

Android Forensics
Investigation, Analysis,
and Mobile Security for

Google Android

Andrew Hoog

John McCash, Technical Editor

AMSTERDAM � BOSTON � HEIDELBERG � LONDON
NEW YORK � OXFORD � PARIS � SAN DIEGO

SAN FRANCISCO � SINGAPORE � SYDNEY � TOKYO

Syngress is an imprint of Elsevier

Acquiring Editor: Angelina Ward

Development Editor: Heather Scherer

Project Manager: Danielle S. Miller

Designer: Russell Purdy

Syngress is an imprint of Elsevier

225 Wyman Street, Waltham, MA 02451, USA

� 2011 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or any information storage and

retrieval system, without permission in writing from the publisher. Details on how to seek

permission, further information about the Publisher’s permissions policies and our

arrangements with organizations such as the Copyright Clearance Center and the Copyright

Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the

Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and

experience broaden our understanding, changes in research methods or professional practices

may become necessary. Practitioners and researchers must always rely on their own

experience and knowledge in evaluating and using any information or methods described

herein. In using such information or methods they should be mindful of their own safety and

the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,

assume any liability for any injury and/or damage to persons or property as a matter of

products liability, negligence or otherwise, or from any use or operation of any methods,

products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Application submitted

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-1-59749-651-3

For information on all Syngress publications visit

our website at www.syngress.com

Printed in the United States of America

11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

http://www.elsevier.com/permissions
http://www.syngress.com

Dedication

To my beautiful spouse who has endured my extended absenteeism as I wrote this

book. She is my motivation, my friend, my partner, and the root of my happiness.

This book is dedicated to her.

And to my wonderful daughters. You light up our lives and know more about

Android forensics than any other 6-year-olds. May your lives be full of learning,

success, and happiness.

Acknowledgements

I now understand that the phrase “It takes a village.” applies equally to writing

a book as it does to raising children. As such, I wish to acknowledge the village:

• My family (see Dedication).

• Lee Haas, for excellent editing and attempts to keep me on schedule

• Ted Eull, who coined to term “deHOOGification,” which provides an immense

service to you, the reader, as the ideas bouncing around in my head don’t always

come out that clear when I persist them to words. Ted is also a great friend and all

around swell guy. Many thanks to his better half for her patience in putting up

with the long hours racked up by motivated geeks at a tech start-up.

• Chris Triplett, for diving head first into Android and doing an amazing job at it.

Chris is also excellent at patching drywall and providing some comic relief by

applying farm English to digital forensics.

• Katie Strzempka, for generally taking care of that other book (“iPhone and iOS

Forensics”). Please buy that one too, seriously.

• My parents, Stevie and Al, who set me on the correct path from the start and were

always there to remind me if I swerved off a bit.

• To Harmonee and Hadabogee, whose help with our daughters, dinner, and other

areas is immensely appreciated.

• To the men and women who bravely serve the public interest in Local, State, and

Federal law enforcement and other government agencies. We appreciate all that

you do to protect and serve our communities and countries.

• To Google, for seeing the value in Android and creating a new paradigm of

openness for mobile devices.

• To Apple, for providing the opposite paradigm.

• And finally to the reader. I hope that you find this book useful and certainly do

appreciate your support.

xiii

Introduction

The Android mobile platform has quickly risen from its first phone in October 2008

to the most popular mobile operating system in the world by early 2011. The

explosive growth of the platform has been a significant win for consumers with

respect to competition and features. However, forensic analysts and security engi-

neers have struggled as there is a lack of knowledge and supported tools for

investigating these devices. This book seeks to address issues not only by providing

in-depth insights into Android hardware, software, and file systems but also by

sharing techniques for the forensic acquisition and subsequent analysis of these

devices. For readers with limited forensic experience, this book creates step-by-step

examples that use free, open source utilities so the reader can directly participate in

the examples. As the free Android software development kit provides a full Android

emulator, readers do not even need to possess an Android device.

As Android devices grow in numbers, an increased awareness of the data they

possess will equally grow. Unfortunately, much of that interest will come from cyber

criminal organizations who realize that successful attacks against the platform will

yield significant results as the devices contain enormous quantities of personal and

business information. The solution to this threat requires a deep understanding of the

platform not only from core Android developers and manufacturers but also from

app developers and corporate security officers. More secure apps will prevent loss of

sensitive information as well as strong policies that can be put in place by IT security

managers.

Although most of the discussed statistics about Android focus on smartphones

and now tablets, there are many more devices that currently or in the near future will

run Android. Some examples include vehicles, televisions, GPS, gaming devices,

netbooks, and a wide variety of other consumer devices. Android will be present in

an increasingly significant percentage of investigations for both forensic analysts

and security engineers. Finally, the appeal of Android is not specific to any particular

country or region and as such will impact individuals, corporations, and agencies

throughout the world.

The following paragraphs contain a brief summary of each of the chapters.

CHAPTER 1
This chapter provides not only a history of the Android platform but also discusses

the Android Open Source Project (AOSP), the internationalization of the platform,

the Android Market, a brief Linux tutorial, and a quick fb-non-chapter to Android

forensics. It also provides a step-by-step tutorial for creating an Ubuntu-based

virtual machine (VM), which will be used throughout the book in examples. The

Ubuntu VM is a highly recommended component of this book and can also be used

outside of the book for Android forensic cases.

xv

CHAPTER 2
In this chapter, a wide array of Android-supported hardware and device types is

covered. Although the hardware compatibility is great for manufacturers, wireless

providers, and ultimately consumers, this diversity poses challenges for forensic

analysts and security engineers. Understanding the hardware components, device

types, and boot process for Android will aid in your overall understanding of

Android and assist in both forensic and security investigations.

CHAPTER 3
This chapter covers the various Android releases, the Android software development

kit (SDK), the Davlik virtual machine, key components of Android security, and

several other concepts core to Android forensics such as the Android debug bridge

(adb) and the USB debugging setting. Step-by-step examples include installing the

SDK on Linux, OS X, and Windows as well as creating an Android virtual device

that can be used to test forensic techniques.

CHAPTER 4
This chapter covers the information needed to understand how data are stored on an

Android device. This includes reviewing the methods in which data are stored

(shared preferences, files, SQLite, and network) as well as the types of memory used

in an Android device such as RAM and the all important NAND flash. The various

file systems the reader might encounter in an Android device are also covered in

great detail including the YAFFS2, EXT, FAT32/FAT16, and a variety of low-level

file systems.

CHAPTER 5
This chapter covers the security of Android devices, data, and apps. A review not

only of how data can be exfiltrated from an Android device is covered but also of

how an Android device can be used as an active attack vector. After discussing

several overarching security concepts, this chapter provides specific advice for three

primary audiences: individuals, corporate security, and app developers. As the

growth of Android continues, issues of data security will be increasingly important

and this chapter provides a thorough and practical fb-non-chapter to this important

topic.

xvi Introduction

CHAPTER 6
This chapter covers specific techniques that are useful in the forensic acquisition of

Android devices. After clarifying the different types of acquisitions and providing

procedures for handling an Android device, seven different strategies for circum-

venting a pass code are discussed. Next, techniques and a specific script for

acquiring an SD card and, if present, the Embedded MultiMediaCard (eMMC) are

covered. Logical acquisition techniques are then covered including ones built into

Android and the SDK, a solution free to law enforcement and government agencies

called AFLogical, and finally a review of six commercial forensic software pack-

ages. Finally, techniques for acquiring a physical image of the NAND flash are

described in detail including six strategies for gaining root privileges and the

AFPhysical technique developed by viaForensics.

CHAPTER 7
In this final chapter, strategies and specific utilities are provided, which enable

a forensic analyst or security engineer to analyze an acquired Android device.

Although many of the techniques used in traditional forensic investigations are

applicable in Android forensics analysis, the new file system and the underlying

hardware characteristics require new techniques. Without these new techniques,

little content and value can be extracted from an Android physical acquisition.

Beyond providing the background and actual utilities, an overview of Android’s

directory structure as well as an in-depth analysis of 11 important applications that

provide significant data about the device are given. Armed with this knowledge,

a forensic analyst or security engineer can investigate any Android device they

encounter.

WEBSITE
For companion material including code, programs and updates please visit: http://

viaforensics.com/education/android-forensics-mobile-security-book/

Introduction xvii

About the Author

Andrew Hoog is a computer scientist, certified forensic analyst (GCFA and CCE),

computer and mobile forensics researcher, former adjunct professor (assembly

language), and cofounder of viaForensics, an innovative digital forensic and security

firm. He divides his energies between investigations, forensic software development,

and research in digital forensics and security. He also has two patents pending in the

areas of forensics and data recovery. He lives in Oak Park, IL, where he enjoys

spending time with his family, traveling, great wine, science fiction, and tinkering

with geeky gadgets.

About the Technical Editor

John McCash (CompTIA Sec+, GCIH, GAWN, GCFA, EnCE, GREM, SANS

Lethal Forensicator) is a 23-year IT veteran. He has specialized in Security for the

last 15 years, and Forensics for the last 4 years. McCash has extensive experience in

digital forensics, security/system/network administration, and incident response on

diverse platforms in very heterogeneous environments. He obtained his BS and MS

in CS at Bradley University in 1988. Currently John works for a major telecom-

munications equipment provider, and is a semiregular contributor to the SANS

Forensic Blog.

xix

About the Author

Andrew Hoog is a computer scientist, certified forensic analyst (GCFA and CCE),

computer and mobile forensics researcher, former adjunct professor (assembly

language), and cofounder of viaForensics, an innovative digital forensic and security

firm. He divides his energies between investigations, forensic software development,

and research in digital forensics and security. He also has two patents pending in the

areas of forensics and data recovery. He lives in Oak Park, IL, where he enjoys

spending time with his family, traveling, great wine, science fiction, and tinkering

with geeky gadgets.

About the Technical Editor

John McCash (CompTIA Sec+, GCIH, GAWN, GCFA, EnCE, GREM, SANS

Lethal Forensicator) is a 23-year IT veteran. He has specialized in Security for the

last 15 years, and Forensics for the last 4 years. McCash has extensive experience in

digital forensics, security/system/network administration, and incident response on

diverse platforms in very heterogeneous environments. He obtained his BS and MS

in CS at Bradley University in 1988. Currently John works for a major telecom-

munications equipment provider, and is a semiregular contributor to the SANS

Forensic Blog.

xix

Android and mobile forensics 1
INFORMATION IN THIS CHAPTER

� Android platform

� Linux, Open source software and forensics

� Android Open Source Project

� Internationalization

� Android Market

� Android forensics

INTRODUCTION
Digital forensics is an exciting, fast-paced field that can have a powerful impact on

a variety of situations including internal corporate investigations, civil litigation,

criminal investigations, intelligence gathering, and matters involving national

security. Mobile forensics, arguably the fastest growing and evolving digital forensic

discipline, offers significant opportunities as well as many challenges. While the

interesting part of Android forensics involves the acquisition and analysis of data

from devices, it is important to have a broad understanding of both the platform and

the tools that will be used throughout the investigation. A thorough understanding

will assist a forensic examiner or security engineer through the successful investi-

gation and analysis of an Android device.

TIP

Book corrections, updates, and software
All corrections, updates, and even software samples for this book will be maintained online

at the following web page:

http://viaforensics.com/education/android-forensics-mobile-security-book/

Please check the web site as over time it will evolve and provide significant and

increasing value to the reader. Beyond corrections and updates, some of the software

referenced in the book will be available for download.

ANDROID PLATFORM
Android is an open source mobile device platform based on the Linux 2.6 kernel and

managed by the Open Handset Alliance, a group of carriers, mobile device and

component manufacturers, and software vendors.

CHAPTER

1Android Forensics. DOI: 10.1016/B978-1-59749-651-3.10001-9

Copyright � 2011 Elsevier Inc. All rights reserved.

http://viaforensics.com/education/android-forensics-mobile-security-book/
http://dx.doi.org/10.1016/B978-1-59749-651-3.10001-9

Android has made a significant impact on the smartphone market and, conse-

quently, in the area of forensics. Two years and one month after the first Android

device was introduced (October 2008), Android became the second largest smart-

phone platform capturing 26.0% of the 61.5 million US smartphone subscribers

(comScore reports, n.d.). Table 1.1 shows the top smartphone platforms as of

November 2010, according to comScore, Inc.

But Android’s influence extends well beyond the US market. According to

Gartner, Inc., the Android operating system (OS) was the second most popular

during the third quarter of 2010 and accounted for 25.5% of worldwide smartphone

sales (Gartner says, n.d.), as shown in Table 1.2.

According to the web site Google Investor, Google CEO Eric Schmidt reported

that over 350,000 Android devices were being activated each day as of February

2011 (Google investor, n.d.). These statistics focus on the smartphone market, which

is only one of the many types of Android devices available in the market.

The open source nature of Android has not only established a new direction for

the industry, but also has enabled developers, code savvy forensic analysts, and

Table 1.1 Total US Smartphone Subscribers, Ages 13þ, November 2010

Platform Share (%) of Smartphone Subscribers

RIM 33.5

Google 26.0

Apple 25.0

Microsoft 9.0

Palm 3.9

Table 1.2 Worldwide Smartphone Sales to End Users by Operating System

in Third Quarter of 2009–2010 (in Thousands of Units)

Company

Unitsd3rd

Qtr 2010

Market Share

(%)d3rd Qtr 2010

Unitsd3rd

Qtr 2009

Market Share

(%)d3rd Qtr

2009

Symbian 29,480.1 36.6 18,314.8 44.6

Android 20,500.0 25.5 1424.5 3.5

iOS 13,484.4 16.7 7040.4 17.1

Research

in motion

11,908.3 14.8 8522.7 20.7

Microsoft

Windows

mobile

2247.9 2.8 3259.9 7.9

Linus 1697.1 2.1 1918.5 4.7

Other OS 1214.8 1.5 612.5 1.5

Total 80,532.6 100.0 41,093.3 100.0

2 CHAPTER 1 Android and mobile forensics

(unfortunately) sophisticated criminals to understand the device at the most

fundamental level. As the core platform quickly matures and continues to be

provided free of charge, carriers and hardware vendors alike can focus their efforts

on customizations intended to retain their customers.

History of Android

For over three decades, companies have invested significant resources into research

and development of handheld computing devices in the hopes that they would open

new markets. As with traditional computers, the hardware components central to

building such devices have advanced significantly and now provide a small, though

powerful, mobile platform for handheld computers.

A central figure in the development of Android is Andy Rubin whose past

employers include robotics firms, Apple, WebTV, and Danger Inc. His previous

company, Danger Inc., developed a smartphone and support OS most recognized

from the T-Mobile Sidekick. This mobile operating system, DangerOS, was built

using Java. It provided a software development kit and had some of the features

found in current smartphones. In 2004, Rubin left Danger and tinkered with several

new ideas. He again returned to smartphone development and teamed with several

engineers from past companies. The company Rubin formed in 2003 was called

Android, Inc.

While the team began development, Rubin was actively marketing Android to

both potential investors and wireless carriers. One of the companies he spoke with

was Google, who subsequently acquired Android in July 2005. The acquisition,

combined with new patents and services involving mobile and a large bid for

wireless spectrum, fueled significant speculation that Google was developing their

own smartphone and perhaps was aiming to be a full wireless carrier.

However, on November 5, 2007, Andy Rubin announced a more ambitious plan

on the official Google blog (Official Google blog, n.d.):

Android is the first truly open and comprehensive platform for mobile devices. It

includes an operating system, user-interface and applicationsdall of the

software to run a mobile phone, but without the proprietary obstacles that have

hindered mobile innovation. We have developed Android in cooperation with

the Open Handset Alliance, which consists of more than 30 technology and

mobile leaders including Motorola, Qualcomm, HTC and T-Mobile. Through

deep partnerships with carriers, device manufacturers, developers, and others,

we hope to enable an open ecosystem for the mobile world by creating

a standard, open mobile software platform. We think the result will ultimately

be a better and faster pace for innovation that will give mobile customers

unforeseen applications and capabilities.

One week later, Google released an early look at the Android software devel-

opment kit (SDK) to developers. This allowed Google to create the first Android

Developer Challenge, which ran from January 2008 through April 2008. Google set

Android platform 3

aside $1,000,000 to reward the most innovative Android apps. The top 50 apps are

available for review at http://code.google.com/android/adc/adc_gallery/.

In August 2008, Google announced the availability of the Android Market where

developers could upload their apps for mobile device owners to browse and install.

The initial release did not support paid apps. However, that feature was added in

early 2009. Finally, October 2008 marked both the official release of the Android

Open Source Project (AOSP) (Bort, n.d.) and the first publicly available Android

smartphone, the T-Mobile G1.

Since inception, the Android ecosystem has grown significantly and is comprised

of diverse groups of contributors. Table 1.3 summarizes significant milestones for

the Android platform.

Open Handset Alliance
The Open Handset Alliance (OHA) is a collaboration among mobile technology

companies including wireless carriers, handset and component manufacturers,

software developers, and other support and integration companies. The alliance,

established on November 5, 2007, originally had 34 members. However, by January

2011 there were nearly 80 members.

The OHA is committed “to accelerate innovation in mobile and offer consumers

a richer, less expensive, and better mobile experience” (Alliance FAQ, n.d.) with the

primary focus on the coordination, development, and release of Android devices.

Google is the driving force behind both the OHA and AOSP. Some have complained

that the alliance is simply a marketing technique that offers little value to the

members or consumers. However, new members have joined throughout 2010 and

the OHA will undoubtedly continue well into the future. The members, as of

Table 1.3 Android Milestones

Date Event

July 1, 2005 Google acquires Android, Inc.

November 12, 2007 Android launched

August 28, 2008 Android Market announced

September 23, 2008 Android 1.0 platform released

October 21, 2008 Android released as open source software

February 13, 2009 Android Market: USA takes paid apps

March 12, 2009 Android Market: UK takes paid apps

April 15, 2009 Android 1.5 (Cupcake) platform released

September 16, 2009 Android 1.6 (Donut) platform released

October 5, 2009 Android 2.0/2.1 (Eclair) platform released

May 20, 2010 Android 2.2 (Froyo) platform released

May 23, 2010 Android 2.2. for Nexus One phones released

December 6, 2010 Android 2.3 (Gingerbread) platform released

February 2, 2011 Android 3.0 (Honeycomb) preview released

4 CHAPTER 1 Android and mobile forensics

http://code.google.com/android/adc/adc_gallery/

February 3, 2011, listed in Table 1.4, are grouped by mobile operators, handset

manufacturers, semiconductor companies, software companies, and commerciali-

zation companies (Alliance members, n.d.).

Android Features
While we explore the various Android device types more in the next chapter, there

are several features common to most Android devices that we can discuss here.

First, Android was engineered from the beginning to be online, whether using

cellular networks such as Global System for Mobile Communications and Code

Division Multiple Access (GSM/CDMA) or wireless networks (Wi-Fi). Regardless

of the venue, the ability to be online is a core feature of any Android device. Many of

the devices are indeed smartphones and thus support sending and receiving phone

calls, text messages, and other services found on cellular networks. Interacting with

the device is typically via a touch screen, but many devices also allow for keyboards

or other buttons, which support user interaction.

A second core feature of Android devices is the ability to download and install

applications (apps) from the Android Market. This is a primary feature to many users

because it allows them to extend the functionality of the device. These apps also

typically happen to be a rich source of information for forensic analysts.

The final core feature is the ability for users to store their data on the devices. This,

of course, is the basis for the forensics work covered in detail in this book. Most

Android devices come with some on-device storage using flash (NAND) memory as

well as an external SD card that is portable and intended to store larger amounts of

data. Some recent HTC devices are now shipping with an emulated SD card which is

a separate USB device ID mapped to the NAND and presented as an SD card. The

emulated SD cards are typically formatted with Microsoft’s FAT32 file system.

Supported Cellular Networks
As smartphones are the largest category of Android devices, it is important to

understand the various cellular technologies Android currently supports.

The first Android device, the HTC DREA100 or T-Mobile G1, was a Global

System for Mobile Communications (GSM) phone. GSM is the most widely used and

supported cellular system with excellent support throughout the world. Major wireless

providers in the United States that support GSM include AT&T and T-Mobile. The

GSM system leverages a subscriber identity module (SIM) or universal subscriber

identity module (USIM) to identify the user to the cellular network.

The next cellular system supported by Android is the Code Division Multiple

Access, often referred to as CDMA. CDMA is the technique used to encode and send

the voice, data, and control signals used by a CDMA phone. It is popular in the

United States, but less so around the world. In the United States, the primary

technology standard used is called CDMA2000. Major carriers include Verizon

Wireless, Sprint, U.S. Cellular, and Cricket Communications.

The final cellular system supported by Android is the Integrated Digital

Enhanced Network, or iDEN, whose primary attraction is its support of the

Android platform 5

Table 1.4 Open Handset Alliance Members

Company Type Companies

Mobile operators � Bouygues Telecom

� China Mobile Communications Corporation

� China Telecommunications Corporation

� China Unicom

� KDDI Corporation

� NTT DoCoMo, Inc.

� Softbank Mobile Corp.

� Sprint Nextel

� T-Mobile

� Telecom Italia

� Telefónica

� Telus

� Vodafone

Handset manufacturers � Acer Inc.

� Alcatel Mobile Phones

� ASUSTeK Computer Inc.

� CCI

� Dell

� FIH

� Garmin

� Haier Telecom (Qingdao) Co., Ltd

� HTC Corporation

� Huawei Technologies

� Kyocera

� Lenovo Mobile Communication Technology Ltd

� LG

� Motorola

� NEC Corporation

� Samsung Electronics

� Sharp Corporation

� Sony Ericsson

� Toshiba Corporation

� ZTE Corporation

Semiconductor companies � AKM Semiconductor Inc.

� Audience

� ARM

� Atheros Communications

� Audience

� Broadcom Corporation

� CSR Plc.

� Cypress Semiconductor Corp.

� Freescale Semiconductor

� Gemalto

� Intel Corporation

� Marvell Semiconductor, Inc.

� MediaTek, Inc.

� MIPS Technologies, Inc.

6 CHAPTER 1 Android and mobile forensics

popular push-to-talk (PTT) feature. In the United States, the only large carrier

supporting iDEN is Sprint Nextel (who also owns Boost Mobile). Motorola, the

developer of iDEN, also developed the Motorola i1, the first Android phone

supporting iDEN.

Google’s Strategy

Android is clearly a powerful mobile device platform which costs an enormous

amount in development. So why did Google give Android away for free?

Table 1.4 Open Handset Alliance Members (Continued)

Company Type Companies

� Nvidia Corporation

� Qualcomm

� Renesas Electronics Corp.

� ST-Ericsson

� Synaptics, Inc.

� Texas Instruments Inc.

� Via Telecom

Software companies � Access Co., Ltd

� Ascender Corp.

� Cooliris, Inc.

� eBay Inc.

� Google Inc.

� LivingImage Ltd

� Myriad

� Motoya Co., Ltd

� Nuance Communications, Inc.

� NXP Software

� OMRON Software Co., Ltd

� PacketVideo (PV)

� SkyPop

� SONiVOX

� SVOX

� VisualOn Inc.

Commercialization

companies

� Accenture

� Aplix Corp.

� Borqs

� L&T Infotech

� Noser Engineering Inc.

� Sasken Communication Technologies Limited

� SQL Start International Inc.

� TAT The Astonishing Tribe AB

� Teleca AB

� Wind River Systems

� Wipro Technologies

Android platform 7

The answer starts with Google’s clearly defined mission (Corporate information:

about, n.d.):

Google’s mission is to organize the world’s information and make it universally

accessible and useful.

Cell phones are the most popular consumer device, numbering over 4 billion, so

by providing an advanced mobile stack at no cost, Google believes they are fulfilling

the universally accessible portion of their mission. But, obviously there must still be

some benefit for Google. When more people are online, more people use search,

which ultimately drives ad revenuedGoogle’s primary source of income. In

a March 2009 interview, Andy Rubin explained:

Google has a great business model around advertising, and there’s a natural

connection between open source and the advertising business model. Open

source is basically a distribution strategy, it’s completely eliminating the

barrier to entry for adoption.

(Krazit, n.d.)

One of the criticisms of Android is that the market is now highly fragmented with

different versions and variations of Androidda direct result of how Google releases

Android to the manufacturers. This is in contrast to other devices, such as the iPhone

where Apple has total control over the hardware and OS and significant influence

over third-party application. Rubin defends this model, however. In the same

interview, Rubin further commented on this aspect (Krazit, n.d.):

Controlling the whole device is great, (but) we’re talking about 4 billion handsets.

When you control the whole device the ability to innovate rapidly is pretty limited

when it’s coming from a single vendor. You can have spurts of innovation. You can

nail the enterprise, nail certain interface techniques, or you can nail the Web-in-

the-handset business, but you can’t do everything. You’re always going to be in

some niche. What we’re talking about is getting out of a niche and giving

people access to the Internet in the way they expect the Internet to be

accessed. I don’t want to create some derivative of the Internet, I don’t want to

just take a slice of the Internet, I don’t want to be in the corner somewhere

with some dumbed-down version of the Internet, I want to be on the Internet.

So by creating a mobile OS that meets the demands of the consumer as well as

the needs of the manufacturers and wireless carriers, Google has an excellent

distribution platform for their revenue-generating search and advertising business.

Apps
One important way by which Android supports innovation beyond the core mobile

stack is by enabling the development and distribution of third-party apps on

Android. As of January 2011, over 200,000 Android apps have been developed.

This, of course, is similar to the strategy Apple developed. However, there are key

differences in their approach. Apple maintains tight control over their App Store,

8 CHAPTER 1 Android and mobile forensics

requiring developers to submit to a sometimes lengthy review process and

providing Apple with the final approval for an app. Apps can be denied based on

a number of criteria, most notably if they contain any content Apple feels is

objectionable. Google, on the other hand, requires very little review to publish an

app in the Android Market. While Google has the ability to ban a developer,

remove an app from the Android Market, and even remotely uninstall apps from

Android devices, in general their approach to app management is hands off.

Nexus Phones
In January 2010, Google released its own smartphone, the Nexus One (N1) shown in

Fig. 1.1. The N1 was developed by HTC and, by all accounts, was an ideal model for

how manufacturers should develop their phones. The processor was extremely fast

(1 GHz), it was running the latest version of Android, and it had innovations such as

three microphones which survey background noise and blend your voice to create

the most clear conversation possible.

The N1 was sold directly by Google and was sold unlockedda move many

analysts saw as a direct challenge to the carrier lock-in model where customers must

sign a two-year agreement to get a discount on the device. The N1 was also available

through T-Mobile for a reduced price, provided the user signs an extended contract.

In the end, the sales for the N1 were not overwhelming and there was speculation

that Google failed in their implementation (Fig. 1.1).

FIGURE 1.1

Google Nexus One by HTC.

Android platform 9

FIGURE 1.2

Google Nexus S by Samsung.

However, at the time, Google was also trying to demonstrate how they believed an

Android phone should be released and maintained. To the surprise of many, one year

later Google released the Nexus S manufactured by Samsung, shown in Fig. 1.2. One

interesting feature of the Nexus Swas that it ran onAndroid 2.3 that allowed the native

ability to make Voice over IP (VoIP) phone calls. If a device has a data connection,

whether it isWi-Fi.comor some other network, then it can send and receive phone calls

using any number of popular VoIP services. In the United States, the phone was sold

only through Best Buy stores and service was available through T-Mobile (Fig. 1.2).

It is unclear what Google’s overall goals are with the Nexus line of smartphones.

However, it is clear they intend to release Google phones and eventually may offer

consumers a new flexibility in how they purchase and use smartphones.

LINUX, OPEN SOURCE SOFTWARE, AND FORENSICS
Open source software has had a tremendous impact on the digital forensics disci-

pline. Forensic tools that are released as free open source software have tremendous

advantages over closed source solutions including the following:

� The ability to review source code and understand exact steps taken

� The ability to improve the software and share enhancementswith entire community

� The price

10 CHAPTER 1 Android and mobile forensics

http://Wi-Fi.com

While many of the free, open source software packages do not offer a commer-

cial support model, some companies specialize in providing support. For example,

Red Hat has built a significant business providing support and services for the Linux

OS. In addition, the maintainers of many free, open source software packages are

generally very accessible and responsive to inquiries and can often provide far

superior support as they directly maintain the software.

The most significant and important example of free, open source software is the

Linux OS. Linux is not only a critical component of Android but can also be used as

a powerful forensic tool.

Brief History of Linux

There have been many books written about Linux and dedicating only one section to

such an important OS is difficult. There are also many fantastic online resources for

Linux some of which focus on Linux as a forensic tool.

In 1991, Linus Torvalds was a University of Helsinki student when he decided to

develop a terminal emulator that he could use to connect to the University’s systems.

The code was developed specifically for his computer, which had an Intel 386

processor. After he completed the initial development, he realized that code could

actually form the basis of an OS and he posted the following famous messages on the

Usenet newsgroup comp.os.minix (Torvalds, 1991):

Path: gmdzi!unido!mcsun!news.funet.fi!hydra!klaava!torvalds
From: torva...@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: Free minix-like kernel sources for 386-AT
Keywords: 386, preliminary version
Message-ID: <1991Oct5.054106.4647@klaava.Helsinki.FI>
Date: 5 Oct 91 05:41:06 GMT
Organization: University of Helsinki
Lines: 55

Do you pine for the nice days of minix-1.1, when men were men and wrote
their own device drivers? Are you without a nice project and just dying
to cut your teeth on a OS you can try to modify for your needs? Are you
finding it frustrating when everything works on minix? No more all-
nighters to get a nifty program working? Then this post might be just
for you :-)

As I mentioned a month(?) ago, I'm working on a free version of a
minix-lookalike for AT-386 computers. It has finally reached the stage
where it's even usable (though may not be depending on what you want),
and I am willing to put out the sources for wider distribution. It is
just version 0.02 (+1 (very small) patch already), but I've successfully
run bash/gcc/gnu-make/gnu-sed/compress etc under it.

<snip>

I can (well, almost) hear you asking yourselves "why?". Hurd will be
out in a year (or two, or next month, who knows), and I've already got
minix. This is a program for hackers by a hacker. I've enjouyed doing
it, and somebody might enjoy looking at it and even modifying it for
their own needs. It is still small enough to understand, use and
modify, and I'm looking forward to any comments you might have.

<snip>

Linux, open source software, and forensics 11

Reading this post, the mentality of many avid Linux users is captured in the desire to

understand, modify, create, and otherwise tinker with complex systems (often

referred to as a hacker mentality). The newsgroup Linus posted on was for the Minix

OS, which at the time was the OS of choice for many people wanting to test and

develop a Unix-like OS. However, there were licensing restrictions as well as

technical limitations of Minix that Linus wanted to overcome.

Over nearly 20 years, Linux has matured significantly and is used on many

PCs, servers, and now mobile devices. There are literally thousands of powerful

tools available as well as complete development environments for many program-

ming languages. The are many distributions that focus on different needs

including servers, workstations, laptops, embedded devices, security suites, and

many more.

Installing Linux in VirtualBox
Linux is a truly amazing OS and we will use its power throughout this book in

examples intended for the reader to follow along and complete. All examples in this

book are performed on an Ubuntu 10.10 64-bit desktop install running as a virtual

machine (VM). While the virtual machine software from several vendors is

compatible (including VMWare Fusion running on Mac OS X), this book is focused

on options that are free, open, or both. In this instance, VirtualBox is both open

source software and freely available.

NOTE
This Ubuntu VM will be used extensively through the book for all examples. Subsequent

chapters will build upon this base install by adding more tools and scripts. Readers are

encouraged to create this Ubuntu VM and follow along with all examples to maximize

knowledge. The Ubuntu VM can be used directly for Android forensic cases.

VirtualBox is now owned by Oracle and is distributed under the GPLv2 license.

There is a section on Oracle’s web site that addresses frequently asked questions

about licensing.

You can download VirtualBox for many operating systems including Microsoft

Windows, Mac OS X, and Linux (2.4 and 2.6) from http://www.virtualbox.org/.

After you install VirtualBox, you will see the Oracle VM VirtualBox Manager,

shown in Fig. 1.3, where you create and manage new VMs.

When you create the new VM, make sure you have enough hard drive space (at

least 20 GB is recommended) and as much RAM as you can spare. For the

Android build, Google recommends at least 1536 MB (1.5 GB) (Get Android

source code, n.d.).

Using the VirtualBox Manager graphical user interface (GUI) to set the new

virtual machine is straightforward. However, if you have access an Ubuntu

Linux 64-bit workstation or server, but do not have the ability to run desktop

12 CHAPTER 1 Android and mobile forensics

http://www.virtualbox.org/

applications, here are the steps you can follow to setup, configure, and run the new

VM (VirtualBox 3.2.10).

From an ssh session, it is best to use the program “screen” so that if you lose

connection to the server, your VM remains active. Then, follow these steps:

FIGURE 1.3

Oracle VM VirtualBox Manager for OS X.

mkdir -p ~/vbox
cd ~/vbox
wget http://ubuntu.mirrors.pair.com/releases/maverick/ubuntu-10.10 -desktop
-amd64.iso

VBoxManage createvm -name af-book-vm -ostype Ubuntu -register

VBoxManage modifyvm af-book-vm --memory 1536 --acpi on --boot1 dvd \
--nic1 bridged --usb on --usbehci on --vrdp on --vrdpport 3392 \
--clipboard bidirectional --pae on --hwvirtex on --hwvirtexexcl on
 --vtxvpid on \
--nestedpaging on --largepages on

Linux, open source software, and forensics 13

mailto:Image of Figure 1.3|tif
mailto:Image of Figure 1.3|tif

At this point, the VM will start up and you can access the install using any

Remote Desktop Protocol (RDP) viewer such as Remote Desktop Connection on

Windows, rdesktop on Linux, or Microsoft’s Remote Desktop Connection Client for

Mac. To access the above session, you would connect to <host server’s IP:3392>.

From there, follow the install until it is time to reboot.

If you shutdown or reboot the VBoxHeadless session ends; you can simply issue

the command again to start the server backup. Then, RDP back into the machine and

install openssh server so that we can use ssh instead of the less efficient RDP:

Now you can find the virtual machine’s IP address by running ifconfig and looking at

the “inet addr” for eth0. You can use your favorite ssh program (if on Windows, try

Putty for a great, free client) and ssh into the virtual machine.

The Sleuth Kit (TSK)
Brian Carrier has an excellent open source forensic toolkit called The Sleuth Kit

(TSK), which will be discussed in this section. Examples throughout this book will

leverage TSK extensively. Brian developed and continues to maintain TSK and

provides an enormous service to our industry. If you are not familiar with TSK, visit

the web site at http://sleuthkit.org/ and consider using the programs. There is quite

a bit of information on TSK’s web site as well as many forensic blogs and books. If

you are going to follow the examples in this book, you should install TSK on the

Linux workstation with the following command:

Hopefully others can follow in Brian’s footsteps and provide such important toolkits

and service to the forensic community.

VBoxManage modifyvm af-book-vm --bridgeadapter1 eth0

VBoxManage storagectl af-book-vm --name "IDE Controller" --add ide

VBoxManage createvdi --filename ~/vbox/af-book-vm.vdi \
--size 20000 --register

VBoxManage storageattach af-book-vm --storagectl "IDE Controller" \
--port 0 --device 0 --type hdd --medium ~/vbox/af-book-vm.vdi

VBoxManage storageattach af-book-vm --storagectl "IDE Controller" \
--port 1 --device 0 --type dvddrive --medium ~/vbox/ubuntu-10.10-desktop
-i386.iso

VBoxHeadless -startvm af-book-vm -p 3392 &

#need to eject DVD, the restart
VBoxManage storageattach af-book-vm --storagectl "IDE Controller" --port 1 \
--device 0 --type dvddrive --medium none

#restart the virtual machine
VBoxHeadless -startvm af-book-vm -p 3392

sudo apt-get install openssh-server

sudo apt-get install sleuthkit

14 CHAPTER 1 Android and mobile forensics

http://sleuthkit.org/
mailto:Image of Figure 1.3|tif
mailto:Image of Figure 1.3|tif
mailto:Image of Figure 1.3|tif

Disable Automount
It is critical that forensic workstations do not have automount enabled which, as the

name infers, will automatically mount a file system when one is found on a device

connected. The option to disable automount in Ubuntu is done per user, so if the

workstation will have more than one user account, please make sure you change

each of them:

Then navigate to apps> nautilus> preferences and ensure the “media_automount”

and “media_automount_open” options are unchecked as illustrated in Fig. 1.4.

You can then close the Gnome Configuration editor. Now, automount is disabled.

For typical users, this is more work. However, for a forensic analyst, it is an absolute

necessity (as is the use of hardware write blockers).

Linux and ForensicsdBasic Commands
Before we setup and configure a Linux forensic workstation, it is helpful to provide

an overview of Linux’s relevance to forensics. A Linux workstation is a powerful

tool for forensic investigation due to the wide support for many file systems, the

advanced tools available, and the ability to develop and compile source code.

However, since many examiners are not familiar with Linux, the following sections

provide a breakdown of some of the more common Linux commands including

a description of the command, its general usage, and one or more examples of how

the command can be applied.

FIGURE 1.4

Disable automount on Ubuntu.

gconf-editor

Linux, open source software, and forensics 15

mailto:Image of Figure 1.4|tif

man
The “man” command pulls up online manuals for the requested command in the

terminal window. The manual will provide a detailed description of the command as

well as its usage (including all the options or “flags” for that command).

In the following examples, the first command lists the beginning of the manual

page for the “mount” command, while the second searches all manuals containing

the characters “grep”, a powerful searching tool.

$ man [-k keywords] commands

$ man mount
MOUNT(8) Linux Programmer's Manual MOUNT(8)

NAME
 mount - mount a filesystem

SYNOPSIS
 mount [-lhV]

 mount -a [-fFnrsvw] [-t vfstype] [-O optlist]

 mount [-fnrsvw] [-o option[,option]...] device|dir

 mount [-fnrsvw] [-t vfstype] [-o options] device dir

DESCRIPTION
 All files accessible in a Unix system are arranged in one big tree, the
 file hierarchy, rooted at /. These files can be spread out over sev-
 eral devices. The mount command serves to attach the filesystem found
 on some device to the big file tree. Conversely, the umount(8) command
 will detach it again.

 The standard form of the mount command, is
<snip>

$ man -k grep
bzegrep (1) - search possibly bzip2 compressed files for a regular
 expression
bzfgrep (1) - search possibly bzip2 compressed files for a regular
 expression
bzgrep (1) - search possibly bzip2 compressed files for a regular
 expression
egrep (1) - print lines matching a pattern
fgrep (1) - print lines matching a pattern
git-grep (1) - Print lines matching a pattern
grep (1) - print lines matching a pattern
pgrep (1) - look up or signal processes based on name and other
 attributes
rgrep (1) - print lines matching a pattern
xzegrep (1) - search compressed files for a regular expression
xzfgrep (1) - search compressed files for a regular expression
xzgrep (1) - search compressed files for a regular expression
zegrep (1) - search possibly compressed files for a regular
 expression
zfgrep (1) - search possibly compressed files for a regular
 expression
zgrep (1) - search possibly compressed files for a regular
 expression
zipgrep (1) - search files in a ZIP archive for lines matching a
 pattern

16 CHAPTER 1 Android and mobile forensics

mailto:Image of Figure 1.4|tif
mailto:Image of Figure 1.4|tif

help
The “help” command displays information on the requested command, including

usage and examples, similar to “man.” Some commands use the - -help notation

while others simply use -h or -help.

cd
This command is used to change into another directory. In Linux, the special

character ~ is used to represent the current user’s home directory. For example, the

user ahoog has a home directory on a Linux system at /home/ahoog. From anywhere

in the file system, you can use ~ to refer to /home/ahoog. This works well for

documentation so throughout this book we refer to ~ and, even if you have setup

a different user name, the command will still function as expected.

$ cd ~ (changes into the current user's home directory from
 anywhere)
$ cd ~/Desktop/Projects (changes into the "Projects" folder located on the
 user's Desktop)
$ cd .. (changes directories up 1 level, back into "Desktop")
$ cd ../../ (changes directories up 2 levels)
$ cd (also changes into the user's home directory from
 anywhere)
$ cd / (changes into the root file system folder from
 anywhere)

$ mount --help

Usage: mount -V : print version
 mount -h : print this help
 mount : list mounted filesystems
 mount -l : idem, including volume labels
So far the informational part. Next the mounting.
The command is 'mount [-t fstype] something somewhere'.
Details found in /etc/fstab may be omitted.
 mount -a [-t|-O] ... : mount all stuff from /etc/fstab
 mount device : mount device at the known place
 mount directory : mount known device here
 mount -t type dev dir : ordinary mount command
Note that one does not really mount a device, one mounts
a filesystem (of the given type) found on the device.
One can also mount an already visible directory tree elsewhere:
 mount --bind olddir newdir
or move a subtree:
 mount --move olddir newdir
One can change the type of mount containing the directory dir:
 mount --make-shared dir
 mount --make-slave dir
 mount --make-private dir
 mount --make-unbindable dir
One can change the type of all the mounts in a mount subtree
containing the directory dir:
 mount --make-rshared dir
 mount --make-rslave dir
 mount --make-rprivate dir
 mount --make-runbindable dir
A device can be given by name, say /dev/hda1 or /dev/cdrom,
or by label, using -L label or by uuid, using -U uuid.
Other options: [-nfFrsvw] [-o options] [-p passwdfd].
For many more details, say man 8 mount.

Linux, open source software, and forensics 17

mailto:Image of Figure 1.4|tif
mailto:Image of Figure 1.4|tif

mkdir
The “mkdir” command creates a directory in the current location, unless otherwise

specified.

$ mkdir android (creates the "android" folder in the
 current directory)
$ mkdir -p ~/android/forensics/book (creates the full path of directories even
 if top levels do not exist)

rmdir/rm
This command removes existing directories or files based on the flags specified. The

“rmdir” command will only remove empty folders. If there are files within the

directory, these will first need to be removed prior to running the “rmdir” command.

The “rm” command can be used to remove both files and folders, and will prompt

the user prior to removing. You can override the prompt with the -f option but use

with caution, hence the phrase “rm minus rf ” or rm -rf.

nano
The “nano” is a terminal based editor that allows the creation and modification of

text files. To create a file, simply type the command.

Typing “nano” will open the text editor within the terminal window or ssh

session, allowing the user to enter the contents they wish as shown in Fig. 1.5.

When the text has been entered, pressing Control X will exit the text editor and

prompt you to save the file. In this case, we set the file name to newfile.txt.

To modify an existing file, simply follow the nano command with the file name

or full path and file name if the file is in a different directory:

$ nano /etc/apt/sources.list

ls
This command lists files and folders. The “ls” command without any options

specified will list the file/folder names only in the current directory. Adding the “-lh”

$ rmdir android (removes only an empty folder)
$ rmdir -p ~/android/forensics/book (removes each folder within the specified
 path)
$ rm -r android (removes the specified folder and all of
 its contents)
$ rm -rf android (removes the specified folder and all of
 its contents without prompting)
$ rm test.txt (deletes the specified file)
$ rm *.txt (deletes all .txt files within the current
 directory)
$ rm * (deletes all files within the current
 directory)

$ nano

18 CHAPTER 1 Android and mobile forensics

mailto:Image of Figure 1.4|tif
mailto:Image of Figure 1.4|tif

option will provide a long list with more details including permissions, ownership,

size, and date and time stamps.

ahoog@ubuntu:~/src$ ls
dc3dd-7.0.0 md5deep-3.7 viaextract-python
dc3dd-7.0.0.tar.gz md5deep-3.7.tar.gz yaffs2-old
download viaextract_env yaffs2-older.tgz

ahoog@ubuntu:~/src$ ls -lh
total 9.0M
drwxr-xr-x 10 ahoog ahoog 4.0K 2011-02-12 13:21 dc3dd-7.0.0
-rw-r--r-- 1 ahoog ahoog 4.2M 2011-02-12 13:12 dc3dd-7.0.0.tar.gz
-rw-r--r-- 1 ahoog ahoog 4.2M 2010-08-19 18:23 download
drwxr-xr-x 6 ahoog ahoog 4.0K 2011-02-18 07:21 md5deep-3.7
-rw-r--r-- 1 ahoog ahoog 256K 2010-12-17 09:33 md5deep-3.7.tar.gz
drwxr-xr-x 6 ahoog ahoog 4.0K 2011-02-16 11:54 viaextract_env
drwxr-xr-x 6 ahoog ahoog 4.0K 2011-02-16 11:21 viaextract-python
drwxr-xr-x 8 ahoog ahoog 4.0K 2011-02-18 07:13 yaffs2-old
-rw-r--r-- 1 ahoog ahoog 460K 2011-02-18 07:11 yaffs2-older.tgz

tree
The “tree” command shows the hierarchy of folders for the directory specified. If

no parameters are specified, the current directory will be used. In Linux, the

current directory is referred to as a single “.” while one directory up is a double

period “..”. In the following output, the current directory is used, which happens to

be the current user’s home directory. The user can specify how many directory

levels they wish to view with the “-L” flag. In the first example, one level is

shown. Whereas in the second example, two levels of the source directory and

files are displayed. Don’t forget: you can learn all the details of a command by

FIGURE 1.5

Create file using “nano.”

Linux, open source software, and forensics 19

mailto:Image of Figure 1.5|tif

examining the man page (man tree) or specifying the command’s help parameter

(tree - -help).

less
The “less” command displays specified files one page at a time. This command is

commonly used in conjunction with other commands to show output one page at

a time. The following command will display the contents of the sanitize-csv.sh file

one screen at a time within the terminal window. Once you are in the less utility,

there are a few key commands to remember:

� h: access help menu

� q: quit help menu

� spacebar: display one screen/page down

� b: display one screen/page up

� /: search for a pattern

� Enter: move one line down

� y: move one line up

ahoog@ubuntu:~/src$ tree -L 1
.
├── dc3dd-7.0.0
├── dc3dd-7.0.0.tar.gz
├── download
├── md5deep-3.7
├── md5deep-3.7.tar.gz
├── viaextract_env
├── viaextract-python
├── yaffs2-old
└── yaffs2-older.tgz

5 directories, 4 files

ahoog@ubuntu:~/src$ tree -L 2 viaextract_env/
viaextract_env/
├── bin
│ ├── activate
│ ├── activate_this.py
│ ├── easy_install
│ ├── easy_install-2.6
│ ├── pilconvert.py
│ ├── pildriver.py
│ ├── pilfile.py
│ ├── pilfont.py
│ ├── pilprint.py
│ ├── pip
│ ├── pisa
│ ├── python
│ └── xhtml2pdf
├── include
│ └── python2.6 -> /usr/include/python2.6
├── lib
│ └── python2.6
└── src
 └── viaextract -> /home/ahoog/src/viaextract-python/trunk/viaextract/

7 directories, 13 files

20 CHAPTER 1 Android and mobile forensics

There are many more commands and tricks to this powerful utility so read the

help screens, the man page, or simply search the Internet for more helpful tips.

cat
The “cat” command outputs the contents of a file to the screen or to a new file if

specified (without retaining the format of the file).

This command can also be used to combine multiple files into one (i.e., often

referred to as concatenating files).

find
The “find” command is used to search for files in a directory hierarchy. The

following command will list all of the files, including the full path, contained on the

specified user’s home directory.

ahoog@ubuntu:~$ find ~
/home/ahoog
/home/ahoog/scalpel-1.60
/home/ahoog/scalpel-1.60/README
/home/ahoog/scalpel-1.60/dirname.h
/home/ahoog/scalpel-1.60/base_name.c
/home/ahoog/scalpel-1.60/dig.c
/home/ahoog/scalpel-1.60/prioque.h
/home/ahoog/scalpel-1.60/scalpel.o
/home/ahoog/scalpel-1.60/files.c
/home/ahoog/scalpel-1.60/helpers.o
<snip>

ahoog@ubuntu:~$ less sanitize-csv.sh
#!/bin/bash

create a new directory to store the sanitized files
mkdir sanitized

#for each file ending with .csv
for f in *.csv
do
 #read the top 1 row of the file and save it to the sanitized directory
 #with the same filename followed by -1strowonly
 head -1 "$f" > sanitized/"$f"-1strowonly
done

#create a "tar gzip" archive of the file so it is easier share
tar czvf AFlogical-sanitized.tgz sanitized/*
sanitize-csv.sh (END)

ahoog@ubuntu:~/Desktop$ cat android.txt
android forensics is so much fun.

This file contains unnecessary information used to display the workings of the
"cat" command.

The "cat" command can be used in conjunction with "less" in order to display
the contents of a
file one page at a time.

$ cat file1.txt file2.txt file3.txt > final.txt

Linux, open source software, and forensics 21

mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif

The output of the find command can also be used in another command. For

example, the following will run the “md5sum” command on the files from the “find”

command. Several parameters are specified:

� find: the command

� ~: find files in the current user’s home directory

� -type f: only list regular files (do not list directories)

� -exec: run the following command

� sha256sum : the utility that calculates a file’s sha256 hash

� {} \;: crazy shell escapes and notations!

If you run a command against the results of a large number of files, you can run into

issues. In those cases, you should research piping the output of the file command to

a utility called xargs.

With most Linux commands, you can also save the output of a command into

a file. For example, the output from the same command above can be saved in the

user’s home directory in a file called md5.txt:

The output of the find command run against the sha256sum utility is redirected to

the sha256sum.txt file in the user’s home directory.

chmod
Short for “change mode,” this command changes file or folder permissions. Many

examples are provided in the following list. Note that these commands must either

be run in the directory in which “textfile.txt” is stored, or the full path to the file must

be provided.

ahoog@ubuntu:~$ find ~ -type f -exec sha256sum {} \;
1d4b6d9e7930e1bd186de982e21ad0d4dab92239920dea791dc25f2d0ffe92cb
/home/ahoog/scalpel-1.60/README
a771570f4b3ebfb212b39abaeff92cc7b4c116b920b726f6f6cabc78092b5d5b
/home/ahoog/scalpel-1.60/dirname.h
95d9d2243444b3e53eb2b449bd9052050bb4bb7d12d9d9bcaae2802de61feab1
/home/ahoog/scalpel-1.60/base_name.c
70babfb49c46a989f8d034b5e7438d5f51fe115a0ce61e6fdac6f0619d47d581
/home/ahoog/scalpel-1.60/dig.c
a5456e609810bca0730768a9d07b8c591246f1448c72b7d107d8b7ebd90f8fef
/home/ahoog/scalpel-1.60/prioque.h
f2364fd3caac10a297ec93123da6503b621cb65a98efaab6ca6fa5aeeccb6c32
/home/ahoog/scalpel-1.60/scalpel.o
d9c2351cc1fa8a8e4ea874005b756d89fa722de051d9e23dd2cd7b3988ce7122
/home/ahoog/scalpel-1.60/files.c
58c10d10cb629c95a81035fd73c553fa0c9ca2bbcacd184b9533f342285cf554
/home/ahoog/scalpel-1.60/helpers.o
<snip>

ahoog@ubuntu:~$ find ~ -type f -exec sha256sum {} \; > ~/sha256sum.txt

22 CHAPTER 1 Android and mobile forensics

mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif

*Provides details on the file permissions for "textfile.txt"
 ahoog@ubuntu:~/Desktop$ ls -l textfile.txt
 -rw-r--r-- 1 ahoog ahoog 264 2011-03-01 12:17 textfile.txt

*Gives read, write, and execute permissions for the owner, and read and execute
permissions for group and world.
 ahoog@ubuntu:~/Desktop$ chmod 755 textfile.txt

 ahoog@ubuntu:~/Desktop$ ls -l textfile.txt
 -rwxr-xr-x 1 ahoog ahoog 264 2011-03-01 12:17 textfile.txt

*Gives read, write, and execute permissions for the owner, and execute
permissions for group and world.
 ahoog@ubuntu:~/Desktop$ chmod 711 textfile.txt

 ahoog@ubuntu:~/Desktop$ ls -l textfile.txt
 -rwx--x--x 1 ahoog ahoog 264 2011-03-01 12:17 textfile.txt

*Gives read, write, and execute permissions for the owner, and read-only
permissions for group and world.
 ahoog@ubuntu:~/Desktop$ chmod 744 textfile.txt

 ahoog@ubuntu:~/Desktop$ ls -l textfile.txt
 -rwxr--r-- 1 ahoog ahoog 264 2011-03-01 12:17 textfile.txt

The “chmod” command can also be run on a group of files or a folder.

$ chmod 755 * (Changes permissions of all files in the current
 directory)
$ chmod -R 444 Files/ (Changes permissions of the "Files" directory and all of
 the files within it)

chown
The “chown” command changes the owner or group of a specified file or directory.

In the following example, the original owner and group of “textfile.txt” was ahoog.

The chown command changed the owner to “root.” This command required

“sudo.”

ahoog@ubuntu:~/Desktop$ ls -l textfile.txt
-rwxr--r-- 1 ahoog ahoog 264 2011-03-01 12:17 textfile.txt

ahoog@ubuntu:~/Desktop$ sudo chown root textfile.txt
[sudo] password for ahoog:

ahoog@ubuntu:~/Desktop$ ls -l textfile.txt
-rwxr--r-- 1 root ahoog 264 2011-03-01 12:17 textfile.txt

sudo
Preceding any command with “sudo” gives the user elevated permissions, allowing

them to run a command as a super user or another user. Sudo is required to run

certain commands such as apt-get (to install software), chown (to change ownership

if you are not the owner), mount, accessing raw disk devices, and many other

commands depending on the files it must access. To use sudo, simply precede the

Linux, open source software, and forensics 23

mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif

command with “sudo,” which will then prompt you for your password. Then log the

command in the sudo logs:

apt-get
The “apt” part of the apt-get command stands for Advanced Packaging Tool and

allows the user to install and uninstall software, upgrade existing software, or even

perform system updates. To run this command, sudo permissions are required.

grep
The “grep” command searches through a file, or list of files and folders, for

a specified phrase. It is equivalent to opening a document and doing a “find” for

a certain phrase. The search is case sensitive, so if you are unsure if a letter is

capitalized or lower case, then you should specify the “-i” (case insensitive) flag.

This option will take longer, depending on the size of the file that is being searched.

General usage is:

The following contains several examples of the usage of “grep.”

The next command searches the contents of all files on the user’s desktop for theword

“unnecessary.” The results show that this word was found in “textfile.txt,” and there

are also matches for this word in “WXP-PRO-OEM.iso.” Because this is a binary file,

further techniques will need to be performed to make the content viewable.

$ grep keyword file.txt

$ grep Forensics androidBook.txt (will search for "forensics" in the
 specified file)
$ grep -i forensics androidBook.txt (will search for "forensics", case
 insensitive, in the specified file)
$ grep "list of files" androidBook.txt (will search the specified file for
 "list of files", case sensitive)

$ sudo apt-get install scalpel (Installs scalpel software package)
[sudo] password for ahoog:

$ sudo apt-get remove scalpel (Uninstalls scalpel software package)
[sudo] password for ahoog:

$ sudo apt-get update (Updates the APT package index, which stores
 packages available for download)
[sudo] password for ahoog:

$ sudo apt-get upgrade -u (Upgrades APT package versions, including
 security updates; should be run after
 update)
[sudo] password for ahoog:

ahoog@ubuntu:~/Desktop$ grep unnecessary *
android.txt:This file contains unnecessary information used to display the
workings of the "cat" command.
Binary file WXP-PRO-OEM.iso matches

ahoog@ubuntu:~$ sudo xxd /dev/sda1 | less
[sudo] password for ahoog:

24 CHAPTER 1 Android and mobile forensics

mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif

As you use Linux more extensively for forensic investigations, grep will become

an indispensable utility.

Piping and Redirecting Files (j and >)
The pipe character “j” (located above the “Enter” key on most keyboards) allows

the output of one command to be sent to another for further processing. Output can

also be redirected into another file using “>”.

The following command takes the results of “cat file.txt” and pipes it to the “less”

command, allowing the user to view the contents one page at a time.

The next command searches for “android” in “ch1.xml” using the grep command

and then takes the results of that search and performs another search, case insen-

sitive, for “forensics.” The final results are then piped through “less” to be displayed

one page at a time.

Redirecting output from a command can also be helpful. The following command

takes the output of “book.txt” (using the “cat” command) and copies the output into

a file on the user’s desktop called “newdocument.txt.”

Redirection can be very helpful while running the “strings” command on a partic-

ular file or even an entire disk image, which will be explored further in Chapter 7.

ANDROID OPEN SOURCE PROJECT
The open strategy behind Android naturally led to the release of the Android source

code through the AOSP on October 21, 2008. The site states (Get Android source

code, n.d.):

We created Android in response to our own experiences launching mobile

apps. We wanted to make sure that there would always be an open

platform available for carriers, OEMs [original equipment manufacturers],

and developers to use to make their innovative ideas a reality. We wanted

to make sure that there was no central point of failure, where one industry

player could restrict or control the innovations of any other. The solution

we chose was an open and open-source platform.

The development strategy focuses on flagship devices (for instance, the Nexus

series), which allows Google to absorb much of the risk with a new platform. The

manufacturers can then use the latest release of Android on their devices while the

AOSP develops the next major release.

$ cat file.txt | less

$ grep android ch1.xml | grep -i forensics | less

cat ch1.xml > ~/Desktop/new-ch1.xml

Android open source project 25

mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif
mailto:Image of Figure 1.5|tif

AOSP Licenses

The AOSP is governed by two primary software licenses, the Apache Software

License 2.0 (Apache 2.0 or ASL2.0) and the GNU Public License v2 (GPLv2). The

GPLv2 is a far more restrictive license that forces contributors to distribute all of

their source code under the same license. Google felt this would limit the

commercial backing of Android, so the GPLv2 primarily covers the use of the Linux

kernel core to Android only.

The Apache 2.0 license, however, is more accepted by commercial entities

because it is less restrictive and does not force companies to open source all of their

related software. The AOSP addresses the question of why they chose the Apache

2.0 license (Licenses, n.d.):

We are sometimes asked why Apache Software License 2.0 is the preferred license

for Android. For userspace (that is, non-kernel) software, we do in fact prefer

ASL2.0 (and similar licenses like BSD, MIT, etc.) over other licenses such as

LGPL.

Android is about freedom and choice. The purpose of Android is to promote

openness in the mobile world, but we don’t believe it’s possible to predict or

dictate all the uses to which people will want to put our software. So, while we

encourage everyone to make devices that are open and modifiable, we don’t

believe it is our place to force them to do so. Using LGPL libraries would

often force them to do so.

Here are some of our specific concerns:

1. LGPL (in simplified terms) requires either: shipping of source to the

application; a written offer for source; or linking the LGPL-ed library

dynamically and allowing users to manually upgrade or replace the library.

Since Android software is typically shipped in the form of a static system

image, complying with these requirements ends up restricting OEMs’ designs.

(For instance, it’s difficult for a user to replace a library on read-only flash

storage.)

2. LGPL requires allowance of customer modification and reverse engineering for

debugging those modifications. Most device makers do not want to have to be

bound by these terms, so to minimize the burden on these companies we

minimize usage of LGPL software in userspace.

3. Historically, LGPL libraries have been the source of a large number of

compliance problems for downstream device makers and application

developers. Educating engineers on these issues is difficult and slow-going,

unfortunately. It’s critical to Android’s success that it be as easy as possible

for device makers to comply with the licenses. Given the difficulties with

complying with LGPL in the past, it is most prudent to simply not use LGPL

libraries if we can avoid it.

26 CHAPTER 1 Android and mobile forensics

The issues discussed above are our reasons for preferring ASL2.0 for our own

code. They aren’t criticisms of LGPL or other licenses. We do feel strongly on

this topic, even to the point where we’ve gone out of our way to make sure as

much code as possible is ASL2.0. However, we love all free and open source

licenses, and respect others’ opinions and preferences. We’ve simply decided

that ASL2.0 is the right license for our goals.

Development Process

The AOSP is a very sophisticated and complex open source project, requiring the

coordination of many developers across the world. As such, the AOSP has a defined

set of roles and processes that must be followed to contribute to the project. The roles

include the following:

� Contributor/developers: individuals and corporations who contribute code to the

project

� Verifiers: individuals who test code changes

� Approvers: individuals who are experienced developers and decide whether

a change will be included or excluded

� Project leads: typically Google employees who are responsible for the overall

management of the AOSP project

Anyone can download, compile, and enhance the AOSP project. Figure 1.6

illustrates the development process.

Value of Open Source in Forensics

Not many forensic examiners will, or need to, contribute directly to the AOSP.

However, there is tremendous value in downloading the software. For example,

when examining a Yet Another Flash File System2 (YAFFS2) physical image from

an Android 1.5 device, the phrase “silly old name” frequently appears when using

strings to extract ASCII text. For most file systems, the examiner would have to

simply conjecture as to the relevance of “silly old name.” However, by downloading

the source code, an examiner can quickly search for the phrase, identify the code,

and examine it for additional information. In this case, when the object header for

a YAFFS2 object (e.g., a file) is updated, the name field is set to “silly old name”

under certain circumstances.

From the AOSP in file kernel/fs/yaffs2/yaffs_guts.c, there is a function

called yaffs_UpdateObjectHeader. The comment in the code and function

header reads:

/* UpdateObjectHeader updates the header on NAND for an object.

 * If name is not NULL, then that new name is used.
 */
int yaffs_UpdateObjectHeader(yaffs_Object * in, const YCHAR * name, int force,
 int isShrink, int shadows)

Android open source project 27

mailto:Image of Figure 1.5|tif

Author sets up

local development

environment with

Git & Repo

Author develops

code / edits files

then commits

changes

Author submits

change commit to

Gerrit for review

Android Open Source Project

Contribution Workflow

Author notifies

reviewers via

Gerrit or email

Approver sets the

“code looks good”

bit in Gerrit, adds

comments

Approver looks at

code diffs within

Gerrit to determine

if change is a good

fit for the project

Verifier patches

the commit to their

local client, then

builds & tests the

change

Verifier sets the

“verified” bit in

Gerrit and submits

the change commit

Verifier unsets the

“code looks good”

bit, adds

 comments &

notifies author

Gerrit merges

commit with

public depot.

The “verified”

and “code

look good”

bits are unset

Gerrit notifies the

verifier to merge

changes manually

Verifier manually

merges files or

notifies the author

to merge &

resubmit

The “verified”

bit is unset

Change is

submitted to

public depot,

included in

future syncs

Did edits to the

same file merge

without conflicts?

Did the merge

go through without

conflicts?

Is the change

correct?

Is change a

good fit?

Approver adds

comments, notifies

author

Gerrit notifies

project owners /

verifiers

“A”

NO

YES

NO

NO NO

YES

YES YES

To

“A”

Author syncs

to pull code

from public

depot to local

client

Author

Approver

Automatic process

Verifier

Verifier’s local environment

Author’s local environment

FIGURE 1.6

AOSP development process.

28 CHAPTER 1 Android and mobile forensics

mailto:Image of Figure 1.6|eps

A variable called “oldName” is created with the contents “silly old name”:

And the name field of the object header being updated is set to “oldName” when

the previous “ChunkId” is greater than 0:

The code also checks to see if the original call to the function passed in a new

name for the object. If a new name value was not provided to the function, the value

of oldName (which is still “silly old name”) is used:

While not every examiner is comfortable interpreting a programmer’s code (C in

this case), clearly this information could be useful in a forensic examination. And, of

course, there are many other situations, such as how SMS messages are time

stamped or how geo-tagging is implemented, which could bring tremendous value to

an examination.

Downloading and Compiling AOSP

Hopefully the value of referring to the Android source code was demonstrated in the

previous YAFFS2 example. The following section highlights the steps you should

follow to download and compile the latest release from the AOSP. While Android

2.2 and earlier versions would compile on 32-bit machines, the latest version of the

AOSP (Android 2.3) and forward require a 64-bit computer.

Using the Ubuntu VM we previously built, we can now start updating the stock

Ubuntu install and then build Android from source code.

yaffs_strcpy(oldName,_Y("silly old name"));

if (prevChunkId > 0) {
 result = yaffs_ReadChunkWithTagsFromNAND(dev, prevChunkId,
 buffer, &oldTags);

 yaffs_VerifyObjectHeader(in,oh,&oldTags,0);

 memcpy(oldName, oh->name, sizeof(oh->name));
}

if (name && *name) {
 memset(oh->name, 0, sizeof(oh->name));
 yaffs_strncpy(oh->name, name, YAFFS_MAX_NAME_LENGTH);
 } else if (prevChunkId>=0) {
 memcpy(oh->name, oldName, sizeof(oh->name));
 } else {
 memset(oh->name, 0, sizeof(oh->name));
 }

#add repository needed for sun-java6-jdk
sudo add-apt-repository "deb http://archive.canonical.com/ lucid partner"

#update installed packages
sudo apt-get update
sudo apt-get upgrade -u
sudo reboot

Android open source project 29

mailto:Image of Figure 1.6|eps
mailto:Image of Figure 1.6|eps
mailto:Image of Figure 1.6|eps
mailto:Image of Figure 1.6|eps

#install packages needed to build Android
sudo apt-get install git-core gnupg flex bison gperf libsdl1.2-dev libesd0-dev \
libwxgtk2.6-dev squashfs-tools build-essential zip curl libncurses5-dev \
zlib1g-dev sun-java6-jdk pngcrush g++-multilib lib32z1-dev lib32ncurses5-dev \
lib32readline5-dev gcc-4.3-multilib g++-4.3-multilib

#make directories and repo utility
mkdir -p ~/bin
mkdir -p ~/android
curl http://android.git.kernel.org/repo > ~/bin/repo
chmod 755 ~/bin/repo

#initialize Android git archive
cd ~/android
time ~/bin/repo init -u git://android.git.kernel.org/platform/manifest.git

#download source files
time ~/bin/repo sync

#build Android
cd ~/android
source build/envsetup.sh
lunch
time make

Congratulations, you have built Android from source (or started the builddit

takes a while).

Now, if you come across an aspect of Android you need to understand better, you

can search the source code and learn more about it. Table 1.5 charts the core Android

Table 1.5 Core Android Projects

Project Description

bionic C runtime: libc, libm, libdl, dynamic linker

bootloader/legacy Bootloader reference code

build Build system

dalvik Dalvik virtual machine

development High-level development and debugging tools

frameworks/base Core Android app framework libraries

frameworks/policies/base Framework configuration policies

hardware/libhardware Hardware abstraction library

hardware/ril Radio interface layer

kernel Linux kernel

prebuilt Binaries to support Linux and Mac OS builds

recovery System recovery environment

system/bluetooth Bluetooth tools

system/core Minimal bootable environment

system/extras Low-level debugging/inspection tools

system/wlan/ti TI 1251 WLAN driver and tools

30 CHAPTER 1 Android and mobile forensics

mailto:Image of Figure 1.6|eps

project, which you will find maps roughly to the directories in the Android source

tree. The project information can be found on the AOSP site at https://sites.google.

com/a/android.com/opensource/projects, which provides a brief description of each

project function.

INTERNATIONALIZATION
Android has broad support for international languages and locales throughout the

platform. This not only allows the phone to display menus, web sites, and other

aspects of the graphical user interface in many languages, but there is also support

for input in a variety of international keyboard formats.

Unicode

The key to Android’s ability to support a multitude of languages is the ability to

encode and decode characters in Unicode, the industry standard encoding scheme

that supports over 600 languages (Languages and scripts, n.d.).

TIP

Cuneiform support
For those curious and adventurous readers, Unicode does support Cuneiform, although we

are still waiting for someone to implement the Android user interface in Sumero-Akkadian

Cuneiform. The full list of Unicode supported languages and scripts can be viewed at

http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/languages_and_scripts.html

Keyboards

Android supports many different types of keyboards, sometimes referred to as the

input method. For example, when running an Android virtual device (AVD), the

emulator allows you to change the language of the keyboard input as shown in

Fig. 1.7.

The ability to handle various languages is simply built into the AVD system.

This has important implications in a forensic investigation where analysts must

remain vigilant and consider that some data could be encoded in an unexpected

language.

The same feature of the ADV is available on the physical Android devices as

well. For example, on the HTC Incredible distributed in the United States by Verizon

Wireless, there is a setting called Language and Keyboard. You can select from two

languages for the phone user interface: English and Español. Then, under the Text

settings, you can choose your Touch Input settings. From here, you can specify the

keyboard type (QWERTY, Phone Keypad, or Compact QWERTY), select from over

20 international keyboards, specific options for Chinese Text input (Traditional or

Internationalization 31

https://sites.google.com/a/android.com/opensource/projects
https://sites.google.com/a/android.com/opensource/projects
http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/languages_and_scripts.html

Simplified Chinese), and a number of other options. The latest version of Android

(Gingerbread, 2.3) now supports 57 languages (Android 2.3 platform, n.d.).

Finally, Android supports third-party keyboards that the user can install. An

alternative keyboard that is gaining popularity is called Swype that allows the user to

drag their finger across the keyboard to each letter in one continuous motion. The

software is then able to determine, with high probability, what word you were

typing. The software supports multiple languages and is a good example of a plug-

gable keyboard input.

Custom Branches

As Android was released as open source, anyone (including you after following the

steps above!) can download and then customize the Android source code. While

many people who undertake this ultimately release their changes back to Google for

inclusion into Android, some people fully branch the code and release their own

version of Android.

Aftermarket Firmware
Perhaps the most prolific example of custom Android branches (also called Mods,

firmware, and ROMs) comes from the Android hacking and enthusiast community.

The community is a very large and diverse group of individuals who are motivated to

develop, experiment, and otherwise hack Android. Some of their work may involve

gaining root permissions on an Android device, enabling new features, or simply

bragging about their latest customization. The community is passionate, prolific, and

a terrific source of information (as well as misinformation) and they respond to many

requests for help. Serious Android researchers would be remiss if they ignored this

FIGURE 1.7

Android virtual device with Chinese number pad.

32 CHAPTER 1 Android and mobile forensics

mailto:Image of Figure 1.7|tif

community. However, the sheer volume of information makes it a very time-

consuming endeavor.

One of the most popular communities is called XDA Developers, self-described

as “the largest Internet community of smartphone enthusiasts and developers for the

Android and Windows Mobile platforms” (xda-developers, n.d.). Their web site has

over 3.2 million registered users and runs a truly impressive forum.

Many of the custom Mods are released on XDA and often the developers

themselves are active in the community. Perhaps the most popular aftermarket

firmware is CyanogenMod. This firmware is based on the AOSP. It adds new

features and attempts to increase the performance and reliability of the device over

Android-based ROMs released by the vendors and carriers directly (CyanogenMod,

n.d.). Currently CyanogenMod supports 17 different smartphone and tablet devices

from six manufacturers: Commitva, Dell, HTC, Motorola, Samsung, and Viewsonic.

These aftermarket firmwares have root access enabled on the device which, as we

will discuss in Chapter 6, is key to obtaining a physical acquisition of the device.

OPhone OS
The Open Mobile Phone OS (OPhone OS) is based on Android and developed by

Borqs, a Chinese software developer. OPhone OS was designed for Chinese

government-owned China Mobile, the largest mobile carrier in the world with over

500 million subscribers. In June 2010, OPhone OS 2.0 was released in Beijing, and

while Borqs/OPhone OS is relatively unknown outside of China, they clearly play an

important and growing role in the Android ecosystem. Inside China, Borqs CEO

stated they only work with one carrier, China Mobile, because “you cannot serve two

masters” in that country (China’s OPhone, n.d.).

So, they reserve the name OPhone OS for their China Mobile software. However,

according to their web site, they also develop another branch of Android software

that they call Androidþ (China’s OPhone, n.d.). In their press release, Borqs

explains the Dell Aero is outfitted with their Androidþ software, which includes an

Apple-esque user interface, and that their software is also being distributed by Dell

in Brazil and Mexico.

Android on iPhone (and Other non-Android Devices)
Perhaps one of the most controversial aftermarket firmwares is the one that enables

Android to run on an iPhone. Since many mobile devices are based on the ARM

processor, the porting process is achievable. This allows Android to run on devices

designed to run other OSs like Windows Mobile, Symbian, iOS, and others. There’s

nothing quite like showing an Apple fanboy your beautiful iPhone running Android!

ANDROID MARKET
The Android Market is an avenue for third-party developers to release their appli-

cations to anyone who owns an Android device. The Android Market was first

Android market 33

announced on August 28, 2008 on the Google Developer blog as “an open content

distribution system that will help end users find, purchase, download and install

various types of content on their Android-powered devices” (Android developers

blog, n.d.). When the market was first released in October 2008, it did not support

paid apps. However, by early 2009 the Android Market supported paid applications

in both the United States and United Kingdom. By January 2011, the Android

Market supported paid apps in 29 countries (Supported locations, n.d.). Several other

countries, most notably India, can use the Android Market but currently cannot

install paid apps.

Google’s light-handed approach to managing the Android Market is in stark

contrast to Apple’s tight management of their App Store. While the Android Market

does have Terms of Service for users (Android Market terms, n.d.) and an Android

Market Developer Distribution Agreement (Android Market developer, n.d.) for

developers, apps are released to the market without an approval process. Instead,

Google believes that the app ratings will weed out apps that are buggy or show little

merit.

To release an app into the Android Market, developers must be registered,

pay a $25 fee, and sign their app with a private key which will uniquely identify

them to the market. When a user purchases an app, the developer receives 70%

of the purchase price with the remaining 30% going to Google (and, at times, the

carrier involved). Initially, users had a 48 h window of time where they could

return the apps. However, in December 2010, Google shortened that window to

15 min.

Google has the ability to remotely remove an app not only from the Android

Market, but also directly from an Android device. The Remote Application Removal

Feature is a security control Android possesses where a dangerous application could

be removed from active circulation in a rapid and scalable manner to prevent further

exposure to users (Android developers blog: exercising, n.d.). The security control

was first exercised in June 2010 when a security researcher distributed a proof of

concept app which could allow it to download and install another app on the device

(Mills, n.d.).

In the open spirit of Android, Google also does not preclude users from directly

installing apps on their phone from the developers’ web site, nor does it preclude the

development of a competing app marketplace. There are several alternatives to the

Android Market, most of which are small in comparison. Also, several large

companies have either announced or indicated their intentions to create an alter-

native app store, including Amazon, Best Buy, and Verizon.

Installing an app

To install an app from the Android Market, shown in Fig. 1.8, a user must first run

the Market app and sign in with a Gmail account. This account allows the user to

purchase paid apps through a Google Checkout account with address and credit card

information. Recently, Google has partnered with some carriers so an app can be

34 CHAPTER 1 Android and mobile forensics

purchased and placed on the subscribers’ monthly wireless carrier bill instead of the

Google Checkout credit card.

The Market app allows the user to search for apps and to browse by topic or

popularity. Once an app is selected, a dedicated app page is displayed from which

the user may install the app. The dedicated page also provides general information

such as description, number of downloads, average rating, detailed reviews, related

apps, developer info and, finally, an opportunity to provide feedback or flag the app

as inappropriate.

As we will discuss, permissions are a central component to Android security.

Once a user decides to install an app, they are presented with the screen that displays

all of the permissions an app is requesting, as seen in Fig. 1.9. At this point, the user

can accept the permissions and proceed with the install or go back to the previous

screen.

The app is then downloaded and installed and the results are displayed in the

notification bar at the top of the device. From there, the user can run the application

or access it anytime from the list of applications.

To remove an application, the user can access the device’s Settings and choose

the Application setting. From there, they can Manage applications (see Fig. 1.10),

which displays a list of apps with various characteristics such as downloaded,

running, and on SD card.

FIGURE 1.8

Android Market on HTC Incredible running Android 2.2.

Android market 35

FIGURE 1.9

Android app permissions.

FIGURE 1.10

Manage applications.

36 CHAPTER 1 Android and mobile forensics

By selecting an app, the user can then see the Application info screen which

shows various information about the apps and allows the user options to Force stop,

Clear data, Clear cache, and Uninstall as shown in Fig. 1.11.

Application Statistics

The Android Market is growing quickly. Six months after its release, T-Mobile’s

Chief Technology Officer, Cole Brodman, commented that users needed more filters

to successfully locate apps from the nearly 2300 apps on the Market (Lawson, n.d.).

By January 2011, over 200,000 apps were on the Market with 27,227 added in

November 2010 alone (Android Market statistics, n.d.). Estimates place the number

of downloaded apps at over 2.5 billion.

Obviously, apps are a key area of focus for both security and forensics. In

Chapter 4, we will explore in great detail how apps persist data to an Android device,

what types of information are stored, and how data can be recovered and analyzed.

ANDROID FORENSICS
Clearly there is a need for Android forensics. Smartphones in general are perhaps the

one electronic device that knows the most about an individual. For most people, their

smartphone is rarely more than a few feet from them at any point of timedincluding

while sleeping. The device blends both personal and corporate information and has the

FIGURE 1.11

Application information, including uninstall.

Android forensics 37

ability to store vast amounts of data including text messages, e-mails, GPS locations,

picture, videos, and more. And people tend to be more honest with their smartphone

than any other person or device.Why?Because people feel the device is secure and can

provide themwith answers to questions theymay choose not to sharewith anyone else.

More than one forensic examiner has quipped, “You are what you Google,” clearly

a byproduct of seeing firsthand the honesty with which people use their smartphones.

Challenges

Of course, nothing worth doing is easy and both mobile forensics and Android

forensics in particular have a host of challenges that must be overcome.

A fundamental goal in digital forensics is to prevent any modification of the

target device by the examiner. However, mobile phones lack traditional hard drives

that can be shutdown, connected to a write blocker, and imaged in a forensically

sound way. Any interaction with the smartphone will change the device in someway.

As such, the examiners must use their judgment when examining a mobile device

and if the device is modified, they must explain how it was modified anddas

importantlydwhy that choice was made.

Some forensic examiners take exception to this approach and debates have ensued.

However, techniques thatmay alter a computer targeted for forensic examination have

been used for some time. For example, often a livememory analysis is necessary in an

investigation of a malware attack. Similarly, if a hard drive is encrypted, an examiner

must image the device while it is still running or they run the risk of never having the

ability to access the data on the drive. Other good examples are systems that must

remain online due to complex environments, typically found in cases involving larger

corporate servers. While every examiner should strive to not change the device they

are investigating, it is rarely possible in the mobile world. So, if the device cannot be

modified, then the only other choice would be to not examine the device. Clearly this

option is not acceptable as evidence from mobile forensics is a critical component in

many investigations and has even solved many crimes.

Further complicating Android forensics is the sheer variety of devices, Android

versions, and applications. The permutations of devices and Android versions alone

are in the thousands and each device plus platform has unique characteristics. While

a logical analysis of every Android phone is achievable, the vast combinations make

the full physical acquisition of every Android device likely unachievable. Even

a minor difference in the Android version may require extensive testing and vali-

dation in high-stakes cases.

SUMMARY

Android is a fast growing, feature-rich, and exciting mobile platform. The combi-

nation of features, connectivity, and popularity naturally lead to a growing need for

Android forensics. While the difficulty of mobile forensics is increasing, the value

is increasing as well. The open source aspect of Android greatly assists in the

38 CHAPTER 1 Android and mobile forensics

fundamental understanding a forensic analyst requires, making Android an ideal

platform to work on.

References
Alliance, F. A. Q. (n.d.). Open Handset Alliance. Retrieved January 3, 2011, from http://

www.openhandsetalliance.com/oha_faq.html.

Alliance Members. (n.d.). Open Handset Alliance. Retrieved March 9, 2011, from http://

www.openhandsetalliance.com/oha_members.html.

Android developers blog: Android Market: a user-driven content distribution system. (n.d.).

Retrieved January 9, 2011, from http://android-developers.blogspot.com/2008/08/

android-market-user-driven-content.html.

Android developers blog: Exercising our remote application removal feature. (n.d.).

Retrieved January 9, 2011, from http://android-developers.blogspot.com/2010/06/

exercising-our-remote-application.html.

Android Market developer distribution agreement. (n.d.). Retrieved January 9, 2011, from

http://www.android.com/us/developer-distribution-agreement.html.

Android Market terms of service. (n.d.). Retrieved January 9, 2011, from http://www.google.

com/mobile/android/market-tos.html.

Android Market statistics from AndroLib, Androlib, Android applications and games directory.

(n.d.). Retrieved January 9, 2011, from http://www.androlib.com/appstats.aspx.

Android 2.3 platform, & Android developers. (n.d.). Retrieved January 8, 2011, from http://

developer.android.com/sdk/android-2.3.html#locs.

Bort, D. (n.d.). Android is now available as open source. Android Open Source Project.

Retrieved January 3, 2011, from https://sites.google.com/a/android.com/opensource/

posts/opensource.

China’s OPhone to find its way to US as Androidþ. (n.d.). Retrieved January 8, 2011, from

http://www.borqs.com/news.jsp.

Corporate information: About. (n.d.). Google. Retrieved January 4, 2011, from http://www.

google.com/corporate/.

comScore reports November 2010 U.S. mobile subscriber market share. (n.d.). comScore.

Inc. Retrieved January 9, 2011, from http://www.comscore.com/Press_Events/

Press_Releases/2011/1/comScore_Reports_November_.

CyanogenMod, About the Rom, CyanogenMod. (n.d.). Retrieved January 8, 2011, from http://

www.cyanogenmod.com/about.

Gartner says worldwide mobile phone sales grew 35 percent in third quarter 2010; smart-

phone sales increased 96 percent. (n.d.) Technology Research & Business Leader

Insight. Gartner Inc. Retrieved March 9, 2011, from http://www.gartner.com/it/page.jsp?

id¼1466313.

Get Android source code, Android open source. (n.d.). Retrieved March 9, 2011, from http://

source.android.com/source/download.html.

Google Investor: Google android activating 350,000 devices daily (data visualization video)

“Top global smartphone platform.” (n.d.). Retrieved March 9, 2011, from http://

googinvestor.blogspot.com/2011/03/google-android-activations-350k-daily.html.

Krazit, T. (n.d.). Google’s Rubin: Android “a revolution.” Digital MediadCNET News.

Technology NewsdCNET News. Retrieved January 5, 2011, from http://news.cnet.com/

8301-1023_3-10245994-93.html.

Android forensics 39

http://www.openhandsetalliance.com/oha_faq.html
http://www.openhandsetalliance.com/oha_faq.html
http://www.openhandsetalliance.com/oha_members.html
http://www.openhandsetalliance.com/oha_members.html
http://android-developers.blogspot.com/2008/08/android-market-user-driven-content.html
http://android-developers.blogspot.com/2008/08/android-market-user-driven-content.html
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://www.android.com/us/developer-distribution-agreement.html
http://www.google.com/mobile/android/market-tos.html
http://www.google.com/mobile/android/market-tos.html
http://www.androlib.com/appstats.aspx
http://developer.android.com/sdk/android-2.3.html%23locs
http://developer.android.com/sdk/android-2.3.html%23locs
https://sites.google.com/a/android.com/opensource/posts/opensource
https://sites.google.com/a/android.com/opensource/posts/opensource
http://www.borqs.com/news.jsp
http://www.google.com/corporate/
http://www.google.com/corporate/
http://www.comscore.com/Press_Events/Press_Releases/2011/1/comScore_Reports_November_
http://www.comscore.com/Press_Events/Press_Releases/2011/1/comScore_Reports_November_
http://www.cyanogenmod.com/about
http://www.cyanogenmod.com/about
http://www.gartner.com/it/page.jsp%3Fid%3D1466313
http://www.gartner.com/it/page.jsp%3Fid%3D1466313
http://www.gartner.com/it/page.jsp%3Fid%3D1466313
http://source.android.com/source/download.html
http://source.android.com/source/download.html
http://googinvestor.blogspot.com/2011/03/google-android-activations-350k-daily.html
http://googinvestor.blogspot.com/2011/03/google-android-activations-350k-daily.html
http://news.cnet.com/8301-1023_3-10245994-93.html
http://news.cnet.com/8301-1023_3-10245994-93.html

Licenses. (n.d.). Android open source. Retrieved January 5, 2011, from http://source.android.

com/source/licenses.html.

Languages and scripts. (n.d.). Unicode Consortium. http://unicode.org/repos/cldr-tmp/trunk/

diff/supplemental/languages_and_scripts.html.

Lawson, S. (n.d.). Android Market needs more filters, T-Mobile says. ITworld, IT news,

technology analysis and how-to resources. Retrieved January 9, 2011, from http://www.

itworld.com/personal-tech/64481/android-market-needs-more-filters-t-mobile-says.

Mills, E. (n.d.). Google remotely wipes apps off Android phones. InSecurity Complex

dCNET News. Technology NewsdCNET News. Retrieved January 9, 2011, from

http://news.cnet.com/8301-27080_3-20008922-245.html.

Official Google Blog: Where’s my Gphone? (n.d.). Retrieved January 2, 2011, from http://

googleblog.blogspot.com/2007/11/wheres-my-gphone.html.

Supported locations for merchantsdAndroid Market help. (n.d.). Retrieved January 9, 2011,

from http://www.google.com/support/androidmarket/bin/answer.py?hl¼en&answer¼
150324.

Torvalds, L. (1991, October 5). Free minix-like kernel sources for 386-ATdcomp.os.minix.

Google Groups. Retrieved March 3, 2011, from http://groups.google.com/group/comp.

os.minix/msg/2194d253268b0a1b.

xda-developers. (n.d.). Retrieved January 8, 2011, from www.xda-developers.com/.

40 CHAPTER 1 Android and mobile forensics

http://source.android.com/source/licenses.html
http://source.android.com/source/licenses.html
http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/languages_and_scripts.html
http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/languages_and_scripts.html
http://www.itworld.com/personal-tech/64481/android-market-needs-more-filters-t-mobile-says
http://www.itworld.com/personal-tech/64481/android-market-needs-more-filters-t-mobile-says
http://news.cnet.com/8301-27080_3-20008922-245.html
http://googleblog.blogspot.com/2007/11/wheres-my-gphone.html
http://googleblog.blogspot.com/2007/11/wheres-my-gphone.html
http://www.google.com/support/androidmarket/bin/answer.py%3Fhl%3Den%26answer%3D150324
http://www.google.com/support/androidmarket/bin/answer.py%3Fhl%3Den%26answer%3D150324
http://www.google.com/support/androidmarket/bin/answer.py%3Fhl%3Den%26answer%3D150324
http://groups.google.com/group/comp.os.minix/msg/2194d253268b0a1b
http://groups.google.com/group/comp.os.minix/msg/2194d253268b0a1b
http://www.xda-developers.com/

Android hardware platforms 2
INFORMATION IN THIS CHAPTER

� Overview of core components

� Overview of different device types

� Read-only memory and boot loaders

� Manufacturers

� Specific devices

INTRODUCTION
Android was designed to be compatible with a wide array of hardware. This is

achieved, in large part, through the Linux kernel, which over the years has evolved to

support a large variety of hardware. This is an important characteristic of the plat-

form as it allows manufacturers freedom to design, procure, or otherwise integrate

the ideal components of the Android device. This strategy has led to the develop-

ment of powerful dual core Android devices capable of significant processing as

well as entry-level devices targeted to entry-level wireless plans. Although the

hardware compatibility is great for manufacturers, wireless providers, and ulti-

mately consumers, the diversity poses challenges for forensic analysts and security

engineers. Understanding the hardware components, device types, and boot process

for Android will aid in your overall understanding of Android.

