of Operating Systems

TIP

Regardless if a virtualization or native OS solution is used, the ability to
collect and understand the data rests with the tools used. Tools built in to
the operating system can provide the fi rst line of data collection in a fuzzing
environment, but are often not up to the task of producing the detailed
amount of data required to trace events.

32 Chapter 3 • Building a Fuzzing Environment

Reliance on third-party tools means that a researcher should create
a toolkit that can easily be copied between different machines and even OSes.
Create a directory tree that breaks, and include a directory for environment and
the necessary tools. The tools for Windows are easy since they are just binaries;
they can be stuck in a subdir. Due to the diversity of operating systems like
Linux, OSX, and the BSD variants, it is a good idea to keep the source code for
those tools in the directories so a quick recompile can produce a working tool.

Tools & Traps…

Real-World Example: Windows 2000 Server SP4
Windows 2000 is a staple in medium to enterprise class businesses across the
globe. It is still used as a good basis for vulnerability auditing and discovery for
the Windows platform. It is starting to show its age since newer Microsoft
applications like Defender or Internet Explorer 7, which means it is best suited
for legacy applications. This shouldn’t sour a researcher on this choice as a
potential platform, because there is still a treasure trove of vulnerabilities in
existing applications like Active Directory and small business applications like
Great Plains.

A basic set of tools to aid in fuzzer use and vulnerability discovery is
comprised mostly of open source or freely available tools like Process Monitor,
TCPView, WinDbg, AccessChk, and AccessEnum. WinDbg is used as the primary
debugger and has its symbol store set up to automatically retrieve necessary
fi les. WinDbg has also set as the primary post mortem debugger by issuing the
windbg.exe –I command from a DOS prompt. This means that WinDbg will
be launched automatically to examine any crash, which allows a researcher to
quickly understand what crashed and why.

Since this is done in a VMware environment, a shared folder is set up with
the host OS that contains the tools package and allows for quick sharing of
fi les. This is useful for moving crash dumps, logs, or anything else that should
be preserved.

A snapshot is created for every patch rev on the box to allow quick
rollbacks. Another snapshot is created when the application to be tested is
installed, confi gured, and verifi ed in the correct working order so a lot of time
is not wasted waiting for reboots. Depending on what application is being
tested, a variety of system logs like the Event Viewer of crash dump fi les may
need to be retrieved before rolling back to a snapshot.

Tools & Traps…

How a Researcher Makes Use of This Environment
A known vulnerability will be used in this test—CVE-2007-1748—the Microsoft
DNS stack overfl ow. DNS is not essential to the operation of a Windows 2000
box, so crashing the process will result in a hung process at best. A process
can be restarted from the Services console under Administrative tools. Since
crashing the DNS does not risk crashing the box, Wireshark can be run locally
to collect data for later analysis. A simple fuzzer can detect this vulnerability,
since it is a stack-based overfl ow. Process Monitor is also running to record
any fi le reads and writes, and access to any registry keys. This is useful to
determine if there is a crash dump and where it is written to.

The fuzzer is designed to stop sending data if the application becomes
unresponsive. This ensures that the network logs are not full of data that occurs
after the crash and are not essential to tracking down the cause. Figure 3.2
shows the result of the crash and the packet that caused it.

Figure 3.2 WinDbg Analyzing a Crash Dump of a Wireless Driver
from a Mobile Phone

34 Chapter 3 • Building a Fuzzing Environment

Basic Tools and Setup
Although modern operating systems have MANY facilities built in to log operations,
they do not provide enough information to locate, debug, and reproduce a crash.
To increase the amount of data used and the chance of understanding an uncovered
vulnerability, third-party tools are used. Most of these tools are available for download
and are often used by application developers to debug or understand how the
application actually operates.

Data Points
The data collected is almost as important as the traffi c the fuzzer generates. Several
different things need to be collected so analysis of a potential fl aw can be done easier,
and aid in reproduction of the fl aw if a problem arises. Many subtle bugs found by
fuzzing may require an exact state that happens rarely, or could rely on another
application doing something specifi c.

Crash Dumps
The most important piece of data to collect is the crash dump of the target. Where
the crash dump is located and what it contains varies based on the operating system.
In general, the crash dump contains the state of the application, the time of the fault,
and register and memory contents. This information will provide the biggest assistance
in understanding what the fl aw is, if it is exploitable or a software bug, and how to
reproduce it.

An entire book could be written on how to do just crash dump analysis, so it is
hard to cover it in any detail. Just make sure your operating system is set up to collect
them. This varies based on the OS but is not diffi cult to enable. For a platform not
listed in the Startup and Recovery Window (Figure 3.3), an Internet search should
show you how to enable similar functionality.

 Building a Fuzzing Environment • Chapter 3 35

For Linux, enabling crash dumps, called core fi les on Linux, is just a matter of
issuing a ulimit command with root privileges. For instance, ulimit –c unlimited will
allow a core fi le of any size to be created. Be careful because core fi les can be very
large and use up all the available space on a partition.

A similar command is used in OSX. Adding the line limit core unlimited to
/etc/launchd.conf will enable system core fi le creation. If the application is being
launched from a terminal, you can enable core fi le creation in just the terminal
environment by issuing the same command as Linux, ulimit –c unlimited.

Figure 3.3 The Settings for a Crash Dump in Windows

36 Chapter 3 • Building a Fuzzing Environment

Fuzzer Output
Although it may seem obvious, saving the output of a fuzzer is extremely important
to diagnosing what happened and how to make it happen again. This is relevant
if the application being tested is a network-based application like an RPC server,
a host-based application like a word processor, or even a Web-based application
like a Web mail front end.

Each of the types of application mentioned requires capturing data in a certain way.
One common step among them all is data reduction. A fuzzer, by design, will create a
tremendous amount of data, and reducing that data to what is important is essential. This
can be handled in different ways, but one simple solution is to develop your fuzzer to
interact with the testing environment. For example, a fuzzer should be aware of when
its target has crashed or hung, so it no longer continues to send malformed data.

If a third-party fuzzer is being used and it doesn’t support that functionality, the
data capture tools can be scripted easily enough to poll the application and stop
collecting data if there is no response.

Client-side applications are some of the easiest to capture fuzzer output for.
Generally, a fuzzer in these cases will create an output fi le that is then loaded into
the application. If the application exits abnormally or hangs, the fi le can be put
aside to be examined in conjunction with the crash dump or debugger output.

Capturing network traffi c is both easy and hard depending on the application
and how the testing is carried out. Normally, it’s just a matter of running a sniffer
like tcpdump or Wireshark to capture the traffi c, which is easy. The hard part occurs
when it comes time to try to make sense of it all. An example would be a hung
application that didn’t create a crash dump and didn’t have a debugger attached.
It is hard to determine the state of an application just by looking at its network
traffi c. Packets could be fi ltered for a number of reasons such as being malformed,
or sent out of order, or at the wrong time. For this reason, its best to always run the
target with a debugger attached so information like register contents and what is
contained in the stack frame can be captured.

Web applications are a bit different. While running a fuzzer you may not receive
any confi rmation from the applications that something bad has occurred, not even an
error message. Since Web application fuzzing is basically a subset of network-based
fuzzing, all the same rules apply. The difference is that the data being recorded may
produce a memory corruption problem or fl ow control issues. The nature and extent
of a vulnerability will be hard to judge, especially if it is a hosted application, which
makes data collection even more important for the class of fuzzing than the others.

 Building a Fuzzing Environment • Chapter 3 37

Keeping the fuzzer output has a different side—reusability. In the case of client-side
applications like a word processor, all the malformed fi les created should be kept, to
avoid running a similar application over the fi les that have already been created.

Debuggers
The most important tool used to understand the operation and results of a fuzzer
run is a good debugger. Debuggers were developed to allow testing, examination of
operation, and debugging in case of a fl aw. There are several popular debuggers, each
with its own strengths and weaknesses, but in the end the choice of debugger is
a personal one and the right tool should be used for the job. Some of the debuggers
listed in Table 3.1 are no longer being maintained, or have not been updated in
a long time, and some are payware.

Table 3.1 Popular Debuggers

Name WinDbg.exe

Manufacturer Microsoft

URL www.microsoft.com/whdc/devtools/debugging/default.mspx

Description WinDbg is a versatile debugger produced by Microsoft.
 It allows for user land debugging, kernel debugging,
 and crash dump analysis. It can also be set to debug any
 exception generated on Windows by making it the
 post-mortem debugger.

Pros WinDbg is well supported and has great integration with
 Windows. There is also built-in support for retrieving and
 loading symbols automatically with the Microsoft symbol
 server. Kernel mode debugging is also possible with a
 two-machine setup; LiveKD can be used for single-machine
 kernel debugging. The trace feature can be used to examine
 how an application is running, and what code branches
 are being used. WinDbg’s capability to do crash dump
 analysis is its most useful feature.

Cons WinDbg is a Windows-only tool with no cross-platform
 capability. Crash analysis on different machines can lead
 to incorrect results and incorrect symbol versions being
 loaded.

Continued

38 Chapter 3 • Building a Fuzzing Environment

Table 3.1 Continued

Name Softice

Manufacturer Compuware

URL N/A

Description Softice was one of the best kernel mode debuggers and
 was extremely useful for all types of debugging tasks.
 It has been discontinued with no replacement. This means
 that legacy OSes have great support, but newer operating
 systems like Windows Vista have no support for it.

Pros Single-mode kernel debugging.

Cons Discontinued support.

Name OllyDbg

Manufacturer Oleh Yuschuk

URL www.ollydbg.de

Description OllyDbg is a disassembler and debugger for Windows
 operating systems that is focused on binary auditing. It is
 shareware and is freely available for download. OllyDbg
 allows for static analysis, and then can be attached to the
 running process for runtime analysis. Binary patching and
 a variety of other functionality are built-in.

Pros Free, powerful, portable, with many features built in.
 A plug-in development kit allows a researcher to extend
 the functionality. Highly useful static analysis.

Cons No kernel debugging and Windows only.

Name IDA Pro

Manufacturer Manufacturer: Data Rescue

URL www.datarescue.com/idabase/index.htm

Description IDA Pro is the leader in disassembler technology supporting
 a variety of platforms, processors, and binary types. IDA
 Pro also contains a debugger that supports a variety of
 platforms remotely, including Linux, OSX, and Windows
 Mobile. IDA Pro also supports a powerful scripting language
 and a plug-in architecture that allows a user-created tool
 access to any of the IDA Pro functionality.

 Building a Fuzzing Environment • Chapter 3 39

Table 3.1 Continued

 Pros IDA Pro is the best disassembler on the market with
 debugger support. Cross-platform support for debugging
 with a Software Development Kit (SDK) allows researchers
 to extend the platform’s capability.

Cons The debugger is missing, as are the advanced features of
 debuggers like WinDbg and Softice.

Name gdb

Manufacturer GNU Project

URL http://sourceware.org/gdb/

Description gdb is a free, open source debugger that works well on
 a variety of platforms, including Linux, ∗nix variants, OSX,
 and even Windows. It’s a powerful and simple debugger
 that supports many advanced features and can be used
 remotely for a variety of targets like Cisco’s IOS.

Pros Free, widely accessible, and heavily documented. Gdb
 supports a wide range of platforms and processor targets.
 Being open source, a researcher can easily extend its
 functionality and add research-specifi c features.

Cons No offi cial GUI interface, command-line access only.

TIP

The best debugger is a personal choice and depends on an individual’s skill
level and preferences. My personal choice is a mixture of WinDbg and IDA
Pro. WinDbg is used as a primary debugger on platforms that are supported,
with IDA Pro used on the remaining platforms. IDA Pro is used for disassembling
and binary auditing of all platforms because of the processor, platform, and
binary support. Choosing the best debugger will depend on how familiar you
are with each tool, and your personal understanding of the low-level operating
system internals and your individual needs. If there is no reason to do kernel-level
debugging in your project, there isn’t much reason to spend a lot of time
learning the functionality until you may need it.

In reality, you will find yourself using a variety of these debuggers when
certain situations call for it. No matter how much people try, there isn’t a single
bullet, and staying current with how to use all available tools is the best way
to avoid a slowdown in research while you learn how to use something new.

40 Chapter 3 • Building a Fuzzing Environment

Numerous debuggers are not mentioned here for the sake of space and brevity.
The ones listed in Table 3.1 are the most popular to use with fuzzing and the easiest
to set up with new systems. Make sure whatever debugger you choose has good
support for the target operating system, as research can be set back if a vulnerability
is triggered but the debugger in use is not aware of a fault.

Recon Tools
The following is a list of tools, what platform they run on, and what they are best
used for. For space concerns, every application useful in a fuzzing environment is
not listed, just the most useful.

Windows
Process Monitor

What it does—Process Monitor is a tool from the former Sysinternals group
(now owned by Microsoft). It lets a researcher view all reads and writes on a
fi le system and supports fi lters for data reduction. In addition to the fi le system
activity process, it shows properties such as what modules are loaded, and stack
and thread information.

How to use it—Process Monitor is particular useful for discovering log fi les,
crash dump location, and even basic process information like what DLLs are
being used.

PsTools
What it does—PsTools is a collection of Windows command-line utilities that
allow access to in-depth process information like memory usage and thread
information. It can also work remotely so it can be controlled by the fuzzer to
determine when applications have had a large processor or memory usage spike.

How to use it—A simple use would be running the command pslist.exe
–s 100000 pid > fuzz.out, where pid is the targeted application. The value
passed to –s is the number of seconds the tool should loop. Figure 3.4 shows
how simple it is to tell when the application crashed and information about
it right before.

 Building a Fuzzing Environment • Chapter 3 41

Figure 3.4 PsTools Output that Demonstrates What Happens when an
Application Crashes During Monitoring

Linux
There are a few useful Linux tools.

Valgrind
What it does—Valgrind is a suite of tools used for memory debugging and
code profi ling.

How to use it—Different tools in the Valgrind family can help fi nd subtle
bugs. Memcheck can detect memory leaks that may lead to a DoS or a race
condition, and memory corruption conditions like buffer overfl ows, off-by-one
fl aws, and writing to a pointer after it’s been freed. This can detect conditions
that may not cause a crash but have the potential to do so with properly
crafted input.

42 Chapter 3 • Building a Fuzzing Environment

strace
What it does—strace is the time-tested syscall tracing mechanism for Linux.
It allows a researcher to view what system calls are made and the response to
them. It is similar to truss on other ∗nix operating systems.

How to use it—The command strace –f –p pid –o fuzzer.out will trace
all syscalls made by the process whose pid is given as the argument to –p.
The –f option will make strace follow any children processes created or
forked. The –o option will save the trace in fuzzer.out. This log fi le will tell
you what the process was doing before it died and what caused it to die.

OSX
Xcode

What it does—Xcode is Apple’s development environment for OSX. It contains
a number of different tools like gcc and gdb, and tools like OCUnit and Shark.
OCUnit is a unit tester, and Shark allows system-level tracing functionality.

How to use it—Shark is useful tool that will record system calls made and
memory activity like vm faults.

Tools & Traps…

Real-World Example: Mac OSX 10.4 Kernel Debugging
To properly debug an OSX kernel fault, two machines are needed: one as a
debugging host and the other as a target. The machines must be running the
same kernel version and have copies of the kernel debugging kit. The debugger
used for the remote debugging is gdb with aliases provided by Apple.
Debugging can occur over Ethernet or FireWire. The setup is relatively painless
and involves setting up a static arp entry, creating the necessary symbols,
and setting the appropriate boot fl ags in the target machine fi rmware. The
steps can be found at http://developer.apple.com/DOCUMENTATION/Darwin/
Conceptual/KernelProgramming/build/chapter_18_section_5.html.

 Building a Fuzzing Environment • Chapter 3 43

In addition to the kernel debug tools, Shark is also running. When an
application or the OS dies unexpectedly, the crash reporter process will create
a fi le in /Library/Logs/CrashReporter with a corresponding fi lename. For instance,
if Firefox dies, you will fi nd a log called fi refox-bin.crash.log. If there is an
operating system level crash, a fi le called panic.log will be created.

To maintain a good testing environment, OSX is installed to an external
FireWire drive from which the Macbook can boot. This allows patches to be
tested and rolled back without risking losing an environment to reproduce
vulnerabilities. The FireWire driver doesn’t need to be big; in this setup, it is
40GB with two operating system images on it.

The vulnerability targeted in Figure 3.5, the Atheros-based Wi-Fi vulnera-
bility, is the stock Apple driver for Macbooks, CVE-2006-3508.

Figure 3.5 shows the contents of panic.log displaying the results of a
driver vulnerability and the subsequent crash.

Figure 3.5 The Atheros-based Wi-Fi Vulnerability Is the Stock Apple Driver
for Macbooks, CVE-2006-3508

44 Chapter 3 • Building a Fuzzing Environment

Summary
The environment of a target process can have a lot of infl uence on how the process
behaves to such a degree it can make the difference between a vulnerability being
found and a lot of time being wasted. A good environment should provide a researcher
the ability to repeat tests easily and monitor the test.

The ability to record fuzzer data and process state is just as important as the
construction of the fuzzer itself. A variety of tools can be used for this purpose on
a number of different platforms. The most important tool in researchers’ toolkits are
a good debugger and the ability to go through crash dumps. The insight a debugger
gives on the operation of a fuzzer target combined with the state information found
in the crash fi les provides a detailed roadmap for duplicating a crash, analyzing it,
and developing the fl aw into an exploit.

The tools used to capture the data may change between different platforms, but
the type of data you want to collect doesn’t. The fuzzer output, any network logs, and
as much state information about the target is the most valuable data to collect.

45

Chapter 4

Open Source
Fuzzing Tools

Solutions in this chapter:

■ Fuzzing Frameworks

■ Special-Purpose Tools

■ General-Purpose Fuzzers

46 Chapter 4 • Open Source Fuzzing Tools

Introduction
Fuzzing tools typically fall into one of three categories: fuzzing frameworks, special-
purpose tools, and general-purpose fuzzers.

Fuzzing frameworks are good if you are looking to write your own fuzzer or
need to fuzz a customer or proprietary protocol. The advantage is that the tool set
is provided by the framework; the disadvantage is that all open source fuzzing
frameworks are far from complete and most are very immature.

Special-purpose tools are usually fuzzers that were written for a specifi c protocol or
application. While they can usually be extended, they are fairly limited to fuzzing anything
outside the original scope of the project. In addition, in many cases general-purpose
fuzzers are very partial, as the writers tend to use them to fi nd a few holes in a protocol/
application and then move on to more interesting things, leaving the fuzzer unmaintained.

General-purpose tools are neat, if they work. They typically don’t, and those that
do are too general and lack optimization to be very useful.

However, the existence of open source fuzzers is a good starting point to start
fuzzing with minimal effort, and to get ideas on how fuzzing should be done and
how it works.

The following list is an almost complete compilation of open source tools. Only
tools whose source code is accompanied with the binary form, or have a source code
version of them, are listed here.

Frameworks
Fuzzing frameworks will help you write your own fuzzer.

Peach Fuzzer—http://peachfuzz.sourceforge.net/
From the Web site: “Peach is a cross-platform fuzzing framework written in Python.
Peach’s main goals include: short development time, code reuse, ease of use, and
fl exibility. Peach can fuzz just about anything from .NET, COM/ActiveX, SQL,
shared libraries/DLLs, network applications, Web, you name it.”

Peach is one of the more advanced open source fuzzing frameworks available.
Peach has a framework to do your own fuzzing or extend it by adding code to it. It
includes many external interfaces to encryption functions, compression libraries, and
encoding types.

 Open Source Fuzzing Tools • Chapter 4 47

(L)ibrary (E)xploit API – lxapi—
http://lxapi.sourceforge.net/
From the Web site: “A selection of python methods designed for bug testing and
exploitation of local and remote vulnerabilities. It includes a fuzz testing component,
miscellaneous shellcode methods and a simple GUI.”

The tool appears to have been dropped around the year 2003 and is no longer
maintained. In addition, at the time of writing the ZIP fi le found on sourceforge
appears to be broken.

Autodafe—http://autodafe.sourceforge.net/
From the Web site: “Autodafe is a fuzzing framework able to uncover buffer overfl ows
by using the fuzzing by weighting attacks with markers technique.”

Autodafe supports fuzzing of both network and fi le standards, and reverse roles
fuzzing, where instead of fuzzing against a server, it is able to perform fuzzing against
a client connecting to it (“client-side fuzzing”). Unlike other fuzzers, Autodafe is able
to take a pdml fi le (an XML-based packet dump) and generate the structure the
fuzzer will use to perform the fuzzing. This saves a lot of time, as it works around the
need for you to teach Autodafe how your server communicates.

The tools haven’t changed since August 2006 and appear to be unmaintained.

RIOT and faultmon—http://media.wiley.com/
product_ancillary/83/07645446/DOWNLOAD/
Source_Files.zip
A proof of concept type of tool that can interpret provided data and change its content
by looking for specifi c markers such as equal, bigger than, and ampersand characters.
It can be used for testing plaintext protocols such as HTTP, SMTP, POP3, etc.

Scratch—http://packetstormsecurity.org/UNIX/
misc/scratch.rar
From the Web site: “Scratch is an advanced protocol destroyer (“fuzzer”) which can
routinely fi nd a wide variety of vulnerabilities from a simple packet. Scratch does
complex parsing of binary fi les to determine what to fuzz with what data. Scratch
also comes with a framework for fuzzing binary protocols such as SSL and SMB.”

48 Chapter 4 • Open Source Fuzzing Tools

Scratch is a fairly simple fuzzer framework that supports both binary and textual
fuzzing of data. Scratch “understands” simple elements such as halfwords (BYTE),
words, big endian, little endian, and variables and blocks.

antiparser—http://antiparser.sourceforge.net/
From the Web site: “antiparser is a fuzz testing and fault injection API. Fuzz testing
has application as a security research methodology and for software quality assurance
purposes.”

antiparser implements two methods of fuzzing: random, where it generates a
random fuzzed state and sends it, brings back the data to its original form and tries
again; and increment, where it generates malformed data from the top of the data to
the bottom sequentially. The random works well, while the incremental appears to be
broken and not fully implemented.

The tool hasn’t changed since August 2005 and appears to be unmaintained.

dfuz—www.genexx.org/dfuz/
From the Web site: “dfuz is a remote protocol fuzzer/triggerer which can do many things
such as sending random data/random sizes, together with the data you want. It has a lot
of ways to tell the program to use this data by using rule fi les which will be later parsed
by the program itself, and with several options and ways to make it very specifi c, and
very fl exible. It’s not only a remote protocol fuzzer as itself, but it is a scripting-like motor
on which you can create any kind of payload, user-friendly.”

dfuz is a generic fuzzing framework. It receives rules, which are used to generate
a protocol that can then fuzz a product. dfuz also includes several protocol interfaces
that allow quicker testing of SMB- and RPC-based protocols.

The tool hasn’t changed since June 2006 and appears to be unmaintained.

Special-Purpose Tools
These tools are generally fuzzers written for a specifi c protocol or application. While
they can usually be extended, they are fairly limited to fuzzing anything outside the
original scope of the project.

fuzz—http://pages.cs.wisc.edu/~bart/fuzz/fuzz.html
From the Web site: “Fuzz testing is a simple technique for feeding random input to
applications. While random testing is a time-honored technique, our approach has
three characteristics that, when taken together, make it somewhat different from
other approaches.”

 Open Source Fuzzing Tools • Chapter 4 49

fuzz was for many years the only fuzzer available. It was built as part of the
academic work done by the University of Wisconsin.

SPIKE Proxy—www.immunitysec.com/
resources-freesoftware.shtml (Web applications)
From the Web site: “Not all Web applications are built in the same way, and hence,
many must be analyzed individually. SPIKE Proxy is a professional-grade tool for
looking for application-level vulnerabilities in Web applications. SPIKE Proxy covers
the basics, such as SQL Injection and cross-site-scripting, but it’s completely open
Python infrastructure allows advanced users to customize it for Web applications that
other tools fall apart on. SPIKE Proxy is available for Linux and Windows.”

SPIKE Proxy is a “twist” on SPIKE—it uses a MiTM (“man in the middle”)
approach, which means it receives input (usually live input) on one side and “spits”
out malformed data on the other side by altering its content.

This makes SPIKE Proxy seamless to use and requires very little confi guration
or customization to the fuzzer itself, rather only the traversing of the Web site while
SPIKE Proxy is set as the Web browser’s proxy server.

The tool hasn’t changed since August 2005 and appears to be unmaintained.

AxMan—www.metasploit.com/users/hdm/
tools/axman/ (ActiveX)
From the Web site: “AxMan is a Web-based ActiveX fuzzing engine. The goal of AxMan
is to discover vulnerabilities in COM objects exposed through Internet Explorer. Since
AxMan is Web-based, any security changes in the browser will also affect the results of
the fuzzing process. This allows for a much more realistic test than other COM-based
assessment tools. AxMan is designed to be used with Internet Explorer 6 only.”

AxMan is Metasploit’s ActiveX fuzzing engine. It can be used to test any available
ActiveX and requires very little intervention to do the testing itself, as it uses Internet
Explorer as the interface to the ActiveX. The program is known to have found
several issues in commercial ActiveXes.

Mangle—http://lcamtuf.coredump.cx/ - HTML
fi le fuzzer
From the Web site: “A trivial utility to automatically check for HTML parsing fl aws.
Generates a basic set of badly mangled tags on request, with auto-refresh back to the
script, so that you can point a browser to it once, and let it run until it crashes.”

50 Chapter 4 • Open Source Fuzzing Tools

The program is fairly simple to understand and use. It contains a list of HTML
keywords, tags and special characters to use, and includes an instruction at the top for
the browser to refresh the page as soon as it’s “ready” (a delay of zero).

This program is known to have found issues in various browsers, including
Opera, Mozilla, Lynx, Internet Explorer, and Links. Several of the issues discovered by
the tool and its variants were used by worm writers (Bofra worm—IFRAME issue)
to spread themselves.

The tool is no longer maintained.

screamingCobra—http://samy.pl/scobra/README.txt
(Web applications)
From the Web site: “Any CGI that doesn’t check arguments that are passed to it over the
Web are possibly vulnerable to attacks which allow a malicious user to get read access to
almost any fi le on that system, if not access to execute programs. screamingCobra is almost
always able to fi nd those bugs remotely due to the common errors programmers make.

screamingCobra is an application for remote vulnerability discovery in any
unknown Web applications such as CGIs and PHP pages. Simply put, it attempts to
fi nd vulnerabilities in all Web applications on a host without knowing anything about
the applications. Modern CGI scanners scan a host for CGIs with known
 vulnerabilities. screamingCobra is able to “fi nd” the actual vulnerabilities in any CGI,
whether it has been discovered before or not.”

Unlike other Web testing tools, screamingCobra tests for just two types of Web
attacks: directory traversal and command execution, and both only for Unix systems.

The product hasn’t changed since January 2002 and appears to be unmaintained.

WebFuzzer—http://gunzip.altervista.org/
g.php?f=projects#webfuzzer (Web applications)
From the Web site: “WebFuzzer is a tool that can be useful for both pen testers and
Web masters, it’s a poor man’s Web vulnerability scanner.”

WebFuzzer is a more mature Web fuzzer than screamingCobra, and is able to test
for SQL injections, directory traversal, cross-site scripting, and command execution
vulnerabilities. However, just like screamingCobra, the tool’s functionality is very
limited. As you cannot control what it fuzzes—for example, the tool crawls through
the Web site on its own—you can’t make the tool authenticate against the Web site.

 Open Source Fuzzing Tools • Chapter 4 51

The product hasn’t changed since December 2004 and appears to be
unmaintained.

ip6sic—http://ip6sic.sourceforge.net/
From the Web site: “ip6sic is a tool for stress testing an IPv6 stack implementation.
It works in a way much similar to isic. It was developed mainly on FreeBSD and is
known to work on OpenBSD and Linux. Theoretically, it should work wherever
libdnet works.”

It is hard to state that ip6sic is a fuzzing tool, as its aim appears to be more in the
realm of stress testing than fuzzing, but it does generate malformed data and valid in
an attempt to cause the IPv6-enabled device to misbehave.

The tool hasn’t changed since October 2003 and appears to be unmaintained.

BlueTooth Stack Smasher (BSS)—www.secuobs.com/
news/05022006-bluetooth10.shtml
From the Web site: “BSS (Bluetooth Stack Smasher) is a L2CAP layer fuzzer,
 distributed under GPL license.”

BlueTooth Stack Smasher (BSS) is an easy-to-use BlueTooth fuzzer. It can
 generate a variety of L2CAP packets, including L2CAP_COMMAND_REJ,
L2CAP_CONN_REQ, L2CAP_CONN_RSP, L2CAP_CONF_REQ, L2CAP_
CONF_RSP, L2CAP_DISCONN_REQ, L2CAP_DISCONN_RSP, L2CAP_
ECHO_REQ, L2CAP_ECHO_RSP, L2CAP_INFO_REQ, L2CAP_INFO_RSP,
and arbitrary data structures that are then sent to the BlueTooth listening device.

Radius Fuzzer—www.suse.de/~thomas/projects/
radius-fuzzer/
Radius Fuzzer is a RADIUS protocol fuzzing tool. Its fuzzing is not limited to
format strings, and will also try to generate malformed packets that contain SQL
injections, cross-site scripting, and command execution. Curiously, it doesn’t try to
manipulate the relationship between length and values found inside the RADIUS
packets. The fuzzer also doesn’t include code that determines if the SQL injection,
cross-site scripting, and command execution attacks were successful.

The tool hasn’t changed since September 2005 and appears to be unmaintained.

52 Chapter 4 • Open Source Fuzzing Tools

COMRaider—http://labs.idefense.com/software/
fuzzing.php
From the Web site: “COMRaider is a tool designed to fuzz COM Object Interfaces.”

COMRaider eases the fuzzing process of COM objects, namely ActiveXes. It has a
nice user interface, is easy to use, and requires very limited know-how of the ActiveX
being tested, as it can automatically detect the methods and attributes the ActiveX
exports and fuzz them.

fuzzball2—www.nologin.net/main.pl?action=
codeView&codeId=54&
From the Web site: “fuzzball2 is a little fuzzer for TCP and IP options. It sends a
bunch of more or less bogus packets to the host of your choice.”

fuzzball2 is a TCP and IP packet fuzzer; it can send various malformed packets
and play with the options defi ned inside the TCP and IP packet structure.

The tool hasn’t changed since April 2005 and appears to be unmaintained.

