

Windows Forensic
Analysis Toolkit

http://dx.doi.org/

This page intentionally left blank

Windows Forensic
Analysis Toolkit

Advanced Analysis
Techniques for Windows 7

Harlan Carvey

Technical Editor

Jennifer Kolde

AMSTERDAM•BOSTON•HEIDELBERG•LONDON
NEWYORK•OXFORD•PARIS•SANDIEGO

SANFRANCISCO•SINGAPORE•SYDNEY•TOKYO
Syngress is an imprint of Elsevier

Acquiring Editor: Chris Katsaropoulos

Development Editor: Heather Scherer

Project Manager: Jessica Vaughan

Designer: Alisa Andreola

Syngress is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2012 Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the Publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies, and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods or professional practices may become
necessary. Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information or methods described herein. In using such information or methods
they should be mindful of their own safety and the safety of others, including parties for whom they
have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence
or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in
the material herein.

Library of Congress Cataloging-in-Publication Data

Carvey, Harlan A.
 Windows forensic analysis toolkit advanced analysis techniques for Windows 7 / by Harlan Carvey.
 p. cm.
 Includes bibliographical references.
 ISBN 978-1-59749-727-5
 1. Computer crimes—Investigation—United States—Methodology. 2. Microsoft Windows
(Computer file)—Security measures. 3. Computer networks—Security measures. 4. Internet—
Security measures. 5. Computer security. I. Title.
 HV8079.C65C3726 2012
 363.259968—dc23

2011043150

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-1-59749-727-5

Printed in the United States of America

11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

For information on all Syngress publications, visit our website at www.syngress.com.

http://dx.doi.org/
http://www.elsevier.com/permissions
http://www.syngress.com

To Terri and Kylie—you are my light and my foundation.

http://dx.doi.org/

This page intentionally left blank

vii

Contents

Preface ...xi

Acknowledgments ..xvii

About the Author ...xix

About the Technical Editor ...xxi

CHAPTER 1 Analysis Concepts ...1
 Introduction ..1

 Analysis Concepts ..3

 Windows Versions ...4

 Analysis Principles ..6

 Documentation ..15

 Convergence ..16

 Virtualization ...17

 Setting Up an Analysis System ..19

 Summary ..22

CHAPTER 2 Immediate Response ...23

 Introduction ..23

 Being Prepared to Respond ..24

 Questions ...25

 The Importance of Preparation..28

 Logs ...31

 Data Collection ..36

 Training ...39

 Summary ..40

CHAPTER 3 Volume Shadow Copies ...43

 Introduction ..43

 What Are “Volume Shadow Copies”?..44

 Registry Keys ..45

 Live Systems ..46

 ProDiscover ...49

 F-Response ..50

 Acquired Images ..52

 VHD Method ...54

http://dx.doi.org/

viii Contents

 VMWare Method...58

 Automating VSC Access ...62

 ProDiscover ...64

 Summary ..67

 Reference ...67

CHAPTER 4 File Analysis ...69

 Introduction ..70

 MFT ...70

 File System Tunneling ...76

 Event Logs ...78

 Windows Event Log ..82

 Recycle Bin ..85

 Prefetch Files ...88

 Scheduled Tasks ...92

 Jump Lists ..95

 Hibernation Files ..101

 Application Files ..102

 Antivirus Logs ...103

 Skype ...104

 Apple Products ..105

 Image Files ..106

 Summary ..108

 References ..109

CHAPTER 5 Registry Analysis .. 111

 Introduction ..112

 Registry Analysis ...112

 Registry Nomenclature ..113

 The Registry as a Log File ..114

 USB Device Analysis ..115

 System Hive ..128

 Software Hive ..131

 User Hives ...139

 Additional Sources ..148

 Tools ..150

 Summary ..153

 References ..153

ixContents

CHAPTER 6 Malware Detection .. 155

 Introduction ..156

 Malware Characteristics ...156

 Initial Infection Vector...158

 Propagation Mechanism ..160

 Persistence Mechanism ...162

 Artifacts ...165

 Detecting Malware ...168

 Log Analysis..169

 Antivirus Scans ...173

 Digging Deeper ...177

 Seeded Sites ..191

 Summary ..193

 References ..193

CHAPTER 7 Timeline Analysis .. 195

 Introduction ..196

 Timelines ..196

 Data Sources..198

 Time Formats ..199

 Concepts ..200

 Benefits ..202

 Format ...204

 Creating Timelines ...210

 File System Metadata ..211

 Event Logs ..217

 Prefetch Files ...221

 Registry Data ...222

 Additional Sources ..224

 Parsing Events into a Timeline ..225

 Thoughts on Visualization ...228

 Case Study ...229

 Summary ..232

CHAPTER 8 Application Analysis.. 233

 Introduction ..233

 Log Files ..235

 Dynamic Analysis ..236

x Contents

 Network Captures ..241

 Application Memory Analysis ...243

 Summary ..244

 References ..244

Index .. 245

xi

Preface

I am not an expert. I have never claimed to be an expert at anything (at least not
seriously done so), least of all an expert in digital forensic analysis of Windows
systems. I am simply someone who has found an interest in my chosen field of
employment, and a passion to dig deeper. I enjoy delving into and extending the
investigative process, as well as exploring new ways to approach problems in the
field of digital forensic analysis. It was more than 13 years ago that I decided to
focus on Windows systems specifically, in large part because no one else on the
team I worked with at the time did so. We had folks who focused on routers and
firewalls, as well as those who focused on Linux; however, almost no effort, beyond
enabling configuration settings in the vulnerability scanner we used, was put toward
really understanding Windows systems. As I moved from vulnerability assessments
into incident response and digital forensic analysis, understanding what was hap-
pening “under the hood” on Windows systems, understanding what actions could
create or modify certain artifacts, became a paramount interest. I am not an expert.

When I sat down to write this book, I wanted to take a different approach from
the second edition; that is, rather than starting with the manuscript from the previ-
ous edition and adding new material, I wanted to start over completely and write
an entirely new book, creating a companion book to the second edition. As I was
writing the second edition, Windows 7 was gaining greater prominence in the mar-
ketplace, and there has been considerably more effort dedicated toward and devel-
opments as a result of research into Windows 7 artifacts. Even now, as I write this
book (summer 2011), Windows 8 is beginning to poke its head over the horizon,
and it likely won’t be too awfully long before we begin to see Windows 8 systems.
As such, there’s a good deal more to write about and address, so I wanted to write
a book that, rather than focusing on Windows XP and looking ahead now and again
to Windows 7, instead focused on Windows 7 as an analysis platform and target,
and refer back to previous versions of Windows when it made sense to do so.

Therefore, regardless of the title, this book is not intended to replace the second
edition, but instead to be a companion edition to be used alongside the second edi-
tion. Let me say that again—if you have the second edition of Windows Forensic

Analysis, you will not want to get rid of it and replace it with this book. Instead,
you’ll want to have both of them (as well as Windows Registry Forensics and
Digital Forensics with Open-Source Tools) on your bookshelf or Kindle (or which-
ever ebook platform you’re using). In fact, if you have just purchased this edition,
you will want to also purchase a copy of the second edition, as well.

I will say upfront that there are some things not covered in this book. When
writing this book, I did not want to reiterate some of the information available in
other media, including previous editions of Windows Forensic Analysis. As such,
while mentioning how physical memory can be collected from a Windows system,
this book does not go into detail with respect to memory analysis; truthfully, this
is a topic best covered in a book of its own. In this book, we also discuss malware

http://dx.doi.org/

xii Preface

detection within an acquired image, but we do not discuss malware analysis, as this
topic has been addressed extremely well in its own book.

INTENDED AUDIENCE
This book is intended for anyone with an interest in developing a greater under-
standing of digital forensic analysis, specifically of Windows 7 systems. This
includes digital forensic analysts, incident responders, students, law enforcement
officers, and researchers, or just anyone who’s interested in digital forensic analysis
of Windows 7 systems. Even system administrators and hobbyists will get some-
thing useful from this book. I’ve tried to point out how the information in this book
can be used, by both forensic analysts and incident responders alike.

In reading this book, you’ll notice that there are several tools described through-
out that were written in the Perl scripting language. Don’t worry, you don’t need
to be a Perl expert (after all, neither am I) to use these scripts; not only are the
scripts very simple to use, but in most cases, they are accompanied by Windows
executables, “compiled” using “Perl2.exe” (found at http://www.indigostar.com/

perl2exe.php). While some programming capability would be beneficial if you want
to develop your own RegRipper plugins, several folks with little to no Perl pro-
gramming skill have written working plugins for that particular tool. Others have
rewritten tools like RegRipper in other languages, because again, it’s not about the
tool you use to solve the problem, it’s about solving the problem.

ORGANIZATION OF THIS BOOK
This book consists of eight chapters.

Chapter 1: Analysis Concepts

This chapter addresses the core investigative and analysis concepts that I’ve found
to be so critical to what we do, yet somehow glaringly absent from many books
and discussions. As professionals within the digital forensic analysis community,
there are a number of concepts that are central to what we do, and while (at this
time) there isn’t a centralized authority to mandate and manage this sort of informa-
tion, I’ve found these concepts to be absolutely critical to the work I’ve been doing.
Further, whether presenting at a conference or discussing analysis with someone
one-on-one, I see “the light come on” when talking about these concepts.

These concepts are vitally important because we cannot simply load an acquired
image into a forensic analysis application and start pushing buttons; this really gets
us nowhere. What do we do when something doesn’t work or gives us output that
we didn’t expect? How do we handle or address that? Do we move on to another
tool, documenting what we’re doing? I hope so—too many times I’ve seen or heard

http://www.indigostar.com/perl2exe.php
http://www.indigostar.com/perl2exe.php

xiiiPreface

of analysts who’ve accepted whatever the tool or application has provided, neglect-
ing to conduct any critical thought, and moved on to their findings. Operating
systems and targets may change, but the core concepts remain the same, and it’s
imperative that analysts understand and employ these concepts in their analysis.

Chapter 2: Immediate Response

In this chapter, we discuss the need for immediate response once an incident has
been identified. Often, an organization is notified by another entity (e.g., bank, law
enforcement agency, etc.) that they’ve been compromised, and an external third-
party consulting firm that provides incident response services is immediately con-
tacted. Once contracting issues have been addressed, consultants are sent onsite,
and once they arrive, they need to gather further information regarding what was
identified, as well as the “lay of the land” with respect to the network infrastruc-
ture. All of this takes additional time, during which information that could prove
to be very critical to addressing the inevitable questions faced by the potentially
compromised organization is fading and expiring (this says nothing about sensi-
tive data that may continue to flow from the infrastructure). Processes complete,
deleted files get overwritten, and new Volume Shadow Copies are created as old
ones are deleted. Windows systems are surprisingly active even when supposedly
sitting idle; therefore, it is paramount that response activities begin immediately,
not whenever someone from outside the organization, who isn’t familiar with the
infrastructure, can arrive onsite.

Chapter 3: Volume Shadow Copies

The existence of Volume Shadow Copies (VSCs) is relatively well known within
the digital forensics community, but means by which analysts can exploit their
forensic value are not. As much of the digital forensic analysis occurs using images
acquired from systems, this chapter addresses how analysts can access the wealth
of information available in VSCs without having to interact with the live system,
and without having to purchase expensive solutions.

Chapter 4: File Analysis

This chapter addresses not only the analysis of some of the usual files available on
Windows systems, but also files and data structures that are new to Windows 7 (or
Vista) and have been identified and better understood through research and testing.
Some files available on Windows 7 systems have changed formats, while others
are simply new, and both need to be understood by analysts. For example, jump
lists are new to Windows 7 systems, and some of them use the compound docu-
ment binary format (popular in MS Office documents prior to version 2007 of the
office suite), in conjunction with the SHLLINK format most often seen in Windows
shortcut files. As such, jump lists can contain considerable information (including
metadata) that can be very valuable during an investigation.

xiv Preface

Chapter 5: Registry Analysis

This chapter addresses some of the information provided through other sources,
most notably Windows Registry Forensics, and takes that information a step further,
particularly with respect to Windows 7 systems. Rather than reiterating the infor-
mation available in other sources, this chapter uses that information as a founda-
tion, and presents additional information specific to the Windows 7 Registry.

Chapter 6: Malware Detection

Oddly enough, this chapter does not contain the word “analysis” in the title,
because we’re not going to be discussing either static or dynamic malware analysis.
Instead, we’re going to discuss a specific type of analysis that is becoming very
prominent within the digital forensic community; that is, given an image acquired
from a Windows system, how can we go about detecting the presence of malware
within that image? Professionally, I’ve received quite a number of images with the
goal being to determine if there was malware on the system. Sometimes, such a
request is accompanied by little additional information, such as the name of a spe-
cific malware variant, or specific information or artifacts that can be used to help
identify the malware. Given that malware authors seem to be extremely adept at
keeping their code hidden from commercial antivirus scanning applications, ana-
lysts need other tools (preferably a process) in their kits for detecting malware
within an acquired image.

Chapter 7: Timeline Analysis

The idea of timeline analysis, as applied to digital forensic analysis, has been
around for quite a while. Rob Lee of SANS fame discussed performing a limited
version of timeline analysis as far back as 2000. Over time, we’ve seen how a con-
siderable amount of time-stamped information is tracked by the Windows operating
systems, and all of this can potentially be extremely valuable to our analysis. Also,
much of this time-stamped information is contained in artifacts that persist even
after applications and malware have been removed from the system, and can be
revealed through timeline analysis. In addition, incorporating multiple data sources
of time-stamped data into a timeline will provide considerably more value to an
examination.

Chapter 8: Application Analysis

This chapter discusses a number of concepts and techniques that are usually associ-
ated with dynamic malware analysis, but takes a more general approach. There are
a number of applications that analysts run into during an examination, and many
times the question that needs to be answered (i.e., the goal of the analysis) is to
determine whether a particular artifact is the result of default application behavior
or specific user activity.

xvPreface

ONLINE CONTENT
There is no DVD that accompanies this book; instead, the code that I’ve written and
described in this book is provided online at the WinForensicAnalysis Google Code
site (http://code.google.com/p/winforensicaanalysis/downloads/list). Updates to
the provided code will be discussed and described via the WindowsIR blog (http://

windowsir.blogspot.com).

http://code.google.com/p/winforensicaanalysis/downloads/list
http://windowsir.blogspot.com
http://windowsir.blogspot.com

This page intentionally left blank

xvii

Acknowledgments

I’d like to begin by thanking God for the many blessings He’s given me in my
life, the first of which has been my family. I count having the interest, ability, and
heart for writing this book, as well as the others, as one of those blessings. I try to
thank Him daily, but I find myself thinking that that’s not nearly enough. A man’s
achievements are often not his alone, and in my heart, being able and afforded
the environment to write books like this is a gift and a blessing in so many ways.
My hope is that this effort benefits many more than just those who purchase and use
the books.

I’d like to thank my true love and the light of my life, Terri, and my stepdaughter,
Kylie. Both of these wonderful ladies have put up with my antics yet again (intently
staring off into space, scribbling in the air, and of course, there are my excellent imi-
tations taken from some of the movies we’ve seen), and I thank you both as much
for your patience as for being there for me when I turned away from the keyboard.
It can’t be easy to have a nerd like me in your life, but I do thank you both for the
opportunity to “put pen to paper” and get all of this stuff out of my head.

I’d like to thank Jennifer Kolde, my technical editor, yet again. I say “again”
because this isn’t the first time that Jennifer and I have worked together. Going
through the process of working on my very first book with you has left an indel-
ible mark on how I have approached and written books since then. Over the years
we have had a number of opportunities to engage and exchange thoughts and ideas,
and that has really been very beneficial for me. I’m sure when I’ve sent you chap-
ters for this book, you’ve alternatively laughed and cried at my prose, but I do thank
you so much for your invaluable insight and input.

I’ve said it before and I’ll say it again … I miss working with Cory Altheide.
Cory and I exchanged emails several years ago and published some research with
respect to tracking USB removable storage devices across Windows systems.
At one point, Cory and I had an opportunity to work together, and while employ-
ment at that organization ultimately didn’t work out for either of us, I’m going to
be entirely selfish and say simply that when we did have an opportunity to work
together, it was a blast! We collaborated on Digital Forensics with Open-Source

Tools, in so much as it was Cory’s idea and he was by far the primary author. So,
if you have a copy of DFwOST, do not refer to it as “Harlan’s book,” and always
make sure Cory signs it first and biggest. I’m sure trading him an autograph for a
beer will leave everyone involved satisfied.

I want to be sure to thank everyone who has written tools—commercial or
open-source—that I mentioned in this book. Christopher Brown of Technology
Pathways, LLC, has graciously granted me a license for ProDiscover since version
3, and I’ve a great deal of fun working with this application and seeing it grow over
time. By the time this manuscript was submitted to the publisher, ProDiscover was
at version 7.0.0.8. I’d like to thank Matt Shannon for all the fantastic work he’s

http://dx.doi.org/

xviii Acknowledgments

done on F-Response, as that is a tool that has really done a lot to change how inci-
dent response should be done. It has also been interesting to see how this tool has
developed over time, as Matt comes from an incident response and digital foren-
sics background, so this is a tool for practitioners, designed and written by a prac-
titioner. I’d also like to thank the guys at Kyrus Tech, Inc. for developing Carbon
Black. They have a quote from me on one of their web pages, stating that “Carbon
Black changes the dynamics of incident response.” I stand by that statement,
because I believe it. I’ve seen their demo, and even worked with it in my own small
lab, and found myself looking back over the previous 10 years and wishing that the
customers that I’d interacted with had had something like Carbon Black installed.
I’d like to thank Mark Woan and Mark McKinnon for providing and sharing their
tools, as well as anyone else I may have missed. I think that in a community that
really has a lot to learn with respect to sharing, anyone who is writing and sharing
tools is really way out in front of the pack.

I’m sure at this point I’ve missed some folks, so please accept my sincerest
apologies and “thank you” if I engaged with you or read something you wrote, and
came away with something that became the seed of an idea that ended up in this
book.

Finally, I’d like to thank the Syngress staff, especially Heather Scherer, for their
patience throughout this process. I’m sure it can’t be easy if your job is publish-
ing books, but for those writing the books, authoring is not their primary job, and
sometimes not their primary focus.

xix

About the Author

Harlan Carvey (CISSP) is vice president of Advanced Security Projects with
Terremark Worldwide, Inc. Terremark is a leading global provider of IT infrastruc-
ture and “cloud computing” services, based in Miami, FL. Harlan is a key con-
tributor to the Engagement Services practice, providing disk forensics analysis,
consulting, and training services to both internal and external customers. Harlan
has provided forensic analysis services for the hospitality industry, financial institu-
tions, as well as federal government and law enforcement agencies. Harlan’s pri-
mary areas of interest include research and development of novel analysis solutions,
with a focus on Windows platforms.

Harlan holds a bachelor’s degree in electrical engineering from the Virginia
Military Institute and a master’s degree in the same discipline from the Naval
Postgraduate School. Harlan resides in northern Virginia with his family.

http://dx.doi.org/

This page intentionally left blank

xxi

About the Technical Editor

Jennifer Kolde is a technical analyst and researcher supporting computer intrusion
investigations for the federal government. Prior to her current position, she spent
nearly 10 years as a defense contractor, providing network and system administra-
tion, network security, incident response, forensics, and malware analysis for the U.S.
Navy. Her experience includes managing information security and incident response
on a 10,000-node research and development network, geographically distributed from
the U.S. east coast to the Asian Pacific rim.

Jennifer received her undergraduate degree from the University of Michigan
and her MS in Computer Science and Information Security from James Madison
University. She is a former SANS instructor and director of the GIAC certification
program, and has edited several technical books for various publishers.

http://dx.doi.org/

This page intentionally left blank

1

Analysis Concepts 1
CHAPTER

INTRODUCTION

If you’ve had your eye on the news media, or perhaps more appropriately the
online lists and forums, over the past couple of years, there are a couple of facts or
“truths” that should be glaringly obvious to you. First, computers and computing
devices are more and more a part of our lives. Not only do most of us have compu-
ter systems, such as desktops at work and school, laptops at home and on the go,
we also have “smart phones,” tablet computing devices, and even smart global posi-
tioning systems (GPSs) built into our cars. We’re inundated with marketing ploys
every day, being told that we have to get the latest-and-greatest device, and be con-
nected not just to WiFi, but also to the ever-present “4G” (whatever that means …)
cellular networks. If we don’t have a phone-type device available, we can easily

CHAPTER OUTLINE

Introduction ... 1

Analysis Concepts ... 3

Windows Versions ..4

Analysis Principles ..6

Goals ..6

Tools Versus Processes ...8

Locard’s Exchange Principle ...8

Avoiding Speculation ..9

Direct and Indirect Artifacts ... 10

Least Frequency of Occurrence ... 14

Documentation ...15

Convergence ...16

Virtualization ..17

Setting Up an Analysis System ... 19

Summary ... 22

INFORMATION IN THIS CHAPTER

l Analysis Concepts

l Setting Up an Analysis System

http://dx.doi.org/

2 CHAPTER 1 Analysis Concepts

open up our laptop or turn on our tablet device and instantly communicate with oth-
ers using instant messaging, email, Twitter, or Skype applications.

The second truth is that as computers become more and more a part of our lives,
so does crime involving those devices in some manner. Whether it’s “cyberbullying”
or “cyberstalking,” identity theft, or intrusions and data breaches that result in some
form of data theft, a good number of real-world physical crimes are now being com-
mitted through the use of computers, and as such, get renamed by prepending “cyber”
to the description. As we began to move a lot of the things that we did in the real
world to the online world (e.g., banking, shopping, filing taxes, etc.), we became tar-
gets for cybercrime.

What makes this activity even more insidious and apparently “sophisticated” is
that we don’t recognize it for what it is, because conceptually, the online world is
simply so foreign to us. If someone shatters a storefront window to steal a televi-
sion set, there’s a loud noise, possibly an alarm, broken glass, and someone fleeing
with their stolen loot. Cybercrime doesn’t “look like” this; often, something isn’t
stolen and then absent, so much as it’s copied. Other times, the crime does result in
something that is stolen and removed from our ownership, but we may not recognize
that immediately, because we’re talking about 1s and 0s in cyberspace, not a car that
should be sitting in your driveway.

These malicious activities also appear to be increasing in sophistication. In many
cases, the fact that a crime has occurred is not evident until someone notices a signifi-
cant decrease in an account balance, which indicates that the perpetrator has already
gained access to systems, gathered the data needed, accessed that bank account, and
left with the funds. The actual incidents are not detected until well after (in some
cases, weeks or even months) they’ve occurred. In other instances, the malicious
activity continues and even escalates after we become aware of it, because we’re
unable to transition our mindset from the real world (lock the doors and windows,
post a guard at the door, etc.) to the online world, and effectively address the issue.

Clearly, no one and no organization is immune. The early part of 2011 saw a
number of high-visibility computer security incidents splashed across the pages
(both web and print) of the media. The federal arm of the computer consulting firm
HBGary suffered an embarrassing exposure of internal, sensitive data, and equally
devastating was the manner in which it was retrieved. RSA, owned by EMC and
the provider of secure authentication mechanisms, reported that they’d been com-
promised. On April 6, Kelly Jackson Higgins published a story (titled “Law Firms
Under Siege”) at DarkReading.com that revealed that law firms were becoming a
more prevalent target of advanced persistent threat (APT) actor groups. The exam-
ples are numerous, but the point is that there’s no one specific type of attack that is
used in every situation, or victim that gets targeted. Everyone’s a target.

To address this situation, we need to have responders and analysts who are at
least as equally educated, armed, and knowledgeable as those committing these
online crimes. Being able to develop suitable detection and deterrence mechanisms
depends on understanding how these online criminals operate, how they get in, what
they’re after, and how they exfiltrate what they’ve found from the infrastructure. As

3Analysis Concepts

such, analysts need to understand how to go about determining which systems have
been accessed, and which are used as primary jump points that the intruders use
to return at will. They also need to understand how to do so without tipping their
hand and revealing that they are actively monitoring the intruders, or inadvertently
destroying data in the process.

In this book, we’re going to focus on the analysis of Windows computer systems—
laptops, desktops, servers—because they are so pervasive. This is not to exclude other
devices and operating systems; to the contrary, we’re narrowing our focus in order to
fit the topic that we’re covering into a manageable volume. Our focus throughout this
book will be primarily on the Windows 7 operating system (OS), and much of the
book after Chapter 2 will be tailored specifically to the analysis of forensic images
acquired from those systems.

In this chapter, we’re going to start our journey by discussing and understand-
ing the core concepts that set the foundation for our analysis. It is vitally important
that responders and analysts understand these concepts, as it is these core concepts
that shape what we do and how we approach a problem or incident. Developing
an understanding of the fundamentals allows us to create a foundation upon which
to build, allowing analysts to be able to address new issues effectively, rather than
responding to these challenges by using the “that’s what we’ve always done” meth-
odology, which may be unviable.

ANALYSIS CONCEPTS
Very often when talking to analysts—especially those who are new to the field—I
find that there are some concepts that shape not only their thought processes but also
their investigative processes and how they look at and approach the various problems
and issues that they encounter. For new analysts, without a great deal of actual expe-
rience to fall back on, these fundamental analysis concepts make up for that lack of
experience and allow them to overcome the day-to-day challenges that they face.

Consider how you may have learned to acquire images of hard drives. Many of
us started out our learning process by first removing the hard drive from the com-
puter system, and hooking it up to a write-blocker. We learned about write-blockers
that allowed us to acquire an image of a hard drive to another, “clean” hard drive.
However, the act of removing the hard drive from the computer system isn’t the
extent of the foundational knowledge we gathered; it’s the documentation that we
developed and maintained during this process that was so critical and foundational.
What did we do, how did we do it, and how do we know that we’d done it correctly?
Did we document what we’d done to the point where someone else could follow the
same process and achieve the same results, making our process repeatable? It’s this
aspect that’s of paramount importance, because what happens when we encounter
an ecommerce server that needs to be acquired but cannot be taken offline for any
reason? Or what happens when the running server doesn’t actually have any hard
drives, but is instead a boot-from-SAN server? Or if the running laptop uses whole

4 CHAPTER 1 Analysis Concepts

disk encryption so that the entire contents of the hard drive are encrypted when the
system is shut down? As not every situation is going to be the same or fit neatly into
a nice little training package, understanding the foundational concepts of what you
hope to achieve through image acquisition is far more important than memorizing
the mechanics of how to connect source and target hard drives to a write-blocker and
perform an acquisition. This is just one example of why core foundational concepts
are so critically important.

Windows Versions

I’ve been told by some individuals that there are three basic computer operating sys-
tems that exist: Windows, Linux, and Mac OS X. That’s it, end of story. I have to say
that when I hear this I’m something a bit more than shocked. This sort of attitude
tells me that someone views all Windows versions as being the same, and that kind
of thinking can be extremely detrimental to even the simplest examination. This is
due to the fact that there are significant differences among Windows versions, par-
ticularly from the perspective of a forensic analyst.

The differences among Windows versions go beyond just what we see in the
graphical user interface (GUI). Some of the changes that occur among Windows ver-
sions affect entire technologies. For example, the Task Scheduler version 1.0 that
shipped with Windows XP is pretty straightforward. The scheduled task (.job) files
have a binary format, and the results of the tasks running are recorded in the Task
Scheduler log file (i.e., “SchedLgU.txt”). With Vista and Task Scheduler version 2.0,
there are significant differences; while the Task Scheduler log file remains the same,
the .job files are XML format files. In addition (and this will be discussed in greater
detail later in the book), not only do Vista and Windows 7 systems ship with many
default scheduled tasks, but information about the tasks (including a hash of the .job
file itself) is recorded in the Registry.

On Windows XP and 2003 systems, the Event Log (.evt) files follow a binary for-
mat that is well documented at the Microsoft web site. In fact, the structures and format
of the .evt files and their embedded records are so well documented that open-source
tools for parsing these files are relatively easy to write. Beginning with Vista, the Event
Log service was rewritten and the Windows Event Log (.evtx) framework was imple-
mented. Only a high-level description of the binary XML format of the logs them-
selves is available at the Microsoft site. In addition, there are two types of Windows
Event Logs implemented; one group is the Window Logs and includes the Application,
System, Security, Setup, and ForwardedEvent logs. The other group is the Application
and Services logs, which record specific events from applications and other compo-
nents on the system. While there are many default Application and Services logs that
are installed as part of a Windows 2008 and Windows 7, for example, these logs may
also vary depending on the installed applications and services. In short, the move from
Windows XP/2003 to Vista brought a completely new logging format and structure,
requiring new tools and techniques for accessing the logged events.

5Analysis Concepts

From a purely binary perspective, there is no difference among the Registry
hive files of the various Windows versions, from Windows 2000 all the way through
to Windows 7 (and even into Windows 8). In some cases, there are no differences
in what information is maintained in the Registry; for the most part, information
about Windows services, as well as the contents of the USBStor key, continue to
be similar for versions between Windows 2000 and Windows 7. However, there
are significant differences between these two Windows versions with respect to
the information that is recorded regarding USB devices, access to wireless access
points, and a number of other areas. Another example of a difference in what’s
recorded in the Registry is that with Windows XP, searches that a user performed
through the Explorer shell (e.g., “Start→Search”) are recorded in the ACMru key.
With Vista, information about searches is moved to a file, and with Windows 7, user
searches are recorded in the WordWheelQuery key.

Other differences in Windows versions are perhaps unintentional. In December
2010, there was a question posted to an online forum asking about the purpose of the
Microsoft\ESENT\Process Registry key within the Software hive on a Windows XP
system. During the ensuing exchange, various respondents included references to
Google searches that indicated that there were some versions of malware that modi-
fied the contents of that key. For example, one reference at the ThreatExpert.com
site indicated that a Trojan associated with online games modified this key when
installed. Ultimately, with the assistance of Troy Larson (senior forensic investiga-
tor at Microsoft), it was determined that the key should only exist on Windows XP
systems, as Windows XP shipped with a debug or “checked build” of “esent.dll.”
This indicated that the dynamic link library (DLL) had been compiled to generate
additional information for debugging purposes, and then had not been recompiled
for “production” delivery, and the debug version of the DLL was shipped with the
operating system installation. In checking the software hives on several available
test systems, as well as within acquired images of Vista, Windows 2003/2008, and
Windows 7 systems I had access to, I didn’t find any indication that the key existed
on any other system than Windows XP.

Some differences among versions of the Windows operating system can be subtle,
while others can be covert and not visible to the casual user or administrator. However,
the fact remains that, as a forensic analyst, what you look for (based on your examina-
tion goals) and what you see, and how you access and interpret it, will be impacted
significantly by the Windows version that you’re examining. Troy Larson has been
putting considerable effort toward highlighting many of the new technologies within
Windows 7 and identifying possible sources of forensic artifacts, and discussing these
areas in presentations. There are a number of other presentations available (via search-
ing) online that discuss similar findings, indicating that there are those, in the forensic
community as well as within academia, who feel it’s important to identify as many of
the new potential sources of forensic artifacts or “evidence” as possible.

Documenting all of the differences among the various Windows versions would
simply be an enormous task. Throughout the rest of this book, as different topics

6 CHAPTER 1 Analysis Concepts

are discussed, I will attempt to point out the differences among Windows versions,
where this is pertinent to the understanding of the topic. The point, however, is to
understand that “Windows” is not simply “Windows,” and the Windows version
(XP or Windows 7, 32- or 64-bit, etc.) will have a significant impact on the tools
used and the investigative approach used.

Analysis Principles

Many times when discussing forensic analysis with other folks, particularly new
analysts, it seems that when someone gets into this business, the primary focus of
their training (and therefore, their investigative approach) is on tools. So when they’re
given an image to analyze, analysts’ first thought is to open up the commercial foren-
sic analysis application that they’re familiar with or were trained on. However, if you
were to take that application away, where would they be? What would they be left
with, and what would they be able to do? I ask this, because I have heard analysts
state, “I need [insert application name]” when given an examination.

Many of the principles and concepts discussed throughout the rest of this chap-
ter will likely be familiar to many analysts. You may have seen them in my blog,
or you may have heard another analyst or responder discuss them in a presentation
at a conference. Chris Pogue’s Sniper Forensics presentations cover many of these
ideas; Chris and I worked at IBM together, and spent time discussing many of these
concepts. I’m presenting the principles again here because they’re important, and I
really feel that analysts need to understand them, or at least have a familiarity with
them.

Goals
The goals of our analysis are perhaps the most important aspect of what we do.
Without having goals for our analysis, we’d likely end up spending weeks or
months combing through a few images, finding all manner of potentially “bad
stuff.” But to what end? Analysts and consultants in the private sector most often
work under the auspices of a contract that specifies a set number of hours. The
same is true for law enforcement examiners, although any limits or constraints may
often be more of a resource issue than from a contract.

When handed a drive image, the first question that should come to every ana-
lyst’s mind is, “What question am I trying to answer?” Locate and identify mal-
ware? Locate indications of access to (or attempts to access) specific files? Locate
indications of attempts to hide activity? Determine if a user accessed specific web
sites or remote computer systems? Without having some kind of concise, achiev-
able goal for analysis, a small stack of hard drives (or images acquired from them)
can easily engage an analyst for a significant (perhaps inordinate) amount of time.
But to what end? At the end of, say, two weeks of dedicated analysis, what is the
final result? What does the report look like, if a report can be written at all? What
are the analyst’s findings and conclusions? Without a destination, how do you know
when you get there?

7Analysis Concepts

As such, “find all bad stuff” is not a goal of forensic analysis. I know of an ana-
lyst who acquired an image of a desktop hard drive and was told to “find all bad
stuff.” Accepting that as a goal, the analyst returned to his lab and began analysis,
and found quite a bit of “bad stuff.” However, it turned out that the employee whose
system had been imaged was tasked with “hacking” activities to protect the com-
pany web site; once that context was added to the examination, it was clear that all
of the work that had been done had simply found the tools that the employee used
in his job.

Developing goals for an examination can be pretty straightforward. When I was
in the military, I had a company commander who told me that if I couldn’t sum up
an issue in a couple of bullet statements on a 3 5 index card, I didn’t know enough
about that issue. At the time, I didn’t think that I had a very good idea of what he
was talking about, but over time, I learned the wisdom of what he’d said. Let’s say
that you’re tasked with examining an image of a system; do you know why that sys-
tem was acquired in the first place? What was the event that occurred that caused
someone to acquire an image of that system? Did a pop-up appear on the desk-
top reporting a virus? Was some sort of network traffic observed emanating from
or going to the system that triggered an intrusion detection system alert, or caught
an security operations center (SOC) analyst’s attention? Were there some unusual
firewall logs or domain name service (DNS) requests that indicated a possible issue
with the system? If this is what happened, then the goals of the examination go from
“find bad stuff” to something a bit more specific and achievable, such as “deter-
mine if malware was present on the system that could have caused or resulted in the
observed event/traffic.”

The goals of an examination can be important for other reasons, as well. Back in
2000, I was working as the network security engineer at a now-defunct telecommu-
nications company. At one point, the security manager was considering having some
forensic analysis performed, and we’d heard that another group within the company
had worked with a particular vendor that provided forensic analysis services. When
we asked some of the members of this group about the vendor, we were told that they
didn’t do a very thorough analysis of one drive in particular, as they had missed a hid-
den DOS partition. That was it … no mention of the reason the vendor had been hired
or what the goal of the analysis was, just this one negative comment. When we spoke
to the vendor, he was prepared for our questions, and brought a copy of the contract
that specified the goal of the analysis, which was to determine if the system had the
SubSeven Trojan installed. There was nothing in the contract that specified the need
to determine if there were any other partitions, particularly hidden ones, although the
analyst did see the partition and noted it. The issue of the hidden DOS partition was a
distraction, and aside from that, the vendor had fulfilled the terms and conditions of the
contract; they’d met the goals of the examination that they’d been given. Regardless
of any personal or professional issues that the company employee may have had, the
forensic analyst for the vendor had remained focused on the goals of the analysis.

Another important aspect of your goals is that they can often help you scope and
better define an incident. For example, in data breach investigations, the primary

8 CHAPTER 1 Analysis Concepts

question that needs to be answered is, “What data, if any, left the infrastructure?”
Various state notification laws or mandates set forth by regulatory bodies may come
into play, and may result in significant costs and negative press exposure for the
organization. Most incident responders know that to definitively answer this ques-
tion, you need full packet traffic captures from the time when the data actually left
the systems and the infrastructure. However, understanding what data may have
left the infrastructure and been exposed then leads responders to those systems that
may be involved in the incident, including where the data were stored (e.g., data-
base server) or may have been processed (e.g., back office payment processor server,
user’s workstation, etc.).

Tools Versus Processes
When it comes to analysis, too many times we seem to focus on tools rather than the
process. This is a trap that new analysts often fall into, as their initial introduction
and training is often focused on developing familiarity with one tool (e.g., a com-
mercial forensic analysis application) to get them up and running as quickly as pos-
sible. However, even more experienced analysts can find themselves focusing on a
specific tool or application rather than the overall process.

Consider the implementation of the Volume Shadow Copy Service (VSS) in
Windows systems beginning with Vista (VSS had actually been implemented in
Windows XP, but in a somewhat limited manner). Long after this technology was
implemented (Vista was released in November 2006), most commercial forensic
analysis applications had not provided a means for easily accessing Volume Shadow
Copies (VSCs, discussed in detail in Chapter 3) within acquired images. For example,
ProDiscover, from Technology Pathways, was the first commercial forensic analysis
application to allow easy access to VSCs in the spring of 2011. However, as will be
described in detail in Chapter 3, there are a number of methods for accessing VSCs
within an acquired image that do not require the purchase of a commercial product. The
point is that by focusing on specific tools (“My tool can’t do that, so I can’t answer that
question”), analysts often lose sight of the process and what’s really required to meet
their goals (“What tool or method is most appropriate for obtaining the data I need?”).
By understanding what it is you hope to achieve, as well as the technology you’re faced
with, you can understand the overall process you need to follow to achieve your goals.
After all, if all you have is a hammer, every problem becomes a nail.

Locard’s Exchange Principle
This is an analysis concept that has been addressed and discussed in a number of
resources; I’m including it here because no discussion of analysis concepts would
be complete without it. In short, Locard was a French scientist who postulated that
when two objects came into contact, material from each was transferred to the other.
We see this mentioned quite often in TV crime shows, like CSI, when analyst Nick
Stokes declares, “… possible transfer.”

Okay, so how does this principle apply to digital forensic analysis, you ask? That
is an excellent question. In short, any interaction between two entities (one being

9Analysis Concepts

the computer operating system) results in the transfer or creation of data. For exam-
ple, when a user logs into a system, even when auditing of logins is not enabled,
artifacts of the login, as well as the user’s activities, are created. When a user inter-
acts with the system, there are traces of this activity, whether the user logs in locally
or accesses the system remotely. Whenever a program runs within the operating sys-
tem, there is a “transfer” or creation of data of some kind. The data or artifacts may
vary in how persistent they are (this is known as the order of volatility), but they
will be created. Many of these artifacts will exist only for a short time, and some
may persist until the system is rebooted. Other artifacts will persist well after the
system is shut down and rebooted. But the thing to remember is that artifacts will be
created.

Avoiding Speculation
Whether working as an incident responder or as a digital forensics analyst, we need
to be sure that we don’t fall into the trap of filling in gaps in our information with
guesses, and answering questions through speculation. This is also an issue (per-
haps even more so) for information technology (IT) staff attempting to scope or
deal with a computer security incident, but doing so without the benefit of the train-
ing and experience of skilled incident responders. The fact is that many times we
simply don’t know what we don’t know, and we fill in the gaps in our information
with speculation rather than facts. This most often results with incorrect information
being provided to decision makers higher up the corporate ladder.

One of the things I used to hear a lot that really made me cringe was when
an analyst would say, “If I had been the hacker, I would have done this.” I’m not
entirely sure I see how that applies during an examination, other than to provide
some possible avenues of investigation that can (and should be, possibly even before
the statement is made) quickly be run down. More often than not, these statements
develop into avenues of reason and pseudo-fact, and can lead the incident response
completely off-track.

Don’t get me wrong—during incident response or even forensic analysis, brain-
storming can be good, and a valuable tool. Throwing out ideas to be discussed, run
down, or refuted can be an excellent exercise. Probative questions like “what if …”
and “why did you …” can lead to some pretty interesting findings. Where this goes
wrong is when assumptions are made and used to move the examination forward,
without those assumptions being verified, and facts are not used (rather than the
assumptions) to fill in gaps in the analysis. This is something that we all have to be
careful of, as it happens to all of us at one time or another; we’ll make an assump-
tion about how an artifact is created or modified without performing any research or
verification, and our analysis will progress based on that assumption, however incor-
rectly. Unchecked, this can lead us down the road of incorrect findings and conclu-
sions, or worse, lead us down a rabbit hole of confusion.

One way to avoid using assumptions to replace facts is to correlate multiple facts
to support your findings. This concept is discussed in greater detail in Chapter 7,
when we dig into the specifics of timeline creation and analysis; however, the basic

10 CHAPTER 1 Analysis Concepts

idea is to look at your analysis and determine where it is based on a single arti-
fact or finding, and then attempt to locate additional artifacts that support (or refute)
your conclusions. An example of this might be an application file that you found
on a system; you think that this application (remote-access program, etc.) may be
critical to the incident, but you find that the file appears to have been created on
the system several years prior to the actual incident; in fact, the creation date of the
file appears to correspond with other files copied over from the installation media.
So, with this finding, what do you do? Do you accept the creation date as legiti-
mate and simply rule the application out from being associated with the incident? I
would hope not; file system creation dates are trivial to modify. Or, do you attempt
to determine whether the creation date was modified to disguise the file’s presence
on the system?

There are a number of artifacts that you could use to quickly validate the crea-
tion date finding, such as additional attributes from the file’s entry in the master
file table (MFT, discussed in greater detail in Chapter 4). With respect to launch-
ing the application, is there a Prefetch file, or any indication in the user’s Registry
hive that they launched the application? Are there any other artifacts that can be
directly associated with the application having been executed? Some tools, such as
the Cain & Abel password collection and cracking tool, produce a series of output
files when run. These artifacts of execution may be used to better determine when
a file or application had been added to a system; why would it have been added to
the system in 2008 but not executed until 2011? How likely would that be? It would
be far more likely that the application had been added to the system in relative close
proximity to the first execution of the application, particularly during a compromise
or breach.

The key concept to understand here is that filling in gaps in information with
speculation can be very misleading, and ultimately detrimental to an organization
attempting to respond to an incident. Whenever possible, seek out multiple support-
ing artifacts, particularly if those artifacts are found in network or firewall logs, or on
other systems not associated with the system being examined. Regardless of whether
a cluster of artifacts are all found within or external to the system being examined, a
knowledgeable analyst will be able to correlate them quickly and efficiently, as they
understand not only the system being examined, but also their analysis goals.

Direct and Indirect Artifacts
Generally, there are two types of artifacts that you can expect to find when per-
forming an examination: direct and indirect. Some analysts might not make a clear
distinction between the two, but when I’ve been looking for something new or
undefined (e.g., the request is to “find the malware” or “find the bad stuff”), it helps
to look to where the indirect artifacts tend to collect to see if there are any indica-
tions of anything new.

A direct artifact is something that is the direct result of an incident, such as a
malware infection or an intrusion. These are usually things like files that are added

11Analysis Concepts

or copied to a system, and any modifications made by the intrusion or compromise,
such as Windows services or other Registry keys and values being created on the
system. Other direct artifacts include files produced as a result of the infection or
addition of malware, such as keystroke captures or the output of native commands
(e.g., ipconfig, “net start,” etc.).

When I was working data breach examinations, I ran across a set of mali-
cious programs that constituted a “memory scraper”; that is, one program would
collect the contents of virtual memory for any of eight specifically named proc-
esses, and then another would comb through the memory dump for track data
(the stuff in that magnetic stripe on the back of your credit card). The program
that looked for the track data was a Perl script that had been “compiled” with
Perl2Exe (http://www.indigostar.com/perl2exe.php) so that the script could be
run as a standalone executable, and not require that Perl be installed on the com-
promised system. Besides the program files themselves, the direct artifacts for
this incident included the Windows service that was created when the files were
installed (along with the associated Registry keys) and the files created every time
the malware was run (i.e., the memory dump file, the archive of extracted track
data, and the DLLs extracted from the “compiled” Perl script as a result of the
use of Perl2Exe).

An indirect artifact is something that is the result of the ecosystem or envi-
ronment in which the incident occurs, and is not a direct result of the incident.
Sounds kind of fancy, I know, but the simple fact is that there’s a lot that occurs on
Windows systems when a program or a process is launched, regardless of whether
it’s for a legitimate application or for malware or malicious activity of some kind.
Some of these things that go on, we never see—they just happen in the back-
ground. For example, if you use Microsoft’s Process Monitor (the use of which
will be demonstrated later in the book) and look at what Registry keys are accessed
when any program is started, you’ll begin to notice that there’s one (the Image File
Execution Options key) that is read whenever you launch a program. This is not
something that the malware does, it’s what the operating system does when a pro-
gram is launched.

Other indirect artifacts include application prefetch files and entries in the
“index.dat” file. Prefetch files are created by default on Windows XP, Vista, and
7 whenever an executable file is run on Windows. The prefetch file contains
information about the files loaded by the executable, and is used to optimize exe-
cution of the program. Prefetch files are indirect artifacts because, while they are
not the direct result of an incident, they may be created by applications executed
during the course of an incident. “Index.dat” files are created by Windows appli-
cations (e.g., Internet Explorer) that use the WinInet application programming
interface (API) for off-system communication. Entries in an “index.dat” file are
not the direct result of an incident, but may be created by applications used in an
incident that leverage the API (e.g., malware that uses the API to connect to an
external site).

http://www.indigostar.com/perl2exe.php

12 CHAPTER 1 Analysis Concepts

TIP

Internet History

“Index.dat” files are most often associated with a user’s Internet history; when performing

analysis on a system and attempting to discern what the user had been up to, an analyst

will often look to the contents of the “index.dat” file, particularly if the user used the

Internet Explorer web browser.

However, malware authors may make use of the same API to exfiltrate data from systems

or allow their malware to communicate with a command and control (C2) server, and in

doing so, will leave similar traces. What can be very telling about this kind of malicious use

of the WinInet API is when the malware is running with system privileges, such as within

a Windows service. In such instances, the LocalService or Default User (depending on the

specific privileges employed by the malware) account will suddenly have indications of

Internet activity populated in the “index.dat” file in that profile.

Another example of an indirect artifact is the entries for Windows services
beneath the Enum\Root key in the Registry hive. This artifact is a result of the func-
tion of the operating system, and will be addressed in greater detail in Chapter 5.

WARNING

ZeroAccess

In November 2010, Giuseppe Bonfa wrote a series of articles (available at the InfoSecInstitute

web site, found online at http://resources.infosecinstitute.com/author/giuseppe/) describing his

findings in reverse engineering the ZeroAccess/Max crimeware rootkit. One of the things he

found was that the rootkit was installed on a Windows system as a service, and when the service

was started, it would delete not only its entry in the Services key, but also the relevant entries

beneath the Enum\Root key. This is an indication of someone who is taking great pains to not

only remain undetected on systems, but to also subvert deep forensic analysis of compromised

systems.

Another way to look at this is that direct artifacts are those that only exist as a
result of the incident occurring (e.g., SQL injection statements in web server logs,
malicious executable files and log files being created on the compromised system,
etc.), whereas indirect artifacts are those artifacts that would be generated—by
design—as the result of any action (legitimate or malicious) occurring on the sys-
tem. For example, with Windows services, administrators can install applications
that create services (e.g., web server, antivirus applications, etc.) and the same
artifacts would be generated if a malicious service were installed. Again, an indi-
rect artifact is not a direct result of the incident or malicious action, but instead the
result of the interaction within environment.

Remember that earlier we discussed the fact that different Windows ver-
sions employ different implementations of technologies such as Task Scheduler,

13Analysis Concepts

Windows Event Log, etc.? Well, this has an effect on the indirect artifacts that are
available to an analyst. If the system you’re examining doesn’t have application
prefetching enabled (either by default, or because it was purposely disabled), then
you shouldn’t expect to see any prefetch files. The same holds true for other tech-
nologies, as well, including but not limited to the Task Scheduler, System Restore
Points, Volume Shadow Copies, etc. The artifacts that you can expect to find can be
dependent not just on how the system is configured, but which Windows version
you’re analyzing.

So by now you’re probably wondering why I’ve presented all of this. Well, the
point is that there are a lot of ways to compromise, do mischief, and remain persist-
ent on a system. That is to say, there is not a simple, short list of artifacts to look
for when examining a system or an image, and as such, we often have to look for
indirect artifacts as indicators of the incident. Because often we don’t really know
what we’re looking for, identifying indirect artifacts of the incident may lead us
back to the direct artifacts. When performing your analysis, pursue and stay open to
the indirect artifacts, as they will often provide clear indicators to the direct artifacts
that we would not otherwise have observed or found.

NOTE

Absence of an Artifact

All this discussion of direct and indirect artifacts, as well as using multiple artifacts to

support your findings, should lead you to one inevitable conclusion; that is, the absence of

an artifact where you would expect to find one is in itself an artifact.

Wait … what? What does this mean? Let’s say that you’re paranoid because you think

someone’s been going through your home while you’re gone, and before leaving for work

in the morning, you place a small piece of scotch tape over the door jamb. You then

leave through the garage. Later that day, you return home and find what you think may

be indicators that someone’s been in your house, and you assume that they only way they

could get in was through the front door. However, there are no fingerprints on the exterior

doorknob, there are no indications that the door was forced open, and the piece of tape

you left is still intact. Are there other artifacts that would indicate that someone came

in through the front door? Or is the real issue that the absence of these specific artifacts

instead indicates that access was not achieved through the front door?

Okay, so how does this apply to digital forensic analysis? Quite a lot, actually. The

absence of artifacts demonstrating, for example, a user logging in and using the web

browser on the system may indicate that the user never performed these actions, or that

specific steps were taken to hide or destroy these artifacts. Either way, there will likely be

other artifacts that indicate either of these (or other) scenarios.

Let’s say that you’re attempting to determine whether a user logged into a system from

the console or via Terminal Services. One of the first artifacts you might look for is a record

of the login in the Event Logs. If you don’t find such a record, is it because auditing of

logins wasn’t enabled? Had the Event Logs been cleared? We sometimes don’t think about

these things, but many times when we don’t find an artifact or series of artifacts that we

would expect to find, this can tell us as much as (or more than) if we had found those

artifacts.

14 CHAPTER 1 Analysis Concepts

Least Frequency of Occurrence
Back in the early days of the Internet, and even as late as the turn of the century,
malware could and did run rampant across the Internet. One of the side effects of
worm infections was that when a worm got into an infrastructure, it would often
spread like wild fire, infecting and reinfecting systems over and over again. System
A would become infected and then infect systems B, C, and D, which would then
each infect the other systems over and over again, ad infinitum, ad nauseum. The
result was that in fairly short order, systems would become so massively infected
that they’d cease to function altogether, as the repeated infections consumed all
available resources on the system. This was bad for the victim, and for the most part,
bad for the attacker, because if the infected systems were offline or simply couldn’t
be accessed, what good were they to anyone? To address this issue and allow access
to infected systems, malware authors began adding a throttling mechanism to their
programs so that once systems were infected, they wouldn’t be reinfected. Some cre-
ated and checked for the existence of specific files, some used specific Registry keys
or values, but the most prevalent method appears to have been to create a unique
mutual exclusion in memory.

The end result of this, from a responder/analyst perspective, was that a mal-
ware infection became the least frequent activity to occur on a system. As malware
authors and intruders began taking specific steps to ensure that their actions became
less noticeable and “flew beneath the radar,” these actions became more difficult to
detect, as the infections did not result in massive amounts of file activity or memory
consumption. Pete Silberman, an analyst with the consulting firm Mandiant, was
the first in our community that I heard use the expression “least frequency of occur-
rence” to describe this phenomenon.

The same often applies to intrusions. With the exception of turning a compro-
mised server into a “warez server” (essentially a repository of pirated movies, etc.),
most intruders appear to take very conscious and specific steps to remain unde-
tected, and avoid drawing attention to their activities by loading massive numbers
of files on to the victim system, running a large number of programs, etc. Why copy
an archive of tools and utilities over to a compromised system when the system
itself has plenty of native tools that can be readily used for the same purpose?

One of the things I see quite often is analysts who create timelines (timeline cre-
ation and analysis will be discussed in Chapter 7) of activity on systems, and then
attempt to locate indicators of malicious activity by looking for spikes in that activ-
ity. What most analysts don’t seem to understand is that Windows systems are inher-
ently “noisy” when it comes to activity on the system, particularly file system activity.
During normal day-to-day operations, most users read and compose email, surf the
Web, maybe create reports and spreadsheets; however, a great deal of activity occurs
automatically, under the hood. Consider Windows XP systems as an example; by
default, a System Restore Point is created every 24 hours. This all occurs with no
other interaction from the user beyond simply turning the system on. This also means
that now and again, some System Restore Points are deleted. In addition, by default, a
limited defragmentation process is run on the system every three days.

15Analysis Concepts

We also need to keep in mind that in many instances, Windows Updates are set
to run automatically, and many applications (e.g., Adobe Reader, Apple QuickTime
and iTunes, Java, etc.) have their own update processes that run in the background.
In short, just turning a Windows system on and walking away from it can lead to
a great deal of activity over time, even with no user interaction with the system at
all. So is it then any wonder that a malicious email attachment that is opened by the
user, which then downloads malware that provides an attacker with remote access
to the system, is, in the grand scheme of things, often the least frequent activity on
a system?

Documentation

In short, documentation is the bread and butter of what we do. There, I said it. And
I said it knowing full well that technically oriented people (nerds) hate, more than
anything else, to document anything.

But without documentation, where are we? If we didn’t document our analysis
goals, how do we make sure that we remain on track throughout our analysis, and
actually achieve those goals? If we don’t document our analysis, our reports would
be nothing more than simply a 3 5 index card with a couple of handwritten find-
ings (which may not answer the customer’s questions, because we didn’t document
our goals). In short, if you didn’t document it, it didn’t happen.

Documentation needs to be a core, central aspect of everything we do. From the
point where an incident is detected, we need to begin documentation (we’ll touch
on this more in Chapter 2). Most organizations have some sort of regulatory body
that they need to report to particularly during or following an incident, and with-
out clear, concise documentation along the way, responders go off-track, systems
get missed, and leaders and managers make bad decisions, all of which can lead to
fines and a significant detrimental impact on the organization’s brand name.

From the perspective of a consultant, documentation needs to start the instant
that a customer contacts you. Most consulting firms have a list of questions (a
“triage worksheet,” if you will) that they use as a sort of script or guideline when
talking to customers, and completing this worksheet serves as the initial documenta-
tion. Contracts are then written based on information collected during the initial call,
and responders begin collecting and documenting information as soon as they arrive
onsite (often before). Consider an incident requiring that data and images be col-
lected from a large number of systems within a data center, or in multiple locations.
If you aren’t documenting your activities, how likely do you think it would be that
you either miss some systems or collect data from the same system twice or more?

Finally, without documentation, how do we learn and grow as analysts or as a
community? Throughout our analysis, we may find something that we hadn’t seen
before, or we may have a question about the function of a specific tool or appli-
cation. If we don’t maintain documentation, we miss significant opportunities to
improve our own processes, as well as to provide other analysts with the benefit
of our experiences. Say you’re on a team with 10 other analysts, and after 8 hours

16 CHAPTER 1 Analysis Concepts

of analysis, you find something that neither you nor any of the other analysts had
seen before. Assuming all things (and analysts) being equal, if you don’t docu-
ment and share what you found (and how you found it), this is now going to cost
your organization 80 hours for everyone to have that same experience and level of
knowledge. However, if you were to document and share it with the other analysts
during, say, a “brown bag” or catered working lunch, you’ve now reduced that time
to less than an hour. Documenting and sharing our findings in this way allows us to
learn from the past and for a group of analysts to quickly expand their knowledge
and capabilities.

Maintaining documentation is relatively straightforward and simple. While there
are applications available that were specifically designed for maintaining analyst
case notes (e.g., Forensic CaseNotes, http://www.qccis.com/forensic-tools), I’ve
found that the simplest way to maintain case notes and analysis documentation is
to start by opening MS Word. Word allows the analyst to create tables, outlines, and
modify formatting so that notes are easier to read and understand, and also allows
the analyst to insert pictures and diagrams that vastly improve the documenta-
tion. Many analysts (and their customers) have access to MS Word through their
employer, and free and open-source office suites such as OpenOffice (http://www

.openoffice.org/) can be used to read and edit Word documents. If you’re looking for
a word processing application with a wide range of capabilities and portability, MS
Word or Writer from OpenOffice are options to consider.

Convergence

Convergence refers to the fact that what we do in what appears to be vastly differ-
ent aspects of our profession—the actual work we do—really isn’t all that different.
Here’s what I mean. In June 2010, I attended the Open Source Conference that Brian
Carrier (the author of File System Forensic Analysis and the TSK tools, although I’m
sure he’s famous for other things, as well) put on. While there, I was speaking to a
member of law enforcement and he told me, “We do child pornography and fraud
cases; you do intrusion investigations and malware cases.” When I heard this, my
response was that people like me—that is, consultants—dealt with problems, and
that the folks who called us for assistance had intrusion and malware problems. Hey,
I thought that was a pretty witty and well-considered response. However, the more I
thought about it, the more I discovered how off-base the original statement (that as a
consultant, I dealt with “problems”) really may have been.

Okay, you’re probably thinking, “Wait … what?” After all, what the law enforce-
ment officer (LEO) said was pretty much on target with respect to his particular case
load, right? Well, what happens during a case involving illicit images? After verify-
ing that there were, in fact, the federally mandated number of contraband images
and/or movies on the hard drive, the next thing that the LEOs can expect to hear is,
“It wasn’t me, it was a virus.” That’s right, the “Trojan Defense,” used in 2003 when
then-19-year-old Aaron Caffrey was accused of hacking into computer systems and
claimed that a Trojan had been installed on his system, allowing someone else to

http://www.qccis.com/forensic-tools
http://www.openoffice.org/
http://www.openoffice.org/

17Analysis Concepts

perform the acts of which he was accused (he was acquitted). At that point, LEOs
must then examine the acquired image and determine if there was some form of mal-
ware installed on the system, and if so, was it capable of the actions that the defense
claims. Well, doesn’t the case then become a malware examination?

Or, if the claim is made that some unauthorized person gained access to the sys-
tem and placed the contraband files on the system, doesn’t the case then become an
intrusion investigation? And wouldn’t both also hold true for fraud cases, if those
same claims were made?

We’re at a point where there really isn’t as much of a divergence between what
various investigators do on a daily basis as some would like us to think. Yes, some
analysts operate in vastly different environments, and with different requirements.
But at the end of the day, we’re using a lot of the same tools and processes, and ulti-
mately looking for some of the same artifacts, to answer a lot of the same questions.
Rather than divergence, what we do has reached a point of convergence, and as such,
analysts from one aspect of our community (such as law enforcement, or the military
or government) would likely benefit greatly from engaging with and sharing infor-
mation with another aspect of the community (such as those in the private sector).
And the reverse would be equally true, as well.

No, I’m not talking about sharing case information, or details of investigations.
What I am referring to is this: Many analysts who are consultants in the private sec-
tor receive cases where the goal is to locate malware that may be on a system. As
such, those analysts tend to develop detailed step-by-step processes and procedures
for performing malware detection (see Chapter 6 for a more detailed discussion of
this topic), but these processes and procedures have to be automated to some degree.
In addition, the work these analysts do is often based on a contract with a set number
of hours. As such, analysts who haven’t encountered such examinations before, or
don’t encounter them often, would likely benefit from engaging with and learning
from the private sector analysts.

This is just one example of how the digital forensic community can take advan-
tage of this convergence phenomenon and grow as a community, rather than requir-
ing all analysts to learn all of the same lessons.

Virtualization

Virtualization can have a significant impact on an investigation in a number of ways.
If someone were to run a virtual system on their physical system, there’s the issue
during an examination of where the artifacts would be located. For example, sev-
eral versions of Windows 7 (Professional, Ultimate, and Enterprise) allow users to
download, install, and run Virtual PC (Microsoft’s virtualization platform for PCs)
and a Windows XP virtual machine (referred to as XPMode). The purpose of this
is to allow users to continue to run applications that ran perfectly well on Windows
XP but are not supported by Windows 7. However, it’s relatively easy for the user to
access and run applications from within the virtual machine, such that the artifacts
of that activity would not appear within the confines (i.e., files, Registry, etc.) of the

18 CHAPTER 1 Analysis Concepts

host system. With the Virtual PC application installed, users can also run other vir-
tual machines, as well. Analysts who are not familiar with virtualization and what to
look for can be left looking for artifacts that they may never find, unless they were to
discover and access the actual virtual machine.

While an associate professor at the University of Advancing Technology (UAT),
Diane Barrett gave a presentation titled “Virtual Traces.” This presentation was
the latest in which she addressed the use of virtualization on desktop systems, and
described artifacts left on a Windows system following the use of MojoPac (http://

www.mojopac.com/) and MokaFive (http://www.mokafive.com/), both of which are
personal, portable environments that can allow users to take their favorite desktop
applications, utilities, and even games with them wherever they go, and run them
from any Windows system. Diane also mentioned the MetroPipe Portable Virtual
Privacy Machine virtual environment, which is based on Damn Small Linux and
purports to allow users to maintain their privacy while Web surfing. These virtual
systems, as well as innumerable others that are available, can be run on a live system
and leave minimal traces of having been used. Someone can walk up to a compu-
ter system, plug in an iPod or thumb drive, run their virtual system, perform any
number of activities (legal or otherwise), then disconnect the device and walk away.
While there may be indications that the virtual environment was run on the host sys-
tem, indicators of the malicious activity itself may remain embedded in the virtual
machine that the user took with them.

Now, consider cloud computing. This term, much-touted in the media, includes
such offerings as infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS),
and software-as-a-service (SaaS), and aside from these terms it also poses signifi-
cant challenges to incident responders and forensic analysts. After all, how does
one respond to an incident where the system of interest existed at one point, but
was deleted and the sectors it consumed were overwritten? In a cloud environment,
which is based on virtualization, how does a responder determine where those sec-
tors are? Even if the responder is able to determine where the CPU and memory
resources were “located,” how does she address the issue of storage, when that stor-
age can be in or spread across systems in another country?

TIP

It’s About Implementation

The question of how responders and law enforcement address cloud environments is a

valid one, for the reasons discussed in this chapter. The simple fact is that it comes down

to implementation; how is the infrastructure designed, architected, and implemented?

If you’re considering moving into a “cloud” environment, and have to meet legal or

regulatory requirements, be sure to get detailed information about the environment and

implementation. Further, if you’re promised some security measures, or need them to meet

compliance, be sure that they’re included in your contract.

http://www.mojopac.com/
http://www.mojopac.com/
http://www.mokafive.com/

19Setting Up an Analysis System

However, virtualization can be very helpful to an analyst, as well. For exam-
ple, virtual systems can be used for application and malware testing. As we will
see later in the book, virtualization can not only assist the analyst “seeing what the
user saw” by allowing them to boot the acquired image as if it were a live system,
but also assist the analyst in accessing some data sources to which they might not
otherwise have access. For example, being able to boot the system would give the
analyst access not only to physical memory from the system, but also the ability to
interact with the system just as the user did.

SETTING UP AN ANALYSIS SYSTEM
Another topic that we need to discuss before completing this chapter and moving
into the rest of this book is more operational and less conceptual in nature; that is,
setting up a system from which you can perform your analysis. I’ve used desktops,
workhorse laptops, and at one point (while I was a member of the ISS Emergency
Response Services, or ERS team), I even used a Mac OS X server system with Mac
OS X and Windows XP installed via BootCamp. From my perspective and experi-
ence, the best way to develop skills in analyzing Windows systems is to use those
systems, which is why I tend to opt for Windows as an analysis platform (I also use
Windows as my work/admin platform, as well). This is not to say that you couldn’t
build a complete analysis platform using Linux; Rob Lee has done a great job
putting together such a system in the SANS Investigative Forensic Toolkit (SIFT)
version 2.0 virtual machine (VM), which is Linux-based and includes a number of
very useful tools. However, my personal experience has shown me that to really
analyze a Windows XP system (and the same thing applies to Windows 7) is to use
that platform on a daily basis. As such, my recommendation for an analysis system
would be something capable of running the 64-bit version of Windows 7, preferably
the Ultimate or Professional editions.

NOTE

SIFT

I have used the SANS SIFT v2.0 Workstation virtual machine, as it can be very useful. In

attempting to develop a solution to something of a unique issue, I downloaded (via the

SANS Portal) and set up the SIFT VM, and then before starting it up, I added the .vmdk

virtual disk file from a Windows XP VM that I already had available. I did this through

VMWare Workstation, so I added the VM as an independent, nonpersistent disk. When

I booted the SIFT VM, I could “see” the Windows XP VM (via fdisk), and could not only

mount the device read-only, but (with a little help from Rob Lee himself) also use the TSK

tool icat to get a copy of the MFT from the device. This can be a very useful approach to

data collection and analysis.

20 CHAPTER 1 Analysis Concepts

As far as a hardware platform goes, I have found great success using Dell
Latitude laptops; they’re on the beefier end of the spectrum, but still portable enough
to carry around if you need to do so. If you’re going to be primarily stationary in
a lab, then getting a powerful desktop system would be the way to go, if you can
afford it. In the end, it comes down to what you prefer and what you can afford. If
you don’t get a beefy system with a powerful processor (or four) and good amount
of RAM, then things will just take a bit longer.

What about the operating system for our analysis platform? Well, I’ve spent
a number of years working with Windows XP and I’m very comfortable with it,
having become familiar with some of its nuances; however, over time, I’ve found
that using Windows 7 provides me with a great deal more functionality, particu-
larly when it comes to Volume Shadow Copies and Windows Event Logs (we’ll
be discussing both of these in greater detail later in the book), which are avail-
able on Vista, Windows 2008, and Windows 7. As we’ll see later in the book,
having access to the necessary OS APIs can be extremely beneficial when you’re
trying to access data and conduct analysis. Using a 64-bit version of Windows 7
also ensures that I have the necessary capability to address analyzing both 32-
and 64-bit editions of Windows (although that shouldn’t be an issue when simply
accessing specific files).

Now we’re up to the point where we can discuss the software we’ll be using.
First, I want to make one thing clear: I’m not biased against commercial forensic
analysis applications. Heck, I’ve even used some of them. I’ve used AccessData’s
FTK as well as Guidance Software’s EnCase product, to include various versions
of both. I like to use ProDiscover from Technology Pathways, in part because the
built-in ProScript scripting language is based on Perl, and due in no small part to
the fact that Christopher Brown has been kind enough to provide me with a license
since version 3.0. However, I don’t use many of the commercial tools on a regu-
lar basis simply because I don’t need to—most of the things I do during analysis
I cannot easily do, or do at all, using commercial forensic analysis applications.
This is not to say that commercial forensic analysis applications do not have their
place, as they do. In fact, they can be extremely useful. For example, I’ve used
ProDiscover for running keyword searches (for files by name, or file contents)
against images, after extracting timeline data so that I can conduct analysis while
the search progresses.

However, like any tool, a commercial forensic analysis application is only as
strong or as valuable as the analyst who is using it, and what I tend to do as a major
aspect of my analysis is produce a timeline of system activity (which is discussed
in detail in Chapter 7) from a variety of data sources from the system, and the com-
mercial tools do not include the inherent capability for creating a timeline of system
activity from these data sources. Very often I will conduct a complete and thorough
analysis using nothing more than open-source and freely available tools, and a file
viewer. Remember, analysis isn’t about the tools you use; it’s about the goals and
your process.

21Setting Up an Analysis System

TIP

Open-Source Tools

Cory Altheide (of Google) and I coauthored Digital Forensics with Open Source Tools, which was

published by Syngress Publishing, Inc., in April 2011. The book focuses primarily on open-

source tools used for forensic analysis of Linux, Mac OS X, and Windows platforms. In addition,

the book provides several scenarios describing how the tools are used, and also presents and

discusses some free, albeit not open-source, tools. In previous editions of this book, I also

spend a great deal of time discussing a number of open-source and freely available tools.

So what tools should you use? Well, it all depends on what to do. One of the
first tools I start off with is 7Zip (http://www.7-zip.org), a freely available archive
utility that recognizes and unpacks files compressed via a number of compression
algorithms (including gzip and tar). Next, I often look to the programming languages
Perl and Python that are the foundation for many open-source tools (including my
own RegRipper). Distributions for both are freely available from ActiveState (http://

www.activestate.com). From there, you want to make sure that you have hex and
text editors available for viewing file contents, as well as programming, if necessary.
There are a number of freely available editors that you can find via searches on the
Internet, and the ones you choose will likely primarily depend on personal prefer-
ence. For example, UltraEdit (not free, but available from http://www.ultraedit.com)
is usually my script editor and file viewer of choice; however, the Crimson Editor
(http://www.crimsoneditor.com/) also appears to be a good choice for creating and
editing Perl scripts, while the HxD hex editor (http://mh-nexus.de/en/hxd/) makes a
suitable hex viewer.

AccessData provides FTK Imager as a freely available download, and not long
ago released version 3.0 of the tool, which not only allows you to acquire images,
but also mount acquired images on your system as read-only volumes. As we’ll dis-
cuss later in the book, this capability can greatly extend the range of your analysis.
Loading an acquired image into FTK Imager allows you to quickly verify the integ-
rity of the file system, view and extract files, extract a volume or partition, or even
convert an image from either expert witness (EWF, also known as EnCases E0x for-
mat) or VMWare virtual disk (.vmdk) format to a raw, dd image.

Version 7.0 of ProDiscover Basic Edition (BE) is freely available from Technology
Pathways (http://www.techpathways.com/DesktopDefault.aspx?tabindex57&tabid514)
and provides basic functionality for populating the Registry, Event Log, and Internet
History Viewers, as well as conducting searches across the image. In addition, you can
also extract files from the image, view the formatted contents of Recycle Bin Info2 or $I
files, and view a directory via the Gallery View. This is a considerable amount of func-
tionality available in a free tool.

Other tools you may want to install at this point include the version of “strings
.exe” available from the Microsoft/SysInternals site, as well as BinText (a GUI

http://www.7-zip.org
http://www.activestate.com
http://www.activestate.com
http://www.ultraedit.com
http://www.crimsoneditor.com/
http://mh-nexus.de/en/hxd/
http://www.techpathways.com/DesktopDefault.aspx?tabindex=7&tabid=14

22 CHAPTER 1 Analysis Concepts

version of a “strings” tool) available from the McAfee/Foundstone site (found
online at http://www.mcafee.com/us/downloads/free-tools/bintext.aspx). Both of
these tools can be used to list strings found in files, including both “regular” files
and files that consist of unstructured data, such as a pagefile. This functionality can
also be used as the basis for greater investigative capabilities.

Most of the tools and programs mentioned to this point provide basic function-
ality to an analyst, and will allow you to get started conducting analysis quickly
and easily. This list should not be considered all-inclusive; throughout this book, I
will be addressing and demonstrating the use of a number of other tools, so I won’t
present them all here.

SUMMARY

Throughout this chapter, I’ve attempted to lay the foundation for your analysis by
presenting some core analysis concepts, as well as provide some initial, first-step
tools that can be installed on an analysis system. Both of these will provide the
foundation for the rest of the book; we will not only be building on the analysis
concepts throughout the following chapters, but we will also be discussing and
demonstrating a number of additional tools that will assist us in our analysis.

23

Immediate Response 2
CHAPTER

INTRODUCTION

Much of what we read regarding incident response is that computer security inci-
dents are a fact of life when we employ IT resources. It’s long been said that it’s
not a matter of if your organization will experience a computer security incident,
but when that incident will occur. If the media has made anything clear at all dur-
ing the first half of 2011, it’s that no organization is immune to computer security
incidents, whether that’s a web page defaced, sensitive corporate emails exposed, or
sensitive financial data compromised.

Most books on incident response discuss and demonstrate a variety of tools and
techniques that are helpful (or even critical) in preparing for and responding to an
incident, so these procedures should be both common knowledge and common prac-
tice. In reality, this is often not the case. When an incident does occur, responders—
whether internal IT, incident response staff, or third-party consultants—only have
access to the data that are actually available. If a company has not prepared appro-
priately, they may not have access to critical data, may not know where sensitive
information is stored, and may not know how to collect key time-sensitive data fol-
lowing the detection of an incident. This is true when internal staff is responsible for

CHAPTER OUTLINE

Introduction ... 23

Being Prepared to Respond ... 24

Questions ...25

The Importance of Preparation ..28

Logs ...31

Data Collection ... 36

Training ..39

Summary ... 40

INFORMATION IN THIS CHAPTER

l Being Prepared to Respond

l Data Collection

http://dx.doi.org/

24 CHAPTER 2 Immediate Response

incident response, but is even more critical in cases where a company hires a third-
party consulting firm to provide incident response services.

In such cases it can often take several days for the contracting process to run its
course and for the responding consultants to actually get on a plane and travel to the
customer’s site. Once they arrive, they usually have to go about determining the lay-
out of the infrastructure they’re responding to, the nature of the incident, etc. Now,
all of this occurs while the upper-level management of the organization is anxiously
awaiting answers.

Given all of this, it behooves an organization to prepare for an incident and to
be prepared to perform some modicum of response when those inevitable incidents
are identified. In this chapter, we will discuss how organizations can better prepare
themselves to respond to incidents, from the perspective of a consultant who has
responded to incidents. The purpose of this is to ensure that response personnel—
whether internal staff or third-party responders—have data that allow them to resolve
the incident in a satisfactory manner. This chapter will not address overall infrastruc-
ture design, development of a complete computer security incident response plan
(CSIRP), or “best practices” for network and system configuration, as all of these can
require considerable thought, effort, and resources to implement in any environment;
any book that tries to address all possible factors and configurations will not succeed.
Rather, we will discuss some of the things that are easy for the local staff to do that
will have a considerable impact on improving incident response and resolution.

BEING PREPARED TO RESPOND
As an incident responder, the vast majority of incidents I have seen have progressed
in pretty much the same manner; our team would get a call from an organization that
had been notified by an outside third party that an incident had occurred within their
infrastructure, and during the initial call, we would ask the point of contact (PoC) a
series of questions to determine the nature of the incident as best we could. Many
times, those questions were met with the telephonic equivalent of blank stares, and
in the extreme cases, due to the nature of the incident, with frantic requests to “Just
get someone here as fast as you can!” We would send responders onsite, based on
what we knew about the incident, and by the time the responders made it onsite, lit-
tle if anything had been done to prepare for their arrival.

After introductions, the questions that had been originally asked on the tele-
phone were asked again, and we (i.e., the responders … most often, just one per-
son) had to work with local IT staff to develop an understanding of the network
infrastructure and traffic flows, as well as the nature of the incident itself. Many
times, much of the information (e.g., network maps, etc.) wasn’t available, or the
people who knew the answers to the questions weren’t available, and considerable
time could be spent trying to simply develop a clear and accurate picture of what
had been reported or identified, and what had happened. This was never a quick
process, and sometimes we would simply have to start arbitrarily collecting and

25Being Prepared to Respond

analyzing data. This also takes time and in some cases would prove to be fruitless
in the long run, as the systems from which the data were collected were later found
to not have been involved in the incident.

