
Android Malware Forensics: Reconstruction of

Malicious Events

Juanru Li, Dawu Gu, Yuhao Luo

Dept. of Computer Science and Engineering

Shanghai Jiao Tong University

Shanghai, China

Email: dwgu at sjtu.edu.cn

Abstract—Smart mobile devices have been widely used and
the contained sensitive information is endangered by malwares.
The malicious events caused by malwares are crucial evidences
for digital forensic analysis, and the main task of mobile
forensic analysis is to reconstruct these events. However, the
reconstruction heavily relies on the code analysis of the malware.
The difficulties and challenges include how to quickly identify
the suspicious programs, how to defeat the anti-forensics tricks
of malicious code, and how to deduce the malicious behaviors
according to the code. To address this issue, we propose sys-
tematic procedures of analyzing typical malware behaviors on
the popular mobile operating system Android. Based on the
procedures we discuss the deduction of Android malicious events.
We also give a real malware forensic case as a reference.

Index Terms—forensic analysis, Android, malware, reverse
engineering.

I. INTRODUCTION

With the fast evolvement of mobile OS such as Android[1]

and iOS, and the growing processing capability of mobile

hardware, the number of smart mobile devices grows expo-

nentially. Mobile devices are nowadays widely used to deal

with sensitive personal affairs, and are becoming an attractive

platform for cybercriminals. A huge number of malwares are

developed to threaten the data privacy and system security

of smart mobile devices, and they bring new challenges to

forensic analysts. A modern digital forensic analyst should

know these threats and be able to employ forensic analysis

against mobile malware.

Most of the forensic analysis on mobile devices focus

on the data acquisition process[2][3]. However, the scope of

mobile malware forensics extends from simple information

retrieval to a series of events reconstruction. In other words,

the requirement is to deduce the happened malicious events

via the data. Digital detectives, like their legendary colleague

Sherlock Homles, are challenged to reveal truth from the

bytes. Typical scenario of mobile malware forensics often

goes like this, She acquires a mobile device compromised by

malwares and is asked to recover the malicious events caused

by malwares (A harsher case is that only the memory dump of

the device is given). She has the privilege to statically extract

the data from the device, or even launches the device (without

changing sensitive data) to employ some dynamic analysis and

to observe the exceptions.

The mobile malware forensics often involves four aspects,

identification of suspicious programs, defeating the anti-

forensics code, extracting malicious code from malwares and

malicious functions deduction. Traditional forensics discuss

the process of collecting static data as digital evidence[4].

For malwares, even with the collected static program code,

the malicious functions, which are very important digital evi-

dences, is often ignored to be reconstructed. Program codes are

raw information which can’t bring the recovery of malicious

events without deduction. The reconstruction of malicious

events involves connecting the relationship between programs,

operating system, hardware and I/O data. Tiny details may

be main obstacles of malicious events reconstruction. Modern

mobile malwares are designed towards certain platform. The

complexity of both hardware (different CPU architectures, file

systems) and software (new mobile operating system) chal-

lenge the inexperienced analysts. The architecture and design

pattern of mobile applications differ widely from those of

common applications on personal computers. Thus to deploy

mobile program analysis is even harder for lacking of well-

developed analyzing tools on mobile platform.

The purpose of this paper is to present a systematic pro-

cess of Android malware forensic analysis, focusing on the

deduction and reconstruction of malicious events. In detail

we suggest three main steps to reconstruct the events. First,

the identification of suspicious programs on Android platform.

Second, how to defeat the Android based anti-forensics codes.

Third, the recognition of the most typical malicious behaviors

on Android that forensics should concern, and the effective

deduction of criminal events. We give a thorough discussion

on essential points of these steps. In order to describe the

details, a particular Android mobile malware forensic analysis

process is also given.

This paper makes the following contributions:

• We propose a systematic procedure for Android malware

forensic analysis and malicious events reconstruction.

• We discuss in detail the code analysis of Android mal-

ware, which is ignored by most forensic research works.

• A real forensic analysis case is given and we suggest how

to combine existing tools and techniques to help analysis.

The paper is organized as follows: Section II briefly intro-

duces malwares on Android OS. Section III proposes the main

principles and methods of malware identification on Android.