General-Purpose Tools
General-purpose tools are a good beginning to fuzzing with minimal effort, and to
get ideas on how fuzzing should be done and how it works.

TAOF—www.theartoffuzzing.com/joomla/index.php?
option=com_content&task=view&id=16&Itemid=35
From the Web site: “TAOF is a GUI cross-platform Python generic network protocol
fuzzer. It has been designed for minimizing set-up time during fuzzing sessions and it
is especially useful for fast testing of proprietary or undocumented protocols.”

TAOF is the fi rst GUI-based fuzzer that tries to ease the process of fuzzing new
and unfamiliar protocols by allowing you to mark the sections of the data you are
interested in testing. TAOF is able to test overfl ows and length value relationships—
where a length is larger or smaller than the provided value.

SPIKE—www.immunitysec.com/
resources-freesoftware.shtml
From the Web site: “When you need to analyze a new network protocol for buffer
overfl ows or similar weaknesses, SPIKE is the tool of choice for professionals.

 Open Source Fuzzing Tools • Chapter 4 53

While it requires a strong knowledge of C to use, it produces results second to
none in the fi eld. SPIKE is available for the Linux platform only.”

One of the fi rst block-based open source fuzzing tools, it has been presented at
several BlackHat conferences and has received numerous mentions in the press.
SPIKE is known to have found issues in Microsoft Windows’ RPC framework and
other products.

The tool hasn’t changed since August 2005 and appears to be unmaintained.

FileFuzz—http://labs.idefense.com/software/
fuzzing.php
From the Web site: “FileFuzz is a graphical Windows based fi le format fuzzing tool.
FileFuzz was designed to automate the executing the launching of applications and
detection of exceptions caused by fuzzed fi le formats.”

FileFuzz takes sample fi les, which it uses for its fuzzing. Its fuzzing methodology
is mainly focused on modifi cation of bytes found inside the original sample and
generating a derivative from them.

FileFuzz also integrates an automated tool for opening all the fi les it has fuzzed,
and detects whether they cause an exception automatically. For those programs that
prompt errors, FileFuzz supports an automated process of killing the program after a
set time that nothing has happened (no exception has occurred).

SPIKEFile—http://labs.idefense.com/software/
fuzzing.php
From the Web site: “SPIKEFile is a Linux based fi le format fuzzing tool, based on
SPIKE 2.9. It was designed to automate executing the launching of applications and
detection of exceptions caused by fuzzed fi le formats.”

As the name states, SPIKEFile is an “adaptation” of the SPIKE tool for fi le fuzzing.
It uses the same functionality of block-based fuzzing techniques SPIKE uses, but its
output are fi les.

notSPIKEFile—http://labs.idefense.com/software/
fuzzing.php
From the Web site: “notSPIKEFile is a Linux based fi le format fuzzing tool. It was
designed to automate executing the launching of applications and detection of
exceptions caused by fuzzed fi le formats.”

54 Chapter 4 • Open Source Fuzzing Tools

notSPIKEFile is another fl avor of SPIKEFile, which doesn’t use the source code
of SPIKE as its base for doing the fuzzing process of fi les.

eFuzz—http://packetstormsecurity.org/Win2k/
efuzz01.zip
From the product’s description: “eFuzz is an easy to use fuzzer (Penetration testing
tool) to search for unknown vulnerabilities in software (buffer overfl ows, format
string vulnerabilities, integer overfl ows, command line overfl ows, …).”

eFuzz is a simple replacement fuzzer that changes the data you provide it and
sends it out to the server being tested; you can create a test confi guration and then
eFuzz will generate malformed data using them.

The product hasn’t changed since November 2004 and appears to be
unmaintained.

Blackops Fuzzing Tools—www.blackops.cn/tools/
Blackops fuzzing tools is a collection of fuzzing tools for HTTP, SMTP, FTP, POP3,
and Windows Device Drivers. It was written by Ollie Whitehouse.

The tool hasn’t changed since December 2005 and appears to be unmaintained.

55

Chapter 5

Commercial
Fuzzing Solutions

Solutions in this chapter:

■ beSTORM (by Beyond Security)

■ BPS-1000 (by BreakingPoint Systems)

■ Codenomicon

■ Mu-4000 Security Analyzer (by Mu Security)

56 Chapter 5 • Commercial Fuzzing Solutions

Introduction
As fuzzing becomes more mainstream, there is a real need for commercial tools to
help those who need to use fuzzing tools but do not want to “mix-and-match”
various free tools that may be half-baked and frequently suffer from lack of maintenance
or support. Those who need the tool to “just work” may want to look at the
commercial tools available.

The obvious disadvantage of commercial tools (other than costing money) is that
you are limited to the vendor’s way of doing things. Unlike open source tools, you
cannot dive into the code and tailor it to your specifi c needs.

However, commercial tools tend to have a more complete rationale for how to
use them, and usually work “out of the box.” Consequently, the money you pay is
often saved by the quick path to using or implementing them into your fuzzing
process, especially if your interest is beyond a mere hobbyist.

Four commercial products typically are mentioned when it comes to fuzzing, and
although some of them do not fi t the classic defi nition of fuzzing, each solves the
problem from a different perspective. All products are already mature and proven and
are in use by large corporations worldwide.

In the next few years, more commercial solutions are likely to appear as the
need for fuzzers grows.

Here are the solutions in alphabetical order.

beSTORM (by Beyond Security)
“beSTORM performs a comprehensive analysis, exposing security holes in your product
and during the development process. beSTORM represents a new approach to security
auditing. Most of the security holes found today in products and applications can be
discovered automatically. By using an automated attack tool that tries virtually all
different attack combinations, with the ability to detect certain application anomalies
and indicate a successful attack, those security holes can be found almost without user
intervention.”

beSTORM is both a fuzzing framework and a protocol-specifi c fuzzer. It comes with
a predefi ned set of protocol “modules,” each containing a full description of the protocol
according to the RFC. beSTORM attempts to create all the different combinations of
the protocols, and sends them to the target. Since every different combination is “fuzzed,”
beSTORM covers the entire protocol space almost entirely (sample screen shots in
Figures 5.1 and 5.2).

 Commercial Fuzzing Solutions • Chapter 5 57

Figure 5.2 beSTORM Snapshot

Figure 5.1 beSTORM Snapshot

58 Chapter 5 • Commercial Fuzzing Solutions

Because this may result in millions and sometimes hundreds of millions of
combinations, beSTORM supports parallelism in several ways—by being multithreading
and by allowing distribution of the attack. It is also very effi cient in how the attacks
are done, allowing you to throttle the attack speed so as not to choke the target.

If you would like to extend the protocol module or build a test module for your
proprietary protocol, beSTORM comes with a module building tool that includes
very nice “auto-learn” capabilities to try to deduce the protocol format from sniffi ng
the network or analyzing captured packets. beSTORM uses various statistical analysis
functions to try to “guess” what the packet format is.

In addition to network fuzzing, beSTORM has fi le fuzzing and DLL/ActiveX
fuzzing capabilities.

Finally, to complete the package, beSTORM comes with a “monitor” component
that can attach itself to the tested application and monitor it for exceptions, memory
leaks, buffer overfl ows, etc. This allows you to pinpoint the problem and helps catch
“subtle” vulnerabilities that do not crash the application but result in a memory
overrun condition that may otherwise go unnoticed.

The monitor communicates with the beSTORM console using an open API,
which allows building custom monitors for proprietary platforms.

Once a weakness is discovered, beSTORM can generate a Perl script that recreates
the problem and can be used by a QA team to further investigate the issue.

BPS-1000 (by BreakingPoint Systems)
“BreakingPoint has developed the most powerful network test system on the planet,
the BPS-1000. At the core is our advanced network application engine, with the
ability to generate millions of real application data streams, while pushing security
to the max.

With over 3,000 unique security attacks and the ability to receive a monthly
update of the latest attacks, we can truly verify your equipment is secure. Our ability
to generate unique never-seen-before real attacks with an exhaustive list of evasion
techniques is guaranteed to bypass even the best security devices.”

BreakingPoint System was founded by people from NetWorth, NetSpeed, and
TippingPoint, along with the creator of the Metasploit open source penetration
testing suite.

The BPS-1000 attempts to “break” products by actively attacking them with known
attacks, yet-unknown attacks, and variation of attacks that try to bypass security systems

 Commercial Fuzzing Solutions • Chapter 5 59

that may be installed on the product. It can be best used to perform a benchmark
between security devices (fi rewalls, IDSs, etc.), as it tries to emulate a hacker attack on
the device. However, like the traditional fuzzers, it can also be used by developers to try
to fi nd security holes in their product.

BPS-1000 is not an “exhaustive” test and does not necessarily focus on testing the
product’s security.

However, it is unique, as it will try to perform the attacks in a “stealth” way to try
to bypass any security measures that are installed.

The appliance is very suitable for robustness testing, either by creating complicated
traffi c scenarios or by capturing your own network traffi c (in speeds up to 1Gps) and
recreating the traffi c, altering it, or amplifying it. It is capable of creating millions of
TCP sessions, and can create “fuzzed” Ethernet, IP, TCP, or UDP packets similar to
the traditional network fuzzers. Twenty protocols are supported, using several thousand
prebuilt attacks that are updated periodically.

Codenomicon
“Codenomicon develops and markets state-of-the-art software testing tools for
proactive elimination and prevention of security vulnerabilities. Codenomicon test
tools are available for a wide range of protocols and fi le formats.”

Codenomicon is the commercial version of the popular PROTOS testing suite.
It is not a single product, but separate testing tools available for a wide range of network
protocols (Figures 5.3 and 5.4).

Unlike the “classic” defi nition of a network fuzzer, Codenomicon’s testing tools
do not arbitrarily fuzz valid requests. Instead, the Codenomicon team built a set of
case studies known to be problematic. These case studies try to give a good simulation
of all the known security holes of the protocol and their variants. The advantage of
this approach is that testing can be done fairly fast, compared to a traditional fuzzer.
The number of case studies ranges from thousands to tens of thousands.

Codenomicon seems to focus on application robustness, so their tests attempt to see
if the product can “survive” the attacks and continue to provide a useful service. The
testing suites are available for both network protocols and fi le formats (“fi le fuzzing”).

Although there is no way for the user to extend testing modules or create tests
for proprietary protocols, PROTOS is still available and can be used for custom or
proprietary protocols. The company also seems to be very responsive to new protocol
requests and extensions.

60 Chapter 5 • Commercial Fuzzing Solutions

At the time of writing, the following protocol testing suites are available:

■ Audio (AU, AIFF, AMR, MIDI, iMelody, ID3, MP3, WAV, and VOC)

■ BGP

■ Bluetooth

■ Compression

■ Diameter (server)

■ DNS (server and client)

■ DVMRP

■ EAP

■ FTP (server)

■ GRE

■ GTP

■ H.248

■ H.323

■ HTTP (server and client)

■ Images (GIF87, GIF89M/A, JPEG/JFIF, MBM, MSBMP, MSICO, PNG12,
PCX, PBM, PGM, PPM, RAS, XBM, XPM, and WBMP)

■ IMAP (server)

■ IPSec

■ IPv4 (TCP, UDP, IPv4, ARP, ICMP, IGMP)

■ IPv6 (TCP, UDP, IPv6, ICMPv6/MLD)

■ ISAKMP/IKE (server)

■ IS-IS

 Commercial Fuzzing Solutions • Chapter 5 61

■ LDAP (server)

■ MGCP

■ MPLS/LDP

■ NTP (both)

■ OSPF

■ PIM-SM/DM

■ POP3 (server)

■ RADIUS (both)

■ RIP

■ RSVP

■ RTSP

■ RTP

■ SigComp

■ SIP (both)

■ SMTP (server)

■ SNMP (server)

■ SSH (server)

■ TACACS+ (server and client)

■ TLS/SSL (server and client)

■ Video

■ X.509

62 Chapter 5 • Commercial Fuzzing Solutions

Figure 5.3 Codenomicon Test Tool

 Commercial Fuzzing Solutions • Chapter 5 63

Figure 5.4 Codenomicon Snapshot

Mu-4000 Security Analyzer (by Mu Security)
“Mu Security is developing solutions to characterize, quantify, and proactively
improve security. Using this approach, it is possible to detect unknown and known
vulnerabilities in applications and systems by methodically attacking target systems to
uncover fl aws; compare the relative robustness of different products to malicious
attacks; and drive improvement in product security through quantifi able metrics.”

64 Chapter 5 • Commercial Fuzzing Solutions

The Mu-4000 Security Analyzer is an appliance-based solution that tries to
quantify or certify network products. It can be used, for example, by IDS vendors to
see if their IDS blocks known attacks on a certain protocol. Mu sends known attacks,
and “mutations” of those attacks, which results in tens of thousands of attacks
per protocol (Figure 5.5).

Figure 5.5 Mu Security Snapshot

An interesting aspect of the testing is the ability to test either the “end point”
(a direct attack on the application) or as “pass through.” The latter is intended for
routers and other network devices, and checks at both ends to analyze what network
traffi c was sent in by the Mu-4000, and what came out from the device we are
testing. This allows checking fi ltering devices to make sure the right things are being
fi ltered or blocked. It is also a good way to check if things are fi ltered that shouldn’t
be; for example, network traffi c that is mysteriously altered or blocked by a router.

 Commercial Fuzzing Solutions • Chapter 5 65

The Mu-4000 is a 2U rack-mountable appliance that includes four Gb Ethernet and
two serial ports, two power sockets for power recycling of systems that lock up during
a failure, and both Ethernet and serial management console ports. Being a security
appliance, the Mu-4000 provides testing with speed, and the capability to test hardware
products by simply connecting them to the testing appliance. The capability to perform
a power cycle allows you to run unattended tests for hardware appliances.

This page intentionally left blank

67

Chapter 6

Build Your
Own Fuzzer

Solutions in this chapter:

■ What a Fuzzer Should Include

■ Fuzzer Building Blocks

■ How to Do It

■ What a Simple Fuzzer Can Do

˛ Summary

68 Chapter 6 • Build Your Own Fuzzer

Hold Your Horses
Before we start building a fuzzer, we must understand what a fuzzer is, or at least
understand what a fuzzer should include, and why we can’t just send in random data.
This is also sometimes referred to as the 1/2^32 problem—where in some cases,
changing something at random is as good as playing the lottery.

Most people hear the word fuzzing or fuzzer and immediately imagine something
that is obscure, uncertain, or even random. If we look up the phrase “Fuzz testing” in
Wikipedia, we see that at least one of the methods of doing fuzz testing is “Simple
fuzz usually uses a pseudo random number generator to provide input” (http://en.
wikipedia.org/w/index.php?title=Fuzz_testing). Although this approach can yield
results, it is uncommon for a random input to cause problems in complicated
products.

This is because the probability of someone fi nding the right bit of data, which
will cause a problem in a product that is complicated enough (for example, require
authentication or some sort of session handling), is almost impossible or at least
improbable.

In theory, we could start sending the product we are interested in testing one
byte, and change its value through so that it goes through the value of 0x00 up to
the value of 0xFF. Then move to send two bytes of data, and change their value so
they pass through 0x0000 up to 0xFFFF. This type of testing, sometimes referred to as
a sequential tester, will conduct the best fuzz testing possible, but at a very steep price,
as you probably could have guessed by now.

This is because it is impractical, as the number of data sets needed to cover a fairly
simple data set of the DNS protocol Standard Query, which is 27 bytes long (a query
for the host “a”), would take an immensely long time to complete.

NOTE

Even though we refer to protocols, we are not limiting the fuzz-testing fi eld
to network protocols. Whenever we refer to a protocol, we are using the term
in the context of a “cookbook,” the specifi cation or guidelines of how to send
data that will be interpreted correctly on the other end.)

 Build Your Own Fuzzer • Chapter 6 69

To cover all possible combinations of the DNS Standard Query protocol we
would in this case send 256^27, which is a very big number—105,312,291,668,557,
186,697,918,027,683,670,432,318,895,095,400,549,111,254,310,977,536—or written
in shorter form roughly the number 1 and 65 zeros after it. In computer time, this would
be almost infi nity; even on a very fast computer able to test millions of combinations
per second, it will still take 1 and 60 zeros after it seconds to complete the simple
27 bytes long testing.

We just saw that it is impractical to send every possible combination, even on the
simplest protocols. However, what about randomly changing bytes in a given known
to be valid data set? Random data changing is a good method to kick start testing of
a protocol; it requires no technical expertise or understanding of the protocol.

Two problems arise when randomness is used for fuzz testing, the fi rst being
repeatability; the ability for someone to repeat the same random change so the
problem discovered can be recreated and investigated. This can be addressed by
pre-selecting a fi xed random seed so we can recreate the random numbers generated
before and after our current position. (Note: Even though we refer to random number,
we are actually talking about a pseudo random number, but for sake of clarity, we
will not get into the difference between the two.)

However, pre-selecting a fi xed random seed does not solve the second issue—protocol
integrity. Protocol integrity defi nes a state where the sender and receiver of the data
contained inside the protocol both know how to parse and understand it. The integrity
is not always crucial and, in some cases, the un-integrity of the protocol caused by
fuzz testing is what we are interested in checking. In many cases, a data set that
doesn’t stand up to the integrity test will be simply discarded.

Here are some examples:

■ A SIP packet not containing the minimal required headers to valid, might
trigger a problem in the product being tested, but most SIP parsers will be
silently discarded.

■ The FTP protocol’s command channel, where the USER, PASS, NLST, etc.
commands are sent, expects all the data to be printable characters or at the
very least not to contain NULL characters or line feeds in the middle of a
given command receives such data due to a random change.

■ A PE (Portable Executable) fi le not containing the required initial “MZ”
characters will not be regarded as a PE fi le.

70 Chapter 6 • Build Your Own Fuzzer

■ A ZIP fi le that was randomly changed without altering the checksum of the
fi le that was modifi ed will not be analyzed.

■ Any encrypted data stream would become invalid as soon as we change
random bytes of it, as the integrity of the data set would be compromised.

We can provide many more examples, but this isn’t the goal of the chapter; rather,
we want to understand how we can build our very own fuzzer.

Fuzzer Building Blocks
As we just saw, a fuzzer can’t just randomly change data; it has to have some form of
understanding what it is changing, as changing it at random in many cases will cause
the data to be invalid and discarded without being used by the product being tested.

Therefore, a fuzzer needs:

■ One or more valid data sets.

■ Understanding of what each byte in that data set means.

■ Change the values of the data sets while maintaining the integrity of the
data being sent, so it is parsed even if it contains malformed data; for example,
maintain the checksum value of a ZIP fi le.

■ Recreate the same malformed data set repeatedly.

■ An arsenal of malformed values or the capability to create a variety of
malformed outputs (NULL characters, Unicode data, negative values, etc.).

■ Maintain a form of a state machine, which will allow us to send an
authentication request and use the data returned, if necessary, for subsequent
requests.

One or More Valid Data Sets
This building block is used by the fuzzer as the basis for its testing; without it, the
fuzzer is no better than our random number generator, or even worse, than our
sequential tester. This is because we have no way of telling our fuzzer what the
known-to-be-good values for the protocol being tested are.

This is especially important for protocols that have fi xed values at certain locations,
and that these fi xed values are used by products to detect the protocol being used.

 Build Your Own Fuzzer • Chapter 6 71

For example, no Windows ICON fi le would be processed unless it begins with
0x0000 followed by 0x0100, as the specifi cation clearly states that the fi le header
needs to be:
WORD idReserved; // Reserved (must be 0)

WORD idType; // Resource Type (1 for icons)

If we play around with these two fi rst values, the product parsing the ICON fi le
will probably ignore the fi le loaded and not parse it as an ICON fi le.

We mentioned that we will need one or more valid data sets, as many protocols
have different states (for example, authentication and a request for fi le listing such as
in the case of the FTP protocol), and we can’t simply send a fi le listing request and
expect the FTP server to spew the list of fi les. (Note: In some cases, part of the fuzz
testing we are interested in doing is mixing up of the state machine—request a fi le
listing before doing a mandatory authentication procedure. We will not talk about
this, as it is less fuzz testing and more logic testing.)

Understanding What Each Byte
in the Data Set Means
Simply having a large valid “database” of data sets doesn’t mean our fuzzer will know
what to do with it. Our fuzzer needs to know and understand what each byte, line,
and sequence means. This is very similar to teaching someone a language. We can’t
just teach him all the possible words, or even complete paragraphs; we must teach how
the words are combined into paragraphs, how their meaning changes if we order the
words differently, or even change their “value”—adding a ing at the end of a verb.

Our fuzzer can be thought of on many levels as how a protocol is defi ned, from
understanding what state comes before what state, to understanding that adding one
more character to a certain location requires you to change the length value that
precedes it.

In some more common cases we would need to teach the fuzzer to do more than
just data manipulation; it needs to know how encoding of data is preformed. This is
true whenever things like MD5, CRC32, and Base64 encoding are preformed on the
data being sent. Manipulating the value without modifying the corresponding
encoded data would cause the data to be invalid and in many cases discarded, whereas
modifying and then encoding it would maintain the integrity of the protocol while
allowing the fuzzer to test the protocol.

72 Chapter 6 • Build Your Own Fuzzer

Change the Values of the Data Sets While
Maintaining the Integrity of
the Data Being Sent
As just mentioned, it is important for the fuzzer to know how to manipulate the data
without causing the data to become invalid. Some protocols use a fi xed size data set,
where, for example, every data set is 512 bytes long, even though variable length
values can be stored inside it. This means that some sort of padding, or length and
value relationship, needs to be maintained and updated by the fuzzer.

For a fuzzer to be able to do this, it would need to have a list of attributes and
characteristics for each byte found inside the protocol. These attributes and characteristics
would be applied after the data fi eld is fuzzed.

Recreate the Same Malformed Data
Set Time and Time Again
It is already a challenge to fi nd problems with fuzz testing; worse is not being able to
understand why they happened or how to recreate them. Imagine this: You kick start
your fuzz testing session on a product, leave it overnight, come back in the morning
and fi nd out that the program crashed, but unfortunately you don’t understand what
happened as the program left no trace, and your fuzzer moved on to test other things.

This means that your fuzzer needs to be able to do two things: save a list of last
data sets sent to the server, so you can roll back your fuzz testing session to a close
proximity to where you were just 10 minutes ago, and be able to pass through the
same data sets you have done in those 10 minutes so you would reach the same point
you were just at.

This is done for two reasons: you cannot always know which data set caused the issue,
and in some cases, a series of data sets can make the program misbehave, usually due to
some latent process or task handling causing the crash—usually garbage collectors.

NOTE

Your fuzzer should be able to recreate not only the invalid data set, but also
the state machine that brought the protocol to the state of an error. This is
true for those protocols that have such requirement of a state machine.)

 Build Your Own Fuzzer • Chapter 6 73

An Arsenal of Malformed Values, or the Ability
to Create a Variety of Malformed Outputs
Wake up any hacker in the middle of the night, ask him what malformed data he
would send, and he would say, “buffer overfl ows—long strings, format strings—percent
signs, NULL characters, etc.” However, taking that knowledge and converting it to an
arsenal that will be used wisely—not sending NULL characters on a textual protocol
for example—is no easy feat.

Therefore, your fuzzer needs to have two things: a large set of malformed values,
anything from invalid datetime values, through invalid hostname values up to simple
long strings, and then each of these malformed values needs to be associated with the
fi elds the fuzzer is going to test.

Here are some examples of groups of malformed values:

■ Buffer overfl ow values A…A (multiple A characters), <<…<<< (multiple
smaller than characters), etc.

■ Boundary cases like for integer values −2, −1, 0, 2^8-2 = 254, 2^8-1 = 255,
2^8 = 256, 2^12-2 = 4094, 2^12-1 = 4095, 2^12 = 4096, etc., both in literal
form (the string representation of −2, −1…) and in encoded form (the
binary representation of −2 = 0xFFFFFE, −1 = 0xFFFFFF in a 4-byte fi eld).

■ Format strings values %s, %x, %25s—encoded percent, %n, etc.

■ NULL character values, either appended to the original data, as standalone
data, or removed from the original data (a NULL terminated string no
longer being NULL terminated).

■ Unicode strings values that include both the Unicode form of the preceding
values and malformed Unicode encoded data—data whose Unicode content
cannot be parsed as Unicode.

■ Off-by-one values, where a length bounded to a string is either one below
the true value or one above the true value.

NOTE

Not all malformed values are created equal in the products you test. One
malformed value for a product might be a valid one for another; for example,
it might disregard the millisecond fi eld provided in the datetime value you

74 Chapter 6 • Build Your Own Fuzzer

Even though a comprehensive arsenal of malformed values is important, exaggerating
and making it too large would mean you would probably test much more than needed,
or in some cases not be able to test “later” areas (those that occur at the end of the
testing phase), as you would be “stuck” at testing the initial parts of the protocol.

It is important to fi nd a balance between a comprehensive arsenal, where the
most common issues are tested, and a complete arsenal, where malformed value is
tested even if it is irrelevant for the fi eld in question (for example, sending a malformed
host value when the protocol specifi es that a datetime value should be given).

This balance is best achieved by creating a fuzzer that is able to do a “quick run”
where expected values are sent—datetime value sent in the datetime fi eld only,
followed by a “probable run,” date value sent in the datetime fi eld, fi nished with a
“quick-run” where everything is allowed.

This balanced approach would be the best of both worlds; do a quick test that
should fi nd the most probable problems, and the later runs—the “quick run”—should
fi nd the more exotic problems.

Maintain a Form of a State Machine
Many protocols, mainly network protocols, require some sort of state machine.
Usually, as in the case of the RPC protocol, a binding request is sent, a response is
received containing some kind of data fi eld, which should be sent back on any
follow-up data sent to the server. In similar fashion to the HTTP protocol where
cookies are used to maintain a session, the RPC protocol uses this data—known as
the transaction id—to know that the packet being sent to it is part of the same
“conversation.”

A fuzzer unable to maintain a simple state machine would not be able to fuzz test
any protocol that requires sending more than one data set; some exceptions may
occur if you can do what is sometimes referred to as session fi xation. Any follow-up
data set would be disregarded by the protocol’s parser, as it would lack the required
data to be valid.

State machines can also be used to test the logic of the protocol’s parser where
the state is “shuffl ed” so that, for example, the authentication process occurs after the

provided. Moreover, some products that crash due to 1022 characters being
sent to them might not crash upon receiving 1024 characters, as its overfl ow
detection algorithm checks for that value.

 Build Your Own Fuzzer • Chapter 6 75

request to download a fi le, or the authentication process is done more than once or
even in reverse order—sending the password fi eld before sending the user fi eld.

These kinds of testing would fall under the category of logic test, and would be
considered by many as not the classic fuzz testing. However, testing this is important,
and many vulnerabilities have been discovered in relation to this kind of testing.

Summarize
To summarize, we would need the following:

1. An initial data set

2. Understand what it contains

3. Modify the value it contains

4. Provide that data to the protocol

5. If we later discover that a problem has occurred, be able to recreate the
preceding “recipe”; if nothing happened, repeat step 1.

Down to Business
Up until now, we were talking about what is needed; from this point, we will be
talking about how we do it.

Our coding language of choice is Perl, even though we believe you could build a
fuzzer with any language, even Bash—of course, some languages would make it
harder for you to build than others. We will take the fi le fuzzing example and use it;
we will not be building a full-blown generic fuzzer, but more of a proof of concept
fuzzer that is able to generate malformed BMP fi les.

We start by building a Perl Module (PM fi le) that will generate upon request a
malformed value; for simplicity, it will not fuzz existing data, but will return one
from the predefi ned list.
Beyond Security Inc.

Copyright 2007 – Noam Rathaus

package Generator;

my @MalformedValues = (

 “RepeatedAx1” => “A”, “RepeatedAx2” => “A”x2,

 “RepeatedAx4” => “A”x4, “RepeatedAx8” => “A”x8,

 “RepeatedAx16” => “A”x16, “RepeatedAx32” => “A”x32,

 “RepeatedAx64” => “A”x64, “RepeatedAx128” => “A”x128,

 “RepeatedAx256” => “A”x256, “RepeatedAx512” => “A”x512,

76 Chapter 6 • Build Your Own Fuzzer

 “RepeatedAx1024” => “A”x1024, “RepeatedAx2048” => “A”x2048,

 “RepeatedAx4096” => “A”x4096, “RepeatedAx8192” => “A”x8192,

 “RepeatedAx16384” => “A”x16384, “RepeatedAx32768” => “A”x32768,

 “RepeatedAx65536” => “A”x65536,

 “RepeatedNULLx1” => “\x00”, “RepeatedNULLx2” => “\x00”x2,

 “RepeatedNULLx4” => “\x00”x4, “RepeatedNULLx8” => “\x00”x8,

 “RepeatedNULLx16” => “\x00”x16, “RepeatedNULLx32” => “\x00”x32,

 “RepeatedNULLx64” => “\x00”x64, “RepeatedNULLx128” => “\x00”x128,

 “RepeatedNULLx256” => “\x00”x256, “RepeatedNULLx512” => “\x00”x512,

 “RepeatedNULLx1024” => “\x00”x1024, “RepeatedNULLx2048” => “\x00”x2048,

 “RepeatedNULLx4096” => “\x00”x4096, “RepeatedNULLx8192” => “\x00”x8192,

 “RepeatedNULLx16384” => “\x00”x16384, “RepeatedNULLx32768” => “\x00”x32768,

 “RepeatedNULLx65536” => “\x00”x65536,

 “Numeric −1” => “−1”, “Numeric −2” => “−2”,

 “Numeric 0” => “0”,

 “Binary −1 (BYTE)” => “\xFF”, “Binary −2 (BYTE)” => “\xFE”,

 “Binary 0 (BYTE)” => “\x00”,

 “Binary −1 (2 BYTES)” => “\xFF\xFF”, “Binary −2 (2 BYTES)” => “\xFF\xFE”,

 “Binary 0 (2 BYTES)” => “\x00\x00”,

 “Binary −2 (2 BYTES Reverse)” => “\xFE\xFF”,

 “Binary −1 (3 BYTES)” => “\xFF\xFF\xFF”, “Binary −2 (3 BYTES)” =>
“\xFF\xFF\xFE”,

 “Binary 0 (3 BYTES)” => “\x00\x00\x00”,

 “Binary −2 (3 BYTES Reverse)” => “\xFE\xFF\xFF”,

 “Binary −1 (4 BYTES)” => “\xFF\xFF\xFF\xFF”, “Binary −2 (4 BYTES)” =>
“\xFF\xFF\xFF\xFE”,

 “Binary 0 (4 BYTES)” => “\x00\x00\x00\x00”,

 “Binary −2 (4 BYTES Reverse)” => “\xFE\xFF\xFF\xFF”,

 “Format String %sx1” => “%s”x1, “Format String %sx2” => “%s”x2,

 “Format String %sx4” => “%s”x4, “Format String %sx8” => “%s”x8,

 “Format String %sx16” => “%s”x16, “Format String %sx32” => “%s”x32,

 “Format String %xx1” => “%x”x1, “Format String %xx2” => “%x”x2,

 “Format String %xx4” => “%x”x4, “Format String %xx8” => “%x”x8,

 “Format String %xx16” => “%x”x16, “Format String %xx32” => “%x”x32,

);

#use Data::Dumper;

#print Dumper(\@MalformedValues);

sub new {

 my $class = shift;

 my $self = bless(

 Build Your Own Fuzzer • Chapter 6 77

 {

 ‘Main’ => @_ ? shift : undef,

 },

 $class);

 return($self);

}

sub returnCount {

 my $class = shift;

 return scalar(@MalformedValues) / 2;

}

sub returnValueAt {

 my $class = shift;

 my $pos = shift;

 return $MalformedValues[$pos*2+1];

}

sub returnNameAt {

 my $class = shift;

 my $pos = shift;

 return $MalformedValues[$pos*2];

}

1;

As you can see in the preceding module, the arsenal of malformed values is far
from complete, but can be easily extended to have additional types of attacks and test
additional cases.

