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Abstract

Kernel-mode rootkits have gained a considerable momentum within the blackhat com-

munity. They represent a considerable threat to any computer system, as they pro-

vide an intruder with the ability to hide the presence of his malicious activity. These

rootkits make changes to the operating system’s kernel, thereby providing particularly

stealthy hiding techniques.

Considering the kernel rootkit threat and other threats, the collection of reliable

information from a compromised system becomes a central problem within the domain

of computer security. This thesis addresses this problem. It looks at the possibility

of using virtualization as a means to facilitate kernel-mode rootkit detection through

integrity checking.

The thesis describes several areas within the Linux kernel, which are commonly

subverted by kernel-mode rootkits. It introduces the reader to the concept of virtual-

ization and describes several technologies employing virtualization. The kernel-mode

rootkit threat is then addressed through a description of their hiding methodologies.

Some of the existing methods for malware detection are also addressed and analysed.

A number of general requirements, which need to be satisfied by a general model

enabling kernel-mode rootkit detection, are identified. A model addressing these

requirements is suggested, and a framework implementing the model is set-up. The

detection capabilities of the framework are tested on a couple of rootkits.
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Chapter 1

Introduction

The theme of this master thesis is the use of integrity checking of the operating sys-

tems kernel to discover anomalities implying kernel level exploits. The focus will be

on the Linux kernel and the detection of kernel-mode rootkits.

Section 1.1 outlines the motivation and importance of discovering malicious ac-

tivity. Section 1.2 defines the problem addressed. Lastly Section 1.7 describes the

structure of this thesis, serving as a roadmap for the reader.

1.1 Motivation

Interconnected computers are subject to constant attacks from people wanting to ex-

ploit the processing power, gain access to information, or to have fun. Preventing and

detecting such attacks is important to assure a certain level of integrity and privacy

for computing systems. Since methods employed by attackers become more and more

sophisticated, we have a continuous arms race between defenders and attackers.

Common goals of the attacker include; to make sure that the legitimate users

or system administrators are unaware of their system being compromised, and when

administrator privileges are obtained, to maintain and keep this privileged access in

the foreseeable future. A commonly used method achieving these goals is the use of a

rootkit. A rootkit is a collection of tools, which allows an intruder to hide his presence

and maintain his access.

Two types of rootkits exist; user-mode rootkits and kernel-mode rootkits. A user-

mode rootkit modifies critical system level binaries and programs, while a kernel-mode

1



2 Chapter 1. Introduction

rootkit replaces or modifies the operating systems kernel. Kernel-mode rootkits are

harder to detect than user-mode rootkits. They operate on a low level and hence

user-mode inspection tools are unable to detect such rootkits. This makes the kernel-

mode rootkit a very powerful tool. Further, rootkits have become more user-friendly

as blackhat hackers1 have applied user interfaces allowing not so well-informed in-

truders, or script kiddies, to apply the rootkit easily. These advantages have made

kernel-mode rootkits very popular, and they have become common in a high percent-

age of the intrusions reported, implying administrator level access [39].

Considering their increased popularity and frequent use, rootkits have become

one of the defenders largest challenges within system compromisation. No good,

general tools have been developed for rootkit detection, and defenders are stuck with

performing large amounts of forensic investigations to discover kernel-mode rootkits.

A research challenge is to develop a general model allowing effective detection of

kernel-mode rootkits.

1.2 Problem definition

The following problem definition was given by my daily supervisor as a starting point

for this thesis:

Detecting kernel-mode rootkits using VMware: Rootkits are a specifically nasty

type of malware. Controlling the communication between the kernel and the hardware

is important to be able to detect kernel-mode rootkits. Is it possible to use VMware to

detect rootkits? A central part will be integrity checking of the kernel.

Collecting reliable information from a compromised system is a central problem

within the domain of computer security. After an intrusion the monitoring informa-

tion returned from the compromised operating system is no longer reliable. This is

especially true, if the operating systems kernel has been changed.

Chen et al. [11] argues that implementing post-intrusion detection at the level

of a Virtual Machine (VM)2 will provide integrity. The use of virtual environments

allow the collected information from a virtual machine to be interpreted and analysed

by a isolated and clean operating system. Hence, the detection mechanism does not

1The blackhat community is a phrase referring to the underground of the computer security world.
2Chapter 3 discusses and explains how VMs work.
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need to trust the potentially compromised system. The technique of using virtual

machines to provide secure and isolated environments is known as sandboxing.

Based on this statement, we believe the use of virtual machine technology will

allow detection of kernel-mode rootkits using integrity checking, and a hypothesis can

be stated given this background:

The use of a Virtual Machine allows detection of kernel-mode rootkits through means

of integrity checking.

Note that the original problem definition stated that VMware could be used to

provide the required virtual environment. However, through the research done, this

has proven incomprehensible within the frames of this research. The use of VMware

would have required access to source code, which we did not have. The scope had to

be extended to consider any virtual machine technology.

1.3 Research questions

Based on the above problem definition and motivation, one of the objectives of this

thesis becomes to determine whether the use of a virtual machine can facilitate ker-

nel malware detection. The focus will be on the detection of kernel-mode rootkits,

through means of kernel integrity checking. The goal is to determine whether integrity

checking may be considered a valid method for kernel-mode rootkit detection.

Therefore, the main question that this report aims to answer is:

How can a virtual environment allow integrity control of an operating system’s kernel

and thereby allow discovery of kernel-mode rootkits?

This question leads to the definition of the following subquestions, determining further

work:

RQ1 Current state: Are there any efforts, which can answer or help answer the main

question?

RQ2 Requirements: What is the nature of kernel-mode rootkits, and what require-

ments do they impose on a system for detection?
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RQ3 Solution: What is needed to provide a foundation for meeting the requirements?

Which parameters need to be tested by the integrity checker?

RQ4 Evaluation: How well does the solution solve the problem given in the main

question?

1.4 Research methodology

The Oxford Dictionary and Thesaurus [58] defines research as:

“the systematic investigation into and study of materials, sources, etc., in order to

establish facts and reach new conclusions and an endeavour to discover new or collate

old facts, etc., by the scientific study of a subject or by the course of critical investi-

gation”.

This view outlines the importance of a systematic approach. Hence, setting up a

methodology and sticking to it is of utmost importance. Wallace et al. [66] and Glass

[20] summarize four research methods;

The scientific method A theory or model is developed to explain a phenomenon;

scientists propose a hypothesis and perform tests, collecting data to validate or

invalidate the claims of the hypothesis.

The engineering method A solution to a hypothesis is developed and studied,

changes are proposed and then evaluated. The solution is improved until no

further improvements are needed.

The empirical method Empirical methods are used to evaluate a given hypothesis.

Unlike the scientific method, there may not be a theory or model describing the

hypothesis.

The analytical method A formal theory is developed and results derived from the

theory can be compared with empirical observations.

The method applied in this work can best be classified as an engineering method.

A solution to the hypothesis stated in Section 1.2 is suggested and analysed. This

analysis gives background for improvement proposals (or the rejection of the hypoth-

esis), which in turn have to be evaluated.
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The work conducted and presented in this thesis can be divided in two main parts.

The first part is based on research questions RQ1 and RQ2. In this part the problem is

approached through a literature study of relevant technologies and implementations.

This study is necessary to gain a minimum of knowledge before the problem is ad-

dressed in depth. Further, the current situation, including rootkit hiding techniques

and rootkit detection methodologies, is surveyed and analysed. This first part of the

report will also reveal if there exist any suitable solutions to the problem at hand, as

well as a number of requirements, which need to be addressed.

The second part is my research contribution. The findings done during the first

part have led to the design of a model, described in Chapter 6. This model aims

to allow detection of kernel level malware through integrity checking methods. A

framework applying the model is set up, and some initial tests, providing an answer

to the hypothesis stated in Section 1.2 are conducted. After the tests of the frame-

work, the findings done are discussed and evaluated, and some possible improvements

and extensions are suggested. Lastly, the work of this thesis is concluded and some

suggestions for further work are given.

1.5 Project scope and demarcation of assessment

The focus of this work has been on the Linux operating system and the i386 processor

family as the underlying architecture. Further, I have focused on kernel-mode rootkits

as kernel level malware. The goal has however been to stay as general as possible,

and the model presented in Chapter 6 provides a general and portable solution.

The intention of this work is not to provide explanation and analysis of how an

intruder gains access. However, as the installation of kernel level rootkits requires

administrator level access to the operating system, this access is assumed to have

been obtained by the potential attacker.

A considerable amount of effort has been put into a pre-study phase, this is due

to my need to get an overview of the research field. This part is also meant as an

introduction to this field for the reader. It is assumed that the audience of this report

is familiar with general computer terms and has a certain level of knowledge within

the area of computer science.

Considering the complexity of the Linux kernel and my limited C-programming
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skills, implementation of the suggested solution has been incomprehensible. This

has been left for further work, and my suggestion is that any person picking up the

threads of this work has considerable skills within C-programming and maybe some

knowledge on kernel programming.

1.6 Definitions

For clarity some of the most used expressions during this thesis are explained in the

following:

Privileged user Throughout the report a user, with all privileges, is referred to as

root user or administrator. The use of the two expressions is intentional, as I

refer to a root user within the scope of Linux operating systems specifically, and

to administrator when considering a more general scope.

Kernel-mode, kernel-space and kernel level Kernel-mode refers to the pro-

grams or tasks executing within the kernel’s level of privilege, while kernel-space

refers to the kernels memory area. Kernel level refers to the level of operation.

User-mode and user-space User-mode refers to the programs or tasks operating

at the lowest level of privilege, while user-space refers to the operations memory

area outside kernel-space.

Malicious code Any code implementing unwanted functionality (from the legiti-

mate user’s viewpoint) is considered malicious code.

Host system and guest system The use of virtualization imposes the need to dis-

tinguish between the system hosting the virtualization technology, the host sys-

tem, and the system running within a virtual machine, the guest system.

1.7 Report outline

The report can be divided into two parts. The first part of this report provides the

setting for the thesis and reviews relevant issues and work done in the field addressed.

The following chapters constitute the first part:

• Chapter 1 (this chapter) provides the motivation, and defines the problem ad-

dressed. A description of the methodology used to address the given problem

is also given.
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• Chapter 2 tries to give an overview and provide a brief description of the Linux

kernel.

• Chapter 3 gives an introduction to the virtual machine technology and survey’s

a number of virtual machine technologies.

• Chapter 4 provides a description of rootkits, both in terms of provided services

and hiding methodologies.

• Chapter 5 gives a brief introduction to various methods for kernel protection,

and describes thoroughly several methodologies for rootkit/malware detection.

The second part, which is my contribution to the research area, describes, analy-

ses and elaborates a model addressing the problem at hand. It also evaluates and

concludes the work done in this thesis. The following chapters constitute the second

part:

• Chapter 6 provides a motivating scenario, summarizes a set of general require-

ments, which need to be addressed, and proposes a model solving the problem

at hand.

• Chapter 7 focuses on how different technologies can be combined in a framework

to support the model suggested in Chapter 6. It evaluates several virtualization

and integrity checking technologies.

• Chapter 8 presents some initial tests performed on the framework presented in

Chapter 7.

• Chapter 9 is a discussion and an evaluation of the work done.

• Chapter 10 concludes the project and provides some suggestions for further

work.

In addition an appendix including a glossary, several examples of both rootkits

and detection mechanisms, is appended at the end of the thesis.

1.7.1 Reader’s guide

The thesis is of considerable length, and reading all chapters is a time consuming task.

However, not all chapters are equally relevant to all readers. The following provides

a reading guide for some classes of readers:

Researchers with knowledge within the addressed field; should focus on the

last part, from Chapter 6 to Chapter 10.
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Researchers unfamiliar within the addressed field; should select any of the

chapters in the first part based on their previous knowledge, before they read

the last part.

Readers interested in the result of this work; should focus on Chapter 8 and

Chapter 10.

Figure 1.1 illustrates how the different chapters within this thesis depend on each

other. This figure can also be used as a guide of how this thesis should be read.

Figure 1.1: Report overview
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The Linux kernel

Given enough eyeballs, all bugs are shallow.

–Eric Steven Raymond, The Cathedral and the Bazaar

Linux is a UNIX-like Operating System (OS) initially created by Linus Torvalds

in 1991. It is considered one of the most successful open-source projects involving

hundreds of developers worldwide and being the preferred OS for millions of users.

This chapter gives a brief introduction to the Linux OS with emphasis on the

kernel. The intention is to provide an overview, and thereby increase the reader’s

understanding of how the kernel works and its responsibilities. This will provide the

reader with a platform of important concepts necessary for further reading, and some

understanding of how the kernel’s integrity may be investigated. It is worth noting

that many of the concepts and components introduced are common targets attacked

and altered by kernel-mode rootkits.

Section 2.1 provides some background information on the operating system and its

interaction with the Central Processing Unit (CPU), while Section 2.2 gives a general

overview of the Linux kernel architecture. Section 2.3 through 2.6 present and explain

some of the kernel’s most important subsystems. Considering kernel level malware,

these subsystems represent the most relevant parts of the Linux kernel. Lastly, some

topics considering the Linux kernel are discussed.

2.1 Background

The operating system is responsible for coordinating all of the computer’s individual

parts, such as the central processing unit (CPU) and the physical memory, and make

9
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them work together according to a single plan [37]. It consists of a set of programs

where the kernel can be considered the most important. The kernel’s main objectives

are to interact with hardware and provide an environment for the execution of user-

programs.

The kernel is the only part of the OS executing as trusted software, which thereby

ensures secure operation of the entire OS. - New processors incorporate a mode bit,

determining the processors mode of operation. The mode bit defines a program’s ca-

pability of execution on the processor. Newer x861 processors provide real mode and

protected mode. Real mode provides compatibility with older processor models and

allows the operating system to bootstrap. Protected mode allows the implementation

of a protection mechanism. The protection mechanism in x86 processors constitutes

four different privilege levels, or protection rings, as shown in Figure 2.1. Ring 0,

denoting the highest level of privilege, was initially intended for kernel services, ring 1

and 2 where intended for device drivers, while ring 3, being the lowest privilege level,

was intended for applications. However, most operating systems, including Linux,

only use ring 0 for kernel-mode, and ring 3 for user-mode. While within ring 0, or

kernel-mode, all instructions on the hardware’s repertoire may be used. Lower privi-

lege levels are restricted to a subset of these instructions.

Figure 2.1: The protection rings of Intel’s x86 architecture.

The kernel implements a set of services and corresponding interfaces [8]. These

services include; memory management, process and resource management, file sys-

tem management and hardware interaction. The following sections will give a closer

description of some of these services.

1Throughout this report, CPU’s belonging to the i386 processor family will be referred to as x86
processors.
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2.2 Architectural overview

Bowman et al. [9] present a conceptual architecture of the Linux kernel, which gives

a general overview of Linux’s subsystems. On it’s highest level of abstraction, this

architecture consists of seven major subsystems. The architecture is depicted in Figure

2.2, and the following gives a short explanation of each subsystem’s responsibilities;

Figure 2.2: The conceptual Linux architecture depicting the seven
major subsystems of the kernel and their dependencies [9].

• The Process Scheduler is responsible for ensuring that processes get a fair share

of the processor and that necessary hardware actions are performed by the kernel

on time.

• The Memory Manager is responsible for the assignment of memory space to

each process. It uses swapping to support processes that need more memory

than available in the system.

• The File system is a common file interface to all hardware devices allowing user

processes to access hardware using only one interface.

• The Network Interface provides access to network devices and allows the use

of several different network protocols to enable communication between user

processes and other computers.
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• The Inter-Process Communication subsystem enables process-to-process com-

munication on a single Linux system employing several mechanisms, such as

synchronisation and memory sharing.

• The Initialisation subsystem is responsible for initialising the other parts of the

Linux kernel with appropriate user configured settings.

• The Library subsystem contains routines used throughout the kernel.

2.3 System calls

Linux implements system calls to allow processes running in user-mode to interact

with hardware devices such as the CPU, disks and memory. These system calls

(or syscalls) provide interfaces between the processes running in user-mode and the

hardware (see Figure 2.3). A system call is a request made to the kernel via a software

interrupt, which allows a transition between user-mode and kernel-mode. Bovet and

Cesati [8] list some advantages introduced by this extra layer between the application

and the hardware:

• Programmers do not have to study low-level programming characteristics of

hardware devices to create useful applications.

• The system becomes more secure, since the kernel can check the request before

attempting to satisfy it.

• Applications become more portable as they may be compiled and executed on

any kernel offering the same interfaces.

Figure 2.3: System calls as an interface to hardware



2.3. System calls 13

User-mode programming and kernel programming should be kept strictly apart.

Hence, most user-mode processes usually do not activate system calls directly. In-

stead, the operating system provides system libraries including code invoking system

calls when required, and wrapper routines issuing particular system calls and thereby

providing indirect access to system calls to a user-mode program. The following

subsections explain how the system call interface is implemented.

2.3.1 The system call table and the interrupt descriptor table (IDT)

The system call table, or sys_call_table[], is responsible for mapping individual

system call names and numbers to the corresponding kernel code needed to handle

each system call. In Figure 2.4 it is shown how a user-mode process invokes a system

call, and thereby the system call table through a function call to the system library.

Further, it is shown how the kernel code corresponding to the system call is located

through a lookup in the system call table.

The system call table, is defined within the architecture dependent ker-

nel source file; arch/i386/kernel/entry.S. In kernel version 2.4 the system

call table is exported, and hence available in user-space via /proc/ksyms2 and

get_kernel_syms(1). However, the table is not exported in kernel version 2.6, but it

is still possible to locate it through the System.map file, which contains information

about the kernel’s symbols3 and is created at the kernel’s compile time. As will be

seen later, the system call table is a popular target for malicious kernel code.

The Interrupt Descriptor Table (IDT) associates each interrupt or exception with

the address of the corresponding interrupt or exception handler [8]. Proper initiali-

sation of the IDT is needed before the kernel enables interrupts, and, hence, allows

execution of system calls. As the CPU uses a register to store the IDTs physical

address, the IDT may reside anywhere in memory.

2.3.2 System call invocation and lifecycle

In Linux, a system call is invoked through the execution of the int $0x80 assem-

bly language instruction. When this assembly instruction is executed an exception

is raised and a software interrupt is created. The CPU then switches to ring 0 and

starts the execution of a kernel function.