While the scenario I’ve described involved the use of outside consulting help,
the situation is not all that different from what might occur with internal responders
whenever an organization is not prepared to respond. Sounds pretty bad, doesn’t it? So
you’re probably wondering, what’s my point? Well, my point is that the clock doesn’t
start ticking once an organization becomes aware of an incident; in fact, it’s already
been ticking by that point, we just don’t know for how long, as the incident may have
occurred well before it was identified or reported. And when it comes to incident
response and digital forensic analysis, a great deal of what can (or can’t) be determined
about the incident is predicated on time; that is, how much time has passed between
when the incident occurred and when pertinent data are collected and analyzed.

Several years ago at a SANS Forensic Summit, Aaron Walters (the creator of the
Volatility Framework and a vice president at Terremark WorldWide, Inc.) used the
term temporal proximity to describe the gap between the incident and response, and
really brought to light just how critical time is with respect to incident response. Why
is time so important? Consider what occurs on a live Windows system, even when
it sits idle; there’s actually quite a lot that goes on “under the hood” that most of us
never see. Processes complete, and the space (bytes) used by those processes in mem-
ory is freed for use by other processes. Deleted files are overwritten by “natural” or
“organic” processes that are simply part of the operating system (e.g., the creation
and deletion of System Restore Points on Windows XP and Volume Shadow Copies
on Vista and Windows 7, etc.). On Windows XP systems, a System Restore Point is
created by default every 24 hours, and often one may be deleted, as well. In addition,
every three days a limited defragmentation of selected files on the hard drive occurs.
On Windows 7 systems, not only are Volume Shadow Copies (VSCs) created and
deleted, but every 10 days a backup is made of the main Registry hives.

Windows systems are typically configured to automatically download and
install updates; many common desktop applications now provide the same func-
tionality. In short, whether you see it or not, a lot of activity occurs on Windows
systems even when a user isn’t interacting with it. As such, as time passes, infor-
mation that would give clear indications as to the extent of what occurred begins
to fade and be obscured, and is finally simply no longer available. Given this, it
is absolutely critical that those most capable of performing immediate incident
response actually do so. As it can be some time before the scope of the incident and
the need for assistance is really realized, it is critical that the local IT staff be able
to react immediately to collect and preserve data.

Questions

When an incident is detected, everyone has questions. Upper-level management most
often wants to know how the intruder or malware got into the network, what data
were taken, where they went, and the risk to which the organization may be exposed.

26 CHAPTER 2 Immediate Response

The nature of the compromised data—and any legal, regulatory, or reporting require-
ments associated with them—is often of great concern to legal counsel and compli-
ance staff, as well. It is critical for incident response staff to understand the types of
questions that will be asked by key stakeholders in the company, so that the data col-
lection and analysis process can answer those questions, especially when failure to do
so may result in significant legal or financial penalties for the organization.

NOTE

Compliance

Regulatory bodies have had a significant impact on incident response over the last five or

so years. When my team was conducting payment card industry (PCI) breach investigations,

one of the items added to the report was a “dashboard” that gave oversight staff a quick,

at-a-glance view of the breach. One of the items in that dashboard was the “window of

compromise,” or an indication of the time between when the incident actually originated

and when the breach was “closed.” This was a very critical component of the investigations,

as many organizations were able to quantify system uptime not in terms of days or weeks,

but in transactions per minute or per hour. Being able to accurately determine when the

systems had actually been compromised and when PCI data could have been exposed

had significant impact on the number of possibly compromised transactions (as well as

notification and any regulatory repercussions), and as time went by, the likelihood of being

able to accurately provide this information decreased.

If an outside consulting firm is called to provide emergency incident response,
they will also have a number of questions, and how fast they respond and who they
send will be predicated on the responses to those questions. These questions are
often technical, or the answers that are being looked for are more technical than the
point of contact is prepared to provide. Examples of these questions can include
such things as how many systems and locations are impacted, what operating sys-
tems (e.g., Windows, Linux, AS/400, etc.) and applications are involved, etc. As
such, an organization can greatly facilitate both the response time and efficiency by
having detailed information about the incident (or the personnel most able to pro-
vide that information) available for those preliminary discussions.

TIP

Triage Questions

Wherever I’ve been an incident responder, I’ve most often been a consultant. As such, the

teams I worked with developed a triage worksheet or questionnaire, which was a list of

questions we had written down and documented for each analyst to use for initial contact

with a potential client. As calls could come in at any time and any analyst could take

the call, I kept a copy of the worksheet (an MS Word document) on my desktop, and had

several hard copies printed out and next to my phone for immediate access. The questions

27Being Prepared to Respond

were the top dozen or so that we asked for every engagement: what is the nature of the

incident, when was the incident identified, what systems were involved (and what are their

current states), what operating systems were involved, how many locations were involved,

had law enforcement been contacted, etc.

Most often, depending on the responses to the questions, combined with our own

experiences (every analyst knew that they were to complete the questionnaire as if they

would be responding to the incident), we would ask further probing questions. However,

the idea of having the questionnaire was to make that initial information collection as

efficient as possible, and to give our staff as complete a view of the incident as possible to

determine who was to respond, how many analysts and what skill sets would be needed,

how long the analysts would be required, etc.

Third-party consulting firms are often contacted to perform emergency incident
response for a variety of reasons. Perhaps the biggest reason is that while the inter-
nal IT staff is technically skilled, they do not possess the investigative experience
and expertise. While they may be able to troubleshoot an MS Exchange server issue
or set up an Active Directory, they aren’t often called upon to dump physical mem-
ory from a live Windows system and determine if there is any malware on the sys-
tem. Another reason is that any investigation performed by the local IT staff may
be viewed as being skewed in favor of the company, in a sort of “fox guarding the
hen house” manner. It is important to keep in mind that when a third-party consult-
ing firm is called, they will ask you a number of questions, usually based on their
experience responding to a wide range of incidents (e.g., malware, intrusions, data
breaches, etc.) in a wide range of environments. And these will often be questions
the local IT staff hadn’t thought of, let alone experienced before, as they come from
an entirely different perspective.

For example, the IT manager may “know” that a system (or systems) is infected
with malware or has been compromised by a remote intruder, but the consultant on
the other end of the phone is likely going to ask questions to better understand how
the IT manager determined her finding. The best thing to do is to ensure that those
employees who have the necessary information to accurately respond to these ques-
tions are available, and to respond without making assumptions regarding where you
think the questions may be leading. If the organization was notified of the incident
by an external entity, it is best to have the employee who took the call, as well as any
other staff who may have engaged with the caller (e.g., legal counsel, etc.), avail-
able to answer questions. For more technical questions regarding the affected sys-
tems and the network infrastructure, having the appropriate employees available to
respond to questions can be very valuable.

The consulting firm will use your responses to scope the incident. They will also
use the responses to determine which skill sets are necessary to respond to the inci-
dent, which consultant to send, and how many consultants they will need to send
to resolve the incident in a timely manner. If accurate information is not available,
too many responders may be sent, incurring additional cost for travel and lodging

28 CHAPTER 2 Immediate Response

upfront, or too few responders may be sent, which would incur not only additional
costs (e.g., for travel, lodging, labor, etc. for additional responders to be sent on-
site) but would also lead to delays in the overall response.

The Importance of Preparation

Did you see the first Mission: Impossible movie? After Ethan’s (Tom Cruise’s char-
acter) team is decimated, he makes his way back to a safe house. As he approaches
the top of the stairs in the hotel, he takes off his jacket, takes the light bulb out of the
fixture in the hallway, crushes the bulb in his jacket, and spreads the shards in the
now-darkened hallway as he backs toward the door, covering the only means of
approach to his room. Does what he did make sense? He knew that he couldn’t pre-
vent someone from approaching his location, but he also knew that he could set up
some sort of measures to detect when someone was approaching, because as they
entered the darkened hallway, they wouldn’t see the glass shards on the floor, and
they’d make a very distinctive noise when they stepped on them, alerting him to their
presence. And that’s exactly what happened shortly thereafter in the movie.

Let’s take a look at some examples of how being prepared can affect the outcome
of an incident. In my experience as an emergency incident responder, the way the
process works has usually been that someone becomes aware of an incident, per-
haps does some checking of the information they receive, and then calls a company
that provides emergency computer security incident response services for assistance.
Many times, they feel that the information they’ve received could be very credible,
and (rightly so) they want someone onsite to assist as soon as possible. From that
point, depending on the relationship with the consulting company, it can be any-
where from 6 to 72 hours (or more) before someone arrives onsite.

For example, I’ve worked with customers in California (I’m based on the east
coast) and told them, if you call me at 3 pm Pacific Standard Time, that’s 6 pm
Eastern Standard Time … the earliest flight out is 6 am the next day, and it’s a 6-hour
flight. At that point, I wouldn’t be on the ground at the remote airport until 18 hours
after you called, assuming that there were no issues with contracting. Once I arrive
at the airport, I have to collect up my “go kit” (Pelican case full of gear weighing
65 pounds or more), get to the rental car agency, and drive to your location. Once I
arrive, we have to get together and try to determine the scope of the incident, hop-
ing that you have the appropriate staff available to address the questions I will have.
I have responded to assist organizations that used part-time system administration
staff, and the next scheduled visit from the system administrator was two days after
I arrived onsite. As you can see, even under ideal conditions, it can be 24 hours or
more before any actual incident response activities begin.

Now, most times when I would arrive onsite, considerable work would need to be
done to determine the nature and range of the incident and figure out which systems
were affected, or “in scope.” (Note that this is an essential step, whether performed
by outside consultants or your own internal staff.) When the incident involved the
potential exposure of “sensitive data” (regardless of the definition you choose), there

29Being Prepared to Respond

may have been a strong indication that someone had accessed the infrastructure and
gained access to some sensitive data; what this means is that someone with no prior
knowledge of the network infrastructure may have accessed it remotely and found
these sensitive data (e.g., database or files containing credit card data or transaction
information, personally identifiable information, medical records, etc.). As such,
when trying to scope the incident, one of the first things I (and most responders) ask
is, where does the data in question reside? Very often, this is not known, or not com-
pletely understood.

As a result, considerable time can be spent trying to determine the answers to the
questions responders ask prior to as well as once they arrive onsite. It is important
that these questions be answered accurately and in a timely manner, as responders
usually arrive onsite after a contract is signed, and that contract often includes an
hourly rate for that responder, or responders. The sooner incident response activi-
ties can commence, with accurate information, the less expensive those incident
response activities are going to be in the long run. Where internal staff is performing
response, these time delays may not translate (directly) into dollars spent on outside
help; but any delay will still postpone the identification and collection of relevant
data, perhaps to the point where the data are degraded or lost completely.

This is not to say that all organizations I’ve responded to are not prepared for a
computer security incident, at least to some extent. During one particular engage-
ment, I arrived onsite to find that rather than having an active malware infection,
the IT staff had already responded to and removed the malware, and the IT manager
was interested in having me validate their process. In fact (and I was very impressed
by this), the staff not only had a documented malware response process, but they
also had a checklist (with checkboxes and everything) for that process, and I was
handed a copy of the completed checklist for the incident. Apparently, once the first
malware infections were found on several desktops within their infrastructure, the IT
staff mobilized and checked other systems, found several infected systems in various
departments (e.g., finance, billing, HR, etc.), and removed those infections from the
systems. Unfortunately, there were no samples of the malware left to be analyzed,
and all we had left was the completed checklist, which included a name used by an
antivirus (AV) vendor to identify the malware.

Now, something else that I did find out about this incident was that during a
staff meeting following the response to the incident, the IT manager had announced
proudly that his team had reacted swiftly and decisively to remove this threat to the
infrastructure … at which point, corporate counsel began asking some tough ques-
tions. It seems that several of the systems were in departments where very sensitive
information was stored and processed; for instance, the billing department handled
bank routing information, and the HR and payroll departments handled a great deal
of sensitive personal information about the company employees. As such, an infec-
tion of malware that was capable of either stealing this information or providing an
attacker with access to that information posed significant risk to the organization
with respect to various regulatory bodies. In addition, there were legislative compli-
ance issues that needed to be addressed.

30 CHAPTER 2 Immediate Response

It seems that the IT department had put a great deal of effort into developing
their malware response process, but had done so in isolation from other critical play-
ers within the organization. As such, there was a chance that the organization may
have been exposed to even more risk, as many regulatory and legislative compliance
policies state that if you can’t identify exactly which records (e.g., personally identi-
fiable information, payment card industry information, etc.) were accessed, you must
notify that regulatory body that all of the records could have been exposed. As the
malware had simply been eradicated and no investigation of any kind had been con-
ducted (root cause or otherwise), there was no information available regarding what
data could have been accessed, let alone what (if any) data were actually accessed or
exfiltrated from the infrastructure.

Now and again, I have had the opportunity to work with an organization that
has taken great pains and put a lot of effort toward being prepared for those inevi-
table incidents to occur. I had another response engagement where as soon as I had
arrived onsite and completed my in-brief, I was ushered to a room (yes, they pro-
vided me with a place to work without my having to ask!) where there were a dozen
drives stacked up on a desk, along with a thumb drive and manila folder. It turns out
that while the IT director was calling my team for assistance, his staff was already
responding to the incident. They had collected and reviewed network logs and iden-
tified 12 affected systems, and replaced the drives in those systems—I was looking
at the original drives sitting on the desk. The thumb drive contained the network
logs, and the folder contained a printout of the network map (there was a soft copy
on the thumb drive). With all of this, I began imaging the provided hard drives and
reviewing the logs.

The incident that they’d experienced involved someone gaining unauthorized
access to their infrastructure via Microsoft’s Remote Desktop Protocol (RDP).
They allowed employees to work from remote locations, requiring them to access
the infrastructure via a virtual private network (VPN) and then connect to specific
systems on the internal infrastructure via RDP. As such, they had VPN and domain
authentication logs, as well as logs that clearly demonstrated the account used by the
intruder. They had used these logs to identify the 12 systems that the intruder had
connected to via the VPN, which corresponded to the 12 hard drives I was imaging.
Their response was quick and decisive, and their scoping and analysis of the ini-
tial incident was thorough. They had also mapped exactly where, within their infra-
structure, certain data existed. In this case, their primary concern was a single file, a
spreadsheet that contained some sensitive data that were not encrypted.

The intruder had apparently connected to the VPN and used a single account
to access the 12 internal machines using RDP. Once I began analyzing the drive
images, it was a relatively straightforward process to map his activities across the
various systems. As a result of this analysis, I was able to identify an additional 13
systems that had been accessed internally, via lateral inside the network. As these
accesses were internal, indicators were not found within the VPN logs but were vis-
ible due to the fact that a profile for the user account the intruder was using was
created on each system they accessed (on Windows systems, a user account—either

31Being Prepared to Respond

local or a domain account—can be created, but a profile will not be created until the
first time the user logs in via that account). I was also able to identify many of the
actions that the intruder performed while accessing the various systems and when
those actions occurred. These activities included running searches and accessing var-
ious files. However, none of the accessed files were spreadsheets, and specifically
not the spreadsheet with which the IT director was most concerned. Ultimately, we
were able to build a very strong case to present to the regulatory body that indicated
that the sensitive data had not been accessed or exposed.

Logs

Throughout this book and in particular in Chapter 4, we will discuss logs that are avail-
able on Windows systems, both as part of the operating system and through applica-
tions installed on those systems. The two primary concerns during an incident with
respect to logs are, where are they located and what’s in them—both of which can have
a significant impact on the outcome of your incident response activities. Logs often
play a significant role in incident response, because as mentioned previously, response
happens after an incident occurs, and sometimes this can be a significant amount of
time. The state of live systems can change pretty quickly, but logs can provide a con-
siderable historical record of previous activity on the system … if they are available.

TIP

Device Logs

While we’re concerned with logs on Windows systems, much of what is discussed in this

section applies to other logs as well, such as those generated by firewalls and other network

devices and systems.

One of the challenges of responding to incidents, whether as a consultant or an
internal employee, is not having the necessary information to accurately and effec-
tively respond to the questions your customer (or management) has regarding the
incident, and therefore not being able to provide an accurate picture of what hap-
pened. Most organizations don’t maintain full packet captures of what happens on
their networks, and even if they did, this would still only be part of the picture, as
you would still need to know what happened or what actions were taken on the host.
Windows systems have the ability to maintain records of what occurred on the host
via the Event Logs (on Vista and Windows 7 systems, this is referred to as “Windows
Event Logging”; Event Logs are discussed in more detail in Chapter 4); however, a
number of times I have referred to the Event Logs only to find that either the spe-
cific events (e.g., logins, etc.) were not being audited, or Event Logging was not even
enabled. This limits not just what data are being recorded but also how complete a
picture an analyst can develop, and how effectively they can respond and answer the
critical questions that are being asked by senior management.

32 CHAPTER 2 Immediate Response

As such, one of the most effective steps in incident preparedness is to under-
stand the logging mechanisms of your systems. A critical step that you can take
quickly (and for free) to improve what information will be available when an inci-
dent is identified is to ensure that logging is enabled, that appropriate activities
are being logged, and that the logs are large enough (or rotated often enough) to
ensure sufficient data are available after an incident, which may be identified 6 or
12 months or more after the fact.

FIGURE 2.1

Windows 7 Audit Policy settings.

TIP

Application Logging

Some applications, in particular AV applications, will record events in the Application Event

Log, as well as in text files managed by the application itself. It is important to remember

that the Windows Event Logs are often limited to a specific size, and “roll over” to make

room for new events. This means that older events may be removed from the Event Log;

however, those events should still be available in the log files maintained by the application.

For example, Windows Event Logs have several characteristics that can be mod-
ified to enable more effective logging. One characteristic is the file size; increasing
the size of the Event Logs will mean that more events will be recorded and avail-
able for analysis.

Another characteristic is what is actually being recorded. Recording successful
and failed login attempts can be very useful, particularly in domain environments,
and on servers or other systems that multiple users may access. In one analysis
engagement, we found a considerable amount of extremely valuable data in the
Event Log because Process Tracking had been enabled, along with auditing of suc-
cessful (and failed) login attempts, as illustrated in Figure 2.1.

The actual settings you employ within your infrastructure depend heavily on
what makes sense in your environment. Enabling auditing for success and failure
Process Tracking events is very useful, as some processes run and complete very

33Being Prepared to Respond

quickly, and are no longer visible mere seconds after they were launched. Enabling
this auditing capability, as well as increasing the size of the logs (or, better yet, for-
ward the logs from source systems to a collector system, per the instructions for
Windows 7 and higher systems found online at http://technet.microsoft.com/en-us/

library/cc748890.aspx), will provide a persistent record of applications that have
been executed on the system.

Something to keep in mind when enabling this auditing functionality on serv-
ers as well as workstations is that, for the most part, there aren’t a great number of
processes that are launched on a Windows system. For example, once a server is
booted and running, how many users log into the console and begin browsing the
Web or checking their email? Administrators may log in and perform system main-
tenance or troubleshooting, but for the most part, once the server is up and running,
there won’t be a considerable amount of interaction via the console. Also, on work-
stations and laptops, users tend to run the same set of applications—email client,
web browser, etc.—on pretty much a daily basis. As such, enabling this functional-
ity can provide information that is invaluable during incident response.

There are other things you can do to increase both the amount and quality of
information available from Windows systems during incident response. Some com-
mercial products may offer additional features such as increased logging capa-
bilities, log consolidation, or log searching. For example, Kyrus Technology, Inc.
(http://www.kyrus-tech.com) has developed a sensor application called Carbon
Black that can be installed on a Windows system and monitors application execu-
tion on that system, sending its logs to a server for consolidation. That server can be
maintained within the corporate infrastructure, or (for much smaller infrastructures)
you can send the logs offsite to a server managed by the vendor.

NOTE

Disclosure

I am providing my recommendation of Carbon Black after having seen a demonstration

of the sensor and server, as well as being afforded the opportunity to work with both on

my own small virtual network. I installed the sensor, which then reported its logs back to

the Carbon Black server, which I installed and had access to on one of my own systems.

I received no payment for any review of the application nor for any mention or discussion

of it in this book. The simple fact is that I honestly believe that Carbon Black changes the

dynamic of incident response, and is something that any organization that uses Windows

systems should strongly consider deploying.

Carbon Black is a lightweight (less than 100 kilobytes in size) sensor that you
can install on Windows systems that you want to monitor. The sensor monitors
the execution of applications, including child processes, file modifications, and
loaded modules (as of this writing; future versions of Carbon Black will also record
Registry key modifications and network connections). Carbon Black also records the

http://technet.microsoft.com/en-us/library/cc748890.aspx
http://technet.microsoft.com/en-us/library/cc748890.aspx
http://www.kyrus-tech.com

34 CHAPTER 2 Immediate Response

MD5 hash of the executable file, as well as the start and end time for the process,
and will also provide a copy of the binary executable file. All of these elements can
also be searched within the logged information available via the server. A portion of
the information available via the Carbon Black server is illustrated in Figure 2.2.

Again, this information can be extremely useful during incident response. As
an example of this, and to get a little more familiar with what the data collected by
Carbon Black look like, I logged into a monitored Windows XP system (on my own
internal “lab network”) and created a “suspicious” application by copying the Solitaire
game file (“sol.exe”) into an New Technology File System (NTFS) alternate data
stream (ADS) attached to a file named “ads.txt.” I then launched the game by typing
“start .\ads.txt:game.exe” at the command prompt. Having already enabled Process
Tracking within the audit policy for the system, I opened the Event Log on the system
and found the event record that illustrated the application being launched. This record
(event ID 593 indicates that the process has exited) is illustrated in Figure 2.3.

I then logged into the system to which the Carbon Black logs are sent, and
accessed the user interface via the Chrome web browser (any web browser could

FIGURE 2.3

Event record for process launched from ADS.

FIGURE 2.2

Excerpt of logged information available via Carbon Black server.

35Being Prepared to Respond

have been used). I was able to quickly locate the log entry for the “suspicious”
process, and even search for it based on the fact that I knew it was a child process
of the “cmd.exe” process. The Carbon Black log entry is illustrated in Figure 2.4.

For the process illustrated in Figure 2.4, the exit time (although not displayed)
correlated exactly with what is illustrated in the Event Log record in Figure 2.3.
Now, this example was a bit contrived, in that it was a test and I knew what I was
looking for via the Carbon Black interface. However, an analyst can use regular
expressions as well as other search criteria (e.g., times, “new” processes, names of
modified files, etc.) to locate potentially suspicious processes. Other search criteria
can be used, such as the loaded modules (locate processes that have loaded a spe-
cific module, or DLL), MD5 hashes (of processes or loaded modules), and even file
modifications. Figure 2.5 illustrates the results of a search for file modifications that
include “ads.txt” via the Carbon Black interface.

As you can see, Carbon Black can be a powerful tool for use during incident
response, and can be used to very quickly determine the extent and scope of an incident
across monitored systems. Using various search criteria, a suspicious process can be
found, and its source can quickly be identified; for example, following the parent proc-
esses for a suspicious process leads to “java.exe” and then to “firefox.exe” might indicate
a browser drive-by compromise. From there, additional searches can reveal any other
systems that may have experienced something similar. While Event Logs may “roll
over” and new entries push out older ones, the information logged by Carbon Black can
be available for a much longer period of time, going back much farther into the past.
Once monitoring of network connections has been added to the sensor, an analyst can
search across all of the logs to see any other monitored systems that may have attempted
to establish connections to a particular IP address, or created a specific Registry key
(the significance of this will be a bit more clear once you read Chapter 6). That said, it’s
important to note that while Carbon Black is a great tool, its functionality and flexibility
are based on the fact that logging is configured, appropriate logging is occurring, and log
data are being collected and preserved. These same principles apply whether you choose
to use an add-on commercial product or native Windows functionality and tools.

FIGURE 2.4

Carbon Black log entry for “suspicious” process.

FIGURE 2.5

Results of Carbon Black file modification search.

36 CHAPTER 2 Immediate Response

Carbon Black (and other logging tools or products) may also have uses beyond
incident response. One example of how Carbon Black has been used was in an
organization that determined which components of the Microsoft Office Professional
suite were being used by its employees, and that information was then used to
reduce the overall corporate license for the software suite, saving the organization a
significant amount of money on an annual basis.

DATA COLLECTION
In addition to your pre-incident preparation, your response team needs to be pre-
pared to begin collecting critical and/or volatile data once an incident is detected. The
main purpose of immediate response is the timely collection of data. It is of para-
mount importance that IT staff who work with your systems on a regular basis also be
trained so that they can begin collecting data from those systems soon after an inci-
dent is identified. Processes—particularly malicious processes—often do not run con-
tinually on systems. These processes may execute only long enough to perform their
designated task, such as downloading additional malware, collecting the contents of
Protected Storage from the system, or sending collected data off of the system to a
waiting server. Malicious processes that may run on a continual basis include such
things as packet sniffers and keystroke loggers.

However, it is unlikely that you will see continuous, ongoing malicious activity
on your system. An intruder who has compromised your infrastructure does not go
to one system, open a browser, and spend hours surfing the Failblog.org web site.
In fact, in a good number of instances, executables may be downloaded to a sys-
tem, run, the data those processes collect sent off of the system to a waiting server
on the Internet, and then the executables and their repository files are deleted. Of
course, following this, the first forensic artifacts to decay are the network connec-
tions, and then as the system continues to function, MFT entries for the deleted files
get reused, as do sectors on the disk that were once part of the files of interest.
Therefore, collecting data as soon as the incident is identified can go a long way

TIP

Trusted Advisor

If you do not intend to perform your own incident response and analysis, the ideal approach

to immediate response is to locate a firm providing incident response services and establish

a relationship with them as your “trusted advisor.” They can assist you in identifying the

appropriate tools, procedures, and documentation for collecting data from your available

systems, as well as address issues such as configuration recommendations for future

systems. They can also assist you in running drills or “mock incidents” to ensure that the

procedures work properly and can be used effectively.

37Data Collection

toward aiding the follow-on incident response and analysis efforts. In fact, with the
proper procedures in place, having specific personnel implement a documented pro-
cedure for collecting data can obviate the need to do so later, such as days later (or
longer) once the third-party responders arrive onsite.

During immediate response, the first data that you will want to collect are the
contents of physical memory. When collecting memory from live Windows sys-
tems, perhaps the easiest (and free) approach is the DumpIt utility from MoonSol
(http://www.moonsols.com/ressources/). DumpIt is a simple-to-employ applica-
tion written by Matthieu Suiche; simply place a copy of the application on a thumb
drive or external USB drive enclosure, and launch the application from the com-
mand prompt. You will be asked a confirmation question, and once you respond
with “y,” a raw dump of memory will be created on the media (therefore, the media
needs to be writeable), as illustrated in Figure 2.6.

When the process completes, the work “Success” appears in green follow-
ing “Processing.…” The resulting file (in this example, Oliver-20110907-010837.
raw) is named using the system name (Oliver) and the coordinated universal time
(UTC) at which the process was initiated; in this case, the date and time in the
filename correlate to 9:08 pm on 6 September 2011, Eastern Standard Time. What
this means is that physical memory can be collected from multiple systems, or even
multiple times from the same system, very easily and without having to use addi-
tional media. In fact, it’s so easy that all you have to do is have a copy of DumpIt
on a couple of USB external drives (or appropriately sized thumb drives) and you’re
ready to go. The sooner memory is collected after an incident has been identified,
the better. Over time, not only do processes complete, but systems can be rebooted,
or even taken out of service, and once the memory is gone, it’s gone.

Collecting the contents of physical memory is just the start, however. Using other
tools such as FTK Imager (http://accessdata.com/support/adownloads#FTKImager),
you can collect copies of specific files from the system (e.g., Registry hives, Event
Logs, etc.), or initiate logical or full physical image acquisition from those systems,
in fairly quick order.

FIGURE 2.6

Example of MoonSol DumpIt use.

http://www.moonsols.com/ressources/
http://accessdata.com/support/adownloads

38 CHAPTER 2 Immediate Response

NOTE

Spinning Plates

One of the challenges I’ve faced once arriving onsite is going to a server room or data

center and acquiring images from multiple systems. In some cases, each system requires a

different approach, particularly if the systems cannot be taken offline for some reason. Live

acquisitions can be a challenge when the system has just a USB version 1.0 connector,

as you watch the estimated completion time for the acquisition of a 250-gigabyte hard

drive start at 2 hours and progress up over 56 hours. I’ve even encountered a boot-from-

SAN system; while the device itself was “in scope,” the multiterabyte SAN was not, so we

performed a live acquisition of the boot-from-SAN system.

Whenever faced with situations like this, we often try to get as many systems started in

the acquisition process as possible, keeping the plates spinning as it were, to reduce the

overall amount of time required by using parallel processes. Often, the incident had been

going on for several days (or weeks) before we were called, and the contracting process and

our (consultant’s) travel to get to the site added additional time to the clock. The overall

process would have been far better facilitated had the local IT staff followed a documented

procedure and initiated the acquisition process immediately.

FIGURE 2.7

FTK Imager “Export Directory Listing…” functionality.

For example, a great deal of analysis work can be performed rather quickly using
a partial acquisition (rather than acquiring a full image) of data from a live system.
Installing FTK Imager on a USB external hard drive (often referred to as a “wallet”
drive due to the size) will provide suitable storage space for acquired images and
files in a small form factor, and when needed the drive can be connected to a system
and FTK Imager launched. The IT staff member performing the acquisition can then
choose to add either the physical drive of the system, or the logical volume for the C:\
drive (depending on the response plan that’s already been established and documented
within the organization). From there, a directory listing that includes the last modified,
last accessed, and creation dates (from the $STANDARD_INFORMATION attribute
in the MFT; see Chapters 4 and 7 for more detail) for all files within the selected
volume (as well as their paths) can easily be exported to the storage media using the
“Export Directory Listing…” functionality, as illustrated in Figure 2.7.

Once the directory listing has been exported, specific files can then be exported
through FTK Imager, allowing for rapid analysis and assessment of the state of the
system. These files may include Registry hives, Event Logs, prefetch files, jump
lists (Windows 7), application (scheduled task, antivirus, etc.) log files, etc.

39Data Collection

TIP

F-Response

The acquisition process discussed previously in this chapter requires an IT administrator

to physically touch each system to plug the USB hard drive into that system. Depending

on the organization and how the infrastructure is designed, this may not be something that

can be done in a timely manner. For example, systems may be located in a server room

or data center on another floor or in another building within the city, or even in another

city. F-Response (http://www.f-response.com) is a dongle-based tool designed by Matthew

Shannon that provides remote, read-only access to remote systems. Matthew wanted to

have a way to perform incident response activities without having to coordinate with his

customers to actually get someone physically onsite, and designed F-Response to meet his

needs. Using the Enterprise version of F-Response, a responder can sit in a single location

with network access to the various systems, deploy the F-Response agent, and connect to

each system in read-only mode (all attempts to write to the remote hard drive are dropped

by F-Response). From there, the responder can collect specific files or acquire a complete

image using their acquisition tool of choice (e.g., FTK Imager). F-Response also provides

access to the contents of physical memory on Windows systems.

Another useful aspect of F-Response is that the agent can be deployed on systems

ahead of time, as part of incident preparation activities. The agent installs as a Windows

service, but by default it is not enabled to run automatically when the system is booted;

therefore, it can be installed and waiting to be enabled when needed. The agent can also

be installed using a name other than the default, so that it is not obvious that F-Response

is installed (although because the service is not started automatically, anyone who logs in to

the system and types “net start” at the command prompt will not see the agent listed as a

running service anyway).

Training

For employees to perform their jobs effectively, they must be trained. Payroll and
accounting staffs within organizations have training to attend, and then return to
their organization and begin working in their field. The same is true with a lot of
other departments within your business, as well as with professionals in other areas
(e.g., emergency medical technicians, police officers, firefighters, doctors, nurses,
etc.). Many organizations offer a variety of types of training to their employees,
often ranging from the use of office suite applications, to professional development,
and even basic first aid.

The same must also be true for those individuals responsible when an inci-
dent is identified by the organization. It does no good to have a CSIRP but not
have designated staff trained in their activities when the plan needs to be imple-
mented. Several regulatory bodies state that to be compliant (all “compliance
vs. security” arguments aside), organizations subject to the regulations must not
only have a CSIRP with all response personnel identified within the plan, but
they must also receive annual training with respect to the CSIRP and the actions
they are to take.

http://www.f-response.com

40 CHAPTER 2 Immediate Response

TIP

Mock Incidents

Mock incidents are a great way to test your response plan, either to see what needs to

be improved or to simply provide training so that the plan and everyone’s role is fresh in

everyone’s minds. I’ve provided mock incident and response team training to a number of

organizations and seen firsthand just how revealing that first mock incident can be.

During one training event, we found two very interesting items. We’d placed an

innocuous bit of software on a system chosen at random that would reach out to the Web

every 10 minutes and grab a web page, and then save that web page on the local hard drive

in a file with the .dll extension. The first thing that happened during the event was that an

incident was declared and the firewall administrator was asked for the firewall logs, and

he said that he’d have them to the incident manager in 10 minutes. Half an hour later,

the incident manager hadn’t received the logs, and when he tried to reach the firewall

administrator, it turned out that he’d gone to lunch! When he returned, he said that he

had thought that the request for the logs was part of a drill and hadn’t actually intended to

provide the logs. When he did try to retrieve the logs, we all found out that the logs weren’t

actually being archived.

The other finding involved the intrusion detection system (IDS). At one point during the

exercise, the IDS administrator stated that this wasn’t a valid test because, even given the

domain and name of the web page being requested, he wasn’t seeing anything in the logs.

As it turned out, the “malware” had been placed on a subnet not covered by any IDS.

Running an exercise during which the CSIRP is tested or taken for a “shake-
down cruise” (please excuse the naval vernacular, as I’m a former Marine officer)
should include actually collecting the data that you’ve decided will be collected.
Are you going to collect memory from Windows systems, and if so, how? Will it
work? Challenges I’ve encountered include older systems with USB version 1.0
interfaces, which usually result in processes that should take a short time ultimately
taking an inordinate amount of time to complete. How will you address such situ-
ations, and have you identified all of the pertinent systems that may have this issue
(regardless of the issue)? How will you address virtual systems? How will you col-
lect data from production systems that cannot be “taken down” (e.g., due to service
level agreements, transaction processing, etc.)? All of these questions (and likely
more) need to be addressed before an incident occurs; otherwise, critical, sensitive
data will continue to be lost (either exfiltrated or degraded) while managers and
staff members try to decide how to react.

SUMMARY

When an incident is identified within an organization, it is critical that local IT staff
be trained and knowledgeable in collecting pertinent data from Windows systems.
Considerable time (i.e., hours, days, etc.) may pass before third-party consultants
arrive onsite to begin performing incident response activities, and even then, the

41Summary

fact that they are not familiar with the organization’s infrastructure can extend the
overall response time. Being prepared for those inevitable computer security inci-
dents to occur simply by having documentation, as well as network and system
data, available will make a significant difference in the ultimate outcome of the
incident. This will be true regardless of whether an incident or data breach needs
to ultimately be addressed by a compliance oversight body, or by law enforcement
interested in intelligence or evidence to pursue prosecution. Properly trained local
IT staff can immediately collect data that would otherwise expire or be unavailable
hours or days later. Local responders should be able to collect the contents of physi-
cal memory, as well as partial, logical, or complete physical images from systems,
and have that data ready and documented for the analysis effort that inevitably fol-
lows data collection.

This page intentionally left blank

43

Volume Shadow Copies 3
CHAPTER

INTRODUCTION

Every time a new version of the Windows operating system is announced or made
public, a collective shudder ripples throughout the forensics community. What new
features are going to be available in the next operating system version? What’s
going to remain the same? What new challenges will we face? Some changes are
minor; for example, the binary structure of the Windows Registry hasn’t changed
among versions, from Windows 2000 all the way through to Windows 7, although
how the Registry is used (i.e., where keys are located, what keys and values are
created and modified, etc.) by the operating system and applications has changed
in many cases. Other changes can be quite significant, such as those that change
the very core of how Windows operates. In this chapter, we’ll address one of those
changes, specifically the introduction of Volume Shadow Copies. However, we

CHAPTER OUTLINE

Introduction ..43

What Are “Volume Shadow Copies”? ..44

Registry Keys ..45

Live Systems ..46

ProDiscover ..49

F-Response ...50

Acquired Images ...52

VHD Method ...54

VMWare Method ..58

Automating VSC Access ...62

ProDiscover ..64

Summary ..67

Reference ...67

INFORMATION IN THIS CHAPTER

l What Are “Volume Shadow Copies”?

l Live Systems

l Acquired Images

http://dx.doi.org/

44 CHAPTER 3 Volume Shadow Copies

will discuss this topic not from the perspective of a developer or programmer, but
instead from the perspective of an analyst, and how this technology might be uti-
lized to further an investigation.

WHAT ARE “VOLUME SHADOW COPIES”?
Volume Shadow Copies (VSCs) are one of the new, ominous-sounding aspects of
the Windows operating systems (specifically, Windows XP, in a limited manner,
and more so with Vista and Windows 7) that can significantly impact an analyst’s
examination. VSCs are significant and interesting as a source of artifacts, enough to
require their own chapter.

With the release of Windows XP, Microsoft introduced the Volume Shadow
Copy Service (VSS) to provide functionality for backing up critical system files to
assist with system recovery. With Windows XP, users and administrators saw this
functionality as System Restore Points, which were created automatically under
various conditions (e.g., every 24 hours, when a driver was installed, etc.), and
could also be created manually, as illustrated in Figure 3.1.

As illustrated in Figure 3.1, users can not only create Restore Points, but they
can also restore the computer to an earlier time. This proved to be a useful func-
tionality, particularly when a user installed something (application, driver, etc.) that
failed to work properly, or the system became infected with malware of some kind.
Users could revert the core functionality of their systems to a previous state through
the System Restore functionality, effectively recovering it to a previous state.
However, System Restore Points do not back up everything on a system; for exam-
ple, user data files are not backed up (and are therefore not restored, either), and
all of the data (specifically, the passwords) in the SAM hive of the Registry are not
backed up, as you wouldn’t want users to restore their systems to a previous point
in time and have them not be able to access their systems, as a previous password
(which they may not remember) had been restored.

So, while System Restore Points did prove useful when users needed to recover
their systems to a previous state, they did little to back up user data and provide
access to previous copies of other files. From a forensic analysis, a great deal of
historical data could be retrieved from System Restore Points, including backed-
up system files and Registry hives. Analysts still need to understand how backed
up files could be “mapped” to their original filenames but the fact that the files are
backed up is valuable in itself.

FIGURE 3.1

Windows XP System Restore Point functionality.

45What Are “Volume Shadow Copies”?

With the release of Vista, the functionality provided by the VSS to support ser-
vices such as Windows Backup and System Restore was expanded. In particular,
the amount and type of data captured by System Restore was expanded to include
block-level, incremental “snapshots” of a system (only the modified informa-
tion was recorded) at a given point in time. These “snapshots,” known as Volume
Shadow Copies, appeared in a different manner to the user. VSCs operate at the
block level within the file system, backing up and providing access to previous
versions of system and user data files within a particular volume. As with System
Restore Points, the actual backups are transparent to the user, but with VSCs, the
user can restore previous versions of files through the Previous Versions shell exten-
sion, as illustrated in Figure 3.2 (from a Windows 7 system).

Okay, so what does this mean to the forensic analyst? From an analyst’s perspec-
tive, there is a great deal of historical information within backed-up files. Accessing
these files can provide not just historical data (e.g., previous contents, etc.) but addi-
tional analysis can be conducted by comparing the available versions over time.

Registry Keys

As you’d expect, there are several Registry keys that have a direct impact on the
performance of the VSS, the service that supports the various functions that lead to
VSCs. As this is a Windows service, the primary key of interest is:

HKLM\System\CurrentControlSet\Services\VSS

However, it is important to understand that disabling the VSS may affect other
applications aside from just disabling VSCs, such as Windows Backup. As such,
care should be taken in disabling this service on production systems. Also, forensic
analysts examining Vista and Windows 7 systems that do not appear to have any
VSCs available should check this key to see if the service had been disabled prior
to the system being acquired.

There’s another key within the System hive that affects VSC behavior:

HKLM\System\CurrentControlSet\Control\BackupRestore

TIP

System Files in Restore Points

One use of system files being backed up to Windows XP System Restore Points is that

when malware is installed as a device driver (executable file with a .sys extension), it would

be backed up to a Restore Point. If the installation process had included modifying the

file time stamps so that the file appeared to have been created on the system during the

original installation process, the true creation date could be verified via the master file

table (see Chapter 4). Further, if there were six Restore Points, and the system file was

not backed up in the older five Restore Points, and was only available in the most recent

Restore Point, this would also provide an indication that the observed creation date for the

file was not correct.

46 CHAPTER 3 Volume Shadow Copies

Beneath this key are three subkeys: FilesNotToBackup, FilesNotToSnapshot, and
KeysNotToRestore. The names should be pretty self-explanatory, but just in case,
the FilesNotToBackup key contains a list of files and directories that (according to
Microsoft; additional information is available at http://msdn.microsoft.com/en-us/

library/bb891959(v5vs.85).aspx) backup applications should not backup and restore.
On a default Windows 7 installation, this list includes temporary files (as in those in the
“%TEMP%” directory), the pagefile, hibernation file (if one exists), the Offline Files
Cache, Internet Explorer “index.dat” files, as well as number of log file directories. The
FilesNotToSnapshot key contains a list of files that should be deleted from newly cre-
ated shadow copies. Finally, the KeysNotToRestore key contains lists of subkeys and
values that should not be restored. It should be noted that within this key, values that
end in “\” indicate that subkeys and values for the listed key will not be restored, while
values that end in “*” indicate that subkeys and values for the listed key will not be
restored from backup, but new values will be included from the backup.

LIVE SYSTEMS
Accessing VSCs on live Vista, Windows 2008, and Windows 7 systems is a rela-
tively simple task, as Windows systems ship with the necessary native system tools

FIGURE 3.2

Windows 7 Previous Versions shell extension.

http://msdn.microsoft.com/en-us/library/bb891959
http://msdn.microsoft.com/en-us/library/bb891959

47Live Systems

to access VSCs. To see the available VSCs for the C:\ drive of the Vista or Windows
7 system that you’re logged into, type the following command into a command
prompt using elevated privileges (you may need to right-click the command prompt
window and choose “Run as Administrator”):

C:\>vssadmin list shadows /for=c:

Example results of this command are illustrated in Figure 3.3.
As you can see illustrated in Figure 3.3, we can use the vssadmin command to

gather considerable information about available VSCs on the system.

FIGURE 3.3

Sample output of the vssadmin command.

WARNING

Windows Management Instrumentation (WMI)

The WMI class Win32_ShadowCopy (documentation found at http://msdn.microsoft.com/

en-us/library/aa394428(v5VS.85).aspx) provides an interface for programmatically

extracting much of the same information from Windows systems made available by the

vssadmin command. However, according to information available at the Microsoft web site

(see the “Community Content” section of the previously linked page) at the time of this

writing, this class is not supported on the 64-bit version of Windows 2008. Testing using

a Perl script indicates that this is also true for Windows 7; the script didn’t work at all on

64-bit Windows 7, but ran very well on the 32-bit edition. A sample of what is available via

Perl (or other methods for accessing WMI classes) appears as follows:

Computer: WIN-882TM1JM2N2

DeviceObject: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1

InstallDate: 20110421125931.789499-240

<snip>

VolumeName: \\?\Volume{d876c67b-1139-11df-8b47-806e6f6e6963}\

http://msdn.microsoft.com/en-us/library/aa394428
http://msdn.microsoft.com/en-us/library/aa394428

48 CHAPTER 3 Volume Shadow Copies

Don’t like the command line approach? Hey, that’s okay … it’s not for every-
one. Head on over to ShadowExplorer.com and get a copy of ShadowExplorer (at
the time of this writing, version 0.8 is available). Download and run the setup file
on your system to install ShadowExplorer on the system in question. The web site
describes ShadowExplorer as being useful to all users, but especially so to users
with Windows 7 Home Edition, who don’t have access to VSCs by default. Once
you install and launch ShadowExplorer, you will see the interface as illustrated in
Figure 3.4.

As illustrated in Figure 3.4, you can use the dropdown selector beneath the
menu bar to select the date of the VSC you would like access to; unfortunately,
ShadowExplorer will only show you the VSCs available within the volume or drive
(i.e., C:\, D:\, etc.) on which it is installed. Therefore, if your system has a D:\ drive,
you’ll need to rerun the installation program and install it on that drive, as well,
to view the VSCs on that drive. Navigating through the tree view in the left pane,
locate the file for which you’d like to see a previous version, right-click the file, and
choose “Export” to copy that file to another location.

Going back to the command prompt, to access the VSCs on your live system
and have access to the previous versions of files within those VSCs, you’ll need
to make a symbolic link to a VSC. To do that, go to the listing for a VSC, as illus-
trated in Figure 3.3, and select (you’ll need to have Quick Edit mode enabled in
your command prompt) the VSC identifier, which appears after “Shadow Copy
Volume:.” Then go back to the prompt and type the following command:

C:\>mklink /d C:\vsc

FIGURE 3.4

ShadowExplorer v0.8 interface.

49Live Systems

Do not hit the Enter key at this point. Once you get that far with command,
right-click to paste the selected VSC identifier into the prompt and then be sure to
add a trailing slash (“\”), so that the command looks like the following:

C:\>mklink /d C:\vsc \\GLOBALROOT\Device\

HarddiskVolumeShadowCopy20\

Remember to add the trailing slash to the command … this is very important!
This is not something that is clearly documented at the Microsoft site, but has been
found to be the case by a number of forensic analysts, to include Rob Lee, of SANS
fame, and Jimmy Weg, a law enforcement officer from Montana. Now, go ahead
and hit the Enter key, and you should see that the symbolic link was successfully
created. Now you can navigate to the “C:\vsc” directory, and browse and access the
files via the command prompt or Windows Explorer. Once you’re done doing what-
ever you’re going to do with these files (e.g., review, copy, etc.), type the following
command to remove the symbolic directory link:

C:\>rmdir C:\vsc

This series of commands is going to be very important throughout the rest of
this chapter, so it’s important that we understand some of the key points. First, use
the vssadmin command to get the list of VSCs for a particular volume; note that
when you run the command from the command prompt, you do not have to be in
that volume. For example, if you want to list the VSCs for the D:\ volume, you can
do so using the following command, run from the C:\ volume:

C:\>vssadmin list shadows /for=d:

Once you know which VSC you’d like to access, you can use the mklink command
to create a symbolic link to that VSC. Remember, you must be sure that the VSC iden-
tifier (i.e., \\GLOBALROOT\Device\HarddiskVolumeShadowCopy20\) ends with a
trailing slash. Finally, once you’ve completed working in that VSC, you remove the
symbolic link with the rmdir command.

ProDiscover

A number of commercial forensic analysis applications provide access to VSCs
within acquired images, and ProDiscover is just one of those applications.
However, ProDiscover is also the only commercial forensic analysis applica-
tion to which I have access. As such, I briefly mention its ability to access VSCs
on live systems here. For those who want more detailed information on how to
use ProDiscover for this purpose, Christopher Brown posted a five-page PDF-
format paper at the Technology Pathways, LLC, web site that describes how
to use ProDiscoverIR (the Incident Response Edition) to access and acquire
VSCs on remote live systems. This can be very valuable to an investigator who
needs to quickly access these resources in another location, or to do so surrepti-
tiously. The paper can be found at http://toorcon.techpathways.com/uploads/

LiveVolumeShadowCopyWithProDiscoverIR.pdf.

http://toorcon.techpathways.com/uploads/LiveVolumeShadowCopyWithProDiscoverIR.pdf
http://toorcon.techpathways.com/uploads/LiveVolumeShadowCopyWithProDiscoverIR.pdf

50 CHAPTER 3 Volume Shadow Copies

F-Response

If you’re a user of the fantastic F-Response tool from Matt Shannon, particularly
the Enterprise Edition (EE), you’ll be very happy to know that you can use this
product to access VSCs on remote systems. This may be important for a variety
of reasons, such as a user within your enterprise environment may have “lost” an
important file that they were working on, you may need to access an employee’s
system surreptitiously, or you may need to quickly acquire data from a system
located in another building in another area of the city. While I generally don’t rec-
ommend acquiring full system images over the network, even over a VPN, you can
use tools like F-Response EE, which provides read-only access to the remote sys-
tem drive, to collect specific information and selected files from remote systems
very quickly. This will allow you to perform a quick triage of systems, and poten-
tially perform a good deal of data reduction and reduce the impact of your response
activities on your organization by identifying the specific systems that need to be
acquired.

That being said, perhaps the best way to discuss F-Response EE’s ability to
provide access to VSCs is through a demonstration. Before describing the setup I
used and walking through this demonstration, I need to make it clear that I used
F-Response EE because Matt Shannon was gracious enough to provide me with a
copy to work with; this process that I’m going to walk through can be used with all
versions of F-Response, including the Consultant and Field Kit editions.

TIP

F-Response VSC Demo Setup

For my demonstration, I don’t have a full network to “play with,” so I opted to use the tools

that I do have available. I booted my 64-bit Windows 7 Professional analysis system, and

then started up a 32-bit Windows 7 Ultimate VM (virtual machine) in VMPlayer. I had set

the Network Adapter in the settings for the VM to “bridged,” so that the VM appeared as

a system on the network. For the demonstration, the IP address of the running VM was

192.168.1.8, and the IP address of the host was 192.168.1.5. On both systems, the

Windows firewalls were disabled (just for the demonstration, I assure you!) to simulate a

corporate environment. Also, it is important to note that Windows 7 ships with the iSCSI

initiator already installed, so I didn’t need to go out and install it separately.

Again, this demonstration makes use of F-Response EE. (Thanks to Matt
Shannon for allowing me the honor to work with this wonderful tool!) Once I
logged in to my analysis system, I plugged in my F-Response EE dongle and
launched the F-Response License Manager Monitor to install and start the License
Manager service. I then launched the F-Response Enterprise Management Console
(FEMC), and started by configuring the credentials that I would be using to access

51Live Systems

the remote system. I clicked “File → Configure Credentials…” from the menu bar,
and entered the appropriate username/password information to access the remote
system (if you’re in an Active Directory domain, check the “Use Current User
Credentials” option). Next, I clicked “File → Configure Options…” and configured
my deployment options appropriately (for this demo, I didn’t select the “Physical
Memory” option in the Host Configuration section).

As I was going to connect to a specific system, I selected “Scan → Direct
Scan” from the menu bar, then entered the IP address of the target system (i.e.,
192.168.1.8), and clicked the “Open” button. Once the connection was made,
F-Response was installed and started on the target system, as illustrated in Figure 3.5.

From there, I logged into the C:\ volume on the target host, and that host’s C:\
drive appeared on my analysis system as the F:\ volume. I then ran the following
command on my analysis system:

C:\>vssadmin list shadows /for=f:

To access the oldest VSC listed (HarddiskVolumeShadowCopy17, created on
January 4, 2011), I entered the following command in a command prompt on my
analysis system:

C:\>mklink /d d:\test \\GLOBALROOT\Device\

HarddiskVolumeShadowCopy17\

This command created a symbolic link on my analysis system called “d:\test”
that contained the contents of a VSC created on the target system on January 4,
2011, and allowed me to access all of the files with that directory, albeit via the
read-only access provided by F-Response EE.

FIGURE 3.5

FEMC Direct Connect user interface.

52 CHAPTER 3 Volume Shadow Copies

As I mentioned, there are a number of commercial forensic analysis applica-
tions and tools that provide analysts and responders with the ability to access VSCs
on remote systems, and what we’ve discussed here are only a few of your (and my)
available options. The application and methodology you choose to use depends
largely on your needs, abilities, and preferences (and, of course, which tool or set of
tools you can afford).

ACQUIRED IMAGES
Since discussion of VSCs first started, one of the biggest and most often asked
questions within the forensic analysis community has been, “How do we access
VSCs within acquired images?” First of all, accessing VSCs within images is not
the same thing as accessing those on live systems. Figure 3.6 illustrates what the
VSCs “look like” within an acquired image.

As illustrated in Figure 3.6, the VSC difference files within the System Volume
Information directory are binary files, and we need some means for translating
these binary data into accessible information. On live systems, this is usually done
through the use of the available API; therefore, one means of accessing the same
data on an acquired image would be to boot the image through the use of LiveView
and VMWare.

WARNING

Accessing VSCs on Live Systems

It is very important to remember that when you’re accessing VSCs on live systems, that

system, whether accessed remotely or locally, is still subject to operating normally. What

this means is that if you’re accessing the oldest VSC that you found, the system itself

is still going about its normal operations, and that VSC could be overwritten to make

room for another VSC, as under normal conditions, the VSCs are subject to the first-in-

first-out (FIFO) process. This actually happened to me while I was working on some of

the demonstrations listed in this chapter. The remote live system continued to operate

normally, and the VSC I was accessing was removed simply because I had taken too long to

complete the testing (I was just browsing through some of the files). I had to back out of my

demonstration and restart it. When I did, I found that the output of the vssadmin command

was quite a bit different, particularly with respect to the dates on which the available

shadow copies had been created.

Another very important aspect of accessing VSCs (and this also applies to accessing

VSCs within images) is that you need to be very careful about the files you click or double-

click on. Remember, if you double-click a file that is in a VSC on a remote system, your

analysis system is going to apply its own rules to accessing and opening that file. This

means that if you see a PDF file that you’d like to click on, you should be very sure that it

wasn’t what led to the remote system being infected in the first place. If it is a malicious

PDF, and your system isn’t protected (e.g., updated antivirus and PDF viewer, etc.), then

your system may become infected, as well.

53Acquired Images

However, even with the ability to “zero out” (not crack, but reset to a new
value, possibly using a tool such as ntpwedit, found at the time of this writing at
http://cdslow.webhost.ru/en/ntpwedit/) the Administrator password so that you can
log into the now-running system, this may still not be a viable option. So, the ques-
tion becomes, with nothing more than an acquired image of a system that may con-
tain VSCs, what are some options for gaining access to the data within those VSCs?

I asked myself this question seriously during the break between Christmas
2010 and the New Year, and I began researching it to find a solution. After all, I’d
encountered several systems that contained VSCs, including Windows 7 and even a
Vista system. In my case, neither instance required access to the VSCs to complete
my analysis, but it was still clear to me that like other analysts, I could fully expect
to see more of these systems. Subsequently, I was going to have to come up with a
way to access the VSCs.

I began my search by going to Google … of course. I found a number of refer-
ences to accessing VSCs within acquired images, but in each case the materials
included mounting the acquired image using EnCase (from Guidance Software) and
the Physical Disk Emulator (PDE) module as part of the process. Well, I don’t have
access to EnCase, nor to the PDE module, and I thought that there just had to be some
way to access data within the VSCs of an acquired image without using either one.

For my testing, I had an image acquired from a personal system that was run-
ning a 32-bit version of Windows Vista. This was an image of the physical hard
drive, and as the system was a Dell laptop, the image contained several partitions

FIGURE 3.6

Acquired image of Vista system opened in FTK Imager v3.0.

TIP

LiveView

LiveView, freely available at http://liveview.sourceforge.net/, is a Java-based graphical

tool developed by a student at Carnegie Mellon University. LiveView creates VMWare

configuration files for acquired raw/dd images or physical disks, and supports Windows

versions from Windows 98 through Windows 2008 (Windows 7 is not listed among the

supported operating systems).

http://cdslow.webhost.ru/en/ntpwedit/
http://liveview.sourceforge.net/

54 CHAPTER 3 Volume Shadow Copies

including the Dell maintenance partition. As such, I used FTK Imager version 3.0
to extract the active operating system partition from the image, as I wanted to iso-
late the partition that contained the VSCs. The disk image was called “disk0.001,”
and the image of the active partition was called “system.001.” My analysis work-
station was a Dell Latitude E6510 laptop, running a 64-bit version of Windows 7
Professional. On that laptop, I had a copy of FTK Imager version 3.0.0.1443, as
well as ImDisk 1.3.1.

VHD Method

A VHD file is a virtual hard disk file used by virtualization software such as
Microsoft’s Virtual PC or Virtual Server (but can also be used by Oracle’s
VirtualBox application, as well). The VHD file represents a physical hard disk and
can be used by a virtual machine as if it were a physical hard disk. Additional infor-
mation regarding VHD files can be found at http://technet.microsoft.com/en-us/

library/cc708315%28WS.10%29.aspx.
As part of my research for this little project, I found “vhdtool.exe” at the

Microsoft site (http://code.msdn.microsoft.com/vhdtool). I also found that
Microsoft’s Virtual Server application includes a tool named “vhdmount” (http://

technet.microsoft.com/en-us/library/cc708295%28WS.10%29.aspx) for mounting
VHD files. In reading about “vhdtool.exe,” it has an option (“/convert”) for convert-
ing a raw/dd image file into a fixed-format VHD file. I ran the tool against a copy
of the system.001 file (the active OS partition image previously described, on an
external USB wallet drive), and although the filename was not changed to “.vhd,”
the tool reported that it had successfully modified the file (apparently by adding
a footer). From there, the next step was to mount the new VHD file; I did this by
opening the Computer Management console, selecting “Disk Management” and
clicking “Action,” then “Attach VHD” from the menu bar. The system.001 file was
recognized as a valid VHD file, and the resulting “Attach Virtual Hard Disk” dialog
is illustrated in Figure 3.7.

Notice in Figure 3.7 that I had selected the option to mount the VHD file as
read-only. Even though I was using a working copy of the image file, and it had

FIGURE 3.7

Windows 7 Disk Manager “Attach Virtual Hard Disk” dialog.

http://technet.microsoft.com/en-us/library/cc708315%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc708315%28WS.10%29.aspx
http://code.msdn.microsoft.com/vhdtool
http://technet.microsoft.com/en-us/library/cc708295%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc708295%28WS.10%29.aspx

55Acquired Images

already been modified (via the use of “vhdtool.exe,” which I documented), I wanted
to be sure to follow best practices in my procedures.

As a result of attaching the VHD file, the Disk Management console showed a
136.46-gigabyte (GB) partition mounted as Disk2, and listed as the G:\ drive/volume,
as illustrated in Figure 3.8.

Opening Windows Explorer, I could clearly see the files within in the G:\ volume;
I confirmed this using the dir command to generate a file listing from the command
prompt. The next step was to determine which VSCs were available, if any. To do
this, I ran the following command from the command prompt:

vssadmin list shadows /for=g:

The output of this command indicated that there were a total of seven VSCs
available in the image, with creation dates ranging from January 10, 2010 to
January 20, 2010. I opted to mount the oldest VSC; to do so, I selected \\?\

GLOBALROOT\Device\HarddiskVolumeShadowCopy23, which appeared after
“Shadow Copy Volume:” in the output of the previous vssadmin command, and
right-clicked to copy this string to the clipboard. I then returned to the command
prompt and typed in the following command:

D:\>mklink /d d:\vsc23

FIGURE 3.8

Disk Management console showing G:\ volume.

56 CHAPTER 3 Volume Shadow Copies

After typing this command, I right-clicked to paste the \\?\GLOBALROOT…
string that I’d copied to the clipboard at the end of the command, and then I made
sure to add a closing “\” to the end of the command, and hit the Enter key. The result
was that the symbolic link from the VSC to D:\vsc23 was successfully created.

TIP

Final Backslash

The final backslash at the end of the mklink command is critically important! Without it,

you won’t be able to access the mounted VSC properly.

At this point, I had the image file mounted as a VHD file, and the oldest VSC
within the image also mounted and accessible from my analysis system (confirmed
via the dir command). Using “robocopy.exe” (which is native to Windows 7) to pre-
serve file metadata (time stamps), I copied the contents of a user’s profile direc-
tory (albeit not the subdirectories) from both the mounted VHD file (the imaged
Vista operating system partition) and the mounted VSC within the VHD file to run
a quick comparison against the NTUSER.DAT files, and in particular the contents
of the UserAssist key. I could have run RegRipper (specifically rip.pl or the com-
piled executable version of the tool, “rip.exe”) from the analysis system against the
mounted VHD and VSC to obtain the information I was looking for, but copying
the files gave me an excuse to run the robocopy command (until then, I hadn’t ever
used the command). To get information from the UserAssist keys from the two cop-
ied NTUSER.DAT hive files, I ran the following command:

C:\tools>rip.pl –r <path>\ntuser.dat –p userassist2 > output.txt

Running the command against each hive file, redirecting the output to the appro-
priate text file, allowed me to then open the output files in an editor and compare
them. From the NTUSER.DAT hive file from the oldest VSC within the image, I
found the following entries:

Sat Jan 9 11:40:31 2010 Z

UEME_RUNPATH:C:\Program Files\iTunes\iTunes.exe (293)

Fri Jan 8 04:13:40 2010 Z

UEME_RUNPATH:Skype.lnk (5)

UEME_RUNPATH:C:\Program Files\Skype\Phone\Skype.exe (8)

Then, from the NTUSER.DAT hive file from the VHD image file itself, I found
the following entries:

Thu Jan 21 03:10:26 2010 Z

UEME_RUNPATH:C:\Program Files\Skype\Phone\Skype.exe (14)

UEME_RUNPIDL:C:\Users\Public\Desktop\Skype.lnk (1)

Tue Jan 19 00:37:46 2010 Z

UEME_RUNPATH:C:\Program Files\iTunes\iTunes.exe (296)

57Acquired Images

What this clearly demonstrates are the changes that occur between various
VSCs and the actual running system, as well as the forensic value of VSCs. As you
can see from the previous examples, in the space of 12 days, the user had run the
Skype application 6 times, and in about 10 days, had run the iTunes application
3 times. As the UserAssist key records the date and time that the application was
most recently run, all we would normally be able to determine from the image of
the Vista was that as of January 21, 2010, the Skype application had been run a
total of 14 times by the user. However, by accessing the VSCs, we’re able to obtain
historical information regarding previous times that the user had run the Skype
application.

This same concept applies to other Registry keys, as well, particularly those that
maintain lists of subkeys and values. Specific keys that may be of interest during an
examination may include most recently used (MRU) lists; these keys usually con-
tain a number of values, and the LastWrite time of the key corresponds to the date
when the last file was accessed. However, we may be able to use data from hive
files within VSCs to determine the dates and times when other files within the MRU
list were accessed, as well. Being able to access this type of temporal information
allows an analyst to infer certain things about a user’s behavior on the system, par-
ticularly if (per this example) the fact that the user launched Skype 6 times in the
space of approximately 12 days is pertinent to the goals of the examination (addi-
tional information regarding the user’s activity could then be obtained from the
application’s log files). It should be clear from this that there is significantly more
value to VSCs than simply previous versions of graphic image files.

TIP

Registry Analysis

A more detailed discussion of analysis of the Windows Registry hive files can be found in

Chapter 5 of this book, as well as within Windows Registry Forensics (Carvey, 2011).

Once I had completed all that I wanted to do (mostly just browsing), I removed
the symbolic link that I’d created to the VSC using the following command:

D:\>rmdir d:\vsc23

As the symbolic link was created to a directory (i.e., “mklink/d”), I needed to
treat the symbolic link as a directory to remove it (i.e., rmdir or rd). I then returned
to the Disk Management console (see Figure 3.8), right-clicked on the “Disk 2”
box to the left of the G:\ volume (displayed in the lower pane), and chose “Detach
VHD” from the context menu.

58 CHAPTER 3 Volume Shadow Copies

In summary, the process you would follow to access VSCs using this method
would be to:

l Convert a working copy of your image file to a VHD file using “vhdtool.exe.”
l Attach/mount the newly created VHD file to your Windows 7 analysis worksta-

tion, using either the Disk Management console, or “diskpart.exe.” Be sure to
check the “Read-Only” box (see Figure 3.7) when mounting the VHD file.

l Determine how many VSCs you have available within the image, and for which
dates, using “vssadmin.exe” (i.e., vssadmin list shadows /for5n:).

l Create a symbolic directory link to the VSC (or VSCs) of interest using
“mklink.exe” (i.e., mklink /d C:\mountpoint\\?\GLOBALROOT\Device\Harddisk

VolumeShadowCopyn\). Note: The trailing backslash in the mklink command is
critically important!

l Perform whatever work is part of your analysis plan (e.g., copy files via robo-
copy, scan the mounted VSC with antivirus scanners, etc.).

l Remove the symbolic link with the rmdir command. When you’ve completed
working with the VHD file itself, detach it via the Disk Management console or
“diskpart.exe.”

I should note that mounting a working copy of your acquired image as a VHD
file can be used for much more than accessing VSCs. For example, all of those
tasks we mentioned performing against a mounted/linked VSC (e.g., scanning with
AV, performing other malware detection steps, etc.) can be performed on just the
mounted VHD file.

VMWare Method

After I figured out how to access the VSCs within an acquired image via the VHD
method, I began discussing this with others, and found out that folks like Rob Lee
(of SANS and Mandiant fame) and Jimmy Weg (a law enforcement officer from

TIP

Diskpart

The diskpart command (a reference for the command, albeit specifically for Windows XP, can

be found at http://support.microsoft.com/kb/300415) can be used to attach and detach VHD

files from the command line. First, you need to simply type “diskpart” at the command prompt

to begin working in the diskpart shell. To attach a VHD file, use the following commands:

selectvdisk file=<path to VHD file>

attachvdisk

Using these commands, the VHD file is automatically mounted using the next available

drive letter. To detach the VHD file, use the following command:

detachvdisk

http://support.microsoft.com/kb/300415

59Acquired Images

Montana) have been using VMWare in a very similar manner to access VSCs.
Discussing the VMWare method with both of them, I got an idea of the process that
they used, and decided to try it on my own to see if I could get it to work. To work
through this process you’ll need the following:

l The ability to run a VMWare virtual machine, such as VMPlayer (freely available
at http://www.vmware.com/products/player/) or VMWare Workstation (a 30-day
evaluation version is available at http://www.vmware.com). Using VMWare
Workstation, you can create your own virtual machines.

l A Windows 7 VM (I used a 32-bit Windows 7 Ultimate VM for this
demonstration).

l A copy of LiveView or ProDiscover Basic Edition.

The first thing I did was download VMPlayer from the VMWare web site, and
get a copy of LiveView. Having only an image in raw/dd format, I needed a way
to get the data within the image recognized as a disk or partition by the VMWare
tools. LiveView provides that capability by generating a VMWare virtual machine
disk format (.vmdk) file that points to the image; however, for this demonstration, I
just wanted the .vmdk file, and I didn’t necessarily want to boot the virtual machine.

TIP

ProDiscover

The ProDiscover forensic analysis application, from Technology Pathways, LLC, includes

functionality for creating VMWare .vmdk files (similar to LiveView). This functionality is

included in the Basic Edition (BE), a freely available version of the application. After you’ve

installed ProDiscover BE, open the application, and under the Tools menu option choose

“Image Conversion Tools” and then “VMWare Support for “DD” Images…” (see Figure 3.9).

FIGURE 3.9

Selecting “VMWare Support for “DD” Images” in ProDiscover BE.

http://www.vmware.com/products/player/

60 CHAPTER 3 Volume Shadow Copies

Next, launch VMPlayer and select your VM, but do not start it; instead, edit the
VM settings to add the newly created .vmdk file to the VM as an additional disk.

When the resulting dialog opens, browse for and select the raw/dd image file you’re

interested in (remember, we’re going to use the one named “system.001”), as illustrated in

Figure 3.10, and click “OK.”

You won’t see any progress bar or notification, but a .vmdk file pointing to the raw/dd

image file will be created. You can then add the .vmdk file to an existing VM as a hard disk.

FIGURE 3.10

ProDiscover BE “VMWare Support for ‘DD’ Images” dialog.

WARNING

Nonpersistent Disk

In the following section, we’ll be adding an independent, nonpersistent disk to an existing

virtual machine via VMWare Workstation. The option to add a new hard disk that is

nonpersistent is not available in VMPlayer, at least not at the time of this writing. As such,

if you choose to use this method to access VSCs, you need to be sure to use a working copy

of your image, or use other mechanisms to ensure that the image itself isn’t modified.

When the Add Hardware Wizard opens and allows you to select a disk, choose
“Use an existing virtual disk” and click “Next,” as illustrated in Figure 3.11 (note
that the dialog box looks the same for both VMPlayer and VMWare Workstation).

In the “Select an Existing Disk” dialog, browse to the newly created .vmdk file
(in our example, “system.vmdk”) and click “Finish.” At this point, if you get a mes-
sage from VMPlayer (or Workstation) about converting the virtual disk format to
a newer format, simply choose to keep the existing format. After you’ve added the
new hard disk to the VM, boot it, log in, and open Windows Explorer to see the file
system for the added disk. From here, you can view and access the VSCs using the
same process we discussed earlier in the chapter.

61Acquired Images

If you’re using VMWare Workstation, when you get to the “Select an Existing
Disk” dialog, you will be presented with some additional options, as illustrated in
Figure 3.12.

FIGURE 3.11

VMWare Workstation “Select a Disk” dialog.

FIGURE 3.12

Adding an independent, nonpersistent disk.

62 CHAPTER 3 Volume Shadow Copies

When adding the new .vmdk file as a hard disk to your VM, go to the Mode sec-
tion of the dialog and select “Independent” and then “Nonpersistent.” This will help
ensure that any changes made to the image file as a result of your analysis (or by
the operating system) are not written to the image. This is simply an additional step
you should take as part of sound analysis practices; you should already be working
with a copy of your image, not the original image.

TIP

VMDKs and SIFT

I mentioned in Chapter 1 that I had used the SANS SIFT v2.0 Workstation VM that Rob Lee

put together. I was working out the kinks in some ideas that I had and was going to try to

access a raw/dd image of a Windows XP system, but this specific experiment required that

I access the image as a .vmdk file. In short, I found that LiveView did a much better job of

creating the necessary VMWare files for use with the SIFT Workstation than did ProDiscover

BE. When I added the .vmdk file created via ProDiscover BE as an additional hard drive

to the SIFT VM and ran the fdisk command, I got some very odd output. However, when I

did the same thing using the same image file, but using the VMWare files created through

LiveView, everything worked just fine.

Automating VSC Access

As we’ve discussed, once you’ve attached an image to your analysis system using
either the VHD or VMWare method, you’ll be able to access the available VSCs.

One way to collect information from available VSCs is to image the entire VSC.
So, you have an image attached to your analysis workstation, and you can image
an available VSC from the attached volume, using George M. Garner, Jr.’s Forensic
Acquisition Utilities (http://gmgsystemsinc.com/fau/). Download the archive and be
sure to the use the appropriate version (32- or 64-bit) for your platform. You can then
use the appropriate version of “dd.exe” to create a logical image of a VSC using the
following command (substituting for the appropriate VSC number, of course):

C:\tools>dd.exe if=\\.\HarddiskVolumeShadowCopy20 of=D:\vsc20.img

–localwrt

One thing to consider about this method is that you will likely need a consider-
able amount of storage space. For a 70-GB volume, if there are nine VSCs, you will
need a total of 700-GB space: 70 GB for the original volume, and another 70 GB for
each of the VSCs. This method for acquiring data from VSCs is resource-intensive,
but there may be times when it is absolutely necessary.

When it comes to accessing and collecting information from the VSCs, you
can also use the Windows native batch file functionality to automate a great deal
of your data collection. Automation in this manner not only increases efficiency
and reduces the chance of errors (e.g., typing the wrong command, or commands

http://gmgsystemsinc.com/fau/

63Acquired Images

in the wrong sequence), but it’s self-documenting, as well; simply keep a copy
of the batch file (and any output) as your documentation. While we’re discussing
accessing VSCs within acquired images, you will see you can also use these same
automation techniques to access VSCs on live remote systems, as discussed earlier
in this chapter. Doing so will help you mitigate issues with the oldest VSCs being
deleted through the normal function of the system while you’re accessing it, as a
batch file will run much quicker than typing all of the commands manually.

As we’ve discussed, once you’ve run the vssadmin command, you should see a
list of the available VSCs in the output. You will see the list in the command prompt,
or you can redirect the output of the command to a file and view the list that way.
So let’s say that you have four VSCs, listed as HarddiskVolumeShadowCopy20
through 23, and you’d like to run the same series of commands on each of these
VSCs, in succession. You can do this using batch files, which is a capability native
to Windows systems. For example, we can use the following command in a batch
file (call it “vsc_sweep.bat” or something that you’d find meaningful) as the initial
command that handles creating a symbolic link to each VSC:

for /l %i in (20,1,23) do mklink /d C:\vsc\vsc%i \\?\GLOBALROOT\

Device\HarddiskVolumeShadowCopy%i\

Once this command has completed, you should have four symbolic links cre-
ated, C:\vsc\vsc20 through vsc23. At this point you can run through the directories,
running whichever commands you choose.

On April 13, 2010, a post to the Forensics from the Sausage Factory blog
(http://forensicsfromthesausagefactory.blogspot.com) illustrated a command for
using “robocopy.exe” to retrieve copies of specific files from the VSCs. That com-
mand, modified to work along with the previous command, looks as follows:

for %i in (20,1,23) do robocopyC:\vsc\vsc%i\Users C:\vsc_output\

vsc%i *.jpg *.txt /S /COPY:DAT /XJ /w:0 /r:0 /LOG: C:\vsc_output\

Robocopy_log_SC%i.txt

This command copies (via “robocopy.exe”) all of the files that end with .jpg and
.txt extensions from the user profiles within the VSCs to a specific directory on the
analysis computer, and logs the activity. As such, a copy of “robocopy.exe” must be
located in the same directory as the batch file, and you should make sure that the
“C:\vsc_output” directory exists before running the commands.

After you’re done accessing the VSCs, you can remove the symbolic links using
the following command:

for /l %i in (20,1,23) do rmdir C:\vsc\vsc%i

In April 2011, Corey Harrell (author of the Journey into IR blog at http://

journeyintoir.blogspot.com) contacted me with the interesting idea of running
RegRipper (more specifically, “rip.exe”) against successive VSCs to collect specific
information. Using “&&” to append commands together in a single line in a batch
file, Corey’s idea was to collect information (Corey’s original submission made use

http://forensicsfromthesausagefactory.blogspot.com
http://journeyintoir.blogspot.com
http://journeyintoir.blogspot.com

64 CHAPTER 3 Volume Shadow Copies

of the “recentdocs.pl” RegRipper plugin) from a specific user’s NTUSER.DAT hive
file. The specific command (modified for use in this example) that Corey had put
together was as follows:

for /l %i in (20,1,23) do (echo -----------------------

---------------- >> output-file.txt && echo Processing

HarddiskVolumeShadowCopy%i>> output-file.txt && C:\tools\

rip.exe -r c:\vsc\vsc%i\Users\user-profile\NTUSER.dat -p

userassist2>>userassist.txt)

The batch file and various commands that we’ve discussed here are just a few
simple examples of what you can do using batch file functionality that is native to
Windows systems.

TIP

Batch Files

There are a number of very useful resources available online that provide references for

batch file commands, such as http://www.computerhope.com/batch.htm and http://ss64

.com/nt/. You can also find tutorials, such as http://commandwindows.com/batch.htm, that

will assist you in writing batch files.

Corey also created a more comprehensive and functional batch file, which he gra-
ciously consented to allow me to include in the additional materials associated with
this book. The batch file is named “rip-vsc.txt” and can be found in the “ch3” directory
in the associated materials (found at http://code.google.com/p/winforensicaanalysis/

downloads/list). Corey spent some time in documenting and explaining the use of the
batch file, by adding comments (lines that begin with “REM”) to the file.