The next stage is to build an infrastructure to allow us to explain to our fuzzer
how the protocol is built. We will defi ne for our protocol that its values are either
a constant (don t fuzz this value), a buffer (fuzz this value), or a length (change this
value in accordance to the data we are bounded to; if it grows, increase our value, if
it diminishes, decrease our value).

A BMP fi le contains of the following data structures (www.fortunecity.com/
skyscraper/windows/364/bmpffrmt.html):
 BITMAPFILEHEADER bmfh;

 BITMAPINFOHEADER bmih;

 RGBQUAD aColors[];

 BYTE aBitmapBits[];

Where the BITMAPFILEHEADER is defi ned as:
 WORD bfType; // must always be set to ‘BM’ to declare that this is a .bmp-fi le.

 DWORD bfSize; // specifi es the size of the fi le in bytes.

 WORD bfReserved1; // must always be set to zero.

78 Chapter 6 • Build Your Own Fuzzer

 WORD bfReserved2; // must always be set to zero.

 DWORD bfOffBits; // specifi es the offset from the beginning of the fi le
to the bitmap data.

And BITMAPINFOHEADER is defi ned as:
 DWORD biSize; // specifi es the size of the BITMAPINFOHEADER structure, in bytes.

 DWORD biWidth; // specifi es the width of the image, in pixels.

 DWORD biHeight; // specifi es the height of the image, in pixels.

 WORD biPlanes; // specifi es the number of planes of the target device, must be
set to one.

 WORD biBitCount; // specifi es the number of bits per pixel.

 DWORD biCompression; // Specifi es the type of compression, usually set to zero
(no compression).

 DWORD biSizeImage; // specifi es the size of the image data, in bytes. If there is
no compression, it is valid to set this member to zero.

 DWORD biXPelsPerMeter; // specifi es the horizontal pixels per meter on the
designated target device, usually set to zero.

 DWORD biYPelsPerMeter; // specifi es the vertical pixels per meter on the
designated target device, usually set to zero.

 DWORD biClrUsed; // specifi es the number of colors used in the bitmap, if set to
zero the number of colors is calculated using the biBitCount member.

 DWORD biClrImportant; // specifi es the number of color that are ‘important’ for
the bitmap, if set to zero, all colors are important.

Followed by the RGBQUAD array:

 BYTE rgbBlue; // specifi es the blue part of the color.

 BYTE rgbGreen; // specifi es the green part of the color.

 BYTE rgbRed; // specifi es the red part of the color.

 BYTE rgbReserved; // must always be set to zero.

Last but not least, the image data itself.
So, what would be the best method of representing the preceding data? A structured

variable that defi nes four types of elements:

■ Constants

■ Buffers

■ Length

■ Structure

Constants are elements whose value does not change, buffers are elements we want
to fuzz around with, Length are elements that contain the size value of another element,
and structure is an element that contains other elements (in a nesting manner).

 Build Your Own Fuzzer • Chapter 6 79

The following is the representation of the previous specifi cation of the BMP fi le:
Beyond Security Inc.

Copyright 2007 – Noam Rathaus

package Protocol;

my @BMPStructure =

 (

 {

 “Name” => “bmfh”,

 “Type” => “S”,

 “Structure” =>

 [

 {

 “Name” => “bfType”,

 “Type” => “C”,

 “Default” => “BM”,

 },

 {

 “Name” => “bfSize”,

 “Type” => “L”,

 “Bounded to” => “Size of File”,

 “Size” => 4,

 “Order” => “Reverse”,

 },

 {

 “Name” => “bfReserved1”,

 “Type” => “C”,

 “Default” => “\x00\x00”,

 },

 {

 “Name” => “bfReserved2”,

 “Type” => “C”,

 “Default” => “\x00\x00”,

 },

 {

 “Name” => “bfOffBits”,

 “Type” => “C”,

 “Default” => “\x36\x00\x00\x00”

 }

],

 },

80 Chapter 6 • Build Your Own Fuzzer

 {

 “Name” => “bmih”,

 “Type” => “S”,

 “Structure” =>

 [

 {

 “Name” => “biSize”,

 “Type” => “C”,

 “Default” => “\x28\x00\x00\x00”,

 },

 {

 “Name” => “biWidth”,

 “Type” => “B”,

 “Default” => “\x10\x00\x00\x00”,

 “Size” => 4,

 },

 {

 “Name” => “biHeight”,

 “Type” => “B”,

 “Default” => “\x10\x00\x00\x00”,

 “Size” => 4,

 },

 {

 “Name” => “biPlanes”,

 “Type” => “B”,

 “Default” => “\x01\x00”,

 “Size” => 2,

 },

 {

 “Name” => “biBitCount”,

 “Type” => “B”,

 “Default” => “\x08\x00”,

 “Size” => 2,

 },

 {

 “Name” => “biCompression”,

 “Type” => “C”,

 “Default” => “\x00\x00\x00\x00”,

 },

 Build Your Own Fuzzer • Chapter 6 81

 {

 “Name” => “biSizeImage”,

 “Type” => “B”,

 “Default” => “\x36\x00\x00\x00”,

 “Size” => 4,

 },

 {

 “Name” => “biXPelsPerMeter”,

 “Type” => “B”,

 “Default” => “\x00\x00\x00\x00”,

 “Size” => 4,

 },

 {

 “Name” => “biYPelsPerMeter”,

 “Type” => “B”,

 “Default” => “\x00\x00\x00\x00”,

 “Size” => 4,

 },

 {

 “Name” => “biClrUsed”,

 “Type” => “B”,

 “Default” => “\x00\x00\x00\x00”,

 “Size” => 4,

 },

 {

 “Name” => “biClrImportant”,

 “Type” => “B”,

 “Default” => “\x00\x00\x00\x00”,

 “Size” => 4,

 },

],

 },

 {

 “Name” => “aColors”,

 “Type” => “B”,

 “Default” => “\xFF\x20”,

 },

 {

 “Name” => “aBitmapBits”,

 “Type” => “B”,

82 Chapter 6 • Build Your Own Fuzzer

 “Default” =>

“\x01\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x02\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x03\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x04\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x05\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x06\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x07\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x08\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x09\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x0A\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x0B\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x0C\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x0D\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x0E\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x0F\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x0F\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”.

“\x10\x10\x20\x30\x40\x50\x60\x7F\x8F\x9F\xAF\xBF\xCF\xDF\xFF”

 },

);

sub new {

 my $class = shift;

 my $self = bless(

 {

 ‘Main’ => @_ ? shift : undef,

 },

 $class);

 return($self);

}

sub returnStructure {

 my $class = shift;

 return (\@BMPStructure);

}

1;

Notice that we have written in several locations the Size attribute to allow our
fuzzer to avoid sending data that is too small or too big to fi t the fi eld. This is important
for protocols that have strict header structures, as sending a malformed (in size)
header would likely get the parser of the structure to discard the data.

 Build Your Own Fuzzer • Chapter 6 83

Now that we have a generator of data and a specifi cation of the protocol, we need
something to take them and combine them together—this is the Fuzzer.pl script:
#!/usr/bin/perl

Beyond Security Inc.

Copyright 2007 – Noam Rathaus

use strict;

use Protocol;

use Generator;

my $refProtocol = new Protocol;

my $refGenerator = new Generator;

my $CombinationCount = $refGenerator->returnCount();

print “Test cases: $CombinationCount\n”;

#use Data::Dumper;

#print Dumper($refProtocol->returnStructure());

my %GlobalPositions;

my @GlobalProtocol = @{$refProtocol->returnStructure()};

my $Counter = 0;

while (1 == incrementPos(\@GlobalProtocol))

{

 $Counter++;

my @Data;

@Data = generateProtocol(\@GlobalProtocol, \@Data);

my $data = “”;

my $lastWord = “”;

my $preData = join(“”, @Data);

foreach my $dataElement (@Data)

{

 if (substr($dataElement, 0, 3) eq “\$SZ”)

 {

 #print “dataElement: $dataElement\n”;

 my $Size = substr($dataElement, 3, 1);

 my $Length = length($preData);

 #print “Length: $Length\n”;

 $dataElement = pack(“L1”, $Length);

 #printf (“dataElement: %x\n”, $dataElement);

 }

 $data .= $dataElement;

}

open(FILE, “> /tmp/data$Counter.bmp”);

84 Chapter 6 • Build Your Own Fuzzer

print FILE $data;

 close(FILE);

};

This function fi nds the fi rst suitable place and moves its position by one

sub incrementPos

{

 my $ptrProtocol = shift;

 my @Protocol;

 if (defi ned $ptrProtocol)

 {

 @Protocol = @{$ptrProtocol};

 }

 foreach my $ptrElement (@Protocol)

 {

 my %Element;

 if (defi ned $ptrElement)

 {

 %Element = %{$ptrElement};

 }

 if (%Element->{“Type”} eq “L”)

 {

 next;

 }

 elsif (%Element->{“Type”} eq “C”)

 {

 next;

 }

 elsif (%Element->{“Type”} eq “S”)

 {

 my @Structure;

 if (defi ned %Element->{“Structure”})

 {

 @Structure = @{%Element->{“Structure”} };

 }

 my $ret = incrementPos(\@Structure);

 if ($ret == 1)

 {

 return 1;

 }

 }

 Build Your Own Fuzzer • Chapter 6 85

 elsif (%Element->{“Type”} eq “B”)

 {

 my $Pos = undef;

 if (defi ned %GlobalPositions->{%Element->{‘Name’} })

 {

 $Pos = %GlobalPositions->{%Element->{‘Name’} };

 }

 if ($Pos != −1)

 {

 if (not defi ned $Pos)

 {

 $Pos = 0;

 }

 else

 {

 $Pos++;

 }

 if (defi ned %Element->{‘Size’} and %Element->{‘Size’} > 0)

 {

 #printf (“Size requirement: %d\n”, %Element->{‘Size’});

 while ($Pos <= $CombinationCount && length($refGenerator->
returnValueAt($Pos)) != %Element->{‘Size’})

 {

 $Pos ++;

 }

 }

 if ($Pos >= $CombinationCount)

 {

 %GlobalPositions->{%Element->{‘Name’} } = −1;

 }

 else

 {

 %GlobalPositions->{%Element->{‘Name’} } = $Pos;

 return 1;

 }

 }

 }

 }

 return 0;

}

86 Chapter 6 • Build Your Own Fuzzer

sub generateProtocol

{

 my $ptrProtocol = shift;

 my $ptrData = shift;

 my @Data;

 if (defi ned $ptrData)

 {

 @Data = @{$ptrData};

 }

 my @Protocol;

 if (defi ned $ptrProtocol)

 {

 @Protocol = @{$ptrProtocol};

 }

 foreach my $ptrElement (@Protocol)

 {

 my %Element;

 if (defi ned $ptrElement)

 {

 %Element = %{$ptrElement};

 }

 #print “Handling: ”.%Element->{‘Name’}.“\n”;

 if(%Element->{“Type”} eq “B”)

 {

 my $Value;

 if (not defi ned %GlobalPositions->{%Element->{‘Name’} } or −1 ==
(%GlobalPositions->{%Element->{‘Name’} }))

 {

 #print “Don’t Fuzz ”.%Element->{‘Name’}.“\n”;

 $Value = %Element->{“Default”};

 }

 else

 {

 $Value = $refGenerator->returnValueAt(%GlobalPositions->{%Element-> {‘Name’} });

 if (defi ned %Element->{“Size”} and length($Value) != %Element->{“Size”})

 {

 $Value = %Element->{“Default”};

 } else

 {

 print “Fuzzing data ”.%Element->{“Name”}.

 Build Your Own Fuzzer • Chapter 6 87

 “ with ”. $refGenerator->returnNameAt(%GlobalPositions->{%Element->
{‘Name’} }).

 “ (”.%GlobalPositions->{%Element->{‘Name’} }.“)\n”;

 }

 }

 push(@Data, $Value);

 }

 elsif (%Element->{“Type”} eq “C”)

 {

 # Just send it

 push(@Data, %Element->{“Default”});

 }

 elsif (%Element->{“Type”} eq “L”)

 {

 # What is the size of the element?

 if (%Element->{“Bounded to”} eq “Size of File”)

 {

 # We need to wait for the fi le to be generated before fi lling this in lets
push the reserved $FILESIZE inside

 my $Size = %Element->{“Size”};

 push(@Data, “\SZSize”);

 }

 }

 elsif (%Element->{“Type”} eq “S”)

 {

 # Recursive go

 my @Structure;

 if (defi ned %Element->{“Structure”})

 {

 @Structure = @{%Element->{“Structure”} };

 }

 @Data = generateProtocol(\@Structure, \@Data);

 }

 else {

 die(“Undefi ned: ”.%Element->{“Type”}.“\n”);

 }

 }

 return @Data;

}

88 Chapter 6 • Build Your Own Fuzzer

Running the above Fuzzer.pl script, will generate 204 test cases as we are skipping
on cases that don’t match our Buffer’s size requirements. This is of course a very
simple fuzzer, but it is good for a few things:

■ Easily extend the malformed values list

■ Use the same Fuzzer for different fi le types – the Protocol structure is not
limited to BMP fi les

■ The Fuzzer understand a few basic attributes such as Size and Data Length

■ Fuzzer’s code can be used to also automate the process of testing the generated
data with your program

Simplest Fuzz Testing Find Issues
We just completed your very fi rst fuzzer; more specifi cally, your very own BMP fi le
fuzzer. In most cases, you would probably wonder what such a simple fuzzer could
do. Well, you won’t believe it but Kuickshow (KDE image/slideshow viewer) version
4:3.5.7-2 is actually vulnerable to one of the BMP fi les generated by the previous
fuzzer.

The vulnerability isn’t an exploitable buffer overfl ow; rather, it appears to be a
form of a DoS where the BMP parser appears to enter an endless loop. If you copied
the previous code exactly, data28.bmp is the culprit that causes the endless loop.

The malformed content of the BMP fi le is:
0000000000 42 4d 37 01 00 00 00 00 00 00 36 00 00 00 28 00 BM7…….6…(.

0000000016 00 00 10 00 00 00 10 00 00 00 01 00 00 00 00 00 …………….

0000000032 00 00 36 00 00 00 00 00 00 00 00 00 00 00 00 00 ..6………….

0000000048 00 00 00 00 00 00 ff 20 01 10 20 30 40 50 60 7f ……ÿ .. 0@P‘.

0000000064 8f 9f af bf cf df ff 02 10 20 30 40 50 60 7f 8f ..−¿Ïßÿ.. 0@P‘..

0000000080 9f af bf cf df ff 03 10 20 30 40 50 60 7f 8f 9f .−¿Ïßÿ.. 0@P‘ ...

0000000096 af bf cf df ff 04 10 20 30 40 50 60 7f 8f 9f af −¿Ïßÿ.. 0@P‘ ...−

0000000112 bf cf df ff 05 10 20 30 40 50 60 7f 8f 9f af bf ¿Ïßÿ.. 0@P‘ ...−¿

0000000128 cf df ff 06 10 20 30 40 50 60 7f 8f 9f af bf cf Ïßÿ.. 0@P‘ ...−¿Ï

0000000144 df ff 07 10 20 30 40 50 60 7f 8f 9f af bf cf df ßÿ.. 0@P‘ ...−¿Ïß

0000000160 ff 08 10 20 30 40 50 60 7f 8f 9f af bf cf df ff ÿ.. 0@P‘ ...−¿Ïßÿ

0000000176 09 10 20 30 40 50 60 7f 8f 9f af bf cf df ff 0a .. 0@P‘ ...−¿Ïßÿ.

0000000192 10 20 30 40 50 60 7f 8f 9f af bf cf df ff 0b 10 . 0@P‘ ...−¿Ïßÿ..

0000000208 20 30 40 50 60 7f 8f 9f af bf cf df ff 0c 10 20 0@P‘ ...−¿Ïßÿ..

0000000224 30 40 50 60 7f 8f 9f af bf cf df ff 0d 10 20 30 0@P‘ ...−¿Ïßÿ.. 0

 Build Your Own Fuzzer • Chapter 6 89

0000000240 40 50 60 7f 8f 9f af bf cf df ff 0e 10 20 30 40 @P‘, ...−¿Ïßÿ.. 0@

0000000256 50 60 7f 8f 9f af bf cf df ff 0f 10 20 30 40 50 P‘, ...−¿Ïßÿ.. 0@P

0000000272 60 7f 8f 9f af bf cf df ff 0f 10 20 30 40 50 60 ‘ ...−¿Ïßÿ.. 0@P‘

0000000288 7f 8f 9f af bf cf df ff 10 10 20 30 40 50 60 7f ...−¿Ïßÿ.. 0@P‘.

0000000304 8f 9f af bf cf df ff ..−¿Ïßÿ

For easier reading, we have marked the fi elds either with or without an underline
in an interlaced method, and in bold the malformed value. The malformed value of
0x0000 for the BPP (biBitCount) fi eld means that the fi le has no bits count. This
causes an endless loop, as the code does not know how much to move forward when
it reads the data section of the image.
Going through the code found in Imlib/load.c you would notice:

 bpp = (int)word;

 if (bpp != 1 && bpp != 4 && bpp != 8 && bpp && 16 && bpp != 24 && bpp != 32)

 {

 fprintf(stderr, “IMLIB ERROR: unknown bitdepth in fi le\n”);

 return NULL;

 }

At fi rst glance, it looks like a value of 0x0000 shouldn’t have passed, but at closer
inspection you’ll notice && bpp &&, which means that the value of 0x0000 will not
enter into the check, but rather into the loop that reads the data from the fi le.

The source goes like so; at line 784 you have the following test:
if (bpp < 16)

And since inside we have only the following tests, and nothing else, the code will
never increment the value of column, and the loop will never terminate.
if (bpp == 1)

{

..

}

else if (bpp == 4)

{

..

}

else if (bpp == 8)

{

..

}

90 Chapter 6 • Build Your Own Fuzzer

Congratulations! You just found your very fi rst vulnerability using a fi le fuzzer.
You’re probably wondering what’s next. Did you fi nd everything? Has the fuzzer

found every possible bug in the program? Well, it didn’t. There are at least two other
issues we know of in the _LoadBMP function that cause the library to read past the
end of fi le or write to memory that hasn’t been allocated, which both in turn cause
it to crash.

NOTE

For those worried about full disclosure, we reported the issues in LoadBMP
several months ago to the Debian security group; they have not been
addressed.

91

Chapter 7

Integration of
Fuzzing in the
Development Cycle

Solutions in this chapter:

■ Why Is Fuzzing Important to Include
in a Software Development Cycle?

■ Setting Expectations for Fuzzers in a
Software Development Lifecycle

■ Setting the Plan for Implementing Fuzzers
into a Software Development Lifecycle

■ Understanding How to Increase the
Effectiveness of Fuzzers, and Avoiding
Any Big Gotchas

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

92 Chapter 7 • Integration of Fuzzing in the Development Cycle

Introduction
Throughout this book, you’ve seen time after time where bugs were easily found via
fuzzing. In many cases, these bugs could have easily been found by software vendors
prior to releasing their software with a little bit of due diligence. This chapter is
written from the perspective of how vendors would go about integrating fuzzing
into their software development lifecycle.

First, fuzzing needs to be a subset of an overall security plan. Two of the more
prominent software security development processes are “The Security Development
Lifecycle” from Microsoft (www.microsoft.com/mspress/books/8753.aspx), and
“Comprehensive, Lightweight Application Security Process,” or CLASP (www.owasp.
org/index.php/Category:OWASP_CLASP_Project), sponsored by the Open Web
Application Security Project (OWASP). Using either of these processes will help in
getting your security effort off on the right foot. Fuzzing simply fi ts into these
broader plans as a component of more robust security testing.

The popularity of fuzzing among security researchers, large corporate customers,
and those with malicious intent is growing rapidly. Not performing fuzz testing on
your software will leave you open to others fi nding these software fl aws for you.
Anyone who has had to respond to externally found and publicly known security
vulnerability knows this is not a good thing. The Month of Browser Bugs (MoBB
http://browserfun.blogspot.com/) was eye opening to many as to the number of
fl aws that could be found via fuzzing. Those familiar with the complexity of the
parsers involved with Internet browsers should not be too surprised that these types
of bugs exist.

Some software vendors are already drinking the fuzzing Kool-Aid. Microsoft has
publicly stated that fuzzing is a requirement for any product that ships as part of its
Security Development Lifecycle (SDL). A number of other companies have been
putting similar requirements on their software.

Our hope is that software vendors can use this book to help produce more secure
and more reliable software. They’ll look at fuzzers as being complementary to their
security testing currently in place, and open up more time for software vendors to do
more in-depth testing, as the fuzzers will allow for automation of some of the more
mundane security testing tasks. Included in this is the realization of what types of
fl aws fuzzers are good at fi nding and those that are better left to manual testing.

 Integration of Fuzzing in the Development Cycle • Chapter 7 93

Why Is Fuzzing Important to Include
in a Software Development Cycle?
If your company develops software or services, one of the fi rst questions you should
ask is, “why should I run fuzzers?” The answer to that, touched on in earlier chapters,
should be straightforward.

■ Put simply, fuzzers are effective at fi nding bugs.

■ Fuzzers save time and are cheap alternatives to manual security testing.

■ External security researchers and malicious individuals will run them
for you if you do not.

In other words, fuzzers reduce test costs, fi nd bugs, and help in preventing folks
outside your organization from fi nding embarrassing fl aws in your software. Sign me
up! So, if your product is actively taking user input from outside sources, the question
really isn’t “should I run a fuzzer,” but “how do I get started?”

Before we jump into how to integrate and implement fuzzing into your development
cycle, we’ll dig deeper into why fuzzers are important to run.

Security Testing Workload
For anyone who has ever worked in Quality Assurance, it should be obvious that you
are always resource and time constrained. That given with the old test adage, “you
can only prove the existence of bugs, but not the absence of them,” are two particular
reasons why performing security testing can be diffi cult. The test team has a long
grocery list of types of tests to run, including, but not limited to:

■ Unit testing

■ Integration testing

■ Scenario testing

■ Functionality testing

■ Reliability testing

■ Performance testing

94 Chapter 7 • Integration of Fuzzing in the Development Cycle

■ Accessibility testing

■ Testability analysis

■ Usability testing

■ Internationalization testing

■ Localization testing

■ Security testing

All this testing requires a signifi cant amount of time. Any test team worth its salt
focuses a good amount of energy on automating what testing it can. Performing all
testing manually and repeating every release (in some cases multiple times a release)
is very time consuming and ineffi cient.

NOTE

We’ll be referring to the test team (and tester) frequently, but being time
and resource constrained applies even more so in smaller organizations
where the development team owns the testing of the software or where
the testing team is substantially outnumbered by developers.

Security testing is hard for most testers (and from our experience, even more
diffi cult for the average developer). It is extremely time consuming, requires the test
team to think in unfamiliar ways, and forces some to focus on technical details they
are not necessarily accustomed to. Additionally, at times there seems to be an unlimited
number of security test cases that could be run. To stress our point on the time it
takes to do security testing, we’ll construct a simple example fi le that is read in by an
application. This fi le is a Rich Text Format fi le saved out by Microsoft Word 2003
and contains four things mixed in with regular black Times New Roman size 12 font
text: red and enlarged text, a link, and a small image as seen in Figure 7.1.

NOTE

Rich Text Format (RTF) is a proprietary fi le format created by Microsoft
in the late 1980s generally used by word processors.

 Integration of Fuzzing in the Development Cycle • Chapter 7 95

Here is the entire RTF document:
{\rtf1\adefl ang1025\ansi\ansicpg1252\uc1\adeff0\deff0\stshfdbch0\stshfl och0
\stshfhich0\stshfbi0\defl ang1033\defl angfe1033{\fonttbl{\f0\froman\fcharset0
\fprq2{\∗\panose 02020603050405020304}Times New Roman;}{\f122\froman
\fcharset238\fprq2 Times New Roman CE;}{\f123\froman\fcharset204\fprq2
Times New Roman Cyr;}
{\f125\froman\fcharset161\fprq2 Times New Roman Greek;}{\f126\froman
\fcharset162\fprq2 Times New Roman Tur;}{\f127\fbidi \froman\fcharset177\fprq2
Times New Roman (Hebrew);}{\f128\fbidi \froman\fcharset178\fprq2 Times New
Roman (Arabic);}
{\f129\froman\fcharset186\fprq2 Times New Roman Baltic;}{\f130\froman
\fcharset163\fprq2 Times New Roman (Vietnamese);} }{\colortbl;\red0\green0
\ blue0;\red0\green0\blue255;\red0\green255\blue255;\red0\green255\blue0;
\ red255\green0\blue255;
\red255\green0\blue0;\red255\green255\blue0;\red255\green255\blue255;\ red0
\green0\blue128;\red0\green128\blue128;\red0\green128\blue0;\red128\green0
\b lue128;\red128\green0\blue0;\red128\green128\blue0;\red128\green128
\blue128;\ red192\green192\blue192;}
{\stylesheet{\ql \li0\ri0\widctlpar\wrapdefault\aspalpha\aspnum\faauto\adjustright
\rin0\lin0\itap0 \rtlch\fcs1 \af0\afs24\alang1025 \ltrch\fcs0 \fs24\lang1033

Figure 7.1 Simple RTF Document Consumed by Microsoft Word

96 Chapter 7 • Integration of Fuzzing in the Development Cycle

\langfe1033\cgrid\langnp1033\langfenp1033 \snext0 Normal;}{\∗\cs10
\ additive \ssemihidden
Default Paragraph Font;}{\∗\ts11\tsrowd\trftsWidthB3\trpaddl108\trpaddr108
\trpaddfl 3\ trpaddft3\trpaddfb3\trpaddfr3\tblind0\tblindtype3\tscellwidthfts0
\tsvertalt\tsbrdrt\ tsbrdrl\tsbrdrb\tsbrdrr\tsbrdrdgl\tsbrdrdgr\tsbrdrh\tsbrdrv
\ql \li0\ri0\widctlpar\wrapdefault\aspalpha\aspnum\faauto\adjustright\rin0\lin0
\itap0 \rtlch\fcs1 \af0\afs20 \ltrch\fcs0 \fs20\lang1024\langfe1024\cgrid\langnp1024
\langfenp1024 \snext11 \ssemihidden NormalTable;}{\∗\cs15 \additive \rtlch\fcs1 \af0
\ltrch\fcs0 \ul\cf2 \sbasedon10 \styrsid7817394 Hyperlink;} }{\∗\latentstyles
\lsdstimax156\lsdlockeddef0}{\∗\rsidtbl \rsid1910890\rsid7817394}{\∗\generator
Microsoft Word 11.0.8125;}{\info{\title Hello, World}{\author user}{\operator user}
{\creatim\yr2007\mo3\dy7\hr14\min54}{\revtim\yr2007\mo3\dy7\hr15
\min4}{\version1}{\edmins8}{\nofpages1}{\nofwords24}{\nofchars137}
{\∗\company Microsoft Corporation}{\nofcharsws160}{\vern24611}{\∗\password
00000000} }{\∗\xmlnstbl {\xmlns1 http://schemas.mic
rosoft.com/offi ce/word/2003/wordml} }\paperw12240\paperh15840\margl1800
\ margr1800\margt1440\margb1440\gutter0\ltrsect
\widowctrl\ftnbj\aenddoc\donotembedsysfont1\donotembedlingdata0\grfdoc
events0\validatexml1\showplaceholdtext0\ignoremixedcontent0\saveinvalidxml0
\showxmlerrors1\noxlattoyen\expshrtn\noultrlspc\dntblnsbdb\nospaceforul
\formshade\horzdoc\dgmargin\dghspace180
\dgvspace180\dghorigin1800\dgvorigin1440\dghshow1\dgvshow1
\jexpand\viewkind1\viewscale100\pgbrdrhead\pgbrdrfoot\splytwnine\ftnlytwnine
\htmautsp\ nolnhtadjtbl\useltbaln\alntblind\ lytcalctblwd\ lyttblrtgr\lnbrkrule
\ nobrkwrptbl\viewnobound1\snaptogridincell\allowfi eldendsel
\wrppunct\asianbrkrule\rsidroot7817394\newtblstyruls\nogrowautofi t \fet0
{\∗\wgrffmtfi lter 013f}\ilfomacatclnup0\ltrpar \sectd \ltrsect\linex0\endnhere
\sectlinegrid360\sectdefaultcl\sftnbj {\∗\pnseclvl1\pnucrm\pnstart1\pnindent720
\pnhang {\pntxta .} }
{\∗\pnseclvl2\pnucltr\pnstart1\pnindent720\pnhang {\pntxta .} }{\∗\pnseclvl3
\pndec\pnstart1\pnindent720\pnhang {\pntxta .} }{\∗\pnseclvl4\pnlcltr\pnstart1
\pnindent720\pnhang {\pntxta)} }{\∗\pnseclvl5\pndec\pnstart1\pnindent720
\pnhang {\pntxtb (}{\pntxta)} }
{\∗\pnseclvl6\pnlcltr\pnstart1\pnindent720\pnhang {\pntxtb (}{\pntxta)} }{\∗
\pnseclvl7\pnlcrm\pnstart1\pnindent720\pnhang {\pntxtb (}{\pntxta)} }{\∗\pnseclvl8
\pnlcltr\pnstart1\pnindent720\pnhang {\pntxtb (}{\pntxta)} }{\∗\pnseclvl9