2The /proc/ksyms file is removed in the 2.6 kernel.
3Symbols is the notion used to refer to variables and functions within the kernel
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(a) Looking up and invoking a system call. [49]

(b) The system call table points to different .text areas within
memory, which correspond to all the different system calls.
[15]

Figure 2.4: The system call table

Figure 2.5 illustrates the relationship between a user-mode application invoking

a system call, the corresponding wrapper routine, the system call handler and the

system call service routine.

The following summarizes the steps performed from the request made by the

application program until a value indicating the requests success is returned to the

requesting application:

1. The application program calls the wrapper routine corresponding to the appro-

priate system call.
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Figure 2.5: System call invocation [8]

2. The wrapper routine issues an interrupt by executing the $0x80 and a lookup

is made to the IDT, which includes a pointer to the system_call() exception

handler.

3. The system_call() function implements the system call handler, which per-

forms several tasks:

• Saves the contents of several registers in the kernel-mode stack.

• syscall_trace() is invoked if the executed program is being traced by a

debugger.

• The system call number is validated.

• If the system call is valid a lookup is made to the sys_call_table to

determine the address of the service routine.

• When the service routine terminates the ret_from_sys_call() function

is called and the handler exits.

4. An integer value determining the result of the system call’s termination is re-

turned4.

5. Most wrapper routines return an integer value to the application program de-

termining if the process request was successful or not.

4Positive (or zero) values indicate a successful termination, while an error condition is indicated
by a negative value [8].
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2.4 Memory management

The computer’s memory management system is a“cooperative venture”between hard-

ware, firmware and software [15]. The operating system’s memory manager is respon-

sible for utilizing the hardware to assign memory space to multiple processes. In

Linux, the memory manager is responsible for managing dynamic memory, which is

the part of the machines main memory not permanently occupied by the kernel [8].

Linux strives to implement a hardware architecture independent memory model.

This model has to be so universal that it may be used in conjunction with the memory

architecture of a wide range of different processor types [6]. To achieve this, the source

code is divided into a processor independent part and a number of smaller parts being

processor specific. The following focuses on the approach taken in Linux to utilize

the memory addressing capabilities of the x86 processors.

2.4.1 Memory organization

Linux provides the abstraction of virtual memory, which acts as a logical layer between

application memory requests and the hardware Memory Management Unit (MMU).

The virtual address space is divided into pages of fixed length. Within the physical

memory, these pages are contained in page frames, having the same size as a page.

The size of a page is defined by the PAGE_SIZE macro of the asm/page.h file. For the

32-bit architecture, such as x86 this size is usually 4 KB [6]. Page directories and page

tables are used to aid the translation from virtual addresses to physical addresses.

Reserved page frames

A number of page frames are assigned to and reserved for the kernel’s code and data

structures. The pages contained in these page frames cannot be assigned or swapped

to disk. As a general rule, these reserved page frames start from the physical address

0x00100000, i.e. from the second megabyte of main memory [8]. The total number

of page frames needed, depends on the kernel’s configuration.

The memory area reserved for the Linux kernel can be divided into three parts,

depicted in Figure 2.6. The symbol _text denotes the first byte of kernel text5, while

the end is denoted with the symbol _etext. Kernel data is divided into initialised,

which start right after _etext and ends at _edata, and uninitialised, which starts

5Kernel text is identical to the kernel’s code.
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after _edata and ends at _end. The linear addresses of these symbols can be found

in the System.map file.

Figure 2.6: The memory areas reserved for the kernel [8].

2.4.2 Virtual memory

The physical memory available is limited, and since Linux can run multiple processes

’simultaneously’, the memory requirements may exceed the available physical mem-

ory. Of course, this also yields single processes requiring large memory areas. This

problem is handled by the virtual memory, and by swapping pages between the sec-

ondary and primary memories. The virtual memory has several advantages, such

as allowing processes to be relocatable and allowing programmers to write machine

independent code not considering any segment or memory page limits [8].

The most important part of the virtual memory subsystem is the virtual address

space. In Linux this address space is 4GB for the x86 architecture. The address

space is split into kernel-space and user-space. In the 2.4 kernel, and earlier ver-

sions, Linux uses a 3GB/1GB split for the user-/kernel-space shown in Figure 2.7.

However, as Linux tries to map as much physical memory as possible directly into

virtual addresses allocated to the kernel-space, some problems arise when the physi-

cal memory becomes larger than 896MB6. In this case, Linux is unable to display the

whole physical memory in the kernel segment. However, through the use of a page

table, which allows temporarily mapping 4MB of physical memory, this problem is

somewhat countered. In the 2.6 kernel, the problem is solved by allowing the address

space split to be configured. This allows direct mapping of nearly 4GB of physical

memory into kernel space.

The /dev/kmem file contains an image of the kernel’s virtual memory, and through

this device file, a means for direct access to the kernel-space memory region, is pro-

6The available area is not 1GB since 128MB is reserved for vmalloc() and the advanced program-

mable interrupt controllers (APICs).
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Figure 2.7: Virtual memory mapping. [15]

vided. Hence, allowing any privileged user to view or modify the kernel’s virtual

memory. Further, access to the physical memory is provided through /dev/mem and

/proc/kcore. /proc/kcore represents the systems RAM, while /dev/mem represents

all available physical memory.

2.4.3 Memory allocation

Protecting pages allocated to one process from another process is vital for the sta-

bility of any multitasking operating system. Linux handles this through the use of

private regions - every process uses a different mapping of physical memory regions

into the virtual address space7. These mappings are switched whenever a process is

suspended and another resumed.

Linux employs the buddy system algorithm for allocating large groups of contigu-

ous page frames, which helps Linux deal with the problem of external fragmentation.

To deal with the problem of allocating small memory areas (less than a page) Linux

uses a slab allocator on top of the buddy system. In this way, Linux tries to deal with

the problem of internal fragmentation.

7This mapping is stored in the individual tasks task_struct.
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A user program may allocate more memory to itself through the use of the C

function; malloc(), which is released by the function free(). In the kernel the

corresponding functions are kmalloc() and kfree(). When allocating space to kernel

modules, Linux uses noncontiguous memory areas. These areas are located within the

vmalloc() memory region. The VMALLOC_START macro defines the starting address

of this region while the and VMALLOC_END defines its end. vmalloc() and vfree()

are used to allocate and release memory pages within this memory region.

2.5 File system management

One of Linux’s greatest advantages is its support for a number of different file sys-

tems. This support is made possible through the use of a common interface to all

the supported file systems. The interface, or the Virtual File System Switch (VFS),

supplies the applications with system calls for file management, maintains internal

structures, passes tasks on to the appropriate file system and provides a number of

default actions [6]. Figure 2.8 depicts this interface and the rest of the file system’s

layered structure.

Figure 2.8: The layered structure of the file system

The file system is responsible for structuring data purposefully, without com-

promising fast and random access. Random access is achieved through the use of

block-oriented devices [6], while caching allows higher access rates. In Linux, the

data is stored in a hierarchical file structure, and all system resources can be accessed

through this structure. Further, it is important that the file system ensures unique
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allocation of data to hardware blocks.

Linux stores information required for file management in inode structures, and

each file has a unique inode associated to it. The information stored includes access

time, access rights, and the allocation of data to blocks using the physical media [6].

2.6 Loadable Kernel Modules (LKM)

Most UNIX kernels are monolithic, e.g. all kernel functions are integrated into one

large kernel program, which operates in kernel-mode and where all functions are

tightly related [8, 16]. Updating and modifying monotolithic kernels is a cumber-

some task, which becomes a problem with Linux considering its wide distribution and

cooperative development. Hence, loadable modules have been introduced8, which

simplified and shortened development time, made dynamic configuration easier and

saved kernel memory [16].

A loadable kernel module is an ELF object9 file that can be dynamically linked

to the running kernel. Bovet et al. [8] use this in their definition of a module; “A

module is an object file whose code can be linked to (and unlinked from) the kernel

at runtime.” The object code usually implements a set of functionalities, which are

executed in kernel-mode, just like any other statically linked kernel function. The

functionality implemented by modules includes process management, memory man-

agement, device drivers, network and file system access [39]. Figure 2.9 depicts how

LKMs can add functionality to a running kernel.

Although, LKMs have several advantages, their use also introduces a security risk

as they may be used to execute malicious code in kernel-mode. This is reflected by

the fact that one of the most popular techniques of kernel-mode rootkits involves the

use of evil LKMs.

2.6.1 Linking and unlinking modules

Modules run in kernel-mode, and all operations involving modules must therefore be

performed by a user with root privileges. To link a module to the running kernel, the

8The use of modules is adopted from the approach used by mikrokernel operating systems, where
the kernel only provides a small set of functions and the ability to extend this functionality is provided
through separate user-space components.

9The Executable and Linking Format (ELF) is the executable file format used on the Linux OS.
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Figure 2.9: Adding functionality to the kernel, using loadable kernel
modules.

module must be implemented and compiled according to the specific kernels require-

ments, before the insmod command linking it to the running kernel may be executed.

The module may then be unlinked using the rmmod command. Further, modules can

be linked to other modules, and hence, a module can depend on another’s services.

This phenomenon is called module stacking. The kernel is responsible for keeping

track with the dependencies between modules, and thereby ensure that modules stay

in the kernel as long as needed.

Appendix D provides a brief description of how LKMs can be implemented, com-

piled and loaded into the Linux kernel.

2.7 Discussion

The Linux kernel provides several means for accessing the kernel. The most common

is through loadable kernel modules, providing a means for inserting both legitimate

and evil code to the kernel at runtime. Further, the kernel’s memory area may be

accessed directly through /dev/kmem. These methods for kernel access can be used by

both attackers and defenders. A model for kernel integrity control should preferably

provide a means for detecting any access made to the kernel, and be able to determine

the legitimacy of this access.

A number of components within the Linux kernel can be changed by kernel mal-

ware. The system call model may be subverted, employing new evil functionality.



22 Chapter 2. The Linux kernel

This can be done by changing addresses within the system call table and make them

point to evil code, and by changing the IDT to bypass the system call handler and

introduce an evil system call handler as a replacement. Further, the VFS may be

changed to hide the malware’s presence. Actually any kernel symbol can be changed

to supply the evil functionality. This emphasises the need for a methodology or model

facilitating integrity control of kernel symbols.

The Linux kernel is very complex, which implies an arduous learning curve for a

novice. This implicates the need for developers knowing the kernel’s internals, if a

model for kernel malware detection is to be implemented thoroughly. This also impli-

cates that most users of kernel level malware do not fully understand the malware’s

functionality, which should increase the chance of most intruders making mistakes.

Thereby, facilitating their own detection. However, if the intruder is known to kernel

internals and the malware’s limitations, these chances are decreased.

The Linux kernel is open source. This may make it an easier target as potentially

anyone can discover vulnerabilities and hackers will know exactly how the system

works. However, open source also increases the chance of good people discovering

these vulnerabilities, allowing them to be patched at an early stage.

The Linux kernel is dynamic being under constant development. Thus, the kernel

becomes a moving target, both for malware and defence developers. This leads to

evolving malware, finding new methods for subverting the kernel, which further hard-

ens the task of detection. The need for a general methodology applying techniques,

which minimize kernel dependence, and which is independent of malware techniques

becomes evident.
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The virtualization technology

The virtualization technology is concerned with the partitioning of computing re-

sources to allow concurrent execution of multiple operating environments. Virtualiza-

tion employs methodologies such as time-sharing, emulation and hardware simulation

[36], and as suggested in Chapter 1 it should be able to provide a platform allowing

analysis of potentially compromised systems.

This chapter aims to give an insight to virtualization technology and provide the

reader with some basic and important concepts. It also aims at giving an insight into

how virtualization may provide a platform for the collection of reliable information

from a compromised system, and thereby facilitate kernel malware detection.

Section 3.1 provides some background information on virtualization, while Section

3.2 present’s an overview of virtualization techniques. Lastly, Section 3.3 surveys four

different virtual machine technologies, before the virtualization technology is discussed

in the context of this report in Section 3.4.

3.1 Background

Virtualization in computers and the virtual machine (VM) concept appeared in the

1960s. During those early days a virtual machine was defined to be an efficient, iso-

lated duplicate of a real machine [42]. By providing several virtual instances of the

physical hardware, the hardware acquisition cost could be reduced and several users

could concurrently utilize the same physical hardware. The first VM was developed

by IBM in 1967 and was motivated by their need to disable certain modules in the

real computer during runtime [35].

23
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Today, VMs are used to enhance security and portability, allow easier testing and

measurement and to provide multiple simultaneous operating systems and execution

environments [30, 36]. Virtualization allows the creation of secure and isolated envi-

ronments with the ability to confine untrusted users. This is the application, core to

the work of this report.

3.2 Virtualization techniques

Virtualization techniques vary widely in their approach, and at which level of abstrac-

tion they operate. Nanda and Chiueh [36] identify five different levels of abstraction;

the instruction set level, the hardware abstraction layer level, the operating system

level, the library level and the application level. Further, virtualization may be divided

into the level of virtualization; the single operating system image groups users into

resource containers, full virtualization presents virtual hardware functionally identical

to the underlying machine, while para-virtualization presents virtual hardware, which

is similar but not identical to the underlying hardware.

This work will consider full and para-virtualization techniques operating on the

hardware abstraction layer level. Reasons for this include; the need to isolate the

virtual machines from each other and the need to inspect the hardware state of the

virtual machine [43]. The most common way to achieve virtualization at this level of

focus, includes the use of a Virtual Machine Monitor (VMM) responsible for creating

and controlling virtual machines.

3.2.1 The virtual machine monitor (VMM)

The VMM is responsible for the creation of the virtual machine environment and

for providing system services. The VMM implements the hardware architecture as a

software layer supporting the execution of multiple virtual machines. Using such a

layer allows functionality to be placed underneath the operating system. A capabil-

ity, which has proven useful for a number of application domains, including untrusted

code isolation and intrusion detection [62].

Back in the 1970s Goldberg and Popek identified three essential characteristics of

VMMs[42]:

• The VMM shall provide an environment for programs, which is essentially iden-

tical with the original machine.
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• Programs running in the environment should not experience a considerable de-

crease in speed.

• The VMM is in complete control of system resources.

The two first characteristics are still relevant, but the last is somewhat out of date,

since some VMMs operate on top of an operating system. As given in the character-

istics one goal of the VMM is to provide performance close to native hardware. To

achieve this, most ordinary machine instructions are executed directly by the physical

processor. However, virtualization requires the VMM to interpose on a set of privi-

leged instructions, including instructions manipulating the CPU control registers and

instructions accessing I/O devices [62]. These instructions are trapped by the VMM

and emulated in software.

3.2.2 Virtual environments

Virtual machine environments can be divided into two different approaches. In a

standalone VM implementation or type I environment the VMM is implemented as a

software layer between the hardware and the guest operating systems, also considered

to be the traditional approach. The VMM becomes similar to a operating system,

requiring devise drivers for hardware components and being limited in its hardware

support. On the other hand, a hosted or type II environment implements the VMM

as an application on a host operating system, and is able to take advantage of the

host OS for resource management and hardware drivers [21, 36]. Figure 3.1 depicts

how these two environments are implemented.

(a) Type I virtual machine environment (b) Type II virtual machine environment

Figure 3.1: Virtual machine environments [30]
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3.3 Virtual machine technologies

A number of projects providing virtual machine environments exist. The objective

of this section is to provide an overview of some relevant virtual machine technolo-

gies. These technologies have been selected based on their momentum within the

virtualization area, and on suggestions from colleague researchers.

3.3.1 Plex86

Plex86 [41] is an open source virtual machine for x86, initially aimed at providing

a virtual environment for any operating system. However, Plex86 was redesigned to

only offer lightweight VMs running the Linux operating system.

In Plex86, the Linux guest kernel code executes at a privilege level not allowing

the kernel to execute privileged instructions. Whenever the guest kernel tries to exe-

cute such an instruction an exception is generated, which in turn is managed by the

VMM. Further, Plex86 does not emulate I/O devices, it only emulates a few core

components such as the interrupt controller and the system timer. I/O interactions

are handled through a hardware abstraction layer, which is responsible for passing

information between the guest Linux and the host operating system.

Unfortunately Plex86 is discontinued as of December 2003.

3.3.2 VMware

VMware provides several commercial products virtualizing the x86 architecture.

VMware Workstation is aimed at desktop users, and runs on both Windows and

Linux host operating systems. It runs on top of the host OS, allowing other user ap-

plications to run on the host next to the guest OS (see Figure 3.2). VMware’s server

products are aimed at allowing numerous OSs on a single physical machine. The

VMware ESX Server even provides its own operating system, being a prime example

of a type I virtual environment. These server products may provide some perfor-

mance benefits compared to the workstation product. However, due to the ability to

run applications on the host next to the guest OS, I will focus on the workstation

version.

VMware employs full virtualization, and creates fully isolated and secure virtual

machines. It allows most x86 operating systems to run unmodified as guest OSs,

including all versions of Windows, Linux, most of the BSD family, Solaris for Intel
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Figure 3.2: VMware layered architecture.

and Novell NetWare [48]. Since the x86 architecture is considered not to be fully-

virtualizable, VMware needs to dynamically rewrite portions of the hosted machine

code to insert traps wherever the VMM intervention is required [5]. This, however,

introduces an extra overhead hitting performance. VMware tries to counter this and

reduce the performance drop by caching and reusing results.

VMware Workstation is comprised of the VMX driver, the VMM and the VMware

application [36], shown in Figure 3.2. The VMX driver is installed on the host OS to

gain the highest privilege level, and to allow the VMware application to install the

VMM into kernel memory upon execution. This creates two different worlds on the

machine; the host world and the VMM world. The VMM world can communicate

directly with the hardware or with the host world through the VMX driver.

VMware Workstation creates virtual devices, presented to the guest operating

system as real, by mapping physical hardware resources to the virtual hardware re-

sources, providing each virtual machine with its own CPU, memory, disk, and I/O

devices. For instance, VMware creates virtual disks by creating one file of either fixed

or dynamic size for each disk.

3.3.3 Xen

Xen [64] is an open source virtual machine monitor for the x86 architecture, mainly

developed at the University of Cambridge. It is designed to obtain high performance,
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high scalability and strong resource isolation.