OVERVIEW OF CORE COMPONENTS
Androidwas developed to support awide range of devices andmanufacturers.As such,

any list of major components will likely be outdated as soon as it is printed. However,

there are some consistent components found in Android devices, which are beneficial

to discuss. The following components comprise the core of an Android device.

Central Processing Unit

The central processing unit (CPU) is a term quite familiar to most forensic analysts,

and there are no surprises in its role on Android devices. The CPU is responsible for

executing operating system (OS) and application code and coordinating or controlling

other core components including the network, storage, displays, and input devices.

CHAPTER

Android Forensics. DOI: 10.1016/B978-1-59749-651-3.10002-0

Copyright � 2011 Elsevier Inc. All rights reserved.
41

http://dx.doi.org/

From the beginning, most (if not all) Android devices utilize ARM processors as

their CPU, which are powerful enough for the mobile platform but designed for low

power consumptionda key aspect in maximizing battery life.

However, corporations and enthusiasts alike have ported Android to other plat-

forms. On the corporate front, Intel has ported Android to their Atom processors.

Similarly, Google has ported Android in their Google TV product, which is built on

top of Android. There are also projects, such as Android-x86 (Android-x86, n.d.),

that have released ported versions of Android running on Intel’s x86 architecture.

Some of the platforms supported include many of the Eee PCmodels and the Lenovo

ThinkPad x61 Tablet.

Baseband Modem/Radio

The baseband modem and radio are hardware and software systems that provide

Android devices a connection to the cellular network. This allows both voice and

data communication from the device.

Instead of occupying the main CPU with these activities, device designers

typically leverage a dedicated component to manage the complexities of cellular

communication. Thus, although the CPU may direct the overall activities of the

device, the baseband modem manages cellular communication.

Throughout this book, we will use the terms baseband, baseband modem, and

radio interchangeably. Although these systems are complex and certain nuances

may be overlooked in this definition, the distinctions are not significant for forensic

analysts.

Memory (Random-Access Memory and NAND Flash)

Android devices, because they are at some level simply computers, need various

types of memory to operate. The two primary types of memory required are volatile

(random-access memory [RAM]) and nonvolatile (NAND flash) memory.

The RAM is used by the system to load, execute, and manipulate key parts of the

OS, applications, or data. RAM is volatile, meaning that it does not preserve its state

without power.

However, NAND flash memory (we will refer to this memory simply as NAND

flash) is nonvolatile, and thus, the data are preserved after the device has been powered

off. The NAND flash is used to store the boot loader, OS, and user data. It is therefore

a critical component of any forensic investigation and is similar to a hard drive in

a forensic investigation of a laptop, desktop, or server. NAND flash also has unique

properties that make it ideal for mobile devices while at the same time presenting

a number of challenges for programmers (which often yield unique opportunities for

forensic analysts). These characteristics will be explored in detail in Chapter 4.

From a hardware perspective, mobile devices obviously have significant space

limitations. Often, the RAM and NAND flash memory are manufactured into

a simple component referred to as the multichip package (MCP). When examining

42 CHAPTER 2 Android hardware platforms

Android device components, generally the NAND flash and RAM will be packaged

as an MCP.

Although Fig. 2.1 is specific to the memory manufacturer Hynix (used in the Dell

Streak and other Android devices), this overall architecture is a good depiction of

MCP components that include not only the NAND flash and RAM but also the

packaging options to suit various devices.

Global Positioning System

Undoubtedly one of the most important innovations in mobile devices since the

inclusion of cellular communication has been integration of the Global Positioning

System (GPS) into the core offering. This functionality not only identifies the

location of the device using the GPS satellite network but also allows for applica-

tions such as point-to-point directions, position-aware applications, and, undoubt-

edly, many more interesting uses in the future.

Wireless (Wi-Fi.com and Bluetooth)

Beyond the cellular networks, most devices allow for additional wireless technol-

ogies, such as Wi-Fi.com for high-speed data connection and Bluetooth for

connections to external devices such as headsets, keyboards, printers, and more. In

+ +

512M / 1G / 2G / 4G / 8G

256M / 512M / 1G / 2G / 4G

MCP PoP

107balls 130balls 137balls 149balls 160balls 152balls 168balls
10.5x13mm 10.5x13mm8x9mm 10x14mm 15x15mm 14x14mm 12x12mm

Height : 1.0mm / 1.2mm / 1.4mm Height : 0.7mm / 0.8mm / 0.9mm / 1.0mm

Voltage Option: 1.8v / 2.7v

I/O Option : 1.8v / 2.7v

Page Option : 512 / 2K byte

Voltage Option : 1.8v

I/O Option : X16 / X32

+ +

Line-Up

NAND Flash

Mobile SDRAM

PKG

MCP Your choice NAND Flash

Your choice Package

Your choice Mobile DRAM

FIGURE 2.1

MCP architecture (Mobile Memory, n.d.).

Overview of core components 43

http://Wi-Fi.com
http://Wi-Fi.com

fact, some devices may omit the cellular network connection, which not only

reduces the cost and complexity of the device but also eliminates a monthly

recurring charge for the consumer. These devices may be designed for home use

only (e.g., a home phone or multimedia device) or for offline mode for those times

when a Wi-Fi.com connection is not available (i.e., tablet or e-reader).

Secure Digital Card

Most Android devices ship with a removable memory card referred to as their Secure

Digital (SD) card. Like the on-device NAND flash, SD cards are nonvolatile and also

use NAND flash technology. However, because the SD cards were designed to be

portable, they must adhere to various physical and communication specifications

that allow them to interoperate with most devices.

The SD card is one obvious design difference between most Android devices and

the popular Apple iPhone. The iPhone is designed with 4GB to 32GB of NAND flash

on-board and does not provide for SD cards. Although more expensive, this provides

the device manufacturer (Apple, in this case) with far more control over the device.

In the case of Android, larger user files are intended to be stored on the SD card. This

not only provides a less expensive and easily upgradeable memory option for

consumers but is also portable, so if a consumer purchases a new phone, they can

easily transfer data using their existing SD card.

Recent HTC phones (notably the HTC Incredible) have provided the standard SD

card interface but did not ship with an SD card installed. Instead, they created an

emulated SD card by carving a portion of the on-board NAND memory and pre-

senting it as an SD card. This adds additional complexity for the forensic analysts.

Analysts must first determine whether there is an SD card, an emulated SD card, or

some other means of user data storage (in addition to the on-board NAND flash).

Screen

The screen on an Android device is obviously a critical component. It is the primary

interface for user interaction, not only through the visual display but also by

responding to the user’s touch. The technologies behind the display are the focus of

intense development. Early iterations included a liquid crystal display and a second

layer that detects user input on the screen. Recent improvements include higher

display resolution, brighter screens, more sensitive and complicated user touch

interactions, and reduced power consumption. In fact, some recent Android smart-

phones, such as those using Samsung’s Super AMOLED technology, have been well

received by consumers due largely to the screen capabilities.

Camera

Initially cameras on smartphones were used to take pictures. Although an exciting

development at the time, there has been significant innovation in this area too. Most

44 CHAPTER 2 Android hardware platforms

http://Wi-Fi.com

devices now also support video recording (some in high definition). Of course,

cameras have increased in their quality and now often include an integrated flash.

Recently, some devices include two cameras. The first, on the back of the device,

is used for external pictures and videos. A second front-facing camera allows for

new applications such as videoconferencing.

Most Android devices also combine the camera functionality with the GPS; hence,

you can record not only the date and time of a picture but also the GPS coordinates.

You can then easily upload or share the picture using the network or perhaps send them

through the Multimedia Messaging Service (MMS) of the cellular provider.

One interesting development in this area is the use of cameras to read bar codes.

Specialized applications leverage the camera to take a picture of a bar code and then

analyze the data. It might look up product reviews, determine the best price, or

automatically check you into a restaurant’s application so that you can rate expe-

riences. Perhaps in the future, these apps may even allow you to pay for items you

wish to purchase.

An early implementation of this is a Google app called Goggles. The user can

take a picture of anything, and the app attempts to identify the object. An interesting

example, provided by Google, was tourists using the app to identify landmarks they

were visiting.

Keyboard

Youmight think that there is little innovation possiblewith a keyboard; however, this is

certainly not the case. Most Android devices come with an on-screen keyboard thanks

to touch screen technology. A number of devices also have a hardware-based keyboard.

The powerful software keyboards can adapt to the screen orientation (i.e., if you

rotate the screen 90 degrees, the keyboard will also rotate) and can support multiple

languages.

There are also companies developing more efficient ways to input text to

a device. One such company, Swype Inc., developed a keyboard where the user does

not select individual keys for each letter. Instead, for each word they simply start

with the first letter and then swipe their finger around the keyboard (without picking

it up) to each subsequent letter until they are done. The Swype keyboard then

determines the likely word and completes it (or offers suggestions). This approach

has proven to be quite successful, and we expect to see more Swype technology (or

similar innovations) integrated into the Android keyboard.

Battery

Battery life has always been a major concern for smartphone adopters. You may love

your phone but hate its battery life. The more people use the devicedand the

components that make it so powerfuldthe more battery consumed. Great care is

taken in minimizing power consumption. However, most people find they must

charge their phones every day.

Overview of core components 45

Over time, improvements in the hardware, software, and battery technology may

lead to less frequent charging. There are some interesting research initiatives in this

area such as recharging your phone without wires, leveraging the movement of the

human body for continuous recharging, or simply creating more powerful batteries.

Whatever the improvements, they will be welcomed by consumers.

For forensic analysts, one thing to bear in mind is that the SD card is often

located behind the battery. So, to access the SD card (and determine the exact device

type and identification), you generally have to remove the battery (thus powering off

the device). There are various considerations here, which we will cover in Chapter 6.

Universal Serial Bus

Most Android devices support several Universal Serial Bus (USB) interfaces that

can be accessed from computers. The cables may vary between devices, but in

general, the USB interface allows most modern OSs connectivity to the device. The

following are some common interfaces exposed by Android devices:

1. Charge only: the device can be recharged over the USB cable

2. Disk interface: portions of the device, including the SD card, emulated SD card,

and other disk interfaces, are presented and accessible to the OS as a Mass

Storage Device

3. Vendor-specific interfaces: these include custom synchronization protocols,

emulated CD-read-only memory (ROM) drives for software installs, and

specialized connections for sharing the phone’s Internet connection

4. Android Debug Bridge (ADB): an interface that provides the user access to

a shell prompt on the device as well as other advanced features

In Chapter 3, we will explore the disk interface and the ADB interface, both of

which are critical components in the forensic investigation of an Android device.

Accelerometer/Gyroscope

Android can detect and change the user interface based on how the device is held or

rotated. This is typically achieved through an accelerometer that detects the size and

direction a device has been accelerated (or positioned). Typically, this is used to

change the display between landscape and portrait.

The latest version of Android (2.3 as of this writing) now supports a gyroscope,

which is more sensitive and sophisticated than an accelerometer. The gyroscope is

a more responsive and accurate measure of device movementdkey for advanced

game development.

Speaker/Microphone

Finally, a smartphone or tablet is not that interesting without the ability to hear or

produce sound. Like the other components, the speaker and microphone continue to

46 CHAPTER 2 Android hardware platforms

mature with each iteration. For instance, some Android devices contain two or three

microphones that, combined with the Android software, have the ability to detect

and cancel out background noise to provide better sound quality. In perhaps some of

the most stunning technological development of this decade, the speaker phones

have evolved to the point where they can actually be used in real conversation!

OVERVIEW OF DIFFERENT DEVICE TYPES
From these core components, designers have created a wide variety of device types.

Back in October of 2008, the T-Mobile G1 (HTC Dream 100) was just released, and

it was quite easy to track the Android devices and types. It was simply the G1. And

the only device type was a smartphone. Of course, there were already blog posts

flying around about new device types but that was all speculation.

However, by the end of 2010, not only had the number of Android devices grown

tremendously but also the types of devices. There are many web sites that attempt to

track Android devices; however, most are incomplete. One decent reference that is

useful while preparing to examine a new Android device is PDAdb.net, which tracks

significant information about current and future devices. Currently, they are tracking

over 300 devices running Android, which you can search from their PDAmaster

page (Main Page, n.d.).

The primary device types remain smartphones and tablets, but there are a growing

number of ultraportable computers (we will call them netbooks) as well as e-readers.

On the innovation front, Google TV devices (running Android) are beginning to hit

the market, a few media players exist, and a number of automotive companies have

announced that they will run Android as part of their media and navigation systems.

And finally, there is an entire group that falls under the “other” category, which may

remain as one-off devices or could certainly go mainstream. Examples include

appliances, gaming devices, GPS receivers, home phones and audio devices, photo

frames, and printers. The following sections detail some of these device types.

Smartphone

Smartphones are the most popular type of Android devices. They contain nearly all

of the components described above and are generally the most well known. As of

October 2010, Android devices represent 22% of the smartphone market in the

United States (NielsenWire, n.d.) and are growing quickly. It is widely accepted that

Android will surpass the iPhone and perhaps will ultimately be the most popular

smartphone platform.

Tablet

Even though tablet computers have been around for decades, it appears that the

confluence of hardware, software, mobile networks, and applications may finally

Overview of different device types 47

http://PDAdb.net

yield a viable market. There are a number of Android tablets on the market.

However, the most recent and widely publicized device is the Samsung Galaxy

Tab�. The 7-inch device has essentially all the components of an Android smart-

phone but in a larger form factor. Although tablets may support cellular data

connections (as the Galaxy Tab does), they are typically limited to data and Short

Message Service/MMS and do not support cellular voice calls. However, with the

convergence of voice and data, we expect tablet devices to support Voice over

Internet Protocol phone and video calls soon.

Netbook

Netbooks are highly portable laptops with low power consumption and are a good

candidate for Android. It is important to note that Android is different from another

Google project called Chromium OS, which “is an open-source project that aims to

build an OS that provides a fast, simple, and more secure computing experience for

people who spend most of their time on the web” (Chromium OS, n.d.). Android was

developed first and is far more mature than Chromium OS.

A number of Android netbooks that are now available share common charac-

teristics with tablets, except netbooks have a full hardware keyboard and generally

a larger hinged screen. Often, the primary data storage medium for netbooks is

NAND flash. However, there is no technical reason why a more traditional hard drive

could not be used.

Google TV

Google, like many companies in the past, is trying to bridge the gap between viewing

broadcast television and Internet content. The devices span from full television sets

with Android built in, to set-top boxes that connect to existing televisions. But the

key is leveraging Android as the base OS, integrating the Internet and television

shows, and providing a framework for developers to create new applications specific

for the new medium.

Vehicles (In-board)

An area that holds exciting possibilities is the integration of Android devices into

automobiles, typically as part of the navigation/heads-up display or entertainment

system. To date, such systems are specific to each vehicle manufacturer, which has

resulted in systems that vary greatly in features, stability, and effectiveness. If

manufacturers integrated the full functionality of the ever-evolving Android OS, it

would allow them to focus on the user experience instead of the fundamental

building blocks. Users would find consistency between different vehicles and with

the Android devices. And developers could target applications specific to the needs

of vehicles and have a wider distribution market. Finally, there may be a host of

additional interested players, such as insurance agencies, attorneys, research

48 CHAPTER 2 Android hardware platforms

organizations, forensic analysts, and more, who could analyze information from

these systems in many ways.

The first car in production running Android is the Roewe 350 developed and

distributed in China by Shanghai Automotive Industry Corporation. In addition, many

US-based car makers have announced support for Android ranging from connectivity

with smartphones through full integration of the Android OS into their vehicles.

Global Positioning System

As mentioned previously, most Android devices have GPS built into their hardware.

When GPS first became available to consumers, the manufacturers created custom

OSs to manage their devices. Although most still leverage their custom system,

several have moved to the Android OS. As such, forensic analysts might encounter

dedicated GPS devices that run Android.

Other Devices

There are a growing number of new Android devices that will be hopelessly out-of-

date as soon as they are mentioned. Android is just too good of a deal for manu-

facturers to pass up. The OS is free, mature, and allows for proprietary development.

It also provides a mechanism for application development, whether internal or

through third parties. So many manufacturers are foregoing the expensive OS

development, maintenance, and support and instead building on top of Android.

Here are some examples of additional Android device types:

� Home appliances such as washing machines and microwaves

� E-readers such as Barnes and Noble’s Nook

� Media players

� Office equipment such as copying machines

� Home phones, audio and video (e.g., photo frames) devices

� Dedicated gaming devices

� Printers

As you can tell, there are manyways in whichmanufacturers will leverage Android

that will certainly keep the forensic analyst’s job interesting (as if it was not already).

ROM AND BOOT LOADERS
Android devices, like any other computer, have a fairly standard boot process which

allows the device to load the needed firmware, OS, and user data into memory to

support full operation. Although the boot process itself is well defined, the firmware

and ROM varies by manufacturer and by device. The goal of this section is to

provide a high-level overview of the Android boot process, as techniques addressed

later in this book will interact with the device at various levels. This overview is

Rom and boot loaders 49

intended to be a high level because an in-depth description of the Android or Linux

boot process could easily require an entire book on its own.

Much of the information in this section is based on a post titled “The Android

boot process from power on” by Mattias Björnheden of the Android Competence

Center at Enea (Björnheden, n.d.). In the post, Mattias identifies seven key steps to

the Android boot process:

1. Power on and on-chip boot ROM code execution

2. The boot loader

3. The Linux kernel

4. The init process

5. Zygote and Dalvik

6. The system server

7. Boot complete

We will examine each of these steps in detail.

Power On and On-chip Boot ROM Code Execution

When an Android device is first powered on, a special boot ROM code paired with

the CPU is executed to (1) initialize the device hardware and (2) locate the boot

media. The ROM code is specific to the CPU the device is using. This step in the

boot process is similar to the basic input-output system used to boot computers.

For example, a CPU popular with the hardware hacking community is the Texas

Instrument OMAP3530 ARM-compatible CPU that has a 3444-page Technical

Reference Manual available publicly (Public Version of OMAP35xx, 2010).

Although reading the technical manual is not for everyone, it provides enormous

detail and insight into how the CPU initializes and loads an OS. On page 3373, the

manual provides a flowchart detailing the overall booting sequence. The ROM code,

which starts the entire process, is hard coded at address 0x00014000, so that when

power is applied to the device, the CPU knows exactly where to locate the boot ROM

to start the boot sequence.

Once the device hardware is initialized, the ROM code scans until it finds the

boot media (which Android devices store on the NAND flash) and copies the initial

boot loader to internal RAM. Then execution jumps from the boot ROM to the

freshly loaded code in RAM as shown in Fig. 2.2.

Boot Loader (Initial Program Load/Second Program Loader)

The boot loader, now copied from the boot media, is executed in internal RAM. This

step is similar to the boot loader found when booting computers such as Windows,

Mac, and Linux. A typical computer boot loader, such as GRUB for Linux, allows

the user to select which OS they want to boot and loads it accordingly.

For an Android device, the boot loader has two distinct stages: the initial program

load (IPL) and the second program loader (SPL). The IPL is responsible for

detecting and setting up external RAM, an essential component needed to boot and

50 CHAPTER 2 Android hardware platforms

operate the device. Once external RAM is prepared, the IPL copies the SPL into

RAM and then transfers execution to the SPL.

The SPL is responsible for not only loading the Android OS but also providing

access to alternative boot modes such as fastboot, recovery, or other modes designed

to update and debug or service the device. The SPL is generally provided by the

manufacturer. However, the Android community actively creates their own SPLs

(and other custom images) that enable additional features and functionality. In

a typical boot scenario, the SPL will initialize hardware components such as the

clock, console, display, keyboard, and baseband modem as well as file systems,

virtual memory, and other features required to operate the device.

The SPL then locates the Linux kernel on the boot media, copies it to RAM,

loads boot parameters, and finally transfers execution to the kernel. Figure 2.3

illustrates this process.

Linux Kernel

There have been volumes written on the Linux kernel and much of it is available

online. For this book, we simply acknowledge that the Linux kernel is now

controlling the device. After setting up additional features on the device, the root file

system is read from the NAND flash, which will provide access to system and user

data shown in Fig. 2.4.

The Init Process

Once the kernel has access to the system partition, it can process the init scripts that

start key system and user processes. This is similar to the /etc/init.d scripts found on

FIGURE 2.2

Power on and on-chip boot ROM code.

Rom and boot loaders 51

traditional Linux devices. For Android, the init.rc is typically located on the root file

system and provides the kernel with the details on how to start core services.

On an HTC Incredible running Android 2.2, the init.rc and init.inc.rc files contain

over 650 lines and provide substantial insight into the device setup. The selected

portions of the /init.rc file are as follows:

FIGURE 2.3

Boot loader.

FIGURE 2.4

Linux kernel.

52 CHAPTER 2 Android hardware platforms

mailto:Image of Figure 2.4|tif

on init

sysclktz 0

loglevel 3

setup the global environment

 export PATH /sbin:/system/sbin:/system/bin:/system/xbin

 export LD_LIBRARY_PATH /system/lib

 export ANDROID_BOOTLOGO 1

 export ANDROID_ROOT /system

 export ANDROID_ASSETS /system/app

 export ANDROID_DATA /data

 export EXTERNAL_STORAGE /mnt/sdcard

 export ASEC_MOUNTPOINT /mnt/asec

Backward compatibility

 symlink /system/etc /etc

 symlink /sys/kernel/debug /d

create mountpoints

 mkdir /mnt 0775 root system

 mkdir /mnt/sdcard 0000 system system

Backwards Compat - XXX: Going away in G*

 symlink /mnt/sdcard /sdcard

 mkdir /system

 mkdir /data 0771 system system

 mkdir /cache 0770 system cache

 mkdir /config 0500 root root

 # Directory for putting things only root should see.

 mkdir /mnt/secure 0700 root root

 # Directory for staging bindmounts

 mkdir /mnt/secure/staging 0700 root root

 # Directory-target for where the secure container

 # imagefile directory will be bind-mounted

 mkdir /mnt/secure/asec 0700 root root

 # Secure container public mount points.

 mkdir /mnt/asec 0700 root system

 mount tmpfs tmpfs /mnt/asec mode=0755,gid=1000

 mount rootfs rootfs / ro remount

 write /proc/sys/kernel/panic_on_oops 1

 write /proc/sys/kernel/hung_task_timeout_secs 0

 write /proc/cpu/alignment 4

 write /proc/sys/kernel/sched_latency_ns 5000000

 write /proc/sys/kernel/sched_wakeup_granularity_ns 100000

 write /proc/sys/kernel/sched_min_granularity_ns 100000

 write /proc/sys/kernel/sched_compat_yield 1

 write /proc/sys/kernel/sched_child_runs_first 0

mount mtd partitions

 # Mount /system rw first to give the filesystem a chance to save

 a checkpoint

 mount yaffs2 mtd@system /system

 mount yaffs2 mtd@system /system ro remount

Rom and boot loaders 53

From a forensic standpoint, the HTC Incredible changes how the browser stores

cache after the boot process is complete. The contents of /bootcomplete.inc.rc are

quite telling:

As you can see, once the device has completed the boot process, the browser cache

is moved from the user data partition stored on the NAND flash into a temporary

RAM disk (tmpfs) located at /app-cache. This means that when the device is powered

down, any data written to /app-cache will be lost as shown in Fig. 2.5.

In summary, the init.rc is a fundamental step in the setup of the Android device

and can be carefully studied to understand how a particular Android device is

configured and operates.

Zygote and Dalvik

In Chapter 3, we will cover the specifics of the individual virtual machine each user

application is provided as a runtime sandbox. The Dalvik virtual machine is the

technology Google selected to create this application sandbox. At startup, the

Zygote sequence essentially sets up the Java runtime environment and registers

a socket with the system; hence, new applications that need to initialize can request

a new Dalvik virtual machine. Without the Zygote service, the Android kernel could

run. However, no applications would operate including built-in applications such as

the phone, browser, and other core features as illustrated in Fig. 2.6.

System Server

The core features of the device mentioned in the previous section are started by the

system server. Once the Java runtime is set up and the Zygote process is listening,

the system server is started. This runs core features such as telephony, network, and

other fundamental components that the device and other applications rely upon.

Figure 2.7 illustrates how the system server runs.

We chown/chmod /data again so because mount is run as root + defaults

mount yaffs2 mtd@userdata /data nosuid nodev

chown system system /data

chmod 0771 /data

rm -r /data/data/com.android.browser/cache

mkdir /app-cache/com.android.browser

chmod 755 /app-cache/com.android.browser

chownto /app-cache/com.android.browser /data/data/com.android.browser

mkdir /app-cache/com.android.browser/cache

chmod 755 /app-cache/com.android.browser/cache

chownto /app-cache/com.android.browser/cache /data/data/com.android.browser

ln -s /app-cache/com.android.browser/cache /data/data/com.android.browser/cache

rm -r /data/app-cache

rm -r /data/DxDrm

54 CHAPTER 2 Android hardware platforms

mailto:Image of Figure 2.4|tif
mailto:Image of Figure 2.4|tif

The system finally sends a standard broadcast action called ACTION_

BOOT_COMPLETED, which alerts dependent processes that the boot process is

complete. The Android system is now fully operational and is ready to interact with

the user.

FIGURE 2.5

Init process.

FIGURE 2.6

Zygote and Dalvik.

Rom and boot loaders 55

mailto:Image of Figure 2.5|tif

MANUFACTURERS
Google’s Android strategy has spawned a diverse group of Android device manu-

facturers. On the Android Developer web site, a list of USB Vendor IDs is main-

tained and currently tracks 15 manufacturers (Using Hardware Devices, n.d.). The

list includes the following:

� Acer

� Dell

� Foxconn

� Garmin-Asus

� HTC

� Huawei

� Kyocera

� LG

� Motorola

� Nvidia

� Pantech

� Samsung

� Sharp

� Sharp

� ZTE

However, once you factor in manufacturers not listed above and devices in

the planning phase, there are over 50 different manufacturers of Android devices.

This, of course, presents a unique challenge for forensic investigators and

corporate security managers alike. The sheer volume of device manufacturers,

FIGURE 2.7

System server.

56 CHAPTER 2 Android hardware platforms

device types, and devices results in a complicated array of policies, procedures,

techniques, and even USB cables.

ANDROID UPDATES
Android’s update models are decentralized, device specific, and are the responsi-

bility of the carrier or device manufacturer, not Google. Although the Open

Handset Alliance, largely influenced by Google, is responsible for maintaining the

core Android OS, they do not exercise control over specific devices. This decen-

tralized approach impacts the forensic and security procedures for devices in

several ways.

First, an analyst is never certain what version of Android a device will have

installed. This is in part driven by corporations’ quest for the highest possible profit

margins. Notably in the United States, if a consumer purchases an Android device

with a two-year contract, the carrier has essentially locked the consumer in, because

the early termination fees are ever-escalating. As the user is unlikely to upgrade

their service or purchase a new phone, they represent a fixed amount of revenue for

the carrier. The engineering, development, deployment, and support costs of

upgrading an existing Android device are quite steep. Therefore, the carriers can

either invest in new Android devices, which generate enormous interest

and presumably sales, or maintain an existing device, which brings in very little, if

any, additional revenue. More often than not, consumers using older Android

phones will remain on older and less functional and less secure versions of Android.

This is an issue Google has acknowledged and has stated that they are working to

address.

Second, both securing and acquiring a forensic image of an Android device

vary greatly between Android versions and device types. For example, the

technique an analyst would leverage for an HTC Dream 100 (T-Mobile G1)

running Android 1.5 with kernel 2.6.30.4 or earlier is vastly different than

the same device running Android 1.6 or a kernel greater than 2.6.30.4. As you can

imagine, with more than 50 manufacturers, over 300 Android devices, four

major releases and hundreds of minor releases, the possible combinations are

vast.

Third, the hardware, drivers, and software used to connect to different Android

devices can vary. The Android software development kit (SDK), discussed in

Chapter 3, does provide some consistency. However, each manufacturer may have

their own set of specific drivers and software. For example, if connecting a Samsung

Galaxy S to a computer running Windows, you need to first install specific software

provided by Samsung. However, many other devices have standard USB drivers

provided by Google via their SDK.

Finally, each manufacturer has their own boot process including the hardware,

boot loaders, and ROM firmware. In Chapter 6, we will explore some techniques for

exploiting the boot process on devices by various manufacturers.

Android updates 57

Custom User Interfaces

Portions of Android are licensed under the Apache 2.0 open source instead of the full

GPLv2 open source license. The Apache 2.0 license allows manufacturers and

developers the ability to customize certain parts of the Android system, yet relieves

them of the obligation to return the source code back to the community. The Apache

2.0 license primarily covers specific drivers for the device where the manufacturer’s

intellectual property could be compromised and in the area of user interface

customization.

By allowing proprietary user interfaces, Google has allowed the manufacturers to

tailor a key area to the intended audience and differentiate their Android devices

from their competitors. For instance, one Android device may target the teen market

and focus on text messaging and social applications, whereas a different device may

be primarily targeted to business users. Fundamentally, the devices operate quite

similarly. However, the user interface customizations (as well as hardware design

implementation) create a unique experience. Table 2.1 describes the custom user

interfaces by manufacturers.

Aftermarket Android Devices

As the Android OS is an open source, custom builds have been created, which will

run on devices originally released to the market with other OSs. In one infamous

example, versions of Android exist which can be installed and run on the iPhone

(Linux on the iPhone, n.d.). It is certainly a lot of fun to watch the Apple fanboys

react when such a feat has been accomplished. More practically, Android has been

ported to many HTC phones that originally shipped with Windows Mobile. And

there are many more examples involving devices from companies such as Nokia and

even devices in categories other than smartphones.

Although it may not happen too often, it is important to consider the possibility

that the Windows phone (or iPhone) you need to forensically analyze may indeed be

running Android.

Table 2.1 Custom Android User Interfaces

Manufacturer Custom User Interface(s)

Motorola Motoblur

HTC Sense

Samsung TouchWiz

Sony Ericsson Rachael, UX, Nexus

Acer Touch 3D

Dell Stage

Viewsonic TapnTap

58 CHAPTER 2 Android hardware platforms

SPECIFIC DEVICES
The following devices are used throughout this book, and a brief overview of each

device is presented here for reference. Several of these devices were some of the first

commercially available Android smartphones and are well understood. They can be

purchased at a fairly reasonable price point and may be a great device to populate

and experiment on following the examples throughout this book.

T-Mobile G1

The T-Mobile G1 shown in Fig. 2.8 was manufactured by HTC and released to the

US market by T-Mobile in October 2008. Like many first-generation devices, there

were usability issues with the phone. However, it sold over one million units (Krazit,

n.d.) in the first six months and serves as a great reference phone.

Device info:

� Manufacturer: HTC

� Model: G1 (aka: HTC Dream 100)

� Carrier(s): T-Mobile

� Release date: October 2008

Motorola Droid

The Motorola Droid, shown in Fig. 2.9, was manufactured by Motorola and released

to the US market by Verizon in November 2009. In the first 74 days, 1.05 million

Droid smartphones were sold, making it more popular than the original iPhone

FIGURE 2.8

T-Mobile G1 (DREA100).

Specific devices 59

release in June 2007 (Day 74 Sales, n.d.). The Droid is an excellent reference phone,

and if you are contemplating the purchase of a device for testing, you should

strongly consider this device.

Device info:

� Manufacturer: Motorola Mobile Devices

� Model: A855

� Carrier(s): Verizon Wireless

� Release date: November 2009

HTC Incredible

The HTC Incredible, pictured in Fig. 2.10, was released on the Verizon network and

is also extremely popular in the United States. The device is used extensively

throughout this book as a reference phone.

Device info:

� Manufacturer: HTC

� Model: ADR6300

� Carrier(s): Verizon Wireless

� Release date: April 2010

Google Nexus One

As described in Chapter 1, Google released their own smartphone, the Nexus One

(N1), in January 2010, shown in Fig. 2.11. The N1 was developed by HTC and, by

all accounts, was an ideal model of how manufacturers should develop their phone.

FIGURE 2.9

Motorola Droid (A855).

60 CHAPTER 2 Android hardware platforms

FIGURE 2.10

HTC Incredible.

FIGURE 2.11

Google Nexus One (N1).

Specific devices 61

The processor was extremely fast (1 GHz), it was running the latest version of

Android, and it had innovations such as three microphones that survey background

noise and blend your voice to create the most clear conversation possible.

Device info:

� Manufacturer: HTC

� Model: HTC Passion

� Carrier(s): T-Mobile, Verizon, Vodafone

� Release date: January 2010

SUMMARY

Although device components vary, there are several core components common to

most devices. A basic understanding of these components, as well as an under-

standing of the various device types, is sufficient for forensic analysts in many

cases. However, it is apparent that there are many other diverse factors that should

be considered in an investigation. The high-level overview of the boot process

provides a foundation for more in-depth discussions of the processes, which will

be further explored. Finally, the overview of manufacturers and devices provides

insight into all the various factors that analysts need to consider. The Android

Market is fractured and diverse, and forensic analysts need to keep in mind that a

“one-size-fits-all” strategy does not work when investigating Android devices.

References
Android-x86dPorting Android to x86. (n.d.). Retrieved March 9, 2011, from http://www.

android-x86.org/.

Björnheden, M. (n.d.). Enea Android Blog: The Android boot process from power on.

Retrieved December 17, 2010, from http://www.androidenea.com/2009/06/android-boot-

process-from-power-on.html.

Chromium OSdThe Chromium projects. (n.d.). Retrieved December 13, 2010, from http://

www.chromium.org/chromium-os.

Day 74 Sales: Apple iPhone vs. Google Nexus One vs. Motorola Droid. (n.d.). The Flurry

BlogdMobile application analyticsjiPhone analyticsjAndroid analytics. Retrieved

December 18, 2010, from http://blog.flurry.com/bid/31410/Day-74-Sales-Apple-iPhone-

vs-Google-Nexus-One-vs-Motorola-Droid.

Krazit, T. (n.d.). T-Mobile has sold 1 million G1 Android phones. WirelessdCNET News.

Technology newsdCNET News. Retrieved December 18, 2010, from http://news.cnet.

com/8301-1035_3-10226034-94.html.

Linux on the iPhone. (n.d.). Retrieved December 15, 2010, from http://linuxoniphone.

blogspot.com/.

Main PagejPDAdb.netdComprehensive database of smartphone, PDA, PDA phone, PNA,

netbook & mobile device specifications. (n.d.). Retrieved November 28, 2010, from

http://pdadb.net/index.php.

62 CHAPTER 2 Android hardware platforms

http://www.android-x86.org/
http://www.android-x86.org/
http://www.androidenea.com/2009/06/android-boot-process-from-power-on.html
http://www.androidenea.com/2009/06/android-boot-process-from-power-on.html
http://www.chromium.org/chromium-os
http://www.chromium.org/chromium-os
http://blog.flurry.com/bid/31410/Day-74-Sales-Apple-iPhone-vs-Google-Nexus-One-vs-Motorola-Droid
http://blog.flurry.com/bid/31410/Day-74-Sales-Apple-iPhone-vs-Google-Nexus-One-vs-Motorola-Droid
http://news.cnet.com/8301-1035_3-10226034-94.html
http://news.cnet.com/8301-1035_3-10226034-94.html
http://linuxoniphone.blogspot.com/
http://linuxoniphone.blogspot.com/
http://pdadb.net/index.php

Mobile Memory. (n.d.). Hynix. Retrieved March 9, 2011, from http://www.hynix.com/

products/mobile/mcp.jsp?menuNo¼1&m¼4&s¼4.

Nielsen Wire. (n.d.). U.S. smartphone battle heats up: Which is the “most desired” operating

system? Retrieved December 12, 2010, from blog.nielsen.com/nielsenwire/online_

mobile/us-smartphone-battle-heats-up/.

Public Version of OMAP35xx. (2010). Technical reference manualdVersion M

(SPRUF98M) Houston, TX: Texas Instruments Incorporated. Retrieved December 17,

2010, from http://focus.ti.com/docs/prod/folders/print/omap3530.html.

Using hardware devices. (n.d.). Android developers. Retrieved March 9, 2011, from http://

developer.android.com/guide/developing/device.html.

Specific devices 63

http://www.hynix.com/products/mobile/mcp.jsp%3FmenuNo%3D1%26m%3D4%26s%3D4
http://www.hynix.com/products/mobile/mcp.jsp%3FmenuNo%3D1%26m%3D4%26s%3D4
http://www.hynix.com/products/mobile/mcp.jsp%3FmenuNo%3D1%26m%3D4%26s%3D4
http://www.hynix.com/products/mobile/mcp.jsp%3FmenuNo%3D1%26m%3D4%26s%3D4
http://www.hynix.com/products/mobile/mcp.jsp%3FmenuNo%3D1%26m%3D4%26s%3D4
http://blog.nielsen.com/nielsenwire/online_mobile/us-smartphone-battle-heats-up/
http://blog.nielsen.com/nielsenwire/online_mobile/us-smartphone-battle-heats-up/
http://focus.ti.com/docs/prod/folders/print/omap3530.html
http://developer.android.com/guide/developing/device.html
http://developer.android.com/guide/developing/device.html

Android software
development kit
and android debug bridge

3
INFORMATION IN THIS CHAPTER

� Android platforms

� Software development kit (SDK)

� Android security model

� Forensics and the SDK

INTRODUCTION
The Android software development kit (SDK) provides not only the tools to

create applications that run on the Android platform but it also provides

documentation and utilities that can assist significantly in the forensic or

security analysis of a device. While the Android hardware covered in Chapter 2

plays a major role in the capabilities of a device, the software harnesses these

features to ultimately create the experience and functionality consumers seek. A

thorough understanding of the Android SDK will provide many insights into the

data and the device, as well as important utilities that we will leverage in

investigations.

ANDROID PLATFORMS
Android was officially announced in November 2007 but has been under significant

development since 2005. This, combined with the large and diverse hardware, which

leverages Android, has created a diverse ecosystem adding significant complexity

for the forensic analyst or security engineer.

An informative characteristic of Android is the version of the Android platform

itself. The platform is a large factor in determining the features a device can

support. The official Android platforms are each assigned an application

programming interface (API) level, and all the newer versions receive a code name.

The current release, as of January 2011, is Android 2.3 which has the code name

Gingerbread. The next major release has a code name Honeycomb and appears to

CHAPTER

Android Forensics. DOI: 10.1016/B978-1-59749-651-3.10003-2

Copyright � 2012 Elsevier Inc. All rights reserved.
65

http://dx.doi.org/10.1016/B978-1-59749-651-3.10003-2

target the anticipated growth of tablet devices. Table 3.1 gives the full list of

Android platforms including API level, code name, and release date (Android

timeline, n.d.).

While many Android versions exist, the distribution of each in current

devices can have a large impact on forensic analysts and security engineers.

Figure 3.1 shows Google’s reports of distribution of Android versions based on

a two-week survey of devices accessing the Android Market (Platform

Versions, n.d.).

To put that in perspective, Table 3.2 shows the total number of devices in

circulation in the United States by Android version. These data are based on an

Table 3.1 Android Platforms

Platform API Level Code Name Release Date

Android 2.3.3 10 Gingerbread February 9, 2011

Android 2.3 9 Gingerbread December 2010

Android 2.2 8 FroYo May 20, 2010

Android 2.1 7 Eclair January 11, 2010

Android 2.0.1 6 Eclair December 11, 2009

Android 2.0 5 Eclair October 5, 2009

Android 1.6 4 Donut September 16, 2009

Android 1.5 3 Cupcake April 27, 2009

Android 1.1 2 Petit Four February 9, 2009

Android 1.0 1 N/A September 23, 2008

FIGURE 3.1

Distribution of Android devices by platforms, January 2011.

66 CHAPTER 3 Android software development kit and android debug bridge

approximate US Android device population of 15.99 million as of November 2011

(comScore Reports, n.d.).

Google also released a graph displaying the historical distribution of Android

versions for the seven-month period between August 2010 and February 2, 2011.

The data are again based on devices accessing the Android Market but nicely dis-

played the progress of Android updates over time as shown in Fig. 3.2 (Platform

Versions, n.d.).

While some devices will never support the latest version of Android, many do

eventually receive the update. Future devices will probably be able to quickly

support and upgrade to the latest version. However, from a forensics and security

perspective, the older outliers cannot be ignored.

Android Platform Highlights Through 2.3.3 (Gingerbread)

Android is a sophisticated, heavily developed platform and any attempt to fully

document all features would encompass a large portion of this book. However,

FIGURE 3.2

Historical distribution of Android version from August 2001 through February 2, 2011.

Table 3.2 Approximate Number of Android Devices by

Platform in the United States

Android Version Total Devices

Android 2.3 63,960

Android 2.2 8,282,820

Android 2.1 5,628,480

Android 1.6 1,263,210

Android 1.5 751,530

Android platforms 67

a brief overview of each major release can be helpful so that a forensic analyst is

aware of the features a device may support. Generally speaking, the features build on

each other so functionality available in Android 1.5 is likely available and improved

in Android 2.3.3.

Android 1.5
Android 1.5, released April 2009, highlighted the features and updates listed in

Table 3.3 (Android 1.5, n.d.).

Android 1.6
Android 1.6, released September 2009, highlighted the features and updates listed

in Table 3.4 (Android 1.6, n.d.).

Table 3.3 Android 1.5 Features and Highlights

New User Features

New Developer Features,

APIs, and Technologies

Built-in

Applications

� User Interface Refinements,

including in-call experience,

SMS/MMS and more

� Performance Improvements

to camera, GPS, browser,

and Gmail

� On-screen soft keyboard

� Home screen widgets

� Video recording and

playback

� Better Bluetooth support and

functionality

� Browser copy and paste,

on-page searching, and

more

� Contact improvements

including pictures, date/time

stamps for call logs, and

on-touch access to contact

methods

� View Google Talk friends’

status in Contacts, SMS,

MMS, Gmail, and e-mail

applications

� Upload videos to YouTube,

pictures to Picasa

� New Linux kernel

(version 2.6.27)

� SD card file system

auto-checking and repair

� Improved media framework

� Speech recognition

framework

� Support 26 locales

� Alarm clock

� Browser

� Calculator

� Camcorder

� Camera

� Contacts

� Custom locale

(developer app)

� Dev. tools

(developer app)

� Dialer

� E-mail

� Gallery

� IME for Japanese

text input

� Messaging

� Music

� Settings

� Spare parts

(developer app)

68 CHAPTER 3 Android software development kit and android debug bridge

Androids 2.0 and 2.1
Android 2.0 and 2.1, released October 2009 and January 2010, respectively,

highlighted the features and updates listed in Table 3.5 (Android 2.1, n.d.).

Android 2.2
Android 2.2, released May 2010, highlighted the features and updates found in

Table 3.6.

Table 3.4 Android 1.6 Features and Highlights

New User Features

New Developer Features,

APIs, and Technologies

Built-in

Applications

� Quick Search Box for Android

� Updated camera, camcorder,

and gallery

� VPN, 802.1x support

� Battery usage indicator

� Android Market Updates

including categorization, top

apps, and screenshots

� 2.6.29 Linux kernel

� Expanded search framework

� Text-to-speech engine

� Support for gestures

� New accessibility framework

� Expanded support for screen

densities and resolutions

� Telephony support for CDMA

� New version of OpenCore for

better audio handling

� All apps in

Android 1.5

� Gestures

Builder

Table 3.5 Android 2.0/2.1 Features and Highlights

New User Features

New Developer Features,

APIs, and Technologies

Built-in

Applications

� Multiple accounts for e-mail and

contact syncing, Quick contact

feature

� Exchange support in e-mail

� SMS/MMS search functionality

� Many enhancements to camera

such as built-in flash, digital

zoom, and more

� Improvement in Android virtual

keyboard

� Browser updates include

bookmarks with web page

thumbnails, double-tap zoom,

and HTML5 support

� New calendar features such as

inviting guests

� Revamped graphics

architecture for improved

performance that enables

better hardware acceleration.

� Bluetooth 2.1

� Live Wallpapers API

� Same apps as

Android 1.6

Android platforms 69

Android 2.3
Android 2.3, released December 2010, highlighted the features and updates listed

in Table 3.7.

Table 3.7 Android 2.3 Features and Highlights

New User Features

New Developer Features,

APIs, and Technologies

Built-in

Applications

� UI refinements for simplicity and

speed

� Faster, more intuitive text input

� One-touch word selection and

copy/paste

� Improved power management

� Support for Internet/SIP calling

(VoIP)

� NFC Reader application lets the

user read and interact with near-

field communication (NFC) tags.

� Downloads management

� Camera improvements, support

for front- and rear-facing

camera

� Linux kernel 2.6.35

� Enhancements for gaming

including performance

improvements, new sensors,

graphics, audio and power

management routines

� Rich multimedia support

such as mixable audio

effects

� Significant upgrades and

enhancements in the Dalvik

runtime and supporting

libraries

� Support for 57 languages/

locales

� Same apps as

Android 2.2

� Downloads

� Search

� Speech

Recorder

Table 3.6 Android 2.2 Features and Highlights

New User Features

New Developer Features,

APIs, and Technologies

Built-in

Applications

� New Home screen tips widget

� The Phone, applications

Launcher, and Browser now have

dedicated shortcuts on the Home

screen

� Exchange expanded with addition

of numeric pin or alpha-numeric

password options to unlock

device; Remote wipe; Exchange

Calendars are now supported;

Auto-discovery; Global Address

Lists look-up

� Improved camera and gallery

� Some devices can be a portable

Wi-Fi hotspot that can be shared

with up to eight devices.

� Multiple keyboard languages

� Improved performance in browser,

Dalvik VM, graphics, and kernel

memory management

� 2.6.32 Linux kernel (support

for RAM> 256 MB)

� New media framework that

supports local file playback

and HTTP progressive

streaming

� Bluetooth improvements

including voice dialing over

Bluetooth, share contacts

with other phones, and

better compatibility with

vehicles

� Android Cloud to Device

Messaging

� Android Application Error

Reports

� Apps on external storage

� Data backup APIs

� Device policy manager

� Same as

Android 2.1

70 CHAPTER 3 Android software development kit and android debug bridge

Android 2.3.3
Android 2.3.3, released February 2011, highlighted the features and updates found

in Table 3.8.

SOFTWARE DEVELOPMENT KIT (SDK)
The Android software development kit (SDK) is the development resource needed to

develop Android applications. It includes software libraries and APIs, reference

materials, an emulator, and other tools. The SDK is supported in many environments

including Linux, Windows, and OS X and can be downloaded free from http://

developer.android.com.

The SDK is also a powerful forensic tool used by analysts in many situations to

aid in the investigation of an Android device.

SDK Release History

While the Android platforms mark the officially supported releases of Android, the

SDK is updated more frequently. Table 3.9 provides the complete SDK release

history that can aid in these situations (SDK Archives, n.d.).

Table 3.9 Archived Android Platforms Releases

Platform API Level Release Date

Android 1.6 r1 4 September 2009

Android 1.5 r3 3 July 2009

Android 1.1 r1 2 February 2009

Android 1.0 r2 1 November 2008

Table 3.8 Android 2.3.3 Features and Highlights

New User Features

New Developer

Features, APIs, and

Technologies Built-in Applications

� Same as Android 2.3 � Improved and extended

support for near-field

communications (NFCs)

� Tweaks to Bluetooth,

graphics, media

framework, and

speech recognition

� Support for 57

languages/locales

� Same apps as Android 2.3

Software development kit (SDK) 71

http://developer.android.com
http://developer.android.com

SDK Install

Since the SDK is critical in the investigation of an Android device, examiners should

have a working installation. The following sections provide step-by-step directions

for installing the SDK on the supported platforms.

Linux SDK Install
These steps are based on the Ubuntu VM used to download and compile the Android

Open Source Project (AOSP) from Chapter 1 which already includes most of the

prerequisites including the Java development kit. From a terminal window, install

the needed 32-bit libraries:

NOTE

32-Bit libraries
Since the Ubuntu VM built in Chapter 1 used the 64-bit version of Ubuntu, we must install

the 32-bit libraries to install the SDK. If, however, you are using a 32-bit Linux workstation,

you need not complete this step. While the 32-bit workstation can run the SDK, it cannot

build the AOSP after version 2.2.

FIGURE 3.3

Download Android SDK for Linux.

72 CHAPTER 3 Android software development kit and android debug bridge

#install 32-bit libraries
sudo apt-get install ia32-libs

Next, start Firefox and navigate to http://developer.android.com/sdk and

download the Linux i386 platform (android-sdk_r08-linux_86.tgz, as of January

2011). The default action will open the archive in the archive manager as shown

in Fig. 3.3.

Then right click and extract the archive to your home directory as shown in

Fig. 3.4.

Next, from the terminal window:

#navigate to the tools/ directory in the Android SDK
cd ~/android-sdk-linux_x86/tools

#run android
./android

This will run the Android SDK and Android Virtual Device (AVD) manager,

which will allow you to download and manage the additional necessary components

as shown in Fig. 3.5.

To fully leverage the Android SDK, additional components are required. Mini-

mally, we want to install the platform’s specific SDK tools and at least one SDK

FIGURE 3.4

Extract Android SDK for Linux.

Software development kit (SDK) 73

mailto:Image of Figure 3.2|tif
http://developer.android.com/sdk
mailto:Image of Figure 3.3|tif
mailto:Image of Figure 3.4|tif

platform (in this case, Android 2.3) so that we can run the emulator. To complete the

installation, select the Available packages from the left navigation pane and then the

two additional packages as shown in Fig. 3.6.

FIGURE 3.5

Android SDK and AVD manager in Linux.

FIGURE 3.6

Select additional Android SDK packages.

74 CHAPTER 3 Android software development kit and android debug bridge

And then choose Install Selected. You will be prompted to approve the license for

all packages as shown in Fig. 3.7.

Select Accept All (provided you agree) and then install. The Android SDK and

AVD manager will then download and install the components.

Optionally, you may want to add the binary directories to your operating system

(OS) execution path so you do not have to specify the full path to the programs each

time. In Linux, do the following:

Save, exit, and then re-open (Ctrl-O) a new shell.

One final step you must take in Ubuntu is to create USB profiles for each Android

device manufacturer in the system’s configuration, specifically the udev rules. From

a terminal session as root, edit/create the udev rule:

FIGURE 3.7

Accept and install Android SDK packages.

open your .bashrc in an editor
nano -w ~/.bashrc

#add the following line, substituting your login name
export PATH=$PATH:/home/ahoog/android-sdk-linux_86/tools/
export PATH=$PATH:/home/ahoog/android-sdk-linux_86/platform-tools/

sudo nano -w /etc/udev/rules.d/51-android.rules

Software development kit (SDK) 75

Copy the following contents (vendor IDs are supplied on http://developer.

android.com/guide/developing/device.html#VendorIds):

#Acer
SUBSYSTEM=="usb", SYSFS{idVendor}=="502", MODE="0666"
#Dell
SUBSYSTEM=="usb", SYSFS{idVendor}=="413c", MODE="0666"
#Foxconn
SUBSYSTEM=="usb", SYSFS{idVendor}=="489", MODE="0666"
#Garmin-Asus
SUBSYSTEM=="usb", SYSFS{idVendor}=="091E", MODE="0666"
#HTC
SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"
#Huawei
SUBSYSTEM=="usb", SYSFS{idVendor}=="12d1", MODE="0666"
#Kyocera
SUBSYSTEM=="usb", SYSFS{idVendor}=="482", MODE="0666"
#LG
SUBSYSTEM=="usb", SYSFS{idVendor}=="1004", MODE="0666"
#Motorola
SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"
#Nvidia
SUBSYSTEM=="usb", SYSFS{idVendor}=="955", MODE="0666"
#Pantech
SUBSYSTEM=="usb", SYSFS{idVendor}=="10A9", MODE="0666"
#Samsung
SUBSYSTEM=="usb", SYSFS{idVendor}=="400000000", MODE="0666"
#Sharp
SUBSYSTEM=="usb", SYSFS{idVendor}=="04dd", MODE="0666"
#Sony Ericsson
SUBSYSTEM=="usb", SYSFS{idVendor}=="0fce", MODE="0666"
#ZTE
SUBSYSTEM=="usb", SYSFS{idVendor}=="19D2", MODE="0666"

And then save the file. Finally, make the file readable by all users:

sudo chmod a+r /etc/udev/rules.d/51-android.rules

You can either restart the udev daemon or simply reboot.

Windows SDK Install
The latest version of the Android SDK for Windows, shown in Fig. 3.8, is now

packaged as an executable installer, which will determine if you have the necessary

Java dependencies properly installed and, if not, will download and install them for

you. However, the installer will only detect the 32-bit install of the JDK and will not

automatically install the JDK on a Windows 7 64-bit install. If you are running a 32-

bit version of Windows (such as Windows XP), then the installer may be a good

option and you can simply download the package from http://developer.android.

com/sdk/index.html and run the installer.

However, many analysts and engineers have moved to 64-bit OSs. To install the

Android SDK on Windows, first install the Java SE SDK by downloading it at http://

java.sun.com/javase/downloads/. Make sure you install the full SDK.

After the SDK is installed, download the zipped version of the Window’s

Android SDK at http://developer.android.com/sdk/index.html and extract it to your

76 CHAPTER 3 Android software development kit and android debug bridge

http://developer.android.com/guide/developing/device.html%23VendorIds
http://developer.android.com/guide/developing/device.html%23VendorIds
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://java.sun.com/javase/downloads/
http://java.sun.com/javase/downloads/
http://developer.android.com/sdk/index.html

hard drive. For our example, we will extract directly to C:\ that will then create the

folder C:\android-sdk-windows.

Open that directory and double click SDK Manager.exe to begin the update

process. Be sure that you select at least the Android SDK Platform-tools, as in

Fig. 3.9, and one release platform (2.3 in this example).

FIGURE 3.8

Android SDK installer for Windows.

FIGURE 3.9

Android SDK manager for Windows.

Software development kit (SDK) 77

When working with Android devices in Windows, you need to specify USB

drivers. The Android SDK recently updated how the USB drivers are installed. First,

make sure you are running the SDKManager and select Available packages. Expand

Third party Add-ons / Google Inc. add-ons and finally choose Google Usb Driver

package as shown in Fig. 3.10.

Then, accept the license and install as shown in Fig. 3.11.

After the USB drivers are installed, you should have all the necessary compo-

nents. However, to simplify running tools from the Android SDK, you should update

FIGURE 3.10

Google USB driver package for Windows.

FIGURE 3.11

Accept and install license.

78 CHAPTER 3 Android software development kit and android debug bridge

your workstation’s environment variables, specifically the PATH to executable files.

To do this, go to your Control Panel and open the System application. You should

then select the tab where you can update the Environment variable, whose location

will vary depending on your exact Windows version, shown in Fig. 3.12. Finally,

locate the Path system variable, select Edit, and append the full path to your Android

SDK platform-tools directory, which in our example would be ;C:\android-sdk-

windows\platform-tools.

The “;” is important, as it is the delimiter between path locations. Once you

complete this update, make sure you exit and wait for command prompts indicating

that the new setting has taken effect.

OS X SDK
To install the Android SDK on OS X, first download the archive from http://

developer.android.com/sdk/index.html, from which OS X will then automatically

extract.

Navigate to the tools subdirectory as shown in Fig. 3.13, and then double

click Android to run the Android SDK and AVD manager as shown in

Fig. 3.14.

When the Manager runs, select Available packages, expand Android Repository

and then select the Android SDK platform-tools and at least one Android platform as

shown in Fig. 3.15.

FIGURE 3.12

Update PATH environment variable (Windows 7 64 bit).

Software development kit (SDK) 79

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Then accept the licenses and complete the install. Finally, to simplify running

tools from the Android SDK, you should update your executable PATH. On OS X

10.6, run Terminal (Applications / Utilities) and do the following:

#edit your bash_profile
nano -w ~/.bash_profile

#add the following line substituting your full path to the platform-tools
directory PATH=$PATH:/Users/ahoog/android-sdk-mac_86/platform-tools

#save with Ctrl-O and then Ctrl-X to exit. Exit Terminal
exit

FIGURE 3.13

Extracted Android SDK for OS X.

FIGURE 3.14

Open Android on OS X.

80 CHAPTER 3 Android software development kit and android debug bridge

mailto:Image of Figure 3.13|tif

Make sure you fully exit the Terminal app and then restart. From the terminal,

type:

echo $PATH

This should return your executable path with the platform-tools appended.

Android Virtual Devices (Emulator)

Once you have the Android SDK installed on your workstation and have at least one

release platform downloaded, you are ready to create an AVD, a virtual mobile

device, or emulator, which runs on your computer. The emulator is especially helpful

for developers for creating custom applications. However, there is great value for

the forensic analyst and security engineer because you can profile how applications

execute on a device. This could be important to validate your findings in an inves-

tigation, or to test how a forensic tool affects an Android device.

The emulator takes considerable resources, so an ideal workstation would have

a newer sufficient CPU and RAM. A bit of patience from the examiner may also be

required. To create an AVD, first run the Android SDK and AVD manager appli-

cation as seen in Fig. 3.16. If you updated your OS’s path to include the tools

directory in the SDK, you should be able to run Android from a shell, terminal, or

command prompt.

In the left pane, select Virtual devices and then select New, as in Fig. 3.17.

FIGURE 3.15

Install Android SDK components on OS X.

Software development kit (SDK) 81

mailto:Image of Figure 3.15|tif

FIGURE 3.16

Start Android SDK and AVD manager.

FIGURE 3.17

Creating a new AVD.

82 CHAPTER 3 Android software development kit and android debug bridge

Make sure you populate the following fields:

� Name: Provide a name for the virtual device, for example, af23 (Android

Forensics 2.3).

� Target: Select the target platform, in this case Android 2.3dAPI level 9.

� [optional] SD card: Optionally create an SD card for the virtual device.

You can set additional properties. However, for now wewill create the most basic

AVD. Also, if you encounter an Android device running on an older platform, you

can create virtual devices running the older version by simply downloading the

Android platform using the Android SDK and AVDmanager. When you click Create

AVD, the device will be created and you will receive a confirmation screen similar to

that shown in Fig. 3.18.

Ensure that the new AVD is highlighted and then click Start, at which point you

will be prompted for launch options as shown in Fig. 3.19.

Select any options you wish and click Launch. At this point, the AVD will begin

the boot process, which could take a few minutes or longer. During that time, you

will see Android starting up. This is illustrated in Fig. 3.20.

Finally, you will be presented with the fully functioning AVD as shown in

Fig. 3.21.

FIGURE 3.18

AVD-created confirmation.

FIGURE 3.19

AVD launch options.

Software development kit (SDK) 83

The AVD is very powerful and fully functional. For example, you can easily

jump online, as demonstrated in Fig. 3.22, and surf the web site. You can configure e-

mail accounts, send test SMS messages to other AVD and of course, if you are

a developer, deploy and test your application.

When an AVD is created and then launched, the data created are valuable for

forensic and security research. The files are created in your home directory, which

FIGURE 3.20

AVD launching.

FIGURE 3.21

Running AVD.

84 CHAPTER 3 Android software development kit and android debug bridge

varies by platform, in a folder called .android (note the dot prefix in the filename).

Table 3.10 provides specific OS paths.

Inside AVD’s .android directory you will find configuration and data files needed

to run the AVD.

FIGURE 3.22

AVD running browser.

Table 3.10 AVD Storage Directory

Workstation

Operating System AVD Storage Directory Example

Ubuntu Linux /home/<username>/.android /home/ahoog/.android

Mac OS X /Users/<username>/.android /Users/ahoog/.android

Windows 7 C:\Users\<username>\.android C:\Users\ahoog\.android

ahoog@ubuntu:~/.android$ tree
.
├── androidtool.cfg
├── avd
│ ├── af23.avd
│ │ ├── cache.img
│ │ ├── config.ini
│ │ ├── emulator-user.ini
│ │ ├── sdcard.img
│ │ ├── userdata.img
│ │ └── userdata-qemu.img
│ └── af23.ini
├── default.keyset
├── modem-nv-ram-5554
└── repositories.cfg

2 directories, 11 files

Software development kit (SDK) 85

Files of particular forensic and security interest include the following:

� cache.img: disk image of /cache partition

� sdcard.img: disk image of SD card (if created during AVD setup)

� userdata-qemu.img: disk image of /data partition

The cache.img and userdata-qemu.img are YAFFS2 file systems that are not sup-

ported by current forensic software and will be covered in Chapter 4. However, stan-

dard forensic tools will work quite well on sdcard.img, which is a FAT32 file system.

ahoog@ubuntu:~/.android/avd/af23.avd$ file sdcard.img
sdcard.img: x86 boot sector, code offset 0x5a, OEM-ID "MSWIN4.1", Media
descriptor 0xf8,
sectors 51200 (volumes > 32 MB), FAT (32 bit), sectors/FAT 397, reserved3
0x800000,
serial number 0x1d0e0817, label: " SDCARD"

Forensic analysts and security engineers can learn a great deal about Android and

how it operates by leveraging the emulator and examining the network, file system,

and data artifacts.

Android OS Architecture

It is important to understand the high-level architecture of Android, especially for

security procedures and moving beyond logical forensic analysis.

Android is based on the Linux 2.6 kernel that provides the fundamental software

needed to boot and manage both the hardware and Android applications. While the

functionality that the kernel provides is quite extensive, we will focus on core areas

highlighted in Fig. 3.23.

As illustrated in Fig. 3.23, low-level functions include power management,

Wi-Fi.com, display, audio drivers, and more. Perhaps most important from a foren-

sics perspective is the flash memory driver, which will be explored in detail in

Chapter 4.

After the kernel, a set of libraries are available, which provide core functionality

needed by developers and device owners alike. These include the WebKit library for

rendering HTML in both the bundled browser and third-party apps. Other libraries

handle fonts, displays, various media, and secure communications using Secure

Socket Layers (SSLs). Finally, the SQLite library provides a method for structured

data storage on Android and is an area forensic analysts and security engineers will

focus on.

The core libraries are then bundled with a custom Java virtual machine (VM) to

provide the Android runtime environment, which is where applications run.

Finally, the SDK provides access to these resources via APIs and an application

framework. The framework is the primary layer that third-party developers interact

with and it provides them abstract access to key resources needed for their application.

As we explore logical forensic techniques, an important aspect of the application

frameworkdcontent providersdwill be explained in more detail because they

provide the primary mechanism bywhich we can extract data from an Android device.

86 CHAPTER 3 Android software development kit and android debug bridge

mailto:Image of Figure 3.22|tif
http://Wi-Fi.com

Dalvik VM

The Dalvik Virtual Machine (Dalvik VM) was developed by Google to create an

efficient and secure mobile application environment.

To achieve the desired security, each application is run on its own Dalvik VM. As

such, the Dalvik VM was written so that many VMs could run at once on an Android

device. The Dalvik VM relies heavily on the Linux OS to provide low-level func-

tions such as access to core libraries and hardware, threat and security management,

memory management, and more.

To achieve efficiency, applications that run in a Dalvik VM have a special

format called a Dalvik Executable (.dex) file. Developers write and compile their

programs with Sun’s Java Development Kit and the resulting byte code is then

transformed into a .dex file which provides efficient storage and is optimized for

execution in the Dalvik VM. An interesting project developed by JesusFreke, an

accomplished and well-known Android hacker, is called smali/baksmali. This

project allows a user to decompile a .dex file to determine what an application

does (smali, n.d.).

Dalvik is a unique aspect of Android and a critical component in the forensic and

security analysis of a device.

FIGURE 3.23

Android architecture.

Software development kit (SDK) 87

mailto:Image of Figure 3.23|tif

Native Code Development

While most Android applications are written in Java using the SDK, Google

provides a lower level development platform with their native development kit

(NDK). The NDK was first released in June 2009 and has gone through five revi-

sions, with the latest release in November 2010.

The NDK allows developers to write code in C/Cþþ and compile it directly for

the CPU. While this adds complexity to the development process, some developers

can benefit from this approach by reusing an existing code base in C/Cþþ or by

implementing certain functions that can be optimized outside the Dalvik VM. The

NDK does not allow developers to create full applications that run outside of the

Dalvik VM; instead the C/Cþþ components are packaged inside the application’s

.apk file and are called by the application within the VM.

At this time, the NDK supports the ARMv5TE and ARMv7-A CPUs, and in the

future will support Intel’s x86 CPU architecture. When a developer writes code in

one platform (e.g., Mac OS X) but compiles it for another CPU, the technique is

referred to as cross-compiling an application. The NDK greatly simplifies this

process and provides a set of libraries the developer can use.

From a forensics and security viewpoint, cross-compiling is an important

component for research and development of new techniques and exploits. While

most forensic analysts and security engineers do not need to compile code, under-

standing how the process works, and what role it plays in the process, is important.

For example, the initial Android 1.5 root exploit targeted a Linux kernel bug (CVE-

2009-2692) to gain privileges. The initial code was distributed as source code and

required cross-compiling. One significant advantage to this approach is that an

examiner can describe in exact detail how the device was exploited and, if necessary,

provide the source code.

As Android matures, expect to see additional developments in the NDK and

natively complied code.

ANDROID SECURITY MODEL
The Android platform implements security through a number of controls designed to

protect the user.

When an application is first installed, Android checks the .apk file to ensure it has

a valid digital signature to identify the developer. Unlike SSL, the digital certifi-

cation does not need to be signed by a Certificate Authority. However, the developer

must keep the key safe; otherwise someone could sign a malicious application and

distribute it as that developer. For example, if a financial institution’s digital

signature was compromised, a malicious developer could publish an update to the

banking application, which steals critical data.

After the .apk file is validated, Android checks the special file created by the

developer that specifies, among other items, what access an application needs to

the system. For example, an application may request access to the user’s contacts,

SMS messages, and the network/Internet. If this application adds functionality to the

88 CHAPTER 3 Android software development kit and android debug bridge

SMS system, these permissions seem reasonable. If, however, the application simply

changes your background images, then a user should question the permission and can

choose not to install the application. In practice, users quickly allow all permissions

and application requests, and thus may allow a malicious application to install.

After an application has been verified and the user granted the requested

permissions, the application can now install on the system. A key part of the Android

security model is that each application is assigned a unique Linux user and group ID

and runs in its own process and Dalvik VM. During the installation, the system

creates a specific directory on the device to store the application’s data and only

allows that application to access the data leveraging the Linux user ID and group ID

permissions. In addition, the application’s Dalvik VM is run in its own process as the

specific user ID. These key mechanisms enforce data security at the OS level as

applications do not share memory, permissions, or disk storage. Applications can

only access the memory and data within their Dalvik VM.

Of course, there are a few exceptions to this process. First, a developer can signmore

than one application with the same digital certification and specify that it can share the

same user ID, process,memory, and data storage as one of their other applications. This

situation is exceptional and is most commonly used when a developer has both a free

and a paid version. If a user upgrades to the paid version, they can leverage the data

accumulated while using the free version and thus no data are lost.

Also, most Android users have the option to allow apps to be installed from non-

Market locations and to skip the digital signature check. This option can be accessed

from the Applications menu in the device’s Settings and, when selected, displays

a warning to the user as shown in Fig. 3.24.

FIGURE 3.24

Android setting to allow apps installs from unknown sources.

Android security model 89

The most common situation is that users could now install apps from web

sites by directly downloading an .apk file. The install process also skips the digital

signature check. A recent AT&T phone (Motorola Backflip) removed this

option from Android upsetting many users (Android On Lockdown, n.d.).

However, a work-around using the Android SDK does exist and will be discussed

in Chapter 6.

As a result of the security architecture built into Android, forensic examiners do

not have a simple way to extract core user data from a device. Barring exploits, the

security architecture is effective in isolating and protecting data between

applications.

FORENSICS AND THE SDK
So how is the SDK important in forensics? The SDK not only provides a set of tools

and drivers enabling the analysis of Android devices but is also useful for application

profiling and other forensic research.

Connecting an Android Device to a Workstation

It is important to note how an Android device actually connects to a VM.

Android devices, to date, have a physical USB interface that allows them to

connect, share data and resources, and typically to recharge from a computer or

workstation. If you are only running a single OS, the USB device should be

detected and accessible. However, additional configuration or drivers may be

required. If you are running a VM though, you simply want the host OS to pass

the connection through to the VM. For example, if your host OS is OS X and

you are running VMWare fusion, you select the menus Virtual Machine / USB

and then Connect the device (High Android Phone in this case), as shown in

Fig. 3.25.

Similarly, when your host OS is Linux, and you are running the VM using

Oracle’s VirtualBox, you must first ensure that you are a member of the usbusers

group. So, from a terminal session, execute the following:

#create usbusers group
sudo addgroup usbusers

#Add your username to the userusers group:
sudo usermod -a -G usbusers ahoog

Next, you go into the VM’s Settings and add a USB Filter for the device, as

shown in Fig. 3.26.

Finally, you can connect the USB device as shown in Fig. 3.27.

Finally, here are the steps if you are running the VM headless (VirtualBox 3.2.10

as outlined in Chapter 1). First, you need to install VBox Additions, which will

90 CHAPTER 3 Android software development kit and android debug bridge

FIGURE 3.25

Connect USB device to Ubuntu VM in VMWare Fusion.

FIGURE 3.26

Adding USB filter on Linux host running Oracle’s VirtualBox.

Forensics and the SDK 91

mailto:Image of Figure 3.25|tif

FIGURE 3.27

Connecting USB device on Linux host running Oracle’s VirtualBox.

FIGURE 3.28

Install VBox additions over on Ubuntu VM remote desktop protocol.

92 CHAPTER 3 Android software development kit and android debug bridge

enable shared folder, better video, USB support (if you downloaded/bought the

PUEL edition), and other features. From the host workstation:

wget
http://download.virtualbox.org/virtualbox/3.2.0/VBoxGuestAdditions_3.2.0.iso

VBoxManage registerimage dvd ~/VBoxGuestAdditions_3.2.0.iso

VBoxManage storageattach af-book-vm --storagectl "IDE Controller" --port 1
--device 0 \
--type dvddrive --medium ~/VBoxGuestAdditions_3.2.0.iso

The DVD should now be available on the Ubuntu VM. Remote desktop into

the VM again (see Chapter 1 for necessary steps) and double click VBOX-

ADDITIONS_3.2.0_61806 DVD on your desktop to open the DVD. Then

double click autorun.sh and select the Run option. You will be prompted

for your password after which the install will proceed. Figure 3.28 illustrates

this step.

Now that you have VBox Additions installed, you can connect USB devices to

your guest OS. But first, you must shutdown the VM. Then, follow these steps:

#create usbusers group
sudo addgroup usbusers

#Add your username to the userusers group:
sudo usermod -a -G usbusers ahoog

#Determine attached USB device info
VBoxManage list usbhost

Oracle VM VirtualBox Command Line Management Interface Version 3.2.8
(C) 2005-2010 Oracle Corporation
All rights reserved.

Host USB Devices:

UUID: b1c23004-db71-49ec-b5cb-348e2038b409
VendorId: 0x0781 (0781)
ProductId: 0x554f (554F)
Revision: 2.0 (0200)
Manufacturer: Best Buy
Product: Geek Squad
SerialNumber: 153563119AC07CAD
Address: sysfs:/sys/devices/pci0000:00/0000:00:1d.0/usb2/2-1/
2-1.5//device:/dev/bus/usb/002/004
Current State: Busy

#Create the USB filter to connect the device
VBoxManage usbfilter add 0 --target af-book-vm --vendorid 0781
--productid 554F \
--name "Geek Squad" --active yes

#Ensure USB is enabled
VBoxManage modifyvm Win2003SvrR2 --usb on

#Power on the guest (again recommended from inside screen)
VBoxHeadless -startvm af-book-vm -p 3392 &

Forensics and the SDK 93

mailto:Image of Figure 3.28|tif

FIGURE 3.29

HTC Incredible connect to PC options.

Using this example, the USB device should now be passed through to the VM.

USB Interfaces

While you connect an Android device to your workstation or VM through a single

USB port, the hardware and Android itself generally expose more than one virtual

USB interface. For example, when you connect the HTC Incredible over USB, you

are presented with a menu of four options:

1. Charge onlydCharge phone over USB

2. HTC SyncdSync contacts and calendar

3. Disk drivedMount as disk drive

4. Mobile Broadband ConnectdSmart phone’s mobile networks with PC

The default selection, shown in Fig. 3.29, is the Charge only option. Both HTC

Sync andMobile Broadband Connect options are custom options and programs HTC

and, at times, the wireless carrier support for the device.

CD-ROM Interface
The disk drive option is more universally used. This option connects the Android

device to the workstation as a disk drive. This is one key area where the device

exposes multiple USB devices to the workstation. When you first plug HTC

94 CHAPTER 3 Android software development kit and android debug bridge

mailto:Image of Figure 3.29|tif

Incredible into the computer, it actually registers three separate types of drives: one

CD-ROM and two USB mass storage devices. The following listing is taken from

the Linux workstation’s kernel messages with the dmesg command:

[210.336135] usb 1-1: new high speed USB device using ehci_hcd and address 3
[210.646221] scsi4 : usb-storage 1-1:1.0
[211.649296] scsi 4:0:0:0: Direct-Access HTC Android Phone 0100
PQ: 0 ANSI: 2
[211.652056] scsi 4:0:0:1: Direct-Access HTC Android Phone 0100
PQ: 0 ANSI: 2
[211.654291] scsi 4:0:0:2: CD-ROM HTC Android Phone 0100
PQ: 0 ANSI: 2
[211.657317] sd 4:0:0:0: Attached scsi generic sg2 type 0
[211.658364] sd 4:0:0:1: Attached scsi generic sg3 type 0
[211.661956] sr1: scsi3-mmc drive: 0x/0x caddy
[211.662569] sr 4:0:0:2: Attached scsi CD-ROM sr1
[211.662755] sr 4:0:0:2: Attached scsi generic sg4 type 5
[211.678409] sd 4:0:0:0: [sdb] Attached SCSI removable disk
[211.686339] sd 4:0:0:1: [sdc] Attached SCSI removable disk

As you can see, two Direct-Access drives are found at 4:0:0:0 and 4:0:0:1, and

a CD-ROM is found at 4:0:0:2. The CD-ROM contains custom programs and drivers

that HTC bundles with the device to enable the syncing and broadband connect

features. Obviously, there is no physical CD-ROM. However, a portion of the

device’s storage is dedicated to the CD-ROM and is formatted as an ISO9660. The

host OS can then mount the drive as a CD-ROM and, in Windows, would potentially

even support the auto-run feature. Leveraging TSK’s fsstat program, we can see

more details about the partition:

ahoog@ubuntu:~$ sudo fsstat /dev/sr2

=== PRIMARY VOLUME DESCRIPTOR 1 ===
FILE SYSTEM INFORMATION
--
File System Type: ISO9660
Volume Name: Verizon Mobile
Volume Set Size: 1
Volume Set Sequence: 1
Publisher: Publisher
Data Preparer: Publisher
Recording Application: Application
Copyright:

METADATA INFORMATION
--
Path Table Location: 23-23
Inode Range: 0 - 9
Root Directory Block: 26

CONTENT INFORMATION
--
Sector Size: 2048
Block Size: 2048
Total Sector Range: 0 - 2383
Total Block Range: 0 - 2383

Forensics and the SDK 95

mailto:Image of Figure 3.29|tif

As you can tell from the Volume Name, the CD-ROM contains software

provided by Verizon to use the additional features of the device.

SD Cards (Removable and Virtual)
Far more important from a forensic standpoint are the SD card(s) available through

the device. Placing user’s files, especially larger files such as multimedia, is a key

strategy in Android. Most Android devices have a removable media slot, which

accepts a micro-SD card. The core application data remain on the device (under

/data/data), but the files that are likely important in an investigation may also exist on

the SD card.

In the previous section, when an Android device was connected via USB, the

Linux workstation’s kernel messages displayed the various USB devices available.

The two SCSI removable disks that were listed, sdb and sdc, represent the SD cards

on an HTC Incredible. If you choose the “Mount as disk drive” option under Connect

to PC, the following additional messages show up on the kernel messages:

[325.669335] sd 4:0:0:1: [sdc] 3911680 512-byte logical blocks: (2.00 GB/
1.86 GiB)
[325.672039] sd 4:0:0:1: [sdc] Assuming drive cache: write through
[325.678282] sd 4:0:0:1: [sdc] Assuming drive cache: write through
[325.678294] sdc: sdc1
[327.671951] sd 4:0:0:0: [sdb] 13844464 512-byte logical blocks: (7.08 GB/
6.60 GiB)
[327.674074] sd 4:0:0:0: [sdb] Assuming drive cache: write through
[327.679387] sd 4:0:0:0: [sdb] Assuming drive cache: write through
[327.679395] sdb:

=== SUPPLEMENTARY VOLUME DESCRIPTOR 1 ===
FILE SYSTEM INFORMATION
--
File System Type: ISO9660
Volume Name:
Volume Set Size: 1
Volume Set Sequence: 1
Publisher:
Data Preparer: Publisher
Recording Application:
Copyright:

METADATA INFORMATION
--
Path Table Location: 25-25
Root Directory Block: 29
Joliet Name Encoding: UCS-2 Level 1

CONTENT INFORMATION
--
Sector Size: 2048
Block Size: 2048
Total Sector Range: 0 - 2383
Total Block Range: 0 - 2383

96 CHAPTER 3 Android software development kit and android debug bridge

mailto:Image of Figure 3.29|tif
mailto:Image of Figure 3.29|tif

You will now see additional information about the SD card. The drive sdc has one

partition, sdc1. And its size is 2 GB. We can see additional partition information by

running TSK’s mmls:

As you will see, the SD card is formatted with a FAT16 file system, but often you

will find FAT32 or you might encounter multiple file systems like FAT32 and native

Linux file system ext3 and ext4.

More recently, devices also have an emulated or virtual SD card feature that uses

the device’s NAND flash to create a nonremovable SD card. This more closely

models the iPhone where the user data partition is located directly on the NAND

flash and cannot be removed. In the previous example, the sdb device provides

access to the emulated SD card. Unlike the physical SD card, sdc does not have

a partition table and the file system simply starts immediately. To see important

information, run TSK’s fsstat:

ahoog@ubuntu:~$ sudo fsstat /dev/sdb
FILE SYSTEM INFORMATION
--
File System Type: FAT32

OEM Name: BSD 4.4
Volume ID: 0xc7f80810
Volume Label (Boot Sector): NO NAME
Volume Label (Root Directory):
File System Type Label: FAT32
Next Free Sector (FS Info): 562580
Free Sector Count (FS Info): 13376448

Sectors before file system: 0

File System Layout (in sectors)
Total Range: 0 - 13844463
* Reserved: 0 - 31
** Boot Sector: 0
** FS Info Sector: 1
** Backup Boot Sector: 2
* FAT 0: 32 - 1721
* FAT 1: 1722 - 3411
* Data Area: 3412 - 13844463
** Cluster Area: 3412 - 13844435
*** Root Directory: 3412 - 3475
** Non-clustered: 13844436 - 13844463

ahoog@ubuntu:~$ sudo mmls /dev/sdc
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

 Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000000 0000000128 0000000129 Unallocated
02: 00:00 0000000129 0003911679 0003911551 DOS FAT16 (0x06)

Forensics and the SDK 97

mailto:Image of Figure 3.29|tif
mailto:Image of Figure 3.29|tif

METADATA INFORMATION
--
Range: 2 - 221456838
Root Directory: 2

CONTENT INFORMATION
--
Sector Size: 512
Cluster Size: 32768
Total Cluster Range: 2 - 216267

FAT CONTENTS (in sectors)
--
3412-3475 (64) -> EOF
3476-3539 (64) -> EOF
3540-5267 (1728) -> EOF
5268-7379 (2112) -> EOF
<snip>

In this particular case, the file system is in fact FAT32 and you will notice that

while the volume has no Label, the OEM Name is set BSD 4.4.

WARNING

Auto-mounting USB devices
In the Ubuntu VM configuration section of Chapter 1, the auto-mount feature is disabled to

prevent the OS from automatically detecting and mounting USB mass storage devices.

Forensic analysts should take extreme precautions to prevent this from happening on a device

being investigated. Beyond disabling auto-mount, devices should generally be connected

through a USB write blocker.

In Ubuntu, if you do not have auto-mounting of USB devices disabled

(which you should in nearly all situations), the SD cards are automatically

mounted for you. If the device is attached to a hardware write blocker, mounted

read-only, or in a situation where write blocking is not needed (e.g., research

and development), you can run the df command in Linux to see where they were

mounted:

ahoog@ubuntu:~$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 19G 3.4G 15G 19% /
none 369M 228K 369M 1% /dev
none 375M 252K 375M 1% /dev/shm
none 375M 100K 375M 1% /var/run
none 375M 0 375M 0% /var/lock
.host:/ 931G 663G 269G 72% /mnt/hgfs
/dev/sdc1 1.9G 200M 1.7G 11% /media/E0FD-1813 (physical
 2GB SD Card)
/dev/sdb 6.6G 227M 6.4G 4% /media/C7F8-0810 (emmulated SD Card)

The physical SD card was mounted on /media/E0FD-1813 and the emulated SD

card on /media/C7F8-0810.

98 CHAPTER 3 Android software development kit and android debug bridge

mailto:Image of Figure 3.29|tif
mailto:Image of Figure 3.29|tif

On the Android device itself, the two SD cards are mounted as follows:

/dev/block/vold/179:9 /mnt/sdcard vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=0702,
allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0
/dev/block/vold/179:3 /mnt/emmc vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=0702,
allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0

USB Debugging
One final, and very important, USB interface exposes the Android Debug Bridge

(ADB) that allows a developer, forensic analyst, or security engineer to communi-

cate and control an Android device over USB. By default, an AVD (running in the

emulator) will have USB debugging enabled. However, non-emulator devices must

explicitly enable USB debugging. To enable, select Applications / Development

from the devices Setting’s, as shown in Fig. 3.30. Finally, check USB debugging.

Once set, the device will run the adb daemon (adbd) in the background and wait

for a USB connection. The daemon will run under the non-privileged shell user

account to limit the access it has to data. AVDs and physical devices that have root

access enabled will run adbd as root providing complete access to the system.

Additional details on this topic will be covered in Chapter 6.

In newer versions of Android, anytime a device with USB debugging enabled is

connected over USB, it will display a security warning as seen in Fig. 3.31.

FIGURE 3.30

Enable USB debugging.

Forensics and the SDK 99

mailto:Image of Figure 3.29|tif
mailto:Image of Figure 3.30|tif

For every current logical Android forensic tool, USB debugging must be

enabled. While this is trivial to achieve if the device is unlocked, it is far more

difficult if the device has a pass code. There are some techniques that can circumvent

the pass code, discussed in Chapter 6. However, they do not work on every platform.

Introduction to Android Debug Bridge

Throughout the rest of this book, we will leverage adb extensively, so covering the

basics now is important. There are three primary components involved when

utilizing adb:

1. The adbd running on the Android device

2. The adbd running on your workstation

3. The adb client program running on your workstation

As previously covered, when you enable USB debugging on an Android device,

the daemon will run and listen for a connection. Communication between the

device’s adbd and your workstation’s adbd takes place over the virtual network

running on top of the USB connection. The daemons communicate over their local

host on ports 5555 through 5585. When the workstation’s adbd detects a new

emulator or device, it creates two sequential port connections. The even port

communicates with the device’s console while the odd port is for adb connections.

The local adb client program uses port 5037 to communicate with the local adbd.

FIGURE 3.31

USB debugging warning.

100 CHAPTER 3 Android software development kit and android debug bridge

The most basic adb command you can issue is the adb devices command, which

provides a list of connected devices.

ahoog@ubuntu:~$ adb devices
List of devices attached
HT08XHJ00657 device

Another important command provides the ability to kill your local adb service.

To achieve this, type the following:

ahoog@ubuntu:~$ adb kill-server
ahoog@ubuntu:~$ adb devices
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
List of devices attached
HT08XHJ00657 device

As you can see, if the adbd on the workstation is not running, it will be auto-

matically started. On Ubuntu, if you ever receive the following response:

ahoog@ubuntu:~$ adb devices
List of devices attached
???????????? no permissions

it is likely that the connected Android device has a new vendor ID which must be

identified (sudo lsusb -v) and added to the udev rule as discussed in the “SDK

install” section. In Microsoft Windows, if the Android device is not recognized you

will be alerted and you must install the proper USB drivers from Google or the

manufacturer.

One powerful adb command all analysts and engineers should know is “adb

shell,” which allows you to open a shell on the Android device and interact with the

system. This is an important feature for anyone exploring Android. For example,

start an AVD and follow these steps to view the application data directories on the

device:

ahoog@ubuntu:~$ adb shell
cd /data/data
ls
com.android.sdksetup
com.android.calculator2
com.android.packageinstaller
com.android.providers.userdictionary
com.android.development
com.android.soundrecorder
com.android.providers.drm
com.android.spare_parts
com.android.providers.downloads.ui
com.android.protips
com.android.fallback
com.android.browser
com.android.providers.applications
com.android.netspeed
com.android.wallpaper.livepicker
android.tts
com.android.htmlviewer

Forensics and the SDK 101

mailto:Image of Figure 3.31|tif
mailto:Image of Figure 3.31|tif
mailto:Image of Figure 3.31|tif

com.android.music
com.android.certinstaller
com.android.inputmethod.pinyin
com.android.providers.subscribedfeeds
com.android.inputmethod.latin
com.android.gallery
com.android.systemui
com.android.contacts
com.android.camera
com.android.term
com.android.speechrecorder
com.android.server.vpn
com.android.quicksearchbox
com.android.defcontainer
com.svox.pico
com.android.customlocale
com.android.providers.settings
com.android.settings
com.android.providers.contacts
jp.co.omronsoft.openwnn
com.android.phone
com.android.launcher
com.android.providers.telephony
com.android.mms
com.android.providers.media
com.android.providers.downloads
com.android.deskclock
com.android.email

The functionality of adb has increased with each new SDK and is a very pow-

erful tool. Some of the features will be explored in detail in Chapter 6, including:

1. Running shell commands on the device

2. Installing applications using command line

3. Forwarding ports between your workstation and the device

4. Copying files and folders recursively to and from the device

5. Viewing device log files

Full documentation for the adb command can be found on the Android

Developer web site http://developer.android.com/guide/developing/tools/adb.html#

commandsummary.