 Integration of Fuzzing in the Development Cycle • Chapter 7 97

\pnlcrm\pnstart1\pnindent720\pnhang {\pntxtb (}{\pntxta)} }\pard\plain \ltrpar
\ql \li0\ri0\widctlpar\wrapdefault\aspalpha\aspnum\faauto\adjustright\rin0\lin0
\itap0 \rtlch\fcs1 \af0\afs24\alang1025 \ltrch\fcs0
\fs24\lang1033\langfe1033\cgrid\langnp1033\langfenp1033 {\rtlch\fcs1 \af0
\afs32 \ltrch\fcs0 \fs32\cf6\insrsid7817394\charrsid7817394 Hello, World!}{\rtlch
\fcs1 \af0 \ltrch\fcs0 \insrsid7817394 I\rquote m told I\rquote m going to be
fuzzed\′85I don
\rquote t know what that means, but it sounds }{\fi eld{\∗\fl dinst {\rtlch\fcs1 \af0
\ltrch\fcs0 \insrsid7817394 HYPERLINK “http://www.youtube.com/watch?v=2T5_
0AGdFic” }{\rtlch\fcs1 \af0 \ltrch\fcs0 \insrsid1910890 {\∗\datafi eld
00d0c9ea79f9bace118c8200aa004ba90b0200000003000000e0c9ea79f9bace118c8200a
a004ba90b5600000068007400740070003a002f002f007700770077002e0079006f0075
0074007500620065002e0063006f006d002f00770061007400630068003f0076003d00
3200540035005f00300041004700640046006900
63000000} } }{\fl drslt {\rtlch\fcs1 \af0 \ltrch\fcs0 \cs15\ul\cf2\insrsid7817394
\charrsid7817394 scary} } }\sectd \linex0\endnhere\sectlinegrid360\sectdefaultcl
\sftnbj {\rtlch\fcs1 \af0 \ltrch\fcs0 \insrsid7817394 .
\par
\par }{\rtlch\fcs1 \af0 \ltrch\fcs0 \insrsid7817394 {\pict{\∗\picprop\shplid1025
{\sp{\sn shapeType}{\sv 75} }{\sp{\sn fFlipH}{\sv 0} }{\sp{\sn fFlipV}{\sv 0} }
{\sp{\sn pibFlags}{\sv 2} }{\sp{\sn fLine}{\sv 0} }{\sp{\sn fLayoutInCell}{\sv 1} } }
\picscalex100\picscaley100\piccropl0\piccropr0\piccropt0\piccropb0\picw4551
\pich1296\picwgoal2580\pichgoal735\wmetafi le8\bliptag229526163\blipupi-96
{\∗\blipuid 0dae4a93ba6c7d9fabce1327556fdbe9}
0100090000039602000000007102000000000400000003010800050000000b0200000
000050000000c023200ad00030000001e00040000000701040071020000
410b2000cc003100ac00000000003100ac000000000028000000ac0000003100000001
000100
0000ffffff00fff00101fff00101
ffffffffffffffffffff
fffffffffffffffffffffff00101fff00101fffffffffffffffffffffffffffffffffffff
ffffff00101ffff
fffffffffffffffffffffffffffffffffffffff00101fff00101ffffffffffffffffffffffff
ffffffffffff
fffffff00101fff00101fff00101fff
fffffffffffffffff

98 Chapter 7 • Integration of Fuzzing in the Development Cycle

fffffffffffffffffffffff00101fff00101fffffffffffffffffffffffffffffffffffffff
ffff00101ffff
fffffffffffffffffffffffffffffffffffffff00101fff00101fffffffffffffffff
fffffffffffffffffff
fffffff00101fff00101fff00101
ffffffffffffffffffff
fffffffffffffffffffffff00101fff00101fffffffffffffffffffffffffffffffffffffff
ffff00101ffff
fffffffffffffffffffffffffffffffffffffff00101ff7c72f765de3e638fb6cb1bbede38f95b63b7fffff0010
1ff7bacf759dddedd77b6b2ebbeddd77b5b5d
fffffff00101ff7baef75dadfedd77b6bafbbeddf7fb5b5ffffffff00101ff7baef761ac1edd
77b6bafbbedc107b5b41fffffff00101febbaef35d75dedd7796
bae9becdd77b4b5dfffffff00101fddc6ef4e3763c638fa1bb1a7c5638f150e3fffffff00101
fddffff7fffffefffffffffbfefffffbfffffffffff00101fbef
fff7fffffefffffffffbff7ffffb7ffffffffff00101fff00101ffffffff
ffffffffffffffffffffffffffff
fffffff00101fff00101ff
fff00101ffffffffffffffffffff
fffffffffffffffffffffff00101fff00101ffffffffffffffffffffffff
fffffffffffffffffff00101ffff
fffffffffffffffffffffffffffffffffffffff00101fff00101ffffffff
ffffffffffffffffffffffffffff
fffffff00101fff00101ff
fff00101ffffffffffffffffffff
fffffffffffffffffffffff00101fff00101ffffffffffffffffffffffff
fffffffffffffffffff00101ffff
fffffffffffffffffffffffffffffffffffffff00101fff00101fffffffffffffffffffffffff
ffffffffffffffffff00101fff00101040000002701ffff03000000000
0} }{\rtlch\fcs1 \af0 \ltrch\fcs0
\insrsid7817394
\par } }

If you were thinking that simple amount of data would be shorter, surprise! File
formats can be quite complex (and RTF is not even one of the more complex). In any
case, if you’re responsible for security testing the RTF format, you’ll have your work
cut out for you. Just in this simple fi le with a few bits of text and an image, you have

 Integration of Fuzzing in the Development Cycle • Chapter 7 99

several hundred inputs that will be parsed when the fi le is opened. The level of acces-
sibility you have to the source code and the developer can signifi cantly help decrease
your testing cost because you’ll understand how the inputs are parsed, which can be
used to come up with more direct tests that can be equivalence classed. However, for
this example, let’s assume you don’t have access to the developer or the source, but are
ultimately accountable for the security of this fi le format.

What types of tests might we try on these different inputs? Here are a few ideas:

■ Large strings (but, what size is best?)

■ Integer manipulation (but, to what?)

■ Character insertion (which characters?)

■ Character deletion

■ Deleted inputs

■ Repeated inputs

■ Altering input and character order

■ Unique characters that have special meaning in the fi le format (such as curly
braces or slashes in RTF)

■ Control characters (such CR, LF, and NULL)

■ Format string insertion

This list could be much longer, as it is simply a starting point for conversation.
As we now have a list of 10 or so different types of test, we’ll want to try them all.
There are some obvious open questions still, such as when we’re doing our buffer
overrun testing, what length of string we should try, or who is responsible for parsing
the embedded graphics fi le in our document. For now, we’ll continue moving forward
with our testing ignorant to those questions and simply say that for each test type
we’ll run two different tests for every input we’ll be testing. So, these 10 types will
produce 20 test cases for every input.

Manually security testing this format would require the tester to:

1. Open the fi le in a binary editor.

2. Alter one of the inputs using one of the test cases listed previously.

3. Save the fi le using the binary editor.

100 Chapter 7 • Integration of Fuzzing in the Development Cycle

4. Open the fi le using the application associated with that fi le format.

5. Repeat steps 1 trough 4 for every test case on every input (or more appropriately,
every piece of the document that is parsed out).

If we’re fast, one test may take 30 seconds. For the sake of argument, let’s say
there are 500 inputs in this document. For each input, we’ll try our 20 test cases.
Doing the math:
 500 (fi elds to test)
 20 (number of tests to run on each input)
 × 30 (seconds to run one test)
 300,000

It would take 300,000 seconds, or a little more than 83 hours, to manually test
this small piece of the fi le format. That is 83 hours for partial test coverage. More
comprehensive coverage on the full fi le format would take several work weeks longer.
Moreover, this number does not include the time it takes to manually investigate
potential issues you uncover.

NOTE

The preceding numbers do not take into account whether different
inputs can be equivalence classed (or if certain tests don’t apply—like integer
manipulation on strings). In our experience, most testers have a diffi cult
time determining exactly what can be equivalence classed and generally side
on over-testing.

As you can see, this problem has “automate me” written all over it. A good fi le
fuzzer can run through an order of magnitude of the number of cases just described.
Just kick off the fi le fuzzer before you head out Friday evening, and when you get
back to work on Monday morning, a good portion of your security testing will be
done for you.

Doing fuzz testing on your software will signifi cantly reduce the cost of security
testing your application. With that said, do not expect fuzzers to magically fi nd all the
security fl aws in your product.

 Integration of Fuzzing in the Development Cycle • Chapter 7 101

Setting Expectations for Fuzzers in a
Software Development Lifecycle
While fuzzers are certainly a great way to fi nd bugs in many different applications,
expectations should be set appropriately on their effectiveness. Having that knowledge
will better equip you when integrating fuzzing into your development lifecycle.

Fuzzing as a Panacea
Hip hip hooray! Fuzzers have gotten a lot of press lately, with some folks saying that
fuzzers can and will fi nd all application fl aws. Put simply, this is now and never will
be true. Fuzzers will continue to fi nd more types of fl aws and will become better at
choosing what tests to execute and when, but there is no way a fuzzer will fi nd all
the vulnerabilities in an application with a moderately sized attack surface.

What Fuzzers Won’t Find
To expand on the topic of don’t bet the farm that fuzzers will fi nd everything, we’d
like to share a few instances where fuzzers typically have a hard time. That’s not to
say they could never fi nd these types of bugs, but most fuzzers today do not. Here’s a
small list of some typical bugs not found by fuzzers:

Logical fl aws We’ve never met a fuzzer that was able to fi nd logical fl aws
on a given application without intervention on the part of the person running
the fuzzer. Let’s say you’re testing some sort of session identifi er issued by the
server to the client and sent by the client in subsequent requests for the
server to determine who you are. For a fuzzer to be effective at testing this
feature, it would need to know that a) this parameter is a session identifi er,
b) understand how to test for session fl aws, and c) understand when a bug
is hit.

Design fl aws Most fuzzers do not understand the design of the application
they are testing. If an application decides to write out private data with world
read/write access to it, the fuzzer would likely not notice.

Parser-specifi c fl aws Each parser is different, and understanding the
context of the parser is important. For example, an application may have a
token replacement routine, and unless the fuzzer knew what tokens to send
in, it would never hit that code path.

102 Chapter 7 • Integration of Fuzzing in the Development Cycle

Second order injection fl aws Flaws the application does not hit initially;
for example, a backend scheduled task that reads data every night at midnight
and uses it to construct SQL queries that are susceptible to SQL injection.

Stateful bugs It can be diffi cult to fi nd and reproduce vulnerabilities
where the application needs to be in a certain state or mode before the
vulnerability presents itself.

New vulnerability types Fuzzers are written by humans, and if a new
vulnerability type exists tomorrow, fuzzers would need to be updated to
attempt those tests.

Many of these fl aws could be found, but they require a couple of things: a fuzzer
that is smart enough to understand how to test for these types of fl aws, and the ability
to monitor if the attack succeeded. Both of these may be nontrivial depending on the
fuzzer you use for your testing. Monitoring is an important concept in understanding
your test coverage and is covered in more detail later in this chapter.

Fuzzer Effectiveness
You should consider fuzzers as a backstop for the rest of the security development
lifecycle. When fuzzers are integrated with other tools such as threat modeling,
static and runtime code analysis tools, security code reviews, and penetration
testing, they all help to reduce the number of vulnerabilities found after software is
released.

According to the book The Security Development Lifecycle by Michael Howard and
Steve Lipner, “At Microsoft, about 20 to 25 percent of security bugs are found
through fuzzing a product before it is shipped.” This fi gure is easily believable, but it
is worth pointing out a few things:

■ It’s all about the parsers. In some software with heavy parsers, that number
will be much higher…anecdotally approaching 75 percent in some software
we’ve seen.

■ It’s also all about the code—managed versus unmanaged, that is. Using
managed code such as Java or C# will decrease the number of memory
management fl aws fuzzers are famous for fi nding.

■ This fi gure is lower because Microsoft has many other avenues that contribute
to security bug fi nding. In organizations without a formalized implementation

 Integration of Fuzzing in the Development Cycle • Chapter 7 103

of how security fi ts in the development process, the number would likely be
higher, as these bugs would not be caught upstream of when the fuzzer is run.

Fuzzing Tools versus …
If you are running fuzzers, do you really need to acquire static code or runtime
analysis tools? To our knowledge, no studies have been done to determine what
number and types of bugs will be found when doing fuzzing versus code analysis
tools. It’s not an easy question to answer, as code bases will differ, as will the
fi ndings of different code analysis and fuzzing tools. Our recommendation
is to use both, particularly if any the following are true.

The software has a large and complex code base. Especially if the
code base has a large amount of legacy code that was written prior to
 security being a high priority in your organization.

The software was written in unmanaged code. Unmanaged code
increases the risk of unintentional fl aws being introduced due to memory
management problems.

The software parses large amounts of user input. Obviously, the
more data that’s parsed, the higher the opportunity for mistakes.

The software has complex data structures. Complexity is the
mating call of the promiscuous bug.

All code has bugs. Some bugs are security fl aws. Software vendors should be
diligent in protecting their users from unnecessary and avoidable vulnerabilities
that lead to exploits. That said, do what’s right for your customers.

Setting the Plan for Implementing Fuzzers
into a Software Development Lifecycle
When embarking on the journey that is fuzzing, it’s important as a software vendor to
properly plan. There is a high likelihood that at some point someone externally will be
running a fuzzer over your application, so it is imperative that you understand how your
fuzzing effort will fi t into your product’s development lifecycle or risk public humiliation.
Leaving it to be done ad-hoc means that there will likely be both duplicated efforts and
uncovered testing—the latter of which will eventually bite you in the ass.

104 Chapter 7 • Integration of Fuzzing in the Development Cycle

Setting Goals
Setting the goals for your fuzzing effort requires answering the questions “who,”
“what,” “when,” “how,” and “why?” Why is covered earlier in this chapter and
throughout the book, and the others are discussed here.

Fuzz Who?
Answering these questions will help the process of running fuzzers go more
smoothly.

■ Who owns defi ning the goals?

■ Who owns setting the criteria and making the decision on which fuzzer to
use? If the decision is to build it yourself, who owns building it?

■ Who owns running the fuzzer?

■ Who owns investigating, reproducing, and determining exploitability of the
bugs found by the fuzzer?

■ Who owns defi ning the criteria for which bugs found by the fuzzer will or
will not be fi xed?

■ Who owns maintaining the fuzz testing infrastructure?

Another “who” type question is, “who in management is supporting this project?”
We’ve seen or heard of a few cases where fuzzers were run late in the product cycle
and found so many bugs that just doing the investigation of the issues would cause
the product to slip. If you run into this problem, you’ll need management support to
help make a business decision of taking the risk of fi xing these fl aws late in the
release cycle.

Fuzz What?
Defi ning the entry points into your application is one of the fi rst steps in setting your
team up for success. This should be part of any security test plan. Hunting Security
Bugs by Gallagher, Landauer, and Jeffries has a great chapter on doing this. Once each
entry point is defi ned and ranked based on risk, you’ll be able to determine what
you’re going to fuzz. The more fuzzing done on the risky entry points, the better.

Here are some ideas of some typical entry points that have a moderate to high
risk (depending on the programming language used):

 Integration of Fuzzing in the Development Cycle • Chapter 7 105

■ Network protocols (HTTP, SMTP, SIP, LDAP, etc.)

■ RPCs

■ Web services

■ File formats (list them all, including those created outside your application
that your software can import)

■ ActiveX controls (OLE/COM Object Viewer) (www.microsoft.com/
downloads/details.aspx?FamilyID=5233b70d-d9b2-4cb5-aeb6-
45664be858b6&DisplayLang=en can help in fi nding these)

■ Pluggable Web protocols (search the registry for “URL Protocol” to fi nd
cases of these; an example is telnet)

■ Command-line parameters

NOTE

Do not forget the case where a malicious server may be sending the victim
client bad data. In many client-server applications, this is a very common
scenario (Web browsers being a common malicious server attack vector).

We should at least touch on the areas fuzzers are not as effective in, or are unimportant
to focus your efforts on. We don’t mean “fuzzers aren’t good at fi nding vulnerability
type <X>,” but the areas of a product not worth looking at. First, never waste your time
doing security testing using the application’s client user interface. It holds true for
general security testing as much as for fuzzing. You want to make sure your fuzzing is
done at the level below where any client validation occurs. For example, in fi le fuzzing,
you’ll want to manipulate the bytes in the fi le directly and not waste your time twiddling
things in the UI. Another area that can be diffi cult is where hardware meets software; for
example, if you want to run fuzz tests on a hardware-based phone, but the phone needs
user interaction (like picking up the handset) to accept the call. It’s certainly not impossible
to do fuzz testing on this area, but it requires things like automated robot arms or test
hooks to pull off.

One other consideration is how to handle third-party code your application uses.
What if your client software parses images (say it ships a copy of GDI+ or libPNG)?

106 Chapter 7 • Integration of Fuzzing in the Development Cycle

Do you do fuzzing on that code base if it’s a place an attacker can send malicious
images to? Personally, we always feel better if we do assessments on the third-party
code we use, including fuzzing, but it is always a lower priority than the code we are
directly responsible for.

Fuzz When?
Determining when to start fuzzing depends on a number of things. If the code is
legacy code that has already shipped and you want to start fuzzing that, you should
start as soon as you can so any bugs found can be fi xed either in the next version or
in a service release or patch. In newly written code, though, it’s important to start as
early as possible in the release, but not too early. If you start too early, you’ll risk
testing areas that are partially implemented and raise the ire of your development
team by opening bugs on unfi nished code. Later in this chapter when we discuss
generation versus mutation fuzzing, it will become clearer why starting too early
can be a chore. Start too late and you’ll run into even more serious problems. Why?
Consider the following:

■ The “bouncer bug.” This bug basically causes the majority of the code paths
to be blocked. Sometimes, it can be worked around by tweaking the fuzzer
to tone down the frequency or types of tests, but you don’t want to hit this
at the end of the development cycle, especially if it ends up requiring any
signifi cant changes that have a chance of being deferred to a future release.

■ Based on our experience, bugs found via fuzzing tend to be found in
bunches. That’s not a hard thing to imagine since a given developer will tend
to make the same mistakes over and over again until he realizes the problem
he is making. You’ll fi nd the fi rst wave of fuzzing will fi nd the highest number
of bugs. Then once those bugs are fi xed, the next wave will yield fewer bugs,
continuing down the line until very few bugs are found in a given piece of
software until a new set of features are added again.

■ Anyone who has worked for a software vendor understands that as the
release date gets closer, the number of bugs that are allowed to be fi xed
decreases signifi cantly to reduce potential regressions from occurring.

Fuzzing complex software is like washing your hair if you have obsessive compulsive
disorder. Rinse, lather, repeat—times 10. There will need to be several iterations of bugs
fi xes and subsequent fuzzer runs to shake out the bugs.

 Integration of Fuzzing in the Development Cycle • Chapter 7 107

In our opinion, the best time to insert fuzzing into your development cycle is
when the code is stable enough that the feature(s) have been implemented and all
major code paths can be exercised. The key is to continue to run your fuzzers
throughout the product cycle so that even when new changes go into effect, the
fuzzer is able to capture them (assuming your tests are updated as appropriate).

You may be wondering about the difference in integrating fuzzers into rapid release
product cycles versus long multiyear ones. Certainly, shorter product cycles are a little
trickier because of timing, but in the end the answer is the same. Run fuzzers as soon
as the code is stable enough not to just be noise to the development team.

Fuzz How?
How, as in how do you decide whether to build your own fuzzer, buy a commercial
one, or use a free version? Or how long should you run the fuzzer before moving
on to the next area? How about different ways of increasing the number of fuzzer
tests run? All interesting questions that we’ll tackle next.

Buy, Build or Borrow?
Here’s the big question: What fuzzer are you going to use, or will you build your
own? We’re not going to recommend a particular fuzzer or a group of fuzzers
because every software vendor is in a slightly different situation. What we will do is
list a few questions to investigate that will help guide you down the path to making
an informed choice.

■ What resources are available to you? Budget and time being the two biggest
criteria here.

■ What are you trying to fuzz? Commercial fuzzers are constantly expanding
what they are able to fuzz, but they may not support your scenario just yet.
Along the same lines, if you’re trying to fuzz a proprietary format or protocol
and want substantial coverage with your fuzzing, you’ll likely need to build
your own.

■ What is the risk involved with the attack surface of the area you want to fuzz?
Why spend lots of money on a commercial fuzzer if the area has limited risk?
If it’s a truly high-risk area, it’s more reasonable to consider a larger budget.

■ What is the extensibility of the fuzzer? There’s several things to consider
when evaluating extensibility:

108 Chapter 7 • Integration of Fuzzing in the Development Cycle

■ Extensibility is important when your product creates custom extensions
on standards. If the fuzzer does not support extending its tests, you’ll be
missing a potentially large chunk of coverage.

■ Sometimes you’ll run across input used in an application that should
rarely be changed. Fuzzers should support a notion of “value locking”
that tells the fuzzer to not (or very rarely) alter a particular input. For
example, in a Web application, the session ID would be such a fi eld.
Session ID is something that should be fuzzed, but consistently fuzzing
that input when you want to increase your coverage will cause the user
to be logged off, which will cause future tests to be less valid.

■ For network fuzzing, it needs the capability to handle progressive steps.
The fuzzer should be able to handle two aspects of this. First, it should
support the capability to get a test ready to be fuzzed. The simplest
example is that of authentication. If the fuzzer is sending malicious
requests to an area that requires authentication, but no authentication has
occurred yet, it will simply fail. The second aspect is about increasing
your coverage. Some applications will require that events happen in a
certain order. Hitting these code paths in a fuzzer requires that fuzzer to
follow steps A then B then C and onward in order to hit that code path.
For example, let’s say that we want to add a new member to a distribution
list. That member has a very long name and we’re trying to determine if
a buffer overrun exists in the server-side process of adding that new
member. The fuzzer would fi rst need to authenticate, if necessary, create
the new member (with the long name), and then add that member to
the distribution list.

■ What type of bugs are you trying to fi nd? Different fuzzers monitor for
different types of fl aws. Most will catch things like access violations and
memory consumption issues, but will your application require more?

■ Do you have control over what is fuzzed and what tests are possible? This
could possibly fall under the extensibility category, but we’ve separated it out.
The key question to ask here is whether the fuzzer will allow you to control
things like frequency of injecting fuzzed data, what types of fuzzed data to
use, or even what types of fuzzed data not to use. Each piece of software has
its own data validation rules, and you’ll want to make sure you can control
the fuzzer enough so it’s not exercising the same failure path excessively.

 Integration of Fuzzing in the Development Cycle • Chapter 7 109

■ What support level do you need? With commercial fuzzers, you’re likely to get
a decent level of support, as they’ll want to keep your business. If you’re using
a free fuzzer off the Internet, support will vary considerably depending on the
author. Obviously, building an in-house fuzzer means you’re on the hook.

There is not always an easy answer for choosing which fuzzer to use. For the
teams we’ve worked with in the past, we’ve investigated buying, but decided to build
our own while also using any free fuzzers that would work with our feature set.
For our situation, this worked well.

How Long to Run the Fuzzer
A very valid question that always causes much discussion is, “How long should we run
our fuzzers?” or “How many iterations of the fuzzer should we submit our product to?”
Microsoft’s Security Development Lifecycle documentation states that all fi le parsers
and formats it releases must go through 100,000 iterations in order to ship—100,000
is not an arbitrary number. Whatever the number is, it needs to be something product
teams can accomplish, but large enough that it would catch a signifi cant number of
fl aws. What we believe is more important is that the iterations need to be clean. This
means no bugs are found in the 100,000 iterations (aside from the few known unex-
ploitable issues). To get to this point you’ve probably run through many sets of
100,000 iterations, as each time you run the fuzzer it fi nds different fl aws that are then
fi xed. The next fuzzer run then gets down further code paths and fi nds issues in those
areas. This process continues until the format can get through 100,000 clean iterations.
If you’re setting goals within your corporation, it’s important to stress the notion of
clean runs.

With all this said, the number of clean runs you should require for a particular
area to be fuzzed is relative to the complexity of that area. It would be insane to
require a fuzzer to be run 100,000 times on a Web page with one single string as
input, but 100,000 is perfectly reasonable for a complex fi le format with complex
data structures. We don’t quibble over these types of numbers and have generally
taken a different approach. Fuzz your software all day, all night, on as many machines
as you can. Hey, it’s free testing…why not?

Shaking the Bug Tree
As mentioned earlier, each time the development team fi xes a set of bugs found by a
fuzzer, they are opening up new code paths that may also contain bugs. It’s important
to note this, as running a fuzzer just once or twice may not uncover the full set of

110 Chapter 7 • Integration of Fuzzing in the Development Cycle

bugs it is capable of fi nding. Figure 7.2 shows a theoretical bug trend chart. On the
Y-axis you have the number of bugs found. On the x-axis, you have the number of
fuzzer passes where one pass is dependent on the previous pass’s bugs being fi xed.
While the graph is theoretical, it is empirical based on our prior experience. The bug
line appears to decrease close to exponentially and points out that each pass will
typically yield less bugs, but over the long haul may come across a small number of
issues as testing continues.

The key point not being that you’ll fi nd 25 bugs on your fi rst pass (or even more
or less than that), but that as developers fi x bugs, the fuzzer is able to fl ex more code.

NOTE

There is an implicit assumption in the graph in Figure 7.2: the fuzzer
is being run when the code is relatively stable. If the code were changing
rapidly with new features being added after past fuzzer passes, it would
not be abnormal to see spikes in future passes. The other aspect that can
skew this data is if you are updating your fuzzer with new tests or new
methods for monitoring for vulnerabilities.

Increasing Fuzzer Coverage
Let’s say you want to increase the number of fuzzer runs on your software. What are
your options?

Figure 7.2 Theoretical Bug Trend Chart

 Integration of Fuzzing in the Development Cycle • Chapter 7 111

24/7
The easiest and simplest way to get more fuzzer coverage is to run your fuzzers

24 hours a day, 7 days a week.
Distributed Fuzzing
You have co-workers who go home at some point in the night. Why not, when they

head home, have them kick off a script that uses their machine to power your fuzzer.
Integrating Fuzzers into Stress Runs
Many software vendors that ship servers (or services) have a notion of stress testing.

This involves a production-like environment set up to see how long the server can
withstand usage beyond the normal capacity, the goal being to use this information
to deduce robustness and availability of your servers. You could say that fuzz testing is
a way to put your servers under intense stress!

Getting your fuzzers hooked up in this scenario may require the same steps as
doing distributed fuzzing. Running continuous fuzz testing in your stress environment
may have undesired hidden costs depending on the fuzzer being used. Those hidden
costs are covered later in this chapter.

Building and Executing on the Plan
Once you’ve answered the basic questions listed previously you should be in a good
position to start the process of integrating fuzzing into your software development
lifecycle. We’ve broken the process into three sections.

■ Building the plan

■ Running the fuzzer through the release

■ Postmortem analysis

Building the Plan
Ideally, this documentation should happen early in a product cycle, toward the middle
to end of the design phase. You could start earlier for legacy features, but for newer
features you’ll want to have a good idea of the technology bets your product will be
taking. The fuzzing plan may bleed into the coding stage of the product cycle as plans
are fi rmed up. Keep in mind that as the product evolves, the fuzzing plan should too.
Changes in direction by the product team may signifi cantly impact your planning.

The following sidebar is a sample fuzzing plan for a small feature. You could use it to
write the fuzzing plan for a particular feature, but more likely, you would write it for an
entire piece of software. We chose to write this for a feature for the sake of brevity.

112 Chapter 7 • Integration of Fuzzing in the Development Cycle

Tools & Traps…

Sample Fuzzing Plan
Fuzzing Plan for Acme Software: ISAPI fi lter
Jon Smith
1/29/2008

Summary
Acme Software is producing an ISAPI fi lter used for authenticating users

to be released in December 2008. It is written in unmanaged code and will
have entry points that are anonymously accessible by anyone on the Internet.
As such, it’s important that a solid plan be in place for solid security analysis,
one piece of which is fuzzing.

Goals
Reduce costs of security testing by feature team by 50%
Find vulnerabilities in our software prior to release
Run at least 50,000 fuzzer tests on fi lter

Plan
Areas Covered
Login entry point
Logout entry point
Session Identifi er

Areas Not Covered
Cryptanalysis of session identifi er creation
Logic and design fl aws in how session identifi er is issued and maintained
Login transport security

These areas will be covered through manual security testing and code
reviews. See test case management tests 1192 through 1213 for a complete set
of manual security test cases for this feature.

Tools Used
Internal Acme Software fuzzer will be used in this testing. It is currently

under development and should be fi nished by 2/15/2008.

 Integration of Fuzzing in the Development Cycle • Chapter 7 113

Once you’ve completed the plan, you’ll need to sell it to your management team,
as there is a cost to doing this work. Focus on what your audience cares about. Some
specifi c examples may include:

■ The amount of coverage the fuzzer will give (managers tend to be impressed
when you tell them the fuzzer will run through XXXXXXX number of
automated tests on your software with little human interaction)

■ The amount of time it will save the development and test team

■ The cost of not doing this work (for example, if someone external uses this
method to fi nd vulnerabilities)

■ Any information you can fi nd on bugs being found externally by fuzzers in
your or your competitor’s products

■ Data on how many and what percentage of the previous release’s vulnerabilities
could have been found by fuzzers

If you have the data and can market the solution, this should not be a terribly hard
sell. The number of fl aws found by fuzzers and the reduction in cost in security testing
should be enough to get your plan approved.

Timeline
The development team believes the feature should be stable enough and

feature complete by April 2008. At that point, we will begin fuzzing and run
the fuzzer throughout the release. To help increase coverage we will distribute
the load of the fuzzer across our engineering team, having each member run
the fuzzer at night when he goes home. This way, we should easily meet the
50,000 goal.