Xen uses para-virtualization to achieve greater performance, at the cost of the

need to modify guest operating systems. The effort needed to port operating systems

depends heavily on the operating system’s complexity and size. Currently, fully func-

tional ports of Linux 2.4, 2.6, and NetBSD have been implemented, and within near

future new Linux kernel releases will provide support for Xen. Ports of FreeBSD and

Plan9 are at the moment still under development. Windows XP was ported for an

earlier version of Xen, but is unfortunately not available due to license restrictions

[64]. However, Xen 3.0 will provide support for Intel’s VT-x virtualization extensions,

which in turn will allow unmodified guest operating system. Table 3.1 describes how

the para-virtualization scheme is employed by Xen.

Memory management
Segmentation Guest OSs have direct read access to hardware segment descriptor tables,

but all updates need to be validated by Xen. However, some restrictions
apply; the segment descriptors must have lower privilege than Xen, and
they cannot allow any access to the 64 MB memory section reserved for
Xen on top of every domains address space.

Paging As Xen cannot guarantee a guest operating system contiguous regions of
memory1, the guest OS needs to create an illusion of contiguous physical
memory. This is the full responsibility of the guest OS and is achieved
through the use of a translation array. Guest OSs have direct read access to
hardware page tables, but to ensure safety all updates need to be validated
by Xen.

CPU management
Protection Protection is achieved by running guest operating systems at a lower priv-

ilege level than Xen.
Exceptions A descriptor table for exception handlers must be registered with Xen by

each guest operating system.
System calls A ’fast’ handler for system calls may be installed to allow direct calls from

an application to its guest OS.
Interrupts A lightweight event mechanism using an event channel replaces hardware

interrupts.
Time The guest OS is aware of both real and virtual time2.
Device I/O
Network,

disks, etc.

Xen implements a safe hardware interface (IF) where drivers are placed in
isolated driver domains, “allowing the use of existing driver code in enter-
prise computing environments where dependability is paramount” [18].

Table 3.1: Para-virtualizing the x86 architecture in Xen [5]

1Operating systems assume that memory comprises of contiguous regions.
2Real time is the time in nanoseconds passed since machine boot, while virtual time is the time

advancing when the guest operating system executes.
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Xen uses the term domains to refer to running virtual machines, and the term

hypervisor to refer to itself, the VMM. The hypervisor runs privileged code and is

only responsible for basic control operations, such as scheduling the CPU between

domains and filtering network packets before transmission. Hence, it is not concerned

with higher level issues such as how the CPU is to be shared, this is the responsibility of

each individual domain and the guest operating system within it. Further, a domain

providing a control interface is created upon boot time. This initial domain, or

domain 0, builds other domains and manages their virtual devices [65]. It controls

each domains scheduling parameters, physical memory allocations and their access

to physical disks and network devices [5]. Within domain 0, the xend process is

responsible for managing virtual machines and providing access to their consoles.

Figure 3.3 depicts the structure of a machine running the Xen hypervisor, which

hosts a number of domains running different operating systems, including domain 0.

Figure 3.3: Xen architecture [43]

3.3.4 User-mode Linux (UML)

User-mode Linux (UML) [59] is an open source project allowing the user to run a

Linux kernel inside a user process, on top of a Linux operating system. Originally, it

was developed to ease Linux kernel development, which has also turned out to be its

most popular use [17].
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UML uses the para-virtualization approach, and does not emulate an x86 proces-

sor, as apposed to Xen, which is close to emulating an x86 processor. However, UML

provides a number of virtual devices mapped to resources on the host [59]. The

following lists how this is achieved;

Block devices Each device is associated with a file on the host system. The file

contains a file system and is made to look like a block device inside the virtual

machine.

Consoles and serial devices The virtual console driver can be attached to a num-

ber of interfaces available on the host.

Network devices A network driver provides network access to UML. The driver can

use a number of host interfaces, such as slip, ethertap and sockets, to exchange

IP packets with other virtual machines, the host and the outside network.

UML is constructed using only Linux kernel symbols, including system calls and

signals. It runs its own scheduler independent of the host scheduler, its own virtual

memory system, and basically supports anything that is not hardware specific. Table

3.2 explains how some parts of UML are designed and implemented, allowing Linux

to run in user-space.

User-mode and

kernel-mode

Within UML, switching between privilege modes is constructed using
the ptrace system call tracing mechanism. Which intercepts system
calls from a process if it operates in user-space, if the process is in
kernel-space no such tracing is performed.

Traps and

faults

UML implement processor traps using Linux signals. Whenever a
process receives a signal, the tracing thread switches the process into
kernel-mode, and the process continues within various UML handlers
implementing the kernel’s interpretation of the signal.

Virtual mem-

ory emulation

The virtual machine’s physical memory is a file of constant size mapped
as a block into its address space.

Host file sys-

tem access

The virtual file system interface is implemented in terms of file access
calls on the host. This provides UML’s virtual file system direct access
to the host file system.

Table 3.2: Running Linux in user-mode [17, 59]

Safety is ensured as UML runs in user-mode, hence at a lower privilege level than

the host OS. This is indicated in Figure 3.4, which gives an overview of the UML

architecture.
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Figure 3.4: UML layered architecture (adopted from [49].

3.4 Discussion

The use of a virtual machine monitor provides an environment allowing analysis and

detection of malicious code. Repeating the main research question is worthwhile

considering this ability; How can a virtual environment allow integrity control of an

operating system’s kernel and thereby allow discovery of kernel-mode rootkits?. It

certainly seems to be possible to use virtual machine environments to facilitate ker-

nel level malware detection, this has also recently been shown by other researchers

[19, 30]. However, the use of integrity checking on the kernel level still needs to be

addressed. This is done in the subsequent parts of this thesis, specifically in Chapter

6.

As has been shown, a number of differences between the various virtual machine

technologies exist. These differences exist in such diverse areas as portability, per-

formance and isolation. These areas must be carefully considered in the light of the

requirements put on a system allowing kernel integrity control. Hence, a thorough

evaluation and comparison between these technologies should be conducted, to allow

the selection of the most suitable virtualization technology.





Chapter 4

Rootkits

Iago: Men should be what they seem to be ...

–Shakespeare, dialogue from Othello, Iago is a treacherous liar who

destroys Othello’s life with his deceptions

Skoudis defines rootkits to be “Trojan horse backdoor tools that modify exist-

ing operating system software so that an attacker can keep access to and hide on a

machine” [49]. The popularity of rootkits, and the power of specifically kernel-mode

rootkits, has made it one of the largest challenges of system compromisation and

forensic investigation.

The main goal of this chapter is to give the reader an introduction to rootkit

functionality and their deceiving methodologies. The focus will be on kernel-mode

rootkits, as these operate on the kernel level, which is the area of attention within the

report.

According to Levine et al. [31] and Skoudis [49] rootkits may be considered as

Trojan horses, hence a short description of Trojan horses is given in Section 4.1.

Further Section 4.2 gives an introduction to user-mode rootkits, while Section 4.3

gives a deeper description of kernel-mode rootkits and their hiding methods.

4.1 Trojan horse

The term Trojan horse stems from the wooden and hollow horse used by the Greeks

to deceive the Trojans during the Trojan War. Within computer science the term

is used to describe computer programs, which try to sneak past computer security

33
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fortifications, such as firewalls, by employing similar trickery. For simplicity and

clarity I will use the word ‘trojan’ instead of the term Trojan horse for such computer

programs. Stallings [50] defines a trojan as “a useful, or apparently useful, program

or command procedure containing hidden code that, when invoked, performs some

unwanted or harmful function.” Looking like normal and useful programs, Trojans

are used for the following goals identified by Skoudis [49]:

• Dupe the user or system administrator to install the trojan. Hence, the user or

the system administrator becomes the entry vehicle for the malicious code.

• Blend in with “normal” programs. The trojan appears to be a legitimate pro-

gram and the intention is to make the user unaware of its presence.

Attackers have devised a number of methods for hiding malicious capabilities

inside their programs on a victims computer. These methods may be categorized and

Thimbleby et al. [54] divides them into four categories:

Direct masquerade: The trojan pretends to be a normal program. A program

called dir with other functionality than listing the directory could be an example

of this.

Simple masquerade: The trojan pretends to be a possible program that contains

other functionality than given by its name or description. An example might

be the use of the word ’sex´ in the program name to appear attractive to some

users.

Slip masquerade: The trojan has a name approximating an existing name. An

example could be program called dr, which might be activated if the user mis-

types dir.

Environmental masquerade: The trojan is an already running programs not easily

identified by the user.

Rootkits fit into these categories in several ways. Considering a kernel-mode

rootkit, it may have characteristics of a direct masquerade in that it will consist of

malicious system calls pretending to be normal system calls. It may have characteris-

tics as a simple masquerade in that it can masquerade as system calls other than what

they really are. Lastly, it may also be considered as an environmental masquerade in

that it is already running and cannot be easily identified by computer users.
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4.2 User-mode rootkits

User-mode rootkits represent a method widely employed by attackers for the last

decades. They operate in user-mode, and they focus on replacing specific system

programs used to extract information such as running processes, network connections

and the file system contents. Their main objective is considered to be keeping and

hiding the unauthorized access once obtained. Siles [39] lists a number of uses for

user-mode rootkits:

• Hide files, processes and connections to complicate the detection of the rootkit

or other malicious activity.

• Provide backdoors to allow future access.

• Sniffing and data acquisition.

• Hide logs and logins to mask the attackers actions.

• Execute certain tasks.

In UNIX some common programs to be changed to obtain some of this function-

ality include; ls (hiding files), netstat (hiding connections), who (hiding logins) and

login (providing backdoors).

From the attackers point of view, a number of problems can be associated with

user-mode rootkits. These include; the many binaries to be replaced in the attacked

system, the ease of detection using common integrity checkers and their OS depen-

dency.

4.3 Kernel-mode rootkits

Kernel-mode rootkits provide similar features as user-mode rootkits only from a lower

level of operation. Their main advantage compared to user-mode rootkits is that they

are much harder to detect. In particular, an integrity checker will in most cases not

be able to detect a kernel-mode rootkit. Figure 4.1 depicts the differences between

user-mode and kernel-mode rootkits in a simplistic way.

Kernel-mode rootkits face two important challenges; the first is concerned with

how to get access to the kernel, which is the main focus of the following subsections,

while the second challenge addresses what to change within the kernel. Considering
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Figure 4.1: Comparison of user-mode and kernel-mode rootkits

what to be changed, kernel-mode rootkits typically hook into the system kernel to re-

place the underlying system call model to execute their own code. However, changing

system calls is not the only means of kernel modification, in fact any kernel code or

memory region may be altered. For instance, it is possible to modify the IDT1. The

address associated with the int $0x80 interrupt can be changed to point to an evil

exception handler instead of the system call handler.

The modifications made to the kernel allow a number of actions to be employed.

One popular action is to redirect execution, which involves changing the sys_execve2

system call to run another application instead of the requested one. Another action

includes filtering out information an attacker wants to keep to himself, which normally

involves changing the sys_open3 system call. The actions performed by evil kernel

rootkits is only limited by the attacker’s imagination. Appendix B presents a couple

of kernel-mode rootkits and describes which changes they make to the kernel.

The first rootkits, which focused on kernel modification appeared publicly in 1997

[13, 22, 39]. They employed the ability to load functionality into the kernel at runtime

through the use of LKMs. The use of evil LKMs is the first of five different methods

employed by kernel-mode rootkits and described in this section [39, 49].

1No well working IDT rootkits have been published [39]. It is however a theoretical possibility,
and a proof-of-concept has been published by kad [27].

2sys_execve executes a program.
3sys_open opens a file.
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4.3.1 Loadable Kernel Modules (LKM)

Using LKMs to load rootkit functionality into the kernel is by far the most popular

technique employed in kernel-mode rootkit implementations. This technique made its

first public appearance in 19974, although it is not known when the first evil LKM

rootkit was created in the underground.

As explained in Section 2.6, LKMs are a legitimate way to load extra functionality

into the kernel. Unfortunately, this also allows an attacker to easily load malicious

code into the kernel.

Loading an evil LKM

To load an evil module into the kernel, the attacker only needs to execute the priv-

ileged user-mode command; insmod. When the evil module has been linked to the

kernel, the module can change the system_call_table[] to point to the modules

evil code. This evil code usually changes the functionality of one or more system

calls. After the module has been inserted into the kernel, any call made to one of the

compromised system calls is redirected to the evil kernel code by the altered sys-

tem_call_table[]. This method can be divided into two different approaches; the

module may provide system calls replacing existing system calls, or it may provide

a wrapper, which makes its changes and calls the legitimate system call. Figure 4.2

depicts how a LKM may be loaded into the kernel.

A module loaded into the kernel can introduce any change of functionality. This

does not only include alteration of the system call module. One example, of possible

changes made by an evil LKM, includes the alteration of the VFS by replacing the

directory listing handler routines5.

Surviving a reboot

Loadable kernel modules do not survive across a system reboot, hence any changes

done to the running kernel need to be done again after a reboot. Naturally, the

attacker wants to make sure his rootkit survives a reboot. This can be achieved by

changing a trusted module, which is always loaded at boot time6. Another way to

achieve this, is by altering any program included in the boot sequence to load the

4heroine by Runar Jensen [13] and the TTY hijacker by ‘halflife’ [22].
5The Adore-ng rootkit, described in Appendix B.1, implements this functionality.
6‘truff’ introduces a technique, which enables LKM infection [57].
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(a) Modifying the system call table to point to evil system
call replacements.

(b) Modifying the system call table to point to evil wrapper
code.

Figure 4.2: Loading an evil LKM(adopted from [49])
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evil kernel module. A popular choice is the init daemon, which is the first process

running on the Linux system. If an existing module or process is changed, the risk of

being detected increases, and hence the rootkit needs to make sure the changes have

been masked.

4.3.2 Patching the running kernel

A simple way to protect a Linux system from LKM rootkits is to disable the ability

to load LKMs. Disabling the kernel’s LKM support does not solve the problem with

kernel rootkits. Cesare explained how a kernel can be patched on a running system

through /dev/kmem [10]. He shows how the memory image can be modified to affect

the system call table or other parts of the running kernel. The methodology is based

on the way Executable and Linking Format (ELF) objects and the kernel memory

works. Among other he explained how to load any kind of executable Linux code into

the kernel. In other words, his method enables an attacker to load evil modules even

if the kernel does not support LKMs.

The main problem addressed in this method, is how the memory used by the new

code should be allocated. The kmalloc pool7 cannot be used since overwriting some

of these blocks could make the kernel unstable. However, due to the use of mem-

ory pages and padding a small piece of memory is available at the beginning of the

memory area assigned to the kmalloc pool. This area is however to small to fit a

complete module, instead [10] suggests that a bootloader, capable of accessing the

memory fragment where the malicious code has been saved, could be placed in this

area.

Putting the problems of loading the evil code aside, the method described by Ce-

sare and further refined and simplified by ‘sd’ and ‘devik’ in their SucKIT rootkit

[47], employs similar methods as LKM rootkits. The method searches in /dev/kmem

looking for the system call table, when this is found it can be modified or replaced

to point to vicious code. Further, the method allows an attacker to insert alternative

code for existing system calls. Figure 4.3 indicates how the running kernel may be

modified through /dev/kmem.

As with loadable kernel modules, a patched memory will be reset upon system

reboot. The solution used to overcome this problem is the same as for evil LKMs.

7The kmalloc pool is a pool of memory blocks dynamically used by the kernel to store data
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Figure 4.3: Altering the running kernel by modifying the kernel
through /dev/kmem.

4.3.3 Patching the kernel binary image

A platform dependent bootable image of the kernel (vmlinuz) is saved to disk upon

compile time in Linux. This file is a compressed and self-extracting image of informa-

tion needed for the boot process together with the vmlinux file, which is the platform

independent kernel executable file. Replacing the kernel image with a patched version

of the image, allows the intruder to add a evil kernel code able to survive reboots.

Linux is an open source project, hence it is possible to modify the source code and

compile an evil kernel. This kernel can include all sorts of functionalities, previously

mentioned. However, there is an obvious problem. Consider a kernel with a very

specific configuration, such as special patches providing specific functionality or special

hardware support. If an attacker swaps this kernel image with his evil image, a system

administrator will immediately be able to notice the security breach. Of course this

problem can be overcome. ‘jbtzhm’8 describes how LKMs can be patched into the

static linux kernel image [26]. His method allows an attacker to uncompress, parse,

and insert an evil LKM into the kernel image.

8This is the actual name taken by a hacker.
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4.3.4 Create a fraudulent virtual system

The three previously described methods are by far the most common methods used

to gain access to the kernel. However, a couple of not so common methods exist,

these methods are probably just theoretical possibilities. They are described within

this subsection and the subsequent one.

It is possible to use virtual machine software9 to dupe legitimate users into be-

lieving that they are still running the normal system. The idea is based on copying

and installing the original file system including the kernel into a virtual machine, and

afterwards install a new evil kernel onto the host system. Further, the attacker needs

to disguise the boot process, as messages from startup scripts might give away the

presence of the virtual environment.

The success of this method depends on how well the fact that the operating system

runs within a virtual machine, is disguised. This problem is directly transferable to

my work, as it is crucial to the success of a detection mechanism that the attacker is

unaware of the mechanism.

4.3.5 Running programs in kernel-mode

The idea of this method is to run a user-mode process within kernel-mode. This would

allow an attacker to write a malicious program able to alter the system call model.

To employ this method the kernel necessarily needs to support the execution of user-

mode programs within kernel-mode. This can be done by replacing or patching the

kernel to support this feature. One example allowing this, is the open source project

Kernel Mode Linux (KML) [28].

4.4 Discussion

As has been shown, several techniques exist for subverting the kernel. Finding appro-

priate countermeasures is important work.

The use of kernel-mode rootkits requires the attacker to obtain administrator priv-

ileges before installation. A system administrator can hinder the attacker in gaining

such privileges, by employing several protective measures. Further, the kernel itself

may be hardened, and several of the kernel features employed by rootkits to gain

9See Chapter 3 for details on the functionality of virtual machines.
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access may be removed if not needed10. However, such countermeasures might not be

enough, and if privileged access is obtained some means for detection is required.

Kernel-mode rootkits become more sophisticated in their hiding techniques as time

passes. Knowing what to expect next is almost impossible. Actually, knowing what

to expect now is difficult as rootkit development is an underground activity. Most

rootkits available to the public are becoming old and somewhat outdated. However,

one noteworthy exception exists; the Adore-ng rootkit is under constant development,

with its latest release on April 25, 200511. Through analysis of kernel level rootkits

and other malware, an understanding of the fundamental concepts employed, and, to

some extent, the attackers mindset can be obtained. With such an understanding it

should be possible to develop better methods for detection.

