
Unreliable Guide To Hacking The
Linux Kernel

Paul Rusty Russell
rusty@rustcorp.com.au

Unreliable Guide To Hacking The Linux Kernel
by Paul Rusty Russell

Copyright © 2000 by Paul Russell

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public

License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later

version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free

Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents
1. Introduction..5

2. The Players ...6

2.1. User Context ...6
2.2. Hardware Interrupts (Hard IRQs) ...7
2.3. Software Interrupt Context: Bottom Halves, Tasklets, softirqs7

3. Some Basic Rules..9

4. ioctls: Not writing a new system call ..10

5. Recipes for Deadlock ...12

6. Common Routines..13

6.1.printk() include/linux/kernel.h...13
6.2.copy_[to/from]_user() / get_user() / put_user()

include/asm/uaccess.h ..13
6.3.kmalloc()/kfree() include/linux/slab.h...14
6.4.current include/asm/current.h ...15
6.5.udelay()/mdelay() include/asm/delay.h include/linux/delay.h

16
6.6.local_irq_save()/local_irq_restore() include/asm/system.h16
6.7.local_bh_disable()/local_bh_enable() include/asm/softirq.h

16
6.8.smp_processor_id()/cpu_[number/logical]_map()

include/asm/smp.h...16
6.9. __init/__exit/__initdatainclude/linux/init.h.......................................17
6.10.__initcall()/module_init() include/linux/init.h17
6.11.module_exit() include/linux/init.h ..18
6.12.MOD_INC_USE_COUNT/MOD_DEC_USE_COUNT include/linux/module.h

18

7. Wait Queues include/linux/wait.h ...20

7.1. Declaring...20
7.2. Queuing...20
7.3. Waking Up Queued Tasks...20

3

8. Atomic Operations ...22

9. Symbols ...23

9.1.EXPORT_SYMBOL() include/linux/module.h..23
9.2.EXPORT_SYMTAB ..23

10. Routines and Conventions...24

10.1. Double-linked listsinclude/linux/list.h..24
10.2. Return Conventions...24
10.3. Breaking Compilation...24
10.4. Initializing structure members ..24
10.5. GNU Extensions ...25
10.6. C++ ...26
10.7. #if ..26

11. Putting Your Stuff in the Kernel...27

12. Kernel Cantrips..29

13. Thanks...31

4

Chapter 1. Introduction
Welcome, gentle reader, to Rusty’s Unreliable Guide to Linux Kernel Hacking. This
document describes the common routines and general requirements for kernel code: its
goal is to serve as a primer for Linux kernel development for experienced C
programmers. I avoid implementation details: that’s what the code is for, and I ignore
whole tracts of useful routines.

Before you read this, please understand that I never wanted to write this document,
being grossly under-qualified, but I always wanted to read it, and this was the only way.
I hope it will grow into a compendium of best practice, common starting points and
random information.

5

Chapter 2. The Players
At any time each of the CPUs in a system can be:

• not associated with any process, serving a hardware interrupt;

• not associated with any process, serving a softirq, tasklet or bh;

• running in kernel space, associated with a process;

• running a process in user space.

There is a strict ordering between these: other than the last category (userspace) each
can only be pre-empted by those above. For example, while a softirq is running on a
CPU, no other softirq will pre-empt it, but a hardware interrupt can. However, any other
CPUs in the system execute independently.

We’ll see a number of ways that the user context can block interrupts, to become truly
non-preemptable.

2.1. User Context
User context is when you are coming in from a system call or other trap: you can sleep,
and you own the CPU (except for interrupts) until you callschedule(). In other
words, user context (unlike userspace) is not pre-emptable.

Note: You are always in user context on module load and unload, and on
operations on the block device layer.

In user context, thecurrent pointer (indicating the task we are currently executing) is
valid, andin_interrupt() (include/asm/hardirq.h) is false .

6

Chapter 2. The Players

Caution
Beware that if you have interrupts or bottom halves disabled (see
below), in_interrupt() will return a false positive.