Internet Evidence Finder version 4 (IEF4; http://www.jadsoftware.com/go/?page_

id5141) is a software application that can search files or hard drives for indications
of a wide range of Internet-related artifacts, including Facebook, MySpace, mIRC,
and Google chat, web-based emails, etc. The web page for IEF4 states that the appli-
cation can also be used to search mounted VSCs.

ProDiscover

On March 3, 2011, Christopher Brown released version 6.9.0.0 of ProDiscover (all
versions, including the Basic Edition). I’ve had a license for ProDiscover Incident
Response Edition (IR) since version 3, for which I’m very grateful to Chris. Over
the years, I’ve had the privilege of watching the evolution of this product, and used
it to analyze a number of images. The latest update (as of this writing) provides
access to VSCs, which (as we’ve discussed) can be extremely valuable to the exam-
iner. I should note that in September 2011, Christopher released version 7.0.0.3 of
ProDiscover.

http://www.computerhope.com/batch.htm
http://ss64.com/nt/
http://ss64.com/nt/
http://commandwindows.com/batch.htm
http://code.google.com/p/winforensicaanalysis/downloads/list
http://code.google.com/p/winforensicaanalysis/downloads/list
http://www.jadsoftware.com/go/?page_id=141
http://www.jadsoftware.com/go/?page_id=141

65Acquired Images

To demonstrate accessing VSCs via ProDiscover IR, I have the application
installed on a Windows XP SP3 system, and I have an image of a hard drive from
a Dell laptop running Vista. First, I opened ProDiscover and created a new project,
and then added the image of the hard drive to the project. Once the image was
added (and I saved the project file), I clicked on the image file listing in the Content
View to see the context menu, illustrated in Figure 3.13.

Then, I clicked on “Mount Shadow Volume…” in the context menu and saw the
“Mount Shadow Volume…” dialog box illustrated in Figure 3.14.

As you can see in Figure 3.14, the mounted image has four partitions avail-
able, which, for those familiar with systems from Dell, is fairly common for default
installations (when I purchase Dell systems for myself, the first thing I do is com-
pletely reinstall the operating system), as they include, at the minimum, a Dell main-
tenance partition. Once the “Mount Shadow Volume…” functionality was selected,
ProDiscover located the volume where the VSCs reside (in this case, E:\) and popu-
lated a dropdown list with the available VSCs. There are a total of seven VSCs avail-
able, and as we progress through the VSCs in the dropdown list, the “Created date &
time” will change to reflect the correct date and time for the selected VSC. Finally,

FIGURE 3.13

ProDiscover “Mount Shadow Volume…” functionality.

FIGURE 3.14

ProDiscover “Mount Shadow Volume…” dialog.

66 CHAPTER 3 Volume Shadow Copies

whichever VSC was selected will be added to the Content View display as the G:\
volume (note that C:\ through F:\ are already populated).

When I clicked “OK,” the selected VSC was mounted as the G:\ volume within
the ProDiscover Content View interface. I then clicked on the volume letter, and the
files were populated within the volume, as illustrated in Figure 3.15.

At this point, there’s a great deal I can do with the available data in the VSCs.
For example, I can navigate to the Users folder and select files to be copied out
of the project for deeper examination, run ProScripts, etc. It all happened within
the blink of an eye, right there while I was sitting in front of my analysis system.
Along with the other functionalities inherent to ProDiscover (e.g., parsing Vista and
Windows 7 Recycle Bin files, locating and parsing email archives, etc.), being able
to mount and access the VSCs puts a whole new level of capabilities in the hands of
the analyst.

FIGURE 3.15

VSC mounted in ProDiscover.

TIP

Other Image File Formats

Throughout this chapter so far we’ve discussed accessing VSCs with raw/dd image files.

As such, I’m sure that at some point someone’s going to ask, “But I have an EnCase .EOx

image file, and it’s compressed—what do I do?” or “I have a snapshot of a VMWare virtual

machine/.vmdk file—how can I use the VHD method?” Those questions are easy to answer.

For the expert witness format (EWF) images (such as acquired via EnCase), you can open

the image in FTK Imager and reacquire it to raw/dd format, making yourself a working copy

of the image file. You can do the same thing with the .vmdk file and then use “vhdtool.exe”

to prepare the image for mounting, or search for tools to convert the .vmdk file to .vhd file

format.

67Summary

SUMMARY

While VSCs may initially be somewhat mysterious to many analysts, they do pro-
vide a very valuable resource with respect to historical data. VSCs can be accessed
via a number of methods, depending on how you’re accessing them (i.e., on a live
system or within an acquired image).

Keep in mind, however, that accessing VSCs on live systems can be a bit tricky,
in that you have to move quickly and decisively, as VSCs are subject to the FIFO
cycle—you may be attempting to gather information from a VSC that gets deleted
during that process.

Finally, remember to be extremely careful with respect to how you access files
within VSCs, both on live systems and within acquired images, as double-clicking
the wrong file can lead to your analysis system being infected or compromised.

Reference
Carvey, H. (2011). Windows registry forensics. Burlington, MA: Syngress Publishing, Inc.

This page intentionally left blank

69

File Analysis 4
CHAPTER

CHAPTER OUTLINE

Introduction ..70

MFT ...70

File System Tunneling ..76

Event Logs ..78

Windows Event Log ..82

Recycle Bin ..85

Prefetch Files ...88

Scheduled Tasks ...92

Jump Lists ..95

Hibernation Files ..101

Application Files ...102

Antivirus Logs ...103

Skype ...104

Apple Products ...105

Image Files ...106

Summary ..108

References ...109

INFORMATION IN THIS CHAPTER

l MFT

l Event Logs

l Recycle Bin

l Prefetch Files

l Scheduled Tasks

l Jump Lists

l Hibernation Files

l Application Files

http://dx.doi.org/

70 CHAPTER 4 File Analysis

INTRODUCTION

As with any computer system, Windows systems contain a great number of files,
many of which are not simply a standard ASCII text format. Many of these files
may not have any relevance to the analysis at all, and only a few may provide
critical information to the analyst. There also may be a number of files that are
unknown to the analyst, and due to their format, may not provide keyword search
hits. These files can often provide an analyst with a great deal of insight into their
examination, if they know that the files exist and how to analyze them.

The purpose of this chapter is not to reiterate analysis techniques that have been
discussed in detail in other resources. Instead, I’d like to discuss the existence of
several files, as well as analysis techniques that may be of value with respect to
these files, that haven’t been widely discussed in other venues.

As I mentioned, Windows systems contain a number of files of various formats.
These files can also contain data consisting of or embedded in various structures,
some of which are well documented, while others have been discovered through
analysis. Many analysts start their examinations by running keyword searches to
identify likely sources of information, but there are a number of files that may
provide critical information related to these keywords even though they don’t return
any search hits.

Many times, the structure where the data exist within a file adds relevance or
provides context to that data. For example, during a data breach investigation, I got
several hits for potential credit card numbers within a Registry hive file (Registry
analysis is discussed in detail in Chapter 5). Further analysis indicated that the
numbers were not key names, nor were they value names or data. Instead, they
were located within unallocated space within the hive file. It turned out that the
numbers detected in the search had been in sectors on the disk that had previously
been part of another file, which had been deleted. As such, the sectors had been
marked as available for use, and several of those sectors had been incorporated into
the hive file as it grew in size.

What this demonstrates is that analysis must (and can) go beyond simply run-
ning a search, and it’s critical that it actually does, to answer some very important
questions. For example, consider the finding I just discussed: Would “I found credit
card numbers in the Registry” really provide any value to the customer? Or would it
be more important to develop an understanding of where those credit card numbers
were found and how they got there? Understanding the structures of various files,
and the value that understanding can provide, will be the focus of this chapter.

MFT
Within the NTFS file system, the master file table (MFT) serves as the master list
of files and contains metadata regarding every file object on the system, includ-
ing files, directories, and metafiles. These metadata can be extremely valuable

71MFT

during an examination, particularly if you suspect that file metadata have been
manipulated in an effort to hide or mask activities (commonly referred to as
“anti-forensics”).

This chapter will not be a comprehensive treatise covering the complete struc-
ture of the MFT. Rather, we will focus on specific data structures (or “attributes”)
that can be extracted from MFT entries, and limit our discussion to a brief descrip-
tion of MFT entries and two specific attributes. Further, while we will be discussing
various tools that you can use to parse the MFT, we won’t be doing so to the depth
that you would expect to be able to write your own such tools from scratch. Perhaps
the best source for additional, detailed information regarding the MFT, the structure
of MFT entry attributes, and the forensic analysis of file systems in general is Brian
Carrier’s book, File System Forensic Analysis (Carrier, 2005).

Each file and directory (folder) on a Windows system has a record in the MFT.
Each record is 1024 bytes in length. As NTFS views each file as a set of attributes,
the file’s MFT record contains some number of attributes that hold metadata about
the file or, in some cases, the file data (content) themselves. The first 42 bytes of
each record comprise the File Record Header, which provides information such as
the link count (how many directories have entries for this file, which helps deter-
mine the number of hard links for the file); whether the record is for a file or direc-
tory; whether the file or directory is in use or deleted; and the allocated and used
size of the file.

All file and directory records will have a $STANDARD_INFORMATION
attribute ($SIA), which is 72 bytes in length (for Windows 2000 and later systems)
and contains (among other things) a set of time stamps. These time stamps are
64-bit FILETIME objects, as defined by Microsoft, which represent the number of
100-nanosecond intervals since January 1, 1601. These time stamps are what we
most often “see” when interacting with the system (via the command prompt when
using the dir command, or via the Windows Explorer shell), and are written into the
MFT record in UTC format on NTFS systems. This means that when we see these
time stamps through Windows Explorer (or via the dir command at the command
prompt), they are translated for display to the user in accordance with the time zone
information stored in the Registry for that system.

NOTE

Displaying Time Stamps in Forensic Analysis Applications

Most commercial forensic analysis applications have the ability to display file last modified,

last accessed, and created (MAC) time stamps in accordance with the time zone settings

on the analyst’s system, although this functionality can be disabled. In the ProDiscover

Incident Response Edition, that setting can be found by clicking the File menu option,

and choosing the Preferences option, which opens the Preferences dialog, as illustrated in

Figure 4.1.

72 CHAPTER 4 File Analysis

The time stamps that are stored within the $SIA attribute are the last modified
time, the last accessed time, the MFT entry modified (changed) time, and the crea-
tion (“born”) time, and are referred to collectively as “MACB” times, where each
letter corresponds to each of the time stamps, respectively. Another way of refer-
ring to these times is “MACE” times” (for file modified, file accessed, file created,
and MFT entry modified); note that the last two times (MFT entry modified and
file creation times) are transposed. For consistency, we will refer to these times as
“MACB” times throughout the rest of this chapter. These time stamps are modified
and updated during the course of normal operating system activity; for example,
when a file is created, the time stamps are set to the current date and time. Whenever
a change is made to the file itself (data are added, modified, or removed by the user
or a service), the last modification time is updated. As we’ll see in the “Last Access
Time” box, modification to this time stamp is subject to a couple of conditions.

FIGURE 4.1

ProDiscover time zone settings.

WARNING

Last Access Time

Most analysts think that when a file is opened or accessed in some other way, the last

access time for that file (in the $SIA attribute in the MFT) is modified to reflect the

appropriate time. However, the last accessed time for a file on the NTFS file system on the

hard drive is not always current. NTFS delays writing the updated last accessed time to

disk for performance reasons, although the correct time is maintained in memory. Windows

will update the value on disk once the time differs from the value in memory by an hour or

more (I am referencing http://www.microsoft.com/resources/documentation/windows/xp/all/

proddocs/en-us/fsutil_behavior.mspx?mfr 5true).

In addition, there is a Registry value (HKLM\SYSTEM\CurrentControlSet\Control\

FileSystem\NtfsDisableLastAccessUpdate) that, when set to 1, disables updating of last

access times. On Windows XP and 2003 systems, this Registry value does not normally

exist in a default installation; however, the value can be added and set to 1, which is

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/fsutil_behavior.mspx?mfr=true
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/fsutil_behavior.mspx?mfr=true

73MFT

In addition, every file within the NTFS file system will have at least one $FILE_
NAME ($FNA) attribute in its MFT record. This attribute contains 66 bytes of file
metadata, plus the filename itself. An MFT record for a file can have more than one
$FNA attribute, as the file system may require that for files with long filenames,
there is also a DOS 8.3 name (this can be disabled via a Registry value). This sim-
ply means that if you have a file named “This is a long file named ‘file.doc,’” there
will also be an $FNA attribute containing the name “this_i~1.doc,” which consists
of eight characters, the dot separator, and the three-character extension. As such,
this file would have a $SIA and two $FNA attributes.

In addition to the filename, the metadata contained in the $FNA attribute include
a reference to the parent directory (which allows tools to completely reconstruct the
full path to the file), as well as four time stamps, similar to and in the same format as
those within the $SIA attribute. The primary difference with the $FNA time stamps
is that Windows systems do not typically update these values in the same way as
those in the $SIA attribute; rather, the $FNA times correspond to the original date
for when the file was created, moved, or renamed. As such, accessing the MFT, pars-
ing the various attributes for the specific files, and noting any anomalies between the
$SIA and $FNA values is a technique that analysts use to determine the likelihood
of the $SIA time stamps being purposely modified in an attempt to disguise the file.

There are several free, open-source tools available that can be easily retrieved
from the Internet that will allow us to extract the $SIA and $FNA attributes from
the MFT. One such tool is David Kovar’s Python script named “analyzeMFT.py”
(http://www.integriography.com/). The Python script has some graphical compo-
nents, so be sure to read the instructions and install the appropriate modules for
your platform, or go into the script itself and change the line “noGUI 5 False” to
“noGUI 5 True.” If you’re sticking to the Windows platform, David also provides an
installer for a standalone Windows executable version of the tool. “AnalyzeMFT.py”
has some useful options, one of which is that it provides for a modicum of “anomaly
detection.” This consists of checking for the upper 32 bits of the $SIA time stamps
to see if they’re all zeros, as well as checking to see if the creation date in the $FNA
is after the $SIA creation date. Positive results to either of these two checks might
indicate an attempt to modify time stamps to hide malicious activity. Something to
keep in mind, too, is that when using anomaly detection, the comma-separated value
(CSV) output of the tool consists of 53 columns (in MS Excel, A–BA).

I’ve also written my own “mft.pl” Perl script for parsing the time stamps (and
other information) for files and directories listed in the MFT. This Perl script is

recommended to improve the performance of high-volume file servers. As of Vista (and

continuing to Windows 7), this value exists and is set to 1. This does not mean, however,

that the last access times on files on these systems are never updated; in fact, file creation,

move, or copy can cause this time to be modified. What it affects is file accesses such as

opening and viewing the file.

http://www.integriography.com/

74 CHAPTER 4 File Analysis

included with the materials provided in association with this book, and provides a
good framework from which I’ve been able to write other Perl scripts, with addi-
tional functionality. As you’ll see later in this chapter, the script displays informa-
tion from the MFT File Entry Header, as well as the $SIA and $FNA attributes in
an easy-to-view format.

When analyzing the information derived from the MFT, it is important to keep
in mind that other user actions (besides simply reading from or writing to a file) can
have an effect on the file time stamps within the $SIA entry, as well, and several are
described in Microsoft KnowledgeBase (KB) article 299648 (found at http://support

.microsoft.com/?kbid5299648). For example, copying or moving a file between direc-
tories within an NTFS partition retains the last modification date on the file, but the
copy operation will reset the creation date to the current date, whereas the move oper-
ation retains the original creation date of the file. Refer to the KB article for details,
but keep in mind that when transferring files, whether or not time stamps are updated
(and which time stamps are actually updated) depends on a number of factors, includ-
ing whether the file is being copied or moved, and whether it is being transferred to a
different location within the same drive partition, or from one partition to another.

NOTE

Testing

I have yet to find any clear, thorough documentation regarding how file time stamps are

affected by all possible operations; as such, analysts should always test their hypotheses

when faced with unusual conditions or situations. For example, if you suspect that a file

was copied from a FAT32-formatted USB thumb drive to an NTFS partition, how would you

expect the time stamps for both (the original and copied) files to appear? How about a file

copied between NTFS shares? It is always a good idea to simulate the conditions of your

hypothesis as best as possible and run your own tests for verification.

Not only do the aforementioned actions affect the time stamps in the $SIA
attribute, but these values (within the $SIA) can be manipulated arbitrarily, as well.
Essentially, if a user has write access to a file, he can modify the time stamps of
that file to arbitrary values, and those modifications are written to the time stamps
in the $SIA attribute (technically, per http://msdn.microsoft.com/en-us/library/

cc781134, these are also written to the directory entry). This is an anti-forensic tech-
nique that is often referred to as time stomping, named for a tool (“timestomp.exe”)
used to perform this function, which allowed the user of that tool to set the time
stamps to arbitrary times (at the time of this writing, I was not able to find a copy of
“timestomp.exe” online). Consider the effect on an investigation of finding illegal
images on a system confiscated in 2011, only to find that the files had creation dates
in 2014 and last access dates in 1984. Even one or two files with time stamps similar
to this would be enough to cast doubt on other files. One of the drawbacks of using
“timestomp.exe,” however, was that the application reportedly had a resolution of 32
bits for the times, leaving the upper 32 bits of the 64-bit FILETIME object all zeros.

http://support.microsoft.com/?kbid=299648
http://support.microsoft.com/?kbid=299648
http://msdn.microsoft.com/en-us/library/cc781134
http://msdn.microsoft.com/en-us/library/cc781134

75MFT

This would make the use of this technique relatively easy to detect; in fact, as men-
tioned previously in this chapter, checking for this is part of the “anomaly detection”
performed by David Kovar’s “analyzeMFT.py” Python script.

Another technique for modifying time stamps on files is copying the time values
from another file, particularly one that was part of the original Windows installa-
tion, such as “kernel32.dll” (found in the “C:\Windows\system32” directory). This
technique avoids the resolution issue faced by “timestomp.exe,” does a better job of
hiding the file from analysis techniques (see Chapter 7), and is easily accessible via
native application programming interface (API) functions.

NOTE

Time Stomping

As I mentioned, while I was writing this chapter, I was not able to find a copy of

“timestomp.exe”; however, using Perl, I can easily modify file time stamps by copying

time stamps from another file on the system. After installing ActiveState’s ActivePerl,

I then installed the Win32API::File::Time Perl module using the following command:

C:\Perl>ppm install win32api-file-time

Once the module was installed, I could use this module to access two specific native

Windows API functions, using the following lines of code (excerpted from the Perl script):

my ($atime, $mtime, $ctime) = GetFileTime ($file);

SetFileTime ($file2, $atime, $mtime, $ctime);

To demonstrate this functionality, I added a couple of checks for file time stamps using

the Perl stat() function to the script, ran it against file (“C:\temp\test.txt”), copying the time

stamps from “kernel32.dll.” The output of the script appeared as follows:

C:\Windows\system32\kernel32.dll

Creation Time: Tue Feb 28 08:00:00 2006

Last Access : Mon May 30 21:14:22 2011

Last Write : Sat Mar 21 10:06:58 2009

C:\Temp\test.txt

Creation Time: Mon May 30 17:36:12 2011

Last Access : Mon May 30 17:36:12 2011

Last Write : Mon May 30 17:36:12 2011

C:\Temp\test.txt

Creation Time: Tue Feb 28 08:00:00 2006

Last Access : Mon May 30 21:14:22 2011

Last Write : Sat Mar 21 10:06:58 2009

The script first displays the output of the Perl stat() function for the file “kernel32.dll”

(all times are displayed in local system time, and my system is set to Eastern Standard Time

with daylight savings), as well as the current settings for the target file, “test.txt.” After

changing the time stamps on the target file, it then displays the new time values. As you can

76 CHAPTER 4 File Analysis

Extracting the $SIA and $FNA time stamps for comparison and analysis is only one
example of how understanding the MFT can be beneficial to an analyst. Understanding
additional elements of the MFT, as well as the structure of each individual MFT record,
can provide additional details with respect to the status of various files.

File System Tunneling

Another aspect of Windows file systems that can affect the time stamps that you
observe during your analysis (and isn’t often discussed) is file system tunneling.
This process applies to both file allocation table (FAT) and new technology file sys-
tem (NTFS) file systems and is described in Microsoft KB article 172190 (found at
http://support.microsoft.com/kb/172190). File system tunneling refers to the fact that
within a specific time period (the default is 15 seconds) after a file is deleted, file
table records (FAT or MFT) will be reused for files of the same name. In short, if you
have a file named “myfile.txt” that is deleted or renamed, and a new file of the same
name is created shortly after the deletion or rename operation, then the file table
record is reused, and the original file’s creation date is retained. According to KB
article 172190, this “tunneling” functionality is meant to maintain backward compat-
ibility with older 16-bit Windows applications that perform “safe save” operations.

see, the last accessed time for “kernel32.dll” was modified when the script was run (the

Perl script was run on a Windows XP SP3 system), and the time stamps on the “test.txt” file

were modified in accordance with the time stamps copied from “kernel32.dll.”

To verify this information, I extracted the MFT from the system (using FTK Imager) and

extracted the information using “mft.pl”; the information for the “test.txt” file appears as

follows (times are displayed in UTC or “Zulu” format):

70319 FILE Seq: 15 Link: 1 0x38 3 Flags: 1
0x0010 96 0 0x0000 0x0000
M: Sat Mar 21 14:06:57 2009 Z
A: Tue May 31 01:14:22 2011 Z
C: Tue May 31 01:14:23 2011 Z
B: Tue Feb 28 11:59:59 2006 Z
0x0030 112 0 0x0000 0x0000
FN: test.txt Parent Ref: 67947 Parent Seq: 49
M: Mon May 30 21:36:12 2011 Z
A: Mon May 30 21:36:12 2011 Z
C: Mon May 30 21:36:12 2011 Z
B: Mon May 30 21:36:12 2011 Z

0x0080 48 0 0x0000 0x0018

The first set of MACB time stamps were extracted from the $SIA attribute, and the

second set were extracted from the $FNA attribute. As you can see, the time stamps

extracted from the $SIA attribute reflect what was seen using the Perl stat() function

(taking the time zone settings into account), while the time stamps from the $FNA attribute

reflect the original times.

http://support.microsoft.com/kb/172190

77MFT

To demonstrate file system tunneling, I created a text file named “test3.txt” on
my Windows XP SP3 system that is 31 bytes in size, and waited a few days. Using
the Perl stat() function, the $SIA time stamps appear as follows, in UTC format:

c:\temp\test3.txt 31 bytes

Creation Time: Mon May 30 21:41:48 2011 UTC

Last Access : Mon May 30 21:41:48 2011 UTC

Last Write : Mon May 30 21:41:48 2011 UTC

I then deleted “test3.txt,” and immediately (within 15 seconds) recreated the file
using the echo command (i.e., echo “A tunnel test” . test3.txt) at the command
prompt. The new version of “test3.txt” is 18 bytes in size, and the time stamps
appear as follows (again, in UTC format):

c:\temp\test3.txt 18 bytes

Creation Time: Mon May 30 21:41:48 2011 UTC

Last Access : Fri Jun 3 20:39:18 2011 UTC

Last Write : Fri Jun 3 20:39:18 2011 UTC

As you can see, the creation date of the new file remains the same as the origi-
nal “test3.txt,” even though the new file was “created” on June 3, 2011. Using FTK
Imager, I then exported the MFT and parsed it with the “mft.pl” Perl script; the
$SIA and $FNA information for the “test3.txt” file appears as follows:

39630 FILE Seq: 60 Link: 1 0x38 3 Flags: 1

 0x0010 96 0 0x0000 0x0000

 M: Fri Jun 3 20:39:18 2011 Z

 A: Fri Jun 3 20:39:18 2011 Z

 C: Fri Jun 3 20:39:18 2011 Z

 B: Mon May 30 21:41:48 2011 Z

 0x0030 112 0 0x0000 0x0000

 FN: test3.txt Parent Ref: 67947 Parent Seq: 49

 M: Fri Jun 3 20:39:18 2011 Z

 A: Fri Jun 3 20:39:18 2011 Z

 C: Fri Jun 3 20:39:18 2011 Z

 B: Mon May 30 21:41:48 2011 Z

As you can see from the previous excerpt from the MFT, the “born” or creation
dates in both the $SIA and $FNA attributes remain the same as the original file, but
all other time stamps are updated to the current date and time, with respect to the
file creation. Remember, all I did was create the file (from the command line); I
didn’t access (open) or modify the file in any way after creating it.

More than anything else, I’ve found the information discussed thus far to
be very useful in establishing when files were really created on a compromised
system. By comparing the creation dates from the $SIA and $FNA attributes for
suspicious files, I’ve often found clear indications of attempts to hide the existence
of those files from detection and closer inspection. This will become a bit clearer
when we discuss timeline analysis in Chapter 7.

78 CHAPTER 4 File Analysis

EVENT LOGS
Windows systems are capable of recording a number of different events in the
Event Log, depending on the audit configuration (we will discuss in Chapter 5
how to determine the audit configuration). The Event Log files on Windows 2000,
XP, and 2003 systems are made up of event records that are stored in a well-
documented binary format (found at http://msdn.microsoft.com/en-us/library/

aa363646(v5VS.85).aspx). Part of this format includes a “magic number” that is
unique to individual event records (including the header record, which contains
information about the Event Log file itself), as illustrated in Figure 4.2.

As illustrated in Figure 4.2, the “LfLe” “magic number” can be used to identify
event records within the Event Log file. The 4 bytes immediately prior to the event
record (0xE0 in Figure 4.2) tell us the size of the event record in bytes. This infor-
mation is not only useful in parsing through the Event Log file on a binary level,

FIGURE 4.2

Partial Windows XP event record format.

NOTE

NTFS $I30 Index Attributes

On September 26, 2011, Chad Tilbury, a SANS instructor, posted an entry to his blog titled

“NTFS $I30 Index Attributes” (found at http://forensicmethods.com/ntfs-index-attribute,

and had originally been posted to the SANS Forensic blog). Chad does an excellent job

of describing the index attributes, how they can be used to identify the names of deleted

files, and how they can be parsed. Many times during incidents malware files may be

deleted, often through actions taken by an intruder or inadvertently by an administrator

or responder. Index attributes may provide indications of the deleted files, including time

stamps associated with those files; as Chad points out, the time stamps are similar to

those found in the $FILE_NAME attribute of an MFT record. Chad also demonstrates the

use of Willi Ballenthin’s “indxparse.py” Python script for parsing index attributes. Willi’s

discussion of the “indxparse.py” script can be found at http://www.williballenthin.com/

forensics/indx/index.html.

http://msdn.microsoft.com/en-us/library/aa363646
http://msdn.microsoft.com/en-us/library/aa363646
http://forensicmethods.com/ntfs-index-attribute
http://www.williballenthin.com/forensics/indx/index.html
http://www.williballenthin.com/forensics/indx/index.html

79Event Logs

extracting each record in turn (and writing tools to help us do this), but it can also
be used to extract event records from relatively unstructured data, such as unallo-
cated space (or the page file), which will be described later in this section.

Many analysts have discovered that when extracting Event Log files from an
acquired image and opening them in the Event Viewer on the their analysis system,
they will often encounter a message stating that the Event Log is “corrupt.” This is
usually not due to the Event Log files actually being corrupted, but instead is often
due to the fact that some message dynamic linked library (DLL) files may not be
available on the analysis system. As such, I’ve written several tools to assist me
with collecting information pertinent to my analysis from Event Log files. The first
is the Perl script “evtrpt.pl,” which collects information about the event records,
such as the frequency of events based on event sources and identifiers (IDs), an
excerpt of which, from an Application Event Log, appears as follows:

Source Event ID Count

------- --------- ------

SecurityCenter 1800 2

SecurityCenter 1807 192

Symantec AntiVirus 12 17

Symantec AntiVirus 14 17

Symantec AntiVirus 16 12

Symantec AntiVirus 53 3

This information is a quick way to determine the type and number of the vari-
ous event records within the Event Log, based on event sources and IDs. This is
a great way of providing an overview of the Event Log content, and whether or
not I can expect to find any records of value to my analysis. Having this informa-
tion available has let me see some things very quickly. For example, if I’m work-
ing a malware issue and see that there are several event records with the source
“Symantec AntiVirus,” I know that the system had the application installed at one
point, and that can help guide my analysis. In particular, if I opt (as part of my
malware detection process, something we will discuss in Chapter 6) to mount the
image as a volume and scan it with an AV product, I know not to use the product
that was installed on the system. Similarly, while I most often start my analysis of
the Event Logs by looking at what is actually being audited via the audit policy,
there have been times when, although logins are being audited, the system has been
running for so long that no one has needed to log into it. As such, I have found
Security Event Logs with no login events available in the visible event records.

“Evtrpt.pl” also provides the date range of all of the event records within the
file, as follows:

Date Range (UTC)

Thu Jan 18 12:41:04 2007 to Thu Feb 7 13:39:25 2008

The date range information can be very useful, as well. There have been times
when I’ve been asked to provide information regarding which user was logged into

80 CHAPTER 4 File Analysis

the system on a certain date or within a specific timeframe. Evtrpt.pl provides me
with a quick view into whether or not digging deeper into the Event Logs is of
value, or perhaps I should decrease the priority of the logs as a source of informa-
tion and focus my analysis on more profitable targets.

NOTE

AV Logs

Most antivirus (AV) products produce some sort of logs; many produce text-based logs that

are easy to view and parse, particularly if you load them into Excel. Many AV products

will also write their logs to the Application Event Log, but for some, this can also be

a configurable option. I have analyzed systems on which I have easily located the AV

application logs, but have not seen any corresponding entries in the Application Event Log.

Another tool that I like to use for parsing Event Log records is the Perl script
“evtparse.pl.” This Perl script reads through the Event Log files on a binary level,
locating and parsing the records without using any of the native Windows API func-
tions. This has a couple of benefits; one is that you don’t have to worry about the Event
Log file being deemed “corrupted,” as will sometimes occur when using tools (such
as the Windows Event Viewer) that rely on native Windows application programming
interface (API) functions. The other is that the Perl script is platform-independent; it
can be used on Windows, Linux, and even Mac OS X. The script is capable of parsing
event records into either CSV format, suitable for opening Excel, or into a format suit-
able for timeline analysis (which will be discussed in greater detail in Chapter 7).

Parsing the values is only half the battle, though. There are a number of
resources available that provide information and details regarding what the vari-
ous event records, either individually or correlated together, can mean. One of my
favorite resources is the EventID web site (http://www.eventid.net). The $24 annual
registration fee is well worth the expense, as I can log into the site and run searches
to not only get additional information about Microsoft-specific events, but also see
information with respect to issues that others (mostly system administrators) have
observed or encountered, as well as links to pertinent Microsoft KB articles. All
of this can be very revealing, even if it only provides me with additional leads or
places to look. Application-specific event records are usually best researched at the
vendor’s web site, as blogs and forum posts can provide a great deal of information
about various events generated by these applications.

Another resource for finding information about Security Event Log entries is the
Ultimate Windows Security Event Log site (http://www.ultimatewindowssecurity

.com/securitylog/encyclopedia/default.aspx). This site provides an easily searched
list of Security Event Log entries, with some explanations to provide context. The
site provides information regarding Security Event Log entries for Windows XP and
2003 systems, as well as corresponding entries for Vista and Windows 2008 systems.

http://www.eventid.net
http://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx
http://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx

81Event Logs

The Event Logs themselves are not always the sole source of event records on
a system. Event Log records, like other data, may be found within the pagefile or
within unallocated space. I was once asked to analyze a system from which very
few event records were found in the Event Logs and the Security Event Log had
an event ID 517 record, indicating that the Event Log had been cleared. As such,
one of the steps in my analysis was to attempt to recover deleted event records.
My first step was to use the Sleuthkit (http://www.sleuthkit.org/) tool “blkls.exe” to
extract all of the unallocated space from the acquired image into a separate file. I
then loaded that file into BinText (http://www.mcafee.com/us/downloads/free-tools/

bintext.aspx) and saved the list of strings located within the file. I then wrote a
Perl script to go through the list of strings and locate all those that contained the
event record “magic number” (i.e., “LfLe”); when BinText reports the strings that
it locates, it also provides the offset within the file where that string is located
(“strings.exe,” available from Microsoft, will do the same thing if you add the “-o”
switch to the command line—the utility can be downloaded from http://technet

.microsoft.com/en-us/sysinternals/bb897439).
For every string that BinText located that began with “LfLe,” the Perl script

would go to the offset within the file containing the unallocated space, “back up” 4
bytes (a “DWORD”), and read the size value. As the event record structure begins
and ends with this 4-byte size value, the script would then read the total number of
bytes, and if the first and last DWORDs in the sequence were the same, the event
record was assumed to be valid, extracted, and parsed. Using this technique, I was
able to recover over 330 deleted event records. Another way to do this would be
to simply have a slightly modified version of either the “evtrpt.pl” or “evtparse.pl”
script parse through unallocated space 4 bytes at a time, looking for the event record
“magic number,” and then processing each event found to be a valid record. However
you go about doing this, it can be a very valuable technique, particularly if you’re
trying to construct a timeline, as discussed in Chapter 7. The point of this is to illus-
trate how understanding the various data structures on Windows systems can lead to
the recovery of additional data that may significantly affect your overall analysis.

TIP

Event Log Analysis

When conducting analysis on a Windows system, I don’t have specific event records

that I search for every time; rather, what I look for depends heavily on the goals of the

examination and the system’s audit configuration. While many of the systems I’ve analyzed

have had fairly default configurations (minimal changes, if at all, beyond the default,

out-of-the-box settings), I have found great value in those systems where settings had

been modified, to include the Event Log size being increased. I once had the opportunity

to analyze a Windows XP system on which not only were both successful and failed logon

events being recorded, but Process Tracking was also enabled. When analyzing this system,

I created a timeline (discussed in detail in Chapter 7) of system activity, and the additional

detail provided by the Event Log configuration was invaluable.

http://www.sleuthkit.org/
http://www.mcafee.com/us/downloads/free-tools/bintext.aspx
http://www.mcafee.com/us/downloads/free-tools/bintext.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897439
http://technet.microsoft.com/en-us/sysinternals/bb897439

82 CHAPTER 4 File Analysis

Windows Event Log

With Vista, Microsoft modified a great deal about how events are recorded, as
well as the types of events recorded, the location where the events are recorded,
and the structure of those recorded events. This new mechanism is referred to as
the “Windows Event Log,” rather than just “Event Log” as seen on Windows XP
and 2003 systems. On Vista through Windows 7 systems, the Windows Event Logs
are stored in the “C:\Windows\system32\winevt\Logs” folder (by default), and are
stored in a binary extensible markup language (XML) format.

On a system with a default installation of Windows 7 and only MS Office 2007
installed, I found 134 different .evtx files in the “winevt\Logs” directory. There are
two types of Windows Event Logs: Windows logs and Application and Services
logs. Figure 4.3 illustrates these logs, visible via the Event Viewer.

You can see a number of the Event Logs that you’d expect to see on a Windows sys-
tem in Figure 4.3. For example, there are the Application, System, and Security Event
Logs, which correspond to “appevent.evt,” “sysevent.evt,” and “secevent.evt,” respec-
tively, on Windows XP/2003 systems. The Security Event Log records many of the
same events as you may be used to seeing on Windows XP systems, including logons
and logoffs (depending on the audit configuration, of course). However, there is a differ-
ence—many of the event IDs you would be interested in are different for the same event.
For example, on Windows XP, an event ID of 528 would indicate a logon; for Windows
7, that same event would have an event ID of 4624. The difference between these
two event IDs is 4096; this holds true for a number of Security events. The Ultimate
Windows Security site has a fairly exhaustive listing of both Windows XP and Windows
7 Security Event Log records that you might expect to see, which can be found at http://

www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx.
You will also see the Setup and Forwarded Event Logs in Figure 4.3. According

to Microsoft, the Setup log contains events related to application setup; however,

TIP

Interesting Artifacts

While I do not have a list of specific event IDs that I look for during every analysis

engagement, there are some records of interest that I do look out for when required by

the goals of the engagement. As mentioned previously in the chapter, a Security Event

Log entry with event ID 517 indicates that the Event Log was cleared. Further, on most

systems, some Windows services being started will result in an event with the “Service

Control Manager” source and an ID of 7035 being generated by the system shortly after

the system is booted. As such, services started by a user hours or days after the system

was last started may indicate normal system administration activity, or provide indications

of a compromise, such as an intrusion or malware being installed. Further, a number of

organizations may use tools such as “psexec.exe” (http://technet.microsoft.com/en-us/

sysinternals/bb897553) to access and remotely manage systems; however, intruders will

sometimes use “psexec.exe” or similar tools (such as “rcmd.exe,” the remote command

utility available from Microsoft) to remotely access systems. The use of such tools usually

results in a service being started in the context of the user account used to launch the tool,

and is preceded by a network logon (security event ID 540, type 3).

http://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx
http://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897553
http://technet.microsoft.com/en-us/sysinternals/bb897553

83Event Logs

reviewing the various entries on a live system reveals that the statuses of Windows
Updates are also recorded in this log. The Forwarded Event Log is intended to store
events forwarded from other systems.

The remaining logs are Applications and Services logs and store events for a
single application or component, rather than events that would affect the entire sys-
tem. These logs have four subtypes: Operational, Admin, Analytic, and Debug. By
default, on a normal Windows 7 system, you’re likely to see Operational and Admin
logs, although now and again you’ll see Analytic logs. Admin events are targeted at
end users and system administrators, and provide information that an administrator
may use to fix an issue or take some other action. Operational logs are generally used
to diagnose an issue. For example, the Microsoft-Windows-WLAN-AutoConfig/
Operational log provides information about wireless networks that the system has
associated with, and through which network adapter, as illustrated in Figure 4.4.
Events such as this can be instrumental not just in diagnosing problems, but can also
provide clues to examiners during an investigation.

The Debug and Analytic logs are intended for developers and used to diagnose
problems that cannot be handled through user intervention.

FIGURE 4.3

Windows 7 Event Logs (via Event Viewer).

TIP

VHDs and VMs

I’ve done a bit of testing of virtual hard drives (VHDs) while writing this book (see

Chapter 3), mounting and removing them from my Windows 7 system. As such, the

Microsoft-Windows-VHDMP/Operational.evtx log has a number of events visible that are

associated with the “surfacing” (mounting) of VHD files (event ID 1) and “unsurfacing”

84 CHAPTER 4 File Analysis

All this aside, what are some of the ways to get at the data within the Windows
Event Logs? One means for parsing Windows Event Logs that I’ve found to be very
effective is to install Microsoft’s free Logparser tool (http://www.microsoft.com/

download/en/details.aspx?displaylang5en&id524659) on a Windows 7 analysis
system, and then either extract the Windows Event Log files from the acquired image,
or mount the acquired image as a volume. From there, I then use the following
command to extract all of the event records from each log:

logparser -i:evt -o:csv "SELECT * FROM D:\Case\System.evtx" >

output.csv

When using this command, it’s important to remember that Logparser relies on
the APIs (available via DLLs) on the analysis system. As such, you won’t be able

(removing) of those files (event ID 2). However, this log applies only to the mounting and

removal of VHD files. The Microsoft-Windows-Virtual PC/Admin log maintains records of

the use of Virtual PC to create and start virtual systems or machines (VMs), including “XP

Mode,” a version of Windows XP available to maintain compatibility with applications

that may not run well (or at all) on Windows 7. This log also maintains information about

applications installed in XP mode, but launched from Windows 7. Both of these may

provide valuable information during exams, particularly when you’re looking for files that

may not be in the Windows 7 file system, but may have been accessed from a VHD or VM.

FIGURE 4.4

Event from the WLAN-AutoConfig/Operational log.

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=24659
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=24659

85Recycle Bin

to use it to parse Vista or Windows 7 Event Logs if you’re running Windows XP on
your analysis system, as the Event Log APIs on Windows XP aren’t compatible with
the Vista/Windows 7 Windows Event Log format. Similarly, you can’t use Logparser
to parse Windows XP or 2003 logs on a Vista/7 analysis system. Sending the output
of the Logparser command to CSV format allows for easy viewing and analysis via
Excel, in addition to providing additional columns for you to add references or your
own notes. The format also allows for easy parsing, as we will see in Chapter 7.

TIP

Converting Event Logs

While attempting to use Logparser running on a Windows 7 system to parse Windows XP

Event Logs won’t result in anything useful, you can use “wevtutil.exe” (native to

Windows 7) to convert the XP Event Logs to Windows 7 Event Log format, using a

command line similar to the following:

D:\tools>wevtutil epl appevent.evt appevent.evtx /lf:true

Andreas Schuster, whose blog can be found at http://computer.forensikblog

.de/en/, has put a good deal of effort into deciphering and decoding the Windows
Event Log format, and creating a Perl-based library and tools collection for pars-
ing the events from a log. As of this writing, the version of his library is 1.08. You
can download and install Andreas’ library, or you can use tools that have the library
and tools already installed, such as the SANS Investigative Forensic Toolkit (SIFT)
Workstation that Rob Lee developed. SIFT version 2.1 was available at http://

computer-forensics.sans.org/community/downloads when this chapter was being
written.

RECYCLE BIN
Windows systems have a great deal of event recovery built into them. Microsoft
understands that users make mistakes, or may delete a file that they later wish they
hadn’t. As such, the Windows Recycle Bin acts as a repository for files deleted by
the user through normal means, such as hitting the Delete key or right-clicking the
file and selecting “Delete” from the context menu (files deleted from remote shares
or from the command line are not sent to the Recycle Bin).

TIP

Bypassing the Recycle Bin

According to http://support.microsoft.com/kb/320031, the Recycle Bin can be bypassed by

right-clicking on the Recycle Bin, choosing “Properties,” and checking the “Do not move

files to the Recycle Bin” checkbox, as illustrated in Figure 4.5.

http://computer.forensikblog.de/en/
http://computer.forensikblog.de/en/
http://computer-forensics.sans.org/community/downloads
http://computer-forensics.sans.org/community/downloads
http://support.microsoft.com/kb/320031

86 CHAPTER 4 File Analysis

On Windows XP systems, deleted files are moved to the Recycler directory,
within a subdirectory based on the security identifier (SID) for the user. Figure 4.6
illustrates the subdirectory for the Administrator user on a Windows XP system.

When a file is deleted on a Windows XP system and moved to the Recycle Bin,
the file is renamed in accordance with a standard format, which is outlined in the
“How the Recycle Bin Stores Files” Microsoft KB article (found at http://support

.microsoft.com/kb/136517). The name is changed so that the first letter is “D” (for
“deleted”), the second letter is the drive letter from which the file originated, which
is followed by the number of the deleted file, and the name ends with the original
file extension. Figure 4.7 illustrates a deleted executable file that originated from
the Z:\ drive.

As illustrated in Figure 4.7, the Recycle Bin also maintains an index file (named
“INFO2”) that keeps track of the original filename and location of deleted files,

Checking this checkbox creates the NukeOnDelete value within the Registry (beneath

the HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\BitBucket key) if it

doesn’t exist, and sets it to 1. If the checkbox is unchecked, the value is set to 0 and the

functionality is disabled. This functionality can be set globally (for all available volumes) or

on a per-volume basis. Given this capability, if you have a case involving potentially deleted

files and do not find anything of value in the Recycle Bin, you may want to check for the

existence of the NukeOnDelete value.

FIGURE 4.5

Windows XP Recycle Bin properties.

http://support.microsoft.com/kb/136517
http://support.microsoft.com/kb/136517

87Recycle Bin

as well as when the files were deleted. The Perl script “recbin.pl” can be used to
extract specific data from the “INFO2” file, as illustrated here:

C:\tools>recbin.pl -i d:\cases\info2

1 Mon Sep 26 23:03:27 2005 C:\Documents and Settings\jdoe\Desktop\

lads.zip

2 Mon Sep 26 23:05:28 2005 C:\Documents and Settings\jdoe\LADS_

ReadMe.txt

3 Mon Sep 26 23:05:28 2005 C:\Documents and Settings\jdoe\lads.exe

4 Mon Sep 26 23:23:58 2005 C:\Documents and Settings\jdoe\My

Documents\Morpheus Shared\Downloads\Toby Keith - Stays In Mexico.

mp3

As you can see, “recbin.pl” parses through the “INFO2” file and returns the
index of the deleted file, the date and time the file was deleted, and the original
filename of the deleted file.

Beginning with Vista, Microsoft changed the format of the files within the
Recycle Bin. When files are deleted through the Windows Explorer shell, by default
they will be moved to the Recycle Bin (“$Recycle.Bin” on disk) into a subfolder
named for the user’s SID. The file itself will be given a new filename, which starts
with “$R,” and is followed by six characters and ends in the original file’s exten-
sion. A corresponding index file will be created, which starts with “$I,” and con-
tains the same remaining characters and extension as the “$R” file. Several deleted
files and their index files are illustrated in Figure 4.8.

Figure 4.8 illustrates several deleted files and their corresponding index files.
Figure 4.9 illustrates the binary contents of an index file. Each index file is 544 bytes
in size. As you can see in Figure 4.9, the first eight bytes of the file appear to be a
header, and the second eight bytes are the size of the original file, in little-endian

FIGURE 4.6

Windows XP Recycle Bin in FTK Imager.

FIGURE 4.7

Deleted file in the Windows XP Recycler directory.

88 CHAPTER 4 File Analysis

hexadecimal format. Bytes 16–23 comprise the 64-bit FILETIME object for when
the file was deleted, and the remaining bytes of the file are the name and path of the
original file, in Unicode format. This structure makes the file relatively easy to parse
and provide similar information as what is provided via the “recbin.pl” Perl script;
once the index file (the one that begins with “$I”) is parsed, you can then recover the
actual file contents from the corresponding file that begins with “$R.”

PREFETCH FILES
By now, most analysts recognize the forensic value of application prefetching, or
just prefetch files. As with other artifacts, prefetch files can provide some interesting
indicators, even if a user or intruder takes steps to hide her activity.

Since Windows XP, Windows systems have been capable of prefetching. All
Windows systems perform boot prefetching, but only Windows XP, Vista, and
Windows 7 perform application prefetching by default (Windows 2003 and 2008
can perform application prefetching following a Registry modification).

FIGURE 4.8

Files populating the Windows 7 Recycle Bin, via FTK Imager.

FIGURE 4.9

Partial contents of Recycle Bin index file, via FTK Imager.

89Prefetch Files

Application prefetching is intended to enable a better user experience within
Windows systems by monitoring an application as it’s launched, and then
“prefetching” the necessary code to a single location so that the next time the
application is launched, it launches faster. This way, the system doesn’t have to
seek across the file system for DLLs and other data that it needs to start the appli-
cation—it knows exactly where to find it. These prefetch files are created in the
“C:\Windows\Prefetch” directory, and end with the .pf extension. Each prefetch
filename also includes the name of the application, a dash, followed by a one-way
hash constructed using, among other things, the path to the application and any
arguments used.

TIP

Enable Application Prefetching

To enable application prefetching, navigate to the CurrentControlSet\Control\Session

Manager\Memory Management\PrefetchParameters key in the System hive, and locate the

“EnablePrefetcher” value. If this value is set to 1 (“prefetch only application launch files”)

or 3 (“prefetch both application and boot files”), application prefetching is enabled.

TIP

SSD Drives

According to the Engineering Windows 7 blog (http://blogs.msdn.com/b/e7/archive/

2009/05/05/support-and-q-a-for-solid-state-drives-and.aspx), if Windows 7 detects

that it is running on a solid-state drive (SSD), certain functionality such as SuperFetch

(which is responsible for producing application prefetch files) is automatically disabled.

See the linked blog entry for a more detailed explanation, as well as a list of additional

functionalities that may be disabled or modified if Windows 7 detects that it is running

from an SSD drive.

To see an example of the creation of application prefetch files, particularly
if you’re running Windows XP, open a command prompt and change to the “C:\
Windows” directory, and type “Notepad.” Close the Notepad window that appears and
then return to the command prompt and change to the “C:\Windows\system32” direc-
tory. Then type “Notepad” again, and close the Notepad window that appears. Now, if
you go to your Prefetch directory, you should see two different prefetch files that start
with “Notepad.exe” and include two different hashes, as illustrated in Figure 4.10.
This is also why you will sometimes see multiple prefetch files for “rundll32.exe.”

Prefetch files contain metadata that can be useful to an analyst during an exami-
nation. For example, they contain the date that the application was last launched, as
well as a “run count,” or how many times that application has been launched. The
prefetch file also contains information about the volume from which the application

http://blogs.msdn.com/b/e7/archive/2009/05/05/support-and-q-a-for-solid-state-drives-and.aspx
http://blogs.msdn.com/b/e7/archive/2009/05/05/support-and-q-a-for-solid-state-drives-and.aspx

90 CHAPTER 4 File Analysis

was launched, as well as a list of DLLs and other files accessed by the application
(in Unicode). There are a number of tools available that will allow you to parse this
information from the files; due to the usefulness of this information, I wrote a Perl
script called “pref.pl” to parse and display this information (this script is included
in the ancillary materials available online). I found an odd prefetch file on a system
and ran the “pref.pl” Perl script against the file; an excerpt of the metadata informa-
tion available in the prefetch file is shown here:

C:\tools>pref.pl -f c:\windows\prefetch\0.8937919959151474.EXE-

12EB1013.pf -p -i

c:\windows\prefetch\0.8937919959151474.EXE-12EB1013.pf Thu May 26

16:46:19 2011

(1)

EXE Name : 0.8937919959151474.EXE

Volume Path : \DEVICE\HARDDISKVOLUME1

Volume Creation Date: Fri Jan 1 22:24:09 2010 Z

Volume Serial Number: A424-CE42

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\NTDLL.DLL

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\KERNEL32.DLL

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\UNICODE.NLS

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\LOCALE.NLS

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\SORTTBLS.NLS

\DEVICE\HARDDISKVOLUME1\DOCUME~1\User\LOCALS~1\

TEMP\0.8937919959151474.EXE

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\USER32.DLL

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\GDI32.DLL

As you can see in the previous output, there is a considerable amount of meta-
data available. For example, we can see the last time that the application was
launched and the run count (respectively, Thu May 26 16:46:19 2011 and (1)), as
well as information about the volume where the application .exe file was found,
and the actual path to the executable file (i.e., \DEVICE\HARDDISKVOLUME1\

DOCUME~1\User\LOCALS~1\TEMP\0.893791995915174.EXE).
I’ve also found other interesting information in the output from “pref.pl.”

In one instance, I found another very odd prefetch file, named “KARTCICYYIR
.EXE-2CC557AD.pf”; using “pref.pl,” an excerpt of the output I saw appeared as
follows:

\DEVICE\HARDDISKVOLUME1\DOCUME~1\ABC\LOCALS~1\TEMP\KARCICYYIR.EXE

\DEVICE\HARDDISKVOLUME1\PROGRAM FILES\SOPHOS\SOPHOS ANTI-VIRUS\

SOPHOS_DETOURED.DLL

FIGURE 4.10

Two prefetch files for “Notepad.exe.”

91Prefetch Files

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\BDYAWUIS.DAT

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\CONFIG\SOFTWARE

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\MRYDUTAG.DAT

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\MBQTAEPO.DAT

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\CMD.EXE

Again, as with the first example, this is only an excerpt of the output, but it shows
the artifacts that were most interesting and immediately caught my attention. You can
see in the previous output excerpt not just the path of the actual executable file, but
also that it appeared to be accessing three .dat files, as well as the Software Registry
hive. This is an excellent example of how prefetch files can be valuable to an analyst,
as it illustrates the concept of secondary artifacts that we discussed in Chapter 1.

The prefetch file parsed in the previous example was a secondary artifact created
during a malware infection; that is, it was created by the operating system as the mal-
ware executed and interacted with its “ecosystem,” or environment. As it turns out, the
Application Event Logs from the system from which the prefetch file was retrieved
included an event record that indicated that the malware file itself (“KARTCICYYIR
.exe”) had been detected by the installed antivirus application and deleted. However,
the benefit of secondary artifacts is that they often are not deleted when an intruder
“cleans up” after herself, or when malware is deleted; Registry keys and values,
prefetch files, etc. often remain. The metadata in this prefetch file not only give us a
clear indication of when the executable was launched, but also from where (via the
volume path and serial number in the previous example output). The metadata also
give us an indication of other files that may be associated with the malware, provid-
ing us with some context (we’ll discuss the concept of context with respect to digital
forensic analysis at greater length in Chapter 7) as to the creation of those files.

The “pref.pl” Perl script isn’t the only tool available for parsing valuable metadata
from prefetch files. Michael Spohn wrote “PFDump.exe,” (http://malware-hunters

.net/all-downloads/) as part of the “malware-hunters forensic toolkit.” “PFDump.exe”
extracts a considerable amount of metadata from prefetch files, and provides for out-
put in tab-delimited format (for opening in MS Excel), HTML format, and XML for-
mat. If you prefer a graphical user interface (GUI) to your tools, Mark McKinnon has
made several tools, including Prefetch Parser version 1.04, available at his web site
(http://redwolfcomputerforensics.com). The GUI for Prefetch Parser is illustrated in
Figure 4.11.

In Figure 4.11, you’ll notice a “Windows Version” dropdown menu; this is
due to the fact that from Windows XP and 2003 to Vista, the mechanism for how
prefetching is performed and the format of the prefetch files changed (a brief
description can be found at http://technet.microsoft.com/en-us/magazine/2007.03

.vistakernel.aspx). However, the only real change that is significant to forensic ana-
lysts is that the offset locations within the binary file for the time stamp and the
run count changed between Windows versions. If you’re using “pref.pl” (described
earlier in this chapter) when you’re extracting metadata from Vista or Windows 7
prefetch files, you will want to use the “-v” switch, as the script defaults to using
the offsets applicable to Windows XP systems. If you’re interested in these offset

http://malware-hunters.net/all-downloads/
http://malware-hunters.net/all-downloads/
http://redwolfcomputerforensics.com
http://technet.microsoft.com/en-us/magazine/2007.03.vistakernel.aspx
http://technet.microsoft.com/en-us/magazine/2007.03.vistakernel.aspx

92 CHAPTER 4 File Analysis

values, simply open “pref.pl” in an editor (such as Notepad) and read through the
code until you find the appropriate settings.

FIGURE 4.11

Mark McKinnon’s Prefetch Parser GUI.

TIP

NTOSBOOT

When examining prefetch files, do not overlook the NTOSBOOT-B00DFAAD.pf file. This

file can be parsed just like any other prefetch file, and some analysts have reported finding

references to malware within the file path strings embedded within this prefetch file.

SCHEDULED TASKS
Windows systems are capable of a great deal of functionality, including being able
to execute tasks on a user-determined schedule. These are referred to as scheduled
tasks, and are accessible via several means, including the “at.exe” tool and the
Scheduled Task Wizard, as illustrated in Figure 4.12.

Scheduled tasks allow various programs to be executed once, or on a regu-
larly scheduled basis. This can be very useful; for example, regular housekeeping

93Scheduled Tasks

functions can be scheduled to occur at regular, specific intervals. One example of
this is if you install iTunes or another Apple product, you will likely see the file
“AppleSoftwareUpdate.job” in the “C:\Windows\Tasks” directory on your system,
as illustrated in Figure 4.13.

That being said, the existence of a scheduled task does not always correlate
directly to a user creating the task, as these tasks can be created programmatically,
through the appropriate API calls (which, with the appropriate credentials, can be
accessed remotely). As such, the existence of a scheduled task may be associated
with a software installation, or in some cases, a malware infection or compromise.
Windows systems require that, to create a scheduled task, the user context have
Administrator-level credentials. When the task executes, the running task itself has
System-level privileges.

This can be very useful to administrators, particularly when System-level privi-
leges are needed temporarily; an administrator can create a scheduled task to launch
the command prompt (i.e., “cmd.exe”) and have it run immediately. Once the
command prompt appears, it will be running with System-level privileges, allow-
ing the administrator access to areas of the system restricted to that privilege level.
Microsoft KB article 313565 (found at http://support.microsoft.com/kb/313565) pro-
vides instructions for how to use “at.exe” to create scheduled tasks; while this article
was written for Windows 2000, the commands work on later Windows versions.

FIGURE 4.13

AppleSoftwareUpdate task.

FIGURE 4.12

Windows XP Scheduled Task Wizard.

http://support.microsoft.com/kb/313565

94 CHAPTER 4 File Analysis

On Windows 2000, XP, and 2003, the scheduled tasks themselves are found
within the “C:\Windows\Tasks” folder, and have the .job file extension. These files
have a binary format, a description of which is available at http://msdn.microsoft

.com/en-us/library/cc248285%28v5PROT.13%29.aspx. The information available
via this site allows for tools to be written to parse the .job file format to extract
information that may be of particular value. For example, the fixed-length portion
of the format contains an 8-byte SYSTEMTIME time stamp that indicates when
the task was most recently run, and the variable-length data section includes a
Unicode string that indicates the name of the author of the task. This can be valu-
able to an analyst, as anything useful to an administrator can also be useful to an
intruder; scheduled tasks have been used as a persistence mechanism (see Chapter
6) for malware, as well as a means for activating Trojans, backdoors, or legitimate
remote-access services to allow an intruder access to a system.

On Windows 7, .job files are stored in the “\Windows\System32\Tasks”
folder, as well as subfolders beneath it, in XML format (i.e., those created via the
Windows 7 API), which means that you can open them and read them in a text edi-
tor such as Notepad. An example of a portion of a Windows 7 .job file (opened in
ProDiscover) is illustrated in Figure 4.14.

Windows 7 ships with a number of scheduled tasks already installed; for exam-
ple, the RegIdleBackup task backs up the Registry (to the “\Windows\System32\
config\RegBack” folder) every 10 days, and limited defragmentation is scheduled
for once a week. These tasks can be viewed on a live Windows 7 system via the
Task Scheduler Control Panel applet (available within Administrative Tools), as
illustrated in Figure 4.15.

Again, on Windows 7, these tasks (described within XML .job files) are stored
in subdirectories beneath the “\Windows\System32\Tasks” folder.

Another means for creating scheduled tasks, aside from “at.exe” or using a wiz-
ard, is to use “schtasks.exe.” This tool was introduced with Windows XP (Microsoft
KB article 814596, found at http://support.microsoft.com/kb/814596, describes how
to use “schtasks.exe” to create scheduled tasks on Windows 2003) and is available
on all systems up through Windows 7. While “at.exe” produces tasks or “jobs” that
are named “AT#.job,” much like the wizard, “schtasks.exe” allows tasks to be cre-
ated with more descriptive names.

FIGURE 4.14

Portion of Windows 7 .job file (via ProDiscover).

http://msdn.microsoft.com/en-us/library/cc248285%28v=PROT.13%29.aspx
http://msdn.microsoft.com/en-us/library/cc248285%28v=PROT.13%29.aspx
http://support.microsoft.com/kb/814596

95Jump Lists

Another useful bit of information available to the analyst is the scheduled tasks
log file, named “SchedLgU.txt. This file is 32 kilobytes (KB) in size, by default, and
is located in the “\Windows\Tasks” directory on Windows 2003 and later (it’s in the
“\Windows” directory on Windows XP). Many times, this file will simply contain
entries that state that the Task Scheduler service started (or exited) at a specific date
and time; this can be useful to establish a record (albeit short term, as the file isn’t
very large and older entries get overwritten) of when the system was running.

This log may also hold a record of various tasks that have executed, along with
their exit code. In some instances, I have found indications of tasks having com-
pleted that were associated with an intrusion, and corroborated with an external
data source (e.g., network traffic, etc.). In such cases, the task was created from a
remote system using compromised domain administrator credentials, and once the
task completed, it was deleted; however, the entry still remained in the “SchedLgU
.txt” file, and we were able to correlate that information to other events. A complete
discussion of timeline creation and analysis is covered in Chapter 7.

JUMP LISTS
Jump lists are something new to Windows 7. In short, jump lists are lists of files
that the user has recently opened, organized according to the application used to

FIGURE 4.15

Portion of the Windows 7 Task Scheduler applet.

WARNING

“at.exe” Versus “schtasks.exe”

When performing live response and using a batch file to collect volatile information from

Windows systems, be sure to use both “at.exe” and “schtasks.exe” within the batch file to

list the available tasks. It turns out that tasks created by one tool will not be “seen” by the

other, when used to list the tasks.

96 CHAPTER 4 File Analysis

open them, so in this way they are similar to the RecentDocs Registry key (Registry
analysis will be discussed in Chapter 5). Users can view their recently accessed doc-
uments and files by right-clicking on the program icon in the Task Bar. Figure 4.16
illustrates a jump list for VMWare’s VMPlayer application.

What the user sees depends on the program; for example, the jump list of Internet
Explorer will show URLs, whereas the jump list for MS Word will show documents
that the user has opened. Users can also choose to keep specific items persistent in
the jump list by “pinning” them; that is, clicking on the push pin to the right of the
item, as illustrated in Figure 4.16. While the items under the Recent list may change
over time, items that the user chooses to “pin” will persist in the jump list. These
jump lists may also appear alongside programs listed in the Start menu, as well.

From an analyst’s perspective, the user’s jump lists are maintained in the
“AppData\Roaming\Microsoft\Windows\Recent\AutomaticDestinations” folder within
the user profile, as illustrated in Figure 4.17.

As you can see in Figure 4.17, the jump list files are named with 16 hexadeci-
mal characters, followed by “.automaticDestinations-ms.” The first 16 characters
of the jump list filename pertain to the specific application used, and are fixed
across systems. For example, “b3f13480c2785ae” corresponds to “Paint.exe,”
“adecfb853d77462a” corresponds to MS Word 2007, and “918e0ecb43d17e23”
corresponds to “Notepad.exe.” These characters comprise the “application identi-
fier,” or “AppID,” and identify the specific application, including the path to the
executable file. Mark McKinnon of RedWolf Computer Forensics, LLC, posted
a list of the AppIDs to the ForensicsWiki at http://www.forensicswiki.org/wiki/

List_of_Jump_List_IDs.
Several analysts within the community have noted that the jump list files follow

a specific file structure. In fact, at a Microsoft cybercrime conference in the fall of
2008, Troy Larson, the senior forensic investigator at Microsoft, stated that jump
lists were based on the compound document “structured storage” binary file format

FIGURE 4.16

VMPlayer jump list.

http://www.forensicswiki.org/wiki/List_of_Jump_List_IDs
http://www.forensicswiki.org/wiki/List_of_Jump_List_IDs

97Jump Lists

(the format specification can be found at http://msdn.microsoft.com/en-us/library/

dd942138(v5prot.13).aspx) that was used in Microsoft Office prior to version 2007.
This structured storage file format was also referred to as a “file system within a
file,” in that the format was used to create a mini-file system within the contents of a
single file, complete with “directories” and “files.” Given this, according to Rob Lee
(of SANS), one way to view the contents of a jump list file is to open it in the MiTeC
Structured Storage Viewer (available at http://mitec.cz/ssv.html), as illustrated in
Figure 4.18.

Each of the numbered streams visible via the Structured Storage Viewer are,
in turn, based on the file format associated with Windows shortcut files; shortcut
files, when by themselves, usually end with the .lnk extension and have the nick-
name “LNK” files. Microsoft has made the binary format of these files, referred
to as shell link files, available at http://msdn.microsoft.com/en-us/library/

dd871305(v5prot.13).aspx.

FIGURE 4.18

Jump list file open in the MiTeC Structured Storage Viewer.

FIGURE 4.17

Contents of user’s “AutomaticDestinations” folder.

http://msdn.microsoft.com/en-us/library/dd942138
http://msdn.microsoft.com/en-us/library/dd942138
http://mitec.cz/ssv.html
http://msdn.microsoft.com/en-us/library/dd871305
http://msdn.microsoft.com/en-us/library/dd871305

98 CHAPTER 4 File Analysis

As these streams follow the binary format of shortcut files, they contain a con-
siderable amount of information that can be valuable to an analyst. For example, the
format contains last modified, last accessed, and creation time stamps (in UTC for-
mat) for the target file; that is, when a jump list stream is created, the MAC time
stamps of the target file are used to populate these values within the jump list stream.
Analysts need to understand what these time stamps represent, and that the jump list
streams do not contain time stamps that indicate when the streams themselves were
created, last accessed, or last modified.

The format can also contain additional information, such as command line argu-
ments used, if any, and possibly a description string. One example of a jump list
stream that may contain command line options (and a description string) has been
seen in the use the Terminal Service client on Windows 7 to access remote systems,
as illustrated here (extracted using a custom Perl script):

Stream: 1

M: Tue Jul 14 00:01:53 2009

A: Tue Jul 14 01:14:27 2009

C: Tue Jul 14 00:01:53 2009

C:\Windows\System32\mstsc.exe /v:"192.168.1.24"

Connect to 192.168.1.24 with Remote Desktop Connection

Other streams extracted from within the jump list file contain the same time
stamps as just shown, as they represent the last modified, last accessed, and crea-
tion dates for the file “C:\Windows\System32\mstsc.exe.” Remember, starting with
Vista, updating of last access times on files has been disabled, by default.

The streams identified within the jump list file can also be extracted and viewed
with a shortcut/LNK file viewer. For example, using the Structured Storage Viewer,
we can extract a stream, rename the extension to .lnk, and then point the MiTeC
Windows File Analyzer (interestingly enough, named “WFA.exe”) at the directory
where we saved the stream. The .lnk files within the directory will be parsed and
the extracted information displayed, as illustrated in Figure 4.19.

The information available from the LNK streams within the jump list file will
depend on the shortcut viewer application you choose. For example, the MiTeC
Windows File Analyzer application does not have a column for a description string
or command line options when parsing shortcut files.

FIGURE 4.19

LNK file information visible in WFA.

99Jump Lists

So how would this information be valuable to an analyst? Well, for the jump list
to be created and populated, the user has to take some action. In the previous exam-
ple, the user accessed the Remote Desktop Connection selection via the Windows
7 Start menu. As such, the existence of this information within the jump list may
provide clues (possibly when combined with other information) as to the user’s
intent. The “user” may be a local user with legitimate access to the system, or an
intruder accessing the system via some remote, shell-based access such as Terminal
Services. In addition, jump list artifacts may persist well after the user performs the
indicated actions or even after the target file has been deleted.

NOTE

DestList Stream

Figure 4.18 illustrates several streams within an “automatic” jump list file, including

two numbered streams and a third one named “DestList.” There isn’t much information

available about the structure of the DestList stream; however, research indicates that

following a 32-byte header, the elements of the DestList stream follow a consistent format.

Each element is associated with one of the numbered streams within the jump list file,

and is 114 bytes long, plus a Unicode string. Table 4.1 provides information regarding the

identified items within each element, along with the offset, size, and description of each

item.

Each offset listed within the first column of Table 4.1 is indexed from the beginning of

the element within the stream. The first element is found immediately following the 32-

byte header, and each subsequent element is adjacent to the last, with no separator. The

8-byte FILETIME object within the element is most likely used to sort the elements into

a most recently used (MRU) or most frequently used (MFU) list; this is further supported

by research, by accessing several files through several applications (e.g., MS Word, Adobe

Reader, MS Paint, etc.), recording the times, and then parsing the entire jump list file,

including the DestList stream. This research was initially conducted by Jimmy Weg, a

law enforcement officer and forensic analyst in Montana, and further validated by other

analysts, including some of my own analysis.

Table 4.1 DestList Stream Header Elements

Offset (Dec/Hex) Size Description

72/048 16 bytes NetBIOS name of the system; zero

padded to 16 bytes

88/058 8 bytes Stream number; corresponds to the

appropriate numbered stream with the

jump list

100/064 8 bytes FILETIME object

112/070 2 bytes Number of characters in the Unicode

string that follows; the string is actually

(size * 2) bytes long

100 CHAPTER 4 File Analysis

The jump lists that we’ve looked at thus far have been from the
“AutomaticDestinations” folder. Users can create custom jump lists based on
specific files and applications, which populate the “CustomDestinations” folder
(in the “AppData\Roaming\Microsoft\Windows\Recent\” folder within the user pro-
file), with jump list files that end in “customDestinations-ms.” As with the previ-
ously discussed jump lists, the files begin with a 16-character “AppID” name that
is associated with a specific application; limited testing indicates a correlation
between the two types of jump lists, with the same 16 characters associated with
the same application between them. According to Troy Larson, these jump lists
consist of one or more streams in the shortcut/LNK file format, without the benefit
of each stream separated into individual streams, as is the case with the automatic
destination jump lists.

There are a number of tools available to assist in parsing jump lists for inclusion in
your overall analysis. Mark Woan has made not only a shortcut file analyzer (lnkan-
alyzer) freely available at http://www.woanware.co.uk/?page_id5121, but he has
also made a jump list viewer application (JumpLister) available at http://www

.woanware.co.uk/?page_id5266. Both tools require that .Net version 4.0 be installed
on your system. I also found a description of a tool called “Jump List Extractor,”
from Alex Barnett, but could not find any way to download a copy of the tool for
evaluation.

Using the Microsoft specifications for the compound document binary and
shortcut file formats, I wrote my own jump list parsing tool (in Perl, of course!).
This code consists of two Perl modules, one for parsing just the Windows shortcut
file format, and the other for parsing the “AutomaticDestinations” folder jump list
files as well as the DestList stream. This allows me a great deal of flexibility in how
I can implement the parsing functionality, as well as how I choose to display the
output. For example, using the two modules (literally, via the Perl “use” pragma),
I wrote a script that would read a single “AutomaticDestinations” folder jump list
file, parse the DestList stream, parse the numbered streams, and then display the
entries in MRU order, as illustrated here:

Fri Apr 15 11:41:56 2011

C:\Windows\System32\mstsc.exe /v:" 192.168.1.12"

Tue Apr 5 16:26:19 2011

C:\Windows\System32\mstsc.exe /v:"192.168.1.10"

Wed Mar 16 18:45:58 2011

C:\Windows\System32\mstsc.exe /v:"ender"

Mon Feb 7 14:09:40 2011

C:\Windows\System32\mstsc.exe /v:" 192.168.1.7"

This example output is from the jump list file for the Remote Desktop Client,
and illustrates connections that I made from my Windows 7 system to various
systems in my lab, several of them virtual systems. This information could very
easily have been displayed in a format suitable for inclusion in a timeline (see
Chapter 7).

http://www.woanware.co.uk/?page_id=121
http://www.woanware.co.uk/?page_id=266
http://www.woanware.co.uk/?page_id=266

101Hibernation Files

ProDiscover (all but the free Basic Edition) also includes a built-in full featured
Jump List Viewer, as illustrated in Figure 4.20.

To populate the Jump List Viewer, open your ProDiscover project, right-click
on the Users Profile directory, and choose “Find Jump List Files…” from the
dropdown menu. ProDiscover will scan through the subdirectories, looking for,
cataloging, and parsing the various automatic and custom jump list files (sans the
DestList stream in the automatic jump list files, as of ProDiscover version 7.0.0.3).

HIBERNATION FILES
Laptop systems running Windows XP or Windows 7 may often be found to con-
tain hibernation files. These files are basically the compressed contents of Windows
memory from when the system (usually a laptop) “goes to sleep.” As such, a hiber-
nation file can contain a great deal of very valuable historic information, including

FIGURE 4.20

ProDiscover Jump List Viewer.

WARNING

Jump List Parser

The Perl modules and scripts that I wrote for parsing jump lists are somewhat rough—

perhaps a better term would be alpha—and at the time of this writing, not suitable for

release, and are therefore not provided with the materials associated with this book. Also, I

am concerned that even though Windows 7 has been available for some time, jump lists are

relatively new and not well understood for their forensic value; as such, releasing a tool that

provides information from jump lists without the analyst really understanding the nature

or context of that information would simply lead to confusion. I do hope to release the tool

at some point in the future, after I’ve had a chance to clean up the code and make it more

usable.

102 CHAPTER 4 File Analysis

processes and network connections from some point in the past. This information
can be used to address issues of malware that may have been installed on the sys-
tem and then deleted, or demonstrate that a user was logged in or that an appli-
cation had been running at some point in the past. As with some other artifacts,
hibernation files are often not included in “clean up” processes, such as application
uninstalls, or when an antivirus application deletes detected malware.

The Volatility Framework (http://code.google.com/p/volatility/) can provide
you access to the contents of a Windows hibernation file and allow you to ana-
lyze it just as if it were a memory dump. To install the Volatility Framework on
your system, consult the Volatility Framework wiki for the appropriate instructions
(as of the time of this writing, Jamie Levy, a volunteer with the Volatility project,
has graciously compiled detailed installation instructions for version 1.4 of the
framework).

Detailed discussion of memory analysis is beyond the scope of this book, par-
ticularly when there are other, much better suited resources that cover the subject,
such as the Malware Analyst’s Cookbook and DVD (Ligh et al., 2011). However,
information found through analysis of the hibernation file can prove to be
extremely valuable; analysts have found pertinent information, including keys for
encrypted volumes, within hibernation files.

APPLICATION FILES
There are a number of application-specific files that may be found on Windows
systems that may be crucial to an analyst. Application logging and configuration
information may be critical to an analyst, but the value of those sources of informa-
tion will depend in large part on the nature and goals of the examination. In the rest
of this chapter, we will discuss some of the files that you may run across during an
examination, based on some of the various applications that may be installed on
the system being examined. In each case, we will also look to applications or tools
that may be used to parse and further analyze these files. However, do not consider
the rest of this chapter to be a comprehensive and complete list of those files; some-
thing like this is just impossible to produce. Application developers develop new
tools and storage mechanisms for log and configuration data; for example, some
browsers have moved away from text or binary files for bookmark and history/
cache storage and have moved to SQLite databases.

TIP

Accessing SQLite Databases

One of the best tools I’ve found for accessing SQLite databases is the SQLite database

browser (http://sqlitebrowser.sourceforge.net). The browser is free, as well as easy to use and

set up. While it does provide command line functionality for accessing SQLite databases, it

also has a GUI that provides much easier access to the database for browsing, etc.

http://code.google.com/p/volatility/
http://sqlitebrowser.sourceforge.net

103Application Files

With new applications being developed all the time and current applications
changing, including adding new features, it would be impossible to keep up on all of
that information, even if only from a digital forensic analysis perspective. My goal
here is to have you consider alternate sources of data to corroborate your findings or to
fill in gaps. For example, application logs can be very useful, as in many cases, entries
are only added when the system is running and a user is logged in and using the appli-
cation. As such, this information can be correlated with Event Log entries, or used in
the absence of such information. While there is really no way to thoroughly address
all applications or even provide an overview, my hope is to provide information about
some of the types of files that you might consider including in your analysis.

Antivirus Logs

Logs produced by AV applications will be discussed in greater detail in Chapter
6, but I wanted to present at least a cursory discussion of the topic in this chap-
ter, for the sake of completeness. AV logs can be extremely valuable to a forensic
analyst in a number of ways. During one particular intrusion incident, I examined
the AV logs and found that on a specific date (shortly after the files were created),
an AV scan had detected and deleted several files identified as malware. Several
weeks later, files with the same names appeared on the system again; however, this
time, the files were not detected as malware. This information was valuable, in that
the logs provided me with names of files to look for, and also allowed me to more
accurately determine the window of compromise, or how long the malware had
actually been on the system. This information was critical to the customer, not only
because it was required by the regulatory compliance organization, but also because
it reduced their window of compromise, but did so with hard data (the creation
dates for the second set of files were verified through MFT analysis).