The hiding methodologies described in this chapter put some clear guidelines on

the development of a methodology allowing kernel level malware detection. Such

a model needs to be able to detect any kind of rootkit, regardless of their hiding

methodology. We assume that any kind of kernel level malware needs to make a

change to the kernel at some level, hence it should also be possible to discover this

change. However, the kernel of the compromised system cannot be trusted, which

implies that another kernel needs to be used. These are some of the main reasons

why this work considers the use of virtualization and integrity checking as a means

for kernel level malware detection.

10Section 5.1 gives several examples.
11Appendix B.1 gives a description of the Adore-ng rootkit.
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Defending the Linux kernel

An ounce of prevention is worth a pound of cure.

–Anonymous

The main goal of this report is to consider integrity checking as a method for

kernel-mode rootkit detection, which may be considered a post-intrusion measure.

However, it is well worth emphasizing the importance of pre-intrusion measures.

The objective of this chapter is to illuminate the reader considering the vast num-

ber of defensive measures. The focus will however be on detection mechanisms allow-

ing kernel-mode rootkit detection, which is central in this work.

The first section in this chapter briefly describes some pre-intrusion measures,

before the following sections address several detection methodologies. Lastly, the

need for a general methodology is emphasized and discussed. Appendix C provides a

description of some tools using these methodologies.

5.1 Protecting a Linux system

Hindering the attacker from gaining access to and obtaining root level access on a

machine, can be considered the first and probably the most important protective mea-

sure. Protection at the network level, such as effective firewalls, should be the first

line of defence. However, a number of common security measures, which can be em-

ployed to protect the machine, can also be mentioned; keep the system patched and

up to date, disable any unneeded services, and employ good account and password

management procedures.
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If an attacker has managed to gain access to the system and obtained root level

access, there are some actions which can be applied to hinder kernel compromisation.

The kernel may be compiled without module support, the System.map file can be

relocated to a secure location, and protective LKMs may be installed. Further, write

access to /dev/kmem can be removed, and the kernel symbols used by kernel-mode

rootkits, such as the system call table, may be removed from user space1

Installing an Intrusion Detection System (IDS) will not protect a system under

attack, it will however allow early detection of the intrusive action, and thereby allow

countermeasures to be employed at an early stage. The next sections discuss methods

allowing malware detection.

5.2 Intrusion detection

An Intrusion Detection System (IDS) collects data from a computing system or a

network and tries to detect intrusive actions [30]. Based on how the data is collected

and its origin, two main approaches exist:

Host-based Intrusion Detection System (HIDS) watches and analyses local

activities such as system calls, logs and network connections. A HIDS agent

is installed on the system it monitors. This makes it relatively fragile as it may

be deactivated or tampered with by a successful intruder.

Network-based Intrusion Detection System (NIDS) watches

the network traffic to and from the system it monitors. It is more resistant

to attacks, but its view of what is happening inside a host is poor.

IDSs can use several different techniques to analyse the collected data in order to

detect intrusion. These techniques can be categorized as follows [30]:

Anomality detection compares the collected data with previously collected data

representing the system’s normal activity.

Signature detection compares the collected data with a base of previously known

attack patterns.

This categorisation can also be used on techniques concerned with post-intrusion

detection. The two following subsections give a brief description on anomality and

signature detection.

1The system call table is no longer exported, and the /dev/ksyms file making all kernel symbols
available to user space is removed in the 2.6 kernel.



5.3. Anomality detection 45

5.3 Anomality detection

Scanning a potentially compromised system for anomalous behaviour is a common

method for rootkit detection. Usually this is done by applying a set of tools, processes

or procedures on the compromised system. Table 5.1 lists the most common aspects

to include within an anomality search, and how anomality within them may be iden-

tified using regular Linux commands.

Unusual processes and services:
# ps aux2 displays all running processes.
# lsof -p [pid]3 provides a more detailed description of a process.

Unusual files:
# find [OPTIONS] depending on the options given, detection of unusually large files,

camouflaged files and unusual Set User ID files, is allowed.
# lsof +L1 lists processes running out of or accessing files that have been

unlinked, this may indicate hidden data or a backdoor.
Unusual network usage:

# ip link | grep

PROMISC

lists all network interfaces in promiscuous mode, which might
indicate a sniffer.

Unusual scheduled tasks:
# crontab -u

root -l

lists all cron jobs4 scheduled by a root user.

Unusual log and user history entries:
Considering rootkits, special attention should be given to system reboots and appli-
cation restarts. Further, missing logs and parts of logs should also call for attention.

Other unusual items:
$ df can help identify sudden decreases in available disk space.
$ free can identify excessive memory use.
$ uptime can be used if the system acts sluggish, to display the load av-

erage.

Table 5.1: Common aspects to include within an anomality search,
and a list of Linux commands for detection [46].

The commands given above, require a minimum of knowledge about usual be-

haviour, and without proper knowledge differentiating between normal activity and

malicious activity can be hard. Hence, a number of tools and methods have been

developed facilitating rootkit detection through anomality detection. Some of these

are described in the following subsections.

2The # is used to denominate the command prompt if the user has root privileges, while $ is used
for regular users without these privileges.

3PID is a unique number identifying a process.
4A cron job is a reappearing task.
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5.3.1 File integrity checking

Integrity checkers normally focus on the detection of changes made to regular files and

the file system. This is done by creating a database containing checksums (usually a

hash sum) of entities selected by the user to be monitored. This database is used for

comparison on a later stage. Careful attention must be given when choosing these

entities. Choosing files which regularly change due to normal activity will produce

to many false positives. The integrity checker runs through the system, producing

checksums for the entities selected for investigation, and compares them to the check-

sums stored in the database, any discrepancies found are reported.

Most Linux distributions provide some means for integrity checking, such as the

md5sums program. However, using a program specifically designed for integrity is

probably better, due to several reasons, such as performance optimalisation. The

following subsection gives a brief description of some tools for file integrity checking.

These tools have been selected based on their reputation and their level of activity.

Tripwire

Tripwire [55, 56] was initially created as a student project in the late 1980’s by Gene

Kim and Eugene Spafford. It’s initial release was in 1992 and in 1997 Tripwire Inc.

acquired the software. The source code for Linux was since released under the General

Public License (GPL) in 2000 [35]. The last open source release was in March 2001.

Tripwire uses a database, as explained above, and several message digest algo-

rithms for checksum calculations are provided. These include; MD5, Haval, SHA1

and CRC-32. Tripwire is able to detect changes made to several file properties, such

as; access and modification timestamps, file owner’s user ID, allocated blocks, number

of links, increasing file size, and inode timestamp and number [33]. Further, Tripwire

allows encryption of the database and is able to send integrity reports by e-mail.

The commercial Tripwire version includes some additional features, such as roll-

back and centralized management if Tripwire is used on several network locations.

Advanced Intrusion Detection Environment (AIDE)

Advanced Intrusion Detection Environment (AIDE) [2] is an open source project re-

leased under the GPL licence. It was initially developed by Rahmi Lehti and Pablo

Virolainen, to improve the functions of Tripwire. The last release was in November
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2003.

AIDE uses a configuration file to build an initial database, and as Tripwire several

different message digest algorithms are available, including MD5, SHA1, tiger and

Haval. AIDE also allows the integration of new algorithms. It checks several file

properties, including; permissions, inode, number of links, user, group, size, block

count, growing size, and access and modification timestamps.

Another File Integrity Checker (Afick)

Afick [1] is an open source project created by Eric Gerbier. It is designed to be fast

and portable, and it supports several operating system platforms, such as; Windows

XP and 2000, Linux Debian and Fedora, and other POSIX based OSes. Afick is at

the moment under constant development, with the current version being 2.8-0.

Afick is similar to Tripwire and AIDE. However, it only supports MD5 and SHA1

for checksum calculation. The properties checked by Afick are comparable to Tripwire

and AIDE. However, Afick provides a graphical user interface as opposed to the other

two.

5.3.2 Kernel integrity checking

The integrity of the kernel may also be investigated. However, a thorough investiga-

tion is hard, and careful consideration must be given to which parts of the system

need to be checked.

The kernel files loaded at boot time are an obvious place to start, hence special

consideration should be given to the files resident within the /boot/ directory. The

kernel source and header files should also be checked for inconsistencies, together with

the kernel modules. This is however not the only place the kernel may be changed,

actually most kernel-mode rootkits are only resident in memory.

The kernel space within virtual memory needs to be checked. Performing integrity

checking on memory is however problematic, as memory is highly dynamic. However,

some parts of the kernel are static within physical memory. Extracting these areas

and performing integrity checks, seems to be a good idea. The vmalloc memory

region is another good candidate for kernel integrity checks.
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5.3.3 Detecting anomalities in program execution

Rootkits placed on a compromised system will change the system’s behaviour. Being

able to detect these behavioural changes will also facilitate rootkit detection. Changes

are detected by creating a baseline, determining valid behaviour and using it for

comparison with the current behaviour.

Logging system call traces

The strace displays all the system calls executed by a process. Statistical analysis

of the information provided by strace should enable user-mode and, in some cases,

kernel-mode rootkit detection [39]. User-mode rootkits may be detected through the

fact that they may call unexpected valid system calls during the execution of a pro-

gram, which is common. However, kernel-mode rootkit detection is more uncertain,

this is only possible if the rootkit has installed any new system calls called during

program execution. Further, strace could help identify the possible system calls

subverted by a kernel-mode rootkit.

Execution path analysis

In [45], Rutkowski presents a methodology based on the assumption that a modified

kernel function will need more machine instructions than the original function. Ma-

licious code usually performs some additional actions, which in turn suggests more

instructions. It is possible to count the number of instructions executed during a

system call, this number can in turn be compared with the number of instructions

needed by a clean system. A difference exceeding some predefined threshold suggests

an intrusion.

Rutkowski implemented a proof-of-concept tool called PatchFinder. The tool is

installed as a module, and hence the LKM-functionality needs to be enabled. Further,

the tool is intended for the ia32 architecture and has only been tested on Linux 2.4

kernels.

Binary analysis

The use of binary analysis tries to determine, wether the behaviour of a kernel module

resembles a rootkit. The idea is based on the observation that the runtime behaviour

of regular kernel modules differs from the behaviour of LKM-based rootkits [29].
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The kernel module binaries are statically analysed. The first phase of the analysis

is to specify undesirable behaviour. Undesirable behaviour includes write operations

to restricted memory areas, and instruction sequences using a forbidden kernel sym-

bol to calculate addresses in kernel address space to perform write operations. The

second phase is to analyse the kernel module binaries looking for this undesirable

behaviour. This is done using symbolic execution5.

The use of binary analysis is still a research project, however the developed pro-

totype shows promising results regarding the discovery of LKM-based rootkits.

5.3.4 Network connections and activity

An intruder will try to make sure he can access the compromised system at a later

stage. This implies a backdoor, which in turn normally implies an open and listening

network port. However, any open ports can be hidden by rootkits and they can be

opened from a remote location. Hence, the method recommended for detection is to

look at network activity from the outside.

A simple method for checking whether Linux tells the truth, is to run netstat

or lsof6 on the potentially compromised machine and compare the results with the

results returned when nmap7 is executed from a remote location. Any discrepancies

found indicates malicious activity. However, this simple test is not able to detect if

the backdoor can be opened remotely.

To detect backdoors, which may be activated remotely, a statistical analysis of

the network traffic is required [39]. This can be achieved through monitoring the

network, and collecting all packets sent to and from the potentially compromised ma-

chine. Two useful tools include; snort and tcpdump.

An attacker might also be interested in sniffing the network traffic on the subnet

associated with compromised machine. This is achieved by setting the Network In-

terface Card (NIC) in promiscuous mode. Detecting this mode can be done in two

separate ways; ip link displays the network interface status, while a check of mes-

sages logged by the kernel can reveal if promiscuous is enabled. Further, a number of

5Symbolic execution simulates a program using symbols, such as variable names, instead of actual
values for input data [29].

6netstat and lsof are both capable of listing network connections, including ports and state.
7nmap allows a user to scan a remote machine for open ports, amongst many other features.
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tools focus on detecting sniffers and promiscuous NICs, including chkrootkit8.

5.4 Signature detection

A signature is a measurable characteristic of an entity, and most rootkits have some

sort of signature, such as a certain string. When signatures are used for detection,

a base of previously known signatures is required. The signature methodology is

common in virus detection tools, which require frequent updates. These tools are

sometimes even able to detect rootkits. Using the signature method for rootkit de-

tection would require a large database of signatures specifically designed for rootkits,

and as with virus detection tools the database would need frequent updates. Hence,

this area of security is a continuous arms race against the attacking side.

5.4.1 Fingerprinting

It is possible to discover the rootkit type through fingerprinting, which basically iden-

tifies a rootkit uniquely. For example the specific system calls modified by a specific

rootkit may be identified. Several tools, searching for specific rootkits, have been

developed, including Chkrootkit, Rootkithunter, Rkscan and Carbonite9.

5.4.2 Characterising kernel-mode rootkits

Levine et al. propose a mathematical framework to characterise rootkit exploits as

existing, modifications to existing, or entirely new [31, 32]. They copy the kernel’s

system call model to create a baseline allowing them to identify changes made to

system calls. A byte by byte analysis is performed to discover what changes have been

made. A checksum or the compromised checksum is stored for future comparison.

5.5 Hardware-based detection

Hardware-based detection has several advantages compared to software methods, and

the main advantage is its isolation from the potentially compromised host operating

system. Hardware methods are used to detect malicious modification independently,

without relying on the information provided by the kernel. Normally, a coprocessor

is installed on a machine to monitor the OS kernel.

8A closer description of chkrootkit is given in Appendix C.
9Some of these tools are described in Appendix C.
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Copilot [40] is based on using a PCI card for monitoring activities. The system is

able to monitor a running system and detect any malicious modifications made. This

is achieved by integrity checking important parts of kernel memory. This is done with

a minimal performance penalty and no need to change the existing host software.

5.6 Sandboxing

A sandbox is defined to be a “safe place for running semi-trusted programs or scripts”

[63]. It provides a controlled set of resources, such as a small space on disk and a

section of memory to carry out instructions. The use of a virtual machine to allow the

execution of an untrusted guest operating system on top of a trusted host operating

system, is considered to be a sandboxing technique.

The use of virtualization allows the combination of advantages introduced by

HIDS and NIDS, allowing both security and visibility into the monitored system.

The following explains two research projects where virtual machines where used for

sandboxing.

5.6.1 Virtual machine introspection (VMI)

The architecture suggested by Garfinkel and Rosenblum allows the detection of kernel

compromises [19]. Their architecture is general and consists of a VMM and a VMI

IDS. The IDS consists of a OS dependent interface library, able to interpret low-level

machine state of the VMM in terms of the higher level OS structures, and a policy

engine, responsible for compromise detection.

Livewire is a prototype implementation of the VMI architecture. It uses VMware

with some minor modifications as its VMM, a modified version of the Linux crash

dump examination tool crash is used as the OS interface library, while the policy

engine consists of a policy framework and several policy modules. Experiments show

that Livewire is able to detect a number of both user and kernel-mode rootkits, with

some penalty on performance.

5.6.2 Intrusion detection in virtual environments

Laureano et al. propose an architecture allowing more reliable HIDS to be built [30].

Their idea is not general as the previous presented architecture. It uses behavioural

data and a system call analysis algorithm for detection. The data is collected during
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a learning phase, while any detection is performed during a monitoring phase.

The prototype system was implemented using user-mode Linux to provide a virtual

environment. Test show a considerable performance penalty, however the system was

capable capable of detecting several rootkits.

5.7 Discussion

A number of different techniques and tools able to detect kernel level compromises

exist. They all have advantages and disadvantages. Deciding which technique or tool

to select is difficult as none of them seem to offer the ability to detect any kernel

compromise, while staying unsusceptible to an attack.

Although, detection tools installed on a system under attack, offer a high level

of internal system view, they are themselves susceptible to an attack if the system

is compromised. On the other hand, the use of network-based techniques, although

not affected by a system compromise, lacks the advantage of internal system view.

This fact emphasises the need for a method allowing the detection tool to be isolated

from the potentially compromised system. The needed isolation and ability to see the

system internals can be provided by either a hardware-based detection mechanism

or the use of a sandbox. However, the hardware-based methodology is inflexible and

often bound to specific products, such as a specific operating system.

The use of virtualization to provide secure sandboxes, seems to be the most promis-

ing technique, and the architecture suggested by Garfinkel and Rosenblum [19] seems

to be a reasonable solution to the problem of providing a system with the advantages

of both host and network-based detection mechanisms. Their approach is similar to

the approach taken in this thesis. Further, the use of integrity checking seems to

be a reasonable choice considering its ability to detect changes. However, checking

the integrity of a kernel is a challenging task. The next chapter describes a model

addressing the given challenges.



Chapter 6

A model supporting kernel

integrity checking

The previous chapters have revealed a number of requirements, which should be ad-

dressed in a model enabling detection of kernel level malware. This chapter identifies

these requirements and proposes a generic model giving a possible solution to the

main research question.

My model suggestion has certain similarities with the architecture described by

Garfinkel and Rosenblum [19], discovered late in my work. However they are different

within several areas. The similarities and differences are addressed in Section 6.3.3.

Section 6.1 tries to illuminate the need for a model allowing kernel malware de-

tection, through a motivating scenario. Section 6.2 summarizes requirements put on

such a model, while Section 6.3 describes the model covering the given requirements.

Lastly, the model is employed on the scenario.

6.1 Motivating scenario

Looking at incidents where attackers exploit insufficiently protected systems allows

us to learn from the mistakes done by others and take appropriate actions. This

section illuminates the need for mechanisms able to discover kernel-mode rootkits

by reproducing a rootkit attack scenario. The scenario is based on a real incident

described by Skoudis [49].

53
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6.1.1 The MyOil scenario

1 Ed Securè is a network and security expert employed in a small oil company called

MyOil. He is responsible for the administration and security of MyOil’s internal

network and their externally accessible servers. The internal network includes a web

server, a Linux-based Domain Name System (DNS), and a number of connected users.

To protect the network Ed has set up a firewall and a couple of network-based IDSs.

Figure 6.1 depicts MyOil’s network.

Figure 6.1: MyOil’s network [49]

The companies management was not known to be nice to its employees, and one

day one of Ed’s colleagues decided to get back on them. Being a system administrator

he had access to the companies internal webserver. He installed two different files; a

kernel rootkit named “Portal of Destruction” or PoD and a script called ipconfig.