Testing various commands using an Android emulator is an excellent way to

understand the tool prior to leveraging it in an investigation.

SUMMARY

The Android SDK not only provides deep insight into the Android platform but

also provides powerful tools to investigate a device, from both a forensic and

security viewpoint. Once the SDK is installed on a forensic workstation, the

examiner has the ability to interact with an Android device connected via USB,

provided the USB debugging feature is enabled. Not only is it possible to query

information from the device but apps can also be installed, run, and ultimately

102 CHAPTER 3 Android software development kit and android debug bridge

mailto:Image of Figure 3.31|tif
http://developer.android.com/guide/developing/tools/adb.html%23commandsummary
http://developer.android.com/guide/developing/tools/adb.html%23commandsummary

data extracted from the device. The Android SDK is an important tool used for

forensic and security analysis.

References
Android timeline. (n.d.). Android tutorials, news, views and forums, Android Academy.

Retrieved March 12, 2011, from http://www.androidacademy.com/1-android-timeline.

Platform Versions, (n.d.). Android developers. Retrieved March 12, 2011, from http://

developer.android.com/resources/dashboard/platform-versions.html.

comScore Reports November 2010 U.S. Mobile Subscriber Market SharedcomScore,

Inc. (n.d.). comScore, Inc.dMeasuring the digital world. Retrieved March 12, 2011,

from http://www.comscore.com/Press_Events/Press_Releases/2011/1/comScore_Reports_

November_2010_.

Android 1.5 Platform. (n.d.). Android developers. Retrieved March 12, 2011, from http://

developer.android.com/sdk/android-1.5.html.

Android 1.6 Platform. (n.d.). Android developers. Retrieved March 12, 2011, from http://

developer.android.com/sdk/android-1.6.html.

Android 2.1 Platform. (n.d.). Android developers. Retrieved March 12, 2011, from http://

developer.android.com/sdk/android-2.1.html.

SDK Archives. (n.d.). Android developers. Retrieved March 13, 2011, from http://developer.

android.com/sdk/older_releases.html.

smali-Project Hosting on Google Code. (n.d.). Google code. Retrieved March 13, 2011, from

http://code.google.com/p/smali/.

Android On Lockdown: AT&T Removes Best Parts of Android from Backflip (n.d.).

AndroidGuys. The trusted source for Android news and opinion, Est. 2007. Retrieved

March 13, 2011, from http://www.androidguys.com/2010/03/08/android-lockdown-att-

removes-parts-android-backflip/.

Forensics and the SDK 103

http://www.androidacademy.com/1-android-timeline
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://www.comscore.com/Press_Events/Press_Releases/2011/1/comScore_Reports_November_2010_
http://www.comscore.com/Press_Events/Press_Releases/2011/1/comScore_Reports_November_2010_
http://developer.android.com/sdk/android-1.5.html
http://developer.android.com/sdk/android-1.5.html
http://developer.android.com/sdk/android-1.6.html
http://developer.android.com/sdk/android-1.6.html
http://developer.android.com/sdk/android-2.1.html
http://developer.android.com/sdk/android-2.1.html
http://developer.android.com/sdk/older_releases.html
http://developer.android.com/sdk/older_releases.html
http://code.google.com/p/smali/
http://www.androidguys.com/2010/03/08/android-lockdown-att-removes-parts-android-backflip/
http://www.androidguys.com/2010/03/08/android-lockdown-att-removes-parts-android-backflip/

Android file systems and data
structures 4
INFORMATION IN THIS CHAPTER

� Data in the shell

� Type of memory

� File systems

� Mounted file systems and directory structures

INTRODUCTION
While the underlying hardware and software powering Android devices is fasci-

nating, the primary focus of forensic analysts and security engineers is to acquire,

analyze, and understand data stored on a device. Like other topics discussed, there

are many nuances to this that are important to understand for effective analysis

including what types of data are stored, where they are stored, how they are stored,

and characteristics of the physical mediums on which they are stored. All of these

factors play a major role in what data can be recovered and how they can be

analyzed.

DATA IN THE SHELL
Forensic analysts are primarily concerned with data artifacts that can be recovered

from the devices they investigate. Android is a combination of both well-known

artifacts, such as those found in Linux, and entirely new ones, such as the Dalvik VM

and the YAFFS2 file system. Adding to the complexity are the varying architectures

that different manufacturers embrace.

While no single book or examiner could possibly cover this topic

exhaustively, there are certain fundamental concepts common to Android

devices. File systems, file, and other artifacts are at the core of what forensic

analysts must understand about Android to maximize the effectiveness of their

investigations.

CHAPTER

Android Forensics. DOI: 10.1016/B978-1-59749-651-3.10004-4

Copyright � 2011 Elsevier Inc. All rights reserved.
105

http://dx.doi.org/10.1016/B978-1-59749-651-3.10004-4

What Data are Stored

Android devices store an enormous amount of data, typically combining both

personal and work data. Apps are the primary source of these data, and there are

a number of sources for apps including:

� Apps that ship with Android

� Apps installed by the manufacturer

� Apps installed by the wireless carrier

� Additional Google/Android apps

� Apps installed by the user, typically from the Android Market

Chapter 7, Android Application and Forensic Analysis, will examine a number

of these apps in detail, although it is certainly beyond the scope of this book to

cover all possibilities. A sample of data found on Android devices includes the

following:

� Text messages (SMS/MMS)

� Contacts

� Call logs

� E-mail messages (Gmail, Yahoo, Exchange)

� Instant Messenger/Chat

� GPS coordinates

� Photos/Videos

� Web history

� Search history

� Driving directions

� Facebook, Twitter, and other social media clients

� Files stored on the device

� Music collections

� Calendar appointments

� Financial information

� Shopping history

� File sharing

App Data Storage Directory Structure

Android applications primarily store data in two locations, internal and external

storage, both of which will be covered in more detail later in this chapter. However, it

is helpful to have a high-level understanding of the data storage directory structure.

In the external data storage areas (the SD card and emulated SD cards), appli-

cations can store data in any location they wish. However, internal data storage is

controlled by the Android APIs. When an application is installed (through either the

market place or in the build shipped to the consumer), an internal data storage is

saved in a subdirectory of /data/data/ named after the package name. For example,

the default Android browser has a package name of com.android.browser and, as

106 CHAPTER 4 Android file systems and data structures

such, the data files are stored in /data/data/com.android.browser. While applications

are not required to store data files, most do.

Inside the applications /data/data subdirectory, there are a number of standard

directories found in many applications as well as directories that developers control.

The most common standard subdirectories are listed in Table 4.1.

Table 4.1 only presents the most common subdirectories found in an applica-

tion’s /data/data file. As we examine data more closely throughout this book, we will

catalog many additional folders and data files.

How Data are Stored

Android provides developers with five methods for storing data to a device. Forensic

examiners can uncover data in at least four of the five formats. Therefore, it is

important to understand each in detail.

Persistent data are stored to either the NAND flash, the SD card, or the network.

Specifically, the five methods are:

1. Shared preferences

2. Internal storage

3. External storage

4. SQLite

5. Network

Beyond the data that app developers store, the Linux kernel and Android stack

provide information through logs, debugging, and other standard information

services.

Shared Preferences
Shared preferences allow a developer to store key-value pairs of primitive data types

in a lightweight XML format. Primitive data types that can be stored in a preferences

file include the following:

1. boolean: true or false

2. float: single-precision 32-bit IEEE 754 floating point

3. int: 32-bit signed two’s complement integer

Table 4.1 Common /data/data/<packageName> Subdirectories

shared_prefs Directory Storing Shared Preferences in XML Format

lib Custom library files an application requires

files Files the developer saves to internal storage

cache Files cached by the application, often cache files from the web

browser or other apps that use the WebKit engine

databases SQLite databases and journal files

Data in the shell 107

4. long: 64-bit signed two’s complement integer

5. strings: string value, typically as a UTF-8

With these basic types, developers can create and save simple values that power their

application.

Shared preferences files are typically stored in an application’s data directory in

the shared_pref folder and end with .xml. On our reference HTC Incredible, the

Android phone shared preferences directory are five XML files:

The com.android.phone_preferences.xml preferences file has examples of int,

boolean, and string preferences:

ahoog@ubuntu:~/data/data/com.android.phone/shared_prefs$ cat
com.android.phone_preferences.xml
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<int name="vm_count_key_cdma" value="0" />
<boolean name="pref_key_save_contact" value="true" />
<string name="vm_number_key_cdma">*86</string>
</map>

As you can tell, the XML file describes the string encoding type at the start of the

file, UTF-8 in this case. There are three preferences that save various settings and

characteristics. Perhaps most interesting from a forensics standpoint is the

updateAreaCode.xml:

ahoog@ubuntu:~/data/data/com.android.phone/shared_prefs$ cat updateAreaCode.xml
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<string name="MDN">312</string>
</map>

The mobile directory number (MDN) is queried and the area code for the device

is stored in this file, presumably to allow a seven-digit dialing option in areas sup-

porting that feature.

Since many applications take advantage of the lightweight Shared Preferences

method for storing key-value pairs, it can be a rich source of forensic data. This is

especially true when examiners can recover older or deleted versions of the XML

preferences file.

Files on Internal Storage
Files allow developers to store more complicated data structures and are saved in

several places on the file internal storage. The files are stored in the application’s

/data/data subdirectory and the developer has control over the file type, name, and

ahoog@ubuntu:~/data/data/com.android.phone/shared_prefs$ ls -l
total 20
-rw-r----- 1 ahoog ahoog 104 2011-01-23 18:05 cdma_msg_id.xml
-rw-r----- 1 ahoog ahoog 214 2011-01-20 09:34 com.android.phone_preferences.xml
-rw-r----- 1 ahoog ahoog 126 1980-01-06 09:42 _has_set_default_values.xml
-rw-r----- 1 ahoog ahoog 152 2010-09-10 09:46 htc_cdma_settings.xml
-rw-r----- 1 ahoog ahoog 102 2010-09-10 09:48 updateAreaCode.xml

108 CHAPTER 4 Android file systems and data structures

mailto:Image of Figure 4.2|tif

location. By default, the files can only be read by the application and even the device

owner is prevented from viewing the files unless they have root access. The

developer can override the security settings to allow other processes to read and even

update the file.

TIP

Identifying custom files
The best way to determine which files in an application’s subdirectory fall into this category is

by a process of elimination. Basically, any file in the application’s /data/data/ subdirectory

which is not in the shared_prefs, lib, cache, or databases subdirectories is a file the developer

created and controls.

Let’s examine com.google.android.apps.maps that provides a good example of

files saved on internal storage:

ahoog@ubuntu:~/data/data/com.google.android.apps.maps$ ls -l
total 24
drwxr-x--x 5 ahoog ahoog 4096 2011-01-18 03:42 app_
drwxr-x--x 3 ahoog ahoog 4096 2010-09-15 10:59 cache
drwxr-x--x 2 ahoog ahoog 4096 2011-01-23 10:30 databases
drwxr-x--x 2 ahoog ahoog 4096 2011-01-23 20:55 files
drwxr-xr-x 2 ahoog ahoog 4096 1980-01-06 09:41 lib
drwxr-x--x 2 ahoog ahoog 4096 2011-01-24 04:13 shared_prefs

The application uses most of the storage mechanisms available and stores files on

internal storage in both the app_ and files directory. The app_ directory has several

subdirectories and a cache_r.m file which is not of a known file format:

ahoog@ubuntu:~/data/data/com.google.android.apps.maps$ tree app_/
app_/
├── cache
│ └── cache_r.m
├── debug
└── testdata

The files directory stores many data files needed by the application to display and

update Google Maps:

ahoog@ubuntu:~/data/data/com.google.android.apps.maps$ tree files
files
├── DA_DirOpt_en_US
├── DA_LayerInfo
├── DATA_LATITUDE_WIDGET_MODEL
├── DATA_LAYER_10
├── DATA_LAYER_2
├── DATA_LAYER_20
├── DATA_LAYER_21
├── DATA_LAYER_24
├── DATA_LAYER_25
├── DATA_LAYER_3
├── DATA_LAYER_5
├── DATA_LAYER_6
├── DATA_LAYER_7

Data in the shell 109

The files clearly indicate data that may be of interest to a forensic analyst or

security engineer. A more thorough data analysis of applications and their data

stored will be covered in Chapter 7, Android Application and Forensic Analysis.

Files on External Storage
While files stored on the internal device’s storage have strict security and location

parameters, files on the various external storage devices have far fewer constraints.

First, one important motivation (beyond cost) for using a removable SD card is

that the data could be used on other devices, presumably upgraded Android devices.

If a consumer purchased a new Android device, inserted their previous SD card

containing all of his or her family pictures and videos and found they were unable to

access them, they would be quite upset.

In order to facilitate mounting the SD card on desktop computers to share files,

SD cards are generally formatted with Microsoft’s FAT32 files system. While the file

system is widely supported, it lacks the fine grained security mechanism built into

file systems such as ext3, ext4, yaffs2, hfsplus, and more. Thus, by default, the files

cannot enforce permissions.

For example, the com.google.android.apps.maps application referenced previ-

ously also stores data on the SD card in the Android/data subdirectory. The

following is a listing of the files and directories from the reference HTC Incredible

SD card, mounted at /mnt/sdcard:

├── DATA_LAYER_8
├── DATA_location_history
├── DATA_OptionDefinitionBlock_en
├── DATA_Preferences
├── DATA_PROTO_SAVED_CATEGORY_TREE_DB
├── DATA_PROTO_SAVED_LAYER_STATE
├── DATA_PROTO_SAVED_RECENT_LAYERS
├── DATA_RemoteStringsBlock_en
├── DATA_Restrictions
├── DATA_Restrictions_lock
├── DATA_SAVED_BGFS_3
├── DATA_SAVED_BGFS_EXTRA_3
├── DATA_SAVED_BGSF_
├── DATA_SAVED_REMOTE_ICONS_DATA_BLOCK
├── DATA_ServerControlledParametersManager.data
├── DATA_STARRING
├── DATA_SYNC_DATA
├── DATA_SYNC_DATA_LOCAL
├── DATA_TILE_HISTORY
├── DATA_Tiles
├── DATA_Tiles_1
├── DATA_Tiles_2
├── DATA_Tiles_3
├── event_store_driveabout
├── event_store_LocationFriendService
├── NavigationParameters.data
├── NavZoomTables.data
├── nlp_GlsPlatformKey
├── nlp_state
└── ZoomTables.data

110 CHAPTER 4 Android file systems and data structures

ahoog@ubuntu:~/htc-inc/mnt/sdcard/Android/data$ tree com.google.android.apps.maps/
com.google.android.apps.maps/
├── cache
│ ├── cache_its.0
│ ├── cache_its.m
│ ├── cache_its_ter.m
│ ├── cache_r.0
│ ├── cache_r.1
│ ├── cache_rgts.0
│ ├── cache_rgts.m
│ ├── cache_r.m
│ ├── cache_vts.0A
│ ├── cache_vts.1
│ ├── cache_vts_GMM.0
│ ├── cache_vts_GMM.1
│ ├── cache_vts_GMM.m
│ ├── cache_vts.m
│ └── cache_vts_tran_GMM.m
├── debug
└── testdata

Similarly, the HTC Incredible ships with an emulated SD card that is stored

directly on the NAND flash. The emulated SD card is mounted at /mnt/emmc. The

following is a listing of a subdirectory that stores album JFIF thumbnail files:

ahoog@ubuntu:~/htc-inc/mnt/emmc$ tree Android/data/com.android.providers.media/
└── albumthumbs
 ├── 1283015214003
 ├── 1283015215018
 ├── 1283015215425
 ├── 1283015215861
 ├── 1283015216304
 └── 1283015216711

As you can tell, developers have great control over the name, format, and

location of files on the external and emulated SD cards.

SQLite
Another NAND/SD card-based storage that developers leverage is a specific type of

filedan SQLite database. Databases are used for structured data storage and SQLite

is a popular database format appearing in many mobile systems as well as traditional

operating systems.

SQLite is popular for many reasons. Notably the entire code base is of high

quality, open source, and released to the public domain. The file format and the

program itself are very compact and pack significant functionality in less than a few

hundred kilobytes. Unlike more traditional relational database management systems

(RDBMS), such as Oracle, MySQL, and Microsoft’s SQL Server, with SQLite the

entire database is contained in a single cross-platform file.

The Android SDK provides dedicated APIs that allow developers to use SQLite

databases in their applications. The SQLite files are generally stored on the internal

storage under /data/data/<packageName>/databases. However, there are no restric-

tions on creating databases elsewhere.

Data in the shell 111

SQLite databases are a rich source of forensic data. The built-in Android

browser, based on the WebKit Open Source Project (http://webkit.org/), provides

a great example. In our referenced HTC Incredible, there were 28 SQLite databases

located in subdirectories of /data/data/com.android.webkit. In this instance, the five

subdirectories were as follows:

� app_icons: 1 database of web page icons

� app_cache: 1 database containing web application data cache

� app_geolocation: 2 databases relating to GPS position and permissions

� app_databases: 21 databases providing local database storage for supporting web sites

� databases: 3 databases for the browser and browser cache

There is very high potential of recovering forensically valuable data from these files.

Network
The final data storage mechanism available to developers is the network, a key

benefit of a device designed to be network aware. Initially, very few applications

took advantage of the network as a storage option. However, as the SDK, apps, and

devices mature, the network storage option is being leveraged more.

The Android Developer web site provides very few details for those interested in

network storage. Their entire documentation is a mere two sentences long (Data

storage, n.d.).

You can use the network (when it is available) to store and retrieve data on your own

web-based services. To do network operations, use classes in the following packages:

� java.net.)

� android.net.)

The packages referenced in the documentation essentially provide developers

with the low-level APIs needed to interact with the network, web servers, and more.

Apps that leverage the network require more custom coding and, while all of the

forensically interesting data may not be stored on the device, often important

configuration and database files are recoverable.

For example (and as a sneak peak to Chapter 7, Android Application and Forensic

Analysis), Dropbox is a popular file sharing web site which has mobile apps for

Android, Blackberry, and iOS devices. Their current Android application (version

1.0.3.0) has been downloaded from the Android Market over 250,000 times and has

over 35,000 user ratings, most quite high. After the app is installed, you can find the

application folder at /data/data/com.dropbox.android with four standard directories:

ahoog@ubuntu:~/htc-inc/data/data$ tree com.dropbox.android/
com.dropbox.android/
├── databases
│ └── db.db
├── files
│ └── log.txt
├── lib
└── shared_prefs
 └── DropboxAccountPrefs.xml

112 CHAPTER 4 Android file systems and data structures

http://webkit.org/

The log.txt is a verbose log of activity and a few lines are provided for reference:

ahoog@ubuntu:~/com.dropbox.android$ cat ./files/log.txt
5 1296055108427 com.dropbox.android.provider.DatabaseHelper Creating new Dropbox
database.
4 1296055108459 com.dropbox.android.DropboxApplication Not authenticated, so
authenticating
4 1296055108466 com.dropbox.android.DropboxApplication No stored login token.
4 1296055108702 com.dropbox.android.DropboxApplication Not authenticated, so
authenticating
4 1296055108704 com.dropbox.android.DropboxApplication No stored login token.
4 1296055108704 com.dropbox.android.activity.SimpleDropboxBrowser Didn't
authenticate, redirecting to login
4 1296055108713 com.dropbox.android.DropboxApplication Not authenticated, so
authenticating
4 1296055108714 com.dropbox.android.DropboxApplication No stored login token.
4 1296055134550 com.dropbox.android.DropboxApplication Authenticating username:
book@viaforensics.com
4 1296055136507 com.dropbox.android.DropboxApplication Successfully
authenticated
6 1296055137501 com.dropbox.android.activity.LoginActivity Dismissed nonexistent
dialog box
4 1296055137525 com.dropbox.android.activity.LoginOrNewAcctActivity Successful
account login
4 1296055137549 com.dropbox.android.activity.delegate.MenuDelegate Successful
login
4 1296055137735 com.dropbox.android.activity.SimpleDropboxBrowser Query is:
content://com.dropbox.android.Dropbox/metadata/
6 1296055137742 com.dropbox.android.provider.QueryStatus Querying with query
id: DB2
4 1296055137765 com.dropbox.android.activity.SimpleDropboxBrowser Browsing
URI: content://com.dropbox.android.Dropbox/metadata/
4 1296055138208 com.dropbox.android.provider.ProviderDirSyncThread Directory
changed, going through line-by-line:
content://com.dropbox.android.Dropbox/metadata/
4 1296055161450 com.dropbox.android.activity.delegate.MenuDelegate Importing
Picture from Gallery
6 1296055170307 com.dropbox.android.provider.DropboxProvider Adding new file
(from import, probably): content://media/external/images/media/5
4 1296055170329 com.dropbox.android.taskqueue.TaskQueue Added task to queue:
content://media/external/images/media/5~/
4 1296055170333 com.dropbox.android.taskqueue.TaskQueue Starting up task queue
4 1296055170333 com.dropbox.android.taskqueue.UploadTask Uploading file from
URI: content://media/external/images/media/5
4 1296055170333 com.dropbox.android.taskqueue.DbTaskQueue Task
content://media/external/images/media/5~/ adding to task DB
6 1296055170351 com.dropbox.android.service.ServiceBinderDelegate Unbound
service!
4 1296055170352 com.dropbox.android.taskqueue.UploadTask Uploading file:
/mnt/sdcard/forensics/20110111.1618/387.jpg to / as 387.jpg
4 1296055170367 com.dropbox.android.activity.SimpleDropboxBrowser Browsing URI:
content://com.dropbox.android.Dropbox/metadata/
4 1296055170471 com.dropbox.android.service.DropboxReceiver Connectivity action:
mobile CDMA - EvDo rev. A 2GVoiceCallEnded
4 1296055170471 com.dropbox.android.service.DropboxReceiver Connectivity change!
true
4 1296055170472 com.dropbox.android.taskqueue.DbTaskQueue Adding Uploads from
stored db: 1

Some items of potential interestwere emphasized in the above listing, specifically:

1. All actions have time stamps

2. Successfully authenticate user, user name provided

Data in the shell 113

3. Picture imported from Gallery

4. Specific file on SD card is uploaded

5. Dropbox service is interrupted by phone call

The app also has a shared preference file:

ahoog@ubuntu:~/htc-inc/data/data/com.dropbox.android$ cat
shared_prefs/DropboxAccountPrefs.xml
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<string name="LAST_URI">content://com.dropbox.android.Dropbox/metadata/</string>
<string name="DISPLAY_NAME">Andrew Hoog</string>
<long name="QUOTA_QUOTA" value="2147483648" />
<long name="QUOTA_NORMAL" value="1480890" />
<string name="REFERRAL_LINK">https://www.dropbox.com/referrals/NNNNAN0NnwNNN
</string>
<string name="COUNTRY"></string>
<long name="UID" value="96189742" />
<string name="EMAIL">book@viaforensics.com</string>
<string name="ACCESS_KEY">accesskeyinfohere</string>
<string name="ACCESS_SECRET">accesssecretinfohere</string>
<long name="QUOTA_SHARED" value="0" />
</map>

A quick examination of the db.db yields the following data using the sqlite3

command line program (you could also use a graphical SQLite browser to view the

database):

ahoog@ubuntu:~/htc-inc/data/data/com.dropbox.android/databases$ sqlite3 db.db
SQLite version 3.6.22
Enter ".help" for instructions
Enter SQL statements terminated with a ";"

sqlite> .tables
android_metadata dropbox pending_upload

sqlite> .mode line

sqlite> select * from dropbox where _id = 2;
 _id = 2
 _data = /sdcard/dropbox/Android intro.pdf
 modified = Wed, 26 Jan 2011 15:18:40 +0000
 bytes = 176607
 revision = 10
 hash =
 icon = page_white_acrobat
 is_dir = 0
 path = /Android intro.pdf
 root =
 size = 172.5KB
 mime_type = application/pdf
 thumb_exists = 0
 parent_path = /
 _display_name = Android intro.pdf
 is_favorite =
local_modified = 1296055191000
 local_bytes = 176607
local_revision = 10
 accessed =
 sync_status = 2

114 CHAPTER 4 Android file systems and data structures

The database provides important forensic and security data about the Dropbox

application, device, and ultimately the user and people they might interact with. The

“Android intro.pdf” file was automatically synced to the Dropbox account by

Dropbox when Android app was installed and logged into. When the shared PDF file

was viewed, it was cached on the SD card. Additional metadata about the file and the

use of it is contained in the database. Despite Dropbox’s extensive use of network

data storage for their application, we could still recover useful information.

Kernel, System, and Application Logs
One additional area where forensic analysts and security engineers can locate files

and information relevant to an investigation or audit is the standard Linux file

system. Unfortunately, that’s quite broad and overwhelming, but we can at least

provide a starting place to look for relevant information.

Log files and debugging are two common and effective ways in which developers

and administrators both maintain their system and their apps. It provides an insight

into the apps as well as the system running them. While not true in every case, it is

possible to glean important information from an Android device by simply exam-

ining the various log and debug files.

Linux kernel logging
The Linux kernel is the low level, abstract interface of the Linux operating system

that provides access to the hardware of a device. Since the role of the kernel is

central to all functions on the device, the ability to log key events and activities is

highly leveraged. The kernel log is accessible on a Linux (and thus Android) device

through the command dmesg. This will print to console all available kernel

messages, a portion of which is displayed here:

ahoog@ubuntu:~$ adb shell dmesg
<6>[151434.178802] batt: SMEM_BATT: get_batt_info: batt_id=2, batt_vol=4211,
batt_temp=264, batt_current=377, eval_current=112, level=96, charging_source=1,
charging_enabled=1, full_bat=1300000, over_vchg=0 at 151435426063278
(2011-01-28 11:28:37.995086662 UTC)
<4>[151574.946685] select 7673 (ogle.android.gm), adj 15, size 4821, to kill
<4>[151574.947418] send sigkill to 7673 (ogle.android.gm), adj 15, size 4821
<4>[151575.003967] deathpending end 7673 (ogle.android.gm)
<4>[151668.188018] mmc1: Starting deferred resume
<6>[151668.195281] incrediblec_sdslot_switchvdd: Setting level to 2850 (Success)
<6>[151668.506591] mmc1: Deferred resume completed
<6>[151674.597320] [dma.c] msm_datamover_irq_handler id 8, result not
valid4000001
<6>[151734.168731] batt: M2A_RPC: level_update: 97 at 151735415412693
(2011-01-28 11:33:37.985015911 UTC)
<6>[151734.173339] batt: batt:power_supply_changed: battery at 151735422126560
(2011-01-28 11:33:37.989654582 UTC)
<6>[151734.190490] batt: SMEM_BATT: get_batt_info: batt_id=2, batt_vol=4212,
batt_temp=281, batt_current=353, eval_current=152, level=97, charging_source=1,
charging_enabled=1, full_bat=1300000, over_vchg=0 at 151735437507419
(2011-01-28 11:33:38.006744426 UTC)
<6>[152004.168853] batt: M2A_RPC: level_update: 98 at 152005415595761
(2011-01-28 11:38:07.985168460 UTC)

Data in the shell 115

<6>[152004.171142] batt: batt:power_supply_changed: battery at 152005418311825
(2011-01-28 11:38:07.987457279 UTC)
<6>[152004.187622] batt: SMEM_BATT: get_batt_info: batt_id=2, batt_vol=4210,
batt_temp=288, batt_current=265, eval_current=112, level=98, charging_source=1,
charging_enabled=1, full_bat=1300000, over_vchg=0 at 152005434913389 (2011-01-28
11:38:08.003875737 UTC)

As you may notice, the data are quite verbose and low level. However, it can

provide important time stamps and activities, as well as a wealth of information

about the device on boot-up. However, if the device has not been rebooted recently,

the initial logs from startup are no longer available.

This command does not require any special permission on the device except that

USB debugging must be enabled. If you ran this command on a device or emulator,

you would have noticed that far too much data were displayed on your screen. You

can determine the total number of lines available in the log by piping (or sending) the

contents of dmesg to a program called wc (which stands for word count) and

instructing it to count the number of lines:

ahoog@ubuntu:~$ adb shell dmesg | wc -l
1859

So, on the reference HTC Incredible, we have 1859 lines in the kernel log. If you

need to inspect the information more closely, or include it in a report, you can

redirect the output of dmesg to a file with the following:

ahoog@ubuntu:~$ adb shell dmesg > dmesg.log

You can now examine the contents of the available kernel log by opening

dmesg.log in a text editor or display program.

logcat
Android has several additional debugging techniques available. One program, logcat,

displays a continuously updated list of system and application debug messages.

ahoog@ubuntu:~$ adb shell logcat
I/HtcLocationService(308): agent - search location by name: oak park, country:
united states, state: illinois
I/HtcLocationService(308): agent - no location was found, total: 0
D/AutoSetting(308): service - CALLBACK - onGetTimeZoneOffset, result: failed,
zoneId: , offset: 0
D/LocationManager(308): removeUpdates: listener =
com.htc.htclocationservice.HtcLocationServiceAgent$7@45dfc770
V/AlarmManager(97): Adding Alarm{463aea28 type 2 com.google.android.location}
Jan 05 05:05:25 pm
I/HtcLocationService(308): agent - send current location notify intent, name:
Oak Park, state: Illinois, country: United States, lat: 41.8786, lng:
-87.6359,tzid:
D/AutoSetting(308): service - CALLBACK - onSetWeatherProvider, result: success
I/WSP (308): [Receiver] EVENT - CURRENT LOCATION CHANGED
V/AlarmManager(97): Adding Alarm{46265558 type 0 com.htc.htclocationservice}
Jan 28 09:12:53 am
D/AutoSetting(308): service - wake lock release
D/LocationManager(308): removeUpdates: listener =
com.htc.htclocationservice.HtcLocationServiceAgent$7@45dfc770

116 CHAPTER 4 Android file systems and data structures

V/AlarmManager(97): Alarm triggering: Alarm{46265558 type 0
com.htc.htclocationservice}
V/AutoSetting(308): receiver - ***onReceive:
com.htc.app.autosetting.retrylocation
V/AutoSetting(308): receiver - startAutosettingService, action:
com.htc.app.autosetting.retrylocation,notifyWhenNoResult:false
D/AutoSetting(308): service - onCreate(),no SharedPreference
D/AutoSetting(308): service - ***setupWizardIsCompleted: true
D/AutoSetting(308): service - onStart(), id = 0
D/AutoSetting(308): service - new wake lock
D/AutoSetting(308): service - wake lock acquire
D/AutoSetting(308): service - onStart(), Checking location times = 2
D/AutoSetting(308): service - onStart(), Checking location change = false
D/AutoSetting(308): service - onStart(), Set city info = false
D/AutoSetting(308): service - onStart(), Set network time info = false
D/AutoSetting(308): service - onStart(), Set network timezone info = true
D/AutoSetting(308): service - onStart(), Set notify when no result = false
D/AutoSetting(308): service - ***setupWizardIsCompleted: true
D/AutoSetting(308): service - ***chkConnected,
mbReqChecking:false,mbApplyAll:true
D/AutoSetting(308): service - ***Data call is avaiable
D/AutoSetting(308): service - doAutoSettings(), isNetworkAvailable: true,
isUseWirelessNetworks: true, isTimeAutoState: true
D/LocationManager(308): requestLocationUpdates: provider = network, listener =
com.htc.htclocationservice.HtcLocationServiceAgent$7@45dfc770
D/LocationManagerService(97): CdmaCellLocation Unavailable
I/HtcLocationService(308): agent - search location by name: oak park, country:
united states, state: illinois
V/AlarmManager(97): Adding Alarm{45fb22a0 type 2 com.google.android.location}
Jan 05 05:04:51 pm
V/AlarmManager(97): Adding Alarm{45fb0a90 type 2 com.google.android.location}
Jan 05 05:04:51 pm

A quick scan of the small log snippet above reveals

� Longitude and latitude data

� Date/time information

� Application details

The logging is very verbose and the sample provided here is just a small sample

of what is available. Each log message begins with message type indicator, described

in Table 4.2.

Table 4.2 Log Method Types

Message Type Description

V Verbose

D Debug

I Information

W Warning

E Error

F Fatal

S Silent

Data in the shell 117

The logcat program also provides logs from the full cellular radio debug, which can

be viewed with the following command (only select portions of the radio logs

included):

ahoog@ubuntu:~$ adb shell logcat -b radio
D/CDMA (193): [CdmaServiceStateTracker] Set CDMA Roaming Indicator to: 128.
mCdmaRoaming = false, isPrlLoaded = true. namMatch = true , mIsInPrl = true,
mRoamingIndicator = 128, mDefaultRoamingIndicator= 64
D/CDMA (193): [CdmaServiceStateTracker] Poll ServiceState done:
oldSS=[0 home Verizon Wireless Verizon Wireless 31000 EvDo rev. A CSS supported
3 20RoamInd: 128DefRoamInd: 64EriInd: 1EriMode: 0RadioPowerSv: falseDefRoamInd:
64EmergOnly: false] newSS=[0 home Verizon Wireless Verizon Wireless 31000 EvDo
rev. A CSS supported 3 20RoamInd: 128DefRoamInd: 64EriInd: 1EriMode:
0RadioPowerSv: falseDefRoamInd: 64EmergOnly: false]
D/CDMA (193): Query NBPCD state: false
D/CDMA (193): will call NBPCD: 7735555555 NBPCD state: false
D/SMS (193): SMS send size=5time=1296219734520
D/RILJ (193): [23001]> RIL_REQUEST_CDMA_SEND_SMS
D/HTC_RIL (67): ril_func_cdma_send_sms():called
D/HTC_RIL (67): dump_cdma_sms():uTeleserviceID = 4098
D/HTC_RIL (67): dump_cdma_sms():bIsServicePresent = 0
D/HTC_RIL (67): dump_cdma_sms():uServicecategory = 0
D/HTC_RIL (67): dump_cdma_sms():sAddress.digit_mode = 0
D/HTC_RIL (67): dump_cdma_sms():sAddress.number_mode = 0
D/HTC_RIL (67): dump_cdma_sms():sAddress.number_type = 0
D/HTC_RIL (67): dump_cdma_sms():sAddress.number_plan = 0
D/HTC_RIL (67): dump_cdma_sms():sAddress.number_of_digits = 10
D/HTC_RIL (67): dump_cdma_sms():sAddress.digits = [07070305050505050505]
D/HTC_RIL (67): dump_cdma_sms():sSubAddress.subaddressType = 0
D/HTC_RIL (67): dump_cdma_sms():sSubAddress.odd = 0
D/HTC_RIL (67): dump_cdma_sms():sSubAddress.number_of_digits = 0
D/HTC_RIL (67): dump_cdma_sms():sSubAddress.digits = []
D/HTC_RIL (67): dump_cdma_sms():uBearerDataLen = 32
D/HTC_RIL (67): dump_cdma_sms():aBearerData:
[0003202C80010D10654CBCFA20DB979F3C39F2800E0705189249CB1B00080100]
D/HTC_RIL (67): encode_cdma_sms():encode_index = 51
D/HTC_RIL (67): ril_func_cdma_send_sms():raw_data:
[00000210020407029DCD158C988006010008200003202C80010D10654CBCFA20DB979F3C39F2800
E0705189249CB1B00080100]
D/HTC_RIL (67): (t=1296219734)>> AT+CMGS=51\r
D/HTC_RIL (67): RX::> \r\n> ^M
D/HTC_RIL (67): (t=1296219734)XX \r\n
D/HTC_RIL (67): (t=1296219734)<< >
D/HTC_RIL (67): (t=1296219734)>>
00000210020407029DCD158C988006010008200003202C80010D10654CBCFA20DB979F3C39F2800E
0705189249CB1B00080100^Z
D/RILJ (193): [UNSL]< UNSOL_DATA_CALL_LIST_CHANGED [DataCallState: { cid:
62, active: 1, type: IP, apn: 0, address: 10.237.127.132 }, DataCallState:
{ cid: -1, active: 0, type: , apn: , address: }, DataCallState: { cid: -1,
active: 0, type: , apn: , address: }]

While the logging is verbose and generally cryptic, scanning the logs above can

provide information such as:

� Time of events (in Unix Epoch, e.g., t¼1296218163)

� AT commands used by the cellular modem to communicate

� Recipient, size, time, and encoded SMS message

� Device’s cellular IP address, networking and location information

� Wireless carrier information

118 CHAPTER 4 Android file systems and data structures

This information is of very low level. However, if such logs are recovered, they can

reveal important information about a device.

NOTE
Unix Epoch
Unix Epoch time is a common format for time stamps in systems based on Unix/Linux. The

time stamp is an integer value that represents the number of seconds (or milliseconds) since

January 1, 1970. A typical time stamp using seconds will have 10 digits while a time stamp

using milliseconds will have 13 digits. Time stamps are covered in more details in Chapter 7.

One final logcat feature is the event logs display:

$adb shell logcat -b events
I/db_sample(193):
[/data/data/com.android.providers.telephony/databases/mmssms.db,INSERT INTO
sms(body, index_on_sim, address, subject, read, type,280,,57]
I/db_sample(193):
[/data/data/com.android.providers.telephony/databases/mmssms.db,SELECT
transport_type, _id, thread_id, address, body, date, read,170,,35]

Again, this log is very verbose. However, as different events within the system

occur, they log considerable information here. In the previous log snippet, we can

see both an INSERT and SELECT statement on the mmssms.db, which is used to

store text messages.

dumpsys
The next logging mechanism is accessed through a command called dumpsys.

Dumpsys provides information on services, memory, and other system details that

can provide helpful information. Some of the types of information provided include

� Currently running services

� Dump of each service

� Services, broadcasts, pending intents, activities, and processes in current activity

manager state

� Process information including memory, process IDs (PIDs), databases, and more

used

Sample sections from the reference HTC Incredible dumpsys are listed next and

each include a brief explanation of how the data might be valuable to a forensic

analyst or security engineer.

First, you run the dumpsys command as follows:

$adb shell dumpsys
Currently running services:
 SurfaceFlinger
 VZW_LOCATION_SERVICE
 accessibility
 account
<snip>

The section dumping details of the service “account” has valuable information

about the various accounts used on the device.

Data in the shell 119

DUMP OF SERVICE account:
Accounts: 10
 Account {name=Backup Assistant, type=com.htc.VzWBASync}
 Account {name=News, type=com.htc.newsreader}
 Account {name=Weather, type=com.htc.sync.provider.weather}
 Account {name=Stocks, type=com.htc.android.Stock}
 Account {name=book@viaforensics.com, type=com.google}
 Account {name=book@viaforensics.com, type=com.htc.android.mail.eas}
 Account {name=Andrew Hoog, type=com.htc.socialnetwork.facebook}
 Account {name=viaforensics, type=com.htc.htctwitter}
 Account {name=viaforensics, type=com.twitter.android.auth.login}
 Account {name=personal@emailaddress.com, type=com.google}

You can see not only programs used, but also at times the account name specific

to the user. For example, the above reveals:

� Google account with user name book@viaforensics.com

� Exchange ActiveSync (EAS) account with user name book@viaforensics.com

(separate from the Google account above)

� Facebook account for Andrew Hoog

� Twitter account for viaforensics

� Google account for personal@emailaddress.com (second one on the device)

Further in the log, the actual time stamps for the last 10 syncs are similarly provided:

Recent Sync History
 #1: book@viaforensics.com:com.google com.android.calendar LOCAL @ 2011-01-28
09:52:46 for 0.0s
 #2: book@viaforensics.com:com.htc.android.mail.eas htceas USER @ 2011-01-28
09:51:43 for 34.5s
 #3: book@viaforensics.com:com.google com.android.calendar LOCAL @ 2011-01-28
09:49:25 for 0.0s
 #4: Andrew Hoog:com.htc.socialnetwork.facebook com.htc.socialnetwork.facebook
SERVER @ 2011-01-28 09:48:57 for 0.5s
 #5: book@viaforensics.com:com.google com.android.calendar LOCAL @ 2011-01-28
09:45:30 for 0.0s
 #6: Andrew Hoog:com.htc.socialnetwork.facebook com.htc.socialnetwork.facebook
SERVER @ 2011-01-28 09:44:40 for 1.3s
 #7: book@viaforensics.com:com.htc.android.mail.eas htceas USER @ 2011-01-28
09:44:18 for 1.3s
 #8: viaforensics:com.twitter.android.auth.login
com.twitter.android.provider.TwitterProvider SERVER @ 2011-01-28 09:44:06 for
11.6s
 #9: book@viaforensics.com:com.htc.android.mail.eas htceas USER @ 2011-01-28
09:41:08 for 15.8s
 #10: Andrew Hoog:com.htc.socialnetwork.facebook com.htc.socialnetwork.facebook
SERVER @ 2011-01-28 09:37:27 for 0.1s

Another service is humorously named “iphonesubinfo,” which obviously has

nothing to do with Apple’s iPhone despite the similarity in name.

DUMP OF SERVICE iphonesubinfo:
Phone Subscriber Info:
 Phone Type = CDMA
 Device ID = A100001829481F

Both the phone type and Device ID (changed) are available from this section.

The Device ID is not the device’s serial number but the Mobile Equipment Identifier

(MEID), which uniquely identifies the device on the CDMA network.

120 CHAPTER 4 Android file systems and data structures

mailto:book@viaforensics.com
mailto:book@viaforensics.com
mailto:personal@emailaddress.com

Another great source of information is the location service that shows last known

location information and time.

DUMP OF SERVICE location:
 Last Known Locations:
 passive:
 mProvider=network mTime=1296230208384
 mLatitude=41.8786 mLongitude=-87.6359
 mHasAltitude=false mAltitude=0.0
 mHasSpeed=false mSpeed=0.0
 mHasBearing=false mBearing=0.0
 mHasAccuracy=true mAccuracy=1423.0
 mExtras=Bundle[{networkLocationType=cell, networkLocationSource=cached}]
 gps:
 mProvider=gps mTime=1296157873000
 mLatitude=41.8786 mLongitude=-87.6359
 mHasAltitude=true mAltitude=198.8000030517578
 mHasSpeed=true mSpeed=29.75
 mHasBearing=true mBearing=69.7
 mHasAccuracy=true mAccuracy=2.828427
 mExtras=Bundle[{satellites=11}]

Most time stamps in Android are the number of milliseconds since January 1,

1970, which is Unix Epoch timedin milliseconds instead of seconds, however.

Since most tools convert Unix Epoch based on seconds, you can divide the number

by 1000 and then use a standard formula. If you built the Ubuntu workstation, you

can convert using the following command line:

ahoog@ubuntu:~$ date -d @1296230208
Fri Jan 28 09:56:48 CST 2011

This will output in the workstation’s time zone. You can control the time zone,

format, and many other parameters with various switches on the command. To see

the full possibilities, run “date–help” or “man date.”

Examining the three cached locations above, we can see the system cached

locations from both GPS satellites and cell towers at the following times:

1. GPS: Thu Jan 27 13:51:13 CST 2011

2. Cell: Fri Jan 28 09:56:48 CST 2011

The locations are accurate for the time recorded and thus provide excellent historical

information on the device’s location.

The network state section provides additional information, including more

detailed information on cell phone towers:

network Internal State:
 location Location[mProvider=network,mTime=1296230208384,mLatitude=41.8786,
mLongitude=-87.6359,mHasAltitude=false,mAltitude=0.0,mHasSpeed=false,mSpeed=0.0,
mHasBearing=false,mBearing=0.0,mHasAccuracy=true,mAccuracy=1423.0,mExtras=Bundle
[{networkLocationSource=cached, networkLocationType=cell}]]
 Status 2
 StatusUpdateTime 385403711
 NetworkState 2
 LastCellStateChangeTime 428707868
 LastCellLockTime 0

Data in the shell 121

 cell state [cid: 277 lac: 3 mcc: 0 mnc: 20 radioType: 2 signalStrength: -85
 neighbors[]
 cell history
 [cid: 4671 lac: 3 mcc: 0 mnc: 20 radioType: 2 signalStrength: -103 neighors[]
 [cid: 277 lac: 3 mcc: 0 mnc: 20 radioType: 2 signalStrength: -103 neighbors[]
 [cid: 4671 lac: 3 mcc: 0 mnc: 20 radioType: 2 signalStrength: -87 neighbors[]
 [cid: 286 lac: 3 mcc: 0 mnc: 20 radioType: 2 signalStrength: -98 neighbors[]
 WifiScanFrequency 60000
 WifiEnabled 0
 WaitingForWifiScan 0
 LastNetworkQueryTime 428712899
 LastSuccessfulNetworkQueryTime 428712926
 Enabled 1
 AirplaneMode 0
 DisabledForAirplaneMode 0

One last section to point out, despite the level of technical details, is the memory

information section, which is output for each PID:

** MEMINFO in pid 454 [com.htc.android.mail] **
 native dalvik other total limit bitmap nativeBmp
 size: 18048 9543 N/A 27591 32768 N/A N/A
 allocated: 14490 4485 N/A 18975 N/A 1032 0
 free: 1341 5058 N/A 6399 N/A N/A N/A
 (Pss): 10644 4839 8651 24134 N/A N/A N/A
 (shared dirty): 1348 3924 960 6232 N/A N/A N/A
 (priv dirty): 10604 4724 4800 20128 N/A N/A N/A

Objects
 Views: 0 ViewRoots: 0
 AppContexts: 0 Activities: 0
 Assets: 3 AssetManagers: 3
 Local Binders: 50 Proxy Binders: 36
Death Recipients: 2
OpenSSL Sockets: 1

SQL
 heap: 3740 memoryUsed: 3740
pageCacheOverflo: 2185 largestMemAlloc: 1667

DATABASES
 Pagesize Dbsize Lookaside Dbname
 1024 21 38 webview.db
 1024 305 52 webviewCache.db
 1024 5662 499 mail.db
 1024 8 0 (attached) people_db

This may be useful not only for determining which processes are running, but

also for determining the databases they access. For instance, a case may require the

investigator to better understand what information is updated when an e-mail is

received. In the above listing, you can see that the e-mail application (com.htc.

android.mail) updates not only the mail.db, but also two web-related databases

attached to the people_db. This information can be very useful when explaining how

data on an Android device interrelates.

dumpstate
Another debug command is dumpstate that combines portions of previous debugs

with system information. Similar to the other commands, you run the command with

the following:

122 CHAPTER 4 Android file systems and data structures

$adb shell dumpsys
/data/anr/traces.txt: Permission denied
==
== dumpstate: 2011-01-28 09:56:27
==

Build: FRF91
Bootloader: 0.92.0000
Radio: 2.15.00.07.28
Network: Verizon Wireless
Kernel: Linux version 2.6.32.17-g9a2fc16 (htc-kernel@u18000-Build-149)
(gcc version 4.4.0 (GCC)) #1 PREEMPT Thu Sep 30 18:42:08 CST 2010
Command line: (unknown)

The first section displayed on an emulator or device with adbd running as root is

stack traces from applications. However, on the reference HTC devices, dumpstate

returns a permission denied. Immediately following is basic information about the

device, build, radio, network and kernel details. The remaining log contains the

sections outlined in Table 4.3.

Table 4.3 Dumpstate Sections

Section File or Command

Stack traces N/A

Device info N/A

System N/A

Memory info /proc/meminfo

Cpu info top -n 1 -d 1 -m 30 -t

Procrank (procrank)

Virtual memory stats /proc/vmstat

Vmalloc info /proc/vmallocinfo

Slab info /proc/slabinfo

Zoneinfo /proc/zoneinfo

System log logcat -v time -d):v

Event log logcat -b events -v time -d):v

Radio log logcat -b radio -v time -d):v

Network interfaces netcfg

Network routes /proc/net/route

Arp cache /proc/net/arp

Dump Wi-Fi firmware log su root dhdutil -i eth0 upload /data/local/tmp/

wlan_crash.dump

System properties N/A

Kernel log dmesg

Kernel wakelocks /proc/wakelocks

Kernel cpufreq /sys/devices/system/cpu/cpu0/cpufreq/stats/

time_in_state

(Continued)

Data in the shell 123

bugreport
The final debugging command further builds on the previous commands and

combines the logcat, dumpsys, and dumpstate debug output in a single command,

and displays on screen for the purpose of submitting a bug report. The command is

run as follows:

ahoog@ubuntu:~$ adb bugreport

It starts by running dumpstate. When run against the reference HTC Incredible,

the output was saved into a file and then a line count was performed:

ahoog@ubuntu:~$ adb bugreport > bugreport.log
ahoog@ubuntu:~$ wc -l bugreport.log
42575 bugreport.log

As you can see, the report generated over 42,000 lines of debug rich in

time stamps, app data, and system information. Parsing this data will yield

useful information. However, if the data are processed manually, the task is

daunting.

Table 4.3 Dumpstate Sections (Continued)

Section File or Command

Vold dump vdc dump

Secure containers vdc asec list

Processes ps -p

Processes and threads ps -t -p -p

Librank librank

Binder failed transaction log /proc/binder/failed_transaction_log

Binder transaction log /proc/binder/transaction_log

Binder transactions /proc/binder/transactions

Binder stats /proc/binder/stats

Binder process state sh -c cat /proc/binder/proc/) -p

File systems and free space df

Package settings /data/system/packages.xml: 2011-01-26 09:18:02

Package uid errors /data/system/uiderrors.txt: 2010-11-14 22:52:26

Last kmsg /proc/last_kmsg

Last radio log parse_radio_log /proc/last_radio_log

Last panic console /data/dontpanic/apanic_console

Last panic threads /data/dontpanic/apanic_threads

Blocked process wait

channels

N/A

Backlights N/A

Dumpsys dumpsys

124 CHAPTER 4 Android file systems and data structures

TYPE OF MEMORY
As discussed in Chapter 2, Android devices have two primary types of memory,

volatile (RAM) and nonvolatile (NAND flash) memory. Each provides a different

insight into the device’s data.

RAM

RAM is used by the system to load, execute, and manipulate key parts of the

operating system, applications, or data, and is not saved on reboot. Like traditional

computers, RAM can contain very important information which applications use to

process data. Some examples include the following:

� Passwords

� Encryption keys

� Usernames

� App data

� Data from system processes and services

Recently, solutions for examining Android memory have emerged. One tech-

nique was documented by security researcher Thomas Cannon on his blog, which we

will step through in detail (Android reverse engineering, n.d.).

Android provides a mechanism for dumping an application’s memory to a file by

sending the app a special signal (SIGUSR1). To send the signal, you need an app’s

PID, which you can find with the ps command:

ahoog@ubuntu:~$ adb shell ps
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1 0 348 248 ffffffff 00000000 S /init
root 2 0 0 0 ffffffff 00000000 S kthreadd
root 3 2 0 0 ffffffff 00000000 S ksoftirqd/0
root 28 2 0 0 ffffffff 00000000 S crypto/0
root 39 2 0 0 ffffffff 00000000 S panel_on/0
keystore 72 61 1732 420 ffffffff 00000000 S /system/bin/keystore
shell 76 61 3412 196 ffffffff 00000000 S /sbin/adbd
system 97 68 288408 50100 ffffffff 00000000 S system_server
app_96 193 68 162284 28356 ffffffff 00000000 S com.swype.android.inputmethod
radio 199 68 181376 33452 ffffffff 00000000 S com.android.phone
9997 429 68 187716 34756 ffffffff 00000000 S com.htc.android.mail
app_24 568 68 187796 31064 ffffffff afd0ebd8 S com.google.android.gm
9997 732 68 161816 24492 ffffffff 00000000 S
com.htc.android.mail:directpush
app_103 756 68 150480 23036 ffffffff 00000000 S com.dropbox.android
app_43 1020 68 176632 29472 ffffffff 00000000 S com.google.android.apps.maps
app_43 1132 68 161984 27744 ffffffff 00000000 S
com.google.android.apps.maps:BackgroundFriendService
app_42 1294 68 160680 32672 ffffffff 00000000 S com.facebook.katana
app_4 1355 68 148900 23768 ffffffff 00000000 S com.htc.WeatherWallpaper
shell 1938 76 744 328 c0064900 afd0e88c S /system/bin/sh
shell 1939 1938 892 340 00000000 afd0d97c R ps

The ps command lists all system and app processes as well as the parent process

id, memory information, and the name. Since a typical device has many running

processes, the above listing only displays a portion of the output.

Type of memory 125

Next, we need to run an interactive shell on the device with root privileges and

set /data/misc with sufficient permissions to write and then read the memory

dump:

ahoog@ubuntu:~$ adb shell
$ su
chmod 777 /data/misc

WARNING

Changing folder permissions
The chmod command changes the permissions of the /data/misc folder granting read,

write, and execute access to all user accounts on the system. This change is necessary for

the successful memory dump. However, this is a system change overtly made by the

forensic analyst. If such analysis is warranted, the change should be noted in your report

and ideally the folder permissions should be restored to their default setting after the

memory dump.

From here, we can send the signal needed to dump memory and display the

contents of the directory:

kill -10 1294
ls -l
drwxrwx--- dhcp dhcp 2011-01-17 13:18 dhcp
drwxrwx--- system system 1980-01-06 11:40 vpn
drwxrwx--- system system 1980-01-06 11:40 bluetooth
drwx------ system system 1980-01-06 11:40 systemkeys
drwxrwxrwx system system 1980-01-06 11:41 lockscreen
-rw-r--r-- system system 1 2011-01-29 15:19 screen_lock_status
-rw-rw---- compass compass 442 2011-01-29 19:11 AK8973Prms.txt
drwxrwx--- wifi wifi 2010-08-28 12:06 wifi
drwxrwx--- bluetooth bluetooth 1980-01-06 11:40 bluetoothd
-rw-rw-rw- app_42 app_42 3978523 2011-01-29 19:26 heap-dump-tm1296350817-
 pid1294.hprof
drwx------ keystore keystore 1980-01-06 11:40 keystore

The file heap-dump-tm1296350817-pid1294.hprof contains the memory dump

and we can exit the interactive adb shell and pull the file to your local workstation for

analysis:

ahoog@ubuntu:~/memdump$ adb pull /data/misc/heap-dump-tm1296351804-pid1294.hprof
facebook.hprof
1223 KB/s (3977724 bytes in 3.175s)

From there, use any memory analysis technique you have at your disposal. For

example, you could extract ASCII strings with the command strings:

ahoog@ubuntu:~/memdump$ strings gmail.hprof > gmail.str

and then view the contents of the file. A quick scan of Gmail’s memory provided

information about various encryption libraries the app referenced as well as HTTP

traffic:

126 CHAPTER 4 Android file systems and data structures

POST
/proxy/gmail/a/andrewhoog.com/g/?version=25&clientVersion=25&allowAnyVersion=1
HTTP/1.1
Accept-Encoding: gzip
Content-Length: 29
Host: android.clients.google.com
Connection: Keep-Alive
User-Agent: Android-GmailProvider/156 (inc FRF91); gzip
Cookie: GXAS_SEC=andrewhoog.com=DQAAAJsAAACz6B42ndmh7G5-oRmGrv_78Q-
NxsOMxL256qXfh_Dtkj3llZ0uUir7FbGQOK8PsaCi3iXuR1GsqCtV0rOel-07_-
nrjZ7WADRPDYDJ2lIYvBfnpaZh7mbMjBpJB4iS6Kvgi1gc8wRJCHhb0aaaaaaaa;
S=gmail=K1XaaaaaaaaaamYA3YypJA:gmproxy=-v0_tVIkUaaaaaaaQ;
GXAS_SEC=andrewhoog.com=DQAAAJwAAAAPCeOv_Xha1i8NCBR5d6hp8wrvO79bW1cweQTUulld3sVT4
nPcw4wnUfCZAaaav8Cqp-ktu6l4gW9L2gWCUpuFkjPHGvHiEa4W7P0R-dawWSgk7_wOmaP585kz8Pkoo4
EGYzn9nbQj7X2s5qLfqRwdpRPUMWREKMqazlg6HgAG5Tsp
Cookie2: $Version=1
: application/vnd.google-x-gms-proto; charset=utf-8
Set-Cookie: XAS_SEC=andrewhoog.com=DQAAAJoAAAAUERMYMdgggggggggiwn1MqWkps31wuuOa
KKe-hKekfgyT7apv6wKpPlycE8PS7S0-gRkmJydqPyDPCgjLXBSw7SVj5Lyp;
Path=/proxy/gmail/a/; Secure
Expires: Sun, 30 Jan 2011 00:16:05 GMT
Transfer-Encoding: chunked
Date: Sun, 30 Jan 2011 00:16:05 GMT
Cache-Control: private, max-age=0
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
X-XSS-Protection: 1; mode=block
Server: GSE

The Facebook app, which uses a file format called JSON to encode and transfer

data, yielded the following:

{"messages":{"unread":0,"most_recent":1296345224},"pokes":{"unread":0,
"most_recent":0},"shares":{"unread":0,"most_recent":0},"friend_requests":[],
"group_invites":[],"event_invites":[18191xxxxxxxxx]}!
:)","time":1296238459,"status_id":1802922removed},"pic_square":"http:\/\/profile.
ak.fbcdn.net\/hprofile-ak-snc4\/hs1323.snc4\/161426_506.jpg"},{"uid":removed,
"first_name":"removed","last_name":"removed","name":"removed
removed","status":{"message":"College friends: do you ever reflect on all the
time we spent driving past removed","time":1296194273,"status_id":10574xxxxxxxx},
{"id":7695xxxxx,"type":"user"
,"pic_square":"http:\/\/profile.ak.fbcdn.net\/hprofile-ak-
snc4\/hs712.ash1\/161111_76xxxxxx_q.jpg","name":"removed"}]},{"name":"places",
"fql_result_set":[{"page_id":1
0823xxxxx,"longitude":-
75.130002,"latitude":40.324749,"description":"","checkin_count":62,"name":
"Pocos"}]}

These examples were sanitized prior to inclusion in this book. However, you can

see time stamps, profile updates, friend info, check-ins, and more.

Memory analysis of an Android device can provide deep insight into the device’s

internal structure as well as key information about the device owner. Over time,

expect more solutions in the market to address analysis of Android memory.

NAND Flash
Unlike RAM, NAND flash is nonvolatile and thus the data are preserved even when

the device is without power or rebooted. The NAND flash is used to store not only

system files but also significant portions of the user’s data.

Type of memory 127

NAND flash memory has characteristics very different from the magnetic media

found in modern hard drives. These properties make NAND flash ideal storage for

mobile devices, while at the same time presenting a number of challenges for

programmers and opportunities for forensic analysts.

First, NAND flash has no mechanically moving parts like the spinning platters

and arms found in traditional magnetic hard drives. This improves the durability and

reduces both the size and power consumption of the device. The memory is

distributed as one or multiple chips, which often integrate both NAND flash and

RAM (MCP, see Chapter 2) and are directly integrated into the circuit board of the

device.

NAND flash also has very high density and is cost effective to manufacture. This,

of course, makes it very popular with manufacturers. One side effect of the

manufacturing process and technology in general is that NAND flash literally ships

with bad blocks directly from the manufacturer. The manufacturer will generally test

the memory as part of the manufacturing process and mark bad blocks in a specific

structure on the NAND flash, which is described in their documentation. Software,

which then directly interacts with the NAND flash, can read the manufacturer’s bad

block markers and will often implement a bad block table that can logically track the

bad blocks on the system and remove them from operation. This greatly speeds up

bad block detection and management. So while NAND flash is more physically

durable than spinning platters, its error rate is much higher and must be accounted

for in development and use.

Another significant limitation of NAND flash is that it has a very limited

write/erase life span before the block is no longer capable of storing data. The

life span varies by device and is largely impacted by the amount of data stored

per NAND flash cell, the central building block for storing the 1 or 0 bit(s). If the

cell only stores a single bit (single-level cell or SLC) then the NAND flash is

rated around 100k write/erase cycles for one-year data retention. However,

NAND flash rarely uses SLC as manufacturers (and consumer) demand more data

storage in similarly sized or smaller devices. The technology has moved to

multilevel cells (MLC) where a cell can store two, three, or even more bits per

cell. However, this not only complicates the manufacturing process and slows

down the write/erase cycle, but it also significantly reduces the endurance of the

device. A typical MLC NAND flash storing two bits per cell experiences a

10-fold reduction in endurance (measured as one-year data retention) with a value

of approximately 10k write/erase cycles. As the bit density per cell increases, the

endurance continues to drop, which obviously must be addressed by the controlling

device.

Unlike RAM and NOR flash which is also flash memory and typically used in

systems such as a computer’s Basic Input Output System or BIOS, NAND flash

cannot be accessed randomly. Instead, access to data is achieved via an allocation

unit, called a page or chunk, which is typically between 512 and 2048 bytes, but

generally increases as the overall size of NAND flash increases. Even though NAND

flash does not provide the fast random access like RAM, access time is still quite fast

128 CHAPTER 4 Android file systems and data structures

because it does not require the mechanical platter and arm movements used in

traditional spinning hard drives.

NOTE

Page versus chunk
Throughout this book, we will use the word page and chunk synonymously to refer to the

low-level data allocation unit referenced in NAND flash. While the allocation unit is usually

referred to as a page, the YAFFS2 file system, which is a key component of Android, generally

refers to the allocation unit as a chunk.

The chunks are then organized into a larger logical unit called a block, which is

typically much larger than a traditional 512B hard drive sector. In most Android

devices, the NAND flash blocks contain 64 chunks of data and each chunk is 2048

bytes. Taking 64� 2 KB yields a block size of 128 KB. Of course, this can and will

change over time and is controlled by the NAND flash manufacturers. When a block

is allocated for writing, the chunks inside the block are written sequentially.

Another very important characteristic of NAND flash is the operations available

for reading and writing:

� Read (page)

� Write (page)

� Erase (block)

While individual chunks can be read or written, the erase operation only func-

tions at the block level. When a block is erased, the entire block is written over with

1’s or 0xFF (hex).

NOTE

NAND flash erase operation
The erase operation is the only mechanism by which a 0 can be changed to a 1 in NAND flash.

This point is worth belaboring. In a traditional hard drive, if a value is changed from a 0 to a 1

(or vice versa), the program would simply seek to the value on the hard drive and apply the

appropriate voltage to change and store the new value. However, the fundamental architecture

of NAND flash provides only one mechanism to change a 0 to a 1 and that is via the erase

function that is applied at the block level, not an individual page level. For this reason, a page

can only be written once, and if the value of the page needs to change, the entire block must be

erased and then the page can be written.

Here is a specific example using a single byte for simplicity: Let’s say this

particular byte holds the decimal value 179 and we want to add 39 for a total value of

218. For those unfamiliar with converting numbers between base10, hex (base16),

and binary (base2), the built-in calculator programs in Windows, Mac OS X, and

Ubuntu Linux provide a programmer mode that will perform the conversions. For

the numbers above, we have the conversions between numbering systems shown in

Table 4.4.

Type of memory 129

So the value 179 contains three 0’s and two of them need to change to a 1 to

present our new value of 218. However, NAND flash cannot make that change

without erasing the entire block. So, if this single byte was attempted without the

erase, the result would be 146, not 218. Here is how this happened:

1011 0011 (original byte, 0xB3 or 179 decimal)
1101 1010 (new byte to write, 0xDA or 218 decimal)

1001 0010 (resulting byte, 0x92 or 146 decimal)

As the byte did not contain all 1’s (0xFF), the only portions of the write cycle that

succeeded were 1’s either remaining a 1 or changing to a 0. Anytime the write

function encountered a 0 and was requested to change to a 1, it would fail and simply

retain the 0 value. The resulting byte was 0x92 or 146 base10dclearly not the value

intended. Another way to describe the write function is that it only changes the

charged 1 values to a 0 where requested, the equivalent of the “logical and” of the

two values.

In summary, a chunk can only be written once, and if it needs to be re-written, the

entire block must first be erased.

As you can tell, NAND flash imposes various restrictions and limitations and

thus developers and file systems must be flash aware to effectively work within the

constraints. Unlike traditional hard drives that ship with firmware to manage the

device (including bad block), the NAND flash used in Android devices does not ship

with a controller. All management of the memory must be implemented in software

interfacing with the NAND flash. Two important techniques deployed are error-

correcting code (ECC) and wear-leveling. Both have significant implications for

forensics and data recovery.

First, ECC is a technique where an algorithm is used to detect data errors on read

or write operations and correct some errors on the fly. Since NAND flash degrades

over time through usage, the system must be able to detect when a page or block is

going bad and recover the data stored there. After a number of errors or failed

operations is exceeded (typically three failed operations), the page or block will be

marked bad and added to the bad block table.

The second important algorithm used to effectively manage NAND flash on

Android is the wear-leveling code that spreads the writing of data across the entire

NAND flash to avoid overutilization of a single area, thus wearing those blocks out

more quickly.

Many hardware devices that use NAND flash, such as removable USB thumb

drivers and solid state drives (SSD), have controller logic bundled with the device,

Table 4.4 Decimal, Hex, and Binary Representation of Integers

Decimal (base10) Hex (base16) Binary (base2)

179 0xB3 1011 0011

218 0xDA 1101 1010

130 CHAPTER 4 Android file systems and data structures

which provides the functions described above including bad block management,

wear-leveling, and error-correcting code. However, Android devices were designed

to integrate the NAND flash components directly, and thus a software management

layer was needed to provide these important functions. The layer selected to manage

the NAND flash was the Memory Technology Device (MTD) system.

MTD was developed to address the need of NAND flash and similar devices due

to their unique characteristics. Prior to MTD, Linux supported primarily character

devices and block devices. Neither device type addresses the unique properties of the

newly developed memory devices. Additionally, while NAND flash was not strictly

a block device (like traditional hard drives), exposure of block device characteristics

to developers aided in development and support. By leveraging MTD, Android now

had the necessary Flash Transition Layer (FTL) needed to effectively interact with

the NAND flash. By taking this approach, Android did not lock manufacturers into

using a small subset of NAND flash providers and associated controllers. Instead,

they are free to use any NAND flash available and then “simply” integrate with

MTD, which supports a wide range of NAND flash.

In Android, the MTD provides not only the block interface to the NAND flash

but also the ECC, wear-leveling, and other critical functions. The ECC and other

chunk metadata are stored in a reserved area called the out of band (OOB) or spare

area. The OOB is located directly after each chunk on the NAND flash. While the

chunk, block, and OOB layout is configurable, most Android devices to date have

a 128 KB block consisting of 64 2,048 byte (2k) chunks each with a 64 byte OOB as

shown in Fig. 4.1.

The OOB not only stores information managed by MTD, but can also store

metadata critical to the file system, provided the file system is NAND flash aware.

While the system presents the block as 128 KB, when you add in the 64 OOB, each

64 bytes in size, there is an additional 4096 bytes (4 KB) bringing the total bytes

used on the NAND flash to 132 KB.

On Android devices, you can determine the MTD partitions by viewing the /proc/

mtd file. On our reference HTC Incredible, we have the following:

FIGURE 4.1

Block (128 KB ¼ 64 � 2k chunks þ OOB).

Type of memory 131

mailto:Image of Figure 4.1|tif

ahoog@ubuntu:~$ adb shell cat /proc/mtd
dev: size erasesize name
mtd0: 000a0000 00020000 "misc"
mtd1: 00480000 00020000 "recovery"
mtd2: 00300000 00020000 "boot"
mtd3: 0f800000 00020000 "system"
mtd4: 000a0000 00020000 "local"
mtd5: 02800000 00020000 "cache"
mtd6: 09500000 00020000 "datadata"

There are seven MTD partitions and the following section will examine where

they are mounted, and provide a high-level overview of the directories and files

found. In the previous listing, the size and erasesize are both hex values that provide

important MTD/NAND flash properties. The erasesize specifies the size of each

block which is 0x20000 or 131,072 bytes or 128 KB (128� 1024) in decimal. This

is consistent with the block figure, specifically 64 pages, each 2048 (2 KB) in size.

The size column specifies the overall size of that partition. So, in this instance, we

have the MTD partitions as shown in Table 4.5.

The values from Table 4.5 can also be verified using the df (disk free) command

that provides a listing of mounted file systems and their total, used, and available

space. Following is the df data for /system:

ahoog@ubuntu:~$ adb shell df /system
/system: 253952K total, 243724K used, 10228K available (block size 4096)

As you can tell, the size found in /proc/mtd is consistent in both our conversions

and as displayed by the df command.

Now that we have established a fundamental understanding of NAND flash and

MTD for Android, we will examine the various file systems used by Android.

FILE SYSTEMS
Like most Linux systems, there are several file systems in use on Android, many of

which are used to boot and run the system. While we will touch on several of the file

systems, the primary focus is on partitions where user data are stored, in particular

the EXT, FAT32, and YAFFS2 file systems.

Table 4.5 MTD Partitions Size Conversions

Size (hex) Name Size (decimal, bytes) Size (KB) Size (MB)

0xa0000 misc 655,360 640 0.6

0x480000 recovery 4,718,592 4608 4.5

0x300000 boot 3,145,728 3072 3.0

0xf800000 system 260,046,848 253952 248.0

0xa0000 local 655,360 640 0.6

0x2800000 cache 41,943,040 40960 40.0

0x9500000 datadata 156,237,824 152576 149.0

132 CHAPTER 4 Android file systems and data structures

mailto:Image of Figure 4.1|tif

To determine what file systems a Linux kernel (and thus Android) supports, you

can examine the contents of the file /proc/filesytem. On our reference HTC

Incredible, it contains the following:

ahoog@ubuntu:~$ adb shell cat /proc/filesystems
nodev sysfs
nodev rootfs
nodev bdev
nodev proc
nodev cgroup
nodev tmpfs
nodev debugfs
nodev sockfs
nodev pipefs
nodev anon_inodefs
nodev inotifyfs
nodev devpts
 ext3
 ext2
nodev ramfs
 vfat
 yaffs
 yaffs2

Of the 18 file systems supported by the HTC Incredible, only five are backed by

a physical device such as NAND flash or the SD card. The remaining file systems

have the “nodev” property, which means that they are essentially virtual file systems

that are not written to any physical device. Furthermore, only six of the nodev file

systems are actually used on the device:

1. rootfs

2. tmpfs

3. cgroup

4. proc

5. sysfs

6. devpts

And three of the device-backed file systems are used:

1. ext3

2. yaffs2

3. vfat

The following sections provide a brief overview of most file systems, and an in-

depth analysis of YAFFS2, where significant user data are stored.

rootfs, devpts, sysfs, and cgroup File Systems

Many file systems in Linux are used to boot, operate, or manage the system and

often will not contain information useful in a forensic investigation. However,

security engineers and researchers may closely examine these file systems, and the

kernel’s inner-workings, in an attempt to identify security holes and other

File systems 133

mailto:Image of Figure 4.1|tif

weaknesses. We will quickly highlight four of the more infrastructure-related file

systems found in Android.

First, rootfs is where the kernel mounts the root file system (the top of the

directory tree, noted with a forward slash) at startup. In order for the kernel to

complete the boot process, it needs access to core files and libraries, thus the need to

mount the root file system. As the kernel finalizes the boot process, subsequent file

systems are mounted as directories off the root file system. For example (and more

on this later in the chapter), the root file system would be mounted at / and contain

key files. Then a more complete system directory would be mounted at /system. You

can see the root file system and directories by running the “ls -l” command from

a shell or typing “mount” to see which file systems are mounted and in what

directory of the root file system.

The devpts file system is used to provide simulated terminal sessions on an

Android device, similar to connecting to a traditional Unix server using telnet or ssh.

Each time a virtual terminal connects, a new node under /dev/pts is created. For

example, if you have a single adb shell connection to an Android device, /dev/pts

would show the following:

ahoog@ubuntu:/dev/pts$ adb shell
$ ls -l /dev/pts
crw------- shell shell 136, 0 2011-02-01 10:00 0

However, in the next example, there are two adb shell connections and one

terminal app connection from an app installed on the device:

ahoog@ubuntu:~$ adb shell ls -l /dev/pts
crw------- shell shell 136, 2 2011-02-01 10:02 2
crw------- app_105 app_105 136, 1 2011-02-01 10:02 1
crw------- shell shell 136, 0 2011-02-01 10:00 0

As you can see, the original /dev/pts/0 connection exists. However, two addi-

tional connections are now present and the one from the terminal app is run under the

app’s unique user id (app_105).

Sysfs is another virtual file system that contains configuration and control files

for the device. On the HTC Incredible, the following top-level directories exist:

ahoog@ubuntu:/dev/pts$ adb shell ls -l /sys
drwxr-xr-x root root 2011-02-01 11:06 fs
drwxr-xr-x root root 2011-01-31 15:42 devices
drwxr-xr-x root root 2011-02-01 11:06 dev
drwxr-xr-x root root 2011-02-01 11:06 bus
drwxr-xr-x root root 2011-02-01 10:02 class
drwxr-xr-x root root 2011-02-01 11:06 firmware
drwxr-xr-x root root 2011-02-01 11:06 kernel
drwxr-xr-x root root 2011-01-31 15:42 power
drwxr-xr-x root root 2011-02-01 11:06 board_properties
drwxr-xr-x root root 2011-02-01 11:06 module
drwxr-xr-x root root 2011-02-01 11:06 block
drwxr-xr-x root root 2011-02-01 11:06 android_touch
drwxr-xr-x root root 2011-02-01 11:06 android_camera
drwxr-xr-x root root 2011-02-01 11:06 camera_led_status
drwxr-xr-x root root 2011-02-01 11:06 android_camera_awb_cal

134 CHAPTER 4 Android file systems and data structures

mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif

For curiosity’s sake, you can do an adb pull on /sys to your forensic workstation

as the files can be read by any user. Execute the following:

ahoog@ubuntu:/dev/pts$ adb pull /sys sys
pull: building file list...
<snip>
pull: /sys/camera_led_status/led_hotspot_status -> ./camera_led_status/
 led_hotspot_status
pull: /sys/camera_led_status/led_wimax_status -> ./camera_led_status/
 led_wimax_status
pull: /sys/camera_led_status/led_ril_status -> ./camera_led_status/led_ril_status
pull: /sys/android_camera_awb_cal/awb_cal -> ./android_camera_awb_cal/awb_cal
3370 files pulled. 0 files skipped.
0 KB/s (33334 bytes in 233.611s)

As you can see, a large number of files were pulled, and you can now use the full

suite of Linux tools to examine the data. While the forensic value of this information

requires additional research, it clearly provides low-level information about the

device that can assist in security research. For example, if you wanted to learn more

about the NAND device, you could examine the following directory:

ahoog@ubuntu:~/sysfs$ ls -l ./module/msm_nand/parameters/
total 12
-rw-r--r-- 1 ahoog ahoog 123 2011-02-01 09:11 info
-rw-r--r-- 1 ahoog ahoog 5 2011-02-01 09:11 pagesize
-rw-r--r-- 1 ahoog ahoog 8 2011-02-01 09:11 vendor

And then each file:

ahoog@ubuntu:~/sysfs$ cat ./module/msm_nand/parameters/vendor
Samsung

ahoog@ubuntu:~/sysfs$ cat ./module/msm_nand/parameters/info
<< NAND INFO >>
flash id =5500BCEC
vendor =Samsung
width =16 bits
size =512 MB
block count =4096
page count =64

ahoog@ubuntu:~/sysfs$ cat ./module/msm_nand/parameters/pagesize
2048

Understanding the NAND device in detail is clearly an important step in forensic

and security analysis. With nearly 3000 files, there is considerable data to examine.

Here is a quick way to look at the file names, paths, and sizes that will allow you to

then easily examine relevant files (try running two terminal sessions and listing the

files in one terminal and use copy/paste to “cat” the file contents in the other terminal):

ahoog@ubuntu:~$ find sysfs -type f -ls | less
933783 4 -rw-r--r-- 1 ahoog ahoog 91 Feb 1 09:11
sysfs/board_properties/virtualkeys.atmel-touchscreen
933855 4 -rw-r--r-- 1 ahoog ahoog 2 Feb 1 09:11
sysfs/android_camera/node
933857 4 -rw-r--r-- 1 ahoog ahoog 22 Feb 1 09:11
sysfs/android_camera/sensor
933856 4 -rw-r--r-- 1 ahoog ahoog 2 Feb 1 09:11
sysfs/android_camera/cam_mode
933863 4 -rw-r--r-- 1 ahoog ahoog 32 Feb 1 09:11

File systems 135

mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif

sysfs/android_camera_awb_cal/awb_cal
933782 4 -rw-r--r-- 1 ahoog ahoog 2 Feb 1 09:11
sysfs/power/pm_trace
933779 4 -rw-r--r-- 1 ahoog ahoog 5 Feb 1 09:10
sysfs/power/wait_for_fb_wake
933781 4 -rw-r--r-- 1 ahoog ahoog 2 Feb 1 09:11
sysfs/power/pm_trace_mask
<snip>

TIP

Additional sysfs analysis
Beyond manually examining the sysfs file system, there are detailed resources on the Internet

which provide additional background. One such resource is a paper by Patrick Mochel

providing a helpful background (The sysfs filesystem, n.d.).

The final virtual file system is called cgroups and is used to track and aggregate

tasks in the Linux file system. On the HTC Incredible, two cgroup file systems are

created: one at /dev/cpuctl and the other at /acct. While additional analysis may yield

results, the accounting data generally do not prove useful in forensic analysis.

proc

The proc file system provides detailed information about kernel, processes, and

configuration parameters in a structured manner under the /proc directory. Some of

the files can be examined by the shell user. However, many files prevent access

unless you have root privileges. As before, one method for exploring the proc file

system is to pull the files from the Android device onto your forensic workstation. It

will take some time and could hang on certain files causing an incomplete copy.

ahoog@ubuntu:~$ adb pull /proc proc
pull: building file list...

On the HTC Incredible, the above process hung when trying to copy process 76

and had to be canceled with a Ctrl-C:

pull: /proc/76/task/5959/auxv -> proc/76/task/5959/auxv
failed to copy '/proc/76/task/5959/auxv' to 'proc/76/task/5959/auxv':
Permission denied
pull: /proc/76/task/5959/environ -> proc/76/task/5959/environ
failed to copy '/proc/76/task/5959/environ' to 'proc/76/task/5959/environ':
Permission denied
pull: /proc/76/task/6993/fd/16 -> proc/76/task/6993/fd/16
 ^C

ahoog@ubuntu:~/proc$ du -hs
25M .
ahoog@ubuntu:~/proc$ find . -type f | wc -l
5998

Before canceling, we successfully pulled 25 MB of data and nearly 6000 files. As

with the sysfs examination, you can manually examine the data using the find

command to locate and list files:

136 CHAPTER 4 Android file systems and data structures

mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif

ahoog@ubuntu:~/proc$ find . -type f -ls | less
934618 4 -rw-r--r-- 1 ahoog ahoog 93 Feb 1 09:48 ./cpu/alignment
413065 4 -rw-r--r-- 1 ahoog ahoog 8 Feb 1 09:50 ./25/wchan
413062 4 -rw-r--r-- 1 ahoog ahoog 2 Feb 1 09:50 ./25/oom_score
413063 4 -rw-r--r-- 1 ahoog ahoog 20 Feb 1 09:50 ./25/cgroup
413069 0 -rw-r--r-- 1 ahoog ahoog 0 Feb 1 09:51 ./25/maps
566313 4 -rw-r--r-- 1 ahoog ahoog 85 Feb 1 09:50 ./25/net/sockstat6
566315 4 -rw-r--r-- 1 ahoog ahoog 108 Feb 1 09:50 ./25/net/if_inet6
<snip>

Alternatively, you can examine some files in /proc directly from the adb shell as

follows:

ahoog@ubuntu:~$ adb shell
$ cd /proc
$ cat cpuinfo
Processor : ARMv7 Processor rev 2 (v7l)
BogoMIPS : 162.54
Features : swp half thumb fastmult vfp edsp thumbee neon
CPU implementer : 0x51
CPU architecture: 7
CPU variant : 0x0
CPU part : 0x00f
CPU revision : 2

Hardware : incrediblec
Revision : 0002
Serial : 0000000000000000

Valuable information about the device can be found in the proc file system.

Examiners can audit these files and should start with files in the /proc directory

instead of the subdirectories.

tmpfs

tmpfs is a file system that stores all files in virtual memory backed by RAM and, if

present, the swap or cache file for the device. Most Android devices at this time do

not have swap space. However, some aftermarket firmware enables this feature. The

advantage of tmpfs is that by using RAM, the storage is very fast and also non-

permanent and hence not saved on reboot.

Of course, for forensic examiners, this poses a challenge. If important data are

located on a tmpfs mount point, it must be collected before the device is rebooted or

loses power. It also presents a unique opportunity because the tmpfs is often readable by

the shell user and forensic programs can be copied and executed in tmpfs without

modifying theNANDflash or SD card. Thismay allow an examiner to acquire forensic

data fromanAndroid devicewithoutmodifying theNANDflash or SDcard in anyway.

WARNING

Investigating tmpfs
If your primary interest is in memory analysis of the device, making changes to tmpfs is not

advised unless you first have a forensic copy of the parts of memory you are interested in.

File systems 137

mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif

On the HTC Incredible, the standard installation has four tmpfs mount points:

� /dev

� /mnt/asec

� /app-cache

� /mnt/sdcard/.android_secure

The /dev directory contains device files that allow the kernel to read and write to

attached devices such as NAND flash, SD card, character devices, and more. The

/mnt/asec and /mnt/sdcard/.android_secure directories are a relatively new addition

to Android and allow apps to be stored on the SD card instead of /data/data, which

provides more storage.

Interestingly, the /app-cache is also a new addition and appears to provide

tmpfs space, which apps can use. On the HTC Incredible, the Web Browser (com.

andrew.browser) created a directory in /app-cache and stores cache files from web

browsing.

ahoog@ubuntu:~$ adb shell ls -l / | grep app-cache
drwxrwxrwt root root 2011-01-31 15:42 app-cache

ahoog@ubuntu:~$ adb shell
$ ls -l /app-cache
drwxr-xr-x app_12 app_12 2011-01-31 15:42 com.android.browser

From the first listing, we can see that the app-cache directory has read, write, and

browse permissions set for all users. In addition, the final “t” in the permissions

“rwxrwxrwt” indicates that only root or the owner of the directory can delete or

rename the directory.

The second listing shows the directory’s inside app-cache, which only has

com.android.browser. However, as we dig deeper into the directory, we discover the

directory and files we are most interested in only allow the app itself (com.android.

browser, user id of app_12) or root access to the files.

ahoog@ubuntu:~$ adb shell ls -l /app-cache/com.android.browser/cache
drwxrwx--x app_12 app_12 2011-01-31 15:57 webviewCache

ahoog@ubuntu:~$ adb shell ls -l /app-cache/com.android.browser/cache/webviewCache
opendir failed, Permission denied

As we have root access on the device, here is what the directory contained:

� 1.4 MB of data

� 64 files

� 18 ASCII files (mostly CSS and JavaScript)

� 1 empty file

� 9 GIF files

� 5 HTML files

� 11 JPEG files

� 17 PNG files

� 3 UTF-8 files

138 CHAPTER 4 Android file systems and data structures

mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.1|tif

ahoog@ubuntu:~/app-cache/com.android.browser/cache/webviewCache$ du -hs
1.4M .

ahoog@ubuntu:~/app-cache/com.android.browser/cache/webviewCache$ find . -type f |
wc -l
64

ahoog@ubuntu:~/app-cache/com.android.browser/cache/webviewCache$ find . -type f |
xargs file
./1d15a326: ASCII text, with very long lines
./982785ed: HTML document text
./fe3f9f59: GIF image data, version 89a, 1 x 1
./1cdb9fc0: PNG image, 140 x 44, 8-bit colormap, non-interlaced
./1c32cdf6: JPEG image data, JFIF standard 1.01
./aacce58f: ASCII C program text
./ad01e1f2: PNG image, 100 x 66, 8-bit/color RGB, non-interlaced
./39e4b622: PNG image, 140 x 44, 8-bit colormap, non-interlaced
./fcf0e4eb: PNG image, 64 x 3, 8-bit colormap, non-interlaced
./9244746c: PNG image, 140 x 44, 8-bit colormap, non-interlaced
./13bf2ef2: ASCII C program text, with very long lines
./44e36c36: PNG image, 560 x 370, 8-bit/color RGB, non-interlaced
./ffbedd54: JPEG image data, JFIF standard 1.01
./c780272a: ASCII English text
<snip>

If you browse the webviewCache directory from your Ubuntu workstation, you

can easily preview images and other files (Fig. 4.2).

FIGURE 4.2

Browser webviewCache from Ubuntu workstation.

File systems 139

mailto:Image of Figure 4.1|tif
mailto:Image of Figure 4.2|tif

The /app-cache tmpfs directory contains information that would be important in

a forensic investigation. This underscores the growing need to educate front-line

responders to ensure that devices are properly handled to maximize the forensic

investigation’s effectiveness.

Extended File System (EXT)

The extended file system (EXT) is the de facto file system for Linux developed

specifically for the operating system. As you already know, Linux supports a large

number of file systems. However, the default is EXT. Since the original version of

EXT was developed in 1992, there have been three additional releases: EXT2,

EXT3, and EXT4.

Although EXT has been integral to most laptop, desktop, and server Linux

distributions, it was not found in early Android devices. In 2010, however, EXT

began to show up in devices, and on December 9, 2010, Google announced in their

Android Developer blog that an increasing number of Android devices were going to

move from YAFFS to the EXT (Android developers blog, n.d.). The move from

YAFFS to EXT seems to be driven by several factors that were discussed online

(Way, n.d.), including

� More Android devices are moving from raw NAND flash to regular block device

(eMMC)

� EXT4 is a standard Linux file system that supports full Unix permissions and

semantics

� EXT4 is stable and offers high performance

� YAFFS is single threaded, which would experience bottlenecks on forthcoming

dual-core systems

The first Android device to use EXT4 is the Google Nexus S, and it is expected that

many tablet devices running Android’s Honeycomb release will also use this new file

system. As only one Android device currently uses EXT4, many changes are expected

over time. Currently, the Nexus uses EXT4 in the following mount points:

� System image (read-only, /system)

� Local user data (readewrite, /data/data)

� Cache partitions (readewrite, /cache and possible others)

From a forensics standpoint, EXT4 is simply another file system that examiners

need to understand and forensic tools need to support. Of course, most forensic tools

do not fully (or even nominally) support EXT4 so this presents a bit of a problem.

File carving techniques do work and it is expected that more forensic software will

begin to support the file system over time.