Ownership
Project Owner: Jon Smith
Stakeholders: Software Development and Test teams
Sponsor: Suraj Poozhiyil

Results
TBD once testing is fi nished.

114 Chapter 7 • Integration of Fuzzing in the Development Cycle

Running the Fuzzer through the Release
After your plan is approved, you’ll need to execute it. The basic execution of the
fuzzer is dependent on that particular fuzzer, and we won’t dive into that here, except
to say, a) keep the fuzzer running as often as possible, and b) keep the builds you’re
running it on updated. As discussed earlier in the chapter, this stage should start as
soon as the product is stable enough to handle malicious input being thrown at it.

NOTE

If you run into roadblocks the fi rst time you present to your management
team, you may need to do further analysis. Try to get a trial version of a
commercial fuzzer, or use a free fuzzer from the Internet to see what bugs
the fuzzer is able to uncover in a particular area. Having data about your
specifi c product will hit closer to home with managers. With heavy pushback,
it never hurts to write an exploit to show the dangers of the fl aws being
found.

NOTE

In past lives, our teams have had separate banks of machines to do our
fuzzing. We had a fairly complex setup with multiple servers and multiple
clients. Part of our fuzzing plan was the requisition of these machines.
On the fl ipside, doing fi le format fuzzing can easily be done on a single box.

Prior to the initial runs of the fuzzer, we recommend communicating the fuzzing
plan for the engineering team responsible for the software. Let them know that it’s
undetermined how many issues the fuzzer will fi nd, but to be on the lookout for any
bugs opened. You may also want to get buyoff from your management team to make
sure a certain priority is placed on getting these bugs fi xed quickly so they do not
block further fuzz testing.

Beyond maintaining the infrastructure for running the fuzzing test infrastructure,
the big cost in this stage is investigating any issues the fuzzer fi nds. Put a priority on

 Integration of Fuzzing in the Development Cycle • Chapter 7 115

making sure these are thoroughly investigated with the steps to reproduce them
narrowed down as much as possible. Also, make sure you give the development team
all the information they need to easily reproduce the fl aws. When the question of
exploitability comes up, you may also be brought in to provide input.

In any organization, it is important to make the progress on the security front
visible to the individuals on the team. We suggest documenting status on your fuzzing
efforts into any security status mail sent throughout the release or any security status
presentations. This will give visibility to the work being done, and give the engineers
a better understanding of what types of issues the fuzzers are and are not fi nding.

Postmortem Analysis
The postmortem analysis of your fuzzer(s) can occur at any time during the product
cycle, but is typically well situated toward the end. Once you’ve completed a full release
of fuzzing, you’ll have a good idea of what bugs it did well at fi nding and those it did
not. Start by bucketing all the security fl aws not found by the fuzzer by vulnerability type
and then brainstorming ways you can build cases to test for and discover these fl aws.
As mentioned previously, some bugs types are not easily found by fuzzing and require threat
modeling, manual security testing, source code review, or other tools to discover them.

NOTE

Personally, we fi nd it useful to monitor the bug tracking system daily to
determine what security bugs have been found. For each of them we ask
the question, “why didn’t the fuzzer fi nd the fl aw and could it be updated
to do so?

Understanding How to Increase Effectiveness
of Fuzzers, and Avoiding Any Big Gotchas
Over time, as you continue running fuzzers you’ll notice a couple of things. First, some
costs with running them aren’t necessarily clear up front. Second, fuzzers can hit points
where they fi nd very few bugs. In this next section, we discuss what costs you’ll
encounter as you run fuzzers throughout a release, and some different steps you can take
to increase their bug-fi nding capability when the fi rst wave of bugs stops pouring in.

116 Chapter 7 • Integration of Fuzzing in the Development Cycle

Hidden Costs
Although running fuzzers may seem like the holy grail of software security testing,
there are certainly costs associated with it that may make you rue the day you fi rst
ran it. All of these hidden costs are issues we’ve hit personally, so we’ve written them
in the form of a dialogue.

Reproducing Bugs
Not Us: Hey, our fuzzer caused the server to crash.
Us: Cool, how?
Not Us: Hmmm…I don’t know.

Reproducing bugs can be a major pain (especially with network fuzzing).
Keeping a debugger attached to the processes you’re monitoring can help, but it’s not
a failsafe. Sending the developer a call stack may not be enough, as they may want
the specifi c steps required to reproduce the fl aw. We’ve certainly come across cases
where fi nding the bugs was not as simple as replaying a single packet. The application
was in a state where multiple packets caused the server to get into an invalid state.

The other aspect of this is you need to keep good logs of what was tested (and
what was fuzzed). Without good logging, you’re really up the creek without a paddle
for more complicated bugs. However, even with this information, nailing down a bug
can sometimes be an all-day event.

Investigating Bugs
Not Us: Hey, our fuzzer found 200 crashes last night.
Us: Holy crap…
Not Us: What should I do?
Us: Are they different call stacks?
Not Us: Yeah.
Us: Have you looked into the exploitability of them?
Not US: I looked at a few…half were exploitable, the other ones I’m not sure yet.
Us: …
Us: …
Us: We should talk to the development manager to let him know what we’ve found.
Open a bug in the meantime to track this.
Not Us: Ok.
[later that day]

 Integration of Fuzzing in the Development Cycle • Chapter 7 117

Development Manager : We don’t have time to fi x all of these, let alone investigate
whether they are exploitable.
Us: As painful as it may be, we have to investigate them. We’ve already found a good
portion of the ones we’ve investigated to be exploitable. The risk involved with not
fi xing these far outweighs the potential cost of investigation.
[conversation continues … usually a long time J]
This conversation is really pointing at three things:

■ Sometimes you’ll be overwhelmed by the number of fl aws found. This particularly
happens in complex legacy code bases. In our experience, complex fi le formats
tend to be major offenders.

■ When you suddenly drop a boatload of bugs on a developer, he will not be
happy. Just going through the call stacks of all 200 bugs would be very time
consuming. Sometimes, there are ways a development team can systematically
eliminate these types of issues, sometimes not.

■ Determining exploitability on 200 bugs is extremely costly. If you are the
individual responsible for running the fuzzer, you may be involved by proxy
in the investigation of exploitability.

Make sure to allocate time in your schedule for investigation of the bugs found
via your fuzzers.

NOTE

The best policy for exploitability is if you don’t know whether it’s
exploitable, just fi x it!

Bad Assumptions
Tester : I think it’s so cool that your fuzzer does all my security testing for me.
Us: Uh…no it doesn’t.

118 Chapter 7 • Integration of Fuzzing in the Development Cycle

Tester : Sure, I took a look at all the bugs it found and I would just be duplicating the
effort of the fuzzer with my testing.
Us: Do you understand exactly what code paths in your feature the fuzzer executes?
Do you know explicitly what tests it tries on those code paths? Do you know what
types of bugs it monitors for?
Tester : Not exactly.

When software engineers see bugs being opened in a given area, they assume it’s
being covered—a dangerous assumption when it comes to fuzz testing. Do not rely
on fuzzers to do all your security testing. Stress to your test team what types of
vulnerabilities the fuzzer can fi nd and what limitations it has. Have them focus the
majority of their time on the areas the fuzzer is not effective at hitting.

Reports
Manager : How do we know whether we’ve hit our fuzzing goals? Is there a status
server somewhere?
Us: We could build one…
Obviously, if your organization is setting goals around fuzzing some level of reporting
of status against those goals is important. Keeping it simple is fi ne. In the past, the
format in Figure 7.3 has worked well for us.

Purchasing a commercial fuzzer may come with a much more advanced
set of reports.

Software Gotchas
Not Us: I don’t think our fuzzer is working.
Us: What do you mean?

Figure 7.3 Status Report

 Integration of Fuzzing in the Development Cycle • Chapter 7 119

Not Us: It didn’t fi nd any bugs and it ran all last week!
Us: Maybe the code is solid…or maybe we’re not really testing anything. Let’s look
at the logs.
[time passes]
Not Us: Looks like we’re getting logged out every time we fuzz a packet to the
server.
Us: Yeah, the server must be doing some heavy validation, or we’re invalidating
a checksum with the data we’re sending.

It can be very frustrating to realize that partway through your fuzzing effort you
missed something key in how the software handles malicious packets. In the preceding
case in a server product, the server was doing several things: limiting the size of the
packets, limiting the number of headers, limiting the characters used in the packet, and
more. Our fuzzer had no prior knowledge of this so we ended up only testing the
initial validation happening on the packet without going deep down the code paths
we wanted to. The server simply logged us out.

Another area where you’ll run into problems if you’re doing mutation fuzzing with
proxies (discussed later in this chapter) is with checksums. If there is a checksum on
the data you are altering, you’ll need to recreate a new checksum on the altered data.

Each piece of software will be different as far as gotchas are concerned. Enter
fuzzing with your eyes open to these potential problematic areas.

Finding More Vulnerabilities
As you go through a release or two using fuzzing tools, you’ll start to ask some deeper
questions as fewer bugs are found via your fuzzer. First, are you getting the depth of
coverage you want, or are you hitting the same code paths over and over again?
Second, even if you hit an application bug, would your fuzzer know what it meant, or
would it happily ignore it because the software didn’t crash? Third, is it worthwhile to
run more than one fuzzer?

Increasing Coverage
One of the goals of any good fuzzing strategy is to look for ways to increase the
coverage of your fuzzer. We’re going to reiterate briefl y the different types of fuzzing
discussed earlier in the book, touch on the pros and cons of each, and discuss what
type of coverage on your applications each is better for. The four techniques are
generation, mutation, smart, and dumb.

120 Chapter 7 • Integration of Fuzzing in the Development Cycle

Generation
Generation fuzzing is when your fuzzer is solely responsible for generating the input
sent to the application. It can be very powerful, but requires in-depth knowledge of
the fi le format or network protocol.

Pros

■ Gives the most control to the implementer.

■ You know exactly what you’re testing.

Cons

■ Requires the most in-depth knowledge up front.

■ Requires the largest amount of development time.

■ Changes in the fi le format or network protocol may cause breaking changes
or may lead to missed testing.

Mutation
Mutation fuzzing is taking already existing valid data and altering aspects of it to be
invalid and/or malicious. It is also very powerful and generally requires less upfront
knowledge of the fi le format or network protocol.

Pros

■ Gives a large amount of control to the implementer.

■ Easy to get up and running quickly.

■ Maintenance is relatively easy.

■ Gives the highest amount of code coverage with the least amount of work.

Cons

■ Getting the right set of templates to use for fi le formats and network packets can
be problematic. This can lead to missed and duplicated testing, as the individual the
running fuzzer may not be as aware of the fi le format or protocol he is testing.

■ Certain test cases tend to be ignored; for example, send malicious packet X
1000 times.

■ Reproducing bugs can be more painful.

 Integration of Fuzzing in the Development Cycle • Chapter 7 121

Smart
Smart fuzzing, also known as intelligent fuzzing, is when the fuzzer has built-in
knowledge of the fi le format or network protocol. It allows for deeper code path
penetration.

Pros

■ Tends to go deeper into code paths.

■ Requires more in-depth knowledge of the fi le format or network protocol.

Cons

■ Time required to invest in fi le format or network protocol knowledge.

■ Smart fuzzers can be too smart for their own good. There’s a balance
in all fuzzers of how much of a packet to keep valid and how much to
change. Often, smart fuzzers lean toward keeping the fi le format or packet
too clean.

Dumb
Dumb fuzzing has no knowledge of the fi le format or network protocol and simply
sends random data. Surprisingly, this technique fi nds bugs.

Pros

■ Implementation cost is low.

Cons

■ Tends to fi nd low-hanging fruit quickly and then fails to fi nd further
deeper bugs.

Where to Focus Time
For maximum coverage in your application, a mixture of these techniques is needed.
If you’re looking to build your own fuzzer for your organization where one does not
already exist, the quickest way is to build a dumb-mutation fuzzer. It’s not guaranteed
to fi nd all the bugs, but at the very least, you’re on the path to building a better
fuzzer, which increases the coverage substantially.

122 Chapter 7 • Integration of Fuzzing in the Development Cycle

Code Coverage
A solid way to measure your fuzzer’s effectiveness or lack thereof is by using code
coverage. Code coverage is a mechanism used to give you a measurement of the level
of code paths you are executing during testing. Code coverage can be used for
automated testing or manual testing. In this case, we’ll use it for fuzzing.

There are numerous code coverage tools available on the Web. We will not be
doing an analysis of the best code coverage tools to use, as that is dependent on your
project and not in the scope of this book.

Once we’ve run our code coverage tools we’ll get an idea of what code paths we
exercised and those we didn’t. For those we didn’t, we can analyze why we didn’t hit
them by looking directly at the code and determining if it is possible and worth the
time for us to update the fuzzer to go down these paths. In the following sample

NOTE

We’ve personally worked on a lot of client-server software. We’ve built man-in-
the-middle capture and edit proxies for any network protocols we use. This is
to help the test team become more familiar with the protocols their features
use and to do their security testing below any client-side validation. The proxies
sit on the client machines and capture the packets prior to being sent to the
server (or on the other side, they capture the server packets before the client
receives them).

Network proxies are great tools for building smart (or dumb) network
mutation fuzzers. When the proxies receive the traffi c, it is completely valid and
can be handed off to the fuzzer to create a malicious packet and reinjected
before it goes back to the server or client.

The best part about this is that you can reuse any test automation you’ve
already written to help drive traffi c. Keep in mind, though, that areas that
are not automated will get no coverage and your test automation may or
may not be robust enough to handle some of the errors caused by fuzzing.

Using network proxies to do fuzzing does not work well for a few
cases like:

■ DoS attacks that send the same packet multiple times
■ Replaying or dropping packets
■ Out of sequence packets

 Integration of Fuzzing in the Development Cycle • Chapter 7 123

code, we’ll need to change our fuzzer slightly to handle a custom extension that
brings us down a conditional path.
public string getStatus(string userName, request headers)

{

 if(headers.getValue(“x-corp-foo”) == “bar”)

 {

 //some code path we weren’t hitting with the fuzzer as

 //the fuzzer has no knowledge of this custom header value

 //or the fact that it must be set to “bar” to hit it.

 }

 //more getStatus code…

}

In the past, we’ve heard individuals state that they want to get to 100% code
coverage with their fuzzer. Depending on your application, the actual percentage you
get up to may not be interesting at all.

For example, in an application that’s sole responsibility is to be a parser of network
traffi c, it makes sense to try to hit all code paths for the part of the code that receives
packets coming from untrusted sources. However, in an application like Adobe Acrobat,
the number is uninteresting on the code path that handles Find and Replace in a
PDF or the code path that handles setup, as there is likely no user input that goes into
these code paths that is controlled by an attacker.

Increasing code coverage is a good thing, but set realistic goals for your
application.

Running More than One Fuzzer
No metric exists today to measure the effectiveness of one fuzzer over another. Even if
one did exist, we don’t think we’d believe it. Most fuzzers are similar in nature, in the
same way Microsoft’s Hotmail and Google’s GMail are both Web-based e-mail software,
but under the hood the code is completely different. We mention this because different
authors of fuzzers take different approaches. Some favor brute force methods over
randomness. Some rely more heavily on keeping packets and fi le formats valid versus
taking a bazooka approach. Some were built to fi nd memory-based fl aws, while others
may have the capability to detect protocol-specifi c issues. As such, it’s not a bad idea to
consider running more than one fuzzer over your areas of interest.

Generally, running another fuzzer doesn’t induce that much more pain (especially
if you’ve fi xed all the low-hanging fruit already). It will also give you confi dence in

124 Chapter 7 • Integration of Fuzzing in the Development Cycle

your application, as folks outside your corporation will run these externally available
fuzzers over your software. If your original fuzzer was well written, in all likelihood
very little will be found, but you’ll sleep better at night knowing you’ve done that
extra work.

Monitoring
Two major pieces of building a fuzzer (or questions to ask when buying or using a
free one) are deciding what malicious input to send and how to determine whether
that malicious input caused a software fl aw. We believe that a big part of the future of
fuzzing is going to be building better monitoring systems, especially on software that
is more than mildly complex.

For the fi rst fuzzer we helped design, one of the fi rst things we did was list the
entry points we wanted to focus on, and then listed the types of vulnerabilities it may
be susceptible to. For any C/C++ application, you have your basics: buffer overruns,
integer overfl ows, format strings, etc. For any Web applications: cross-site scripting,
SQL injection, etc. After going through all the common attacks for the areas, we
brainstormed more application- or implementation-specifi c fl aws. For example,
elevation of privilege attacks on our Web application or accessing arbitrary fi les in a
safe for scripting ActiveX control. Once we had this list, we went through and listed
all the mechanisms we had for detecting these bugs. In some cases, something already
existed; in others, we had to write our own code; and in a couple cases, the ability
and cost of detecting the fl aw was either fraught with error or much too costly.

To illustrate our point, let’s look at one example of how one could detect a
certain type of bug. With a little ingenuity, most vulnerability types can be detected.
Earlier, we mentioned elevation of privilege attacks in a Web application. For the sake
of argument, let’s say that this is a banking application, and the key thing being
protected is that user A should never be able to see user B’s data. Effectively, we are
testing the Web application’s handling of authorization. Vulnerabilities that lead to this
type of disclosure are usually parameter tampering attacks (or session ID tampering,
but we’ll exclude that for now). For example, in the URL http://bank.example.com/
transaction.jsp?transactionid=324569, we may try changing the transactionid value to
something above or below the integer currently used to see if we are able to gain
access to someone else’s account data. Depending on the application, we have several
potential options to determine if our fuzzer is able to fi nd such vulnerabilities by
monitoring HTTP responses:

 Integration of Fuzzing in the Development Cycle • Chapter 7 125

■ Once logged in, most banking applications will include the account number
or username of the logged-in user. If the response contains something out of
the norm, we may have hit a vulnerability.

■ If the previous example will not work with your application, you can try
seeding the data store. What we mean by this is that you can fi nd a piece (or
pieces) of input you know is rendered back in most if not all pages.
Knowing that, you can add a marker to the data owned by users other than
user A that the malicious user should never see (in this case, you’d need to
seed for much more then one user); for example, adding “!!!” preceding the
particular data you’re interested in. Now you’ll need to build a simple moni-
tor piece for the fuzzer, which analyzes the response looking for “!!!”. If you
see it, you know that a vulnerability has been found.

Once you have a good feel for the types of vulnerabilities your application exhibits,
spend the time to determine whether your fuzzer(s) is able to detect such fl aws. If not,
hopefully there is a mechanism to extend its functionality to monitor for new types of
vulnerabilities.

126 Chapter 7 • Integration of Fuzzing in the Development Cycle

Summary
As you’ve read through this book, you’ve no doubt seen the powerful nature of
fuzzers. Many software vendors are beginning to realize that fuzzing can be a very
fruitful method of detecting vulnerabilities prior to releasing products to customers.
For those vendors for whom this is not obvious, it should become so very quickly
as external security researchers, corporations evaluating software packages, and those
with malicious intent begin using fuzzers on their software.

While fuzzers are a very effective mechanism for fi nding bugs quickly and reducing
testing costs, it’s also important to note that running fuzzers in the absence of a broader
security policy will not give you a complete security story. Fuzzers are very good at
fi nding certain types of vulnerabilities, while others are better left to tasks such as
threat modeling or penetration testing.

As you begin to integrate fuzzing into your software development lifecycle, keep
in mind that any plans should be organic. The best fuzzers are those that are updated
to better facilitate the testing of your applications. As new attacks are found by security
researchers and new techniques are found for detecting bugs, update your fuzzer
periodically to keep the testing fresh.

Solutions Fast Track

Why Is Fuzzing Important to Include in a Software
Development Cycle?

˛ Fuzzers are a very effective method for fi nding bugs in software that relies
heavily on parsers. The more complex the parsers, the more likely fuzzers
will fi nd many issues.

˛ Doing manual security testing is extremely time consuming. Fuzzers can
help in offl oading much of that process and provide better coverage for
certain types of testing.

˛ If your software is widely deployed, individuals external to your organization
will be running fuzzers against your software. It’s that simple. Do you want
to be publicly embarrassed, or would you rather fi nd these fl aws in house
before you have to deal with hot fi x or patching nightmares?

˛ It is understood that the cost of fi xing a bug once a product has already been
released increases substantially. The last thing you want to deal with is 50

 Integration of Fuzzing in the Development Cycle • Chapter 7 127

vulnerabilities in your software reported externally because someone ran
a fuzzer over your fi le format. You’ll have customers demanding patches right
now, and some making the decision to switch from your software to
a competitor’s.

Setting Expectations for Fuzzers in a Software
Development Lifecycle

˛ Integrating fuzzing into your software development lifecycle because it’s
a popular technique is not a good idea. It needs to be carefully considered
based on the technologies and languages you are using, and be part of a
formalized security process. Simply running fuzzers on your software will
not produce secure code. With that said, fuzzers can be a major piece of
moving in the right direction toward more secure code if the right set of
additional security policies and practices is in place.

˛ Fuzzing tools are not meant to fi nd all known vulnerabilities. Depending on
the complexity of your application, you may very well need to extend them
to meet your needs. Even after that is fi nished, tasks such as Threat Modeling,
security code reviews, and penetration testing will help round out your
security plan.

˛ Substituting fuzzers for source code analysis tools is not a good idea. The
opposite is true as well. Fuzzers and source code analysis tools will fi nd some
of the same bugs, but will also uncover unique fl aws.

Setting the Plan for Implementing Fuzzers
into a Software Development Lifecycle

˛ Setting the goals of what you’d like to accomplish with the use of fuzzers is
a good fi rst step toward building a solid fuzzing plan. Without a solid list of
goals or expectations, it will be diffi cult to measure whether the process was
a success.

˛ When creating the plan for running a fuzzer(s), you’ll need to answer the
question of ownership on many levels: who will be responsible for choosing
the fuzzer, maintaining the infrastructure to run it, opening and investigating
fl aws found by it, and more.

128 Chapter 7 • Integration of Fuzzing in the Development Cycle

˛ Your fuzzer plan should also include answers to what specifi cally you will be
fuzzing and the risks associated with those areas. This will help in your
prioritization exercises later.

˛ You’ll need to consider when to perform fuzz testing. Starting too late can
lead to missed bugs, but starting too early can lead to an unhappy
development team, as code may not be ready for the harshness of that type
of testing.

˛ You’ll need to carefully consider what fuzzer(s) meets your requirements
for the areas you are interested in testing. There are numerous commercial
fuzzers available at a cost. Free ones can also be found quite easily on the
Internet. Alternatively, you may be interested in building your own if one
does not exist for what you are attempting to test. Depending on the fi le
format or network protocol you are testing, you may take a mixed approach.

Understanding How to Increase Effectiveness of Fuzzers,
and Avoiding any Big Gotchas

˛ There are several hidden costs to running fuzzers as a software vendor that
may not be blatantly obvious. Reproducing bugs can be problematic if your
fuzzer doesn’t contain solid logging or the issue requires several prior failures
to get into that state. If the fuzzer comes across a number of bugs, investigating
them and determining exploitability can be a huge cost. This is more common
to see on legacy code that has not been through a more formalized security
process. Be careful if your development or test team starts looking at the
fuzzer as the ultimate authority on the security of the product. Watch out for
comments where they feel it’s not important to do security code reviews or
security testing because “the fuzzer has it covered.” Stress to them what the
fuzzer does fi nd and what it does not. All software has its own set of validation
rules and logic for when it receives potentially malicious data. You may have to
alter your fuzzer so that at least part of the time it plays within those rules so
the fuzzer can reach deeper code paths.

˛ There are different techniques for increasing the number of fl aws found by
fuzzing. One of the important areas to focus is on making sure you are able
to detect when certain types of bugs are hit. Crashes are easy to monitor for,
but other types of bugs (and implementation specifi c bugs) may require you

 Integration of Fuzzing in the Development Cycle • Chapter 7 129

to extend your fuzzer. There are generally four techniques used for fuzzing:
generation, mutation, smart, and dumb. Understanding where these
techniques work well and don’t work well is important. If your fuzzer
is relying heavily on a particular technique and is not fi nding many bugs,
we suggest trying a different technique.

˛ Using code coverage can be a useful way to determine what code paths your
fuzzer is not hitting. Understanding this you can alter the fuzzer in different
ways that help guide it down those other paths. Don’t worry about hitting
100% code coverage in most software, as what you’re really worried about is
that you get coverage on the pieces of code where malicious input can enter.

130 Chapter 7 • Integration of Fuzzing in the Development Cycle

Frequently Asked Questions
Q: We ran the fuzzer right before we released and it found lots of bugs…we fi xed

those but we don’t have time to run any more tests…is that ok?

A: Fuzzing tends to fi nd bugs in bunches. The short answer is that if you found
many bugs in the fi rst run, you’re likely to fi nd many bugs (less, but still quite a
few) in subsequent runs once those original fl aws are fi xed.

Q: Why should I spend money on a commercial fuzzer when there’s many free
ones?

A: Some of the free versions are very intuitive and easy to use—some, not so much.
The support level of free fuzzers can also vary depending on the responsiveness of
the developer. They may not care much if you’re shipping your product in three
weeks and you need them to fi x a bug in their fuzzer. The quality of the free fuzzers
also varies signifi cantly. Personally, we recommend evaluating the free versions
available, and if it works for your situation, great. If not, consider buying a commercial
version or building your own if you have the technical expertise to do so.

Q: How much time and money should I budget?

A: Time will depend on several factors. Will you buy, build, or use a free fuzzer? How
large is the code base? How much of it is legacy code? Is the software written in
managed or unmanaged code? What is the attack surface of the product? How
many areas are you planning to fuzz? There are the hidden costs of bug investigation
as well. Money basically boils down to whether you’ll buy a commercial version
of a fuzzer.

Q: My fuzzer hasn’t found anything in the last several months of running it…what
gives?

A: It could mean several things. It could be that your fuzzer isn’t executing any new
code paths. It could be that your fuzzer is failing on some initial validation the
application does. Or it could be that the code has solid protection against the
attacks your fuzzer is testing. We suggest trying two things: 1) Run code coverage
tools to determine which code paths you are failing to hit and tweak your fuzzer
as necessary, and 2) If another fuzzer is applicable that supports your fi le format
or network protocol and is free, give it a shot.

 Integration of Fuzzing in the Development Cycle • Chapter 7 131

Q: Is fuzzer X better than fuzzer Y?

A: We have no idea. Your best bet is trying each on your application to see if it
meets the requirements and goals you’ve set in your initial fuzzer planning.

Q: I work in a very small development shop. Should I be using fuzzing?

A: They key is to weigh how much security analysis your product will need.
If it’s heavy into parsing and has interesting attack vectors, it is defi nitely worth
 performing fuzz testing. If the software is a simple stand-alone client application
(say, a children’s game) without any attack vectors, you know the answer to the
question. The answer is not always black and white, though. Our advice would
be to lean toward the cautious side for a couple of reasons: a) the cost of issuing
patches on externally found vulnerabilities can be very costly for you and your
customers, and b) fuzzers are getting to the point where all it takes is fi ve minutes
to get one up and running on well-known protocols or fi le formats. It would
take you a short time to get set up, but the fl ipside is that the bar is very low
for an attacker to get started too.

This page intentionally left blank

133

Chapter 8

Standardization
and Certifi cation

Solutions in this chapter:

■ Fuzzing and the Corporate Environment

■ Software Security Testing, the Challenges

■ Testing for Security

■ Fuzzing as a Viable Option

134 Chapter 8 • Standardization and Certifi cation

Fuzzing and the Corporate Environment
Fuzzing is a black-box testing technique, today, mostly for software. Therefore, it
makes perfect sense for this technology to be used by software developers and software
vendors for their QA and testing. In the corporate environment, it would make
perfect sense for fuzzing to be used specifi cally for that—testing and proofi ng new
applications.

There are other uses for fuzzing in the corporate environment, some of which
have far-reaching implications. Most corporations, or organizations for that matter,
have an IT infrastructure such as a network, a Web page, an e-mail system, etc. This
infrastructure is sometimes built without security considerations, based on basic needs
put together or against budgetary concerns and functional needs. When the organization
is about to buy a new product, it will proceed through different bureaucratic channels
of varying complexity, and eventually decide on a product.

The technological evaluation part of that process varies, and can be as signifi cant
as it can be discarded. In some cases, the product is put through its paces in a demo
or a pilot and tested to see if it is stable and provides all the requirements.

How the product is tested for security, stability, and usage is what we discuss in
this chapter, and what implications this testing may have on the software industry.

When it comes to security, the testing often ends with a list of security features
on a marketing checklist and the check that they are there. How do you test a product
to see if it is secure itself? What implications can such testing have on the software
world?

Up to now we discussed the concept of fuzz before release; now we will discuss the
concept of fuzz before purchase. We will explore the caveats to the second approach,
and how it can help your business save costs and pass audits. That and more is discussed
in this chapter.

The concept of standardizing how fuzz testing is done is beyond the scope of this
chapter, and is far away in terms of likelihood.

Software Security Testing, the Challenges
Software security testing has always been problematic, at least for the end clients who
do not always have the luxury of looking at the source code.

Without the source code, security testing requires highly skilled professionals in
the diffi cult and expensive niche of reverse engineering. It requires specially built labs
to put products through stress testing, simulated regular usage, attacks, etc. All in all,

 Standardization and Certifi cation • Chapter 8 135

the results of such tests, depending on the resources invested, would be anywhere
from worthless to very good.

This is an expensive and time-consuming process, and when done, can never
be announced as complete. Much like any testing, it can speak to the quality of
the software and its stability; it cannot guarantee that there will be no vulnerabilities
in it.

The prohibitive cost combined with imperfect results and potential liability for
the tester, both from the client (who may sue if vulnerabilities are later disclosed)
and from the vendor (who may sue for intellectual property violations or for any other
number of reasons) caused the fi eld of security testing for products to die out.

Those who do provide such services do it direct-to-client as a service and in
most cases will not publicize their results. Others include very large organizations
that have specialized testing teams.

One type of security testing for products that is widely accepted, and very
controversial, is antivirus testing, which we discuss at the end of this chapter
as an example of further challenges and some solutions.

Testing for Security
Before we continue and discuss how fuzzing presents itself as a viable option for
software testing for end clients, we’ll examine how such testing is done today.

In this case, we are not speaking of reverse engineering and costly software testing,
but rather of simple tasks that can be performed before a product is chosen.

There are many methods for such testing, such as a pilot run and user simulation,
but some of the ones specifi c to security repeat in most organizations that perform
such testing. We will cover a few.