Another use for the AV logs is to help the analyst narrow down what malware
might be on the system. For example, Microsoft’s Malicious Software Removal
Tool (MRT) is installed by default on many systems, and updated through the regu-
lar Windows Update process. MRT is an application meant to protect the system
from specific threats (again, discussed in greater detail in Chapter 6), rather than
provide more general protection in the manner of AV products. As such, checking
the “mrt.log” file (located in the “Windows\debug” directory) will let you know
when the application was updated, and the results of any scans that had been run.
An example log entry is illustrated here:

Microsoft Windows Malicious Software Removal Tool v3.20, June 2011

Started On Wed Jun 15 21:13:25 2011

Results Summary:

No infection found.

Microsoft Windows Malicious Software Removal Tool Finished On Wed

Jun 15 21:14:4

5 2011

Return code: 0 (0x0)

104 CHAPTER 4 File Analysis

As you can see, the “mrt.log” file includes the date of when the MRT was
updated; this can be compared to the table in Microsoft KB article 891716 (found
at http://support.microsoft.com/kb/891716) to determine what the system should be
protected against. Note that KB article 891716 also provides example log excerpts
that illustrate malware being detected.

Skype

Skype is a useful communications utility that has been around for some time, and in
the spring of 2011, Microsoft purchased Skype (for a reported $8.5 billion). Skype
is not only available on Windows, Linux, and Mac OS X computers, but it can be
downloaded and run from Apple products (iPhone, iTouch, iPad), as well as from
some smart phones and tablets running the Android operating system. As such, it is
a pretty pervasive utility for not only making video calls, but also for something as
simple as instant messaging, for sharing information outside what may be consid-
ered more “normal” channels (as opposed to AOL Instant Messenger, or Internet
relay chat).

I’ve had Skype available on a Windows XP system for some time, in part to test
the application and see what tools were available for parsing any log files produced
by the application. The version (as of this writing) of Skype that I’m using is 5.3,
and the communications logs are maintained in the “main.db” file located within
my user profile, in the “\Application Data\Skype\username” subdirectory. Two
tools available for parsing information from the database file are Skype Log View
(http://nirsoft.net/utils/skype_log_view.html) and Skype History Viewer (http://

skypehistory.sourceforge.net). Figure 4.21 illustrates a portion of the user interface
for Skype Log View (run on my live system) with the contents of the “main.db”
file displayed.

This information can be very useful to an analyst, illustrating not just communi-
cations between parties, but also who initiated the call, when the call was initiated,
etc. This can also show when the system was in use, and may support or refute a
user’s claims regarding when they were accessing the system.

FIGURE 4.21

Portion of Skype Log View UI, accessing “main.db.”

http://support.microsoft.com/kb/891716
http://nirsoft.net/utils/skype_log_view.html
http://skypehistory.sourceforge.net
http://skypehistory.sourceforge.net

105Application Files

Apple Products

Many of us may have products from Apple, including an iPod or iTouch, an iPhone,
or even an iPad. Many of us may also use iTunes to sync and make backups of
our devices. In April 2011, two researchers (Alasdair Allan and Pete Warden, article
located at http://radar.oreilly.com/2011/04/apple-location-tracking.html) found that
as of the release of iOS 4, the iPhone and iPad would track approximate longitude
and latitude information, along with time-stamped information. On the iPhone, this
information is reportedly recorded in the file “consolidated.db.”

When a user syncs their Apple device to a Windows system via iTunes, the
backup information is placed in the user’s profile, in the path “Application Data\
Apple Computer\MobileSync\Backup” (on Windows XP; on Windows 7, the path
is “\Users\user\AppData\Roaming\Apple Computer\MobileSync\Backup”). When I
sync my iTouch to my Windows XP system, I have a subdirectory in that path with
a name that is a long string of characters, as illustrated in Figure 4.22.

The backup information is maintained in that subdirectory in multiple files, also
with long strings of characters for names. Within that directory, the “Info.plist” file
is an XML file (you can open it in a text editor) that contains information about the
device being backed up, and the “Manifest.mbdb” and “Manifest.mdbx” files contain
filename translations, between the long strings of characters and the original filenames.

The iPhoneBackupBrowser (authored by “reneD” and available at http://code

.google.com/p/iphonebackupbrowser/) is a freely available tool that allows you to
access the backup information, reportedly beginning with iTunes v9.1.1, and parse
the “Manifest.mbdb” file to map the backup filenames to their original names.
The wiki at the Google Code site includes information about the format of the
“Manifest.mbdb” file, as well as the “Manifest.mbdx” index file (so you can write
your own parser, if need be). The iPhoneBackupBrowser application itself report-
edly runs better on Windows 7 than Windows XP, due to some of the APIs accessed.

Once you download the tools and place them into a directory, you can run
“mbdbdump.exe” (works just fine on Windows XP) against the “Manifest.mbdb” file
by passing the path to the directory where the file is located to the tool, as follows:

D:\tools\iphone>mbdbdump [path to directory] > output.txt

The resulting output file contains the parsed contents of the “Manifest.mbdb”
file, allowing you to search for specific files, such as the “consolidated.db” file.

FIGURE 4.22

Path to “MobileSync\Backup” subdirectory.

http://radar.oreilly.com/2011/04/apple-location-tracking.html
http://code.google.com/p/iphonebackupbrowser/
http://code.google.com/p/iphonebackupbrowser/

106 CHAPTER 4 File Analysis

Once you determine which of the files with the long filenames is the “consolidated
.db” file, you can use free tools for accessing SQLite databases, such as the SQLite
Browser (mentioned previously in this chapter) or the SQLite Manager add-on for
Firefox (available at https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/),
to peruse the contents of the database and extract the location information. The
researchers stated in their article that the information recorded for each location may
not be exact; however, from an overall perspective, it can show routes and that the
phone or tablet was in a particularly proximity at a specific time.

TIP

iTouch Backup

Even though I ran my initial tests against the backup of an iTouch, rather than an iPhone,

some of the available information was pretty telling. Parsing through the “mbdbdump

.exe” output, I could clearly see installed applications, as well as files that likely contained

configuration information, such as wireless networks I’d connected to via WiFi. All of this

information may be valuable to an analyst or investigator.

An analyst can use information within these backup files to develop more
detailed information regarding specific devices attached to the system, as well as
possibly gain further insight into the user’s movements, not just geographically but
also around the Web.

NOTE

Android Devices

Apparently, Apple products may not be the only devices to record location information.

In April 2011, Cory Altheide (of Google) pointed me to Packetlss’ Android-locdump site

(https://github.com/packetlss/android-locdump), in which the author of the site describes

which files on some Android devices (no specific devices were named) apparently maintain

location information for WiFi sites and cell phone towers. I checked my BackFlip (Motorola

MB300 handset, running kernel version 2.6.29) and didn’t find the files mentioned at the

site (the site does mention that you will need to be “root” or superuser to see the files).

The site also includes a Python script for parsing the information in the “cache.wifi” and

“cache.cell” files into a more readable format. As with Apple products, the information in

these files may be extremely valuable to an investigator, and they may exist on a Windows

system if the user copied them or backed up the information on their handset or device.

Image Files

I own a work phone and a personal cell phone, both of which can be described as
“smart” phones, and both of which contain cameras. I also own an iTouch, which
contains a camera. I can connect all of these devices directly to my computer and

https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
https://github.com/packetlss/android-locdump

107Application Files

copy pictures and videos directly to a folder. There are very few similar devices
available these days that do not contain a camera of some type, and most of the ones
available are capable of producing very high-quality digital images and videos. Not
only that, many of the devices have global positioning system (GPS) capabilities;
a friend of mine once took a picture with his Droid phone, swiped his hand across
the screen, and pulled up a Google map with a push-pin on the location where the
digital photo was taken. This simply illustrates that digital images can contain a
significant amount of metadata; the question is then, how can you access that data?

One excellent tool for doing exactly that is Phil Harvey’s EXIFTool (http://

www.sno.phy.queensu.ca/~phil/exiftool/). EXIF stands for “exchangeable image
file,” which is a standard that specifies the formats of various tags used by dig-
ital cameras (as well as smart phones and scanners), and Phil’s tool is capable of
extracting embedded EXIF (metadata) information from within a number of image
file formats. The tool can be used from the command line, an example of which
follows:

D:\tools>exiftool -a -u -g1 D:\pictures\img_3791_2165.jpg

---- ExifTool ----

ExifTool Version Number : 8.60

---- System ----

File Name : img_3791_2165.jpg

Directory : D:/pictures

File Size : 4.0 MB

File Modification Date/Time : 2010:07:18 15:32:06-04:00

File Permissions : rw-rw-rw-

---- File ----

File Type : JPEG

…snip…

---- IFD0 ----

Make : Canon

Camera Model Name : Canon EOS DIGITAL REBEL XTi

Orientation : Horizontal (normal)

I added “…snip…” to the previous output to indicate that I’d removed some
information to make it easier to view; neither the tool nor the camera added that to
the output. I am able to verify the relevant output because I have seen the camera,
and know that it is, in fact, a Canon EOS Digital Rebel XTi.

Further along in the output of the tool, we see the following additional
information:

Canon Image Type : Canon EOS DIGITAL REBEL XTi

Canon Firmware Version : Firmware 1.1.1

Owner Name : unknown

Serial Number : 2271247134

Canon Model ID : EOS Digital Rebel XTi / 400D / Kiss Digital X

…snip…

Internal Serial Number : H3624774

http://www.sno.phy.queensu.ca/~phil/exiftool/
http://www.sno.phy.queensu.ca/~phil/exiftool/

108 CHAPTER 4 File Analysis

From this, we can see that we have two possible candidate serial numbers to
uniquely identify the camera. So, if the user had copied the image from the camera
and the camera was available to be analyzed, you could use this and other informa-
tion (e.g., image file hashes, information from the computer system Registry indi-
cating that the camera had been connected to the system, etc.) to definitively tie the
image to the devices, and to the user.

What other information might be available within images? Well, many smart
phones come with GPS capability enabled, and GPS information may be embed-
ded within the images. Phil’s tool is capable of extracting that information, as well
as a great deal of additional information that may be embedded within a number of
image file formats.

TIP

File Metadata

Phil Harvey’s EXIFTool is reportedly capable of reading metadata from file formats other

than just images. For example, the web site for the tool indicates that it can read metadata

embedded in MS Office 2007 (and later) file formats (i.e., .docx, .pptx, and .xlsx file

extensions), making it a very versatile and potentially valuable tool. Another tool capable of

reading metadata from MS Office 2007 file formats is “read_open_xml.pl,” available from

http://blog.kiddaland.net/downloads/. Information derived from the use of either of these

tools can be very useful, depending on your investigation.

A final thought on metadata such as we’ve discussed in this section of the chap-
ter. While metadata can be very useful and even immensely valuable to an analyst,
the simple fact is that not all files have metadata, and not all files that do have meta-
data necessarily have all metadata fields populated. If the metadata aren’t there,
they aren’t there. For example, some images captured via cell phone cameras may
not have GPS coordinates as part of the image EXIF data. This may be due to the
fact that the cell phone is not a “smart” phone and did not have a GPS receiver, or
that the software used to capture the image did not embed the data, or there could
be other reasons.

SUMMARY

Windows systems contain a number of files in a variety of both open and propri-
etary formats. Depending on the type of case that you’re working on or what you’re
looking for, these files will be of varying importance. However, my intention in
this chapter has been to make you aware of some of the various files (and formats)
available, and how their contents have been used to further examinations.

http://blog.kiddaland.net/downloads/

109Summary

One particularly important aspect of this chapter has been to help you under-
stand that in many cases, a file can be much more than just a binary data stream.
For example, if you understand the structure of the data, and how the various ele-
ments of the structure are used by an application or even the operating system, you
will then have some context associated with that data. I once worked with another
analyst who had identified a particular string—a filename—within a Windows
portable executable (PE) file (the structure of these files is discussed in Windows

Forensic Analysis, Second Edition (Carvey, 2009)). Before reporting this find-
ing to the customer, further analysis needed to be completed; for example, did this
filename refer to a DLL within the import table of the PE file, or was it the name of
a file used as a data repository? The answer to these questions, while relatively easy
to determine, can have a significant impact on the overall examination.

References
Carrier, B. (2005). File system forensic analysis. Upper Saddle River, NJ: Pearson Education.
Carvey, H. A. (2009). Windows forensic analysis (2nd ed.). Burlington, MA: Syngress

Publishing.
Ligh, M. H., Adair, S., Hartsteing, B., & Richard, M. (2011). Malware analyst’s cookbook

and DVD. New York: Wiley.

This page intentionally left blank

111

Registry Analysis 5
CHAPTER

CHAPTER OUTLINE

Introduction ..112

Registry Analysis ..112

Registry Nomenclature ...113

The Registry as a Log File ..114

USB Device Analysis ...115

System Hive ...128

Services ...129

Software Hive ...131

Application Analysis ..131

NetworkList ..134

NetworkCards ...137

Scheduled Tasks ..138

User Hives ..139

WordWheelQuery ..140

Shellbags ...141

MUICache ..144

UserAssist ..144

Virtual PC ...147

TypedPaths ..148

Additional Sources ..148

RegIdleBackup ...148

Volume Shadow Copies ..149

Virtualization ...149

Memory ..150

Tools ..150

Summary ..153

References ...153

INFORMATION IN THIS CHAPTER

l Registry Analysis

http://dx.doi.org/

112 CHAPTER 5 Registry Analysis

INTRODUCTION

The Registry is a key component of every Windows system, and as Windows sys-
tems have become more complex, progressing from Windows 2000 to XP and on
to Windows 7, the value of the Registry as a source of forensic data has likewise
increased. As such, what is available to an analyst through analysis of the Registry
needs to be better understood. As the Windows versions have progressed, each
new version has brought with it new data that can be critical to an investigation. As
applications come to rely more on the Registry, and the “user experience” is moni-
tored and optimized, even in part by the Registry, more useful data are available to
be incorporated into an examination.

In this chapter, we will not be discussing the Registry in detail, as other
resources have already laid the groundwork on this subject. Details of the Registry
are covered in Windows Forensic Analysis, Second Edition (Carvey, 2009) and even
more so in Windows Registry Forensics (Carvey, 2011). Much of what was cov-
ered in these two books (particularly the binary structure of the Registry, as well
as Registry analysis techniques and tools) applies across all versions of Windows,
including Windows 7. The Malware Analyst’s Cookbook and DVD (Ligh et al.,
2011) provides considerable information regarding how the Registry can be a valu-
able forensic resource when analyzed in conjunction with or as part of Windows
physical memory and malware analysis. With this considerable treatment of the
topic, there is really no significant value in repeating what’s already been said. As
such, in this chapter, we will assume that the reader (that’s you) has a basic under-
standing of the Registry—for example, where the hives are located within the file
system, or the difference between a “key” and a “value” that some of the tools use
to collect information from the Registry (including but not limited to RegRipper)—
and focus on information available in the Registry that is specific to Windows 7.

Also, I’d like to take something of a different approach in this chapter; rather
than providing a list of keys or values of interest, I’d like to discuss the Registry in
terms of addressing analysis questions through case studies or investigative proc-
esses. Many resources leave it up to the analyst to flip back and forth between the
various pages, trying to track information among hives; instead, I think it may be
useful to present all of the components of a case study together. Hopefully, this
approach will be valuable to analysts.

REGISTRY ANALYSIS
All of the information presented and discussed in the first two chapters of the book
Windows Registry Forensics applies across all versions of Windows, particularly anal-
ysis concepts, the binary structure of the Registry (including key and value cells), and
the tools that can be used to extract and view information from the Registry, such as
RegRipper (available at http://code.google.com/p/winforensicaanalysis/downloads/

list). This book also covers the use of RegRipper in detail, including how to set it up,

http://code.google.com/p/winforensicaanalysis/downloads/list
http://code.google.com/p/winforensicaanalysis/downloads/list

113Registry Analysis

how to use it, and even how to create your own plugins for extracting and translat-
ing information of interest from the Registry. As such, there’s really no need to repeat
content and graphics of what the Registry “looks like” with respect to the native
Registry Editor or files on the system, or when the hive file is opened in another, non-
native viewer, such as the MiTeC Windows Registry Recovery (WRR) tool (http://

www.mitec.cz/wrr.html). Other tools for extracting and viewing information from
Registry keys and values, or monitoring accesses to the Registry on a live system
(such as Process Monitor, found at http://technet.microsoft.com/en-us/sysinternals/

bb896645) work equally well on Windows XP and Windows 7 systems.
As an example, the information from Chapter 3 of Windows Registry Forensics

regarding using tools such as “pwdump7.exe” to extract and view the password
hashes in the SAM hive applies equally as well to Vista, Windows 2008, and
Windows 7. However, it is important to keep in mind that the LAN Manager pass-
word hash field will (in most cases) say “no password” or “blank” (depending
on the tool used), as the “NoLMHash” value (discussed in Microsoft KB article
299656, found at http://support.microsoft.com/kb/299656) exists and is set to 1 by
default on those versions of the Windows operating system.

Instead, the approach I’d like to take in this chapter is to address analysis ques-
tions through case studies, or investigative steps that you can take to answer some
common questions when it comes to Registry analysis. In several instances (albeit
not all), these case studies will correlate data from multiple hive files, so it makes
sense to present the information all together in a single process flow, rather than
spreading that information across multiple chapters.

TIP

Registry Structure

A key concept discussed in Chapter 4 is applicable in this chapter as well; that is, locating

data in a Registry hive file using something like “strings.exe” or the BinText application tells

us that the string is there. But understanding the structure of the data (e.g., Is the string a

key name or value name? Is it embedded within value data or located in unallocated space

within the hive file?), where the string exists within the “container,” and how that data are

used by an application provides us with context to that information. This can be extremely

valuable, as the location of the string can have a significant impact on your examination.

For example, if the string that you’re interested in is a key name, that information will take

your examination in a vastly different direction than if the string were a value name, or if the

string was actually located within unallocated space within the hive file.

This is an important concept to keep in mind. As such, we also discuss the context

of data with respect to surrounding data at other points in this book, including within

Chapter 7, when we explore creating and analyzing timelines of system activity.

Registry Nomenclature

Before we begin our discussion of Registry analysis and dive into some case stud-
ies, one thing I think is important to reiterate is Registry nomenclature. Many
analysts may not completely understand the names of various objects within the

http://www.mitec.cz/wrr.html
http://www.mitec.cz/wrr.html
http://technet.microsoft.com/en-us/sysinternals/bb896645
http://technet.microsoft.com/en-us/sysinternals/bb896645
http://support.microsoft.com/kb/299656

114 CHAPTER 5 Registry Analysis

Registry, or why they’re important. Figure 5.1 illustrates a fairly standard view of
the Registry on a live system via the native Registry Editor tool.

As you can see in Figure 5.1, the Registry is made up of keys, values, and value
data. It is important for analysts to understand the differences between these vari-
ous objects, as they have different properties associated with them. For example,
Registry keys (the folders visible in the left pane in Figure 5.1) contain subkeys and
values, and also have a property referred to as the LastWrite time. This is a 64-bit
FILETIME (a description of the FILETIME object can be found at http://support

.microsoft.com/kb/188768) time stamp that refers to the last time the key was modi-
fied in some way. This can include the key being created (creation or deletion being
the extreme form of modification), or subkeys or values within the key being added,
deleted, or modified. This is an important distinction, as Registry values do not have
LastWrite times; however, some Registry values may contain time stamps within
their data that refer to some other function or action having occurred. The value of
the Registry key LastWrite times, as well as time stamps recorded within the data of
various values, will be discussed through case studies in this chapter, and are also
discussed in Chapter 7.

The Registry as a Log File

Microsoft refers to the “structured storage” file format (known as “COM struc-
tured storage” or “OLE structured storage,” the format used for Word documents
up to and including MS Office 2003, as well as jump list and Sticky Notes files on
Windows 7; the binary format specification can be found at http://msdn.microsoft

.com/en-us/library/dd942138(v5prot.13).aspx) as a “file system within a file.” If
you think about it, the same thing can be said about a Registry hive. Keys are often
viewed as folders, as they contain other keys as well as values. As such, values can
then be viewed as files, with the value data comprising the file contents. Taking

FIGURE 5.1

Registry viewed via “RegEdit.exe.”

http://support.microsoft.com/kb/188768
http://support.microsoft.com/kb/188768
http://msdn.microsoft.com/en-us/library/dd942138
http://msdn.microsoft.com/en-us/library/dd942138

115Registry Analysis

this a step further, we can view a Registry hive file as a log file, as various system
and user activity is recorded within the hive files, along with modifications to time
stamps (e.g., Registry key LastWrite times). This is important to keep in mind, as
some of the most valuable data can be derived from the Registry when combining
value data with available time stamps, much like one would do when conducting
log file analysis.

All that being said, I think we’re ready to take a look at some of the analysis
that can be done through the Registry.

USB Device Analysis

Tracking the use of USB devices—in particular, thumb drives or external drive
enclosures (also referred to as “wallet” drives)—can be a very important aspect of
an investigation. For example, determining that a specific removable device was
connected to a system, along with information such as who was logged into the
system at the time and what data were accessed during that time period, may pro-
vide indications that an employee copied sensitive corporate data onto that device.
Alternately, combining information about external device connection with events
relating to a malware infection may not only identify a thumb drive as the source of
the infection, but also which specific device introduced the malware.

Windows 7 systems record a great deal of information with respect to USB
devices that users connect to those systems, most of which is stored in the Registry
(we’ll discuss where information is stored in the Windows Event Log later in this
section). Starting with the Registry, an analyst may discover some very interesting
information with respect to devices that were connected to a Windows 7 system.
For example, it may be possible to not only discover which types of devices were
connected to the system, but also to uniquely identify those devices (via a unique
instance identifier, or serial number) and determine when the devices were con-
nected to the system. To do this, however, we need to not only extract information
from multiple locations within a hive file, but we also need to look to information
within multiple hive files (System, Software, and NTUSER.DAT). What we will
do in this section is walk through a couple of examples of connecting devices to
a Windows 7 system, and extracting the information and artifacts of those connec-
tions for analysis.

TIP

Analysis Checklists

For analyzing USB thumb drives and drive enclosures that have been connected to

Windows systems, Rob Lee, faculty fellow at the SANS Institute, created checklists that

can be used in your USB device analysis. The checklist for USB keys and thumb drives is

available at http://blogs.sans.org/computer-forensics/files/2009/09/USBKEY-Guide.pdf, and

the checklist for drive enclosures is available at http://blogs.sans.org/computer-forensics/

files/2009/09/USB_Drive_Enclosure-Guide.pdf.

http://blogs.sans.org/computer-forensics/files/2009/09/USBKEY-Guide.pdf
http://blogs.sans.org/computer-forensics/files/2009/09/USB_Drive_Enclosure-Guide.pdf
http://blogs.sans.org/computer-forensics/files/2009/09/USB_Drive_Enclosure-Guide.pdf

116 CHAPTER 5 Registry Analysis

In our first example, we will start with a thumb drive. In this case, I used a 1-GB
thumb drive that I purchased at Best Buy several years ago. The device has a “Geek
Squad” logo on it, as well as a “U3 Smart” logo (I removed the U3 components
from the device awhile back).

TIP

U3-Enabled Devices

To see artifacts left by U3-enabled devices, see Chapter 4 of Windows Forensic Analysis,

Second Edition.

The Geek Squad thumb drive had never been connected to my target Windows 7 system

before. I connected it to the system at approximately 8:13 am EDT (equates to 12:13 pm

UTC), and disconnected approximately 40 minutes later. Then I reconnected the thumb

drive to the same Windows 7 system at approximately 9:14 am EDT (approximately 1:14

pm UTC), and used FTK Imager version 3.0.0.1442 to extract the System and Software hive

files, as well as the NTUSER.DAT from my user profile, from the system. I then shut down

the system.

So the first place to start looking for information about the device is in the USBStor keys

within the System hive. This has long been known as an initial location where information

about USB removable storage devices (e.g., thumb drives, “wallet” drives, and as we’ll see

later in this chapter, other devices recognized as removable storage) is maintained. The full

path to this key on a live system is:

HKLM\System\CurrentControlSet\Enum\USBStor

TIP

Locating the Current ControlSet

You will notice when viewing the System hive file (using the Registry Editor or another

viewer such as WRR) extracted from an acquired image, you won’t see a key named

CurrentControlSet. Instead, you will see two (or possibly three) keys with names such

as ControlSet001 and ControlSet003. To determine which of these was treated as the

current ControlSet, go to the Select key and look at the value “Current.” This will tell you

which ControlSet you should look to as the CurrentControlSet.

In this case, we’ll be looking at the subkey beneath the ControlSet001 key.
Following the path and looking at the subkeys beneath the USBStor key, we see an
entry for the Geek Squad device, which is illustrated in Figure 5.2.

As you can see in Figure 5.2, immediately beneath the USBStor key we see the
device instance identifier (device class ID, or just device ID) for the device, and
then immediately beneath that key we see the unique instance ID key for the device
itself. This unique instance ID is, in fact, the serial number maintained in the device
descriptor (not the storage section) of the Geek Squad thumb drive.

117Registry Analysis

FIGURE 5.2

USBStor subkeys, seen via WRR.

FIGURE 5.3

USBStor device subkey properties seen via WRR.

WARNING

Device Mapping

This unique instance ID is used on Windows 7 and Vista systems to map the device found

beneath the USBStor key to other elements that are critical to our analysis, such as which

drive letter was used to mount the removable device. On Windows XP systems, a value

named ParentIdPrefix was created and used to perform this mapping. While this value is not

created by Vista and Windows 7 systems, the unique instance ID (or serial number) is used

instead.

If we view the relevant Registry keys with WRR, we can right-click on the
device ID and, choosing “Properties,” we can see the LastWrite time for the device
ID key, as illustrated in Figure 5.3.

From Figure 5.3, we see that the LastWrite time of the device ID key corre-
lates to the time that the device was first connected to the system since the last
time the system was rebooted. What this means is that after the system is booted,
a device can be (and in this case, was) connected to the system multiple times;
the LastWrite time of the device ID key correlates to the first time that the device
was connected to the system following the most recent reboot. Prior to the system
being shut down, the device can be disconnected and reconnected multiple times,
but the LastWrite time of this key will—in most cases—reflect when the device
was first connected during that boot session. However, this may not always be the
case; some analysts have reported finding cases where multiple devices had been
connected to a Windows system, and all of the devices listed beneath the USBStor

118 CHAPTER 5 Registry Analysis

key had the same LastWrite time. There is speculation within the community that
this anomaly may be the result of a Service Pack or patch having been installed, or
of a Group Policy Object (GPO) that modifies the access control list (ACL) on the
keys; further analysis of the system itself (perhaps using the timeline creation tech-
niques discussed in Chapter 7) would be recommended.

TIP

Driver Events

When a USB device is connected to a Windows 7 system for the first time, an entry is

written to the C:\Windows\inf\setupapi.dev.log file (per http://support.microsoft.com/

kb/927521, this file contains information about Plug and Play devices and driver

installation), and events with identifier (ID) 20003 and 20001 and source “UserPnp” are

written to the System Event Log. There may also be event IDs 10000 and 10002 (source

is “DriverFrameworks-UserMode”), indicating the installation or update of a device driver.

These events will contain an identifier or name of the device that can be correlated to

information extracted from the Registry. When drivers are loaded to support a USB device,

several events are generated in the Microsoft-Windows-DriverFrameworks-UserMode/

Operational Event Log, with IDs of 1003, 2003, 2010, 2004, 2105, etc., all containing

a name or identifier for the device. When the device is removed from the system, a series

of events (IDs 2100, 2102, 1006, 2900, etc.) are written to the DriverFrameworks-

UserMode/Operational Event Log, as the driver host process for the device is shut down.

As such, the System Event Log can be useful in correlating information about USB devices

being connected to a Windows 7 system for the first time, and the Microsoft-Windows-

DriverFrameworks-UserMode/Operational Event Logs, if available, can provide information

regarding when devices were connected and removed from the system, allowing you to see

how long the device had been connected.

At this point, we also have the unique instance ID (or serial number) of the
device, which can uniquely identify the device. I say “can” simply because there
is no guarantee that each and every USB thumb drive with a serial number has (or
must have) a unique serial number. Some analysts have reported seeing several
devices from the same manufacturer, all with the same serial number. Further, some
devices do not have serial numbers within their device descriptors and are assigned
a unique instance ID by the Windows system to which they’re connected.

We can tell the difference between a serial number and a unique instance ID
assigned by the operating system, as the one assigned by the operating system has
an “&” as the second character. As you can see in Figure 5.2, our example serial
number listed (0C90195032E36889&0) has an “&” as the second to last character,
but a unique instance ID assigned by the operating system will have an “&” as the
second character. This allows the device to be uniquely identified on that system.
The algorithm used to create a unique instance ID for a device that does not have a
serial number is not publicly available, but it is important for analysts to know and
understand the distinction in unique instance IDs.

http://support.microsoft.com/kb/927521
http://support.microsoft.com/kb/927521

119Registry Analysis

Next, we navigate to the Enum\USB subkey within the same ControlSet, and
locate the subkey of which the name is the serial number (or unique instance ID) of
the device in question. The key for the device we’re interested in, visible in WRR,
is illustrated in Figure 5.4.

Right-clicking on the key named for the unique instance ID (in this example, the
serial number for the device) and selecting “Properties,” we can see the LastWrite
time of the key, illustrated in Figure 5.5.

The LastWrite time of the unique instance ID/serial number key correlates to
the last time that the device was connected to the system. This finding appears to be
fairly consistent across Windows systems.

Next, we need to navigate to the MountedDevices key at the root of the
System hive, and within the values, locate the volume globally unique identi-
fier (volume GUID) that contains the device serial number within its data. In our
example, the data for the volume GUID “\??\Volume{b7d8834c-b065-11e0-834c-
005056c00008}” contains the device unique instance ID (i.e., serial number), as
illustrated in Figure 5.6.

As you can see in Figure 5.6, the device serial number is selected within the
value’s binary data. Also within the data, we can also see the device ID (“Ven_
Best_Buy&Pord_Geek_Squad_U3”). Now, as it turns out, the MountedDevices
key also contains a value named “\DosDevices\F:,” which contains the same data
as the volume ID value seen in Figure 5.6. This tells us that the device had been
mapped to the F:\ volume on the system; this information can be very useful during

FIGURE 5.4

Enum\USB subkeys visible via WRR.

FIGURE 5.5

Enum\USB subkey properties visible via WRR.

120 CHAPTER 5 Registry Analysis

an examination (e.g., for mapping to file paths, volumes listed in Windows short-
cuts/LNK files and jump lists, etc.). What this also indicates is that no other device
had been mapped to the F:\ volume after the Geek Squad device was removed from
the system; had another device been connected and mounted as the F:\ volume, we
would likely see another device’s information in the data, as opposed to that of the
Geek Squad device.

FIGURE 5.7

PGPDisk and TrueCrypt volumes listed within the MountedDevices key.

FIGURE 5.6

Volume GUID data seen in WRR.

121Registry Analysis

This is a good time to mention that you may find indications of a variety of
other types of volumes within the MountedDevices key. For example, TrueCrypt
and PGPDisk volumes can also be seen listed here, as illustrated in Figure 5.7.

As you can see, the value names for these volumes appear listed a bit differ-
ently, beginning with “#” rather than “\??\Volume.” The use of TrueCrypt and
PGPDisk volumes may be part of legitimate business practices; forensic ana-
lysts will often use both of these methods to protect data being stored or shipped.
However, it may also indicate specific attempts to hide data.

TIP

DeviceClasses

Within the System hive, the DeviceClasses subkeys maintain some very good information

about USB devices. If you navigate to the ControlSet001\Control\DeviceClasses key

(or whichever ControlSet is marked “current”), and then locate the {53f56307-b6bf-

11d0-94f2-00a0c91efb8b} subkey (the GUID refers to devices identified as disks), then

beneath this subkey you will find a subkey that starts with “##?#USBSTOR” and contains

the device ID (“VEN_BEST_BUY&PROD_GEEK_SQUAD_U3”) and unique instance ID

(“0C90195032E36889”) for the thumb drive in question. If you look for the {53f5630d-

b6bf-11d0-94f2-00a0c91efb8b} subkey (refers to volumes) beneath the DevicesClasses

key, you should find a subkey that starts with “##?#STORAGE#VOLUME#_??_USBSTOR,”

and also contains the device ID and serial number of the thumb drive. In both cases, the

LastWrite time for the keys containing the device ID and unique instance ID of the device

corresponds to the first time that the device was connected to the system during the most

recent boot session.

This may not seem like very valuable information, but the fact that these keys are

available provides additional, correlating information for an analyst. This information can

be particularly helpful when someone has taken steps to cover his tracks, and has perhaps

deleted the contents of the USBStor key mentioned earlier in this chapter in an attempt to

hide the fact that he connected a device to the system, as remnants may still exist in other

locations within the Registry.

Now we can navigate to the Software\Microsoft\Windows\CurrentVersion\
Explorer\MountPoints2 key within the NTUSER.DAT hive file for a user, and
locate the subkey with the same name as the volume GUID ({b7d8834c-b065-
11e0-834c-005056c00008}). Right-clicking that key and choosing “Properties” we
can see that the LastWrite time for that key corresponds to the last time that the
device was connected to the system, as illustrated in Figure 5.8. The information
illustrated in Figure 5.8 not only allows us to see when the device was last con-
nected to the system, but also under which user context it was connected.

By now, you should be able to see that there is a great deal of information avail-
able within the Windows 7 Registry regarding USB thumb drives. Starting with the
ControlSet00x\Enum\USBStor subkeys (where “x” refers to the ControlSet marked
as “current” within the Select key) in the System hive, we can determine the
device class and unique instance IDs of devices connected to the system. We can

122 CHAPTER 5 Registry Analysis

use the unique instance ID to then map to the MountedDevices key (at the root of
the System hive) and determine the volume GUID, and possibly the drive letter to
which the device was mounted. Then using this information, we can determine both
when the device was first connected during the most recent boot session (LastWrite
times from USBStor and DeviceClasses subkeys), as well as when the device was
last connected to the system (LastWrite time from USB subkey in the System hive,
and MountPoints2 subkey in the NTUSER.DAT hive).

Interestingly enough, there’s even more information available about USB-
connected devices in the Windows 7 Registry. For instance, continuing with our
previous example and navigating to the Microsoft\Windows Portable Devices\
Devices key in the Software hive, we see a subkey named as follows:

WPDBUSENUMROOT#UMB#2&37C186B&0&STORAGE#VOLUME#_??_

USBSTOR#DISK&VEN_BEST_BUY&PROD_GEEK_SQUAD_U3&REV_6.15#0C901950

32E36889&0#

The LastWrite time for this key (viewed via WRR) correlates to the first time
that the device was connected to the system during the most recent boot session.
Also, the key has a value named “FriendlyName,” of which the data are “Test.”

Next, if we navigate to the Microsoft\Windows NT\CurrentVersion\EMDMgmt
key within the Software hive, we see a key named as follows:

_??_USBSTOR#Disk&Ven_Best_Buy&Prod_Geek_Squad_U3&Rev_6.15#0C9019503

2E36889&0#{53f56307-b6bf-11d0-94f2-00a0c91efb8b}TEST_1677970716

Available information online indicates that the EMDMgmt key is associated
with ReadyBoost, a technology available with Windows 7 that allows the system to
use a USB-connected device as a source of RAM. Within the name of the key, we
can see the device ID, the unique instance ID, and the word “TEST” are actually
the name of the FAT16 volume on the device. As with the Devices key discussed
previously, the LastWrite time on this key appears to correlate to the first time that
the device was connected to the system during the most recent boot session. In
addition, the key contains several values, as illustrated in Figure 5.9.

As you can see in Figure 5.9, the available values could potentially provide
some valuable information, in particular the “LastTestedTime” value. If this value
and the “CacheSizeInMB” value were populated with nonzero data, this might

FIGURE 5.8

MountPoints2 volume GUID subkey LastWrite time (via WRR).

123Registry Analysis

indicate that the device was used as a ReadyBoost drive, and provide information
regarding when it was last tested. If nothing else, this key and its values provide an
additional indication of certain devices that had been connected to the system, even
if they hadn’t been tested by ReadyBoost.

Another piece of information available from the EMDMgmt key, particu-
larly for USB hard drive enclosures (“wallet drives”), is the volume serial number
for the mounted volume. Now, this is not the drive or disk signature seen in the
MountedDevices key. A volume serial number is used to identify a volume and is
changed whenever the volume is formatted.

As an example, I have a SimpleTech 500-GB drive that I had attached to my
Windows 7 system at one point; the EMDMgmt subkey for the device is RIG___
ST500_1354504530. The volume name is “ST500,” and I can view the volume ID
using the following command:

G:\>vol

Volume in drive G is ST500

Volume Serial Number is 50BC-1952

If I open the Windows calculator tool (“calc.exe”) and switch to the scientific
view, I can convert the value from the EMDMgmt subkey (i.e., 1354504530) from
decimal to hexadecimal; when I do this, I get “50BC1952.”

Remember, I said that the volume serial number is not the same thing as the
drive signature; these are often confused, or considered to represent the same arti-
fact. A drive signature is a 4-byte value stored at offset 0x1B8 within the mas-
ter boot record (MBR). A volume serial number is a unique value assigned by
Windows to a volume when the volume is formatted. The drive signature for the
wallet drive in question, which is available via the MountedDevices key, is “23 48
3D D4.” I verified this by plugging the device back into the system, and then view-
ing the physical disk via FTK Imager. I saw the drive signature within the 4 bytes
starting at offset 0x1B8 (440 in decimal) within the drive MBR.

FIGURE 5.9

EMDMgmt subkey values, visible in WRR.

WARNING

USBStor Subkey LastWrite Times

There have been a number of posts to online forums asking about a specific observation

regarding LastWrite times on the USBStor subkeys. Several analysts have reported seeing all

of the subkeys with identical LastWrite times—not within seconds or minutes, but the same

time stamps. Several analysts have asked how it would be possible for a user to connect all

124 CHAPTER 5 Registry Analysis

FIGURE 5.11

Drive/disk signature.

of the devices at the same time. It is important to remember that the LastWrite times on

these keys do not indicate when the device was last connected to the system. Also, other

analysts have reported creating timelines (see Chapter 7) of system activity and observing

that the key LastWrite times appear to have been updated shortly after an update or Service

Pack was installed on the system.

The process for tracking “wallet” or external drives (also referred to as “drive
enclosures”) on Windows 7 systems is just a bit different. As an example, I con-
nected a Seagate FreeAgent GoFlex external USB drive to my Windows 7 system
(the serial number written on the label was NA02VNHQ), and as you’d expect, an
entry was created in both the USBStor key and the USB key within the System
hive. The keys that were created are illustrated in Figure 5.10. As you can see in
Figure 5.10, the unique instance ID subkey for the device is, in fact, the serial
number of the device. Also, as with thumb drives, the LastWrite time of the unique
instance ID key beneath the USB key correlates to the last time the device was con-
nected to the system.

The biggest difference between drive enclosures and other USB removable stor-
age devices is that we do not use the unique instance ID to determine the volume
ID from the MountedDevices key. Remember, this should allow us to then deter-
mine which user may have had access to the device. Instead, we have to use the
drive or disk signature, which is the 4 bytes located at offset 440 (0x1B8) within the
MBR of the drive. As I have access to the drive, I can use a hex editor or forensic
analysis software to view the disk signature, as illustrated in Figure 5.11.

FIGURE 5.10

USBStor and USB subkeys for external hard drive enclosure.

125Registry Analysis

With the disk signature (which is set by the operating system whenever the drive
is formatted), we can then parse the contents of the MountedDevices key using the
“mountdev.pl” RegRipper plugin and find the volume GUID for the drive enclo-
sure, which appears as follows:

\??\Volume{5d3e617b-b2c7-11e0-8563-005056c00008}

 Drive Signature = b6 19 f4 04

Once we have this information, we can then parse the contents of the
MountPoints2 key within the user’s NTUSER.DAT hive using the “mp2.pl”
RegRipper plugin, to determine when the device was last connected to the system.
In this case, that information appears as follows:

Wed Jul 20 15:07:15 2011 (UTC)

 {5d3e617b-b2c7-11e0-8563-005056c00008}

As it turns out, this is not only the same LastWrite time for the unique instance
ID key found beneath the USB key, it’s also the last time I actually plugged the
device into the system, although this time is displayed in UTC. As with other USB
removable storage devices, the first time that the device was connected to the sys-
tem can be found by examining the Windows Event Logs (as discussed earlier in
this chapter) or the “setupapi.dev.log” file.

Thumb drives and external “wallet” drives (those in drive enclosures) are not
the only devices that can be attached to Windows systems. Other devices may be
connected, including smart phones and even devices capable of capturing video and
still images, such as the Apple iTouch. This can be particularly important during an
exam if images are found to contain EXIF metadata (see Chapter 4), and the analyst
finds that a device (e.g., smart phone, iTouch, digital camera) of the type identi-
fied in that data had also been connected to the system. To demonstrate what these
devices might “look like” to an analyst examining the Registry from an acquired
image from a Windows system, I connected an Android smart phone (Motorola
Backflip) and an Apple iTouch to a Windows 7 system, disconnected them, repeated
the connection–disconnection process later, and then finally rebooted the system.
To view artifacts from this activity, I extracted the Registry hive files from the sys-
tem and parsed them using RegRipper, or more specifically, the command line
tool, rip (RegRipper is available at http://code.google.com/p/winforensicaanalysis/

downloads/list). Using the “usbstor.pl” plugin, we see the following:

C:\tools>rip.pl -r f:\system -p usbstor

Launching usbstor v.20080418

ControlSet001\Enum\USBStor

…

Disk&Ven_Motorola&Prod__MB300&Rev__001 [Wed Jul 20 13:24:27 2011]

 S/N: TA538029DP&0 [Wed Jul 20 13:24:27 2011]

 FriendlyName : Motorola MB300 USB Device

Now, this device was first plugged into the Windows 7 system at 9:24 am, July
20, 2011 EST. This can be verified by examining the “setupapi.dev.log” file, as well

http://code.google.com/p/winforensicaanalysis/downloads/list
http://code.google.com/p/winforensicaanalysis/downloads/list

126 CHAPTER 5 Registry Analysis

as the Windows Event Log, as mentioned previously in this chapter. We also know
that the LastWrite time on the device ID and unique instance ID keys do not spe-
cifically correlate to when the device was last connected to the system; in this case,
the LastWrite times correlate to the first time the device was connected to the sys-
tem during the most recent boot session, but only because this was the first time
that the device had been connected to the system.

Something else interesting is that I don’t see any indication of the Apple iTouch
in the output from the “usbstor.pl” plugin. However, using the “usbdevices.pl”
plugin, we see the following:

C:\tools>rip.pl -r f:\system -p usbdevices

Launching usbdevices v.20100219

…

Apple iPod [VID_05AC&PID_129E\b9e69c2c948d76fd3f959be89193f30a500a0d50]

 Class : WPD

 Service : WUDFRd

 Location Information : Port_#0003.Hub_#0004

 Mfg : Apple Inc.

This shows us that the Apple iTouch is identified as an iPod, with unique
instance ID (or serial number) “b9e69c2c948d76fd3f959be89193f30a500a0d50.”
During testing, the iTouch was last connected to the system at 11:02 am, July 11,
2011 EST, and the LastWrite time for the unique instance ID, when viewed via
WRR, is “7/20/2011 3:02:37 PM,” which correlates to the last time the device was
connected to the Windows 7 system, expressed in UTC.

Using the “mountdev.pl” plugin to examine the MountedDevices key within the
System hive, we see the following:

C:\tools>rip.pl -r f:\system -p mountdev

Launching mountdev v.20080324

Get MountedDevices key information from the System hive file.

…

Device:

_??_USBSTOR#Disk&Ven_Motorola&Prod__MB300&Rev__001#TA538029DP&0#

{53f5630 7-b6bf-11d0-94f2-00a0c91efb8b}

 \??\Volume{5d3e6180-b2c7-11e0-8563-005056c00008}

This indicates that the smart phone was mounted to the system with the volume
GUID “{5d3e6180-b2c7-11e0-8563-005056c00008}.” The iTouch, however, does
not appear to have been recognized as a removable storage device, and does not
appear to have been mounted as a volume. Using the “devclass.pl” plugin to look at
the devices mounted as disks indicates the following:

C:\tools>rip.pl -r f:\system -p devclass

Launching devclass v.20100901

DevClasses - Disks

ControlSet001\Control\DeviceClasses\

{53f56307-b6bf-11d0-94f2-00a0c91efb8b}

127Registry Analysis

…

Wed Jul 20 13:24:27 2011 (UTC)

 Disk&Ven_Motorola&Prod__MB300&Rev__001,TA538029DP&0

As mentioned previously in this chapter, the smart phone was first connected
to the system at 9:24 am, July 20, 2011 EST. We also know from previous discus-
sions that the LastWrite time for the device key listed under the DevicesClasses
disk device subkey will tell us when the device was first connected during the most
recent boot session; in this case, “Wed Jul 20 13:24:27 2011 (UTC).”

With the volume GUID for the smart phone, we can now run the “mp2.pl”
plugin against the NTUSER.DAT hive file extracted from the system, to parse the
MountPoints2 key. Running the plugin, we see the following:

C:\tools>rip.pl -r f:\ntuser.dat -p mp2

Launching mp2 v.20090115

MountPoints2

Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2

…

Volumes:

…

Wed Jul 20 15:11:34 2011 (UTC)

 {5d3e6180-b2c7-11e0-8563-005056c00008}

Again, as discussed previously in this chapter, the LastWrite time for the volume
GUID key for the smart phone (i.e., “Wed Jul 20 15:11:34 2011 (UTC)”) indicates
(and does in fact correlate to) when the device was last connected to the system.

We can then use the “port_dev.pl” plugin to parse the contents to the Microsoft\
Windows Portable Devices\Devices key from the Software hive, and when we do,
we see the following:

C:\tools>rip.pl -r f:\software -p port_dev

Launching port_dev v.20090118

Microsoft\Windows Portable Devices\Devices

Device :

LastWrite : Wed Jul 20 12:56:48 2011 (UTC)

SN :

Drive : Apple iPod

…

Device : DISK&VEN_MOTOROLA&PROD__MB300&REV__001

LastWrite : Wed Jul 20 13:24:30 2011 (UTC)

SN : TA538029DP&0

Drive : F:\

The output of the “port_dev.pl” plugin indicates key LastWrite times that correlate
to the first time that each device was connected to the system during the most recent
boot session. It also indicates that the smart phone had been mapped to the F:\ vol-
ume, which is not something that we got from the contents of the MountedDevices
key (from the System hive), as another device (not part of the testing) had been

128 CHAPTER 5 Registry Analysis

TIP

Deleted Registry Keys

When Registry keys are deleted, much like files, they aren’t really gone. Instead, the

space that they consume within the hive file is simply marked as being available, and

can be overwritten. As discussed in Chapter 2 of Windows Registry Forensics, Jolanta

Thomassen’s “regslack.exe” (provided in the RR.zip archive at http://code.google.com/p/

winforensicaanalysis/downloads/list) utility does a great job of recovering deleted keys and

values, in addition to illustrating free space within the hive file.

connected to the system and mounted as the F:\ drive after the smart phone had been
disconnected from the system. This can be determined by comparing the two sets of
output and their associated time stamps.

Finally, the EMDMgmt key (full path within the Software hive is Microsoft\
Windows NT\CurrentVersion\EMDMgmt) contains a subkey named_??_USBSTOR#
Disk&Ven_Motorola&Prod__MB300&Rev__001#TA538029DP&0#{53f56307-b6bf-
11d0-94f2-00a0c91efb8b}_946156644, which corresponds to the smart phone (includ-
ing the device model and serial number). Again, the EMDMgmt key is specific to
ReadyBoost, and this device was not tested for its suitability for ReadyBoost function-
ality. However, the EMDMgmt key does provide indications of devices that had been
connected to the system, which can be particularly useful when a user deletes some of
the other Registry keys in an attempt to hide her activities.

As we began this section on USB device analysis, I mentioned a couple of
checklists for this type of analysis that Rob Lee had created. Hopefully you took
the time to download those checklists and take a look at them. Regardless, I put
together similar checklists based on the information provided in this section,
including where within the Registry to look for specific pieces of information,
and, where appropriate, which RegRipper plugin can be used to retrieve and dis-
play that information. These checklists are included with the materials associated
with this book, and can be found at http://code.google.com/p/winforensicaanalysis/

downloads/list.

System Hive

Many times, Registry analysis may not involve multiple keys or hives, but will
instead involve just a single hive, or even just a single key. As one would think, the
System hive maintains a great deal of information regarding the system, including
devices that have been attached, services and drivers that should (or should not)
be running, etc. As such, analysts may find a good deal of very useful information
within the System hive. So far in this chapter, we’ve already discussed some of the
information available that can be used to determine when USB devices had been
connected to the system, and we also included references to the MountedDevices
key in that discussion.

http://code.google.com/p/winforensicaanalysis/downloads/list
http://code.google.com/p/winforensicaanalysis/downloads/list
http://code.google.com/p/winforensicaanalysis/downloads/list
http://code.google.com/p/winforensicaanalysis/downloads/list

129Registry Analysis

Again, in this chapter, I do not want to provide a voluminous list of keys and
values; instead, my goal is to present possible solutions to questions commonly
posed as such, therefore we will not be going through each hive, a key at a time.
Instead, we will focus on providing solutions.

Services
Analyzing available services can be an important part of investigations for a
number of types of incidents, including compromises, data breaches, and even
malware infections. Windows services serve as a great persistence mechanism for
malware (something that will be discussed in more detail in Chapter 6), as many
services start automatically when the system is started (no user login or other inter-
action required), and services often run with elevated privileges. An attacker may
compromise a system and leave a backdoor running as a Windows service, knowing
that if the service is set to start when the system boots, that backdoor will be avail-
able as long as the system is running. As such, analyzing the available services may
prove to be fruitful.

When you open the System hive in WRR, locate the “current” ControlSet,
and expand the Services key, you’ll likely see a great number of subkeys; not all
of these are actually services. Many of the subkeys you’ll see are for device driv-
ers installed with the operating system or with applications. As you click your way
down through the available services (I’ll stop on BITS, or Background Intelligent
Transfer Service), you’ll see the values for each key, with information similar to
what is illustrated in Figure 5.12.

From these values, you can see considerable information, including the Start
value. In this case, a value of 3 indicates that the service is set to a Manual start—
that is, on demand, usually via some user- or application-initiated action. Other
services may have a Start value of 2, indicating that they are set to an Automatic
start when Windows boots. We can also see the DisplayName (previous versions of
Windows, particularly XP, actually had names and description fields in the Registry,

FIGURE 5.12

Service key values, via WRR.

130 CHAPTER 5 Registry Analysis

FIGURE 5.13

Enum\Root\LEGACY_IMDISK keys, via WRR.

NOTE

ImagePath Value

Some malware may maintain persistence by referencing a malicious executable in the

ImagePath value. However, malware may use a more subtle persistence method by loading

a malicious DLL into a valid executable. In these cases, the ImagePath will reference a

legitimate Windows file—frequently “%SystemRoot%\system32\svchost.exe”—while the

malicious DLL will be referenced in the service’s Parameters subkey under the ServiceDLL

value.

rather than references to strings in DLLs) and the ImagePath, which can be used to
help identify suspicious services.

More information about the various values and their meaning can be found in
Microsoft KB article 1030000, found at http://support.microsoft.com/kb/103000.

There is also more information regarding Windows services available in
the System hive. If we navigate to the Enum\Root key within the appropri-
ate ControlSet, we’ll see a number of subkeys of which the names all start with
“LEGACY_.” You should recognize the remaining portions of the names as being
the same as some of the services and drivers we saw listed beneath the Services
key. These keys are created automatically by the operating system as part of nor-
mal system function. Many of the LEGACY_* keys will also have a subkey named
“0000,” as illustrated in Figure 5.13.

In this case, the LEGACY_IMDISK (ImDisk is a virtual disk driver avail-
able at http://www.ltr-data.se/opencode.html/#ImDisk) key illustrated in Figure
5.13 refers to a legacy driver; we can see this listed in the Class value beneath
the “0000” subkey. Now, the really interesting thing is that the LastWrite time for
the LEGACY_IMDISK is “Tue Jan 4 11:35:45 2011 (UTC)” (extracted using the
RegRipper “legacy.pl” plugin), which correlates to the first time that the device
driver was launched, and the LastWrite time for the LEGACY_IMDISK\0000 key
is “Wed Jan 5 16:50:32 2011 (UTC),” which refers to the last time the device driver
was launched. Not only can this be very useful during malware and data breach
investigations (particularly when you need to identify a “window of compromise,”
or how long the system has been compromised), but the really interesting thing is
that the ImDisk driver is no longer installed on the system. After installing it and

http://support.microsoft.com/kb/103000
http://www.ltr-data.se/opencode.html/

131Registry Analysis

using it briefly, I uninstalled the driver, yet the LEGACY_ key for that driver per-
sisted on the system. This information can clearly be extremely useful during an
investigation.

Software Hive

As the Software hive contains information regarding installed software, as well as
the system-wide configuration of that software (the user’s hive will contain user-
specific settings), analysis of this hive can prove to be very valuable during an
examination.

Application Analysis
Many times, analysts want to know what applications are installed on the system
to begin the process of determining user activity, to see what applications the user
may have had access to, to determine if there was a violation of corporate accept-
able use policies, or to tie specific activities to an application. The simplest way to
start going about this is to check the available keys at the root of the Software hive,
as illustrated in Figure 5.14.

As you can see from Figure 5.14, the system in question has the 7-Zip archive
utility installed, as well as some Broadcom, Dell, and Intel applications. This infor-
mation can provide the analyst with some indications of installed applications.

Next, the Uninstall key (the key path is “\Microsoft\Windows\CurrentVersion\
Uninstall” within the Software hive) should also be examined. The subkeys beneath
the Uninstall key may appear to be GUIDs or readable names, and many will con-
tain values that provide information regarding installation date, install path and
source, as well as the string used to uninstall the application. As with those keys at
the root of the Software hive, the Uninstall keys are most often the result of applica-
tions that are installed via an installation package, such as the Microsoft installer.
Applications that are simply executable files copied to a directory do not generally

FIGURE 5.14

Portion of keys at the Software hive root, via WRR.

132 CHAPTER 5 Registry Analysis

FIGURE 5.15

Wow6432Node key, via WRR.

create Install or Uninstall keys, although some will leave traces in the Registry once
they have actually been executed. One such example is the MS SysInternals utili-
ties; these tools have an end user license agreement (EULA) that must be accepted
before the tool will run, and running the tool will create an entry in the Registry for
that tool.

Applications installed via a Microsoft installer package (a file that ends in
“*.msi”) are logged or recorded in the Software hive in the path “\Classes\Installer\
Products.” Each subkey beneath the Products key has a name with a long sequence
of hexadecimal characters, and the ProductName value will tell you the name of the
product that was installed. The “msis.pl” RegRipper plugin will extract this infor-
mation for you, and sort the various installed packages by their key LastWrite times
(which correlates to the package installation date/time). An example of this infor-
mation collected from one Windows 7 system appears as follows:

Thu Apr 21 16:51:24 2011 (UTC)

 VMware Player;C:\Users\harlan\AppData\Local\Temp\

vmware_1303404464\vmware player.msi

Wed Apr 13 18:54:38 2011 (UTC)

 ActivePerl 5.8.9 Build 829;F:\tools\ActivePerl-5.8.9.829-

MSWin32-x86-294280.msi

These are not the only places that an analyst should look for installed applica-
tions. On 64-bit Windows 7 systems, 32-bit applications may appear beneath the
Wow6432Node key at the root of the Software hive, as illustrated in Figure 5.15.

In addition, the analyst should also check the root of the NTUSER.DAT hive for
indications of installed applications, and the Uninstall key within the user hive (the
key path is “\Software\Microsoft\Windows\CurrentVersion\Uninstall”) should also
be examined. These keys will contain information regarding application data spe-
cifically installed by and available to a particular user.

133Registry Analysis

FIGURE 5.16

Classes subkeys from Software hive.

TIP

Browser Analysis

Many times when the subject of browser or web history analysis comes up in online forums,

one of the first responses you’ll usually see is “check the TypedURLs key in the user hive”;

however, this key applies to Internet Explorer, and there are several other browsers that

users can download and install. As such, the first step in browser analysis is to determine

which browser the user was using during the timeframe in question (tips on determining

the browser in use, from system or user file associations or other information found in the

Registry, are discussed in greater detail later in the chapter). Do not assume that simply

because the system is Windows, or because the TypedURLs key is populated with values,

that at the time in question, the user was using Internet Explorer.

Yet another way for an analyst to gather information regarding applications on
a system is through what I have referred to as “file extension analysis.” This tech-
nique has proven itself to be useful for finding not only installed applications (in the
sense that the application had an installer, such as an MSI file or a “setup.exe” file),
but also for standalone applications (that do not necessarily appear in the Registry)
that the user has associated with certain file types. We want to start by accessing
the Software hive, navigating to the Classes key, and looking at each of the subkeys
that starts with a “.” (see Figure 5.16).

From each of these file extensions, we can determine considerable information.
For example, if we open each of the keys (as illustrated in Figure 5.16) and look for
the “Default” value, for most of them we’ll see what type of file the extension refers
to; for example, the “Default” value for the .3g2 key is “WMP11.AssocFile.3g2.”
If we then go to the Classes\ WMP11.AssocFile.3g2 key and then navigate to the
shell\open\command subkey, we’ll see that the command used to access or execute
files that end in the .3g2 extension appears as follows:

"%ProgramFiles(x86)%\Windows Media Player\wmplayer.exe" /prefetch:6

/Open "%L"

134 CHAPTER 5 Registry Analysis

What this tells us is that the files ending in the .3g2 extension are associated
with the Windows Media Player, and when the user double-clicks one of these files,
the Windows Media Player will open automatically to run the file.

The way you would find this information on a live system is by opening a com-
mand prompt and typing the command assoc. A lot of file extensions would go fly-
ing by, so let’s say that you just wanted to see one ... say .jpeg. So you’d type the
command assoc | find “.jpeg”, and you’d see .jpeg 5 jpegfile returned. Then you’d
type the command ftype jpegfile, and you’d see something similar to the following:

%SystemRoot%\System32\rundll32.exe "%ProgramFiles%\Windows Photo

Viewer\PhotoViewer.dll", ImageView_Fullscreen %1

This is great information, but it’s for a live system. To determine similar infor-
mation from an acquired image, you’d want to run the “assoc.pl” RegRipper plugin
against the Software hive from the system, using the following command:

C:\tools>rip.pl-r f:\software -p assoc

The “assoc.pl” plugin processes information from the Software hive in a manner
similar to running the assoc and ftype commands already mentioned. You will also
want to check the keys at the root of the user’s USRCLASS.DAT hive file. I had
installed the Google Chrome browser in my Windows 7 system, and the “Default”
value for the “.https\shell\open\command” appears as follows:

"C:\Users\harlan\AppData\Local\Google\Chrome\Application\chrome.

exe" -- "%1"

Also at the root of my USRCLASS.DAT hive file is a key named .shtml, and the
“Default” value is “ChromeHTML”; mapping back to the Software hive, the value
for the “Classes\ChromeHTML\shell\open\command” is the same as what appears
above, indicating that if I double-click a file the ends in “.shtml” (or “.https”), the
file will be opened via the Chrome browser.

From an analyst perspective, this is great information, as it provides indications of
applications installed on the system. However, it also helps us answer another ques-
tion. Many times I will see a question in lists and online forums similar to, “Does
anyone know what application uses a file with this extension?” Many times, this ques-
tion is a result of some analysis that has already been performed, and the analyst has
apparently run across an unfamiliar file. In cases such as this, searching via Google
may provide a number of possible solutions, but analysis of the Registry from the sys-
tem that is being examined will likely provide the most accurate information.

Finally, another means for seeing what applications the user may have accessed
involves examining the contents of the UserAssist subkeys, which is discussed in
detail later in this chapter. This can be a valuable avenue of investigation, as the
contents of these keys persist even though the application itself may have been
uninstalled or deleted.

NetworkList
Windows systems have always maintained information regarding network connec-
tions, including wireless access points (WAPs) to which the system (usually a laptop)

135Registry Analysis

has connected. Tools used to manage these connections maintain historical infor-
mation regarding the connections, and we can often see these within the user inter-
face for the application. As you might expect, this information is maintained in the
Registry, and on Vista and Windows 7 there is considerable information available to
the analyst.

To start examining these data, we first have to navigate to the following Registry
key within the Software hive:

Microsoft\Windows NT\CurrentVersion\NetworkList\Signatures

Beneath this key, you will usually see two subkeys: Managed and Unmanaged.
Managed refers to connections for which the system is managed by a domain con-
troller; Unmanaged refers to connections for which the system is not managed by a
domain controller. Beneath both of these keys you will find subkeys with names that
are a long series of letters and numbers; what we’re looking for is the values within
each of these subkeys. An example of these values is illustrated in Figure 5.17.

From the available values, you can see how they can be valuable. For exam-
ple, the “Description” and “FirstNetwork” values refer to the service set identifier
(SSID) of a WAP. The “DefaultGatewayMac” value is the media access control
(MAC) address of the WAP, which we can use in WiFi geolocation mapping.

FIGURE 5.17

Values from a NetworkList\Signatures\Unmanaged subkey.

TIP

WiFi Geolocation Mapping

Over the years, there have been a couple of databases compiled for use in WiFi geolocation;

that is, providing a mapping between wireless router MAC addresses (usually compiled

via “wardriving” or submissions) and the coordinates (latitude and longitude) of the

physical location of the router. Some of these services focused primarily on mapping major

metropolitan areas. One such service that was publicly available was the Skyhook Wireless

database, and I had implemented access to the database to retrieve the latitude/longitude

pair for wireless routers in their database in a Perl script called “maclookup.pl.” (While the

script worked very well for some time, at the time of this writing, it would appear that the

Skyhook database may no longer be accessible; however, the script continues to serve as an

example of what can be achieved.) As an example, I extracted the MAC address of a wireless

router from the Registry of one of my systems and was able to obtain coordinates, which

I then submitted to Google Maps. The map location for the wireless router in question is

illustrated in Figure 5.18.

136 CHAPTER 5 Registry Analysis

As you can see, information such as this can be extremely useful to law enforcement

for mapping locations of devices used by suspects or missing individuals. I’ve heard that

analysts in private industry have also used similar techniques and found former employees

who visited a competitor’s location (presumably with their company-issued laptop) prior

to resigning their employment and going to work for that competitor. The time stamp

information associated with the connection to the WAP near the competitor’s site was then

used as a basis to determine what the employee accessed (e.g., files, databases, etc.) prior

to giving notice.

One thing to keep in mind, however, is that over time open access to databases such

as was available from Skyhook may change or be disabled, requiring license payment and/

or some sort of access token to be used via an API. As such, the “maclookup.pl” code

may stop working; however, other resources may be used to obtain geolocation information

once the MAC addresses of the wireless routers have been obtained from the Registry.

For example, in July 2011, Elie Bursztein posted to his blog (http://elie.im/blog/privacy/

using-the-microsoft-geolocalization-api-to-retrace-where-a-windows-laptop-has-been/) that

he’d developed a means for performing geolocation of WiFi router MAC addresses using

the Microsoft Live API, and that he would be giving a presentation on the topic at the

upcoming BlackHat Briefings conference in Las Vegas, NV, in August 2011. The white

paper and PDF of the presentation slides can be found at https://www.blackhat.com/html/

bh-us-11/bh-us-11-archives.html#Bursztein.

FIGURE 5.18

Google map location for WAP.

Finally, we can use the “ProfileGuid” value to map to the appropriate profile
in the NetworkList\Profiles key. The data for the “ProfileGuid” value should cor-
respond to one of the available profiles beneath the Profiles key. The values for the
profile identified in Figure 5.17 are illustrated in Figure 5.19.

As we can see in Figure 5.19, the “ProfileName” and “Description” values should
match the “Description” and “FirstNetwork” values that we saw in Figure 5.17. The
“NameType” value refers to the type of connection of the profile, where 0x47 is a
wireless network, 0x06 is a wired network, and 0x17 is a broadband (a.k.a., 3G)
network (as indicated by the MS TechNet blog located at http://blogs.technet.com/b

/networking/archive/2010/09/08/network-location-awareness-nla-and-how-it-relates-

to-windows-firewall-profiles.aspx). The “DateCreated” and “DateLastConnected”

http://elie.im/blog/privacy/using-the-microsoft-geolocalization-api-to-retrace-where-a-windows-laptop-has-been/
http://elie.im/blog/privacy/using-the-microsoft-geolocalization-api-to-retrace-where-a-windows-laptop-has-been/
https://www.blackhat.com/html/bh-us-11/bh-us-11-archives.html
https://www.blackhat.com/html/bh-us-11/bh-us-11-archives.html
http://blogs.technet.com/b/networking/archive/2010/09/08/network-location-awareness-nla-and-how-it-relates-to-windows-firewall-profiles.aspx
http://blogs.technet.com/b/networking/archive/2010/09/08/network-location-awareness-nla-and-how-it-relates-to-windows-firewall-profiles.aspx
http://blogs.technet.com/b/networking/archive/2010/09/08/network-location-awareness-nla-and-how-it-relates-to-windows-firewall-profiles.aspx

137Registry Analysis

FIGURE 5.20

Values for NetworkCards\12 key.

FIGURE 5.19

Windows 7 NetworkList key profile values.

values are a 128-bit SYSTEMTIME structure, a description of which can be found
at http://msdn.microsoft.com/en-us/library/ms724950(v5vs.85).aspx. These values
refer to when the profile was created (the system first connected to the network) and
when the system was last connected to the network; however, according to Microsoft,
these time stamps can be “either in coordinated universal time (UTC) or local time,
depending on the function that is being called.”

NetworkCards
All versions of the Windows operating system also maintain information about
network interface cards within the Registry. For example, a quick look in the
Software hive (“HKLM\Software”) at the \Microsoft\Windows NT\CurrentVersion\
NetworkCards key shows two subkeys (named 12 and 8, respectively), one of
which contains the values illustrated in Figure 5.20.

The ServiceName value illustrated in Figure 5.20 is the GUID for the net-
work interface card (NIC) and the Description value is what is seen when you type
“ipconfig/all” at the command prompt on a live system; in fact, it’s actually listed
after “Description” in the output of the command. We can then go to the System
hive, and navigate to the ControlSet00n\services\Tcpip\Parameters\Interfaces key
(where n is the number of the ControlSet identified as current) and locate the sub-
keys named for the ServiceName value we found beneath the NetworkCards key.
This key will contain a great deal of pertinent network settings and information that
refers to the interface, such as whether dynamic host configuration protocol (DHCP)
was enabled (or the interface had a hard-coded IP address), the DHCP server,
default gateway, etc. This information can be useful, particularly when attempting to
identify the system being analyzed in association with other external sources, such
as network packet captures, firewall/web server/network device logs, etc.

http://msdn.microsoft.com/en-us/library/ms724950

138 CHAPTER 5 Registry Analysis

Scheduled Tasks
Vista, Windows 2008, and Windows 7 systems manage scheduled tasks a bit differ-
ently from previous versions of Windows. Starting with Windows Vista, Microsoft
introduced Task Scheduler 2.0, which stored information regarding scheduled tasks
in the Registry’s Software hive beneath the following key (note that these Windows
versions ship with a number of default tasks):

Microsoft\Windows NT\CurrentVersion\Schedule\TaskCache

The XML files that contain the scheduled task settings and instructions are
located in the “C:\Windows\System32\Tasks” folder (and subfolders; refer to
Chapter 4 for a detailed discussion of scheduled tasks information maintained
within the file system). Most of the human-readable information regarding sched-
uled tasks within the Registry is found beneath the Tree subkey, as illustrated in
Figure 5.21.

On a default installation of Windows 7, most of the scheduled tasks will have
keys listed beneath the Tree\Microsoft\Windows subkey. For each scheduled task,
there will be an “Id” value that contains a GUID, and an index value. The values for
the Microsoft\Windows\Registry\RegIdleBackup task are illustrated in Figure 5.22.

We can then use the GUID value to navigate to the TaskCache\Tasks key, and
locate the subkey with the ID GUID as its name. Beneath this key, you will find the
values illustrated in Figure 5.23.

Most notable are the “Path” and “Hash” values. The Path value clearly
provides the path to the scheduled task file. The Hash value is a bit more inter-
esting, as the hash is of the XML task file itself and used to verify the integrity
of that file. Bruce Dang (of Microsoft) gave a presentation at the 27th Chaos
Communications Congress (the video of which is available online at http://www

.vimeo.com/18225315), during which he discussed Microsoft’s efforts in analyz-
ing the Stuxnet malware. During that presentation, Bruce stated that the hash
algorithm used at the time to identify changes in the scheduled task files was the

FIGURE 5.21

TaskCache\Tree subkeys, via WRR.

http://www.vimeo.com/18225315
http://www.vimeo.com/18225315

139Registry Analysis

CRC-32 algorithm, for which it is very easy to generate collisions. Analysis of
the malware determined that one of the vulnerabilities it would exploit was to
modify a scheduled task and pad the file so that when the Task Scheduler veri-
fied the task’s hash prior to running it, the hash would match what was stored in
the Registry. According to Bruce, Microsoft decided to replace the algorithm with
the SHA-256 algorithm; this fix appears to have been provided in security update
MS10-092, found online at http://support.microsoft.com/kb/2305420. Note that
the KnowledgeBase article states that any scheduled tasks that have already been
corrupted by malware may be validated following the installation of this security
update; as such, the article recommends that the actions associated with the tasks be
verified, which is excellent advice.

FIGURE 5.23

Values beneath a TaskCache\Tasks\GUID key.

FIGURE 5.22

Values in RegIdleBackup key, via WRR.

TIP

Wow6432Node

As long as you’re examining a Software hive, don’t forget to take a look in the Wow6432

Node key. This key is used for Registry redirection of calls from 32-bit applications on 64-

bit systems, and can contain some very useful information. For example, I’ve found values

within the \Wow6432Node\Microsoft\Windows\CurrentVersion\Run key in the Software hive

from a 64-bit Windows 7 system, and these values were not also included in the \Microsoft\

Windows\CurrentVersion\Run key. I’ve also found a significant number of subkeys beneath

the \Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall key, indicating applications

and updates that had been installed on the system.

User Hives

As with other Registry hives, there are some similarities between keys and val-
ues found in the user profile hives on the more familiar (to analysts) Windows
XP systems and newer Windows 7 systems. Some keys and their values remain
relatively unchanged; one such key is the ubiquitous Run key, as the path and use

http://support.microsoft.com/kb/2305420

140 CHAPTER 5 Registry Analysis

(in both the Software and NTUSER.DAT hives) has remained essentially the same.
Some keys have changed slightly; for example, beneath the Software\Microsoft\
Windows\CurrentVersion\Explorer\ComDlg32 key we no longer find the familiar
LastVisitedMRU and OpenSaveMRU keys we were used to from Windows XP.
Instead, we find other keys, as illustrated in Figure 5.24.

As you can see from Figure 5.24, there are some new keys, as well as some keys
with different names. However, the LastVisitedPidMRU, LastVisitedPidMRULegacy,
and OpenSavePidMRU keys are very similar to their Windows XP brethren.

What I hope to do in the rest of the chapter is discuss some of the keys that are
new to Windows 7, and different from Windows XP. Have no illusions, I will not be
able to address every new key and every change, as something like that is beyond
the scope of this book. Instead, I will try to address some of the significant changes
that are important to analysts and investigators. I will focus primarily on those keys
and values associated with the operating system itself, as it is impossible to address
every possible application. So, please consider this a start, but I hope one in which
you find significant value.

WordWheelQuery
With Windows XP, searches that the user ran via the Search functionality accessed
via the Start menu appeared in the ACMru key within the user’s hive. When Vista
was deployed, analysts found that searches performed by the user were no longer
maintained in the Registry, but were instead stored in a file. Shortly after the release
of Windows 7, analysts found that user searches were again stored in the Registry,
this time in the following key:

Software\Microsoft\Windows\CurrentVersion\Explorer\WordWheelQuery

The values within this key are stored in Unicode format, and maintained in a
most recently used (MRU) list, as illustrated in Figure 5.25.

FIGURE 5.24

ComDlg32 subkeys, via WRR.

FIGURE 5.25

WordWheelQuery values.

141Registry Analysis

As with other MRU list keys, the LastWrite time for the key in questions corre-
sponds to when the most recent search was conducted. As illustrated in Figure 5.25,
the search terms are stored as binary values, with the actual terms listed in Unicode.
As such, item 1 (the byte sequence “70 00 72 00 6F 00 67 00 72 00 61 00 6D 00
00 00”) indicates that the user searched for the term “program.” When viewing the
Properties for the WordWheelQuery key via WRR, we see that the LastWrite time
for the key is “3/13/2010 1:34:03 PM,” which indicates the date and time (in UTC
format) that the user searched for item 1. We know this because the first 4 bytes (or
DWORD) in the MRUListEx value (“01 00 00 00”) indicate that the value named
“1” was the most recent search term. The RegRipper “wordwheelquery.pl” plugin
will assist in enumerating this information.

TIP

Historical Registry Data

This is as good a place as any to point out how historical Registry data can be accessed

and used. Windows 7 maintains Volume Shadow Copies (VSCs), which can provide access

to previous versions of files, to include Registry hives. Accessing VSCs from an analyst’s

perspective (e.g., from within an acquired image) is discussed in detail in Chapter 3. What

this means is that while Registry keys that maintain MRU lists (e.g., the WordWheelQuery

key, RecentDocs, etc.) only provide information about the most recent activity, historical

information can be retrieved by mounting the appropriate VSCs and running queries for

the same Registry keys and values. For example, the value named “0” in Figure 5.25 is

“cctune,” but the MRUListEx value indicates that the most recently used value is “1,”

and as such the LastWrite time for the key indicates when the user searched for the term

in value “1.” The date and time for which the user ran the search for “cctune” may be

determined by mounting the appropriate VSC from the acquired image and querying the

WordWheelQuery key. This can be a very useful analysis technique, and can be used to

provide greater detail and context to timelines (discussed in detail in Chapter 7).

Shellbags
When conducting research on Windows forensic analysis, you may see mention of
shellbags and wonder exactly what this refers to. Shellbags are a set of Registry
keys and values that store user-specific preferences for Windows Explorer display
options. One of the nice things about Windows systems is that when you open
Windows Explorer to a particular file path and position and size the window that
you have open, Windows “remembers” these settings, so that the next time you go
to that directory or folder, you are presented with the same settings. This informa-
tion is maintained in the Registry hives within the user profile. This way, if you
log into a system as “userA,” you would likely have different settings than if you
logged in using another account. An example of how this Registry information can
affect a system from a user perspective is available in Microsoft KB article 813711
(found at http://support.microsoft.com/kb/813711); this article describes a situation
in which changes in size, view, icon, and position of folders are not remembered on

http://support.microsoft.com/kb/813711

142 CHAPTER 5 Registry Analysis

Windows systems. As such, these settings can be said to contain user preferences
for displaying certain information—settings the user would have had to configure.