Section IV describes the common anti-forensics technique

and proposes the countermeasure. Section V describes the

deduction of malicious events via program code, how to

take advantage of the relationship between specific Android

developing feature and corresponding malicious function, and

paying particular attention to typical malicious behaviors of

Android Malwares. Section VI gives a concrete example of

mobile malware forensic analysis. The conclusions are made

in Section VII.

II. A BRIEF INTRODUCTION TO ANDROID MALWARE

Most of the malwares on Android OS are developed using

JAVA programming language and are executed on Dalvik VM

engine[5] of the system. Although Android itself is a Linux

based system, the best way of malware invasion is via normal

application installation. Thus to analyze malwares on Android

OS, the analyst should first understand the format of the Dalvik

VM based program. The Dalvik Based Android applications

are released and stored in the device with the APK format[6].

An application is first compiled and is then archived into one

single APK file with all of its parts, including codes and

assets. The APK file is actually an application in the form

of a ZIP archive with codes, resources, assets, certificates

and manifest file. The inner folders and files structure of this

archive conform to the JAR file format specification. After the

installation, the APK file is copied to a specific location in

the system. For system applications, the location is typically

/system/app and for user-installed applications the location is

/data/app.

From the forensic analyst’s point of view, an APK file con-

tains three parts of abstract information: signature, bytecodes

and resources.

A. Signature

The signature contains the message digest of the APK

file. Since any modification to the APK file will change the

message digest of the signature, one could quickly identify if

an application is corrupted by checking the signature. Analyst

could also collect signatures of malwares to find out malwares

quickly.

B. Bytecodes

The executable part of the application, the classes.dex file

in the archive, contains all compiled classes of the program

in the form of bytecodes. For Android programs, the original

JAVA bytecodes are converted to the instruction set used by

the Dalvik VM, which is a register-based VM while JVM is

stack-based.

C. Resources

Resources is the non-executable part of the application, it

contains all additional data required by the application. Most

resources in an application are user interface components,

such as bitmaps, menus, layouts, widgets. In most cases, the

malicious part of the malware runs in background and does

not have any user interfaces. So these UI resources are seldom

concerned. However, the resource file, AndroidManifest.xml, is

important for it indicates crucial forensic information of an ap-

plication. The AndroidManifest.xml file is encoded into binary

format in the APK file. It contains the permission request of

an application. The most important forensic information are

permissions and components.

1) Permissions: In order to access some protected APIs of

Android, the application will declare the permission request in

AndroidManifest.xml, such as the permissions to read message,

contacts, etc. Permission request is a very important clue to re-

veal malicious functions[7]. For instance, a normal application,

such as calculator, declares a READ CONTACTS permission,

it can be very suspicious because a calculator should never

need information about contacts. This character is unique for

Android applications and is useful for analysis.

2) Components: Android applications are formed by com-

ponents. The components of the application are divided into

four kinds – activities, services, broadcast receivers and

content providers. A malware who runs in background often

has a service component and a receiver component in order

to receive the boot Intent on system booting. By checking

components and their received intents, analyst may have a

brief view of the potential behavior of an application.

III. IDENTIFICATION OF SUSPICIOUS APPLICATIONS

In a typical smart mobile device there are as much as

hundreds of applications. Malwares only occupy a few part

of them and Most of the others are benign. The first step of

forensic analysis is to identify the malicious programs from

the benign ones. Although many research works and tools are

claimed to support malware detection[8], there’re still some

unsolved problems for forensics. In one way, automatic tools

need samples to generate malware database. The rapid evolve-

ment of malware makes automatic detection tools difficult to

follow. Moreover, some malwares are designed for attacking

specific devices and yet are hard to be collected beforehand.

In another way, forensics not only needs to find the suspi-

cious programs, but also requires code analysis and events

reconstruction. Thus manual check is helpful for later in-depth

analysis, and manual methods are essential for forensic analyst

to ensure the identification.

To identify malicious programs, one important conclusion

is that malwares are always connected with some unusual

features. These features indicate the potential suspicions. We

suggest checking the following features to efficiently and

effectively identify suspicious applications.

A. Message Digest

For excluding benign applications from affected ones, the

message digest is a useful cryptographic feature. Often a

trustful application is released via online market and the

market provides its message digest. A database for normal

applications can be built by collecting message digest infor-

mation from online markets. Then the analyst simply checks

an application’s message digest and if the message digest

of the checked application can’t be found in database, it is



Fig. 1. Suspicious Features

possible that this application is malign. However, only with the

message digest it is not cautious to determine the malicious

applications. A more in-depth analysis should be employed to

fulfil the identification.