FAT32/VFAT

Android devices often have one or more Microsoft FAT32 partitions, generally on

the SD card and eMMC. The reason for leveraging this venerable file system is not

140 CHAPTER 4 Android file systems and data structures

due to superior design but is due to sheer compatibility with other operating systems.

Microsoft’s FAT32 file system was widely supported in most operating systems

including Mac OS X, all Windows versions (obviously), Linux, and more. This

means that Android data stored on the FAT32 partitions can be easily read, modified,

or even deleted on other file systems.

In Linux, the file system driver for a FAT32 partition is called VFAT, not to be

confused with Microsoft’s earlier Virtual FAT file system that bridged the FAT16 and

FAT32 implementation by adding, among other features, long file name support. On

the HTC Incredible, there are three mount points that use FAT32:

� /mnt/sdcard

� /mnt/secure/asec

� /mnt/emmc

As you may recall from Chapter 3’s section on USB interfaces, when an Android

device is connected to another computer, there is an option to expose the devices’

USB mass storage (UMS) interfaces to enable file sharing. On the HTC Incredible,

both the /mnt/sdcard and /mnt/emmc partitions can be presented to other operating

systems over the USB connection as a UMS device.

The /mnt/secure/asec partition is an encrypted partition on the SD card where

Android devices can store apps. When the ability to run apps from the SD card was

introduced, the security engineers were understandably concerned that app data

could easily be damaged or compromised because file permissions are not main-

tained in the VFAT/FAT32 partitions. As such, the app (.apk file) is encrypted on the

physical device and when in use, it is decrypted and temporarily stored at /mnt/asec

or another location specified by design.

As discussed previously, the removable SD card is mounted at /mnt/sdcard and

generally contains photos, videos, thumbnails, downloaded files, text to speech

temporary files, and Google Maps Navigation data as well as data from many

Android Market applications. The newer /mnt/emmc is a FAT32 partition, not

removable, and resides in storage architected into the device. In the devices

examined thus far, the eMMC is formatted as FAT32, again for interoperability.

YAFFS2

When the first Android device was released, many people were surprised to see

a relatively unknown file system play a key role in the system. YAFFS, which is an

acronym for Yet Another Flash File System, is an open-source file system developed

specifically for NAND flash and is licensed under both the GNU Public License

(GPL) and a commercial license agreement for those who do not wish to follow the

strict GPL guidelines (YAFFS licence FAQs, n.d.). Android devices use the latest

release of YAFFS (YAFFS2) that follows more strict NAND flash guidelines meant

to improve the endurance of the NAND flash while optimized to run on low-memory

mobile or embedded devices.

File systems 141

YAFFS2 was developed by Aleph One Ltd, a company based in New Zealand.

Driven by customer requests, Aleph One began YAFFS design in December 2001

and released the first publicly available source code in May 2002. The primary

developer (or certainly the most visible) is Charles Manning who is described as

“The Embedded Janitor” and has been developing and “mopping up” embedded

systems for 20 years (YAFFS: the NAND-specific flash, n.d.). Charles is quite active

on the YAFFS mailing list and is the de facto expert on YAFFS and YAFFS2.

TIP

Additional YAFFS2 resources
Analysts and engineers interested in the internals of YAFFS2 are encouraged to read the

full documentation (and source code, if that’s your thing) from http://www.yaffs.net/ and sign

up for the mailing list.

YAFFS2 was built specifically for the growing NAND flash devices and has

a number of important features that address the stringent needs of this medium.

YAFFS2 is

� a log-structured file system (which protects data even through unexpected power

outages)

� provides built in wear-leveling and error correction

� capable of handling bad blocks

� fast and has a small footprint in RAM

However, since its usage was limited prior to Android, there are currently no

forensic tools (commercial or open source) that support the file system. This leaves the

forensic analysts with few options except to download the YAFFS2 source code, grab

a forensic image of a partition, open it up in your favorite hex editor, and start digging.

Although some utilities should develop over time, Android’s move to EXT4 may

reduce the motivation for commercial forensic companies to develop such support.

As covered in the NAND flash section, YAFFS2 addressed the memory in blocks

through the MTD subsystem and each block contains a set number of pages (called

chunks in YAFFS documentation and code). When YAFFS2 is ready to write data to

the NAND flash, it passes both the data and metadata structures to the MTD. The

MTD is then responsible for writing (as well as reading) both the data and the

metadata to the NAND flash.

For most Android devices, the MTD subsystem addressed NAND flash in blocks

that are divided into 64 chunks with each chunk containing 2048 bytes (so blocks are

128K) plus a 64-byte out-of-band/spare area (OOB) where various tags and meta-

data are stored. When a block is allocated for writing, it is assigned a sequence

number that starts at 1 and increments with each new block.

All data structures stored in YAFFS2 are referred to as Objects and can be files,

directories, symbolic links, and hard links. Each chunk either stores a yaffs_

ObjectHeader (object metadata) or data for the object. The yaffs_ObjectHeader

tracks various information including the Object type, the parent object, a checksum

142 CHAPTER 4 Android file systems and data structures

http://www.yaffs.net/

of the name to speed up searching, the object name, permissions and ownership,

MAC information, and the size of the object if it is a file.

In the 64-byte OOB/spare area, YAFFS2 not only stores critical information

about the chunk but also shares the area with the MTD subsystem. The critical

YAFFS2 tags are as follows:

� 1 byte: block state (0xFF if block is good, any other value for a bad block)

� 4 bytes: 32-bit chunk ID (0 indicates that chunk is storing a yaffs_ObjectHeader,

else data)

� 4 bytes: 32-bit Object ID (similar to traditional Unix inode)

� 2 bytes: number of data blocks in this chunk (all but final chunk will be fully

allocated)

� 4 bytes: sequence number for this block

� 3 bytes: ECC for tags (in Android, handled by MTD)

� 12 bytes: ECC for data (in Android, handled by MTD)

If an object is changed, a new yaffs_ObjectHeader is written to flash because

NAND memory can only be written once before erasing. The old data and headers

still exist but are ignored in the file structure by examining the values of the sequence

number. Using this process complies with the guideline that blocks in NAND flash

can never be re-written (only written once and then erased when no longer needed).

This, of course, can be of enormous benefit to the data-recovery process as modified

or deleted data will still exist on the NAND flash unless the block went through

the garbage collection process used to erase a block and prepare it to accept new

data.

Similarly, when a file is deleted in YAFFS2, the parent directory for the

ObjectHeader is moved to a special, hidden directory called unlinked. The file

remains in this directory until all of the chunks in the file are erased. To achieve this,

the file system tracks the number of chunks in the system for the file. When it reaches

0, the remnants of the file no longer exist. At that point, it will no longer track the

object in the unlinked directory.

While the file system structure can be regenerated completely from the OOB area

and ObjectHeader information, this is not efficientdespecially as the size of NAND

flash memory grows. The structure is thus loaded and maintained in RAM (with

writes to the NAND flash as needed) using a tree-node structure (T-node) to track all

allocated chunks. T-nodes are a fixed 32 bytes and, at their lowest level (level 0),

store an index used to locate the first chunk ID. As the file size grows, additional

levels are added, which consist of eight pointers to other T-nodes.

To regenerate, YAFFS2 reads each chunk in its block allocation order, starting

from the end and working back, and populates the file system structures as T-nodes

in RAM. This requires scanning the entire NANDda time-consuming operation. To

work around this issue, checkpointing was developed for YAFFS2, which prefers the

RAM structure to NAND flash (using 10 blocks) when it is properly unmounted.

A few other key concepts are needed to round out your understanding on

YAFFS2. First, garbage collection is queued up and, if needed, is done each time

File systems 143

a write-to-the-system occurs. If all the chunks in a block are no longer in use, the

block is a candidate for garbage collection. The system is also capable of taking the

“dirtiest” block, copying allocated chunks to new blocks, thus making the block

available for garbage collection. To make the block available again, it is erased by

writing all 1’s (0xFF).

On an Android device, we can find detailed information about the YAFFS2 file

systems by examining the /proc/yaffs files:

ahoog@ubuntu:~$ adb shell cat /proc/yaffs
YAFFS built:Sep 30 2010 18:41:07
Id
Id

Device 0 "system"
startBlock......... 0
endBlock........... 1983
totalBytesPerChunk. 2048
nDataBytesPerChunk. 2048
chunkGroupBits..... 0
chunkGroupSize..... 1
nErasedBlocks...... 10
nReservedBlocks.... 5
blocksInCheckpoint. 3
nTnodesCreated..... 9600
nFreeTnodes........ 62
nObjectsCreated.... 1100
nFreeObjects....... 20
nFreeChunks........ 5690
nPageWrites........ 0
nPageReads......... 551024
nBlockErasures..... 0
nGCCopies.......... 0
garbageCollections. 0
passiveGCs......... 0
nRetriedWrites..... 0
nShortOpCaches..... 10
nRetireBlocks...... 0
eccFixed........... 0
eccUnfixed......... 0
tagsEccFixed....... 0
tagsEccUnfixed..... 0
cacheHits.......... 0
nDeletedFiles...... 0
nUnlinkedFiles..... 460
nBackgroundDeletions 0
useNANDECC......... 1
isYaffs2........... 1
inbandTags......... 0

Device 1 "datadata"
startBlock......... 0
endBlock........... 1191
totalBytesPerChunk. 2048
nDataBytesPerChunk. 2048
chunkGroupBits..... 0
chunkGroupSize..... 1
nErasedBlocks...... 11
nReservedBlocks.... 5
blocksInCheckpoint. 0

144 CHAPTER 4 Android file systems and data structures

nTnodesCreated..... 3700
nFreeTnodes........ 119
nObjectsCreated.... 3000
nFreeObjects....... 84
nFreeChunks........ 50903
nPageWrites........ 2368440
nPageReads......... 1028358
nBlockErasures..... 38623
nGCCopies.......... 323313
garbageCollections. 18186
passiveGCs......... 2454
nRetriedWrites..... 0
nShortOpCaches..... 10
nRetireBlocks...... 0
eccFixed........... 0
eccUnfixed......... 0
tagsEccFixed....... 0
tagsEccUnfixed..... 0
cacheHits.......... 1017819
nDeletedFiles...... 0
nUnlinkedFiles..... 643647
nBackgroundDeletions 0
useNANDECC......... 1
isYaffs2........... 1
inbandTags......... 0

We can see many useful details, for example, on the “datadata” YAFFS2 partition

mounted at /data/data. By examining the /proc/yaffs listing for this partition, we can

learn the following:

1. There are 1192 blocks (0 through 1191) and we know there are 64 chunks (2048

bytes) per block. So, 128K� 1192 ¼ 152,576K, which you can confirm by

running the df command or examining /proc/mtd as we did above.

2. The number of Page Reads, Page Writes, and Block Erasures are shown. This

will provide a general idea of how much the NAND flash is used.

3. One strategy in the garbage collection procedure is to find blocks that are nearly

free, copy the remaining data out, and then mark the block available for

collection. We can see this happening at a high rate (323,313).

4. We can see there are no ECC errors detected.

5. The YAFFS2 metadata reports over 643,000 unlinked files.

6. YAFFS2 is not using software ECC and instead relies on either MTD or the

NAND flash.

If you compare the system partition that does not have the high read and write

usage of the /data/data direction, you will notice significant differences. Inspecting

the /proc/yaffs file may help provide necessary background information when

explaining error-correcting code, fragmented data, and more.

The best way to gain a deeper understanding of YAFFS2 is to simply create,

modify, and examine the file system directly. All of this is possible on the Ubuntu

workstation created for other exercises throughout the book. Since we already have

a Linux virtual machine and the build-essential package installed (which includes

File systems 145

mailto:Image of Figure 4.2|tif

the necessary C compiler and supporting packages), we need to now install the mtd-

utils package:

ahoog@ubuntu:~$ sudo apt-get install mtd-utils

Then, we download the latest YAFFS2 source code:

ahoog@ubuntu:~$ curl http://www.aleph1.co.uk/cgi-bin/viewvc.cgi/
yaffs2.tar.gz?view=tar > yaffs2.tar.gz
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 391k 0 391k 0 0 242k 0 --:--:-- 0:00:01 --:--:-- 277k

And then extract yaffs2.tar.gz and compile so we can use the kernel module:

ahoog@ubuntu:~$ tar xzf yaffs2.tar.gz
ahoog@ubuntu:~$ cd yaffs2/
ahoog@ubuntu:~/yaffs2$ make
make -C /lib/modules/2.6.35-25-generic/build M=/home/ahoog/yaffs2 modules
make[1]: Entering directory `/usr/src/linux-headers-2.6.35-25-generic'
 CC [M] /home/ahoog/yaffs2/yaffs_mtdif.o
<snip>

Next, we are going to load the needed kernel modules to simulate an MTD in

RAM (unless you happen to have some NAND flash lying around which you can

hook up directly) and then mount a YAFFS2 partition.

First, we’ll create a place to mount the file system in our home directory:

ahoog@ubuntu:~$ cd; mkdir -p ~/mnt/yaffs2

Next we need to load a few kernel modules to enable MTD support:

ahoog@ubuntu:~$ sudo modprobe mtd
[sudo] password for ahoog:
ahoog@ubuntu:~$ sudo modprobe mtdblock

Next, we create the simulated NAND flash with the nandsim kernel module:

ahoog@ubuntu:~$ sudo modprobe nandsim first_id_byte=0x20 second_id_byte=0xa2
third_id_byte=0x00 fourth_id_byte=0x15

TIP

Additional information on Linux MTD
The Linux MTD web page provides more details on nandsim. The web site provides deep

background information and support for MTD so please visit it for full details.

Additional details on nandsim from the Linux MTD web site are provided here

for direct reference (NAND FAQ, n.d.):

“NAND simulator (nandsim) is an extremely useful debugging and development

tool which simulates NAND flashes in RAM or a file. To select the simulated flash

type one should specify ID bytes of your flashdthe ones which are returned by the

146 CHAPTER 4 Android file systems and data structures

mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif

“Read ID” command (0x90)dconsult the flash manual. The following are

examples of input parameters:

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0x33d16MiB,

512 bytes page

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0x35d32MiB,

512 bytes page;

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0x36d64MiB,

512 bytes page;

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0x78d128MiB,

512 bytes page;

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0x71d256MiB,

512 bytes page;

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0xa2

third_id_byte¼0x00 fourth_id_byte¼0x15d64MiB, 2048 bytes page;

� modprobe nandsim first_id_byte¼0xec second_id_byte¼0xa1

third_id_byte¼0x00 fourth_id_byte¼0x15d128MiB, 2048 bytes page;

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0xaa

third_id_byte¼0x00 fourth_id_byte¼0x15d256MiB, 2048 bytes page;

� modprobe nandsim first_id_byte¼0x20 second_id_byte¼0xac

third_id_byte¼0x00 fourth_id_byte¼0x15d512MiB, 2048 bytes page;

� modprobe nandsim first_id_byte¼0xec second_id_byte¼0xd3

third_id_byte¼0x51 fourth_id_byte¼0x95d1GiB, 2048 bytes page;”

Now that we have the simulated NAND flash, we can verify size and

partition info by examining the /proc/mtd just as we did directly on the Android

device:

ahoog@ubuntu:~$ cat /proc/mtd
dev: size erasesize name
mtd0: 04000000 00020000 "NAND simulator partition 0"

The system shows that we have one MTD partition (mtd0), and erasesize in

hex of 0x20000 bytes (128 KB), and a total size in hex of 0x4000000

(65,536 KB or 64 MB). Next, we need to load the YAFFS2 kernel module into

memory:

ahoog@ubuntu:~$ sudo insmod ~/yaffs2/yaffs2.ko

Before we mount the YAFFS2 file system, let’s take a look at the uninitialized

simulated NAND flash in a hex editor. If you try to use tools like dd or simply xxd to

view the NAND flash device, you will not see the OOB areas because they are not

exposed to most tools. This is to prevent the intermixed 64 bits of metadata from

confusing programs that do not expect OOB in their file (imagine trying to display

a PDF that has 64 bytes of binary OOB data after each 2k chunk). To read the full

NAND flash including the OOB, we use the program nanddump that is part of the

File systems 147

mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif

previously installed mtd-utils package. This will read the data and return them in

binary. There are several options to consider which can be easily viewed:

ahoog@ubuntu:~$ nanddump --help
Usage: nanddump [OPTIONS] MTD-device
Dumps the contents of a nand mtd partition.

 --help Display this help and exit
 --version Output version information and exit
-a --forcebinary Force printing of binary data to tty
-c --canonicalprint Print canonical Hex+ASCII dump
-f file --file=file Dump to file
-i --ignoreerrors Ignore errors
-l length --length=length Length
-n --noecc Read without error correction
-o --omitoob Omit oob data
-b --omitbad Omit bad blocks from the dump
-p --prettyprint Print nice (hexdump)
-q --quiet Don't display progress and status messages
-s addr --startaddress=addr Start address

For our purposes, we want to use nanddump to extract the full NAND with OOB

and pipe the output to a hex editor (xxd) for viewing:

ahoog@ubuntu:~$ sudo nanddump -a /dev/mtd0ro | xxd | less
0000000: ffff ffff ffff ffff ffff ffff ffff ffff
0000010: ffff ffff ffff ffff ffff ffff ffff ffff
0000020: ffff ffff ffff ffff ffff ffff ffff ffff
0000030: ffff ffff ffff ffff ffff ffff ffff ffff
0000040: ffff ffff ffff ffff ffff ffff ffff ffff
0000050: ffff ffff ffff ffff ffff ffff ffff ffff
0000060: ffff ffff ffff ffff ffff ffff ffff ffff
0000070: ffff ffff ffff ffff ffff ffff ffff ffff
0000080: ffff ffff ffff ffff ffff ffff ffff ffff
<snip>

Notice that the simulated NAND flash contains the expected 0xFF values that

a blank or erased NAND flash should have. The above command will allow you to

examine how the raw NAND flash is modified when we initialize and subsequently

modify the file system.

So, finally, we are ready to mount a YAFFS2 file system:

ahoog@ubuntu:~$ sudo mount -t yaffs2 /dev/mtdblock0 ~/mnt/yaffs2/

You can verify the file system is mounted and accessible:

ahoog@ubuntu:~$ sudo mount -t yaffs2 /dev/mtdblock0 ~/mnt/yaffs2/
ahoog@ubuntu:~$ mount | grep yaffs2
/dev/mtdblock0 on /home/ahoog/mnt/yaffs2 type yaffs2 (rw)

ahoog@ubuntu:~$ ls -la ~/mnt/yaffs2/
total 8
drwxr-xr-x 1 root root 2048 2011-02-03 11:37 .
drwxr-xr-x 3 ahoog ahoog 4096 2011-02-03 07:21 ..
drwx------ 1 root root 2048 2011-02-03 11:37 lost+found

So, we can see a YAFFS2 file system is mounted with read/write permissions at

~/mnt/yaffs2. Even though we have not created any files, the directory contains

a lostþfound virtual directory where files and directories whose parent directory

148 CHAPTER 4 Android file systems and data structures

mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif

cannot be determined are stored. If you use the xxd hex editor again to examine the

simulated NAND flash device, it will still contain 0xFF. However, if you write

a single file with the following command:

ahoog@ubuntu:~$ nano -w ~/mnt/yaffs2/book.txt

and put the contents “Android Forensics and Mobile Security” in the file, then when

we examine the raw NAND flash, we can clearly see the YAFFS2 structures

including the ObjectHeaders, Objects, and file contents. Here’s a portion of the hex

content using nanddump and a slightly modified xxd command by adding the -a

option that will skip 0x00 rows:

ahoog@ubuntu:~$ sudo nanddump -a /dev/mtd0ro | xxd -a | less
0000000: 0100 0000 0100 0000 ffff 626f 6f6b 2e74 book.t
0000010: 7874 0000 0000 0000 0000 0000 0000 0000 xt..............
0000020: 0000 0000 0000 0000 0000 0000 0000 0000
*
00007e0: ffff ffff ffff ffff ffff ffff ffff ffff
00007f0: ffff ffff ffff ffff ffff ffff ffff ffff
0000800: ffff 0110 0000 0101 0010 0100 0080 0000
0000810: 0000 2aaa aaaa 0400 0000 fbff ffff ffff ..*.............
0000820: ffff ffff ffff ffff fff0 cfaa 5567 ffff Ug..
0000830: ffff ffff ffff ffff ffff ffff ffff ffff
0000840: 416e 6472 6f69 6420 466f 7265 6e73 6963 Android Forensic
0000850: 7320 616e 6420 4d6f 6269 6c65 2053 6563 s and Mobile Sec
0000860: 7572 6974 790a 0a00 0000 0000 0000 0000 urity...........
0000870: 0000 0000 0000 0000 0000 0000 0000 0000
*
0001040: ffff 0110 0000 0101 0000 0100 0000 2700 '.
0001050: 0000 1900 0000 0800 0000 f7ff ffff ffff
0001060: ffff ffff ffff ffff aa66 5bff ffff ffff f[.....
0001070: ffff ffff ffff ffff ffff ffff ffff ffff
0001080: 0100 0000 0100 0000 ffff 626f 6f6b 2e74 book.t
0001090: 7874 0000 0000 0000 0000 0000 0000 0000 xt..............
00010a0: 0000 0000 0000 0000 0000 0000 0000 0000

Beginning at offset 0x0000000, we can see the blank ObjectHeader where we

can easily see the file name in ASCII (book.txt). Beginning at 0x0000800 through

0x000083F, we can see the OOB data that is stored by YAFFS2 and then MTD as

packed binary data and must be decided. The actual contents of the file are written to

the NAND flash at 0x0000840. We see another OOB from 0x0001040 through

0x000107F and then the ObjectHeader is written to the NAND flash again at

0x0001080 because the original ObjectHeader represented the blank file. Once we

added the content and saved the file, the data was written to the NAND flash and

a new ObjectHeader was written to the NAND flash. The new ObjectHeader reflects

the new metadata about the Object including what chunks hold the data, MAC

(modified, accessed, changed) data, and more.

A key point to understand is that YAFFS2 could not simply update the first

ObjectHeader with this information because it would first have to erase that entire

block. So instead it writes a new ObjectHeader, generates a high sequence number

for that header which makes it the most up-to-date ObjectHeader for the file. As you

can imagine, the old ObjectHeader and data remain on the NAND flash unless they

go through garbage collection and thus provide a great opportunity to recover file

metadata and contents using forensic techniques.

File systems 149

mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif

YAFFS Example
In this final section about YAFFS2, a fictitious scenario is presented to illustrate how

ObjectHeaders and Objects are written to the NAND flash. The example was pre-

sented by Charles Manning in his “How Yaffs Works” (How YAFFS works, n.d.).

Anyone interested in the internals of YAFFS is encouraged to print, read, or re-read

this document. In the example, we use a NAND flash which, for simplicity, has four

chunks per block and is erased (0xFF). After each change is described, a table will

show the contents of the NAND flash.

First, we create an empty file on the NAND flash as shown in Table 4.6.

The ObjectHeader points to an empty file. Next, we write three chunks of data to

the file, as shown in Table 4.7.

So far, this may seem straightforward. The object is now taking up the entire first

block.

NOTE

Fictitious NAND flash
Remember, our fictitious NAND flash has four chucks per block, not the typical 64 chunks we

see in commercial NAND flash.

Table 4.6 Blank File Created

Block Chunk ObjectId ChunkId

Status (Live or

Shrink/Delete) Comment

0 0 500 0 Live ObjectHeader for

blank file, length

of 0

Table 4.7 Write Three Chunks of Data

Block Chunk ObjectId ChunkId

Status (Live or

Shrink/Delete) Comment

0 0 500 0 Live ObjectHeader for

blank file, length

of 0

0 1 500 1 Live First chunk of

data

0 2 500 2 Live Second chunk of

data

0 3 500 3 Live Third chunk of

data

150 CHAPTER 4 Android file systems and data structures

Next, we are going to save the file that will cause a new ObjectHeader to be

written to the NAND flash as shown in Table 4.8.

The key point to understand here is that YAFFS2 is unable to go back and update

the original ObjectHeader with the new size, chunks of data, and others. Instead, it

must write a new ObjectHeader that will contain the metadata needed for the

updated file. In YAFFS2, the new ObjectHeader is given a larger sequence number

and thus it becomes the current ObjectHeader and YAFFS2 simply ignores the

previous one (however, it remains on disk).

Next, the file will be opened with read/write access and the first chunk of data

will be given a new value. Finally, the file is saved and closed, which results in

additional data written to the NAND flash, as shown in Table 4.9.

Again, since we cannot simply change the original first chunk of data in the file,

a new data chunk is written to the NAND flash and the previous data chunk is

obsolete. This is achieved as yet another new ObjectHeader is written to the NAND

flash, which points to the new first chunk of data for the file. Next, we are going to

truncate the file to a zero length file and the resulting NAND flash changes are shown

in Table 4.10.

As the file was truncated, none of the chunks in Block 0 are in use any longer.

This makes the block available for garbage collection, which will occur on the next

write cycle. This is referred to as lazy garbage collection because it uses an existing

write cycle to perform any necessary garbage collection. As before, a new Object-

Header is written to the NAND flash to account for the truncated file.

Finally, we rename the file and the NAND flash results are shown in Table 4.11.

During this cycle, Block 0 was garbage collected and is now available for writing

data. As the file was renamed, a new ObjectHeader was written to the NAND flash.

With all chunks in Block 1 now obsolete, they are available for garbage collection.

However, bear in mind that due to the limited endurance of NAND flash, write/erase

cycles are avoided.

Table 4.8 Save the File’s New ObjectHeader

Block Chunk ObjectId ChunkId

Status (Live

or Shrink/

Delete) Comment

0 0 500 0 Shrink/delete Obsoleted

ObjectHeader.

Originally for blank

file, length of 0

0 1 500 1 Live First chunk of data

0 2 500 2 Live Second chunk of

data

0 3 500 3 Live Third chunk of data

1 0 500 0 Live New ObjectHeader,

file length 3.

File systems 151

Table 4.9 Save the New Data and ObjectHeader

Block Chunk ObjectId ChunkId

Status (Live

or Shrink/

Delete) Comment

0 0 500 0 Shrink/delete Obsoleted

ObjectHeader.

Originally for blank

file, length of 0

0 1 500 1 Shrink/delete Obsoleted first chunk

of data

0 2 500 2 Live Second chunk of data

0 3 500 3 Live Third chunk of data

1 0 500 0 Shrink/delete Obsoleted

ObjectHeader, file

length 3

1 1 500 1 Live New first chunk of

data

1 2 500 2 Live New ObjectHeader,

file length 3

Table 4.10 Truncate File and Write New ObjectHeader

Block Chunk ObjectId ChunkId

Status (Live

or Shrink/

Delete) Comment

0 0 500 0 Shrink/delete Obsoleted

ObjectHeader.

Originally for blank

file, length of 0

0 1 500 1 Shrink/delete Obsoleted first chunk

of data

0 2 500 2 Shrink/delete Second chunk of data

0 3 500 3 Shrink/delete Third chunk of data

1 0 500 0 Shrink/delete Obsoleted

ObjectHeader, file

length 3

1 1 500 1 Shrink/delete New first chunk of

data

1 2 500 2 Shrink/delete New ObjectHeader,

file length 3

1 3 500 3 Live New ObjectHeader,

file length 0

152 CHAPTER 4 Android file systems and data structures

The implications for forensics are that the entire history of ObjectHeader and

Object data chunks, unless garbage collected, would remain on the NAND flash.

With proper software, the NAND flash could be scanned and the entire history of the

file system could essentially be rebuilt. Not only would the timeline contain the date/

time of every edit, but it is possible to recover the actual state of the file. In practice,

the state of the YAFFS2 partitions is not this simple. However, the general principle

remains relevant.

MOUNTED FILE SYSTEMS
We have covered many components of Android’s memory systems in detail. Not

only have we explored RAM and the NAND flash, but we have also examined many

of the file systems in great detail. This background information will assist in your

forensic and security analysis of Android devices. To better understand this more

academic information, we will now explore the mounted file systems found on an

Android device.

Table 4.11 Rename File and Write New ObjectHeader

Block Chunk ObjectId ChunkId

Status (Live

or Shrink/

Delete) Comment

0 0 Erased

0 1 Erased

0 2 Erased

0 3 Erased

1 0 500 0 Shrink/delete Obsoleted

ObjectHeader, file

length 3

1 1 500 1 Shrink/delete New first chunk of

data

1 2 500 2 Shrink/delete New ObjectHeader,

file length 3

1 2 500 2 Shrink/delete New ObjectHeader,

file length 0

2 0 500 0 Live New ObjectHeader,

file renamed, file

length 0

Mounted file systems 153

Mounted File Systems

Let us start with the file systems mounted on the HTC Incredible:

ahoog@ubuntu:~$ adb shell mount
rootfs / rootfs ro,relatime 0 0
tmpfs /dev tmpfs rw,relatime,mode=755 0 0
devpts /dev/pts devpts rw,relatime,mode=600 0 0
proc /proc proc rw,relatime 0 0
sysfs /sys sysfs rw,relatime 0 0
none /acct cgroup rw,relatime,cpuacct 0 0
tmpfs /mnt/asec tmpfs rw,relatime,mode=755,gid=1000 0 0
none /dev/cpuctl cgroup rw,relatime,cpu 0 0
/dev/block/mtdblock3 /system yaffs2 rw,relatime 0 0
/dev/block/mmcblk0p1 /data ext3 rw,nosuid,noatime,nodiratime,
errors=continue,data=writeback 0 0
/dev/block/mtdblock6 /data/data yaffs2 rw,nosuid,nodev,relatime 0 0
/dev/block/mmcblk0p2 /cache ext3
rw,nosuid,nodev,noatime,nodiratime,errors=continue,data=writeback 0 0
tmpfs /app-cache tmpfs rw,relatime,size=8192k 0 0
/dev/block/vold/179:9 /mnt/sdcard vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=0702,
allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0
/dev/block/vold/179:9 /mnt/secure/asec vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=0702,
allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0
tmpfs /mnt/sdcard/.android_secure tmpfs ro,relatime,size=0k,mode=000 0 0
/dev/block/vold/179:3 /mnt/emmc vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=0702,
allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0

When you run the mount command without parameters, it returns the list of

mounted file systems and their options. Table 4.12 is a description of the output

using several entries. However, note that each entry above ends with “0 0” which

is omitted from the table for space reasons. The “0 0” entry determines whether

or not the file system is archived by the dump command and the pass number that

determines the order in which the file system checker (fsck) checks the device/

partition for errors at boot time. On most desktop or server Linux systems, the

root file system has a pass number of 1 so it is checked prior to other file

systems.

The /mnt/sdcard has many options. The options are:

1. rw: mounted to allow read/write

2. dirsync: all updates to directories are done synchronously

3. nosuid: does not allow setuid (which would allow other users to execute

programs using the permission of file owner)

4. nodev: does not interpret any file as a special block device

5. noexec: does not let all files execute from the file system

6. relatime: updates the file access time if older than the modified time

7. uid¼1000: sets the owner of all files to 1000

8. gid¼1015: sets the group of all files to 1015

154 CHAPTER 4 Android file systems and data structures

mailto:Image of Figure 4.2|tif

9. fmask¼0702: sets the umask applied to regular files only (set permissions

---rwxr-x, or user¼none, group¼read/write/execute,other¼read/execute)

10. dmask¼0702: sets the umask applied to directories only (set permissions

--- rwxr-x, or user¼none, group¼read/write/execute,other¼read/execute)

11. allow_utime¼0020: controls the permission check of mtime/atime.

12. codepage¼cp437: sets the codepage for converting to shortname characters on

FAT and VFAT file systems.

13. iocharset¼iso8859-1: character set to use for converting between 8-bit char-

acters and 16-bit Unicode characters. The default is iso8859-1. Long file names

are stored on disk in Unicode format.

14. shortname¼mixed: defines the behavior for creation and display of file names

that fit into 8.3 characters. If a long name for a file exists, it will always be the

preferred display. Mixed displays the short name as is and stores a long name

when the short name is not all upper case.

Table 4.12 Output of Mount Command Overview

Device

Name

Mount

Point

File

System

Type Options Notes

rootfs / rootfs ro,relatime This is the ro (read-only)

root file system mount at /

tmpfs /dev tmpfs rw,relatime,

mode¼755

The device directory is

mounted as tmpfs and has

permissions set to 755

that are read, write, and

execute for root (rwx) and

read/execute for everyone

else

/dev/block/

mtdblock6

/data/

data

yaffs2 rw,nosuid,

nodev,relatime

While the /data directory is

an ext3, the /data/data

where app data is stored is

a YAFFS2 file system. It is

mounted to allow read/

write access, does not

allow setuid (which would

allow other users to

execute programs using

the permission of file

owner), does not interpret

any file as a special block

device, and updates the

file access time if older

than the modified time

/dev/block/

vold/179:9

/mnt/

sdcard

vfat See SD card

numbered list

See SD card

numbered list

Mounted file systems 155

15. utf8: converts 16-bit Unicode characters on CD to UTF-8.

16. errors¼remount-ro: defines the behavior when an error is encountered; in this

case, remounts the file system read-only.

All of the mount command options are explained in the manual page (man 8

mount). However, for most cases, a quick scan will reveal the information an

examiner needs including the mount points, types, and permissions on the file

systems.

The df command will provide information about the free space available on the

mounted file systems:

ahoog@ubuntu:~$ adb shell df
/dev: 211600K total, 0K used, 211600K available (block size 4096)
/mnt/asec: 211600K total, 0K used, 211600K available (block size 4096)
/system: 253952K total, 243724K used, 10228K available (block size 4096)
/data: 765992K total, 129840K used, 636152K available (block size 4096)
/data/data: 152576K total, 52048K used, 100528K available (block size 4096)
/cache: 198337K total, 10790K used, 187547K available (block size 1024)
/app-cache: 8192K total, 7140K used, 1052K available (block size 4096)
/mnt/sdcard: 1955520K total, 245664K used, 1709856K available (block size 32768)
/mnt/secure/asec: Permission denied
/mnt/emmc: 6920512K total, 233152K used, 6687360K available (block size 32768)

As you can see, one of the mount points (/mnt/secure/asec) returned a permission

denied when the shell user tried to determine how much disk space was free.

By looking at the parent directory, we can see that only root has access to the

directory:

ahoog@ubuntu:~$ adb shell ls -l /mnt
d---rwxr-x system sdcard_rw 1969-12-31 18:00 emmc
drwxr-xr-x root system 2011-01-31 15:42 asec
drwx------ root root 2011-01-31 15:42 secure
d---rwxr-x system sdcard_rw 2011-02-01 17:49 sdcard

Interestingly, two of these file systems/directories can be exposed through the

USB mass storage (UMS) option and when that occurs, the permissions on the

directories change. If the UMS option is not enabled, the file systems are fully

accessible to the Android device as you can see for /mnt/emmc and /mnt/sdcard.

However, when UMS is active and the two file systems are available to the

connected workstation, the permissions change:

ahoog@ubuntu:~$ adb shell ls -l /mnt
d--------- system system 2011-01-23 10:08 emmc
drwxr-xr-x root system 2011-01-23 10:08 asec
drwx------ root root 2011-01-23 10:08 secure
d--------- system system 2011-01-23 10:08 sdcard

As you can see, all permissions on /mnt/emmc and /mnt/sdcard are removed and

thus the Android device cannot access /mnt/emmc or /mnt/sdcard from the phone

directly (i.e., it is exclusively shared with the connected workstation).

156 CHAPTER 4 Android file systems and data structures

mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif
mailto:Image of Figure 4.2|tif

SUMMARY

The physical memory, file systems, and data structures present on an Android device

are the fundamental building blocks for data storage. Having a deep understanding

of these structures will not only enable you to understand an Android device but to

also perform your own research and development when presented with new file

systems and data structures.

References
Android developers blog: Saving data safely. (n.d.). Retrieved February 2, 2011, from http://

android-developers.blogspot.com/2010/12/saving-data-safely.html.

Android reverse engineering. (n.d.). thomascannon.net. Retrieved January 29, 2011, from

http://thomascannon.net/projects/android-reversing/.

Data storage. (n.d.). Android Developers. Retrieved March 13, 2011, from http://developer.

android.com/guide/topics/data/data-storage.html#netw.

How YAFFS works: the internals. (n.d.). YAFFS. Retrieved February 4, 2011, from http://

www.yaffs.net/how-yaffs-works-internals.

Nand Faq. (n.d.). Memory technology device (MTD) subsystem for Linux, Retrieved March

13, 2011, from http://www.linux-mtd.infradead.org/faq/nand.html.

The sysfs filesystem. (n.d.), Retrieved February 1, 2011, from http://www.kernel.org/pub/

linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf.

Way, T. (n.d.). Android will be using ext4 starting with Gingerbread. Thoughts by Ted.

Welcome to thunk.org, Retrieved February 2, 2011, from http://thunk.org/tytso/blog/

2010/12/12/android-will-be-using-ext4-starting-with-gingerbread/.

Licence FAQs, Y. A. F. F. S. (n.d.). YAFFS, Retrieved February 4, 2011, from http://www.

yaffs.net/yaffs-licence-faqs.

YAFFS: the NAND-specific flash file systemdIntroductory Article. (n.d.). Retrieved February

2, 2011, from http://www.yaffs.net/yaffs-nand-specific-flash-file-system-introductory-

article.

Mounted file systems 157

http://android-developers.blogspot.com/2010/12/saving-data-safely.html
http://android-developers.blogspot.com/2010/12/saving-data-safely.html
http://thomascannon.net/projects/android-reversing/
http://developer.android.com/guide/topics/data/data-storage.html%23netw
http://developer.android.com/guide/topics/data/data-storage.html%23netw
http://www.yaffs.net/how-yaffs-works-internals
http://www.yaffs.net/how-yaffs-works-internals
http://www.linux-mtd.infradead.org/faq/nand.html
http://www.kernel.org/pub/linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf
http://www.kernel.org/pub/linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf
http://thunk.org/tytso/blog/2010/12/12/android-will-be-using-ext4-starting-with-gingerbread/
http://thunk.org/tytso/blog/2010/12/12/android-will-be-using-ext4-starting-with-gingerbread/
http://www.yaffs.net/yaffs-licence-faqs
http://www.yaffs.net/yaffs-licence-faqs
http://www.yaffs.net/yaffs-nand-specific-flash-file-system-introductory-article
http://www.yaffs.net/yaffs-nand-specific-flash-file-system-introductory-article

Android device, data,
and app security 5
INFORMATION IN THIS CHAPTER

� Data theft targets and attack vectors

� Security considerations

� Individual security strategies

� Corporate security strategies

� App development security strategies

CHAPTER

INTRODUCTION
There is a delicate balance in being both a forensic analyst and a privacy advocate. If

a device were 100% secured, then forensic investigation of the device would fail to

return any information. On the other hand, if a device’s security measures were

completely absent, forensic expertise would hardly be necessary to extract mean-

ingful data from the device.

The primary consumers of mobile forensics are law enforcement and govern-

ment agencies. They use and secure many types of sensitive data on mobile devices,

and they have the mandate and authority to investigate crimes. They rely not only on

digital forensic analysis, but can also exercise their authority through search

warrants and subpoenas and compel most organizations to produce needed infor-

mation such as financial records, e-mail, Internet service provider logs, and more.

Similarly, corporations need to protect their sensitive data, and at times launch

internal investigations to ensure security. While their authority does not reach

beyond their company, in the United States, corporations can exercise wide authority

pertaining to searches on devices they own.

Finally, individuals have the right to access their own data. Whether they exercise

this in the pursuit of civil litigation or for other matters, they have the authority to do

so on devices they own.

In the cases of individuals and corporations, the parties generally have no need

to recover sensitive information such as credit cards, banking information, or

passwords on the device they have authority to investigate. Corporations would not

seek an individual’s credit card data in an internal investigation, and they have the

means to access corporate e-mail systems and change passwords. In the case of

individuals, they already have access to their own financial records, e-mail, and

Android Forensics. DOI: 10.1016/B978-1-59749-651-3.10005-6

Copyright � 2011 Elsevier Inc. All rights reserved.
159

http://dx.doi.org/10.1016/B978-1-59749-651-3.10005-6

other such sensitive data. In the case of law enforcement and government agencies,

they can use their subpoena and search warrant powers to acquire the data they

seek.

So, in the end, the only people likely to benefit from highly sensitive data being

stored insecurely on mobile devices are cyber criminals. In the course of many

individual, corporate, and criminal investigations of mobile devices, we have

encountered highly sensitive personal information that was not central to the case.

However, if cyber criminals had access to that devicedwhether in their physical

possession or through remote exploitsdthe data they could gather would represent

a significant risk to the consumer.

Likewise, corporations are targets for commercial espionage, financial theft,

intellectual property theft, and a wide variety of other attacks. As many corporations

move to employee-owned devices, even more control and oversight of the device is

lost, placing corporate data at great risk.

And finally, law enforcement and government agencies are negatively affected

by mobile security issues. The agencies are comprised of individuals who share the

same risk of data exposure as consumers. Like corporations, the agencies themselves

may be the target of attacks, which seek not only sensitive data that could jeopardize

investigations or embarrass the agency but also attacks with motives as serious as

international espionage. And a challenge unique to law enforcement and govern-

ment agencies is that many, many crimes involving mobile devices must be inves-

tigated, straining already overloaded criminal investigation units and digital forensic

laboratories.

For these reasons, mobile device security is a rising concern for individuals,

corporations, and law enforcement and government agencies.

DATA THEFT TARGETS AND ATTACK VECTORS
At this point anyone still reading is quite aware that smartphones, and Android

devices in particular, contain an enormous amount of information, often blending

both personal and corporate data. Android devices can be a target of data theft as

well as a means by which theft can occur (attack vector). Understanding the

various threats and scenarios will allow security engineers and developers to

design appropriate controls to mitigate risk. While this chapter cannot possibly

provide exhaustive coverage of such a broad topic, specific threats and mitigation

strategies will be covered and should serve as a strong starting point for security

professionals.

Android Devices as a Target

Primary focus of mobile security research, exploits, and articles has been on

smartphones as a target of data theftdand rightfully so. The risks to consumers,

corporations, and agencies are very real, and most security experts agree that

160 CHAPTER 5 Android device, data, and app security

malicious software targeting mobile devices is on the rise and will remain a focus of

cyber criminals.

Mobile devices contain a wealth of personal and corporate data in a highly

concentrated and portable form. Criminals are generally pragmatic and cyber

criminals are no exception. If they can exploit one device that contains not only user

names, passwords, and sensitive data about an individual, but also the same types of

information about their employers, they will clearly target that opportunity.

Furthermore, while the data from one mobile app may not provide sufficient

information for the criminal to achieve their goal, combining the information found

from the numerous installed applications typically yields an alarmingly complete

profile of the owner.

Mobile devices are not only easy to lose and relatively easy to steal, but they

also have a fairly short usage scenario before consumers want the latest model.

Both of these situations result in a large number of smartphones available for

purchase through venues such as eBay and Craigslist, and many of the devices

are not properly wiped leaving personal data intact. Furthermore, malicious code,

malware, and remote exploits increasingly target mobile devices, and history

indicates they will result in significant data theft. The extent of their effectiveness

will only be determined over time; but given the urgent pace of development of

the operating systems (Android in this case), and the rapid proliferation of

mobile apps, it is certainly reasonable to expect that many of these attacks will

succeed.

Data at Rest
Data at rest is a term used to describe data that are stored in nonvolatile memory and

thus are neither located in RAM nor in transit through networks (cellular, data, or

other networks). The term data at rest is often used in laws and regulations and

defines one key state where data must be secured.

Throughout this book, we highlight different examples of data that an Android

device contains. Here, let’s consider two fictitious scenarios: one focusing on

corporate customers and one focusing on an individual.

For the individual, the Android device is used for personal communications,

personal finance, entertainment, and general information surfing. Examining the

phone might recover the following:

� SMS/MMS: All allocated (undeleted) SMS and MMS will be recoverable as well

as much of the unallocated (deleted but still on the NAND flash). The infor-

mation recovered will include not only the messages themselves, but any

attachments including pictures, videos, audio files, phone contacts (.vcf file),

calendar items, and more. There are also many third-party SMS/MMS apps that

may include additional features.

� Call logs: While also available from the wireless carrier, the full call logs are

recoverable. These could include call attempts that failed to make it to the carrier

as well as other metadata that we can correlate, such as location (this can also be

Data theft targets and attack vectors 161

generally estimated based on cell towers) and other activities happening on the

device prior to the call being placed.

� Voice mail: In the case of installed voice-mail applications, such as Verizon’s

visual voice mail, allocated voice-mail messages are usually recoverable as audio

files (.OGG). Some unallocated voice-mail messages may be recoverable as well.

� Financial apps: While they vary widely, most installed financial apps store some

data locally or cache web pages. In some cases, the information recoverable can

include user login, password, account numbers, and transaction details. In our

testing, for example, the Mint.com app stored a user name, PIN for accessing the

local app, and some bank account transaction information.

� Personal e-mail: Most installed e-mail apps store the contents of e-mail messages

in plain text, including e-mail headers (To/From e-mail addresses). In some

cases, the user credentials including user login and password are also recover-

able. The standard Android mail app, for example, when used to connect to

Hotmail via POP3, was found to store the password in plain text.

� Web history: Allocated web history including URLs visited, cookies, and cached

pages are recoverable. Unallocated space may include additional web history

information.

� Google search history: URLs from Google including search terms.

� YouTube: URLs of videos watched.

� Pictures and videos: Photos and videos taken by the user, stored on the device,

related to applications, and others.

� Geo-location: GPS coordinates in pictures, other artifacts.

� Game history and interactions.

In this fictitious situation, a skilled forensic examiner can recover extensive

information about an individual.

In our corporate example, it simply builds on the individual since most devices

blend the individual’s information with their corporate information. Here are some

additional items typically recoverable from a corporate device:

� Corporate e-mail and attachments

� Voice mail and faxes sent via e-mail

� User names, passwords, and domain information

� Wi-Fi access points, information, and passwords

� Calendar items

� Instant Messenger or other communications with employees

� Corporate files stored on the device for convenience

As you can see, if an attacker was looking for an effective way to infiltrate

a corporation, an employee’s device (or better yet, several employees’ devices) can

provide many insights and avenues for an attackdnot to mention recovering

sensitive corporate information directly from the device.

One concrete example that may raise significant alarm with corporate security

managers is how Android’s built-in e-mail application stores credentials for an

162 CHAPTER 5 Android device, data, and app security

http://Mint.com

e-mail account that uses Microsoft’s exchange ActiveSync (EAS) protocol. The

credentials used to authenticate to EAS are a user’s active directory domain user

name and password. Many corporations centralize their authentication, authoriza-

tion, and accounting (AAA) services into an active directory that enables single

sign-on and simplified management. Overall, the simplification leads to more

effective security. In the Android mail application (com.android.mail), the user’s

EAS is stored in plain text in a well-defined location. The database is stored in /data/

data/com.android.email, Here is an overview of the folders and files:

ahoog@ubuntu:~$ tree com.android.email/
com.android.email/
├── cache
│ └── webviewCache
├── databases
│ ├── 1.db_att
│ │ ├── 1
│ │ ├── 2
│ │ └── 3
│ ├── EmailProviderBody.db
│ ├── EmailProvider.db
│ ├── webviewCache.db
│ └── webview.db
├── files
│ └── deviceName
├── lib
└── shared_prefs
 └── AndroidMail.Main.xml

The password is located in the EmailProvider.db in a table called HostAuth in

a column conveniently named password:

ahoog@ubuntu:~$ sqlite3 com.android.email/databases/EmailProvider.db
SQLite version 3.6.22
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .mode line
sqlite> select * from HostAuth;
 _id = 1
 protocol = eas
 address = owa.CorpExchangeServerExample.com
 port = 0
 flags = 5
 login = thisIsTheirUserNameInPlainText
 password = thisIsTheirPasswordInPlainText-Seriously
 domain = NeverHurtsToHaveTheDomainInfoToo
accountKey = 0

In addition to the account’s user name, password, and domain, the full subject and

body of e-mail are stored in the data directory, as well as attachments, preferences, and

other information. All are stored in plain text (the term silver platter comes to mind).

There are two primary techniques attackers use to access data at rest. The first

requires physical access to the device and will use a variety of techniques that are

essentially the same techniques used by forensic examiners and which will be

Data theft targets and attack vectors 163

explored in Chapter 6. While physical access to a device is not necessarily easy to

achieve, we mention plausible scenarios above, including lost or stolen phones as well

as phones that are replaced with newer models but not securely wiped. In addition,

people who travel internationally, especially executives at corporations, may find their

phones are temporarily confiscated and examined by customs officials as they enter

a country. In this scenario, the officials have unfettered physical access to the device.

The other primary techniques attackers use to access data at rest are remote

exploits and malicious software. In these scenarios, the attackers are able to gain

additional privileges by using programmatic and social engineering techniques. The

techniques may include exploiting vulnerabilities found in the Linux kernel and core

Android libraries, phishing attacks, or exploiting vulnerabilities in apps. In addition,

users may inadvertently install apps and grant permissions beyond the access needed,

thereby allowing malicious software access to data at rest. Finally, social engineering

remains a highly effective way to compromise systems, and mobile devices are not

immune from this. Users are accustomed to installing a variety of apps, often knowing

little about the app provider and often trust and freely follow links presented to them in

e-mail and SMS, opening avenues to social engineering-based attacks.

Data in Transit
Data in transit (sometimes called data in motion) is a term used to describe data that

is in transit through networks (cellular, Wi-Fi, or other networks) or is located in

RAM. The term data in transit is often used in laws and regulations and defines

another key state where data must be secured.

In general, most of the information stored on a device (and described above) will,

at some point, have traveled through the network. Beyond the data itself, quite a bit

of information never persisted to the device is transmitted and must be protected.

Some examples include the following:

� Passwords: Many applications do not store passwords on the device and require

the user to authenticate each time the app is opened. The password is therefore

only transmitted, not stored.

� Two-factor authentication

� Password reset security responses

� Data displayed in an application but not saved or cached to nonvolatile storage

(e.g., account numbers and balances)

A good way to demonstrate the data traveling through the network is with an

example. In this case, a computer running BackTrack 4 (a Linux-based penetration

testing suite), was connected to a network hub, which also has a Wi-Fi access point

connected to it. The network interface on the computer is set to promiscuous mode,

which allows the device to see all traffic on the network hub, even if the traffic was

not destined for the interface. The urlsnarf program is run which intercepts the traffic

on the network interface (eth0) and inspects it for URLs. If a URL is found, it is

printed to screen. Bear in mind, all network traffic is intercepted so any unencrypted

data such as user names or passwords could be similarly captured and viewed.

164 CHAPTER 5 Android device, data, and app security

root@bt:~# sudo urlsnarf
urlsnarf: listening on eth0 [tcp port 80 or port 8080 or port 3128]
10.1.10.11 - - [17/Mar/2011:09:26:19 -0500] "GET
http://api.twitter.com/1/statuses/mentions.json?include_entities=true&count=100&
since_id=45865608952295424 HTTP/1.1" - - "-" "TwitterAndroid/2.0.1 (122)
ADR6300/8 (HTC;inc;verizon_wwe;inc;)"
10.1.10.11 - - [17/Mar/2011:09:26:19 -0500] "GET
http://api.twitter.com/1/statuses/retweets_of_me.json?include_entities=true&
count=100&since_id=15855940804812800 HTTP/1.1" - - "-" "TwitterAndroid/2.0.1
(122) ADR6300/8 (HTC;inc;verizon_wwe;inc;)"
10.1.10.11 - - [17/Mar/2011:09:26:20 -0500] "GET
http://api.twitter.com/1/statuses/home_timeline.json?include_entities=true&
count=100&since_id=48383245812895746 HTTP/1.1" - - "-" "TwitterAndroid/2.0.1
(122) ADR6300/8 (HTC;inc;verizon_wwe;inc;)"
10.1.10.11 - - [17/Mar/2011:09:26:20 -0500] "GET
http://api.twitter.com/1/account/rate_limit_status.json HTTP/1.1" - - "-"
"TwitterAndroid/2.0.1 (122) ADR6300/8 (HTC;inc;verizon_wwe;inc;)"
10.1.10.11 - - [17/Mar/2011:09:26:20 -0500] "GET
http://api.twitter.com/1/direct_messages.json HTTP/1.1" - - "-"
"TwitterAndroid/2.0.1 (122) ADR6300/8 (HTC;inc;verizon_wwe;inc;)"
10.1.10.11 - - [17/Mar/2011:09:26:20 -0500] "GET
http://api.twitter.com/1/account/rate_limit_status.json HTTP/1.1" - - "-"
"TwitterAndroid/2.0.1 (122) ADR6300/8 (HTC;inc;verizon_wwe;inc;)"
10.1.10.11 - - [17/Mar/2011:09:26:21 -0500] "GET
http://api.twitter.com/1/direct_messages/sent.json HTTP/1.1" - - "-"
"TwitterAndroid/2.0.1 (122) ADR6300/8 (HTC;inc;verizon_wwe;inc;)"
10.1.10.11 - - [17/Mar/2011:09:27:35 -0500] "GET http://goo.gl/4G7Bx HTTP/1.1"
- - "-" "Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300 Build/FRF91)
AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:51 -0500] "GET http://mrkl.it/ HTTP/1.1"
- - "-" "Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300 Build/FRF91)
AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:51 -0500] "GET http://mrkl.it/
-/media/static/main.css HTTP/1.1" - - "http://mrkl.it/" "Mozilla/5.0 (Linux; U;
Android 2.2; en-us; ADR6300 Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko)
Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:51 -0500] "GET http://mrkl.it/
-/media/static/fancybox/jquery.fancybox-1.3.4.pack.js HTTP/1.1"
- - "http://mrkl.it/" "Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300
Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile
Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:51 -0500] "GET
http://ajax.googleapis.com/ajax/libs/jquery/1.5.1/jquery.min.js HTTP/1.1"
- - "http://mrkl.it/" "Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300
Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile
Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:51 -0500] "GET http://mrkl.it/
-/media/static/fancybox/jquery.fancybox-1.3.4.css HTTP/1.1"
- - "http://mrkl.it/" "Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300
Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile
Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:52 -0500] "GET http://mrkl.it/
-/media/static/misc/screenshot-demo.png HTTP/1.1" - - "http://mrkl.it/"
"Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300 Build/FRF91)
AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:52 -0500] "GET http://mrkl.it/
-/media/static/main.js HTTP/1.1" - - "http://mrkl.it/" "Mozilla/5.0 (Linux; U;
Android 2.2; en-us; ADR6300 Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko)
Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:52 -0500] "GET http://mrkl.it/
-/media/static/sign-in-with-twitter-l.png HTTP/1.1" - - "http://mrkl.it/"
"Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300 Build/FRF91)
AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1"

Data theft targets and attack vectors 165

10.1.10.11 - - [17/Mar/2011:09:28:53 -0500] "GET
http://www.youtube.com/embed/ptq21VOfgfs?rel=0&hd=1 HTTP/1.1"
- - "http://mrkl.it/" "Mozilla/5.0 (Linux; U; Android 2.2; en-us; ADR6300
Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile
Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:53 -0500] "GET http://www.
google-analytics.com/__utm.gif?utmwv=4.8.9&utmn=722592738&utmhn=mrkl.it&
utmcs=UTF-8&utmsr=800x1183&utmsc=32
-bit&utmul=en&utmje=0&utmfl=10.1%20r92&utmdt=Welcome&utmhid=414400362&utmr=-&
utmp=%2F&utmac=UA-21535947
-2&utmcc=__utma%3D15198314.1123929794.1300372147.1300372147.1300372147.1%3B%2B
__utmz%3D15198314.1300372147.1.1.utmcsr%3D(direct)%7Cutmccn%3D(direct)%7Cutmcmd%
3D(none)%3B&utmu=q HTTP/1.1" - - "http://mrkl.it/" "Mozilla/5.0 (Linux; U;
Android 2.2; en-us; ADR6300 Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko)
Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:54 -0500] "GET http://mrkl.it/
-/media/static/favicon.ico HTTP/1.1" - - "http://mrkl.it/" "Mozilla/5.0 (Linux;
U; Android 2.2; en-us; ADR6300 Build/FRF91) AppleWebKit/533.1 (KHTML, like
Gecko) Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:54 -0500] "GET
http://s.ytimg.com/yt/swfbin/watch_as3-vflFkxRDW.swf HTTP/1.1"
- - "http://www.youtube.com/embed/ptq21VOfgfs?rel=0&hd=1" "Mozilla/5.0 (Linux;U;
Android 2.2; en-us; ADR6300 Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko)
Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:57 -0500] "GET
http://i1.ytimg.com/crossdomain.xml HTTP/1.1"
- - "http://s.ytimg.com/yt/swfbin/watch_as3-vflFkxRDW.swf" "Mozilla/5.0 (Linux;
U; Android 2.2; en-us; ADR6300 Build/FRF91) AppleWebKit/533.1 (KHTML, like
Gecko) Version/4.0 Mobile Safari/533.1"
10.1.10.11 - - [17/Mar/2011:09:28:57 -0500] "GET
http://i1.ytimg.com/vi/ptq21VOfgfs/hqdefault.jpg HTTP/1.1"
- - "http://s.ytimg.com/yt/swfbin/watch_as3-vflFkxRDW.swf" "Mozilla/5.0 (Linux;
U; Android 2.2; en-us; ADR6300 Build/FRF91) AppleWebKit/533.1 (KHTML, like
Gecko) Version/4.0 Mobile Safari/533.1"

There are several well-known techniques that attackers use to compromise data

in transit, along with new techniques that security researchers either discover

themselves or practitioners uncover “in the wild.” Some of the well-known tech-

niques include:

� Man-in-the-middle (MITM) attacks

� MITM Secure Sockets Layer (SSL) attacks

� DNS spoofing attacks (including /etc/hosts)

� TMSI overflow baseband attacks

The baseband attacks are a very new technique focusing on the cellular modem

(baseband) firmware. According to Ralf-Philipp Weinmann who presented his

exploit at the DeepSec 2010 conference, the baseband firmware is code written in the

1990s. Until recently, the technologies behind the GSM networks were poorly

understood. However, over time researchers have unraveled the protocols and

hardware and today it is possible to create a rogue GSM station with readily

available hardware powered by open source software. With control over the GSM

network, an attacker can execute a TMSI overflow attack that causes a heap overflow

in the GSM baseband stack of Apple iOS devices prior to 4.2. This attack can lead to

remote code execution on the baseband processor (Ralf-Philipp Weinmann, n.d.).

166 CHAPTER 5 Android device, data, and app security

While the baseband attack is cutting edge security work, the MITM attacks have

been around much longer and are well understood and fairly easily executed.

Generally, these techniques require the attacker to fully control a computer that is

between the mobile device and the ultimate destination the device is trying to

communicate with. In addition, the attacker may control key network services or

devices such as a network switch, Wi-Fi access point, or DNS server, facilitating the

attack.

Once the attacker is able to position their computer between the Android device

and the ultimate destination, they can launch the attack. For this scenario, let us

assume an Android device connects to a Wi-Fi network unaware that a malicious

attacker controls the network. The user begins to surf the Internet and ultimately

decides to check their Twitter account. To keep the example simple, let us assume

the Twitter app they use does not implement SSLdmost do not, although recently

the official app began to move in this direction.

When they launch the app, it will connect to Twitter’s web site, authenticate, and

take the user to their account. Of course, in the interim, the attacker was capturing

the web traffic and now has the Twitter user name and password. If the app did use

SSL, but did not properly verify the SSL certificate, they would be susceptible to an

MITM SSL attack, illustrated in Fig. 5.1.

Although such an attack may only capture one password, most users reuse user

names and passwords for many different sites. Once the attacker has one user name

Attacker SSL Clear Text

Authentic

SSL

Authentic Web site

with SSL Certificate

Internet

Victim
Attacker-controlled

Wi-Fi access point
Attacker

FIGURE 5.1

Man-in-the-middle SSL.

Data theft targets and attack vectors 167

and password, they can begin to research more about the consumer and generally

will be able to find additional systems they can access.

Another very well-known attack leverages interception of HTTP session cookies

to hijack another user’s authenticated session on a web site and begin acting as that

user. Eric Butler’s Firesheep extension for the Firefox browser (http://codebutler.

com/firesheep) demonstrates how easy this type of attack can be. Although using

strong encryption such as WPA on Wi-Fi and other local measures can make things

more difficult, as long as web sites do not require HTTPS end-to-end this type of

attack remains possible.

Android Devices as an Attack Vector

While the press and many security researchers largely focus on attacks directed at

mobile devices, a growing concern is use of the Android device as an attack vector,

particularly in environments where sensitive data are stored. The most common

scenarios are found in corporations with trade secrets, intellectual property, or other

data requiring protection. Corporations often implement sophisticated systems

designed to prevent, or at least detect, the theft of data. These systems are not only

expensive to purchase, but they generally require skilled staff to maintain, monitor,

and then act on the information they provide.

Until recently, most data protection systems focused on securing the perimeter

of the enterprise to keep attackers outside the protected areas. Over time, systems

designed to protect against internal threats were also developed. The most recent

systems delve even deeper into the network and infrastructure in an attempt to

thwart attacks. These systems focus on areas such as data loss prevention (DLP),

network access control (NAC), and network forensics. However, currently

available solutions do not yet fully address the threat presented by mobile

devices.

Smartphones are obviously popular, and most people use them as intended.

Often, they are personally owned and heavily used devices, so asking someone to

forfeit their device is an intrusive request. For these reasons, Android devices and

other smartphones end up in locations which house sensitive information, and yet

no one shows concern. If instead someone brought a digital camera, voice

recording device, camcorder, external hard drive, or their own networking

equipment, it might raise some eyebrows. Of course, an Android device essen-

tially contains all of these features and more in a compact and innocent looking

device.

Data Storage

Perhaps the simplest example of how an Android device can be used to steal

information is to use it as a USB mass storage device. Until recently, smartphones

had very little data storage. However, as NAND flash matured, manufacturers

realized they could cost-effectively create devices that stored many gigabytes of

168 CHAPTER 5 Android device, data, and app security

http://codebutler.com/firesheep
http://codebutler.com/firesheep

data. Android devices today can easily store eight to 16 GB of data on the NAND

flash, and many devices include an external SD card, which can store an additional

16 GB or more.

Recording Devices

Android devices are also well equipped to record nearly anything around them. They

can easily take photographs of sensitive equipment or documents. They can also

record video that captures a path through a building, including the sounds, security

stations, windows, stairwells, and other items of interest along the way. Finally,

Android devices can also passively record audio. All of this can be done without

drawing any attention.

Circumventing Network Controls
Perhaps an even more dangerous feature is the ability of an Android device to

provide a separate network connection for a computer or devices with wireless

capabilities. There are several ways to achieve this. In one scenario, an attacker

(perhaps a disgruntled employee) could connect their Android device to their

workstation. Casual observation may not raise any alarm since many people do this

to charge their phones while at work. However, by installing a small program on

both the Android device and the computer, a new network connection is provided to

the computer. In this case, the traffic routed from the computer and out the Android

device is completely outside the control of the environment. This connection

completely circumvents the firewall, network access control, data loss prevention,

and other security controls in place at the company.

The newest Android devices do away with the USB cables and software pack-

ages needed in the above scenario. Instead, the Android device becomes a fully

functional wireless access point through which the computer can connect. This

scenario just as effectively circumvents the network security controls in place and

can be performed with the device in a briefcase or pocket.

REALLY SNEAKY TECHNIQUES

If anyone believes cyber criminals or other attackers are not intelligent and creative, they are

showing a serious lapse in judgment. So, let’s think outside the box using some of the

techniques described above.

For this scenario, the attacker is an employee who works at a company, which has signif-

icant trade secrets and intellectual property. (The attacker would not necessarily need to work

there; however, it keeps the example simple.) Many of the executives who have access to this

information also have laptops and smartphones. Many of these same executives drink coffee

at a popular cafe, which offers free Wi-Fi. The wireless access point at the coffee shop is

called “indigo” and since they do not want to require a password, the access point is open and

unencrypted. While the executives are drinking, eating, or meeting at the cafe, they connect

their smartphones and laptops to the Wi-Fi.

When they return to the office, they leave the wireless active on their smartphones and

laptops. The disgruntled employee, of course, knows about the cafe’s wireless access point

Data theft targets and attack vectors 169

and decides to enable the access point feature on his Android device. Naturally, he has root

access on his device, so he also installs and runs software that allows him to capture the

network traffic. When one of the executives gets close to his Android device, the smart-

phone or laptop associates with his access point. He is then able to intercept traffic and

either capture sensitive files and communications or perhaps capture credentials he could

then use to access key network resources.

While there are obstacles the attacker would have to overcome to implement this scenario,

it is highly plausible and illustrates the unique risks Android devices present when used as an

attack vector.

SECURITY CONSIDERATIONS
Security, like development, is an art. There might be some who do not agree with

that statement but very few of those individuals are going to read a forensics and

security book. Security is an artistic process in the sense that art is “the products of

human creativity” and “a superior skill that you can learn by study and practice and

observation” (WordNet Search, n.d.). So why is all of this relevant? Successful

security strategies require the right mix and balance of experience, judgment, risk

assessment, creativity, observation, skill, and maybe even a little bit of luck. This

section aims to cover a few broad concepts related to Android and security.

Security Philosophy

Security is nearly always a compromise, weighing the risk of an attack against the

costs (financial or other costs) of mitigating that risk. While in theory an entirely

secure system is possible, in practice it is nearly impossible to achieve, especially

when social engineering attacks are available. The task of securing a system is very

difficult even when the security professional controls access to the device including

physical and remote access.

Mobile devices are even more difficult to secure than traditional systems. Most of

the control that a corporate security engineer would have over a computer system is

not possible on an Android device. First, the device is comprised of hardware and

software assembled and maintained by a large, complex, and diverse group of

participants including the core Android team, software and hardware from the

manufacturer, and software and hardware from the wireless carrier. Furthermore, the

device owner has the ability to install custom apps and even modify the device

significantly if they have sufficient privileges. Finally, the device travels through

many networks, none of which can be fully trusted. Yes, securing mobile devices is

a major challenge.

In spite of these challenges, certain security controls could be engineered into the

device. To summarize an overall strategy and philosophy, the following meme is

useful:

If you secure it, they won’t come.

170 CHAPTER 5 Android device, data, and app security

The conceptdadapted from Universal Studio’s 1989 film “Field of Dreams,” where

a voice is heard encouraging the lead character to build a baseball field on his Iowa

farmdis simple. In themovie, the voice repeatedly says, “If you build it, hewill come”

(Ten, n.d.). Eventually, the lead character does build the field and, in fact, mysterious

guests do show up. But you’ll have to watch the movie for the complete story.

So, how does this apply to mobile security? There is a wide margin between the

ideal cryptographically secure system and a system that stores all information in

plain text in a well-organized and known structure as described in the previous

com.android.email example. Since the mobile device is a risk from many different

vectors, even encrypted data can be compromised. However, providing some level of

obfuscation or encryption will complicate the process required for an attacker to

compromise the data. While this approach is not 100% secure, attackers are prag-

matic and tend to target the easily accessible data.

One argument against this approach is that obfuscation or encryption that can be

compromised provides a false sense of security causing the user to act more care-

lessly with the device in the belief that the security of their data is impenetrable.

Whereas if the data are stored as plain text and the users are aware of the risk, they

will use significant caution with the device.

Ultimately, the individual and corporate consumers of mobile devices will steer

the mobile security ecosystem in the direction they value through their purchasing

decisions. This necessarily depends on education. Consumers must be sufficiently

aware of the data security risks and possible solutions available.

There are a number of potential solutions which, while not providing a crypto-

graphically secure system, do improve the security of the data by increasing the

complexity of a successful attack. The list below illustrates several concepts:

1. Require the user to enter the password the first time an app is run after a reboot,

and only store the password in memory. In this case, the password is not stored on

the device in plain text. However, it is in memory and an attacker with sufficient

privileges on the device could recover the password.

2. Further, secure the concept above by encrypting the password stored in memory

with a key based on time, pseudo-random data, etc. In this fashion, the attacker

now must have root on the device and instead of just dumping the processes’

memory, they must locate the encryption key, the encrypted password, and the

algorithm used to comprise the password.

3. Building further, the memory password could expire in time or the encryption

key used in memory could be changed.

4. If the password is stored on the NAND flash, encrypt it with a pass phrase, which

is entered after the device reboots.

Although none of the ideas provide a completely secure system, the level of

effort and privilege needed to compromise the data are orders of magnitude

higher than compromising sensitive data stored in plain text, and thus deters most

attackers.

Security considerations 171

US Federal Computer Crime Laws and Regulations

There are a number of federal laws in the US that relate to the security of data at rest

and in transit. The goal of this section is to simply enumerate several of the more

relevant laws and provide a brief background on them. In total, more than 40 federal

statues exist which can be used in the prosecution of computer-related crimes

(Country, n.d.). In addition, each State typically has laws and regulations addressing

computer crimes.

At the Federal level, the US Department of Justice (DoJ) divides computer crime

into three distinct areas, two of which have broad application to the types of crimes

involved when compromising a mobile device. The two areas are (Country, n.d.):

1. Crimes that target a computer network or device directly including hacking,

viruses, worms, malware, sniffers, and others.

2. Crimes committed using computer networks or devices such as fraud, identity

theft, corporate espionage, and so on.

The Computer Fraud and Abuse Act (CFAA) focuses on attacks against

government and financial institution computers or computers involved in interstate

or foreign commerce. The Act covers narrow areas, such as accessing computers

without proper authorization to gain data related to national security issues, as well

as more broad sections, such as accessing a computer without proper authorization

in order to commit fraud or to gain something of value. The CFAAwas amended by

the National Information Infrastructure Protection Act to cover new abuses and to

include those intending to commit the crime.

The Electronic Communications Privacy Act (ECPA) is another law covering

computer crimes, which makes it illegal to intercept stored or transmitted electronic

communication without authorization. The ECPA contains several key areas:

� Communication in transit including oral, wire, or electronic communications

(Wiretap).

� Data at rest (Stored Communication Act) that protects data stored on nonvolatile

memory.

� Collecting communication metadata such as phone numbers, IP addresses, and

other data used to route communication (but not the message itself). This is

called the “pen registers and trap and trace devices,” which refers to the actual

devices and techniques used to capture the information.

One final law worth pointing out is the Economic Espionage Act, which passed in

1996 and focused on the theft of trade secrets. Prior to the law’s enactment, it was

difficult to prosecute economic or corporate espionage. However, by defining trade

secrets and requiring the owner of the information to have taken reasonable measures

to protect the secret, itwas nowpossible to criminalize the theft of intellectual property.

This section barely addresses the significant body of legal work which can be

used to prosecute computer crimes. However, it should be clear that there are laws

designed to protect data both in transit and at rest.

172 CHAPTER 5 Android device, data, and app security

In addition to Federal and State laws that criminalize computer crimes, a host

of regulatory bodies govern corporations who operate in industries which

involve sensitive data. Many of the regulations provide not only specific

guidelines and requirements the firms must follow, but also civil and criminal

statues with both financial penalties and, in the most serious cases, may even

involve incarceration. A list of the better known regulations include the

following:

� Payment card industry data security standard (PCI)

� Health Insurance Portability and Accountability Act (HIPAA)

� HITECH Act Enforcement Interim Final Rule (additions to HIPAA)

� Federal Information Security Management Act (FISMA)

� Family Education Rights and Privacy Act of 1974 (FERPA)

� Gramm-Leach-Bliley Financial Services Modernization Act of 1999 (GLBA)

� Sarbanes Oxley (SOX)

Clearly the US Congress recognizes the importance of data and computer

security and provides a wide array of laws, regulations, and other resources to

compel and enforce the security measures necessary to successfully operate the

systems critical to commerce.

Open Source Versus Closed Source

There is active debate discussed often on the Internet about whether open source

software is more secure than closed source software. As with many long-standing

debates, the main proponents of each side are committed to their conclusions and the

debate continues on.

The basic reason behind the belief that open source software is more secure is

that the code can be examined for flaws and quickly fixed. Implicit in this belief are

two assumptions:

1. Developers will perform security code reviews on open source projects.

2. The software’s maintainer will quickly patch the security flaws.

Of course, if both the steps are not taken, then clearly the open source software

will contain security flaws and without the patch, attackers will have precisely the

information they need to exploit the bug. However, if both of these steps are taken,

then the security of the code will evolve with the benefit of many people examining

the code and the resulting patches.

In contrast, the closed source model relies on a company developing secure code,

scouring their code for security flaws, patching the flaws, and then distributing the

updates in a timely manner to subscribers. For anyone tasked with securing desktops

running Microsoft’s Windows platforms, they are well aware of the continuous

stream of patches released on the second Tuesday of each month, which has been

dubbed “Patch Tuesday.” Microsoft also releases patches for serious exploits outside

of the scheduled Patch Tuesdays.

Security considerations 173

In a fairly high profile finding, Microsoft acknowledged (Microsoft Security

Advisory, n.d.) that security researcher Tavis Ormandy discovered a 17-year-old

security flaw in every 32-bit version of Microsoft Windows since 1993 (Windows

NT through Windows 7) (Johnston, n.d.). Ormandy posted the full details of the

exploit to the Full Disclosure mailing list nearly seven months after notifying

Microsoft of the vulnerability on June 12, 2009 ([Full-disclosure] Microsoft, n.d.). It

is noteworthy that the official advisory to Microsoft’s clients only happened after

Ormandy posted the disclosure and after that point, Microsoft acknowledged the

security flaw within one day.

In another recent example, security firm Matta Consulting discovered numerous

critical security flaws in Cisco System’s Unified Videoconferencing platform. The

flaws enable a malicious third party to gain full control of the device, harvest user

passwords, and possibly launch an attack against other parts of the target infra-

structure (Cisco Unified Video, n.d.). Cisco acknowledged the flaws in their advisory

with the hard-coded passwords representing the most alarming flaw:

The Linux shadow password file contains three hard-coded user names and

passwords. The passwords cannot be changed, and the accounts cannot be

deleted. Attackers could leverage these accounts to obtain remote access to

a device by using permitted remote access protocols.

(Cisco Security Advisory, n.d.)

In the end, software development is a creative endeavor which, despite all best

efforts and intention, will likely contain flaws. The overall security of the software or

system is directly related to how quickly the flaws are discovered and resolved.

Although over eight years old (an eternity from a security standpoint), David A.

Wheeler’s “Secure Programming for Linux and Unix HOWTO” provides an

excellent overview of the debate and represents both the sides. He quotes Elias Levy

(also known as Aleph One and moderator of the Bugtraq full disclose list in addition

to CTO and co-founder of SecurityFocus) as saying:

So does all this mean Open Source Software is no better than closed source

software when it comes to security vulnerabilities? No. Open Source Software

certainly does have the potential to be more secure than its closed source

counterpart. But make no mistake, simply being open source is no guarantee of

security.

(Secure Programming, n.d.)

At the end of his HOWTO, Wheeler concludes that open source software can be

more secure if the following happens:

� If the code is first closed source and then opened, it will start as less secure but

over time will improve.

� People must review the code.

� The reviewers and developers must know how to write secure code.

� Once flaws are found, they must be quickly fixed and distributed.

174 CHAPTER 5 Android device, data, and app security

Ultimately, each individual will have to decide if they believe open source or

closed source software is more secure. Since large parts of Android system are

indeed open source, it is likely the software will initially have a number of flaws

discovered, but over time they will be addressed resulting in a more secure system.

Encrypted NAND Flash

The techniques and strategies for secure data in transmission are, generally

speaking, more mature, vetted, and secure than the technologies used to securely

store data at rest. The reason data in transmission are easier to secure is because the

duration of time in which the information must be protected is short and well

defined. After the transmission of data in transit is complete, the keys protecting the

data can be discarded. In contrast, data at rest are nonvolatile and must, at any time,

be accessible to the user. That means that the keys for decryption must be available

on the device (or the user must type them every time, which is impractical) and thus

they are accessible to an attacker.

Bruce Schneier, a respected security technologist, cryptographer, and author,

summarizes the difficulties of using encryption to protect data at rest:

Cryptography was invented to protect communications: data in motion. This is

how cryptography was used throughout most of history, and this is how the

militaries of the world developed the science. Alice was the sender, Bob the

receiver, and Eve the eavesdropper. Even when cryptography was used to

protect stored dataddata at restdit was viewed as a form of communication.

In “Applied Cryptography,” I described encrypting stored data in this way: “a

stored message is a way for someone to communicate with himself through

time.” Data storage was just a subset of data communication.

In modern networks, the difference is much more profound. Communications are

immediate and instantaneous. Encryption keys can be ephemeral, and systems

like the STU-III telephone can be designed such that encryption keys are

created at the beginning of a call and destroyed as soon as the call is

completed. Data storage, on the other hand, occurs over time. Any encryption

keys must exist as long as the encrypted data exists. And storing those keys

becomes as important as storing the unencrypted data was. In a way,

encryption doesn’t reduce the number of secrets that must be stored securely; it

just makes them much smaller.

Historically, the reason key management worked for stored data was that the key

could be stored in a secure location: the human brain. People would remember

keys and, barring physical and emotional attacks on the people themselves,

would not divulge them. In a sense, the keys were stored in a “computer” that

was not attached to any network. And there they were safe.

This whole model falls apart on the Internet. Much of the data stored on the

Internet is only peripherally intended for use by people; it’s primarily intended

Security considerations 175

for use by other computers. And therein lies the problem. Keys can no longer be

stored in people’s brains. They need to be stored on the same computer, or at least

the network, that the data resides on. And that is much riskier.

(Schneier on, n.d.)

Several other platforms, notably later models of Apple’s iPhones, implement

encryption on the user portions of the NAND flash. However, in the case of the 3.x

versions of Apple’s iOS, the encryption was quickly defeated for the reasons

highlighted previously. As of March 2011, the encryption of iOS 4.x has not yet been

broken. However, it is likely that over time this will happen.

The forensic strategies for dealing with encrypted NAND flash differ from

unencrypted ones. If the NAND flash is not encrypted, the memory could be

physically read via a chip-off or JTAG process and then decoded. However, with an

encrypted NAND flash, this technique will no longer work. Instead, to extract the

unencrypted data, the process executes on the device while it is running. In forensics,

this is referred to as a live acquisition and is used in other scenarios such as

a workstation or server that encrypts the contents of the hard drive or other storage

device.

Encryption will play a growing role in securing both data in transit and data at

rest. However, the data at rest will nearly always be vulnerable to attack. In this

instance, the security designers must find the balance between a cryptographically

secure system and one that offers little protection. The compromise will result in

a system that provides reasonable protection of the data at rest and in transit without

encumbering the user to the point where device is no longer useful.

INDIVIDUAL SECURITY STRATEGIES
While the large part of this chapter has focused on issues with mobile devices and

data security, there are user practices that can minimize the risk of compromise. As

before, this list is not intended to be comprehensive. Rather, it provides a solid basis

for securing the device.

1. Always use a data network you trust. For mobile devices, this may include your

wireless carrier’s data network or Wi-Fi access point at work, home, or other

trusted locations. This ensures that the networks used to transmit sensitive data

are not malicious or used by an attacker to compromise your sensitive data.

Although a carrier’s network can be compromised, there is far greater security in

place at a large company than on a smaller data network. Furthermore, while it is

easy to acquire, setup, and manage a rogue Wi-Fi access point, it is far more

difficult to implement rogue cellular data connections. So, in general, the cellular

data connections provided by the wireless carriers reduce the risk of attack.

2. Always place a pass code on the Android device to thwart a casual attacker from

gaining access to your sensitive data. Ideally, the Android device should perform

a full wipe of the user data if the pass code is input incorrectly more than a set

176 CHAPTER 5 Android device, data, and app security

number of attempts. That way an attacker cannot compromise your pass code

through brute force. Also, if possible use the option for an alphanumeric pass-

word over a four-digit numeric PIN or pattern lock. The alphanumeric codes

provide far greater security by allowing more complex pass codes. Think of the

pass code on your device as similar to a password on your computer. It is hard to

imagine (perhaps just for security researchers) that anyone would have

a computer that did not have a password.

3. Check the free appWatchdog service at http://viaforensics.com/appwatchdog/ to

determine if the applications you use pass a basic security test. appWatchdog

audits mobile apps to determine if they securely store your user name, password,

and sensitive app data. The web site provides a result of pass, warn, or fail for

each area tested and details of what information was recovered. Currently,

a mobile app version of appWatchdog is being developed that will allow the user

to install directly on an Android (or iPhone) device and determine the audit status

of installed apps. It will also allow the user to directly contact the app developer

to request resolution to an audit issue as well as other notification options.

4. Never click on links in SMS messages and ideally avoid links in e-mail

messages, especially shortened links like bit.ly or goo.gl. Smartphone and

computer tablet users are three times more susceptible to e-mail phishing scams

than traditional PC and laptop users, according to research by security firm

Trusteer (Donohue, n.d.). The research determined that it is more difficult to

identify fraudulent web sites from a smartphone due to reduced screen sizes and

lack of software protecting the user from phishing scams. The best way to ensure

that you are visiting the valid web site is to either type it in manually, or (perhaps

a better approach) allow a trusted search engine to locate the web site on your

behalf. This allows the user to type (or mistype) the name of the company and

allows the search engine to find the appropriate sites. Some search engines, such

as Google, are now attempting to deter malicious or compromised web sites and

this provides an additional layer of protection for smartphone users.

5. Consider using an alternate web browser on your Android device. As mentioned

previously, cyber criminals are pragmatic, which is why for many years they

focused on attacking Microsoft Windows and largely ignored operating systems

such as Linux and Mac. In the mobile environment, many of the bundled

browsers are based on the open source WebKit project. As such, it is likely that

initial web attacks against Android and other smartphone devices will focus on

browsers utilizing WebKit. By using an alternative browser, you may find far

fewer attacks targeting your platform. However, this may only provide a nominal

and temporary increase in security.

6. When installing apps from the Android Market, ensure that the app is only

granted permissions necessary to operate. If you are installing an enhanced alarm

clock application and it requests access to your SMS and web history data, you

should not grant it permission. Although this will not protect you from all

malicious apps, it is an important layer of Android’s security and one the user

must take responsibility for.

Individual security strategies 177

http://viaforensics.com/appwatchdog/

Over time, not only will this list grow and evolve but hopefully new security controls

will be introduced, which will help secure the mobile device and sensitive data.

CORPORATE SECURITY STRATEGIES
Corporations typically have more complex security requirements than individuals

because they are responsible for protecting the entire corporation from both internal

and external attacks. In addition, they may belong to a regulated industry required to

operate under some of the guidelines listed earlier in this chapter. For these reasons,

more fine grained control over assets, including mobile devices, is required.

Policies

One important aspect of mobile device management in corporations is a close

evaluation of current policies making sure to update them for the new situations

presented by mobile devices. Most policies do not account for smartphone and tablet

devices and the situations that might arise through their use. Although a complete

review of corporate policies is warranted, there are at least a few which will certainly

require attention. They include the following:

� Acceptable Use (for company resources, now including mobile devices)

� Data Security (obviously want to place policies around mobile devices)

� Backups and Data Retention (will likely be impacted, especially from an elec-

tronic discovery standpoint)

Although updating policies does not directly improve security through infor-

mation technology, it provides critical direction not only to the employees but also to

the security architects and those involved in internal investigations and disciplines. If

you have an outdated policy in place, it can be used against you. For example, if your

Acceptable Use policy simply adds mobile devices into the description of covered

resources, then all of the policies in place that allow a corporation to investigate

a device they own are now explicitly defined. Otherwise in a contentious legal battle,

it is quite possible opposing counsel would make the case that the mobile devices

were not covered by policy and thus the evidence found on the device (e.g., company

confidential documents) is not admissible. While your legal team may refute the

argument, it is far less expensive and more effective to simply update the policy to

include mobile devices.

Password/Pattern/PIN Lock

Passwords, pattern, and PIN locks are neither consistently nor effectively imple-

mented on Android devices. However, they do offer some protection. These features

have improved since they first appeared and will likely continue to improve over

time. With the exponential increase in processing power and a simultaneous

178 CHAPTER 5 Android device, data, and app security

reduction in cost, using brute force techniques to crack protection mechanisms is

affordable and more common each year. However, if the device is lost or stolen, it

provides a basic level of protection that would be effective against nontechnical

criminals.

All pass codes are not created equal. The most effective pass code is the one

that allows or requires an alphanumeric password. While entering these codes is far

more cumbersome for the users, it greatly increases the effort needed to crack the

password. The next most effective pass code is the pattern lock found in the first

Android device and many since then. The pattern technique introduced a new way to

approach locking the device and as such required the user to learn the new technique

resulting in a more effective lock. Instead of reusing old approaches (such as the

PIN), the user had to come up with a new pattern and thus it would be hard for an

attacker to use information about the person to guess the pattern lock. Perhaps for

familiarity, the venerable PIN was also included in many Android devices. While it

would be better to use a PIN than leave the phone unlocked, the PIN is probably the

easiest lock to defeat. They typically have a finite number of digits (four is the

common number), which dangerously constrains the number of overall combina-

tions. Furthermore, the PIN has been used to secure many other system, most well

known are Automated Teller Machine (ATM) cards. People tend to reuse PINs and

to base them on easily discoverable facts about them.

As suggested in the individual strategies in the previous section, the pass code

lock should have a maximum number of attempts allowed after which the device

should perform a factory reset and full wipe of the user data partitions. This will

prevent a brute force attack against the easier-to-defeat pass codes (i.e., the four-

digit PIN) and provide an additional layer of security.

Remote Wipe of Device

One of the most sought after security features for smartphones by corporate security

managers is the ability to remotely wipe the device. The feature is, without a doubt,

extremely important and powerful. However, it is a very fragile feature, and the

confidence it instills in security managers might be too high.

The basic premise behind the remote wipe is that the company can issue

a command to the device causing it to wipe all data and perform a factory reset.

Many of the smartphone platforms are building hooks into their system to allow this

control. However, the features were not designed from the beginning and do not yet

provide enough reliability to ensure high security.

Even provided the remote wipe hooks are present and working effectively, it is

quite easy to prevent the remote wipe command by simply not placing the device on

the network using airplane mode, removing the SIM card, or other such techniques.

In fact, some corporation might first disable a terminated employee’s cellular

account and then send the remote wipe command. In most cases, they will have

inadvertently removed their ability to remotely wipe the device. While the device is

no longer connected to the network, it will still have full access to the data. Savvy

Corporate security strategies 179

device owners who have root access on their device could also look into filtering

such requests to simply ignore them. However, the largest issue is simply that the

remote wipe feature is not sufficiently mature.