2.2. Hardware Interrupts (Hard IRQs)
Timer ticks, network cards and keyboard are examples of real hardware which produce
interrupts at any time. The kernel runs interrupt handlers, which services the hardware.
The kernel guarantees that this handler is never re-entered: if another interrupt arrives,
it is queued (or dropped). Because it disables interrupts, this handler has to be fast:
frequently it simply acknowledges the interrupt, marks a ‘software interrupt’ for
execution and exits.

You can tell you are in a hardware interrupt, becausein_irq() returns true.

Caution
Beware that this will return a false positive if interrupts are
disabled (see below).

2.3. Software Interrupt Context: Bottom Halves,
Tasklets, softirqs

Whenever a system call is about to return to userspace, or a hardware interrupt handler
exits, any ‘software interrupts’ which are marked pending (usually by hardware
interrupts) are run (kernel/softirq.c).

Much of the real interrupt handling work is done here. Early in the transition to SMP,
there were only ‘bottom halves’ (BHs), which didn’t take advantage of multiple CPUs.

7

Chapter 2. The Players

Shortly after we switched from wind-up computers made of match-sticks and snot, we
abandoned this limitation.

include/linux/interrupt.h lists the different BH’s. No matter how many CPUs
you have, no two BHs will run at the same time. This made the transition to SMP
simpler, but sucks hard for scalable performance. A very important bottom half is the
timer BH (include/linux/timer.h): you can register to have it call functions for
you in a given length of time.

2.3.43 introduced softirqs, and re-implemented the (now deprecated) BHs underneath
them. Softirqs are fully-SMP versions of BHs: they can run on as many CPUs at once
as required. This means they need to deal with any races in shared data using their own
locks. A bitmask is used to keep track of which are enabled, so the 32 available softirqs
should not be used up lightly. (Yes, people will notice).

tasklets (include/linux/interrupt.h) are like softirqs, except they are
dynamically-registrable (meaning you can have as many as you want), and they also
guarantee that any tasklet will only run on one CPU at any time, although different
tasklets can run simultaneously (unlike different BHs).

Caution
The name ‘tasklet’ is misleading: they have nothing to do with
‘tasks’, and probably more to do with some bad vodka Alexey
Kuznetsov had at the time.

You can tell you are in a softirq (or bottom half, or tasklet) using thein_softirq()

macro (include/asm/softirq.h).

Caution
Beware that this will return a false positive if a bh lock (see below)
is held.

8

Chapter 3. Some Basic Rules

No memory protection

If you corrupt memory, whether in user context or interrupt context, the whole
machine will crash. Are you sure you can’t do what you want in userspace?

No floating point or MMX

The FPU context is not saved; even in user context the FPU state probably won’t
correspond with the current process: you would mess with some user process’
FPU state. If you really want to do this, you would have to explicitly save/restore
the full FPU state (and avoid context switches). It is generally a bad idea; use fixed
point arithmetic first.

A rigid stack limit

The kernel stack is about 6K in 2.2 (for most architectures: it’s about 14K on the
Alpha), and shared with interrupts so you can’t use it all. Avoid deep recursion
and huge local arrays on the stack (allocate them dynamically instead).

The Linux kernel is portable

Let’s keep it that way. Your code should be 64-bit clean, and endian-independent.
You should also minimize CPU specific stuff, e.g. inline assembly should be
cleanly encapsulated and minimized to ease porting. Generally it should be
restricted to the architecture-dependent part of the kernel tree.

9

Chapter 4. ioctls: Not writing a new
system call

A system call generally looks like this

asmlinkage int sys_mycall(int arg)

{

return 0;

}

First, in most cases you don’t want to create a new system call. You create a character
device and implement an appropriate ioctl for it. This is much more flexible than system
calls, doesn’t have to be entered in every architecture’sinclude/asm/unistd.h and
arch/kernel/entry.S file, and is much more likely to be accepted by Linus.

If all your routine does is read or write some parameter, consider implementing a
sysctl interface instead.

Inside the ioctl you’re in user context to a process. When a error occurs you return a
negated errno (seeinclude/linux/errno.h), otherwise you return 0.