Historical Studies
Of course, learning from history is always useful. Searching through bugtraq and
other historical vulnerability information sources such as SecuriTeam for old
vulnerabilities in the product we test can at times prove very useful.

Problems with such information include:

■ Out-of-date data

■ Metrics and terminology differ considerably between reports

■ Data is not always verifi ed or verifi able

136 Chapter 8 • Standardization and Certifi cation

■ Reports are on different product versions or code bases

■ Not all products meet with the same scrutiny from the researcher
community

Therefore, although vulnerability history does give us a glimpse into the
product’s security and the company’s coding standards, it is far from reliable, if it
exists. And then, it is often too scattered both in content and context to be useful
for such a study.

Further, our premise when doing such research should be: information may not
exist, and if it does, it will not be conclusive.

Edge cases exist with products that have been heavily scrutinized (many different
reports over time) or studied (researched specifi cally), and are most useful.

Although the information gathered and conclusions reached are far from perfect,
they are important. They can indicate issues not necessarily relating to how securely
the code was built, but rather how scrutinized it is (how popular) and how much
attention it gets from the research community. Are there new vulnerabilities disclosed
often? Are these then critical?

With all the caveats, this method is the best one that exists today other than
performing your own exhaustive and resource consuming testing.

Stress Testing
Stress testing is an accepted and long practiced method of testing new products,
especially when it comes to network services.

The service would be bombarded by a large number of requests, up to a point
where it could no longer handle them. This helps with tweaking confi guration so
more queries can be handled, and to make sure the server can handle what it will face.

Stress testing can be considered, to a very limited degree, fuzzing. It sends large
amounts of requests, which can also result in issues such as hangs and crashes.

Vulnerability Scanning
Vulnerability scanning (also known as vulnerability assessment) is used for network
security, searching for insecure computers and missing patches on them.

Vulnerability scanning is not specifi c to product testing and, to be honest, is not
very useful for it. It was never meant to be used as such as it can only provide very
limited results.

It isn’t meant to fi nd new vulnerabilities or test for robustness.

 Standardization and Certifi cation • Chapter 8 137

There are two goals one can hope to reach:

■ Fuzzing for the very poor: see if an old vulnerability triggers a new one.

■ If the product comes as an appliance, see that the operating system and
applications on it are properly secure and hardened.

To a very limited degree, scanning for open ports can also be useful for seeing
if the operating system and other applications have been secure.

Fuzzing as a Viable Option
With all the diffi culties and price tag of software security testing done without source
code, as important as it may be, it has been largely neglected. Fuzzing technology
comes as a viable alternative to some of these, with a lower cost and faster results.

Fuzzing fi rst entered the scene as a technique used by hackers, or as homegrown
tools used mostly by large vendors for specialized security testing. With the fuzzing
industry maturing and the introduction of easy-to-use products, fuzzing presents itself
as a viable option for organizations that do not have the source code and are looking
to test before they buy.

Here are the main reasons fuzzing may just make such testing an option:

■ Fuzzing is black-box testing, which means no source code is required.

■ Automated fuzzing is doable to a large extent.

■ Fuzzing in its simplest form indicates critical bugs, such as crashes and hangs,
which can of course also mean vulnerabilities.

■ Fuzzing can indicate the stability and robustness of a product: how often
does it crash? What does it take to crash it?

■ Most importantly, fuzzing is low-cost and easily repeatable.

For these reasons, fuzzing presents itself as a viable option for testing new products
before they are purchased, and knowing to a good degree how robust they are, and
how likely it is for new vulnerabilities to be discovered in them.

Other techniques can and should still be used, but the cost of performing some
of these tests drops dramatically, making them available to everyone rather than
just large organizations. Further, they are repeatable, which means they can be
used on different products using the same process with small to no additional
infrastructure costs.

138 Chapter 8 • Standardization and Certifi cation

Business Pressure
Choosing software that will be up to scratch and will result in fewer losses
due to security issues becomes a business concern.

Reactive vs. Proactive, and Security
as Part of the Business
In today’s world with increasing awareness of security threats, and security being
considered a part of the business in many organizations, there is business pressure
to maintain security.

Patching and similar techniques are useful, but reactive. They take time to
 implement, and in some cases don’t work. If a product can be chosen ahead of time
on the criterion that it is more robust and less likely to have vulnerabilities discovered
and publicly disclosed, all the better.

With the ever-decreasing time until exploit code is released after a vulnerability
becomes known, even without taking into consideration the testing and implementation
time for patches, a more proactive approach is needed.

To illustrate this, even if the patching systems are perfect and all known
vulnerabilities are patched, with the increase in targeted attacks using as-of-yet
unknown vulnerabilities (or 0days—zerodays) to attack our organizations and executives,
we cannot always rely on patches.

Saving Costs by Using Fuzzing
By using the concept of fuzz before purchase, you will see some benefi ts both short
and long term, including:

■ Being forced to patch less often.

■ The lack of need to patch systems with no new vulnerabilities.

■ Critical systems such as production servers (which patching may not
even be a viable option for) would be more secure, reducing risk.

■ Reducing risk of outbreaks.

■ Reducing risk of targeted attacks.

■ Making the window of vulnerability from exploit to patch irrelevant
in more cases.

■ Pressure from partners.

 Standardization and Certifi cation • Chapter 8 139

In recent years, organizations have been looking for a way by which they could
cooperate with other organizations securely, trusting them. As testing for how secure
another organization may be is diffi cult and at times not possible, standardization has
been picked as a good indication of the other organization being security-aware and
doing what needs to be done. BS7799/ISO17799 (now ISO27001 and ISO17799)
proved to be good standards that many started to follow, and is a good example.

Certifi cation by Product
Although without such standards, some organizations such as telecommunication
giants and banks started demanding that vendors that want to sell to them fi rst be
tested by certain fuzzing products, with proof provided. This is far from a standard
and is not a certifi cation as such, but does show a trend.

SDL
Not for the end client, Microsoft’s Software Development Lifecycle is an example
of another type of pressure, although solely for vendors. SDL is the standard
Microsoft pushes for secure development, and third-party development companies
wishing to work on Microsoft code are required to follow it.

Fuzzing is a part of SDL, and because of that, many vendors now incorporate
fuzzing into their development cycle.

Software Security Certifi cation
With security testing becoming lower cost and more effi cient, it can be expected
that some type of testing rather than by the demands of partners and clients will
be done.

This in turn has the potential of turning into a certifi cation, declaring a product
is built securely, and not just as a rubber stamp.

Meeting Standards and Compliance
Much like vulnerability assessment is essential in passing audits, standardization and
compliance testing, the concept of fuzz before purchase can increase an organization’s
chances of passing such audits.

Proof of testing products for security before they are even implemented, and how
this has made the organization’s patch management system more effi cient, can help
your organization prove your status to auditors.

140 Chapter 8 • Standardization and Certifi cation

Tester Certifi cation
With the increasing use of fuzzing in end-client organizations and corporations,
a standard for how to use fuzzing will be required. Further, qualifi ed personnel
would have to be found or trained.

Certifying such personnel in training is going to become a necessity, and the role
of the QA Security Engineer is born.

Industry Pressure
One could hope that when many end-client organizations test products and purchase
based on how securely they are built, and report issues back to the vendor and
demand them to be fi xed, others will follow suit or be left behind.

Fuzzing has the potential of helping the software industry become more secure,
and fi nally rid us of the lower hanging fruit, the simple vulnerabilities that are easy
to fi nd and keep haunting us and placing our organizations at risk.

With the maturing fuzzing industry, vendors run out of excuses to produce
insecure products. Hopefully, this vision of upping the ante will be realized, but until
it does, at the very least we can make sure to buy what’s up to scratch, rather than
deal with the added risk later.

Antivirus Product Testing and Certifi cation
The only certifi cation and widely deployed testing in the security industry today
for vendors is for antivirus products.

These products are tested for many different things, including:

■ The number of virus samples they identifi ed

■ How well these infections are removed

■ The antivirus’ capability to detect the virus on access

There are many concerns in testing and the resulting certifi cation, though, which
the world of security testing for products can learn from.

The main questions would be: what criteria are used for the testing, and what are
the processes and environments used for the testing? What type of testing is used?

One of the biggest problems is what sample pool you would use for testing
a product. This is especially important, as if you test a product with only one type
of samples, it may not do as well as others.

 Standardization and Certifi cation • Chapter 8 141

How you determine what samples should be used for testing is another problem;
after all, if the antivirus doesn’t identify some “junk fi le” left behind by the virus,
or a sample that doesn’t work, it may not mean it always should.

Another concern is that once such testing is performed and made public, if one
antivirus doesn’t do as well as one of its competitors due to a mistake, it will take
a long time for that marketing damage to be repaired.

These issues only begin to describe how problematic testing and its ramifi cation
can be. The world of security certifi cations for products is re-awakening, but what
certifi cation we choose to use or rely on is another question all together.

How to avoid a rubber stamp, what would be a good certifi cation, and what
damages can the certifi cations cause the vendor or the client, if not done correctly?

This page intentionally left blank

143

Chapter 9

What Is a File?

Solutions in this chapter:

■ Are File Fuzzers Special?

■ Analyzing and Building Files

■ Frameworks

144 Chapter 9 • What Is a File?

Introduction
Since we are interested in the fuzzing aspects, and to study generating various

malformed fi les, we will make some distinctions fi rst:

■ A fi le is some sort of input for an application.

■ Confi guration fi le (could be in formats such as XML, INI)

■ Data fi le (e.g., GIF, AVI, EML)

■ We assume there must be an automated process to “generate” (“save”) that
fi le, as it was generated by some application.

■ Following the same logic, we deduce there must be an automated process
to “load” the fi le.

■ The fi le format could be binary or textual—this would become relevant
in the way we treat data inside it.

Our agenda is to provide a process to generate a large number of potentially malicious
fi les, and have each separately tested with the application. This process would be divided to:

1. File generation/creation.

2. File load (by an external application, which we would like to test).

Next, we need to understand the difference between network protocol fuzzers
and fi le fuzzers:

1. Generating the tests.

a. How do we research/analyze fi les so our test will be built properly?

b. How do we build the fi les?

2. Once a list of test cases is generated, how should we approach running the
actual tests?

a. How do we automate the process?

b. How do we detect problems?

 What Is a File? • Chapter 9 145

Are File Fuzzers Special?
When discussing network fuzzers, we looked at ways to build the actual test cases.
It only makes sense that when you want to fuzz some sort of fi le specifi cation, the
fi rst step would be to analyze the fi le and determine its structure. If this is well
documented, this might be a reasonable task. We already have the fi le divided into
sections/structure and all we have to do is wrap everything together and start
altering and manipulating each section to create the list of fi les.

Of course, this is not enough. Even if the documentation is all there, we should
try to expand our test to areas the documenters did not think of. Before diving in,
we have to ask, “Is this concept any different from network fuzzing?” The answer is
probably not. Once we do have our list of fi les to test, we have to think about how
to run them. This part is obviously different from testing some server via a socket,
but let’s leave that for now.

So, why are fi le fuzzers, or more accurately creation of fi le test cases through a
fuzzer, so special they deserve their own chapter? Let’s think of a proprietary network
protocol that has no documentation whatsoever. How would we try to research this
scenario? First, we would probably set up a lab with the desired tested server installed.
Next, we would hopefully fi nd and install a few supporting clients and start simulating
some actions. We can then use a sniffer to capture the data, analyze it, and learn the
protocol’s basic structure, according to our actions.

We can also recreate those sessions ourselves. Simply open a telnet session with
the server and send the packet captures. We can play around with the packet and
change parts of it to see how the server responds. The fact that we have an interactive
session with the server allows us to play with the protocol and learn its structure.
How could this be simulated with fi les? Well, let’s think of a very, very, very
(+very∗1024) simple example fi rst. Microsoft’s Notepad (Figure 9.1) is a simple
text editor that allows us to view and edit text fi les. Of course, this is not an interesting
fuzzing example, but it’s so simple that it’s worth spending the time to present
the concept.

Let’s open Notepad and enter some text.

146 Chapter 9 • What Is a File?

Let’s save this text fi le.
In Notepad’s Save As dialog (Figure 9.2), we see there are four types of fi le

encoding options.

Figure 9.1 Microsoft’s Simple Text Editor

Figure 9.2 Four File Encoding Options in Notepad

 What Is a File? • Chapter 9 147

Let’s save four versions of our simple text fi le, one for each encoding. Now, let’s
view the hex representation of the fi le (Figures 9.3 through 9.6). (Note: Re-opening
in Notepad would not work, as it parses the “headers.”)

Figure 9.3 ANSI

Figure 9.4 Unicode

Figure 9.5 Unicode Big Endian

148 Chapter 9 • What Is a File?

We can easily compare (visually) the fi les and see that they are not the same.
We might even have some knowledge of Unicode and deduce the following:

■ The fi rst bytes are some sort of header used to determine the fi le type.

■ If the fi rst 2 bytes are equal to “fffe,” the fi le encoding is Unicode. While
parsing the rest of the fi le we would treat characters as Unicode, meaning
read 2 bytes for each character.

■ If the fi rst 2 bytes are equal to “feff,” the fi le encoding is Unicode big
endian, so we parse the rest of the fi les reading 2 bytes for each character but
in big endian order.

■ If the fi rst 3 bytes are equal to “efbbbf,” the fi le is in UTF-8 encoding.

■ Else, this is a fi le in ANSI encoding.

So, we have some knowledge of Notepad’s TXT fi le specifi cation structure. Pretty
simple, and we can easily build a fuzzer to test this, adding the relevant conditions to
parsing the actual text data according to the header.

This process is similar to what we explained about network fuzzers. We take a sample,
play around with it, and have the “server”—in this case, the fi le application—generate
more samples. Then, all we have to do is fi nd the similarities and differences. Eventually,
we will have a decent grasp on how the fi le is built.

Of course, this suffers from the same problems as the network protocols: we
never know if there are more hidden features in Notepad we missed. This gets more
worrisome in complex applications. Imagine the enormous number of features in an
Adobe PDF fi le (adding pictures, tables, colors, …)—repeating the process for each
and every feature seems not very time effi cient…

Figure 9.6 UTF-8

 What Is a File? • Chapter 9 149

Another problem is having the application give us some hints on how to further
build a fi le. While sending an invalid packet to a server might respond with the
problem (missing fi eld perhaps) or a list of known commands (or in fact, sometimes
there is a special command for doing just that), applications that fail to load a fi le
would rarely report an interesting error.

Therefore, whenever we can generate fi le samples, we might get suffi cient output
to understand at least part of the fi le. This is a good place to start, and is reproducible
for many fi le types (e.g., for MP3, change the bit rate, frequency, and other parameters
to change the “header.” Again, this is not a full solution, but a good starting point.

Now let’s refer to the scenario where it is diffi cult to “manually” generate many
fi le samples. With network protocols, we have the ability to capture traffi c and simulate
many samples in a short time. The real added value is that there are a few analyzing
tools that parse the data for us and help us with analyzing (Wireshark is a good
example).

Say we managed to get our hands on a satisfying list of samples to use. How can we
use these to build our module? Must we manually go over and hope to understand the
inner structures? While in textual fi les this might be a sane task, assuming most fi les are
actually binary this seems like a lot of hard work.

Analyzing and Building Files
In this section, we suggest techniques for analyzing fi les and building some output
from that research.

First, we need to understand the way the tested application handles this fi le. As it
is obvious there is no point in testing a fi le specifi cation by itself (how could we test
this abstract concept?), we need to decide which application(s) would be used to
load the fi le. These are the applications we would be actually testing. This process is
straightforward, as we assume our main goal is testing a specifi c application, and the
fi le format is simply one of the interfaces of this application (confi guration fi le,
media players, etc.).

If we are actually working on a fi le format intended for wide use and our goal
is to check whether our spec is vulnerable, we would have to target down a few
(probably well known and popular) applications that load our fi le type and use them
for our testing process. If we provide some API or package to work with our fi le, we
would have to test it using some simple tester application. A common way to divide the
way an application handles a fi le is into two parts: parsing and rendering. Parsing usually

150 Chapter 9 • What Is a File?

takes place fi rst, when the application is fi rst given the fi le. It must load the fi le, read
its input, and convert it into a memory structure to work with (XML elements, maps,
buffers). In fact, it might be logical that the parser would be a separate library provided
by some vendor and incorporated in the application, as it contains no special logic but
the fi le format.

Rendering is the part in the application that takes the actual data inside the fi le
and tries to work with it—display a bitmap on the screen, play a movie, update the
application with the relevant settings, or anything else the application was supposed
to do with this fi le. In some cases, parsing and rendering are mixed together—parse
some data, render it, parse more date, render that, and so on. Notice that these are
two different procedures in the application. Some data might be able to pass parsing
but would not render (an image viewer would parse a valid in structure bitmap but
refuse to show it if some parts are missing). A good example of this is looking into
XML fi les (let’s ignore XML schemes for this example):
<Settings Name=“Example1” RequiredAttribute1=“5” />

This line is a valid XML line and thus would pass the “parsing” process. The
application then requires reading the attribute RequiredAttribute and using its value.
This is the “rendering” part.

If we omit the RequiredAttribute1 part and keep the line:
<Settings Name=“Example1” />

this is still a valid XML, but while the “parsing” process would pass with no problems,
“rendering” would painfully fail.

To summarize, we would obviously aspire to create various test cases to check
both types of application procedure. To do so, we will need to generate a fi le that is
valid and choose specifi c locations in the fi le (or combination of specifi c locations)
to tamper with.

This chapter mostly focuses on binary fi les, as they present a more complicated
problem. So, let’s get textual fi les out of the way fi rst.

Textual Files
The nice thing about textual formatted fi les is that by defi nition they are usually
easier on the eye. Even before attempting to have any automatic process to analyze
them, we can view them in our favorite textual editor and sometimes even read
actual words that explain the meaning of each fi eld. Even if the fi eld’s name is not
clear to us, we can try to fi nd patterns for delimiters and get a grasp on how parsing
that data would work.

 What Is a File? • Chapter 9 151

In addition, it is easy to use an application such as WinMerge to compare two
fi les to distinguish between required fi elds and optional ones.

Another interesting thing we might want to do is detect patterns in a fi le. Here
are some general options:

■ Find delimiters. Blindly go through the fi le and cut once a specifi c
character is encountered. Try to visualize an HTTP Request cut in the blocks
for every space/question mark/quote mark. This is not perfect, but goes a
long way for us. NULL termination/new line breaks are also always popular
for textual fi les.

■ Check for special textual patterns (with/without regular expression).
Look for all elements beginning with a specifi c text, containing format of
“fi eld=number.”

■ Try matching conditions between two elements. Find all strings that
are preceded with a number that equals their length.

■ Do the opposite. For each string, try looking up its size (as number)
in the fi le.

Other techniques, which we discuss next, could also be adapted here.

Binary Files
This gets a bit trickier. Most binary fi les present the following problems:

■ Unfamiliar/new data is not readable to the human eye (yes, even to those of
you who feel very comfortable with 1/0s).

■ As a result, comparing binary fi les is a less effi cient task.

■ When a binary fi le is presented, it usually means that the fi le is used for
something more complex to begin with—a simple settings fi le would rarely
need to be binary. Even e-mails hold the nonprintable data as textual using
some encoding (Base64, Quoted Printable) and try to keep things textual.

Binary fi les are used where complex structures with inner dependencies
need to be stored effi ciently (time and space).

■ Ordinary pattern searches would not work on binary formats—we need
to get smarter.

152 Chapter 9 • What Is a File?

In spite of all that, binary fi les are not the single most troubling problem in
modern science. In fact, it is probably not such a diffi cult and frightening task once
we get a bit of experience and some tools under our belt.

So before jumping into what can be done, let’s think of what would we like to
be able to do:

■ Analyze the fi le! If possible, as in Wireshark, have some parsing automatically
done on the fi le to allow us to view the inner structures, and not the full fi le.

■ Specifi cally, if exist a designated “editor”/“viewer” to our fi le format, we
would be almost there.

■ Assuming analyzing is not fully possible (meaning, no such designated editor
exists), we would like to have some process/algorithm help us guess how this
fi le is built. Again, search for patterns, but this time, smarter patterns.

■ Compare the fi le with known fi le structures:

■ ASN1 (Type-Length-Value)

■ Search for patterns that present a type of data, its length, and then a value at
that length.

■ Length-Value

■ Search for printable strings of a minimum size and divide the fi le around them.

Once the data is accumulated, we can easily calculate some statistics to help us
decide which structure best fi ts our fi le.

■ If we know our fi le is ASN1 compliant (or any other format, let’s say it has
a BNF or corresponds to a Context-Free-Grammar), we can try parsing the
fi les using specifi c rules.

■ Compare the fi le with known fi le formats:

■ If you know your fi le’s format, perhaps someone already did some work
for you and you can base your research on that.

■ Perhaps there is a similar fi le format you can compare to.

■ Split the fi le in to smaller chunks and isolate each while researching.

■ Have an automated process “hack” the tested application, check which bytes
it reads from the fi le and how much, and give us an extensive report.

 What Is a File? • Chapter 9 153

We’re going to skip the magical editor/viewer part. This is rarely the case, but if
we do have that special editor/viewer, our task is easy.

We have to understand that even in known, common, and popular fi le formats,
the difference between two fi les could be distinctive; therefore, even in the easier
cases, such an “editor” exists only for parts of the fi le, if at all.

Let’s think back to our Notepad example. This was a very simple, but still, binary
fi le. Well, its header was… (after all, there wasn’t anything much more there).

The fi rst tool we used to see how the fi le is really built was a HEX editor.
While there are many HEX editors out there (some for free, some for purchase),
in general this seems like our Wireshark fi le equivalent—it “captures” data, displays
it, and as we will soon see, sometimes offers various tools to explore the fi le further.

In fact, HEX editors could be the answer for all our wishes, except the fi le
sniffer.

Let’s try to think more technically, and be a bit more specifi c with our demands:

■ Ability to open a fi le from the disk/from memory.

■ Once we recognize a pattern, look for similar patterns across the fi le and
mark them visually (highlight them with a specifi c color).

■ Run external scripts on the fi le; we want the HEX editor to allow us to
write an extension that performs our proprietary tasks. Such extensions
could be:

■ Comparing fi les

■ Merging fi les

■ Run statistical scripts (number occurrences of …)

■ Find regularity

■ Create grammar according to fi le

■ Find conditional elements within a fi le

■ Templates support—compare to an existing set of fi le format templates.

■ Perform complex calculations—we are working with binary/HEX data and
would probably get around to calculating offsets, sizes, network/host order
representation, etc.

■ Script recording (macros)—re-execute a manual process.

154 Chapter 9 • What Is a File?

■ Change fi le—perhaps we can use the HEX editor to simulate test fi les.
This could be done by running some external script that takes advantage
of the editor’s knowledge of structures and performs specifi c tasks on it:

■ Change order of data (byte swap)

■ Replace specifi c data with random data

■ Duplicate data

■ Export to C/Perl code—a nice way to start our auto-creation process is to
have some base code that already has the basic structures of the fi le detailed.

Now let’s look at a few HEX editors and specify their main features:

010 editor—trial available (www.sweetscape.com/010editor/)

■ Ability to mark and paint fi elds (add bookmarks to sections in a fi le).

■ Can run external scripts such as “create random data”, “isASCII?”, “split fi les”,
“multiple paste”, and more, which can be found at www.sweetscape.com/
010editor/scripts/.

■ Can be extended with your own scripts.

■ Use templates to look at predefi ned fi le section (from a pre-defi ned list of
zip, bmp, wav, and more, which can be found at www.sweetscape.com/
010editor/templates/—edit and write your own.

■ Ability to compare binary fi les.

■ Advanced calculation and operations (such as bitwise operations, data format
conversions).

HexProbe—evaluation available (www.hexprobe.com/index.htm)

■ Allows you to set data marks (in an XML format).

■ Set bookmarks inside fi le.

■ Advanced search operations (for patterns).

■ Pre-defi ned templates (PE, wav, ico, bmp—more can be found at
www.hexprobe.com/hexprobe/template_resource.htm)

■ Compare binary fi les.

 What Is a File? • Chapter 9 155

AXE3—trial available (www.axe-editor.com/)

■ Allows you to defi ne your own structures (some included, such as PE).

■ Allows you to run external scripts (isASCII? Calculate RVA, Byte swap).

■ Allows setting bookmarks in fi le.

■ Advanced compare for binary fi les.

■ Ability to fi nd regularities within a fi le.

■ Ability to attempt to create grammar from a fi le.

■ Ability to run statistical functions on a fi le.

Tiny Hexer (www.mirkes.de/en/freeware/tinyhex.php)

■ Ability to set bookmarks within a fi le.

■ Ability to insert part of a fi le into a different fi le.

■ Ability to perform statistical functions on fi le data.

■ Ability to compare fi les.

■ Ability to run scripts on code such as strings, resize data, highlight, split,
fi ll with random/calculated data, script recording (macro), and more.

■ Ability to extend with your own plug-ins.

So, this can help us take a fi le sample and manually analyze it.
By loading the structure viewer, and using the predefi ned bmp template, we can

easily navigate through the structures in the fi le and their values, and pretty much
understand what should/could be changed.

Once we begin to understand our fi le’s patterns, we can write our assumptions
as a template and start comparing fi les using it. This would make the chore of verifying
a theory much easier.

We can see that only the headers change, and the color table is the same (go back
to the structure viewer to identify the exact locations).The last thing on our wish list
was a “fi le sniffer.” Since we start with some fi le samples, we can have the application
load them.

Remember our assumption that there is an automated process to “generate” and
“load” these fi les. Using that assumption, we could try to “record” all actions made

156 Chapter 9 • What Is a File?

to the fi le, by the application (either during load or save, each of the operations has
its advantages), and then use that report data while we view the fi le in our editor.

An interesting data might look like this:

■ 42 bytes were read from offset 12 => might suggest that this is some
structure.

■ 1 byte was read from offset 64 and then X bytes were read from offset 65 =>
might suggest this is a Length-Value structure.

This data could be collected in one of the following methods:

■ Use a device driver to track fi le operations (such as SysInternal’s FileMon).
This would let us know whenever a fi le is opened, read from, written to,
and closed.

■ Use an API monitor to track fi le access function calls.

■ Could use any existing reverse-engineering tool that allows adding breakpoints
to functions (Soft-Ice, IDA, OllyDbg).

■ Could use simple API monitors such as APISpy or Rohitab’s API Monitor.

■ Could write your own application that hooks specifi c functions and logs
relevant parameter data.

We won’t go any deeper on how to perform this, as that is a different subject that
deserves its own attention. So, to summarize, it seems that these tools and features
are a nice start to working with a fi le. However, even if we think we have the theory
part fi gured out, we must test our data/changes to see that it is aligned with the
application’s behavior.

This would probably be done toward the end of the process, while running the
actual test on a large amount of test fi les, but is also necessary during the learning
process, to see whether our conclusions stand and that our generated fi les are somewhat
valid, so they would not be thrown away by the application at fi rst sight. This nicely leads
us to our next section on how to perform the actual testing (“running”) of the fi les.

Running the Test
A few problems still stand in our way to fi nding vulnerabilities in our fi le product.
While the fi rst, generating the samples, is out of the way, we still need to think of

 What Is a File? • Chapter 9 157

how to feed these test cases to our application and (of course) how to detect potential
problems. As usual, let’s start by seeing how this is done in network fuzzer scenarios.

Interface

■ Network test cases have an obvious interface—network, and usually
via a socket.

■ File test cases have a similar common interface, the File->Open menu option.
While it is true that in many cases it is possible to load a fi le using other methods,
such as drag-and-dropping into the application, running the application from
the command line with the fi lename as input, import and more, we will assume
that either we would handle all of these options (preferably), or that they all bottle
down to the same code and therefore one method covers them all (or at least
close enough). In some cases, such as working on an application’s confi guration
fi le, there is no interface to load the fi le. Still, something loads it. We just need to
fi gure out how this is done and fi nd a solution for automating that process (for
example, replace the actual confi guration fi le and start the application).

Test Flow
Network test cases sometime need to preserve a session throughout the test (e.g., Login
before Commands). In addition, problems in one session might affect a following
session, which might be hard to detect.

■ File test cases—well, it seems we fi nally found something easier in fi le fuzzers!
There doesn’t seem to be “Sessions” in fi le format cases. In fact, most applications
do not load and reload fi les on the fl y so we may even decide to close the
application entirely after each test and restart it for the next one.

However, this requires the observation that our application is not being
tested for multiple fi le operations. Memory leak in load would not crash the
application and might not be detected until it does (which would take, let’s
say, 15 sequential load operations).

Again, we make the choice to simplify this matter and treat each test on
its own. If your fi le application is different, and cannot make this assumption,
you are not left out to dry—the change is reasonable. In fact, the main
difference is in parsing the error report and determining which fi le caused
the problem. We would address this issue later.

158 Chapter 9 • What Is a File?

Network errors are detected when:

■ Server crashes—could be detected by a monitoring agent, such as a
debugger.

■ Server stops responding.

■ Server reports specifi c error to some log fi le.

■ Server sends specifi c packet back to client (someone must parse the packet
and detect discrepancies.

File errors should be detected when:

■ Application crashed—can be detected by attaching a debugger to the
application.

■ Application hangs—put a timer on an application’s run, detect high memory
usage and stop it, check its log size and stop it when it exceeds a certain size.

■ Application reports a specifi c error to some log fi le—could be detected by
parsing the log fi le.

■ Application alerts user with a specifi c message (Message box, stdout/stderr, etc.).

We can see that the difference is minute, and aside from detecting an application
“Reply,” which is something a bit different in network fuzzers as well, the same
mechanisms could be used.

Side effects:

■ Network tests can be affected by several nontest-related issues:

■ Network connectivity problems (our fuzzing was so extensive and hard
that we burned out the router?).

■ Due to a large number of requests, the server fi lled the machine with log
fi les and took up all the free space (whether this is a potential vulnerability
is debatable).

■ Once crashed, server must restart for us to resume testing.

File tests can be affected by:

■ Generating our fi les test cases might take up all our disk space. We need to
keep that in mind (either have enough disk space or generate a test-case, run,
delete fi le test case if no problem was reported).

 What Is a File? • Chapter 9 159

■ Once crashed, the application might go into safe mode. Not sure this was
our intent (to test following fi les in safe mode).