In Android 2.1 on the Motorola Droid, the remote wipe feature triggered using

Microsoft’s Exchange ActiveSync did not cause the device to wipe data. However,

when the same feature was tested on Android 2.2 on the Motorola Droid, the remote

wipe did occur. If you are relying on the remote wipe feature for data security, you

need to ensure that the remote wipe ability works on each of the Android hardware

platforms for each Android version installed. This, unfortunately, is a difficult

undertaking for most IT departments because the devices are widely distributed and

do not have a good central administrative tool (more on that later).

One fairly simple technique to overcome the limitations of remote wipe is to

install an application on the device that will automatically wipe the device if it is

unable to check in with the enterprise system after a specific amount of time. Using

such a technique (often called a watchdog or countdown app), provides a significant

improvement in data security because the device will automatically erase if unable to

connect to the corporate system after a certain number of attempts. So, even if

a device is offline, security managers can ensure all corporate data will be wiped

within a specific time frame. Of course, if a user disconnects his or her phone from

the network for a long time for legitimate reasons, it will result in an erased phone,

so user education on this feature is important. At this time, very few (if any)

applications exist that support this feature.

There is another technique that addresses data residing on the NAND flash. It is

possible to develop an app (and a few do exist) that would routinely erase the unused

(unallocated) space on the device’s user data storage partition. The benefit of this

being that (most) deleted data would no longer be recoverable, even with a physical

image. This erasing can be accomplished by having the app simply write a file with

0xFF until the partition fills up. At that point, the file is deleted and thus the allocated

space has been overwritten. Of course, there can be many repercussions to such

a program, including shortening the life of the NAND flash, causing the device to

become unresponsive while writing the file, wearing down the battery, or causing

other apps to crash or lose data if they try to access the partition when it is

completely full.

Upgrade to Latest Software

Although the smartphone market is innovating quickly, it is far more difficult for

enterprises to upgrade core infrastructure such as their Microsoft Exchange envi-

ronment. However, the last two versions of Microsoft Exchange offer enhanced

mobile management and security mechanisms. When Exchange is upgraded to the

latest version (currently Exchange 2010), additional options to securely manage

your device are available. Ensuring that the corporate infrastructure is up-to-date

will improve not only the manageability but the overall security of connected mobile

devices.

180 CHAPTER 5 Android device, data, and app security

Similarly, the mobile devices themselves should apply updates as they

become available. While in some cases a new bug or security flaw could be

introduced, in general the updated software will not only patch previously

discovered flaws but also add additional management and security features. The

example from the remote wipe section above illustrates this well as Android 2.1

on the Motorola Droid did not properly execute the remote wipe command

whereas Android 2.2 did.

Remote Device Management Features

Corporate customers have a growing need to manage the mobile devices connected

to their infrastructure. Although the list of features will vary between companies,

a general list of requirements might include the following:

� remotely provision devices

� remotely wipe devices

� enforce IT policies such as pass code, encryption, minimum OS versions,

upgrade policies, allowed/denied applications, and more

� remotely install/upgrade apps

As of Android 2.2, new device administration application programming inter-

faces (APIs) were introduced. They include the ability for apps to incorporate the

types of policy management listed earlier. Specifically, they support (Device

Administration, n.d.) the following abilities.

� Password enabled: Requires that devices ask for PIN or passwords.

� Minimum password length: Sets the required number of characters for the

password. For example, you can require PIN or passwords to have at least six

characters.

� Alphanumeric password required: Requires that passwords have a combination

of letters and numbers. They may include symbolic characters.

� Maximum failed password attempts: Specifies how many times a user can enter

the wrong password before the device wipes its data. The Device Administration

API also allows administrators to remotely reset the device to factory defaults.

This secures data in case the device is lost or stolen.

� Maximum inactivity time lock: Sets the length of time since the user last touched

the screen or pressed a button before the device locks the screen. When this

happens, users need to enter their PIN or passwords again before they can use

their devices and access data. The value can be between 1 and 60 min.

� Prompt user to set a new password.

� Lock device immediately.

� Wipe the device’s data (i.e., restore the device to its factory defaults).

On the Device Administration page on developer.android.com (Device Admin-

istration, n.d.), several examples of this API are demonstrated, as illustrated in

Fig. 5.2.

Corporate security strategies 181

http://developer.android.com

When a user installs an app that uses the new administration APIs, they are

presented with an Enable Device Admin screen, shown in Fig. 5.3.

Although this is an improvement over no device management, it falls well short

of the needs and requirements of corporate customers. Also, though the APIs exist,

developers must incorporate them into their apps.

Several companies are trying to fill the void in full feature device management.

However, the solutions for smartphones are also still quite immature. Investing in

a third-party solution may address a short-term need. However, over time, Android,

the manufacturers, and device developers will develop more sophisticated manage-

ment features and tools. Similarly, many corporate devices synchronize with the

e-mail system using Microsoft’s Exchange ActiveSync (EAS) protocol and manage-

ment features continue to mature in this platform. So if immediate security concerns

necessitate better remote management of devices, a corporation might consider

implementing third-party tools for an incremental improvement in security. However,

there is a risk that these tools will not meet or exceed the manufacturers’ tools and thus

the technology and personnel investment will not prove worthwhile.

As much of the corporate data found on mobile devices centers around e-mail,

focusing security efforts in this area can yield good results. Several companies have

recognized this need and have developed their own e-mail clients, which implement

a variety of additional security mechanisms including two-factor authentication,

FIGURE 5.2

Device administration API sample.

182 CHAPTER 5 Android device, data, and app security

encrypted data stores, and additional management interfaces. However, security-

conscious entities should audit the software to ensure they actually deliver on the

functionality they claim to implement.

Clearly, remote device administration is important to corporate clients and while

support for these features are still immature, expect significant improvements over

the next few releases of Android.

Application and Device Audit

It is difficult to secure mobile devices and their data if you do not have a full

understanding of what information is at risk. Corporations can initiate a mobile

security and risk mitigation audit to evaluate the data exposed on mobile devices. By

analyzing the actual devices and operating systems in use at their company, it is

possible to determine what data are stored, where it might be at risk (on the device,

in transit, in backups, etc.), and create specific policies, procedures, or even software

implementation to minimize the risk.

A typical audit can include evaluation of many criteria including

� What type of corporate data might be stored on the device

� Where that data are stored

FIGURE 5.3

Enable device admin.

Corporate security strategies 183

� What other applications can be installed, and access corporate data

� Effectiveness/capability of remote wiping and device administration

� Ability to implement corporate security policies

� Secure storage and transmission of passwords, authentication information, and

other sensitive data

� Effectiveness of encryption

Once the supported devices are well understood, the task of securing the data at

rest and in transit is less overwhelming, and specific strategies to minimize unac-

ceptable risk can be developed.

As with other areas of information security, a strategy and ongoing process is

necessary to maintain appropriate security measures and evaluate risk.

APP DEVELOPMENT SECURITY STRATEGIES
One final area extremely important to mobile security is the apps that are developed

and installed. This includes not only third-party apps, but also apps distributed by the

operating system developer (Android in this case), device manufacturers, and the

wireless carriers. The apps are the primary mechanism by which users interact with

their mobile device to access the information they are interested in. Often the

information is sensitive and provides private details about the user.

Mobile App Security Testing

After discovering numerous mobile application security vulnerabilities in the course

of performing forensic work, this author and colleagues at viaForensics began

auditing the security of data in popular applications and disclosed their findings

publicly on our web site. The goal of the free public service, called appWatchdog, is

to improve mobile app data security and protect consumers. As consumer awareness

of the data security risks rises, developers will be encouraged to thoroughly review

their apps prior to release and achieve a higher level of security. The findings can be

viewed at http://viaforensics.com/appwatchdog/. viaForensics plans to release a

mobile app that will check the installed apps on an Android device and provide

appWatchdog results for those already audited. It will also allow the consumer to

suggest an app for review as well as contact the app developer if they have any

concerns.

The appWatchdog service uses forensic and security assessment techniques to

determine whether user names, passwords, credit card numbers, or other application

data are being insecurely stored. The process involves installing the application and

running it in the manner in which a consumer uses the app. The device is then

forensically imaged and analyzed for personal information and application data. The

findings are first communicated to the app developer and then publicly disclosed in

order to provide this information directly to consumers. Users can then make an

184 CHAPTER 5 Android device, data, and app security

http://viaforensics.com/appwatchdog/

informed decision on whether or not they wish to continue use of that app, or perhaps

wait for the developer to release a more secure version.

Each app is reviewedbasedon certain criteria that dependon the specific uses for the

app. For example,with amobile payment app, the appwould beanalyzed for user name,

password, application data, and credit card numbers. However, for other applications,

credit card numbers may not be relevant. The following criteria are explained in further

detail, with the top three being the most applicable to most applications:

� Securely stores passwords? If any type of password is being stored unencrypted

on the device, the application would get a “Fail.”

� Securely stores user names?Application data are examined to determine whether

user names are being stored unencrypted on the device.

� Securely stores application data? Each application is analyzed for app-related

data. For example, financial apps are searched for account numbers, balances,

and transfer information. Other applications might store additional personal user

data, such as e-mail address, phone number, or address.

� Securely stores credit card information? For applications handling credit card

information, data are examined to determine whether the full credit card number

is stored unencrypted on the device as well as any supporting data associated

with it, such as expiration date or security number on the back of the card.

� Additional security tests: These tests can include capturing wireless data sent

from the mobile device and examining that traffic for user names, passwords,

PINs, and any other relevant application data. Additional security tests are

typically more time consuming and therefore only performed for an in-depth

application security review.

The appWatchdog service only provides a basic indication of whether a mobile

app implements security. By combining advanced mobile forensic and security

techniques, a far deeper analysis of a mobile app is possible. The items listed below

are some of the criteria that should be evaluated in order to determine whether a

mobile application is secure.

� How does the application handle web history and caching?

� Does the application securely transmit login data?

� Does the application avoid MITM attacks?

� Does the application securely transmit sensitive data?

� Is the application protected from session hijacking?

� Is the application able to permanently delete data and prevent storage on the

device?

� Does the application securely handle interruptions?

� Does the application properly secure data in backups?

A thorough application security audit leverages both advanced forensics and

security tests to uncover security flaws, protecting both developers and users. via-

Forensics provides these testing services and a certification, called appSecure. A

similar testing methodology can be effectively applied by internal forensic and

App development security strategies 185

security teams provided they have the tools and expertise, as well as the budget and

time, to execute the tests.

App Security Strategies

The results of appWatchdog and appSecure have led to some general guidelines that

mobile app developers should consider as they design, develop, and test their apps.

This list, as with others, is not necessarily exhaustive but provides some noteworthy

concepts for consideration.

User Names
Avoid storing user names in plain text on the device. For obvious usability issues,

you may decide to cache the user name on the device so the consumer does not have

to type it in every time. However, consider masking a portion of the user name that

would provide enough information for the consumer to identify their user name but

not enough for an attacker to have the entire user name. The user name is one

component needed to log into an account and the less an attacker knows, the less

effective they will be.

For example, let us assume an application which accesses sensitive health

information requires a user name. The consumer creates one called “andrewhoog.”

However, after the initial login, if the application only stores “andr))))” and then

displays that back to the user, it would be clear that they are logging into the correct

account. However, an attacker might only get the first four characters. Furthermore,

if the mask (using “)” in this case but could be presented in other ways) does not

give away the overall length of the user name, it makes it even more difficult for the

attacker to guess.

Finally, more online services are requiring more complex user names that must

be of a certain length and be alphanumeric. So, whereas a user name “andrewhoog”

might be fairly easy to guess, AndrewHoog6712 would be far more difficult. Some

sites may even place further restrictions on the user name where it cannot contain

any portion of your basic profile information such as your name.

Passwords
Perhaps far more concerning are applications that store the password in plain text.

There are several strategies to avoid this serious problem. First, as discussed in the

“Security philosophy” section, you could simply force the users to type their

password in each time they run the app. If you think about logging into a banking

web site from your home computer, you must log in every time. While you stay

logged in for your current session, once a certain period of inactivity has passed (or

you log out), you can no longer access the protected web site without re-entering

your user name and password.

Another approach to consider is the use of security tokens to avoid storing the

real password on the mobile device. If a user securely authenticates to a protected

resource on the Internet, a security token can be generated, which not only expires

186 CHAPTER 5 Android device, data, and app security

after a certain period of time but is also unique to that device. While someone with

physical access to the phone could access the protected resource, it would only last

until the token expired, at which point they would need the user name and password

again. Furthermore, if the security token was specific to the device and was

compromised remotely, the token would not provide access to the restricted

resource. Methodologies that use the security token approach also would not place

any other protected resource on the Internet at risk, even if the account holder used

the same user name and password (which is quite common).

Implementing a token-based authentication scheme is more complicated than

a simple user name and password and is a methodology that is not as widely used or

understood by developers. However, a number of APIs that provide this functionality

are available and are maturing. One framework is called OAuth and is supported by

many of Google’s services. There are other APIs, but they tend to focus on

a particular service. There are similarities and the OAuth web site describes the

connection to other services this way:

OAuth is the standardization and combined wisdom of many well established

industry protocols. It is similar to other protocols currently in use (Google

AuthSub, AOL OpenAuth, Yahoo BBAuth, Upcoming API, Flickr API, Amazon

Web Services API, etc). Each protocol provides a proprietary method for

exchanging user credentials for an access token or ticker. OAuth was created

by carefully studying each of these protocols and extracting the best practices

and commonality that will allow new implementations as well as a smooth

transition for existing services to support OAuth.

An area where OAuth is more evolved than some of the other protocols and

services is its direct handling of non-website services. OAuth has built in

support for desktop applications, mobile devices, set-top boxes, and of course

websites. Many of the protocols today use a shared secret hardcoded into your

software to communicate, something which poses an issue when the service

trying to access your private data is open source.

(IntroductiondOAuthn, n.d.)

Since Google is moving toward OAuth, they provide detailed information about

the APIs and how to use them. On the Google Code web site, they provide the

following basic overview of the OAuth process (Default, n.d.):

1. Your application requests access and gets an unauthorized request token from

Google’s authorization server.

2. Google asks the user to grant you access to the required data.

3. Your application gets an authorized request token from the authorization server.

4. You exchange the authorized request token for an access token.

5. You use the access token to request data from Google’s service access servers.

As you can tell from the steps, the actual user name and password are only sent to

the authorization service (Google in this case) and are not stored nor shared with the

App development security strategies 187

requesting app. The requesting app is provided the various tokens used through the

negotiation of the process and they will need to store the final access token, but the

time and scope are both limited.

Although the typical scenario for OAuth allows a third-party service (i.e., a social

media we bsite) time and scope limited, token-based authentication to the protected

information (i.e., your Gmail contact list), it is interesting to point out that an app

developer can use the OAuth service to authenticate to themselves. Using this

approach, the app developers not only provide secure, token-based access to their

service in a standardized fashion but they now have the infrastructure in place to

allow approved third-party apps’ access to the data, provided the account owner

authorizes the access.

There are many different schemes and techniques that can be used to securely

authenticate users who would not require a mobile app to store the user name and

password in plain text on the mobile device. App developers must move to these

more secure methodologies to better protect their customers.

Credit Card Data
Most people in the security industry are familiar with the Payment Card Industry

(PCI) Data Security Standard (DSS), which provides standards for protecting credit

card data. Prior to the formation of the PCI Security Standards Council (SSC), the

major credit card vendors had their own standards for protecting credit card data. In

2006, the PCI SSC was launched by the following payment brands:

� American Express

� Discover Financial Services

� JCB International

� MasterCard Worldwide

� Visa Inc

These brands have a vested interested in reducing fraud in the payment card

industry. In the version 2.0 document “Requirements and Security Assessment

Procedures” published in October 2010, the specific requirements of the PCI DSS

are listed. The following is a small sample of requirements that would cover situ-

ations where credit card data are used in a mobile app (Documents Library, n.d.).

� 3.2 Do not store sensitive authentication data after authorization (even if

encrypted). Sensitive authentication data include the data as cited in Require-

ments 3.2.1 through 3.2.3

� 3.2.1 Do not store the full contents of any track (from the magnetic stripe located

on the back of a card, equivalent data contained on a chip, or elsewhere). These

data are alternatively called full track, track, track 1, track 2, and magnetic-stripe

data.

� 3.2.2 Do not store the card verification code or value (three-digit or four-digit

number printed on the front or back of a payment card) used to verify card-not

present transactions.

188 CHAPTER 5 Android device, data, and app security

� 3.2.3 Do not store the personal identification number (PIN) or the encrypted PIN

block.

� 3.3 Mask PAN when displayed (the first six and last four digits are the maximum

number of digits to be displayed).

� 3.4.1 If disk encryption is used (rather than file- or column-level database

encryption), logical access must be managed independently of native operating

system access control mechanisms (e.g., by not using local user account data-

bases). Decryption keys must not be tied to user accounts.

The PCI DSS, while not without criticism, is a fairly mature standard with a goal

of protecting a staggering volume of financial transactions. It is interesting to

compare some of the standards the PCI DSS has developed over time such as

requiring encryption, limiting the storage of sensitive information, and masking

sensitive information when displayed to screen.

It should really go without saying that storing the credit card in plain text on

a mobile device would not only violate the PCI DSS standard but would also place

the card owner at great risk if the device was compromised. Perhaps not surprisingly,

the appWatchdog service described above checks for credit card data stored in plain

text and, unfortunately, uncovers this information in some applications.

If an app requires payment processing, it would be advisable to integrate with

mature online services such as PayPal and Google Checkout, or work with

a payment provider to implement a secure payment application. Be advised, this is

a significant undertaking, not only from a development and testing perspective, but

also requiring an ongoing security audit process.

Sensitive App Data
Many mobile apps contain sensitive data that the consumer would not want out of

their control. There are various levels to the data. Here is a simplistic list designed to

illustrate the levels:

1. No sensitive user datadfor example, a calculator app would not contain any

sensitive user data.

2. No sensitive user data but some potential metadatadfor example, a weather

application would not contain any sensitive user data; however, it might contain

the GPS coordinates and date/time stamp when it was run.

3. Contains user data but not sensitivedsome applications are intended for public

consumption such as messages people share on Twitter. If a user was informed

that all of his or her Twitter messages were readable by the world, most (except

those which protect to their messages) would not be concerned.

4. Contains sensitive user datadmany applications fall into this category and

contain sensitive user data such as your full e-mail messages, SMS and MMS

messages, voice mail, call logs, and more.

5. Highly sensitive user datadthis is a special level that covers apps that contain

financial information, health care information, password vaults, and other apps

which place the consumers at great risk if their security is compromised.

App development security strategies 189

It is helpful to differentiate the sensitivity of data an app contains in order to

provide appropriate levels of security. If a calculator app required two-factor

authentication and AES-256 encryption, users would obviously be annoyed and

might try to calculate the 15% tip on paper (which once written down would place it

at risk for a number of physical and social engineering attacks, but we digress).

However, the appWatchdog service regularly uncovers apps containing sensitive

data of levels 4 and 5 which are stored in plain text on the NAND flash. If you

develop an application with sensitive data at this level, you should protect the data

with some level of security. There are a number of options including

1. Don’t store the datadthis is the simplest approach and mitigates any attack

which grants access to the NAND flash. As discussed previously, the crypto-

graphic algorithms used to protect data in transit are far more effective than any

approach to securing data at rest (at least on a mobile device). Most mobile

devices are highly connected to the Internet and thus caching the data is not

necessary. Of course, there are advantages to caching the data, which include

providing access even if the device is offline as well as improving app

responsiveness.

2. Encrypt the datadas discussed previously, encrypting data at rest on a mobile

device requires that the keys are also stored on the device and as such it cannot

provide perfect security. However, if the keys are sufficiently difficult to locate, it

provides a much higher level of protection than plain text. Also, as remote attacks

against mobile devices increase, they may gain access to the NAND flash but not

other areas where the encryption keys are stored, such as memory. If the data

were in plain text, they would be at risk; whereas if the data were encrypted, the

consumer would be protected in this instance.

Securing sensitive data is critical to protecting consumers and the industry must

mature and consider this as a requirement for apps.

SSL/TLS
One final area to discuss is the implementation of Secure Sockets Layer (SSL) and

Transport Layer Security (TLS) that protects data in transit. It is critical that app

developers properly implement SSL/TLS, including a full validation of the digital

certificates to prevent MITM attacks. Although SSL/TLS is effective in protecting

data in transit, without proper implementation it leaves the users highly vulnerable to

attack. While testing apps for the appWatchdog service, a test-attacking machine

would regularly display the user name and password for apps not in scope as it

would automatically execute (i.e., some apps log in on a schedule to check to new

messages) and fall victim to the compromise.

Beyond ensuring SSL/TLS is properly implemented and validated in the mobile

app, SSL/TLS must also be securely configured on the server. SSL has been

available since the 1990s to secure data transmission on untrusted networks. Earlier

implementation of SSL contained security flaws that had to be addressed to ensure

secure transmission. And over time, the algorithms were improved to reduce the risk

190 CHAPTER 5 Android device, data, and app security

of a brute force attack. The latest versions of the technology are known as TLS and

generally work in the same way as SSL, so much so that many still simply use the

term SSL for both.

A common problem is that the people responsible for implementing SSL/TLS on

the server are not necessarily security engineers and hence tend to focus on server

infrastructure. They might implement and test SSL/TLS and it would appear to be

secure; but, there can be vulnerabilities. For example, MD5 is a common encryption

algorithm that has been in wide use for more than 10 years. Although still considered

useful for applications such as file integrity checking, authorities have designated it

for retirement from use in securing communications. The US Department of

Homeland Security CERT group states in Vulnerability Note #836068 “Software

developers, Certification Authorities, web site owners, and users should avoid using

Client Attacker Server (HTTPS)

TLS Handshake session #1

(client <> server)

TLS Handshake session #2

(attacker <> server)

Attacker sends application layer

commands of his choice

Renegotiation is triggered

Legend

Red: Attacker data

Green: Client communication

Dotted line: Encrypted communication

Straight line: Clear test communication

Attacker holds

the packets

Client data is encrypted within session #1 (Green) (The attacker cannot read/

manipulate this data), previous data (1.2) prefixed to newly sent client-data

TLS Handshake session #1 continued (client-server)

within the encrypted session #2 (attacker-server)

FIGURE 5.4

Generic TLS renegotiation prefix injection vulnerability.

App development security strategies 191

mailto:Image of Figure 5.4|eps

the MD5 algorithm in any capacity. As previous research has demonstrated, it should

be considered cryptographically broken and unsuitable for further use” (US-CERT

Vulnerability Note VU#836068, n.d.). Real-time cracking of this encryption remains

impractical, but stronger encryption is supported by all major Web browsers and

mobile devices.

An even greater problem is the acceptance of the NULL cipher (no encryption)

or weaker export-grade encryption in the server SSL/TLS settings. For a number of

years the United States restricted the export of devices and software with cryptog-

raphy technology, and so weaker encryption algorithms were implemented for use in

exported software. The export ciphers use a short key length of only 40 bits and can

be compromised much more easily than modern ciphers with longer keys of 128 or

256 bits.

Another issue in SSL/TLS use is the implemented version. TLSv1 is more than

10 years old and was found vulnerable to a “renegotiation attack” in 2009. In this

attack, the server treats the client’s initial TLS handshake as a renegotiation and thus

believes that the initial data transmitted by the attacker are from the same entity as

the subsequent client data (US-CERT Vulnerability Note VU#120541, n.d.). Thierry

Zoller (November 2009), a security consultant, provided a well-written summary

with visual depictions of the steps involved. Although many different attacks are

explained, Fig. 5.4 is the first example provided in this summary that helps illustrate

the attack.

Most servers using TLSv1 have been patched to close this vulnerability.

However, the TLSv1 protocol has been updated and a more current TLSv1.2

offers the latest technology and strongest encryption ciphers. Older specifica-

tions including SSLv2 and SSLv3 are still widely in use and can be reasonably

secure with adequate ciphers and key lengths, but they are not as secure as

TLS.

Securing the transmission of sensitive data from a mobile device requires

coordination, diligence, and a thorough understanding of SSL/TLS from not only the

app developer but also from the team that maintains the server participating in the

secure communication. Although SSL/TLS has been available for some time and

may be taken for granted, it is important that a correct implementation and thorough

security testing of the system be undertaken.

SUMMARY

Android devices can be both a target of malicious attacks and a tool used to carry out

such attacks. Personal users as well as corporations must be aware of the risks and

should take certain measures to protect against malicious misuse. Application

developers must also increase their attention on security concerns and take

responsibility for protecting user data. Implementing basic security measures dis-

cussed in this chapter, though not providing full protection, can at least serve as

a deterrent against most attacks.

192 CHAPTER 5 Android device, data, and app security

References
Country. (n.d.). Computer crime lawdguide to computer crimes law. Retrieved February 10,

2011, from http://www.hg.org/computer-crime.html.

Cisco unified video conferencing multiple vulnerabilities. (n.d.). Matta Consulting.

Retrieved February 11, 2011, from www.trustmatta.com/advisories/MATTA-2010-001.

txt.

Cisco Security advisory: multiple vulnerabilities in Cisco unified video conferencing

productsdCisco Systems. (n.d.). Retrieved February 10, 2011, from http://www.cisco.

com/en/US/products/products_security_advisory09186a0080.

default. (n.d.). OAuth for installed applicationsdauthentication and authorization for Google

APIsdGoogle Code. Retrieved February 12, 2011, from http://code.google.com/apis/

accounts/docs/OAuthForInstalledApps.htm.

Device administration. (n.d.). Android Developers. Retrieved February 11, 2011, from http://

developer.android.com/guide/topics/admin/device-admin.html.

Donohue, B. (n.d.). Mobile device users more susceptible to phishing scams. Retrieved

February 10, 2011, from http://threatpost.com/en_us/blogs/mobile-device-users-more-

susceptible-phishing-scams-010511.

Documents Library. (n.d.). PCI security standards documents: PCI DSS, PA-DSS, PED

standards, compliance guidelines and more. Retrieved February 12, 2011, from https://

www.pcisecuritystandards.org/security_standards/documents.php?agreements¼pcidss&

assocation¼PCI%20DSS.

[Full-disclosure] Microsoft Windows NT #GP trap handler allows users to switch kernel

stack. (n.d.). Retrieved February 10, 2011, from http://lists.grok.org.uk/pipermail/full-

disclosure/2010-January/072549.html.

IntroductiondOAuthn. (n.d.). OAuth Community Site. Retrieved February 12, 2011, from

http://oauth.net/about/.

Johnston, S. J. (n.d.). Microsoft warns about 17-year-old windows bug. Retrieved

February 10, 2011, from http://www.esecurityplanet.com/features/article.php/3860131/

article.htm.

Microsoft security advisory (979682) vulnerability in Windows kernel could allow elevation

of privilege. (n.d.). Retrieved February 10, 2011, from http://www.microsoft.com/

technet/security/advisory/979682.mspx.

Ralf-Philipp Weinmann. (n.d.). CryptoLUX. Retrieved February 10, 2011, from https://

cryptolux.org/Ralf-Philipp_Weinmann.

Schneier on security: data at rest vs. data in motion. (n.d.). Retrieved February 9, 2011, from

http://www.schneier.com/blog/archives/2010/06/data_at_rest_vs.html.

Secure programming for Linux and Unix HOWTO. (n.d.). David A. Wheeler’s personal home

page. Retrieved February 10, 2011, from http://www.dwheeler.com/secure-programs/

Secure-Programs-HOWTO/open-source-security.html.

Ten, T. T. (n.d.). Field of dreams (1989)dMemorable quotes. The Internet movie database

(IMDb). Retrieved February 10, 2011, from http://www.imdb.com/title/tt0097351/

quotes?qt0314964.

US-CERT Vulnerability Note VU#836068. (n.d.). CERT Knowledgebase. Retrieved February

13, 2011, from http://www.kb.cert.org/vuls/id/836068.

US-CERT Vulnerability Note VU#120541. (n.d.). CERT Knowledgebase. Retrieved February

13, 2011, from http://www.kb.cert.org/vuls/id/120541.

App development security strategies 193

http://www.hg.org/computer-crime.html
http://www.trustmatta.com/advisories/MATTA-2010-001.txt
http://www.trustmatta.com/advisories/MATTA-2010-001.txt
http://www.cisco.com/en/US/products/products_security_advisory09186a0080
http://www.cisco.com/en/US/products/products_security_advisory09186a0080
http://code.google.com/apis/accounts/docs/OAuthForInstalledApps.htm
http://code.google.com/apis/accounts/docs/OAuthForInstalledApps.htm
http://developer.android.com/guide/topics/admin/device-admin.html
http://developer.android.com/guide/topics/admin/device-admin.html
http://threatpost.com/en_us/blogs/mobile-device-users-more-susceptible-phishing-scams-010511
http://threatpost.com/en_us/blogs/mobile-device-users-more-susceptible-phishing-scams-010511
https://www.pcisecuritystandards.org/security_standards/documents.php?agreements=pcidss&assocation=PCI%20DSS
https://www.pcisecuritystandards.org/security_standards/documents.php?agreements=pcidss&assocation=PCI%20DSS
https://www.pcisecuritystandards.org/security_standards/documents.php?agreements=pcidss&assocation=PCI%20DSS
https://www.pcisecuritystandards.org/security_standards/documents.php?agreements=pcidss&assocation=PCI%20DSS
https://www.pcisecuritystandards.org/security_standards/documents.php?agreements=pcidss&assocation=PCI%20DSS
http://lists.grok.org.uk/pipermail/full-disclosure/2010-January/072549.html
http://lists.grok.org.uk/pipermail/full-disclosure/2010-January/072549.html
http://oauth.net/about/
http://www.esecurityplanet.com/features/article.php/3860131/article.htm
http://www.esecurityplanet.com/features/article.php/3860131/article.htm
http://www.microsoft.com/technet/security/advisory/979682.mspx
http://www.microsoft.com/technet/security/advisory/979682.mspx
https://cryptolux.org/Ralf-Philipp_Weinmann
https://cryptolux.org/Ralf-Philipp_Weinmann
http://www.schneier.com/blog/archives/2010/06/data_at_rest_vs.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/open-source-security.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/open-source-security.html
http://www.imdb.com/title/tt0097351/quotes?qt0314964
http://www.imdb.com/title/tt0097351/quotes?qt0314964
http://www.kb.cert.org/vuls/id/836068
http://www.kb.cert.org/vuls/id/120541

WordNet searchd3.0. (n.d.). Retrieved February 10, 2011, from wordnetweb.princeton.edu/

perl/webwn?s¼art.

Zoller, T. (2009, November 29). TLS & SSLv3 renegotiation vulnerability explained. SANS

Internet Storm Center; Cooperative Network Security CommunitydInternet Security.

Retrieved February 13, 2011, from http://isc.sans.edu/diary.html?storyid¼7582.

194 CHAPTER 5 Android device, data, and app security

http://wordnetweb.princeton.edu/perl/webwn?s=art
http://wordnetweb.princeton.edu/perl/webwn?s=art
http://wordnetweb.princeton.edu/perl/webwn?s=art
http://isc.sans.edu/diary.html?storyid=7582
http://isc.sans.edu/diary.html?storyid=7582

Android forensic techniques 6
INFORMATION IN THIS CHAPTER

� Procedures for handling an Android device

� Imaging Android USB mass storage devices

� Logical techniques

� Physical techniques

INTRODUCTION
Before we dive into the actual Android forensic techniques, there are a number of

considerations that influence which technique forensic analysts should use. In this

section, we will discuss the different types of investigations, the differences between

logical and physical techniques, and how to limit or avoid modifications to the

device.

Types of Investigations

There are a variety of situations that might benefit from the results of an Android

forensic investigation. While the application of forensics is a commonality in all the

situations, each one may require different procedures, documentation, and overall

focus.

The first situation that people think of in general is investigations that will likely

be adjudicated in a criminal or civil court of law. In these situations, there are

a number of important considerations:

� Chain of custody

� Detailed contemporaneous notes and final reporting

� Possible validation of results using different tools or investigators

� Fact or opinion based testimony

Another common scenario is internal investigations in corporations. These

investigations may end up litigated in court, but often they are used to deter-

mine the root cause of an issue (whether that is a system, external attack, or

internal employee) and may result in disciplinary action against an employee.

CHAPTER

Android Forensics. DOI: 10.1016/B978-1-59749-651-3.10006-8

Copyright � 2011 Elsevier Inc. All rights reserved.
195

http://dx.doi.org/10.1016/B978-1-59749-651-3.10006-8

Internal corporate investigations can cover many areas but the most common

include:

� Intellectual property or data theft

� Inappropriate use of company resources

� Attempted or successful attack against computer systems

� Employment-related investigations includingdiscrimination, sexual harassment, etc.

� Security audit (random or targeted)

There is also a need for forensics in cases involving family matters. The most

common cases involve:

� Divorce

� Child custody

� Estate disputes

One final area where forensic investigation can yield significant value is for the

security and operation of a government. Governments are usually the largest

employer in a country and the United States is a good example. According to the

US Census Bureau, data from the 2009 Annual Survey of Public Employment and

Payroll revealed that the Federal government across all functions had over 3 million

employees, while state and local governments has 16.6 million full-time equivalent

employees (Government Employment & Payroll, n.d.).

Beyond employment-related matters, countries are also the potential target of

attacks and foreign government intelligence gathering. Forensics can play a key role

in thwarting attacks against a country, investigating successful attacks, counter

intelligence scenarios, and in providing valuable intelligence needed for the gov-

erning of the country.

Difference Between Logical and Physical Techniques

Android forensic techniques are either logical or physical in nature. A logical

technique extracts allocated data and is typically achieved by accessing the file

system. Allocated data simply means that the data are not deleted and are accessible

on the file system. One exception to this definition is that some files, such as an

SQLite database, can be allocated and still contain deleted records in the database.

While recovery of the deleted data requires special tools and techniques, it is

possible to recover deleted data from a logical acquisition.

Physical techniques, on the other hand, target the physical storage medium

directly and do not rely on the file system itself to access the data. There are

advantages to this approach; the most significant is that physical techniques likely

provide access to significant amounts of deleted data. As discussed in Chapter 4, file

systems often only mark data as deleted or obsolete, and do not actually erase the

storage medium unless needed. As physical forensic techniques provide direct

access to the storage medium, it is possible to recover both the allocated and the

unallocated (deleted or obsolete) data.

196 CHAPTER 6 Android forensic techniques

Of course, the analysis of an Android physical acquisition is generally far more

difficult and time consuming. Also, the physical techniques are more difficult to

execute and missteps could leave the device inaccessible.

In Android forensics, the most common logical technique does not provide direct

access to the file system and operates at a more abstract and less-effective level than

the traditional logical techniques, which can acquire all nondeleted data directly

from the file system. This technique, which relies on the Content Providers built into

the Android platform and software development kit (SDK), is effective in producing

some important forensic data, but only a fraction of the data that are available on the

system.

Modification of the Target Device

One of the guiding principles of any forensic investigation is to avoid modification

of the target device in any manner. In many cases, this is achievable. For example,

let’s assume you are handed a desktop computer that is not powered on. You are

informed it was seized from a suspect and that you need to launch a forensic

investigation. The device is fairly easy to investigate without material changes to the

data after you take custody. A typical investigation would fully document the

computer, remove the hard drive, and connect it to a physical write blocker and

acquire a bit-by-bit forensically sound image of the hard drive. The investigation

would then take place on copies of the forensic image and the original device would

remain unchanged.

As the power and functionality of computers has increased, this ideal situation

has become more and more difficult to achieve. First, let’s assume you are called to

the scene of an investigation and there is a desktop computer, but this time the

computer is in operation. Any interaction with the computer, whether you simply

move it or even physically unplug the device, will modify the device in some way.

While many examiners advocate simply unplugging the computer, unplugging the

computer still changes the computer as the contents of RAM, open network

connections, and more (all of which can be quite valuable in an investigation) are

permanently lost.

If you instead decide to examine the device while it is running, all interactions

change the device. To further complicate an investigation, it is possible that the

computer is leveraging encryption and, while the device is running, that data may be

accessible. However, if the device is powered off and you don’t have the encryption

keys, then you may permanently lose the ability to recover that data.

Another complicating factor can be the existence of servers that have special

hardware, complex setups, or that simply cannot be powered down without signif-

icant impact to other systems or people. Some examples of complex service setups

include complicated RAID setup, setups that rely on network-based storage area

networks (SAN), and unsupported hardware. In such cases, the examiner must

interact directly with the device while it is running even though those actions change

the device.

Introduction 197

Of course, mobile devices, and Android devices in particular, are nearly

impossible to forensically analyze without any impact to the device. Unlike desk-

tops, notebooks, and servers, there are portions of storage on an Android device that

cannot be easily removed. And if the device is powered on, a shutdown of the device

or pulling the battery again changes the device.

When mobile phones were first showing up in investigations, there was very little

data stored in them that could be extracted from the device. Many investigations used

traditional approaches, such as a search warrant on the wireless carrier to obtain call

detail records. It was also possible to remove the subscriber identity module (SIM)

card on GSM devices and extract some data. As phones began to store more data, there

developed a deep divide between examiners who advocated the older methods (which

had little impact on the device and subsequently retrieved only nominal data) and

those who advocated exploiting the device more fully. The techniques used to exploit

the devices did modify the device, leading to the ensuing debate.

As of 2011, much of the debate has subsided because the amount of data mobile

devices now hold necessitates the more intrusive techniques. The Association of

Chief Police Officers in the United Kingdom produces guidelines that address this

issue quite clearly. The guide, Good Practice Guide for Computer-Based Electronic

Evidence (ACPO Good Practice Guide, n.d.), establishes four principles of

computer-based electronic evidence:

1. No action taken by law enforcement agencies or their agents should change data

held on a computer or storage media, which may subsequently be relied upon in

court.

2. In circumstances where a person finds it necessary to access original data held on

a computer or on storagemedia, that personmust be competent to do so and be able

to give evidence explaining the relevance and the implications of their actions.

3. An audit trail or other record of all processes applied to computer-based elec-

tronic evidence should be created and preserved. An independent third party

should be able to examine those processes and achieve the same result.

4. The person in charge of the investigation (the case officer) has overall respon-

sibility for ensuring that the law and these principles are adhered to.

As mobile devices clearly present a circumstance where it is necessary to access

the original device directly, then it is permissible provided the examiner is suffi-

ciently trained, provides valid reasons for their approach and keeps a clear audit trail

so that their actions are repeatable by a third party. This is certainly good advice and

helps provide a solid framework for the forensic investigation of mobile devices.

PROCEDURES FOR HANDLING AN ANDROID DEVICE
One major challenge for forensic analysts is to devise a protocol for handling the

device prior to the analyst taking direct custody. And this is certainly not a new issue

for analysts as others involved in the investigation may also handle other digital

198 CHAPTER 6 Android forensic techniques

devices such as computers or laptops. However, mobile devices are still relatively

new and are often not handled properly by first responders. There is a tendency to

immediately examine the device, which almost inevitably results in data modifi-

cation and potential loss of access to the device.

Securing the Device

Many agencies and first responders have established a protocol for securing

evidence. The following sections are meant to complement the existing proce-

dures, not replace them. Of course, these represent special procedures, and

educating first responders who have many other responsibilities can be quite

challenging.

Pass Code Procedures
Pass code locked devices are becoming more common as a result of heightened

security awareness in consumers and corporations. In the next section, we cover

some specific techniques to circumvent pass codes. However, it is not always

possible. The first consideration when obtaining information from a device is

whether an opportunity exists to immediately disable or otherwise circumvent the

pass code.

If you encounter an Android device and the screen is active, strong consideration

should be given to checking and potentially changing its settings. For devices that

have pass codes, there is a short period of time (from less than a minute up to about

15 min) where full access to the device is possible without re-entering the pass code.

If a device is in this state, there are several steps to consider:

1. Increase the screen timeout to prevent or postpone the screen locking. The

location for this setting is not consistent between Android versions and devices.

For example, on a G1 running Android 1.5, the timeout can be set by pressing

Menu (from the home screen), then Settings, Sound & display, Screen timeout,

and then select “Never timeout.” On an HTC Incredible running Android 2.2,

press Menu (from the home screen), then Settings, Security, Lock phone after,

and then finally “15 minutes.” As long as the device has some nominal activity in

the allotted timeout setting, it will remain accessible.

2. Enable USB debugging and “Stay awake” settings. The location for this setting

has remained consistent in devices and can be accessed by pressing Menu (from

the home screen), then Settings, Applications and Development. From there, you

can check USB debugging and Stay awake. If you select the “Stay awake” setting

and then connect it to a charge, the device will never go to sleep, which is

effective in preventing the screen lock. By enabling USB debugging, the device

can be accessed over USB enabling data extraction.

Of course, these steps are making changes to the device and should be thoroughly

logged in the case notes describing the state of the device, the rationale for the

attempted changes, and the outcome of each change. This will not only assist in

Procedures for handling an android device 199

future report writing but will likely be an important factor if your decision to change

the device is challenged in court.

To make matters more difficult, it is also important to minimize touching the

screen in case the screen lock becomes active. As we will discuss shortly, it is

sometimes possible to determine the pattern lock of a device by enhancing photo-

graphs of the device’s screen. The lesser the interaction a first responder has with the

screen, the higher the success rate of this technique.

Network Isolation

As many examiners likely know, it is important to isolate the device from the

network as soon as possible. In the worst-case scenario, a remote wipe could be

initiated on the device which, if successful, would prevent the recovery of any data.

While most remote wipes are done over the data network, some can be triggered over

SMS, and hence ensure the device is fully isolated to prevent remote wipes. In other

circumstances, additional messages on the device could be received or even removed

by triggers outside your control. As the goal of a forensic image is to preserve the

state of the device for additional analysis, any changes should be avoided.

There are a number of ways to isolate a device from the network and each of

these methods have advantages and disadvantages. Table 6.1 summarizes the

advantages and disadvantages of each technique.

As you can tell, isolating an Android device from the network is not an easy task

and each option has advantages and disadvantages. While each examiner or their

organization should determine the appropriate steps to undertake, the best option is

probably placing the device in Airplane mode. This varies slightly between Android

devices and versions but the general approach is the same:

1. Press and hold the Power off button and select Airplane mode.

2. Press Menu (from the home screen), then Settings, then the Wireless option

which is generally near the top. Some examples are “Wireless controls” or

“Wireless and networks.” The next menu should present the Airplane mode

option.

Fig. 6.1 is a screenshot from the Power off button approach. Fig. 6.2 shows the

option via the Wireless settings.

Regardless of which technique you ultimately choose, the main goal should be to

isolate the device from the network as soon as possible.

Power and Data Cables
While most forensic labs will have the cables necessary to charge and connect the

device, it is always prudent to seize the cables directly from the scene. It’s possible

that a newer device is in use and the forensic toolkits do not yet have an appropriate

cable. For example, a new specification for connecting media devices was developed

called portable digital media interface (PDMI) and is integrated into two Android

tablet devices, the Dell Streak and the Samsung Galaxy Tab. The PDMI interface

200 CHAPTER 6 Android forensic techniques

provides not only power and high-resolution video output, but also offers USB 3.0

support. Whereas the actual examination of one of these devices could be delayed

while an appropriate cable is acquired, if it needed charging and you do not have the

appropriate cable, the loss of power will result in the loss of temporal data.

Table 6.1 Techniques for Device Isolation

Technique Advantages Disadvantages

Put the device in Airplane

mode. This requires that

you have full access to the

Settings menu.

The device continues

running and temporal data

remains intact. Disables

cellular data network as

well as Wi-Fi.com.

You are modifying the

device setting further. Only

works if you have full

access to the device.

If the phone is a GSM

phone, remove the SIM

card.

Easy to remove, effective

in disabling all cellular

voice, SMS, and data

transmissions.

Does not disable Wi-Fi.

com or other networks.

Does not work on non-

GSM phones including

CDMA and iDEN phones.

Suspend account with

wireless carrier.

Effective in disabling all

cellular voice, SMS, and

data transmissions for any

phone.

Process may take some

time and require a court

order. Does not disable

Wi-Fi.com or other

networks.

Place device in a shielded

bag, box, tent, or room.

Faraday shields prevent

various types of network

transmissions and can be

an effective approach if

you cannot utilize any of

the previous options.

There is some debate

about the effectiveness of

portable Faraday shields,

notably Faraday bags.

Also, while the

transmissions are

blocked, the device

attempts to contact the

cellular network

repeatedly thus draining

the battery quickly. Cords

cannot be inserted into the

enclosure as they will

transmit signals. A

shielded room dedicated

for mobile examinations is

ideal. However, they are

quite expensive to build

and maintain.

Turn the device off. Completely effective in

preventing all network

transmissions.

The device state is

modified and temporal

data is lost. Pass code on

reboot could be enabled,

thus restricting access to

the device.

Procedures for handling an android device 201

http://Wi-Fi.com
http://Wi-Fi.com
http://Wi-Fi.com
http://Wi-Fi.com

FIGURE 6.1

Airplane mode via the Power off button.

FIGURE 6.2

Airplane mode via the Wireless and networks settings.

202 CHAPTER 6 Android forensic techniques

Powered-off Devices
If a device is already powered off when you encounter it, the best option is to boot it

into recovery mode to test for connectivity and root access. The owner may have

already enabled USB debugging or have rooted the device, so you may have access

to the data without booting into normal operational mode.

This approach is similar to performing forensics on a standard computer hard

drive. The last thing any trained forensic analyst would do is boot the computer to

determine what operating system is installed. Instead, the hard drive is removed and

connected to a write blocker for imaging to prevent any changes to the evidence.

Similarly, if a mobile device does not have to boot into normal mode, there is no need

to do so as this may make changes to the device. Specific information on how to test

a device in recovery mode for sufficient privileges is discussed later in this chapter.

How to Circumvent the Pass Code

The ability to circumvent the pass code on an Android device is becoming more

important as they are utilized frequently and, in most cases, do not allow data

extraction. While there is no guaranteed method, there are a number of techniques

which have worked in certain situations.

As previously discussed, there are three types of pass codes Android devices

currently support. The first is a pattern lock. This was the default on the initial

Android devices. To access the device, the user draws a pattern on the locked phone

and, if drawn properly, the device is unlocked. An example of a pattern lock on an

HTC Incredible is shown in Fig. 6.3.

FIGURE 6.3

Android pattern lock.

Procedures for handling an android device 203

The second type of pass code is the simple personal identification number (PIN)

which is commonly found on other mobile devices. Fig. 6.4 is an example of a PIN-

enabled HTC Incredible.

The final type of pass code currently found on Android devices is a full,

alphanumeric code, as shown in Fig. 6.5.

FIGURE 6.4

Android PIN lock.

FIGURE 6.5

Android alphanumeric lock.

204 CHAPTER 6 Android forensic techniques

mailto:Image of Figure 6.4|tif

As discussed in Chapter 4, not all pass codes were created equal. The most

effective pass code is one that allows or requires an alphanumeric password, as these

are far more difficult to circumvent.

Utilize ADB if USB Debugging is Enabled
The first technique you should attempt, provided the phone is powered on, is to

connect with the Android Debug Bridge (ADB) over USB, which was covered

extensively in Chapter 3. Whereas only a fraction of Android devices will allow an

ADB connection through the USB debugging setting, it is certainly worth trying as it

easily provides sufficient access for data extraction. The most common reasons for

which users enable USB debugging include:

� App development and testing

� Certain apps require this setting, such as PDAnet, which allows the device to

provide Internet access to a tethered device over USB

� Custom ROMs

� Developer phones such as Google’s Android developer phone (ADP1)

� Device hacking

It is quite simple to determine if USB debugging is enabled, provided you are

using the Ubuntu virtual machine (VM) or have a forensic workstation with

a properly installed and configured Software Development Kit. With the phone

running in normal mode, plug it into the Ubuntu VM. From the command

prompt type “adb devices.” If USB debugging is enabled, the ADB daemon will

return the device serial number along with the mode that the phone is

presently in.

ahoog@ubuntu:~$ adb devices
List of devices attached
HT08XHJ00657 device

If it is disabled, it will not return anything when the “adb devices” command is

entered.

Remember to pass the device through to your VM if you are running the

command inside a virtual workstation. If the VM can’t see the device, you

will get the same result as if the USB debugging were not enabled. Once you

verify that the USB connection is passed through to the Ubuntu VM, you can

ahoog@ubuntu:~$ adb devices
List of devices attached

ahoog@ubuntu:~$

Procedures for handling an android device 205

execute the lsusb command to verify that the operating system is aware of the

connection:

ahoog@ubuntu:~$ sudo lsusb -v
[sudo] password for ahoog:

Bus 001 Device 005: ID 0bb4:0c9e High Tech Computer Corp.
Device Descriptor:
 bLength 18
 bDescriptorType 1
 bcdUSB 2.00
 bDeviceClass 0 (Defined at Interface level)
 bDeviceSubClass 0
 bDeviceProtocol 0
 bMaxPacketSize0 64
 idVendor 0x0bb4 High Tech Computer Corp.
 idProduct 0x0c9e
 bcdDevice 2.26
 iManufacturer 1 HTC
 iProduct 2 Android Phone
 iSerial 3 HT08XHJ00657
 bNumConfigurations 1
<snip>
 Interface Descriptor:
 bLength 9
 bDescriptorType 4
 bInterfaceNumber 1
 bAlternateSetting 0
 bNumEndpoints 2
 bInterfaceClass 255 Vendor Specific Class
 bInterfaceSubClass 66
 bInterfaceProtocol 1
 iInterface 4 ADB
<snip>

In this example, emphasis was placed on several areas that clearly show the

Android device is connected and, in such cases, we can see an ADB interface is

exposed. If the device is connected but you cannot connect via ADB, you should also

kill your local ADB daemon and then start it again. This is easily accomplished as

follows:

ahoog@ubuntu:~$ adb kill-server
ahoog@ubuntu:~$ adb devices
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
List of devices attached
HT08XHJ00657 device

If the USB debugging is enabled, a forensic analyst can use the interface to gain

access and perform a logical recovery of the device, which is covered in detail later

in this chapter.

206 CHAPTER 6 Android forensic techniques

Smudge Attack
Initially, Android devices used the pattern lock for pass code protection instead of

a numeric or alphanumeric code. A recent paper entitled “Smudge Attacks on

Smartphone Touch Screens” by the University of Pennsylvania Department of

Computer and Information Science demonstrated a technique for accessing pattern

locked Android devices by enhancing photographs of the screen (Aviv, Gibson,

Mossop, Blaze, Smith, n.d.). The paper’s summary states:

Our photographic experiments suggest that a clean touch screen surface is

primarily, but not entirely, reflective, while a smudge is primarily, but not

entirely, diffuse. We found that virtually any directional lighting source that is

not positioned exactly at a complementary angle to the camera will render

a recoverable image of the smudge. Very little photo adjustment is required to

view the pattern, but images generally rendered best when the photo capture

was overexposed by two to three f-stops (4 to 8 times “correct” exposure).

If care was taken by the first responders to minimize contact with the device’s

screen, this recovery technique may be viable. As an example of what is possible,

Fig. 6.6 shows photos of the same Android device displayed side by side. The same

original photo was used for both images but the image on the right was enhanced as

part of the smudge attack process to highlight the contact points.

Recovery Mode
Some users install a custom ROM which usually enables root access to the device

through a modified recovery mode. Most custom ROMs install a modified recovery

partition which simplifies the process used to install the custom ROM. There are

FIGURE 6.6

Enhanced photo showing smudge attack.

Procedures for handling an android device 207

mailto:Image of Figure 6.6|tif

several popular recovery partitions that are primarily used with custom ROMs and

both offer shell access with root privileges from within the recovery console itself.

As the phone is not booted into normal mode, the pass code is circumvented and the

user data partitions can be mounted read-only, thus preventing changes to that area.

Forensic analysts should attempt to boot into recovery mode if the device is

powered off, when they take custody. If, instead, the device is running and a pass

code is present, you should first attempt to connect via ADB and consider smudge

attack. If neither of these is successful, you should then try to reboot into recovery

mode. Like many other techniques, recovery mode is accessed in different ways

depending on the device manufacturer and model. Table 6.2 covers the key

combinations to access recovery mode on the phones referenced throughout this

book. Each assumes the device is powered off already.

Once in recovery mode, you can connect the device to your Ubuntu workstation

and attempt to connect using ADB. If the device is running a nonmodified recovery

mode, the connection will fail. The screen generally shows a triangle with an

exclamation point inside it and often a small Android device next to it. On other

devices, you will be presented with the somewhat famous three Androids on

a skateboard. Finally, other recovery modules clearly show they are in modified

recovery code and provide a wide range of device options.

Flash a New Recovery Partition
There are a number of protocols, utilities, and devices that allow a skilled examiner

to flash the recovery partition of a device with a modified image.

The first available protocol supporting this approach was fastboot. Fastboot is

a NAND flash update protocol executed over USB while in bootloader mode. Most

devices ship with bootloader protection enabled, which prohibits the use of this

protocol. However, it is possible that the protection has been disabled. To determine

if bootloader protection is enabled, you must access the bootloader and look at the

signature information, which will indicate S-ON or S-OFF. The S represents

security, and so S-ON, the default production build, has security enabled; S-OFF

indicates security is not enabled. Some devices ship with S-OFF, such as the

Google Nexus One, as it is preloaded with Google’s Engineering SPL/Bootloader.

Table 6.2 Key Combinations to Boot into Recovery Mode

Device Key Combination

HTC G1 Hold home button and press power button. Use volume

down to select RECOVERY and press power key.

Nexus One Hold volume down and press power button.

Motorola Droid Hold X key and press power button.

HTC Incredible Hold volume down and press power button. Use volume

down to select RECOVERY and press power key.

208 CHAPTER 6 Android forensic techniques

Other rooting techniques also disable this protection, so checking this on a pass code

protected device may yield results. You can access the main bootloader using the

first part of the key combinations in Table 6.2 in the previous section.

Fastboot does not require USB debugging to access the device. Hence, like

recovery mode, it can be used to gain access to the device’s data. Once the new

recovery partition is available, the device should be rebooted into recovery mode and

forensic imaging can take place.

Other techniques exist which allow the recovery partition to be flashed with

a new image. Some examples include:

� Motorola’s RSD Lite

� sbf_flash

� Samsung’s Odin Multiloader

While these utilities and protocols may ultimately provide the privileges that

a forensic analyst requires, there is considerable effort required to not only locate

and test the techniques but to understand them sufficiently to use them in a forensic

investigation.

Screen Lock Bypass App
Security researcher Thomas Cannon recently developed a technique that allows

a screen lock bypass by installing an app through the new web-based Android

Market (Cannon, T., n.d.). Cannon’s technique utilizes a new feature in the web-

based Android Market that allows apps to be installed directly from the web site. As

such, you must have access to the Android Market using the primary Gmail user

name and password for the device, which may be accessible from the primary

computer of the user. Alternatively, you could access the Android Market if you

knew the user name and password and had sufficient authority. Changing the user’s

Gmail password would not work in this instance.

Cannon explains the technique on this web site as in the following section

(Cannon, T., n.d.).

How it Works
The procedure is quite simple really. Android sends out a number of broadcast

messages which an application can receive, such as SMS received or Wi-Fi.com

disconnected. An application has to register its receiver to receive broadcast

messages and this can be done at run time, or for some messages, at install time.

When a relevant message comes in, it is sent to the application and if the application

is not running it will be started automatically.

After testing out various broadcast messages the best one I found for the purpose

of this utility was android.intent.action.PACKAGE_ADDED. This exists in all APIs

as version 1 and is triggered when an application is installed. Hence, to get the

application to execute remotely, we first deploy it from the Android Market, then

deploy any other application that will cause the first one to launch.

Procedures for handling an android device 209

http://Wi-Fi.com

Once launched it is just a matter of calling the disableKeyguard() method in

KeyguardManager. This is a legitimate API to enable applications to disable the

screen lock when, say, an incoming phone call is detected. After finishing the call the

app ought to enable the screen lock again, but we just keep it disabled.

This technique is certainly worth consideration if you have proper access to the

Android Market.

Use Gmail User/Pass
On most Android phones, you can circumvent the pass code if you know the primary

Gmail user name and password registered with the device. After a number of failed

attempts (ten attempts on the G1), you will be presented with a screen that asks if

you forgot your pass code. From there, you can enter the Gmail user name and

password and you will then be prompted to reset the pass code. This technique does

not require the phone to be online as it uses credential information cached on the

phone.

If you do not have the current Gmail user name and password, but have sufficient

authority (i.e., court order) to reset the password, you could attempt to compel

Google to reset the account password. You would then have to connect the Android

device to the network and gain access. This issue presents many challenges,

including the need to place the device online, putting it at risk for remote wipe in

addition to making changes to the device. Reports on various law enforcement

mailing lists indicate this technique does not always work.

If this approach is attempted, additional research is warranted. In particular, it

would be prudent to control the Internet connection the device uses, most likely

a Wi-Fi.com access point. You could then limit the network access to only those

which the Google server needed for authentication. In addition, a detailed network

capture of test devices should be analyzed as well as the actual changes made to the

device.

JTAG and Chip-off
At this time, most Android devices do not encrypt the contents of the NAND flash,

which makes directly accessing and decoding the memory chips a potential work-

around if a pass code is enabled. There are two primary techniques, which provide

direct access to the chips. Both are technically challenging. The two techniques are:

� Joint test action group (JTAG)

� Physical extraction (chip-off)

Both techniques are not only technically challenging and require partial to full

disassembly of the device, but they require substantial post-extraction analysis to

reassemble the file system. For these reasons, JTAG and chip-off would likely be the

very last choices to circumvent a locked device.

With JTAG, you connect directly to the device’s CPU by soldering leads to

certain JTAG pads on the printed circuit board (PCB). Then JTAG software can be

210 CHAPTER 6 Android forensic techniques

http://Wi-Fi.com

used to perform a complete binary memory dump of the NAND flash, modify certain

partitions to allow root access, or eliminate the pass code altogether.

In the chip-off procedure, the NAND flash chips are physically extracted from

the PCB using heat and air. The chip, usually a small ball grid array (BGA) package,

then needs to have the BGA connections regenerated and inserted into special

hardware that connects to the chip and reads the NAND flash.

The advantages to these techniques are that they will work in any situation where

the NAND flash is not encrypted. However, extensive research, development,

testing, and practice are required to execute these techniques.

IMAGING ANDROID USB MASS STORAGE DEVICES
Every Android device to date has either an external Secure Digital (SD) card or an

EmbeddedMultiMediaCard (eMMC) that provides the large storage space required by

many users. These storage devices exist because the user’s app data, typically stored in

/data/data, is isolated for security and privacy reasons. However, users want to copy

songs, pictures, videos, or other files between theirAndroiddevice and a computer, and

these large capacity FAT file system partitions solve that issue. The sensitive user data

remains protected, yet the larger and more portable files are accessible to the user.

Initially, the approach to imaging the external storage was to simply remove it

from the Android device and image using a USB write blocker. However, a number

of challenges arose over time, including:

� Moving to eMMC storage meant that the mass storage was no longer removable.

� Apps can now run from the SD card and in this scenario, the .apk files are

encrypted. If capturing an unencrypted copy of the app is critical to an investi-

gation (for example, a case involving malware analysis or a Trojan horse

defense), the SD card must remain in the Android device.

� Newer devices are using RAM disks (tmpfs) more frequently to store user data

that might be helpful in an investigation. Often, removing the SD card requires

the device to be shut down and the battery removed, thus losing the ability to

recover the temporal data.

For these reasons, the recommended approach for imaging the USB Mass

Storage (UMS) devices on Android no longer involves removing the SD card but

instead imaging it via the UMS interface.

SD Card Versus eMMC

An SD card and eMMC are not all that different. The primary difference, of course,

is that the SD cards are portable, easily moving from one device to the next. They use

NAND flash, are based on the MultiMediaCard (MMC) specification, and have

embedded storage controllers, so that systems MTD is not needed for guest oper-

ating systems to read them.

Imaging android USB mass storage devices 211

To date, Android devices accept microSD cards generally ranging from 2 GB

up to 16 GB. However, larger cards are possible. Depending on the Android

device, the SD card may be easily accessed and removed from a running device.

However, many require that the device is shut down so that the battery can be

removed.

For storage embedded on the device, several manufacturers have begun using

eMMC, which consists of embedded storage with an MMC interface integrating

directly onto the device’s PCB. This standard simplifies accessing NAND flash

with the standardized eMMC protocol and is capable of supporting file systems

that are not NAND flash aware. This does not necessarily mean the file systems

preserve the life of the NAND flash at the same level and sophistication that

a NAND flash-aware file system like YAFFS2 does. However, the general lifespan

of Android devices is certainly decreasing and is likely not an issue for most

users.

How to Forensically Image the SD Card/eMMC

There are two primary methods to forensically acquire the SD card and eMMC

without removing it from the device. The first method, covered here, exposes the

UMS device interface to your forensic workstation and allows you to acquire

the image with your forensic tool of choice. The second method does not expose the

UMS to your forensic workstation and instead uses dd on the Android device. This

requires adb port forwarding, which will be covered in the section on physical

techniques later in this chapter.

Even though our Ubuntu VM has dd built in, we are going to download,

compile, and install an updated version of dd maintained by the Department of

Defense’s Cyber Crime Center. The program, dc3dd, is a patched version of GNU

dd and includes a number of features useful for computer forensics (dc3dd, n.d.),

such as:

� Piecewise and overall hashing with multiple algorithmsdSupports MD5,

SHA-1, SHA-256, and SHA-512.

� Progress meter with automatic input/output file-size probing.

� Combined log for hashes and errors.

� Error groupingdProduces one error message for identical sequential errors.

� Verify modedAble to hash output files and compare hashes to the acquisition

hash.

� Ability to split the output into chunks with numerical or alphabetic extensions.

� Ability to write multiple output files simultaneously.

The program is open source software licensed under the GNU Public license

version 3 (GPLv3) and is distributed online through SourceForge and was updated to

version 7.0 in August 2010 (dc3dd, n.d.). At this point in the book, you should be

fairly comfortable compiling programs and have all the tools needed, so here are the

abbreviated steps.

212 CHAPTER 6 Android forensic techniques

mkdir -p ~/src
cd ~/src
curl http://cdnetworks-us-2.dl.sourceforge.net/project/dc3dd/
dc3dd/7.0.0/dc3dd-7.0.0.tar.gz
> dc3dd-7.0.0.tar.gz
tar xzf dc3dd-7.0.0.tar.gz
cd dc3dd-7.0.0/
./configure
make
sudo make install

At this point, you could proceed with imaging. However, typing out the entire dc3dd

command each time is not only tedious but can result in typos that could cause

irreparable damage. So create a shell script, which not only acquires the device but

also records various system characteristics, date/time stamps, and creates log files,

which can be helpful as you write your report at a later time.

We will place the acquire script in /usr/local/bin so you can easily run the script

from any directory as /usr/local/bin is in your execution path by default:

ahoog@ubuntu:~$ sudo nano -w /usr/local/bin/acquire-disk.sh

Next, copy the following into the script, save by pressing Ctrl-O, and exit with

Ctrl-X:

#!/bin/bash

CLIENT="${1}"
CASE="${2}"
TAG="${3}"
SERIALNO="${4}"
SOURCEDEV="${5}"
DESTPATH="${6}"

OUTPUTPATH=$DESTPATH/$CLIENT/$CASE/$TAG-$SERIALNO
LOGFILE=$OUTPUTPATH/log/$TAG-$SERIALNO.log
STDERRLOG=$OUTPUTPATH/log/$TAG-$SERIALNO.stderr.log
SEPERATOR="--\r"

if ["$#" != 6]; then
 echo "Usage: acquire_disk.sh CLIENT CASE TAG SERIALNO SOURCEDEV
DESTPATH"
 exit 2
fi

check directories, created if needed
if [! -d "$DESTPATH"]; then
 echo "Destination path [$DESTPATH] does not exist, exiting"
 exit 1
fi

if [-d "$DESTPATH/$CLIENT/$CASE/$TAG-$SERIALNO"]; then
 echo "$DESTPATH/$CLIENT/$CASE/$TAG-$SERIALNO already exists, can't
overwrite evidence"
 exit 1
fi

Imaging android USB mass storage devices 213

mailto:Image of Figure 6.6|tif

GOTROOT=`whoami`

if ["$GOTROOT" != "root"]; then
 echo "must be root to execute"
 exit 1
fi

mkdir -p $OUTPUTPATH/log

echo -e "Start date/time" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`/bin/date`\n" >> $LOGFILE 2>> $STDERRLOG

echo -e "uname -a" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`uname -a`\n" >> $LOGFILE 2>> $STDERRLOG

echo -e "dmesg | tail -50" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`dmesg | tail -50`\n" >> $LOGFILE 2>> $STDERRLOG

echo -e "lshw" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`lshw`\n" >> $LOGFILE 2>> $STDERRLOG

VERSION=`fdisk -v`
echo -e "fdisk -l $SOURCEDEV [$VERSION]" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`fdisk -l $SOURCEDEV`\n" >> $LOGFILE 2>> $STDERRLOG

VERSION=`mmls -V`
echo -e "mmls $SOURCEDEV [$VERSION]" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`mmls $SOURCEDEV`\n" >> $LOGFILE 2>> $STDERRLOG

VERSION=`fsstat -V`
echo -e "fsstat $SOURCEDEV [$VERSION]" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`fsstat $SOURCEDEV`\n" >> $LOGFILE 2>> $STDERRLOG

VERSION=`dc3dd --version 2>&1 | grep dc3dd`
echo -e "dc3dd [$VERSION]" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "dc3dd if=$SOURCEDEV of=$OUTPUTPATH/$TAG-$SERIALNO.dc3dd verb=on
hash=sha256 hlog=$OUTPUTPATH/log/$TAG-$SERIALNO.hashlog
log=$OUTPUTPATH/log/$TAG-$SERIALNO.log rec=off\n" >> $LOGFILE
dc3dd if=$SOURCEDEV of=$OUTPUTPATH/$TAG-$SERIALNO.dc3dd verb=on hash=sha256
hlog=$OUTPUTPATH/log/$TAG-$SERIALNO.hashlog log=$OUTPUTPATH/log/
$TAG-$SERIALNO.log rec=off

echo -e "ls -lR $DESTPATH/$CLIENT/$CASE/$TAG-$SERIALNO" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`ls -lR $DESTPATH/$CLIENT/$CASE/$TAG-$SERIALNO`\n" >> $LOGFILE

echo -e "End date/time" >> $LOGFILE
echo -e "$SEPERATOR" >> $LOGFILE
echo -e "`/bin/date`\n" >> $LOGFILE

#sha256sum all log files
cd $OUTPUTPATH/log/
sha256sum * > $TAG-$SERIALNO.sha256.log

214 CHAPTER 6 Android forensic techniques

Next, you have to change permissions, so that you can run the script and then run

it without parameters to see the usage help:

ahoog@ubuntu:~$ sudo chmod 755 /usr/local/bin/acquire-disk.sh
ahoog@ubuntu:~$ sudo /usr/local/bin/acquire-disk.sh
Usage: acquire_disk.sh CLIENT CASE TAG SERIALNO SOURCEDEV DESTPATH

The great thing about this script, and open source in general, is that you can

simply change it as you see fit. If you do not want to track client name, then simply

remove it from the script.

Next, we have to mount the UMS device on your Ubuntu workstation. As

covered in Chapter 1 in the Ubuntu VM setup, it is critical that you have disabled

automount on your workstation. If you did not do this, please review the steps

necessary and complete before presenting the UMS devices to the VM.

Additionally, the ideal situation would first connect the Android device to

a hardware-based USB write blocker. However, some write blockers seem to have

trouble when the connected device exposes more than one device ID. You should

experiment with your USB write blocker and, ideally, have this working first.

NOTE

Tableau UltraBlock USB
The Tableau UltraBlock USB model T8, running the latest firmware from August 9, 2009, was

only able to pass through the first USB device found on the reference HTC Incredible, and so we

were unable to use it when analyzing a device. Tableau has a new UltraBlock USB device which

may work; however, we have not verified this. Examiners should test the various USB write

blockers they have for compatibility.

Next, we need to determine to what devices the UMS is mapped. This infor-

mation is displayed in the kernel logs and can be easily accessed with the “dmesg”

command:

ahoog@ubuntu:~/$ dmesg
<snip>
[327202.720222] usb 1-1: new high speed USB device using ehci_hcd and address 12
[327203.032759] scsi11 : usb-storage 1-1:1.0
[327204.039549] scsi 11:0:0:0: Direct-Access HTC Android Phone 0100
PQ: 0 ANSI: 2
[327204.044572] scsi 11:0:0:1: Direct-Access HTC Android Phone 0100
PQ: 0 ANSI: 2
[327204.047208] scsi 11:0:0:2: CD-ROM HTC Android Phone 0100
PQ: 0 ANSI: 2
[327204.049854] sd 11:0:0:0: Attached scsi generic sg2 type 0
[327204.052640] sd 11:0:0:1: Attached scsi generic sg3 type 0
[327204.066738] sr1: scsi3-mmc drive: 0x/0x caddy
[327204.066817] sr 11:0:0:2: Attached scsi CD-ROM sr1
[327204.066892] sr 11:0:0:2: Attached scsi generic sg4 type 5
[327204.082001] sd 11:0:0:0: [sdb] Attached SCSI removable disk
[327204.091070] sd 11:0:0:1: [sdc] Attached SCSI removable disk

Imaging android USB mass storage devices 215

As discussed previously, the HTC Incredible exposes three USB interfaces in

addition to ADB:

� CD-ROM for device driver install (sr1)

� eMMC UMS device (sdb)

� SD card UMS device (sdc)

However, the differences between /dev/sdb and /dev/sdc are not easily discernible

until the UMS or Disk drive feature is enabled on the Android device. Once enabled,

you should then examine the output of dmesg again.

WARNING

Use hardware write blocker
Although the automount feature on the Ubuntu workstation has been disabled, it is critical that

the forensic analyst connects only the Android device to the workstation through a hardware

write blocker to ensure no changes are made to the device. All hardware should be thoroughly

tested prior to active use in a case.

ahoog@ubuntu:~/$ dmesg
<snip>
[327520.269248] sd 11:0:0:1: [sdc] 3911680 512-byte logical blocks:
(2.00 GB/1.86 GiB)
[327520.298549] sd 11:0:0:1: [sdc] Assuming drive cache: write through
[327520.304747] sd 11:0:0:1: [sdc] Assuming drive cache: write through
[327520.304757] sdc: sdc1
[327522.267959] sd 11:0:0:0: [sdb] 13844464 512-byte logical blocks:
(7.08 GB/6.60 GiB)
[327522.271097] sd 11:0:0:0: [sdb] Assuming drive cache: write through
[327522.277187] sd 11:0:0:0: [sdb] Assuming drive cache: write through
[327522.277202] sdb:

It is now clearer that /dev/sdb is the 7 GB storage device (which is the eMMC)

while the 2 GB SD card is mapped to /dev/sdc. We can now acquire the devices

using our acquire script or any forensic imaging tool available on your forensic

workstation. The script takes the following six parameters:

1. Client dThis parameter creates the folder structure, examples might be “sher-

iffs-office” or a client name such as “viaforensics.”

2. CasedThis parameter provides a case name, such as af-book.

3. TagdThis parameter is tag number for the evidence you are forensically

imaging, item001 in our example.

4. SerialnodThis is the serial number of the device, disk, SD card, etc. If you do

not have access to a serial number, you can type any text you choose such as

unknown-serialno.

5. SourcedevdThis is the device you want to acquire such as /dev/sdb, /dev/sdc,

etc. You can determine this using dmesg which is explained next.

6. DestpathdThe top-level directory where the folders should be created. It could

be your home directory (~) or perhaps a folder called clients (~/clients).

216 CHAPTER 6 Android forensic techniques

For this example, create a folder in your home directory called sd-emmc and then

run the acquire script with sudo permissions.

ahoog@ubuntu:~$ sudo acquire-disk.sh viaforensics af-book item001
unknown-serialno /dev/sdc ~/sd-emmc
Cannot determine file system type

dc3dd 7.0.0 started at 2011-02-22 04:36:05 -0600
compiled options:
command line: dc3dd if=/dev/sdc of=/home/ahoog/sd-emmc/viaforensics/
af-book/item001-unknown-serialno/item001-unknown-serialno.dc3dd
verb=on hash=sha256 hlog=/home/ahoog/sd-emmc/viaforensics/af-book/
item001-unknown-serialno/log/item001-unknown-serialno.hashlog
log=/home/ahoog/sd-emmc/viaforensics/af-book/item001-unknown-serialno/
log/item001-unknown-serialno.log rec=off
device size: 3911680 sectors (probed)
sector size: 512 bytes (probed)
2002780160 bytes (1.9 G) copied (100%), 808.727 s, 2.4 M/s

input results for device '/dev/sdc':
 3911680 sectors in
 0 bad sectors replaced by zeros
 fc8f3d6dc7e659c3124a4113d2d0ebe87466b497038aedf9f7a1b89c44eda8b9 (sha256)

output results for file '/home/ahoog/sd-emmc/viaforensics/af-book/
item001-unknown-serialno/item001-unknown-serialno.dc3dd':
 3911680 sectors out

dc3dd completed at 2011-02-22 04:49:34 -0600

Youcan thenuse the samegeneral command,but change theparameters to image the

eMMC which, for the device, is located at /dev/sdb. After these commands complete,

the forensic images and log files are in ~/sd-emmc and are structured as follows:

hoog@ubuntu:~$ tree -h sd-emmc/
sd-emmc/
└── [4.0K] viaforensics
 └── [4.0K] af-book
 ├── [4.0K] item001-emmc-unknown-serialno
 │ ├── [6.6G] item001-emmc-unknown-serialno.dc3dd
 │ └── [4.0K] log
 │ ├── [686] item001-emmc-unknown-serialno.hashlog
 │ ├── [39K] item001-emmc-unknown-serialno.log
 │ ├── [374] item001-emmc-unknown-serialno.sha256.log
 │ └── [0] item001-emmc-unknown-serialno.stderr.log
 └── [4.0K] item001-sd-unknown-serialno
 ├── [1.9G] item001-sd-unknown-serialno.dc3dd
 └── [4.0K] log
 ├── [726] item001-sd-unknown-serialno.hashlog
 ├── [39K] item001-sd-unknown-serialno.log
 ├── [296] item001-sd-unknown-serialno.sha256.log
 └── [0] item001-sd-unknown-serialno.stderr.log

6 directories, 10 files

For each UMS device forensically imaged, we not only have the verified image

but also a hashlog for the dd image, log file with date, time, system info and

Imaging android USB mass storage devices 217

commands run, an error log, and finally a listing of each log file and its sha256

hash. This ensures sufficient details are known about the imaging process.

TIP

Encrypted apps on the SD card
If apps are installed on the SD card, they are encrypted and thus, if the files are examined from

the SD card image, they will be unreadable. However, when the SD card is not mounted on your

forensic workstation, the unencrypted .apk files are mounted in /mnt/asec. If an investigation

relies on .apk app analysis, ensure you acquire a copy of the unencrypted files too.

LOGICAL TECHNIQUES
As discussed at the start of this chapter, logical forensic techniques extract data that

is allocated. This is typically achieved by accessing the file system. Logical

techniques are often the first type of examination a forensic analyst will run

because they are not only easier to execute but often provide sufficient data for the

case. Android forensics physical techniques can provide far more data. However,

they are more difficult to successfully execute and take considerably more effort to

analyze.

Logical techniques also have the advantage of working in far more scenarios as

the only requirement is that USB debugging is enabled. In other words, Android

forensics logical techniques do not require root access.

In this section, we first cover techniques that are freely available (although

AFLogical is only free for active law enforcement and government agencies) fol-

lowed by a review of available commercial software.

ADB Pull

In Chapter 4, the recursive adb pull command was demonstrated several times as

various parts of the file system were copied to the Ubuntu workstation for further

analysis. Unless an Android device has root access or is running a custom ROM, the

adb daemon running on the device that proxies the recursive copy only runs with

shell permissions. As such, some of the more forensically relevant files are not

accessible. However, there are still files which can be accessed.

If you attempt to access files that the shell user does not have permissions to, it

simply does not copy the files:

ahoog@ubuntu:~$ adb pull /data adbpull
pull: building file list...
0 files pulled. 0 files skipped.

However, if you have sufficient privileges (root in the next example), then this

method is very simple and effective:

218 CHAPTER 6 Android forensic techniques

ahoog@ubuntu:~$ adb pull /data adbpull/
pull: building file list...
<snip>
pull: /data/miscrild_nitz_long_name_31026 -> data/misc/rild_nitz_long_name_31026
pull: /data/misc/akmd_set.txt -> data/misc/akmd_set.txt

712 files pulled. 0 files skipped.
963 KB/s (208943249 bytes in 211.671s)

As you can see from the output above, the entire “/data” partition was copied to

a local directory in just over three and a half minutes. The directory structure is

maintained during the copy so you can then simply browse or otherwise analyze the

files of interest from the workstation.

As most phones will not have root access (at least by default), this technique may

appear to be of little value. However, it is a powerful utility to understand and there

are several scenarios ideal for this approach. These scenarios include:

� On nonrooted devices, an adb pull can still access useful files such as unen-

crypted apps, most of the tmpfs file systems that can include user data such as

browser history, and system information found in “/proc,” “/sys,” and other

readable directories.

� On rooted devices, a pull of nearly all directories is quite simple and certain files

and directories from “/data” would be of interest.

� When utilizing the physical technique, it is not always possible to mount some

acquired file systems such as YAFFS2. If adbd is running with root permissions,

you can quickly extract a logical copy of the file system with adb pull.

As adb is not only a free utility in the Android SDK but also very versatile, it

should be one of the primary logical tools used on a device.

WARNING

adb Pull issues
Some recursive pulls using adb can fail in the middle of the data transfer due to permission or

other issues. You should closely monitor the results of the command to determine if any issues

were encountered. Breaking the recursive pull of large directories into smaller data pulls may

yield better results.

Backup Analysis

When Android was first released, it did not provide a mechanism for users to backup

their personal data. As a result, a number of backup applications were developed and

distributed on the Android Market. For users running custom ROMs, there was an

even more powerful backup utility developed called nandroid.

Many of the backup utilities have a “Save to SD Card” option (which users found

extremely convenient) as well as several options to save to “the cloud.” Either way,

users could take a backup of their devices, and if needed they could restore required

Logical techniques 219

data. This is not only a great way for users to protect themselves from data loss, but it

can be a great source of information for forensic analysts.

One of the more popular backup apps is RerWare’s My Backup Prowhich can take

a backup of device data using Content Provider and even the entire “/data/data” files if

the device has root access. The user can choose between saving to the SD card and

saving to RerWare’s server. The app supports (RerWare, LLC, n.d.) the following:

� Application install files (if phone has root access, this includes APK þ Data and

Market Links)

� Contacts

� Call log

� Browser bookmarks

� SMS (text messages)

� MMS (attachments in messages)

� System settings

� Home screens (including HTC Sense UI)

� Alarms

� Dictionary

� Calendars

� Music playlists

� Integrated third-party applications

The last bullet, “integrated third-party applications,” refers to companies who

provide RerWare hooks for data backup. At least initially, RerWare would pay

developers to include RerWare backup support in their apps.

Interestingly, the app runs not only on Android but also on Windows Mobile,

Blackberry, and soon Symbian OS. The user can take a backup on one platform and

restore on a completely different supported OS. RerWare saves a single SQLite file

to the SD card when the device backup is stored locally.

In the more recent releases of Android, a new backup API is now available.

Developers can simply integrate these APIs into their apps and the rest of the backup

is handled by Android and Google. This provides the users with secure, cloud-based

backups with consistency across apps, and will likely become the de facto standard.

Unfortunately, current research has not yet discovered useful artifacts from the new

backup APIs left on an Android device.

Regardless of the backup app, forensic analysts should determine if one was

installed and, if so, where the backup data is stored. The SD card should be

examined as well as other devices such as a computer or laptop. The data saved in

a backup is obviously of significant value in an examination.

AFLogical

AFLogical is an Android forensics logical technique which is distributed free to law

enforcement and government agencies. The app, developed by viaForensics, extracts

data using Content Providers, which are a key feature of the Android platform. This

is the same technique that commercial forensics tools use for logical forensics.

220 CHAPTER 6 Android forensic techniques

Recall that Android’s security model is effective in limiting access to app data

except in a few circumstances. Here is a quick recap of the key components of

Android’s security model:

� Each application is assigned a unique Linux user and group id.

� Apps execute using their specific user ID in a dedicated process and Dalvik VM.

� Each app has dedicated storage, generally in “/data/data,” that only the app can

access.

However, the Android framework does provide a mechanism by which apps can

share data. An app developer can include support for Content Providers within their

application, which allows them to share data with other apps. The developer controls

what data is exposed to other apps. During the install of an app, the user controls

whether or not an app should gain access to the requested Content Providers.

Some examples of Content Providers are:

� SMS/MMS

� Contacts

� Calendar

� Facebook

� Gmail

And there are many more.

The AFLogical app takes advantage of the Content Provider architecture to gain

access to data stored on the device. Similar to commercial Android logical tools,

USB debugging must be enabled on the device for AFLogical to extract the data.

The current version, 1.5.1, extracts data from 41 Content Providers and provides the

output information to the SD card in CSV format and as an info.xml file, which

provides details about the device and installed apps. AFLogical supports devices

running Android 1.5 and later, and has been specifically updated to support

extraction of large data sets such as an SMS database with over 35,000 messages.

The currently supported Content Providers are:

1. Browser Bookmarks

2. Browser Searches

3. Calendars

4. Calendar Attendees

5. Calendar Events

6. Calendar Extended Properties

7. Calendar Reminders

8. Call Log Calls

9. Contacts Contact Methods

10. Contacts Extensions

11. Contacts Groups

12. Contacts Organizations

13. Contacts Phones

Logical techniques 221

14. Contacts Settings

15. External Media

16. External Image Media

17. External Image Thumb Media

18. External Videos

19. IM Account

20. IM Accounts

21. IM Chats

22. IM Contacts Provider (IM Contacts)

23. IM Invitations

24. IM Messages

25. IM Providers

26. IM Provider Settings

27. Internal Image Media

28. Internal Image Thumb Media

29. Internal Videos

30. Maps-Friends

31. Maps-Friends extra

32. Maps-Friends contacts

33. MMS

34. Mms Parts Provider (MMSParts)

35. Notes

36. People

37. People Deleted

38. Phone Storage (HTC Incredible)

39. Search History

40. SMS

41. Social Contracts Activities

Let’s walk through the steps for running AFLogical on a device. First, ensure you

have downloaded AFLogical, which requires registration and approval from via-

Forensics. (You can access the AFLogical page at http://viaforensics.com/products/

tools/aflogical/.) Next, you need to replace the user’s SD card with an SD card you

control and ensure that USB debugging is enabled on the device. Then connect the

Android device to your Ubuntu workstation and make sure you pass the USB

connection through to the VM.

WARNING

Replace user’s SD card
This version of AFLogical writes content directly to the SD card and it is important that the

user’s SD card is removed and replaced with the examiner’s SD card. Failure to do this will

either write data to the user’s SD card or AFLogical will fail as it cannot write to the SD card.

The commercial version of this app will eventually replace the writing to the SD card in favor of

port forwarding over adb.

222 CHAPTER 6 Android forensic techniques

http://viaforensics.com/products/tools/aflogical/
http://viaforensics.com/products/tools/aflogical/

From a terminal session, verify you can see the device:

$adb devices
List of devices attached
0403555511112222F device

Assuming you saved the AFLogical app in your home directory, you can install it

with the following command:

ahoog@ubuntu:~$ adb install ~/AndroidForensics.apk
523 KB/s (31558 bytes in 0.058s)
 pkg: /data/local/tmp/AndroidForensics.apk
Success

Note: If AFLogical is already installed on the device, an error will display and

you must uninstall the existing app before you can install the new version. To

uninstall, run the following command:

ahoog@ubuntu:~$ adb install /opt/via/AFLogical/AndroidForensics.apk
824 KB/s (31558 bytes in 0.037s)
 pkg: /data/local/tmp/AndroidForensics.apk
Failure [INSTALL_FAILED_ALREADY_EXISTS]

ahoog@ubuntu:~$ adb uninstall com.viaforensics.android
Success

After the application is successfully installed, you can run the program from

either the Android device directly or via command line. If you run the app from

command line, you can simply start the app and then complete using the device or

have it run automated. To run the app and extraction automatically, execute the

following:

ahoog@ubuntu:~$ adb shell am start -n
com.viaforensics.android/com.viaforensics.android.ExtractAllData
Starting: Intent { cmp=com.viaforensics.android/.ExtractAllData }

The program immediately starts and begins to extract data from all supported

Content Providers. If you are viewing the screen, you would see an image similar to

Fig. 6.7.

Or you can simply start the app with the following:

ahoog@ubuntu:~$ adb shell am start -n
com.viaforensics.android/com.viaforensics.android.ForensicsActivity
Starting: Intent { cmp=com.viaforensics.android/.ForensicsActivity }

Logical techniques 223

And then complete the acquisition using the screen presented on the device as

shown in Fig. 6.8.

Otherwise, you can simply run the app directly from the All Apps screen

on the device as shown in Fig. 6.9. First, access the Android app menu,

FIGURE 6.8

AFLogical, run from command line.

FIGURE 6.7

AFLogical, extract all from command line.

224 CHAPTER 6 Android forensic techniques

mailto:Image of Figure 6.8|tif

look for a program called viaForensics and click on the icon to launch

the app.

You will then be presented with the AFLogical data extraction screen. You can

select or deselect individual Content Providers or leave all of them selected. Next,

you hit Capture which will start the data collection process as illustrated in

Fig. 6.10.

Once the data collection is complete, you will receive the corresponding message

shown in Fig. 6.11.

The extracted data are saved to the SD card of the device in a directory called

forensics and a subdirectory named after the date in YYYYMMDD.HHMM

format. For this example, we moved the files from the SD card to an AFLogical

directory on the local file system using adb pull. If you examine that folder,

you see:

FIGURE 6.9

AFLogical in All Apps list.

ahoog@ubuntu:~$ ls AFLogical/
20110221.1708

Logical techniques 225

FIGURE 6.11

AFLogical, data extraction complete.

FIGURE 6.10

AFLogical capturing data.