After you slept you should check if a signal occurred: the Unix/Linux way of handling
signals is to temporarily exit the system call with the-ERESTARTSYS error. The system
call entry code will switch back to user context, process the signal handler and then
your system call will be restarted (unless the user disabled that). So you should be
prepared to process the restart, e.g. if you’re in the middle of manipulating some data
structure.

if (signal_pending())

return -ERESTARTSYS;

If you’re doing longer computations: first think userspace. If youreally want to do it in
kernel you should regularly check if you need to give up the CPU (remember there is

10

Chapter 4. ioctls: Not writing a new system call

cooperative multitasking per CPU). Idiom:

if (current->need_resched)

schedule(); /* Will sleep */

A short note on interface design: the UNIX system call motto is "Provide mechanism
not policy".

11

Chapter 5. Recipes for Deadlock
You cannot call any routines which may sleep, unless:

• You are in user context.

• You do not own any spinlocks.

• You have interrupts enabled (actually, Andi Kleen says that the scheduling code will
enable them for you, but that’s probably not what you wanted).

Note that some functions may sleep implicitly: common ones are the user space access
functions (*_user) and memory allocation functions without GFP_ATOMIC.

You will eventually lock up your box if you break these rules.

Really.

12

Chapter 6. Common Routines

6.1. printk() include/linux/kernel.h

printk() feeds kernel messages to the console, dmesg, and the syslog daemon. It is
useful for debugging and reporting errors, and can be used inside interrupt context, but
use with caution: a machine which has its console flooded with printk messages is
unusable. It uses a format string mostly compatible with ANSI C printf, and C string
concatenation to give it a first "priority" argument:

printk(KERN_INFO "i = %u\n", i);

Seeinclude/linux/kernel.h; for other KERN_ values; these are interpreted by
syslog as the level. Special case: for printing an IP address use

__u32 ipaddress;

printk(KERN_INFO "my ip: %d.%d.%d.%d\n", NIPQUAD(ipaddress));

printk() internally uses a 1K buffer and does not catch overruns. Make sure that will
be enough.

Note: You will know when you are a real kernel hacker when you start typoing
printf as printk in your user programs :)

Note: Another sidenote: the original Unix Version 6 sources had a comment on
top of its printf function: "Printf should not be used for chit-chat". You should follow
that advice.

13

Chapter 6. Common Routines

6.2. copy_[to/from]_user() / get_user() /
put_user() include/asm/uaccess.h

[SLEEPS]

put_user() andget_user() are used to get and put single values (such as an int,
char, or long) from and to userspace. A pointer into userspace should never be simply
dereferenced: data should be copied using these routines. Both return-EFAULT or 0.

copy_to_user() andcopy_from_user() are more general: they copy an arbitrary
amount of data to and from userspace.

Caution
Unlike put_user() and get_user(), they return the amount of
uncopied data (ie. 0 still means success).

[Yes, this moronic interface makes me cringe. Please submit a patch and become my
hero --RR.]

The functions may sleep implicitly. This should never be called outside user context (it
makes no sense), with interrupts disabled, or a spinlock held.

6.3. kmalloc()/kfree() include/linux/slab.h

[MAY SLEEP: SEE BELOW]

These routines are used to dynamically request pointer-aligned chunks of memory, like
malloc and free do in userspace, butkmalloc() takes an extra flag word. Important
values:

GFP_KERNEL

May sleep and swap to free memory. Only allowed in user context, but is the most
reliable way to allocate memory.

14

Chapter 6. Common Routines

GFP_ATOMIC

Don’t sleep. Less reliable thanGFP_KERNEL, but may be called from interrupt
context. You shouldreally have a good out-of-memory error-handling strategy.

GFP_DMA

Allocate ISA DMA lower than 16MB. If you don’t know what that is you don’t
need it. Very unreliable.

If you see a kmem_grow: Called nonatomically from int warning message you called a
memory allocation function from interrupt context withoutGFP_ATOMIC. You should
really fix that. Run, don’t walk.

If you are allocating at leastPAGE_SIZE (include/asm/page.h) bytes, consider
using__get_free_pages() (include/linux/mm.h). It takes an order argument (0
for page sized, 1 for double page, 2 for four pages etc.) and the same memory priority
flag word as above.