So, now that we know what we want to do, and have some ideas on how to do
it, let’s look at several of the fi le fuzzers out there. Notice that most of them try to
deal with both parts of our process, meaning generating fi les from some source and
running to detect problems.

iSEC Partners—FileP
FileP is a python-based fi le fuzzer. It generates mutated fi les from a list of source fi les
and feeds them to an external program in batches.

This fuzzer gets a source fi le and an application command. It then looks for
predefi ned patterns in the source fi le, changes them to a malicious pattern, and
executes the application, giving the fi lename as a parameter.

Output is the list of fi les that triggered an application error (www.isecpartners.com/
fi le_fuzzers.html).

iDefense’s FileFuzz
FileFuzz is a graphical Windows-based fi le format fuzzing tool. It was designed to
automate executing the launching of applications and detection of exceptions caused
by fuzzed fi le formats (http://labs.idefense.com/software/fuzzing.php).

It takes a fi le as input, parameters to choose bytes to manipulate from and
changes them. It also has default settings for various fi le applications/specifi cations
(acrobat, ntbackups, zip, wmf, wab, etc.).

eEye—Integer File Fuzzer (UFuz3)
UFuz3 is a binary fi le fuzzer focused on fi nding integer overfl ow vulnerabilities. This
tool can audit any application that loads a binary fi le such as Windows Media player,
Microsoft offi ce, etc. (http://research.eeye.com/html/tools/RT20070129.html).

This fuzzer gets an input fi le and application path and generates sample fi les.
It then tests them with the application and reports the fi les that generated a crash/error.
Test fi les are generated by searching for integer overfl ows patterns (supporting size,
offsets, little/big endian).

Gianni’s fuzzer
Given a fi lename and an application path, Gianni’s fuzzer generates fi les according to
patterns (predefi ned or tailored) and reports which fi les crashed the application with

160 Chapter 9 • What Is a File?

the relevant debug information (http://gruba.blogspot.com/2006/11/
fi le-fuzzer.html).

zzuf
zzuf is a transparent application input fuzzer. Its purpose is to fi nd bugs in applications
by corrupting their user-contributed data. It works by intercepting fi le and network
operations and changing random bits in the program’s input (http://sam.zoy.org/zzuf/).

This takes a bit of a different approach, where it tries to generate fi les dynamically
according to the way an application reads input fi les and not statically. The application
needs to be “fed” with various sample fi les.

untidy
untidy is general-purpose XML fuzzer. It takes a string representation of an XML as
input and generates a set of modifi ed, potentially invalid XMLs based on the input
(http://untidy.sourceforge.net/).

mangle.c
mangle.c is a trivial binary fi le fuzzer by Ilja van Sprundel.

Its usage is very simple: it takes a fi lename and header size as input. It will then
change approximately between 0 and 10% of the header with random bytes (biased
toward the highest bit set).

Frameworks
Fuzzing frameworks do not offer a “complete” solution as previous examples, but do
offer you some platform to use your research data to construct an effective fi le generator.
It is important to understand that even after we have all the technical information about
our fi le specifi cation, we still need to decide how to alter its structures and whether to
generate fi les such that each has only one “broken” point or some “magic combination”
of broken parts.

Fuzzled—Perl Fuzzing Framework
Offers some code to generate data and some code for generating advanced elements
such as Repeated data/Format String/Filename/Unicode (and more). In addition,
provides several pre-built examples, mostly for network protocols.

AntiParser
AntiParser is a fuzz testing and fault injection API (http://antiparser.sourceforge.net/).

 What Is a File? • Chapter 9 161

Monitoring the Application
with the Test Cases
So, we established we need to analyze a fi le format and generate various test fi les.
We also know that our next step is to run and fi nd problems.

We noticed that most fi le fuzzers take the same approach:

1. Analyze an input fi le and generate various test fi les:

a. Simply by replacing data with random data

b. More advanced—by replacing data inside specifi c patterns with
different data

c. By a predefi ned fi le format (which we can only assume is a result
of some research)

2. Run the fi le on a given application with some monitoring tool.

3. And, of course, report your fi ndings.

So, the last thing on our task list is to run the actual test.
Assume we have a directory full of potentially problematic fi les. We would want

to run them, one after the other, and monitor the application’s response.
This could be done in various ways, but the simplest is to have a script, iterating

over all fi les in the folder and running the application.
Most fi le-accepting applications allow launching with a fi lename as a parameter.

If not, we can simulate an application with any action, but this is obviously less
generic.

Next, we would like to have a sanity check performed at the start of the test,
feeding the application with some of the fi les we created and already manually
checked. This would be done to make sure the testing process is valid and that the
application does not simply reject all fi les on some minor issue.

Once this is done, we need to determine how to detect that the application
fi nished working on a specifi c fi le. While normal/standard fi les might simply be a
matter of waiting a few seconds and closing, large fi les might take more time, hang
the application, or even simply alert the user with some question and wait for input.

While we cannot address any specifi c case or question the application might raise,
we can mark these cases with some tag for us to check manually later. (We’re hoping
this would not be too common. If it is, we would have to fi nd a way to handle it on
our script.)

162 Chapter 9 • What Is a File?

Now that these cases are marked, we can skip them and go on to the next test
case. So, we have an algorithm, iterating over fi les, loading them into the application
and exiting the application. Now we need to attach the application run to some
monitoring process. Any debugger would do the trick, as long as we can handle the
Exception Reports, save the malicious fi le, and resume the test. gdb, IDA, and
OllyDbg, which provide various plug-ins, seem like good candidates.

Finally, we can add external checks for log messages, code coverage, memory/CPU
usage, and other system events to check for other types of data. Our results should
consist of fi les that caused some problem (and the relevant data found, whether this
is from the debugger, the log parsing, or any other event) and suspicious fi les that could
not be tested automatically. This allows us to dig deep into each of these suspicious
scenarios by reproducing it, and by doing so, further investigate the problem to its
solution.

163

Chapter 10

Code Coverage and
Fuzzing

Solutions in this chapter:

■ Code Coverage

■ Obtaining Code Coverage

■ Improving Fuzzing with Code Coverage

■ Weaknesses of Code Coverage

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

164 Chapter 10 • Code Coverage and Fuzzzing

Introduction
Many related problems arise during the fuzzing of real applications. First, some
mutation-based fuzzers will run indefi nitely, endlessly modifying data and supplying
it to the target application. Assuming the application never crashes, how do we
know when to turn off this type of fuzzer? When is enough? Another problem that
arises comes after running a fi nite set of fuzzed test cases, such as those generated by
SPIKE or supplied by a PROTOS test suite. If the target application has not
crashed, and the fuzzer is fi nished, what do we do next? Can we call the application
secure and move on? Is it possible to measure how well the application has been
fuzzed? Is there a way to make “improved” test cases based on the results of previous
fuzzing runs?

The answers to all these questions can be found by closer examination of the
actions of the application being fuzzed. This chapter demonstrates how to use code
coverage, a measure of the amount of code executed by an application, to make
decisions on how successful fuzzing has been and how this information can be used
to make fuzzing even more effective.

Code Coverage
Code coverage is a metric often used by software developers and testers to help determine
when applications have been suffi ciently tested. Typically, code coverage information
is obtained by adding additional code to the application when it is built. Adding code
to a binary is called instrumenting the code. (We’ll see later that there are other ways
to obtain code coverage). This additional code is responsible for recording the coverage
information when the application is executed. This recorded coverage information is
then post processed by another application that computes the amount of code covered,
and generates reports and graphs.

There are many different types of code coverage, the most basic being statement
coverage. This refers to whether lines in the source code have been executed. We will
also extend this notion to include whether lines in assembly code have been executed,
for applications in which we do not have the corresponding source code. From this
information we can compute the percentage of the total lines of code executed, be it
source or assembly. These numbers can be generated per application, and per module,
fi le, class, or function. The information gained from these code coverage reports can
lead us to particular regions of code that have not been executed and may require
further analysis. This is the simplest and most common form of code coverage.

 Code Coverage and Fuzzzing • Chapter 10 165

A slightly more informative type of code coverage is branch coverage. This type of
coverage measures whether each branch, or conditional, has been taken. Again, we
extend this to whether each conditional jump in assembly code has been taken.
(Technically, this assembly version of branch coverage is equivalent to multiple-condition
coverage in the testing fi eld). Again, an aggregate number that indicates the percentage
of possible branches that have been taken can be computed at various levels of the
application.

A particular variation of branch coverage exists called relational operation coverage.
This measures whether expressions containing relational operators (<, >, >=, <=) are
exercised with boundary values. For example, in the following code segment,
if (x > 0)

 foo();

branch coverage would be obtained if during one execution x was greater than zero,
and in another it was less than 0. However, this would not constitute complete
relational operation coverage. For this more powerful metric to be maximized, we
would also require a test case where x equals 0. This is very useful for detecting
off-by-one errors, a common source of security vulnerabilities. This particular type of
code coverage is not currently implemented in any tools.

The most complete type of code coverage is referred to as path coverage. This
measures the number of paths in the control fl ow graph of the program that have
been executed. This type of coverage is the most thorough type of coverage because
it depends on every possible way through the control fl ow graph of the program.
This requires various combinations of variables to be particular values at different
times. Again, a percentage of paths can be calculated at various levels of the
application.

While path coverage is the most thorough measurement of code coverage, it has
many problems. One is that, when loops are considered, there may be an infi nite
number of paths. This diffi culty is handled by only recording whether multiple loops
have been executed; that is, two possible “paths” through a loop are covered depending
on whether the loop was executed only once or multiple times.

Another problem with path coverage is the notion of infeasible paths. Consider the
following code segment:
if(x > 0)

 foo();

if(x < 0)

 bar();

166 Chapter 10 • Code Coverage and Fuzzzing

if(x == 0)

 foobar();

There are eight possible paths through the control fl ow graph of this code.
However, only three are feasible. Namely, the variable x cannot at the same time be
greater and less than zero, so it is not possible to have both foo() and bar() called in
the same execution of this code.

The most serious problem with path coverage is the exponential number of paths
in an application. For instance, if a portion of a program has n total conditionals,
there will be 2n possible branches, but 2^n possible paths. This can be seen by examining
the previous code that contains three branches but has 2^3 = 8 possible paths.

Tools & Traps…

Why One Form of Code Coverage Is More Thorough
Than Others
Most code coverage tools supply statement coverage information. This can be
very useful for us, but does have some limitations. Consider the following code
segment:

if(x > 0)

 size += x;

if(y > 0)

 size +=y;

foo(size);

Suppose that upon examining the code coverage data, it is found that all
statements have been executed. Have we done all we can do? Not necessarily.
For example, this code segment can have complete statement coverage with
only one execution (namely, when x and y are both greater than zero).
However, it will require two executions to obtain total branch coverage (where
x and y are both greater and less than zero, respectively). To obtain perfect
path coverage, four executions are required. This demonstrates the additional
information obtained by examining path coverage versus branch coverage, or
branch coverage versus statement coverage, for it may be that a vulnerability
only emerges down one particular path in a program.

 Code Coverage and Fuzzzing • Chapter 10 167

Obtaining Code Coverage
In general, there are a few ways in which code coverage information can be collected
from an application. The traditional way is to instrument the binary during compilation.
Additional code is added to the compiled program, which records execution of the
binary. Other ways to obtain code coverage information include injecting this additional
code into a running application. Yet another option includes monitoring the target
program with a specialized debugging program or simulating its execution. Let’s start
with the simplest example and assume we have source code.

Instrumenting the Binary
Let us examine how to use the GNU compiler gcc to obtain code coverage information
for applications for which we have source code. We compile a simple program with the
-fprofi le-arcs and -ftest-coverage fl ags, which inform the compiler to add code
coverage instrumentation. The following assembly code fragment from this binary
illustrates the added instructions that record code coverage information. The relevant
lines that record this information are highlighted.
0x00001b9e <main+0>: push ebp

0x00001b9f <main+1>: mov ebp,esp

0x00001ba1 <main+3>: push ebx

0x00001ba2 <main+4>: sub esp,0x14

0x00001ba5 <main+7>: call 0x2ffc <__i686.get_pc_thunk.bx>

0x00001baa <main+12>: cmp DWORD PTR [ebp+8],0x2

0x00001bae <main+16>: jle 0x1bc6 <main+40>

0x00001bb0 <main+18>: mov DWORD PTR [ebp-12],0x1

0x00001bb7 <main+25>: lea eax,[ebx+0x14de]

0x00001bbd <main+31>: add DWORD PTR [eax],0x1

0x00001bc0 <main+34>: adc DWORD PTR [eax+4],0x0

0x00001bc4 <main+38>: jmp 0x1bdd <main+63>

0x00001bc6 <main+40>: mov DWORD PTR [ebp-12],0x2

0x00001bcd <main+47>: lea eax,[ebx+0x14de]

0x00001bd3 <main+53>: lea eax,[eax+8]

0x00001bd6 <main+56>: add DWORD PTR [eax],0x1

0x00001bd9 <main+59>: adc DWORD PTR [eax+4],0x0

0x00001bdd <main+63>: mov eax,DWORD PTR [ebp-12]

0x00001be0 <main+66>: add esp,0x14

0x00001be3 <main+69>: pop ebx

0x00001be4 <main+70>: pop ebp

0x00001be5 <main+71>: ret

168 Chapter 10 • Code Coverage and Fuzzzing

An analysis of the highlighted assembly reveals a global array located at
ebx+0x14de consisting of two 64-bit elements. These two elements are incremented
every time their respective basic branch is executed. Although it’s not seen here, this
collected data is then dumped to the corresponding fi les upon a call to gcov_exit.
Additionally, during compilation, for each source fi le, a fi le with a GCNO extension
is created. This fi le contains information about the control fl ow graph of the program,
and records the name of the fi le and functions among other things. When the
program is actually executed, an additional fi le is created for each source fi le, this
time with a GCDA extension. These data fi les can then be read by post processing
programs such as gcov or lcov. Let’s follow a complete example to see how this
process works.
charlie-millers-computer:~ cmiller$ more test3.c

int main(int argc, char *argv[]){

 int ret;

 if(argc >2)

 ret = 1;

 else

 ret = 2;

 return ret;

}

charlie-millers-computer:~ cmiller$ gcc -g -fprofi le-arcs -ftest-coverage -o test3
test3.c

charlie-millers-computer:~ cmiller$./test3

charlie-millers-computer:~ cmiller$ gcov test3.c

File ‘test3.c’

Lines executed:80.00% of 5

test3.c:creating ‘test3.c.gcov’

charlie-millers-computer:~ cmiller$ more test3.c.gcov

 -: 0:Source:test3.c

 -: 0:Graph:test3.gcno

 -: 0:Data:test3.gcda

 -: 0:Runs:1

 -: 0:Programs:1

 1: 1:int main(int argc, char *argv[]){

 -: 2:int ret;

 1: 3: if(argc >2)

 #####: 4: ret = 1;

 : 5: else

 Code Coverage and Fuzzzing • Chapter 10 169

 1: 6: ret = 2;

 1: 7: return ret;

 -: 8:}

First, we list the contents of the fi le, test3.c. Next, we compile it using gcc with
the appropriate fl ags. Then we run the program. After running it, we execute the gcov
program on the source fi le. This reads the GCDA fi le, computes code coverage
statistics, and generates a fi le named test3.c.gcov. Finally, we examine this fi le and
observe the code coverage obtained.

Observe that executing test3 with no arguments executes 80% of the fi ve lines. The
test3.c.gcov fi le shows that each line was executed once with the exception of line 4,
which was never executed. If we wished to have 100% code coverage, we would know
that we needed to make argc greater than two, although this is a trivial example.

TIP

To get branch coverage, use the −b option to gcov. This generates additional
summary information, like

Lines executed:80.00% of 5

Branches executed:100.00% of 2

Taken at least once:50.00% of 2

No calls

and the GCOV fi le contains branch information, such as

2: 3: if(argc >2)

branch 0 taken 0% (fallthrough)

branch 1 taken 100%

Monitoring a Closed Source Application
When we have source code, instrumenting a program to include code coverage
information is as easy as adding a couple fl ags at compile time. Things are a little
more diffi cult when we don’t have the source code and need to get coverage data
from a proprietary, closed source application. The most effective way to approach this
problem is to use the open source PaiMei framework.

170 Chapter 10 • Code Coverage and Fuzzzing

PaiMei (http://paimei.openrce.org/) is a reverse engineering framework that
contains many useful modules. One of the modules, PAIMEIpstalker, can record and
export code coverage data. It does this by attaching to the target process as a debugger,
setting breakpoints at the beginning of each basic block or function, and recording
when each breakpoint is hit into a MySQL database. This data is then accessible
through the PaiMei GUI or may be exported to a fi le (Figure 10.1).

To use PAIMEIpstalker, the locations of all the basic blocks need to be identifi ed.
This is done with the help of IDA Pro (datarescue.com/idabase/index.html), a
commercial disassembler. By using a special fi le developed for use in IDA Pro, these
values can be exported into a fi le with the extension PIDA. (Please see the PaiMei
site for more instructions on how to use the framework and this module.) Once this
PIDA fi le is input into PAIMEIpstalker, and the command to begin stalking is issued,
each time a breakpoint is hit, it is stored in memory. Upon completion, this information
is exported into a MySQL database and can additionally be exported into a fi le that
can be imported back into IDA Pro to highlight those instructions that have been
executed. More details are shown in the next section when we carry out this procedure
with an example.

Figure 10.1 PaiMei Console

 Code Coverage and Fuzzzing • Chapter 10 171

Improving Fuzzing with Code Coverage
Thus far, we’ve talked about what code coverage is and how to get it. Now we will see
how to use this information to evaluate and improve fuzzing. We do this via an example.

We will consider the Freeciv (freeciv.org) open source game that comes with many
Linux systems. This game comes with a server that manages the game play and a
client all the players use to connect to the server and interact with one another. This
is a great example for fuzzing because

■ The client and server communicate with an undocumented protocol.

■ The protocol is binary based.

■ The code is buggy as hell.

The fi rst thing we need to do is enable the collection of code coverage. To do
this we need to compile and instrument the code such that code coverage will be
recorded. We simply run
CFLAGS=“-g -fprofi le-arcs -ftest-coverage” ./confi gure

make

This will build the program with the added instructions to record code coverage,
as we discussed earlier. You can verify this is correct by verifying the existence of
corresponding GCNO fi les. Next, start the server:
./bin/civserver

Tools & Traps…

Code Coverage for Other Languages
We’ve only been discussing code coverage with respect to C/C++ source code
and x86 binaries, but the concept can be applied to any language or architecture.
In fact, there are code coverage tools available for most popular languages.
For example, EMMA and JCover can be used for Java code. NCover is a code
coverage tool for .NET, coverage.py for Python, and Devel::Cover for Perl.

A commercial tool exists, Fortify Tracer, from Fortify Software, designed
especially to provide code coverage for Web applications.

172 Chapter 10 • Code Coverage and Fuzzzing

At this point, we can commence fuzzing the server. For this example, we’ll use
the General Purpose Fuzzer (GPF) (appliedsec.com/resources.html) in “main” mode.
In this mode, valid traffi c is fi rst captured by the user and then GPF resends the
traffi c while injecting faults into the traffi c (i.e., adding randomness to the existing
captured traffi c). This should have the advantage that the data is closer to valid data
than pure random and so should delve deeper into the application. To use this fuzzing
technique, we fi rst need to capture a valid exchange between a legitimate Freeciv
client and server. We can easily do this using tcpdump or Ethereal. Next, we convert
this PCAP fi le into one GPF understands:
./GPF -C freeciv_reg_game.pcap freeciv_reg_game.gpf

Finally, we start up GPF:
./GPF -G l ../freeciv_reg_game.gpf client <IP ADDRESS> 5555 ? TCP
kj3874jff 1000 0 + 0 + 00 01 09 43 close 0 1 auto none

This particular mode of GPF takes each packet sent from the client to the server
in the full traffi c capture and replaces it with random data. It repeats this 10 times for
each packet. After the fuzzer fi nishes, let’s see what kind of code coverage was
obtained. Quit out of civserver so that the coverage data is saved. This should generate
a number of GCDA fi les. We use lcov (http://ltp.sourceforge.net/coverage/lcov.php)
to collect and display this collected data,
lcov –t “freeciv” –directory . –c –o freeciv-main-random.info

This command gathers all the code coverage information and stores it in one
central fi le, freeciv-main-random.info. This command needs to be run from the main
Freeciv directory. Finally, we run the genhtml command, a part of the lcov package.
genhtml –o freeciv-main-random –f freeciv-main-random.info

This creates a set of HTML documents that describe the code that was covered
while fuzzing with GPF. Opening the index.html fi le reveals the document shown
in Figure 10.2.

 Code Coverage and Fuzzzing • Chapter 10 173

This fuzzing has executed 2373 lines, which is 5.4% of possible code, mostly in
the common directory.

Without this code coverage information, we might have believed we had
 thoroughly tested this application. However, at this point it is clear that our fuzzing
has been insuffi cient for this application and needs to be improved. We need test cases
that will reach the large portion of lines that have not been covered. There are a few
ways we can devise new test cases that will improve the code coverage.

It should also be pointed out that this code coverage information can be helpful
during static analysis. We can use it to observe which lines have been executed and
which lines have not. This helps in determining whether we can get data to various
suspicious functions. Dynamic analysis can help static analysis, which can then help
dynamic analysis, as we’ll see in the following sections.

Figure 10.2 lcov Code Coverage Report for Initial Fuzz Run of freeciv

174 Chapter 10 • Code Coverage and Fuzzzing

Manual Improvements
The simplest, but most time-intensive technique is to try to improve code coverage
“by hand.” By examining the source code in the HTML generated by lcov, along
with the dynamic information annotated in it, it is possible to identify branches that
were not taken and identify the changes locally that would have made that alternative
branch to have been taken. This information can then be traced back to the input to
the program and the appropriate change can be made to the test case. This can then
be done for many branches, concentrating on ones that lead to new, unexplored
sections of code. An example will illustrate this idea.

It makes sense to start where the user input enters the program. In this case, this will
be where our network traffi c is initially read. Looking through the source code, shortly
after our data is read, the processing proceeds to a large switch statement, with 228 cases:
void *get_packet_from_connection_helper(struct connection *pc,
enum packet_type type)

{

 switch(type) {

This function is called from get_packet_from_connection(). Pulling out important
portions of this function we see
dio_get_uint16(&din, &len_read);

whole_packet_len = len_read;

…

Notes from the Underground…

Take the Path Less Traveled
Years ago, a very wise man once said, “If you don’t know what it does, it gives
you root.” He was referring to auditing daemons that run on operating systems
and was pointing out that the ones that no one uses are the ones most likely
to have bugs.

This same thought applies directly to fuzzing and code coverage. Namely,
the code that is rarely executed and isn’t covered during most testing or fuzzing,
is the code most likely to have problems.

 Code Coverage and Fuzzzing • Chapter 10 175

dio_get_uint8(&din, &utype.itype);

…

return get_packet_from_connection_helper(pc, utype.type);

From this, we see that the fi rst two bytes of our data should correspond to the
length of the packet, and the third byte indicates the type of the packet and is the
value that is used in the large switch statement. Only a few cases of this switch
statement have been executed with our fuzzing thus far (Figure 10.3).

Figure 10.3 lcov Code Coverage Report for get_packet_from_connection_helper()
Function

Therefore, it is clear; we need to fuzz this application while varying the third byte
through all possibilities to exercise more code. Again, we can use GPF to accomplish
this goal. In a real audit, we would probably switch to a custom fuzzer or at least
provide additional information to GPF to help it understand the protocol.

176 Chapter 10 • Code Coverage and Fuzzzing

To see if we can improve the code coverage from the fi rst run, we must clear out
coverage data from the previous run.
lcov –directory . –z

Then we start up the Freeciv server and turn on GPF.
./GPF -G l ../freeciv_reg_game.gpf client <IP ADDRESS> 5555 ? TCP
kj3874jff 1000 0 + 2 10 00 01 255 41 fi nish 0 1 auto none

This replaces the bytes 2 through 10 of each packet, one at a time, with all possible
values from 0 to 255. This will ensure that all the cases in the switch statement are hit.
The code coverage from this run of GPF is about three times as good (Figure 10.4).

We now have 15.6% code coverage, having tripled our coverage with only one
small variation in our fuzzing. Also, as we predicted, we hit every case in that switch
statement. This corresponds to at least a couple of hundred additional processing
functions we have hit.

Figure 10.4 Improved lcov Code Coverage Report after More Directed Fuzzing

 Code Coverage and Fuzzzing • Chapter 10 177

However, we are still only at 15.6% coverage. What is the next step? As before, we need
to manually identify portions of code that haven’t been executed yet, and try to design our
future test cases such that they will be executed. We should especially concentrate
on portions of code that haven’t been exercised that contain data copying and
manipulation, as these could lead to memory corruption errors. It would make sense
to start going through the 228 processing functions and see how we can improve the
coverage in those functions; that is, try to understand more of the protocol beyond
the fi rst 3 bytes. For the sake of brevity, we’ll choose one particular packet type for
closer inspection, PACKET_PLAYER_ATTRIBUTE_CHUNK. When this type of
packet is processed, the function receive_packet_player_attribute_chunk() is called,
which is a wrapper for receive_packet_player_attribute_chunk_100(). Examining the
code coverage for this function reveals some interesting branches that were never
taken (Figure 10.5).

Figure 10.5 lcov Code Coverage Report Indicating Some Missed Branches

178 Chapter 10 • Code Coverage and Fuzzzing

Looking at line 11187 in this source fi le, we see a call to dio_get_memory(), which
is never executed. Referencing this function reveals
void dio_get_memory(struct data_in *din, void *dest, size_t dest_size)

{

 if (enough_data(din, dest_size)) {

 if (dest) {

 memcpy(dest, ADD_TO_POINTER(din->src, din->current), dest_size);

 }

 din->current += dest_size;

 }

}

so that dio_get_memory() is just a memcpy() wrapper. Therefore, looking at the code,
we notice that we control the value real_packet->chunk_length, processed from our
packet in line 11182 and elsewhere in the code we see that we control the size of the
real_packet->data heap buffer. This leads to a classic heap overfl ow, found from
fuzzing with the help of some information provided by the code coverage.

Of course, we won’t always have source code, and hence, we won’t always be able
to use gcov and lcov. However, the exact same code coverage increasing procedure can
be carried out for binaries using PaiMei. To demonstrate this, we outline how to do
the same steps we did on the Windows binary download of Freeciv.

First, we need to generate a PIDA fi le. To do this, load civserver.exe into IDA Pro
and allow it to fi nish its analysis. Then select Edit | Plugins | IDA python, and
choose pida_dump.py. When prompted, indicate we want to analyze at the basic
blocks level. Choose yes for the next two dialogs and then click Save. After some
time, the PIDA fi le will be produced.

Next, start up PaiMei and select the icon for the PAIMEIpstalker module.
Establish a connection to your MySQL server by choosing Connections | MySQL
Connect. Next, load the new PIDA module by selecting the Add Module(s)
button. Notice that there are 2207 functions and 36156 basic blocks. Prepare for the
fuzzing by right clicking Available Targets and adding a target named Freeciv.
Right click this new tag, select Add Tag, and call it GPF-random. Right click this
new tag and Use For Stalking. Start up civserver.exe, and click the Refresh
Process List button. Find civserver.exe on the list and click on it. Then choose the
Coverage Depth of Basic Blocks, uncheck the Heavy box, and click Start
Stalking. That is a lot of button pushing, but it’s worth it!

Now fuzz the server as before using GPF. When GPF is fi nished, click Stop
Stalking. The data will be exported to the MySQL database. To display the progress

 Code Coverage and Fuzzzing • Chapter 10 179

we’ve made, right click the GPF-random tag and pick Load Hits. This will fi ll in
the PaiMei GUI with the code coverage information, as can be seen in the top
 portion of Figure 10.6. The fi nal step is to export the data in a form we can load into
IDA Pro. To do this, right click the GPF-random tag and select Export to IDA.

Finally, go back to IDA Pro, choose File | IDC File…, and select the fi le con-
taining the exported data. After the IDC fi le is run, all the basic blocks that were
executed during the fuzzing are colored. This helps to quickly fi nd portions of the
code that remain untested in exactly the same way as when we had the source code.
Figure 10.6 shows the switch statement we identifi ed during the packet processing, as
viewed in graph mode of IDA Pro. As we can see, again, the original fuzzing did not
execute many of the case statements.

Figure 10.6 IDA Pro screenshot of code coverage. The few executed basic blocks
are shaded green

There are only a handful of basic blocks, represented as squares, that are colored
green (i.e., have been executed). If we rerun GPF again, changing the bytes one at a
time as we did earlier, you can see we successfully fuzz all these statements, as every
basic block has been shaded (Figure 10.7).

180 Chapter 10 • Code Coverage and Fuzzzing

Figure 10.7 IDA Pro Screenshot Showing All Basic Blocks in This Function Have
Now Been Executed

Tools & Traps…

Dealing with PaiMei Problems
Sometimes when using PaiMei’s pstalker module, problems will arise.
For example, we may fi nd that our application being monitored crashes. In this
situation, the likely culprit is not PaiMei, but rather IDA Pro. If IDA Pro makes
a mistake when disassembling and identifi es some data as code, PaiMei will set
software breakpoints in that data. These changes to the data may cause the
program to crash. To solve this problem, consider tuning IDA Pro to be less
aggressive in its disassembly.

Another potential problem is that exceptions are occurring in the program
(by design) and you have told PaiMei to catch these. In this case, ensure that
the unhandled only box in the PaiMei GUI is checked.

 Code Coverage and Fuzzzing • Chapter 10 181

Dynamically Generating Code Coverage
Improvements
While it is easy to identify portions of code that have not been executed using
the previous techniques, it is incredibly time consuming, so much so that it is perhaps
no faster than doing standard static analysis. Therefore, we need ways to automatically
take code coverage information and use it to generate better test cases.

The fi rst attempt at this method was by autodafe (http://autodafe.sourceforge.net/).
This tool requires a description of a protocol, for which it then marks the various
fi elds. A debugger attached to the target process then monitors “dangerous” function
calls for marked data. If it observes marked data being used in one of the suspicious
function calls, it increases the weight of this data; that is, this data is fuzzed with a higher
priority and more thoroughly. This tool was the fi rst to use information from the execution
of a program to improve future test cases. It does have some major drawbacks, not the
least of which is identifying all the dangerous functions.