The script was responsible for installing PoD onto the victim machine, and as the

attacker did not have root privileges it would obtain these as soon as someone with

these privileges executed it. The PoD rootkit was a version of the SucKIT rootkit

providing features, which allowed it to spread by exploiting a buffer overflow in DNSs.

1All names are a product of my imagination, and any similarities to real companies or persons are
purely coincidental
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One day Ed noticed that the internal web server was acting differently, it was

as though performance had dropped. Ed immediately suspected an attack, and as a

consequence he started looking for unusual files, processes and network connections.

Not finding anything he ran a file integrity check, but still nothing unusual showed

up. As Ed was unable to detect any anomalities he started thinking he had been to

paranoid and gave up. He blew it of as a normal performance problem, and as the

performance had only dropped slightly, he decided he would try to fix it tomorrow.

Two hours later, Ed received an urgent message from the internal IDS. The IDS

had detected a buffer overflow attack2 against the internal DNS. The report from the

IDS identified the buffer overflow as a well known problem. Ed knew exploits of this

problem where commonly available on the Internet. He deemed himself for being so

lightheaded, not patching this loophole at an earlier stage. His main focus had been

on keeping MyOil’s externally accessible DNS, mail and web server up to date, and

hence he had slightly ignored the internal system. The attack originated from the

problematic web server.

After the IDS alarm, Ed immediately started to investigate the potentially com-

promised DNS. He used a secure shell tool to remotely log into the system, and

immediately switched to the privileged root-level account. As he wanted to verify the

system’s IP address and network configuration, being used to Windows as his regular

work environment, he incautiously typed;

# ipconfig

Unfortunately, as the aware reader might have noticed, this command is the Windows

command for checking the network configuration. Ed should of course used the com-

mand ifconfig, since the DNS is a Linux system. Securè’s mistake was severe, as

he had unknowingly executed an evil trojan, which among others installed a rootkit

giving the attacker root privileges and hiding its presence. Ed was kept unaware of

this problem as the ipconfig command also executed the ifconfig command.

After executing the ipconfig command, Ed started to investigate the system. He

looked for unusual files, processes and network activity using commands such as find,

ps and netstat. However, Ed was unable to find anything, and he once again blew

2Buffer overflow attacks are one of the most common attack types on the Internet today.
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of the problem, this time thinking that the IDS had reported a false-positive3.

Blowing of the problem later turned out to be the biggest mistake Ed Securè had

ever done. Soon, the external IDS sounded an alert, identifying a buffer overflow

attack from the internal DNS to the external DNS. Ed being desperate and now

knowing that the problem could become really serious, called in a couple of expensive

security consultants. These consultants discovered and managed to stop the PoD from

spreading further. However, management was very unpleased with Ed’s inability to

handle the problem by himself and fired him for not doing his work.

6.1.2 Summarising and analysing the scenario

Figure 6.2 depicts all steps of the attack on MyOil’s network, and the following

summarizes these steps;

Figure 6.2: MyOil’s network under attack [49]

1. The internal web server has been attacked.

a) The internal web server has been infected with the PoD, a extended version

of the SucKIT rootkit.
3Appendix E provides an explanation of false-positives.
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b) Ed Securè investigates the problematic webserver, but is unable to find any

problem.

2. The internal DNS is being attacked.

a) The DNS is attacked by the web server with a buffer overflow attack.

b) The internal IDS alerts Ed Securè about the security breach.

c) Ed Securè investigates the DNS, but is unable to find any problem. Unfor-

tunately he also unwittingly executed some malicious code.

3. The external DNS is being attacked.

a) The external DNS is attacked by the internal DNS with a buffer overflow

attack.

b) The external IDS alerts Ed Securè about the security breach.

The scenario illustrates the power and stealth of kernel-mode rootkits. Even Ed

employed all his knowledge on forensic investigation, his efforts where futile. Further,

it shows how a kernel-mode rootkit can be used in conjunction with other types of

malware to create powerful and stealthy attack weapons. It also provides a reminder

regarding proper protection as described in Section 5.1, as this would have blocked

the PoD rootkit from spreading.

The scenario illuminates the borderline between knowledge and proper tools. To-

day, the ability to discover kernel level malware, requires knowledge about their level

of operation and how they may be discovered. Considering the vast number of detec-

tion tools, often unable to discover kernel malware generally and also often vulnerable

to attacks, the task of selecting a proper set of tools and applying them correctly be-

comes a challenge.

The requirement for knowledge can partially be removed by providing a general

means for kernel level malware detection. The need for expertise on such malware

will be removed, however the system administrator does still need basic knowledge on

how the detection mechanism operates and what actions to execute upon discovery.

Designing a system, which is easy to use and provides a general detection mechanism

insusceptible from the potentially compromised system, will employ earlier detection.
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6.2 Model requirements

Given the research done during the first part of this report and the research done by

Weng in [60], some general requirements (GR) can be set up. These requirements

should be satisfied by a successful model enabling kernel integrity checking. Table

6.1 summarizes these requirements, and the following subsections provide a thorough

explanation.

Requirement Description
GR1 Kernel malware inde-

pendence

The kernel integrity model should be able to discover
any kind of kernel level malware.

GR2 Integrity of important

files

The model should be able to check the integrity of any
file within the monitored system.

GR3 Integrity of kernel

memory

The kernel integrity model should be able to check the
integrity of the kernel’s memory.

GR4 Isolation The kernel integrity checker should be kept strictly
apart from the system to be checked.

GR5 Resource consumption The kernel integrity model should not hurt the perfor-
mance of the system to be checked.

GR6 Hidden from an attacker The attacker should be kept unaware of the presence
of the kernel integrity checker.

GR7 Operating system

independence

The kernel integrity model should be independent of
the OS installed on the system to be checked.

GR8 Reporting The system administrator should be kept aware of any
suspicious changes made to the system.

GR9 Reliability The kernel integrity model should avoid false-positives
and true-negatives.

Table 6.1: General requirements imposed on a model supporting
integrity checking

6.2.1 Properties of kernel level malware

A number of techniques used to make changes to the kernel’s functionality have been

identified. Given the research done, focusing on kernel-mode rootkits, a kernel in-

tegrity model needs to cover several areas, such as the integrity of important files and

the integrity of the kernel’s text and data areas within memory.

GR1 Kernel malware independence: The integrity model should be able to discover

any kind of kernel level malware. Special attention is given to kernel-mode

rootkits, considering both specific rootkits and their hiding methodology. This

choice of attention is supported by the fact that rootkits come in many flavours

and are constantly evolving.
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GR2 Integrity of important files: Malware generally makes changes to stored data.

Considering rootkits, a number of rootkit implementations involve changing

important files. These changes are later masked to avoid detection. Being able

to detect these files is important, both for detection and later recovery.

GR3 Integrity of kernel memory: Kernel level malware may change some kernel

memory areas. Most rootkits installed on a system will make such changes. Be-

ing able to discover these changes will facilitate kernel level malware detection.

GR4 Isolation: To avoid any influence from the system under attack, the detection

mechanism should be an isolated part of the model. An attack propagating from

the system under surveillance to the detection system, will have vital effects on

the integrity of the detection system.

6.2.2 Behaviour and support

The nature of kernel level rootkits impose a number of requirements to a integrity

system. These include those related to behaviour and support. Behaviour is asso-

ciated with execution within the model, while support addresses the ever evolving

Linux kernel.

GR5 Resource consumption: Integrity checking can quickly require a lot of system

resources. This should be avoided by limiting the data to be analysed. Further,

the implementation of the model itself should not utilize to much of the resources

intended for the system to be checked, and thereby hurt its performance.

GR6 Hidden from an attacker: The presence of the integrity checker should be

hidden from the attacker, to avoid countermeasures. The attacker should in

other words not be able to check the system, and thereby become aware of that

his actions might be monitored.

GR7 Operating system independence: The model should be possible to employ on

any operating system. Considering Linux, a vast number of Linux distributions

exist, and the Linux kernel itself is constantly evolving. The model should not

require any special operating system both in means of the OS kernel and any

supporting OS programs. Hence, the model should be independent of these and

thereby ensure portability of the model.
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6.2.3 Provided services

An integrity system should provide some general services to extend the range of kernel

level malware, which can be discovered within a virtual environment. These include

awareness, filtering and adaptation of information, and compression.

GR8 Reporting: System administrators should be kept aware of any illegitimate

actions performed within the system. This implies monitoring the system and

keep it under constant surveillance, thereby decreasing the time from malware

installation or execution till detection. Further, a mechanism allowing a secure

channel for monitoring reports is a must.

GR9 Reliability: The system should not produce to many false-positives, and even

more important, not any false-negatives.

6.3 Overall description of the model

A model, enabling detection of kernel level malware using integrity checking, can be

suggested based on the motivating scenario and the general requirements outlined in

the previous sections. Figure 6.3 is the overall view of my suggested model, it depicts

a system allowing kernel malware detection. The figure illustrates how it may be

connected to the outside world, and the system’s visibility to its surroundings.

The detection system is kept transparent to it’s surroundings. Regular users and

potential intruders are only able to see the system under surveillance, which is con-

tained within the detection system. The intention is to keep any outsider unaware of

the fact that he/she is inside a virtual environment, being monitored.

The detection system is divided into a host system and a guest system. The guest

system is a virtual machine, simulating hardware and containing a guest operating

system. This guest OS is the interface to the outside world. The guest system may

provide any kind of service to the outside world, such as hosting a web server or a

mail server. This guest system has to be kept strictly apart from the host system,

and the guest system should be unable to affect the host system in any way.

The host system is responsible for monitoring the guest system. It consists of

a virtual machine monitor, able to create virtual environments, a virtual machine

interface, providing an interface for information retrieval from the virtual hardware

and the guest OS, and a number of modules providing detection mechanisms. This is
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Figure 6.3: Overall description of my model providing a system for
kernel malware detection.

illustrated in Figure 6.4, which depicts a high-level architectural view of the detection

system.

Figure 6.4: Architectural overview of the model.

The model assumes that the host system is kept clean, and hence not compromised

on any level. Any compromise of the host system is considered catastrophic, as this
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implicates a failure of the suggested model. Hence, a number of precautions need to

be taken. First, the guest system should not be unable to initiate any communication

to host system. This should disallow the guest system to make direct changes to

the host system. Second, any information obtained from the guest system, either

directly or through the VMM, should be considered tainted, containing potentially

misleading or even dangerous data. This data should be handled with care. Third,

the host system should not be connected to any kind of network, and should only

be accessible to a system administrator. This should ensure the integrity of the host

operating system.

6.3.1 Component functionalities and responsibilities

The components within the model have different functionalities and responsibilities,

this subsection gives an overview.

The virtual machine monitor

The VMM allows the creation of several guest systems within the host system. How-

ever, the number of guest systems should be kept to a minimum, preferably just one

guest system should be allowed. This is mainly due to performance reasons, as a large

performance penalty could make a potential attacker suspicious. The VMM provides

virtual hardware replacements. These hardware parts need to be monitored, this is

however the responsibility of the virtual machine interface.

The VMM is responsible for providing isolated environments, allowing malicious

code to execute without the ability to affect the rest of the system. It needs to provide

virtual environments, which cannot be detected from within the environment itself,

facilitating the need to hide the VMM’s presence from an attacker. Further, the

performance penalty introduced by the virtualization technology needs to be kept to

a minimum. Hence, selecting a VMM with a low resource consumption is important.

The virtual machine interface

The virtual machine interface allows inspection of the guest systems software and vir-

tual hardware. It implements an interface to the virtual hardware of the guest system,

which allows inspection of CPU state, memory and I/O device state, and notification

on certain events. Further, an interface to the guest’s file system is provided.
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Providing access, to both virtual hardware and software components within the

virtual machine, is important to allow thorough system analysis. Through this access

the interface provides retrieval of kernel structures within the guest system, and, if

wanted, structures belonging to user processes.

The performance penalty introduced by the monitoring activity needs to be kept

to a minimum. Hence, interference with the VMM should be kept to a minimum.

However, some interference is necessary as the interface needs to query the VMM,

and to provide monitoring information.

Lastly, the virtual machine interface provides control mechanisms for the VMM.

It allows restart, shutdown, creation and blocking of virtual machines. Further, a

logging mechanism to monitor any of these events is provided. This allows a system

administrator to detect any unusual events, such as an unauthorized reboot.

The detection modules

The detection mechanism may implement any kind of module, both signature and

anomality-based, able to detect discrepancies within the guest system, or anomalous

network behaviour. These modules will interact with the virtual machine interface

to retrieve the necessary information for detection. As the focus of this report is on

integrity checking, the rest of this subsection will focus on the file and kernel integrity

modules, depicted in Figure 6.4.

The file integrity module checks for inconsistencies within the file system. A

number of files associated with the guest kernel should be given special attention:

• The /boot/ directory and files within. This includes the kernel disk image,

normally the System.map file, and the bootloader. Any unauthorized changes

of any of these files should be treated as a potential break in. They can be

signs of rootkit break-ins such as; a patched kernel binary image or a fraudulent

virtual system.

• The modules directory /lib/modules/ and all files within. Any changes made

to these files could indicate kernel malware aimed at surviving a reboot.

• The modules configuration file /etc/modules.conf

• The kernel source tree and headers. If present, normally located within

/usr/src/[linux-version]/ and /usr/include/[linux-version]/.
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• Programs and scripts associated with the startup procedure. Hence, check-

ing directories containing binaries, such as /bin/, /sbin/, /usr/bin/ and

/usr/sbin/.

The file integrity checker should however, not only be concerned with files related

to the kernel, but should also consider the rest of the system. Setting up a rule cov-

ering several components within the file system is necessary.

Checking regular files is not enough to determine the integrity of a kernel. Hence,

a kernel integrity needs to check for changes within other areas. The checker shall

detect discrepancies in the kernel running within the guest system. The following lists

what has to be checked, and how this can be done:

• Many rootkits change the system call table to implement their evil code. This

is achieved, as explained in Chapter 4, by replacing the address pointing to

the legal system call to point to the evil system call replacement. This can be

discovered by comparing the map of symbol addresses in System.map with the

system call addresses given by the system call table. Further, a search for a

system call table duplicate should also be conducted.

• Some rootkits hide processes by manipulating the sys_getdents() system call

not to show some process entries within the /proc file system. Another approach

is to remove the process entry from the process list. However, they cannot be

entirely removed from the system as they require CPU time. Comparing the

task list scheduled by the CPU with running processes visible within the /proc

file system, should allow detection of these hidden processes.

• LKM rootkits usually hide by unlinking themselves from the kernel list of run-

ning modules. However, they are still resident in memory, and by traversing

the vmalloc memory region4 searching for modules every module linked to the

kernel can be found. These findings can of course be compared to a baseline.

• Theoretically, the IDT may be altered pointing to malicious code. Saving a

known good IDT to compare with the current IDT, should allow detection of

this type of subvertion.

The kernel integrity checker is mostly concerned with the integrity of kernel mem-

ory areas. It is therefore important that the virtual machine interface provides a

4The vmalloc contains unfortunately also empty pages, which if accessed generate a page fault.
Hence, the page directory and page table should be queried on mapped addresses.
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mechanism for accessing the virtual machines memory, both the physical and virtual

memory.

6.3.2 Main features

The detection system provides a number of features. The more important ones in-

clude;

• Allowing kernel-mode rootkit discovery, without the need to reboot, by provid-

ing a clean, running kernel.

• Facilitating early detection through the notification mechanism.

• Control of the guest systems operation mode, such as the ability to block, shut-

down and create virtual machines.

• Offering the ability to checkpoint the guest system, providing a means for roll-

back on compromisation.

• Provide expansibility by allowing new detection modules to be added at a later

stage.

6.3.3 Comparison of the VMI architecture and the described model

The use of virtualization to achieve isolation is the fundamental similarity between

the architecture proposed by Garfinkel and Rosenblum [19] and my model suggestion

described in this chapter. Even though, both use sandboxing to provide an environ-

ment to facilitate malware detection, some differences exist.

First of all, the model is more general than the architecture of Garfinkel and

Rosenblum. It uses stand alone modules to provide detection mechanisms, while

their architecture uses a policy engine. Even though the policy engine allows policy

modules to be added, the architecture becomes more static than the model. The

intention of the model is to provide an interface, which can be used by any kind of

detection tool only with minor changes.

The model facilitates and focuses on more advanced detection mechanisms,

whereas the policy modules within the architecture only provide simple detection

rules, such as burglar alarms and misuse detectors. This is emphasised by the models

focus on the guest systems kernel.
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Lastly, Garfinkel and Rosenblum’s architecture aim to provide an intrusion de-

tection system with the advantages of both host-based and network-based intrusion

detection systems. The goal of the model, is on the other hand to provide a detection

mechanism for malicious changes made to the OS kernel.

6.4 Employing the model on the MyOil scenario

The model suggested in Section 6.3 may be applied to the MyOil scenario. Figure

6.5 illustrates how this can be done, while the following paragraphs describe what

happened as Ed deployed the suggested model.

Figure 6.5: Employing the model on the scenario

Ed had recently heard of a totally new model, allowing the detection of a partic-

ularly stealthy kind of malware. Being a paranoid person he immediately decided to

adopt the model. The model developer told Ed that the detection system still had
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not left its research phase and needed some more evaluation. Ed was, however, still

eager to try it out.

One day, Ed received a notification from the system telling him that a rootkit

had been installed on the companies internal webserver, resident inside the detection

system. Looking at the report he discovered that the webserver had been infected by

a rootkit named SucKIT. He decided to shutdown the infected webserver. However,

the virtualization technology within the system allowed him to immediately set up a

new webserver using the clean state of the virtual machine recorded the previous day.

This allowed Ed to analyse the infected virtual machine, and he quickly discovered

who installed the rootkit. Being one of Ed’s closest colleagues, Ed decided to confront

him. The colleague decided to leave the company, and Ed never told anyone what he

found.

The previous paragraphs illustrate how the suggested model can allow early de-

tection of kernel level malware. It also shows how quickly tables turn based on who

is smarter, the defender or the attacker. Hence, this also illustrates the importance

of research like this.





Chapter 7

Building a framework

In theory, there is no difference between theory and practice; In prac-

tice, there is.

–Chuck Reid

This chapter focuses on how different technologies can be combined in a frame-

work to support the model suggested in Chapter 6. I evaluate several technologies,

and determine which are most suitable for an implementation of the model. The

general requirements stated in Section 6.2 impose a number of considerations to the

selection of suitable technologies, these requirements are therefore given special at-

tention during the evaluation.