If you are allocating more than a page worth of bytes you can usevmalloc(). It’ll
allocate virtual memory in the kernel map. This block is not contiguous in physical
memory, but the MMU makes it look like it is for you (so it’ll only look contiguous to
the CPUs, not to external device drivers). If you really need large physically contiguous
memory for some weird device, you have a problem: it is poorly supported in Linux
because after some time memory fragmentation in a running kernel makes it hard. The
best way is to allocate the block early in the boot process via thealloc_bootmem()

routine.

Before inventing your own cache of often-used objects consider using a slab cache in
include/linux/slab.h

6.4. current include/asm/current.h

This global variable (really a macro) contains a pointer to the current task structure, so
is only valid in user context. For example, when a process makes a system call, this will
point to the task structure of the calling process. It isnot NULL in interrupt context.

15

Chapter 6. Common Routines

6.5. udelay()/mdelay() include/asm/delay.h

include/linux/delay.h

Theudelay() function can be used for small pauses. Do not use large values with
udelay() as you risk overflow - the helper functionmdelay() is useful here, or even
considerschedule_timeout().

6.6. local_irq_save()/local_irq_restore()
include/asm/system.h

These routines disable hard interrupts on the local CPU, and restore them. They are
reentrant; saving the previous state in their oneunsigned long flags argument. If
you know that interrupts are enabled, you can simply uselocal_irq_disable() and
local_irq_enable().

6.7. local_bh_disable()/local_bh_enable()
include/asm/softirq.h

These routines disable soft interrupts on the local CPU, and restore them. They are
reentrant; if soft interrupts were disabled before, they will still be disabled after this
pair of functions has been called. They prevent softirqs, tasklets and bottom halves
from running on the current CPU.

6.8.
smp_processor_id()/cpu_[number/logical]_map()

16

Chapter 6. Common Routines

include/asm/smp.h

smp_processor_id() returns the current processor number, between 0 and
NR_CPUS (the maximum number of CPUs supported by Linux, currently 32). These
values are not necessarily continuous: to get a number between 0 and
smp_num_cpus() (the number of actual processors in this machine), the
cpu_number_map() function is used to map the processor id to a logical number.
cpu_logical_map() does the reverse.

6.9. __init/__exit/__initdata
include/linux/init.h

After boot, the kernel frees up a special section; functions marked with __init and data
structures marked with __initdata are dropped after boot is complete (within modules
this directive is currently ignored). __exit is used to declare a function which is only
required on exit: the function will be dropped if this file is not compiled as a module.
See the header file for use. Note that it makes no sense for a function marked with
__init to be exported to modules withEXPORT_SYMBOL() - this will break.

Static data structures marked as __initdata must be initialised (as opposed to ordinary
static data which is zeroed BSS).

6.10. __initcall()/module_init()
include/linux/init.h

Many parts of the kernel are well served as a module (dynamically-loadable parts of the
kernel). Using themodule_init() andmodule_exit() macros it is easy to write
code without #ifdefs which can operate both as a module or built into the kernel.

Themodule_init() macro defines which function is to be called at module insertion
time (if the file is compiled as a module), or at boot time: if the file is not compiled as a

17

Chapter 6. Common Routines

module themodule_init() macro becomes equivalent to__initcall(), which
through linker magic ensures that the function is called on boot.

The function can return a negative error number to cause module loading to fail
(unfortunately, this has no effect if the module is compiled into the kernel). For
modules, this is called in user context, with interrupts enabled, and the kernel lock held,
so it can sleep.

6.11. module_exit() include/linux/init.h

This macro defines the function to be called at module removal time (or never, in the
case of the file compiled into the kernel). It will only be called if the module usage
count has reached zero. This function can also sleep, but cannot fail: everything must
be cleaned up by the time it returns.

6.12. MOD_INC_USE_COUNT/MOD_DEC_USE_COUNT
include/linux/module.h

These manipulate the module usage count, to protect against removal (a module also
can’t be removed if another module uses one of its exported symbols: see below). Every
reference to the module from user context should be reflected by this counter (e.g. for
every data structure or socket) before the function sleeps. To quote Tim Waugh:

/* THIS IS BAD */

foo_open (...)