We take a look at a more generic version of this idea by examining the
Evolutionary Fuzzing System (EFS), which uses methods from machine learning to try to
increase code coverage. Before we can understand how EFS works, we need to understand
the basics of genetic algorithms (GA), as this is what EFS uses to try to generate
better test cases. GAs are a technique to fi nd approximate solutions to optimization
and search problems. In our case, we’re trying to fi nd test cases that maximize code
coverage. On the surface, this sounds like a perfect fi t. The unique thing about GAs is
that they are inspired by evolutionary biology. The optimization problem is phrased
in terms of a species of organisms trying to become the most fi t and survive. In our
case, the test cases are the organisms and the most fi t ones are the ones that obtain
the most code coverage. The best thing about this approach is that the test cases get
to have sex with one another!

To use GAs, we need to start with an initial population. Then, we need a way to
measure an individual member of the population’s fi tness (i.e., via a fi tness function).
We also need to defi ne how organisms in a generation are selected to breed new organisms

A fi nal problem that comes up is that the target application has some
anti-debugging features enabled. PaiMei has some very simple mechanisms to
avoid this, but will be stymied by more advanced anti-debugging features,
such as those found in Adobe Acrobat Reader 8.1. In this case, some research
will be required to fi gure out how to get PaiMei working against a particular
application.

182 Chapter 10 • Code Coverage and Fuzzzing

for the next generation. Next, we need to defi ne how organisms reproduce, through two
operations—recombination and mutation. Recombination requires two organisms (wink,
wink), while mutation needs only one. Finally, we need to select a point to terminate the
process. Let’s defi ne these biological processes in terms of test cases and fuzzing.

First, we need our initial population. EFS has the capability to start from various seed
fi les, which help the algorithm get started with test cases and describe some of the
structure of the protocol. As a true test, we will assume no special knowledge of the
protocol and start with random test cases. This could be modifi ed in the future, of course.

Next, we need a measure of a test case’s fi tness. EFS uses the fi tness function of
how many functions (or basic blocks) were executed by a given test case. Actually,
EFS measures fi tness in a slightly more complicated fashion, using “pools” of test
cases, but this is close enough for the sake of discussion.

For the selection of organisms for breeding, EFS favors selecting those test cases
that are most fi t. In fact, 70% of the time, it selects test cases from the top-half of most
fi t test cases. The remaining 30% of the time, it selects a test case from the entire pool.

Next, we need a way to create new test cases from existing ones, using recombination
and mutation methods. For recombination of two test cases, a point is selected randomly
within both test cases, the crossover point. Basically, the second portion of the second
test case is concatenated to the fi rst portion of the fi rst test case, and vice versa.
However, some care is taken by EFS to respect any “tokens” that it may have found
in the protocol, such as carriage returns, nulls, etc. For mutation, a portion of the test
case is mutated with some fi xed probability. In this case, the data is replaced with
fuzzing heuristics, such as long strings of As or with format string characters. Again, if
the protocol is tokenized, the mutation mutates the data respecting these tokens. For
termination, EFS runs for a set number of generations.

Tools & Traps…

More Genetic Algorithm Features
We’ve only discussed the very basics of GAs. Many other features can have a
large impact on a GA’s effectiveness and performance, and EFS uses some of
these, including:

 Code Coverage and Fuzzzing • Chapter 10 183

Now that we have a basic understanding of genetic algorithms and how EFS uses
them to try to generate new test cases, let’s see it in action against our old friend
Freeciv (Figure 10.8).

■ Elitism The most fi t individual passes to the next generation
unmodifi ed.

■ Niching Those individuals that are dramatically different from the
most fi t individuals will be selected for breeding with a higher
probability. This helps increase diversity.

■ Pooling Sets of individuals are considered as a whole and their total
fi tness is used. Pools of individuals are selected for additional breeding.
In EFS, this is used because the author comments that a pool of
lower fi t test cases may be better at fi nding bugs than a single high
fi t test case.

Figure 10.8 EFS Console

Since EFS is built on top of a modifi ed PaiMei, we still need a PIDA fi le.
To use EFS, fi rst select the EFS icon on the left side of the modifi ed PaiMei console.
As in PaiMei, connect to the MySQL database by selecting Connections | MySQL
Connect. Next, press the Add Module(s) button and load the corresponding PIDA
fi le. Enter the full pathname to the civserver.exe application in the Load/Attach window.
Finally, start the EFS listener by choosing Connections | Fuzzer Connect, followed

184 Chapter 10 • Code Coverage and Fuzzzing

by clicking the Listen button in the dialog that appears. At this point we are ready
to begin fuzzing. On a client system with GPF installed, execute
./GPF -E <IP ADDRESS> root <PASSWORD> 0 0 <IP ADDRESS> 31338 funcs
client <IP ADDRESS> 5555 ? TCP 800000 20 low AUTO 4 25 Fixed 10 Fixed 10
Fixed 35 3 5 9 none none no

This tells GPF to begin evolutionary fuzzing from a random initial population
(“no”), and to terminate after 35 generations. The output looks something like:
Successfully played generation 0. Saving to mysqldb.

Processing Generation 0 …

Done processing. Time to play and process: 100 total evaluations in

1001 seconds.

10.01 sec/eval

That’s 16.683 mins or 0.278 hrs.

Successfully played generation 1. Saving to mysqldb.

Processing Generation 1 …

Done processing. Time to play and process: 200 total evaluations in

1887 seconds.

9.44 sec/eval

That’s 31.450 mins or 0.524 hrs.

When it is complete, a graph of the progress can be viewed (Figure 10.9).

Figure 10.9 Output Graph from EFS Indicating Some Improvements of Code
Coverage as Generations Progressed

 Code Coverage and Fuzzzing • Chapter 10 185

Following the light-blue line in the graph reveals that the best pool of test cases
did indeed improve over these 22 generations.

This tool is still extremely experimental and holds great promise. However, it, and
any GA-based technique, suffers from some inherent problems. In particular, GAs can
get “stuck” at local maxima; that is to say, they get to a point where they can’t increase
their fi tness without fi rst greatly reducing their fi tness. If you watch closely the errors
generated when fuzzing Freeciv with EFS, this becomes apparent. The error messages
indicate that it spends a large amount of time fuzzing the “uncompressor” routines,
when it should probably be focusing on the packet type processing routines we
looked at in the last section. This is another case of the human mind being smarter
than the computer. Another problem with GAs is that there are so many parameters
(size of population, number of pools, number of individuals per pool, length of
experiment, initial population, mutation probability, etc.), it is unclear how to
 optimize the GA. While GA-based techniques offer an avenue to generate new test
cases by searching for approximate solutions to a problem, the next section shows
there may be a way to fi nd exact solutions analytically.

Statically Generating Code Coverage
The fi nal way to generate test cases that produce maximal code coverage is to statically
examine the executable. Basically, this is the automated version of what we did manually
two sections earlier. This technique is extremely cutting edge, and no available existing
tool does this. Microsoft Research (ftp://ftp.research.microsoft.com/pub/tr/TR-2007-58.
pdf) has an experimental tool that uses exactly this method. Catchcov (http://sourceforge.
net/projects/catchconv), built upon the Linux Valgrind tool, uses similar techniques to not
generate test cases, but attempt to fi nd integer overfl ow errors. Since no available tool
actually uses this idea to generate test cases, we’ll describe how such a tool would work
and some of the components that would be necessary.

To take a binary and generate a set of test cases that maximize code coverage, a
few primary tasks need to be accomplished. First, the places where user-supplied data
enters the application need to be identifi ed. This data needs to be traced through the
application, and each branch that is encountered needs to be recorded. Finally, we
need to take the recorded information and then generate input that would take the
application down different branches. This is best seen in an example. Consider the
following simple C program.
int test(int x){

 if(x < 10){

186 Chapter 10 • Code Coverage and Fuzzzing

 if(x > 0){

 return 1;

 }

 }

 return 0;

}

int main(int argc, char *argv[]){

 int x = atoi(argv[1]);

 return test(x);

}

Input comes into this simple program via the arguments argc and argv. Tracing
through the program reveals that there is only one path through the main function.
The argv[1] is converted into an integer and passed to the test function. Here, there
are two branch points that depend on the argument, and different paths are executed
for the following constraints on the argument:

■ x >= 10

■ 0 < x < 10

■ x <= 0

A tool that would automatically generate test cases would need to fi rst automatically
follow the fl ow of the program and observe that the branch points in this function
depend on the input supplied in the fi rst argument to the program.

Now that we know the constraints on the inputs needed to achieve all three paths
through the program, all that remains is fi nding inputs that satisfy these constraints.
In this case it is obvious, but let’s see how we’d do this in general for large complicated
systems of constraints. To solve these equations, we need a program that can solve
these types of constraints. One such program is STP (http://theory.stanford.edu
/~vganesh/stp.html), a Boolean satisfi ability problem (SAT) solver.

To use this SAT solver, the constraints must be expressed as a series of:

■ Bit vector variables or arrays

■ Word level functions, such as left and right shifts

■ Bitwise operators, such as bitwise AND, OR, and XOR

■ Arithmetic functions, such as add, subtract, and multiply

■ Predicates, such as equal, less than, greater than

 Code Coverage and Fuzzzing • Chapter 10 187

Expressing the constraints of this program in the language of STP, there are three
sets of constraints to solve:
x : BITVECTOR(32);

QUERY(BVLT(x,0hex0000000a));

x : BITVECTOR(32);

ASSERT(BVLT(x,0hex0000000a));

QUERY(BVGT(x,0hex00000000));

x : BITVECTOR(32);

ASSERT(BVLT(x,0hex0000000a));

QUERY(BVLE(x,0hex00000000));

Each of these sets of constraints starts by defi ning the variable x as a 32-bit
 quantity. Then, using the predicates BVLT, BVGT, and BVLE (Bit Vector Less Than,
Bit Vector Greater Than, Bit Vector Less than or Equal), we express the constraints on
the variable x in terms of the program. Solving these equations using the SAT solver
gives three inputs that maximize code coverage. To do this, we put each constraint
into a separate fi le named q1, q2, and q3, respectively.
[cmiller@linuxbox stp]$./stp -p q1

Invalid.

ASSERT(x = 0hex0000000C);

[cmiller@linuxbox stp]$./stp -p q2

Invalid.

ASSERT(x = 0hex00000000);

[cmiller@linuxbox stp]$./stp -p q3

Invalid.

ASSERT(x = 0hex00000004);

Three inputs are discovered—0, 4, and 12—which when input as the argument
to this program achieve maximal path coverage. Using this technique, very
 sophisticated sets of constraints, including those that would have found the path to
the vulnerability discovered by hand in the Freeciv example, can possibly be solved to
generate test cases from the inputs. In general, solving these constraints is not always
possible, so there will be some paths for which we will not be able to fi nd inputs to
transverse.

Using this technique, these test cases can be produced without ever executing the
program. Combining analytic and static approaches to fuzzing can only help to fi nd
vulnerabilities and make software even more secure.

188 Chapter 10 • Code Coverage and Fuzzzing

Weaknesses of Code Coverage
Code coverage information does an excellent job of identifying parts of the application
that have not been fuzzed. However, code coverage reports do not always tell the
whole story when evaluating fuzzing. To illustrate this point, consider the simple
function
mySafeCpy(char *dst, char* src){

 if(dst && src)

 strcpy(dst, src);

}

It is clear that code coverage could indicate that this function had been fully
covered without identifying the vulnerability that is possibly present. In particular, it
is not so important that this function is executed, which is what code coverage measures,
but rather whether this function is fuzzed. Unless it is executed with a variety of
inputs, it is possible that the vulnerability would remain hidden, despite a perfect code
coverage report.

As another, more concrete example of the failure of code coverage in this regard,
consider the Freeciv server example we examined earlier. We could have fuzzed
Freeciv using GPF in random mode (-R), which just sends strings of random data to
the server. It turns out that after about 10,000 packets, all the cases in the switch
statement we explored earlier get executed under this fuzz test, although only a
couple of times each. This may lead us to believe that this portion of the code was
fuzzed with great detail, although it has not been. Even worse, the vulnerable lines in
the receive_packet_player_attribute_chunk_100() function all get executed but the
vulnerability is not exposed! While code coverage information is a tool that can help
us improve the quality of our test cases, good code coverage does not necessarily
imply good test cases.

Another problem with focusing on code coverage numbers is that it is usually
impossible to execute anywhere near 100% of the code in an application. Frequently,
error-checking code will not be executed except in extraordinary circumstances.
For example, in the code
ptr = malloc(sizeof(blah));

if(!ptr)

 ran_out_of_memory();

 Code Coverage and Fuzzzing • Chapter 10 189

the line (or branch) containing the ran_out_of_memory() function will not typically be
executed, regardless of the fuzzing taking place. However, the fact that this line is not
executed is not necessarily indicative that more fuzzing is required.

From the perspective of an attacker, the preceding problem is amplifi ed. Consider
the situation where we fuzz the Apache Web server, for example. The fuzzing will
consist of making numerous HTTP requests to the server. After fuzzing is complete,
we look at the code coverage and observe that we have only covered 15% of the
code. What happened? Well, there will be large portions of the application over
which our fuzzing has no control. For example, when the server starts up and reads
its confi guration fi le, when it is calculating how many child processes to generate
based on traffi c load, etc. These portions of the code may be executed, but they will
certainly not be fuzzed and so we shouldn’t expect complete code coverage. Even if
we did fi nd a bug in the way Apache reads its confi guration fi les, this probably
wouldn’t be helpful to an attacker. Likewise, some portion of the code will not be
accessible due to the confi guration of the server. For example, the server may have
no fi les protected with .htaccess fi les, which implies that we cannot fuzz the portion
of the code that handles basic authentication. Of course, this is completely out of our
control. The portion of the application that could possibly be reached from user
interaction is called the attack surface of the application. What we are really interested
in when examining code coverage while fuzzing is the amount of the attack surface
that has been covered, not the total code coverage. However, it is a nontrivial task to
compute this metric and no available tools do so.

190 Chapter 10 • Code Coverage and Fuzzzing

Summary
Code coverage is a measure of how much of an application has been executed by
testing or fuzzing. This information can be obtained by modifying the build environment
to include additional instructions in the binary. It can also be obtained by monitoring
a binary within a debugger and recording each function or basic block executed.
While there are many different types of code coverage, most tools produce statement
or branch coverage, although path coverage contains more information.

Code coverage is a valuable tool that can be used to measure the effectiveness of
fuzzing. It can be used to identify portions of the application that have not been
fuzzed. Additional test cases can be generated, either by hand, or automatically, to
increase the effectiveness of fuzzing. The code coverage information can also be used
to increase the utility of static analysis by allowing us to focus on the portions of
code that have not been thoroughly tested.

While code coverage helps us fi nd parts of the application that require additional
fuzzing, achieving a high coverage rate simply means that a lot of code was executed.
It does not necessarily imply that code was exercised well. After all, the point of
fuzzing is to send invalid data, and valid data can generate high test coverage.

Solutions Fast Track
Code Coverage
˛ Code coverage is a mechanism that identifi es which code in an application has

been executed during testing or fuzzing.

˛ Statement coverage measures which lines or assembly instructions have been executed.

˛ Branch coverage indicates which conditionals have been taken.

˛ Path coverage examines which paths through the program have been run.

˛ Path coverage contains the most information, but due to the large number of
paths, it is usually impossible to achieve a high percentage of path coverage.

Obtaining Code Coverage
˛ The -fprofi le-arcs and -ftest-coverage gcc fl ags are required to produce code
 coverage.

˛ For cases when we don’t have source code, the PaiMei framework may be used.

 Code Coverage and Fuzzzing • Chapter 10 191

Improving Code Coverage with Fuzzing
˛ Code coverage can indicate locations in the application that require additional

fuzzing.

˛ Additional test cases can be generated by hand by looking at untaken branches
and tracing back to determine how the test cases should be modifi ed.

˛ Improved test cases can be automatically generated by comparing the results of
different test cases to the amount of code coverage they obtained. This is still
experimental.

˛ Test cases may theoretically be generated by solving constraints on the user-supplied
data to the program to yield maximal code coverage.

Weaknesses of Code Coverage
˛ Just because a line was executed, doesn’t mean it was fuzzed.

˛ Only the attack surface can be reached, but code coverage does not take this
into account.

192 Chapter 10 • Code Coverage and Fuzzzing

Frequently Asked Questions
Q: I instrumented my program with gcov but it never produces any coverage

information, what’s the deal?

A: The coverage data is recorded in memory and is only dumped to the fi les on disk
when the application exits. If the application runs indefi nitely, like a server, or
crashes, this never occurs. The easiest way to collect the data in such a situation is
to attach to the process with a debugger, such as gdb, and force the application to
exit (cleanly).

Q: Are there other tools are out there that can do code coverage?

A: Yes, there are many tools available. Some of the more popular ones include

■ Coverage Validator from Software Verifi cation. This requires the corresponding
debug fi les.

■ Rational Purify/PureCoverage from IBM. This requires the corresponding
debug fi les.

■ Insure++ from Parasoft. This requires source code.

■ BullseyeCoverage from Bullseye. This requires source code.

■ Vgprof, an experimental Valgrind skin for Linux.

Q: Setting up my working environment to do code coverage can take a signifi cant
amount of time. Should I always worry about code coverage?

A: It never hurts to just trying fuzzing and see what happens. Code coverage is really
best as a “tool of last resort.” After you’ve fuzzed for a while with no luck and
want to analyze exactly what is going on, it is time to look at code coverage.
After all, the test cases you are sending might all have the wrong checksum and
may all be getting rejected immediately!

193

Index
A
ActiveX fuzzing engine, 49
antiparser, fuzzing framework, 48, 160
antivirus product testing

and certifi cation, 141
concerns in, 140–141

application monitoring, 18
assembly language, 3
Atheros-based Wi-Fi vulnerability, 43
attack vectors, coding errors, 20
Autodafe, fuzzing framework, 47
AXE3 (HEX editor), 155
AxMan, 49

B
beSTORM

capabilities of, 58
fuzzer, 25
running and paused snapshots of, 57
security auditing, 56

binary fi le fuzzer
mangle.c, 160
UFuz3, 159

binary representation, 6
BITMAPFILEHEADER

(data structure), 77–78
BITMAPINFOHEADER

(data structure), 78
black box testing, 10
Blackops fuzzing tools, 54
BlueTooth Stack Smasher (BSS), 51
BMP fi le

data structures of, 77
malformed content of, 88–89
size attribute of, 82

bouncer bug, 106
BPP (biBitCount) fi eld, endless loop in, 89

BPS-100 (BreakingPoint System), 58
branch coverage, 165
BreakingPoint System (BPS-1000)

emulating hacker attack, 59
network test system, 58

BSS (BlueTooth Stack Smasher), 51
buffer overfl ow, 6

contents of memory, 7
on stack, 8

bug and vulnerabilities
fi nding, 9
programming error, 7

C
certifi cation, 139
checking fi ltering devices, 64
closed source application monitoring,

PaiMei framework for, 169–170
code coverage

automatically generating
information of

by autodafe, 181
by Evolutionary Fuzzing

System (EFS), 181–182
binary, 167–168
branch coverage, 165
code paths, 122
failure of, 188
for other languages, 171
manual, 122
of fuzzer, 123
path coverage, problems associated

with, 165–166
problems in, 189
statement coverage, 164
statically generating, 185–187
tools, 166

194 Index

Codenomicon
network protocols testing, 59
protocol testing suites, 61–62
snapshot, 63

codes, managed vs. unmanaged and
memory management fl aws in, 102

commercial tools, disadvantages of, 56
commercial-grade fuzzers

beSTORM and mu4000, 25
Codenomicon’s approach, 24

COMRaider, 52
core fi les on Linux, 35
crash dump, target

application information, 34
for Windows and Linux, 35

CVE-2007-1748, 33

D
data points, 34
data structures, BMP fi le, 77
debuggers

gdb, 39
IDA Pro, 38–39

for code coverage, 179–180
Softice and OllyDbg, 38
WinDbg.exe, 37

denial-of-service (DoS) vulnerability, 8, 9
dfuz, generic fuzzing framework, 48
DHCP (Dynamic Host Confi guration

Protocol), 64
DNS protocol Standard Query, 68, 69
DoS (denial-of-service) vulnerability, 8, 9
dumb fuzzing, 121
dumb-mutation fuzzer, 121
Dynamic Host Confi guration Protocol

(DHCP), 64

E
EFS (Evolutionary Fuzzing System), 181
eFuzz (simple replacement fuzzer), 54

encoding of data, 71
Evolutionary Fuzzing System (EFS)

and genetic algorithms, 181–182
for code coverage information

generation, 181

F
fi le fuzzers

binary, 159, 160
importance of, 145
test fi le generation, 161

fi le fuzzing, 22
FileFuzz

fi le as input, 159
graphical Windows-based fi le format

fuzzing tool, 53
FileP, python-based fi le fuzzer, 159
fi les

binary
analysis of, 152–153
fuzzer, 159
problems associated with, 151

parsing and rendering of, 149–150
test

errors, 158
interfaces and test fl ow, 157
problems affecting, 158–159

textual, 150–151
types of, 144
vulnerabilities detection in, 156

network test, 157
XML, 150

fl aws (bugs)
logical, design, and parser-specifi c, 101
second order injection and stateful, 102

fuzz before purchase
benefi ts of, 138
patch management system, 139

fuzz testing. See fuzzing
fuzzball2, 52

 Index 195

fuzzer
client-side applications and

network traffi c, 36
code base and bug detection, 103
debuggers for analysis of

gdb, 39
IDA Pro, 38–39
Softice and OllyDbg, 38
WinDbg.exe, 37

effectiveness, 115–117, 119, 122–123
environment, 30
extensibility, 107–108
fl aws detection, 101–102
in stress runs, 111
increasing coverage of, 110–111
integration with threat modeling and

penetration testing tools, 102, 127
needs for randomly changing data

data sets, 70–71
encoding of data, 71
maintaining data integrity, 72
maintaining state machine, 74–75
malformed values, 73–74
recreating data set, 72

output, 36
Perl Module (PM fi le) building, 75–77
postmortem analysis of, 115
software application fl aw analysis, 28
third-party, 36
tools, 32

Fuzzer.pl script, 83–88
fuzzing

and software industry, 140
Apache Web server, 189
defi nition of, 12
distributed, 21
frameworks, 46–48, 160
generation and mutation, 120
in corporate environment, 134
in software development lifecycle

bugs detection, 93
entry points, application, 104–105, 124
execution, 114–115
factors affecting fuzzer selection,

107–109
importance of, 126–127
iterations needed in, 109
plan, 111–114, 127
reproducing and investigating bugs,

116–117
security testing workload, 93–100
software vulnerabilities, 102–103,

119–122
third-party code, 106
timing in, 106–107

main components of
application monitoring, 18
fuzzing baseline, 16
input generation, 17–18

of ZIP fi le, 22
random input to applications, 14–15
second-generation, 19

logic and session manipulation, 21
robustness, 20

smart and dumb, 121
software development life cycle, 26
software testing technique, 14
targets, 30
testing operations, assumptions for, 13
uses of, 23
using network proxies, 122
web application, 22, 36
with code coverage

Freeciv, 171
server, 172

fuzzing baseline, 16

G
GCDA extension, 168
gcov_exit (post processing program)

196 Index

gcov_exit (post processing
program) (Continued)

data fi les processing by, 168–169
source fi le, 169

General Purpose Fuzzer (GPF), 172
general-purpose tools

eFuzz and Blackops fuzzing tools, 54
FileFuzz and SPIKEFile, 53
notSPIKEFile, 52–53
SPIKE, 52–53
TAOF, 52

general-purpose XML fuzzer. See untidy
generation fuzzing, 120
genetic algorithms, in EFS, 181–182
Gianni’s fuzzer, 159–160
glass box testing, 10
GPF (General Purpose Fuzzer), 172
graphical Windows based fi le format

fuzzing tool, 53, 159
gray box testing. See fuzzing
GUI cross-platform Python generic

network protocol fuzzer, 52

H
HEX editors

010 editor and HexProbe, 154
AXE3 and Tiny Hexer, 155
functions needed in, 153–154

HexProbe (HEX editor), 154
host-side monitoring, 22
HTML parsing fl aw checking utility, 49

I
ICON fi le processing, 71
input generation, fuzzing

protocol manipulation, 17–18
value manipulation, 17

integer overfl ows
arithmetic operations, 6
operating system, 5

intelligent fuzzing. See smart fuzzing
ip6sic (special-purpose tool), 51

K
Kuickshow (KDE image/slideshow viewer)

version vulnerability, 88

L
lcov code

after fuzzing, 176
coverage report for

get_packet_from_connection_helper,

175
coverage report for initial fuzz

run of
freeciv,

 173
coverage report for missed branches, 177
for data collection, 172

Linux based fi le format
fuzzing tool, 53–54

Linux tools, 41–42
local class applications, 28
logic manipulation, 21

M
man-in-the-middle capture and

edit proxies, 122
Mangle (special-purpose tool)

for HTML parsing fl aws, 49
in browsers, 50

manual security testing, 93, 126
Microsoft

security bug fi nding, 102
Security Development Lifecycle (SDL), 92

Microsoft DNS stack overfl ow, 33
Microsoft’s Notepad. See Notepad
Miller, Barton, 12
Morris worm, 9
Mu Security, 63
Mu-4000 security analyzer

2U rack-mountable appliance, 65
appliance-based solution, 64

 Index 197

end point and pass through,
testing of, 64

vulnerabilities detection, 63
multiple-condition coverage. See branch

coverage
mutation fuzzing, 120
MySQL database, 170

N
network class applications, 29
network fuzzing, authentication

and code paths, 108
network proxies, 122
network sniffers, 18
Network test

error detection during, 158
interfaces, 157
nontest-related issues affecting, 158
test fl ow, 157

No-eXecute (NX) technology, 30
Notepad

fi le encoding options in, 146
text fi les, 145

notSPIKEFile, 53–54
NULL character values, 73

O
off-by-one errors, 3–4
open source fuzzers, 24
open source fuzzy tools

antiparser and dfuz, 48
Autodafe, RIOT and faultmon, 47
Peach, 46
Scratch, 47–48

OSX kernel fault debugging,
machines needed for, 42

P
PaiMei framework, code coverage data,

recording and export of, 170

PAIMEIpstalker, 170
parsing, 149–150
path coverage, 165
PE (Portable Executable) fi le, 69
Peach, cross-platform fuzzing

framework, 46
Perl Module (PM fi le), generating

malformed value, 75–77
perl script, beSTORM, 58
postmortem analysis, fuzzer(s), 115
privilege attacks in Web application, 124
Process Monitor, 40
programming errors

analysis based on protocol
manipulation, 21

and vulnerabilities, 7
cause of, 3

programming language use errors, 5
protocol integrity, 69
protocol template, 16
protocol-specifi c fuzzer. See beSTORM
PsTools, 40–41
python methods for bug testing, 47

R
Radius Fuzzer, 51
Recon tools, 40–41
relational operation coverage, 165. See also

branch coverage
remote debugging, 42
remote protocol fuzzer/triggerer. See dfuz,

generic fuzzing framework
remote vulnerability discovery

application, 50
rendering, 150
reproducing bugs, 116
Rich Text Format (RTF) fi le, 94–98

security testing, 98–100
RIOT and faultmon, fuzzy

framework, 47

198 Index

S
Scratch, advanced protocol destroyer

binary and textual fuzzing, 48
fuzzing binary protocols, 47

screamingCobra for Web attacks, 50
SDL (Security Development

Lifecycle), 92
security testing workload, 93–94
session manipulation, 21
Shark, 42, 43
simple text editor, 145–146
simple text fi le

ANSI, Unicode, and Unicode
Big Endian, 147

UTF-8, 148
smart fuzzing, 121
software development life cycle, 25–26
software security certifi cation, 139
software security development

processes, 92
software security testing

challenges associated with, 134
fuzzing for, 137
reactive vs. proactive approach, 138
resources needed for, 135
stress testing, 136
vulnerability information sources,

problems with, 135–136
vulnerability scanning, 136–137

software vendors
fuzzing Kool-Aid usage, 92
hidden costs to running

fuzzers for, 128
need for implementing

fuzzing in SDL, 103
stress testing, 111

source code review, 9–10
special-purpose tools

COMRaider and fuzzball2, 52
fuzz, 48–49

ip6sic, BlueTooth Stack Smasher (BSS),
and Radius Fuzzer, 51

Mangle, 49–50
screamingCobra and WebFuzzer, 50–51
SPIKE Proxy and AxMan, 49

SPIKE
buffer overfl ows analysis, 52
fi le, 53
for Linux platform, 53
fuzzing tool

block-based approach and
protocol-based fuzzing, 15–16

data-set templates framework, 15
proxy, for Web applications

vulnerabilities, 49
SQL slammer worm, 9
stack, 8
stack overfl ow, 8–9
state machine

authentication process, 74–75
HTTP protocol and RPC

protocol, 74
statement coverage, 164
STP, boolean satisfi ability problem (SAT)

solver, 186
strace, syscall tracing mechanism, 42
strcpy function, error due to, 5
stress testing, 136

tool for, 51
structured variable, elements of, 79

T
TAOF (general-purpose tool), 52
TCP and IP packet fuzzer, 52
tester certifi cation, 140
theoretical bug trend chart, 110
third-party fuzzer, 36
Tiny Hexer (HEX editor), 155
traffi c sniffi ng, 16, 18
translation, 3

 Index 199

U
UFuz3, binary fi le fuzzer, 159
ulimit command, 35
unbounded recursion.

See stack overfl ow
unicode strings values, 73
Unmanaged code and fl aws, 103
untidy, 160

V
Valgrind, 41
VMware, virtualization tools

operating system services, 30–31
states of machines, 30

vulnerabilities
due to bugs, 7
in second-generation fuzzers, 21

vulnerability discovery tools, 32
vulnerability information, historical

sources, 135–136
vulnerability scanners as fuzzers

attack vectors, 22
test case based, 23

vulnerability scanning
for open ports, 137
network security, 136

W
web applications, 29

privilege attacks in, 124
vulnerabilities monitoring by fuzzers,

124–125
web-based ActiveX fuzzing engine.

See ActiveX fuzzing engine
WebFuzzer, 50–51
WinDbg

analyzing crash dump of wireless
driver, 33

features of, 37
Windows 2000, 32
Windows binary download of Freeciv,

178–179
Windows ICON fi le processing, 71
wrong comparison operator, off-by-one

error due to, 4

X
Xcode, 42
XML fi les, parsing and rendering of, 150

Z
zzuf, transparent application input

fuzzer, 160