Section 7.1 evaluates some of the programs available allowing virtual environ-

ments, while Section 7.2 evaluates some of the available integrity checkers. The most

suitable technologies are selected, and Section 7.3 describes how these technologies

are combined into a framework allowing detection of kernel level malware.

7.1 Selecting a virtualization technology

As stated, careful consideration must be given to the model’s general requirements,

when a a technology supporting virtualization is to be selected. The following lists

the general requirements, which need to be addressed in the evaluation phase of

virtualization technologies:

GR4 Isolation: The virtualization technology has to ensure isolation by disallowing

virtual machines to influence each other and the host system.

69
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GR5 Resource consumption: The performance penalty needs to be kept at an accept-

able level. Virtualization has a tendency of becoming a costly matter regarding

performance within the guest systems.

GR6 Hidden from an attacker: To many changes made to the guest operating system

by the virtualization technology, will most likely draw an intruders attention.

GR7 Operating system independence: The model aims to be a general solution, hence

selecting a virtualization technology supporting several OSes as a potential guest

OS is important.

Four virtualization technologies are evaluated. These include the commercial

VMware Workstation, and the open source projects Plex86, user-mode Linux (UML)

and Xen. These virtualization technologies where presented in Section 3.3. Each of

the four candidates are evaluated against the specified requirements, and a selection

is made based on suitability and requirement coverage.

7.1.1 Requirement coverage

Each of the four evaluated virtualization technologies implement different solutions

to achieve virtualization. Therefore, a number of differences exist, and their ability

to cover the requirements varies accordingly.

Covering GR4

All of the four virtualization technologies provide isolation. However, as VMware

applies full virtualization, it seems to provide better isolation than the other.

Whereas VMware emulates the host computer’s hardware and presents it to the

guest operating system as real hardware, the open source solutions all apply para-

virtualization. They run guest OSes in a lower privilege than x86’s ring 0, and do not

emulate all hardware devices. Taking Xen as an example, a compromise affecting the

virtual machine monitor (VMM) will automatically affect the whole system. On the

other hand, a compromise of VMware’s VMM will not necessarily propagate to the

host system.

Covering GR5

The performance and resource consumption varies a lot between the four candidates.

Performing a thorough performance analysis of the four candidates is outside the

scope of this thesis. However, Barham et al. have evaluated the performance penalty
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introduced the considered virtualization technologies [5].

Barham et al. present the evaluation of VMware Workstation 3.2, Xen 1.0 and

UML. The performance of Plex86 is significantly lower than the other techniques [5],

and is not presented. In their evaluation they apply several benchmarks, and com-

pare the performance to native Linux. The results of this evaluation show that Xen’s

performance, being close to the performance of native Linux, is significantly better

than the other two techniques.

The results of Barham et al. have been validated by an independent group of

researchers in [14].

Covering GR6

VMware seems to be the virtualization technology most transparent within the virtual

machine. This is due to the fact that VMware provides a full virtual environment,

not requiring any changes to the guest OSes.

The three open source solutions, all apply para-virtualization, requiring specially

adapted kernels to run within the virtual machine. This implies the possibility to see

these changes from within the guest system. However, this requires a knowledge of

what to look for.

Covering GR7

Again, VMware seems to be a better choice than the other techniques, and once again

the reason is that VMware applies full virtualization. VMware’s goal is to allow any

operating system to run within a virtual machine, while the open source solutions

need to make changes to the OS to achieve virtualization.

Considering the open source solutions, a considerable amount of effort is required

to allow a new OS to run within a virtual machine. Hence, their support for guest

OSes is limited. Xen supports Linux 2.4 and 2.6 and FreeBSD, while Plex86 and

UML only support Linux.

7.1.2 Other considerations

The virtual machine interface in the suggested model requires the ability to inspect

the virtual hardware from the outside of the guest system. However, the evaluated
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virtualization technologies provide no such possibility. This implies the need to ap-

ply hooks and make changes to the software. Considering commercial products such

as VMware, making changes to the code is difficult/impossible without special au-

thorization. This problem excludes VMware from further evaluation, even though it

looks to be a promising candidate.

The maturity and user adoption of the product should also be considered. Consid-

ering these factors, and excluding VMware, Xen has gained a considerable momentum.

For instance, Xen is to be included in the Linux kernel within near future.

7.1.3 Open source evaluation

Table 7.1 compares the open source solutions. The solutions are compared to a set

of requirements defined in [24], and presented in Appendix E. The comparison done

within the table shows that UML and Xen are comparable, and that Plex86 has lacks

within several areas.

Table 7.1: Open source software evaluation

7.1.4 Summarizing the virtualization technology evaluation

Taking the requirement for code insight into consideration, Xen seems to be the better

choice. Xen is similar to the other open source solutions within the area of isolation

and transparency. However, Xen outperforms the other considering performance,

supports more guest operating systems, and is under constant development with a

considerable momentum within the community.
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7.2 Selecting an integrity checker

The general requirements of Section 6.2 need to be considered when a file integrity

checker is to be selected. The following lists the general requirements related to the

evaluation of file integrity checkers:

GR1 Kernel malware independence: The integrity checker needs to be able to detect

any changes made to the file system, independently of the type of change.

GR2 Integrity of important files: It must be possible to select the most important

files for integrity checking.

GR3 Integrity of kernel memory: It should be possible to use the integrity checker

to check static kernel areas within memory.

GR5 Resource consumption: The performance penalty induced on the guest system

needs to be kept to a minimum.

GR8 Reporting: The integrity checker has to provide reports if any changes have

been detected.

GR9 Reliability: The integrity checker has to be reliable, discovering all changes

made, and not introduce to many false positives.

Three different file integrity checkers have bee evaluated. These include the Ad-

vanced Intrusion Detection Environment (AIDE), Another File Integrity Checker

(Afick) and Tripwire, which all are open source projects. These file integrity checkers

where presented in Section 5.3.1. Each of the three candidates are evaluated against

the specified requirements.

7.2.1 Requirement coverage

Each of the three evaluated file integrity checkers implement different solutions to al-

low file integrity checking. Hence, a number of differences exist, including performance

and services, and their ability to cover the requirements varies accordingly.

Covering GR1

All of the evaluated integrity checkers are able to detect changes made to the system.

Their ability to check file system properties are similar, as all provide checks for

the number of links, allocated blocks, increasing file size, access and modification

timestamps.
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Covering GR2

All of the evaluated integrity checkers allow a user to specify which parts of the file

system he wants to monitor through integrity checks. They also allow a user to specify

what to check.

Covering GR3

As all of the evaluated integrity checkers allow the specification of which files to check

and what to check, it should be possible to use the integrity checkers to detect changes

in a memory readout.

Covering GR5

The performance and resource consumption varies a lot between the three candidates.

Providing a thorough performance analysis of these, is however outside the scope of

this thesis. However, number of performance tests have been conducted by other

researchers, upon which this evaluation bases its statements.

In most cases, AIDE is faster than Tripwire [3, 35]. The only case where Tripwire

is faster is on single file checking against a database [35]. Considering Afick, the cre-

ator of Afick, Eric Gerbier, has performed some timing tests comparing Afick with

AIDE. His results show that Afick is faster than AIDE [1], this implies that Afick is

the fastest of the three evaluated integrity checkers.

The presented tests have a considerable weakness, they only perform timing tests

not considering load. A thorough performance test using recognized benchmarks

should therefore be conducted, this is however left for future work.

Covering GR8

All of the three candidates present reports to the user if any changes have been

detected. In addition, both Afick and Tripwire are capable of emailing the report,

and they also provide reports (if wanted) even if no changes have occurred.

Covering GR9

Verifying that all of the candidates report any changes, and not to many false positives,

is outside the scope of this thesis. However, initial tests show that simple changes,

such as adding a file, are detected.
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7.2.2 Other considerations

The integrity checker should not be able to make any changes to the system under

surveillance. Therefore, the ability to check the integrity of read-only files is crucial.

All of the evaluated integrity checkers have this ability.

The baseline should be protected and preferably impossible to change. The use of

a read-only device would be the best choice. However, in a system where legitimate

changes induce baseline updates frequently, such a solution is impractical. Hence, a

mechanism allowing data to be stored safely and still allow easy updates is preferable.

AIDE does not provide such a solution, Tripwire allows encryption of the database,

and Afick stores its data in a sdbm database, which does not store data as clear text.

7.2.3 Open source evaluation

Table 7.1 compares the integrity checkers, being open source, to a set of requirements

defined in [24], and presented in Appendix E. The comparison done within the table

shows that Tripwire and Afick are comparable, while AIDE has lacks within several

areas.

Table 7.2: Open source software evaluation

Note that Tripwire also exists as a commercial product.

7.2.4 Summarizing the integrity checker evaluation

Comparing the results of the evaluation crystallizes Afick as the best open source

choice. Afick provides all features provided by the other two, and it seems to be
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faster. Further, it works on all platforms able to run Perl, and it is under constant

development being regularly updated.

7.3 Framework setup

The model of Chapter 6 needs to be tested and validated. To allow some initial tests

a framework of the model has been set-up, this framework combines the technologies

evaluated in the previous sections. This section describes how the framework has

been set-up, while the next chapter describes some initial tests on this framework.

The framework differs somewhat from the suggested model. This is due to Xen’s

method of virtualization. Xen uses a virtual machine, or domain, to control the other

domains running on the system. As described in Section 3.3, this domain, or domain

0, contains the xend process, which is responsible for managing the other domains.

The framework places the integrity checker within domain 0, because this domain

controls all other domains, and thereby provides a better system overview to the de-

tection mechanism, e.g. the integrity checker. Figure 7.1 shows how the framework

has been set-up.

Figure 7.1: The suggested framework corresponding to the model
described in Chapter 6.
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The framework was installed on a 1GHz Pentium III desktop, with 512 MB of

RAM, running Fedora Core 3 as the initial host OS.

7.3.1 Installing Xen

The installation of the binary version of Xen, was more or less straightforward. And

the following describes the steps performed:

1. Xen has several prerequisites, listed in [65]. These needed to be covered to allow

installation. In my setup, the Linux bridge-utils and the Twisted framework

needed to be installed.

2. The tarball containing the latest version of a pre-built Xen1, was downloaded

from Xen’s download page [64]; http://xen.sf.net, and unpacked2.

3. To install Xen # sh ./install.sh, was entered within the unpacked directory.

This created amongst other a number kernel images and System.map files within

the /boot/ directory.

The model requires an interface to the virtual machine, and since Xen does not

provide a full fledged interface it needs to be implemented. This will require some

slight modification to Xen3. Hence, easy installation of a customized version should

be provided. To customize Xen, it needs to be built from source. This turned out to

be a problematic and time consuming process. The following steps describe the final

approach taken to build a customized version of Xen:

1. The tarball containing the source tree of the latest stable Xen version, was

downloaded from Xen’s download page, and unpacked.

2. The Linux kernels corresponding to the kernel sparse trees4, contained within

the unpacked Xen source directory, where downloaded from http://www.

kernel.org, and stored in the Xen directory.

3. If any changes need to be applied to the source code, this should be done now.

4. Select the kernel versions to be compiled by editing the makefile.

1Xen 2.0.5
2Even if the tarball contained the suffix .tgz, it was not compressed.
3It might be possible to implement a module providing the needed interface. However building a

customized version should be easy due to a number of other reasons, such as supporting additional
devices.

4The Xen 2.0.5 source tree contains sparse trees for the 2.4.29 kernel and the 2.6.10 kernel.

http://xen.sf.net
http://www.kernel.org
http://www.kernel.org
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5. Run # make config to configure the kernel to support the machines hardware.

config can be exchanged with either menuconfig or xconfig to provide a more

user friendly configuration interface. If an old configuration file is to be used

config can be swapped witholdconfig.

6. Run # make world; make kernels; make install to build Xen and it’s con-

trol tools, the appropriate kernels, and install it.

After the installation of Xen, the GRUB bootloader needs to be configured to

allow Xen to be booted and run. Hence some changes need to be made to the

/boot/grub/grub.conf file. The following lists the entry added to the grub.conf

file:

title Xen 2.0 / XenLinux 2.6.10

kernel /boot/xen.gz dom0_mem=131072

module /boot/vmlinuz-2.6.10-xen0 root=LABEL=/ rhgb console=tty0

module /boot/initrd-2.6.9-1.667.img

The system is now ready to be restarted, allowing Xen to boot. During bootup,

Xen outputs several lines of information regarding itself and the system’s hardware.

As soon as the system has restarted, we may start using Xen.

7.3.2 Running Xen

After the installation process, additional domains need to be started to provide guest

systems. This turned out to be an arduous and very time consuming phase. The

final domain was based on Fedora Core 2 as the guest operating system, running a

2.4.29-xenU kernel, and called Fedora2. Figure 7.2 lists the configuration file for the

Fedora2 domain.

Within the configuration file several options needed to be set, some of these in-

clude;

kernel was set to the path of the kernel image intended for a virtual machine.

disk was set to the disk partition containing the root file system, and to a swap

partition.

ip was set statically to allow network communication with domain 05.

5This should not be done in a final setup, as this facilitates an attackers ability to compromise
the whole detection system.
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Figure 7.2: The configuration file for the Fedora2 domain

The /etc/fstab then needed to be modified, so that the domain was able to

mount the disk partitions set in the configuration file. After this, the # xend start

command may be issue, to allow the creation of new domains. In Figure 7.3 the

Fedora2 domain is already running as an additional domain, the ttylinux domain is

started. The figure also shows how domain 0 is able to control the other domains on

the system.

7.3.3 Installing and initialising Afick

The binary version of Afick was installed. The following describes the steps performed:

1. The afick-2.8-0.rpm package was downloaded from the Afick homepage [1];

http://afick.sourceforge.net/

2. The # rpm -Uhv afick-2.8-0.rpm command was issued to install Afick on the

machine.

http://afick.sourceforge.net/
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Figure 7.3: Running Xen

After the installation the configuration file needed to be set up. This file deter-

mines which files to monitor and what to monitor. This part should be given careful

consideration, and some suggestions for what to include where given on Page 63.

However, I only configured it to allow some initial testing.

To initialise Afick and build a baseline database, the following command was is-

sued:

# afick -c afick.conf -i

afick.conf is the configuration file.

7.4 Summary

The final set-up of the framework implemented Xen 2.0.5 as its virtualization tech-

nology. The host system, or domain 0, was running on a 2.6.10 kernel, while the guest

system was running on a 2.4.29 kernel, and Afick 2.8-0 was used as the file integrity

checker, installed on domain 0. The virtual machine interface was provided through
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mounting the virtual machine’s partition, /dev/kmem, to the /mnt/ directory. The

setup is summarized in Table 7.3, which also provides a mapping of the components

to the model described in Chapter 6.

Framework component Role within model

Hardware: 1GHz Pentium III
desktop, with 512 MB of RAM

Detection system

Xen 2.0.5 Virtualization technology

Fedora Core 3 running a
2.6.10-xen0 kernel

Host system

Fedora Core 2 running a
2.4.29-xenU kernel

Guest system

/dev/hda7 mounted to /mnt/

on the host system
Virtual machine interface

Afick 2.8-0 Integrity checking module

Table 7.3: Mapping the framework to the model of Chapter 6





Chapter 8

Applying the framework

Performing tests is important to validate the functionality of a system. Therefore,

some initial tests are presented in this chapter. The tests show how the framework,

presented in the previous chapter, is able to detect two different kernel-mode rootkits.

The size of the test set is limited due to the framework’s limited functionality, and the

fact that many of the publicly available kernel-mode rootkits are somewhat outdated.

The goal of these tests is merely to provide a proof-of-concept, showing that the use

of virtual environments facilitates kernel malware detection.

Section 8.1 describes how the test has been set-up, while Section 8.2 describes the

results of the performed tests.

8.1 Test setup

Three different kernel-mode rootkits where picked out for testing; Adore, Adore-ng

and SucKIT. These three represent three different approaches to achieve hiding capa-

bilities. Adore loads itself into the kernel as a LKM and manipulates the system call

model to achieve hiding capabilities. Adore-ng is a more advanced version of Adore.

Instead of subverting the kernel through the system call model, it manipulates the

virtual file system structure. Lastly, the SucKIT rootkit patches the running kernel

through /dev/kmem, thereby changing several system calls1.

The following subsections describe the effort made to install these rootkits into

the guest system within the framework.

1Adore-ng and SucKIT are presented in Appendix B
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8.1.1 Preparing the guest system

The guest system needed to be prepared for the installation of kernel-mode rootkits.

This basically included the need to provide kernel source code within the guest system,

and building a kernel corresponding to this source code. Hence, the Xen 2.0.5 source

and the 2.4.29 kernel source was moved into the guest system. The source was then

built and installed into the guest system. This provided the guest system with a

kernel source tree corresponding to the kernel running the guest system. This was all

done because some of the kernel-mode rootkits require the kernel source code to be

able to build themselves.

8.1.2 Installing and running Adore

The following steps describe the process performed to install the Adore kernel-mode

rootkit into the guest system:

1. The adore-0.42.tgz file, containing the Adore rootkit, was downloaded

from http://bismark.extracon.it/exploits/directory/?url=&dlid=452,

and stored on the guest system.

2. The line MODULE_LICENSE=("GPL"); was added to adore.c and cleaner.c to

avoid a tainted kernel.

3. The # ./configure command was run to build a makefile, which in turn needed

some minor changes to allow the installation of Adore. The lines including the

expression -I/usr/src/linux/include where changed to point to the appro-

priate linux source location.

4. The # make command was run to build the kernel modules.

5. # ./startadore was run to link the Adore module into the kernel. Now Adore

was ready to be used. This could be done by running # ./ava, which provides

an interface to Adore.

The installation of Adore was successful, and a some trials showed that Adore was

able to hide files and processes.

8.1.3 Installing and running Adore-ng

The following steps describe the process performed to install the Adore-ng kernel-

mode rootkit into the guest system:

2Last visit 15. May 2005.

http://bismark.extracon.it/exploits/directory/?url=&dlid=45
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1. The adore-ng-0.53.tgz file, containing the Adore-ng rootkit, was downloaded

from http://stealth.openwall.net/rootkits/ [52], and stored on the guest

system.

2. A line within the configure file was changed. The line included the

INC=-I/usr/src/linux/include expression and was changed to point to the

appropriate linux source location.

3. The # ./configure command was run to build the makefile, before the # make

command could be run to build the kernel modules.