B. Permission requirement

The permission requirement is a unique character for An-

droid programs. Due to the design philosophy of the Android

OS, the application only needs to apply for permissions when

being installed and persistently own these permissions without

repeatedly requesting. Users may ignored the initial request,

and a common malware pretending to be an unharmful appli-

cation with faked normal functions will ask for a set of per-

missions such as SMS and Contacts database access, even the

faked functions of the application need not these permissions

at all. Suspicious permission requirement is the leading clue

to confirm an Android malware[9][10]. Most of the Malwares

declare a list of high-privilege permissions to fulfil malicious

functions. According to the AndroidManifest.xml file of an

APK file, we can find out the permissions requested by the

application and filter out the suspicious requests.

C. Components

At the very abstract level, Android application is formed

by components. The structure of components can be used to

judge the program’s characters. As mentioned in Sec II, service

component and receiver component are sensitive weapons

for malwares. So, from the examination of components and

their received intents, analyst could have a brief view of the

potential malicious function of an application. and suspicious

applications are to be distinguished from the normal ones.

IV. DEFEAT ANTI-FORENSICS CODES

In this section we introduce three common anti-forensics

techniques and discuss how to deal with them.

A. Anti-forensics techniques

Events could be deduced from the code. However, malware

developers always try to stop the deduction or make it hard.

Before code analysis, one important thing is to clean the

barrier – anti-forensics codes. Anti-forensics codes are com-

mon inside malwares of commodity personal computers. For

instance, many malwares detect the execution environment to

check whether it is executed inside a virtual machine. Android

Malwares inherit the property to inconvenience the forensic

analysis.

• obfuscation. The obfuscation techniques of Android mal-

ware is as much the same as JAVA obfuscation[11], be-

cause the developing programming languages are similar.

A very typical case is that in an obfuscated program all

of the packages, classes, methods, fields are renamed to

single alphabet such as a, b, c.a(), d, e.b, f.a, g.b(). So that

analyst is hard to distinguish different parts of the code

yet is difficult for her to understand the functionalities.

• strings encryption. For an experienced reverse engineer,

strings in a program are valuable information sources.

Many malwares use string encryption to avoid plaintext

detection. Constant strings in malware are encrypted with

symmetric algorithms such as DES and the AES and the

key is fixed (dynamic key is seldom used because no

matter how complex the key is, it will finally be used

to decrypt the ciphertext). The encryption makes static

analysis hard. However, if the analyst has the capability

of dynamic execution she may manually extract key

and decrypt the ciphertext, thus the information is still

available for retrieving.

• environment verification. Some of the mobile malwares

are designed to attack certain types of mobile devices.

Specific symbols like Android system properties (from

android.os.BUILD) are often verified to make sure the

malware is not executed in an emulator or other types of

devices. And the subscriber ID (IMSI) is used to make

sure the malware is running on a certain device with

the special IMSI. If verification fails, the malicious code

will stop executing, and the analyzers could not simply

reproduce the malicious behavior by emulation or using

any improper devices. This anti-forensic technique lets

malware deceive dynamic black-box analysis.

B. Countermeasures

We suggest some countermeasures to the anti-forensics

techniques mentioned above.

1) decompilation and deobfuscation: For an Android ap-

plication, the high level JAVA-like source code is much

easier to read and to be understood than the bytecode. How-

ever, the State of Art decompilation tools cannot decompile

programs perfectly. The decompiled source code typically

contains mistakes or code absences. What’s more, in many

cases the bytecode of malware is obfuscated, which makes

decompilation more difficult and inaccurate. Meanwhile, the

bytecode is always correct and accurate although it is much

more difficult to be analyzed. So analyst should utilize both

bytecode and decompiled source code, and take both codes

into analysis to compensate the shortcomings of each other.

Three main steps are suggested to employ decompilation

and deobfuscation. First, the analyst could use apktool[12] to

extract the bytecode (with .dex format). Then, the combination

of dex2jar[13] and jd-gui[14] are helpful to decompile the



Fig. 2. JD-GUI decompiler

bytecode file to JAVA source code. The decompiled JAVA

source code may contain huge number of errors. The following

measures are possible options for code fixing.