226 CHAPTER 6 Android forensic techniques

mailto:Image of Figure 6.11|tif

This then contains the extracted data:

ahoog@ubuntu:~$ ls AFLogical/20110221.1708/
Browser Bookmarks.csv IM Providers.csv
Browser Searches.csv IM ProviderSettings.csv
CallLog Calls.csv info.xml
Contacts ContactMethods.csv Internal Image Media.csv
Contacts Extensions.csv Internal Image Thumb Media.csv
Contacts Groups.csv Internal Videos.csv
Contacts Organizations.csv Maps-Friends contacts.csv
Contacts Phones.csv Maps-Friends.csv
Contacts Settings.csv Maps-Friends extra .csv
External Image Media.csv MMS.csv
External Image Thumb Media.csv MMSParts.csv
External Media.csv People.csv
External Videos.csv PhoneStorage (HTC Incredible).csv
IM Account.csv sanitize.sh
IM Accounts.csv Search History.csv
IM Chats.csv SMS.csv
IM Contacts.csv Social Contracts Activities.csv
IM Invitations.csv

The CSV files can be viewed using any editor or spreadsheet. There is also a file in

the directory called info.xml, which contains information about the device including

the IMSI, IMEI, Android version, network provider, and more, as well as the list of

all installed apps.

ahoog@ubuntu:~$ less info.xml
<android-forensics>
<date-time>20110221.1708</date-time>
<IMSI>removed</IMSI>
<IMEI>removed</IMEI>
<build>
 <version.release>2.2</version.release>
 <version.sdk>8</version.sdk>
 <version.incremental>264707</version.incremental>
 <board>inc</board>
 <brand>verizon_wwe</brand>
 <device>inc</device>
 <display>FRF91</display>
 <fingerprint>verizon_wwe/inc/inc/inc:2.2/FRF91/264707:user/release-
keys</fingerprint>
 <host>HPA003</host>
 <id>FRF91</id>
 <model>ADR6300</model>
 <product>inc</product>
 <tags>release-keys</tags>
 <time>1285855309000</time>
 <type>user</type>
 <user>root</user>
</build>
<applications>
 <app>
 <label>Network Location</label>
 <className>null</className>
 <dataDir>/data/data/com.google.android.location</dataDir>
 <descriptionRes>0</descriptionRes>
 <flags>48709</flags>
 <manageSpaceActivityName>null</manageSpaceActivityName>

Logical techniques 227

mailto:Image of Figure 6.10|tif
mailto:Image of Figure 6.10|tif

 <name>null</name>
 <packageName>com.google.android.location</packageName>
 <permission>null</permission>
 <processName>system</processName>
 <publicSourceDir>/system/app/NetworkLocation.apk
 </publicSourceDir>
 <sourceDir>/system/app/NetworkLocation.apk</sourceDir>
 <taskAffinity>com.google.android.location</taskAffinity>
 <uid>1000</uid>
 <enabled>true</enabled>
 <description>null</description>
 <packageinfo> <versionCode>8</versionCode>
 <versionName>2.2</versionName>
 </packageinfo> </app>
 <app>
 <label>IMDb</label>
 <className>null</className>
 <dataDir>/data/data/com.imdb.mobile</dataDir>
<snip>

The data can now be analyzed by the forensic examiner and easily shared with

others.

WARNING

Uninstall AFLogical
Do not forget to uninstall AFLogical. Failure to uninstall the app would mean that the Android

device could potentially be returned to the owner with the forensic agent still accessible. To

uninstall AFLogical, key in the following command:

adb uninstall com.viaforensics.android

This should return Success. Alternately, you can go to the home screen, press Menu,

select Applications, Manage Applications, viaForensics, and finally Uninstall.

Commercial Providers

Many of the commercial mobile forensic software vendors now support Android. To

date, the forensic software only supports a logical examination of an Android device

using the same Content Provider technique used by AFLogical. It can be helpful for

a forensic examiner to understand how each of the forensic software vendors

implement Android support.

Each software company provided an evaluation copy of their software as well as

an overview of their platform, which is included at the beginning of each section. A

Motorola Droid running Android 2.2 was used for the examination. This section is

not intended to evaluate each platform, but rather provide a helpful overview. The

following forensic software packages were provided (reviewed in alphabetical

order):

� Cellebrite UFED

� Compelson MOBILedit!

� EnCase Neutrino

228 CHAPTER 6 Android forensic techniques

mailto:Image of Figure 6.10|tif

� Micro Systemation XRY

� Paraben Device Seizure

� viaForensics’ viaExtract

Two additional forensic software packages were tested. However, issues were

encountered which prevented their inclusion at this time. These vendors do provide

a forensic solution for Android and, if interested, you should review their offerings

independently. The software packages omitted were Oxygen Forensic Suite 2010

and Logicube’s CellDEK.

The challenge with any such overview is that the forensic software is updated

frequently enough that a newer version likely already exists. Forensic examiners and

security engineers interested in a particular software package should check the

vendor’s web site or contact them directly.

Cellebrite UFED
The following overview of Cellebrite was provided by the vendor:

The Cellebrite UFED Forensic system is a stand-alone device capable of

acquiring data from approximately 1600 mobile devices and storing the information

on a USB drive, SD card or PC. UFED also has a built-in SIM card reader and cloner.

The ability to clone a SIM card is a powerful feature as you can create and insert

a clone of the original SIM and the phone will function normally. However, it will

not register on the mobile carrier’s network, eliminating the need for Faraday bags

and the possibility that the data on the phone will be updated (or erased). The UFED

package ships with about 70 cables for connecting to most mobile devices available

today. Connection protocols supported include serial, USB, infrared, and Bluetooth.

Cellebrite also distributes the UFED Report Manager, which provides an intui-

tive reporting interface and allows the user to export data/reports into Excel, MS

Outlook, Outlook Express, and CSV or to simply print the report.

The UFED device fully supports Unicode and thus, can process phones with any

language enabled. Also, the following data types are extracted:

� Phone Book

� Text Messages

� Call History (Received, Dialed, Missed)

� SIM ID Cloning

� Deleted Text Messages off SIM/USIM

� Audio Recordings

� Videos

� Pictures

� Phone Details (IMEI/ESN phone number)

Installation

The UFED system is a stand-alone unit and is packaged in a soft case containing the

UFED device, user manual, software CD-ROM, USB Bluetooth radio (Cambridge

Logical techniques 229

Silicon Radio Ltd), 250 MB USB drive, and roughly 72 cables for connecting to

supported devices.

The UFED system provides several mechanisms by which the firmware and

software can be updated. After setting the date and time, an examiner can

simply connect the UFED system to the network via an Ethernet cable,

provided DHCP and Internet access are available. Next, select Services,

Upgrade, Upgrade Application Now, and select HTTP Server as the source. For

this test, the latest Application software, version 1.1.0.5, was located and

installed. As the UFED system is a stand-alone solution, no additional installs

are necessary.

Acquisition

The acquisition of the Motorola Droid was quite fast and simple on the UFED

system. After powering the device on, select Extract Phone Data, Motorola

CDMA, Moto. A855 Droid (Android), USB disk drive (destination), and the

desired Content types. The following instructions were then displayed by the

UFED system (see Fig. 6.12):

Moto. A855 Droid (Android):
Before starting the transaction, prepare phonebook for transfer, as follows:
1. Make sure SD card is inserted into the phone.
2. Go to "Contacts".
3. Press on "Menu" Key on the phone.
4. Select "Import/Export".
5. Select "Export to SD card" and "OK".
6. Wait for completing of Export to .vcf file.

To enable phone USB Connectivity, set Connection settings as follows:
Menu -> Settings -> Applications -> Development -> Select the checkboxes: "USB
debugging" and "Stay awake".

FIGURE 6.12

UFED instructions for Android device.

230 CHAPTER 6 Android forensic techniques

mailto:Image of Figure 6.10|tif
mailto:Image of Figure 6.12|tif

It should be noted that the contacts list will be saved to the SD card if the

suggested steps are followed. After performing these steps, you hit Continue and the

acquisition proceeds. The UFED system next prompts:

Set USB to Mass Storage (Memory Card) mode on the SOURCE phone

And after this step is completed, the acquisition proceeds. You may be prompted

to set UMS again before the acquisition is complete. The acquisition process took

just over three minutes and provided the following prompt:

Moto. A855 Droid (Android):
Please return the Connection settings back: Menu -> Settings -> Applications ->
Development -> unmark the checkboxes: "USB debugging" & "Stay awake"

The results from the acquisition were stored on the flash drive that was plugged

into the UFED. A 25 MB folder was created on this drive with folders for videos,

audio, and images. There were also three files of interest created: PhoneBook

2010_11_23 (001).htm, SMSMessages 2010_11_23 (001).htm, and Report.htm. All

these can be viewed in a web browser. The file Report.htm contains the entire report

of the extraction. This contains sections for Phone Examination Report Properties,

Phone Examination Report Index, Phone Contacts, Phone SMSdText Messages,

Phone Incoming Calls List, Phone Outgoing Calls List, Phone Missed Calls List,

Images, Ringtones, Audio, and Video.

The entire acquisition process took approximately ten minutes. After the

acquisition was completed, a quick examination of the SD card revealed a file

named 00001.vcf that contained the contact information from the export

process.

Phone information was well laid out and was quite accurate.

Data presentation and analysis

The acquisition data was stored on a flash drive connected to the UFED system and

contained a folder that stored videos, audio files, and images as well as three HTML

files, which contained the report data:

1. PhoneBook 2010_11_23 (001).htm

2. SMSMessages 2010_11_23 (001).htm

3. Report.htm

These files can be viewed in a web browser and samples from the report are

displayed in Fig. 6.13, in which thorough phone information was captured.

Fig. 6.14 shows how the Phone Contacts are laid out.

Fig. 6.15 shows text messages displayed chronologically with detailed infor-

mation on whether the message was sent or received.

Logical techniques 231

mailto:Image of Figure 6.12|tif

FIGURE 6.14

UFED phone contacts reporting.

FIGURE 6.13

UFED phone information reporting.

232 CHAPTER 6 Android forensic techniques

mailto:Image of Figure 6.14|tif

However, deleted text messages are not displayed, nor are MMS messages.

Call logs are displayed chronologically as shown in Fig. 6.16, and include the

length of the call. They are categorized into Incoming, Outgoing, and Missed

sections.

Several calls were deleted from the call logs; however, UFED was able to extract

and display the details.

All of the images found on the phone are reported, along with a thumbnail of the

image and details, including file name, size, date and time created, and resolution, as

shown in Fig. 6.17.

Deleted images did not appear, and it seemed as though a duplicate of each image

was created. Both audio and video files are reported. The report includes file name,

file size, date and time created, and a link to view or listen to the media, as shown in

Fig. 6.18.

No deleted videos were returned and songs uploaded to the device did not appear

in the report. The audio files that were reported were returned from Google Maps

Navigation.

FIGURE 6.15

UFED SMS reporting.

Logical techniques 233

FIGURE 6.16

UFED phone calls reporting.

FIGURE 6.17

UFED images reporting.

234 CHAPTER 6 Android forensic techniques

Compelson MOBILedit!
The following overview of MOBILedit! was provided by the vendor:

With just a single click, MOBILedit! Forensic collects all possible data from

mobile phones and generates extensive reports onto a PC that can be stored or

printed. It is the most universal mobile phone solution with software supporting most

GSM phones and open architecture allowing the support of any phone. The system

allows you to customize the output making it completely adaptable to the needs of

your judicial system.

MOBILedit! Forensic does a complete analysis of the phone including its phone

book, last dialed numbers, missed calls, received calls, MMS messages, SMS

messages, photos, videos, files, phone details, calendar, notes, tasks, and much more.

MOBILedit! Forensic caters to the entire world with reports that can be gener-

ated in any language. You are able to prepare creative templates according to your

specific needs. You construct all the text that you would like to see appear in every

final report. It also allows for XML export, so that you can connect the application

with other systems. The XSL module exports and nicely formats all data in the

package to an Internet browser. You can burn, send, and share the report as needed.

MOBILedit! Forensic reports can be created without the touch of a human hand.

While there is noneed to import or export stubs of data fromSIMsor phones, it is possible

in manual investigation mode in MOBILedit! Forensic. It is read-only and hence, it

prevents changes in the device, which could mean the disappearance of evidence. All

FIGURE 6.18

UFED audio and video reporting.

Logical techniques 235

items are also protected against later modifications by MD5 hash codes used in digital

signatures. It helps you to quickly locate the possible place of modification.

MOBILedit! Forensic also has frequent updates and upgrades so that you can be

sure you are using the absolute latest in technology. Its detailed reports and user-

friendly design make it a pleasure to work with.

Installation

The MOBILedit!4 Forensic application was downloaded from www.mobiledit.com

and the install only took a few minutes. After the installation is completed and the

application is run for thefirst time, you are presentedwith a prompt to check for updates.

To activate the software, Compelson sends an e-mail with an “activation card”

attachment. This PDF file includes installation instructions as well as an activation

key that worked without any issues.

Acquisition

To begin the acquisition, the examiner must first connect the Android device to the

forensic workstation using USB and ensure USB debugging is enabled. MOBILedit!

attempts to detect the device as shown in Fig. 6.19.

After clicking “Finish,” there was a notification prompting the installation of the

“Connector” app on the device, shown in Fig. 6.20.

Following the quick installation, you create a name for the investigation and

select the type of data you want to extract. In the example shown in Fig. 6.21, the

FIGURE 6.19

detect Android device.

236 CHAPTER 6 Android forensic techniques

http://www.mobiledit.com

option to take a backup of the “Whole file system” was selected, which then

executed without error and presented a success status as illustrated in Fig. 6.22.

You can then decide if you want to add this to an already existing case or create

a new one. For this example, shown in Fig. 6.23, a new case was created and a data

export format option of XLS was selected.

FIGURE 6.20

Install the connector.

FIGURE 6.21

Take backup of the whole file system.

Logical techniques 237

FIGURE 6.22

Operation completed successfully.

FIGURE 6.23

Data export format.

238 CHAPTER 6 Android forensic techniques

Data presentation and analysis

Immediately following the acquisition of the device, MOBILedit displays statistics

on the devices that were acquired, as well as a view of the application data available

for analysis. Fig. 6.24 shows the main screen where the examiner can see specific

device information including the IMEI number, serial number, and details on the

amount of Phone memory, Battery signal, Network signal, and Memory card space

available on the device.

The next option in the Tree View is the Phonebook where the examiner can view

all contacts stored within the Phonebook including e-mail address, phone numbers,

nicknames, and any notes entered regarding the contact, as shown in Fig. 6.25.

Call logs are next and are separated into Missed calls, Last dialed numbers, and

Received calls as shown in Fig. 6.26.

SMS messages are similarly separated into categories including Inbox, Sent

items, and Drafts. Each section contains the date and time the message was received

(or sent), the message content, and who the message was from. Contact names are

linked to the Phonebook, so both name and phone numbers are displayed. Fig. 6.27

shows the SMS message inbox.

Any MMS messages are displayed within the “MMS Storage” folder, shown in

Fig. 6.28. On the left-hand side, information about the message is displayed,

FIGURE 6.24

Main screen.

Logical techniques 239

including the subject, number it was sent from, number it was sent to, and date and

time. On the right-hand side is a preview of the actual image.

Selecting the Calendar option will literally pull up a calendar within the reporting

tool as shown in Fig. 6.29.

Additional data extracted from the device or SD card is shown within the “files”

directory. This directory contains a listing of the file system on the device. While

some of these folders are empty (such as cache, config, and data), there are also some

folders which contain raw files acquired from the device. For example, within the SD

card folder, the subfolder “secret stuff” contained two files shown in Fig. 6.30.

Finally, the tool also provides a hex dump capability for specified files. After

selecting “Hex Dump,” and then a file (in this example, a .jpg file was selected),

FIGURE 6.25

Phonebook.

FIGURE 6.26

Call logsdMissed calls.

240 CHAPTER 6 Android forensic techniques

the hex dump is viewed on the right-hand side using a hex editor as shown in

Fig. 6.31.

Most of the raw user data files on the Android can be found within the “data”

folder and, when MOBILedit created an entry in the Tree View for this folder (under

the “Files” directory), it did not contain any files.

One thing to note is that when the acquisition and analysis was complete, the

“MOBILedit! Connector” application was still installed on the device. Examiners

should strongly consider manually uninstalling the software from the device after

the investigation is complete.

FIGURE 6.27

SMS messagesdInbox.

FIGURE 6.28

MMS storage.

Logical techniques 241

EnCase Neutrino
The following overview of Neutrino was provided by the vendor:

EnCase� Neutrino� is designed for law enforcement, security analysts, and

eDiscovery specialists who need to forensically collect and review data from mobile

devices. Investigators can process and analyze mobile device data alongside other

types of digital evidence within any EnCase� product.

The solution features hardware support and parsing capabilities for the most

common mobile devices and Smartphone operating systems including iPhone, Palm,

FIGURE 6.29

Calendar.

FIGURE 6.30

SD card files.

242 CHAPTER 6 Android forensic techniques

BlackBerry�, Android, Windows Mobile, Motorola, Nokia, Samsung, and many

more. Investigators can collect, analyze, and preserve all potentially relevant data

including:

� Device Settings

� Contacts

� Call logs

� E-mail

� Images

� SMS/MMS

� Calendars

� Other files stored on the device

With EnCase Neutrino an investigator can:

� Collect data from a wide variety of devices, following an easy to use wizard

� Correlate data from multiple devices and computer media

� Seamlessly integrate collected data into EnCase Forensic or EnCase Enterprise

for analysis

� Parse data quickly to improve speed of investigation process

� Access more data on selected devices in comparison to similar products

Installation

The installation of EnCase Neutrino first required installing EnCase, then Neutrino.

The software installation proceeded without issue when following the on-screen

FIGURE 6.31

Hex dump.

Logical techniques 243

instructions. To use the software, you must have a hardware USB dongle provided

by EnCase.

Acquisition

The acquisition of an Android device by Neutrino is handled in a single screen. First,

you select the device, manufacturer, and model. Next, you enter basic information

about the case and the device. Finally, you connect the device to your forensic

workstation and click “Acquire Current Item.” Fig. 6.32 shows the acquisition screen.

The acquisition took less than one minute. Once completed, click Generate

Report to see the results of the acquisition.

Data presentation and analysis

Neutrino reports have a short and a detailed report. The short report, shown in

Fig. 6.33, shows all of the entries of the detailed report but with fewer details.

And the detailed view provides much greater detail about the contacts as shown

in Fig. 6.34.

FIGURE 6.32

Neutrino acquisition screen.

244 CHAPTER 6 Android forensic techniques

The SMS section also has a short and detailed view. The short view only shows

the other phone number in the conversation, the date and time of the message, the

message direction (sent or received), and the message contents. The detailed view,

shown in Fig. 6.35, includes information such as the name associated with the phone

number involved with the message and the status of the message.

FIGURE 6.34

Neutrino contacts in detailed report.

FIGURE 6.33

Neutrino contacts in short report.

Logical techniques 245

MMS messages only appear in the detailed view, shown in Fig. 6.36.

No deleted SMS messages were recovered. The detailed view of the user’s web

history, shown in Fig. 6.37, provides considerable details.

The only photos recovered from the device were the images sent as MMS, not the

photos or videos saved on the device’s SD card.

The report can be exported in other formats, such as to HTML, so that the entire

report can be viewed in one page, as illustrated in Fig. 6.38

Micro Systemation XRY
The following overview of XRY was provided by the vendor:

XRY is a dedicated mobile device forensic tool developed by Micro Systemation

(MSAB) based in Stockholm.

XRY has been available since 2002 and “XRY Complete” is a package con-

taining the software and hardware to allow logical and physical analysis of mobile

devices. The product comes shipped in a handy portable case with bespoke interior

and all the necessary hardware included, which are as follows:

� XRY Forensic Pack Software License Key

� Communication hub for USB, Bluetooth, and Infrared connectivity

FIGURE 6.35

Neutrino SMS in detailed report.

246 CHAPTER 6 Android forensic techniques

FIGURE 6.36

Neutrino MMS in detailed report.

Logical techniques 247

� SIM ID cloner device

� Pack of SIM clone cards

� Write-protected universal memory card reader

� Complete set of cables for logical and physical acquisition

� XACT Hex Viewer software application

� XRY Reader Tool for distribution to third parties

XRY was designed and refined with the input of forensic investigators and

a wizard guides you through the entire process to assist the examination. The new

unified Logical/Physical extraction Wizard and the resulting reports help to show

the examiner the full contents of the device in a neat, clean, and professional

manner.

One of the unique features of XRY is the Device Manual with a complete and

detailed list of available support for each device; identifying what data can be

retrieved, and also what cannot be recovered which is sometimes just as relevant to

investigators.

FIGURE 6.37

Neutrino web history in detailed report.

248 CHAPTER 6 Android forensic techniques

All extractions, logical or physical, are saved in an XRY file which remainsd

for forensic security purposes. From the XRY file, you can create reports as

required in Word, Excel, Open Office, or PDF. You can include case data, and

references, choose what data is included in the report or not and then distribute it to

other parties involved in the investigation; lawyers, prosecutors or other investi-

gators. MSAB offer a free XRY reader and you can provide this to third parties to

allow them to make notes on the reportdwhile still maintaining the original

forensic integrity of the data.

Within the package is the XACT Hex Viewer application to undertake more

detailed examination of the raw data recovered and assist with searching and manual

decoding to supplement the automatic decoding available in XRY Physical.

Version 5.1 of the XRY Forensic Pack was released on June 28, 2010 with

additional support for the Apple iPad.

Installation

XRY is a Windows application that you install from a single setup program provided

by the vendor. The setup includes an installation wizard, checks for software updates

online, and takes approximately 15 minutes. The software requires the use of

a hardware dongle to operate.

FIGURE 6.38

Neutrino report exported as HTML.

Logical techniques 249

Acquisition

After the installation is complete, run the software, select Extract Data, and then

choose to extract data from a phone. After that, you must identify the device type,

which can be done in several ways. For this example, a search was executed by

selecting Name Search, search for Droid, and select Motorola Droid A855, and then

select Next. This is illustrated in Fig. 6.39.

Although the MSAB forensic suite supports physical extractions of some

devices, only logical extraction is available for Android. After selecting logical

acquisition, the software displays the data available for extraction as shown in

Fig. 6.40.

Select Next and then the option to extract data by cable and a full read and finally

click Next to start data extraction. When the extraction is complete, you see the

extraction complete screen shown in Fig. 6.41.

Data presentation and analysis

After extraction, the application displays the data within the application and is easy

to navigate. The contact list includes not only the details of a contact but where the

contact was stored, as shown in Fig. 6.42.

The call logs provide the type of call (dialed or received), name, number, time,

duration, and storage location, as shown in Fig. 6.43.

Fig. 6.44 shows the SMS messages including the number, name, message, time,

status, storage, index, and the folder it is located in.

Fig. 6.45 shows that the only image extracted from the device was from anMMS.

FIGURE 6.39

XRYdSearch device type.

250 CHAPTER 6 Android forensic techniques

Other data was extracted. However, it is not displayed in a dedicated report

section. For example, you can review the web browser history, web site bookmarks,

and Google search history in the Log section of the report.

MSAB also has a tool called XACT, which provides a hex view of specific

entries. For example, Fig. 6.46 shows the contents of an SMS message.

Paraben Device Seizure
The following overview of Device Seizure was provided by the vendor:

Paraben’s Device Seizure (DS) is a handheld forensics tool that enables the

investigator to perform logical and physical data acquisitions, deleted data recovery,

and full data dumps, on approximately 2400 models of cell phones, PDAs/smart-

phones, and portable GPS units. Physical data acquisitiondoften where deleted data

is founddis possible from approximately two-thirds of the supported models.

Furthermore, DS has been documented and verified as being 100% forensically

FIGURE 6.40

XRY data types available for Droid extraction.

Logical techniques 251

sound, meaning the digital evidence is never altered in any way. These functions are

all possible through a standard USB data cable connection with any PC.

Over the past two years Google’s Android operating system for mobile devices

has had a significant impact on the industry. Paraben focuses on staying in step with

the latest innovations and has added support for the Android OS to DS. With the

release of DS version 4.0, an investigator has the capabilities of acquiring the most

commonly sought-after data such as call logs, address book, and SMS messages.

FIGURE 6.41

XRY extraction complete.

FIGURE 6.42

XRY contacts list.

252 CHAPTER 6 Android forensic techniques

Beyond these data types, DS will also acquire multimedia filesdMMS messages,

images, video, and audio files. The full list of data types that can be acquired from

Android models are as follows:

� Address Book including contacts groups, organizations, and address book

settings, along with the standard name, phone number, and address

� SMS messages

FIGURE 6.43

XRY call log.

FIGURE 6.44

XRY SMS.

Logical techniques 253

FIGURE 6.45

XRY images.

FIGURE 6.46

XACTdSMS message.

254 CHAPTER 6 Android forensic techniques

� MMS messages

� Call history

� Contact methods

� Browser history

� External image media (metadata)

� External image thumbnail media (metadata)

� External media, audio, and miscellaneous data (metadata)

� External videos (metadata)

� List of all applications installed and their version

Installation

Paraben DS version 4.1.3971.37683 was installed on the Windows forensic work-

station. The setup process required the installation of many required drivers that took

a considerable amount of time. The software must be registered prior to use, which is

achieved either using a hardware dongle or through a registration key file provided

by Paraben. To install the registration key file, you simply copy the file into the DS

install directory, which is likely C:\Program Files\Paraben Corporation\Device

Seizure.

Acquisition

To start the acquisition of a new Android device, you first open a new case and

complete the required case information section. You then choose “Data Acquisition”

and select Android at which point the following directions are provided:

Android based cell phones must be placed into "debugging" mode*. Follow the
instructions below:
1. On the cell phone, navigate to Settings>Application Settings and select the
Unknown Sources option.
2. On the cell phone, navigate to Settings>Application Settings>Development and
select the USB debugging option.
3. Install drivers for your cell phone. These drivers are provided in the
Device Seizure Drivers Pack that can be downloaded on www.paraben.com.
4. Connect the cell phone to the USB port on your computer.
* Please note that AT&T and Motorola have taken the "Unknown Sources", found on
step 1, out of Android devices. Device Seizure does not support these models.

According to these instructions, Motorola phones are not supported. However,

the acquisition of the Motorola Droid was successful.

Follow the instructions, then click “Next” at which point DS attempts to identify

the phone. Ensure the identified device information is accurate and click “Next” as

shown in Fig. 6.47.

The next screen provides a list of supported data types that DS can extract from

the device. All were selected, which includes acquiring the part of the file system it

can read and the SD card, so the acquisition process is slow. Fig. 6.48 shows the DS

acquisition timing.

The acquisition completed approximately two hours later and the prompt to sort

files was accepted. The process of sorting the files took considerable time, but was

Logical techniques 255

less than two hours. At that point, the acquisition process was complete. Fig. 6.49

shows the DS acquisition complete output.

Data presentation and analysis

Device Seizure displays the acquired data with the application in an easy to browse

and navigate structure. The acquired directory structures are shown in Fig. 6.50.

FIGURE 6.47

Device Seizure device identification.

FIGURE 6.48

Device Seizure acquisition timing.

256 CHAPTER 6 Android forensic techniques

mailto:Image of Figure 6.47|tif

Contacts provide not only the name, notes, phone numbers, and e-mail, but also

helpful fields, such as number of times contacted, last time contacted, and a photo, if

available, as shown in Fig. 6.51.

The SMS reporting provides the expected fields, but deleted messages were not

included. The report does not cross-reference the contact data with the phone

FIGURE 6.49

Device Seizure acquisition complete.

FIGURE 6.50

Device Seizure Droid directory structure.

Logical techniques 257

number, so the examiner must either know the phone number or handle the cross-

referencing themselves. Fig. 6.52 shows the DS SMS.

However, the call logs do perform the cross-reference and display the date,

message type, duration, number, number type, name, or whether the call was a new

call (presumably the first time that number appeared in the call logs). Fig. 6.53

shows the call logs.

FIGURE 6.51

Device Seizure contacts.

FIGURE 6.52

Device Seizure SMS.

258 CHAPTER 6 Android forensic techniques

A complete web history is available and parsed, including visit count and

bookmarks. However, the data view is quite long and only the beginning information

is displayed in Fig. 6.54.

Device Seizure allows the examiner to select any file and extract it to the

forensic workstation for additional analysis. This is helpful for viewing or

analyzing file types not supported natively in the DS environment. As the file

sorting option was chosen during the acquisition stage, each extracted file was

identified and grouped by type allowing quick access to files of interest. This is

shown in Fig. 6.55.

FIGURE 6.53

Device Seizure call logs.

FIGURE 6.54

Device Seizure web history.

Logical techniques 259

viaForensics’ ViaExtract
The following overview of viaExtract was provided by the vendor:

viaExtract is the latest Android forensic solution from viaForensics, a leader and

innovator in the field. In addition to their mobile forensics white papers and book,

viaForensics’ provides a free Android forensics solution for law enforcement and

government agencies called AFLogical.

Building on this experience, viaForensics developed viaExtract, which extracts,

analyzes, and reports on data in Android devices. viaExtract is a modular solution

and will next offer an Android forensic physical technique based on viaForensics’

research and development. Up to date information on viaExtract is available online

at http://viaforensics.com/products/viaextract/ including support for Android

forensics physical techniques, additional supported mobile platforms, and advanced

forensic recovery techniques.

viaForensics is a forensics and security firm that actively investigates mobile

devices and traditional computers. Their direct experience as examiners has led to

the development of a tool specifically tailored to forensic examiners. The tool was

designed for frequent updates as the mobile forensic discipline is changing rapidly.

A unique debug and reporting system integrated into viaExtract simplifies the

process of sending debug and sanitized data to viaForensics to assist with the design

and improvement of viaExtract operating on the diverse Android ecosystem.

Installation

The viaExtract software is distributed as a virtual machine, so it runs on Microsoft

Windows, Apple OS X, Linux, or other operating systems that run supported vir-

tualization software. The software is fully configured, as are necessary drivers and

supporting libraries, which greatly simplifies the installation. There are several

supported virtualization packages, which are free, including:

FIGURE 6.55

Device Seizure’s file sorter.

260 CHAPTER 6 Android forensic techniques

http://viaforensics.com/products/viaextract/

� Oracle’s VirtualBox

� VMWare Player

A number of commercial packages are also available. The virtual machine is

downloaded from viaForensics’ web site and then imported into the supported

software. Examiners can use features built into virtualization software, such as

taking snapshots to restore the software to a pristine state after each case, or integrate

it directly into their host operating system by sharing data storage and other valuable

features.

Acquisition

After viaExtract is imported into the host system’s virtualization software and is

running, the forensic examiner logs into the Ubuntu virtual machine and runs

viaExtract as shown in Fig. 6.56.

The examiner can then start a new case or open a previous one, as illustrated in

Fig. 6.57.

After entering the case details, the examiner can then choose to extract data

directly from an Android device or to load from a previous data extraction located on

the file system. The latter feature is useful for cases where the examiner used via-

Forensics’ free AFLogical software to extract data from Android devices. It also

allows the examiner to generate a new forensic report from a previous device’s

extracted data, which is quite useful as new reporting features are added.

For this example, we will extract data from an Android device by clicking

Forward. We are then presented with the Load data screen, which provides

FIGURE 6.56

viaExtract software.

Logical techniques 261

directions for enabling USB debugging. After you click OK the data extraction

begins, as shown in Fig. 6.58.

After the data extraction is complete, the examiner is presented with a list of data

extracts and has the ability to select what they want to include in the forensic

analysis and report, as shown in Fig. 6.59.

After the selections are completed and the examiner clicks Apply, the report

logic is executed and the data extraction is complete.

FIGURE 6.57

viaExtractdNew case.

FIGURE 6.58

viaExtractdData extraction.

262 CHAPTER 6 Android forensic techniques

Data presentation and analysis

After the data extraction is complete, viaExtract presents the analyzed data

to the user. By navigating the selections on the left side of the application,

the examiner can view different sections of the report. For example, the

first section presented is the Device Information section as shown in

Fig. 6.60.

Next, Fig. 6.61 shows browser history and bookmarks that are available in the

report.

In this example, you can see several features of the report view, including:

� Ability to filter, on the fly, any section of the report

� Ability to sort ascending or descending on any column

In the next example, a filter of viaforensics.com was applied against 29 people

records and 2 remained. However, many of the fields were displayed to the right of

the screenshot as shown in Fig. 6.62.

In total, viaExtract currently supports just over 41 Content Providers. However,

in the next release, roughly 100 Content Providers will be actively queried. If the

device responds to the Content Provider, the extraction and subsequent reporting

will succeed. Fig. 6.63 is an example of the Call Logs.

Fig. 6.64 shows the video media metadata.

Reports can also be exported to PDF format as shown in Fig. 6.65.

FIGURE 6.59

viaExtractdForensic analysis and report.

Logical techniques 263

http://viaforensics.com

FIGURE 6.60

viaExtractdDevice info.

FIGURE 6.61

viaExtractdBrowser history and bookmarks.

264 CHAPTER 6 Android forensic techniques

FIGURE 6.63

viaExtractdCall logs.

FIGURE 6.62

viaExtractdPeople records filtered.

Logical techniques 265

PHYSICAL TECHNIQUES
Forensic techniques that acquire physical images of the targeted data storage

typically result in exponentially more data being recovered and often

circumvent pass code protection. These techniques provide access to not only

deleted data but also data that was simply discarded as the system no longer

required it. For example, some systems track the last time a web site was

visited and the date field is updated each time the site is accessed again. The

previous date and time data was not specifically deleted but was not tracked by

the system. On Android devices using YAFFS2, the previous values are

recoverable provided garbage collection did not occur. As such, the physical

techniques provide access to not only deleted data but also access to obsolete

data on the system.

The Android forensics physical techniques fall into two broad categories:

� Hardware: Methods which connect hardware to the device or physically extract

device components

� Software: Techniques which run as software on devices with root access and

provide a full physical image of the data partitions

FIGURE 6.64

viaExtractdVideo media metadata.

266 CHAPTER 6 Android forensic techniques

FIGURE 6.65

viaExtractdExport to PDF.

P
h
ysic

a
l
te
c
h
n
iq
u
e
s

2
6
7

The hardware-based methods required specialized and often expensive equip-

ment and training but can be very effective on devices where root access is unat-

tainable. The software-based physical techniques are a more direct path to

acquisition and are often the best place to start. Of course, before software-based

techniques are possible, you must have root access on the device.

Hardware-Based Physical Techniques

The two hardware-based physical techniques are JTAG and chip-off and a brief

overview is provided in this section.

JTAG

The JTAG was created in the 1980s to develop a standard for testing the wiring and

interconnects on printed circuit boards (PCB). By 1990, the standard was complete

and became an Institute of Electrical and Electronics Engineers standard, specifi-

cally IEEE 1149.1-1990 (IEEE SA, n.d.), and then a later update in 2001 named

IEEE 1149.1-2001. The standard was widely accepted and today most PCBs have

JTAG test access ports (TAPs) that facilitate access to the central processing unit

(CPU).

A JTAG TAP exposes various signals and most mobile devices include the

following:

1. TDIdTest Data In

2. TDOdTest Data Out

3. TCKdTest Clock

4. TMSdTest Mode Select

5. TRSTdTest Reset

6. RTCKdReturn Test Clock

A major obstacle to JTAG is locating the TAPs on the PCB and tracing them

to the CPU to determine which pad is responsible for each test function. This is

very difficult to achieve even if the chip manufacturer has published a CPU map.

In addition, it can be extremely difficult to trace the JTAG functions from the chip

and it may require first removing the CPU from the PCB. Device manufacturers

have JTAG schematics, but they are generally considered company confidential

and are only released to authorized service centers. Another approach is to

determine the functions of each pad by reading the voltage at each pad and, based

on the reference voltage, identifying the function. In some instances the JTAG

pin-outs are published by flasher box manufacturers or various online groups.

Fig. 6.66 is an example of the JTAG pin-outs for a T-Mobile HTC G1. The six

pin-outs are indicated by the small white circles and the legend on the right

provides the detailed information.

In most cases, your soldered wire leads to the pads on the PCB, and the other

side is connected to a special device (flasher box) which, through software, will

268 CHAPTER 6 Android forensic techniques

manage the CPU. Some companies make custom connectors which support

a specific device and simplify the connection to the pads by placing the PCB

between two jig boards with pogo pins. The pogo pins make contact with the JTAG

pads on the PCB and can then easily connect to the flasher box. However, expe-

rienced engineers may find that soldering the leads directly to the PCB provides

a more stable connection.

Once the leads are connected to the appropriate pads, power must be applied

to the board to boot the CPU. Each CPU manufacturer publishes the reference

voltage for their hardware and this voltage must not be exceeded. Some flasher

boxes provide an option for managing the voltage but in general the power

should be managed through an external power supply with a built-in digital

voltmeter to ensure accuracy. Once the board is powered on, the flasher box

software has the ability to perform a full binary memory dump of the NAND

flash. However, the connection is serial and takes a considerable amount of

time. Despite all of the complexities, if the JTAG technique is executed

properly, the phone can be reassembled and will function normally with no data

loss.

Though JTAG is an option for extracting data from an Android device’s NAND

flash, it is very difficult and should only be attempted by qualified personnel with

sufficient training and specific experience in soldering small PCB connections.

Errors in soldering to the JTAG pads or applying the wrong voltage to the board

could not only disable JTAG but can also seriously damage the device. For these

FIGURE 6.66

T-Mobile HTC G-1 PCB.

Physical techniques 269

reasons, JTAG is not typically the first choice for a physical forensic image of an

Android device.

Chip-off

Chip-off is a technique where the NAND flash chips are physically removed from

the device and examined externally. The chip-off technique allows for the recovery

of damaged devices and also circumvents pass code-protected devices. This removal

process is generally destructivedit is quite difficult to reattach the NAND flash to

the PCB and have the device operate.

There are three primary steps in the chip-off technique:

1. The NAND flash chip is physically removed from the device by either de-

soldering it, or using special equipment that uses a blast of hot air and

a vacuum to remove the chip. There are also techniques that heat the chip to

a specified temperature. It is quite easy to damage the NAND flash in this

process and specialized hardware, and even controlling software, exists for

the extraction.

2. The removal process often damages the connectors on the bottom of the chip, so

it must first be cleaned and then repaired. The process of repairing the conductive

balls on the bottom of the chip is referred to as reballing.

3. The chip is then inserted into a specialized hardware device, so that it can be

read. The devices generally must be programmed for a specific NAND flash chip

and support a number of the more popular chips already.

At this point, you now have a physical image of the data stored on the NAND flash

chip.

Although the chip-off process is quite effective, it also has a large barrier to entry.

The cost of the equipment and tools is prohibitive and an examiner must again have

very specialized training and skills. There is always the risk that the NAND flash

chip will be damaged with chip-off, generally in its removal from the PCB. Finally,

a clean room with protections from static electricity is also desirable. While local or

even State law enforcement agencies and forensic firms may find the cost of chip-off

too prohibitive, it is certainly a valid techniques that larger agencies would find

useful in their suite of forensic techniques.

Software-Based Physical Techniques and Privileges

Software-based physical techniques have a number of advantages over the hard-

ware-based techniques. Software-based techniques:

� Are easier to execute;

� Often provide direct access to file systems to allow a complete copy of all logical

files (simplifies some analysis);

� Provide very little risk of damaging the device or data loss.

270 CHAPTER 6 Android forensic techniques

To execute the software-based physical techniques, you first must gain root

privileges and then run the acquisition programs.

Unfortunately, root privileges on Android devices are not enabled by default.

However, it is possible to gain root privileges in certain scenarios, several of which

we will cover next. There are some major challenges to obtaining root privileges to

keep in mind though:

1. Gaining root privileges changes the device in many situations.

2. The techniques for root privileges differ not only for each manufacturer and

device but for each version of Android and even the Linux kernel in use. Just

based on the Android devices and versions developed to date, there are literally

thousands of possible permutations.

3. Many of the exploits used to gain root privileges are discussed online and often

contain inaccurate information.

Given this, gaining root privileges can be quite difficult and is always very

frustrating.

There are three primary types of root privileges:

1. Temporary root privileges attained by a root exploit, which does not survive

a reboot. Typically the adb daemon is not running as root in this instance.

2. Full root access attained through a custom ROM or persistent root exploit.

Custom ROMs often run the adb daemon as root while most of the persistent root

exploits do not.

3. Recovery mode root attained by flashing a custom recovery partition or part of

a custom ROM. Custom ROMs often run the adb daemon as root as do most of

the modified recovery partitions.

Android enthusiasts who want root access are typically only interested in full,

sustained root privileges. However, from a forensics standpoint, temporary root

privileges or root access via a custom recovery mode are preferred.

If you need to gain access on a new device or Android version, you must have

a separate device used for testing to ensure that the process works and no data are

lost. Testing, although time consuming, is an important step in this situation.

The following sections cover each step in detail.

su
The first thing a forensic examiner should check is whether the device already has

root privileges. This is the easiest of any technique discussed and is certainly worth

the short time it takes to test. The device must have USB debugging enabled but even

if the device is locked, you should still check. If the device is not pass code locked,

make sure USB debugging is enabled, which was covered in Chapter 3.

Next, connect the device to your workstation and attempt to gain root privileges

by requesting super user access with the “su” command as follows:

ahoog@ubuntu:~$ adb shell su
su: permission denied

Physical techniques 271

In this instance, root privileges were not granted. This is the typical result of the

command. However, the following was on a device that had root access:

Instead of receiving a permission denied error, root privileges were granted. This

is indicated by the new # prompt. Sometimes a device will allow root access but

require the user to grant the privileges by clicking OK on a prompt displayed on the

device. If the device is not pass code protected, you should check to see if the prompt

is displayed.

Researching Root Privilege Exploits
If the device does not already have root privileges, you can research possible

techniques online. This process can be very frustrating as there are many inexpe-

rienced people who request help on the various discussion boards. However, while

there are substantial amounts of inaccurate information, there are also very

knowledgeable resources and techniques which do work.

Although there are many sites available that discuss Android root exploits, one

truly stands above all others. The site, xda-developers, is an extremely popular and

active site and is self-described as “the largest Internet community of smartphone

enthusiasts and developers for the Android and Windows Mobile platforms”

(Android & Windows Phone, n.d.). Many of the other web sites post various root

exploits but generally link back to a discussion thread on xda-developers.

Often the best approach to researching root exploits is to simply search the

Internet with your preferred search engine, have a test device, and a lot of patience.

Recovery Mode
Recovery mode is an operating mode for Android that was designed to apply

updates, format the device, and perform other maintenance on the devices. The stock

recovery mode on most devices is very basic, only provides a number of limited

functions, and certainly does not provide root privileges in a shell.

Custom recovery partitions, on the other hand, nearly always allow root privi-

leges through the shell. These new recovery partitions are typically installed by the

user when the device is rooted and provide various functions that simplify the

backup and update processes needed from the custom ROMS.

As with researching root exploits, examiners should use extreme caution when

installing a custom recovery partition as the process often contains kernel and radio

updates that could render the device unusable (often referred to as “bricked”) if there

are incompatibilities between the device, kernel, and radio firmware. Extensive

testing must be performed on a lab device first to ensure no issues occur. And

forensic examiners should understand what is being modified on the device during

the installation of a custom recovery firmware.

ahoog@ubuntu:~$ adb shell su
#

272 CHAPTER 6 Android forensic techniques

mailto:Image of Figure 6.66|tif

The software that powers recovery mode is stored on a dedicated partition and is

quite small. On many devices, you can see details of the recovery partition by

examining /proc/mtd:

This list is from a T-Mobile HTC G1 and you can see that the recovery partition

has a size of 0x500000 bytes, which is 5 MB (0x500000 ¼ 5,242,880 then divide by

1024 twice to convert to KB and finally MB). Here are the sizes from other phones

used throughout this book:

� T-Mobile HTC G1: 5 MB

� HTC Incredible: 4 MB

� Motorola Droid: 4 MB

� Google Nexus One: 4 MB

This is helpful to understand as we explore techniques to replace the small but

important recovery partition in the next section.

In the previous section covering techniques for circumventing pass code-pro-

tected devices, accessing the recovery mode was one possible solution. In the same

fashion, it is advisable to check the recovery partition for root privileges as it will

enable the software-based physical techniques. First, boot the device into recovery

mode as covered in Table 6.2, or simply search the Internet for the specific key

combination for your device. Once the device is in recovery mode, connect it to your

Ubuntu VM and run adb as follows:

In this case, adb discovered a device in recovery mode. However, many devices

will simply not have adb access enabled in recoverymode, especially on stock devices.

In such a case, you can then determine if the shell has root privileges as follows:

As we discussed previously, if you are presented with a # prompt, this indicates

root privileges. If instead you have a $ prompt, you do not have root privileges.

However, you should at least try to gain them by running the su command.

Boot Loaders
As discussed in Chapter 2, the boot loader is a small program that is executed early

in the Android boot process and is responsible for, among other details, selecting and

ahoog@ubuntu:~$ adb shell cat /proc/mtd
dev: size erasesize name
mtd0: 00040000 00020000 "misc"
mtd1: 00500000 00020000 "recovery"
mtd2: 00280000 00020000 "boot"
mtd3: 04380000 00020000 "system"
mtd4: 04380000 00020000 "cache"
mtd5: 04ac0000 00020000 "userdata"

ahoog@ubuntu:~$ adb devices
List of devices attached
0403555551222244F recovery

ahoog@ubuntu:~$ adb shell
#

Physical techniques 273

mailto:Image of Figure 6.66|tif
mailto:Image of Figure 6.66|tif
mailto:Image of Figure 6.66|tif

loading the main kernel. On certain devices, special software exists, typically

developed by the manufacturer, which can interact with the boot loader. This soft-

ware is capable of writing new images to the NAND flash of a device. Manufacturers

use this software to fix nonfunctional devices and likely in other situations such as

development and testing. Forensic examiners can also use the software to flash

a utility or exploit to a device’s NAND flash, which will provide root privileges.

However, the boot loaders of most devices are shipped from the factory in a locked

state, which prevents such updates.

One example of software that interacts with Motorola Android devices is

a program called RSD Lite developed by Motorola. RSD Lite is proprietary

software and appears to only be distributed to Motorola Service Centers for device

repair. It is assumed that anyone using this software has full authorization to do so,

and this overview is only provided as a example of how some Android devices are

flashed.

There are many web sites which discuss RSD Lite and provide guides for using

the software. One such site, modmymobile.com, provides an article entitled

“[Guide] Flashing Linux Motorola’s with RSD Lite Versions,” which offers step-by-

step instructions for the software ([Guide] Flashing Linux, n.d.).

Provided the device is supported and the boot loader is unlocked, you connect the

device to your workstation and then run the software, which detects the phone. You

must then provide the appropriate .sbf file and then click Start to flash the device as

shown in Fig. 6.67.

FIGURE 6.67

RSD Lite.

274 CHAPTER 6 Android forensic techniques

http://modmymobile.com
mailto:Image of Figure 6.67|tif

After the process is completed and the device is restarted, the new recovery

partition (and any other areas modified by the .sbf file used) is ready. RSD Lite may

provide a good option for forensic analysts who have proper authorization to use

RSD Lite.

sbf_flash
Similar to Motorola’s RSD Lite is a utility called sbf_flash that does not carry the

license and usage restrictions of RSD Lite. The application was developed and

posted online by an Android enthusiast and, while distributed in many places online,

it is best to retrieve it from the author’s blog OPTICALDELUSION, which is

updated when new versions are available. This utility was developed on Linux, and

now also runs on OS X, and thus, greatly simplifies the flashing of data to the NAND

flash via an unlocked boot loader. The latest version of sbf_flash is 1.15 and it

supports the following:

ahoog@ubuntu:~$./sbf_flash -h
SBF FLASH 1.15 (mbm)
http://opticaldelusion.org

Usage: ./sbf_flash <filename>

sbf_flash [options] [sbf file]
 -f - force; attempt to continue on error
 -v - verbose output (of CDT)
 -r - read CDT information from the phone
 -x - extract sbf file
 -d - download cg from phone
 --cgname [file] - upload/download cgname
 matches any cgname shown with -r
 optional file arg for contents

To use sbf_flash, you must first verify that the device is supported. For this

example, we will cover the Motorola Droid; however, other devices are supported.

The device must be placed in bootloader mode, which is accomplished by holding

the up direction on the D pad while pressing the power button. The boot loader is

easily recognized on the Motorola Droid by a solid black screen with the kernel

version, USB status, and battery status in white text. Ensure the battery is fully

charged before attempting this process as you could easily brick the device if the

flashing process is interrupted with a power failure. Also, you must have the SBF file

saved to your forensic workstation so you can flash it to the device. This is where

extensive testing must occur prior to working on the target device to ensure

compatibility and a detailed understanding of the process.

With the Droid in bootloader mode, we can query the device with sbf_flash as

follows:

ahoog@ubuntu:~$./sbf_flash -r
SBF FLASH 1.15 (mbm)
http://opticaldelusion.org

Physical techniques 275

mailto:Image of Figure 6.67|tif

The sbf_flash utility looks for a device in bootloader mode and immediately flashes

the image file to the NAND flash. The status of the update process is displayed on

screen and afterwards the Droid is rebooted.

ahoog@ubuntu:~$ sbf_flash SPRecovery.sbf
=== SPRecovery.sbf ===
00: RDL03 0x80500000-0x8054CFFF DECE AP
01: CG47 0xC0A00000-0xC0D5C7FF 02C0 AP

 >> waiting for phone: Droid found.
 >> uploading RDL03
Uploading: 100% OK
 >> verifying ramloader
 -- OK
 >> executing ramloader
Droid found.
 >> sending erase
 >> uploading CG47
Uploading: 100% OK
 >> verifying CG47
 -- OK
 >> rebooting

You should be prepared to immediately boot the device into recovery mode as

later versions of the Motorola Droid’s firmware implemented a routine that checks

the hash signatures of the existing recovery partition against the stock recovery

partition for that Android version. If there is a disparity, the system will rebuild the

stock recovery partition during the boot process and thus overwrite the modified

recovery image.

Once the new SBF file has been flashed, and the device is running in the modified

recovery mode, you will have root access and can proceed with the software-based

physical technique.

fastboot
Fastboot is another utility that flashes images to the NAND flash over USB. The

source code for fastboot is contained in the AOSP and thus, the utility is built when

 >> waiting for phone: Droid found.
 CG63 0xC0000000-0xC001FFFF mbmloader.img
 CG30 0xC0020000-0xC00BFFFF mbm.img
 CG55 0xC00C0000-0xC015FFFF mbmbackup.img
 CG31 0xC0160000-0xC01BFFFF cdt.bin
 CG38 0xD01CE000-0xD0359FFF pds
 CG34 0xC035A000-0xC03BCFFF lbl
 CG57 0xC03BD000-0xC041FFFF lbl_backup
 CG41 0xC0400000-0xC057FFFF sp
 CG42 0xC0580000-0xC061FFFF logo.bin
 CG44 0xC0620000-0xC067FFFF misc
 CG35 0xC0680000-0xC09FFFFF boot
 CG47 0xC0A00000-0xC0E7FFFF recovery
 CG39 0xD0EF4000-0xD9FB6FFF system
 CG40 0xD9FB7000-0xDFF3BFFF cache
 CG37 0xDFF3C000-0xF0D29FFF userdata
 CG53 0xDFD40000-0xDFF3FFFF kpanic
 CG54 0xDFF40000-0xDFFFFFFF rsv

Usage: ./sbf_flash <filename>

276 CHAPTER 6 Android forensic techniques

mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

you compile the AOSP code. Like sbf_flash, the boot loader must support fastboot,

which not only requires a compatible boot loader but also one that has security

turned off (S-OFF).

Fastboot was first used on the Google Android developer phone (ADP),

which was manufactured by HTC. As such, much of the documentation and

references for fastboot refer to the ADP, and HTC has a helpful reference page

for the utility (HTCdDeveloper Center, n.d.). This page contains not only

various stock NAND flash image files for the ADP device but also directions on

using fastboot and accessing the appropriate mode on the device (HTCdDe-

veloper Center, n.d.):

To enter fastboot mode, power up the device (or reboot it) while holding down

the BACK key. Hold the BACK key down until the boot loader screen is visible and

displays “FASTBOOT.” The device is now in fastboot mode and is ready to receive

fastboot commands. If you want to exit fastboot mode at this point, you can hold

down the keys MENUþSENDþEND (on the ADP, SEND is the “Call” key and

END is the “End call” key).

Note that the boot loader screen may vary across devices. For ADP devices, the

boot loader screen shows an image of skateboarding robots. Other devices may

show a different image or color pattern. In all cases, the boot loader screen shows

the text “FASTBOOT” when in fastboot mode. The boot loader also shows the

radio version.

Once in fastboot mode, verify fastboot detects the device with the following

command:

Fastboot provides many options that are detailed when you execute fastboot with

the help parameter as follows:

ahoog@ubuntu:~$./fastboot --help
usage: fastboot [<option>] <command>

commands:
 update <filename> reflash device from update.zip
 flashall flash boot + recovery + system
 flash <partition> [<filename>] write a file to a flash partition
 erase <partition> erase a flash partition
 getvar <variable> display a bootloader variable
 boot <kernel> [<ramdisk>] download and boot kernel
 flash:raw boot <kernel> [<ramdisk>] create bootimage and flash it
 devices list all connected devices
 reboot reboot device normally
 reboot-bootloader reboot device into bootloader

options:
 -w erase userdata and cache
 -s <serial number> specify device serial number
 -p <product> specify product name
 -c <cmdline> override kernel commandline
 -i <vendor id> specify a custom USB vendor id

ahoog@ubuntu:~$./fastboot devices
HT08XHJ00657 fastboot

Physical techniques 277

mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

As you can see, once in flashboot mode, it is quite simple to flash the modified

recovery partition:

ahoog@ubuntu:~$ fastboot flash recovery modified-recovery-image.img

After this process completes, you can reboot the phone into recovery mode and

proceed with the software-based physical imaging technique.

AFPhysical Technique

The AFPhysical technique was developed by viaForensics to provide a physical disk

image of Android NAND flash partitions. The technique requires root privileges on

the device and should support any Android device. The technique, however, is not

a simple process and the forensic analyst will have to adapt the technique for the

specific device investigated. This is a direct result of the large variations in Android

devices not only between manufacturers but between devices running different

versions of Android.

The overall process for AFPhysical is quite simple:

1. Acquire root privileges on the target Android device.

2. Identify NAND flash partitions which need to be imaged.

3. Upload forensic binaries to the target Android device.

4. Acquire physical image of NAND flash partitions.

5. Remove forensic binaries if any were stored on nonvolatile storage.

Regardless of the technique, it is assumed you have root privileges on the device.

For this example, we will use a Motorola Droid. As we are able to flash a modified

recovery partition to a Motorola Droid, this technique will work on a device even if it

is pass code locked.

After we have flashed the modified recovery partition and rebooted into recovery

mode, connect the device to our Ubuntu VM and verify adb can locate the device by

running adb devices.

ahoog@ubuntu:~$ adb devices
List of devices attached
040363260C006018 recovery

From there, access the shell to ensure you have root privileges:

ahoog@ubuntu:~$ adb shell
/ #

At this point, we need to understand more about the phone so we can decide what

needs to be physically imaged. The first place to start is to examine the mounted file

systems, if any:

278 CHAPTER 6 Android forensic techniques

mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

/ # mount
rootfs on / type rootfs (rw)
tmpfs on /dev type tmpfs (rw,mode=755)
devpts on /dev/pts type devpts (rw,mode=600)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
/dev/block/mtdblock7 on /cache type yaffs2 (rw,nodev,noatime,nodiratime)

Now, we know that the device uses MTD for NAND flash access as well as

YAFFS2. To determine partitions exposed by MTD, we execute the following:

/ # cat /proc/mtd
dev: size erasesize name
mtd0: 000a0000 00020000 "mbm"
mtd1: 00060000 00020000 "cdt"
mtd2: 00060000 00020000 "lbl"
mtd3: 00060000 00020000 "misc"
mtd4: 00380000 00020000 "boot"
mtd5: 00480000 00020000 "recovery"
mtd6: 08c60000 00020000 "system"
mtd7: 05ca0000 00020000 "cache"
mtd8: 105c0000 00020000 "userdata"
mtd9: 00200000 00020000 "kpanic"

An examiner should choose to image all of the MTD partitions. However, for this

example we will focus on mtd8, the user data partition.

As we are now prepared to acquire the device, it may be helpful to refer back to

the NAND flash and file system topics in Chapter 4 if some of the terminology or

data structures are confusing. There are four Android physical acquisition strategies

you can use once you have a device with root access:

1. Full nanddump of all partitions, including data and OOB (preferred)

2. A dd image of partitions, which only acquires the data, not the OOB

3. A logical acquisition of files using tar

4. A logical acquisition of files using adb

In addition, there are two primary ways to save the acquired data from the device:

1. Use adb port forward to create a network between the Ubuntu workstation and

Android device over USB

2. Place an SD card into the device, mount, and save locally

There are advantages to both approaches. With adb port forwarding, you do not

need to insert your own device and can immediately create the files on your

workstation. When you save to the SD card, the acquisition is much faster. Both

approaches are valid and will be demonstrated here.

We will start with the full nanddump of the user data partition as this provides the

most complete forensic copy of the data. To achieve the nanddump, you must have

a version of nanddump compiled for the ARM platform. Cross-compiling nanddump

is beyond the scope of this book. However, you can either search for the program on

the Internet or follow directions that are also posted online.

Physical techniques 279

mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

TIP

Cross-compiling for ARM
Cross-compiling source code to run on the ARM platform can be quite difficult and there is

sparse support for it online. One possible solution is to use Android’s Native Development Kit

(NDK) to build compatible binaries. Another option is to use Linux and install a cross-compiler

such as Code Sourcery’s Gþþ Lite 2009q3-67 for ARM GNU/Linux from http://www.

codesourcery.com/sgpp/lite/arm/portal/release1039. Once a cross-compiler is installed, you

must modify the source code’s Makefile to indicate the cross-compiling option. Also check this

book’s web site at http://viaforensics.com/education/android-forensics-mobile-security-book/

for future updates.

To avoid writing any data to the NAND flash, we can again examine the output of

the mount command and take note that the “/dev” directory is tmpfs and thus, is

stored in RAM. We can therefore push the forensic utilities to “/dev”:

Next we need to make the programs executable on the device. To achieve this,

we use the chmod command, which changes the permissions of a file including

the execute flag. We will set all files to allow any user to read or execute the

program:

ahoog@ubuntu:~$ adb shell
/ # cd /dev/AFPhyiscal
/dev/AFPhyiscal # ls -l
-rw-rw-rw- 1 0 0 711168 Jan 24 2011 md5sum
-rw-rw-rw- 1 0 0 669799 Jan 24 2011 nanddump
-rw-rw-rw- 1 0 0 711168 Jan 24 2011 nc
-rw-rw-rw- 1 0 0 711168 Jan 24 2011 tar
/dev/AFPhyiscal # chmod 755 *
/dev/AFPhyiscal # ls -l
-rwxr-xr-x 1 0 0 711168 Jan 24 2011 md5sum
-rwxr-xr-x 1 0 0 669799 Jan 24 2011 nanddump
-rwxr-xr-x 1 0 0 711168 Jan 24 2011 nc
-rwxr-xr-x 1 0 0 711168 Jan 24 2011 tar

As you can tell, after we execute the “chmod 755” command on the programs,

they each have the execute bit now set, which is represented by the “x” in the file

permissions.

If you decided to save the nanddump to the SD card, ensure you place a properly

formatted SD card in the device and that it is mounted on the system. Then we can

execute nanddump as follows:

ahoog@ubuntu:~$ adb push AFPhysical/ /dev/AFPhyiscal
push: AFPhysical/tar -> /dev/AFPhyiscal/tar
push: AFPhysical/md5sum -> /dev/AFPhyiscal/md5sum
push: AFPhysical/nanddump -> /dev/AFPhyiscal/nanddump
push: AFPhysical/nc -> /dev/AFPhyiscal/nc
4 files pushed. 0 files skipped.
1003 KB/s (2803303 bytes in 2.727s)

280 CHAPTER 6 Android forensic techniques

http://www.codesourcery.com/sgpp/lite/arm/portal/release1039
http://www.codesourcery.com/sgpp/lite/arm/portal/release1039
http://viaforensics.com/education/android-forensics-mobile-security-book/
mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

/ # /dev/AFPhyiscal/nanddump /dev/mtd/mtd8ro > /sdcard/af-book-mtd8.nanddump
ECC failed: 0
ECC corrected: 0
Number of bad blocks: 1
Number of bbt blocks: 0
Block size 131072, page size 2048, OOB size 64
Dumping data starting at 0x00000000 and ending at 0x105c0000...

/ # ls -l /sdcard/af-book-mtd8.nanddump
-rwxrwxrwx 1 0 0 283041792 Jan 1 00:12 /sdcard/
af-book-mtd8.nanddump

And ultimately either transfer to your Ubuntu VM using adb pull or remove the SD

card and copy via a direct USB connection, which is much faster.

NOTE

MD5 hash
Although the user data partition was not mounted on the device during acquisition, the

md5sum hash signature of “/dev/mtd/mtd8ro” will change even without any writes. This is due

to the nature of NAND flash where the operating system and memory are in a nearly constant

state of change from wear leveling, bad block management, and other mechanisms which

occur despite the lack of changes to the user data. The best approach is to perform an md5sum

of the resulting NAND flash file to ensure integrity from that point forward.

The second method for saving the NAND flash file or any other imaged data is to

use netcat, which is a utility that allows you to redirect the output of a command to

the network. For this approach, you will need two active terminal or ssh sessions. We

will refer to them as Session0 and Session1. All of the Session0 commands will run

on the Ubuntu VM and thus we will not go into the Android device shell from

Session0. The commands which need to execute within the Android device’s shell

will all take place on Session1.

To begin, we first enable the network connection between the two endpoints

using the adb port-forwarding capability:

SESSION0

ahoog@ubuntu:~$ adb forward tcp:31337 tcp:31337

This command essentially connects port 31337 on the Android device and the

Ubuntu VM. Next, we execute nanddump on the Android device and pipe the output

to netcat:

SESSION1

ahoog@ubuntu:~$ adb shell
/ # /dev/AFPhyiscal/nanddump /dev/mtd/mtd8ro | /dev/AFPhyiscal/nc -l -p 31337
ECC failed: 0
ECC corrected: 0
Number of bad blocks: 0
Number of bbt blocks: 0
Block size 131072, page size 2048, OOB size 64
Dumping data starting at 0x00000000 and ending at 0x105c0000...

Physical techniques 281

mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

Now that the Android device is sending the nanddump data over netcat, we need

to receive it on the Ubuntu VM side:

SESSION0

ahoog@ubuntu:~$ nc 127.0.0.1 31337 > af-book-mtd8.nanddump

When nanddump completes, it simply exits without any additional output as does

the netcat on the Ubuntu VM. We can verify that the nanddump was received on the

workstation with ls:

SESSION0

ahoog@ubuntu:~$ ls -lh af-book-mtd8.nanddump
-rw-r--r-- 1 ahoog ahoog 270M 2011-02-26 20:58 af-book-mtd8.nanddump

At this point, you could continue to physically image the MTD partitions needed

for the investigation, which should include at least the user data and the cache

partitions.

In Chapter 7, we provide a program that will allow you to extract the OOB data

from a nanddump to assist with forensic processing such as file carving. As you can

generate the dd image in this manner, there is no need to acquire a dd image using the

Android device. However, dd is built into Android and so we provide this example

which is similar to the use of the nanddump example, except it uses the dd utility, and

so does not capture OOB data. This example uses the reference HTC Incredible.

SESSION0

ahoog@ubuntu:~$ adb forward tcp:31337 tcp:31337

SESSION1

ahoog@ubuntu:~$ adb shell
$ su
cat /proc/mtd
dev: size erasesize name
mtd0: 000a0000 00020000 "misc"
mtd1: 00480000 00020000 "recovery"
mtd2: 00300000 00020000 "boot"
mtd3: 0f800000 00020000 "system"
mtd4: 000a0000 00020000 "local"
mtd5: 02800000 00020000 "cache"
mtd6: 09500000 00020000 "datadata"
dd if=/dev/mtd/mtd6 bs=4096 | /dev/AFPhyiscal/nc -l -p 31337
38144+0 records in
38144+0 records out
156237824 bytes transferred in 182.898 secs (854234 bytes/sec)

SESSION0

ahoog@ubuntu:~$ nc 127.0.0.1 31337 > dd of=htc-datadata.dd bs=4096

Due to variations in Android devices, MTD, YAFFS2, and other nuisances, it is

not always possible to mount the acquired nanddump image and extract the logical

files. As you already have sufficient privileges, it is best to extract the desired logical

data. This can be accomplished using a recursive adb pull because the adb daemon

282 CHAPTER 6 Android forensic techniques

mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

running on the device has root privileges. You can also use a utility such as tar to

copy the data into a single archive file. In either instance, you must ensure the

desired file system is mounted. Some of the modified recovery partitions provide

a user interface for mounting the file systems. However, you can also do this on the

command line and mount the file system read only. On the Motorola Droid refer-

enced above, do the following:

SESSION1

/ # mount -o ro -t yaffs2 /dev/block/mtdblock8 /data
/ # mount -o ro,remount -t yaffs2 /dev/block/mtdblock7 /cache
/ # mount
rootfs on / type rootfs (rw)
tmpfs on /dev type tmpfs (rw,mode=755)
devpts on /dev/pts type devpts (rw,mode=600)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
/dev/block/mtdblock7 on /cache type yaffs2 (ro)
/dev/block/mmcblk0p1 on /sdcard type vfat
(rw,nodev,noatime,nodiratime,fmask=0000,dmask=0000,allow_utime=0022,
codepage=cp437,iocharset=iso8859-1,errors=remount-ro)
/dev/block/mtdblock8 on /data type yaffs2 (ro)

The first command mounts the “/data” partition read only. The second command

takes the already mounted “/cache” directory and remounts it read only. You can

now perform the adb pull:

ahoog@ubuntu:~$ adb pull /data/data/com.android.providers.telephony sms
pull: building file list...
pull: /data/data/com.android.providers.telephony/databases/mmssms.db ->
sms/databases/mmssms.db
pull: /data/data/com.android.providers.telephony/databases/telephony.db ->
sms/databases/telephony.db
2 files pulled. 0 files skipped.
137 KB/s (44032 bytes in 0.311s)

The final option is to use the tar utility that places files and directories in a single

archive often called a tarball.

SESSION1

ahoog@ubuntu:~$ adb shell
/ # /dev/AFPhyiscal/tar cpv -f - /data/data/com.android.providers.telephony
/cache | /dev/AFPhyiscal/nc -l -p 31337
tar: removing leading '/' from member names
data/data/com.android.providers.telephony/
data/data/com.android.providers.telephony/lib/
data/data/com.android.providers.telephony/databases/
data/data/com.android.providers.telephony/databases/telephony.db
data/data/com.android.providers.telephony/databases/mmssms.db
cache/
cache/recovery/
cache/recovery/log
cache/lost+found/

SESSION0

ahoog@ubuntu:~$ nc 127.0.0.1 31337 > af-book-droid-files.tar

Physical techniques 283

mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif
mailto:Image of Figure 6.67|tif

In this example, we passed two directories to tar which we wanted archived: the

directory containing SMS/MMS messages in “/data/data” and the “/cache” direc-

tory. We sent the archive over the network and received it on the Ubuntu VM.

However, you could have also simply saved the archive to the SD card.

Once you have root privileges on an Android device and sufficient understanding

of the device’s architecture, you can use nanddump, dd, tar, netcat, and adb to create

forensic images or simply copies of the data for analysis.

SUMMARY

There are several techniques that can be used to perform a forensic acquisition of an

Android device. If the device is pass code protected, you must circumvent or bypass

the protection to extract data. While a number of techniques to circumvent the pass

code exist, it is not possible to achieve this in every circumstance. Once the device is

accessible, the forensic analyst can choose from a logical acquisition which focuses

primarily on undeleted data accessible through Content Providers or the more

thorough but technically challenging physical acquisition. While the physical

acquisition will produce more data, it generally requires more sophisticated analysis

techniques which will be covered in Chapter 7.

References
ACPO Good Practice Guide for Computer-Based Electronic Evidenced7Safe Information

Security. (n.d.). Retrieved February 19, 2011, from http://7safe.com/electronic_evidence/

index.html#.

Android & Windows Phone: Tablets, Apps, & ROMs @ xda-developers. (n.d.). Retrieved

February 23, 2011, from http://www.xda-developers.com/.

Aviv, Gibson, Mossop, Blaze, & Smith. (n.d.). Smudge attacks on smartphone touch screens.

Retrieved February 21, 2011, from http://www.usenix.org/events/woot10/tech/full_

papers/Aviv.pdf.

Cannon, T. (n.d.). Android lock screen bypass. Retrieved February 21, 2011, from http://

thomascannon.net/blog/2011/02/android-lock-screen-bypass/.

dc3dd. (n.d.). Retrieved February 22, 2011, from http://dc3dd.sourceforge.net/.

Government Employment & Payroll. (n.d.). Retrieved February 19, 2011, from http://www.

census.gov/govs/apes/.

[Guide] Flashing Linux Motorola’s with RSD Lite Versions. (n.d.). Retrieved February 24,

2011, from modmymobile.com/forums/8-guides-downloads-forum-suggestions/218651-

guide-flashing-linux-motorolas-rsd-lite-versions.html.

HTCdDeveloper Center. (n.d.). Retrieved February 28, 2011, from http://developer.htc.com/

adp.html.

IEEE SAd1149.1e1990dIEEE Standard Test Access Port and Boundary-Scan

Architecture. (n.d.). Retrieved February 23, 2011, from http://standards.ieee.org/findstds/

standard/1149.1-1990.html.

RerWare, LLC: Android Backup and BlackBerry BackupdMyBackup Pro. (n.d.). Retrieved

February 22, 2011, from http://www.rerware.com/.

284 CHAPTER 6 Android forensic techniques

http://7safe.com/electronic_evidence/index.html%23
http://7safe.com/electronic_evidence/index.html%23
http://www.xda-developers.com/
http://www.usenix.org/events/woot10/tech/full_papers/Aviv.pdf
http://www.usenix.org/events/woot10/tech/full_papers/Aviv.pdf
http://thomascannon.net/blog/2011/02/android-lock-screen-bypass/
http://thomascannon.net/blog/2011/02/android-lock-screen-bypass/
http://dc3dd.sourceforge.net/
http://www.census.gov/govs/apes/
http://www.census.gov/govs/apes/
http://modmymobile.com/forums/8-guides-downloads-forum-suggestions/218651-guide-flashing-linux-motorolas-rsd-lite-versions.html
http://modmymobile.com/forums/8-guides-downloads-forum-suggestions/218651-guide-flashing-linux-motorolas-rsd-lite-versions.html
http://developer.htc.com/adp.html
http://developer.htc.com/adp.html
http://standards.ieee.org/findstds/standard/1149.1-1990.html
http://standards.ieee.org/findstds/standard/1149.1-1990.html
http://www.rerware.com/

Android application
and forensic analysis 7
INFORMATION IN THIS CHAPTER

� Analysis techniques

� FAT forensic analysis

� YAFFS2 forensic analysis

� Android app analysis and reference

INTRODUCTION
A lot of material has been discussed up to this point in the book covering not only the

history and architecture of Android devices but also complete details on the file

systems, ways to secure devices, and methodology to acquire data from them. But

data without context and analysis is just noise. Many of the techniques used in

traditional forensic investigations are applicable in Android forensics analysis.

ANALYSIS TECHNIQUES
This section will provide an overview of the analysis techniques followed by

sections that demonstrate the procedures for specific file systems.

Timeline Analysis

Timeline analysis should be a key component to any investigation as the timing of

events is nearly always relevant. There are many ways to build a forensic timeline.

However, unless created with specialized software, the process can be quite tedious.

Several software techniques will be covered in detail later in the chapter including

free, open source forensic utilities from both The Sleuth Kit and log2timline. Other

forensic tools can create timelines as well.

For supported file systems (for example, the FAT16/FAT32 file systems found on

the SD cards and embedded MultiMediaCard [eMMC]), a number of tools are

available which can create the timeline. However, YAFFS2 is not currently supported

by any analysis tool and so creating a timeline requires significant manual analysis.

The primary source of timeline information is the file system metadata including

the modified (file metadata), accessed, changed (file contents), and created. This

CHAPTER

Android Forensics. DOI: 10.1016/B978-1-59749-651-3.10007-X

Copyright � 2011 Elsevier Inc. All rights reserved.
285

http://dx.doi.org/10.1016/B978-1-59749-651-3.10007-X

metadata is often referred to as MAC times or sometimes MACB where the “B”

represents when a file was created (born). File systems track different time stamps

and have nuances that must be taken into account when performing forensic

analysis.

For example, Microsoft’s FAT file system has been the subject of many forensic

investigations and analyses. The Microsoft Developers Network (MSDN) provides

details on file times in FAT and NTFS file systems, stating:

Not all file systems can record creation and last access times, and not all file

systems record them in the same manner. For example, the resolution of create

time on FAT is 10 ms, while write time has a resolution of 2 s, and access time

has a resolution of 1 day, and hence, it is really the access date. The NTFS file

system delays updates to the last access time for a file by up to 1 h after the

last access.

(File Times, n.d.)

Andre Ross created a useful graphical representation of this on his digfor (DIGital

FORensics) blog (http://digfor.blogspot.com/2008/10/time-and-timestamps.html)

shown in Fig. 7.1 (Ross, A., n.d.).

To further illustrate how FAT time stamps work, digital forensics and incident

response firm cmdLab posted a blog entitled “Misinterpretation of File System

Timestamps” (Casey, E., n.d.), which provides full details on FAT time stamps.

The confusion arises from the fact that FAT file systems represent create and last-

write time stamps slightly differently. Last-write time stamps are 32-bit little-endian

values, interpreted as follows:

24 16 8 0
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
|Y|Y|Y|Y|Y|Y|Y|M| |M|M|M|D|D|D|D|D| |h|h|h|h|h|m|m|m| |m|m|m|s|s|s|s|s|
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

____________/________/_________/ ________/____________/_________/
year month day hour minute second

Take as an example the following FAT folder entry with the last-write date high-

lighted in bold:

$ icat /dev/sdb1 353884 | xxd
0000000: 2e20 2020 2020 2020 2020 2030 004f b079 . 0.O.y
0000010: 763a 763a 0000 b579 763a a502 0000 0000 v:v:…yv:……
0000020: 2e2e 2020 2020 2020 2020 2010 004f b079O.y
0000030: 763a 763a 0000 b079 763a 6605 0000 0000 v:v:…yv:f…..
0000040: 4173 0061 006c 0076 0065 000f 009e 6e00 As.a.l.v.e….n.
0000050: 6500 7700 3400 2e00 6700 0000 6900 6600 e.w.4…g…i.f.
0000060: 5341 4c56 454e 7e31 4749 4620 0075 78b9 SALVEN~1GIF .ux.
0000070: 753a 763a 0000 78b9 753a 9212 c1d4 0000 u:v:..x.u:……
0000080: 4269 0066 0000 00ff ffff ff0f 0014 ffff Bi.f…………
0000090: ffff ffff ffff ffff ffff 0000 ffff ffff …………….

Converting to big endian gives 3a 75 b9 78, which has the following binary

representation:

00111010 01110101 10111001 01111000

286 CHAPTER 7 Android application and forensic analysis

http://digfor.blogspot.com/2008/10/time-and-timestamps.html

File Times

Last Access
Created

Modified

Granularity
Granularity

Granularity

1 Day FAT
FAT 10 milliseconds

Limited by Windows Internal

clock to 1 millisecond

IF instead the file Copied or

Moved from another disk or

directory

Renaming the file or

changing it’s attributes

Saved or auto saved even if

no new data written to the file

Set when OS allocates

a new directory entry

for a newly crated file

Set when OS writes or

changes content of a file

IF instead the file Copied or Moved

via command line from another

disk or directory on Windows

2000 or later

100 ns

NTFS

NTFS

Up to 1 hour

Scanned by Antivirus

File is opened

Changed

Changed

Changed

Not Changed

Not Changed

Not Changed

File is right clicked

Moved to new Volume

Infected file cleaned

by the Antivirus

http://digfor.blogspot.com

Can be disabled in

registries by setting NTFS

Disable Last Access

Update to Value 1

FAT 2 seconds

100 ns
Limited by Windows Internal

clock to 1 millisecondNTFS

FIGURE 7.1

FAT and NTFS time and time stamps.

A
n
a
lysis

te
c
h
n
iq
u
e
s

2
8
7

This translates to a time stamp of 2009.03.21 23:11:48 as follows:

� 7 bits¼ 0011101¼ 29 years since 1980

� 4 bits¼ 0011¼ 3 months

� 5 bits¼ 10101¼ 21 days

� 5 bits¼ 10111¼ 23 h

� 6 bits¼ 001011¼ 11 min

� 5 bits¼ 11000¼ 24¼ 48 s

Note that 5 bits cannot store all 60 s, so last-write time stamps must be incre-

mented in 2 s intervals, and are always an even number of seconds.

Although the create time follows a similar general calculation, it uses an addi-

tional 8 bits to represent one hundredths of a second. In the same directory listing

above, the create time stamp is identical to the last modified time stamp except for an

additional byte (75 78 b9 75 3a). The additional byte equates to 117 hundredths of

a second, which brings the create time to 2009.03.21 23:11:49.17. Thus, the create

time can have an odd number of seconds, and has a resolution of 10 ms.

One tool used in this book for timeline analysis is The Sleuth Kit (TSK), which

supports several file systems. The TSK wiki provides the information presented in

Table 7.1 to define the meaning of MACB time stamps for the supported file systems

(Carrier, B., n.d.).

Unfortunately, TSK does not, as of version 3.2.1, fully support YAFFS2.

However, there are some efforts to provide this information. For Android, TSK is

effective in analyzing the FAT file systems as well as EXT3 which is found on some

devices. TSK does not yet fully support EXT4 but the software is updated frequently

and examiners should check the web site http://www.sleuthkit.org/ for the most

recent changes.

File System Analysis

As discussed throughout this book, the directories and files in the Android file

systems are obviously the primary focus of a forensic investigation. The final section

of this chapter and book, “Android App Analysis and Reference,” will provide

a detailed analysis of Android apps. Combining this information with techniques

demonstrated in Chapter 4 will provide the most significant results for an

investigation.

Table 7.1 MAC Meaning by File System

File System m a c b

Ext 2/3 Modified Accessed Changed N/A

FAT Written Accessed N/A Created

NTFS File modified Accessed MFT modified Created

UFS Modified Accessed Changed N/A

288 CHAPTER 7 Android application and forensic analysis

http://www.sleuthkit.org/

There are a number of directories that need to be examined for an investi-

gation. Over time, examiners will need to expand the list to include new

directories and files, as Android devices are changing rapidly. The best way to

approach this problem is to first run the following command to determine which

file systems are mounted on the system, where they are mounted, and what type

they are. To demonstrate, let’s look at four different Android phones including

a T-Mobile/HTC G1, a Google Nexus One, a Motorola Droid, and an HTC

Incredible.

To start, let’s examine the output of the mount command on the G1 running

Android 1.5:

ahoog@ubuntu:~$ adb shell mount
rootfs / rootfs ro 0 0
tmpfs /dev tmpfs rw,mode=755 0 0
devpts /dev/pts devpts rw,mode=600 0 0
proc /proc proc rw 0 0
sysfs /sys sysfs rw 0 0
tmpfs /sqlite_stmt_journals tmpfs rw,size=4096k 0 0
/dev/block/mtdblock3 /system yaffs2 ro 0 0
/dev/block/mtdblock5 /data yaffs2 rw,nosuid,nodev 0 0
/dev/block/mtdblock4 /cache yaffs2 rw,nosuid,nodev 0 0

This particular G1 was running a stock firmware and did not have an SD card

inserted, so we are left with four file systems to examine, highlighted with emphasis.

Similarly, we examine the output of mount on the Nexus One running Android

2.1-update1:

ahoog@ubuntu:~$ adb shell mount
rootfs on / type rootfs (ro,relatime)
tmpfs on /dev type tmpfs (rw,relatime,mode=755)
devpts on /dev/pts type devpts (rw,relatime,mode=600)
proc on /proc type proc (rw,relatime)
sysfs on /sys type sysfs (rw,relatime)
tmpfs on /sqlite_stmt_journals type tmpfs (rw,relatime,size=4096k)
none on /dev/cpuctl type cgroup (rw,relatime,cpu)
/dev/block/mtdblock3 on /system type yaffs2 (ro,relatime)
/dev/block/mtdblock5 on /data type yaffs2 (rw,nosuid,nodev,relatime)
/dev/block/mtdblock4 on /cache type yaffs2 (rw,nosuid,nodev,relatime)
/sys/kernel/debug on /sys/kernel/debug type debugfs (rw,relatime)
/dev/block//vold/179:1 on /sdcard type vfat
(rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,
dmask=0702,allow_utime=0020,codepage=cp437,iocharset=iso88591,shortname=mixed,
utf8,errors=remount-ro)

In this case, there are five file systems on the Nexus One, highlighted with

emphasis, which should be the initial focus of an examination. The additional file

system is the SD card mounted.

Next, we take a look at the Motorola Droid’s mounted file systems when running

Android 2.2.1:

ahoog@ubuntu:~$ adb shell mount
rootfs / rootfs ro,relatime 0 0
tmpfs /dev tmpfs rw,relatime,mode=755 0 0

Analysis techniques 289

The Motorola Droid also has seven files systems of interest. However, they are

slightly different from the Nexus One.

Finally, let’s take a look at the HTC Incredible output previously discussed

running Android 2.2:

ahoog@ubuntu:~$ adb shell mount
rootfs / rootfs ro,relatime 0 0
tmpfs /dev tmpfs rw,relatime,mode=755 0 0
devpts /dev/pts devpts rw,relatime,mode=600 0 0
proc /proc proc rw,relatime 0 0
sysfs /sys sysfs rw,relatime 0 0
none /acct cgroup rw,relatime,cpuacct 0 0
tmpfs /mnt/asec rw,relatime,mode=755,gid=1000 0 0
none /dev/cpuctl cgroup rw,relatime,cpu 0 0
/dev/block/mtdblock3 /system yaffs2 rw,relatime 0 0
/dev/block/mmcblk0p1 /data ext3
rw,nosuid,noatime,nodiratime,errors=continue,data=writeback 0 0
/dev/block/mtdblock6 /data/data yaffs2 rw,nosuid,nodev,relatime 0 0
/dev/block/mmcblk0p2 /cache ext3
rw,nosuid,nodev,noatime,nodiratime,errors=continue,data=writeback 0 0
tmpfs /app-cache tmpfs rw,relatime,size=8192k 0 0
/dev/block/vold/179:9 /mnt/sdcard vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=070
2,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0
/dev/block/vold/179:9 /mnt/secure/asec vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=070
2,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0
tmpfs /mnt/sdcard/.android_secure tmpfs ro,relatime,size=0k,mode=000 0 0
/dev/block/vold/179:3 /mnt/emmc vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=070
2,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0

The HTC Incredible tops the list with nine file systems of interest. As you can

tell, with different Android devices and different versions of Android, the file

systems of interest change. However, from the above examination, we have created

Table 7.2, which provides a strong starting point for file system examinations.

devpts /dev/pts devpts rw,relatime,mode=600 0 0
proc /proc proc rw,relatime 0 0
sysfs /sys sysfs rw,relatime 0 0
none /acct cgroup rw,relatime,cpuacct 0 0
tmpfs /mnt/asec tmpfs rw,relatime,mode=755,gid=1000 0 0
none /dev/cpuctl cgroup rw,relatime,cpu 0 0
/dev/block/mtdblock4 /system yaffs2 ro,relatime 0 0
/dev/block/mtdblock6 /data yaffs2 rw,nosuid,nodev,relatime 0 0
/dev/block/mtdblock5 /cache yaffs2 rw,nosuid,nodev,relatime 0 0
/dev/block/mtdblock0 /config yaffs2 ro,relatime 0 0
/dev/block/vold/179:1 /mnt/sdcard vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=
0702,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0
/dev/block/vold/179:1 /mnt/secure/asec vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=
0702,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,
errors=remount-ro 0 0
tmpfs /mnt/sdcard/.android_secure tmpfs ro,relatime,size=0k,mode=000 0 0

290 CHAPTER 7 Android application and forensic analysis

On a positive note, as these files are allocated, even for unsupported file systems

such as YAFFS2, the files can be copied to another medium and examined with

existing forensic tools and techniques an examiner owns and has knowledge of. For

example, the contents of “/data/data” could be copied from an Android device onto

your forensic workstation and then the content could be examined directly.

File Carving

File carving is a process in which specified file types are searched for and extracted

across binary data, often resulting in a forensic image of an entire disk or partition.

File carving works by examining the binary data and identifying files based on their

known file headers. If the file format has a known footer, it will then scan from the

header until it finds the footer (or hits a maximum file length set by the configuration

file) and then save the carved file to disk for further examination.

Table 7.2 File Systems to Include in an Investigation

Mount Point File System Type Relevance

/proc proc Examine on the phone with the “cat”

command. Look for relevant

metadata about the system such as

file system statistics

/data/data (on older

systems, entire /data is

1 partition/file system)

YAFFS2 Nearly all app data

/data (on newer

phones /data can be

further segemented)

EXT3/EXT4/YAFFS2 App and system data excluding the

app data stores found in /data/data

/cache YAFFS2/EXT3 Cache file system used by some

apps and by the system

/mnt/asec tmpfs Unencrypted app .apk file, which is

stored encrypted on the SD card but

decrypted here for running systems

to access and utilize

/app-cache tmpfs Temporary file system where

com.android.browser (on HTC

Incredible) stores cache. Other apps

may also use this directory over time

/mnt/sdcard vfat FAT32 file system on removable SD

card

/mnt/emmc vfat FAT32 file system on the Embedded

MultiMediaCard (eMMC)

Analysis techniques 291

Traditional file carving techniques require that the data are sequential in the image

and this cannot produce the full file if it is fragmented. There aremany reasons that files

are fragmented as the process for saving the file to nonvolatile storage varies by file

system type and is heavily influenced by the memory type such as NAND flash. This

alsomeans that files that are very large (such as videos)will bemore difficult to recover.

Newer file carving techniques are being researched and developed to address the

limitations experienced with file fragmentation. One such technique is developed by

Digital Assembly, a digital forensics solutions company based in New York. Their

technique, called SmartCarving, profiles the fragmentation characteristics of several

popular file systems (except YAFFS2, unfortunately) and uses this information to

carve even fragmented photos. Their product, Adroit Photo Forensics, can also carve

images from unknown file systems (Digital Assembly, n.d.).