4. # ./startadore was run to link the Adore-ng module into the kernel. Now

Adore-ng was ready to be used. This could be done by running # ./ava, which

provides an interface to Adore-ng.

As can be observed these steps are similar to the steps performed during the

installation of the Adore rootkit. This is due to the fact, that Adore-ng is an improved

version of Adore. Adore-ng was also run successfully after the installation steps.

8.1.4 Installing and running SucKIT

I also tried to install the SucKIT rootkit. However, this effort was unfruitful. The

following describes the steps performed:

1. The sk-1.3a.tar.gz file, containing the SucKIT rootkit, was downloaded from

http://www.packetstormsecurity.org [38], and stored on the host system.

This was done because the README file within the rootkit package describes how

SucKIT can be used as a backdoor.

2. $ make skconfig was run to configure the rootkit, providing it with a password

and defining a home directory.

3. $ make created a file called inst. This file was uploaded to the target machine

and executed. It installed a file called sk in the home directory specified in the

last step.

4. Running # ./sk within the home directory gave the result depicted in Figure

8.1.

5. The memory addresses needed by SucKIT where obtained manually, and coded

into the /src/install.c SucKIT source file. The last two steps where repeated

and the result is depicted in Figure 8.2.

http://stealth.openwall.net/rootkits/
http://www.packetstormsecurity.org
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Figure 8.1: Running SucKIT on the Fedora2 domain. As can be
seen the returned messages are pretty harsh.

Figure 8.2: Running a modified SucKIT on the Fedora2 domain

The reason why SucKIT would not install on the guest system is probably due to

the way Xen handles memory for additional domains such as the guest system. This

has however not been fully investigated.

8.1.5 Final test setup

Table 8.1 describes the configuration of the complete platform used for testing, and

maps it to the model presented in Chapter 6. The table extends Table 7.3 by the

introduction of rootkits.

Framework component Role within model

Hardware: 1GHz Pentium III
desktop, with 512 MB of RAM

Detection system

Xen 2.0.5 Virtualization technology

Fedora Core 3 running a
2.6.10-xen0 kernel

Host system

Fedora Core 2 running a
2.4.29-xenU kernel

Guest system

/dev/hda7 mounted to /mnt/

on the host system
Virtual machine interface

Afick 2.8-0 Integrity checking module

Adore-ng 0.53 Kernel-mode rootkit

Adore 0.42 Kernel-mode rootkit

Table 8.1: Mapping the test setup to the model of Chapter 6
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Figure 8.3 depicts the overall view of the final test setup. It also illustrates how

the detection capabilities where tested. This was done by mounting the hard drive

partition containing the guest system to provide the interface to the guest system.

Figure 8.3: The framework test setup

8.2 Test results

Two different tests where done to check if the framework was able to detect any

changes made by kernel-mode rootkits within the guest system.

8.2.1 Test 1

Test number one included a simple comparison of the results presented to a user when

running ls from both domain 0 and the Fedora2 domain, e.g. the host and the guest

system. The test consisted of the following steps:

1. /dev/hda7 was mounted to /mnt/, within domain 0.

2. The ls command was run within both domain 0 and the Fedora2 domain. At

this point, the results where similar.

3. Adore-ng or Adore where installed on Fedora2, and the /home/hack directory

was hidden.
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4. The ls command was rerun within both domains. This time the results where

different. The Fedora2 domain was unable to see the /home/hack directory,

while domain 0 still was able to see this directory.

This test was performed with both Adore and Adore-ng, and the results where

identical. Figure 8.4 depicts the results of test when Adore was installed.

(a) The console of the Fedora2 domain

(b) The console of Domain 0

Figure 8.4: Detecting Adore by comparison

8.2.2 Test 2

Test number two used the Afick integrity checker to see if it was able to detect changes

made to the file system within the Fedora2 domain. The following summarizes the

steps performed:
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1. Afick was configured on the host system to create a baseline of the mounted

partition. This was done by adding the following line to the /etc/afick.conf

file: /mnt/home/ p+i+n+u+g

2. The Afick database was then initiated by executing the # afick -c

afick.conf -i command.

3. Adore-ng or Adore where then installed on Fedora2, and the /home/hack direc-

tory was hidden.

4. Running # afick -c afick.conf -k resulted in a report, which showed that

the change was detected.

This test was also performed with both Adore and Adore-ng, and the results where

identical. Figure 8.4 depicts the results of test when Adore-ng was installed.

Figure 8.5: Detecting the Adore rootkit with Afick

8.2.3 Result summary

Table 8.2 summarizes the results, by stating whether the framework was able to detect

specified kernel-mode rootkits or not. The table shows that all of the performed tests

where successful.
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Test 1 Test 2

Able to detect Adore-ng Yes Yes

Able to detect Adore Yes Yes

Able to detect Suckit N/A N/A

Table 8.2:



Chapter 9

Discussion and evaluation

This chapter discusses and evaluates the work presented in this report. It starts with

a discussion of the results, the framework and the model, before it evaluates how well

the research questions of Chapter 1 have been answered.

9.1 Discussion

This discussion focuses on Chapter 6 through 8, comprising my contribution to the

field of research. Several issues are discussed, including the many challenges met

during this work.

9.1.1 Discussion of results

Chapter 8 describes some initial tests of the framework, and presents their results.

The tests show that, even if the integrity checker operates in user land, it can detect

changes made, even if the guest kernel is subverted. However, the tests performed are

narrow, and they cover only a limited area considering the problem of kernel integrity

checking. They provide merely a proof-of-concept showing that the combination of

integrity checking and virtualization is promising as a means of kernel integrity check-

ing.

One of the main problems with the tests of Chapter 8, is that they are insufficient,

considering kernel integrity checking. To allow this, the framework needs to be ex-

tended. The framework has to be able to read the kernel’s memory areas. Only then

will it be possible to fully test whether integrity checking is enough to allow detection

of kernel level malware. This is due to the fact that such malware operates within the

kernel’s memory, and they do not have to be stored on disk. However, any changes
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made to the file system may be discovered by an integrity checker as is.

Another problem with the performed tests, is that they cannot be considered gen-

eralizable considering the small test set and the vast number of kernel-mode rootkits.

The tests covers only a subset of the current methodologies employed in kernel-mode

rootkits. The set needs to be extended to see whether or not the framework is able

to detect changes made by any kind of rootkit. This does not imply that all known

rootkits need to be tested. However, the test set should be representative and cover

all of the five methodologies used by kernel-mode rootkits to gain access to the ker-

nel. These are presented in Chapter 4, and include; loadable kernel modules, dynamic

and static kernel patching, the use of fraudulent virtual systems and the execution of

user-mode programs in kernel-mode. The actions performed by them to gain hiding

capabilities should also be considered. A last remark, considering this issue, is that it

is almost impossible to know what the blackhat community has up its sleeves. Most

likely several undiscovered kernel-mode rootkits and methodologies exist.

The focus of the performed tests has been on the frameworks functionality, mean-

ing its ability to detect changes made to a subverted guest system. Issues considering

non-functional requirements, such as performance, level of isolation and transparency,

have not been tested. This part is left for further work as it is considered to be outside

the scope of this thesis.

The results of Chapter 8 are promising. They give reason for closer studies of the

use of virtualization and integrity checking as a means to detect kernel level malware.

9.1.2 Discussion of the framework

Chapter 7 evaluates several technologies to be used in a framework covering the model

of Chapter 6, and puts the most suitable together to build a framework able to detect

changes made in a compromised system. However, the framework is not able to cover

all aspects of the model for various reasons. These aspects and reasons are discussed

in the following.

Central challenges

The presented framework is, as mentioned, not a full fledged solution to the model, as

it lacks several important components. The interface to the guest system is limited to

the mounting of disk partitions. This only allows detection mechanisms to check the
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guest system’s file system resident on disk. This implies that any changes made to re-

gions within memory will not be detected. The reason why this ability is non-existent,

is due to my shortcomings in C-programming. An interface covering all aspects as

described in Section 6.3, would require some programming. The programming solu-

tion should either include a kernel module able to save a copy of the relevant memory

areas to disk, or some changes made to the virtualization technology, e.g. Xen.

The requirement covering the models invisibility from an attacker, is probably the

largest and most difficult requirement to fulfil. A tradeoff exists between this visibility

and performance. Para-virtualization, which seems to provide higher performance, is

harder to hide from an attacker than a full-virtualization approach. Hence, if possible

a technology allowing full-virtualization, without a large performance penalty would

be the optimal choice. However, this requires further research, and probably several

advancements within the area of virtualization.

The selected virtualization technology

Xen was selected to be included in the framework for several reasons. It achieves

higher performance than all of the four evaluated candidates, while also being the best

open-source solution. However, disregarding the need for open-source, the VMware

Workstation product would probably be a better choice. This is mainly due to its

isolation capabilities and its ability to run several different operating systems.

The selection of Xen is further justified by the current efforts put into its develop-

ment, and the promises of future releases. Within near future, Xen will be included

into the Linux kernel. Further, d the coming version of Xen, Xen 3.0, will provide

support for Intel’s Virtualization Technology, which will be included on newer proces-

sors within near future [25, 44]. This technology will allow better support for guest

operating systems.

The selected integrity checker

Afick was selected as the preferred integrity checker, mainly for two reasons. First,

it seems to be faster than the other two evaluated integrity checkers. However, the

speed of the integrity checker does not say anything about the performance penalty

introduced. Therefore, thorough tests implementing common benchmarks should be

conducted. Second, Afick is under constant development with regular updates and

improvements.
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Coverage of the general requirements

Table 9.1 describes how the general requirements presented in Section 6.2 are covered

by the framework.

Requirement Level of
coverage

Notes

GR1 Kernel malware

independence

Partly The framework is only able to detect changes made
to the file system resident on disk.

GR2 Integrity of im-

portant files

Covered The framework is capable of discovering changes
made to important files through regular file integrity
checking.

GR3 Integrity of kernel

memory

Not covered This requires an improvement to the virtual machine
interface.

GR4 Isolation Partly The Xen development team have made considerable
efforts to achieve isolation. However, since Xen uses
para-virtualization full isolation is difficult.

GR5 Resource con-

sumption

Partly Xen is the virtualization technology providing the
smallest performance penalty. However, the perfor-
mance penalty of the integrity checker needs to be
analysed.

GR6 Hidden from an

attacker

Partly If an attacker knows what to look for, it is might be
possible to detect Xen from within the framework.
This has been shown for other virtualization tech-
nologies, such as VMware and UML [23].

GR7 Operating system

independence

Partly Operating systems running as guests within Xen
need to be ported.

GR8 Reporting Partly Afick provides a mechanism for reporting, but the
framework does not provide constant monitoring. It
only provides a means for regular reporting, as run-
ning the integrity checker to often would hurt the
system performance considerably.

GR9 Reliability Partly Afick can detect most changes made to a file. How-
ever, the coverage of this requirement cannot be fully
evaluated without a considerable number of tests.

Table 9.1: Covering the general requirements

9.1.3 Discussion of the model

Chapter 6 provides a model enabling integrity control of the operating system’s kernel.

This subsection addresses several issues regarding the model.
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The use of virtualization

The use of virtual environments has several advantages, including; the ability to pro-

vide a trusted kernel isolated from the potentially compromised kernel, and the ability

to see events both within the guest system and on its outside. However, it also has a

number of shortcomings, and a number of challenges addressed below.

The detection mechanisms transparency is vital to the model’s success. The at-

tacker should not be able to detect that he is contained within a virtual machine.

However, it has been shown that several clues exist within the guest system compro-

mising the detection mechanisms transparency [23]. It is therefore necessary to cover

the tracks of the virtual machine thoroughly.

The main goal of most virtualization technologies is to provide isolation. Con-

sidering the choice of a hosted virtual environment, this becomes challenging as the

virtual machine monitor operates on the host kernel. It is critical that the host OS is

secured, and that access is tightly limited to disallow any access from the guest OS

to the host OS.

The use of integrity checking

The use of integrity checking as a means to discover changes made to the kernel has one

central challenge. Changes made to the kernel’s memory might be difficult to track,

this is mainly due to its dynamic nature. Thorough analysis of which areas might

be changed, and which areas normally are considered static is necessary. Considering

that changes can be made to dynamic areas, the use of a regular integrity checker

falls through. Using the integrity checker to check dynamic areas would produce an

incomprehensible amount of false positives.

Performance issues

An important issue is performance. The model should not impose a large performance

penalty on the system under surveillance. This could make an intruder suspicious,

and maybe cause him to direct his efforts towards the detection system, which ulti-

mately could cause the detection system to be compromised.

The performance penalty due to the use of a virtual machine, needs to be mini-

mized. This is achieved through the selection of a technology introducing a minimal

amount of performance penalty. The same argument is valid for the selection of an
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integrity checker.

9.2 Evaluation

The success of this work depends on whether the goal of the thesis is reached. This

can be determined by looking at how well the research questions defined in Section

1.3 have been answered.

Starting with the main research question, this report tried to answer:

How can a virtual environment allow integrity control of an operating system’s kernel

and thereby allow discovery of kernel-mode rootkits?

This question has been answered with a set of requirements, a model and a frame-

work. The requirements impose guidelines on the development of a model allowing

integrity control of an operating system’s kernel. The model presented in Chapter 6

allows detection of kernel level malware through the use of virtualization and integrity

checking. The framework presented in Chapter 7 describes how a system based on

the model may be set-up.

The main research question led to the definition of several subquestions, which

determined the progress of this work:

RQ1 Current state: Are there any efforts, which can answer or help answer the main

question?

Chapter 5 provided an overview of some the methodologies used for kernel level

malware detection. It revealed some efforts showing the possibility of using virtualiza-

tion to allow better intrusion detection systems. These efforts where close to provide

an answer to the main research question, however they failed this due to their lack of

focus on integrity control. The methods introduced in Chapter 5.1 provided several

useful ideas for a solution, which where incorporated into the model.

RQ2 Requirements: What is the nature of kernel-mode rootkits, and what require-

ments do they impose on a system for detection?

Chapter 4 described the nature of kernel-mode rootkits. It thereby revealed several

issues, which needed to be addressed. Section 6.2 provided a set of requirements

addressing these issues.
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RQ3 Solution: What is needed to provide a foundation for meeting the requirements?

Which parameters need to be tested by the integrity checker?

Section 6.3 describes a model, which is able to meet the general requirements.

It also identifies some of the parameters needed to be monitored and tested by an

integrity control system. However, the model has several shortcomings as discussed

in Section 9.1.3.

RQ4 Evaluation: How well does the solution solve the problem given in the main

question?

The model proposed in Chapter 6 provides an answer to the main research ques-

tion, though with some shortcomings as discussed in Section 9.1.3. Unfortunately,

the framework described in Chapter 7 lacked some central elements, and how well the

problem was solved could not be fully tested. This is left for further work.





Chapter 10

Conclusion and further work

Now this is not the end. It is not even the beginning to the end. But

it is perhaps, the end of the beginning.

–Winston Churchill

This chapter summarizes and concludes the achievements of the work presented

in this thesis and points out some directions for future work.

10.1 Conclusion

This section describes the major themes covered and summarises the contributions of

this thesis.

10.1.1 Important themes

The collection of reliable information from a compromised system is a central problem

within the domain of computer security. This thesis suggests a solution allowing the

collection of more reliable information through the use of virtual machines. Several

aspects within the given area of research have been addressed during this work.

The operating system’s kernel. This thesis describes a methodology allowing de-

tection of changes made to the operating system’s kernel. The focus has been

on the Linux kernel. Several issues regarding the ability to detect changes have

been identified, including the many ways of gaining access to the kernel and the

many components susceptible to changes within the kernel.

The capabilities of virtualization. The use of virtualization facilitates the ability

to detect changes made within a kernel. It can provide secure and isolated
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environments for execution of untrusted code. One of its main advantages is

that it provides the detection system with a clean kernel.

The nature of kernel level malware. Kernel-mode rootkits provide specifically

stealthy mechanisms for hiding malicious activity. They subvert the kernel, dis-

allowing the use of the compromised kernel for detection. Hence, the need for a

clean kernel is evident. Further, kernel-mode rootkits employ several method-

ologies to gain access to the kernel, and perform a number of different actions

to allow hiding capabilities. Ultimately, any kernel-mode rootkit need to make

changes within the kernel, therefore integrity checking seems to be the most

promising method for detection.

10.1.2 Contributions of this thesis

The major contribution of this work has been the presentation of a model allowing

detection of kernel level malware. The model is based on several findings done during

the initial phases of this work, and presented and discussed in chapters 2 through

5. Further, a framework providing an initial implementation of the model has been

presented. The proposed framework does not fully support the model, but it provides

a basis allowing verification of the model’s main idea; the ability to detect changes

made on a system compromised by a kernel-mode rootkit. A couple of tests where

performed, and their results where promising. The framework was able to detect

changes on a compromised system.

The presented methodology, allows the collection of information with a high de-

gree of reliability from a compromised system. It thereby provides a solution to one

of the central challenges within the domain of computer security. This is achieved

through the use of an isolated, trusted system able to see the system internals of the

compromised system, thereby allowing detection of malicious activity.

Even though the proposals of this work are quite similar to the ones found in [19]

they differ in several areas. The most significant is the model’s generalizability, and

its ability to detect nearly any changes made to a monitored system. Further, my

framework has focused on the use of open-source solution, providing a better insight

into the internals of the framework, and allowing any researcher to pick up the threads

of this work.
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10.1.3 The future

The people of the underground know we are hunting their tale, and they are aware

of the challenges facing them. A blackhat hacker has identified several of these chal-

lenges, including the use of intrusion detection systems and the introduction of ad-

vanced forensic tools and analysis methods [51]. This awareness emphasises the need

for more transparent and effective detection methodologies. The smarter will win this

race.

10.2 Further work

This section describes the directions for future work, including the full implementation

of a framework supporting the model, and areas for further research.

10.2.1 Implementing the model

The model is not fully implemented. The most significant lack is the limited vir-

tual machine interface. The interface needs to provide a means for virtual machine

introspection, amongst other allowing memory reads and providing monitoring mech-

anisms. Looking at and analysing the methodologies of the St. Michael tool, presented

in Appendix C, will aid such a programming task.

Given that the interface has been thoroughly implemented, attention should be

directed towards the integrity mechanism. The kernel memory should be analysed.

An integrity checker should create a baseline of memory regions containing legitimate

kernel and LKM text, and important data structures, such as jump tables of kernel

function pointers.