• removing empty classes

• renaming

• decompile errors correction

• control flow error correction

• name conflict correction

• missed information fixing

2) strings decryption: Strings are important information

sources and most constant strings (e.g. remote server URL) in

malware are encrypted. Often a decryption process is required

to extract these strings. The whole decryption process involves

encryption algorithm recognition, secret key extraction and

string decryption. One convenient aspect is that many mal-

wares use system cryptographic APIs to deal with encryption

and decryption. Analyst could filter out these situations and

quick identify the key.

3) program patching: As mentioned above, to deceive

dynamic analysis, system properties and the subscriber ID are

often verified by the malware. In order to employ dynamic

analysis, analyst could automatically search for these features

and manually patch the code to avoid these verifications.

V. MALICIOUS EVENTS DEDUCTION

The core part of mobile malware forensics is to reconstruct

the malicious events via program code and additional infor-

mation such as network flow. But in most cases the only form

of malware provided is binary program. In order to understand

the logic of the program, a reverse code analysis is essential.

Although there is not a standard procedure for reverse code

analysis, on Android some typical behaviors may be the key

that helps analyst unlock the puzzle and understand the crime.

These typical behaviors are always related to malicious code

with obvious patterns. So analyst can follow the patterns

to locate and then find the malicious behaviors, and finally

combines the behaviors to deduce the events.

A. Specific suspicious behaviors on Android

The Android malwares steal private information such as

SMS and Contacts, and automatically send them to remote

servers. In detail, a malicious program may pretend to be a

normal financial application while accessing users’ personal

information (SMS, Contacts, ID, etc.) with background service.

The background service then waits for certain commands from

particular remote server and sends the private information

via self-defined protocols. Related suspicious functions that

essential to the malicious behavior are listed below.

• service core loop. Most of the malwares contain a service

that supports continually execution. On Android OS, this

is often implemented using a service component.

• self-defined communication protocol. A malware often

contains a self-defined protocol to communicate with a

certain remote server with its own ”language”. Inside

the malware some modules handle the communication

between the client and the command server. Malwares

often pack and encrypt the sent information, decrypt and

parse data returned by the server. On Android OS, this

function is always related to the permission of network

access such as android.permission.INTERNET and an-

droid.permission.ACCESS NETWORK STATE.

• cryptographic utilities. The cryptographic utilities from

system libraries support encryption operation of the mal-

ware, such as generating message digest of device in-

formation, decrypting encrypted strings, exchanging key

with server and making encrypted communication with

the server.

• sensitive data access. Sensitive data access

is the core function of the malware from

the point of privacy leakage. It needs high

privileges to achieve the goal. First, data access

permissions such as android.permission.READ SMS,

android.permission.READ CONTACTS are required.

Then, specific protected APIs and content providers are

used to visit the database. An application with sensitive

data access permission request is highly suspicious.

B. Taking Code analysis to reconstruct crime

It is hard to extract the malicious behaviors of malwares

in the view of top level. Android malwares are written using

JAVA programming language, and the bytecode of the mal-

ware contains all logic functions. In mobile malware forensic

analysis, the direct evidence of malicious events is from the

malicious code itself. A malware sample may be acquired

after the crime. The criminal events is unknown for analyst.

Only the code related to malicious behaviors helps analyst fast

locating and analyzing the malicious event first. That is to

say, through the reverse code analysis that aims at extracting

program fragments first, analyst could then combine simple

functions into a high-level abstract events.

The reconstructed events may include following informa-

tion, the work flow of malicious code, sensitive information

that the malware accessed, the encryption algorithms, and the



Fig. 3. Malicious Events Reconstruction - work flow

details of malware’s communication protocols. The task of

reconstruction and combination requires not only the mining

of function inside codes, but also rearrangement of these

functions into a correct order. Android provides a logcat

mechanism to capture high-level operations such as the system

API calls and services starting/stopping log. If allowed, analyst

should try to reappear the execution of malware and record the

occurred operations, and then draw the picture of the events.

Fig 3 shows a complete work flow of events reconstruction

procedure.

VI. CASE STUDY

In this section we provide a complete forensic analyzing

process to show some details of mobile malware analysis.

The analyzed malware sample is from the honeynet Forensic

Challenge 9[15]. Notice that we ignore the file recovery

process for it is not directly related to this paper’s topic.

The interested reader may refer[16]. The process of forensic

analysis could be divided into four parts and each part is

introduced below.