The shellbags Registry keys that we’re interested in are named “Shell” and
exist within the two hive files located in the user profile on Windows 7 systems:
the NTUSER.DAT hive in the root of the profile, and the USRCLASS.DAT hive
located in the “AppData\Local\Microsoft\Windows” folder in the profile. Within
the NTUSER.DAT hive, the path to the Shell key is “Software\Microsoft\Windows\
Shell,” and the subkeys that we’re interested in are Bags and BagMRU. Within
the USRCLASS.DAT hive, the path to the Shell key is “Local Settings\Software\
Microsoft\Windows\Shell,” and the subkeys we’re interested in are also Bags and
BagMRU. (By now, you can see why this section is called “Shellbags.”)

Further research indicates that there may also be shellbags data in the
USRCLASS.DAT hive (on Vista and Windows 7 systems, found in the
“Users\username\AppData\Local\Microsoft\Windows” folder, and merged with
the NTUSER.DAT file to create the HKEY_CURRENT_USER hive when the user
logs in), beneath the Wow6432Node key on 64-bit systems. While a review of a
limited number of systems failed to identify a “Local Settings\Software\Microsoft\
Windows\Shell\Bags” key path beneath this key, it is worth keeping an eye out for
during an exam.

TIP

Tracking User Activity

User actions that result in a persistent change to the system can be useful to an

investigator. The key is for analysts to understand what actions may lead to the creation

or modification of an artifact (or specific set of artifacts), and developing supporting,

corroborating information through the inclusion and analysis of additional data sources.

For example, the existence of a prefetch file (discussed in Chapter 4) indicating that the

Windows defragmentation utility had been launched doesn’t implicitly indicate that the user

launched the utility; in fact, Windows systems run a limited “defrag” on a regular basis.

However, the existence of artifacts related to the user launching the utility, preceded by file

deletions and/or applications being removed from the system, would provide indications of

user intent.

Apparently, the data beneath the Bags and BagMRU keys can be used to recon-
struct some potentially valuable information regarding access to folder paths. For
example, much like Windows shortcut (LNK) files, the binary data within cer-
tain values beneath the keys contain embedded creation, modification, and access
time stamps for the accessed folder. The keys themselves also contain LastWrite
times, indicating when the folder was first accessed, or when the configuration
was most recently updated. Analysts can access this information through the use
of the Windows shellbag parsers “sbag.exe” tool, available at http://tzworks.net/

prototype_page.php?proto_id514.

http://tzworks.net/prototype_page.php?proto_id=14
http://tzworks.net/prototype_page.php?proto_id=14

143Registry Analysis

Using the “sbag.exe” tool is quite simple; it’s a command line interface (CLI)
tool and requires only the path to the hive file of interest. For example, you can
easily dump the shellbags information from a hive file extracted from an acquired
image using the following command:

C:\tools> sbag f:\usrclass.dat

With the amount of information that can be available, it’s a good idea to redirect
the output to a file. The output of the tool produces 10 pipe-separated columns that
include the bag number (i.e., “NodeSlot”), LastWrite time of the key being parsed,
the path, embedded creation, modification and access times, and the full path for
the folder accessed. The pipe-separated output can be opened in Excel for analysis;
a portion of output from “sbag.exe,” open in Excel, is illustrated in Figure 5.26.

This information can be very valuable to an analyst, illustrating access to spe-
cific resources, along with the date and time that those resources had been accessed.
For example, the parsed shellbag information can illustrate access to zipped
archives and folders that no longer exist on the system, removable storage devices,
and even network shares. As with other artifacts located in the Registry, the shell-
bags provide indications of access to resources that persist after the resource (i.e.,
folder) is no longer available.

Some interesting artifacts I’ve found in USRCLASS.DAT hives from Windows
7 systems are filenames, as you can see illustrated in Figure 5.26—specifically,
“fau-1.3.0.2390a.zip,” “ProDiscoverRelease6800Basic.zip,” and “Shadow_analyser_
beta_U52.zip.” This is interesting because the available information regarding
the BagMRU keys is that the data within the values refers to folders. However,
keep in mind that when a user “sees” a zipped archive in Windows Explorer and
double-clicks it, by default a folder window opens, which accounts for the existence
of these files listed in the BagMRU information.

Also, if you run “sbag.exe” against an NTUSER.DAT hive file from a Windows
7 system, you may see files listed beneath a key with a name that appears as follows:

\Software\Microsoft\Windows\Shell\Bags\1\Desktop\

ItemPos1920x1080x96(1)

This key (and ones like it) appears to contain information (via the key’s val-
ues) about icons available on the desktop, which can include … well, any file.

FIGURE 5.26

Extract of output from “sbag.exe.”

144 CHAPTER 5 Registry Analysis

From the NTUSER.DAT from a Windows 7 system, I found references to
“{CLSID_RecycleBin},” “Crimson Editor SVN286.lnk,” and “Google Chrome
.lnk.” On a Windows XP system, I found references to a considerable number of
PDF files. Information such as this can be correlated with the contents of the user’s
RecentDocs key, and perhaps application (image viewer) MRU lists to determine
where particular files that the user accessed were located.

MUICache
The MUICache key first came to my attention several years ago when I was looking
into some interesting malware artifacts; specifically, one antivirus vendor indicated in
several write-ups that malware was creating entries beneath these keys. This was not,
in fact, the case; instead what was happening was that the entry was being created by
the operating system as a result of how the malware was being executed for testing.

On Windows 7 systems, the MUICache key is located in the USRCLASS.DAT
hive within the user profile, in the path “Local Settings\Software\Microsoft\Windows\
Shell\MuiCache.” The values beneath this key, specifically ones that do not begin with
“@,” appear to provide indications of applications that had been run on the system. An
example of the partial contents of an MUICache key is illustrated in Figure 5.27.

As you can see in Figure 5.27, the MUICache key contains a list of applications
that have, at some point, been run on the system by the user. However, since each
program entry is a value, there is no time stamp information associated with when
the program may have been executed. The value of this key during an investigation
is that the running of the program can be associated with a particular user, even
after the program itself has been removed (deleted or uninstalled) from the system.
Further, comparing visible values beneath the MUICache key from USRCLASS
.DAT hives in VSCs can provide a timeframe during which the user ran the pro-
gram. Finally, on more than one occasion, I’ve found indications of oddly named
programs beneath this key that, when the program file was found and examined,
turned out to be malware.

UserAssist
The purpose and use of the UserAssist subkeys have been discussed at length in a
number of resources; suffice to say at this point that the contents of this key provide

FIGURE 5.27

Partial contents of MUICache key.

145Registry Analysis

some very valuable insight into user activity, as the key appears to be used to track
certain user activities that occur via the shell (Windows Explorer). When users dou-
ble-click icons to launch programs, or launch programs via the Start menu, this activ-
ity is documented in the UserAssist subkeys, along with a date and time of the most
recent occurrence of the activity, and the number of times the user has performed that
activity. Each subsequent time the user performs the activity, the time stamp and coun-
ter are updated accordingly. The value names beneath the subkeys are “encrypted”
using a Rot-13 (rotation 13) translation cipher, which can be easily decrypted. The
RegRipper “userassist2.pl” plugin decrypts the value names beneath the subkeys and
parses the time stamps and count (number of times the activity has occurred) from the
binary data. Didier Stevens’ UserAssist tool (http://blog.didierstevens.com/programs/

userassist/) does this, as well.
To run the RegRipper plugin on an NTUSER.DAT file within an image mounted

as a volume, simply use the following command line:

C:\tools>rip –r F:\users\jdoe\NTUSER.DAT –p userassist2

The output from this command would appear at the command prompt (you
would need to redirect the output from STDOUT to a file to save it), and an excerpt
of a sample output appears as follows:

Wed Apr 13 19:06:47 2011 Z

 D:\Tools\RFV.exe (3)

Wed Apr 13 19:06:39 2011 Z

 D:\Tools\bintext.exe (1)

Wed Apr 13 19:06:29 2011 Z

 D:\Tools\PEview.exe (1)

Wed Apr 13 18:59:08 2011 Z

 F:\tools\PEview.exe (1)

 F:\tools\RFV.exe (1)

 F:\tools\bintext.exe (1)

 F:\tools\PEDUMP.exe (1)

As you can see, the information is presented sorted in order of occurrence with
the time stamps listed in UTC format. The applications launched are followed by
their run count in parentheses.

TIP

Adding UserAssist Data to Timelines

We discuss timeline creation and analysis in Chapter 7, but this is a good point to mention

that you can output the information from the UserAssist keys to timeline (TLN) format using

the “userassist_tln.pl” plugin, via the following command line:

C:\tools>rip–r F:\users\jdoe\NTUSER.DAT–p userassist_tln>

events.txt

http://blog.didierstevens.com/programs/userassist/
http://blog.didierstevens.com/programs/userassist/

146 CHAPTER 5 Registry Analysis

The information from the UserAssist keys can be used to demonstrate access to
the Date Time Control Panel applet, installing or launching applications, etc. Most
often, it’s a good idea to include what you find in the UserAssist subkeys with other
data, such as information from the RecentDocs key, to corroborate and validate
your findings. In this way, you may find that a user launched MS Word and created
a document, and metadata (file metadata was discussed in Chapter 4) from within
the document may correlate back to the user.

NOTE

XPMode

To provide compatibility with older applications that ran under Windows XP and may not run

within the Windows 7 environment, Microsoft provides a free download of a custom virtual

environment called Windows XP Mode, or just XPMode. XPMode can be installed and run

on Windows 7 Professional, Ultimate, and Enterprise systems using Microsoft’s VirtualPC

(http://windows.microsoft.com/en-US/windows7/products/features/windows-xp-mode).

Applications installed in XPMode can be run from the Windows 7 host environment through

a Windows shortcut or LNK file. As this interaction occurs via the shell, it appears in the

user’s UserAssist subkeys within the Windows 7 environment. Using the RegRipper plugin

“userassist2.pl” to extract and translate the values and their data, indications of the use of

applications launched via XPMode appear as follows:

Wed Apr 13 19:25:57 2011 Z

 {A77F5D77-2E2B-44C3-A6A2-ABA601054A51}\Windows Virtual PC\

Windows XP Mode Applications\RFV (Windows XP Mode).lnk (1)

Information from the UserAssist subkeys may also correlate to other activ-
ity that the analyst has available that is separate from the system being examined.
For example, information from the UserAssist subkeys may indicate that the user
launched the Terminal Server Client, and the Terminal Server Client key, as well as
the jump lists for the application (discussed in Chapter 4), would provide indica-
tions of which system the user had attempted to connect to. The Windows Event
Logs on the remote system might indicate that the user successfully logged in, and
network device logs might provide additional information regarding the connection,
such as correlating information regarding the date and time of the connection, total
number of bytes transferred, etc.

Another great thing about the contents of the UserAssist subkey information is
that it persists beyond activity associated directly with applications. Let’s say that
a user downloads and installs an application, runs it a couple of times, then deletes
the application and any data files created. Weeks or even months after the deleted
files are overwritten and unrecoverable, the information within the UserAssist sub-
keys is still available. I once performed an examination in which this was precisely
the case. We were able to determine that the user had installed Cain & Abel, a pass-
word recovery tool available at http://www.oxid.it/cain.html. The user had installed

http://windows.microsoft.com/en-US/windows7/products/features/windows-xp-mode
http://www.oxid.it/cain.html

147Registry Analysis

and run the tool to collect password information, viewed several of the output files,
and then deleted the application files themselves.

FIGURE 5.28

“Software\Microsoft\Virtual PC” key path, via WRR.

FIGURE 5.29

Partial contents of c6d3bf33.Windows.XP.Mode key.

TIP

Historical UserAssist Data

Information within the UserAssist subkeys provides us with indications of user activity, but

only the most recent occurrence of that activity. For example, if we see that a user launched

a particular application 14 times, we can see the date and time that he did so, but we

have no information regarding the previous 13 times that he launched that application.

By mounting available VSCs within the acquired image (see Chapter 3 for techniques

for mounting VSCs) to access previous versions of the Registry hives, we may be able to

determine the dates and times when the user previously launched the application.

Virtual PC
When a Windows 7 system (Professional, Ultimate, or Enterprise) has Virtual PC
and XPMode installed, a user may be using it to run legacy applications from the
special Windows XP environment. On a Windows 7 system with XPMode installed,
I wanted to run an application that I could not run in Windows 7, so I ran it from
the Windows XP environment. Once installed in the XPMode environment, the
application appeared on the Windows 7 Start menu under “Windows XP Mode
Applications.” A reference to the application also appeared in “Software\Microsoft\
Virtual PC” key path within the NTUSER.DAT hive, as illustrated in Figure 5.28.
Beneath the final key in the path (c6d3bf33.Windows.XP.Mode), several values
were added, as illustrated in Figure 5.29.

148 CHAPTER 5 Registry Analysis

The AppPath value visible in Figure 5.29 illustrates where the application
executable file is located within the XPMode environment. This information can
be very useful, as it can also be correlated with information found beneath the
UserAssist subkeys to determine how many times the user accessed the application,
and the most recent time and date that he did so.

TypedPaths
A Registry key that is new to Windows 7 is the TypedPaths key, found in the user’s
hive file, in the path “Software\Microsoft\Windows\CurrentVersion\Explorer\
TypedPaths.” Values within this key are populated when the user types a path into
the Windows (not Internet) Explorer Address Bar, as illustrated in Figure 5.30.

The first value added is named “url1,” and as each new value is added, that
value appears to be named “url1” and previous values are “pushed down.” As such,
the LastWrite time of the TypedPaths key would correlate to when the “url1” value
was added to the list.

Additional Sources

As you can see from this chapter so far, a great deal of potentially valuable infor-
mation can be retrieved from the Registry on a Windows 7 system. However, while
we’ve focused on information that can be derived by analyzing an image acquired
from a system, most of what we’ve discussed so far has involved what would corre-
late to the Registry visible via the Registry Editor on a live system. As it turns out,
Windows 7 has much more Registry data available, if you know where to find them
and how to access them. Knowing the structure of Registry keys and values, we can
search the pagefile, unallocated space, and even the unallocated space within hive
files for additional information.

RegIdleBackup
Earlier in this chapter, we discussed Registry keys associated with scheduled tasks.
Figure 5.23 illustrates a task named “RegIdleBackup,” which is a default task that
ships with Windows 7. If we locate the file for that scheduled task and open it in

FIGURE 5.30

TypedPaths key in Explorer Address Bar.

149Registry Analysis

Notepad, we’ll see that the task backs up the SAM, Security, Software, and System
hives to the “C:\Windows\System32\config\RegBack” folder every 10 days. So
whenever you acquire an image from a Windows 7 system, you should expect to
find backups of the Registry hives, and on an active system, those backups should
be no more than 10 days old. The information may be very helpful to the ana-
lyst, possibly showing historical Registry information, or showing keys that were
deleted from the hive file after the last backup was made.

TIP

Diff

If you install ActiveState Perl and then install the Parse::Win32Registry module (via “C:\

perl.ppm install parse-win32registry”), a script called “regdiff.pl” will be installed in the

“Perl\site\bin” folder. You can use this script, or the “regdiff.bat” batch file that is also

installed, to “diff” the current active hives against the backed-up hive files, to see what

changed since the last backup was made.

Volume Shadow Copies
In Chapter 3, we discussed how to access VSCs within images acquired from Vista
and Windows 7 systems. Using these mounting techniques, multiple previous ver-
sions of the Registry hives (including the NTUSER.DAT and USRCLASS.DAT
hives) can be accessed and parsed using tools such as RegRipper (and the associ-
ated “rip.pl/.exe” command line tool) to retrieve historical data from those hives.
This technique can be added to analysis to search previous versions of hive files for
earlier versions of data, or for keys and values that were subsequently deleted from
the Registry. Information such as this may prove to be extremely valuable to the
analyst or the investigator.

TIP

Evidence Eliminators

Users may sometimes elect to run “evidence eliminator” tools to hide their illicit activities.

Depending on which tool is used (I’ve seen a tool called “Window Washer” run on systems),

the Registry keys or values that get deleted may vary. Besides searching the unallocated

space within hive files for deleted keys, another method for recovering this information

would be to compare the current version of the hive files to previous versions of those files.

Virtualization
As discussed in Chapter 1, virtualization is available to a much greater degree on
Windows 7 systems than in previous versions of the operating system. For example,
not only is Virtual PC (VPC) freely available for download and installation on sev-
eral versions of Windows 7, but a special virtual environment called XPMode can
also be installed on those versions. This special version of Windows XP not only

150 CHAPTER 5 Registry Analysis

allows the user to more easily run legacy applications that may not run on Windows
7, but users can also access and interact with the Windows XP environment. For
example, a user can access the XPMode virtual machine as “XPMUser” and install
applications, surf the Web, etc., and none of that activity will appear within the host
Windows 7 environment.

In addition to XPMode, users can create and use other virtual guest systems
within VPC. Users may do this to hide their illicit activities within the virtual guest
system; if the virtual system is run via VPC, then analyzing that virtual hard drive
(.vhd) file would be essentially no different from analyzing an image acquired from
a physical system; these systems would have their own Registry files. The same is
true for VMWare .vmdk files, as well. Virtual systems can prove to be extremely
valuable sources of information.

Memory
Beyond these sources, and beyond the scope of this chapter (memory analysis is a
chapter, or perhaps even a book unto itself), Registry information may be available
in Windows memory, either in a dump of physical memory or in a hibernation file
(which is essentially a frozen-in-time snapshot of memory) and is accessible using
the open-source Volatility framework (http://code.google.com/p/volatility/). Brendan
Dolan-Gavitt (a.k.a, “moyix”; his blog is located at http://moyix.blogspot.com/)
has done considerable work in locating and extracting Registry data from memory
and his work is incorporated in the Volatility framework. One of the key aspects of
accessing Registry data within memory is that there are several volatile keys, which
are keys that exist only in memory and not on disk. In fact, the structures that iden-
tify volatile keys themselves only exist in memory. While this is not usually an issue,
as many volatile keys are created and used for legitimate purposes by the operating
system (such as the CurrentControlSet key within the System hive), it is possible
that a volatile key could be created and used for malicious purposes (e.g., Registry-
based mutex indicating that the system was infected with a particular bit of malware,
temporary staging area for stolen data, etc.). As such, looking for available Registry
information should be part of an analyst’s investigative process whenever she has
a memory dump or hibernation file available. If you are interested in information
regarding memory analysis specifically for malware analysis, be sure to consult the
Malware Analyst’s Cookbook and DVD (Ligh et al., 2011).

Tools

Before we close out this chapter, I wanted to make a couple of comments regarding
tools. Throughout this chapter, I’ve mentioned a number of RegRipper plugins, and
specific information regarding RegRipper and how to go about creating plugins can
be found in Windows Registry Forensics (Carvey, 2011). However, it’s worth men-
tioning again here that there are two ways to go about listing the available plugins,
which hive each is intended to be run against, and a brief description of what each
plugin does.

http://code.google.com/p/volatility/
http://moyix.blogspot.com/

151Registry Analysis

The first way to do this is to use “rip.pl” (or the “compiled” Windows execut-
able, “rip.exe”) with the appropriate switches. For example, typing “rip.pl –l” at the
command prompt will list all of the available plugins in order, in a table format. An
example of this format is illustrated as follows:

180. winzip v.20080325 [NTUSER.DAT]

 - Get WinZip extract and filemenu values

181. win_cv v.20090312 [Software]

 - Get & display the contents of the Windows\CurrentVersion key

182. wordwheelquery v.20100330 [NTUSER.DAT]

 - Gets contents of user's WordWheelQuery key

183. xpedition v.20090727 [System]

 - Queries System hive for XP Edition info

Adding the “-c” switch to the previous command tells “rip.pl” to format the out-
put in a comma-separated value format, suitable for opening in Excel, as illustrated
in the following command:

C:\tools>rip.pl –l –c>plugins.csv

The other way to view the available plugins is to use the GUI-based Plugin
Browser, illustrated in Figure 5.31.

After selecting the directory where the plugins are located, you will see each
plugin listed beneath the “Browse” tab, and as each plugin is selected (by clicking

FIGURE 5.31

Plugin Browser interface.

152 CHAPTER 5 Registry Analysis

on the plugin name), the plugin information (i.e., name, version, hive, and the short
description are all included in the code for each plugin) will appear to the right. The
Plugin Browser is part of the “RR.zip” archive that contains the tools that are part
of the Windows Registry Forensics (Carvey, 2011) book, and can be found at http://

code.google.com/p/winforensicaanalysis/downloads/list.
Another tool that definitely deserves attention is the Registry Decoder. In

September 2011, Andrew Case released the Registry Decoder (the announcement
for the release of the tool can be found at http://dfsforensics.blogspot.com/2011/09/

announcnig-registry-decoder.html), which is an open-source (Python) project that
was initially funded by the National Institutes of Justice, and was released to the
public.

The Registry Decoder consists of two components; the online acquisition com-
ponent safely acquires copies of Registry hives from live systems by using the
System Restore Point functionality on Windows XP, or the Volume Shadow Service
on Vista and Windows 7. Creating the Restore Point or VSC ensures that there is
a current, read-only copy of the hives that are not in use by the operating system.
The second component provides a GUI for offline analysis of Registry hives. Figure
5.32 illustrates the results of a plugin run across a Windows 7 Software hive file
loaded into the Registry Decoder.

The Registry Decoder allows an analyst to create a case and load multiple
hive files (including those extracted from VSCs) and process those hives (e.g.,
run searches, “diff” hives, run plugins across all of the “mounted” hives, generate
reports, etc.). Registry Decoder can process acquired images, Registry hives, and
even acquired databases. Once the information is loaded, the tool performs a one-
time preprocessing of all of the information, and generates databases and metadata
files that contain all of the information needed for analysis. Andrew was inter-
viewed by Ovie Carroll regarding the Registry Decoder, and you can listen to the
interview, which contains a great deal more information regarding the tool, in the

FIGURE 5.32

Partial Registry Decoder UI.

http://code.google.com/p/winforensicaanalysis/downloads/list
http://code.google.com/p/winforensicaanalysis/downloads/list
http://dfsforensics.blogspot.com/2011/09/announcnig-registry-decoder.html
http://dfsforensics.blogspot.com/2011/09/announcnig-registry-decoder.html

153Summary

September 26, 2011 CyberSpeak podcast (found at http://cyberspeak.libsyn.com/

cyber-speak-sep-26-2011-registry-browser). Both components of the Registry
Decoder can be downloaded from http://code.google.com/p/registrydecoder/.

SUMMARY

The Registry contains a great deal of forensically valuable data, and understand-
ing what is available, as well as how to access and interpret the data, can provide
a great deal of context and additional (perhaps even critical) investigative detail to
an analyst. While the Registry does contain a great deal of information, it cannot be
used to answer every question; for example, analysts have asked in online forums
where records of file copy operations are maintained in the Registry, and the sim-
ple answer is that they aren’t. However, the good news is that there are a number
of questions that can be answered through Registry analysis, but there is so much
information that no one resource can be written to contain it all. As further research
and analysis are conducted, new artifacts are discovered and cataloged, and often
the best approach, beyond referencing resources such as this book (as well as the
other books and resources mentioned in this chapter), is to collaborate with other
analysts and conduct some of your own research.

References
Carvey, H. A. (2009). Windows forensic analysis (2nd ed.). Burlington, MA: Syngress

Publishing.
Carvey, H. A. (2011). Windows registry forensics. Burlington, MA: Syngress Publishing.
Ligh, M. H., Adair, S., Hartstein, B., & Richard, M. (2011). Malware analyst’s cookbook and

DVD. New York: Wiley.

http://cyberspeak.libsyn.com/cyber-speak-sep-26-2011-registry-browser
http://cyberspeak.libsyn.com/cyber-speak-sep-26-2011-registry-browser
http://code.google.com/p/registrydecoder/

This page intentionally left blank

155

Malware Detection 6
CHAPTER

CHAPTER OUTLINE

Introduction ..156

Malware Characteristics ...156

Initial Infection Vector ...158

Propagation Mechanism ...160

Persistence Mechanism ...162

Artifacts ...165

Detecting Malware ..168

Log Analysis ...169

Dr. Watson Logs ...173

Antivirus Scans ...173

AV Write-ups ..175

Digging Deeper ...177

Packed Files ...177

Digital Signatures ..179

Windows File Protection ..180

Alternate Data Streams ...181

PE File Compile Times ..183

MBR Infectors ..184

Registry Analysis ..187

Internet Activity ..188

Additional Detection Mechanisms ...190

Seeded Sites ..191

Summary ..193

References ...193

INFORMATION IN THIS CHAPTER

l Malware Characteristics

l Detecting Malware

http://dx.doi.org/

156 CHAPTER 6 Malware Detection

INTRODUCTION

If you own or use a computer, at some point malware is just going to be a part of
your life. This is especially true for system and network administrators, who are
often responsible for managing and maintaining hundreds of systems. However,
this is also true for small businesses, which are often without the benefit of a dedi-
cated system administrator, and even home users. We all know of friends and fam-
ily who have suffered the frustration of having systems infected with malware; in
most cases, the complaints are about how the system has slowed down, or about
annoying pop-ups and messages that appear on the screen. What most folks don’t
realize is that the truly insidious malware is what we aren’t seeing on the screen:
the key loggers; the malware that grabs the contents of web browser form fields
whenever we log into our online banking account; or the Trojan that captures your
keystrokes when you order something online, before the data are encrypted and sent
to the server on the other end of the web browser session.

The presence of malware on a system can have a significant impact on an
organization. For example, the presence of malware may indicate a violation of
acceptable use policies within that organization, in addition to potentially exposing
the organization to risk in the eyes of compliance and regulatory bodies. Further,
understanding the nature of the malware (based on the identification of the malware
through the analysis of associated artifacts) can help an organization address busi-
ness issues, such as reporting and notification.

This chapter is not about malware reverse engineering; there are extremely
high-quality books available that address that topic far better than I ever could, such
as Malware Analyst’s Cookbook and DVD (Ligh et al., 2011). The purpose of this
chapter is to provide analysts and responders with an understanding of malware
characteristics to aid in detecting suspicious and malicious files within an acquired
image; if not the malware itself, then indications of malware having executed on
the system. We will discuss various techniques for performing a thorough exami-
nation for malware and malware artifacts, as well as provide a checklist of these
techniques.

MALWARE CHARACTERISTICS
While I was a member of an emergency computer incident response services team,
I began to notice that, as a team, we were receiving calls regarding as well as
responding to a good number of malware infection incidents. As such, I felt that
it would be valuable, and indeed important, to develop a framework for not only
better understanding malware in general, but also to come up with a way for all of
the consultants on our team to respond intelligently and speak authoritatively about
malware, and be able to explain what they were seeing to our customers. After
all, as consultants we were approaching the problem from a technical perspec-
tive: which systems were infected, what network traffic was being observed, etc.

157Malware Characteristics

However, the customer was coming at the problem and concerned about the issue
from a business perspective: How does this affect me from a legal or compliance
perspective, what data were stolen (if any), and where did the data go? During
some examinations, this will be the primary target of your analysis; during others,
the malware will be a secondary artifact, installed on a system following a com-
promise. As such, I wanted to develop a framework that allowed our consultants
(and others) to easily address the situation and bridge the technology–business gap.
Customers very often aren’t so much concerned with the technical aspects of the
malware as they are with what data may have been exposed as a direct (or indirect)
result of the infection, what risk they may be exposed to, and what issues they may
have with respect to compliance and regulatory bodies.

What I came up with (and blogged about several times at http://windowsir

.blogspot.com) were four simple malware characteristics that could be used to
understand, respond to, and eradicate malware, as well as answer the customer’s
questions. These characteristics are:

1. The initial infection vector (how the malware got on the system).
2. The propagation mechanism (how the malware moves between systems, if it

does that).
3. The persistence mechanism (how the malware remains on the system, and sur-

vives reboots and when the user logs out).
4. Artifacts (what traces the malware leaves on a system as a result of its execu-

tion) that you can look for during an examination.

I’ve found that when understood and used by responders (either consultants who
fly in or onsite IT staff) these characteristics also provide a framework for locating
malware on a system, as well as collecting information about a malware sample
found on a system.

For the types of cases where malware is likely to play a role (e.g., intrusion inci-
dents), most customers want to know things like what data, if any, were exposed, as
well as if the malware was specifically targeted to their organization. Developing
a more complete picture of malware and the effects on its ecosystem (not just the
system it’s installed on, but the entire infrastructure) can guide us in answering
those questions. Understanding how the malware behaves allows us to understand
its capabilities. For example, some malware behaves differently if it finds that it’s
in a virtual environment, or depending on the version of Windows it’s running on.
There is also malware that will install itself differently on systems depending on the
level of privileges available. Knowing things like how malware gets on a system
or how it communicates off of the system (if it does) helps us understand where
else we should be looking for artifacts; subsequently, we learn more about the mal-
ware when these artifacts are found (or when they’re not found!—think back to
Chapter 1 . . .) and ultimately provide better answers to our customers.

It’s important for everyone to understand the characteristics of malware. If you
think back to Chapter 1, we talked about convergence—the fact that no one area of
computer/digital forensic analysis is really as separate from others as we might think.

http://windowsir.blogspot.com
http://windowsir.blogspot.com

158 CHAPTER 6 Malware Detection

When law enforcement officers (LEOs) have to deal with an issue of contraband
(often called “illicit”) images or fraud, it’s very likely that someone will ask about or
make the claim that malware (a Trojan) was responsible for the observed activity, or
at least contributed to it. As such, LEOs are no longer simply dealing with cataloging
contraband images, as they now have a malware investigation to complete. As such,
turning to those who address malware detection and user activity analysis issues on a
regular basis would likely provide a great deal of assistance and expertise.

That being said, let’s go ahead and take a look at the four malware characteris-
tics in greater detail.

Initial Infection Vector

Not to be circular, but the initial infection vector is how the malware initially
infected or made its way onto a system or infrastructure. There are a number of
ways that systems can be infected; the user opens or double-clicks on an email
attachment that is really a malicious document, the user clicks on a link to a mali-
cious or infected web site, other browser “drive-bys,” etc. Systems can also be
infected when removable storage devices (e.g., thumb drives, iPods, etc.) that are
infected are connected to the system. Peer-to-peer (P2P) file sharing infrastructures
are other popular means by which systems can get infected. The more intercon-
nected we become, and the more devices that we have that can be updated and syn-
chronized by connecting them to our computer systems, the more we are open to
infection from malware.

Another prevalent infection mechanism is social networking sites, such as
MySpace and Facebook. In their book Cybercrime and Espionage, Will Gragido
and John Pirc mentioned a quote reportedly attributed to the infamous bank rob-
ber, Willy Sutton; when asked why he robbed banks, Mr. Sutton reportedly replied,
“because that’s where the money is.” Well, this provides us a glimpse as to why
those who spread malware use email and target social media/networking sites—if
they’re looking to infect a large number of systems, then they have to go where the
users are, and in particular where they can find massive numbers of users. If the
goal is to create masses of infected systems (for botnet activity, collecting user’s
personal data, etc.), then casting as wide a net as possible would likely be the best

WARNING

The “Trojan Defense”

The claim by defendants that “a virus did it” is nothing new. In 2003, Aaron Caffrey was

accused in the United Kingdom of hacking into computer systems in the United States.

He claimed that someone had hacked into his system and run an attack script; essentially,

“a Trojan did it.” Even though no indication of a Trojan (although the attack tools were

found) was found, Caffrey was acquitted.

159Malware Characteristics

way to achieve that goal. The motivations of the malware authors are often predi-
cated by the predilections of their target prey or “user community,” in that the vast
majority of users like to browse the Web, click links, use email and open email
attachments, etc.

Speaking of email and attachments, the February 2011 Symantec.cloud
MessageLabs Intelligence report (http://www.symanteccloud.com/globalthreats/

overview/r_mli_reports) indicated that “malicious PDF files outpace the distribu-
tion of related malicious attachments used in targeted attacks, and currently rep-
resent the attack vector of choice for malicious attackers.” Didier Stevens (whose
blog can be found at http://blog.didierstevens.com/) has spent considerable effort
writing tools to detect malicious contents in PDF files, and his tools have even been
included in online malware analysis sites such as VirusTotal (http://www.virustotal

.com). These demonstrate not only that those who proliferate malware gravitate to
using infection vectors that tend to be “popular” (i.e., applications may be targeted
not so much because they are vulnerable to exploit, but because they are so widely
used), but also that the security community will often follow suit in providing
appropriate and novel detection mechanisms.

Targeting users isn’t the only way to gain access to systems. Vulnerable
Internet-facing applications and servers are generally found through network scan-
ning. For example, vulnerable web servers (as well as applications running on
those servers) can provide access to systems, through such means as SQL injection
attacks. Systems can also be exploited via functionality inherent to the operating
system, such as automatically executing the commands in an “autorun.inf” file on
a USB thumb drive that is inserted into or connected to the system. In short, there
are more vectors that allow malware to infect a system than simply getting a user to
click a link or open a file.

The initial infection vector of malware is important to understand, as it is very
often one of the questions that the customer wants answered: “How did this mal-
ware originally get on my system or into our infrastructure?” For some, this infor-
mation is needed to clearly establish a “window of compromise”; that is, what was
the initial infection vector, when did the initial infection occur, and therefore how
long have we been infected? Identifying the initial infection vector can also be used
to find gaps in protection or detection mechanisms or user awareness training.

TIP

Phishing Training

Aaron Higbee is the CTO and a cofounder of the Intrepidus Group, and responsible for

the PhishMe.com site, which allows someone to send phishing emails into their own

infrastructure to baseline or test their user awareness training with respect to clicking

on links and attachments offered through email. The idea is that following (or even prior

to) user awareness training with respect to the dangers and risks of phishing attacks, an

organization can use the PhishMe.com site to validate and reinforce their training.

http://www.symanteccloud.com/globalthreats/overview/r_mli_reports
http://www.symanteccloud.com/globalthreats/overview/r_mli_reports
http://blog.didierstevens.com/
http://www.virustotal.com
http://www.virustotal.com

160 CHAPTER 6 Malware Detection

The initial infection vector can also help determine if the malware infection is
a targeted attack. In some instances, a malware infection is simply opportunistic,
such as when a user (coincidentally) visits a compromised web site infected with
a downloader; the downloader gets on the user’s system through a vulnerability
or misconfiguration in their browser, and then downloads additional malware. For
example, about two years ago, a friend of mine contacted me for advice because his
work laptop was infected with malware. It seemed that his son (a fourth grader) was
doing homework, which required that students go to the National Geographic web
site and complete a task. As it turned out, the site had been compromised and every
visit to the web site using a Windows system (apparently, regardless of the actual
web browser used) resulted in an infection. The intent of such attacks is to infect
any and all visitors to the site.

However, some infections occur when a user is sent an email with an attach-
ment or link that is designed to be interesting to them, and appears to come from
a known, trusted source. These types of attacks are often preceded by consider-
able open-source intelligence collection, and target victims are selected based on
their employer and projects that they may be working on or know something about.
These attacks are referred to as spear phishing, during which specific individuals
are sought to launch an attack against. As such, the answer to the question of “Was
this a targeted attack?” would be yes.

Propagation Mechanism

Once malware has infected an infrastructure, there is generally some means by
which that malware moves to other systems. This may be via network-based vul-
nerability exploitation (such as with Conficker), making use of operational busi-
ness functionality by writing to available network shares, or by parsing the user’s
address book or contact list and sending out copies of itself or other malware to
everyone listed with an email address.

Malware’s propagation mechanism can be particularly insidious when it takes
advantage of the day-to-day operational business infrastructure within the organiza-
tion to spread, such as writing to existing network shares. Many organizations have
home directories for users as well as file shares that users will access or be auto-
matically connected to when they log in, and if the malware writes to these shares,
the user systems may end up being infected. When the malware propagates using
the infrastructure in this manner, it makes incident response and malware eradica-
tion efforts difficult. The affected functionality is most often required and critical
to business operations, and taking that infrastructure offline for an indeterminate
amount of time is simply not an acceptable response measure. Additionally, taking
some systems offline for “cleaning” without understanding how they were infected
in the first place may result in the systems becoming reinfected shortly after con-
necting them back to the network, making effective eradication and clean-up proce-
dures impossible. Without understanding the infection or propagation method used,
it is impossible to take appropriate measures, such as installing patches, making
configuration changes, or modifying permissions, to prevent reinfection.

161Malware Characteristics

Depending on which system(s) you’re looking at within an infrastructure, the
propagation mechanism (how the malware moves between systems) may appear to
be the initial infection vector. In some instances, malware may initially make its
way into an infrastructure as a result of a browser “drive-by” or as an email attach-
ment. This initial infection may then be described as a “Trojan downloader,” which
in turn downloads a worm that infects systems within the infrastructure through
some vulnerability or other mechanism. If you’re looking at the fifth or tenth sys-
tem infected by the worm within the infrastructure, the initial infection vector for
that system would appear to be the worm. However, if you missed “patient 0” (the
originally infected system), you would not be able to “see” how the infrastructure
was originally infected.

In other instances, the propagation mechanism may, in fact, be the same as the
initial infection vector, in that the means by which the malware infected the first
system was also used to infect subsequent systems. An example of this may be
when an employee takes her laptop home, and it becomes infected with a network
worm while attached to the home wireless network. When the employee then brings
the laptop back to the office and connects it to the network, the worm propagates
using the same method as the initial infection vector.

The propagation mechanism needs to be identified and understood, not sim-
ply because it impacts the infrastructure, but also because the manner in which the
malware spreads to other systems may impact and lead to the infection of other,
external organizations, such as vendors and business partners, or even customers. In
the case of malware that spreads through email attachments, customers may also be
impacted. At the very least, this can bring undue attention to an organization, nega-
tively impacting the brand image of that organization, and possibly even exposing
vulnerabilities within that infrastructure to public scrutiny.

Another reason the propagation mechanism needs to be understood is that this
mechanism will very likely play an important role in the response to the incident.
Depending on the situation, patches may need to be applied or configuration modi-
fications may need to be made to devices, or to the infrastructure itself. As such,
correctly understanding the propagation mechanism so that it can be addressed as
part of an overall security response plan will ensure that resources are correctly
applied to the issue.

NOTE

Least Frequency of Occurrence (LFO)

In Chapter 1, we discussed the concept of least frequency of occurrence (LFO). The malware

propagation mechanism is closely related to LFO, and tied directly into the malware artifacts

(discussed later in this chapter). “Back in the day” (I love to say that …) malware would

infect an infrastructure and then start spreading out of control. Patient 0 (the first system

to be infected) would infect other systems, but as other systems became infected, patient

0 would become reinfected, and so on. Malware had no means to identify already-infected

systems, and pretty soon individual systems would become so massively infected that they

would be completely unusable.

162 CHAPTER 6 Malware Detection

Persistence Mechanism

Jesse Kornblum pointed out in his paper, “Exploiting the Rootkit Paradox” (http://

jessekornblum.com/publications/ijde06.html), that malware most often wants to
remain persistent on the infected system. (In his paper, he was specifically referring
to rootkits, but the concept applies to malware in general.) What use is a Trojan or
backdoor that disappears and is no longer accessible after the system is rebooted,
particularly if this happens regularly? As such, most malware has some mechanism
that allows it to be automatically restarted when the system is rebooted, when a
user logs in, or via some other trigger. Again, this is a general statement, as some
malware has been identified that takes advantage of the fact that the system itself
must remain online and is unlikely to be rebooted; therefore, the malware doesn’t
employ what would be defined as a “traditional” persistence mechanism. Instead,
an attacker uses some vulnerability or identified technique to inject the malware
into the server’s memory; should the system be taken offline or rebooted for some
reason, the attacker hopes that he can reinfect the system using the same or a simi-
lar method. In this case, the malware remains persistent in memory as long as the
server remains online and functioning. However, our discussion in this chapter
focuses on detecting malware within an acquired image, so some form of persist-
ence mechanism is assumed.

Perhaps one of the most popular malware persistence mechanisms employed
by malware authors is to make some use of the Registry, using what’s commonly
become known as an autostart mechanism. While the Registry contains a great
deal of configuration and user tracking information, it also contains a considerable
number of locations from which applications can be automatically started, with-
out any interaction from the user beyond booting the system or possibly logging
in. For example, when a Windows system is booted, Windows services are started,
and entries within the Run key in the Software hive are parsed and launched, and a
number of other Registry keys and values are also parsed. When a user logs in, the
Run key within the user’s hive is parsed, as are other entries. There are even auto-
start mechanisms that can be engaged when a user takes a specific action, such as
running a program or launching a GUI-based application. The Registry can also be
modified to ensure that the malware is launched even if the system is started in Safe
Mode.

As cybercrime and the bad guy’s motives have evolved, there has been a need to not

have that happen anymore, as denying the user from using the system has the side effect

of preventing the attacker from using it, as well. As such, malware authors have used

techniques such as unique Registry keys or files, or mutexes (memory objects), to identify

already-infected systems. The malware can check for and recognize these “flags,” ensuring

that only a single infection or single instance of the malware is present on any given

computer. As such, the malware becomes the least frequently occurring process on the

system.

http://jessekornblum.com/publications/ijde06.html
http://jessekornblum.com/publications/ijde06.html

163Malware Characteristics

Not all persistence mechanisms reside within the Registry, however. In fact,
once analysts become aware of the Registry as a source for malware persistence,
it’s just their luck that the very next case involves malware that uses a persistence
mechanism that does not reside within the Registry. Some malware may be identi-
fied as a file infector, for example, and therefore doesn’t need to use the Registry
to maintain persistence on an infected system. Instead, such malware would infect
executable files or data files, so that the malware would be run whenever the exe-
cutable was launched or the data file accessed.

An example of malware of which the persistence mechanism does not require
the Registry was originally identified as “W32/Crimea” (the write up can be found
at http://home.mcafee.com/VirusInfo/VirusProfile.aspx?key 5 142626) in July 2007.
This malware was placed on a system as a DLL, and persistence was achieved by
modifying the import table (within the header of the portable executable, or PE,
file) of the file “imm32.dll” (a legitimate Windows PE file) to point to a function in
the malicious DLL. As such, any process that loaded “imm32.dll” became infected.

One means for malware to remain persistent on a system that really came to
light in the summer of 2010 had originally been documented by Microsoft as nor-
mal system behavior in 2000. Nick Harbour, a malware reverse engineer for the
consulting firm Mandiant, was the first to publicly describe this specific issue in
an M-unition blog post titled “Malware Persistence Without the Windows Registry”
(the blog post can be found at http://blog.mandiant.com/archives/1207). In particu-
lar, a malicious DLL was added to the “C:\Windows” directory and named “ntshrui
.dll,” which also happens to be the name of a legitimate DLL and shell extension
that is found in the “C:\Windows\system32” directory. However, unlike other shell
extensions listed in the Registry, this shell extension does not have an explicit path

WARNING

Memory Scraper

I once encountered an interesting piece of malware found on back-office point of sale (POS)

servers. This malware used a Windows service as its persistence mechanism, but rather

than launching immediately when the system booted, the service started a timer to wait or

“sleep” for a random amount of time. When the timer had expired the service would “wake

up” and run a series of other tools, the first of which would extract the virtual memory

used by any of eight named processes (all of which were associated with processing credit

card information). The malware then launched a Perl script (that had been compiled into

a standalone executable file with the “Perl2.exe” application) to parse the virtual memory

dump, looking for track 1 and 2 data (the data found in the magnetic stripe on the back of

your credit card). This was an interesting approach to data theft. First, it targeted the only

location within the credit card processing system at the local site where the data were not

encrypted (i.e., in memory). Second, it waited for a random period after the system was

booted, because when the system was booted, there was no credit card data in memory.

By waiting for a random amount of time (in one instance, 41 days), the malware author

ensured that there were data in memory to collect and parse.

http://home.mcafee.com/VirusInfo/VirusProfile.aspx?key=142626
http://blog.mandiant.com/archives/1207

164 CHAPTER 6 Malware Detection

listed for its location, and when “Explorer.exe” launches to provide the user shell,
it uses the established and documented DLL search order to locate the DLL by
name only (no other checks, such as for MD5 hash or digital signature verification,
are performed), rather than following an explicit path. As such, the “Explorer.exe”
process starts looking in its own directory first, and finds and loads the malicious
DLL. In this way, the malware relies on how the system operates, rather than add-
ing a key or value to the Registry as its persistence mechanism.

Yet another persistence mechanism to consider is the Windows scheduled tasks
functionality. Scheduled tasks allow administrators to run tasks or “jobs” at desig-
nated times, rather than every time the system is booted or when a user logs in. For
example, if you use Apple products such as iTunes, Safari, or QuickTime on your
Windows system, you can expect to see a scheduled task that launches the software
update application on a weekly basis. As such, it’s relatively easy to get malware on
a system and schedule it to run at specifically designated times.

Yet another example of a persistence mechanism that does not rely on the
Registry is to use other startup locations within the file system. For example, the
Carberp Trojan, which is reportedly replacing Zeus/ZBot as the preeminent malware
for stealing a user’s online banking information, does not appear to use the Registry
for persistence. The Symantec write-up for this Trojan (found at http://www.syman-

tec.com/security_response/writeup.jsp?docid 5 2010-101313-5632-99&tabid 5 2)
indicates that the malware remains persistent by placing an executable file in the
“\Start Menu\Programs\Startup” folder within a user’s profile, which causes the
file to be launched when the user logs onto the system. Further, on September 23,
2011, Martin Pillion wrote a post titled “Malware Using the Local Group Policy
to Gain Persistence” to the HBGary blog (the blog is found at http://www.hbgary.

com/hbgary-blog; there is no direct link available to the post) that described the use
of the Windows Local Group Policy (the article specifically addresses Windows 7)
functionality for running scripts during specific events (e.g., logon, logoff) as a per-
sistence mechanism. In the article, Martin stated that this was a particular due to the
fact that the Microsoft AutoRuns tool (updated to version 11 on September 20, 2011
and found at http://technet.microsoft.com/en-us/sysinternals/bb963902) reportedly
does not check these locations.

Additionally, malware doesn’t have to be or reside on a system to remain per-
sistent on that system. In networked environments, “nearby” systems can monitor
infected systems and ensure that the malware that spread to those systems is run-
ning. This is a particularly insidious approach to use, as many organizations only
perform detailed monitoring at their network perimeter and egress points. Unusual
or suspicious traffic seen at the perimeter will lead back to the systems that are
communicating out of the infrastructure; however, the systems that are ensuring
that malware is running on those systems will likely not be seen by the monitoring.
Therefore, IT staff will respond to the systems identified via egress monitoring and
“clean” or even reprovision those systems, which (depending on the method used)
may become reinfected shortly after being placed back on the network. This sort
of approach ensures that the malware remains persistent on the infrastructure as a
whole, rather than focusing on persistence on a specific host.

http://www.symantec.com/security_response/writeup.jsp?docid=2010-101313-5632-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2010-101313-5632-99&tabid=2
http://www.hbgary.com/hbgary-blog
http://www.hbgary.com/hbgary-blog
http://technet.microsoft.com/en-us/sysinternals/bb963902

165Malware Characteristics

Yet another mechanism for remaining persistent doesn’t even involve being on the
system in question. What happens is that the intruder is able to gain access to another
system, adjacent or logically “nearby” on the network, and is then able to execute
commands on the apparently infected system. This may be through the use of a vul-
nerability to repeatedly compromise the system, or simply using remote command
mechanisms (via tools similar to Microsoft’s own “psexec.exe”) in conjunction with
the appropriate credentials (usually those for a domain administrator). As such, the
observed activity (e.g., network traffic or device logs) that appear to indicate an issue
with the system is not the result of a malware being persistent on that system, but
instead that system being accessed again and again from another “nearby” system.

The purpose of this section has not been to list all possible persistence mecha-
nisms; instead, my goal has been to open your eyes to the possibilities for persist-
ence on Windows systems. One aspect of this has been obvious over time—that is
that responders will continue to learn from intruders and malware authors as they
identify and use new persistence mechanisms. As Windows systems provide more
functionality to users and become more complex, new persistence mechanisms are
invariably discovered and employed; as such, the goal for responders and analysts is
to recognize this and keep malware’s need for persistence in mind, as understanding
that there is a persistence mechanism is the first step to identifying that mechanism.

Artifacts

Artifacts are those traces left by the presence and execution of malware, but are
not themselves specifically used by the malware to maintain persistence. Malware
persistence mechanisms appear to be similar to artifacts, and based on this defini-
tion, can be considered to be a subset of the more general “artifacts” description.
However, the best way to look at this is that persistence mechanisms are artifacts
used for a specific purpose, while the more general use of the term applies to other
artifacts not specifically used for persistence. For example, some malware creates
or modifies Registry keys or values to remain persistent on an infected system,
whereas that same malware may also create Registry values to maintain configura-
tion information, such as servers to contact or encryption keys.

WARNING

Multiple Persistence Mechanisms

One has to be careful when determining what the persistence mechanism is for a particular

bit of malware. I once responded to a malware infection incident that wasn’t particularly

widespread, but did seem to be particularly persistent. The local IT staff had determined

that the persistence mechanism for the malware was apparently a Windows service.

However, when they deleted the service and corresponding file on disk and then rebooted

the system, the malware was back. Close examination of one of the systems indicated that

there was a second Windows service involved that monitored the first service. If this service

did not detect the other malware service when the system started, it would reinfect the

system.

166 CHAPTER 6 Malware Detection

That being said, not all artifacts are directly created by the malware itself;
some artifacts are created as a result of the ecosystem in which the malware exists.
(Remember when we talked about indirect artifacts in Chapter 1?) I know, you’re
asking yourself, “What?” That’s just a fancy way of saying that some artifacts
aren’t created by the malware, but are instead created as a result of the malware’s
interaction with the infected host. For example, some malware creates a Windows
service to ensure its persistence; as a result, when the service is launched, Windows
will create subkeys under the HKLM\System\CurrentControlSet\Enum\Root key
that refer to the service name, prepended with “Legacy_*” (see Figure 6.1).

This is an interesting artifact, but how is it useful? Well, several analysts have
noted that the LastWrite time for the Legacy_*\0000 keys closely approximates
to the last time that the service was launched, while the LastWrite time for the
Legacy_* (again, where the “*” is for the service name) closely approximates to
the first time that the service was launched. This information was developed largely
through observation and testing, and has been extremely useful in determining
when a system was initially infected.

FIGURE 6.1

Enum\Root\Legacy_* keys.

WARNING

Malware Evolution

One aspect of analysis that examiners need to keep in mind is that malware authors may

learn of our analysis methods and attempt to use those processes against us. For example,

the ZeroAccess rootkit (a.k.a., Smiscer or Max), which was reverse-engineered by

Giuseppe Bonfa, was found to delete its Legacy_* service keys that the operating system

created beneath the HKLM\System\CurrentControlSet\Enum\Root key. The write-up that

includes the discussion of the Legacy_* service key being deleted can be found at http://

resources.infosecinstitute.com/zeroaccess-malware-part-2-the-kernel-mode-device-driver-

stealth-rootkit.

Another example of artifacts created by the operating system is prefetch files,
specifically as a result of application prefetching performed by the operating system.

http://resources.infosecinstitute.com/zeroaccess-malware-part-2-the-kernel-mode-device-driver-stealth-rootkit
http://resources.infosecinstitute.com/zeroaccess-malware-part-2-the-kernel-mode-device-driver-stealth-rootkit
http://resources.infosecinstitute.com/zeroaccess-malware-part-2-the-kernel-mode-device-driver-stealth-rootkit

167Malware Characteristics

Prefetch files are found in the “C:\Windows\Prefetch” directory on Windows
systems where application prefetching is enabled; by default, Windows XP, Vista,
and Windows 7 have application prefetching enabled (Windows 2003 and 2008 are
capable of application prefetching, but this functionality is not enabled by default).
Details regarding the creation and analysis of these files was covered in Chapter 4,
but suffice to say here that prefetch files have provided useful indications of mal-
ware being executed, even after that malware has been deleted from the system.

TIP

Application Prefetching

As was mentioned, Windows 2003 and 2008 are capable of performing application

prefetching, although it is not enabled by default. Enabling this functionality as part of

incident preparedness planning may provide useful artifacts during incident response and

analysis.

TIP

Prefetch and Data Exfiltration

Prefetch files can contain significant data with respect to data exfiltration. For example,

some intruders may use “rar.exe” to archive stolen data prior to shipping it off of the

system; as such, the prefetch file for “rar.exe” may contain references to the directory paths

and filenames of the data that were included in the archive. See Chapter 4 for a discussion

of parsing prefetch files.

Malware artifacts can also be based on the version of Windows that the mal-
ware infects/installs itself on, or based on the permissions under which the malware
is installed. There is malware, for example, that when it infects a system via a user
account with Administrator privileges, it uses the Run key in the Software hive for
persistence, and files may appear in the “C:\Windows\Temp” directory. However,
if the account through which the system is infected is a normal user (i.e., lower-
privilege account), the malware will use the Run key in the user’s hive for persistence
and write files to the Temp directory in the user profile. As such, when an analyst
looks at the entries in the Run key within the Software hive, he won’t see anything
that would indicate an infection by that particular malware, and should also be sure
to check (all of) the user profiles.

Determining the characteristics that we’ve discussed when attempting to locate
malware within an acquired image can often have a significant impact on your
examination. For example, some families of malware may have different file-
names or propagation mechanisms associated with each variation within the fam-
ily, but there will also be characteristics that are consistent across all variants.
For example, while the malware family known as Conficker (family description

168 CHAPTER 6 Malware Detection

found at http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?

name 5 win32%2fconficker) had differences across all variants, the malware had a
consistent persistence mechanism, using a random name for a Windows service that
started as part of “svchost.exe.” As such, Conficker infections could be determined
by locating the persistence mechanism, and from there locating the dynamic linked
library (DLL) file that comprised the infection. Understanding these characteris-
tics, in particular the persistence mechanism and artifacts, can also assist in helping
to locate malware that is not identified by antivirus (AV) scanning applications, as
locating the artifacts can lead you to the malware itself.

DETECTING MALWARE
Detecting malware within an acquired image is perhaps one of the most amorphous
and ethereal tasks that an analyst may encounter. Many analysts have cringed at
receiving instructions to “find all of the bad stuff,” because the question remains,
how do you go about doing this effectively, and in a timely manner? The answer
to that is simple: you don’t, and you can’t. After all, isn’t “bad” a relative term?
Without context, a good deal of effort can be dedicated to finding something that is
actually normal activity, or isn’t the “bad” thing you’re looking for. I know of one
analyst who was told to “find bad stuff” and found hacker tools and utilities, as well
as indications of their use. After reading the report, the customer stated that those
tools were actually part of the employee’s job, which was to test the security of spe-
cific systems within the infrastructure. Sometimes, we have to take a moment to get
a little context and find out just what “bad” is, so that we have a better understand-
ing of what to look for.

The goal of detecting malware within an acquired image should be one of data
reduction. Malware authors are sometimes lazy, but they can also be very insidi-
ous, and take great pains to protect their files from detection. There are a number
of techniques that malware authors can and do use to hide their programs from
detection, even going so far as to make their programs look as much like a normal
Windows program as possible. Malware authors will use specific techniques (e.g.,
giving the file a “normal”-looking name, placing the file in a directory where such
a file would be expected to be found, etc.) to hide their programs, sometimes even
based on the techniques used by analysts to detect these files.

Given the challenge of finding one (or a small number) of well-disguised files
on an image containing thousands of files, the best approach that an analyst can
take is to use a thorough, documented process to reduce the number of files that
need to be analyzed to a more manageable number. Having a documented process
allows the analyst, as well as other analysts, to see exactly what was done, what
worked, and what needs to be done to improve the process, if anything.

The following sections of this chapter lay out some steps that analysts can use
as a methodology and include in their analysis process to detect the presence of
malware within an acquired image, or provide a thorough process for ensuring that

http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?name=win32%2fconficker
http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?name=win32%2fconficker

169Detecting Malware

malware does not exist with an image. However, while each section will describe
that particular step thoroughly, this is not intended to be an all-inclusive list. Some
of these steps are sure to be familiar, while others may be new, but given enough
time, someone will very likely come up with additional steps.

Log Analysis

One of the first steps in detecting malware within an acquired image is to deter-
mine what AV application, if any, was already installed and/or run on the system.
If the system did have AV installed, the analyst would need to determine if it was
running at the time that the system was acquired (or when the incident occurred;
some malware actually disables AV and other security products on Windows sys-
tems) and when that application was last updated. This can be done easily by exam-
ining logs generated by AV applications; many maintain logs of updates, as well as
the results of regularly scheduled and on-demand scans. Some AV applications even
write their events to the Application Event Log. However, in some cases, this may
be a configurable option, and may be disabled or simply not enabled; therefore, if
you check the event sources for the various Application Event Log records and do
not see an indication of an AV application (McAfee AV products use the source
“McLogEvent”), do not assume that one hasn’t been installed.

WARNING

Application Event Logs

When analyzing a system, keep in mind that Application Event Logs, like the other Event

Logs on Windows systems, do not simply keep recording events ad infinitum. Instead, once

the logs have reached their specified size, older events are discarded to make room for

new ones. The maximum size of the Event Logs can be controlled by modifying a Registry

value, but in my experience, this is not something that’s done very often, particularly on

desktop systems. As such, analysts should look for both Application Event Log records

and AV application log files, as the AV log files may have considerably more historical data

available.

One of the first things I will usually look for on a Windows system is the log file
for Microsoft’s Malicious Software Removal Tool (MRT). MRT is a targeted micro-
scanner that is installed in the background on Windows systems, and is updated
with signatures on an almost-monthly basis. The term microscanner refers to the
fact that MRT is not a full-blown AV application, but is instead intended to pro-
tect Windows systems from very specific threats. Microsoft Knowledgebase (KB)
article 890830 (found on the Microsoft Support site at http://support.microsoft.com/

kb/890830) provides information about installing and running MRT (there are com-
mand line switches that can be used to run scans), as well as an up-to-date list of the
threats that MRT is intended to detect. MRT logs the results of its scans to the file
“mrt.log,” which is located in the “C:\Windows\debug” directory. The log contains

http://support.microsoft.com/kb/890830
http://support.microsoft.com/kb/890830

170 CHAPTER 6 Malware Detection

information such as the version of MRT run (usually following an update), when
the scan started, when the scan completed, and the results of the scan. An exam-
ple of an entry from the MRT log file retrieved from a Windows XP SP3 system
appears as follows:

Microsoft Windows Malicious Software Removal Tool v3.15, January

2011

Started On Wed Jan 12 21:50:26 2011

Engine internal result code = 80508015

Results Summary:

No infection found.

Microsoft Windows Malicious Software Removal Tool Finished On Wed

Jan 12 21:51:29 2011

Return code: 0 (0x0)

This information can be very useful to an analyst, particularly when claims are
made of particular malware being found on a system; for example, I’ve received
a number of images along with the statement that the systems had been infected
with Zeus. According to Microsoft KB article 890830, detection of Win32/Zbot
(also known as “Zeus” or “Wnspoem”) was added in October 2010. If an analyst
receives an acquired image and there is a suspicion that this particular malware had
infected the system, then this is one artifact that can be used to determine whether
there were any indications of particular malware on the system. As I include AV log
analysis as part of my methodology for these types of examinations, I document my
findings with respect to when MRT was updated, and what I find in the “mrt.log”
file. This helps address issues of what malware may or may not be on the system.

TIP

MRT Registry Key

Whenever MRT is updated, the “Version” value of the Microsoft\RemovalTools\MRT Registry

key in the Software hive is updated with a globally unique identifier (GUID) that indicates

the version of MRT, as illustrated in Figure 6.2.

This GUID can be looked up in Microsoft KB article 891716 (found at http://support

.microsoft.com/kb/891716) and used in conjunction with the LastWrite time to determine

when the MRT was last updated and which threats it should detect.

FIGURE 6.2

MSRT “Version” value.

http://support.microsoft.com/kb/891716
http://support.microsoft.com/kb/891716

171Detecting Malware

Later versions of Windows (starting with Vista) tend to have Microsoft’s
Windows Defender application installed, although this program can also be
installed on Windows XP. Windows Defender is a program that reportedly protects
Windows systems from pop-ups, spyware, and “unwanted programs.” As such, it
may also be worthwhile to examine the application logs to see if there are any indi-
cations of unusual or suspicious activity.

TIP

Windows Defender Logs

Microsoft KB article 923886 (found at http://support.microsoft.com/kb/923886) provides

very useful information regarding Windows Defender logs. The article describes where to

go within the file system and which files and other data to collect when seeking support

assistance with respect to Windows Defender. The article also describes the command

you can use on Windows XP, Vista, and Windows 7 to automatically gather all pertinent

information into a compressed .cab file, to be sent to Microsoft Support for analysis.

During an examination, you may find that other AV applications may have
been installed and run on the system. Check the Registry, Program Files direc-
tory, and even the prefetch files for indications of these applications and their use.
Often, both home user and corporate employee systems may have AV applications
installed; home user systems may have freely available AV scanners installed, and
corporate systems will likely have an enterprise-scale commercial AV scanner
installed. As such, you may need to determine if the logs are maintained on the
local system or in a central location. I have received a number of hard drives and
acquired images that indicate that shortly after an incident or malware infection was
suspected, the administrator logged into the system and either updated the installed
AV and ran a scan, or installed and ran an AV application. Like other examiners,
I’ve also clearly seen where more than one AV scanner was run on the system.
What you would want to do is locate the logs (if possible) from these scans and
determine what, if anything, these scanners may have found. Even if the adminis-
trator installed the AV application, ran a scan, and then deleted the application, you
may still be able to find indications of scan results in the Application Event Log.

So why is it so important to determine which AV applications have already been
run on a system? Within the information security industry, and specifically within
the digital forensics and incident response (DFIR) community, it’s understood that
just because a commercial AV scan didn’t find any malware on a system, that doesn’t
definitively indicate that there was no malware on the system. As such, many of
us rely on a methodology, rather than one specific commercial AV application, to
attempt to detect malware within an acquired image. Along those lines, what an ana-
lyst does not (and I mean not) want to do is hinge his findings on one AV scan, and
in particular, one done using the same AV application that had been installed on the
system. And to answer the question that just popped into your mind, yes, I have seen

http://support.microsoft.com/kb/923886

172 CHAPTER 6 Malware Detection

reports that have indicated that no malware was found on a system based on a single
AV scan, and when the analyst went back and checked later, he found that the AV
application used was the same version and malware signature file as what had been
installed on the system. What is the point of redoing something that was already
done, especially when it didn’t provide findings of any significance?

As such, the first step of any malware detection analysis should be to determine
what, if any, anti-malware or anti-spyware applications were already installed on
the system, what were the versions of these applications, and when they were last
updated. The version of the application itself can be very important, as AV ven-
dors have stated that the reason why known malware hadn’t been detected on a cus-
tomer’s infrastructure was that while the signature file was up to date, the scanning
engine itself was out of date and was not properly utilizing the signatures.

Once this information has been documented, determine if there are any logs
available, and if so, examine them for any indication that malware had been
detected. I’ve had a number of opportunities to examine systems onto which mal-
ware had originally been detected and quarantined by the AV application when it
was first introduced to the system. The intruder later returned to the system and
uploaded a new version of the malware that the AV application did not detect, but
used the same filename for the new version of the malware. As such, a search for
the filename originally detected by the AV application turned up the version of the
malware that the AV application didn’t detect.

I’ve also seen instances in which an AV application detected the presence of
malware, but that application had been specifically (however unintentionally) con-
figured to take no action other than to record the detection event. As such, the logs
(as well as the Application Event Log) provided clear indication that there was in
fact malware on the system (including the full path to the files) but that it hadn’t so
much as been quarantined by the AV application. In one instance, the AV applica-
tion logs indicated that the creation and subsequent deletion of malware files (pre-
sumably, after the intruder was done with them) had been detected, but again, no
action other than to record these events had been taken. This proved to be extremely
valuable information that provided insight into other actions taken by the intruder.

In other instances, AV scanning applications have additional functionality
beyond the traditional signature-based detection. For example, McAfee AV prod-
ucts can detect and/or block (i.e., they can be configured to detect but not block)
suspect actions, such as trying to run an executable file from a Temp directory or
from a web browser cache directory. So, while malware itself may not be explicitly
detected by an AV product, the actions taken to download and install that malware
may be detected, and possibly even prevented or simply inhibited.

WARNING

Mixing Protection Mechanisms

I once responded to an incident in which a user’s system was thought to have been infected

with some form of malware. The organization used a network monitoring product that

watched for DNS queries for “known-bad” malware/botnet sites, and reported on these as

173Detecting Malware

an indication of an infected system. As it turned out, the organization also had rolled out

a campus-wide installation of a host-based anti-spyware application to all of their user

systems, one which “blackholed” known malicious sites by modifying the hosts file (found

in the “C:\Windows\system32\drivers\etc” directory, and described in Microsoft KB article

172218, found at the Microsoft Support site at http://support.microsoft.com/kb/172218)

to redirect the queries for the domains and hosts to the local host (i.e., 127.0.0.1). The

final result of the engagement was that the user had installed an additional anti-spyware

application on his system, one which extracted all of the host names from the host files

and issued DNS queries for each one, regardless of the fact that they were blackholed.

The combination of these three tools, while thought to be providing overlapping layers of

protection, actually triggered what was thought to be a significant incident.

Dr. Watson Logs
Another source of potentially valuable data is the Dr. Watson log file. Dr. Watson is
a user-mode debugger found on Windows XP (but not Windows 7) that launches and
generates a log file when an error occurs with a program. This log file (“drwtson32
.log”) is located in the “All Users” profile, in the “\Application Data\Microsoft\
Dr Watson\” subdirectory, and when subsequent application errors occur, data are
appended to the file. The appended data include the date, the application for which
the error occurred and a list of loaded modules for the application, and a list of the
processes that were running at the time of the error. I’ve looked to the information
in this file to not just help determine if malware had been installed on the system,
but also reviewed the list of processes (as well as modules loaded in the “offend-
ing” or crashed process) to see if the malware process was running at the time that
the information in the log was captured. This has been very useful when attempt-
ing to verify the “window of compromise” (how long the system had been compro-
mised) during data breach investigations.

Antivirus Scans

Once you’ve determined and documented which, if any, AV applications had been
installed and/or run on the system prior to acquisition, another step you may decide
to do is to mount the image as a volume on your analysis workstation and scan it
with other AV products. Not all AV applications seem to be created equal; in some
instances, I’ve run multiple big-name AV applications across a mounted image and
not found anything. Then after running a freely available AV application, I got a hit
for one of the files associated with the malware, and was able to use that as a start-
ing point for further investigation. So, it doesn’t hurt to use multiple AV applica-
tions in your detection process.

Mounting an acquired image is relatively straightforward, using a number
of freely available tools. For example, the ImDisk virtual disk driver (http://www

.ltr-data.se/opencode.html/#ImDisk) installs as a Control Panel applet and allows
you to mount Windows images (NTFS or FAT) as read-only on your Windows
system. AccessData’s FTK Imager version 3.0 (http://accessdata.com/support/

adownloads#FTKImager) includes the capability to mount images, as well. As

http://support.microsoft.com/kb/172218
http://www.ltr-data.se/opencode.html/
http://www.ltr-data.se/opencode.html/
http://accessdata.com/support/adownloads
http://accessdata.com/support/adownloads

174 CHAPTER 6 Malware Detection

mentioned in Chapter 3, the “vhdtool.exe” program (available from Microsoft) will
allow you to convert a copy of your image to a virtual hard drive (VHD) file and
mount it read-only on your Windows 7 system. Regardless of the tool used, the pur-
pose is to make the file system within the image accessible as a drive letter or vol-
ume (albeit in read-only mode) on your analysis system.

Once you’ve mounted the image as a volume, you can scan it with AV scanners
in the same manner as you would a “normal” file system. Many AV products allow
scans to be configured to only be run against specific volumes or drive letters (some
even allow you to scan specific directories), making it relatively simple and straight-
forward to scan only the mounted volume(s). If you do not have access to commer-
cial AV products, there are a number of free AV products available for download
and use (be sure to read the license agreement thoroughly!!), several of which are
simply limited (in the sense that they provide scanning but no other capabilities,
such as real-time monitoring, etc.) versions of the full commercial AV products. For
example, there is a free version of the AVG scanner available at http://free.avg.com,
and you have the option to upgrade to a full version of the application that provides
additional protection, while downloading files or chatting online. Other AV products
such as Eset (producer of the NOD32 AV product, available at http://www.eset.com)
provide a limited-time trial version of their software; again, be sure that you read
and understand the license agreement before using any of these options.

There are a number of other AV products available for use, and many (such as
Microsoft’s Defender product, mentioned earlier in this chapter) are freely avail-
able, while other vendors provide limited-time trial versions of their full, profes-
sional products. This part of the chapter is not intended to provide a breakdown or
“shootout” among the various available products, but to instead demonstrate that
there are options available. The point is that it’s always better to run a scan using an
AV product that had not been installed on or run on the system, and it’s not usually
a bad idea to run multiple AV scans using disparate products.

One free, open-source AV product that is very useful and includes a portable
(run from a thumb drive) version is ClamWin (see Figure 6.3), found at http://www

.clamwin.com.
ClamWin can be installed on, updated, and run from a thumb drive, making it

a useful option for using among multiple systems without having to install the full
application on your analysis system.

Another option available, particularly when specific malware variants are sus-
pected, is micro-scanners. These are not general-purpose AV scanning products, but
are instead targeted scanners to look for specific malware variants. One such prod-
uct is McAfee’s AVERT Stinger product, available at http://www.mcafee.com/us/

downloads/free-tools/how-to-use-stinger.aspx. Downloading the file and running it
on your analysis system opens the user interface (UI) illustrated in Figure 6.4.

If you click on the purple “List Viruses” button in the Stinger UI (see Figure
6.4), a dialog listing all of the malware that the microscanner is designed to detect
will be listed. Again, while not as comprehensive as a more general AV product,
microscanners offer a useful capability. At the same time, don’t forget other scanner

http://free.avg.com
http://www.eset.com
http://www.clamwin.com
http://www.clamwin.com
http://www.mcafee.com/us/downloads/free-tools/how-to-use-stinger.aspx
http://www.mcafee.com/us/downloads/free-tools/how-to-use-stinger.aspx

175Detecting Malware

products, such as those specifically designed to detect spyware and adware, as these
can also provide some useful coverage. Finally, be sure to document the applica-
tions that you do use, as well as their versions and results. Both pieces of informa-
tion will help demonstrate the thoroughness of your detection process.

AV Write-ups
There’s something that I think is worth discussing with respect to malware write-
ups from AV vendor companies. These write-ups provide descriptions and a wealth
of information about the malware that these companies have found, been given
access to, and analyzed. However, there’s very often a gap when it comes to what
incident responders and forensic analysts need to know about malware, and what’s
provided by the AV companies. This gap is due in large part to the fact that AV
companies are not in the business of supporting incident responders; rather, they’re
in the business of supporting their business.

FIGURE 6.3

Partial ClamWin v.0.97 portable GUI.

FIGURE 6.4

McAfee’s Stinger UI.

176 CHAPTER 6 Malware Detection

Now, don’t take this as an indictment of AV companies, because that’s not what
I’m doing. What I am saying here is that malware write-ups from AV companies are
a good resource, but should be considered within that context, as sometimes they are
not complete and do not provide a comprehensive or completely accurate picture
of the malware. For example, there is malware that infects files that are “protected”
by Windows File Protection (WFP), but often there is no reference to WFP or the
fact that it was subverted in the malware write-up. While WFP is not intended as a
security or AV mechanism and is easily subverted (code for this is available on the
Internet), this fact is important to know as it may help us detect the malware where
the AV product fails since AV products are most often based on signatures within
the malware files themselves, and not on specific artifacts on the system.

Another aspect of malware write-ups that can be confusing is that there’s often
no differentiation between artifacts produced by the malware infection and those
produced by the ecosystem (e.g., operating system, installed applications, etc.) that
the malware infects. One example of this is the MUICache key within the Registry;
several years ago I found a number of malware write-ups that stated that the mal-
ware added a value to this key when it infected a system, when, in fact, the value
was added by the operating system based on how the malware was executed in
the test environment. Another example is the ESENT key within the Registry on
Windows XP systems. When someone asked what this key was used for, Google
searches indicated that there were malware samples that modified this key when
executed. It turned out that Windows XP systems were mistakenly shipped with a
checked (or debug) version of the “esent.dll” file, and the key itself (and all of its
subkeys and values) were a result of that debug version of the DLL being deployed
on production systems. As such, it wasn’t the malware infecting the system that
caused the Registry modifications as much as it was the result of the debug version
of the DLL. This could be confusing when an analyst was examining a Windows
Vista or Windows 7 system and found the malware in question, but did not find a
corresponding ESENT key within the Registry.

WARNING

Googling

Analysts should beware of conclusively identifying any malware sample as a particular virus

based on the name or location of the malicious file, a Registry key used for persistence, etc.

There are literally hundreds of thousands of malware samples and variants floating around,

and a relatively limited number of autostart/persistence locations, innocuous-looking

filenames, etc. that tend to get used and reused by malware authors. Analysts should not

base their analysis on “I Googled the filename and this is what I found,” as doing so can

easily lead to a misidentification of the malware, and an incorrect report of the malware’s

capabilities provided to a customer.

Remember, the customer is very likely going to have to make some tough business

decisions regarding risk and compliance based on your findings, and providing incorrect

information about the nature of the malware found on their systems will lead to the

wrong decisions being made. In some cases, all it would take is for the intruder to

177Detecting Malware

design his malware to use the same filenames and locations as some very well-known

malware (perhaps something known to be fairly innocuous) that has completely different

functionality and poses a completely different set of risks to infected systems. This would

have a significant impact on the information provided to the customer, if the analyst relied

on the Googling to identify the malware.

Digging Deeper

Windows systems contain a lot of executable files, many of which are completely
legitimate, and it’s neither productive nor efficient to examine each and every one
of those files to determine if it’s malicious. While these files can be hashed and
comparisons can be run, this method of identifying “known-good” files can be
cumbersome, particularly on Windows systems, as software installations and sys-
tem patches tend to change a number of files, so that while they are still completely
legitimate, they may trigger false positives in the hash comparison tool that you’re
using. Also, system administrators and home users rarely maintain an accurate set
of system file hashes for you to use as a baseline for comparison.

There are a number of other techniques available to analysts, beyond log analy-
sis and AV scans, that allow us to perform some significant data reduction and con-
siderably narrow the field of interesting files. We can use these techniques to help
us detect malware within an acquired image that would be missed by other detec-
tion means. We’ll discuss several of these techniques throughout the rest of this
chapter, but there are a couple of things that should be clear. First, this should not
be considered a complete list; I will attempt to be comprehensive, but there may be
techniques discussed in which you may find limited value, and you may have your
own techniques. Second, these techniques will be discussed in no particular order;
do not assume that a technique presented first is any more valuable than another.
Finally, whichever techniques you decide to use should be included in a docu-
mented malware detection process. A sample checklist is provided as an MS Word
document along with the additional materials provided with this book (available at
http://code.google.com/p/winforensicaanalysis/downloads/list).