{

stuff..

if (fail)

return -EBUSY;

sleep.. (might get unloaded here)

stuff..

MOD_INC_USE_COUNT;

18

Chapter 6. Common Routines

return 0;

}

/* THIS IS GOOD /

foo_open (...)

{

MOD_INC_USE_COUNT;

stuff..

if (fail) {

MOD_DEC_USE_COUNT;

return -EBUSY;

}

sleep.. (safe now)

stuff..

return 0;

}

You can often avoid having to deal with these problems by using theowner field of
the file_operations structure. Set this field as the macro THIS_MODULE.

For more complicated module unload locking requirements, you can set the
can_unload function pointer to your own routine, which should return 0 if the
module is unloadable, or -EBUSY otherwise.

19

Chapter 7. Wait Queues
include/linux/wait.h

[SLEEPS]

A wait queue is used to wait for someone to wake you up when a certain condition is
true. They must be used carefully to ensure there is no race condition. You declare a
wait_queue_head_t, and then processes which want to wait for that condition declare a
wait_queue_t referring to themselves, and place that in the queue.

7.1. Declaring
You declare a wait_queue_head_t using theDECLARE_WAIT_QUEUE_HEAD()macro,
or using theinit_waitqueue_head() routine in your initialization code.

7.2. Queuing
Placing yourself in the waitqueue is fairly complex, because you must put yourself in
the queue before checking the condition. There is a macro to do this:
wait_event_interruptible() include/linux/sched.h The first argument is
the wait queue head, and the second is an expression which is evaluated; the macro
returns 0 when this expression is true, or -ERESTARTSYS if a signal is received. The
wait_event() version ignores signals.

Do not use thesleep_on() function family - it is very easy to accidentally introduce
races; almost certainly one of thewait_event() family will do, or a loop around
schedule_timeout(). If you choose to loop aroundschedule_timeout()
remember you must set the task state (withset_current_state()) on each iteration
to avoid busy-looping.

20

Chapter 7. Wait Queuesinclude/linux/wait.h

7.3. Waking Up Queued Tasks
Call wake_up() include/linux/sched.h;, which will wake up every process in
the queue. The exception is if one hasTASK_EXCLUSIVE set, in which case the
remainder of the queue will not be woken.

21

Chapter 8. Atomic Operations
Certain operations are guaranteed atomic on all platforms. The first class of operations
work on atomic_tinclude/asm/atomic.h; this contains a signed integer (at least 24
bits long), and you must use these functions to manipulate or read atomic_t variables.
atomic_read() andatomic_set() get and set the counter,atomic_add(),
atomic_sub(), atomic_inc(), atomic_dec(), andatomic_dec_and_test()
(returns true if it was decremented to zero).

Yes. It returns true (i.e. != 0) if the atomic variable is zero.

Note that these functions are slower than normal arithmetic, and so should not be used
unnecessarily. On some platforms they are much slower, like 32-bit Sparc where they
use a spinlock.

The second class of atomic operations is atomic bit operations on a long, defined in
include/asm/bitops.h. These operations generally take a pointer to the bit pattern,
and a bit number: 0 is the least significant bit.set_bit(), clear_bit() and
change_bit() set, clear, and flip the given bit.test_and_set_bit(),
test_and_clear_bit() andtest_and_change_bit() do the same thing, except
return true if the bit was previously set; these are particularly useful for very simple
locking.

It is possible to call these operations with bit indices greater than BITS_PER_LONG.
The resulting behavior is strange on big-endian platforms though so it is a good idea
not to do this.

Note that the order of bits depends on the architecture, and in particular, the bitfield
passed to these operations must be at least as large as a long.

22

Chapter 9. Symbols
Within the kernel proper, the normal linking rules apply (ie. unless a symbol is declared
to be file scope with the static keyword, it can be used anywhere in the kernel).
However, for modules, a special exported symbol table is kept which limits the entry
points to the kernel proper. Modules can also export symbols.