One popular tool used for carving data files is scalpel, an open source, high

performance file carver written byGoldenG. Richard III (Scalpel, n.d.). Scalpel reads

a configuration file for desired file header and footer definitions in order to extract files

from a raw image. It is file system independent and will work on FATx, NTFS, EXT2/

3, HFS, or raw partitions. Scalpel is written in C and runs on Linux, Windows, OS X,

and other operating systems which can compile the C code (Scalpel, n.d.).

There are two ways to acquire scalpel. First, on the forensic workstation, you can

install via apt-get:

ahoog@ubuntu:~$ sudo apt-get install scalpel

This will install the latest version. Alternatively, you can compile from source,

which will allow you to install the latest version on Linux or other platforms without

waiting for the specific platform maintainer to update the prepackaged version.

cd ~
wget http://www.digitalforensicssolutions.com/Scalpel/scalpel-1.60.tar.gz
tar xzvf scalpel-1.60.tar.gz
cd scalpel-1.60/
make

The scalpel executable is now in “~/scalpel-1.60” and is simply called scalpel. In

addition, there is a sample scalpel.conf in that same directory that is needed by

scalpel to run and to extend the supported file definitions. Here’s a starter scalpel.

conf for an Android device:

#ext case size header footer
gif y 5000000 \x47\x49\x46\x38\x37\x61 \x00\x3b
gif y 5000000 \x47\x49\x46\x38\x39\x61 \x00\x3b
jpg y 200000000 \xff\xd8\xff\xe0\x00\x10 \xff\xd9
jpg y 5000000 \xff\xd8\xff\xe1 \x7f\xff\xd9

png y 102400 \x50\x4e\x47? \xff\xfc\xfd\xfe
png y 102400 \x89PNG

db y 409600 SQLite\x20format

email y 10240 From:

doc y 10000000 \xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00

292 CHAPTER 7 Android application and forensic analysis

As you can tell, the headers for this configuration file define the extension or file

type (if it is case sensitive), the maximum size to carve, the header definition (in

ASCII, hex, and other supported notations), and the footer (if it exists). A targeted

file type for carving does not need to define each setting. For additional infor-

mation, see the sample configuration file in the downloaded source files as there are

many additional options that are quite powerful. Your Ubuntu workstation now has

the software needed for file carving, which will be covered in the FAT32 and

YAFFS2 sections.

It is worth pointing out that a large number of file signatures have already

been assembled. Gary Kessler, an independent consultant and practitioner of

digital forensics, actively maintains a table of file signatures on his web site

(Kessler, G., n.d.). He references the “magic file,” which is found on most

Unix systems located at “/usr/share/file/magic” on the Ubuntu workstation. On

the workstation, you can run the “file” command, which takes a file as an

argument and attempts to determine the file type based on the signatures in the

magic file.

A simple example is looking at an unknown file in “/mnt/emmc/.Trashes,” called

“._501,” which cannot be easily identified by the file name (of course, some people

might try to hide file types by changing the extension; however, by examining the file

signature, this is easily discovered):

#ahoog@ubuntu:~/htc-inc/mnt/emmc$ file ./.Trashes/._501
./.Trashes/._501: AppleDouble encoded Macintosh file

Thus, the eMMC has an OS X file in the Trash, which might indicate that

someone connected the Android device to a Mac computer.

Strings

The strings command on the Ubuntu workstation will extract, by default, ASCII

printable stringsdat least four characters longdfrom any file, text or binary. While

this technique is not terribly elegant or sophisticated, it is quite effective at quickly

examining binary data to determine if information of interest might be contained in

the file.

\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00 NEXT
doc y 10000000 \xd0\xcf\x11\xe0\xa1\xb1

htm n 50000 <html </html>

pdf y 5000000 %PDF %EOF\x0d REVERSE
pdf y 5000000 %PDF %EOF\x0a REVERSE

wav y 200000 RIFF????WAVE
amr y 200000 #!AMR

zip y 10000000 PK\x03\x04 \x3c\xac

java y 1000000 \xca\xfe\xba\xbe

Analysis techniques 293

There are several options that have a great impact on what strings output. First,

let’s take a look at the synopsis section of the command’s man page (manual):

STRINGS(1) GNU Development Tools STRINGS(1)

NAME
 strings - print the strings of printable characters in files.

SYNOPSIS
 strings [-afovV] [-min-len]
 [-n min-len] [--bytes=min-len]
 [-t radix] [--radix=radix]
 [-e encoding] [--encoding=encoding]
 [-] [--all] [--print-file-name]
 [-T bfdname] [--target=bfdname]
 [--help] [--version] file

There are a few options you should always consider using when executing

strings. First, the “dall” option tells strings to examine the entire file (on certain

files, it only examines certain portions of the file). Second, the “--radix¼” option

instructs strings to print the offset within the file where the string was found. This is

extremely helpful when you combine strings and a hex editor to examine possible

evidence found in the file. The radix option can print the offset in octal (--radix¼o),

hex (--radix¼x), or decimal (--radix¼d). For most hex editors, you should consider

hex or perhaps decimal offsets.

The other extremely important option controls the character encoding of the

strings, which provides support for Unicode characters in both big-endian and little-

endian formats:

This is important because not only does Android natively support Unicode but it

also allows investigating a phone where the default language requires Unicode.

Following are a few examples from the previous dd image:

ahoog@ubuntu:~$ strings --all --radix=x htc-datadata.dd | less
 880a htcchirp.db
 891d ^XMp4XM
 900a unlinked
 980a deleted
 a00a htcchirp.db-journal

In this example, the first lines of results were omitted. However, you can see the

dd image is referencing the htcchirp.db at offset 0x880A and, shortly thereafter, we

see unlinked (0x900A), deleted (0x980A), and finally htcchirp.db-journal

(0xA00A). So what does all this mean? It seems likely that the htcchirp.db database

was modified. During that time, it created a special file (htcchirp.db-journal,

--encoding=encoding
 Select the character encoding of the strings that are to be found.
 Possible values for encoding are: s = single-7-bit-byte characters
 (ASCII, ISO 8859, etc., default), S = single-8-bit-byte characters,
 b = 16-bit bigendian, l = 16-bit littleendian, B = 32-bit
 bigendian, L = 32-bit littleendian. Useful for finding wide
 character strings. (l and b apply to, for example, Unicode
 UTF-16/UCS-2 encodings).

294 CHAPTER 7 Android application and forensic analysis

a journal file) that manages the update and allows the change to roll back if it was not

successful. After the journal file was no longer needed, it was deleted. This is

important information for understanding what occurred and where deleted data

might exist (the journal file takes a complete snapshot of the SQLite page that is

being updated and thus, the previous values are stored on the NAND flash).

Now, let’s change the encoding parameter and look for the following:

ahoog@ubuntu:~$ strings --all --radix=x --encoding=b htc-datadata.dd | less
 c42404 xt=\"chicago tribune\">chicago tribune
</div>",259200,604800],["<div class=\"sg_g\"
 sg_text=\"chicago bears\">chicago bears
</div>",259200,604800],["<div class=\"sg_g\"
 sg_text=\"chicago weather\">chicago weather
</div>",259200,604800],["<div class=\"sg_g\"
 sg_text=\"chicago sun times\">chicago sun times
</div>",259200,604800],["<div class=\"sg_g\"
 sg_text=\"chicago public library\">chicago public library
</div>",259200,604800],
 ["<div class=\"sg_g\" sg_text=\"chicago bul

1943020 gt_bearsh[1295219345,["<div class=\"sg_n\"
sg_url=\"/url?ct=res&oi=s

uggest_nav&q=http://www.bearshare.com/&sa=X&
source=suggest&usg=AFQjCNGP71yyDMU
 jIhmvN-DN2Tm7yPYCAA\">Free Music
Downloads - Download Free MP3
 Music - BearShare.com Music
<span
style=\"display:inline;\">www.bearsha

In this example, we are looking for 16-bit big-endian characters. In this case, two

examples were pulled from the results. In one example at offset 0xC42404, it’s clear

some sort of activity related to Chicago occurred. The examiner could simply open

a hex edit, jump to offset 0xC42404, and look at the data around this entry in an

attempt to understand the activity.

Equally interesting is the next entry at offset 0x1943020 that references the

bearshare.com web site and has what appears to be a time stamp. If we convert the

number 1295219345 into a date/time based on Unix Epoch, we get Sunday, 16 Jan

2011 23:09:05 GMT. Again, the examiner would need to examine the data more

closely to validate any findings, but a good hypothesis is that some web-based

activity took place on the Android device at that time.

One final example (and the other encodings can be left as an exercise for the

reader) reveals the following:

ahoog@ubuntu:~$ strings --all --radix=x --encoding=l htc-datadata.dd | less
18451a8 rgc:0:lat41.8786
18451d2 rgc:0:lon-87.6359
18451fc rgc:1:last1288470018632
1845230 rgc:0:rgcOak Park, IL
1845260 rgc:1:acc912

This is a great example because it includes not only a (valid) longitude and

latitude, but a time stamp (in milliseconds, not seconds, since 1970) that translates to

GMT: Sat, 30 Oct 2010 20:20:18 GMT.

Analysis techniques 295

http://bearshare.com

Strings is a very powerful command which, when combined with searching and

filters, can quickly determine if phone numbers, names, locations, GPS coordinates,

dates, and many more pieces of information are easily extractable in a data file.

Hex: A Forensic Analyst’s Good Friend

In many forensic investigations, a logical acquisition or a logical file system analysis

from a physical acquisition will provide more than enough data for the case.

However, certain cases require a deeper analysis to find deleted data or unknown file

structures. This is also necessary when the file system has little or no support in

standard forensic tools, such as YAFFS2.

Understandably, many forensic analysts would prefer to not perform a deeper

analysis because it requires significant time, is extremely tedious, and requires

a fairly deep understanding and curiosity of data structures. However, the results

from this type of analysis are often quite amazing. Important information about that

individual case is learned, and this knowledge is generally applicable to many cases

in the future.

For these reasons, every forensic analyst should be comfortable using a hex

editor should the need arise. This allows the analysts to see exactly what data are

being stored, look for patterns, and perhaps identify deleted or previously under-

stood data structures.

Of course, let’s explain this better with an example. First, make sure you install

the following package on your Ubuntu workstation:

ahoog@ubuntu:~$ sudo apt-get install ncurses-hexedit

This is a very fast curses (terminal)-based hex editor. Of course, you can use any

hex editor that is comfortable. Next, let’s use the strings command to look at the

mmssms.db file which is located in the /data/data/com.android.providers.telephony/

databases directory to see if we can find some deleted text messages. In this sample

case, it is known that text messages to 3128781100 were deleted from the device.

First, let’s use strings to see if we find that phone number in the SQLite file:

ahoog@ubuntu:~$ strings --all --radix=x mmssms.db | grep 3128781100 | wc -l
417

In this command, we use the pipe (“j”) operator, which takes the output from one

command and sends it to the next command. In this way we can link many

commands together and get very powerful analysis techniques on the fly. Thus, the

above command does the following:

1. Runs the strings command on the SQLite database.

2. Takes the output of the strings command and runs it through the grep program,

which filters the output-based patterns provided. In this case, we provide the

phone number in question. However, you can create very powerful search strings

for grep including regular expressions.

296 CHAPTER 7 Android application and forensic analysis

3. Take the output from the grep command and see how many lines are returned by

piping the output to the word count program (“wc”) and instructing it to count by

line instead of by word.

The result is that 417 entries for that phone number were found; obviously

indicating that there was indeed communication with the phone number on that

device. We next want to take a close look at the messages, so instead of piping the

output to the wc program, let’s look at the results directly and include one line of text

after the phone number by adding the option “-A 1” to grep (also, we pipe the output

to the “less” command to display it one page at a time):

ahoog@ubuntu:~$ strings --all --radix=x mmssms.db | grep -A 1 3128781100 |
less
 12108 3128781100
 1211b Activated my phone
--
 14080 3128781100
 14097 Have to meet CPA at 11:30.
--
 16116 3128781100
 16129 Can you try to refresh...

Thus, we know we have an SQLite database with the targeted number and

messages. Let’s use SQLite3 to better understand the database. Here we will use

command line (covered in Chapter 4) but you can use a SQLite viewer with

a graphical front end if you prefer.

TIP

SQLite language reference
While we have mentioned several SQLite tools throughout this book, you may find the SQLite

language reference at http://www.sqlite.org/lang.html to be a great resource. For those not

familiar with SQL, it provides a thorough overview. If you already have an understanding of

SQL, this language reference will help explain, as the page title reads, “SQL as Understood by

SQLite.”

ahoog@ubuntu:~$ sqlite3 mmssms.db
SQLite version 3.6.22
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .tables
addr incoming_msg sms
android_metadata incoming_msg_v2 sr_pending
attachments part threads
canonical_addresses pdu threads_list
cbch pending_msgs words
drm qtext words_content
htcmsgs rate words_segdir
htcthreads raw words_segments

sqlite> .schema sms
CREATE TABLE sms (_id INTEGER PRIMARY KEY,thread_id INTEGER,toa INTEGER

Analysis techniques 297

http://www.sqlite.org/lang.html

In the above SQLite3 sessions, the following commands were run to better

understand the data:

1. SQLite3 mmssms.db: Opens database for querying.

2. .tables: Lists the tables in the database.

3. .schema sms: Focuses on the sms table, asks database for the structure (schema)

of the table. The schema was quite long and was truncated.

4. .mode line: Sets the display mode to line for easier viewing.

5. “select * from sms limit 1;”: Instructs SQLite3 to display one record to the screen

(limit one) from the sms table showing all columns.

6. .quit: Exits the program

Thus, we can now see that there are a number of fields in the sms table, but that

after the phone number, there is a personal ID followed by the time stamp. Using

DEFAULT 0,address TEXT,person
INTEGER,date INTEGER,protocol INTEGER,read INTEGER DEFAULT 0,status INTEGER
DEFAULT -1,type
INTEGER,reply_path_present INTEGER,subject TEXT,body TEXT,sc_toa INTEGER
DEFAULT 0,report_date
INTEGER,service_center TEXT,locked INTEGER DEFAULT 0,index_on_sim INTEGER
DEFAULT -1,callback_number TEXT,
priority INTEGER DEFAULT 0,htc_category INTEGER DEFAULT 0,cs_timestamp LONG
DEFAULT -1, cs_id TEXT,
cs_synced INTEGER DEFAULT 0, error_code INTEGER DEFAULT 0,seen INTEGER
DEFAULT 0);
<snip>

sqlite> .mode line

sqlite> select * from sms limit 1;
 _id = 5
 thread_id = 3
 toa = 0
 address = 3121111111
 person = 901
 date = 1284137437259
 protocol = 0
 read = 1
 status = -1
 type = 1
reply_path_present = 0
 subject =
 body = Did you have a chance do upload the new classes to the
website?
 sc_toa = 0
 report_date =
 service_center =
 locked = 0
 index_on_sim = -1
 callback_number =
 priority = 0
 htc_category = 0
 cs_timestamp = -1
 cs_id =
 cs_synced = 0
 error_code = 0
 seen = 0

sqlite> .quit

298 CHAPTER 7 Android application and forensic analysis

a hex editor, let’s see if we can determine the date/time stamp from the message

about the phone being activated. First, let’s open the mmssms.db in the hex editor we

just installed:

ahoog@ubuntu:~$ hexeditor mmssms.db

This will then show you the beginning of the file in box hex as well as the

printable ASCII strings in the right column:

File: mmssms.db ASCII Offset: 0x00000000 / 0x00077FFF (%00)
00000000 53 51 4C 69 74 65 20 66 6F 72 6D 61 74 20 33 00 SQLite format 3.
00000010 04 00 01 01 00 40 20 20 00 00 24 4A 00 00 00 00 @ ..$J....
00000020 00 00 00 00 00 00 00 00 00 00 00 3C 00 00 00 01 <....
00000030 00 00 00 00 00 00 00 18 00 00 00 01 00 00 00 3C <
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000060 00 00 00 00 05 00 00 00 17 03 8D 00 00 00 00 45 E
00000070 03 FB 03 F6 03 F1 03 EC 03 E7 03 E2 03 DD 03 D8
00000080 03 D3 03 CE 03 C9 03 C4 03 BF 03 BA 03 B5 03 B0
00000090 03 AB 03 A6 03 A1 03 9C 03 97 03 92 03 8D 00 00
000000A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000B0 00 00 00 00 00 00 00 00 00 00 00 00 00 04 81 0C
000000C0 03 07 17 15 15 01 81 7B 74 61 62 6C 65 61 64 64 {tableadd
000000D0 72 61 64 64 72 05 43 52 45 41 54 45 20 54 41 42 raddr.CREATE TAB
000000E0 4C 45 20 61 64 64 72 20 28 5F 69 64 20 49 4E 54 LE addr (_id INT
000000F0 45 47 45 52 20 50 52 49 4D 41 52 59 20 4B 45 59 EGER PRIMARY KEY
00000100 2C 6D 73 67 5F 69 64 20 49 4E 54 45 47 45 52 2C ,msg_id INTEGER,
00000110 63 6F 6E 74 61 63 74 5F 69 64 20 49 4E 54 45 47 contact_id INTEG
00000120 45 52 2C 61 64 64 72 65 73 73 20 54 45 58 54 2C ER,address TEXT,
00000130 74 79 70 65 20 49 4E 54 45 47 45 52 2C 63 68 61 type INTEGER,cha
00000140 72 73 65 74 20 49 4E 54 45 47 45 52 29 84 57 02 rset INTEGER).W.
00000150 07 17 13 13 01 89 15 74 61 62 6C 65 70 64 75 70 tablepdup
^G Help ^C Exit (No Save) ^T goTo Offset ^X Exit and Save ^W Search

We can press Control-T (^T) to jump to an offset in the file. In this case, the

previous strings command included the “–radix¼x,” so we have the offset in hex

(0x12108), so time to search:

File: mmssms.db ASCII Offset: 0x00000000 / 0x00077FFF (%00)
00000000 53 51 4C 69 74 65 20 66 6F 72 6D 61 74 20 33 00 SQLite format 3.
00000010 04 00 01 01 00 40 20 20 00 00 24 4A 00 00 00 00 @ ..$J....
00000020 00 00 00 00 00 00 00 00 00 00 00 3C 00 00 00 01 <....
00000030 00 00 00 00 00 00 00 18 00 00 00 01 00 00 00 3C <
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000060 00 00 00 00 05 00 00 00 17 03 8D 00 00 00 00 45 E
00000070 03 FB┌──┐
00000080 03 D3│ Goto Offset │
00000090 03 AB│ │
000000A0 00 00│ Offset: 0x12108 │
000000B0 00 00│ │
000000C0 03 07│ Hint: Decimal 255 = Hex 0xFF = Octal 0377 │ {tableadd
000000D0 72 61│ │ addr.CREATE TAB
000000E0 4C 45└──┘ E addr (_id INT
000000F0 45 47 45 52 20 50 52 49 4D 41 52 59 20 4B 45 59 EGER PRIMARY KEY
00000100 2C 6D 73 67 5F 69 64 20 49 4E 54 45 47 45 52 2C ,msg_id INTEGER,
00000110 63 6F 6E 74 61 63 74 5F 69 64 20 49 4E 54 45 47 contact_id INTEG
00000120 45 52 2C 61 64 64 72 65 73 73 20 54 45 58 54 2C ER,address TEXT,
00000130 74 79 70 65 20 49 4E 54 45 47 45 52 2C 63 68 61 type INTEGER,cha
00000140 72 73 65 74 20 49 4E 54 45 47 45 52 29 84 57 02 rset INTEGER).W.
00000150 07 17 13 13 01 89 15 74 61 62 6C 65 70 64 75 70 tablepdup
^G/^X/Escape Cancel ^U Clear input

Analysis techniques 299

The hex editor is extremely responsive and jumps to the offset:

Looking at the hex data above, we can see the phone number and it ends at

0x12111. After that, we should see a person field, as it is the next column as specified

in the table design (also called the table schema). If the person field is set, it links to

the contact table to provide details on the person involved. In this case, no person

was set, so SQLite does not record anything. Finally, we look at the next six bytes

and we get 0x012AFC97C52C. When translated to decimal, the resulting number is

1284138059052. Finally, we can use a number of techniques to convert this time

(Unix Epoch in milliseconds) to a more easily read date/time. One quick technique

for this is to use the built-in date command. However, it only handles Unix Epoch in

seconds, not milliseconds, so you can simply divide by 1000 (that is, omit the last

three digits):

ahoog@ubuntu:~$ date -d @1284138059
Fri Sep 10 12:00:59 CDT 2010

The date command automatically displays the date in the current system time

zone. Another quick way to convert the time is to use the web site designed to

convert Unix Epoch time at http://www.epochconverter.com/ that handles both Unix

Epoch in seconds and milliseconds (Epoch Converter, n.d.). To convert, copy the

entire time stamp (not necessary to divide by 1000) into the web site text box and

click “Timestamp to Human date” as in Fig. 7.2.

One final time stamp conversion technique to mention is the free utility DCode

by Digital Detective, a digital forensic software company based in the United

Kingdom. DCode supports many formats (Digital Detective, n.d.) and can covert

from milliseconds as shown in Fig. 7.3.

This example is simply intended to illustrate the importance of data that might

only be accessible if the forensic analyst moves beyond the forensic software they

use and also examines the data directly. With well-known file systems and perhaps

“standard” cases, this is often not necessary. However, mobile forensics, and

Android forensics in particular, is a challenging area as many of the file formats, file

systems, hardware, and software are not only very new (and not well supported) but

also change at an alarming rate. Forensic analysts who dive into hex will find they

uncover far more data than simply relying on existing forensic software.

File: mmssms.db ASCII Offset: 0x00012108 / 0x00077FFF (%15)
00012100 01 01 00 01 01 01 01 00 33 31 32 31 31 31 31 31 31211122
00012110 32 32 01 2A FC 97 C5 2C 01 FF 02 41 63 74 69 76 22.*...,...Activ
00012120 61 74 65 64 20 6D 79 20 70 68 6F 6E 65 00 00 FF ated my phone...
00012130 33 31 32 34 34 34 33 33 33 33 00 00 FF 00 FF 00 3124443333......
00012140 7B 05 1C 00 01 01 21 00 05 01 01 01 01 01 00 81 {.....!.........
00012150 0B 01 00 00 01 01 0D 01 01 01 00 01 01 01 03 00
00012160 33 33 33 35 35 35 37 37 37 37 01 2A FC 8E 48 4B 3335557777.*..HK
00012170 00 01 FF 01 00 44 69 64 20 79 6F 75 20 68 61 76 Did you hav
00012180 65 20 61 20 63 68 61 6E 63 65 20 64 6F 20 75 70 e a chance do up
00012190 6C 6F 61 64 20 74 68 65 20 6E 65 77 20 63 6C 61 load the new cla
000121A0 73 73 65 73 20 74 6F 20 74 68 65 20 77 65 62 73 sses to the webs
000121B0 69 74 65 3F 00 00 FF 00 00 FF 00 00 00 81 25 04 ite?..........%.
000121C0 1C 00 01 01 3F 00 05 01 01 01 01 01 00 81 41 01 ?.........A.
000121D0 00 00 01 01 0D 01 01 01 00 01 01 01 02 00 73 74 st

300 CHAPTER 7 Android application and forensic analysis

http://www.epochconverter.com/

Android Directory Structures

A broad understanding of the Android directory structure is very helpful in the

forensic analysis of a device. To perform this analysis, five important root level

directories were copied from the HTC Incredible and then displayed with the tree

FIGURE 7.2

Time conversion on http://www.epochconverter.com/.

FIGURE 7.3

DCode time conversion utility by Digital Detective.

Analysis techniques 301

http://www.epochconverter.com/

command on the local workstation. Following the hierarchical layout, an explana-

tion of many directories is provided.

1 /
2 ├── app-cache
3 │ └── com.android.browser
4 │ └── cache
5 │ └── webviewCache
6 ├── cache
7 │ ├── lost+found
8 │ └── recovery
9 ├── data
10 │ ├── anr
11 │ ├── app
12 │ ├── app-private
13 │ ├── backup
14 │ ├── btips
15 │ ├── dalvik-cache
16 │ ├── data
17 │ │ ├── com.facebook.katana
18 │ │ │ ├── cache
19 │ │ │ │ └── webviewCache
20 │ │ │ ├── databases
21 │ │ │ ├── files
22 │ │ │ ├── lib
23 │ │ │ └── shared_prefs
24 │ ├── dontpanic
25 │ ├── local
26 │ ├── lost+found
27 │ ├── misc
28 │ │ ├── bluetooth
29 │ │ ├── bluetoothd
30 │ │ ├── dhcp
31 │ │ ├── keystore
32 │ │ ├── lockscreen
33 │ │ ├── systemkeys
34 │ │ ├── vpn
35 │ │ └── wifi
36 │ ├── property
37 │ ├── system
38 │ │ ├── registered_services
39 │ │ ├── shared_prefs
40 │ │ ├── sync
41 │ │ ├── throttle
42 │ │ └── usagestats
43 │ └── tombstones
44 ├── mnt
45 │ ├── asec
46 │ ├── emmc
47 │ │ ├── Android
48 │ │ │ └── data
49 │ │ │ └── com.android.providers.media
50 │ │ │ └── albumthumbs
51 │ │ ├── DCIM
52 │ │ │ └── 100MEDIA
53 │ │ ├── LOST.DIR
54 │ │ ├── MP3
55 │ │ │ ├── People Under the Stairs
56 │ ├── sdcard
57 │ │ ├── Android
58 │ │ │ └── data
59 │ │ │ ├── com.google.android.apps.maps
60 │ │ │ │ ├── cache

302 CHAPTER 7 Android application and forensic analysis

mailto:Image of Figure 7.3|tif

61 │ │ │ │ ├── debug
62 │ │ │ │ └── testdata
63 │ │ │ └── com.yelp.android
64 │ │ │ └── cache
65 │ │ │ └── images
66 │ │ ├── dcim
67 │ │ ├── download
68 │ │ ├── Downloads
69 │ │ ├── LOST.DIR
70 │ │ └── tmp
71 │ └── secure
72 │ ├── asec
73 │ └── staging
74 └── system
75 ├── app
76 ├── bin
77 ├── customize
78 │ ├── CID
79 │ ├── MNS
80 │ └── resource
81 ├── etc
82 │ ├── bluetooth
83 │ ├── clockwidget
84 │ ├── dhcpcd
85 │ │ └── dhcpcd-hooks
86 │ ├── firmware
87 │ ├── iproute2
88 │ ├── permissions
89 │ ├── ppp
90 │ ├── security
91 │ ├── updatecmds
92 │ ├── wifi
93 │ └── wimax
94 ├── fonts
95 ├── framework
96 ├── lib
97 │ ├── bluez-plugin
98 │ ├── egl
99 │ ├── hw
100 │ └── modules
101 ├── lost+found
102 ├── media
103 │ └── audio
104 │ ├── alarms
105 │ ├── notifications
106 │ ├── ringtones
107 │ └── ui
108 ├── tts
109 │ └── lang_pico
110 ├── usr
111 │ ├── keychars
112 │ ├── keylayout
113 │ ├── share
114 │ │ ├── bmd
115 │ │ └── zoneinfo
116 │ └── srec
117 └── xbin

Analysis techniques 303

mailto:Image of Figure 7.3|tif

Line 1: At the top is the root directory, which creates the structure and mount

points for the other file systems explored previously.

Line 2: As previously discussed, the HTC Incredible created an “/app-cache”

directory of type tmpfs. You can see the browser cache structure. Presumably,

over time, other apps may leverage this directory.

Lines 6e8: Android devices from the start had a dedicated “/cache” directory

that originally appeared to be unused. However, this is certainly not the case and

the “/cache” partition should be imaged for full analysis. Files including Gmail

attachment previews, Browser DRM, some downloads (Market and other), as

well as Over The Air (OTA) updates from the wireless carriers can be found here.

Line 9: The root level “/data” directory has a number of important subdirectories

covered next. Note that some phones (such as the HTC Incredible) have a dedi-

cated partition for the “/data/data” subdirectory.

Line 10: The “/data/anr” directory contains stack traces (debugging) from the

system and is generally not accessible to the shell user. However, some of the adb

debug commands appear to read this data.

Line 11: The “/data/app” directory contains the .apk files from the AndroidMarket.

Line 12: The “/data/app-private” directory stores protected apps from the

Android Market.

Line 13: More recent versions of Android have a secure cloud backup API that

developers can integrate into their apps. The “/data/backup” directory is used to

queue and manage these backups. However, thus far meaningful data has not

been recovered from directory.

Line 14: The “/data/btips” (Texas Instrument’s Bluetooth Protocol Stack) direc-

tory stores the log files if the associated app (com.ti.btips) crashes.

Line 15: The “/data/davlik-cache” directory contains the Davlik VM’s cached dex

files used to run apps.

Line 16: The “/data/data directory” contains the application specific data, easily

the most important area to focus on in an investigation.

Lines 17e23: One app was kept in the directory hierarchy for demonstration

purposes. The directory is named according to the package name and often

clearly identifies the developer (Facebook in this case).

Line 24: For HHGTTG fans (famous advice to intergalactic travelers from the

classic novel The Hitchhiker’s Guide to the Galaxy: DON’T PANIC), there’s

a great directory named “/data/dontpanic,” which is simply a place to store some

error log files from the system. Again, a great benefit of an open system is the

ability to examine code. Short of that, we would have simply had to guess the

purpose or perform significant testing. From the AOSP:

Create dump dir and collect dumps.
 # Do this before we mount cache so eventually we can use cache for
 # storing dumps on platforms which do not have a dedicated dump partition.

 mkdir /data/dontpanic
 chown root log /data/dontpanic
 chmod 0750 /data/dontpanic

304 CHAPTER 7 Android application and forensic analysis

mailto:Image of Figure 7.3|tif

Line 25: The “/data/local” directory is important as it allows shell (the user

account nonrooted phones run adbd as) read/write access. When an app is

installed, it is first copied to “/data/local.” Also, some forensic techniques rely on

this directory to upload important files, typically binaries.

Line 26: The “/data/lostþfound” directory shows up in several places in YAFFS2

file systems. Again, a quick search (try “grep -R lostþfound *.c” from the

YAFFS2 source directory we downloaded) will explain that any files or

directories found that do not have a path to the root directory will be placed in this

folder.

Lines 27e35: The “/data/misc” directory contains files related to Bluetooth,

dhcp, vpn, Wi-Fi, and more. One important file to point out is “/data/misc/wifi/

wpa_supplicant.conf” that contains a list of Wi-Fi.com networks to which the

device got connected. If the wireless access point required a password, it is stored

in plain text in the file (have fun pen testers). Here’s a partial listing:

 # Collect apanic data, free resources and re-arm trigger
 copy /proc/apanic_console /data/dontpanic/apanic_console
 chown root log /data/dontpanic/apanic_console
 chmod 0640 /data/dontpanic/apanic_console

 copy /proc/apanic_threads /data/dontpanic/apanic_threads
 chown root log /data/dontpanic/apanic_threads
 chmod 0640 /data/dontpanic/apanic_threads

 write /proc/apanic_console 1

 # Collect ramconsole data
 copy /proc/last_kmsg /data/dontpanic/last_kmsg
 chown root log /data/dontpanic/last_kmsg
 chmod 0640 /data/dontpanic/last_kmsg

ahoog@ubuntu:~/htc-inc/data/misc/wifi$ cat wpa_supplicant.conf
ctrl_interface=eth0
update_config=1

network={
 ssid="viaForensics"
 psk="s0rryN04cc3ss"
 priority=1
}

/*
 * This code iterates through all the objects making sure that they are
rooted.
 * Any unrooted objects are re-rooted in lost+found.
 * An object needs to be in one of:
 * - Directly under deleted, unlinked
 * - Directly or indirectly under root.
 *
 * This fixes the problem where directories might have inadvertently been
deleted
 * leaving the object "hanging" without being rooted in the directory tree.
 */

Analysis techniques 305

http://Wi-Fi.com
mailto:Image of Figure 7.3|tif
mailto:Image of Figure 7.3|tif

Line 36: The “/data/property” directory contains various system properties such

as time zone, country, and language.

Line 37: Beyond the subdirectories you can see /data/system contains several key

files. First, the accounts.db contains a list of accounts that require authentication

and provides the name, type, password (encrypted), and authentication tokens

(among other data). There are also two very important files related to the pass

code or PIN for the device. The files are gesture.key and password.key and

contain an encoded/encrypted hex value for the pass code.

Line 43: When a process crashes, a special tombstone file can be created. The file

is ASCII and thus readable. More information can be found online such as one

informative post on Crazydaks.com (Debugging in Android, n.d.).

Line 44: The “/mnt” directory is where the system mounts various file systems,

including the SD card, the eMMC, and others.

Line 45: The “/mnt/asec” directory contains the unencrypted apps that are stored

on the SD card. When Android introduced the ability to store apps on the SD

card, they encrypted the contents for security reasons. However, when the system

is up and running and unencrypted access to the files is necessary, they are

decrypted and mounted in “/mnt/asec.”

Line 46: The “/mnt/emmc” contains the FAT32 file system that resides on the

NAND flash for some devices. Lines 47 through 55 are several examples of

eMMC subdirectories.

Line 51: The “/mnt/emmc/DCIM directory,” album thumbnails are stored here.

Line 52: The “/mnt/emmc/DCIM/100MEDIA” directory contains any pictures or

videos taken by the HTC Incredible.

Line 53: The “/mnt/emmc/LOST.DIR” directories are found on FAT32 partitions

and may contain files or fragments that the file system lost track of (similar to

YAFFS2 lostþfound directory). This directory should be examined.

Line 56: If a physical SD card is present, it is mounted at “/mnt/sdcard.”

Line 66: As with the eMMC, the “/mnt/sdcard/dcim” directory would store

pictures and videos from the device. On the HTC Incredible, they are stored in

“/mnt/emmc/DCIM,” so they are not present on the physical SD card.

network={
 ssid="attwifi"
 key_mgmt=NONE
 priority=3
}

network={
 ssid="GoogleGuest"
 key_mgmt=NONE
 priority=4
}

network={
 ssid="sfo free wifi"
 key_mgmt=NONE
 priority=5
}

306 CHAPTER 7 Android application and forensic analysis

http://Crazydaks.com

Lines 67e68: The “/mnt/sdcard/download” and “/mnt/sdcard/Downloads”

directories contain files downloaded by the browser, e-mail clients, and others.

Line 72: As mentioned previously, the “/mnt/sdcard/secure/asec” directory is

encrypted and is where apps that reside on the SD card (instead of the NAND

flash) store data.

Line 75: The “/system/app” directory contains .apk app files for apps that are

provided with the system. This includes apps bundled by Google/Android, the

manufacturer (HTC in this case), and the wireless carrier (Verizon in this case). In

the case of the HTC Incredible, the directory contains a significant 152 .apk files.

It’s important to know this location in case app analysis is required for a case

(which means you need access to the apk file). The .apk files present on the

reference HTC Incredible were:

AccountSyncManager.apk
AdobeReader.apk
amazonmp3.apk
ApplicationsProvider.apk
AppSharing.apk
Bluetooth.apk
BrcmBluetoothServices.apk
Browser.apk
Calculator.apk
Calendar.apk
CalendarProvider.apk
CertInstaller.apk
CheckinProvider.apk
CityID.apk
Clicker.apk
com.htc.FMRadioWidget.apk
com.htc.FriendStreamWidget.apk
com.htc.MusicWidget.apk
com.htc.NewsReaderWidget.apk
com.htc.StockWidget.apk
com.htc.TwitterWidget.apk
com.htc.WeatherWidget.apk
ContactsProvider.apk
CustomizationSettingsProvider.apk
CustomizationSetup.apk
DCSImpl.apk
DCSStock.apk
DCSUtility.apk
DebugTool.apk
DefaultContainerService.apk
DMPortRead.apk
DownloadProvider.apk
DrmProvider.apk
EPST.apk
Facebook.apk
FieldTest.apk
FieldTrial.apk
FilePicker.apk
Flashlight.apk
Flickr.apk
FriendStream.apk
GenieWidget.apk
Gmail.apk
GoogleCalendarSyncAdapter.apk
GoogleContactsSyncAdapter.apk
GoogleFeedback.apk
GooglePartnerSetup.apk
GoogleQuickSearchBox.apk
GoogleServicesFramework.apk
GSD.apk
HtcAddProgramWidget.apk

HTCAlbum.apk
htcbookmarkwidget.apk
HtcCalculatorWidget.apk
htccalendarwidgets.apk
HTCCamera.apk
HtcCarPanel.apk
HtcCdmaMccProvider.apk
HtcClockWidget.apk
HtcContacts.apk
htccontactwidgets.apk
HtcCopyright.apk
HtcDialer.apk
HtcFacebook.apk
HtcFMRadio.apk
HtcFootprints.apk
HtcFootprintsWidget.apk
HTC_IME.apk
HtcLocationPicker.apk
HtcLocationService.apk
HtcLockScreen.apk
htcmailwidgets.apk
HtcMessageUploader.apk
htcmsgwidgets.apk
HtcMusic.apk
HtcPhotoWidget.apk
HtcProfilesWidget.apk
HtcRingtoneTrimmer.apk
HtcRingtoneWidget.apk
HtcSettingsProvider.apk
htcsettingwidgets.apk
HTCSetupWizard.apk
HtcSoundRecorder.apk
HtcStreamPlayer.apk
HtcSyncwidget.apk
HtcTwitter.apk
HtcWeatherWallpaper.apk
HTMLViewer.apk
install_flash_player.apk
LbsProvider.apk
LiveWallpapers.apk
LiveWallpapersPicker.apk
MagicSmokeWallpapers.apk
Mail.apk
Maps.apk
MarketUpdater.apk
MediaProvider.apk
MediaUploader.apk
Mms.apk
Mode10Wallpapers.apk
NetworkLocation.apk
NewsReader.apk

PackageInstaller.apk
PCSCII.apk
Phone.apk
PicoTts.apk
PluginManager.apk
QuickLookup.apk
Quickoffice.apk
QxdmLog.apk
restartapp.apk
Rosie.apk
RSS.apk
Settings.apk
SettingsProvider.apk
SetupWizard.apk
SlackerRadio.apk
SocialNetworkProvider.apk
Stock.apk
Street.apk
Superuser.apk
Talk.apk
teeter.apk
TelephonyProvider.apk
TtsService.apk
TVOUT.apk
Updater.apk
UpgradeSetup.apk
UploadProvider.apk
UserDictionaryProvider.apk
VCast.apk
Vending.apk
VisualizationWallpapers.apk
VoiceDialer.apk
VoiceSearch.apk
VpnServices.apk
VVM.apk
VzNav.apk
VzWBAClient.apk
VzWBAService.apk
VZWInstaller.apk
VzwLBSPerm.apk
VZW_MyVerizon.apk
VZW_Skype.apk
WeatherAgentService.apk
Weather.apk
WeatherProvider.apk
WeatherSyncProvider.apk
WidgetDownloadManager.apk
WifiRouter.apk
WorldClock.apk
YouTube.apk

ahoog@ubuntu:~/htc-inc/system/app$ ls *.apk

Analysis techniques 307

Lines 76 and 117: The “/system/bin” and “/system/xbin” directories contain the

Android binary files used on the system. Forensic analysts and security engineers

(and most definitely Android researchers) can find many useful and undocu-

mented commands by experimenting with files in these directories.

Lines 77e80: The “/system/customize” directories contain carrier-specific cus-

tomizations for the phone, notably UI.

Line 81: The “/system/etc” directory is where Android stores the typical Linux/

Unix configuration (/etc) directory. It contains numerous configuration files

worthy of examinationdtoo many to discuss in this bookdbut can vary from

device to device.

There are far more directories and files to explore but the above overview

provides a good starting point.

FAT FORENSIC ANALYSIS
The SD card can be a gold mine for forensic investigators. All the multimedia that

has been synced with the phone, or taken with the phone’s camera, is stored here.

Items such as pictures, videos, voice recordings, application data, music, Google

Map data, and potentially complete backup files from backup apps that use the SD

card for storage are recoverable. In addition, investigators can also find cached mms

image thumbnails, trash information relating to deleted objects, and downloaded

application APKs.

For example, a typical user might use Google Maps to obtain driving directions

to a local shopping center. Through forensic examination of the “com.google.

android.apps.maps/cache” directory on the SD card, we are able to recover map

image tiles and navigation voice prompts. These voice prompts are also stamped

with a date and time, so a forensic investigator can literally retrace the location of

that device for a given time and date.

Here’s what it looks like after a short trip within a Chicago suburb:

ahoog@ubuntu:/mnt/readonly-fs/google_maps_navigation/cache$ ls -la
total 1184
dr-xr-xr-x 2 root root 32768 2010-11-16 15:32 .
dr-xr-xr-x 4 root root 32768 2010-11-16 13:31 ..
-r-xr-xr-x 1 root root 66476 2010-11-16 15:20 ._speech_nav_0.wav
-r-xr-xr-x 1 root root 142252 2010-11-16 15:19 ._speech_nav_1.wav
-r-xr-xr-x 1 root root 142380 2010-11-16 15:18 ._speech_nav_2.wav
-r-xr-xr-x 1 root root 73644 2010-11-16 15:15 ._speech_nav_3.wav
-r-xr-xr-x 1 root root 60460 2010-11-16 15:15 ._speech_nav_4.wav
-r-xr-xr-x 1 root root 107948 2010-11-16 15:15 ._speech_nav_5.wav
-r-xr-xr-x 1 root root 96300 2010-11-16 15:20 ._speech_nav_6.wav
-r-xr-xr-x 1 root root 6144 2010-11-16 13:31 tilecache_ImageTileStore.db
-r-xr-xr-x 1 root root 281600 2010-11-16 15:32 tilecache_VectorTileStore.db

It is also important to remember that SD cards can be mounted through Android

as an external mass storage device. This allows the user to transfer any files between

the SD card and his or her personal computer.

308 CHAPTER 7 Android application and forensic analysis

In Chapter 6, we demonstrated how to acquire the two current FAT32 partitions

on Android devices that contain data. There are many books and articles which cover

the analysis of FAT32 file systems and this section will not attempt to cover those

again in detail. However, this section will demonstrate some techniques for

examining the FAT32 partitions found on Android devices using the Ubuntu

workstation.

FAT Timeline Analysis

To build a file system timeline of a FAT32 image, we utilize both The Sleuth Kit

(TSK) and another great open source forensic tool called log2timeline. The

log2timeline utility, written by Kristinn Gudjonsson, is a framework for automatic

creation of a timeline that encompasses various log files and artifacts found on the

system. log2timeline can be utilized on many systems and does an excellent job at

extracting time stamp information for many file formats for analysis.

As we already have TSK setup, we need to take a few steps to install

log2timeline. First, it has probably been a while since you first built the Ubuntu

workstation so it is a good idea to update any packages which have newer

versions and often contain security patches or bug fixes.

sudo apt-get update
sudo apt-get upgrade -u

The first step updates your software list and the second will actually perform the

upgrade. Next, we’ll install log2timeline, which Kristinn has greatly simplified by

creating a Ubuntu package for his software.

sudo add-apt-repository "deb http://log2timeline.net/pub/ maverick main"
wget -q http://log2timeline.net/gpg.asc -O- | sudo apt-key add -
sudo apt-get update
sudo apt-get install log2timeline-perl

The four commands do the following:

1. Add the log2timeline custom software repository to the Ubuntu workstations

overall list.

2. Download the public key used to validate the software and add to the list of

accepted keys.

3. Update the software packages list.

4. Install log2timeline.

For this analysis, we are going to use the forensic image of the 2 GB SD card we

imaged in Chapter 6. First, the examiner should always ensure that the hash

signature of the image matches with the hash taken during forensic imaging to

ensure the image is valid.

ahoog@ubuntu:~/sd-emmc/viaforensics/af-book/sdcard2-113serialno$ sha256sum
sdcard2-113serialno.dc3dd
e5dcc0af1d8a09c9af4d2db98f5f684d20a561666b9ff8df7c8b90a0b9d78770 sdcard2-
113serialno.dc3dd

FAT forensic analysis 309

If you recall, the hash of the input device (/dev/sdc in this case) was e5dcc0af1

d8a09c9af4d2db98f5f684d20a561666b9ff8df7c8b90a0b9d78770. The forensic image

is now validated. Next, let’s take a quick look at the file first with the file command:

ahoog@ubuntu:/home/ahoog$ file /home/ahoog/sd-emmc/viaforensics/af-book/
sdcard2-113serialno/sdcard2-113serialno.dc3dd
/home/ahoog/sd-emmc/viaforensics/af-book/sdcard2-
113serialno/sdcard2-113serialno.dc3dd: x86 boot sector; partition 1: ID=0x6,
starthead 2, startsector 129, 3911551 sectors, extended partition table
(last)\011, code offset 0x0

So we are, in fact, dealing with a disk image with a valid partition. Next, we can

examine the disk image further with TSK’s mmls:

ahoog@ubuntu:~/sd-emmc/viaforensics/af-book/sdcard2-113serialno$ mmls sdcard2-
113serialno.dc3dd
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

 Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000000 0000000128 0000000129 Unallocated
02: 00:00 0000000129 0003911679 0003911551 DOS FAT16 (0x06)

And finally TSK’s fsstat, but note that you have to provide a sector offset of 129

as the FAT partition starts there:

ahoog@ubuntu:~/sd-emmc/viaforensics/af-book/sdcard2-113serialno$ fsstat -o 129
sdcard2-113serialno.dc3dd
FILE SYSTEM INFORMATION
--
File System Type: FAT16

OEM Name:
Volume ID: 0xe0fd1813
Volume Label (Boot Sector): NO NAME
Volume Label (Root Directory):
File System Type Label: FAT16

Sectors before file system: 129

File System Layout (in sectors)
Total Range: 0 - 3911550
* Reserved: 0 - 0
** Boot Sector: 0
* FAT 0: 1 - 239
* FAT 1: 240 - 478
* Data Area: 479 - 3911550
** Root Directory: 479 - 510
** Cluster Area: 511 - 3911550

METADATA INFORMATION
--
Range: 2 - 62577158
Root Directory: 2

310 CHAPTER 7 Android application and forensic analysis

In this case, the partition is a FAT16 partition with data on it. So, we are going to

first build the timeline with TSK’s fls command:

ahoog@ubuntu:/home/ahoog$ time fls -z CST6CDT -s 0 -m /mnt/sdcard -f fat16 -r
-o 129 -i raw ~/sd-emmc/viaforensics/af-book/sdcard2-113serialno/sdcard2-
113serialno.dc3dd > ~/sdcard.body

real 0m55.765s
user 0m0.820s
sys 0m12.850s

The options set have the following meaning:

� -z CST6CDTdSets time zone to CST6CDT for US Central Time

� -s 0dSets the time skew if one is known

� -m /mnt/sdcarddPrefaces the path with this value when writing out the body file

� -f fat16dSets file system to FAT16

� -rdRecursively traverses all directories to build the timeline

� -o 129dSets the offset to 129 (a sector size of 512 bytes is assumed but can be

changed with the -b option)

� -i rawdSets the image type, in this case a raw image and not another forensic

image format

� ~/sd-emmc/viaforensics/af-book/sdcard2-113serialno/sdcard2-113serial-

no.dc3dddImage file

� > ~/sdcard.bodydRedirects the command’s output to a file instead of displaying

on the screen

Often it is helpful to know how long a command takes (if nothing else, over

time you learn when it’s best to go grab that coffee warmer). So, we preface fls

with the time command, which will tell us how long the program took to run (real)

and the various system time it took (user, sys). You can view the contents of the

body file, but in a later step we will convert it to a more readable format. If you

CONTENT INFORMATION
--
Sector Size: 512
Cluster Size: 32768
Total Cluster Range: 2 - 61111

FAT CONTENTS (in sectors)
--
511-574 (64) -> EOF
575-638 (64) -> EOF
639-702 (64) -> EOF
703-766 (64) -> EOF
767-830 (64) -> EOF
831-894 (64) -> EOF
895-958 (64) -> EOF
959-1022 (64) -> EOF
1023-1086 (64) -> EOF
<snip>

FAT forensic analysis 311

want to verify fls-returned results, you can always determine the total lines in the

file:

ahoog@ubuntu:~$ wc -l sdcard.body
24399 sdcard.body

So, we have just over 24,000 entries. Next, we need to mount the file system

read-only and then we can run log2timeline against it. To mount the file system using

the dd image, you use the mount command and a special device called the loopback

device. The full command is as follows:

ahoog@ubuntu:~$ mkdir -p ~/mnt/sdcard
ahoog@ubuntu:~$ sudo mount -t vfat -o loop,ro,offset=66048 ~/sd-emmc/
viaforensics/af-book/sdcard2-113serialno/sdcard2-113serialno.dc3dd ~/mnt/sdcard

Again, let’s look at each of the options set. First, this command requires

administrator rights so we run with sudo. The options are then:

� -t vfat

� -o loop,ro,offset¼66068dThis tells mount to use the loopback device as we are

using a physical file instead of an actual device. The ro mounts the e-mail as read-

only. Finally, we have to tell mount where to find the partition. From the mmls

command, you recall that the offset was a sector 129. Mount does not know the

sector size, so we calculate 129� 512, which is equal to 66,048

� ~/sd-emmc/viaforensics/af-book/sdcard2-113serialno/sdcard2-113serialno.

dc3dddThe dd images

� ~/mnt/sdcarddWhere to mount the image

We can validate that the file system is mounted by executing the mount command

with no options, which returns the list of all mounted file systems. We pipe this

through grep to isolate the file system we are looking for:

ahoog@ubuntu:~$ mount | grep vfat
/dev/loop0 on /home/ahoog/mnt/sdcard type vfat (ro,offset=66048)

So, we can see the vfat file system is mounted read-only using loopback device

“/dev/loop0” and located at “/home/ahoog/mnt/sdcard.” You can see the total size

with the df command:

ahoog@ubuntu:~$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 19G 18G 570M 97% /
none 366M 208K 366M 1% /dev
none 373M 256K 373M 1% /dev/shm
none 373M 100K 373M 1% /var/run
none 373M 0 373M 0% /var/lock
/dev/mtdblock0 64M 1.2M 63M 2% /home/ahoog/mnt/yaffs2
/dev/loop0 1.9G 244M 1.7G 13% /home/ahoog/mnt/sdcard

So, only 244 M of the 1.7 G available is in use. Now we are ready to use the time-

scanner program that comes with log2timeline to extract additional timeline information

from the files. We will append the command output to the same body file as fls:

312 CHAPTER 7 Android application and forensic analysis

ahoog@ubuntu:~$ time timescanner -d /home/ahoog/mnt/sdcard -z CST6CDT >>
sdcard.body
Loading output file: mactime
[timescanner] Recursive scan completed. Successfully extracted timestamps from
410 artifacts (either files or directories).
Run time of the script 62 seconds.

real 1m2.241s
user 0m31.810s
sys 0m13.760s

The options for timescanner are as follows:

� -d /home/ahoog/mnt/sdcarddSpecify the directory to scan for time stamp artifacts

� -z CST6CDTdAgain set the time zone to U.S. Central Time

� >> sdcard.bodydAppend the output to the existing sdcard.body. Please note the

double greater than sign (“>>”), which instructs the shell to append to the file

(and if it does not exist, creates it). If you forget and use a single “>”, then you

will overwrite the fls output.

Timescanner only extracted 410 artifacts, which is far less than the number you

would extract on a scan of an entire hard drive. However, the 410 artifacts will

certainly help build the overall timeline for the device.

Finally, we can create an easy-to-read (and easy-to-share) comma separated

values (csv) file of the timeline with TSK’s mactime command:

ahoog@ubuntu:~$ mactime -b sdcard.body -z CST6CDT -d > sdcard-timeline.csv

The following options were passed to mactime:

� -b sdcard.bodydSpecifies the body file to convert

� -z CST6CDTdTime zone

� -ddOutput of the file in csv format

This only takes a few seconds for just under 25,000 entries but yields over 73,000

lines in the csv file.

ahoog@ubuntu:~$ wc -l sdcard-timeline.csv
73739 sdcard-timeline.csv

You can now easily browse the timeline in a spreadsheet program or even import it

into a database for additional analysis. There are several interesting items to point out.

First, you will likely see many dates near January 1, 1970. This is caused by time

stamps that were set to 0 or not set at all. As Unix Epoch is based on the number of

seconds since 01/01/1970 00:00:00 UTC, then an offset would be that exact time. In

the above examples, we set the time zone to CST6CDT which, in January, is GMT

�6 hours. So, there are many artifacts with a time stamp of “Wed Dec 31 1969

18:00:00.” While we are unable to glean specific timeline data on these artifacts,

they may nonetheless contain important information.

FAT forensic analysis 313

If you double-click the sdcard-timeline.csv file from your Ubuntu workstation,

Open Office’s Calc program will present a Text Import screen as shown in Fig. 7.4.

Make sure the “Separated by” is set to comma, then press OK.

The Calc program will then open and you can browse the timeline, illustrated in

Fig. 7.5.

As you can see, most of the files are deleted. However, TSK and other programs

can still recover them. One interesting event to examine is when an app was moved

to the SD card for testing purposes. The app, Angry Birds, supports running from the

SD card, which was tested at 06:17:28 on 02/15/2011, shown in Fig. 7.6.

The timeline clearly shows that a new file is created and modified at 06:17:28 in

“/mnt/sdcard/.android_secure.”

One final entry to point out is from log2timeline. As it came across a PDF, the

metadata was extracted. We can see the following:

� Mon Nov 29 2010 04:44:47

� 23,159 bytes

� File modified

� Title: (Scanned Document)

� Author: [michelle]

� Creator: [HardCopy]

� Produced by: [Lexmark X543]

� File: /mnt/sdcard/.easc/Attachment/ATT_1291219677612.pdf

FIGURE 7.4

Text import of sdcard-timeline.csv into OO Calc.

314 CHAPTER 7 Android application and forensic analysis

mailto:Image of Figure 7.4|tif

Timeline analysis is extremely powerful, especially if the forensic analyst

combines traditional file system time stamped artifacts from Kristinn Gudjonsson’s

log2timeline.

FIGURE 7.5

Viewing timeline in OO Calc.

FIGURE 7.6

Timeline when app moved to SD card.

FAT forensic analysis 315

FAT Additional Analysis

There are many different approaches for further analysis of the FAT partitions. First,

the large majority of forensic software in the market supports the FAT file system,

and many examiners will have tool sets that they are comfortable with. Beyond the

forensic software, we covered several additional techniques in the first section

including:

� File system analysis

� File carving

� Strings

� Hex analysis

These techniques are similar even when the file system type is different, so we

will provide detailed coverage of them in the YAFFS2 section next. However, some

brief concepts are highlighted below.

First, the SD card clearly has a significant amount of deleted files. It is advisable

to use a forensic tool to recover the data. TSK can recover the data as well as many

other forensic software packages. In addition, file-carving techniques should be used

to recover files that are not referenced in the File Allocation Table of the partition.

Strings and hex analysis are again great ways to quickly locate data of interest.

There is one more quick technique to mention if the Ubuntu workstation is used

for file system analysis. Using the find and file commands, you can list all allocated

files by name, path, and file type. You can easily sort them on the fly or import them

into a spreadsheet or database for additional analysis. This technique only lists

allocated (undeleted) files, but is quite effective.

The command is as follows:

ahoog@ubuntu:~$ find ~/mnt/sdcard -type f -print0 | xargs -0 file
/home/ahoog/mnt/sdcard/.android_secure/com.rovio.angrybirds-1.asec:
data
/home/ahoog/mnt/sdcard/.footprints/footprints.db:
SQLite 3.x database
/home/ahoog/mnt/sdcard/download/Swype-Installer.apk:
Zip archive data, at least v2.0 to extract
/home/ahoog/mnt/sdcard/download/Swype-Installer-1.apk:
Zip archive data, at least v2.0 to extract
/home/ahoog/mnt/sdcard/download/Swype-Installer-2.apk:
Zip archive data, at least v2.0 to extract
/home/ahoog/mnt/sdcard/download/Download.apk:
Zip archive data, at least v1.0 to extract
/home/ahoog/mnt/sdcard/download/PdaNetA242.pkg:
xar archive - version 1
/home/ahoog/mnt/sdcard/download/hotwatch-powerpoint.pdf:
PDF document, version 1.5
/home/ahoog/mnt/sdcard/download/dinner.pdf:
PDF document, version 1.3
/home/ahoog/mnt/sdcard/download/dinner-1.pdf:
PDF document, version 1.3
/home/ahoog/mnt/sdcard/download/Swype-Installer-3.apk:
Zip archive data, at least v2.0 to extract
/home/ahoog/mnt/sdcard/download/subpoena.pdf:
PDF document, version 1.3

316 CHAPTER 7 Android application and forensic analysis

In total, this command found and categorized 4352 allocated files on the SD card.

Here’s what each part of the command accomplished:

� find ~/mnt/sdcarddFinds files in the directory where we mounted the SD card

image ~/mnt/sdcard

� -type fdOnly examines regular files (i.e., doesn’t list directories)

� -print0dTerminates each file name with a NULL character instead of the default

new line which causes issues when file names have spaces

� “j”dPipes the output of find to the next program

� xargsdThis program builds and executes command lines using data from

standard input (i.e., other programs’ output)

� -0dTells xargs that the data being piped is terminated by NULL character

(matches the -print0 from find)

� filedThis is the command xargs runs against each line returned by the find

command

The find and xargs commands are very powerful ways to examine, interact, or

otherwise manipulate a large set of files. By combining timeline and file system

analysis, file carving, strings, and hex analysis, an investigator is armed with

powerful tools to uncover information critical to the case.

FAT Analysts Notes

There are a few remaining notes for the FAT file systems on Android.

Apps on the SD Card
First, as mentioned in Chapter 6, as of Android 2.2, users can move supported

applications to the SD card to save space in the “/data/data” directory where user

data are stored. The app must explicitly support this capability, and typical candi-

dates for this feature are apps that use a lot of storage such as a game. To test this

feature, the popular Angry Birds game by Rovio Mobile (Rovio - Angry Birds, n.d.)

was installed on the reference HTC Incredible. The app was briefly run and then

closed. To move the app to the SD card, you select Settings from the home screen,

then Applications, and finally Manage Applications as illustrated in Fig. 7.7.

/home/ahoog/mnt/sdcard/Android/data/com.google.android.apps.genie.geniewidget.
news-content-cache/.nomedia: empty
/home/ahoog/mnt/sdcard/Android/data/com.google.android.apps.maps/cache/
cache_vts.m:data
/home/ahoog/mnt/sdcard/Android/data/com.google.android.apps.maps/cache/
cache_rgts.m:data
/home/ahoog/mnt/sdcard/Android/data/com.google.android.apps.maps/cache/
cache_rgts.0:Microsoft Document Imaging Format
/home/ahoog/mnt/sdcard/Android/data/com.google.android.apps.maps/cache/
cache_vts.0:data
/home/ahoog/mnt/sdcard/Android/data/com.google.android.apps.maps/cache/
._speech_nav_5.wav: RIFF (little-endian) data, WAVE audio,
Microsoft PCM, 16 bit, mono 16000 Hz

FAT forensic analysis 317

mailto:Image of Figure 7.6|tif

As you can tell, the Angry Birds uses 18.40 MB of space on “/data/data,” which

is very precious space. So, the app developer included the necessary support to move

the .apk to the SD card. The user can then select the app (Angry birds, in this case)

and is then presented with a screen that has information and options about the app,

including “Move to SD card” as shown in Fig. 7.8.

From this screen, you can see that the app itself uses 18.39 MB while user data is

only 12.00 KB, a clear candidate for moving the .apk to the SD card. And, as

illustrated in Fig. 7.9, it’s as simple as clicking the “Move to SD card” button and

waiting for the task to complete.

This is great from the user’s perspective. But what does this mean for the forensic

examiner or security analyst? A number of steps are taken that are described next

and then highlighted in the code listing.

1. The .apk file is moved from “/data/app” (or “/data/app-private”) to the SD card in

an encrypted partition at /mnt/secure/asec (see highlighted parts of next listing)

which can only be accessed via the root directory.

2. Anewdevicemapperfile system ismounted read-onlyand theapp from“/mnt/secure/

asec” is decrypted and accessible to the system at “/mnt/asec/com.rovio.angrybirds-

1.” The system must be able to access the unencrypted .apk file to run the app.

3. The user data remains in “/data/data” (in this case “/data/data/com.rovio.angrybirds”).

4. If the SD card becomes inaccessible (whether it is removed, damaged, or simply

mounted on a host computer for file sharing), the unencrypted volume is

unmounted and no longer accessible to the system. This is why the core apps are

currently unable to run from the SD card.

FIGURE 7.7

Manage applications screen.

318 CHAPTER 7 Android application and forensic analysis

mailto:Image of Figure 7.7|tif

FIGURE 7.8

Move to SD card.

FIGURE 7.9

App move to SD card complete.

FAT forensic analysis 319

The .apk file is encrypted on the SD card to ensure that other apps (or processes)

cannot corrupt or maliciously modify the app. However, app developers should not

rely on the encryption to prevent people from accessing the .apk file as it is simply

a matter of copying it from the unencrypted “/mnt/asec/<app-name>.” The mount

and ls commands in the following code illustrate the structure.

ahoog@ubuntu:~/sd-emmc$ adb shell mount
rootfs / rootfs ro,relatime 0 0
tmpfs /dev tmpfs rw,relatime,mode=755 0 0
devpts /dev/pts devpts rw,relatime,mode=600 0 0
proc /proc proc rw,relatime 0 0
sysfs /sys sysfs rw,relatime 0 0
none /acct cgroup rw,relatime,cpuacct 0 0
tmpfs /mnt/asec tmpfs rw,relatime,mode=755,gid=1000 0 0
none /dev/cpuctl cgroup rw,relatime,cpu 0 0
/dev/block/mtdblock3 /system yaffs2 ro,relatime 0 0
/dev/block/mmcblk0p1 /data ext3
rw,nosuid,noatime,nodiratime,errors=continue,data=writeback 0 0
/dev/block/mtdblock6 /data/data yaffs2 rw,nosuid,nodev,relatime 0 0
/dev/block/mmcblk0p2 /cache ext3
rw,nosuid,nodev,noatime,nodiratime,errors=continue,data=writeback 0 0
tmpfs /app-cache tmpfs rw,relatime,size=8192k 0 0
/dev/block/vold/179:3 /mnt/emmc vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,
dmask=0702,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,
utf8,errors=remount-ro 0 0
/dev/block/vold/179:9 /mnt/sdcard vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,
dmask=0702,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,
utf8,errors=remount-ro 0 0
/dev/block/vold/179:9 /mnt/secure/asec vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,
dmask=0702,allow_utime=0020,codepage=cp437,iocharset=iso8859-1,shortname=mixed,
utf8,errors=remount-ro 0 0
tmpfs /mnt/sdcard/.android_secure tmpfs ro,relatime,size=0k,mode=000 0 0
/dev/block/dm-0 /mnt/asec/com.rovio.angrybirds-1 vfat
ro,dirsync,nosuid,nodev,noexec,relatime,uid=1000,fmask=0222,dmask=0222,
codepage=cp437,iocharset=iso8859-1,shortname=mixed,utf8,errors=remount-ro 0 0

ahoog@ubuntu:~/sd-emmc$ adb shell ls -l /mnt
d---rwxr-x system sdcard_rw 1969-12-31 18:00 emmc
drwxr-xr-x root system 2011-02-15 05:17 asec
drwx------ root root 2011-02-14 07:59 secure
d---rwxr-x system sdcard_rw 1969-12-31 18:00 sdcard

ahoog@ubuntu:~/sd-emmc$ adb shell ls -l /mnt/asec
dr-xr-xr-x system root 1969-12-31 18:00 com.rovio.angrybirds-1

ahoog@ubuntu:~/sd-emmc$ adb shell ls -l /mnt/asec/com.rovio.angrybirds-1
-r-xr-xr-x system root 17235931 2011-02-15 05:17 pkg.apk

ls -l /mnt/secure/asec
----rwxr-x system sdcard_rw 19192832 2011-02-15 05:17 com.rovio.angrybirds-1.
asec

ls -l /data/data/com.rovio.angrybirds
drwxrwx--x app_106 app_106 2011-02-15 05:14 cache
drwxrwx--x app_106 app_106 2011-02-15 05:15 files
drwxr-xr-x system system 2011-02-15 05:14 lib

320 CHAPTER 7 Android application and forensic analysis

If you need the .apk for analysis (for example, investigating malware), then it is

critical to copy the “/mnt/asec” subdirectories during the acquisition process while

the SD card is inserted and active on the Android device (that is, not mounted on the

forensic workstation for physical acquisition).

nomedia
One other common item found on the SD card and eMMC partitions is an empty file

named .nomedia that will instruct Android’smedia scanner to skip the directory, so that

it does not include any of themedia files in apps such asGallery orMusic. If a directory

does not contain this file, then it is quite possible that images which were previously

deleted might have thumbnails which can be found in the media scanner’s directory.

This will be covered further in the section on Android App Analysis and Reference.

YAFFS2 FORENSIC ANALYSIS
As discussed in Chapter 4, YAFFS2 is an open source, log-structured file system

developed specifically for NAND flash, including support for wear-leveling and

error-correcting code algorithms. This is great news not only for the phone owners,

as YAFFS2 works very well on Android, but also for forensic analysts since

a significant amount of old (deleted or updated) data is recoverable. But the good

news stops there. As YAFFS2 is a relatively new file system, at this time no

commercial forensic software solution supports it.

However, all is not lost. Using the power of Linux, the openness of YAFFS2, an

effective acquisition strategy, and the techniques already discussed including file

system analysis, file carving, strings, and hex analysis, a forensic examiner can

extract significant amounts of relevant data from the file system.

As we dive into the analysis of YAFFS2, it’s quite helpful to remember how it is

structured. One important concept to recall is how the data are structured physically

on the NAND flash via MTD. Generally, YAFFS2 andMTD organize the NAND flash

into 128 KB blocks, which consist of 2048 KB chunks of data followed by 64 bytes of

Out-Of-Band (OOB) data (making the total size on the NAND flash 132 KB), which is

used to store disk and some file system metadata, as shown in Fig. 7.10.

Of course, it is not required that the Android device structure the NAND flash

and MTD this way and the best way to verify is to examine the contents of the

“/proc/mtd” file, which contains configuration information. Here is the file again

from the reference HTC Incredible.

ahoog@ubuntu:~$ adb shell cat /proc/mtd
dev: size erasesize name
mtd0: 000a0000 00020000 "misc"
mtd1: 00480000 00020000 "recovery"
mtd2: 00300000 00020000 "boot"
mtd3: 0f800000 00020000 "system"
mtd4: 000a0000 00020000 "local"
mtd5: 02800000 00020000 "cache"
mtd6: 09500000 00020000 "datadata"

YAFFS2 forensic analysis 321

mailto:Image of Figure 7.9|tif

While we need the OOB data if we want to attempt to mount the YAFFS2

nanddump on the Ubuntu workstation, the 64-byte OOB data will definitely cause

problems for most forensic techniques, notably file carving. To alleviate this problem,

you can simply remove the OOB with a simple program. The program is written in

Python and can be easily adapted to different block and OOB configurations.

First, let’s open a newfile for editingwith sudo permissions, so thatwe can place the

program in “/usr/local/bin”which is the best place to save custom scripts and programs.

ahoog@ubuntu:~$ sudo nano -w /usr/local/bin/removeOOB.py

Next, copy the following contents into the editor:

FIGURE 7.10

Block (128 KB¼ 64� 2k chunksþOOB).

#!/usr/bin/env python

Author: Andrew Hoog [ahoog at viaforensics dot com]
Name: removeOOB.py
#

import subprocess, os, csv, getopt, sys

def usage():
 print """
Written by Andrew Hoog, remove the recurring 64 bytes of OOB data from
nanddump file with 2k chunks. Resulting dd file in saved in current directory

Usage: removeOOB.py [-h] -o nanddump file

 -h|--help: prints this help function and exits
 -o|--oobFile: name of nanddump file to parse
 """

def main():
 try:
 opts, args = getopt.getopt(sys.argv[1:], "ho:", ["help", "oobFile="])
 except getopt.GetoptError, err:
 # print help information and exit:
 print str(err) # will print something like "option -a not recognized"
 usage()
 sys.exit(2)

322 CHAPTER 7 Android application and forensic analysis

mailto:Image of Figure 7.9|tif
mailto:Image of Figure 7.10|tif

Then save with Ctrl-O and exit with Ctrl-X. Next, you have to make the Python

file executable, so type in the following:

ahoog@ubuntu:~$ sudo chmod 755 /usr/local/bin/removeOOB.py

And finally we can run the program against a nanddump file:

ahoog@ubuntu:~$ removeOOB.py -o htcinc-mtd6-datadata.nanddump
opening htcinc-mtd6-datadata.nanddump readonly
opening htcinc-mtd6-datadata.nanddump.dd r/w
Processing...
Complete. Read 76288 chunks

 oobFile = None
 for o, a in opts:
 if o in ("-o", "--oobFile"):
 oobFile = a
 elif o in ("-h", "--help"):
 usage()
 sys.exit()
 else:
 assert False, "unhandled option"

 #open OOB file binary, read-only
 print "opening %s readonly" % oobFile
 try:
 yaffs2File = open(oobFile, 'rb')
 except:
 print "Unable to open file source file %s" % oobFile
 usage()
 sys.exit()

 #open .dd file binary, writable
 print "opening %s.dd r/w" % oobFile
 try:
 ddFile = open(oobFile + '.dd', 'wb')
 except:
 print "Unable to file %s" % oobFile + '.dd for output'
 usage()
 sys.exit()

 chunks=0

 data = yaffs2File.read(2048)
 oob = yaffs2File.read(64)

 print "Processing..."
 while data != "":
 ddFile.write(data)
 chunks += 1
 data = yaffs2File.read(2048)
 oob = yaffs2File.read(64)

 print "Complete. Read %d chunks" % chunks
 yaffs2File.close()
 ddFile.close()

if __name__ == "__main__":
 main()

YAFFS2 forensic analysis 323

mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif

Let’s make sure the removeOOB.py results are what we expect. According to

“/proc/mtd,” the “/dev/mtd/mtd6” partition has a size of 0x9500000 bytes and an

erase size (block size) of 0x20000. The overall size in bytes is 156,237,824 (simply

convert the size from hex to decimal) or roughly 154 MB. Similarly, the erase size is

2048 bytes, so if we divide 156,237,824 by 2048, we get 76,288 blocks in the data.

This corresponds to the results from removeOOB.py. But there is one more thing we

can check. As we know the nanddump has 64 bytes of OOB data after each 2k

chunk, the total nanddump size on disk should be (76,288� 64)þ 156,237,824. The

total should then be 161,120,256, which would represent the data chunks and their

corresponding OOB. We can see what the size on disk is with a simple “ls el”:

ahoog@ubuntu:~$ ls -ltr htcinc-mtd6-datadata*
-rw-r--r-- 1 ahoog ahoog 161120256 2011-02-13 19:34 htcinc-mtd6-datadata.
nanddump
-rw-r--r-- 1 ahoog ahoog 156237824 2011-02-13 19:36 htcinc-mtd6-datadata.
nanddump.dd

As you can see, both the full nanddump and the .dd image (the nanddump with

the OOB removed) correspond to the expected sizes.

As we now have the YAFFS2 nanddump file, dd image, and the logical files

(either from tar, adb pull, or by mounting the YAFFS2 partition), we are ready to

perform various techniques against the data.

YAFFS2 Timeline Analysis

Ideally, this section would detail the use of already-built forensic software that

would build YAFFS2 timelines. Unfortunately, YAFFS2 is not yet supported by any

forensic timeline tools, so examiners in need of this information must take a more

difficult path.

Over the next few years, the forensics industry needs to perform far more

research into YAFFS2. However, with Android moving towards EXT4, it is possible

that most of the YAFFS2 research will not occur. Hopefully, this will not be the case.

Here, we will present some research that is intended to provide a basic frame-

work to begin YAFFS2 research. This research was done on the simulated NAND

flash initially covered in Chapter 4. While this approach provides the researcher with

the control and privileges needed for effective research, it does not necessarily

mimic production environments.

As discussed in Chapter 4, both YAFFS2 and MTD are involved in writing

data to the NAND flash. The YAFFS2 module is responsible for all aspects of

the file system. However, the writing of the data to the NAND flash is managed

by MTD. Unfortunately, this adds considerable complexity to the analysis as

MTD can accept the data from YAFFS2, which needs to be written to the

NAND flash and then has the autonomy to write not only the YAFFS2 data but

additional MTD data in the manner it sees fit. Some research into the data as it

has persisted must take into account not only the YAFFS2 code but the MTD

code. Additionally, there can be subtle differences in the YAFFS2 and MTD

324 CHAPTER 7 Android application and forensic analysis

mailto:Image of Figure 7.10|tif

modules used on different Android devices, which adds yet another layer of

complexity.

This does not mean understanding the YAFFS2 data found in a nanddump is

impossible. To get started, we are going to setup a 64 MB simulated NAND flash

device on our Ubuntu workstation.

sudo modprobe mtd
sudo modprobe mtdblock
sudo insmod ~/yaffs2/yaffs2.ko
sudo modprobe nandsim first_id_byte=0x20 second_id_byte=0xa2 third_id_byte=0x00
fourth_id_byte=0x15

You can verify the nandsim is properly setup:

ahoog@ubuntu:~$ cat /proc/mtd
dev: size erasesize name
mtd0: 04000000 00020000 "NAND simulator partition 0"

Before we mount the YAFFS2 file system, we are going to enable various

debugging features built into YAFFS2. There are many debugging options that

YAFFS2 supports (YAFFS Debugging, n.d.), but we are only going to enable three of

them. To do this, we first need to have full root permissions and then we will echo the

debugging flags into “/proc/yaffs”:

ahoog@ubuntu:~$ sudo -s
root@ubuntu:~# echo =none+os+write+mtd > /proc/yaffs

The value after echo command first removes any exiting debugging (none) and

then enables the os, write, and mtd debugging options. You can view the results of

the debugging in the system log located at “/var/log/syslog.” Ideally, open a second

terminal window or ssh session and use the tail command to continuously output the

tail end of the syslog:

ahoog@ubuntu:~$ tail -f /var/log/syslog
Feb 17 18:29:34 ubuntu kernel: [4474.970406] new trace = 0xF0004082

Next, we create the mount point and mount a YAFFS2 file system:

mkdir -p ~/mnt/yaffs2
sudo mount -t yaffs2 /dev/mtdblock0 ~/mnt/yaffs2

At this point, the examiner should create a series of test cases, so that the

expected controlled data can be examined on the simulated NAND flash to ulti-

mately determine the structure. For this test, the following steps were taken:

1. Create a directory called test in “~/mnt/yaffs2” (mkdir ~/mnt/yaffs2/test)

2. Create “~/mnt/yaffs2/test/file1.txt” with the contents “viaforensics” (nano -w

~/mnt/yaffs2/test/file1.txt)

3. Update “~/mnt/yaffs2/test” and append “updated” to file (echo “updated” >>

~/mnt/yaffs2/test/file1.txt)

4. Read “~/mnt/yaffs2/test/file1.txt” (cat ~/mnt/yaffs2/test/file1.txt)

YAFFS2 forensic analysis 325

mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif

5. Change the user and group owner for the directory and file (chown -R pulse.rtkit

~/mnt/yaffs2/test)

6. Change the permission of the directory and file (chmod -R 777 ~/mnt/yaffs2/

test)

As these tests are being executed, not only is the file system being updated but the

debugging information is written to the syslog. The debugging is very verbose (and

we only enabled three of the debugging options), so only two examples are provided

here, which correspond to the following:

1. Creating the “~/mnt/yafs2/test” directory

2. Change the permission of file1.txt (chmod -R 777 ~/mnt/yaffs2/test)

mkdir ~/mnt/yafs2/test

Feb 17 15:53:33 ubuntu kernel: [26704.104072] yaffs_lookup for 1:test
Feb 17 15:53:33 ubuntu kernel: [26704.104076] yaffs_lookup not found
Feb 17 15:53:33 ubuntu kernel: [26704.104078] yaffs_mkdir
Feb 17 15:53:33 ubuntu kernel: [26704.104080] yaffs_mknod: parent object 1 type 3
Feb 17 15:53:33 ubuntu kernel: [26704.104082] yaffs_mknod: making oject for test, mode 41ed dev 0
Feb 17 15:53:33 ubuntu kernel: [26704.104083] yaffs_mknod: making directory
Feb 17 15:53:33 ubuntu kernel: [26704.104191] yaffs_MarkSuperBlockDirty() sb = ffff88001bf74800
Feb 17 15:53:33 ubuntu kernel: [26704.104194] nandmtd2_ReadChunkWithTagsFromNAND chunk 0 data ffff88000d30c000 tags ffff880019f479f8
Feb 17 15:53:33 ubuntu kernel: [26704.104233] packed tags obj -1 chunk -1 byte -1 seq -1
Feb 17 15:53:33 ubuntu kernel: [26704.104235] ext.tags eccres 0 blkbad 0 chused 0 obj 0 chunk0 byte 0 del 0 ser 0 seq 0
Feb 17 15:53:33 ubuntu kernel: [26704.104237] packed tags obj -1 chunk -1 byte -1 seq -1
Feb 17 15:53:33 ubuntu kernel: [26704.104239] ext.tags eccres 1 blkbad 0 chused 0 obj 0 chunk0 byte 0 del 0 ser 0 seq 0
Feb 17 15:53:33 ubuntu kernel: [26704.104243] Writing chunk 0 tags 257 0
Feb 17 15:53:33 ubuntu kernel: [26704.104244] nandmtd2_WriteChunkWithTagsToNAND chunk 0 data ffff88000d30c800 tags ffff880019f47ba8
Feb 17 15:53:33 ubuntu kernel: [26704.104247] packed tags obj 805306625 chunk -2147483647 byte 0 seq 4097
Feb 17 15:53:33 ubuntu kernel: [26704.104249] ext.tags eccres 0 blkbad 0 chused 1 obj 257 chunk0 byte 0 del 0 ser 1 seq 4097
Feb 17 15:53:33 ubuntu kernel: [26704.104466] nandmtd2_ReadChunkWithTagsFromNAND chunk 0 data ffff88000d30c000 tags ffff880019f47aa8
Feb 17 15:53:33 ubuntu kernel: [26704.104471] packed tags obj 805306625 chunk -2147483647 byte 0 seq 4097
Feb 17 15:53:33 ubuntu kernel: [26704.104474] ext.tags eccres 0 blkbad 0 chused 1 obj 257 chunk0 byte 0 del 0 ser 0 seq 4097
Feb 17 15:53:33 ubuntu kernel: [26704.104476] packed tags obj 805306625 chunk -2147483647 byte 0 seq 4097
Feb 17 15:53:33 ubuntu kernel: [26704.104478] ext.tags eccres 1 blkbad 0 chused 1 obj 257 chunk0 byte 0 del 0 ser 0 seq 4097
Feb 17 15:53:33 ubuntu kernel: [26704.104487] yaffs_get_inode for object 257
Feb 17 15:53:33 ubuntu kernel: [26704.104488] yaffs_iget for 257
Feb 17 15:53:33 ubuntu kernel: [26704.104492] yaffs_FillInode mode 41ed uid 0 gid 0 size 2048 count 1
Feb 17 15:53:33 ubuntu kernel: [26704.104494] yaffs_mknod created object 257 count = 1
Feb 17 15:53:33 ubuntu kernel: [26704.330210] yaffs_MarkSuperBlockDirty() sb = ffff88001bf74800
Feb 17 15:53:33 ubuntu kernel: [26704.330214] Writing chunk 1 tags 1 0
Feb 17 15:53:33 ubuntu kernel: [26704.330217] nandmtd2_WriteChunkWithTagsToNAND chunk 1 data ffff88000d30c800 tags ffff880011c3dd00
Feb 17 15:53:33 ubuntu kernel: [26704.330219] packed tags obj 805306369 chunk -2147483648 byte 0 seq 4097
Feb 17 15:53:33 ubuntu kernel: [26704.330221] ext.tags eccres 0 blkbad 0 chused 1 obj 1 chunk0 byte 0 del 0 ser 1 seq 4097
Feb 17 15:53:37 ubuntu kernel: [26708.060113] yaffs_write_super
Feb 17 15:53:37 ubuntu kernel: [26708.060118] yaffs_do_sync_fs: dirty no checkpoint
Feb 17 15:53:37 ubuntu kernel: [26708.060121] flushing obj 257
Feb 17 15:53:37 ubuntu kernel: [26708.060122] flushing obj 2
Feb 17 15:53:37 ubuntu kernel: [26708.060123] flushing obj 1

chmod -R 777 ~/mnt/yaffs2/test

Feb 17 15:59:00 ubuntu kernel: [27030.833325] yaffs_setattr of object 257
Feb 17 15:59:00 ubuntu kernel: [27030.833331] inode_setattr called
Feb 17 15:59:00 ubuntu kernel: [27030.833338] nandmtd2_ReadChunkWithTagsFromNAND chunk 11 data ffff88000d30c800 tags ffff88002e2efc38
Feb 17 15:59:00 ubuntu kernel: [27030.833356] packed tags obj 805306625 chunk -2147483647 byte 0 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833358] ext.tags eccres 0 blkbad 0 chused 1 obj 257 chunk0 byte 0 del 0 ser 0 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833360] packed tags obj 805306625 chunk -2147483647 byte 0 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833362] ext.tags eccres 1 blkbad 0 chused 1 obj 257 chunk0 byte 0 del 0 ser 0 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833366] yaffs_MarkSuperBlockDirty() sb = ffff88001bf74800
Feb 17 15:59:00 ubuntu kernel: [27030.833368] Writing chunk 12 tags 257 0
Feb 17 15:59:00 ubuntu kernel: [27030.833369] nandmtd2_WriteChunkWithTagsToNAND chunk 12 data ffff88000d30c800 tags ffff88002e2efc88
Feb 17 15:59:00 ubuntu kernel: [27030.833372] packed tags obj 805306625 chunk -2147483647 byte 0 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833378] ext.tags eccres 0 blkbad 0 chused 1 obj 257 chunk0 byte 0 del 0 ser 4 seq 4097

326 CHAPTER 7 Android application and forensic analysis

mailto:Image of Figure 7.10|tif

The debugging provides valuable information including object id, sequence

number, chunk id, and the detailed process YAFFS2 follows to create the file. If you

enable additional debugging you will have even more data to correlate and use in

your understanding of YAFFS2.

Before we examine the actual nanddump, there is one other helpful command

worth pointing out. The stat command will provide detailed information about

a file, directory, or other file system objects. For example, we can run stat against

“~/mnt/yaffs2/test” and “~/mnt/yaffs2/test/file1.txt” and use the information in

our research:

root@ubuntu:~/mnt/yaffs2# stat test
 File: `test'
 Size: 2048 Blocks: 4 IO Block: 4096 directory
Device: 1f00h/7936d Inode: 257 Links: 1
Access: (0777/drwxrwxrwx) Uid: (109/ pulse) Gid: (117/ rtkit)
Access: 2011-02-17 15:53:33.000000000 -0600
Modify: 2011-02-17 15:55:02.000000000 -0600
Change: 2011-02-17 15:59:00.000000000 -0600

root@ubuntu:~/mnt/yaffs2# stat test/file1.txt
 File: `test/file1.txt'
 Size: 21 Blocks: 1 IO Block: 4096 regular file
Device: 1f00h/7936d Inode: 258 Links: 1
Access: (0777/-rwxrwxrwx) Uid: (109/ pulse) Gid: (117/ rtkit)
Access: 2011-02-17 15:55:02.000000000 -0600
Modify: 2011-02-17 15:56:13.000000000 -0600
Change: 2011-02-17 15:59:00.000000000 -0600

We now have the Modified, Access, and Change properties of the file and

directory and, combined with the actions we took to create the data, we have enough

information to start our research.