Packed Files
Compression or “packing” is a means for reducing the size of a file, but more
importantly, portable executable (PE) files can be packed to hide their true nature,
and to “hide” from AV scanners. However, it is uncommon—albeit not unheard
of—for legitimate files to be packed. Therefore, any packed files found during a
scan would bear closer inspection. One tool that is freely available for checking for
packed files is PEiD, available at http://www.peid.info/ (version 0.95 is available at
the time of this writing; as of April 4, 2011, the project appears to have been dis-
continued). The PEiD UI is illustrated in Figure 6.5.

Choosing the “Multi Scan” button on the PEiD UI allows you to run a scan of
files within a directory, as well as recurse through subdirectories, and only scan PE
files, as illustrated in Figure 6.6.

http://code.google.com/p/winforensicaanalysis/downloads/list
http://www.peid.info/

178 CHAPTER 6 Malware Detection

PEiD also supports command line switches (be sure to read the “readme” text
file that comes as part of the distribution), but the difference from other command
line interface (CLI) tools is that running the application via command line switches
sends the output to GUI dialogs, as seen in Figure 6.6. Without an option for redi-
recting the output to files, PEiD cannot effectively be incorporated into batch files.
Regardless, this is still an invaluable tool to have available.

FIGURE 6.5

PEiD UI.

FIGURE 6.6

PEiD “Multi Scan” button output.

NOTE

Using PEiD

PEiD’s capability for detecting packed files is signature-based, and the configuration file

that ships with the tool (“userdb.txt”) contains only one signature. As such, users will need

to provide their own signatures; fortunately, Jim Clausing has provided a list of packer

signatures, which is available via the SANS Incident Handler’s site (http://handlers.sans

.org/jclausing/userdb.txt).

http://handlers.sans.org/jclausing/userdb.txt
http://handlers.sans.org/jclausing/userdb.txt

179Detecting Malware

If you would prefer a CLI tool, you might consider the Yara project, found at http://

code.google.com/p/yara-project/. Yara started out as an open-source project to help
identify and classify malware samples, but the author’s (Victor Manuel Alvarez of
Hipasec Sistemas) work has expanded the project. While it remains open-source and
based on Python, a Windows executable file is available for download, making it much
more accessible to a wider range of users. Yara is a rules-based scanner, in which users
can define their own sets of rules, based on strings, instruction patterns, regular expres-
sions, etc., to detect and classify malware. The Google Code site for the Yara project
includes a wiki page with sample rules files for packers as well as a limited set of rules
to detect some malware. The packer rules are based on some of the same signatures
used by PEiD, which means that those rules can be used to run PEiD functionality
(packer scans) from a batch file, using a command similar to the following:

C:\tools>yara packer.txt C:\Windows > d:\case\yara-packer.txt

In this Yara command, the file “packer.txt” is simply a file that contains a limi-
ted number of rules for detecting packers, available on the Yara project wiki (i.e.,
copy and paste the rules into a file). The book Malware Analyst’s Cookbook and

DVD (Ligh et al., 2011) contains several “recipes” (i.e., Python scripts) for con-
verting ClamAV (note: this is not the ClamWin AV product discussed earlier in
this chapter, and is instead available at http://www.clamav.net) antivirus signatures
and the full set of PEiD packer signatures to Yara rules files. If you work with or
encounter malware at all, having a copy of the Malware Analyst’s Cookbook and

DVD available can be quite valuable.

Digital Signatures
Examining executable image files for valid digital signatures using a tool such as
“sigcheck.exe” (available from the SysInternals site on MS TechNet, at http://tech-
net.microsoft.com/en-us/sysinternals/bb897441) is a valuable approach for detecting
malware. This is an excellent technique to use, in that an analyst can scan systems
for executable files that do not have digital signatures, as illustrated in Figure 6.7.

FIGURE 6.7

“Sigcheck.exe” tool.

http://code.google.com/p/yara-project/
http://code.google.com/p/yara-project/
http://www.clamav.net

180 CHAPTER 6 Malware Detection

As with many CLI tools, simply typing “sigcheck” at the command prompt will
display the syntax for the various command line switches. Figure 6.7 illustrates
a scan of just the “C:\Windows” directory, looking for unsigned executable files,
regardless of their extension. CLI tools are very useful in that they can be very eas-
ily included in batch files to facilitate scanning and processing of the results. For
example, adding appropriate switches will tell “sigcheck.exe” to recurse through
subdirectories, and send the output to comma-separated value (CSV) format, which
is suitable for ease of analysis. This is illustrated in the following command line:

C:\tools>sigcheck –e –v –u –q –s c:\windows > d:\case\dig_sig.csv

However, it’s worth noting that like many methods used by responders and ana-
lysts, someone is going to find out about them and find a way to use that method
against the responders and analysts. In June 2010, malware known as “StuxNet”
was publicly mentioned and described, and one of the notable aspects of the mal-
ware was that it contained a valid digital signature. On July 16, 2010, a post to the
Microsoft Malware Protection Center (MMPC) blog titled “The StuxNet Sting”
(found at http://blogs.technet.com/b/mmpc/archive/2010/07/16/the-stuxnet-sting

.aspx) stated that the StuxNet malware files had been signed with a valid digital
signature belonging to Realtek Semiconductor Corp. This digital signature quickly
expired, but other examples of the StuxNet malware that were discovered were
found to use other valid signatures. As with other techniques, scanning for valid
digital signatures should not be considered a “silver bullet” solution, but should
instead be considered as part of an overall detection process.

Windows File Protection
WFP is a process that runs in the background on Windows systems and monitors
for file change events that occur on the system. When such an event is detected,
WFP determines if the event is related to one of the files it monitors, and if so,
WFP will replace the modified file from a “known-good” version in its cache,
which in many instances is the “C:\Windows\system32\dllcache” directory. A more
comprehensive description of WFP can be found at http://support.microsoft.com/

kb/222193.
Many times, an attacker will get malware on a system that temporarily disables

WFP and replaces or infects a “protected” file, after which WFP is reenabled. WFP
does not poll or scan files, but instead “listens” and waits for file change events,
so once it has been reenabled, the modified file goes undetected. Sometimes, only
the file that does not reside in the cache is modified, and other times, analysts have
found that both the file in the cache as well as the one in the “runtime” portion of
the file system (i.e., the “system32” directory) were modified.

One means for detecting attacks where only the noncached copy of a “pro-
tected” file was modified is to compute cryptographic one-way MD5 hashes of all
of the files in the cache directory, and then locate the noncached copies of those
files, hash them, and compare the hashes. I wrote an application called “WFP
Checker” several years ago (2008) that does exactly that, and writes its output to a

http://blogs.technet.com/b/mmpc/archive/2010/07/16/the-stuxnet-sting.aspx
http://blogs.technet.com/b/mmpc/archive/2010/07/16/the-stuxnet-sting.aspx
http://support.microsoft.com/kb/222193
http://support.microsoft.com/kb/222193

181Detecting Malware

CSV-formatted file so that it can be easily viewed in a spreadsheet program or eas-
ily parsed via a scripting language. The UI for WFP Checker (following a scan of a
mounted volume) is illustrated in Figure 6.8.

WFP Checker is a pretty straightforward tool for scanning live systems for indi-
cations of “protected” files that have been modified in the manner described ear-
lier in this section. Keep in mind, however, that following hashing the files in the
“dllcache” directory, only those corresponding files in the “system32” directory are
hashed and compared (it should be noted that depending on the source of the files,
cached copies may be maintained in other directories). Some application installers
may place files in other directories, and to maintain a relatively low “noise” level
(I didn’t want to introduce more data to be analyzed) and reduce false positives,
the rest of the volume is not searched. As you can see in Figure 6.8, a log file of the
application’s activity is maintained along with the output file.

Alternate Data Streams
Alternate data streams (ADSs) are an artifact associated with the NTFS file sys-
tem that have been around since the implementation of NTFS itself. ADSs were
originally meant to provide compatibility with the Macintosh Hierarchal File
System (HFS), providing the ability to store resource forks for files shared between
Windows NT and Mac systems. ADSs have been covered in great detail in other
resources (Carvey, 2009), but suffice to say, ADSs can be particularly insidious
based on how they can be created and used, and the fact that an analyst may be una-
ware of or unfamiliar with them.

FIGURE 6.8

WFP Checker UI.

182 CHAPTER 6 Malware Detection

Windows systems contain all of the necessary native tools to create and manipu-
late ADSs, as well as launch executables and scripts “hidden” in ADSs; however,
until recently, Windows systems did not contain any native tools for locating arbi-
trary ADSs created within the file system. By “until recently,” I mean to say that it
wasn’t until Vista was released that the dir command, used with “/r” switch, could
be used to view arbitrary ADSs. There are also a number of third-party tools that
you can add to your system or toolkit that will allow you to view ADSs, includ-
ing Frank Heyne’s command line “lads.exe” (available from heysoft.de), “streams
.exe” (available from Mark Russinovich’s site at Microsoft), and the GUI-based
“alternatestreamview.exe” (available from nirsoft.net). Any of these tools can be
run against a mounted image file, but keep in mind these artifacts are specific to
NTFS. If the file system of the imaged system is FAT-based, there’s really no point
in checking for ADSs.

NOTE

Poison Ivy RAT

Poison Ivy is a GUI-based client-server remote administration tool (RAT) that is freely

available on the Internet. The Poison Ivy GUI provides a point-and-click interface for

configuring and creating a custom version of the “tool.” One of the configuration options

allows the tool to be installed within an ADS. An intruder with no programming skills simply

has to select a checkbox to use this mechanism to hide their malware on the computer of

an unsuspecting victim.

So why are ADSs an issue? Well, there are a number of files on systems; in
many cases, thousands of files. Even when an acquired image is loaded into a com-
mercial forensic analysis application (several of which will highlight ADSs in red
font), ADSs may not be immediately visible to the analyst without digging within
the directory structure. As we’ve mentioned, they’re definitely not easy to detect on
the live system, as the native tools for doing so are very limited. Therefore, while
ADSs are simple and were never intended for malicious purposes, like anything
else they can be particularly insidious if an analyst or system administrator simply
isn’t familiar with them, and doesn’t even know to look for them.

WARNING

Knowing What’s Possible

Knowing what to look for when performing digital forensic analysis is important, and this is

where having a documented malware detection process (or checklist) can be so valuable.

I’ve been to a number of conferences and given many seminars and presentations where I

will ask the attendees (analysts, administrators, etc.) about things like ADSs, and will not

be surprised at all when no one indicates that they’re aware of them. That’s why we have

professional education and development, and that’s also why it’s so important for analysts to

share information with each other.

183Detecting Malware

On September 20, 2011, an interesting post regarding the creation of “stealth
ADSs” appeared on the Exploit-Monday.com web site (the post can be found at
http://www.exploit-monday.com/2011/09/stealth-alternate-data-streams-and.html).
The post outlines, in part, how to add an ADS to a file that was first created using
specific names (e.g., NUL, CON, etc.; part of the device namespace in Windows).
These files can be created by appending “\\?\” to the file path. The author of the
post found that neither “streams.exe” (available from Microsoft at http://technet

.microsoft.com/en-us/sysinternals/bb897440), nor the use of “dir /r” (command
line switch available on Windows starting with Vista) included the capability of
detecting ADSs “attached” to these files, unless the file path was specifically pre-
pended with “\\?\.” The blog post also illustrated how Windows Management
Instrumentation (WMI) could be used to launch executables from within these
stealth ADSs, illustrating the risk associated with this capability. Michael Hale Ligh
(also known as “MHL,” one of the coauthors of The Malware Analyst’s Cookbook

and DVD), quickly followed with a blog post of his own (found at http://mnin

.blogspot.com/2011/09/detecting-stealth-ads-with-sleuth-kit.html) that illustrated
the use of “tsk_view.exe” (see his blog post for a link to the tool) to detect these
stealth ADSs.

PE File Compile Times
Another check that we can run against individual files (this may take a little bit of
programming to automate) is to take advantage of metadata embedded within PE
files to attempt to detect suspicious files. The compile date is a 32-bit value (the
number of seconds since December 3, 1969 at 4:00 pm), which is a time date stamp
that the linker (or compiler for an object file) adds to the header of a PE file, as
illustrated in Figure 6.9.

As illustrated in Figure 6.9, the compile date appears as “2006/08/01 Tue
21:10:42 UTC.” The created and modified time stamps within the file’s metadata
are often modified (referred to as “timestomped”) to disguise the malicious file and
make it blend in with legitimate operating system and application files. While the
compile time stored in the PE header could be similarly modified (e.g., using a hex
editor), it is not often seen in practice. Therefore, comparing the compile time from
the PE header with the created and modified times from the file metadata and look-
ing for anomalies may allow you to identify malware.

The trap you want to avoid is basing your findings or conclusions on assumptions and

speculation. We’ve all seen where something “new” has been discussed and this suddenly

becomes the cause célèbre, as incidents are attributed to this “new” artifact or finding. Be

sure to follow your documented analysis process, and if you rule out four items based on

your analysis, don’t simply assume that the issue is the fifth item. Run that scan or perform

that analysis. What you want to avoid is stating that the issue has to do with ADSs, only to

have someone come back later after having run the appropriate scan and determined that

there were no ADSs within the acquired image. Don’t assume that just because something

is possible, that’s what happened—check it.

http://www.exploit-monday.com/2011/09/stealth-alternate-data-streams-and.html
http://technet.microsoft.com/en-us/sysinternals/bb897440
http://technet.microsoft.com/en-us/sysinternals/bb897440
http://mnin.blogspot.com/2011/09/detecting-stealth-ads-with-sleuth-kit.html
http://mnin.blogspot.com/2011/09/detecting-stealth-ads-with-sleuth-kit.html

184 CHAPTER 6 Malware Detection

On “normal,” uninfected systems, the PE files provided by Microsoft will gen-
erally be from the installation medium and have the dates of when the original OS
binaries were compiled. There are a number of PE files, of course, that may be
updated by patches and Service Packs, and will subsequently have compile dates
associated with when the patches were built.

However, consider this example: In November 2009, a malware author creates a
PE (.exe or .dll) file, and shortly thereafter, deploys it to compromised systems. As
part of the infection mechanism, the file metadata times are “stomped”—in this case,
the file times are copied from a file known to be on all Windows systems. This is
usually done to hide the existence of the file from responders who only look at those
times. One file from which malware authors seem to prefer to copy file times, noted
by malware analysis conducted by AV vendors and reverse engineers, is “kernel32
.dll,” found in the “system32” directory. So, if the compile time of the suspicious
PE file is relatively “recent” (with respect to your incident window), but the creation
time of the file is before the compile time, you may have found a suspicious file.

You might also find suspicious files by considering the executable file’s com-
pile time in isolation. For example, if the values were all zeros, this might indicate
that the malware author directly edited the values. Another example of a suspicious
compile time might be one that predates modern versions of Windows, such as any-
thing before 1993.

As with other techniques, you may find that you’ll have a number of possible
false positives. For example, legitimate system files on Windows systems get updated
through the Windows Update mechanism, but may have creation dates from the orig-
inal installation media (consider the discussion of file system tunneling from Chapter
4). Consider that these may be false positives and not explicit indicators of malware
infections. As such, be sure to correlate your findings from other techniques.

MBR Infectors
A great deal of malware runs from within the file system of the infected system itself;
that is, the malware or a bootstrap mechanism for the malware exists some place
within the file system. The malware may be an executable PE file on the system (it
may be encrypted), or instead of the malware itself, a downloader may exist on the

FIGURE 6.9

Compile time in PE file header seen in PE view.

185Detecting Malware

system that, when activated, downloads the latest and greatest malware and launches
it. However, malware has been seen to exist on the disk, albeit originate from outside
the active volumes; these are often master boot record (MBR) infector malware.

Perhaps the first known MBR infector was “Mebroot.” According to the
Symantec write-up (found at http://www.symantec.com/security_response/writeup

.jsp?docid 5 2008-010718-3448-99) this MBR infector was first written in November
2007 and later modified in February 2008. Once this malware was discovered, ana-
lysts determined just how insidious it was, in that an MBR infector allows the malware
author to infect a system very early during the boot process, before most protec-
tion mechanisms have been initiated. In particular, artifacts of an Mebroot infection
included the finding that sectors 60 and 61 of the disk (on many, albeit not all, sys-
tems, the MBR is found at sector 0 and the first partition begins at sector 63) contained
kernel and payload patcher code, respectively, and that sector 62 contained a preinfec-
tion copy of the MBR. Now, this may not be the case for all variants of Mebroot, but it
is important to note that on a normal Windows system these sectors are usually full of
zeros (and more importantly do not contain copies of the original MBR!).

About two months after the Symantec description of Mebroot was published, an
article titled “MBR Rootkit, a New Breed of Malware” appeared on the F-Secure
blog (found at http://www.f-secure.com/weblog/archives/00001393.html) and pro-
vided some additional information about Mebroot. Then, in mid-February 2011,
another article titled “Analysis of MBR File System Infector” was posted to the
F-Secure blog (found at http://www.f-secure.com/weblog/archives/00002101.html)
that described yet another bit of malware named “Trojan:W32/Smitnyl.A” that
modifies or infects the MBR. The description of Smitnyl.A includes such artifacts
as a copy of the original MBR copied to sector 5, and the infector payload starts at
sector 39. According to the description, there is also apparently an encoded execut-
able located in sector 45.

So how does this help us, as forensic analysts, in detecting the presence of MBR
infectors in an acquired image? Well, one check that we can run programmatically
(which is a fancy way of saying, “we can write code to do this for us”) is to deter-
mine where the first partition starts (we can confirm this by running “mmls.exe”
from the TSK tools against the image), and then to run from sector 0 to that sector
(usually, though not always, 63) and locate any sectors that do not contain all zeros.

Let’s take a look at an example; Figure 6.10 illustrates the output of “mmls.exe”
(one of the Sleuthkit tools) run against an acquired image of a Windows system.

As we can see in Figure 6.10, the first 63 sectors are “Unallocated,” and the
first NTFS partition for this system (in this case, the C:\ volume) starts at sector 63.
Sample Perl code to check the sectors with a raw/dd image for any content other
than zeros might look like the following:

my $file = shift;

my $data;

open(FH,"<",$file) || die "Could not open $file: $!\n";

binmode(FH);

foreach my $s (0..63) {

http://www.symantec.com/security_response/writeup.jsp?docid=2008-010718-3448-99
http://www.symantec.com/security_response/writeup.jsp?docid=2008-010718-3448-99
http://www.f-secure.com/weblog/archives/00001393.html
http://www.f-secure.com/weblog/archives/00002101.html

186 CHAPTER 6 Malware Detection

seek(FH,0,$s * 512);

read(FH,$data,512);

my $str = unpack("B*",$data);

if ($str != 0) {

print " Sector ".$s."\n";

}

}

close(FH);

When I ran this code against an image that I had already checked manually (by
opening the image in FTK Imager and tabbing through sectors 0–63 in the hex view
pane), I found that as expected, sectors 0, 10, and 63 contained something more
than zeros. At this point, I’ve reduced the amount of data I need to look at (data
reduction through coding is a wonderful thing) from a total of 64 sectors to just
one, as sector 0 contains the MBR and sector 63 contains the beginning of the C:\
volume. Running this same code against a system infected with either of the dis-
cussed MBR infectors would produce markedly different results, but still only have
to dig into about half a dozen (as opposed to 64) sectors.

However, our coding doesn’t need to stop there … and because this really rocks,
I didn’t stop with just the previous sample code. I ended up writing “mbr.pl,” a Perl
script that provides much more functionality than the previous sample code (the
code for “mbr.pl” is a bit too lengthy to list here), which not only tells the analyst
which 512-byte sectors are nonzero, but will also provide other capabilities. For
example, we can see just the sectors that contain something other than zeros using
the following command line:

C:\Perl>mbr.pl -f f:\case\disk0.001 -s

Sector 0

Sector 10

Sector 63

If we want to see more, we can remove the “-s” switch (stands for “summary”)
and have the script print out the nonzero sectors in a hex editor–like format, as
illustrated in Figure 6.11.

Finally, the script allows also us (via the “-d” switch, for “dump”) to dump the
raw contents of the 512-byte sectors to files on the disk. This allows us to run diff
commands on the sectors, or generate MD5 or ssdeep hashes for the sectors; the
raw sectors or the hashes can be uploaded to sites like VirusTotal for a modicum of

FIGURE 6.10

Output of “mmls.exe.”

187Detecting Malware

analysis. Further, file hashes generated using Jesse Kornblum’s “ssdeep.exe” (freely
available at http://ssdeep.sourceforge.net/) can be compared to determine if any of
the hashes are similar, as some MBR infectors (albeit not all) will copy the original
MBR to another sector.

Other checks can be added to this code; for example, we could check the first 2
bytes of the sector for “MZ,” which is just a quick-and-dirty check for the possibility
that the sector is the beginning of a PE file. The “mbr.pl” script is provided as part
of the materials associated with this book.

FIGURE 6.11

Sample “mbr.pl” output.

TIP

Coding Skills

Having some ability to program, whether it’s writing batch files or via a scripting language

like Python or Perl, can prove to be an extremely valuable skill. Programming requires the

ability to compartmentalize a task into smaller subtasks, to think methodically, and to spell;

if you misspell your variable names in Perl (and don’t use the “use strict” pragma) you’re

going get unexpected results. All of these skills are valuable to an analyst, as is the ability

to have the computer system do the bulk of the “heavy lifting” for you, allowing you to

automate repetitive tasks.

Registry Analysis
Earlier in this chapter, we discussed persistence mechanisms and malware artifacts,
and how both can be found in the Registry. In Chapter 5, we discussed various tools
and techniques for parsing data from the Registry, and we can use those to detect
the presence of malware on systems. Registry analysis can be an extremely impor-
tant and revealing technique when looking for the presence of malware in an image.
For example, as new variants of Conficker were released, they weren’t immediately
detected by installed AV products on a good number of systems, but one thing did
remain constant across the variants: The malware used a random service name,

http://ssdeep.sourceforge.net/

188 CHAPTER 6 Malware Detection

running as part of the “svchost.exe” process, as its persistence mechanism. In many
instances, within malware families that use the Registry for persistence, there is
some consistency across the family.

In addition to persistence mechanisms, malware will many times also have other
artifacts that you can look for that will indicate the presence of malware when AV
scanner applications do not do so. Consider some of the artifacts discussed earlier
in this chapter, such as values beneath the MUICache key, prefetch files, processes
listed in the Dr. Watson log file, etc.; these (and others) can provide indications of
malware on a system that may be missed by AV products.

Internet Activity
Many analysts look to a user’s Internet activity to determine web sites that they’ve
visited, often as part of a wider examination. However, the same technique can be
used to check for the presence of malware, as well as potentially identify the source
of the malware (from whence it came). Many times, when an intruder gets malware
onto a system, she does so with elevated privileges; for example, if the intruder
gains Administrator-level access to a system, she can use those privileges to cre-
ate a scheduled task or a Windows service, both of which will run with elevated,
System-level privileges. If the malware running with elevated privileges uses the
WinInet API (also used by Internet Explorer) to communicate off of the system,
there will be artifacts of this communication, including entries in the Temporary
Internet Files (TIF) “index.dat” file for the “Default User” user.

On November 15, 2006, Robert Hensing (a Microsoft employee who used to
lead their incident response team) posted to his TechNet blog (http://blogs.technet

.com/b/robert_hensing) about malware “hiding” in the “Default User” user profile.
Robert had seen some of the same odd entries in a user profile’s Web history that
I’d seen during examinations, and had gone so far as to test his theories by launch-
ing Internet Explorer as a scheduled task (so that it would run with System-level
privileges). After surfing to several sites using this “super IE,” Robert then found
Web history in the “Default User” profile. It’s also important to note that Robert
had actually posted to his blog much earlier (January 27, 2005, with a post titled
“Anatomy of a WINS Server Hack”) with respect to finding the artifact of content
in the Temporary Internet Files directory in the “Default User” profile.

An analyst has a number of means available to parse the Internet history from
within an image. I have found that ProDiscover (both the IR and Basic editions;
I mention these two specifically as they are the ones to which I have access) is
very good at parsing these data; simply open the project file and navigate to your
image via the Content view. Navigate through the tree to the user profile direc-
tory, and then right-click to reveal the dropdown menu illustrated in Figure 6.12.
Select “Find Internet Activity…” and allow the application to populate the Internet
History Viewer, as illustrated in Figure 6.13.

Christopher Brown released ProDiscover (Incident Response Edition) 6.10.0.1
on May 5, 2011, and one of the updates that he included in this version is the abil-
ity for ProDiscover to also parse Internet history from the Chrome and Firefox

http://blogs.technet.com/b/robert_hensing
http://blogs.technet.com/b/robert_hensing

189Detecting Malware

browsers. (Note: ProDiscover version 7.0.0.3 was released in September 2011, and
included additional functionality.)

I have also seen Internet history for the LocalService account during analysis,
and in a manner similar to what Robert was able to demonstrate, have been able
to trace these artifacts back to malware that was making use of the WinInet API
and was installed as a Windows service, running under the Local Service account.
Examination of the malware indicated that it did, in fact, use the WinInet APIs, and
testing of the malware in a lab environment illustrated that the malware did com-
municate off of the infected system through the use of HTTP requests.

Another way to quickly check for the potential presence of this type of malware
artifact is to navigate to the Temporary Internet Files directories for the profiles in
question and quickly check to see if the “index.dat” files contain any entries. You
can do this by checking the size of the file and seeing if it contains all zeros (I’ve
seen this before), or extract strings from the files. As we will discuss in more detail
in Chapter 7, you can also use a Perl script that uses the Win32::UrlCache module
to parse the contents of the “index.dat” file. The method or tool you use to perform
a check like this is really up to you, as the examiner, but the important point of
this section is to understand that Internet history is not something that we normally

FIGURE 6.12

ProDiscover dropdown menu.

FIGURE 6.13

Populated ProDiscover Internet History Viewer.

190 CHAPTER 6 Malware Detection

expect to see in association with the “Default User” or “LocalService” user profiles
on a Windows system, and as such, this is something worth checking for, and some-
thing I do for most cases that are suspected to involve some type of malware.

Additional Detection Mechanisms
In addition to the various detection techniques we’ve discussed so far, there are
a number of other locations within an image that you can look for indications of
a malware infection. For example, looking for unusual scheduled tasks, either
the actual .job files in the Tasks directory or listed in the scheduled tasks log file
(“SchedLgU.txt”).

TIP

AT Jobs

Scheduled tasks created using the native “at.exe” utility are often used by intruders to

install malware on or execute other processes on a system. While Administrator privileges

are required to create these scheduled tasks, the tasks themselves run with elevated

privileges. Within most infrastructures, “at.exe” is not commonly used for routine system

administration, and as such, the existence of scheduled tasks named “at1.job,” “at2.job,”

etc. would merit a closer look.

We’ve discussed malware that uses a Windows service as a persistence mecha-
nism, and other artifacts associated with services. Another place you might want
to look is to examine the System Event Log (discussed in detail in Chapter 4) for
indications of services being started (event ID 7035) with a user security identi-
fier (SID), rather than a system SID. Services are usually started by LocalService
(SID: S-1-5-19) or NetworkService (SID: S-1-5-20) or similar accounts (depending
on their configuration), so services (particularly the PSExecSvc service) started by
a user account are definitely worth a closer look. Also, services usually start when
the system is booted; services that are started hours or days after a system start may
also indicate something suspicious.

Another location within the file system that you may find indications of mal-
ware includes Temp directories, either the Windows Temp directory (“C:\Windows\
Temp”) or the Temp directory within the user profile. Further, the Tasks folder
(“C:\Windows\Tasks”) is often used to store malware or a location from which to
conduct operations, as this is one of the “special” Windows folders in which the
true contents are not visible when viewed via Windows Explorer. The same is true
for the Fonts (“C:\Windows\Fonts”) folder, as well as the Recycle Bin. With these
folders, the true contents can be seen via the command line, using the dir command.

As with many of the techniques that we’ve described so far in this chapter,
none of them provides us with 100% guaranteed detection of malware. However,
we can correlate the output from multiple techniques, and use these techniques to
perform data reduction and address the potential for malware being on the system

191Detecting Malware

you’re analyzing. Remember that there are no silver bullets in information secu-
rity and digital forensics, but by automating the use of multiple techniques to look
for different artifacts of malware, from different perspectives, the goal is to pro-
vide enough coverage to minimize the chance of the malware avoiding detection.
We should never expect to completely eliminate the possibility of a system being
infected, but what we can do is continually improve our process and checklist, and
perform as complete and thorough of an assessment as we can.

Seeded Sites

Not long ago an excellent question was posed in an online forum as a hypothetical
event. Essentially, someone is found to have contraband images and videos on her
system, potentially as a result of using a P2P sharing network. During the examina-
tion of the system, several instances of malware are found, and the claim is made
that the purveyor of the contraband materials purposely “seeded” his site with mal-
ware to provide his customers with a plausible excuse, and that this was actually
part of the “contract” for accessing the site.

Given something like this (and you’d think that this will be something that
we’d need to address), what could an analyst do to address the issue? As we’ve dis-
cussed in this chapter, running an AV scan on a system and locating files identified
as malware is simply one step of several in the process of addressing the “Trojan
defense.” Once the malware files have been identified, the game isn’t over. Just
because malware files were found on a system, it doesn’t immediately follow that
those files were responsible for downloading the contraband. The first thing that an
analyst would want to do is determine and document where the malware files are
located within the file system, particularly with respect to the contraband files. Were
the files identified as malware found in the P2P download directory, or were they
located in the web browser cache directory? This can be a very important factor,
as the presence of malware on a system does not immediately lead to that malware
being responsible for populating the system with contraband images.

A next step would be to determine if the malware had ever actually executed.
After all, just because the malware files were located on the system doesn’t mean
that the “Trojan defense” can effectively be employed (the operative word being
“effectively”). If the malware files were written to the file system, but the malware
was never executed (and this fact can be proven), then the defense is nullified. What
are the file times for the malware files? What are other artifacts of the identified
malware? Does the malware modify Registry keys or values when run? Are other
files created as a result of the malware executing? What is the malware’s persist-
ence mechanism (e.g., Run key, Windows service, etc.), and does that mechanism
exist on the system? Remember, the absence of an artifact where one is expected

is itself an artifact. As such, the analyst may be able to build a thorough case dem-
onstrating that while the malware files were found on the system, there were no
indications that the malware had actually been executed, and completely obviate the
“Trojan defense.”

192 CHAPTER 6 Malware Detection

Finally, did the identified malware have the capability to download contraband,
as well as the functionality to place the contraband within the file system where
they were found? This may require a modicum of reverse-engineering skill to deter-
mine, but sometimes it’s as simple as opening the malware .exe or .dll file in a tool
such as PEView (found at http://www.magma.ca/~wjr/) and looking at the import
address table (IAT) to see if it imports any DLL functions that allow for network
or off-system communications (remember our discussion in this chapter regarding
the WinInet APIs). Determining whether the identified malware could have down-
loaded contraband files may simply be an additional step to further address the
“Trojan defense.” In one malware examination, I was able to locate actual indica-
tions of off-system communications after our malware reverse engineer succeeded
in running the malware and providing me with unique strings that were specific to
the malware. I ended up locating several instances of the keywords within the page-
file extracted from the system, and examining the surrounding bytes, was able to
see HTTP GET request headers and responses, which included time stamps.

TIP

Did Malware Run?

An excellent example of determining whether malware had run occurred during an exam

that involved the Coreflood bot. When this malware actually executes and infects a system,

there are several Registry keys and values created, and files containing configuration

information and collected data are also created. Finding the Registry artifacts allowed me

to identify unique instances of the infection, and differentiate those from detection events,

where the installed AV product detected the file and deleted it before the system could be

infected. This not only allowed me to identify how many times (and when) systems had

been infected, but also see where the malware had been modified to avoid detection, only

to be detected and deleted later following a subsequent AV update.

NOTE

Digging Deeper

Once you’ve located the malware, and used the four characteristics discussed earlier in

this chapter to gather further information about the malware, there may be a need to find

out just a little bit more about it. At this point, you’ve very likely documented the malware,

including where within the file system you found it, how you found it (e.g., suspicious

Registry value, AV scan, etc.), any other associated artifacts, etc. There may be additional

work you can do, and do quickly, to add a bit more information about the malware to your

documentation. This section is not intended to teach malware reverse engineering, as this

topic would (and has) filled a book of its own; however, there are other excellent books

already available that provide comprehensive coverage of this topic, in particular, the

Malware Analyst’s Cookbook and DVD (Ligh et al., 2011).

http://www.magma.ca/~wjr/

193Summary

SUMMARY

Detecting malware on a system can be difficult, and detecting potential malware
within an acquired image even more so. However, this is something analysts in law
enforcement and in the public and private sectors have to deal with, and as such,
need the knowledge, skills, and process to accomplish this task. AV scanning appli-
cations may prove insufficient for this task, and analysts may have to look for arti-
facts of a malware infection, rather than the malware itself, to locate the malware.
As such, it is important for analysts to understand the characteristics of malware to
understand the types of malware artifacts that may be present on a system, as well
as where and how to locate those potential threats. Analysts should always docu-
ment their activities, and developing a checklist of malware detection techniques
can be very valuable, particularly when the analyst fills in that checklist with the
results of each technique, or a statement or justification for not using the technique.

In the next chapter, we will walk through the process of creating a timeline of
system activity for analysis; this is a technique that can be used to determine a great
deal of additional information about not just the infection vector used to get the
malware on the system, but also actions that occurred in association with the mal-
ware following the infection. This analysis technique has a number of other uses,
and as such deserves a chapter of its own.

References
Carvey, H. A. (2009). Windows forensic analysis (2nd ed.). Burlington, MA: Syngress

Publishing.
Ligh, M. H., Adair, S., Hartstein, B., & Richard, M. (2011). Malware analyst’s cookbook and

DVD. New York: Wiley.

This page intentionally left blank

195

Timeline Analysis 7
CHAPTER

CHAPTER OUTLINE

Introduction ... 196

Timelines ... 196

Data Sources ..198

Time Formats ..199

Concepts ..200

Benefits..202

Format ...204

Time .. 204

Source .. 207

System .. 207

User .. 208

Description .. 208

TLN Format ... 209

Creating Timelines .. 210

File System Metadata ..211

Event Logs ..217

Windows XP .. 217

Windows 7 .. 219

Prefetch Files ...221

Registry Data ..222

Additional Sources ..224

Parsing Events into a Timeline ..225

Thoughts on Visualization ...228

Case Study ... 229

Summary ... 232

INFORMATION IN THIS CHAPTER

l Timelines

l Creating Timelines

l Case Study

http://dx.doi.org/

196 CHAPTER 7 Timeline Analysis

INTRODUCTION

I’ve mentioned several times throughout the book thus far that there are times when
commercial forensic analysis applications simply do not provide the capabilities
that an analyst may need to fully investigate a particular incident. Despite all of the
capabilities of some of the commercial applications, there’s one thing I still cannot
do at this point; that is, load an image and push a button (or run a command) that
will create a timeline of system activity. Yet the ability to create and analyze time-
lines has really taken the depth and breadth of my analysis forward by leaps and
bounds.

Throughout the day, even with no user sitting at a computer, events occur on
Windows systems. Events are simply things that happen on a system, and even a
Windows system that appears to be idle is, in fact, very active. Consider Windows
XP systems; every 24 hours, a System Restore Point is created, and others may be
deleted, as necessary. Further, every three calendar days a limited defragmentation
of the hard drive is performed; as you would expect, sectors from deleted files are
overwritten. Now, consider a Windows 7 system; Volume Shadow Copies (VSCs)
are created (and as necessary, deleted), and every 10 days (by default) the primary
Registry hives are backed up. All of these events (and others) occur automatically,
with no user interaction whatsoever. So even as a Windows system sits idle, we can
expect to see a considerable amount of file system activity over time. When a user
does interact with the system, we would expect to see quite a bit of activity: files
are accessed and Registry keys and values are created, modified, or deleted, etc.
When malware executes, when there is an intrusion, or when other events occur,
an analyst can correlate time-stamped data extracted from the computer to build a
fairly detailed picture of activity on a system.

TIMELINES
Creating timelines of system activity for forensic analysis is nothing new, and dates
back to around 2000, when Rob Lee (of SANS and Mandiant fame) wrote the
“mac-daddy” script to create ASCII timelines of file system activity based on meta-
data extracted from acquired images using The Sleuth Kit (TSK) tools. However,
as time has passed, the power of timeline analysis has been recognized and much
better understood. As such, the creation of timelines has been extended to include
other data sources besides just file system metadata; in fact, the power of timelines
as an analytic resource, using multiple data sources, potentially from multiple sys-
tems, is quickly being recognized and timeline analysis is being employed by more
and more analysts.

Throughout this chapter, we will discuss the value of creating timelines as an
analysis technique, and demonstrate a means for creating timelines from an acquired
image. The method we will walk through is not the only means for creating a time-
line; for example, Kristinn Gudjonsson created log2timeline (http://log2timeline

.net/), described as “a framework for [the] automatic creation of a super timeline.”

http://log2timeline.net/
http://log2timeline.net/

197Timelines

This framework utilizes a number of built-in tools to automatically populate time-
lines with data extracted from a number of sources found within an acquired image.

NOTE

Approaches to Timelines

From my perspective, there are two schools of thought at opposite ends of the spectrum

when it comes to creating timelines. This is not to say that one is any better or any

more correct than another, as it’s simply a matter of the goals of your analysis, and of

your preference. I refer to one school of thought as the “kitchen sink” approach, where

everything possible is included in a timeline and the analyst begins to sort things out from

there. Personally, I find this cumbersome, but I do understand why some analysts might

prefer this approach. I tend to take a minimalist approach, building my timeline a layer

at a time, based on the goals of my analysis and adding specific data sources to bring the

available context into focus.

For example, when addressing an issue of contraband images on a system, the question

was posed as to whether or not someone logged into the system remotely and somehow

added the images. I saw from the Security hive data that auditing of both successful and

failed logins was enabled, so as part of my analysis, I created a timeline of just the remote

login events available in the Security Event Log (for Windows XP, event ID 528 and 540

events). This way, I had something concise that I could create and refer to quickly, rather

than having to open a much larger timeline file composed of a bunch of data sources that

had little if anything to do with the question I was trying to answer.

During another examination, I was confronted with a Windows system that had

been compromised through SQL injection; as the web server and database server (both

components are required for SQL injection) had both been installed on the same platform, I

was only analyzing a single system. I started by taking an iterative approach to locating the

SQL injection statements in the web server logs. I located what appeared to be indicators

of SQL injection in the logs and sorted those by source IP address. I then removed those

NOTE

Log2timeline

Kristinn’s log2timeline framework is a valuable resource for analysts, and is comprised of

various Perl modules that can be used to parse different data sources for time-stamped

data. Currently, log2timeline supports modules to parse various structures discussed in this

chapter, as well as history files from common web browsers, metadata from some common

document types, and log data from widely used applications such as Apache, IIS, or Squid.

This framework can be extremely useful to an analyst. While the approach and
tools that I use (which will be described throughout the rest of this chapter) and
Kristinn’s log2timeline may be viewed by some as competing approaches, they are
really just two different ways to reach the same goal. Log2timeline allows for a
more automated approach to collecting and presenting a great deal of the availa-
ble time-stamped data, whereas the tools I use entail a much more command line–
intensive process; however, at the same time, this process provides me with a good
deal more flexibility to address the issues that I have encountered.

198 CHAPTER 7 Timeline Analysis

attempts that, based on the source IP address, appeared to originate from a legitimate

scanning service that had been engaged by the customer, and performed searches for all

requests originating from the remaining IP addresses. I was able to “see” (using a mini-

timeline of just the pertinent web server log entries) clusters of activity on specific dates;

when I added these events to the file system metadata, I was able to see not just the

commands sent to the system via the SQL injection statements, but also the effect they

had on the file system. In the end, I was able to build a complete picture of what happened

on the system, and when it happened, using only two data sources.

Again, the approach that any particular analyst uses should be based primarily on the

goals of their examination, but will likely also include their preference, how comfortable

they are with their knowledge of the data and tools, and any documented processes and

procedures they employ.

Data Sources

The early days of digital forensic analysis included reviewing file system meta-
data: metadata that is associated with the time stamps from the $STANDARD_
INFORMATION attributes within the master file table (MFT). As we know from
Chapter 4, the time stamps within this attribute are easily modified via publicly
accessible application programming interfaces (APIs); if you have the necessary
permissions to write to a file (and most intruders either get in with or elevate to
System-level privileges), you can modify these file times to arbitrary values (this
is sometimes referred to as timestomping, from the name of a tool used to do this).
However, in many cases, rather than “stomping” the file times, the intruder or mal-
ware installation process will simply copy the file times from a legitimate system
file, such as “kernel32.dll,” as this is simply much easier to do, requires only a few
API function calls, and leaves fewer traces than “stomping” times.

TIP

Timestomping Artifacts

“Timestomp.exe” (a description of the tool can be found at http://www.forensicswiki

.org/wiki/Timestomp), developed by James C. Foster and Vincent Lui (at the time of this

writing, I could not locate a reliable site from which to download a copy of “timestomp

.exe”), reportedly has a 32-bit granularity with respect to its ability to modify file times (as

opposed to the 64-bit granularity used in the common Windows FILETIME structure), and

it modifies only the time stamps found in the $STANDARD_INFORMATION attribute within

the MFT. As such, the use of a tool such as this would be easy to detect, by first checking

the granularity of the time stamp within the MFT to see if the lower 32 bits are all zeros,

and then comparing the creation dates in the two attributes ($STANDARD_INFORMATION

and $FILE_NAME).

As the Windows operating systems developed and increased in complexity, vari-
ous services and technologies were added and modified over time. This made the
systems more usable and versatile, not only to users (desktops, laptops) but also to

http://www.forensicswiki.org/wiki/Timestomp
http://www.forensicswiki.org/wiki/Timestomp

199Timelines

system administrators (servers). Many of these services and technologies (e.g., the
Registry, application prefetching, scheduled tasks, Event Logs, etc.) not only maintain
data, but also time stamps that are used to track specific events. Additional services
and applications, such as the Internet Information Server (IIS) web server, can pro-
vide additional time-stamped events, in the form of logs. This concept also applies to
various client applications; for example, the Firefox web browser “bookmarks.html”
file (as of Firefox 3, Mozilla moved to the use of a SQLite database for storing book-
mark information) is an XML-formatted file that contains information about book-
mark links, including the date each was added and when they were last modified. An
example of the format of a folder in the “bookmarks.html” file appears as follows:

<DT><H3 ADD_DATE="1200093363" LAST_MODIFIED="1200093398"

ID="rdf:#$RS6tu">WFP</H3>

As you can see and imagine, Windows systems are rife with timeline data
sources, many of which we’ve discussed throughout the book (particularly in
Chapter 4). Also, in Chapter 3 we discussed how to get even more time-stamped
data and fill in some analytic gaps by accessing VSCs. Overall, Windows systems
do a pretty decent job of maintaining time-stamped information regarding both
system and user activity. Therefore, it’s critical that analysts understand what data
sources may be available, as well as how to access that time-stamped information
and use it to further their analysis.

Time Formats

Along with the variety of data sources, Windows systems maintain time-stamped
information in a variety of formats. The most frequently found format on modern
Windows systems is the 64-bit FILETIME format (the structure definition is avail-
able at http://msdn.microsoft.com/en-us/library/ms724284(v5vs.85).aspx), which
maintains the number of 100-nanosecond intervals since midnight, January 1, 1601,
in accordance with Universal Coordinated Time (UTC, analogous to Greenwich
Mean Time or GMT). As we saw in Chapter 4, this time format is used through-
out Windows systems, from file times to Registry key LastWrite times to the
“ShutdownTime” value within the Registry System hive.

Every now and again, you will see the popular 32-bit Unix time format on
Windows systems, as well. This time records the number of seconds since mid-
night on January 1, 1970 relative to the UTC time zone. This time format is used to
record the “TimeGenerated” and “TimeWritten” values within Windows 2000, XP,
and 2003 Event Log records (a description of the structure is found at http://msdn

.microsoft.com/en-us/library/aa363646(VS.85).aspx).
Other time-based information is maintained in a string format, similar to what

users usually see when they interact with the system or open Windows Explorer,
such as “01/02/2010 2:42 PM.” These time stamps are often recorded in local sys-
tem time after taking the UTC time stamp and performing the appropriate conver-
sion to local time using the time zone and daylight savings settings (maintained in

http://msdn.microsoft.com/en-us/library/ms724284
http://msdn.microsoft.com/en-us/library/aa363646
http://msdn.microsoft.com/en-us/library/aa363646

200 CHAPTER 7 Timeline Analysis

the Registry) for that system. IIS web server logs are also maintained in a similar
format (albeit with a comma between the date and time values), although the time
stamps are recorded in UTC format.

Yet another time format found on Windows systems is the SYSTEMTIME for-
mat (the structure definition is available at http://msdn.microsoft.com/en-us/library/

ms724950(v5vs.85).aspx). The individual elements within the structure of this
time format record the year, month, day of week, day, hour, minute, second, and
millisecond (in that order). These times are recorded in local system time after the
conversion from UTC using the time zone and daylight savings settings maintained
by the system. This time format is found within the metadata on Windows XP and
2003 scheduled tasks (.job files), as well as within some Registry values, particu-
larly on Vista and Windows 7 (refer to Chapter 5).

Finally, various applications often maintain time stamps in their own time format,
particularly in log files. For example, Symantec AV logs use a comma-separated, text-
based format in six hexadecimal octets (defined at http://www.symantec.com/business/

support/index?page5content&id5TECH100099&locale5en_US).
So, it’s important to realize that time stamps can be recorded in a variety of

formats (to include UTC or local system time), and we will discuss later in this
chapter tools and code for translating these time stamps into a common format to
facilitate analysis.

Concepts

When we create a timeline of system activity from multiple data sources (i.e., more
than simply file system metadata), we achieve two basic concepts (credit goes to Cory
Altheide for succinctly describing these to me awhile back); we add context to the
data that we’re looking at, and we increase our relative level of confidence in that data.

Okay, so what does this mean? Well, by saying that we add context to the data
that we’re looking at, I mean that by bringing in multiple data sources, we begin
to see more detail added to the activity surrounding a specific event. For example,
consider a file being modified on the system, and the fact that we might be inter-
ested in what may have caused the modification; that is, was it part of normal sys-
tem activity? Was the file modification part of an operating system or application
update (such as with log files, etc.)? Or was that file modification the direct result
of some specific action performed by a user? By using time-stamped information
derived from multiple data sources, normalizing the data (i.e., reducing the time
stamps to a common format), and incorporating them into an overall view, we can
“see” what additional activity was occurring on the system during or near that time.
I’ve used timelines to locate file modifications that were the result of a malware
infection (see Chapter 6), and could see when a file was loaded on a system, and
then a short while later the file (i.e., with a “suspicious” name or in a suspicious
location) of interest was modified.

When we say that timelines can increase our relative level of confidence in
the data that we’re analyzing, what this means is that some data sources are more

http://msdn.microsoft.com/en-us/library/ms724950
http://msdn.microsoft.com/en-us/library/ms724950
http://www.symantec.com/business/support/index?page=content&id=TECH100099&locale=en_US
http://www.symantec.com/business/support/index?page=content&id=TECH100099&locale=en_US

201Timelines

easily mutable than others, and we have greater confidence in those that are less
easily mutable (or modified). For example, we know that the file time stamps in
the $STANDARD_INFORMATION attribute of the MFT can be easily modified
through the use of open, accessible APIs; however, those in the $FILE_NAME
attribute are not as easily accessible. Also, to this date, I have yet to find any indi-
cation of a publicly available API for modifying the LastWrite times associated
with Registry keys (remember Chapter 5?) to arbitrary values. These values can be
updated to more recent times by creating and then deleting a value within the key,
but we may find indications of this activity using tools and techniques described in
Chapter 5.

The point is that all data sources for our timeline have a relative level of con-
fidence that the times associated with those sources are “correct,” and that rela-
tive level of confidence is higher for some data sources (Registry key LastWrite
times) than for others (file times in the $STANDARD_INFORMATION attributes
of the MFT, log file entries, etc.). Therefore, if we were to see within our timeline a
Registry key associated with a specific malware variant being modified on the sys-
tem and saw that a file also associated with the malware was created “nearby,” then
our confidence that the file system metadata regarding the file creation was accurate
would be a bit higher.

We also have to keep in mind that the amount of relevant detail available from
time-stamped information is often subject to temporal proximity. This is a Star

Trek–sounding term that I first heard used by Aaron Walters (of the Volatility
project) that refers to being close to an event in time. This is an important con-
cept to keep in mind when viewing time-stamped data; as we saw in Chapter 4,
some time-stamped data are available as metadata contained within files, or as
values within Registry keys or values, etc. However, historical information is not
often maintained within these sources. What I mean by this is that a Registry key
LastWrite time is exactly that; the value refers to the last time that the key contents
were modified in some way. What is not maintained is a list of all of the previous
times that the key was modified.

The same holds true with other time-stamped information, such as metadata
maintained within prefetch files; the time stamp that refers to the last time that par-
ticular application was launched is just that—the last time this event occurred. The
file metadata does not contain a list of the previous times that the application was
launched since the prefetch file itself was created. As such, it’s nothing unusual to
see a prefetch file (for MS Word, Excel, the Solitaire game, etc.) with a specific
creation date, a modification date that is “close” to the embedded time stamp, and
a relatively high run count, but what we won’t have available is a list of times and
dates for when the application had been previously launched. What this means is
that if your timeline isn’t created within relative temporal proximity to the incident,
some time-stamped data may be overwritten or modified by activities that occurred
following the incident but prior to response activities, and you may lose some of the
context that is achieved through the use of timeline analysis. This is an important
consideration to keep in mind when performing timeline analysis, as it can explain

202 CHAPTER 7 Timeline Analysis

an apparent lack of indicators of specific activity. I’ve seen this several times, par-
ticularly following malware infections; while there are indicators of an infection
(e.g., Registry artifacts, etc.), the actual malware executable (and often, any data
files) may have been deleted and the MFT entry and file system sectors overwritten
by the time I was able to obtain any data.

Benefits

In addition to providing context and an increased relative confidence in the data
that we’re looking at, timelines provide other benefits when it comes to analysis.
I think that many of us can agree that a great deal of the analysis we do (whether
we’re talking about intrusions, malware infections, contraband images, etc.) comes
down to definable events occurring at certain times, respective to each other or to
some external source. When we’re looking at intrusions, we often want to know
when the intruder initially gained access to a system. The same is often true with
malware infections; when the system was first infected determines the window of
compromise (i.e., how long the system was infected) and directly impacts how long
sensitive data may have been exposed. With respect to payment card industry (PCI)
forensic assessments, one of the critical data points of the analysis is the “window
of exposure”; that is, answering the question of when the system was compromised
or infected and how long credit card data was at risk of exposure. When address-
ing issues of contraband images, we may want to know when the images were cre-
ated on the system to determine how long the user may have possessed them, what
actions the user may have performed in relation to those images (e.g., launched a
viewing application), and when those actions occurred.

These examples show how analysis of timeline data can, by itself, provide a
great deal of information about what happened and when for a variety of incidents.
Given that fact, one can see how creating a timeline has additional benefits, particu-
larly when it comes to triage of an incident, or the exposure of sensitive data is in
question. One challenge that has been faced by forensic analysts consistently over
the years has been the ever-increasing size of storage media. I can remember the
days when a 20-megabyte (MB) hard drive was a big deal; in fact, I can remember
when a hard drive itself was a big deal! Over time, we’ve seen hard drive sizes go
from MB to gigabytes (GB) to hundreds of GB, even into terabytes. But it’s not just
hard drives, it’s all storage media. External storage media (e.g., thumb drives and
external hard drives) have at the same time increased in capacity and decreased in
price. The same is true for digital cameras, smart phones, etc.

Where timelines can be extremely beneficial when dealing with ever-increasing
storage capacity is that they are created from text-based metadata, rather than file
contents. Consider a 500-GB hard drive; file system metadata (discussed later
in this chapter) extracted from the active file system on that hard drive will only
comprise tens of kilobytes. Even as we add additional data sources to our timeline
information (such as data from Registry hives, or even the hive files themselves),
and the data themselves approach hundreds of kilobytes, it’s all text-based and can

203Timelines

be compressed, occupying even less space. In short, the relevant timeline data can
be extracted, compressed, and provided or transmitted to other analysts far more
easily than transmitting entire copies of imaged media.

To demonstrate how this is important, consider a data breach investigation
where sensitive data (such as PCI) was possibly exposed. These investigations can
involve multiple systems, which require time to image, and then time to analyze,
as well as time to search for credit card numbers. However, if the onsite responder
were to acquire images, and then extract a specific subset of data sources (either
the files themselves or the metadata that we will discuss in this chapter), these data
could be compressed, encrypted, and provided to an offsite analyst to conduct an
initial analysis or triage examination, all without additional exposure of PCI data,
as file contents are not being provided.

The same can be said of contraband image investigations. Timeline data can be
extracted from an acquired image and provided to an offsite analyst, without any
additional exposure of the images themselves; only the filenames and paths are pro-
vided. The images themselves do not need to be shared (nor should they) to address
such questions as how or when the images were created on the system, or whether
the presence of the images is likely the result of specific user actions (as opposed to
malware). While I am not a sworn law enforcement officer, I have assisted in inves-
tigations involving contraband images; however, the assistance I provided did not
require me (thankfully) to view any of the files. Instead, I used time-stamped data
to develop a timeline, and in several instances was able to demonstrate that a user
account had been accessed from the console (i.e., logging in from the keyboard)
and used to view several of the images.

In short, it is often not feasible to ship several terabytes of acquired images to
a remote location; this would be obviated by the time it would take to encrypt the
data, as well as by the risks associated with the data being lost or damaged dur-
ing shipment. However, timeline data extracted from an acquired image (or even
from a live running system) can be archived and secured, and then provided to an
offsite analyst. As an example, I had an image of a 250-GB hard drive, and the
resulting timeline file created using the method outlined in this chapter was about
88 kilobytes (KB), which then compressed to about 8 KB. In addition, no sensitive
data was exposed in the timeline itself, whereas analysis of the timeline provided
answers to the customer’s questions regarding malware infections.

Another aspect of timeline analysis that I have found to be extremely valuable is
that whether we’re talking about malware infections or intrusions or another type of
incident, in the years that I’ve been performing incident response and digital foren-
sic analysis as a consultant, it isn’t often that I’m able to get access to an image
of a system that was acquired almost immediately following the actual incident.
In most cases, a considerable amount of time (often weeks or months) has passed
before I get access to the necessary data. However, very often, creating a timeline
using multiple data sources will allow me to see the artifacts of an intrusion or other
incident that still remains on the system. Remember in Chapter 1 when we dis-
cussed primary and secondary artifacts? Well, many times I’ve been able to locate

204 CHAPTER 7 Timeline Analysis

secondary artifacts of an intrusion or malware/bot infection, even after the pri-
mary artifacts were deleted (possibly by an AV scan, or the result of first-responder
actions). For example, during one particular engagement, I found through timeline
analysis that specific malware files had been created on a system, but an AV scan
two days later detected and deleted the malware. Several weeks later, new malware
files were created on the system, but due to the nature of the malware it was sev-
eral more weeks before the portion of the malware that collected sensitive data was
executed (this finding was based on our analysis of the malware, as well as the arti-
facts within the timeline). By locating the secondary artifacts associated with the
actual execution of the malware, this allowed us to specify the window of exposure
for this particular system to a more accurate and narrow timeframe, for which the
customer was grateful.

Finally, viewing data from multiple sources allows an analyst to build a picture
of activity on a system, particularly in the absence of direct, primary artifacts. For
example, when a user logs into a system, a logon event is generated but it is only
recorded in the Security Event Log if the system is configured to audit those events.
If an intruder gains access to or is able to create a domain administrator account
and begin accessing systems (via the Remote Desktop Protocol), and that account
has not been used to log into the systems previously, then the user profile for the
account will be created on each system, regardless of the auditing configuration.
The profile creation, and in particular the creation of the NTUSER.DAT hive file,
will appear as part of the file system data, and the contents of the hive file will
also provide the analyst with some insight as to the intruder’s activities while he
was accessing the system. I’ve had several examinations where I was able to use
this information to “fill in the gaps” when some primary artifacts were simply not
available.

Format

With all of the time-stamped information available on Windows systems, in the var-
ious time-stamp structures, I realized that I needed to create a means by which I
could correlate all of it together in a common, “normalized” format. To this end, I
came up with a five-field TLN (which is short for “timeline”) format to serve as the
basis for timelines. This format would allow me to provide a thorough description
of each individual event, and then correlate, sort, and view them together. Those
five fields—time, source, system, user, and description—and their descriptions
follow.

Time
With all of the various time structures that appear on Windows systems, I opted
to use the 32-bit Unix time stamp, based on UTC as a common format. All of the
time-stamp structures are easily reduced to this common format, and the values
themselves are easy to sort on and to translate into a human-readable format using
the Perl gmtime() function. Also, while Windows systems do contain a few time

205Timelines

values in this 32-bit format, I did not want to restrict my timelines to Windows sys-
tems only, as in many incidents valuable time-stamped data could be derived from
other sources as well, such as firewall logs, network device logs (in syslog format),
and even logs from Linux systems. As I did not have access to all possible log or
data sources that I could expect to encounter when I was creating this format, I
wanted to use a time-stamp format that was common to a wide range of sources,
and to which other time-stamp structures could be easily reduced.

For example, Andreas Schuster (maintainer of the int for(ensic) {blog;} blog,
found at http://computer.forensikblog.de/en) created Perl code (that he allowed oth-
ers to copy and use) that translates the 64-bit FILETIME time stamp into a 32-bit
Unix epoch format when he began delving into Windows memory parsing and anal-
ysis; an example of that code appears as follows:

sub getTime($$) {

my $lo = shift;

my $hi = shift;

my $t;

if ($lo == 0 && $hi == 0) {

$t = 0;

}

else {

$lo -= 0xd53e8000;

$hi -= 0x019db1de;

$t = int($hi*429.4967296 + $lo/1e7);

};

$t = 0 if ($t < 0);

return $t;

}

This takes the lower and upper 32-bit portions (respectively) of the 64-bit
FILETIME time structure and returns a 32-bit Unix epoch format time stamp.

NOTE

Granularity

When developing this format for representing events, I felt that grouping events within

1-second intervals would provide sufficient granularity and that there was really no need

to break events out in millisecond or 100-nanosecond intervals. Some analysts have

suggested that the granularity of the original time-stamp format is required; however, we

often find ourselves mixing 64- and 32-bit time stamps due to the data that we’re including

in our timelines.

For translating other time formats to a common structure, the Perl DateTime
module comes in very handy. If you’re using the ActiveState ActivePerl distribu-
tion (mentioned in Chapter 1), this module is easy to install using the Perl Package

http://computer.forensikblog.de/en

206 CHAPTER 7 Timeline Analysis

Manager (PPM) command ppm install datetime at the command line. Once this
module is installed, the provided HTML documentation includes sample code for
translating various time values into a Unix epoch time.

Perl code that uses the DateTime module to parse the time-stamp struc-
ture found in AV logs and translate it into something human-readable appears as
follows:

sub parseDateAsEpoch {

my $li_time = shift;

my $yr = hex(substr($li_time,0,2)) + 1970;

my $mon = hex(substr($li_time,2,2));

my $day = hex(substr($li_time,4,2));

my $hr = hex(substr($li_time,6,2));

my $min = hex(substr($li_time,8,2));

my $sec = hex(substr($li_time,10,2));

my $dt = DateTime->new(year => $yr,

month => $mon + 1,

day => $day,

hour => $hr,

minute => $min,

second => $sec);

return $dt->epoch;

}

Perl code that translates the SYSTEMTIME structure into a human-readable
time structure (albeit not specifically reduced to UTC format) appears as follows:

sub parseDate128 {

my $date = $_[0];

my @months = ("Jan","Feb","Mar","Apr","May","Jun","Jul",

"Aug","Sep","Oct","Nov","Dec");

my @days = ("Sun","Mon","Tue","Wed","Thu","Fri","Sat");

my ($yr,$mon,$dow,$dom,$hr,$min,$sec,$ms) = unpack("v8",$date);

$hr = "0".$hr if ($hr < 10);

$min = "0".$min if ($min < 10);

$sec = "0".$sec if ($sec < 10);

my $str = $days[$dow]." ".$months[$mon - 1]." ".$dom."

".$hr.":".$min.":".$sec." ".$yr;

return $str;

}

Remember that the SYSTEMTIME structure is based on the local system time
for the system being examined, taking the time zone and daylight savings settings
into account. As such, you would first need to reduce the value to the 32-bit time
format, and then make the appropriate adjustments to convert local time to UTC
(86,400 seconds/hour times the “ActiveTimeBias” value from the Registry, for that
system, and for that time of year).

207Timelines

Source
The source value within the TLN format is a short, easy-to-read identifier that
refers to the data source within the system from which the time-stamped data were
derived. For example, as we’ll see later in this chapter, one of the first places we
often go to begin collecting data is the file system, so the source would be “FILE.”
For time-stamped data derived from Event Log records on Windows 2000, XP,
and 2003 systems, I use the “EVT” (based on the file extension) identifier in the
source field, whereas for Vista and Windows 7 systems, I use the “EVTX” identifier
for events retrieved from the Windows Event Logs. I use “REG” to identify data
retrieved from the Registry, and “SAV” or “MCAFEE” to identify data retrieved
from Symantec AV and McAfee AV log files, respectively.

You might be thinking, what is the relevance of identifying different sources?
Think back to earlier in this chapter when we discussed the relative level of confi-

dence we might have in various data sources. By using a source identifier in our time-
line data, we can quickly see and visualize time-based data that would provide us with
a greater level of relative confidence in the overall data that we’re looking at, regard-
less of our output format. For example, let’s say that we have a file with a specific last
modified time (source FILE). We know that these values can be modified to arbitrary
times, so our confidence in these data, in isolation, would be low. However, if we have
a Registry key LastWrite time (source REG) derived from one of the most recently
used (MRU) lists within the Registry (such as the RecentDocs subkeys, or those asso-
ciated with a specific application used to view that particular file type) that occurs
prior to that file’s last modified time, we’ve increased our confidence in that data.

I do not have a comprehensive list or table of all possible timeline source identifiers,
although I have described a number of the more frequently used identifiers. I try to keep
them to eight characters or less, and try to make them as descriptive as possible, so as to
provide context to the data within the timeline. A table listing many of the source identi-
fiers that I have used is included along with the materials associated with this book.

System
This field refers to the system, host, or device from which the data were obtained. In
most cases within a timeline, this field will contain the system or host name, or per-
haps some other identifier (based on the data source), such as an IP address or even

TIP

Registry Analysis

As we will discuss later in this chapter, there may be some modicum of Registry analysis

that needs to occur prior to creating a timeline. For example, if we know that we’re going to

be working with a number of time stamps in the SYSTEMTIME object format, we’ll want to

examine the system’s time zone settings (found beneath the Control\TimeZoneInformation

key within the appropriate ControlSet) so that we can properly translate these to UTC

format.

208 CHAPTER 7 Timeline Analysis

a media access control (MAC) address. This can be very helpful when you have data
from multiple sources that describe a single event. For example, if you’re looking
at a user’s web browsing activity, you may have access to the user’s workstation,
firewall logs, perhaps web server proxy logs, and in some cases, even logs from
the remote web server. In other instances, it may be beneficial to combine time-
lines from multiple systems to demonstrate the progression of malware propagat-
ing among those systems. Finally, it may be critical to an investigation to combine
wireless access point (WAP) log files into a timeline developed using data from a
suspect’s laptop. In all of these instances, you would want to have a clear, under-
standable means for identifying the system from which the event data originated.

User
The user field is used to identify the user associated with a specific event, if one
is available. There are various sources within Windows systems that maintain not
just time-stamped data, but also information tying a particular user to that event.
For example, Event Log records contain a field for the security identifier (SID) of
the user associated with that particular record. In many cases, the user is simply
blank, “System,” or one of the SIDs associated with a System-level account (e.g.,
LocalService or NetworkService) on that system. However, there are a number
of event records that are associated with a specific user SID; these SIDs can be
mapped to a specific user name via the SAM Registry hive, or the ProfileList sub-
keys from the Software hive.

Another reason to include a user field is that a great deal of time-based infor-
mation is available from the NTUSER.DAT Registry hive found in each user pro-
file. For example, not only do the Registry keys have LastWrite times that could
prove to be valuable (again, think of the MRU keys), but various Registry values
(think UserAssist subkey values) also contain time-based data. So, while many
data sources (e.g., file system and prefetch file metadata) will provide data that are
not associated with a specific user, adding information derived from user profiles
(specifically the NTUSER.DAT hive) can add that context that we discussed ear-
lier in this chapter, allowing us to associate a series of events with a specific user.
Populating this field also allows us to distinguish the actions of different users.

Description
This field provides a brief description of the event that occurred. I’ve found that
in populating this particular field, brief and concise descriptions are paramount, as
verbose descriptions not only quickly get out of hand, but with many similar events
analysts will have a lot to read and keep track of when conducting analysis.

So what do I mean by “brief and concise”? A good example of this comes
in representing the times associated with files within the file system. We know
from Chapter 4 that files have four times—last modified, last accessed, when
the file metadata was modified, and the file creation or “born” date—associated
with each file, usually derived from the $STANDARD_INFORMATION attribute
within the MFT. These attributes are often abbreviated as MACB. As such, a

209Timelines

concise description of the file being modified at a specific time would be “M . . .
, filename .”—it’s that simple. The “M” stands for “modified,” the dots repre-
sent the other time stamps (together they provide the MACB description), and the
filename provides the full path to the file. This is straightforward and easy to under-
stand at a glance.

I have found that doing much the same thing with Registry LastWrite times
is very useful. Listing the key name preceded by “M…,” much like last modified
times for files, is a brief and easy-to-understand means for presenting this informa-
tion in a timeline. Registry key LastWrite times mark when a key was last modified,
and by itself, does not contain any specific information about when the key was cre-
ated. While it’s possible that the LastWrite time also represents when the key was
created, without further contextual information, it is best not to speculate and to
only consider this value “as is”—that is, simply as the LastWrite time.

When populating at timeline with Event Log records, I’ve found that a concise
description can be derived from elements of the event itself. Using the event source
from the Event Log record, along with the event identifier (ID), the type (warning,
info, or error), and the strings extracted from the event (if there are any), I’ve been
able to create a brief description of the event. For example, on Windows XP and
2003 systems, event ID 520 (source is “Security”) indicates that the system time
had been successfully changed; from such an event record, the Description field
would appear as follows:

Security/520;Success;3368,C:\WINDOWS\system32\rundll32.exe,v12

mware,REG-OIPK81M2WC8,(0x0,0x91AD),vmware,REG-OIPK81M2WC8,(0x0,0x

91AD),1/17/2008,4:52:28 PM,1/17/2008,4:52:27 PM

To see what each of the fields following “Security/520;Success;” refers to, see
the event description found at http://www.ultimatewindowssecurity.com/securitylog/

encyclopedia/event.aspx?eventid5520. A Description field such as the previous
example might seem a bit cryptic at first to some analysts, but over time and look-
ing at many timelines, I’ve developed something of an eye for which events to look
for when conducting analysis. In addition, I’ve relied heavily on the EventId.net web
site, purchasing a new subscription every year so that when the next exam comes up I
can search for and review the details of the various event sources and IDs.

TLN Format
Now that we’ve discussed the five basic fields that can comprise a timeline, you’re
probably asking yourself, “Okay, in what format are these events stored?” I have
found that storing all of these events in an intermediate events file (usually named
“events.txt”) in a pipe (“|”) delimited format makes them very easy to parse (we
will discuss parsing the events file later in the chapter). As such, each individual
event appears as follows in the events file:

Time|Source|System|User|Description

The use of a pipe as a separator was a pretty arbitrary choice, but I needed to
use something that wasn’t likely to show up in the Description field (like a comma

http://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=520
http://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=520

210 CHAPTER 7 Timeline Analysis

or semicolon) and play havoc with my parsing utility. The pipe seemed like a pretty
good choice.

CREATING TIMELINES
With all this talk about timelines, it’s about time we created one. What we’ll do is
walk through a demonstration of creating a timeline from a Windows XP image,
start to finish, pointing out along the way different techniques for getting similar
information from Vista and Windows 7 systems, as well as some alternative tech-
niques for obtaining the same information.

This process is going to be modular in nature, allowing us a great deal of flexi-
bility in creating timelines. As we walk through the process, you’ll notice that we’re
creating the timeline in stages. In some of the steps, the data that we extract will
be stored in an intermediate file. We will first extract the data into an intermediate
file in one format (generally whatever format is used by the tool capable of extract-
ing our data of interest). We’ll then use another tool to manipulate that data into a
normalized format (TLN format) in an intermediate events file. Since our events
file will contain multiple sets of unsorted, appended data, our last step will be to
parse the events file and sort it into a final timeline file. This can be very beneficial,
particularly if an application uses a new format to store its data, or something hap-
pened with the application that corrupted the data that we’re parsing. Think of this
as something of a debugging step, as checking the contents of the intermediate file
can help you figure out whether something is wrong, and how to fix it.

Remember, there are no commercial forensic analysis applications that allow us
to press a button and create timelines from all available data; rather, we often have
to rely on multiple open-source and freely available tools to extract the necessary
data. As these tools are often created by various authors with completely disparate
goals in mind, we often have to extract the data into the format provided by the
tool, and then manipulate or restructure the data so that we can add them more eas-
ily to our timeline format. So, starting with an acquired image, we will extract the
data we want or need in whatever format is provided by the available tools, and
then use or create the necessary tools to put that data into our common timeline
format in an “events” file, which we will then parse into a timeline. I know that this
process does seem terribly manual and perhaps cumbersome at first, but to be hon-
est, over time I’ve found that having this sort of granular level of control over the
information that is added to a timeline can be advantageous. Hopefully, through the
course of our discussion, you will see the same thing, as well.

NOTE

Modular Approach

You will notice throughout the process that we’re about to walk through that it’s modular.

That is, the process is not about pushing a button and having everything done for you, but

211Creating Timelines

about determining what data you need and using the appropriate tools to extract that data.

Each tool used is separate and distinct, and in some cases, the tool provides additional

capabilities beyond simply populating a timeline. Creating full timelines can generate a

considerable amount of data, and I’ve found over time that creating mini-, micro-, or even

what I refer to as nano-timelines (i.e., creating separate timelines from limited data sources)

has been an extremely valuable tool. Using the tools along with the find command has

allowed me to create distinct timelines of just remote login or AV detection events. In many

cases, this has provided me with an initial event that I could then take to the full timeline

and view other surrounding events and context.

Before we get started, we need to make sure that we have the necessary tools
available. You should have installed ActiveState ActivePerl version 5.12 (found at
http://www.activestate.com/activeperl/downloads). In addition to the Perl instal-
lation, you will need the timeline scripts (“tln_tools.zip,” available at http://code

.google.com/p/winforensicaanalysis/downloads/list) and TSK tools, which can be
found at http://www.sleuthkit.org/sleuthkit/download.php. Once you’ve assembled
this collection of tools, you will be ready to start creating timelines.

As we’re going to be creating a timeline from an acquired image, you will need
to have an image available so that you can follow along with and use the commands
that comprise the process that we will walk through in the rest of this chapter. There
are a couple of ways to obtain an image of a Windows system if you don’t already
have one. One is to simply use FTK Imager to acquire an image of one of your
own systems. There are also a number of images available online; for example,
there is the Hacking Case image available from the National Institute of Standards
and Technology (NIST) web site (the image can be found at http://www.cfreds.nist

.gov/Hacking_Case.html). Lance Mueller has posted several practical exercises to
his ForensicKB.com web site, which include images that can be downloaded. For
example, the scenario and link to the image for his first practical can be found at
http://www.forensickb.com/2008/01/forensic-practical.html. In fact, an acquired
image from any Windows system (Windows 2000 through Windows 7) would serve
as a good learning tool as we understand how to create timelines. That being said,
let’s get started.

File System Metadata

One of the first sources of timeline data that I generally start with is the file sys-
tem metadata. These data are most often referred to as MACB times, where the “M”
stands for last modification date, “A” stands for last accessed date, “C” stands for
the date that the file metadata was modified, and the “B” refers to the “born” or
creation date of the file. Another way of referring to these times is MACE, where
the “C” refers to the creation date and the “E” refers to when the file metadata was
modified (or “entry modified”). For consistency, we’ll use the MACB nomenclature.
Regardless of the designation used, these data are derived from the $STANDARD_
INFORMATION attribute within the MFT (discussed in detail in Chapter 4).

http://www.activestate.com/activeperl/downloads
http://code.google.com/p/winforensicaanalysis/downloads/list
http://code.google.com/p/winforensicaanalysis/downloads/list
http://www.sleuthkit.org/sleuthkit/download.php
http://www.cfreds.nist.gov/Hacking_Case.html
http://www.cfreds.nist.gov/Hacking_Case.html
http://www.forensickb.com/2008/01/forensic-practical.html

212 CHAPTER 7 Timeline Analysis

FIGURE 7.1

Sample “mmls.exe” output.

TIP

NTFS File Times

MS KnowledgeBase (KB) article 299648 (found at http://support.microsoft.com/?

kbid5299648) provides descriptions of the effects that various operations (e.g., copy or

move) have on the file system metadata associated with files and folders within the NTFS

file system. This KB article should be used as a reference and support (rather than replace)

analyst testing of various events and conditions.

We can use TSK tools (specifically “mmls.exe” and “fls.exe”) to easily extract
these data from an acquired image into what is referred to as a “bodyfile.” When
an image is acquired of a physical hard drive, it will often contain a partition table.
Using “mmls.exe” (man page found at http://www.sleuthkit.org/sleuthkit/man/mmls

.html) we can parse and view that partition table. The command used to view the
partition table of an image acquired from a Windows system appears as follows:

C:\tools>mmls -t dos -i raw <image>

Optionally, you can save the output of the command by using the redirection
operator (i.e., “.”) and adding “. mmls_output.txt” (or whatever name you prefer)
to the end of the command. An example of the output that you might see from this
command is illustrated in Figure 7.1.

From the sample output that appears in Figure 7.1, we can see the partition table
and that the NTFS partition that we would be interested in is the one marked 02,
which starts at sector 63 within the image. If you downloaded the “hacking case”
image from the NIST site mentioned earlier in this chapter, the output of the mmls
command run against the image would look very similar to what is illustrated in
Figure 7.1. However, if you get an error that begins with “Invalid sector address,”
the image you’re looking at may not have a partition table (such as when an image
is acquired of a logical volume rather than the entire physical disk), and you can
proceed directly to the part of this chapter where we discuss the use of “fls.exe.”

You may also find that the partition table isn’t quite as “clean” and simple with
some acquired images. Figure 7.2 illustrates the output of “mmls.exe” run against a
physical image acquired from a laptop purchased from Dell, Inc.

http://support.microsoft.com/?kbid=299648
http://support.microsoft.com/?kbid=299648
http://www.sleuthkit.org/sleuthkit/man/mmls.html
http://www.sleuthkit.org/sleuthkit/man/mmls.html

213Creating Timelines

In Figure 7.2, the partition we’d most likely be interested in (at least initially) is
the one marked 04, which starts at sector 178176. We will need to have this informa-
tion (i.e., the sector offset to the partition of interest) available to use with “fls.exe”
(man page found at http://www.sleuthkit.org/sleuthkit/man/fls.html) to extract the file
system metadata from within the particular volume in which we’re interested.