9.1. EXPORT_SYMBOL() include/linux/module.h

This is the classic method of exporting a symbol, and it works for both modules and
non-modules. In the kernel all these declarations are often bundled into a single file to
help genksyms (which searches source files for these declarations). See the comment
on genksyms and Makefiles below.

9.2. EXPORT_SYMTAB
For convenience, a module usually exports all non-file-scope symbols (ie. all those not
declared static). If this is defined beforeinclude/linux/module.h is included, then
only symbols explicit exported withEXPORT_SYMBOL() will be exported.

23

Chapter 10. Routines and Conventions

10.1. Double-linked lists include/linux/list.h

There are three sets of linked-list routines in the kernel headers, but this one seems to
be winning out (and Linus has used it). If you don’t have some particular pressing need
for a single list, it’s a good choice. In fact, I don’t care whether it’s a good choice or
not, just use it so we can get rid of the others.

10.2. Return Conventions
For code called in user context, it’s very common to defy C convention, and return 0 for
success, and a negative error number (eg. -EFAULT) for failure. This can be unintuitive
at first, but it’s fairly widespread in the networking code, for example.

The filesystem code usesERR_PTR() include/linux/fs.h; to encode a negative
error number into a pointer, andIS_ERR() andPTR_ERR() to get it back out again:
avoids a separate pointer parameter for the error number. Icky, but in a good way.

10.3. Breaking Compilation
Linus and the other developers sometimes change function or structure names in
development kernels; this is not done just to keep everyone on their toes: it reflects a
fundamental change (eg. can no longer be called with interrupts on, or does extra
checks, or doesn’t do checks which were caught before). Usually this is accompanied
by a fairly complete note to the linux-kernel mailing list; search the archive. Simply
doing a global replace on the file usually makes thingsworse.

24

Chapter 10. Routines and Conventions

10.4. Initializing structure members
The preferred method of initializing structures is to use the gcc Labeled Elements
extension, eg:

static struct block_device_operations opt_fops = {

open: opt_open,

release: opt_release,

ioctl: opt_ioctl,

check_media_change: opt_media_change,

};

This makes it easy to grep for, and makes it clear which structure fields are set. You
should do this because it looks cool.

10.5. GNU Extensions
GNU Extensions are explicitly allowed in the Linux kernel. Note that some of the more
complex ones are not very well supported, due to lack of general use, but the following
are considered standard (see the GCC info page section "C Extensions" for more details
- Yes, really the info page, the man page is only a short summary of the stuff in info):

• Inline functions

• Statement expressions (ie. the ({ and }) constructs).

• Declaring attributes of a function / variable / type (__attribute__)

• Labeled elements

• typeof

• Zero length arrays

• Macro varargs

25

Chapter 10. Routines and Conventions

• Arithmetic on void pointers

• Non-Constant initializers

• Assembler Instructions (not outside arch/ and include/asm/)

• Function names as strings (__FUNCTION__)

• __builtin_constant_p()

Be wary when using long long in the kernel, the code gcc generates for it is horrible
and worse: division and multiplication does not work on i386 because the GCC runtime
functions for it are missing from the kernel environment.

10.6. C++
Using C++ in the kernel is usually a bad idea, because the kernel does not provide the
necessary runtime environment and the include files are not tested for it. It is still
possible, but not recommended. If you really want to do this, forget about exceptions at
least.

10.7. #if
It is generally considered cleaner to use macros in header files (or at the top of .c files)
to abstract away functions rather than using ‘#if’ pre-processor statements throughout
the source code.

26

Chapter 11. Putting Your Stuff in the
Kernel

In order to get your stuff into shape for official inclusion, or even to make a neat patch,
there’s administrative work to be done:

• Figure out whose pond you’ve been pissing in. Look at the top of the source files,
inside theMAINTAINERS file, and last of all in theCREDITS file. You should
coordinate with this person to make sure you’re not duplicating effort, or trying
something that’s already been rejected.

Make sure you put your name and EMail address at the top of any files you create or
mangle significantly. This is the first place people will look when they find a bug, or
whentheywant to make a change.