A. Background

The challenge offers the exploration of a real smart phone

compromised by mobile malware, based on Android, after a

security incident. Analyst will have to analyze the image of a

portion of the file system, extract all that may look suspicious,

analyze the threat and finally give conclusion. The required

knowledge extends from File System recovery to Malware

reverse-engineering and PCAP analysis.

B. identification of suspicious program

There’re totally ten applications and two tmp files contained

in the provided corrupted memory dump. Among them, seven

files’ message digest can be found online and are considered

as normal, trusted packages.

• com.adobe.reader-1.apk

• com.google.android.stardroid-1.apk

• com.rovio.angrybirds-1.apk

• com.android.vending-1.apk

• com.google.android.apps.maps-1.apk

• com.google.earth-1.apk

• com.opera.browser-1.apk

For the rest three packages, although their SHA1 and MD5

are not found online, we further examined the permission

and component and decompiled these packages, found noth-

ing suspicious for com.google.android.apps.finance-1.apk and

net.xelnaga.exchanger-1.apk. We noticed that the only left ap-

plication, app/com.fc9.currencyguide-1.apk is exactly the same

as the tmp files app/vmdl34052.tmp and lgdrm/TRYSYNC,

which means this application was possibly active when the

memory was dumped.

Then, we checked the requested permission of this applica-

tion and found the following permissions are requested.

• android.permission.INTERNET

• android.permission.READ PHONE STATE

• android.permission.ACCESS WIFI STATE

• android.permission.WAKE LOCK

• android.permission.ACCESS NETWORK STATE

• android.permission.RECEIVE BOOT COMPLETED

• android.permission.CAMERA

• android.permission.VIBRATE

• android.permission.ACCESS COARSE LOCATION

• android.permission.ACCESS FINE LOCATION

• android.permission.CALL PHONE

• android.permission.SEND SMS

• android.permission.READ CONTACTS

• android.permission.RECEIVE SMS

• android.permission.READ SMS

The application(see fig 4) however performed as a normal

currency calculation tools when executed. The unusual num-

ber and type of unnecessary requested permissions makes it

suspicious.

We then focused on this suspicious application

com.fc9.currencyguide-1.apk to employ analysis in depth.

C. Anti anti-forensics

This malware uses all three anti-forensics techniques we

mentioned above to interfere forensic analysis. We only em-

ployed code error fixing and strings decryption to get a neat

version of decompiled code for static analysis.



Fig. 4. The suspicious application

1) Code error fixing and Refactoring: The raw code

from the decompiler contains lots of errors. To fix these

errors, we analyzed the bytecode, and rebuilt the source

code. Then, because all malicious parts of the code are

obfuscated by name renaming(e.g., one of the class is

com.fc9.currencyguide.daemon.g.a.a), we need to do code

Refactoring. The procedure of refactoring all source codes was

a Depth-First Search. The atomic functions were refactored

first then the complex ones. What’s more, when looking into

the decompiled code, we found some empty JAVA classes

without fields or methods definition. Some of these situations

are due to the decompiler’s processing capability and the

correct code should be manual added after further examina-

tion to the corresponding bytecode. And We confirmed that

other situations are really empty. These classes were probably

intended to add into the code by the obfuscator.

2) strings decryption: The most important data in this

malware is string encrypted with DES, including the server

address, command names, etc. We extracted the DES key

from the code (0x63B252F6FAF4167F) and decrypted all

encrypted strings with the key. For instance, one im-

portant string is the address of the command server,

http://faeacdeadbeefada.zonbi.org:443.

D. Code analysis

1) Code entry: From the AndroidManifest.xml of

com.fc9.currencyguide-1.apk, we found six components

of the application,

• Main Activity

• Converter Service

• PrefMenu Activity

• com.fc9.currencyguide.daemon.fc9

• com.fc9.currencyguide.daemon.CCcomService

• com.fc9.currencyguide.daemon.BootReceiver

By examining the code entry of each component, we

found that the first three components, Main Activity,

Converter Service, PrefMenu Activity, fulfils the

normal currency converter function that the application

pretends, while the last three components are malicious.

The component com.fc9.currencyguide.daemon.fc9

is an activity started on application launching,

com.fc9.currencyguide.daemon.BootReceiver is

a receiver component who responds to the

BOOT COMPLETED intent. They may start the service

com.fc9.currencyguide.daemon.CCcomService, which is the

main malicious code entry. The design indicates the malicious

service will run automatically when the application launched

or system boot completed. And it contains a state machine and

an infinite loop so that it will always active in background.