Using the offset information we can collect file system metadata from the parti-
tion of interest. Returning to our first example (Figure 7.1, with the NTFS partition
at offset 63), the “fls.exe” command that we would use appears as follows:

C:\tools>fls -i raw [-o 63] -f ntfs -r -p -m C:/ <image> > bodyfile.txt

In this command, the various switches used all help us get the data that we’re
looking for. The “-m” switch allows us to prepend the path with the appropri-
ate drive letter. The “-o” switch allows us to select the appropriate volume. (I’ve
included the “-o” switch information in square brackets as it can be optional; if you
get an error message that begins with “Invalid sector address” when using “mmls
.exe,” it’s likely that you won’t have to use the “-o” switch at all. Alternately, the
value used with the “–o” switch may change, depending on the image you’re using
(volume or physical image) or the offset of the volume in which you’re interested.
For example, offset 63 would be used for the volume listed in Figure 7.1, but offset
21149696 would be used to extract information from the partition marked 05 in
Figure 7.2 (and you’d likely want to use “-m D:/” as well). The “-p” switch tells
“fls.exe” to use full paths for the files and directories listed, and the “-r” switch
tells “fls.exe” to recurse through all subdirectories. Explanations for the other
switches, as well as additional switches available, can be found on the “fls.exe”
man page.

You should also notice that the listed fls command includes a redirection opera-
tor, sending the output of the command to a file named “bodyfile.txt.” The bodyfile
(described at http://wiki.sleuthkit.org/index.php?title5Body_file) is an intermediate
format used to store the file system metadata information before translating it into
the TLN event file format that we discussed earlier.

FIGURE 7.2

Sample “mmls.exe” output from a Dell system.

http://www.sleuthkit.org/sleuthkit/man/fls.html
http://wiki.sleuthkit.org/index.php?title=Body_file

214 CHAPTER 7 Timeline Analysis

Using this approach allows us to not just keep track of the information output
from our various tools, but to also keep that data available for use with other tools
and processes that may be part of our analytic approach. To translate the bodyfile
(output of “fls.exe”) information to a TLN events file format (the five fields described
earlier in this chapter), we want to use the “bodyfile.pl” script, which is available as
part of the additional materials available with this book, in the following command:

C:\tools>bodyfile.pl –f bodyfile.txt –s Server > events.txt

This command is pretty simple and straightforward. To see the syntax options
available for “bodyfile.pl,” simply type the command “bodyfile.pl” or “bodyfile.pl
-h” at the command prompt. The “-f” switch tells the script which bodyfile to open,
and the “-s” switch fills in the name of the server (you can get this from your case
documentation, or by running the “compname.pl” RegRipper plugin against the
System hive, as described in Chapter 5). Also, notice that we redirect the output of
the command to the “events.txt” file; as with many of the tools we will discuss, the
output of the tool is sent to the console, so we need to redirect it to a file so that we
can add to it and parse the events later.

At this point in our timeline creation process, we should have a bodyfile (“body-
file.txt”) and an events file (“events.txt”), both containing file system metadata that
was extracted from our acquired image. However, there may be times when we
may not have access to an acquired image, or access to the necessary tools, and as
such cannot use “fls.exe” to extract the file system metadata and create the body-
file. One such example would be accessing a system remotely via F-Response; once
you’ve mounted the physical drive on your analysis system, you can then add that
drive to FTK Imager as an evidence item just as you would an acquired image. You
might do this to extract specific files (e.g., Registry hives, Event Log files, prefetch
files) from the remote system for analysis. FTK Imager also provides an alternative
means for extracting file system metadata, which we can use in situations where we
may choose not to use “fls.exe.”

One of the simplest ways to do this is to open the newly acquired image (or the
physical disk for a remote system accessed via F-Response) in FTK Imager, add-
ing it as an evidence item. Figure 7.3 illustrates the image examined in Figure 7.2
loaded into FTK Imager version 3.0.0.1442.

Now, an option available to us once the image is loaded and visible in the evi-
dence tree is to select the partition that we’re interested in (say, partition 2 listed in

NOTE

Events File

We discussed the use of intermediate formats earlier in this chapter; timeline data stored in

the five-field, pipe-delimited TLN format is referred to as an “events file,” simply because it

contains the events that will comprise the timeline in their raw, unsorted form. The actual

creation of the timeline originates with this file.

215Creating Timelines

Figure 7.3), and then select the “Export Directory Listing…” option from the File
menu, as illustrated in Figure 7.4.

When you select this option, you will then be offered a chance to select the name
and location of the comma-separated value (CSV) output file for the command (as
part of my case management, I tend to keep these files in the same location as the
image itself if I receive the image on writeable media, such as a USB-connected
external hard drive). Once you’ve made these selections and started the directory
listing process, you will see a dialog such as is illustrated in Figure 7.5.

At this point, we should have a complete directory listing for all of the files visi-
ble to FTK Imager in the volume or partition of interest within our image. However,
the contents of the file will require some manipulation to get the data into a format
suitable for our timeline. I wrote the script “ftkparse.pl” specifically to translate the
information collected via this method into the bodyfile format discussed earlier in
this chapter. The “ftkparse.pl” script takes only one argument, which is the path to
the appropriate CSV file, and translates the contents of the file to bodyfile format,
sending output to the console. An example of how to use the “ftkparse.pl” script
appears as follows:

C:\tools>ftkparse.pl c_drive.csv > bodyfile.txt

If you use the previous command, be sure to use correct file paths for your
situation.

FIGURE 7.3

Image partition listing visible in FTK Imager.

FIGURE 7.4

FTK Imager “Export Directory Listing…” option.

216 CHAPTER 7 Timeline Analysis

After running the command, if you open the resulting bodyfile in a text editor,
you will notice that the file and directory paths appear with some extra informa-
tion. For example, when I ran through this process on the Vista image described in
Figure 7.2, the body file contained paths that looked like “RECOVERY [NTFS]\
[root]\Windows\,” where “RECOVERY” is the name of the particular volume
from which the directory listing was exported. To get this information into a usa-
ble format, use your text editor to perform a search-and-replace operation, replac-
ing “RECOVERY [NTFS]\[root]\” with “C:\.” Once you’ve completed this process
with the appropriate volume information, you can then proceed with creating your
timeline. The biggest difference between using the FTK Imager directory listing,
as opposed to the output of “fls.exe,” is that the file/directory metadata change date
(the “C” in MACB) would not be available (FTK Imager does not extract the “C”
time), and would be represented as a dot (i.e., “.”) in the bodyfile.

Once you’ve completed this search-and-replace operation, you can run the
“bodyfile.pl” Perl script against the “bodyfile.txt” file that resulted from running
“ftkparse.pl,” translating it into an events file.

FIGURE 7.5

FTK Imager creating a directory listing.

WARNING

Installing Perl Modules

When running Perl scripts discussed in this chapter, you may see error messages that

indicate that a particular module could not be located. If you’re using the ActiveState

ActivePerl distribution, you can use the Perl Package Manager (PPM) to install the

appropriate modules and supporting documentation. For example, the “ftkparse.pl” script

uses the DateTime module; if you need to install this module, simply open a command

prompt, change to your Perl directory, and type “ppm install datetime”; PPM will take care

of installing the module for you.

217Creating Timelines

In summary, the commands that you would run to create your events file for file
time-stamped data from an acquired image using “fls.exe” would include:

l mmls -t dos -i raw , image .
l fls -i raw [-o 63] -f ntfs -r -p -m C:/,image.. bodyfile.txt
l bodyfile.pl –f bodyfile.txt –s Server . events.txt

If you opted to use FTK Imager to export a directory listing, the steps you
would follow to create an events file for file “time-stamped data” are:

l Export directory listing via FTK Imager (dir_listing.csv)
l ftkparse.pl dir_listing.csv . bodyfile.txt
l Search-and-replace file and directory paths with appropriate drive letter
l bodyfile.pl –f bodyfile.txt –s Server . events.txt

Now, if you’ve created separate events files for different volumes (C:\, D:\, etc.)
or even from different systems, you can use the native type command to combine
the events files into a single, comprehensive events file, using commands similar to
the following:

C:\tools>type events1.txt > events_all.txt

C:\tools>type events2.txt >> events_all.txt

Notice in the previous command that the redirection operator used is “..,”
which allows us to append additional data to a file, rather than creating a new file
(or overwriting our existing file by mistake).

Event Logs

As discussed in Chapter 4, Event Logs from all versions of Windows can provide a
great deal of very valuable information for our timeline; however, how we extract
timeline information and create events files for inclusion in our timeline depends
heavily on the version of Windows that we’re working with. As we saw in Chapter
4, Event Logs on Windows 2000, XP, and 2003 systems are very different from the
Windows Event Logs available on Vista, Windows 2008, and Windows 7 systems.
As such, we will address each of these separately, but ultimately, we will end up
with information that we can add to an events file.

Windows XP
Event Log files are found, by default, on Windows 2000, XP, and 2003 systems
in the “C:\Windows\system32\config” directory, and have a .evt file extension. You
can normally expect to find the Application (“appevent.evt”), System (“sysevent
.evt”), and Security (“secevent.evt”) Event Log files in this directory, but you may
also find other files with .evt extensions based on the applications that you have
installed. For example, if you have MS Office 2007 (or later) installed, you should
expect to find “ODiag.evt” and “OSession.evt” files. You can access these files in
an acquired image by either adding the image to FTK Imager as an evidence item,

218 CHAPTER 7 Timeline Analysis

navigating to the appropriate directory, and extracting the files, or by mounting the
image as a volume via FTK Imager version 3 (or via ImDisk) and navigating to the
appropriate directory.

Once you have access to these files, you should use the “evtparse.pl” Perl script
to extract the necessary event information using the following command:

C:\tools>evtparse.pl –d <directory> -t > evt_events.txt

This command tells the “evtparse.pl” script to go to a specific directory, extract
all event records from every file in that directory with an .evt extension, and put that
information into the “evt_events.txt” file in TLN format, adding “EVT” as the data
source. So, if you’ve mounted an acquired image as the G:\ volume, the argument
for the “-d” switch might look like “G:\Windows\system32\config.” Many times,
I will extract the Event Log files from the drive or the image using FTK Imager,
placing them in a files directory, so the path information might then look like
“F:\,case.\files.”

If you do not want to run this script against all of the .evt files in a directory, you
can select specific files using the “-e” switch. For example, if you want to create an
events file using only the event records in the Application Event Log, you might use
a command similar to the following:

C:\tools>evtparse.pl –e G:\windows\system32\config\appevent.evt –t >

app_events.txt

I actually use this technique quite often. As I mentioned earlier in this chap-
ter, there are times when I do not want to create a full timeline, but would rather
create a mini- or micro-timeline, based on specific data, so that I can get a clear
view of specific data without having to sift through an ocean of irrelevant events.
For example, I once worked an examination where the customer knew that they
were suffering from an infection from specific malware, and informed me that they
had installed the Symantec AV product. After running the “evtrpt.pl” Perl script
(described in Chapter 4) against the Application Event Log, I noticed that there
were, in fact, Symantec AV events listed in the event log (according to information
available on the Symantec web site, events with ID 51 indicate a malware detec-
tion; “evtrpt.pl” indicated that there were 82 such events). As such, I used the fol-
lowing command to parse just the specific events of interest out of the Application
Event Log:

C:\tools>evtparse.pl –e appevent.evt –t | find “Symantec AntiVirus/51”

>sav_51_events.txt

The resulting events file provided me with the ability to create a timeline of just
the detection events generated by the Symantec product, so that I could quickly
address the customer’s questions about the malware without having to sift through
hundreds or thousands of other irrelevant events.

219Creating Timelines

You’ll notice that unlike the “bodyfile.pl” script, the “evtparse.pl” script doesn’t
require that you add a server (or user) name to the command line; this is due to the
fact that this information is already provided within the event records themselves.

TIP

Find

The find command is native to Windows systems, and is used to search for a string in a file

or within several files; you can see the command syntax by typing “find /?” at a command

prompt. As noted in the syntax information, find can search information piped from another

command, as illustrated in the previous example. I tend to use variations of this command

as a means of data reduction.

TIP

Additional Event Record Sources

There may be times when you can find additional Event Log files on a system. For example,

I’ve examined systems where an administrator had logged in and backed up the Event Logs

as part of her troubleshooting procedures, and copied those files off of the system without

deleting them. As such, I was able to extract the event records from those files, adding a

significant amount of historical data to my timeline.

Also, as discussed in Chapter 4, it’s possible that you might be able to find a number

of event records in the unallocated space of an image, particularly when someone recently

cleared the Event Logs.

Windows 7
The Windows Event Logs on Vista, Windows 2008, and Windows 7 systems are
located (by default) in the “C:\Windows\system32\winevt\logs” directory and end
in the .evtx file extension. As discussed in Chapter 4, these files are of a different
format from their counterparts found on Windows XP systems, and as such, we will
need to use a different method to parse them and create our events file. Another dif-
ference is the names; for example, the primary files of interest are “System.evtx,”
“Security.evtx,” and “Application.evtx.” As with Windows XP, additional files may
be present depending on the system in question; for example, I have also found
the file “Cisco AnyConnect VPN Client.evtx” on a Windows 7 system that had the
Cisco client application installed.

As you would expect, parsing these files into the necessary format is a bit dif-
ferent than with Event Log (.evt) files. One method would be to use Andreas
Schuster’s Perl-based framework for parsing these files; the framework is avail-
able via his blog (http://computer.forensikblog.de/en). Using this framework, you
can parse the .evtx files and then write the necessary tool or utility to translate that
information to the TLN format.

http://computer.forensikblog.de/en

220 CHAPTER 7 Timeline Analysis

An alternate method that I’ve found to be very useful is to install Microsoft’s
Log Parser tool on a Windows 7 system, and then either extract the .evtx files I’m
interested in to a specific directory, or mount the image as a volume on my analysis
system. From there, I can then run the following command:

Logparser -i:evt -o:csv "SELECT * FROM D:\Case\File\System.evtx">

system.csv

This command uses the Log Parser tool to access the necessary Windows API to
parse the event records from the “System.evtx” file. The “-i:evt” argument tells Log
Parser to use the Windows Event Log API, and the “-o:csv” argument tells the tool
to format the output in CSV format. Not only can you open this output file in Excel,
but you can use the “evtxparse.pl” Perl script to parse out the necessary event data
into TLN format, using the following command:

C:\tools>evtxparse.pl -f system.csv -t > sys_events.txt

Again, this process requires an extra, intermediate step when compared to pars-
ing Event Logs from Windows XP systems, but we get to the same place, and we
have the parsed data available to use for further analysis. The one difference from
“evtparse.pl” is that “evtxparse.pl” adds the source “EVTX” to the TLN-format
events instead of “EVT.’

WARNING

Parsing Windows Event Logs

Remember when parsing Windows Event Logs using Log Parser, you must run Log Parser on

a Windows 2008 or Windows 7 system, due to the fact that Log Parser relies on the native

API for accessing data within the .evtx files. Attempting to run Log Parser on a Windows

XP system to parse an “Application.evtx” file extracted from a Vista or Windows 7 system

will result in unusable data, as the APIs are not compatible. The opposite is also true; you

cannot run Log Parser on Vista or Windows 7 to parse Event Log (.evt) files obtained from a

2000, XP, or 2003 system.

As with the other timeline events files that we’ve discussed thus far, you will
ultimately want to consolidate all of the available events into a single events file
prior to parsing it into a timeline. You can use a batch file to automate a great deal
of this work for you. For example, let’s say that you have an image of a Vista sys-
tem available on an external hard drive, and the path to the image file is “F:\vista\
disk0.001.” You can mount the image as a volume on your Windows 7 analysis sys-
tem (i.e., G:\) and create a batch file that contains commands similar to the fol-
lowing to parse the System Event Log (repeat the command as necessary for other
Windows Event Log files):

C:\tools>logparser -i:evt -o:csv "SELECT * FROM %1\Windows\

system32\winevt\logs\System.evtx" > %2\system.csv

221Creating Timelines

If you name this batch file “parseevtx.bat,” you would launch the batch file by
passing the appropriate arguments, such as follows:

C:\tools>parseevtx.bat G: F:\vista

Running the previous command populates the “%1” variable in the batch
file with your first command line parameter (in this case “G:,” representing your
mounted volume) and the “%2” variable with your second command line parameter
(in this case “F:\vista” representing the path to where your output should be stored),
and executes the command. You would then use (and repeat as necessary) a com-
mand similar to the following to parse the output .csv files into event files:

C:\tools>evtxparse.pl -f %1\system.csv -t > %1\sys_events.txt

Again, you will need to repeat the previous command in the appropriate manner
for each of the Windows Event Logs parsed. An example version of “parseevtx.bat”
to run against the System, Application, and Security Event Logs in this manner is
included along with the additional materials available for this book.

Prefetch Files

As discussed in Chapter 4, not all Windows systems perform application prefetch-
ing by default; in fact, prefetch files are only usually found on Windows XP, Vista,
and Windows 7 systems (application prefetching is disabled by default on Windows
2003 and 2008 systems, but can be enabled via a Registry modification). Also, as
discussed in Chapter 4, prefetch files can contain some pretty valuable information;
for the purpose of this chapter, we’re interested primarily in the time stamp embed-
ded within the file. We can use the “pref.pl” Perl script to extract the time value for
the last time the application was run (which should correspond closely to the last
modification time of the prefetch file itself) and the count of times the application
has been run into TLN format, using the following command:

C:\tools>pref.pl –d G:\Windows\Prefetch –t –s Server > pref_events.txt

Now, we have a couple of options available to us with regards to the previous
command. For example, as the command is listed, the “-d” switch tells the tool
to parse through all of the files ending with the .pf (the restriction to files ending
in “.pf” is included in the code itself) extension in the Prefetch directory (of an
acquired image mounted as the G:\ volume); if you would prefer to parse the infor-
mation from a single prefetch file, simply us the “-f” switch along with the full path
and filename for the file of interest. By default, the “pref.pl” Perl script will parse
embedded information from Windows XP prefetch files. However, that same infor-
mation is found at different offsets within prefetch files from Vista and Windows
7 systems and can be found at different offsets within the file, so you need to add
the “-v” switch, with no additional arguments, if you’re working with prefetch files
from those systems. The “-t” switch tells the Perl script to structure the output in
TLN format, and adds “PREF” as the source. Also, you’ll notice that as with some

222 CHAPTER 7 Timeline Analysis

other scripts that we’ve discussed thus far, “pref.pl” has an “-s” switch with which
you can add the server name to the TLN format; prefetch files are not directly asso-
ciated with a particular user on the system, so the user name field is left blank.

Finally, at the end of the command, we redirected the output of the script to the
file named “pref_events.txt.” Instead of taking this approach, we could have easily
added the output to an existing events file using “.. events.txt.”

Registry Data

As we’ve discussed several times throughout this book, the Windows Registry
can hold a great deal of information that can be extremely valuable to an analyst.
Further, that information may not solely be available as Registry key LastWrite
times. There are a number of Registry values that contain time stamps, available
as binary data at specific offsets depending on the value, as strings that we need to
parse, etc. As such, it may be useful to have a number of different tools available to
us to extract this information and include it in our timelines.

Perhaps one of the easiest ways to incorporate Registry key LastWrite time list-
ings within a timeline is to use the “regtime.pl” Perl script (part of the additional
materials available for this book). Rob Lee originally asked me some time ago to
create “regtime.pl” to parse through a Registry hive file and list all of the keys and
their LastWrite times in bodyfile format; that is, to have the script output the data
in a format similar to what “fls.exe” produces. I wrote this script and provided it to
Rob, and it has been included in the SANS Investigative Forensic Toolkit (SIFT)
workstation (found at http://computer-forensics.sans.org/community/downloads/),
as well as Kristinn’s log2timeline framework. A bit ago, I modified this script to
bypass the bodyfile format and output its information directly to TLN format. An
example of how to use this updated version of “regtime.pl” appears as follows:

C:\tools>regtime.pl –m HKEY_USER –r NTUSER.DAT –s System –u User>

reg_event.txt

Similar to the “fls.exe” tool discussed earlier in this chapter, “regtime.pl” includes
an “-m” switch to indicate the “mount point” of the Registry hive being parsed, which
is prepended to the key path. In the previous example, I used “HKEY_USER” when
accessing a user’s Registry hive; had the target been a Software or System hive, I
would have needed to use “HKLM/Software” or “HKLM/System,” respectively.
The “-r” switch allows you to specify the path to the hive of interest (again, either
extracted from an acquired image or accessible by mounting the image as a volume
on your analysis system). As you would expect, the “-s” and “-u” switches allow you
to designate the system and user fields within the TLN format, as appropriate; the
script will automatically populate the source field with the “REG” identifier.

With respect to parsing time-stamped information from within Registry val-
ues, there are two options that I like to use; one involves RegRipper, described
in Chapter 5. By making slight modifications to “rip.pl” (new version number is
20110516) and adding the ability to add a system and username to the TLN output,

http://computer-forensics.sans.org/community/downloads/

223Creating Timelines

I can then also modify existing RegRipper plugins to output their data in TLN for-
mat. For example, I modified the “userassist2.pl” RegRipper plugin to modify its
output format into the five-field TLN format and renamed the plugin “userassist_
tln.pl.” I could then run the plugin using the following command line:

C:\tools> rip.pl -r D:\cases\test\ntuser.dat -p userassist_tln -s

SERVER -u USER

An excerpt of the output of this command appears as follows in TLN format:

1163016851|REG|SERVER|USER|UserAssist - UEME_RUNCPL:SYSDM.CPL (4)

1163015716|REG|SERVER|USER|UserAssist - UEME_RUNCPL:NCPA.CPL (3)

1163015694|REG|SERVER|USER|UserAssist - UEME_RUNPATH:C:\Putty\putty.

exe (1)

Clearly we’d want to redirect this output to the appropriate events file (i.e., “..
events.txt”) for inclusion in our timeline.

Another means for adding any time-stamped information (other than just from
the Registry) to a timeline events file is to use the graphical user interface (GUI)
“tln.pl” Perl script, illustrated in Figure 7.6.

Okay, how would you use the GUI? Let’s say that rather than running the
“userassist_tln.pl” plugin just mentioned, we instead ran the “userassist2.pl” plugin
against the same hive file, and based on the nature of our investigation we were
only in the entry that appears as follows:

Wed Nov 8 19:54:54 2006 Z

UEME_RUNPATH:C:\Putty\putty.exe (1)

Opening the “tln.pl” GUI, we can then manually enter the appropriate informa-
tion in to the interface, as illustrated in Figure 7.7.

Once you’ve added the information in the appropriate format (notice that the
date format is “MM/DD/YYYY,” and a reminder even appears in the window title
bar; entering the first two values out of order will result in the date information

FIGURE 7.6

The “tln.pl” GUI.

224 CHAPTER 7 Timeline Analysis

being processed incorrectly) and hit the “Add” button, the information added to the
designated events file appears in the status bar at the bottom of the GUI.

I wrote this tool because I found that during several examinations, I wanted to
add specific events from various sources to the events file, but didn’t want to add all
of the data available from the source (e.g., Registry, etc.), as doing so would simply
make the resulting timeline larger and a bit more cumbersome to go through when
conducting analysis. For example, rather than automatically adding all UserAssist
entries from one or even several users, I found that while viewing the output of the
“userassist2.pl” RegRipper plugin for a specific user, there were one or two or even
just half a dozen entries that I felt were pertinent to the examination, and added
considerable context to my analysis. I’ve also found that including the creation date
from the MFT $FILE_NAME attribute for one or two specific files, depending on
the goals of my exam, proved to be much more useful than simply dumping all of
the available MFT data into the timeline.

Additional Sources

To this point in the chapter, we’ve discussed a number of the available time-stamped
data sources that can be found on Windows systems. However, I need to caution you
that these are not the only sources that are available; they are simply some of the most
common ones used to compile timelines. In fact, the list of possible sources can be
quite extensive (a table listing source identifiers, descriptions, and tools used to extract
time-stamped data is included in the materials associated with this book); for exam-
ple, Windows shortcut (.lnk) files contain the file system time stamps of their target
files embedded within their structure. Earlier we mentioned that the Firefox “book-
marks.html” file might contain useful information, and the same thing applies to other
browsers, as well as other applications. For example, Skype logs might prove to be a
valuable source of information, particularly if there are indications that a user (via the
UserAssist subkey data) launched Skype prior to or during the timeframe of interest.

Speaking of UserAssist data from user Registry hive files, another data source
worth mentioning is VSCs. As illustrated and discussed in Chapter 3, a great deal

FIGURE 7.7

The “tln.pl” GUI populated with data.

225Creating Timelines

of time-stamped data can be retrieved from previous copies of files maintained by
the Volume Shadow Copy Service (VSS), particularly on Vista and Windows 7 sys-
tems. One of the examples we saw in Chapter 3 involved retrieving UserAssist data
from the hive file within a user’s profile. Consider an examination where you found
that the user ran an image viewer application, and that application maintains a
MRU list of accessed files. We know that the copy of the user’s NTUSER.DAT hive
file would contain information in the UserAssist key regarding how many times that
viewer application was launched, as well as the last date that it was launched. We
also know that the MRU list for the viewer application would indicate the date and
time that the most recently viewed image was opened in the application. As we saw
in Chapter 3, data available in previous versions of the user’s NTUSER.DAT hive
file would provide not just indications of previous dates that the viewer application
was run, but also the dates and times that other images were viewed. Depending
on the goals of your examination, it may be a valuable exercise to mount available
VSCs and extract data for inclusion in your timeline.

So, this chapter should not be considered an exhaustive list of data sources, but
should instead illustrate how to easily extract the necessary time-stamped data from
a number of perhaps the most critical sources. Once you have that data, all that
remains is to convert them into a normalized format for inclusion in your timeline.

TIP

Data Volume

The only drawback to using multiple data sources (and the benefits far outweigh any

drawbacks) is the potential volume of timeline data. While a timeline of less than 100

KB is much less data to go through than a 250-GB hard drive, it can still be a great deal

of data. For example, I’ve seen a number of Windows XP systems where there was simply

a lot of file system activity when System Restore Points were created and deleted. One

way to address this is to parse the resulting events file with tools such as grep -v, which

specifies inverse matches, or selects nonmatching lines. Writing a regular expression that

parses through the events file, looking for and removing all of the file system activity for

the Restore Points directory can reduce the volume of data that you then need to analyze.

I would suggest, however, that techniques such as this are used wisely; depending on the

nature of your investigation and the syntax of your grep command, you could inadvertently

exclude pertinent data from your timeline.

Parsing Events into a Timeline

Once we’ve created our events file, we’re ready to sort through and parse those
events into a timeline, which we can then use to further our analysis. So, at this
point, we’ve accessed some of the various data sources available on a Windows sys-
tem and created a text-based, pipe-delimited, TLN-format events file. The contents
of this file might appear as follows:

1087549224|FILE|SERVER||MACB [0] C:/$Volume

1087578198|FILE|SERVER||MACB [0] C:/AUTOEXEC.BAT

226 CHAPTER 7 Timeline Analysis

1087578213|FILE|SERVER||..C. [194] C:/boot.ini

1087576049|FILE|SERVER||MA.. [194] C:/boot.ini

1087549489|FILE|SERVER||...B [194] C:/boot.ini

1087578198|FILE|SERVER||MACB [0] C:/CONFIG.SYS

1200617554|FILE|SERVER||.A.. [56] C:/Documents and Settings

1087586327|FILE|SERVER||M.C. [56] C:/Documents and Settings

1200617616|EVT|SERVER|S-1-5-18|Service Control

Manager/7035;Info;IMAPI CD-Burning COM Service,start

1200617616|EVT|SERVER|N/A|Service Control Manager/7036;Info;IMAPI

CD-Burning COM Service,running

1200617616|EVT|SERVER|N/A|Service Control Manager/7036;Info;IMAPI

CD-Burning COM Service,stopped

1200617621|EVT|SERVER|N/A|EventLog/6006;Info;

1087585113|PREF|SERVER||AGENTSVR.EXE-002E45AB.pf last run (1)

1087602543|PREF|SERVER||CACLS.EXE-25504E4A.pf last run (2)

1200617562|PREF|SERVER||CMD.EXE-087B4001.pf last run (3)

TIP

Creating Events Files

Just a reminder, albeit an important one—we don’t always have to throw everything and the

kitchen sink into a timeline. Sometimes, particularly based on the goals of our analysis, we

may not want to start with everything, and instead start with specific items. For example,

if information about logins to a Windows system is important to my examination, I will

start by using RegRipper to parse the Security Registry hive to determine the audit policy;

if logon/account logon events are not being audited, then it doesn’t necessarily make

sense to attempt to parse the Security Event Log for those events. Even so, I will also use

the “evtrpt.pl” Perl script to parse the Security Event Log and see if there are any events

related to logons available, just to be sure.

We should be ready to parse the events file into a timeline, the purpose of which
is to sort through the events within the events file, grouping those that occur within
the same time together, and then sorting them and presenting them in an under-
standable format. I’ve written a script for this purpose, aptly named “parse.pl,” and
the simplest, most basic way to use this script is to run it against your events file
using a command line similar to the following:

C:\tools>parse.pl –f D:\case\events.txt > D:\case\tln.txt

This command produces an ASCII-based timeline file with all of the times
sorted with the most recent time first, and with all events within the same time
grouped together. The output looks like the following:

Time

Src System User Description

Src System User Description

Time

Src System User Description

227Creating Timelines

An example of what this might look like in a “real” timeline file appears as
follows:

Fri Jun 18 19:16:02 2004 Z

FILE SERVER - MACB [12864] C:/WINDOWS/Prefetch/DFRGNTFS.EXE-

269967DF.pf

Fri Jun 18 19:16:01 2004 Z

FILE SERVER - MACB [8622] C:/WINDOWS/Prefetch/DEFRAG.EXE-273F131E.

pf

Fri Jun 18 19:15:52 2004 Z

FILE SERVER - .A.. [99328] C:/WINDOWS/system32/dfrgntfs.exe

FILE SERVER - .A.. [51200] C:/WINDOWS/system32/dfrgres.dll

PREF SERVER - DFRGNTFS.EXE-269967DF.pf last run (1)

It should be easy to see from this timeline format how the five-field TLN for-
mat plays right into not just collecting and correlating the events, but also display-
ing them for analysis. Again, the times are formatted in a human-readable format,
based on UTC. Normalizing the times to this format allows us to incorporate data
from multiple sources independent of time zone or location, and present the infor-
mation in a uniform manner. All of the events that occurred within that second are
then listed below the time value, slightly indented. This text-based format allows
you to browse through the timeline using any text editor (as opposed to requiring a
specific editor or viewer). I use UltraEdit, as it’s very good at handling large files,
and if I find some text of interest that I want to search on, I can highlight the text
and hit the F3 key to automatically jump to the next instance of that text.

The “parse.pl” Perl script also provides some additional capabilities that can be
very useful to you. For example, if you know that you’re looking for all events that
occurred within a particular time window, you can use the “-r” switch to specify a
time window for the events that will be displayed within the timeline. For example:

C:\tools>parse.pl -f events.txt -r 02/12/2008-03/16/2008 > tln_

short.txt

This command line will parse the events file, but only place events that occurred
between 00:00:00 February 12, 2008 and 23:59:59 March 16, 2008 into the time-
line file.

Another option that I recently added to “parse.pl” is the ability to output the
timeline information to CSV format, which would allow you to open the output file
in a spreadsheet application such as MS Office Excel or OpenOffice Calc. When
the information is written to the timeline file, all five fields are included on each
line, separated by commas, so each row in the spreadsheet application begins with
a time value in the “YYYYMMDDhhmmss” format. Spreadsheets have long been
used to view and analyze this sort of time-stamped information, although in the past
the information was populated manually. One of the aspects of this approach that
I really think is useful to a lot of analysts is that the analyst can highlight specific
events with color coding, and can even add notes into a sixth column (e.g., adding
Microsoft KB articles as references, notes, etc., to clarify the information that is
available in the timeline).

228 CHAPTER 7 Timeline Analysis

So now that we have a timeline, how do we go about analyzing it? I think that
the best way to do this is with an example. An excerpt from a timeline created from
a system that had experienced a malware infection (trimmed to make it easier to
view, and with slight modifications) appears as follows (times removed to make the
information easier to view):

FILE SYSTEM - ...B [720] C:/WINDOWS/system32/irrngife.dat

FILE SYSTEM - ...B [506] C:/WINDOWS/system32/msgsvuc.dat

FILE SYSTEM - ...B [2700] C:/WINDOWS/system32/kbdrxyl.dat

FILE SYSTEM - ...B [0] C:/Documents and Settings/user/Local

Settings/Temp/~~x103D.tmp

REG SYSTEM - - M... HKLM/Software/Classes/CLSID/{GUID}

REG SYSTEM - - M... HKLM/Software/Classes/CLSID/{GUID}/

InprocServer32

REG SYSTEM - - M...

HKLM/Software/Microsoft/Windows/…/ShellIconOverlayIdentifiers/

msgsvuc

Other portions of the timeline appeared similar to what you see here, with spe-
cific Registry keys being created and grouped along with specific .dat files being
created (remember, the “B” refers to the “born” date) within the “system32” direc-
tory. By looking for groupings similar to this throughout the timeline, you can
distinguish between infections and other events where the installed AV product
detected a malicious file and deleted it before any further actions could occur.

Thoughts on Visualization

I’ve talked to a number of analysts, and read questions posted to online forums
regarding the use of visualization tools and techniques with timeline analysis. Most
of these questions seem to center around entering all of the available event data
into some sort of visualization model or tool, so that the analyst can then perform
analysis. This isn’t something that, at this point, I can see being entirely feasible or
useful toward furthering analysis.

Yes, I know that having some sort of visualization tool seems as if it would
make things much easier for the analyst, but we have to keep in mind that Windows
systems are extremely verbose, even when they’re just sitting there, apparently idle.
By themselves, Windows systems will perform housekeeping functions, creating
and deleting System Restore Points and VSCs, installing updates, performing lim-
ited defrags of the hard drive, etc. Once you include some of the applications and
their automated functions (Java and Apple products, among others, automatically
look for updates), it becomes clear that there’s a lot that goes on on Windows sys-
tems when no one’s around. So if you think back to Chapter 1 where we discussed
least frequency of occurrence (LFO), it quickly becomes clear that any sort of visu-
alization mechanism for representing the abundance of time-stamped data available
on a Windows system will quickly not simply overwhelm the analyst, but also com-
pletely mask the critical events of interest.

229Case Study

What this really comes down to is how an analyst uses timelines for analysis;
even so, once analysis has been performed, the analyst’s job isn’t complete—her
findings still need to be reported and presented to the “customer.” Most often perti-
nent excerpts of timelines are included in the report as a narrative or encapsulated
in a table, although there are templates for spreadsheet applications that will allow
you to create visual timelines; these should only be used after the pertinent events
have been clearly identified, otherwise, everyone (the analyst, the customer, etc.)
will be overwhelmed by the sheer volume of available data.

CASE STUDY
After all of this discussion, it would be a good idea to do a complete walk-through
of the process for creating a timeline from an acquired image. As such, this will
require an image to use, and a great place to go online to get one is Lance Mueller’s
first forensic practical posted via his blog (http://www.forensickb.com/2008/01/

forensic-practical.html). The first thing you will need to do is to download the
400-MB expert witness format (EWF, also known as “Encase” format) image, and
then open it in FTK Imager (get version 3 from the AccessData downloads page
if you don’t already have it) and reacquire the image into a 1.5-GB raw/dd image
file named “xpimg.001.” We’ll be using this name throughout the rest of this case
study; if you use a different name, use that name. Also, from the scenario that
Lance provided on his blog, this appears to be a malware-related issue, so this
would likely be a good opportunity to develop a timeline.

Once you have the raw/dd image available, you’ll see when you run the mmls
command described earlier in this chapter that you get the “Invalid sector address”
error message, which is an indication that a partition table wasn’t found. As such,
you can proceed directly to using the fls command without the need for an offset to
a specific partition. You can use the following command to create the bodyfile from
the file system metadata within the image:

D:\tools\tsk>fls -i raw -f ntfs -r -p -m C:/ d:\case\xpimg.001 > d:\

case\bodyfile.txt

We can then use FTK Imager version 3 to mount the image on our analysis
system (as the F:\ volume) and use “rip.pl” to obtain the system name, using the
following command:

C:\tools>rip.pl -r f:\[root]\windows\system32\config\system -p

compname

From this command, you will see that the system name is “REG-
OIPK81M2WC8.” You can then use the following command to parse the bodyfile
into the events file:

C:\tools>bodyfile.pl -f d:\case\bodyfile.txt -s REG-OIPK81M2WC8 > d:\

case\events.txt

http://www.forensickb.com/2008/01/forensic-practical.html
http://www.forensickb.com/2008/01/forensic-practical.html

230 CHAPTER 7 Timeline Analysis

At this point, you’ve created your initial events file, and you can then go about
adding Event Logs records and prefetch file metadata as additional data sources
using the following commands:

C:\tools>evtparse.pl -d f:\[root]\Windows\system32\config -t >> D:\

case\events.txt

C:\tools>pref.pl -d f:\[root]\Windows\Prefetch -s REG-OIPK81M2WC8 -t

>> D:\case\events.txt

As part of your process for detecting malware, you run RegRipper against vari-
ous hive files available within the image, including the NTUSER.DAT hive for the
“vmware” user. When examining the RegRipper output file from this hive for mal-
ware autostart locations (something you remember from Chapter 6), you notice an
unusual value in the CurrentVersion\Run key and enter that single entry into your
events file using “tln.pl,” as illustrated in Figure 7.8.

Based on this, you then decided to add the UserAssist subkey information for
that user to your events file using the following command:

C:\tools>rip.pl -r "f:\[root]\Documents and Settings\vmware\ntuser.

dat" -u vmware -s REG-OIPK81M2WC8 -p userassist_tln >> D:\case\

events.txt

You then run “regtime.pl” against the System and Software hives from within
the image to add the time-stamped data from these Registry hives to your events file
using the following commands:

C:\tools>regtime.pl -r f:\[root]\Windows\system32\config\software -m

HKLM/Software -s REG-OIPK81M2WC8 >> D:\case\events.txt

C:\tools>regtime.pl -r f:\[root]\Windows\system32\config\system -m

HKLM/System -s REG-OIPK81M2WC8 >> D:\case\events.txt

At this point, you have a pretty comprehensive events file compiled, and you
decide to parse it into a timeline. Using this technique, you can take an iterative

FIGURE 7.8

Adding an event to the events file with “tln.pl.”

231Case Study

approach, by adding additional events as necessary to the events file and regenerat-
ing the timeline file, as necessary. To create your timeline file, you can use the fol-
lowing command:

C:\tools>parse.pl -f D:\case\events.txt > D:\case\tln.txt

You then open your newly created timeline file in a text editor and search for
“inetsrv\rpcall.exe” within the timeline and find the following entries:

Fri Jun 18 23:49:49 2004 Z

FILE REG-OIPK81M2WC8 - ..C. [524288] C:/Documents and Settings/

vmware/NTUSER.DAT

FILE REG-OIPK81M2WC8 - MACB [21396] C:/WINDOWS/Prefetch/SMS.EXE-

01DC4541.pf

FILE REG-OIPK81M2WC8 - ...B [15870] C:/WINDOWS/Prefetch/RPCALL.EXE-

394030D7.pf

FILE REG-OIPK81M2WC8 - M.C. [152] C:/WINDOWS/system32/inetsrv

FILE REG-OIPK81M2WC8 - .A.. [16384] C:/WINDOWS/system32/ping.exe

PREF REG-OIPK81M2WC8 - PING.EXE-31216D26.pf last run (1)

PREF REG-OIPK81M2WC8 - RPCALL.EXE-394030D7.pf last run (2)

PREF REG-OIPK81M2WC8 - SMS.EXE-01DC4541.pf last run (2)

REG REG-OIPK81M2WC8 vmware - UserAssist - UEME_RUNPATH:C:\System

Volume Information\...\RP2\snapshot\Repository\FS\sms.exe (1)

REG REG-OIPK81M2WC8 vmware - HKCU\..\Run - RPC Drivers -> C:\

WINDOWS\System32\inetsrv\rpcall.exe

REG REG-OIPK81M2WC8 - M... HKLM/Software/Microsoft/Windows/

CurrentVersion/Run

REG REG-OIPK81M2WC8 - M... HKLM/Software/Microsoft/Windows/

CurrentVersion/RunServices

REG REG-OIPK81M2WC8 - M... HKLM/System/ControlSet001/Services/

SharedAccess/Parameters

REG REG-OIPK81M2WC8 - M... HKLM/System/ControlSet001/Services/

SharedAccess/Parameters/FirewallPolicy

REG REG-OIPK81M2WC8 - M... HKLM/System/ControlSet001/Services/

SharedAccess/Parameters/FirewallPolicy/StandardProfile

REG REG-OIPK81M2WC8 - M... HKLM/System/ControlSet001/Services/

SharedAccess/Parameters/FirewallPolicy/StandardProfile/

AuthorizedApplications

REG REG- OIPK81M2WC8 - M... HKLM/System/ControlSet001/Services/

SharedAccess/Parameters/FirewallPolicy/StandardProfile/

AuthorizedApplications/List

Noticing the entries at the end of the listing that point to the firewall set-
tings on the system (from the System hive), you then run RegRipper against the
System hive, and looking at the firewall settings output for the report file, find the
following:

C:\WINDOWS\System32\inetsrv\rpcall.exe -> C:\WINDOWS\System32\

inetsrv\rpcall.exe:*:Enabled:RPC Drivers

232 CHAPTER 7 Timeline Analysis

So at this point in your analysis, you have likely found a good candidate for the
malware thought to be on the system; in this case, the “rpcall.exe” file. Not only
that, you have additional context available regarding how the malware was activated
on the system; specifically, from the above timeline listing, you see the following:

vmware - UserAssist - UEME_RUNPATH:C:\System Volume

Information\...\RP2\snapshot\Repository\FS\sms.exe (1)

This indicates that “sms.exe” was run from the “vmware” user context, but the
path indicates that the executable file itself was found within a System Restore
Point (RP2). You know that users should not normally be able to access this direc-
tory path, let alone launch executable files. An additional search of the timeline
indicates that the tool “cacls.exe,” which can be used to modify permissions of var-
ious objects (e.g., files, directories, Registry keys) on Windows systems, was run
shortly before the timeline listing we just saw.

While this is a brief case study, my hope is that it serves to demonstrate how
powerful and beneficial timeline analysis can be, and that it encourages analysts to
explore the use of this as a viable analysis technique. Not only does it demonstrate
how timelines can be used to detect the presence of malware within an image (often
much faster than or even in lieu of AV) but it also illustrates the concept of context
that we discussed earlier in this chapter, as well as how timelines can provide an
increased level of relative confidence with respect to the various data sources used
to populate the timeline. Finally, while the original image file was 1.5 GB in size,
the resulting timeline file is just under 6 MB, and compresses down to 511 KB.

SUMMARY

Properly employed, timelines can be an extremely valuable analysis tool. The nature
of our complex operating systems, applications, and various other data sources almost
necessitates an open-source approach to creating tools for parsing time-stamped data
and converting them into a normalized format. Timelines can provide and facilitate
a level of visibility into examinations that analysts have not seen using commercial
forensic analysis applications, in cases ranging from malware infections, to suspected
intrusions, to violations of acceptable use policies and contraband image cases, as
well as the more “advanced” incidents that have been discussed in the media.

The open-source approach also means that an analyst isn’t restricted to a spe-
cific analysis platform; many of the available tools and scripts, including those dis-
cussed in this chapter, can be run on Linux and Mac OS X platforms, often without
any modification.

However, analysts should keep in mind that as versatile and powerful a technique
as this is, it’s still just a tool and isn’t necessarily something that would or should
be employed in every situation. Be sure that you fully understand the goals of your
analysis before you decide to employ any particular tool, including timeline analysis.

233

Application Analysis 8
CHAPTER

INTRODUCTION

So far in this book, we’ve discussed a number of artifacts and resources that ana-
lysts can turn to within a Windows system to help address the issues and goals they
are facing. Many of the artifacts we’ve discussed up to this point (e.g., Registry
keys, jump lists, etc.) have been generated by the operating system as a result of
either user or malware interaction with the environment. What we haven’t discussed
is what an understanding of applications can provide to the analyst.

Application analysis can be a very important part of an examination, and
as such, a very important technique for analysts to understand. Within the world
of digital forensic analysis, and even restricting that world to just the analysis of
Windows systems, there are a great number of applications that users may install
and use. Many times when analyzing an acquired image, analysts look to certain
artifacts, often without understanding how the application functions, or how the
application receives user input, what the application does on its own, and when the
application requires user interaction to perform a task.

Application analysis is, in some ways, similar to malware analysis, as some of the
same techniques can be used to gather information regarding the effect that an appli-
cation has on the environment, either through installation or normal user interaction.
However, neither this book nor this chapter addresses malware analysis (or malware

CHAPTER OUTLINE

Introduction ..233

Log Files ..235

Dynamic Analysis ..236

Network Captures ...241

Application Memory Analysis ...243

Summary ..244

References ...244

INFORMATION IN THIS CHAPTER

l Application Analysis

http://dx.doi.org/

234 CHAPTER 8 Application Analysis

reverse engineering), as there are other resources that are much better suited to and
address that topic in far better detail than could be addressed here. Perhaps the best
resource available that addresses the topic of malware analysis is the recently pub-
lished book Malware Analyst’s Cookbook and DVD (Ligh et al., 2011).

There are a lot of applications out there that allow users to perform a great variety
of tasks and activities: web and file browsers, gaming applications, servers, desktop
managers for mobile devices, office suites, peer-to-peer (P2P) file sharing clients,
image viewing and manipulation applications, etc. The list is just too long to provide
a complete view of what’s available, and it keeps growing. However, analysts and
investigators often need to know detailed information regarding the artifacts left by
the use of these applications, and often those questions center around what the user,
the operating system, or the application itself may have done to generate an artifact.

WARNING

Assumptions

We’ve all heard the adages about “assumptions”—how it’s spelled, what they lead to, etc.

However, we often catch ourselves making assumptions about what happened on a system

to create an artifact that we may be interested in. One example of this is the existence of

a prefetch file for “defrag.exe” (this applies to both Windows XP and Windows 7 systems).

We’ve all seen where an analyst was looking for something that she couldn’t find, and made

the statement that the user deleted whatever it was and then ran the defrag utility to cover

his tracks. Most (albeit not all) times I’ve heard this, further examination of the system

provides no indication that the user ran the utility, and instead the prefetch file is an

artifact of a regularly scheduled system process. The point of all this is that it’s far too easy

to make assumptions about why we’re seeing (or not seeing) various artifacts and those

assumptions can have a severely detrimental impact on our overall analysis. It’s far better

to do some testing and verification, or to simply state that we don’t know, than it is to make

assumptions.

Many of the techniques and tools discussed in this chapter can be used to ana-
lyze applications (e.g., P2P file sharing, etc.) and malware, as well. In many ways,
malware can be viewed as being similar to an application, albeit with less-than-hon-
orable intentions. Like applications, malware needs to execute and interact with its
environment, and often uses some means to remain persistent on the system across
reboots and logins. As such, many of the techniques that an analyst may use to deter-
mine and verify artifacts of user application usage can be used in malware analysis.

TIP

Timeline Analysis

In Chapter 7 we discussed timeline creation and analysis, and we also discussed how

timeline analysis can be used in conjunction with other analysis techniques. Using

techniques discussed in this chapter can help you perform timeline analysis, by providing

235Log Files

LOG FILES
One of the first aspects of application analysis that analysts should keep in mind is
log file analysis. Any application that creates and maintains log files is going to be
of great value and interest to an analyst. Antivirus (AV) applications are great for
this, because many times not only do they write their logs to the Application Event
Log, but they also keep a text-based archive of the logs, which very often contains
considerably more historical data than what appears in the Application Event Log.

For example, when examining Windows XP systems with the McAfee AV
application installed, I usually find the logs in the “All Users” profile path in the
“\Application Data\McAfee\DesktopProtection” folder. On Windows 7, Microsoft
Defender logs are located in the “ProgramData\Microsoft\Windows Defender\
Support” directory. These logs often contain information regarding updates to the
scanning engine or the signature database, as well as records of scans and detected
malware (as well as any actions taken). I’ve examined systems on which one AV
scanner had been installed, and then at some point later, another had been installed,
and that system contained the full logs from both AV scanners.

TIP

Windows Defender Logs

The Microsoft KnowledgeBase offers some assistance with gathering logs and other

pertinent information from Windows Defender, specifically when troubleshooting issues

with the anti-spyware application. Article 923886 (found at http://support.microsoft.com/

kb/923886) provides some great insight into not only where logs are located, but also how

to collect troubleshooting information for support analysis. This process is not only useful

for helpdesk and support staff, but if the process is run and the analyst finds these files

during an examination, the contents may provide some useful information.

However, AV applications are not the only applications that maintain logs of
application activity. Applications such as web servers tend to be capable of main-
taining some very comprehensive logs of activity. Like many analysts, I’ve been
involved in several engagements over the years in which homegrown applications
that were designed and written internally to an organization have been found to
maintain some pretty detailed logs, which have been extremely helpful in not only
scoping the engagement, but in the overall analysis of the incident, as well. Many

context to a particular artifact or set of artifacts. It is often helpful to understand what

actions caused or led up to the creation or modification (the extreme case of modification

is deletion) of an artifact, and if those actions were the result of user interaction with

the application or of normal application function. Timeline analysis can often help you

determine this by providing context to the observed artifacts.

http://support.microsoft.com/kb/923886
http://support.microsoft.com/kb/923886

236 CHAPTER 8 Application Analysis

commercial server applications (e.g., FTP servers, database servers, etc.) also have
the ability to maintain considerable information via logs by default, and even more
detailed information when the configuration is modified accordingly.

TIP

Incident Preparation

Referring back to Chapter 2, if you’re reading this chapter and your role at your organization

is that of internal IT staff, consider reviewing the applications that are deployed and in

use throughout your enterprise, with a specific view toward logging capability. Consider

various scenarios such as malware infections and intrusions, and then consider what

could be done with respect to the logging capability afforded by the applications to make

response to such incidents more effective. Would you be able to address these incidents in

a more comprehensive and timely manner if the logging level were turned up or if the logs

were maintained in a central location (either through log forwarding or through a regularly

scheduled retrieval process)?

DYNAMIC ANALYSIS
There are times when, to answer specific questions about application usage and any
artifacts that may be created through that usage, the only option available to an ana-
lyst is to execute and interact with the actual application. One option available is
to use a copy of the acquired image from the system to create a virtual instance of
the system itself, and then log into it and launch the application. In fact, there have
been a number of times when analysts (particularly those supporting law enforce-
ment) have done just that, as illustrating a screen capture of what the user “saw”
on his desktop tends to be much clearer to a jury (or prosecutor, or any other audi-
ence) than trying to describe it in a report. A very useful application for doing this
is LiveView (http://liveview.sourceforge.net/). Pointing LiveView at a copy of an
acquired image, as illustrated in Figure 8.1, will allow an analyst to create a work-
ing virtual machine that can then be accessed, and the analyst can then access the
system just as the user did.

TIP

Logging into a VM

If you’ve decided to perform some analysis of a system by creating a virtual instance of a

copy of the acquired image via LiveView, and need to log into that system, there are a couple

of options available to you. One is to use the System and SAM hives from the acquired

imagve to dump and crack the passwords. Another is to boot the virtual instance first using

a utility that allows you to change passwords on the system, and then reboot the virtual

instance to the operating system so that you can log in using the new password. Both of

these techniques are described in Chapter 3 of Windows Registry Forensics (Carvey, 2011).

http://liveview.sourceforge.net/

237Dynamic Analysis

Clicking the “Start” button in the LiveView interface starts the process of creat-
ing the VMWare configuration files and launching (with VMWare Workstation or
Player installed) the virtual machine.

Another way to go about testing an application is to set up a system (real or vir-
tual) with a version of the relevant operating system (Windows XP, Vista, Windows
7, etc.—whichever version is running on the system that you’re analyzing), install
monitoring tools into that environment, and then install the application (the correct
version, if available) that you want to analyze. Using a virtual environment such as
VMWare (http://www.vmware.com), Workstation allows you to create your installa-
tion environment complete with monitoring tools, and then take a “snapshot” of the
system (prior to installing the application to be tested) so that you can always revert
to a known-good “clean” state for your environment.

FIGURE 8.1

Portion of LiveView user interface.

TIP

VirtualBox

VMWare isn’t the only virtual environment for Windows systems that is available. While

VMWare Player and Server are freely available, the Workstation version, which allows for the

convenience of virtual machines and management of snapshots, is not. VirtualBox (http://

www.virtualbox.org/) is a virtual environment that is freely available from Oracle Corporation

(part of Oracle’s Sun Microsystems acquisition) and includes the ability to create and

manage snapshots, as well (http://www.virtualbox.org/manual/ch01.html#snapshots). Be

sure to consult the VirtualBox documentation for instructions regarding how to boot an

acquired image as a virtual machine.

Once you have determined which of these two methods you plan to use to go
about analyzing the application, there are essentially two methods for monitoring
changes to a system during application installation, as well as while running and

http://www.vmware.com
http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.virtualbox.org/manual/ch01.html

238 CHAPTER 8 Application Analysis

using those applications. The first method involves making and comparing snap-
shots of the system; essentially, make a snapshot of the system, do something with
the application (perform some atomic action), take another snapshot, and then com-
pare the two to look for differences.

There are freely available applications that allow you to do this sort of com-
parative analysis with specific components of the operating system. For example,
RegShot (http://sourceforge.net/projects/regshot/files/) allows you to compare snap-
shots of the file system and Registry. Using open-source tools such as “fls.exe”
(part of the Sleuthkit tools, available at http://www.sleuthkit.org), you could eas-
ily create your own tool for performing differential analysis of file system meta-
data from within an acquired image. However, when you’re referring to executing
and using an application, there very often can be much more to the analysis of that
application (with respect to artifacts) than simply modifications to the Registry and
file system.

Fortunately, Microsoft provides an excellent and comprehensive solution for
this approach to application analysis; in fact, the Attack Surface Analyzer (ASA;
still in beta at the time of this writing and available at http://www.microsoft.com/

download/en/details.aspx?id519537) was specifically written for this purpose.
From the Overview section of the application download page:

Attack Surface Analyzer is developed by the Security Engineering group,

building on the work of our Security Science team. It is the same tool used by

Microsoft’s internal product groups to catalogue changes made to operating sys-

tem attack surface by the installation of new software.

Tools such as this can be very useful, as you can snapshot the system, perform
an “atomic action” such as installing the application that you’re interested in, create
another snapshot of the live system, and compare them to determine the “attack sur-
face.” From that point, you can perform other atomic actions, performing one func-
tion at a time or changing one variable at a time, all the while creating snapshots at
specific points along the way. Then you can determine the difference between any
of the snapshots at any point.

Once you’ve downloaded and installed ASA, you’ll want to also have a copy of
the application that you want to install. As with all snapshot tools, you do not want
to run a scan of the system as soon as you install the tool; the reason for this is that
while this does create a baseline, you do not know how much activity will occur on
the system before you run your second scan for comparison. As such, you should
minimize any chance for additional changes to occur to the system, and run your
first scan just prior to installing your application. When you run ASA, you’ll be
presented with the name of a CAB (Microsoft cabinet file) file to generate, based
on the system name, as well as the date and UTC time of when you launched ASA
(e.g., “ENZO_5.1.3._2011-08-19_21-40-20.cab,” when ASA was launched at 5:40
pm EST on August 19, 2011). When you run a scan, ASA runs through a data col-
lection phase, during which it collects a good deal of security-specific information

http://sourceforge.net/projects/regshot/files/
http://www.sleuthkit.org
http://www.microsoft.com/download/en/details.aspx?id=19537
http://www.microsoft.com/download/en/details.aspx?id=19537

239Dynamic Analysis

from the live system, enumerating such information as autorun tasks, threads, desk-
tops, handles, services, memory information, network ports, etc.

Once the initial scan is complete, you can minimize the ASA window on the
desktop and install your application. As an example, I thought it would be a good
idea to install an application that many people use and are familiar with: iTunes
version 10. Once the installation was complete, I opted to associate audio files with
iTunes as the default application to use when launching those files.

Once I completed the iTunes setup, I closed the application and ran another
ASA scan. Once that scan was complete, I selected the “Generate attack surface
report” ASA option, as illustrated in Figure 8.2.

Once the snapshot comparison analysis is complete, the “report.html” page
opens in your default browser with three tabs: Report Summary, Security Issues,
and Attack Surface. This report presents a great deal of valuable information
regarding changes to the system, including Registry changes such as modifications
to the firewall rules on the system. The Security Issues tab provides information
similar to what you would expect from a security assessment scan of the system.

However, as with many tools not written or designed by analysts, ASA has
weaknesses or gaps in what we might expect such a tool to provide. For example,
nothing in the report clearly indicated security issues with respect to file system
changes (i.e., files added or modified); specifically, no information was provided
regarding a scheduled task (see Chapter 5 for a discussion of scheduled tasks)
that had been added to the system (e.g., to check for software updates on a regu-
lar basis). Scheduled tasks provide an effective persistence mechanism for intrud-
ers or malware. Now, missing the scheduled task being added to the system does
not necessarily mean that tools such as ASA do not have their uses; in fact, tools
such as this can be used to create periodic snapshots of the system for a “security
health checkup.” For example, the Attack Surface tab of the report clearly showed
that three new services had been added to the system as a result of the installation,
and two of those services were set to auto-start, and the third was set to start on
demand. This can be very valuable information when part of a regular scan, as well
as when used to assess an application installation.

FIGURE 8.2

Generating an attack surface report.

240 CHAPTER 8 Application Analysis

A drawback of using this snapshot-based approach to application analysis is that
if an application creates an artifact, such as a file or Registry key, and then deletes
it between the two snapshots, the fact that the file was created and then deleted
may not show up in your differential analysis of the snapshots. The same would
be true with existing files and Registry keys (including volatile Registry keys) that
are simply accessed and not modified or changed in any way during the process;
such activity may not show up when you compare snapshots. As such, the second
method for monitoring an application is to use real-time monitoring applications.

An application monitoring tool that you might consider is Capture-BAT
(https://www.honeynet.org/node/315). Capture-BAT was designed to monitor a
system (including monitoring of network activity) while executing applications or
“processing” documents; according to the web page, one example use case involves
determining the behavior of a maliciously crafted MS Word document when it is
opened in the application. Once you’ve downloaded and installed Capture-BAT,
you’ll need to reboot your system, and when it comes back up, you’ll find the tool
in the “C:\Program Files\Capture” directory. From there, typing “capturebat –h” at
the command prompt provides the following usage information:

Usage: CaptureClient.exe [-chn] [-s server address -a vm server id

-b vm id] [-l file]

-h Print this help message

-s address Address of the server the client connects up to. NOTE -a

& -b

must be defined when using this option

-a server id Unique id of the virtual machine server that hosts the

client

-b vm id Unique id of the virtual machine that this client is run on

-l file Output system events to a file rather than stdout

-c Copy files into the log directory when they are modified or

deleted

-n Capture all incoming and outgoing network packets from the

network adapters on the system and store them in .pcap files in

the log directory

If -s is not set the client will operate in standalone mode

NOTE

Tool Usability

I see Microsoft’s Attack Surface Analyzer tool, while being a “beta,” not quite ready for

primetime with respect to completely meeting the needs of digital forensic analysts. For

one, it is intended for Vista and later systems; this isn’t a huge issue, as Windows XP is

being phased out as a desktop operating system. Also, just from the little interaction I had

with the tool, it clearly missed identifying what could have been a fairly significant item.

However, in Microsoft’s defense, ASA was never billed as a tool for forensic analysts. It

does appear to be useful to some extent, but as with other tools, it also seems to have its

strengths as well as its weaknesses.

https://www.honeynet.org/node/315

241Network Captures

From this, you can see that it’s fairly straightforward to run the Capture-BAT in
standalone mode. For example, most analysts would want to run Capture-BAT with
the following command line:

C:\Program Files\Capture\capturebat –l logs\output.txt –c

This command line would start Capture-BAT monitoring the system and send-
ing logged system events to the “output.txt” file in the “logs” subdirectory, while
copying files that are deleted or modified. If you have the necessary WinPCap driv-
ers (available at http://www.winpcap.org/) installed on your system, adding the “-n”
switch would allow you to capture network traffic, as well. If you opt to do this,
you might consider using tools mentioned in the “Network Captures” section later
in this chapter in your analysis.

There are other free tools available for monitoring system activity, and perhaps
the best known is Process Monitor (available online from Microsoft at http://technet

.microsoft.com/en-us/sysinternals/bb896645). Process Monitor (ProcMon) performs
real-time monitoring of file system, Registry, and process/thread activity on the system.

One of ProcMon’s greatest strengths—and potential weaknesses—is that it cap-
tures so much data; a vast amount of activity normally occurs on a Windows system,
even when the system is “idle.” Fortunately, ProcMon includes a detailed and flex-
ible filter system. Filters can be set prior to starting a capture (to limit the amount of
data collected), or after a capture is complete (to limit the amount of data displayed).
One nice advantage of ProcMon or similar “active” monitoring tools is that moni-
toring processes during execution of an application will allow you to see any child
processes that were launched and then exited; using a snapshot-based approach will
only show you the before and after and will miss events that occurred during.

NETWORK CAPTURES
Many times when performing application analysis, you may want to determine if
the application attempts to “phone home” or perform any network communications
during the installation process, or if any other network communications occur at any
point (e.g., accepting a terms of use policy, registration process, etc.). If you’re analyz-
ing an application being installed in a VM, then you’ll want to incorporate some sort
of network capture capability on the host system; that way, the network capture capa-
bility will not interfere with, or be interfered with, the application installation process.

WARNING

Looking for Security Functionality

There may be applications that, during the installation process, examine the environment

that they’re being installed and running in, to attempt to disable security functionality. For

example, there is malware that is “VM-aware”; that is, it can determine that it is running in

a VM, and either disable itself or follow another execution path. There is other malware that

has the ability to disable security measures such as AV applications, firewalls, etc.

http://www.winpcap.org/
http://technet.microsoft.com/en-us/sysinternals/bb896645
http://technet.microsoft.com/en-us/sysinternals/bb896645

242 CHAPTER 8 Application Analysis

Tools you will want to consider using to capture and analyze network traf-
fic include Wireshark (http://www.wireshark.org/) and NetworkMiner (http://www

.netresec.com/). Installing Wireshark on your host system (if you’re analyzing the
application installed in a VM) will allow you to capture network traffic as it leaves
the VM, as well as conduct analysis of the captured traffic. Wireshark allows you to
view the captured packets, as well as reassemble network streams to view the entire
“conversation” between systems. NetworkMiner is capable of passively identifying
operating systems, as well as reassembling transmitted files (e.g., images, etc.) from
the capture pcap files.

Another tool to consider using on your analysis system (the system or virtual
machine on which you’re testing the application) is Microsoft’s own Port Reporter
(available via MS Knowledgebase article 837243at http://support.microsoft

.com/kb/837243), a tool that acts as something of a “netstat-as-a-service” on
Windows systems. Port Reporter does not have a full packet capture capability,
the way Wireshark and other network sniffer tools do, but it does provide infor-
mation regarding outbound (and possibly inbound) network communications, and
associates network connections with the processes using them, in much the same
way the “netstat” utility does. Port Reporter installs as a service and writes its logs
to the Windows\system32\Logfiles\PortReporter folder, as well as writing to the
Application Event Log. MS Knowledgebase article 837243 provides examples of
the contents of the logs produced by Port Reporter.

If you install Port Reporter, you might also consider adding the Port Reporter
Parser tool (described and available via MS Knowledgebase article 884289 at
http://support.microsoft.com/kb/884289). This parser allows you to cull information
from the Port Reporter logs using various filters.

TIP

Understanding Network Communications

When performing incident response (and this applies to forensic analysis, particularly

where logs from network devices and applications are included), it is important to have an

understanding of network communications. I’ve told a number of analysts how important it

is to understand that TCP/IP communications is initiated by a three-stage handshake; if any

of that fails, the communications channel is not established. Another aspect is the specific

process used by Windows hosts to perform name resolution, which is addressed in MS

KnowledgeBase article 172218 (http://support.microsoft.com/kb/172218).

I once responded to an incident that included unusual network communications; in this

case, DNS name queries for hosts and domains associated with bots and possibly other

suspicious activity had been detected emanating from one specific host system. Analysis

revealed that the issue was a result of two anti-spyware applications that had been installed

on the system; one application modified the hosts file to “blackhole” name lookups (so that

if the system were infected with known malware, attempts to communicate with command

and control channels would resolve to the local host), and the other read the hosts file and

performed network lookups of the names it found, regardless of the IP address to which it

was directed. A network monitoring application alerted on the name queries, indicating a

possible incident.

http://www.wireshark.org/
http://www.netresec.com/
http://www.netresec.com/
http://support.microsoft.com/kb/837243
http://support.microsoft.com/kb/837243
http://support.microsoft.com/kb/884289
http://support.microsoft.com/kb/172218

243Application Memory Analysis

APPLICATION MEMORY ANALYSIS
I’ve mentioned a number of times in this book that a detailed discussion of the anal-
ysis of physical memory is beyond the scope of this book, and this continues to be
the case. To really do the topic justice, even focusing solely in Windows memory,
would require a book all its own. That being said, one of perhaps the most over-
looked aspects of application analysis is understanding what exists (e.g., data, net-
work connections, open handles, etc.) in memory while the application is running.
While this section will not be a tutorial on installing and using memory analysis
tools, these tools will be mentioned as a means for extracting information from
Windows memory, and are best employed by an analyst with a thorough under-
standing of their use.

I mention this because, like many other analysts, I’ve responded to a number of
data breaches in which we found that sensitive data were encrypted while in tran-
sit on the network, as they moved among systems. But we also found that during
the time that the data were actually on the systems, they were available in clear text
in the memory used by the process that was processing and managing the data. As
such, as you might assume, an attacker had loaded software on the system (referred
to by some as a “RAM scraper”) that would dump the contents of process memory to
a file, and then parse through the file looking for and culling out that sensitive data.

Collecting and analyzing memory from a Windows system has come a long
way since the Digital Forensics Research Workshop (DFRWS) 2005 Windows
memory analysis challenge. For example, there are now a number of freely avail-
able tools that allow you to collect memory from Windows systems, includ-
ing FTK Imager (available from AccessData at http://accessdata.com/support/

adownloads#FTKImager) and DumpIt from MoonSol (http://www.moonsols

.com/2011/07/18/moonsols-dumpit-goes-mainstream/). If you’re using a virtual
environment, you may be able to suspend the VM and collect the contents of physi-
cal memory from a file. Using VMWare Workstation, the file containing the con-
tents of physical memory ends with the .vmem extension. You can then analyze the
contents of the physical memory dump using freely available tools such as “strings
.exe” (http://technet.microsoft.com/en-us/sysinternals/bb897439) and the Volatility
Framework (version 2.0, including a standalone version for Windows systems;
http://code.google.com/p/volatility/).

Once you have the contents of memory to examine, to see what information is
available, the easiest thing to do is to run “strings.exe” against the exported file con-
taining the memory contents. If you set up and configured the application on a sys-
tem that you own and control (such as on a standalone system or virtual machine),

Using application analysis techniques outlined in this chapter, we were able to

empirically demonstrate that the observed activity was the result of the interaction between

the two applications, and not the result of a malware infection that had not been detected

by either of the anti-spyware applications or the installed AV application.

http://accessdata.com/support/adownloads
http://accessdata.com/support/adownloads
http://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/
http://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/
http://technet.microsoft.com/en-us/sysinternals/bb897439
http://code.google.com/p/volatility/

244 CHAPTER 8 Application Analysis

and you used an account that you created, you may find information such as pass-
words, configuration settings, etc. Using Volatility, you can get a much more granular
view of what the application is doing, including dumping the process information,
including loaded modules, open file and Registry handles, network connections, etc.
You can then correlate what you learned from application analysis on a virtual sys-
tem to what artifacts you might expect to find in the acquired image.

TIP

Other Sources of Memory

If you’re analyzing an image acquired from a Windows system, in particular a laptop,

you may find valuable memory data in a hibernation file (“C:\hiberfil.sys”). The Volatility

framework incorporates Matthieu Suiche’s work on accessing the contents of this file, and

being able to analyze it as if it were a physical memory dump from a live system.

SUMMARY

Analysts will often come across artifacts during an examination of an acquired
image, and need to identify means by which those artifacts were created and/or
modified. In most cases, this is not self-evident, and some form of additional analy-
sis may be required to identify the circumstances that may have lead to the crea-
tion or modification of those artifacts. One means of doing this is to boot a copy of
the acquired image into a virtual machine; another may be to create a system (or
perhaps a virtual machine) on which to install the version of the application being
examined, and monitor its behavior on that system. With available tools and tech-
niques, application analysis is an investigative technique that analysts can employ
to obtain clear and perhaps even decisive answers to their questions.

References
Carvey, H. A. (2011). Windows registry forensics. Burlington, MA: Syngress Publishing.
Ligh, M. H., Adair, S., Hartstein, B., & Richard, M. (2011). Malware analyst’s cookbook and

DVD. New York: Wiley.