• Usually you want a configuration option for your kernel hack. EditConfig.in in
the appropriate directory (but underarch/ it’s calledconfig.in). The Config
Language used is not bash, even though it looks like bash; the safe way is to use only
the constructs that you already see inConfig.in files (see
Documentation/kbuild/config-language.txt). It’s good to run "make
xconfig" at least once to test (because it’s the only one with a static parser).

Variables which can be Y or N use bool followed by a tagline and the config define
name (which must start with CONFIG_). The tristate function is the same, but allows
the answer M (which defines CONFIG_foo_MODULE in your source, instead of
CONFIG_FOO) if CONFIG_MODULES is enabled.

You may well want to make your CONFIG option only visible if
CONFIG_EXPERIMENTAL is enabled: this serves as a warning to users. There
many other fancy things you can do: see the variousConfig.in files for ideas.

• Edit theMakefile: the CONFIG variables are exported here so you can
conditionalize compilation with ‘ifeq’. If your file exports symbols then add the
names toMX_OBJS or OX_OBJS instead ofM_OBJS or O_OBJS, so that genksyms

27

Chapter 11. Putting Your Stuff in the Kernel

will find them.

• Document your option in Documentation/Configure.help. Mention incompatibilities
and issues here.Definitely end your description with “ if in doubt, say N ” (or,
occasionally, ‘Y’); this is for people who have no idea what you are talking about.

• Put yourself inCREDITS if you’ve done something noteworthy, usually beyond a
single file (your name should be at the top of the source files anyway).MAINTAINERS

means you want to be consulted when changes are made to a subsystem, and hear
about bugs; it implies a more-than-passing commitment to some part of the code.

• Finally, don’t forget to readDocumentation/SubmittingPatches and possibly
Documentation/SubmittingDrivers.

28

Chapter 12. Kernel Cantrips
Some favorites from browsing the source. Feel free to add to this list.

include/linux/brlock.h:

extern inline void br_read_lock (enum brlock_indices idx)

{

/*

* This causes a link-time bug message if an

* invalid index is used:

*/

if (idx >= __BR_END)

__br_lock_usage_bug();

read_lock(&__brlock_array[smp_processor_id()][idx]);

}

include/linux/fs.h:

/*

* Kernel pointers have redundant information, so we can use a

* scheme where we can return either an error code or a dentry

* pointer with the same return value.

*

* This should be a per-architecture thing, to allow different

* error and pointer decisions.

*/

#define ERR_PTR(err) ((void *)((long)(err)))

#define PTR_ERR(ptr) ((long)(ptr))

#define IS_ERR(ptr) ((unsigned long)(ptr) > (un-

signed long)(-1000))

include/asm-i386/uaccess.h:

#define copy_to_user(to,from,n) \

29

Chapter 12. Kernel Cantrips

(__builtin_constant_p(n) ? \

__constant_copy_to_user((to),(from),(n)) : \

__generic_copy_to_user((to),(from),(n)))

arch/sparc/kernel/head.S:

/*

* Sun people can’t spell worth damn. "compatability" indeed.

* At least we *know* we can’t spell, and use a spell-checker.

*/

/* Uh, actually Linus it is I who cannot spell. Too much murky

* Sparc assembly will do this to ya.

*/

C_LABEL(cputypvar):

.asciz "compatability"

/* Tested on SS-5, SS-

10. Probably someone at Sun applied a spell-checker. */

.align 4

C_LABEL(cputypvar_sun4m):

.asciz "compatible"

arch/sparc/lib/checksum.S:

/* Sun, you just can’t beat me, you just can’t. Stop try-

ing,

* give up. I’m serious, I am going to kick the liv-

ing shit

* out of you, game over, lights out.

*/

30

Chapter 13. Thanks
Thanks to Andi Kleen for the idea, answering my questions, fixing my mistakes, filling
content, etc. Philipp Rumpf for more spelling and clarity fixes, and some excellent
non-obvious points. Werner Almesberger for giving me a great summary of
disable_irq(), and Jes Sorensen and Andrea Arcangeli added caveats. Michael
Elizabeth Chastain for checking and adding to the Configure section. Telsa Gwynne for
teaching me DocBook.

31