E. evidences and malicious event rebuild

According to the code analysis result, we rearranged the

sequence of each functions and formed a complete malicious

communication process. The process contains four parts.

1) key exchange: The first step of the communication

between the malware and the server is a self-defined diffie-

hellman key exchanging to establish a secret key. The typical

Diffie-hellman key exchange algorithm is used in the nego-

tiation, and then DES is used in encrypted communication.

According to the source code and the captured network traffic

record, we found the DES key is 0xc4c9973a45c7007d.

2) encrypted private information sending: The commu-

nication between malware and remote server is based on

HTTP protocol. The following private information are sent

via encrypted communication.

• device infomation The device ID (IMEI), subscriber ID

(IMSI), network operator name(alphabetic name), net-

work operator(numeric name), network ISO country code.

• personal information SMS (address and body for each

sms, contained password)

• contacts contact id and display name

• com.fc9.currencyguide.daemon.fc9

• com.fc9.currencyguide.daemon.CCcomService

• com.fc9.currencyguide.daemon.BootReceiver

3) server command receiving: The malware requests com-

mand from server every 15 seconds, and executes the com-

mand. Some commands involve extra communication while

executing. For commands ”getsms”, ”getcontacts”, the mal-

ware will send SMS or Contacts information to server when

executing.

4) The ”smsspy” communication: A very special command

from the server is the ”smsspy” command. When receiving,

the malware will change the malicious mode into an ”smsspy”

mode and send any SMS to server whenever an SMS is coming

from mobile network.

Finally, the reconstructed malicious event can be represented

as fig 5. For more details, please refer to[16].

VII. CONCLUSION

In this paper we discuss the problem of Android mobile

malware forensic analysis. The core task of mobile malware

forensic analysis is to reconstruct the malicious events accord-

ing to malware. We propose some systematic procedures for

Android malware forensics and discuss the details. In addition,



Fig. 5. The reconstructed malicious events

an example of malware forensic analysis is given to help

further research.

ACKNOWLEDGMENT

The authors would like to thank SafeNet Inc. for the support.

REFERENCES

[1] Google, “Android,” URL http://www.android.com/accessed March, 2012.

[2] J. Lessard and G. Kessler, “Android forensics: Simplifying cell phone
examinations,” Small Scale Digital Device Forensics Journal, 2010.

[3] Google, “Android forensics,” URL http://code.google.com/p/android-

forensics/accessed March, 2012.

[4] A. Hoog, Android forensics. Syngress., 2009.

[5] Google, “Code and documentation from android’s vm team.” URL

http://code.google.com/p/dalvik/accessed March, 2012.

[6] Ophonesdn, “The structure of android package (apk) files.” URL

http://en.ophonesdn.com/article/show/354/accessed March, 2012.

[7] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference

on Computer and communications security. ACM, 2011, pp. 627–638.

[8] L. M. Security, “Android security for mobile.” URL

https://www.mylookout.com/accessed March, 2012.

[9] F. Di Cerbo, A. Girardello, F. Michahelles, and S. Voronkova, “Detection
of malicious applications on android os,” Computational Forensics, pp.
138–149, 2011.

[10] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets,” in Proceedings of the 19th Annual Network and Distributed

System Security Symposium, 2012.
[11] D. Low, “Protecting java code via code obfuscation,” Crossroads, vol. 4,

no. 3, pp. 21–23, 1998.
[12] Brut.alll, “Android-apktool.” URL http://code.google.com/p/android-

apktool/accessed March, 2012.
[13] pxb1988, “dex2jar.” URL http://code.google.com/p/dex2jar/accessed

March, 2012.
[14] E. Dupuy, “Jd-gui: Yet another fast java decompiler.” URL

http://java.decompiler.free.fr/?q=jdgui/accessed March, 2012.
[15] Honeynet, “Forensic challenge 9 - ”mobile malware”,” URL

http://www.honeynet.org/node/751/accessed March, 2012.
[16] Y. W. Luo YH, Li JR, “Submission of the honeynet forensic challenge

9.” URL http://www.honeynet.org/files/1317348062

lyh62771gmail.com ForensicChallenge2011-Challenge9-

Submission.doc/accessed March, 2012.