245

Index

A
Access control list (ACL), USB device analysis,

117–118

ACMru key, 5, 140

Acquired images, see also Hard drive image

ASCII timelines, 196

dynamic application analysis, 236

Event Log file extraction, 79

historical Registry data, 141

installed AV applications, 171

malware detection, 168

multiple antivirus scans, 173–174

timeline analysis, 203, 229

timeline creation, 214

timeline creation on XP, 217–218

VM log-in tips, 236

VSCs

batch files, 64

diskpart command, 58

FTK Imager, 53f

image file formats, 66

LiveView, 53

overview, 52–67

ProDiscover, 64–66, 65f, 66f

ProDiscover BE, 59–60

VHD method, 54–58, 54f, 55f

VMDKs and SIFT, 62

VMWare method, 58–62, 61f

Acquisition process

F-Response, 39

incident response, 38

Active Directory

F-Response VSC, 50–51

incident response questions, 27

ActivePerl

time fomats, 205–206

timeline creation, 211

timestomping example, 75

ActiveState

analysis system set-up, 21

diff, 149

time fomats, 205–206

timeline creation, 211

Administrator-level privileges

Internet activity analysis, 188

AT jobs, 190

malware artifacts, 167

malware detection, 188

scheduled tasks, 93

Admin logs, characteristics, 83

ADS, see Alternate data stream (ADS)

Advanced persistent threat (APT), law firm targets, 2

Allan, Alasdair, 105

Alternate data stream (ADS)

Carbon Black log example, 34

“knowing what to look for”, 182

malware detection, 181–183

Poison Ivy RAT, 182

stealth ADSs, 183

Alternatestreamview.exe, 182

Altheide, Cory, 21, 106, 200

Alvarez, Victor Manuel, 179

Analysis concepts

analysis principles, 6–15

cloud environment implementation, 18

convergence, 16–17

documentation, 15–16

overview, 3–19

virtualization, 17–19

Windows versions, 4–6

Analysis principles

absence of artifacts, 13

direct/indirect artifacts, 10–13

goals, 6–8

Internet history information, 12

least frequency of occurrence, 14–15

Locard's exchange principle, 8–9

overview, 6–15

speculation, 9–10

tools vs. processes, 8

ZeroAccess, 12

Analysis system

open-source tools, 21

set-up, 19–22

SIFT usage example, 19

Analytic logs, characteristics, 83

Android (Google)

location information, 106

Skype, 104

USB device analysis, 125

Anti-forensics

definition, 70–71

timestomping, 74–75

Anti-malware applications, detection analysis, 172

Anti-spyware applications

mixing protection mechanisms, 172–173

network communications, 242

Windows Defender logs, 235

http://dx.doi.org/

246 Index

Antivirus (AV) software

application configuration, 172

Application Event Logs, 169

Event Log files, 79

event parsing into timeline, 228

hibernation files, 101–102

indepth malware detection, 177

log file analysis, 169, 171, 235

logs, 80, 103–104

log time formats, 200

malware artifacts, 167–168

malware write-ups, 175–176

multiple scanning techniques, 173–177

packed files, 177

prefetch files, 91

Registry analysis, 187–188

security functionality search, 241

seeded sites, 191

testing for malware execution, 192

timeline analysis, 203–204

timeline creation, 210–211

Apache, Log2timeline framework, 197

Appevent.evt, XP/2003 systems, 82

Apple products, see also specific products

application files, 105–106, 105f

iPod Touch backup, 106

malware persistence mechanism, 164

Skype, 104

timeline analysis via visualization, 228

AppleSoftwareUpdate task, 92–93, 93f

Application analysis

basic considerations, 234

dynamic analysis, 236–241

incident preparation, 236

log files, 235–236

memory analysis, 243–244

memory sources, 244

network captures, 241–242

network communications, 242–243

overview, 233–234

security functionality search, 241

Software hive, 131–134

Windows Defender logs, 235

Application Event Log

analysis, 169, 235

AV logs, 80

characteristics, 83

example, 79

expert tip, 32

incident response data collection, 38–39

installed AV applications, 171

prefetch files, 91

timeline creation on Windows, 7, 219

timeline creation on XP, 217–218

Application files

Android devices, 106

antivirus logs, 103–104

Apple products, 105–106, 105f

file analysis, 102–108

image files, 106–108

Skype logs, 104, 104f

SQLLite databases, 102

Application prefetching, see also Prefetch files

enabling, 89

expert tip, 167

purpose, 89

timeline analysis data sources, 198–199

Application programming interface (API)

analysis system set-up, 20

Apple product application files, 105

Event Log file parsing, 80

Internet history information, 12

Log Parser tool, 84–85, 220

scheduled tasks, 93

timeline analysis, 198, 200–201

timeline creation on Windows, 7, 220

time stamp alteration, 75–76

timestomping example, 75

VSCs in acquired images, 52

WiFi geolocation mapping, 136

WinInet, 11–12

Artifact basics

absence as artifact, 13

application analysis, 234

concealing via virtualization, 17–18

direct artifacts, 10–13

incident response data collection, 36–37

indirect artifacts, 10–13

order of volatility, 8–9

searching tips, 82

sources, 5

speculation, 9–10

timeline analysis, 204

ASA, see Attack Surface Analyzer (ASA)

ASCII timelines, 196, 226

Assumptions, analysis principles, 9–10

At.exe

.job files, 190

scheduled tasks, 92

vs. schtasks.exe, 95

Atomic actions, dynamic application analysis, 238

Attack Surface Analyzer (ASA), 238, 239f, 240

Audio visual (AV) applications, 32

Auditing functionality

247Index

Carbon Black, 34

incident preparation, 32–33

Windows 7 settings, 32f

AutomaticDestinations folder, jump lists, 96, 97f, 100

Automation, VSC access, 62–64

AutoRuns tool

initial infection vector, 159

malware persistence mechanism, 164

Autostart mechanism, malware persistence, 162

AV, see Antivirus (AV) software; Audio visual (AV)

applications

AVERT Stinger, 174, 175f

AVG scanner, multiple AV scans, 174

B
Backdoors

malware persistence mechanism, 162

scheduled tasks, 94

Windows services, 129

BackFlip phone, 106, 125

Background Intelligent Transfer Service (BITS), 129

BackupRestore key, 45

BagMRU key, shellbags, 142, 143

Bags subkey, shellbags, 142

Barnett, Alex, 100

Barrett, Diane, 18

Batch files

at.exe vs. schtasks.exe, 95

commands references, 64

timeline creation on Windows, 7, 221

BinText, 21–22, 81, 113

BitBucket key, 86

BITS, see Background Intelligent Transfer Service

(BITS)

“Blackhole” name lookups, 172–173, 242

Bodyfile, timeline analysis, 212, 213, 216, 229

Bonfa, Giuseppe, 12, 166

BootCamp, analysis system set-up, 19

Brown, Christopher, 20, 49, 64, 188–189

Browser analysis, 133, 172

Bursztein, Elie, 136

C
C2, see Command and control (C2) server

C6d3bf33.Windows.XP.Mode key, 147, 147f

Cabinet (CAB) files, dynamic application analysis,

238–239

CacheSizeInMB, USB device analysis, 122–123

Caffrey, Aaron, 16–17, 158

Cain & Abel, UserAssist subkeys, 146

Canon EOS Digital Rebel XTi, image file

analysis, 107

Capture-BAT, dynamic application analysis, 240

Carberp Trojan, 164

Carbon Black (Kyrus), 33, 34f, 35f, 36

Carrier, Brian, 16, 71

Carroll, Ovie, 152–153

Case, Andrew, 152

Child processes, Carbon Black, 33–34

Chrome web browser (Google), 34–35, 134,

188–189

ClamAV, 179

ClamWin, 174, 175f

Classes subkeys, Software hive, 133f

Clausing, Jim, 178

Cloud computing, 18

ComDlg32 subkeys, via WRR, 140f

Command and control (C2) server, 12

Comma-separated value (CSV) format

Event Log parsing, 80

event parsing into timeline, 227

Log Parser tool, 84–85

MFT analysis, 73

Sigcheck.exe tool, 180

timeline creation, 215, 220

WFP Checker, 180–181

Compliance

AV log analysis, 103

cloud implementation, 18

Google-based malware research, 176–177

incident response, 26

malware detection, 156

malware removal example, 29

and preparation, 29

COM structured storage, Registry as log file,

114–115

Conficker, 160, 167–168, 187–188

Consolidated.db, Apple product application files,

105–106

Contextual information

analysis goals, 7

Event Log analysis, 80–81

file analysis, 70

historical Registry data, 141

jump list parser, 101

malware detection, 168

prefetch files, 91

Registry structure, 113

timeline analysis, 200, 209

approaches, 197

benefits, 202

case study, 232

concepts, 201–202

data source, 207

248 Index

Contextual information (Continued)

expert tip, 234–235

Lastwrite times, 209

modular approach, 210–211

TLN creation, 210–211

user field, 208

Contraband images

malware characteristics, 157–158

timeline analysis, 203

timeline approaches, 197

ControlSet

U3-enabled device analysis, 116

USB subkey, 119

USB thumb drive, 121–122

Convergence, law enforcement and forensic

analysis, 16–17

Coreflood bot, 192

CRC-32 algorithm, scheduled tasks, 138–139

Crimson Editor, analysis system set-up, 21

CSI, 8

CSIRP, incident preparation training, 39–40

CSV, see Comma-separated value (CSV) format

CustomDestinations folder, jump lists, 100

Cyberbullying, as common problem, 2

Cybercrime

as common problem, 2

evolution, 162

sophistication, 2

Cybercrime and Espionage (Gragido & Pirc),

158–159

Cyberstalking, as common problem, 2

D
Damn Small Linux, 18

Dang, Bruce, 138–139

DarkReading.com, 2

“Dashboard,” incident response report, 26

Data breaches

analysis goals, 7–8

as common problem, 2

direct artifacts, 11

file analysis example, 70

incident response questions, 25–26

malware characteristics, 156–157

timeline analysis, 203

Data collection

dynamic application analysis, 238–239

incident preparation, 36–40

trusted advisor, 36

Data exfiltration, prefetch files, 167

Data files, malware persistence mechanism, 163

Data sources

data volume issues, 225

timeline analysis, 198–199, 207, 224–225

timeline analysis case study, 230

Data Time Control Panel applet, UserAssist keys, 146

Date range information, Event Log files, 79–80

DateTime module, timeline analysis, 205–206

Debug logs, characteristics, 83

Default User, Internet history information, 12

“Default User” profile, Internet activity analysis, 188

Dell laptops

acquired images, 65

analysis system set-up, 20

mmls.exe sample output, 213f

timeline creation, 212

VSCs in acquired images, 53–54

Description field, timeline analysis, 208–209

DestList stream, 99, 100

Device driver, system files in System Restore

Points, 45

Device ID key, 116, 117, 122, 125–126

Device logs

incident response, 31

UserAssist subkeys, 146

DevicesClasses disk device subkey, smart phones,

127

Devices key, 122, 127

DFIR, see Digital forensics and incident response

(DFIR) community

DHCP server, NetworkCards key, 137

Diff, 149, 152–153

Digital forensics and incident response (DFIR)

community, 171–172

Digital Forensics Research Workshop (DFRWS),

243

Digital Forensics with Open Source Tools

(Altheide), 21

Digital signatures

malware detection, 179–180

malware persistence mechanism, 163–164

verification, 163–164

Dir command

ADS manipulation, 182

MFT record, 71

Direct artifacts

analysis principles, 10–13

definition, 10–11

vs. indirect, 12

Directory (folder) record, MFT, 71

Diskpart command, expert tip, 58

Disk signature, USB external drive analysis, 124f,

125

DLL, see Dynamic link library (DLL)

249Index

Documentation

analysis concepts, 15–16

malware detection, 168

Dolan-Gavitt, Brendan, 150

DOS 8.3, $FNA MFT record, 73

DOS partition, analysis goals example, 7

DRFWS, see Digital Forensics Research Workshop

(DFRWS)

Drive enclosures, see USB external drives

Driver events, USB device analysis, 118

Dr. Watson logs, 173, 188

DumpIt (MoonSol), 37, 37f, 243

DWORD, Event Log records, 81–82

Dynamic application analysis

ASA report, 239f

ASA usability, 240

LiveView UI, 237f

overview, 236–241

VM log-in tips, 236

Dynamic link library (DLL)

application prefetching, 89

Carbon Black log example, 35

direct artifacts, 11

Event Log file extraction, 79

and IAT, 192

Log Parser tool, 84–85

malware artifacts, 167–168

malware persistence mechanism, 163–164

malware write-ups, 176

prefetch files, 89–90

Process Registry key, 5

W32/Crimea, 163

E
Echo command, file system tunneling example, 77

Email

malware initial infection vector, 159

malware propagation mechanism, 161

phishing training, 159

EMDMgmt key

USB device analysis, 122, 128

via WRR, 123f

EnCase

analysis system set-up, 20

image file formats, 66

timeline analysis case study, 229

VSCs in acquired images, 53

ESENT key, malware write-ups, 176

Eset, multiple AV scans, 174

Event ID

interesting artifact searches, 82

timeline analysis, 209

timeline approaches, 197

Windows Event Log, 82

EventID web site, Event Log parsing, 80

Event Logs (.evt), see also Application Event Log;

Security Event Logs; System Event

Log; Windows Event Logs

absence of artifacts, 13

analysis system set-up, 20

analysis tip, 81

Carbon Black example, 35

conversion, 85

file analysis, 78–85

Forwarded Event Log, 82–83

incident response, 31

incident response data collection, 38–39

indirect artifacts, 12–13

pagefile and unallocated space, 81

Perl script parser, 80

ProDiscover Basic Edition, 21

sources, 219

time formats, 199

timeline analysis, 207, 209

timeline analysis case study, 230

timeline analysis data sources, 198–199

timeline creation

basic considerations, 217–221

sources, 219

Windows, 7, 219–221

Windows XP, 217–219

Ultimate Windows Security Event Log site,

80–81

Windows 7 example, 83f

XP/2003 formats, 4

XP format, 78f

Events file

creation, 226

event addition, 230f

parsing into timeline, 225–228

timeline creation, 214, 217

Event sources, Event Log files, 79

Event Viewer

Windows 7 Event Log example, 83f

Windows Event Log, 82

Evidence eliminator tools, expert tip, 149

EWF, see Expert witness format (EWF) images

Excel, see Microsoft Excel

Exchangeable image file (EXIF)

file analysis, 107

USB device analysis, 125

Exchange server, incident response questions, 27

Executable files, malware persistence mechanism, 163

EXIF, see Exchangeable image file (EXIF)

250 Index

EXIFTool, 107, 108

Expert tips

application logging, 32

application prefetching, 89, 167

backslash in vhdtool.exe, 56

browser analysis, 133

cloud environment implementation, 18

coding skills, 187

current ControlSet, 116

data source volume, 225

deleted Registry keys, 128

DeviceClasses, 121

device logs, 31

diff, 149

diskpart, 58

driver events, 118

Event Log analysis, 81

Event Log sources, 219

events file creation, 226

evidence eliminators, 149

find command, 219

F-Response VSC demo set-up, 50

historical Registry data, 141

image file formats, 66

incident preparation, 236

interesting artifacts, 82

Internet history information, 12

iPod Touch backup, 106

.job files, 190

LiveView, 53

logging into VM, 236

memory sources, 244b

MRT Registry key, 170

network communications, 242–243

NTFS file times, 212

NTOSBOOT-BOODFAAD.pf, 92

phishing training, 159

prefetch and data exfiltration, 167

Recycle Bin bypass, 85–86

Registry analysis, 207

Registry structure, 113

SQLLite database access, 102

SSD drives, 89

testing for malware execution, 192

timeline analysis, 234–235

timestomping artifacts, 198

tracking user activity, 142

triage questions, 26–27

trusted advisor, 36

U3-enabled device analysis, 116

USB device analysis checklist, 115

UserAssist data, 145

VHDs and VMs, 83–84

VirtualBox, 237

WiFi geolocation mapping, 135–136

Windows Defender logs, 171

Wow6432Node, 139

Expert witness format (EWF) images, 21, 66, 229

Exploit-Monday.com, 183

Extensible markup language (XML) format

Apple product application files, 105

prefetch file parsing, 91

scheduled tasks, 94, 138

Task Scheduler files, 4

timeline analysis data sources, 198–199

Windows Event Logs, 82

External drives

drive/disk signature, 124f

imaging, 3–4

incident response, 37, 38

Registry analysis, 115–128

timeline analysis, 202

timeline creation, 215

USBStor and USB subkeys, 124f

F
Facebook, initial infection vector, 158–159

FAT file systems

ADS manipulation, 182

file system tunneling, 76

multiple AV scans, 173–174

USB device analysis, 122

Fdisk, 19, 62

FEMC, see F-Response Enterprise Management

Console (FEMC)

File analysis

antivirus logs, 103–104

Apple product application files, 105–106, 105f

application file prefetching, 89

application files, 102–108

at.exe vs. schtasks.exe, 95

basic considerations, 70

Event Log conversions, 85

Event Logs, 78–85

file system tunneling, 76–78

hibernation files, 101–102

image files, 106–108

interesting artifact searches, 82

jump lists, 95–101, 101f

MFT, 70–78

prefetch files, 88–92, 90f

Prefetch Parser GUI, 92f

Recycle Bin, 85–88, 88f

scheduled tasks, 92–95, 94f

251Index

Skype logs, 104, 104f

SSD drive prefetch settings, 89

VHDs and VMs, 83–84

Windows Event Log, 82–85, 83f, 84f

File Entry Header, MFT, 73–74

File modifications, Carbon Black, 33–34

$FILE_NAME attribute ($FNA)

file system tunneling example, 77

MFT record, 73

timeline analysis, 200–201

timeline creation, 224

timestomping artifacts, 198

timestomping example, 76

File record, MFT, 71

File Record Header, MFT record, 71

FilesNotToBackup, 46

FilesNotToSnapshot, 46

File System Forensic Analysis (Carrier), 16, 71

File system metadata, timeline creation,

211–217

File system tunneling, 76–78

FILETIME objects

DestList stream, 99

Recycle Bin, 87–88

Registry nomenclature, 114

time formats, 199, 205

time stamps, 71

timestomping, 74–75

timestomping artifacts, 198

Find command, expert tip, 219

Firefox browser, 188–189, 198–199

First-in-first-out (FIFO) process, VSCs on live

systems, 52

Fls.exe

dynamic application analysis, 238

Registry data and TLN creation, 222

timeline analysis case study, 229

timeline creation, 212, 213, 217

Folder record, MFT, 71

Fonts directory, malware detection, 190

Forensic Acquisition Utilities, VSC access

automation, 62

Forensic CaseNotes, for documentation, 16

ForensicKB.com, 211

ForensicsWiki, jump lists, 96

Forwarded Event Log, characteristics, 82–83

Foster, James C., 198

Frequency of occurrence

analysis principles, 14–15

Event Log files, 79

F-Response, 39, 50–52

F-Response Enterprise Edition (EE), 50

F-Response Enterprise Management Console

(FEMC), 50–51, 51f

F-Secure blog, 185

FTK Imager

analysis system set-up, 20, 21

application memory analysis, 243

directory listing creation, 216f

file menu example, 215f

file system tunneling example, 77

functionality example, 38f

image partition table, 215f

incident response, 37–38

MBR infectors, 186

multiple AV scans, 173–174

Recycle Bin index file, 88f

timeline analysis case study, 229

timeline creation, 211, 214, 215, 216

timeline creation on XP, 217–218

timestomping example, 76

U3-enabled device analysis, 116

VSCs in acquired images, 53f

Windows 7 Recycle Bin, 88f

XP Recycle Bin, 87f

G
Garner, George M., Jr., 62

Geek Squad thumb drive, 116, 119–120

Globally unique identifier (GUID)

MRT Registry key, 170

scheduled tasks, 138

smart phones, 126

Software hive application analysis, 131–132

USB device analysis, 119, 121

USB external drive analysis, 125

via WRR, 120f

Global positioning systems (GPSs), 1–2, 106–107,

108

Gmtime() function, timeline time formats,

204–205

“Go kit,” incident response, 28

Google Code site, 105, 179

Google Maps, WiFi geolocation mapping,

135, 136f

Google searches, malware information, 176–177

GPO, see Group Policy Object (GPO)

GPSs, see Global positioning systems (GPSs)

Gragido, Will, 158–159

Granularity, timeline analysis, 205, 210

Grep command, timeline data volume, 225

Group Policy Object (GPO), 117–118

Gudjonsson, Kristinn, 196–197, 222

GUID, see Globally unique identifier (GUID)

252 Index

H
Hacking Case image, timeline creation, 211, 212

Harbour, Nick, 163–164

Hard drive image, see also Acquired images

analysis goals, 6

Event Log file extraction, 79

incident response example, 30

learning to image, 3–4

Harrell, Corey, 63–64

Harvey, Phil, 107, 108

HBGary, 2, 164

Hensing, Robert, 188

Heyne, Frank, 182

HFS, see Hierarchical File System (HFS)

[Macintosh]

Hibernation files

file analysis, 101–102

memory sources, 244

Registry analysis, 150

Registry keys, 46

Hierarchical File System (HFS) [Macintosh], 181

Higbee, Aaron, 159

Higgins, Kelly Jackson, 2

HKEY_CURRENT_USER hive, shellbags, 142

HTML, see Hyper Text Markup Language (HTML)

format

HxD hex editor, analysis system set-up, 21

Hyper Text Markup Language (HTML) format

prefetch file parsing, 91

seeded sites, 192

Hypothesis testing, time stamps, 74

I
$I30 Index Attributes, overview, 78

IaaS, see Infrastructure-as-a-service (IaaS)

IAT, see Import address table (IAT)

Icat (TSK tool), SIFT VM usage example, 19

Identifiers (IDs)

driver events, 118

Event Log files, 79

interesting artifact searches, 82

Identity theft, as common problem, 2

IDS, see Intrusion detection system (IDS)

$I files, ProDiscover Basic Edition, 21

IIS, see Internet Information Server (IIS)

Illicit images, malware characteristics, 157–158

IM, see Instant Messaging (IM)

Image File Execution Options key, indirect

artifacts, 11

Image file formats, examples, 66

Image files, file analysis, 106–108

ImDisk

multiple AV scans, 173–174

timeline creation on XP, 217–218

VSCs in acquired images, 53–54

Windows services, 130–131

Imm32.dll, W32/Crimea, 163

Import address table (IAT), 192

Incident preparation

auditing functionality, 32–33, 32f

basic considerations, 24–36

data collection, 36–40

employee training, 39–40

expert tip, 236

importance, 28–31

logs, 31–36

questions, 25–28

Incident response

acquisition process, 38

application logging, 32

Carbon Black, 33, 35f

compliance, 26, 29

consultants vs. IT staff, 27

data breach questions, 25–26

device logs, 31

example case, 29

F-Response, 39

incident scoping, 27–28

malware characteristics, 156–157

malware propagation mechanism, 161

malware removal process, 29

mock incidents, 40

MoonSol DumpIt example, 37, 37f

network communications, 242

outside consultant questions, 26–27

overview, 23–24

speculation issues, 9

speed, 29

temporal proximity, 25

“triage” questions, 26–27

trusted advisor, 36

Index attributes, NTFS $I30, 78

Index.dat file

indirect artifacts, 11–12

Internet activity analysis, 188, 189–190

Internet history information, 12

Registry keys, 46

Index file, Recycle Bin, 86–87, 88f

Indirect artifacts

analysis principles, 10–13

definition, 11

vs. direct, 12

INFO2, 21, 86–87, see also Recycle Bin

Infrastructure-as-a-service (IaaS), 18

253Index

Initial infection vector

malware characteristics, 158–160

vs. propagation mechanism, 161

Inkanalyzer, jump lists, 100

Install key, Software hive application analysis,

131–132

Instant Messaging (IM), 104

Interfaces key, NetworkCard key, 137

Internet, early worms, 14

Internet Explorer

browser analysis, 133

Internet activity analysis, 188

Internet history information, 12

jump lists, 96

Internet history information

expert tip, 12

Log2timeline framework, 197

malware detection, 188–190

Internet History Viewers

ProDiscover Basic Edition, 21

ProDiscover example, 189f

Internet Information Server (IIS), 197, 198–199

Intrusion detection system (IDS), 40

Intrusions

antivirus log analysis, 103

as common problem, 2

frequency of occurrence, 14

incident response questions, 25–26

interesting artifact searches, 82

scheduled tasks, 95

timeline analysis, 203–204

iOS 4, application files, 105

iPad (Apple), 104, 105

IP address

Carbon Black, 35

NetworkCards key, 137

network communications, 242

time analysis, 207–208

timeline approaches, 197–198

iPhone (Apple), 104, 105

iPhoneBackupBrowser, Apple product application

files, 105

iPod (Apple), application files, 105

iPod Touch (Apple)

application files, 105

backup tip, 106

image files, 106–107

Skype, 104

unique instance ID, 126

USB device analysis, 125

iTunes application

application files, 105

dynamic application analysis, 239

malware persistence mechanism, 164

scheduled tasks, 92–93

VSCs in acquired images, 57

J
.Job files, 190

“Journey into IR” blog, 63–64

JPEG files, Software hive application

analysis, 134

JumpLister, 100

Jump List Extractor, 100

Jump lists

AutomaticDestinations folder, 96, 97f

CustomDestinations folder, 100

DestList stream, 99

file contents, 98

file structure, 96–97

incident response data collection, 38–39

information value, 99–100

LNK file, 98, 98f

MiTeC Structured Storage Viewer, 97, 97f, 98

naming, 96

overview, 95–101

parsing tools, 100, 101, 101f

Registry as log file, 114–115

VMPlayer example, 96f

Jump List Viewer, 101, 101f

K
Kernel32.dll

PE file compile times, 184

timeline analysis data sources, 198

time stamp alteration, 75–76

timestomping example, 75

KeysNotToRestore, 46

Keystroke loggers, 10–11, 36

Keyword searches, file analysis, 70

“Kitchen sink” timeline approach,

overview, 197

Kornblum, Jesse, 162, 186–187

Kovar, David, 73, 74–75

L
Lads.exe, 182

Larson, Troy, 5, 96–97, 100

Last Access Time, overview, 72–73

LastTestedTime value, USB device analysis,

122–123

LastVisited MRU key, user hives, 139–140

LastVisitedPidMRU key, user hives, 140

LastVisitedPidMRULegacy key, user hives, 140

254 Index

LastWrite time

device ID, 117

historical Registry data, 141

iPod Touch, 126

Legacy_*\0000 keys, 166

LEGACY_IMDISK, 130–131

MRT Registry key, 170

Registry data and TLN creation, 222

Registry nomenclature, 114

shellbags, 142

smart phone, 125–126, 127

Software hive application analysis, 132

time formats, 199

timeline analysis, 200–201, 208, 209

TypedPaths key, 148

USB device analysis, 119, 121, 122

USB external drive analysis, 124, 125

USBStor subkey, 123–124

WordWheelQuery, 141

Law enforcement officers (LEOs)

forensic analysis convergence, 16–17

malware characteristics, 157–158

Least frequency of occurrence (LFO)

and malware propagation mechanism, 161–162

timeline analysis via visualization, 228

Lee, Rob, 19, 49, 58–59, 62, 85, 96–97, 115, 128,

196, 222

LEGACY_IMDISK, Windows services, 130–131

Legacy_* keys, 166, 166f

Legacy_* service key, ZeroAcess rootkit, 166

LEOs, see Law enforcement officers (LEOs)

LFO, see Least frequency of occurrence (LFO)

Linux

analysis system set-up, 19

Event Log parsing, 80

open source tools, 21

Skype, 104

time fomats, 204–205

Little-endian hexadecimal format, Recycle Bin,

87–88

Live systems

memory sources, 244

Software hive application analysis, 134

VSC access, 48f

basic considerations, 52

F-Response, 50–52, 51f

overview, 46–52

ProDiscover, 49

WMI class Win32_ShadowCopy, 47

LiveView

dynamic application analysis, 236, 237

overview, 53

user interface, 237f

VSCs in acquired images, 52, 59

LNK file

jump lists, 100

shellbags, 142

timeline analysis, 224

USB device analysis, 119–120

via WFA, 98f

XPMode, 146

Loaded modules, Carbon Black, 33–34

LocalService

Internet history information, 12, 189

timeline analysis, 208

Locard's exchange principle, basic concept, 8–9

Location information

Android devices, 105

Apple products, 105

Log2timeline framework, characteristics, 197

Log analysis

AV application configuration, 172

Dr. Watson logs, 173

installed AV applications, 171

malware detection, 169–173

MSRT, 169–170

Windows Defender, 171

Log files, see also Event Logs (.evt)

application analysis, 235–236

application logging, 32

auditing functionality, 32

AV products, 80

Carbon Black, 33, 34f

incident response, 31–36

mock incidents, 40

Registry as, 114–115

timeline analysis, 200, 201, 224

Windows Defender logs, 235

Log Parser tool, 84, 220

Lui, Vincent, 198

M
MAC address, see Media access control (MAC)

address

MACB times

definition, 72

timeline analysis, 208–209

timeline creation, 211

timestomping example, 76

Mac-daddy script, 196

MACE times, 72, 211

Mac OS X

alternate data streams, 181

analysis system set-up, 19

255Index

Event Log parsing, 80

open source tools, 21

Skype, 104

MAC time stamps, jump list files, 98

Magic numbers, Event Logs, 78, 81

Main.db, Skype, 104, 104f

Malicious activity

direct vs. indirect artifacts, 12

incident response data collection, 36

sophistication, 2

Malicious Software Removal Tool (MSRT)

antivirus log analysis, 103

log analysis, 169–170

MRT Registry key, 170

Malware

basic problem, 156

direct artifact, 10–11

Event Log files, 79

frequency of occurrence, 14

incident response process, 29

incident response questions, 25–26

interesting artifact searches, 82

Internet history information, 12

MUICache key, 144

prefetch files, 91

scheduled tasks, 94, 138–139

system files in System Restore Points, 45

testing via virtualization, 19

Trojan defense, 158

The Malware Analyst's Cookbook and DVD (Ligh

et al.), 102, 112, 150, 179, 183, 192,

233–234

Malware artifacts

AV write-ups, 176

indirect, 11

overview, 165–168

persistence mechanisms, 165

prefectch files, 166

seeded sites, 191

Windows version, 167

Malware characteristics

artifacts, 165–168

evolution, 166

initial infection vector, 158–160

LFO, 161

memory scraper, 163

multiple persistence mechanisms, 165

overview, 156–168

persistence mechanism, 162–165

propagation mechanism, 160–161

Malware detection

alternate data streams, 181–183

AV vendor write-ups, 175–176

coding skills, 187

digital signatures, 179–180

Dr. Watson logs, 173

event parsing into timeline, 228

file system locations, 190

Googled malware information, 176–177

indepth techniques, 177–191, 192

Internet activity, 188–190

“knowing what to look for”, 182–183

log analysis, 169–173

MBR infectors, 184–187

mixing protection mechanisms, 172–173

multiple antivirus scans, 173–177

overview, 168–193

packed files, 177–179

PE file compile times, 183–184, 184f

phishing training, 159

Poison Ivy RAT, 182

Registry analysis, 187–188

scheduled tasks, 190

seeded sites, 191–192

System Event Log, 190

testing for execution, 192

timeline analysis, 200, 202, 203–204

timeline creation on XP, 218

WFP, 180–181, 181f

Managed subkey, values, 135

Manifest.mbdb (Apple), 105

Manifest.mdbx (Apple), 105

Master boot record (MBR)

MBR infectors, 184–187

USB device analysis, 123

USB external drive analysis, 124

Master file table (MFT)

antivirus log analysis, 103

file analysis, 70–78

file system tunneling, 76–78

$FNA, 73

incident response data collection, 36–37, 38

Last Access Time, 72–73

NTFS $I30 Index Attributes, 78

record characteristics, 71

$SIA and $FNA extraction, 73

$SIA time stamps, 74

SIFT VM usage example, 19

speculation issues, 10

timeline analysis, 201, 208–209

timeline analysis data sources, 198

timeline creation, 211, 224

time stamp alteration, 75–76

time stamp parsing script, 73–74

256 Index

Master file table (MFT) (Continued)

time stamps, 72

timestomping, 74–75

timestomping artifacts, 198

timestomping example, 75–76

Mbdbdump.exe, Apple product application files, 105

MBR, see Master boot record (MBR)

McAfee antivirus (AV) products

additional functionality, 172

log analysis, 169

log file analysis, 235

multiple AV scans, 174

Stinger UI, 175f

timeline analysis, 207

McAfee/Foundstone site, analysis system set-up,

21–22

McKinnon, Mark, 91, 92f, 96

MD5 hash

Carbon Black, 33–34, 35

malware persistence mechanism, 163–164

MBR infectors, 186–187

WFP, 180–181

Mebroot, 185

Media access control (MAC) address

NetworkList, 135

time analysis, 207–208

WiFi geolocation mapping, 135, 136

Memory

application memory analysis, 243–244

malware persistence mechanism, 162

Registry analysis, 150

sources, 244

Memory objects (Mutexes), malware approaches, 162

Memory scraper

application memory analysis, 243

direct artifacts, 11

example, 163

Metadata

ASCII timeline creation, 196

EXIF, USB device analysis, 125

EXIFTool, 107, 108

files without, 108

Log2timeline framework, 197

MFT $FNA, 73

MFT overview, 70–71

PE file compile times, 183

prefetch files, 89–92

timeline analysis, 201–203

timeline analysis case study, 230

timeline approaches, 197–198

timeline creation, 211–217

UserAssist subkeys, 146

MetroPipe Portable Virtual Privacy Machine, 18

MFT, see Master file table (MFT)

MFU, see Most frequently used (MFU) list

Microscanner

MSRT as, 169–170

multiple AV scans, 174

Microsoft Excel

Event Log parsing, 80

event parsing into timeline, 227

Log Parser tool, 84–85

prefetch file parsing, 91

rip.pl output, 151

timeline analysis, 201–202

timeline creation on Windows, 7, 220

Microsoft KnowledgeBase (KB) articles

136517, Recycle Bin, 86

172190, file system tunneling, 76

172218

host file redirection, 172–173

name resolution by hosts, 242

188768, FILETIME objects, 114

222193, WFP, 180

299648

NTFS file times, 212

$SIA time stamps, 74

299656, NoLMHash value, 113

313565, scheduled tasks, 93

320031, Recycle Bin bypass, 85

813711, shellbags, 141–142

814596, schtasks.exe, 94–95

837243, Port Reporter, 242

884289, Port Reporter Parser tool, 242

890830, MSRT, 169–170

891716, MRT Registry key, 170

923886, Windows Defender logs, 171, 235

927521, driver events, 118

2305420, scheduled tasks, 138–139

Event Log parsing, 80

Microsoft Malware Protection Center (MMPC)

blog, 180

Microsoft Office, jump lists, 96–97

Microsoft Office 2003, Registry as log file,

114–115

Microsoft Office 2007

metadata file EXIFTool, 108

timeline creation on XP, 217–218

Windows Event Logs, 82

Microsoft Office Professional, Carbon Black

uses, 36

Microsoft/SysInternals site, analysis system set-up,

21–22

Microsoft Word

257Index

for documentation, 16

dynamic application analysis, 240

jump lists, 96

timeline analysis, 201–202

“triage” questions worksheet, 26–27

UserAssist subkeys, 146

Mission: Impossible, 28

MiTeC Structured Storage Viewer, 97, 97f, 98

MiTeC Windows File Analyzer (WFA), 98, 98f

MiTeC Windows Registry Recovery (WRR) tool

ComDlg32 subkeys, 140f

current ControlSet, 116

EMDMgmt subkey values, 123f

RegIdleBackup key values, 139f

Registry analysis, 112–113

Software hive root, 131f

Tree subkeys, 138f

USBStor device subkey properties, 117f

USBStor subkeys, 117f

USB subkey properties, 119f

USB subkeys, 119f

Virtual PC key path, 147f

volume GUID, 120f

Windows services analysis, 129, 129f

WordWheelQuery, 141

Wow6432Node key, 132f

Mlink command, VSCs on live systems, 49

Mmls.exe

sample output, 212f, 213f

timeline analysis case study, 229

timeline creation, 212

MMPC, see Microsoft Malware Protection Center

(MMPC) blog

Mock incidents, response testing, 36, 40

Modular approach, TLN creation, 210–211

MojoPac, 18

MokaFive, 18

Most frequently used (MFU) list, 99

Most recently used (MRU) list

DestList stream, 99

historical Registry data, 141

jump list parsing, 100

timeline analysis, 207, 208

timeline analysis data sources, 224–225

VSCs in acquired images, 57

WordWheelQuery, 140

MountedDevices key

PGPDisk and TrueCrypt volumes, 120f, 121

smart phones, 126, 127–128

USB device analysis, 119

USB external drive analysis, 124

Mounting

images for AV scans, 173–174

VHD files, 83–84

MountPoints2 key

LastWrite time, 121

smart phones, 127

USB external drive analysis, 125

USB thumb drive, 121–122

Mrt.log, antivirus log analysis, 103, 169–170

MRT Registry key, expert tip, 170

MRU, see Most recently used (MRU) list

MRUListEx value, historical Registry data, 141

MSRT, see Malicious Software Removal Tool

(MSRT)

MS SysInternals utilities, Software hive application

analysis, 131–132

Mueller, Lance, 211, 229

MUICache key

example contents, 144f

malware detection, 188

malware write-ups, 176

user hives, 144

M-unition blog, 163–164

Mutexes (Memory objects), malware approaches, 162

MySpace, initial infection vector, 158–159

N
Nano-timelines, creation, 210–211

National Institute of Standards and Technology

(NIST), timeline creation, 211

Network captures, application analysis, 241–242

NetworkCards key, 137, 137f

Network communications, expert tip, 242–243

Networked environments, malware persistence

mechanism, 164

Network interface card (NIC), 137

NetworkList key, 134–137, 137f

NetworkMiner, network captures, 242

NetworkService, timeline analysis, 208

NIC, see Network interface card (NIC)

NoLMHash value, Registry analysis, 113

NTFS file system

ADS manipulation, 182

alternate data streams, 181

$FILE_NAME attribute, 73

file system tunneling, 76

file times, 212

$I30 Index Attributes, 78

Last Access Time, 72

MBR infectors, 185

MFT, 70–71

multiple AV scans, 173–174

time stamps, 74

258 Index

NTOSBOOT-BOODFAAD.pf, expert tip, 92

Ntpwedit tool, 53

NTUSER.DAT hive

shellbags, 142, 143

smart phones, 127

Software hive application analysis, 132

timeline analysis, 204, 208

timeline analysis case study, 230

timeline analysis data sources, 224–225

U3-enabled device analysis, 116

USB device analysis, 115

USB external drive analysis, 125

USB thumb drive, 121–122

UserAssist subkeys, 145

Virtual PC, 147

VSC access automation, 63–64

VSCs in acquired images, 56, 149

NukeOnDelete value, Recycle Bin bypass, 86

O
ODiag.evt, timeline creation on XP, 217–218

Offline Files Cache, Registry keys, 46

OLE structured storage, Registry as log file,

114–115

OpenOffice, 16, 227

OpenSaveMRU key, user hives, 139–140

OpenSavePidMRU key, user hives, 140

Open-source tools (general), see also specific tools

analysis system set-up, 20–21

convergence, 16

dynamic application analysis, 238

pre-infection intelligence collection, 160

suggested reading, 21

timeline creation, 210

Operational logs

characteristics, 83

WLAN-AutoConfig example, 84f

Oracle, VirtualBox, 54

Order of volatility, definition, 8–9

OSession.evt, timeline creation on XP, 217–218

P
P2P, see Peer-to-peer (P2P) file sharing

PaaS, see Platform-as-a-service (PaaS)

Packed files

malware detection, 177–179

PEiD example, 178

Packet sniffers, incident response data collection,

36

Pagefile

Event Log records, 78–79, 81

Registry keys, 46

ParentIDPrefix value, device mapping, 117

Parsing

Android devices, 106

Apple products, 105

application files, 102–103

application memory analysis, 243

AV logs, 80

Event Logs, 4, 78–79, 80, 84, 85

events file creation, 226

events into timeline, 225–228

index files, 87–88

INFO2, 87

Internet history, 188

iPod Touch backups, 106

jump lists, 99, 100, 101

LNK files, 98

Log2timeline framework, 197

malware persistence mechanism, 162

malware propagation mechanism, 160

MFT, 71, 73, 77

network captures, 242

NTFS $I30 Index Attributes, 78

NTOSBOOT, 92

prefetch files, 89–90, 91, 167, 221–222

Prefetch Parser, 92f

Recycle Bin, 66

Registry analysis, 125, 127, 144–145, 187–188,

222

scheduled tasks, 94

shellbags, 142, 143

Skype logs, 104

timeline analysis, 197, 205, 206, 209, 229,

230–231

timeline creation, 210, 212, 214, 215, 216, 218,

219, 227

timeline creation on Windows, 7, 219

timeline data volume, 225

virtual memory, 163

VSCs, 149

WFP, 180–181

Windows Event Logs, 220

Partition table

via FTK Imager, 215f

timeline analysis case study, 229

timeline creation, 212, 214–215

Patient 0, 161

Payment card industry (PCI)

incident response example, 26

timeline analysis, 202, 203

PCI, see Payment card industry (PCI)

PDE, see Physical Disk Emulator (PDE) module

PDF files, initial infection vector, 159

259Index

PE, see Portable executable (PE) files

Peer-to-peer (P2P) file sharing

application analysis, 234

initial infection vector, 158

seeded sites, 191

PEiD tool

packed file malware detection, 177

UI example, 178f

usage tips, 178

Yara project, 179

Perl2Exe, 11

Perl Package Manager (PPM), 205–206

Perl script listing

Assoc.pl, 134

Bodyfile.pl, 214, 219

Devclass.pl, 126

Evt-parse.pl, 80, 218, 219

Evtrpt.pl, 79, 218, 226

Evtxparse.pl, 220

Ftkparse.pl, 215

Legacy.pl, 130–131

Maclookup.pl, 135, 136

Mbr.pl, 186, 187f

Mft.pl, 73–74

Mountdev.pl, 125, 126

Mp2.pl, 125, 127

Msis.pl, 132

Parse.pl, 226, 227

Port_dev.pl, 127

Pref.pl, 89–90, 221

Recbin.pl, 86–87

Regdiff.pl, 149

Regtime.pl, 222, 230

Rip.pl, 151, 222–223

Tln.pl, 223f, 224f, 230, 230f

Usbdevices.pl, 126

Usbstor.pl, 125, 126

Userassist2.pl, 144–145, 223, 224

Userassist_tln.pl, 145, 223

Perl scripts

analysis system set-up, 20, 21

coding skills, 187

DateTime module, 205–206

diff, 149

direct artifacts, 11

Event Log file extraction, 79

Event Log file parsing, 80

Event Log records, 81

events file additions, 230f

events file creation, 226

events into timeline, 226, 227

file system tunneling example, 77

gmtime() function, 204–205

INFO2 file extraction, 86–87

Internet activity analysis, 189–190

jump list parsing, 100, 101

LEGACY_IMDISK LastWrite time, 130–131

Log2timeline framework, 197

MBR infectors, 185, 186, 187f

memory scraper, 163

MFT analysis, 73–74

module installation, 216

prefetch file parsing, 89–90

Registry analysis, 151

Registry data and TLN creation, 222–223

Software hive application analysis, 132, 134

timeline analysis case study, 230

timeline creation, 211, 214, 215, 221, 223, 223f,

224, 224f

timeline creation on Windows, 7, 219, 220

timeline creation on XP, 218, 219

timestomping example, 75

USB device analysis, 125, 126, 127

USB external drive analysis, 125

UserAssist, 144–145

WiFi geolocation mapping, 135, 136

Windows Event Log parsing, 85

Persistence mechanism (malware)

as artifacts, 165

file infection, 163

file system startup locations, 164

malicious DLL, 163–164

memory scraper, 163

multiple mechanisms, 165

“nearby” systems, 165

networked environments, 164

overview, 162–165

Registry, 162

scheduled tasks, 164

W32/Crimea, 163

PEView tool, 192

PFDump.exe, prefetch file parsing, 91

PGPDisk volume, MountedDevices key, 120f, 121

Phishing attacks, training for, 159

PhishMe.com, 159

Physical Disk Emulator (PDE) module, 53

Physical memory

application memory analysis, 243

F-Response, 39, 50–51

incident preparation questions, 27

incident response, 37

memory sources, 244

Registry analysis, 112, 150

virtualization, 19

260 Index

Pillion, Martin, 164

Pirc, John, 158–159

Platform-as-a-service (PaaS), 18

Plugin Browser, Registry analysis, 151, 151f

Pogue, Chris, 6

Point of contact (PoC), incident preparation, 24

Poison Ivy RAT, 182

Portable executable (PE) files

compile times, 183–184, 184f

MBR infectors, 184–185, 187

packed, malware detection, 177

W32/Crimea, 163

Port Reporter, network captures, 242

Port Reporter Parser tool, network captures, 242

PPM, see Perl Package Manager (PPM)

Prefetch files, see also Application prefetching

application file prefetching, 89

as artifacts, 166

data exfiltration, 167

file analysis, 88–92

incident response data collection, 38–39

indirect artifacts, 11–12

installed AV applications, 171

metadata, 89–90

NTOSBOOT-BOODFAAD.pf, 92

parsing, 90f

purpose, 89

Registry analysis, 188

speculation issues, 10

SSD drives, 89

timeline analysis, 201–202

timeline creation, 221–222

Vista, 91–92

PrefetchParameters key, 89

Prefetch Parser, 91, 92f

Previous Versions shell extension, 45, 46f

Process Monitor (ProcMon), 11, 241

Process Registry key (XP), 5

ProDiscover

analysis system set-up, 20

dropdown menu example, 189f

Internet History Viewer, 189f

Jump List Viewer, 101, 101f

Mount Shadow Volume, 65f

time stamp display, 71

VSC access, 8

VSCs in acquired images, 64–66, 66f

VSCs on live systems, 49

Windows 7 .job file, 94f

ProDiscover Basic Edition (BE), 21, 59–60, 62

ProDiscover Incident Response Edition (IR)

Internet activity analysis, 188

time stamp display, 71, 72f

VSCs in acquired images, 64

VSCs on live systems, 49

ProfileGuid value, NetworkList, 136

ProfileList subkey, timeline analysis, 208

Profiles key, NetworkList, 136

Propagation mechanism (malware)

and LFO, 161–162

malware artifacts, 167–168

malware characteristics, 160–161

ProScript, analysis system set-up, 20

Psexec.exe, interesting artifact searches, 82

PSExecSvc service, malware detection, 190

Pwdump7.exe, Registry analysis, 113

Python script listing

AnalyzeMFT.py, 73, 74–75

Indxparse.py, 78

Python scripts

analysis system set-up, 21

Android device application files, 106

cache.wifi parsing, 106

coding skills, 187

NTFS $I30 Index Attributes, 78

Registry Decoder, 152

$SIA and $FNA extraction, 73, 74–75

Yara project, 179

Q
Questions

incident preparation, 25–28

“triage worksheet”, 26–27

QuickTime (Apple), malware persistence

mechanism, 164

R
RAT, see Remote administration tool (RAT)

Rcmd.exe, 82

RDP, see Remote Desktop Protocol (RDP)

ReadyBoost, 122, 128

RecentDocs key, 95–96, 146, 207

Recycle Bin

bypassing, 85–86

file analysis, 85–88

index file, 88f

INFO2, 21, 86–87

malware detection, 190

Vista, 87

Windows, 7, 88f

Windows XP, 86, 87f

RegEdit.exe, see Registry Editor tool

(RegEdit.exe)

261Index

RegIdleBackup key

as Registry information source, 148–149

scheduled tasks, 94, 138

values via WRR, 139f

Registry

application memory analysis, 243–244

camera image file analysis, 108

dynamic application analysis, 238

$FNA MFT record, 73

function, 112

installed AV applications, 171

as log file, 114–115

malware persistence mechanism, 162

malware write-ups, 176

MFT record, 71

nomenclature, 113–114

prefetch files, 88–89

ProDiscover Basic Edition, 21

RegEdit.exe view, 114f

RegIdleBackup task, 94

structure, 113

task sheduling, 4

timeline analysis, 207

timeline analysis data sources, 198–199

timeline creation, 222–224

Registry analysis

alternate sources, 148–150

browser analysis, 133

current ControlSet, 116

DeviceClasses, 121

device mapping, 117

diff, 149

driver events, 118

EMDMgmt key, 128

EMDMgmt subkey values, 123f

evidence eliminators, 149

expert tip, 207

historical Registry data, 141

malware detection, 187–188

memory, 150

MountedDevices key, 120f

overview, 112–153

Plugin Browser interface, 151, 151f

RegIdleBackup, 148–149

Registry Decoder, 152, 152f

Registry nomenclature, 113–114

Registry overview, 112

smart phones, 125

Software hive, 131–139, 131f

application analysis, 131–134

Classes subkeys, 133f

GUID key values, 139f

NetworkCards\12 key, 137f

NetworkCards key, 137

NetworkList, 134–137, 137f

RegIdleBackup key values, 139f

scheduled tasks, 138–139

Tree subkeys, 138f

Unmanaged subkey values, 135f

WiFi geolocation mapping, 135–136

Wow6432Node key, 132f, 139

System hive

basic considerations, 128–131

services, 129–131, 129f

testing for malware execution, 192

tools, 113, 150–153

U3-enabled devices, 116

USB device analysis, 115–128

USB drive/disk signature, 124f

USB external drives, 124

USBStor device subkey properties, 117f

USBStor subkeys, 117f, 123–124

USBStor and USB subkeys, 124f

USB subkey properties, 119f

USB subkeys, 119f

USB thumb drives, 116

user hives, 139–148

c6d3bf33.Windows.XP.Mode key, 147f

ComDlg32 subkeys, 140f

MUICache key, 144, 144f

shellbags, 141–144, 143f

tracking user activity, 142

TypedPaths key, 148, 148f

UserAssist historical data, 147

UserAssist subkeys, 144–147, 145

Virtual PC key, 147–148, 147f

WordWheelQuery, 140–141, 140f

XP Mode, 146

virtualization, 149–150

volume GUID, 120f

VSCs, 149

Wow6432Node key, 132f

Registry Decoder, 152, 152f

Registry Editor tool (RegEdit.exe), 114f, 116

Registry hives

file analysis example, 70

idling processes, 25

incident response data collection, 38–39

Root key, 12

speculation issues, 10

structure, 113

suggested reading, 57

System Restore Points, 44

timeline analysis, 202–203, 224–225

262 Index

Registry hives (Continued)

timeline analysis case study, 230

Windows version comparison, 5

Registry keys (general)

artifacts, 165

Carbon Black, 35

deleted keys, 128

direct artifact, 10–11

dynamic application analysis, 240

early worms, 14

event parsing into timeline, 228

jump lists, 95–96

malware persistence mechanism, 162

prefetch files, 91

Recycle Bin bypass, 86

Registry as log file, 114–115

Registry nomenclature, 114

seeded sites, 191

time formats, 199

timeline analysis, 200–201, 207, 208

unique, malware, 162

VSCs, 45–46, 57

Registry values (general)

Application Event Logs, 169

artifacts, 165

Registry as log file, 114–115

Registry nomenclature, 114

seeded sites, 191

RegRipper

analysis system set-up, 21

events file creation, 226

LEGACY_IMDISK LastWrite time, 130–131

Registry analysis, 112–113, 150

Registry data and TLN creation, 222–223, 224

smart phone, 125

Software hive application analysis, 132, 134

timeline analysis case study, 230

timeline creation, 214

USB device analysis, 128

USB external drive analysis, 125

UserAssist subkeys, 144–145

VSC access automation, 63–64

VSCs in acquired images, 56, 149

WordWheelQuery, 141

XPMode, 146

RegShot, dynamic application analysis, 238

Remote administration tool (RAT), 182

Remote Desktop Client, jump list parsing, 100–101

Remote Desktop Connection, jump list information,

99–100

Remote Desktop Protocol (RDP), 30, 204

Remote systems

jump list files, 98

VSC access

basic considerations, 52

F-Response, 50

ProDiscover, 49

Removal, VHD files, 83–84

Robocopy command, 56, 63

Root key

indirect artifact, 12

Windows services, 130

ZeroAccess, 12

Rootkits

malware persistence mechanism, 162

MBR, 185

ZeroAccess, 12, 166

Rot-13 translation cipher, UserAssist subkeys,

144–145

Rpcall.exe, timeline analysis case study, 232

RSA, data breach, 2

Run key

malware artifacts, 167

malware persistence mechanism, 162

timeline analysis case study, 230

user hives, 139–140

Wow6432Node key, 139

Russinovich, Mark, 182

S
SaaS, see Software-as-a-service (SaaS)

Safari (Apple), malware persistence mechanism,

164

Safe Mode, malware persistence mechanism, 162

SAM hive

RegIdleBackup, 148–149

Registry analysis, 113

System Restore Points, 44

timeline analysis, 208

VM log-in tips, 236

SANS Investigative Forensic Toolkit (SIFT)

analysis system set-up, 19

incident response acquisition process, 38

Registry data and TLN creation, 222

usage example, 19

VSCs in acquired images, 62

Windows Event Log parsing, 85

Sbag.exe, 142, 143f

SchedLgU.txt, 95

Scheduled tasks

AppleSoftwareUpdate task, 93f

at.exe vs. schtasks.exe, 95

file analysis, 92–95

GUID key values, 139f

263Index

.job files, 190

malware detection, 190

non-user created, 93

RegIdleBackup key values, 139f

SchedLgU.txt, 95

via schtasks.exe, 94–95

Software hive, 138–139

timeline analysis data sources, 198–199

Windows, 7, 94, 95f

Windows 7 .job file, 94f

Windows 2000/XP/2003, 94

XP Scheduled Task Wizard, 93f

Scheduled Task Wizard, 92–95, 93f

Schtasks.exe, 94–95

Schuster, Andreas, 85, 205, 219

Secevent.evt, XP/2003 systems, 82

Security Event Logs

events file creation, 226

file analysis, 79

interesting artifact searches, 82

timeline analysis, 204

timeline approaches, 197

timeline creation on Windows, 7, 219

timeline creation on XP, 217–218

Ultimate Windows Security Event Log site,

80–81

Security functionality, searching for, 241

Security hive

events file creation, 226

RegIdleBackup, 148–149

timeline approaches, 197

Security identifier (SID)

malware detection, 190

Recycle Bin, 86

timeline analysis, 208

Win7 Recycle Bin, 87

Seeded sites, malware detection, 191–192

Serial number key, 118, 119

Servers, auditing functionality, 33

ServiceName value, NetworkCards key, 137

Service set identifier (SSID), 135

Services Event Log, characteristics, 83

Setup Event Log, characteristics, 82–83

7Zip, 21, 131

SHA-25 algorithm, scheduled tasks, 138–139

ShadowExplorer v0.8, interface example, 48f

Shannon, Matthew, 39, 50

Shellbags, 141–144, 143f

Shell link files, jump lists, 97

SID, see Security identifier (SID)

SIFT, see SANS Investigative Forensic Toolkit (SIFT)

Sigcheck.exe tool, 179, 179f

Silberman, Pete, 14

Skype, 57, 104, 224

Skype History Viewer, 104

Skype Log View, 104, 104f

The Sleuth Kit (TSK) tools

ASCII timelines, 196

dynamic application analysis, 238

Event Log records, 81

MBR infectors, 185

SIFT VM usage example, 19

timeline creation, 211, 212

Smart phones

image file analysis, 106–107

ubiquitousness, 1–2

USB device analysis, 125

“Snapshots”, see Volume Shadow Copy (VSC)

Sniper Forensics (Pogue), 6

Software-as-a-service (SaaS), 18

Software hive

application analysis, 131–134

Classes subkeys, 133f

GUID key values, 139f

malware artifacts, 167

malware persistence mechanism, 162

NetworkCards\12 key, 137f

NetworkCards key, 137

NetworkList, 134–137, 137f

Process Registry key, 5

RegIdleBackup, 148–149

RegIdleBackup key values, 139f

Registry analysis, 131–139

Registry Decoder, 152

scheduled tasks, 138–139

smart phone, 127

timeline analysis, 208

Tree subkeys, 138f

Unmanaged subkey values, 135f

USB device analysis, 122

WiFi geolocation mapping, 135–136

Wow6432Node key, 132f, 139

via WRR, 131f

Software Registry hive

prefetch files, 91

VSC access automation, 115

Solid-state drive (SSD), 89

Source value, timeline analysis, 207

Spear phishing, definition, 160

Speculation, analysis principles, 9–10

Spohn, Michael, 91

SQL injection attacks, 159, 197–198

SQLLite databases, 102, 105–106

Squid, Log2timeline framework, 197

264 Index

SSD, see Solid-state drive (SSD)

Ssdeep hash, MBR infectors, 186–187

SSID, see Service set identifier (SSID)

$STANDARD_INFORMATION attribute ($SIA)

file/directory records, 71

file system tunneling example, 77

Last Access Time, 72

timeline analysis, 198, 200–201, 208–209

timeline creation, 211

time stamps, 72, 74

timestomping artifacts, 198

timestomping example, 76

Startup location, malware persistence mechanism,

164

Start value, Windows services analysis, 129–130

Stevens, Didier, 144–145, 159

Sticky Notes files, Registry as log file, 114–115

Strings.exe

analysis system set-up, 21–22

application memory analysis, 243–244

Event Log records, 81

Registry structure, 113

Structured storage, Registry as log file, 114–115

Stuxnet malware, 138–139, 180

SubSeven Trojan, 7

Suiche, Mattieu, 244

Surfacing, VHD files, 83–84

Suspicious processes, Carbon Black log example,

35, 35f

Sutton, Willy, 158–159

Svchost.exe, malware detection, 187–188

Symantec antivirus (AV) products

AV log time formats, 200

Event Logs, 79

malware characteristics, 159

malware detection, 164

MBR infectors, 185

timeline analysis, 207

timeline creation on XP, 218

Sysevent.evt, XP/2003 systems, 82

System Event Log

driver events, 118

malware detection, 190

timeline creation on Windows, 7, 219

timeline creation on XP, 217–218

System field, timeline analysis, 207–208

System files

System Restory Points, 45

VSC access automation, 115

System hive

RegIdleBackup, 148–149

Registry analysis, 128–131, 129f

smart phones, 126, 127–128

time formats, 199

U3-enabled device analysis, 116

USB thumb drive, 121–122

VSC access automation, 115

System-level privileges

Internet activity analysis, 12, 188

scheduled tasks, 93

timeline analysis, 198, 208

System Restore Points

indirect artifacts, 12–13

Registry Decoder, 152

system files, 45

timeline analysis case study, 232

timeline analysis via visualization, 228

timeline data volume, 225

VSS, 44, 45

XP functionality, 44f

XP system “noisiness”, 14

SYSTEMTIME

NetworkList, 136–137

Perl DateTime module, 206

Registry analysis, 207

scheduled tasks, 94

time formats, 200

T
Tab-delimited files, prefetch file parsing, 91

Tablet devices, ubiquitousness, 1–2

TaskCache\Tasks\GUID key, values example, 139f

TaskCache\Tree subkeys, via WRR, 138f

Task Scheduler

indirect artifacts, 12–13

SchedLgU.txt, 95

Software hive, 138

Windows, 7, 94, 95f

Windows version differences, 4

TCP/IP communications, expert tip, 242

TechNet blog, 188

Temp directory

malware artifacts, 167

malware detection, 172, 190

VSCs and Registry keys, 46

Temporal proximity

definition, 25

timeline analysis, 201

Temporary files, Registry keys, 46

Temporary Internet Files (TIF), 188, 189–190

Terminal Server Client key, UserAssist subkeys,

146

Terminal Services, jump list files, 98, 99–100

Thomassen, Jolanta, 128

265Index

ThreatExpert.com, 5

TIF, see Temporary Internet Files (TIF)

Tilbury, Chad, 78

Time formats, timeline analysis, 199–200, 204–206

Timeline (TLN) analysis

analysis system set-up, 20–21

approaches, 197–198

basic concepts, 200–202

benefits, 202–204

case study, 229–232

data sources, 198–199, 207

data source volume issues, 225

description field, 208–209

via event parsing, 225–228

events file additions, 230f

events file creation, 226

expert tip, 234–235

formats, 204–210

granularity issues, 205

Log2timeline framework, 197

non-time-stamped data sources, 224–225

overview, 196–210

Registry analysis, 207

system field, 207–208

time formats, 199–200, 204–206

UserAssist data, 145

user field, 208

visualization, 228–229

Timeline (TLN) creation

Event Logs

basic considerations, 217–221

sources, 219

Windows, 7, 219–221

Windows XP, 217–219

events file, 214

example, 212f, 213f

file system metadata, 211–217

image partition table, 215f

modular approach, 210–211

NTFS file times, 212

overview, 210–229

prefetch files, 221–222

Registry data, 222–224

Time stamps

file/directory records, 71

file system tunneling example, 77

$FNA, 73

hypothesis testing, 74

jump list files, 98

Log2timeline framework, 197

NetworkList, 136–137

ProDiscover IR, 71, 72f

$SIA, 72, 74

timeline analysis, 201–202, 207

values from other file, 75–76

Timestomp.exe, 74–75, 198

Timestomping

definition, 74–75

example, 75–76

expert tip, 198

timeline analysis data sources, 198

TimeZoneInformation key, 207

TLN, see Timeline (TLN) analysis

Tools vs. process, analysis principles, 8

Training

incident preparation, 39–40

mock incidents, 40

phishing attacks, 159

“Triage worksheet”, 15, 26–27

“Trojan Defense”, 16–17, 158, 191

Trojan downloader, 161

Trojans

persistence mechanism, 164

Process Registry key, 5

scheduled tasks, 94

TrueCrypt volume, MountedDevices key, 120f, 121

Trusted advisor, incident response, 36

TSK, see The Sleuth Kit (TSK) tools

TypedPaths key, 148, 148f

TypedURLs key, browser analysis, 133

U
U3-enabled devices, Registry analysis, 116

Ultimate Windows Security Event Log site, 80–81, 82

UltraEdit, 21, 227

Unallocated space

data breach example, 70

Event Log records, 78–79, 81

MBR infectors, 185

Registry structure, 113

Unicode format

DestList stream, 99

prefetch file parsing, 89–90

Recycle Bin, 87–88

Uninstall key, 131–132, 139

Unique instance ID key

device mapping, 117

iPod Touch, 126

LastWrite time, 119

vs. serial number, 118

smart phone, 125–126

USB device analysis, 116, 118, 122

USB external drive analysis, 124

USB thumb drive, 121–122

266 Index

Unix

epoch time format, 205

time formats, 199

Unmanaged subkey, values, 135, 135f

Unsurfacing, VHD files, 83–84

USB device analysis

checklists, 115

current ControlSet, 116

deleted Registry keys, 128

DeviceClasses, 121

device mapping, 117

driver events, 118

EMDMgmt key, 128

EMDMgmt subkey values, 123f

MountedDevices key, 120f

overview, 115–128

smart phones, 125

subkeys, 122

U3-enabled devices, 116

USBStor device subkey properties, 117f

USBStor subkey LastWrite times, 123–124

USBStor subkeys, 117f

USB subkey properties, 119f

USB subkeys, 119f

volume GUID, 120f, 121

USB external drives

drive/disk signature, 124f

imaging, 3–4

incident response, 37, 38

Registry analysis, 115, 115–128

timeline analysis, 202

timeline creation, 215

USBStor and USB subkeys, 124f

USB key, 124

USBStor key

device mapping, 117

LastWrite time, 117–118

OS version comparison, 5

U3-enabled device analysis, 116

USB external drive analysis, 124

USBStor subkeys

device properties, 117f

LastWrite time, 123–124

USB external drive analysis, 124f

USB thumb drive, 121–122

via WRR, 117f

USB subkeys, 119f, 124f

USB thumb drive

initial infection vector, 159

Registry analysis, 115, 116, 118

time stamp testing, 74

Windows 7 Registry, 121–122

User activity tracking, expert tip, 142

UserAssist key, 56, 224–225

UserAssist subkeys

historical data, 147

timeline analysis, 208

timeline analysis case study, 230

user hives, 144–147

XP Mode, 146

User field, timeline analysis, 208

User hives

c6d3bf33.Windows.XP.Mode key, 147f

ComDlg32 subkeys, 140f

MUICache key, 144, 144f

Registry analysis, 139–148

shellbag, 141–144, 143f

tracking user activity, 142

TypedPaths key, 148, 148f

UserAssist historical data, 147

UserAssist subkeys, 144–147

Virtual PC, 147–148

Virtual PC key path, 147f

WordWheelQuery, 140–141, 140f

XPMode, 146

USRCLASS.DAT hive

MUICache key, 144

shellbags, 142, 143

Software hive application analysis, 134

VSCs in acquired images, 149

UTC format

dynamic application analysis, 238–239

event parsing into timeline, 227

file system tunneling example, 77

iPod Touch, 126

jump list files, 98

LEGACY_IMDISK LastWrite time, 130–131

MFT record, 71

NetworkList, 136–137

Perl DateTime module, 206

timeline analysis, 199, 204–205

U3-enabled device analysis, 116

USB external drive analysis, 125

UserAssist subkeys, 145

V
VHD, see Virtual hard drive (VHD)

vhdmount, VSCs in acquired images, 54

vhdtool.exe, 54, 66

VirtualBox (Oracle), 54, 237

Virtual hard drive (VHD)

expert tip, 83–84

image file formats, 66

multiple AV scans, 173–174

267Index

Registry analysis, 149–150

VSCs in acquired images, 54–58, 54f, 55f

Virtualization

analysis concepts, 17–19

Registry analysis, 149–150

Virtual machine (VM)

analysis system set-up, 19

expert tip, 83–84

F-Response VSC demo set-up, 50

log-in tips, 236

network captures, 241

security functionality search, 241

Virtual memory, direct artifacts, 11

Virtual PC (VPC)

concealing artifacts, 17–18

Registry analysis, 149–150

user hives, 147–148

VSCs in acquired images, 54

Virtual PC key, 147f

Virtual private network (VPN), 30, 50

Virtual Server, VSCs in acquired images, 54

VirusTotal, 159, 186–187

Visualization, timeline analysis, 228–229

VMDK, see VMWare (.vmdk)

VMPlayer, 50, 60, 95–96, 96f

VMWare (.vmdk)

analysis system set-up, 21

application memory analysis, 243

dynamic application analysis, 237

Registry analysis, 150

VSCs in acquired images, 52, 58–62

VMWare Workstation, VSCs, 59, 61, 61f

Volatility Framework

application memory analysis, 243

hibernation files, 102

memory sources, 244

Registry analysis of memory, 150

Volume serial number, EMDMgmt key, 123

Volume Shadow Copy (VSC)

access, 8

access automation, 62–64

acquired images

batch files, 64

Diskpart command, 58

example, 53f

image file formats, 66

LiveView, 53

overview, 52–67

ProDiscover, 64–66, 65f, 66f

ProDiscover BE, 59–60

VHD method, 54–58, 54f, 55f

VMDKs and SIFT, 62

VMWare method, 58–62, 61, 61f

analysis system set-up, 20

definition, 44–46

historical Registry data, 141

idling processes, 25

indirect artifacts, 12–13

live systems

basic considerations, 52

F-Response, 50–52, 51f

overview, 46–52

ProDiscover, 49

MUICache key, 144

Registry Decoder, 152

as Registry information source, 149

Registry keys, 45–46

ShadowExplorer v0.8 interface, 48f

system files System Restore Points, 45

timeline analysis data sources, 198–199,

224–225

timeline analysis via visualization, 228

UserAssist historical data, 147

WMI class, 47

XP System Restore Points, 44f

Volume Shadow Copy Service (VSS)

implementation, 44

Registry Decoder, 152

Registry keys, 45

timeline analysis data sources, 224–225

tools vs. process, 8

Vista implementation, 45

VPC, see Virtual PC (VPC)

VPN, see Virtual private network (VPN)

VSC, see Volume Shadow Copy (VSC)

VSS, see Volume Shadow Copy Service (VSS)

Vssadmin command, 47, 49, 55, 63

VSS key, 45

W
W32/Crimea, 163

Wallet drives, see USB external drives

Walters, Aaron, 25, 201

WAPs, see Wireless access points (WAPs)

Warden, Pete, 105

Wardriving, WiFi geolocation mapping, 135

Warez server, intrusions, 14

Warnings

Application Event Logs, 169

at.exe vs. schtasks.exe, 95

dangers of assumptions, 234

device mapping, 117

Googled malware information, 176–177

jump list parser, 101

268 Index

Warnings (Continued)

“knowing what to look for”, 182–183

Last Access Time, 72–73

malware evolution, 166

memory scraper, 163

mixing protection mechanisms, 172–173

multiple persistence mechanisms, 165

Perl module installations, 216

security functionality search, 241

Trojan defense, 158

USBStor subkey LastWrite time, 123–124

VSCs on live systems, 52

Windows Event Log parsing, 220

WMI class, 47

ZeroAccess, 12

Web history analysis, expert tip, 133

Web sites, initial infection vector, 160

Weg, Jimmy, 49, 58–59, 99

Wevtutil.exe, Event Log conversion, 85

WFA, see MiTeC Windows File Analyzer (WFA)

WFP, see Windows File Protection (WFP)

WiFi geolocation mapping, expert tip, 135–136

Win32_ShadowCopy, 47

Window of compromise

antivirus log analysis, 103

compliance issues, 26

Dr. Watson logs, 173

initial infection vector, 159

LEGACY_IMDISK LastWrite time, 130–131

timeline analysis, 202

Windows, 7

alternate Registry sources, 148

analysis system set-up, 19, 20

Apple product application files, 105

application prefetching, 167

Applications/Services logs, 83

Audit Policy settings, 32f

device mapping, 117

driver events, 118

dynamic application analysis, 237

Event Log conversion, 85

Event Log files, 4, 83f

Event Log parsing, 220

Explorer shell searches, 5

F-Response VSC demo set-up, 50

hibernation files, 101–102

historical Registry data, 141

idling processes, 25

iPod Touch, 126

jump list parser, 101

jump lists, 95–96, 98, 99–101

Last Access Time, 72–73

live system VSCs, 46–47

log file analysis, 235

Log Parser tool, 84–85

malware persistence mechanism, 164

MUICache key, 144

multiple AV scans, 173–174

NetworkList, 134–135, 137f

prefetch files, 88–89, 91–92

prefetch files and TLN creation, 221

Previous Versions shell extension, 46f

Recycle Bin, 88f

RegIdleBackup, 148–149

Registry, 112

Registry analysis, 113

Registry as log file, 114–115

Registry Decoder, 152

Registry hive files, 5

Registry keys, 45

scheduled tasks, 4, 94, 138

shellbags, 142, 143

smart phone, 125

Software hive application analysis, 132, 134

SSD drive prefetch settings, 89

Task Scheduler applet, 95f

timeline creation, 210, 211

U3-enabled device analysis, 116

USB device analysis, 115, 121–122

USB external drive analysis, 124

user hives, 139–140

virtualization, 17–18, 149–150

Virtual PC, 147

VMs, 83–84

VSCs, 44, 149

VSCs in acquired images, 53, 66, 59

Windows Defender logs, 171

Windows Event Logs, 82

WordWheelQuery, 140

Wow6432Node key, 139

XPMode, see Windows XP Mode

Windows 2000

Event Log files, 78

Log Parser tool, 220

Registry, 112

Registry hive files, 5

scheduled tasks, 93

$SIA, 71

time formats, 199

timeline analysis, 207

timeline creation, 211

Windows 2003

application prefetching, 167

Event Log files, 4, 78

269Index

Last Access Time, 72–73

Log Parser tool, 84–85, 220

prefetch files, 88–89, 91–92

prefetch files and TLN creation, 221

SchedLgU.txt, 95

scheduled tasks, 94

Security Event Logs, 80–81

timeline analysis, 207, 209

Windows Event Log, 82

Windows 2008

analysis system set-up, 20

application prefetching, 167

Event Log files, 4

Event Log parsing, 220

live system VSCs, 46–47

prefetch files, 88–89

prefetch files and TLN creation, 221

Registry analysis, 113

scheduled tasks, 138

Security Event Logs, 80–81

Windows Backup, 45, 45

Windows Defender, 171, 174, 235

Windows Event Logs

characteristics, 32

conversion, 85

example, 84f

file analysis, 82–85

Log Parser tool, 84

parsing issues, 220

Perl-based parsing, 85

size limits, 32

smart phone, 125–126

timeline analysis, 207

USB device analysis, 115

USB external drive analysis, 125

UserAssist subkeys, 146

Windows 7 example, 83f

Windows Event Viewer, 80

Windows Explorer shell

malware persistence mechanism, 163–164

searches in XP, 5

shellbags, 141–142

time formats, 199–200

time stamps, 71

TypedPaths key, 148, 148f

UserAssist subkeys, 144–145

VSCs in acquired images, 55

VSCs on live systems, 49

Win7 Recycle Bin, 87

Windows File Protection (WFP), 176, 180–181,

181f

Windows Local Group Policy, 164

Windows Management Instrumentation (WMI),

47, 183

Windows Media Player, 134

Windows NT, 181

Windows Registry Forensics (Carvey), 57

Windows services

direct artifact, 10–11

direct vs. indirect artifacts, 12

F-Response, 39

interesting artifact searches, 82

Internet activity analysis, 188

Internet history information, 12

key values via WRR, 129f

malware-created, 166

memory scraper, 163

OS version comparison, 5

Registry keys, 45

System hive analysis, 129–131

Windows systems (general)

ADS manipulation tools, 182

analysis system set-up, 19

Apple product application files, 105

application memory analysis, 243

application prefetching, 89

auditing functionality, 33

Event Log analysis, 81

event parsing into timeline, 225

events file creation, 226

file format diversity, 70

file system tunneling, 76

idling processes, 25

indepth malware detection techniques, 177

indirect artifacts, 11

initial infection vector, 160

logs and incident response, 31–36

malware persistence mechanism, 162

memory sources, 244

MFT records, 71

MSRT, 169–170

multiple AV scans, 173–174

open source tools, 21

prefetch files, 88–89, 167

Registry, 112

Registry analysis checklists, 115

Registry hive files, 5

shellbags, 141–142

Skype, 104

system “noisiness”, 14

timeline analysis data sources, 198–199,

224–225

timeline analysis via visualization, 228

timeline creation, 211

270 Index

timeline time formats, 204–205

time-stamped information, 199

tracking user activity, 142

version differences, 4–6

VPN incident, 30–31

VSC access automation, 64

ZeroAccess, 12

Windows Updates, 15, 82–83, 184

Windows Vista

ADS manipulation, 182

analysis system set-up, 20

application prefetching, 167

device mapping, 117

dynamic application analysis, 237

Explorer shell searches, 5

jump list files, 98

Last Access Time, 72–73

live system VSCs, 46–47

log files, 4

Log Parser tool, 84–85, 220

NetworkList, 134–135

prefetch files, 88–89, 91–92

prefetch files and TLN creation, 221

Recycle Bin, 87

Registry analysis, 113

Registry Decoder, 152

Registry keys, 45

scheduled tasks, 138

Security Event Logs, 80–81

Task Scheduler, 4

timeline creation, 210

VSCs, 44, 149

VSCs in acquired images, 53–54, 53f, 66

VSS functionality, 45

VSS implementation, 8

Windows Defender logs, 171

Windows Event Logs, 82

WordWheelQuery, 140

Windows XP

analysis system set-up, 19, 20

Apple product application files, 105

application prefetching, 167

Carbon Black log example, 34

device mapping, 117

Dr. Watson logs, 173

dynamic application analysis, 237

Event Log analysis, 81

Event Log conversion, 85

Event Log files, 4, 78, 82

Event Logs, timeline creation, 217–219

event record format, 78f

Explorer shell searches, 5

hibernation files, 101–102

idling processes, 25

Last Access Time, 72–73

log file analysis, 235

Log Parser tool, 84–85, 220

malware write-ups, 176

prefetch files, 88–89, 91–92

prefetch files and TLN creation, 221

Process Registry key, 5

ProDiscover IR, 65

Recycle Bin, 86, 87f

Registry, 112

Registry Decoder, 152

SchedLgU.txt, 95

scheduled tasks, 94

Scheduled Task Wizard, 93f

Security Event Logs, 80–81

SIFT VM, 19

Skype, 104

system files in System Restore Points, 45

system “noisiness”, 14

System Restore Points, 44f

Task Scheduler, 4

time formats, 199

timeline analysis, 207, 209

timeline approaches, 197

timeline creation, 210

timeline data volume, 225

user hives, 139–140

virtualization, 149–150

Virtual PC, 17–18

VMs, 83–84

VSCs, 44

VSCs in acquired images, 62

VSS implementation, 8, 44

Windows Defender logs, 171

Windows Event Logs, 82

Windows services, 129–130

WordWheelQuery, 140

Windows XP Mode

C6d3bf33.Windows.XP.Mode key, 147, 147f

UserAssist subkeys, 146

Virtual PC, 147

VM tips, 83–84

Windows XP SP3 system

file system tunneling example, 77

MSRT log analysis, 169–170

timestomping example, 75–76

Window Washer, 149

WindPCap drivers, dynamic application analysis,

241

Windows systems (general) (Continued)

271Index

WinInet, 11–12, 188

Wireless access points (WAPs), 134–135, 136f,

207–208

Wireshark, network captures, 242

WLAN-AutoConfig log, event example, 84f

WMI, see Windows Management Instrumentation

(WMI)

Woan, Mark, 100

Word, see Microsoft Word

WordWheelQuery key, 5, 140–141, 140f

Worms, early Internet, 14

Wow6432Node key, 132, 132f, 139, 142

Write-blockers, hard drive imaging, 3–4

WRR, see MiTeC Windows Registry Recovery

(WRR) tool

X
XML, see Extensible markup language (XML)

format

XP Mode, see Windows XP Mode

Y
Yara project, malware detection, 179

Z
ZeroAccess rootkit, 12, 166

Zeus/ZBot, 164, 170

	Front Cover
	Windows Forensic Analysis Toolkit
	Copyright Page
	Contents
	Preface
	Intended Audience
	Organization of this Book
	Chapter 1: Analysis Concepts
	Chapter 2: Immediate Response
	Chapter 3: Volume Shadow Copies
	Chapter 4: File Analysis
	Chapter 5: Registry Analysis
	Chapter 6: Malware Detection
	Chapter 7: Timeline Analysis
	Chapter 8: Application Analysis

	Online Content

	Acknowledgments
	About the Author
	About the Technical Editor
	1 Analysis Concepts
	Introduction
	Analysis Concepts
	Windows Versions
	Analysis Principles
	Goals
	Tools Versus Processes
	Locard’s Exchange Principle
	Avoiding Speculation
	Direct and Indirect Artifacts
	Least Frequency of Occurrence

	Documentation
	Convergence
	Virtualization

	Setting up an Analysis System
	Summary

	2 Immediate Response
	Introduction
	Being Prepared to Respond
	Questions
	The Importance of Preparation
	Logs

	Data Collection
	Training

	Summary

	3 Volume Shadow Copies
	Introduction
	What Are “Volume Shadow Copies”?
	Registry Keys

	Live Systems
	ProDiscover
	F-Response

	Acquired Images
	VHD Method
	VMWare Method
	Automating VSC Access
	ProDiscover

	Summary
	Reference

	4 File Analysis
	Introduction
	MFT
	File System Tunneling

	Event Logs
	Windows Event Log

	Recycle Bin
	Prefetch Files
	Scheduled Tasks
	Jump Lists
	Hibernation Files
	Application Files
	Antivirus Logs
	Skype
	Apple Products
	Image Files

	Summary
	References

	5 Registry Analysis
	Introduction
	Registry Analysis
	Registry Nomenclature
	The Registry as a Log File
	USB Device Analysis
	System Hive
	Services

	Software Hive
	Application Analysis
	NetworkList
	NetworkCards
	Scheduled Tasks

	User Hives
	WordWheelQuery
	Shellbags
	MUICache
	UserAssist
	Virtual PC
	TypedPaths

	Additional Sources
	RegIdleBackup
	Volume Shadow Copies
	Virtualization
	Memory

	Tools

	Summary
	References

	6 Malware Detection
	Introduction
	Malware Characteristics
	Initial Infection Vector
	Propagation Mechanism
	Persistence Mechanism
	Artifacts

	Detecting Malware
	Log Analysis
	Dr. Watson Logs

	Antivirus Scans
	AV Write-ups

	Digging Deeper
	Packed Files
	Digital Signatures
	Windows File Protection
	Alternate Data Streams
	PE File Compile Times
	MBR Infectors
	Registry Analysis
	Internet Activity
	Additional Detection Mechanisms

	Seeded Sites

	Summary
	References

	7 Timeline Analysis
	Introduction
	Timelines
	Data Sources
	Time Formats
	Concepts
	Benefits
	Format
	Time
	Source
	System
	User
	Description
	TLN Format

	Creating Timelines
	File System Metadata
	Event Logs
	Windows XP
	Windows 7

	Prefetch Files
	Registry Data
	Additional Sources
	Parsing Events into a Timeline
	Thoughts on Visualization

	Case Study
	Summary

	8 Application Analysis
	Introduction
	Log Files
	Dynamic Analysis
	Network Captures
	Application Memory Analysis
	Summary
	References

	Index