Lastly, it should be considered that virtualization technologies will be improved,

and a number of new methods applied by kernel level malware will emerge. This

implies the need to constantly revise the system implementing the suggested model.

10.2.2 Further research

Several issues have been left for further research, and include the following topics:

Extending the suggested model. Currently, the model focuses on the use of in-

tegrity checking as its main detection mechanism. However, the model is open

for extensions through the implementation of detection modules. Therefore,
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developing such detection modules is important to improve the model. These

modules may contain a number of functionalities, looking at and analysing the

existing tools would provide a basis functionalities to be incorporated into such

modules.

Conducting performance analysis. A thorough performance test using recog-

nized benchmarks should be conducted, to evaluate the performance penalty

introduced by the suggested framework.

Analysing the isolation and transparency capabilities of the framework.

The ability to provide isolated and transparent environments is critical to the

success of the detection system. An analysis revealing the systems weaknesses

should be conducted to allow further improvements of the system.

Analysing the ability to discover changes. The ability to discover any changes

made to a monitored system, needs to be further explored. This can only be

done through thorough analysis and testing of the capabilities of the integrity

checker.

Looking at the possibilities of new virtualization technologies. AMD and

Intel will within near future incorporate support for virtualization into their

processors [4, 25]. Incorporating these into the framework will probably allow

a higher degree of isolation.

Improving integrity checking technologies. The use of integrity checking is ex-

pensive with regards to system resources. Hence, developing more efficient in-

tegrity checkers is important.
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[39] R. S. Peláez. Linux kernel rootkits: protecting the system’s ”Ring-Zero”. Tech-

nical report, SANS Institute, May 2004.

[40] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh. Copilot - a Coprocessor-

based Kernel Runtime Integrity Monitor. In Proceedings of the 13th USENIX

Security Symposium, pages 179–194. USENIX, USENIX, 2004.

[41] The new Plex86 x86 Virtual Machine Project. http://plex86.sourceforge.

net/. Last visit: May 15. 2005.

[42] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third

generation architectures. Commun. ACM, 17(7):412–421, 1974.

[43] I. Pratt. Xen and the Art of Virtualization. http://www.cl.cam.ac.uk/

Research/SRG/netos/papers/2004-xen-ols.pdf. Presentation at the 2004 Ot-

tawa Linux Symposium.

[44] I. Pratt. Xen and the Art of Virtualization. http://www.cl.cam.ac.uk/

Research/SRG/netos/papers/xen-lwe2005-short.ppt. Presentation at the

Virtualization BOF at Linux world in 2005.

[45] J. K. Rutkowski. Execution path analysis: finding kernel based rootkits. Phrack

Magazine, 2002.

[46] Intrusion Discovery Cheat Sheet v1.4, Linux. http://www.sans.org/

resources/linsacheatsheet.pdf. Last visit: April 2. 2005.

[47] sd and devik. Linux on-the-fly kernel patching without LKM. Phrack Magazine,

2001. Last visit: March 20. 2005.

[48] K. Seifried. Honeypotting with VMware - basics. July 2002.

[49] E. Skoudis and L. Zeltser. Malware: Fighting Malicious Code. Prentice Hall,

first edition, 2004.

http://www.packetstormsecurity.org
http://plex86.sourceforge.net/
http://plex86.sourceforge.net/
http://www.cl.cam.ac.uk/Research/SRG/netos/papers/2004-xen-ols.pdf
http://www.cl.cam.ac.uk/Research/SRG/netos/papers/2004-xen-ols.pdf
http://www.cl.cam.ac.uk/Research/SRG/netos/papers/xen-lwe2005-short.ppt
http://www.cl.cam.ac.uk/Research/SRG/netos/papers/xen-lwe2005-short.ppt
http://www.sans.org/resources/linsacheatsheet.pdf
http://www.sans.org/resources/linsacheatsheet.pdf


BIBLIOGRAPHY 107

[50] W. Stallings, editor. Network Security Essentials: Applications and Standards.

Prentice Hall, second edition, 2003.

[51] stealth. Kernel Rootkit Experiences. Phrack Magazine, 2003. Last visit: June

10. 2005.

[52] Index of /. http://stealth.openwall.net/. Last visit: June 2. 2005.

[53] St. Jude. http://sourceforge.net/projects/stjude. Last visit: June 10.

2005.

[54] H. Thimbleby, S. Anderson, and P. Cairns. A Framework for Modelling Trojans

and Computer Virus Infection. The Computer Journal, 41(7), 1998.

[55] Tripwire, Inc. http://www.tripwire.com/. Last visit: May 15. 2005.

[56] Open Source Tripwire. http://sourceforge.net/projects/tripwire/. Last

visit: May 15. 2005.

[57] truff. Infecting loadable kernel modules. Phrack Magazine, 2003. Last visit:

March 20. 2005.

[58] S. Tulloch, editor. The Oxford Dictionary & Thesaurus. Oxford University Press,

1995.

[59] The User-mode Linux Kernel Home Page. http://user-mode-linux.

sourceforge.net/. Last visit: May 10. 2005.

[60] A. D. Weng. Un-authorized use of LKM Rootkits. Master’s thesis, Norwegian

University of Science and Technology, Department of telematics, June 2004.

[61] Whatis.com. http://whatis.techtarget.com/. Last visit: May 7. 2005.

[62] A. Whitaker. Building Robust Services with Virtual Machine Monitors. Univer-

sity of Washington Generals Examination, Aug. 2004.

[63] Wikipedia, the free encyclopedia. http://www.wikipedia.org/. Last visit: June

16. 2005.

[64] Xen virtual machine monitor. http://www.cl.cam.ac.uk/Research/SRG/

netos/xen/. Last visit: May 15. 2005.

[65] Xen users’ manual. http://www.cl.cam.ac.uk/Research/SRG/netos/xen/

readmes/user.pdf. Last visit: May 15. 2005.

http://stealth.openwall.net/
http://sourceforge.net/projects/stjude
http://www.tripwire.com/
http://sourceforge.net/projects/tripwire/
http://user-mode-linux.sourceforge.net/
http://user-mode-linux.sourceforge.net/
http://whatis.techtarget.com/
http://www.wikipedia.org/
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/readmes/user.pdf
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/readmes/user.pdf


108 BIBLIOGRAPHY

[66] M. V. Zelkowitz and D. R. Wallace. Experimental Models for Validating Tech-

nology. IEEE Computer, 31(5):23–31, May 1998.



Appendix A

Glossary

API (Application Programming Interface) is a library of pre-defined routines

which can be used by a developer to ease the task of programming.

awareness is a term used to describe the knowledge about an environment.

distributed system is a collection of components distributed over several hosts con-

nected through a network.

domain is the term used within Xen to denote a virtual machine.

Executable and Linking Format (ELF) is the executable file format used on the

Linux OS.

framework is a structure supporting something.

guest operating system a term used in this report to refer to the operating system

residing within a virtual machine.

honeypot a trap set to lure, detect and deflect attempts of unauthorized use of

computer systems [63].

Host-based Intrusion Detection System (HIDS) is an IDS resident on the

computer it monitors.

host operating system a term used in this report to refer to the operating system

hosting a set of virtual machines.

IDI Department of Computer and Information Science at NTNU

Interrupt Descriptor Table (IDT) is a table associating each interrupt or excep-

tion with the address of the corresponding interrupt or exception handler [8].
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Intrusion Detection System (IDS) is a software or hardware tool used to detect

unauthorized access to a computer system [63].

LAN (Local Area Network) is a group of computers interconnected through a

common communication line within a small geographic area [61].

Loadable Kernel Module (LKM) is an ELF object file that can be dynamically

linked to the running kernel [8].

Memory Management Unit (MMU) is a class of computer components respon-

sible for handling memory requests from the CPU.

Network-based Intrusion Detection System (NIDS) is an IDS monitoring the

network traffic to detect unauthorized access to other computer systems on the

network.

patch is a quick-repair job for an existing program [61].

physical address is used to refer to a specific memory cell on a memory chip [8].

POSIX “is a collective name of related standards defined by IEEE” [63]. The stan-

dards have emerged from a standardisation of the API for software designed to

run on variants of the UNIX operating systems.

redundancy is repeated information.

sandboxing the use of secure and isolated environments to execute and run un-

trusted code.

server consolidation instead of using several distinct real machines as servers, a

single machine hosts several distinct OSs, applications and services.

trap is a program instruction catching a certain event. Virtual machine monitors

trap certain instructions to achieve virtualization.

virtual address (or linear address) is a single 32-bit unsigned integer used to address

up to 4 GB [8].

Virtual File System Switch (VFS) a common interface to all the file systems

supported by Linux.

Virtual Machine (VM) an efficient, isolated duplicate of a real machine [42].

Virtual Machine Monitor (VMM) is a usually a software component responsible

for the creation of the virtual machine environment.
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x86 a generic term for a family of microprocessors initially developed by Intel.





Appendix B

Rootkit examples

A vast number of rootkits exist, a complete list of all is outside the scope of this thesis.

However the following lists some of the most common and best known rootkits:

Adore and Adore-ng Adore is probably the most popular Linux kernel-mode

rootkit [49], its main components include the LKM called adore and a user

interface called ava. This rootkit is thoroughly described in Section B.1.

The Kernel Intrusion System (KIS) Provides all the regular capabilities of

kernel-mode rootkits including hiding of files, processes and network ports. Its

advantage compared to others is its user interface and the interface centred

around hidden processes [49].

Knark Redirects various system calls to its own system call handlers, by overwriting

entries in the system call table.

Phantasmagoria Hides processes by removing them from the task list, using the

Linux kernel’s REMOVE_LINKS macro [60].

SucKIT Subverts the kernel through /dev/kmem, by inserting a new system call table

into kernel memory. This rootkit is thoroughly described in Section B.2.

The following sections describe two of these rootkits.

B.1 Subverting the VFS - Adore-ng

The developer of Adore-ng calls himself“stealth”. He constantly releases updates, with

the latest release being v0.53 released April 25. 2005. Adore-ng is an improvement

of Adore. It uses the LKM methodology to gain access to the kernel. From there
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it subverts the kernel’s VFS layer to intercept accesses to the /proc file system [39].

This avoids the need to change the system call table. It provides several new features

apart from the usual hiding techniques 1:

syslog filtering: logs generated by hidden processes never appear on the syslog

UNIX socket anymore

wtmp/utmp/lastlog filtering: writing of xtmp entries by hidden processes do not

appear in the file, except you force it by using special hidden AND authenticated

process (a sshd back door is usually only hidden thus xtmp entries written by

sshd don’t make it to disk)

(optional) relinking of LKMs as described in [7] aka LKM infection to make it

possible to be automatically reloaded after reboots (2.4 and 2.6)

The Adore rootkit provides a user-mode tool providing a user interface to the

Adore LKM. This interface is similar for both Adore and Adore-ng. Figure B.1

depicts the Ava user interface.

Figure B.1: The Adore user interface, Ava.

One last difference from Adore worth mentioning is the ability to control Adore-ng

without the Ava interface tool [39]. The following commands are available2:

# echo > /proc/<ADORE_KEY> will make the shell authenticated,

# cat /proc/hide-<PID> from such a shell will hide PID,

# cat /proc/unhide-<PID> will unhide the process

# cat /proc/uninstall will uninstall adore

1Extracted from the rootkit’s FEATURES file.
2Extracted from the adore-ng.c file.
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B.2 Patching /dev/kmem - SucKIT

SucKIT was originally written by “sd” and “devik”, and its initial release was in 2001

[47]. It employs an idea initially introduced by Silvio Cesare [10]. The idea employs

the ability to read and change kernel memory through /dev/kmem. This allows the

rootkit to gain access to a kernel without LKM support. SucKIT can hide processes,

files and tcp/udp/raw sockets, it also provides a backdoor and sniffing capabilities.

SucKIT does not have to be compiled on the target machine as its binary can

work on any 2.2 or 2.4 kernel, according to the developers. Hence, compilation can be

done on the attacker’s machine. The compiled rootkit can then be uploaded to the

target machine and executed. Upon execution SucKIT searches the kernel memory

to find the spot pointing to the system call table, the current address is then changed

to point to the rootkits own system call table [32]. Hence, an integrity check of the

system call table will not detect any changes since the legitimate table is intact.

One of SucKIT’s main advantages is its ability to survive across reboots, this is

achieved by overwriting an unused system call with the address of the kmalloc()

kernel function. This allows kmalloc() to be called from user-space.
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Rootkit detection tools

A number of open source tools for rootkit detection exist. The following lists a number

of these tools and provides a brief explaination:

Carbonite is a LKM based tool focusing on the task_struct kernel structure to

retrieve information on running proccesses. Its intention is to provide a tool

resident within the kernel similar to the user-mode programs ps and lsof [60].

CheckIDT a proof-of-concept tool able to retrieve the IDT and store it for later

comparison [27].

check_ps is a tool providing a means for detection of rootkit hidden processes. It

is however only capable of rootkit detection if there are some hidden processes

[39].

Chkrootkit is a tool searching for rootkits on the local machine. It depends on

regular Linux commands, such as awk, cut, echo and find. Hence, it cannot

be run from a compromised system, however it allows the user to specify a path

to a set of trusted binaries. Chkrootkit checks for approximatelly 50 different

user and kernel-mode rootkits [12].

kern_check a tool using the System.map file to discover inconsistencies, if any, with

the system call table currently within kernel memory. It is also capable of

discovering an “extra” system call table [60].

Kernel Security Therapy Anti-Trolls (Kstat) is tool used to find and remove

evil LKMs. It checks the kernel’s integrity by fingerprinting the system calls.

The necessary information is retrieved through /dev/kmem [60].
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The Linux Trace Toolkit is a statistical analysis tool. It provides a means for ob-

taining the dynamic system behaviour and create baselines for auditing purposes

[34].

Patchfinder a proof-of-concept tool able to count the executed instruction upon the

execution of specific system calls [27].

Rootkithunter is a user and kernel-mode rootkit scanner [39]. rkhunter looks for

default rootkit files, permission inconsistencies, open ports and well known LKM

rootkit strings.

St. Jude/St. Michael: St. Jude implements a kernel level rule-based IDS to pro-

tect the integrity of UNIX systems [53]. St. Michael is a LKM capable of

monitoring the integrity of the kernel memory generating a MD5 crypto hash

value for several non-volatile memory regions [39]. It is mainly a protective tool,

which tries to disallow LKM-based rootkits access to the kernel.



Appendix D

Creating and running Loadable

Kernel Modules (LKM)

This chapter gives a brief description of how you may create your own LKM. The

chapter is included for completeness and educational reasons and its intention is not

to provide a complete guide to LKM programming and creation [15].

D.1 LKM programming

The source code of a LKM is written in C. However, there are some noteworthy

differences from other C applications. First of all a LKM may not use any of the

familiar functions from the standard C runtime library. It depends solely on the func-

tions included in the kernels’ source code. Second, the usual main() function is not

present. Instead two other entry-points are mandatory; int init_module(void); is

called during module installation and void cleanup_module(void); is called during

module removal.

To write the LKM code you may use your favourite text editor. The following

lists a simple kernel module:

#define MODULE

#include <linux/module.h>

MODULE_LICENCE("GPL");

int init_module(void)

{
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printk("<1> This is my first module saying: Hello world!\n");

return 0;

}

void cleanup_module(void)

{

printk("Bye world!\n");

}

D.2 LKM compilation

One of the problems with LKM compilation is the fact that the Linux kernel changes

so rapidly. Hence, the compilation of loadable kernel modules might differ from kernel

version to kernel version.

For the 2.6 kernel a makefile has to be written, which is listed below.

ifneq ($(KERNELRELEASE),)

obj-m := mymod.o /* The modules name */

else

KERNELDIR := /lib/modules/$(shell uname -r)/build

PWD := $(shell pwd)

default

$(MAKE) -C $(KERNELDIR) M=$(PWD) modules

endif

Upon execution of make the kernel module will be built, and they will receive the

.ko extension. The module is now ready to be linked into the kernel using the insmod

command.
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Notation

This chapter describes the open source evaluation table used in Chapter 7 and the

meaning of false-positives and false-negatives.

E.1 Notation used in the evaluation table

Table 7.1 and 7.2 in Chapter 7 use a number of characteristics to describe the tech-

nologies evaluated for adoption into the framework based on the model suggested

in Chapter 6. These characteristics have been adopted from the work of Wang and

Wang [24]. This section is taken from their work, it provides an explanation of the

characteristics and a set of possible values to be assigned to them.

Technical support: the level of support available for the software.

• - Support limited to direct, ad hoc individual developer support.

• + Support based on community oriented group support.

• ++ One or more commercial entities provide extensive support.

Backward compatibility: the effort required by an existing system to maintain

compatibility with the software.

• - An extensive amount of effort is required to upgrade to the current ver-

sion.

• + A moderate effort is required to upgrade to the current version.

• ++ Almost no effort is required to upgrade to the current version.

Binary availability: official or unofficial binary releases are available.

• Yes.
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• No.

Integration with commercial software: to which extent the open source software

is integrated with commercial software.

• - Almost no widely used commercial software can be integrated with the

open source software.

• + A moderate number of commercial software can be integrated with the

open source software, but no commercial installation history exists.

• ++ Many commercial software integration possibilities are available and

have been deployed in commercial environments.

Commercial adoption: the extent to which the software has been commercially

adopted.

• - Virtually no commercial entity has adopted the software.

• + A few commercial entities have selected and installed the software.

• ++ The software has a large installed user base.

Operating system dependency: the specific OS the software depends on.

• UNIX

• Mac OS

• Windows

• Open platform - available for virtually all major operating systems.

Software license: the license1 bound to the software.

• GPL - applies to all open source applications developed by the Gnu orga-

nization.

• Lesser General Public License (LGPL) - covers the various libraries devel-

oped by the Gnu organization.

• BSD - includes all derivatives of the BSD license.

• Community Public License (CPL) - includes various community source

projects.

• Commercial license - includes all licenses bound to commercial software.

1The differnce between the various licenses are the type of modifications and integrations an
implementing party is allowed to perform.
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Current development status. • Development release: The software is still be-

ing actively developed and features are continously added.

• Stable: A stable, widely installed version of the software exists, with un-

going development efforts underway.

• Discontinued: No current development efforts.

E.2 False-positives and false-negatives

False-positives appear when a detection system reports suspicious activity even if the

activity is legitimate. A false-negative appears when there is suspicious activity on a

system, but the detection mechanism is unable to detect this. Figure E.1 illustrates

the meaning of false-positives and false-negatives.

Figure E.1:
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