It’s time to look at the NAND flash, which requires root access. The following

command will skip the rows of the NAND flash, which are all 0xFF and 0x00

making it easier to see trends. Also, only a small portion of the NAND flash is

displayed here in hex for space reasons:

Feb 17 15:59:00 ubuntu kernel: [27030.833390] yaffs_setattr done returning 0
Feb 17 15:59:00 ubuntu kernel: [27030.833485] yaffs_readdir: starting at 0
Feb 17 15:59:00 ubuntu kernel: [27030.833486] yaffs_readdir: entry . ino 257
Feb 17 15:59:00 ubuntu kernel: [27030.833488] yaffs_readdir: entry .. ino 1
Feb 17 15:59:00 ubuntu kernel: [27030.833490] yaffs_readdir: file1.txt inode 258
Feb 17 15:59:00 ubuntu kernel: [27030.833493] yaffs_readdir: starting at 3
Feb 17 15:59:00 ubuntu kernel: [27030.833500] yaffs_setattr of object 258
Feb 17 15:59:00 ubuntu kernel: [27030.833501] inode_setattr called
Feb 17 15:59:00 ubuntu kernel: [27030.833504] nandmtd2_ReadChunkWithTagsFromNAND chunk 10 data ffff88000d30c800 tags ffff88002e2efc38
Feb 17 15:59:00 ubuntu kernel: [27030.833510] packed tags obj 268435714 chunk -2147483391 byte 21 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833512] ext.tags eccres 0 blkbad 0 chused 1 obj 258 chunk0 byte 0 del 0 ser 0 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833514] packed tags obj 268435714 chunk -2147483391 byte 21 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833517] ext.tags eccres 1 blkbad 0 chused 1 obj 258 chunk0 byte 0 del 0 ser 0 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833519] yaffs_MarkSuperBlockDirty() sb = ffff88001bf74800
Feb 17 15:59:00 ubuntu kernel: [27030.833520] Writing chunk 13 tags 258 0
Feb 17 15:59:00 ubuntu kernel: [27030.833522] nandmtd2_WriteChunkWithTagsToNAND chunk 13 data ffff88000d30c800 tags ffff88002e2efc88
Feb 17 15:59:00 ubuntu kernel: [27030.833524] packed tags obj 268435714 chunk -2147483391 byte 21 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833526] ext.tags eccres 0 blkbad 0 chused 1 obj 258 chunk0 byte 0 del 0 ser 7 seq 4097
Feb 17 15:59:00 ubuntu kernel: [27030.833533] yaffs_setattr done returning 0
Feb 17 15:59:01 ubuntu kernel: [27032.060195] yaffs_write_super
Feb 17 15:59:01 ubuntu kernel: [27032.060205] yaffs_do_sync_fs: dirty no checkpoint
Feb 17 15:59:01 ubuntu kernel: [27032.060208] flushing obj 258
Feb 17 15:59:01 ubuntu kernel: [27032.060209] flushing obj 257
Feb 17 15:59:01 ubuntu kernel: [27032.060210] flushing obj 2
Feb 17 15:59:01 ubuntu kernel: [27032.060212] flushing obj 1

YAFFS2 forensic analysis 327

mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif

nanddump -c /dev/mtd0ro | grep -v "00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00" |
grep -v "ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff" | less
0x00000000: 30 00 00 00 10 00 00 00 ff ff 47 56 37 47 00 00 |..........test..|
0x00000100: 00 00 00 00 00 00 00 00 00 00 ff ff de 14 00 00 |.............A..|
0x00000110: 00 00 00 00 00 00 00 00 dd 89 d5 d4 dd 89 d5 d4 |..........]M..]M|
0x00000120: dd 89 d5 d4 ff ff ff ff ff ff ff ff ff ff ff ff |..]M............|
0x000001c0: ff ff ff ff ff ff ff ff ff ff ff ff 00 00 00 00 |................|
0x000001e0: ff ff ff ff ff ff ff ff 00 00 00 00 ff ff ff ff |................|
0x000001f0: ff ff ff ff ff ff ff ff 00 00 00 00 00 00 00 00 |................|
 OOB Data: ff ff 10 01 00 00 10 10 00 03 10 00 00 08 00 00 |.........0......|
 OOB Data: 00 00 c0 a7 4f 91 30 00 00 00 30 00 00 00 ff ff |...z............|
 OOB Data: ff ff ff ff ff ff ff ff ff f3 f0 ff 0f 3c ff ff |.........?......|
 OOB Data: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
<snip>
0x00006800: 10 00 00 00 10 10 00 00 ff ff 66 96 c6 56 13 e2 |..........file1.|
0x00006810: 47 87 47 00 00 00 00 00 00 00 00 00 00 00 00 00 |txt.............|
0x00006900: 00 00 00 00 00 00 00 00 00 00 ff ff ff 18 00 00 |................|
0x00006910: d6 00 00 00 57 00 00 00 63 99 d5 d4 d7 99 d5 d4 |m...u...6.]M}.]M|
0x00006920: 42 a9 d5 d4 51 00 00 00 ff ff ff ff ff ff ff ff |$.]M............|
0x000069c0: ff ff ff ff ff ff ff ff ff ff ff ff 00 00 00 00 |................|
0x000069e0: ff ff ff ff ff ff ff ff 00 00 00 00 ff ff ff ff |................|
0x000069f0: ff ff ff ff ff ff ff ff 00 00 00 00 00 00 00 00 |................|
 OOB Data: ff ff 10 01 00 00 20 10 00 01 10 10 00 08 51 00 |................|
 OOB Data: 00 00 51 af e2 e2 10 00 00 00 ef ff ff ff ff ff |................|
 OOB Data: ff ff ff ff ff ff ff ff ff 00 3c ff 3c ff ff ff |................|
 OOB Data: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

The portion of the NAND flash included covers the following:

1. Create “~/mnt/yaffs2/test” directory

2. Permissions change on file1.txt (chmod -R 777 ~/mnt/yaffs2/test)

The data displayed are part of YAFFS2 ObjectHeaders and contain the metadata

for the file system. The names of the files are clearly visible as are the 64-byte OOB

areas. One key characteristic about this data is that the integers which represent Unix

Epoch time stamps are in little-endian order, which means that you must read the

data from right to left.

� Number as written to NAND flash: 63 99 d5 d4 (0x6399d5d4)

� Converted from little endian to big endian: 4d 5d 99 36 (0x4d5d9936, which is

the hex read from right to left)

� Converting 0x4d5d9936 (hex) to base 10 is 1297979702

� Unix time stamp 1297979702 in human date/time format is Thu Feb 17 15:55:02

CST 2011 (date -d @1297979702)

Using this information, we can isolate a number of important artifacts in the

nanddump as shown in Table 7.3.

Quite satisfyingly, the data from the debug logs, stat command, and the nand-

dump of the simulated NAND flash device all correspond. With additional analysis,

it would be quite possible to create the MAC times for each file and directory on the

NAND flash, which would provide obvious benefit to an examiner. It is also possible

to gather full metadata information from ObjectHeaders still found on the NAND

flash anddprovided garbage collection did not occur on the blockdthe full content

of the time at each point in time.

328 CHAPTER 7 Android application and forensic analysis

mailto:Image of Figure 7.10|tif

Table 7.3 Artifacts from YAFFS2 Nanddump

Offset Hex Decimal Converted Description

0x00000118 - 11B dd 89 d5 d4 1297979613 Thu Feb 17 15:53:33 CST

2011

This is the atime (accessed time) for the

directory created, which is the same as the

modified and changed time as it was just

created. This corresponds with the date/

time from debugging statements

0x0000011C - 11F dd 89 d5 d4 1297979613 Thu Feb 17 15:53:33 CST

2011

This is the mtime (modified time) of the

directory, which is the same as the atime as

it was just created

0x00000120 - 123 dd 89 d5 d4 1297979613 Thu Feb 17 15:53:33 CST

2011

This is the ctime (metadata changed time)

of the directory, which is the same as the

atime as it was just created

Bytes 3–6 in OOB 10 01 00 00 4097 N/A Sequence number for the block

Bytes 7–10 in OOB 10 10 00 03 805306625 N/A Object ID for directory test, consistent with

debugging data

0x00006918 - 691B 63 99 d5 d4 1297979702 Thu Feb 17 15:55:02 CST

2011

File atime, not updated as file was created

despite file being accessed

0x0000691C - 691F d7 99 d5 d4 1297979773 Thu Feb 17 15:56:13 CST

2011

File mtime, consistent with update of file

contents

0x00006920 - 6923 42 a9 d5 d4 1297979940 Thu Feb 17 15:59:00 CST

2011

File ctime, consistent with the permission

change detailed in debug logs

Bytes 3–6 in OOB 10 01 00 00 4097 N/A Sequence number for the block, same as

previous as all data fit in 128 KB block and

thus, a new sequence number was not

allocated

Bytes 7–10 in OOB 20 10 00 01 268435714 N/A Object ID for file1.txt, consistent with

debugging data

Y
A
F
F
S
2
fo
re
n
sic

a
n
a
lysis

3
2
9

It is worth pointing out that in the very limited testing and analysis demonstrated

here, it appears the atime (accessed time) for the file is not updated every time the file

is accessed. This is not really surprising as it would mean that any time a program

accesses the file, a new ObjectHeader would have to be written to NAND flash. This

would result in a far greater number of writes to the NAND flash and would not only

use precious battery power, but would also wear out the NAND flash with metadata

updates most users do not really care about. This practice is also not terribly unusual

as Microsoft, by default, disabled atime update in Microsoft Windows Vista and

Windows 7.

To be sure, this analysis is not trivial. It can provide valuable information and is

a basis for forensic research on the YAFFS2 file system.

YAFFS2 File System Analysis

Hex analysis of the YAFFS2 file system is quite time consuming, so let’s move on to

techniques for analyzing the allocated files. Unfortunately, there are again chal-

lenges, as it can be quite difficult to mount a YAFFS2 nanddump after it is extracted

from an Android device.

For this reason, as highlighted in Chapter 6, if you have root access on an

Android device, it is best to not only acquire the appropriate YAFFS2 nanddump

files, but to also logically copy important directories from the systems using adb

pull, tar, or other method. That way, if you are unable to mount the YAFFS2

nanddump, you still have a logical copy of the files. The nanddump can then be used

for timeline creation, other hex analysis, and file carving.

However, it is possible to mount some YAFFS2 nanddumps in Linux and, over

time, expect more nanddump files to successfully mount. For this section though, we

will focus on a nanddump from a Motorola Droid as they can be successfully

mounted in Linux with nandsim and the YAFFS2 kernel module.

First, we need to load the appropriate kernel modules and create a 1 GB nandsim

device.

sudo modprobe mtd
sudo modprobe mtdblock
sudo insmod ~/yaffs2/yaffs2.ko
sudo modprobe nandsim first_id_byte=0xec second_id_byte=0xd3 third_id_byte=0x51
fourth_id_byte=0x95

We now have a 1 GB nandsim device that is capable of housing the Droid’s

“/data” partition. The next step is to use nandwrite to copy both the data and OOB to

the simulated NAND flash.

ahoog@ubuntu:~$ sudo nandwrite --autoplace --oob /dev/mtd0 droid_userdata.
nanddump
Writing data to block 0 at offset 0x0
Writing data to block 1 at offset 0x20000
Writing data to block 2 at offset 0x40000
Writing data to block 3 at offset 0x60000
Writing data to block 4 at offset 0x80000
Writing data to block 5 at offset 0xa0000
<snip>

330 CHAPTER 7 Android application and forensic analysis

mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif

The parameters instruct nandwrite to do the following:

� sudo nandwritedNandwrite requires root permission

� --autoplacedUse auto oob layout

� --oobdImage contains oob data

� /dev/mtd0dThe mtd device to write the nanddump to

� droid_userdata.nanddumpdThe name of the nanddump file

If everything went as expected, we should now be able to mount the file system

with the following commands:

ahoog@ubuntu:~$ mkdir -p ~/mnt/yaffs2
ahoog@ubuntu:~$ sudo mount -t yaffs2 /dev/mtdblock0 ~/mnt/yaffs2

There are two primary problems you can encounter during this process. First,

YAFFS2 and MTD may not successfully mount the file system and will display this

message:

ahoog@ubuntu:~$ sudo mount -t yaffs2 /dev/mtdblock0 ~/mnt/yaffs2
mount: wrong fs type, bad option, bad superblock on /dev/mtdblock0,
 missing codepage or helper program, or other error
 In some cases useful info is found in syslog - try
 dmesg | tail or so

There can be many causes for this such as:

� Differences between device’s YAFFS2 and MTD implementation and your

workstation

� Corrupt or invalid nanddump

� File system issues

The secondmost common issue is that the file systemmounts, but there are no files:

ahoog@ubuntu:~/mnt/yaffs2$ ls
lost+found

This is most likely due to differences between the device’s YAFFS2 and MTD

implementation and your workstation, and again can be difficult to debug. There are

a few things you can try to resolve the issues. First, if you have a version of mtu-utils

greater than 20090606-1, try installing the older version. Here’s how to check your

current version and optionally install:

ahoog@ubuntu:~$ dpkg -l | grep mtd-utils
ii mtd-utils 20100706-1
Memory Technology Device Utilities

ahoog@ubuntu:~$ sudo apt-get remove mtd-utils
ahoog@ubuntu:~$ wget http://mirror.pnl.gov/ubuntu//pool/universe/m/mtd-
utils/mtd-utils_20090606-1ubuntu0.10.04.1_amd64.deb
ahoog@ubuntu:~$ sudo dpkg -i mtd-utils_20090606-1ubuntu0.10.04.1_amd64.deb

ahoog@ubuntu:~$ dpkg -l | grep mtd-utils
ii mtd-utils 20090606-1ubuntu0.10.04.1
Memory Technology Device Utilities

YAFFS2 forensic analysis 331

mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif
mailto:Image of Figure 7.10|tif

Now that we downgraded the version of MTD, you could try the steps to mount

a YAFFS2 nanddump again.

The other potential option is that your version of YAFFS2 is not consistent

enough with the version used on the Android device. In order to get different

versions of YAFFS2, you will need to use the source control system of either the

YAFFS2 or the Android Open Source Project. You would then compile that

source code, remove the existing YAFFS2 kernel module, insert the new one, and try

again.

If these steps work, here is what you will see:

ahoog@ubuntu:~$ ls -l ~/mnt/yaffs2/
total 25
drwxrwx--x 1 ahoog ahoog 2048 2010-10-11 15:21 app
drwxrwx--x 1 ahoog ahoog 2048 2010-10-07 13:53 app-private
drwx------ 1 ahoog ahoog 2048 2010-10-11 20:16 backup
-rw-rw-rw- 1 root root 8 2010-10-11 20:18 cc_data
drwxrwx--x 1 ahoog ahoog 2048 2010-10-11 15:21 dalvik-cache
drwxrwx--x 1 ahoog ahoog 2048 2010-10-11 15:21 data
drwxr-x--- 1 root 1007 2048 2010-10-07 13:53 dontpanic
drwxrwx--x 1 2000 2000 2048 2010-10-07 13:53 local
drwxrwx--- 1 root root 2048 2010-10-07 13:53 lost+found
drwxrwx--t 1 ahoog 9998 2048 2010-10-11 19:02 misc
drwx------ 1 root root 2048 2010-10-11 19:38 property
drwxrwxr-x 1 ahoog ahoog 2048 2010-10-11 20:20 system
drwxr-xr-x 1 ahoog ahoog 2048 2010-10-11 14:55 tombstones

ahoog@ubuntu:~$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/mtdblock0 1.0G 65M 960M 7% /home/ahoog/mnt/yaffs2

So we now have the full “/data” file system from a Motorola Droid accessible on

our Ubuntu workstation, which you can then explore and analyze with the forensic

tools of your choice. Ultimately, if you are unable to mount the nanddump on the

Ubuntu workstation, you should still have the full set of logical files from the

acquisition process, so it should not inhibit the analysis of the device.

YAFFS2 File Carving

The next technique useful for analyzing YAFFS2 file systems is file carving.

Previously in this chapter, we installed and configured scalpel on our Ubuntu

workstation. For this example, let’s assume there is a file called htc-datadata.dd in

the home directory of the logged-in user on the Ubuntu virtual machine. In that same

directory (which you can reference with a ~ in your commands), there is a scalpel

configuration containing the entries from the section 1.3 named scalpel-

android.conf.

Please note that we are using the dd image for file carving, not the nanddump.

This is necessary as the OOB data found after each 2k chunk of YAFFS2 data would

significantly impact the ability of scalpel to carve valid files. The following

command would run scalpel against the dd image and output the files in a folder

called htc-scalpel-test in your home directory:

332 CHAPTER 7 Android application and forensic analysis

mailto:Image of Figure 7.10|tif

In this instance, scalpel was able to recover 11,370 files and the output provides

specifics on the file types and counts that were recovered. Fig. 7.11 is a screen shot

from the Ubuntu workstation looking at one of the JPG directories.

The images do not have a high resolution but, especially when viewed directly on

the workstation, you can discern the contents. Here are a few things that this small

fraction of images shows:

� The top three pictures are the opening frames from YouTube movies, dragon

cartoons in this case.

� The next picture is a fragment of a Facebook message asking about lunch and

recommending sushi.

� The remaining pictures appear to be from various news articles.

ahoog@ubuntu:~$ scalpel -c ~/scalpel-android.conf ~/htc-datadata.dd -o
~/htc-scalpel-test
Scalpel version 1.60
Written by Golden G. Richard III, based on Foremost 0.69.

Opening target "/home/ahoog/htc-datadata.dd"

Image file pass 1/2.
/home/ahoog/htc-datadata.dd: 100.0%
|***| 149.0 MB
Allocating work queues...
Work queues allocation complete. Building carve lists...
Carve lists built. Workload:
gif with header "\x47\x49\x46\x38\x37\x61" and footer "\x00\x3b" --> 16 files
gif with header "\x47\x49\x46\x38\x39\x61" and footer "\x00\x3b" --> 385 files
jpg with header "\xff\xd8\xff\xe0\x00\x10" and footer "\xff\xd9" --> 2140 files
jpg with header "\xff\xd8\xff\xe1" and footer "\x7f\xff\xd9" --> 18 files
png with header "\x50\x4e\x47\x3f" and footer "\xff\xfc\xfd\xfe" --> 0 files
png with header "\x89\x50\x4e\x47" and footer "" --> 1442 files
db with header "\x53\x51\x4c\x69\x74\x65\x20\x66\x6f\x72\x6d\x61\x74" and
footer "" --> 5453 files
email with header "\x46\x72\x6f\x6d\x3a" and footer "" --> 1183 files
doc with header "\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00" and footer
"\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00" --> 0 files
doc with header "\xd0\xcf\x11\xe0\xa1\xb1" and footer "" --> 0 files
htm with header "\x3c\x68\x74\x6d\x6c" and footer
"\x3c\x2f\x68\x74\x6d\x6c\x3e" --> 732 files
pdf with header "\x25\x50\x44\x46" and footer "\x25\x45\x4f\x46\x0d" -->
1 files
pdf with header "\x25\x50\x44\x46" and footer "\x25\x45\x4f\x46\x0a" -->
0 files
wav with header "\x52\x49\x46\x46\x3f\x3f\x3f\x3f\x57\x41\x56\x45" and
footer "" --> 0 files
amr with header "\x23\x21\x41\x4d\x52" and footer "" --> 0 files
zip with header "\x50\x4b\x03\x04" and footer "\x3c\xac" --> 0 files
java with header "\xca\xfe\xba\xbe" and footer "" --> 0 files
Carving files from image.
Image file pass 2/2.
/home/ahoog/htc-datadata.dd: 100.0%
|***| 149.0 MB
Processing of image file complete. Cleaning up...
Done.
Scalpel is done, files carved = 11370, elapsed = 4 seconds.

YAFFS2 forensic analysis 333

mailto:Image of Figure 7.10|tif

As this demonstrates, file carving can recover important artifacts from YAFFS2

and is a valuable tool for forensic analysis.

YAFFS2 Strings Analysis

We have already demonstrated one example of using strings to find data on an

Android device. However, let’s work through another exercise to demonstrate not

only the technique but the power of this type of analysis.

For this example, the examiner needs to find location information on the Android

device. One term to search for, especially on an Android device, is maps.google.com

as the Google Maps service is tightly integrated into the operating system. An

extremely powerful utility for search is called grep and is used so extensively it is

now a verb in technical vernacular (“Did you grep the device for map references?”).

It is not only built into the Ubuntu virtual machine but it also supports very powerful

regular expressions (often shortened to regex or regexp), which allow sophisticated

pattern matching. There are many online resources which introduce both grep and

regex with good examples.

For our example, we are going to use grep for its most basic functionality where

we simply search for a string:

FIGURE 7.11

Viewing images recovered using scalpel.

334 CHAPTER 7 Android application and forensic analysis

http://maps.google.com
mailto:Image of Figure 7.11|tif

ahoog@ubuntu:~$ strings --all --radix=x htcinc-mtd6-datadata.nanddump | grep
maps.google.com | less
691e6 Nhttp://maps.google.com/?q=Naperville+Crime+Prevention&
cid=146831038092484986558d2e7cc
Vhttp://maps.google.com/?q=Kennedy+Space+Center+Visitor+Complex&
cid=36393186238250854638d30fce
http://maps.google.com/maps/gen_204?oi=miwd&sa=X&ct=miw_details&cd=1&ei=3oVUTdC
aNZn2iwPg2dyOBQ&q=Kennedy+near+Space+Center,+FL&cad=ip:174.253.2.53,client:
maps-mobile,cid:3639318623825085463,src:link

The query returned 775 examplesdonly a few are displayed here for brevity and

privacy reasons. However, it is quite easy to determine some of the activity that took

place on the device. Specifically:

� A search (the q¼ in the URL stands for query) for Naperville Crime Prevention

was conducted and the URL is valid complete with address, phone number,

pictures, directions, and more.

� A search for Kennedy Space Center Visitor Complex was also performed.

� The Kennedy Space Center query was then viewed by the mobile maps appli-

cation and we can even see the IP address.

If we take a look at the IP address, which is part of the last query (174.253.2.53),

we can use either command line tools or an online IP lookup service (What Is My

IP Address, n.d.) to find out additional information. The results are shown in

Fig. 7.12.

The information from the IP lookup service reveals several important pieces of

information:

1. The device is using the Verizon Wireless network.

2. The device was located in the Chicago, IL area (it is possible to spoof and fake IP

addresses but this is nontrivial and unlikely in most scenarios).

As we have the hex offset for the strings recovered, we could then look at

data surrounding this search to determine the general time frame the search took

place.

YAFFS2 Analyst Notes

The manual analysis required for much of the YAFFS2 forensics is certainly time

consuming and a bit daunting, which makes the barrier of entry much higher than

the analysis of well-understood and supported file systems. However, there are

many resources that are easily accessible to assist an analyst new to this

approach.

First, hopefully this book provided a good introduction to using Linux for

forensic analysis (please recommend that all of your friends and colleagues should

have a copy for their bookshelf).

Perhaps a bit more helpful is that a simple Google search will often result in

many helpful posts on blogs, discussion boards, mailing lists, and other such

YAFFS2 forensic analysis 335

resources. While there is certainly inaccurate information on the Internet, many of

the technical people working in these areas post quite accurate and precise infor-

mation. And, as a bonus, many of the authors are very responsive to inquiries and

clarifications.

Next, there is an excellent introduction to Linux for law enforcement and

forensic analysts, which is available online and at no cost. The web site, Linux LEO:

The Law Enforcement and Forensic Examiner’s Introduction to Linux, provides the

guide in PDF format and introduces the reader to Linux concepts needed to use the

operating system as a forensic tool (Grundy, B., n.d.).

As you use Linux further, you will find that it is quite easy to automate many of

the manual tasks. This not only allows you to have great control over how the system

works, but the automation can save considerable time. This is a great combination as

the busy examiner can process more forensic data with cutting edge tools and at the

same time explain exactly what the system did instead of just being able to say that

a button was clicked and a report was produced.

The easiest way to start automating common Linux tasks is to simply write

a shell script, which is very easy to write and essentially mimic the commands you

would type in a terminal session.

FIGURE 7.12

Results of IP address lookup.

336 CHAPTER 7 Android application and forensic analysis

mailto:Image of Figure 7.12|tif

For example, let’s say you have a series of .csv files, which contain the

results from running the AFLogical forensic technique on an Android device.

You need to send the top row of each file to someone, but it should not contain

any data from the device. You could open each file manually, delete the data

rows, save the updated file to a new directory, and finally send the information.

However, this could take quite some time. Instead, you could write a simple

shell script.

First, let’s open a new file for editing:

ahoog@ubuntu:~$ nano -w ~/sanitize-csv.sh

Then place the following into the file:

#!/bin/bash

create a new directory to store the sanitized files
mkdir sanitized

#for each file ending with .csv
for f in *.csv
do
 #read the top 1 row of the file and save it to the sanitized directory
 #with the same filename followed by -1strowonly
 head -1 "$f" > sanitized/"$f"-1strowonly
done

#create a "tar gzip" archive of the file so it is easier share
tar czvf AFlogical-sanitized.tgz sanitized/*

Then save the file by pressing Ctrl-O and exit with Ctrl-X. Next, we have to make

the script executable:

ahoog@ubuntu:~$ chmod 755 ~/sanitize-csv.sh

The files we want to sanitize are in a directory called AFLogical on the home

directory of the user and, as you can tell, processing these by hand would be quite

time consuming:

ahoog@ubuntu:~/AFLogical$ ls
Browser Bookmarks.csv IM Providers.csv
Browser Searches.csv IM ProviderSettings.csv
CallLog Calls.csv info.xml
Contacts ContactMethods.csv Internal Image Media.csv
Contacts Extensions.csv Internal Image Thumb Media.csv
Contacts Groups.csv Internal Videos.csv
Contacts Organizations.csv Maps-Friends contacts.csv
Contacts Phones.csv Maps-Friends.csv
Contacts Settings.csv Maps-Friends extra .csv
External Image Media.csv MMS.csv
External Image Thumb Media.csv MMSParts.csv
External Media.csv People.csv
External Videos.csv PhoneStorage (HTC Incredible).csv
IM Account.csv sanitize.sh
IM Accounts.csv Search History.csv
IM Chats.csv SMS.csv
IM Contacts.csv Social Contracts Activities.csv
IM Invitations.csv

YAFFS2 forensic analysis 337

mailto:Image of Figure 7.12|tif
mailto:Image of Figure 7.12|tif
mailto:Image of Figure 7.12|tif

We can easily process these files simply now:

ahoog@ubuntu:~/AFLogical$ cd ~/AFLogical
ahoog@ubuntu:~/AFLogical$ ~/sanitize-csv.sh
sanitized/Browser Bookmarks.csv-1strowonly
sanitized/Browser Searches.csv-1strowonly
sanitized/CallLog Calls.csv-1strowonly
<snip>

Now, the AFLogical directory not only has a new subdirectory called sanitized

with each of the updated files in it, but also a single file containing the data:

ahoog@ubuntu:~/AFLogical$ ls -lh *.tgz
-rw-r--r-- 1 ahoog ahoog 2.1K 2011-02-19 03:44 AFlogical-sanitized.tgz

This data can be easily e-mailed or copied to another drive.

Here’s a more complex example, which will create a nandsim device, mount

a blank YAFFS2 file system, generate several files, and then allow the user to

unmount the file system. This is a quick way to automate the steps involved in testing

YAFFS2.

#!/bin/bash

read -p "Load kernel modules? (y/n)?"
if ["$REPLY" == "y"] ; then
 sudo modprobe mtd
 sudo modprobe mtdblock
 sudo insmod ~/yaffs2/yaffs2.ko
else
 exit
fi
echo ""
echo "Choose nandsim size in MiB [64, 128, 256, 512, 1024]"
echo "1) 64 MiB"
echo "2) 128 MiB"
echo "3) 256 MiB"
echo "4) 512 MiB"
echo "5) 1024 MiB"
read size
case $size in
 1) sudo modprobe nandsim first_id_byte=0x20 second_id_byte=0xa2
third_id_byte=0x00 fourth_id_byte=0x15 ;;
 2) sudo modprobe nandsim first_id_byte=0x20 second_id_byte=0xa1
third_id_byte=0x00 fourth_id_byte=0x15 ;;
 3) sudo modprobe nandsim first_id_byte=0x20 second_id_byte=0xaa
third_id_byte=0x00 fourth_id_byte=0x15 ;;
 4) sudo modprobe nandsim first_id_byte=0x20 second_id_byte=0xac
third_id_byte=0x00 fourth_id_byte=0x15 ;;
 5) sudo modprobe nandsim first_id_byte=0xec second_id_byte=0xd3
third_id_byte=0x51 fourth_id_byte=0x15 ;;
 *)
 echo "invalid nandsim size"
 exit
 ;;
esac

338 CHAPTER 7 Android application and forensic analysis

mailto:Image of Figure 7.12|tif
mailto:Image of Figure 7.12|tif
mailto:Image of Figure 7.12|tif

read -p "Mount yaffs2 in ~/mnt/y? (y/n)?"
if ["$REPLY" == "y"] ; then
 echo ""
 echo "Mounting with sudo mount -t yaffs2 /dev/mtdblock0 ~/mnt/y"
 sudo mount -t yaffs2 /dev/mtdblock0 ~/mnt/y
else
 exit
fi

echo ""
read -p "Write viafile.txt with contents of viaforensics? (y/n)?"
if ["$REPLY" == "y"] ; then
 sudo echo "viaforensics" > ~/mnt/y/viafile.txt
else
 exit
fi

echo ""
read -p "Append .com to contents of viafile.txt? (y/n)?"
if ["$REPLY" == "y"] ; then
 sudo echo ".com" >> ~/mnt/y/viafile.txt
else
 exit
fi

echo ""
read -p "Rename viafile.txt to renamed.txt? (y/n)?"
if ["$REPLY" == "y"] ; then
 sudo mv ~/mnt/y/viafile.txt ~/mnt/y/renamed.txt
else
 exit
fi

echo ""
read -p "Delete renamed.txt? (y/n)?"
if ["$REPLY" == "y"] ; then
 sudo rm ~/mnt/y/renamed.txt
else
 exit
fi

echo ""
read -p "Create last.txt with afphysical? (y/n)?"
if ["$REPLY" == "y"] ; then
 sudo echo "afphysical" > ~/mnt/y/last.txt
else
 exit
fi

echo ""
read -p "Unmount and remove modules? (y/n)?"
if ["$REPLY" == "y"] ; then
 sudo umount ~/mnt/y
 sudo rmmod yaffs2
 sudo rmmod nandsim
 sudo rmmod mtdblock
 sudo rmmod nand
 sudo rmmod mtd_blkdevs
 sudo rmmod mtd
 echo "Done"
else
 exit
fi

YAFFS2 forensic analysis 339

mailto:Image of Figure 7.12|tif

Hopefully, the absence of commercial tools which support the YAFFS2 file

system is not viewed by the examiner as a situation where no additional data can be

recovered. Using free, open source tools available on an Ubuntu workstation

clearly provides a powerful means to further the investigation. When combining

these techniques with the hex analysis outlined in this chapter, an examiner should

find they are well prepared to extract evidence from YAFFS2 partitions on Android

devices. When a case involving a medical device that runs embedded Linux with

the YAFFS2 file system is placed on your desk you can confidently dive in and

figure it out.

ANDROID APP ANALYSIS AND REFERENCE
While this chapter described many techniques useful for the forensic and security

investigation of Android devices, it is helpful to have a reference of where data is

stored for key applications. Of course, maintaining a complete reference would be

nearly impossible not only due to the sheer number of applications but also due to

the variation between specific devices and Android versions.

In the following sections, we analyze 10 important applications from the refer-

ence phones used throughout this book and provide the following data:

1. App information

2. Files and directories (including /data/data, SD card, and eMMC)

3. Important database tables

4. Analyst notes

Through the app analysis, all time stamps are in Unix Epoch milliseconds, the

number of milliseconds since January 1, 1970, unless otherwise noted.

The apps tested were installed and used on the device and then analyzed with

a custom Python program to automate some of the techniques described previously

in this chapter. While significant information is provided, be advised that this is only

a reference and likely incomplete. Analysts should use the forensic and security

tools as well as the techniques described above for a full analysis of the device they

are examining.

Messaging (sms and mms)

App Info
This is the default app shipped with Android that handles SMS and MMS

messages.

� App Name: Messaging

� Package name: com.android.providers.telephony

� Version: 2.2

� Device: HTC Incredible

� App developer: Android

340 CHAPTER 7 Android application and forensic analysis

Directories, Files, and File Types
In /data/data/com.android.providers.telephony:

com.android.providers.telephony/ directory
├── app_parts directory
│ ├── PART_1285875367786 JPEG image data, JFIF standard 1.01
│ ├── PART_1287901591761 JPEG image data, JFIF standard 1.01
│ └── PART_1293199567316 JPEG image data, JFIF standard 1.01
├── databases directory
│ ├── mmssms.db SQLite 3.x database, user version 60
│ └── telephony.db SQLite 3.x database, user version 524296
└── lib directory

Important Database Tables and Files
Important database tables and files for mms and sms are shown in Table 7.4.

Analyst Notes
Analyst notes for /data/data/com.android.providers.telephony:

� The app_parts folder will contain the MMS attachments and can include images,

video, or any other supported data. File types are not maintained, so use the file

command or other file signature analysis tools to identify.

� The telephony database is usually of little interest as it only contains service

information for the wireless carrier(s).

� The sms table contains all the messages and should be the primary focus.

� Several other tables seem to replicate parts of the sms table’s content, so look at

words_content and other tables to aid in your analysis.

� See also: com.android.mms.

MMS Helper Application

App Info
This app stores some MMS data and appears to be a helper application for the main

Messaging app.

Table 7.4 Important Database Tables and Files from /data/data/

com.android.providers.telephony/databases/mmssms.db

Database Tables/Files Description

words_content Content of messages

part MMS attachment details including type, name, location

on file system if binary (i.e., images), and content of

attachment if plain text

sms Full SMS messages including to, from, person, time

stamp, read status, send/receive status, and message

content

Android app analysis and reference 341

mailto:Image of Figure 7.12|tif

� App Name: com.android.mm

� Package name: com.android.mms

� Version: 2.2

� Device: HTC Incredible

� App developer: Android

Directories, Files, and File Types
In /data/data/com.android.mms:

com.android.mms directory
├── bufferFileForMms data
├── cache directory
│ ├── PART_1285875367786 PNG image, 80 x 60,
8-bit/color RGB, non-interlaced
│ ├── PART_1287901591761 PNG image, 80 x 60,
8-bit/color RGB, non-interlaced
│ └── PART_1293199567316 PNG image, 80 x 60,
8-bit/color RGB, non-interlaced
├── lib directory
└── shared_prefs directory
 ├── com.android.mms.customizationBySIM.xml XML document text
 ├── com.android.mms_preferences.xml XML document text
 ├── FIRST_EXECUTE.xml XML document text
 ├── _has_set_default_values.xml XML document text
 └── VERY_FIRST_EXECUTE.xml XML document text

Important Database Tables and Files
� PART files in /data/data/com.android.mms/cache

Analyst Notes
Analyst notes for /data/data/com.android.mms:

� File “bufferFileForMms” might contain buffer data at the time of sending.

However, it usually only contains 0x00.

� The PART files in cache are small PNG versions of the images found in the

Messaging app at /data/data/com.android.providers.telephony/app_parts.

Browser

App Info
This is the built-in web browser for Android, based on the open source WebKit

project.

� App Name: Internet

� Package name: com.android.browser

� Version: 2.2

342 CHAPTER 7 Android application and forensic analysis

mailto:Image of Figure 7.12|tif

� Device: HTC Incredible

� App developer: Android

Directories, Files, and File Types
In /data/data/com.android.browser:

com.android.browser/directory
├── app_appcache directory
│ └── ApplicationCache.db SQLite 3.x database, user version 5
├── app_databases directory
│ ├── Databases.db SQLite 3.x database
│ ├── http_a.ringleaderdigital.com_0 directory
│ │ └── 0000000000000002.db SQLite 3.x database
│ ├── http_blogs.techrepublic.com.com_0.localstorage SQLite 3.x database
│ ├── http_b.scorecardresearch.com_0.localstorage SQLite 3.x database
│ ├── http_forumlogr.disqus.com_0.localstorage SQLite 3.x database
│ ├── http_mashable.com_0.localstorage SQLite 3.x database
│ ├── http_mashable.disqus.com_0.localstorage SQLite 3.x database
│ ├── http_m.imdb.com_0.localstorage SQLite 3.x database
│ ├── https_api.twitter.com_0.localstorage SQLite 3.x database
│ ├── http_singularityhub.com_0.localstorage SQLite 3.x database
│ ├── http_singularityhub.disqus.com_0.localstorage SQLite 3.x database
│ ├── http_twitpic.com_0.localstorage SQLite 3.x database
│ ├── http_voices.washingtonpost.com_0.localstorage SQLite 3.x database
│ ├── http_www.accuweather.com_0 directory
│ │ └── 0000000000000001.db SQLite 3.x database
│ ├── http_www.accuweather.com_0.localstorage SQLite 3.x database
│ ├── http_www.cbc.ca_0.localstorage SQLite 3.x database
│ ├── http_www.forensicfocus.com_0.localstorage SQLite 3.x database
│ ├── http_www.forumlogr.com_0.localstorage SQLite 3.x database
│ ├── http_www.google.com_0.localstorage SQLite 3.x database
│ ├── http_www.iphoneworld.ca_0.localstorage SQLite 3.x database
│ ├── http_www.linkedin.com_0.localstorage SQLite 3.x database
│ └── http_www.youtube.com_0.localstorage SQLite 3.x database
├── app_geolocation directory
│ ├── CachedGeoposition.db SQLite 3.x database
│ └── GeolocationPermissions.db SQLite 3.x database
├── app_icons directory
│ └── WebpageIcons.db SQLite 3.x database
├── app_plugins directory
│ └── com.adobe.flashplayer directory
│ ├── .adobe directory
│ │ └── Flash_Player directory
│ │ └── AssetCache directory
│ │ └── YY3JJV4U directory
│ │ ├── 3C82B2A2455B252B8595FD0113249AA19D7E8BDD.heu data
│ │ ├── 3C82B2A2455B252B8595FD0113249AA19D7E8BDD.swz data
│ │ └── cacheSize.txt ASCII text, with no line terminators
│ └── .macromedia directory
│ └── Flash_Player directory
│ ├── adobe.com directory
│ │ └── flashplayer directory
│ │ ├── #cdn.widgetserver.com directory
│ │ │ └── settings.sol data
│ │ ├── #flashapps.ifg.net directory
│ │ │ └── settings.sol data
│ │ ├── #images10.newegg.com directory
│ │ │ └── settings.sol data
│ │ ├── settings.sol data
│ │ └── #s.ytimg.com directory
│ │ └── settings.sol data
│ └── #SharedObjects directory
│ └── GPDJW6S3 directory
│ ├── cdn.widgetserver.com directory

Android app analysis and reference 343

mailto:Image of Figure 7.12|tif

In /app-cache/com.android.browser/cache:

app-cache/ directory
└── com.android.browser directory
 └── cache directory
 └── webviewCache directory
 ├── 00684608 JPEG image data, JFIF standard 1.01, comment:
"CREATOR: gd-jpeg v1.0 (using IJ"
 ├── 00f02aa9 GIF image data, version 89a, 3 x 3
 ├── 0113650e ASCII text, with very long lines
 ├── 01c6689f ASCII C program text, with very long lines
 ├── 0249f797 PNG image, 46 x 20, 8-bit/color RGBA,
 non-interlaced
 ├── 02d78554 GIF image data, version 89a, 468 x 60
 ├── 0305cad6 JPEG image data, JFIF standard 1.02
 ├── 0339028b GIF image data, version 89a, 155 x 85
 ├── 036d8956 036d8956: GIF image data, version 89a, 15 x 15
 ├── 03bc67f9 ASCII text, with very long lines
 ├── 04e9f7f8 JPEG image data, JFIF standard 1.01
 ├── 056d50ab HTML document text
 ├── 069360d7 JPEG image data, JFIF standard 1.02
 ├── 073f38ff GIF image data, version 89a, 20 x 14
 ├── 074a5b68 ASCII text, with very long lines
 ├── 07f04406 PNG image, 200 x 52, 8-bit/color RGBA,
 non-interlaced
 ├── 07ff1c11 PNG image, 132 x 29, 8-bit/color RGBA,
 non-interlaced
 ├── 09fda0dd GIF image data, version 89a, 32 x 11
 ├── 0aec9086 GIF image data, version 89a, 8 x 3
 ├── 0c24e90f GIF image data, version 89a, 17 x 17
<snip>

│ │ ├── com.quantserve.sol data
│ │ ├── syndication directory
│ │ │ └── flash directory
│ │ │ └── InsertWidget.swf directory
│ │ │ └── wbx.sol data
│ │ └── wbx_cookie.sol data
│ ├── flashapps.ifg.net directory
│ │ └── weather directory
│ │ └── weather.swf directory
│ │ └── TestMovie_Config_Info.sol data
│ ├── images10.newegg.com directory
│ │ ├── s7_newegg.sol data
│ │ └── WebResource directory
│ │ └── Themes directory
│ │ └── 2005 directory
│ │ └── Nest directory
│ │ └── genericzoomviewer.swf directory
│ │ └── #newegg directory
│ │ └── 16%2D102%2D144%2DZ02_init.sol data
│ └── s.ytimg.com directory
│ └── soundData.sol data
├── app_sharedimage directory
├── app_thumbnails directory
├── cache -> /app-cache/com.android.browser/cache broken symbolic link to '/app-cache/
 com.android.browser/cache'
├── databases directory
│ ├── browser.db SQLite 3.x database, user version 24
│ ├── webviewCache.db SQLite 3.x database, user version 4
│ └── webview.db SQLite 3.x database, user version 10
├── lib directory
└── shared_prefs directory
 ├── com.android.browser_preferences.xml XML document text
 └── WebViewSettings.xml XML document text

344 CHAPTER 7 Android application and forensic analysis

mailto:Image of Figure 7.12|tif
mailto:Image of Figure 7.12|tif

Important Database Tables and Files
Local storage for supported web apps is shown in Table 7.5.

Cached geoposition data is shown in Table 7.6.

The geolocation permissions database is shown in Table 7.7.

Table 7.8 shows the browser database.

Table 7.9 shows the web view database.

And the web view cache database is shown in Table 7.10.

Analyst Notes
Analyst notes for /data/data/com.android.browser:

� Check the WebpageIcons.db in app_icons if looking for a particular site and the

site has a favicon.

Table 7.5 Important Database Tables and Files from /data/data/com.android.

browser/app_databases/http_www.google.com_0.localstorage

Database Tables/Files Description

ItemTable This table is a simple list of key/value pairs; however,

potentially contains useful information for sites that were

visited and takes advantage of the localstorage feature.

Table 7.6 Important Database Tables and Files from /data/data/com.android.

browser/app_geolocation/CachedGeoposition.db

Database Tables/Files Description

CachedPosition � latitude¼41.896888

� longitude¼�87.799985

� altitude¼
� accuracy¼ 1368.0

� altitudeAccuracy¼
� heading¼
� speed¼
� timestamp¼ 1296479267929

Table 7.7 Important Database Tables and Files from /data/data/

com.android.browser/app_geolocation/GeolocationPermissions.db

Database Tables/Files Description

Permissions This table is list of origins (web sites) and the permission for

each (allow). For example, http://www.google.com and the

value 1 means Google’s web site has permission to access

geolocation

Android app analysis and reference 345

http://www.google.com_0.localstorage
http://www.google.com

Table 7.9 Important Database Tables and Files from /data/data/

com.android.browser/databases/webview.db

Database Tables/Files Description

cookies � _id¼ 3912

� name¼ PHPSESSID

� value¼ 25b5b5a8608795fa4ac45d2b872a20e5

� domain¼mobile.itworld.com

� path¼ /

� expires¼
� secure¼ 0

formurl � _id¼ 95

� url¼ http://en.m.wikipedia.org/wiki/

Dime_(United_States_coin)?wasRedirected¼true

formdata � _id¼ 39

� urlid¼ 95

� name¼ search

� value¼Dime (United States coin)

httpauth � _id¼ 1

� host¼ dev-computer-forensics.sans.org

� realm¼ SANS - Restricted Access [Area - 39]

� username¼ your-sans-blog-username

� password¼ your-sans-blog-password

password � _id¼ 2

� host¼ httpswww.netflix.com

� username¼ your-netflix-username

� password¼ your-netflix-password

Table 7.8 Important Database Tables and Files from /data/data/

com.android.browser/databases/browser.db

Database Tables/Files Description

Bookmarks � _id¼ 662

� title¼ http://mobile.itworld.com/device/article.php?

CALL_URL¼http://www.itworld.com/security/135495/

ddos-attacks-made-worse-firewalls-report-finds

� url¼ http://mobile.itworld.com/device/article.php?CALL_

URL¼http://www.itworld.com/security/135495/ddos-

attacks-made-worse-firewalls-report-finds

� visits¼ 1

� date¼ 1296736862801

Searches � _id¼ 4

� search¼ fogo de chao chicago

� date¼ 1291401576968

346 CHAPTER 7 Android application and forensic analysis

http://en.m.wikipedia.org/wiki/Dime_(United_States_coin)?wasRedirected=true
http://en.m.wikipedia.org/wiki/Dime_(United_States_coin)?wasRedirected=true
http://en.m.wikipedia.org/wiki/Dime_(United_States_coin)?wasRedirected=true
http://www.netflix.com
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds
http://mobile.itworld.com/device/article.php?CALL_URL=http://www.itworld.com/security/135495/ddos-attacks-made-worse-firewalls-report-finds

� The specific app databases can contain very useful information. For example,

Google app database has previous search terms, many versions of cached “lon/

lat/acc” with time stamps and more.

� The com.adobe.flashplayer directory contains not only “Flash cookies,” which

end in the .sol extension and can be parsed by log2timeline, but also some of the

Flash .swf files.

� The browser database (databases/browser.db) contains a table called bookmarks,

which is generally pre-populated with bookmarks from the wireless carriers. This

same table also contains the web browser history. There is also a table called

Searches, which contains Google searches made from the browser.

� The web view database (databases/webview.db) contains considerable infor-

mation not only useful for a forensic examiner but also a security engineer.

Cookies are visible and most are not secure, meaning they may be vulnerable to

a cookie hijacking attack using a tool such as Firesheep. Form URL and data

often contain sensitive information as do httpauth and password.

� The web view cache database (databases/webviewCache.db) provides the met-

adata about the cache files stored in cache directory.

� Most devices save the web view cache data as a subdirectory in /data/data/

com.android.browser. However, the HTC Incredible moved this directory to

a tmpfs (RAM disk) directory.

Contacts

App Info
This app is the main contacts app provided by Android. While there are many

additional apps available, this app provides the core contact functionality.

Table 7.10 Important Database Tables and Files from /data/data/

com.android.browser/databases/webviewCache.db

Database Tables/Files Description

cache � _id¼ 464

� url¼ http://profile.ak.fbcdn.net/hprofile-ak-snc4/hs267.

snc3/23271_145853460360_2616_q.jpg

� filepath¼ 00684608

� lastmodify¼ Thu, 01 Jan 2009 00:00:00 GMT

� etag¼
� expires¼ 1299533415543

� expiresstring¼Mon, 07 Mar 2011 21:30:00 GMT

� mimetype¼ image/jpeg

� encoding¼
� httpstatus¼ 200

� location¼
� contentlength¼ 2890

� contentdisposition¼
� crossdomain¼

Android app analysis and reference 347

http://profile.ak.fbcdn.net/hprofile-ak-snc4/hs267.snc3/23271_145853460360_2616_q.jpg
http://profile.ak.fbcdn.net/hprofile-ak-snc4/hs267.snc3/23271_145853460360_2616_q.jpg

� App Name: Contacts

� Package name: com.android.providers.contacts

� Version: 2.2

� Device: HTC Incredible

� App developer: Android

Directories, Files, and File Types
In /data/data/com.android.providers.contacts:

Important Database Tables and Files
There is only one database, contacts2.db, and it has over 30 tables. A few of the key

tables are listed in Table 7.11.

Analyst Notes
Analyst notes for /data/data/com.android.providers.contacts:

� This app stores the Call Logs for the device in the calls table.

� There are over 30 tables in contacts2.db, so further inspection may be required.

The data table contains additional values about contacts and the raw_contacts

contains additional data about some contacts.

� The app is capable of storing contact information from many different accounts

including Gmail, Exchange, Facebook, Twitter, and more. Some of the data stored

include information from these other apps such as Facebook status messages.

� If pictures of the contacts are available, they are stored in the files directory and

named thumbnail_photo_[NNNNN].jpg. In the reference HTC Incredible, there

were over 200 images but duplicates were found.

com.android.providers.contacts directory
├── databases directory
│ └── contacts2.db SQLite 3.x database, user version 309
├── files directory
│ ├── thumbnail_photo_10014.jpg JPEG image data, JFIF standard 1.01
│ ├── thumbnail_photo_10194.jpg JPEG image data, JFIF standard 1.01
│ ├── thumbnail_photo_10199.jpg JPEG image data, JFIF standard 1.01
│ ├── thumbnail_photo_10202.jpg JPEG image data, JFIF standard 1.01
│ ├── thumbnail_photo_10203.jpg JPEG image data, JFIF standard 1.01
│ ├── thumbnail_photo_12450.jpg JPEG image data, JFIF standard 1.01
│ ├── thumbnail_photo_12827.jpg JPEG image data, JFIF standard 1.01
│ ├── thumbnail_photo_12832.jpg JPEG image data, JFIF standard 1.01
│ ├── thumbnail_photo_12833.jpg JPEG image data, JFIF standard 1.01
│ ├── thumbnail_photo_9508.jpg JPEG image data, JFIF standard 1.01
│ ├── thumbnail_photo_9509.jpg JPEG image data, JFIF standard 1.01
│ ├── thumbnail_photo_9566.jpg JPEG image data, JFIF standard 1.01
│ └── thumbnail_photo_9866.jpg JPEG image data, JFIF standard 1.01
├── lib directory
├── shared_prefs directory
│ ├── com.android.providers.contacts_preferences.xml XML document text
│ └── ContactsUpgradeReceiver.xml XML document text
└── SNtemp directory
 └── 27386_604172803_5385_n.jpg empty

348 CHAPTER 7 Android application and forensic analysis

Media Scanner

App Info
This app scans and stores the metadata of media files available on internal and

external storage.

Table 7.11 Important Database Tables and Files from /data/data/

com.android.providers.contacts/databases/contacts2.db

Database Tables/Files Description

accounts � account_name¼ viaforensics

� account_type¼ com.twitter.android.auth.login

calls � _id¼ 1156

� number¼ 3128781100

� date¼ 1296780296202

� duration¼ 142

� type¼ 1

� new¼ 1

� name¼ viaForensics Corporate

� numbertype¼ 3

� numberlabel¼
� raw_contact_id¼ 907

� city_id¼

status_updates � status_update_data_id¼ 14792

� status¼ installed Facebook for Windows

Phone

� status_ts¼ 1287597506000

� status_res_package¼ com.htc.socialnetwork.

provider

� status_label¼ 2130968576

� status_icon¼ 33685932

contacts � _id¼ 907

� name_raw_contact_id¼ 907

� photo_id¼
� custom_ringtone¼
� send_to_voicemail¼ 0

� times_contacted¼ 19

� last_time_contacted¼ 1296780451343

� starred¼ 0

� in_visible_group¼ 1

� has_phone_number¼ 1

� lookup¼ 1598i2%3A40

� status_update_id¼
� single_is_restricted¼ 0

� ext_account_Type¼ com.htc.android.mail.eas

� ext_photo_url¼
� display_name¼ viaForensics Corporate

� default_action¼

Android app analysis and reference 349

� App Name: Media Store

� Package name: com.android.providers.media

� Version: 2.2

� Device: HTC Incredible

� App developer: Android

Directories, Files, and File Types
In /data/data/com.android.providers.media:

Important Database Tables and Files
The structure of each database is similar, as shown in Table 7.12.

Analyst Notes
Analyst notes for /data/data/com.android.providers.media:

� The database names contain the volume ID, if available. For example, on the

reference HTC Incredible device, the eMMC FAT32 file system has a volume ID

of 0xc7f80810.

� If a directory has a file named .nomedia, then the media store will not scan and

record the metadata of files in that directory.

� If an image was deleted, the thumbnail likely still exists. Also, even if the

metadata record is deleted, it is likely recoverable due to the YAFFS2 file system.

� Also scans for audio files, albums, etc.

� Other media scanners and apps exist, so check for those. One stores thumbnails

on the SD card, which can provide an insight into deleted pictures and videos.

YouTube

App Info
YouTube is a video viewing web site now owned by Google, for which they have

developed a native app for Android.

� App Name: YouTube

� Package name: com.google.android.youtube

� Version: 1.6.21

� Device: HTC Incredible

� App developer: Google

com.android.providers.media directory
├── databases directory
│ ├── emmc-c7f80810.db SQLite 3.x database, user version 90
│ ├── external-e0fd1813.db SQLite 3.x database, user version 90
│ └── internal.db SQLite 3.x database, user version 90
├── lib directory
└── shared_prefs directory
 └── ringtoneinit.xml XML document text

350 CHAPTER 7 Android application and forensic analysis

Directories, Files, and File Types
In /data/data/com.google.android.youtube:

com.google.android.youtube/ directory
├── cache directory
│ ├── GDataRequest.-1358025214 XML document text
│ ├── GDataRequest.149614182 XML document text
│ ├── GDataRequest.1718906282 XML document text
│ ├── GDataRequest.307198247 XML document text
│ ├── GDataRequest.-689089246 XML document text
│ ├── GDataRequest.718990876 XML document text
│ └── GDataRequest.-953243531 XML document text
├── files directory
│ └── DATA_Preferences data
├── lib directory
└── shared_prefs directory
 └── youtube.xml XML document text

Table 7.12 Important Database Tables and Files from /data/data/

com.android.providers.media/databases/

Database Tables/Files Description

images � _id¼ 88

� _data¼ /mnt/emmc/DCIM/100MEDIA/IMAG0074.jpg

� _size¼ 873150

� _display_name¼ IMAG0074.jpg

� mime_type¼ image/jpeg

� title¼ IMAG0074

� date_added¼ 1295368758

� date_modified¼ 1295372358

� description¼
� picasa_id¼
� isprivate¼
� latitude¼
� longitude¼
� datetaken¼ 1295372358000

� orientation¼ 0

� mini_thumb_magic¼ 88

� bucket_id¼ -942500167

� bucket_display_name¼ 100MEDIA

� favorite¼
� lock_screen¼

videos Fields similar to images table

thumbnails � _id¼ 88

� data¼ /mnt/emmc/dcim/.thumbnails/(28)890943898-

s¼901931-fH¼274-gH¼160-mode¼10-AG¼0.raw

� image_id¼ 28

� kind¼ 103

� width¼ 160

� height¼ 160

Android app analysis and reference 351

Important Database Tables and Files
YouTube preferences, including device key(s) and watched videos in /data/data/

com.google.android.youtube/shared_prefs/youtube.xml:

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<int name="safe_search_mode" value="1" />
<string name="StrongAuth.deviceKey">AomSH9asdnA5DMqw/8mzHUDXdsaIl5e0s=</string>
<string name="watchedVideos">osnUasdB9bUm-E,SunCPrwdsadOlNI,
qKrrHtY1231WcWA,E7ULR-asdayfNnk,aHmUZgssaoq123rIYA,JaecOddBxDFlas0</string>
<string name="StrongAuth.deviceId">AOuj_RqrF8oasdastTCOySdFNIaNV_M9lX
-3MQMbBzzLassdTcAQQn8oYPMWZRK_PiTYMgB-T_rPECOyG4W2jd7zLT7TS2Q</string>
<string name="ratedVideos"></string>
<string name="MasfLogYouTubeApplicationVersion">1.6.21</string>
</map>

Information about specific movies watched saved in XML file in /data/data/

com.google.android.youtube/cache:

Analyst Notes
Analyst notes for /data/data/com.google.android.youtube:

� Examine the XML files in the cache directory and in the shared_prefs directory

for information on videos viewed.

� A snapshot of the opening image to a video can often be found on the device

using file carving or other techniques.

<?xml version='1.0' encoding='UTF-8'?>
<id>tag:youtube.com,2008:video:E7ULR-yfNnk</id>
<published>2006-09-10T22:22:58.000Z</published>
<updated>2010-11-30T19:06:08.000Z</updated>
<category scheme='http://schemas.google.com/g/2005#kind'
term='http://gdata.youtube.com/schemas/2007#video'/>
<category scheme='http://gdata.youtube.com/schemas/2007/categories.cat'
term='Entertainment' label='Entertainment'/>
<category scheme='http://gdata.youtube.com/schemas/2007/keywords.cat'
term='Mime'/>
<category scheme='http://gdata.youtube.com/schemas/2007/keywords.cat'
term='Miming'/>
<category scheme='http://gdata.youtube.com/schemas/2007/keywords.cat'
term='Robot'/>
<category scheme='http://gdata.youtube.com/schemas/2007/keywords.cat'
term='Dance'/>
<title>Cool Mime! Tyson Eberly Mime Performance Part 2</title>
<content type='video/mp4' src='http://v12.lscache5.googlevideo.com/
videoplayback?id=13b50b47ec9f3679&itag=18&uaopt=
no-save&ip=0.0.0.0&ipbits=0&expire=1293757989&
sparams=id,itag,uaopt,ip,ipbits,expire
&signature=C3885D4913EC51106910D8E99049F7D39F7C4AA6.D809F3290B0A6E0D8C83C28
F31261D64BDF0C680&key=yta1
&el=videos&client=mvapp-android-
verizon&devKey=ATEU_r3RX2afGwq_gCqiS2UO88HsQjpE1a8d1GxQnGDm&
app=youtube_gdata'/>

<snip>

352 CHAPTER 7 Android application and forensic analysis

Cooliris Media Gallery

App Info
This app was developed for the Google Nexus One and provides a media gallery and

scanner.

� App Name: Cooliris Media Gallery

� Package name: com.cooliris.media

� Version: 1.1.30682

� Device: Google Nexus One

� App developer: Cooliris

Directories, Files, and File Types
In /data/data/com.cooliris.media:

com.cooliris.media/ directory
└── databases directory
 └── picasa.db SQLite 3.x database, user version 83

More importantly, thumbnails are stored on the SD card:

/mnt/sdcard/Android/data/com.cooliris.media directory
└── cache directory
 ├── geocoder-cache directory
 ├── geocoder-cachechunk_0 data
 ├── geocoder-cacheindex data
 ├── hires-image-cache directory
 ├── hires-image-cache-1158935264581041381_1024.cache JPEG image data, JFIF standard 1.01
 ├── hires-image-cache1585961800385347536_1024.cache JPEG image data, JFIF standard 1.01
 ├── hires-image-cache1588208008548304680_1024.cache JPEG image data, JFIF standard 1.01
 ├── hires-image-cache-1695915026582362443_1024.cache JPEG image data, JFIF standard 1.01
 ├── hires-image-cache1826788044297674713_1024.cache JPEG image data, JFIF standard 1.01
 ├── hires-image-cache1830742186312500388_1024.cache JPEG image data, JFIF standard 1.01
 ├── hires-image-cache2087069753732167412_1024.cache JPEG image data, JFIF standard 1.01
 ├── hires-image-cache2114895255670203853_1024.cache JPEG image data, JFIF standard 1.01
<snip>
 ├── hires-image-cache9169278413697037975_1024.cache JPEG image data, JFIF standard 1.01
 ├── local-album-cache directory
 ├── local-album-cachechunk_0 data
 ├── local-album-cacheindex data
 ├── local-image-thumbs directory
 ├── local-image-thumbschunk_0 data
 ├── local-image-thumbsindex data
 ├── local-meta-cache directory
 ├── local-meta-cachechunk_0 data
 ├── local-meta-cacheindex data
 ├── local-skip-cache directory
 ├── local-skip-cachechunk_0 MMDF mailbox
 ├── local-skip-cacheindex data
 ├── local-video-thumbs directory
 ├── local-video-thumbschunk_0 data
 ├── local-video-thumbsindex data
 ├── picasa-thumbs directory
 └── picasa-thumbsindex data

Android app analysis and reference 353

Important Database Tables and Files
For this device, the picasa.db was empty, but presumably the databases will contain

useful information.

Analyst Notes
Analyst notes for /data/data/com.cooliris.media:

� The real value in this app is that media discovered on the device is cached on the

SD card in “/mnt/sdcard/Android/data/com.cooliris.media/cache” and should be

examined closely.

Google Maps

App Info
This is the built-in Google Maps application used to view maps, search for

endpoints, and even provide directions.

� App Name: Google Maps

� Package name: com.google.android.apps.maps

� Version: 4.4.0

� Device: HTC Incredible

� App developer: Google

Directories, Files, and File Types
In /data/data/com.google.android.apps.maps:

com.google.android.apps.maps/ directory
├── app_ directory
│ ├── cache directory
│ │ └── cache_r.m data
│ ├── debug directory
│ └── testdata directory
├── cache directory
│ └── webviewCache directory
├── databases directory
│ ├── da_destination_history SQLite 3.x database, user version 1
│ ├── friends.db SQLite 3.x database, user version 19
│ ├── LayerInfo SQLite 3.x database, user version 2
│ ├── search_history.db SQLite 3.x database, user version 5
│ ├── webviewCache.db SQLite 3.x database, user version 4
│ └── webview.db SQLite 3.x database, user version 10
├── files directory
│ ├── DA_DirOpt_en_US data
│ ├── DA_LayerInfo data
│ ├── DATA_LATITUDE_WIDGET_MODEL data
│ ├── DATA_LAYER_10 data
│ ├── DATA_LAYER_11 data
│ ├── DATA_LAYER_13 data
│ ├── DATA_LAYER_14 data
│ ├── DATA_LAYER_15 data
│ ├── DATA_LAYER_16 data
│ ├── DATA_LAYER_18 data

354 CHAPTER 7 Android application and forensic analysis

This app also stores data on the SD card:

/mnt/sdcard/Android/data/com.google.android.apps.maps/ directory
├── cache directory
│ ├── cache_its.0 data
│ ├── cache_its.m data
│ ├── cache_its_ter.m data
│ ├── cache_r.0 data

│ ├── DATA_OptionDefinitionBlock_en data
│ ├── DATA_Preferences data
│ ├── DATA_PROTO_SAVED_CATEGORY_TREE_DB raw G3 data, byte-padded
│ ├── DATA_PROTO_SAVED_LAYER_STATE data
│ ├── DATA_PROTO_SAVED_RECENT_LAYERS data
│ ├── DATA_RemoteStringsBlock_en data
│ ├── DATA_Restrictions raw G3 data, byte-padded
│ ├── DATA_Restrictions_lock empty
│ ├── DATA_SAVED_BGFS_3 data
│ ├── DATA_SAVED_BGFS_EXTRA_3 data
│ ├── DATA_SAVED_BGSF_ data
│ ├── DATA_SAVED_REMOTE_ICONS_DATA_BLOCK data
│ ├── DATA_ServerControlledParametersManager.data data
│ ├── DATA_STARRING X11 SNF font data, MSB first
│ ├── DATA_SYNC_DATA data
│ ├── DATA_SYNC_DATA_LOCAL data
│ ├── DATA_TILE_HISTORY data
│ ├── DATA_Tiles data
│ ├── DATA_Tiles_1 data
│ ├── DATA_Tiles_2 data
│ ├── DATA_Tiles_3 data
│ ├── DATA_Tiles_4 DBase 3 data file (45375 records)
│ ├── DATA_Tiles_5 data
│ ├── DATA_Tiles_6 data
│ ├── DATA_Tiles_7 data
│ ├── DATA_Tiles_8 DBase 3 data file (60175 records)
│ ├── event_store_driveabout data
│ ├── event_store_LocationFriendService data
│ ├── NavigationParameters.data data
│ ├── NavZoomTables.data data
│ ├── nlp_GlsPlatformKey data
│ ├── nlp_state data
│ └── ZoomTables.data data
├── lib directory
└── shared_prefs directory
 ├── DriveAbout.xml XML document text
 ├── friend_service.xml XML document text
 ├── login_helper.xml XML document text
 └── network_initiated_prefs.xml XML document text

│ ├── DATA_LAYER_27 data
│ ├── DATA_LAYER_28 data
│ ├── DATA_LAYER_3 data
│ ├── DATA_LAYER_5 data
│ ├── DATA_LAYER_6 data
│ ├── DATA_LAYER_7 data
│ ├── DATA_LAYER_8 data
│ ├── DATA_LAYER_9 data
│ ├── DATA_location_history data

│ ├── DATA_LAYER_2 data
│ ├── DATA_LAYER_20 data
│ ├── DATA_LAYER_21 data
│ ├── DATA_LAYER_24 data
│ ├── DATA_LAYER_25 data

Android app analysis and reference 355

│ ├── cache_vts_GMM.11 data
│ ├── cache_vts_GMM.12 data
│ ├── cache_vts_GMM.2 data
│ ├── cache_vts_GMM.3 data
│ ├── cache_vts_GMM.4 data
│ ├── cache_vts_GMM.5 data
│ ├── cache_vts_GMM.6 data
│ ├── cache_vts_GMM.7 data
│ ├── cache_vts_GMM.8 data
│ ├── cache_vts_GMM.9 data
│ ├── cache_vts_GMM.m data
│ ├── cache_vts.m data
│ ├── cache_vts_tran_GMM.m data
│ ├── ._speech_nav_0.wav RIFF (little-endian)
data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz
│ ├── ._speech_nav_1.wav RIFF (little-endian)
data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz
│ ├── ._speech_nav_2.wav RIFF (little-endian)
data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz
│ ├── ._speech_nav_3.wav RIFF (little-endian)
data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz
│ ├── ._speech_nav_4.wav RIFF (little-endian)
data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz
│ ├── ._speech_nav_5.wav RIFF (little-endian)
data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz
│ └── ._speech_nav_6.wav RIFF (little-endian)
data, WAVE audio, Microsoft PCM, 16 bit, mono 16000 Hz
├── debug directory
└── testdata directory

│ ├── cache_r.1 data
│ ├── cache_rgts.0 Microsoft Document Imaging Format
│ ├── cache_rgts.m data
│ ├── cache_r.m data
│ ├── cache_vts.0 data
│ ├── cache_vts.1 data
│ ├── cache_vts_GMM.0 data
│ ├── cache_vts_GMM.1 data
│ ├── cache_vts_GMM.10 data

Table 7.13 Important Database Tables and Files from /data/data/

com.google.android.apps.maps/databases/da_destination_history

Database Tables/Files Description

destination_history � time¼ 1295058395176

� dest_lat¼ 37786034

� dest_lng¼ -122405174

� dest_title¼Coffee Bean and Tea Leaf

� dest_address¼ 773 Market Street San Francisco,

CA 94103

� dest_token¼ FbKRQAIdyj60-CE--yMryKRCIQ

� source_lat¼ 37791708

� source_lng¼ -122410077

� day_of_week¼ 6

� hour_of_day¼ 18

356 CHAPTER 7 Android application and forensic analysis

Important Database Tables and Files
While each database should be examined, on the HTC Incredible, two contained

highly useful information. The first is the da_destination_history database as shown

in Table 7.13 and the search_history database shown in Table 7.14.

The files directory also contains a significant amount of information. For

example, the first part of the DATA_LAYER_24 file contains the following

strings:

t,+0
XThe Stanford Court, A Renaissance Hotel, 905 California Street,
San Francisco, CA 94108
FQqpQAIdGS20-CHNignjYUhNwQ,CJ
$3.75;B
VWalking directions (beta): use caution.
Head southeast on Naglee Ave toward Cayuga Ave
3 %(
Balboa Park BART`
167 ft
37 secsRV
Turn left at Cayuga Ave
78aBo16F4yPZxvWb9KipKA
0.2 mi
3 minsRU
Turn left at Ottawa Ave
3 ((
KutrDTBAAz1iBqg0_dtz3w
167 ft
40 secsRW
Turn right at Delano Ave
paD-lLwjtwdrtiMP6pjAOw
0.3 mi
5 minsRV
Turn left at Geneva Ave
CHzTIqx_6bEUmrZ5e2dnBw
0.2 mi
4 minsR
#Millbrae-SFIA to Pittsburg/Baypoint
Balboa Park BART:
Powell St. BARTB
Pittsburg / Bay Point`
11 mins
Civic Center BART
us-ca-bart:CIVC

Table 7.14 Important Database Tables and Files from /data/data/

com.google.android.apps.maps/databases/search_history.db

Description

suggestions � _id¼ 140

� data1¼ the stanford court, a renaissance hotel, 905 california

street, san francisco, ca 94108

� singleResult¼
� displayQuery¼ The Stanford Court, A Renaissance Hotel, 905

California Street, San Francisco, CA 94108

Android app analysis and reference 357

The data stored on the SD card is used for the turn-by-turn directions for the

Google Maps Navigation and the turn-by-turn directions are time stamped:

ahoog@ubuntu:~/htc-inc/mnt/sdcard/Android/data/com.google.android.apps.maps/
cache$ ls -lah | grep speech
-rwxr-xr-x 1 root root 105K 2011-01-27 14:35 ._speech_nav_0.wav
-rwxr-xr-x 1 root root 81K 2011-01-27 14:34 ._speech_nav_1.wav
-rwxr-xr-x 1 root root 127K 2011-01-27 14:34 ._speech_nav_2.wav
-rwxr-xr-x 1 root root 61K 2011-01-27 14:33 ._speech_nav_3.wav
-rwxr-xr-x 1 root root 94K 2011-01-27 14:41 ._speech_nav_4.wav
-rwxr-xr-x 1 root root 67K 2011-01-27 14:41 ._speech_nav_5.wav
-rwxr-xr-x 1 root root 112K 2011-01-27 14:41 ._speech_nav_6.wav

Analyst Notes
Analyst notes for /data/data/com.google.android.apps.maps:

� The app stores a significant amount of information about maps, tiles, searches,

and more in the files directory and should be closely examined.

� While each database may not contain information, both search_history.db and

da_destination_history should be examined closely.

� While the shared_prefs direction contains some information, most is not useful to

a forensic examination. However, the authentication token can be recovered,

which may be of interest in a security review.

� The Navigation function caches map data on the SD card, as well as .wav files of

the actual directions. If you look at the time stamps on the file, which are

prefaced with a “._speech_nav,” you can determine when the directions were

provided and also hear the actual spoken directions.

Gmail

App Info
Google provides a native client for their Gmail service:

� App Name: Gmail (Google Mail)

� Package name: com.google.android.gm

� Version: 2.2

� Device: HTC Incredible

� App developer: Google

Directories, Files, and File Types
In /mnt/sdcard/Android/data/com.google.android.apps.maps/:

com.google.android.gm/ directory
├── app_sslcache directory
│ └── android.clients.google.com.443 data
├── cache directory
│ ├── download directory
│ │ └── .jpeg JPEG image data, JFIF standard 1.01
│ └── webviewCache directory

358 CHAPTER 7 Android application and forensic analysis

Important Database Tables and Files
The Gmail app stores a significant amount of information in SQLite databases and

a sample of key tables is shown in Table 7.15.

├── databases directory
│ ├── downloads.db SQLite 3.x database, user version 100
│ ├── gmail.db SQLite 3.x database, user version 18
│ ├── gmail.db-journal empty
│ ├── mailstore.book@viaforensics.com.db SQLite 3.x database, user version 56
│ ├── mailstore.personal@emailaddress.com.db SQLite 3.x database, user version 56
│ ├── suggestions.db SQLite 3.x database, user version 513
│ ├── webviewCache.db SQLite 3.x database, user version 4
│ ├── webviewCache.db-journal data
│ └── webview.db SQLite 3.x database, user version 10
├── files directory
├── lib directory
└── shared_prefs directory
 ├── Gmail.xml XML document text
 └── _has_set_default_values.xml XML document text

Table 7.15 Important Database Tables and Files from /data/data/com.google.

android.gm/databases/mailstore.book@viaforensics.com.db

Database

Tables/Files Description

conversations � _id¼ 1343614283601791413

� queryId¼ 3

� subject¼New Banking Trojan Discovered Targeting

Businesses’ Financial Accounts

� maxMessageId¼ 1347608009807593988

� snippet¼ Forwarded message From: “Andrew Hoog”

<book@viaforensics.com> Date .

� fromAddress¼ n 2 0 0

messages � _id¼ 2

� messageId¼ 1338926826441746102

� conversation¼ 1338926826441746102

� fromAddress¼ “Hoog, Andrew” <book@viaforensics.

com>

� toAddresses¼ “” <us12268@somegraphxcompany.

org>

� ccAddresses¼
� bccAddresses¼
� replyToAddresses¼
� dateSentMs¼ 1276900125000

� dateReceivedMs¼ 1276900125971

� subject¼ viaForensics training packet

(continued on next page)

Android app analysis and reference 359

mailto:book@viaforensics.com
mailto:book@viaforensics.com
mailto:book@viaforensics.com
mailto:us12268@somegraphxcompany.org
mailto:us12268@somegraphxcompany.org

Analyst Notes
Analyst notes for /data/data/com.google.android.gm:

� Each configured Gmail account will have its own SQLite database, which will

contain the entire e-mail content.

� Other databases such as downloads.db, suggestions.db, and gmail.db contain

additional information.

� Some SQLite journal files may be recoverable.

� The cache/download directory stores downloads.

� The synced Gmail accounts are also referenced in the Gmail.xml in shared_prefs.

Facebook

App Info
This is the office Facebook app.

� App Name: Facebook

� Package name: com.facebook.katana

� Version: 1.2

� Device: HTC Incredible

� App developer: Facebook

Table 7.15 Important Database Tables and Files from /data/data/com.google.

android.gm/databases/mailstore.book@viaforensics.com.db (Continued)

Database

Tables/Files Description

� snippet¼Hello, Per our conversation with sandy, we

need 11 packets by 10am monday. Th.

� listInfo¼
� personalLevel¼ 0

� body¼<p>Hello, Per our conversation with sandy, we

need 11 packets by 10am monday. Thanks. Andrew

</p>

� bodyEmbedsExternalResources¼ 0

� joinedAttachmentInfos¼
� synced¼ 1

� error¼
� clientCreated¼ 0

� refMessageId¼ 0

� forward¼ 0

� includeQuotedText¼ 0

� quoteStartPos¼ 0

� bodyCompressed¼
� customFromAddress¼

360 CHAPTER 7 Android application and forensic analysis

Directories, Files, and File Types
In /data/data/com.facebook.katana:

Important Database Tables and Files
There is one primary database as shown in Table 7.16.

Analyst Notes
Analyst notes for /data/data/com.facebook.katana:

� The fb.db contains nearly all of the information and only three of the tables were

profiled above. Full table list includes the following:

� albums

� info_contacts

� notifications

� android_metadata

� key_value

� perf_sessions

� chatconversations

� mailbox_messages

� photos

� chatmessages

� mailbox_messages_display

� search_results

com.facebook.katana/ directory
├── cache directory
│ └── webviewCache directory
├── databases directory
│ ├── fb.db SQLite 3.x database, user version 58
│ ├── webviewCache.db SQLite 3.x database, user version 4
│ ├── webviewCache.db-journal data
│ └── webview.db SQLite 3.x database, user version 10
├── files directory
│ ├── 093m JPEG image data, JFIF standard 1.01
│ ├── 0iC8 JPEG image data, JFIF standard 1.01
│ ├── 0NUX JPEG image data, JFIF standard 1.01
│ ├── 0SSB JPEG image data, JFIF standard 1.01
│ ├── 0vgY JPEG image data, JFIF standard 1.01
│ ├── 0xKj JPEG image data, JFIF standard 1.01
<snip>
│ ├── vT4y JPEG image data, JFIF standard 1.01
│ ├── VVzz JPEG image data, JFIF standard 1.01
│ ├── wE7J JPEG image data, JFIF standard 1.01
│ ├── WHTa JPEG image data, JFIF standard 1.01
│ ├── X663 JPEG image data, JFIF standard 1.01
│ ├── XzR6 JPEG image data, JFIF standard 1.01
│ ├── y44e JPEG image data, JFIF standard 1.01
│ └── YLyf JPEG image data, JFIF standard 1.01
├── lib directory
└── shared_prefs directory
 └── com.facebook.
 katana_preferences.xml XML document textvv

Android app analysis and reference 361

� default_user_images

� mailbox_profiles

� stream_photos

� events

� mailbox_threads

� user_statuses

� friends

� mailbox_users

� user_values

� The files directory contains a significant number of images from the Facebook

app.

Table 7.16 Important Database Tables and Files from /data/data/

com.facebook.katana/databases/fb.db

Database Tables/Files Description

friends � _id¼ 125

� user_id¼ removed

� first_name¼ FName

� last_name¼ LName

� display_name¼ FName LName

� user_image_url¼ http://profile.ak.fbcdn.net/hprofile-ak-

snc4/aa.jpg

� user_image¼ ÿØÿà

� intent¼ content://com.facebook.katana.provider.

FriendsProvider/info_contacts/uid<snip>

� birthday_month¼ 01

� birthday_day¼ 01

� birthday_year¼ 1929

� hash¼ -15123123123177976

user_statuses � _id¼ 21

� user_id¼ removed

� first_name¼ FName

� last_name¼ LName

� display_name¼ FName LName

� user_pic¼ http://profile.ak.fbcdn.net/hprofile-ak-snc4/

aa.jpg

� timestamp¼ 1296367386

� message¼ geolocation, geolocation,

geolocation.hmmm.

mailbox_messages � _id¼ 13

� folder¼ 0

� tid¼ 1825710720339

� mid¼ 0

� author_id¼ removed

� sent¼ 1290345224

� body¼ happy birthday! hope it was a fun day and that

you have a wonderful year!

362 CHAPTER 7 Android application and forensic analysis

http://profile.ak.fbcdn.net/hprofile-ak-snc4/aa.jpg
http://profile.ak.fbcdn.net/hprofile-ak-snc4/aa.jpg
http://profile.ak.fbcdn.net/hprofile-ak-snc4/aa.jpg
http://profile.ak.fbcdn.net/hprofile-ak-snc4/aa.jpg

Adobe Reader

App Info
This is the official Abode Reader for PDF files

� App Name: Adobe Reader

� Package name: com.adobe.reader

� Version: 9.0.1

� Device: HTC Incredible

� App developer: Adobe

Directories, Files, and File Types
In /data/data/com.adobe.reader:

com.adobe.reader/ directory
├── cache directory
│ └── cache_file.pdf PDF document, version 1.1
├── lib directory
└── shared_prefs directory
 ├── AdobeReader.xml XML document text
 └── com.adobe.reader.preferences.xml XML document text

Important Database Tables and Files
The com.adobe.reader.preferences.xml preferences file:

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<string name="recentFile0">/sdcard/dropbox/Android intro.pdf</string>
<string name="recentFile3">/mnt/sdcard/download/presentation-powerpoint.pdf
</string>
<string name="recentFile2">/mnt/sdcard/download/dinner-1.pdf</string>
<string name="recentFile1">/mnt/sdcard/download/file-1.pdf</string>
</map>

Analyst Notes
Analyst notes for /data/data/com.adobe.reader:

� Cached PDF files are stored in the cache directory.

� A list of recent files is stored in cache/com.adobe.reader.preferences.xml.

SUMMARY

While the acquisition of Android devices is the focus of much research, devel-

opment, and discussion, it is really only half of the challenge of Android forensics.

Analysis is needed with both logical and physical techniques. However, the amount

of analysis needed after a physical acquisition is far greater. The goal of this

chapter was to provide techniques that would allow a forensic analyst or security

engineer to examine and extract data from acquisitions even if the file systems are

not supported by forensic utilities. By leveraging existing forensic utilities, Linux

Android app analysis and reference 363

commands and, at times, hex analysis, much of the data required for an investi-

gation are available.

References
File times (Windows). (n.d.). Retrieved February 13, 2011, from http://msdn.microsoft.com/

en-us/library/ms724290%28VS.85%29.aspx.

Carrier, B. (n.d.). Mactime outputdSleuthKitWiki. Retrieved February 13, 2011, from http://

wiki.sleuthkit.org/index.php?title¼Mactime_output.

Casey, E. (n.d.). Misinterpretation of file system timestamps. Retrieved February 13, 2011,

from http://blog.cmdlabs.com/2009/05/08/misinterpretation-of-file-system-timestamps/.

Debugging in Android with tombstones. (n.d.). Retrieved March 14, 2011, from http://

crazydaks.com/debugging-in-android-with-tombstones.html.

Digital assembly: Adroit photo forensicsdSmartCarving�. (n.d.). Retrieved February 13,

2011, from http://digital-assembly.com/products/adroit-photo-forensics/features/smartcar

ving.html.

Digital DetectivedDCode. (n.d.). Retrieved February 14, 2011, from http://www.digital-

detective.co.uk/freetools/decode.asp.

Epoch converterdepoch & unix timestamp conversion tools. (n.d.). Retrieved February 14,

2011, from http://www.epochconverter.com/.

Grundy, B. (n.d.). Linux LEO. Retrieved February 19, 2011, from http://www.linuxleo.com.

Kessler, G. (n.d.). File signatures table. Retrieved February 13, 2011, from http://www.

garykessler.net/library/file_sigs.html.

Ross, A. (n.d.). digfor: Time and timestamps. Retrieved February 13, 2011, from http://

digfor.blogspot.com/2008/10/time-and-timestamps.html.

RoviodAngry Birds. (n.d.). Retrieved February 15, 2011, from http://www.rovio.com/index.

php?page¼angry-birds.

Scalpel: a frugal, high performance file carver. (n.d.). Retrieved February 13, 2011, from

www.digitalforensicssolutions.com/Scalpel/.

What is my IP address. (n.d.). Retrieved February 19, 2011, from http://www.whatismyip.

com/.

YAFFS debugging. (n.d.). Retrieved February 17, 2011, from http://www.yaffs.net/

yaffs-debugging.

364 CHAPTER 7 Android application and forensic analysis

http://msdn.microsoft.com/en-us/library/ms724290%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms724290%28VS.85%29.aspx
http://wiki.sleuthkit.org/index.php%3Ftitle%3DMactime_output
http://wiki.sleuthkit.org/index.php%3Ftitle%3DMactime_output
http://wiki.sleuthkit.org/index.php%3Ftitle%3DMactime_output
http://blog.cmdlabs.com/2009/05/08/misinterpretation-of-file-system-timestamps/
http://crazydaks.com/debugging-in-android-with-tombstones.html
http://crazydaks.com/debugging-in-android-with-tombstones.html
http://digital-assembly.com/products/adroit-photo-forensics/features/smartcarving.html
http://digital-assembly.com/products/adroit-photo-forensics/features/smartcarving.html
http://www.digital-detective.co.uk/freetools/decode.asp
http://www.digital-detective.co.uk/freetools/decode.asp
http://www.epochconverter.com/
http://www.linuxleo.com
http://www.garykessler.net/library/file_sigs.html
http://www.garykessler.net/library/file_sigs.html
http://digfor.blogspot.com/2008/10/time-and-timestamps.html
http://digfor.blogspot.com/2008/10/time-and-timestamps.html
http://www.rovio.com/index.php%3Fpage%3Dangry-birds
http://www.rovio.com/index.php%3Fpage%3Dangry-birds
http://www.rovio.com/index.php%3Fpage%3Dangry-birds
http://www.digitalforensicssolutions.com/Scalpel/
http://www.whatismyip.com/
http://www.whatismyip.com/
http://www.yaffs.net/yaffs-debugging
http://www.yaffs.net/yaffs-debugging

Index

A
Accelerometer, 46

ACTION_BOOT_COMPLETED, 55

ADB pull, 219

Adobe Reader, 363

AFLogical, 228

in All Apps list, 225f

data capture, 226f

data extraction complete, 226f

extract all from command line, 224f

run from command line, 224f

AFPhysical Technique, 278e284

Aftermarket firmware, 32e33

Airplane mode, 202f

Alphanumeric lock, 205f

Android

apps, 8e9

core, projects, 32f

history of, 3e7

milestones, 4t

supported cellular networks, 5e7

Android, Inc., 3

Android 1.5, 42

features and highlights, 68t

Android 1.6, 42e43

features and highlights, 69t

Android 2.0 and 2.1, 69

features and highlights, 69t

Android 2.2, 35f, 69e70

features and highlights, 70t

Android 2.3, 70

features and highlights, 70t

Android 2.3.3, 71

features and highlights, 71t

Android app analysis, 340e363

Adobe Reader, 363

Browser, 342e347

Contacts, 347e349

Cooliris Media Gallery, 353e354

Facebook, 360e362

Gmail, 358e360

Google Maps, 354e358

Media Scanner, 349e350

messaging, 340e341

MMS Helper Application, 341e342

YouTube, 350e352

Android Debug Bridge (ADB), 100e102

for USB debugging, 203e207

Android Development Challenge, 3e4

Android device

as attack vector, 168

for circumventing network controls, 169

connecting to workstation, 90e94

as data theft target, 160e168

detection of, 236f

features of, 5

platform-based distribution, 66f, 67t

procedures for handling, 198e211

network isolation, 200e203, 201t

pass code, circumventing, 203e211

securing, 199e200

as recording device, 169

as storage device, 168e169

Android directory structures, 301e308

Android forensics, 37e38

challenges, 38e39

Android Market, 4, 8e9, 33e37

application

installation of, 34e37, 37f

managing, 36f

permissions, 36f

statistics, 37

on HTC Incredible, 35f

Android Open Source Project (AOSP), 4, 25e31

development process, 27, 28f

downloading and compiling, 29e31

licenses, 26e27

value in forensics, 27e29

Android OS architecture, 86e87, 87f

Android platforms, 1e10, 65e71, 66t

archived, releases, 71t

versions, 41e42

distribution of, 67f

Android security model, 88e90

Android USB mass storage device, imaging

SD card vs. eMMC, 211e218

Android Virtual Device (AVD) manager, 82f

for Linux, 74f

Android virtual devices (AVD), 81e86

creating, 82f, 83f

launching, 83f, 84f

running, 84f, 85f

storage directory, 85t

Apache Software License 2.0 (Apache 2.0 or

ASL2.0), 26

App development security strategies, 184e192

credit card data, 188e189

mobile app security testing, 184e186

Note: Page numbers followed by “f” and “t” denote figures and tables, respectively.

365

App development security strategies (Continued)

passwords, 186e188

sensitive app data, 189e190

SSL/TLS, 190e192, 191f

usernames, 186

Apple, 8e9

Application programming interfaces (APIs),

device administration sample, 182f

Applications

audit, 183e184

data storage directory structure, 106e107

installation from unknown sources, 89f

appSecure, 185

appWatchdog, 177, 184, 185

apt-get command, 24

AT&T, 5

Attack vector, android device as, 168

Automated Teller Machine (ATM) cards, 179

Automobiles, android devices in, 48e49

B
Backup analysis, 219e220

Baseband modem, 42

Battery, 45e46

Block, 129, 131f

Bluetooth, 7e10

Boot loader, 50e51, 52f, 273e275

Browser, 342e347

bugreport command, 124

C
Camera, 44e45

Carrier, Brian, 14

cat command, 21

cd command, 17

CDMA2000, 5

CD-ROM interface, 94e96

Cellebrite UFED, 229

acquisition, 230e231

audio and video reporting, 235f

data presentation and analysis, 231e233

images reporting, 234f

installation of, 229e230

instruction for Android device, 230f

phone calls reporting, 234f

phone contacts reporting, 232f

phone information reporting, 232f

SMS reporting, 233f

Cellular networks, 5e7

Central processing unit (CPU), 41e42

cgroup file system, 133e136

Chip-off, 270

chmod command, 22e23

chown command, 23

Chromium OS, 48

Closed source software, 173e175

Code Division Multiple Access (CDMA), 5

Commands. See also individual commands

redirecting (>), 25

Commercial providers, 228e266

Cellebrite UFED, 229e233

Compelson MOBILedit!, 233e242

EnCase Neutrino, 242e246

Micro Systemation XRY, 246e251

Paraben Device Seizure, 251e260

viaForensics’ ViaExtract, 260e266

Compelson MOBILedit!, 233e242, 236f, 237f,

238f, 239f

acquisition of, 236e239

backup of whole file system, 237f

calendar, 242f

call logs, 240f

data export format, 238f

data presentation and analysis, 239e242

hex dump, 243f

installation of, 236

MMS storage, 241f

phonebook, 240f

SD card files, 242f

SMS messages, 241f

Computer Fraud and Abuse Act (CFAA), 172

Contacts (application), 347e349

Cooliris Media Gallery, 353e354

Corporate security strategies, 178e184

application and device audit, 183e184

latest software upgradation, 180e181

passwords, pattern, and PIN lock, 178e179

policies, 178

remote device management features, 181e183

remote wipe of device, 179e180

Credit card data, 188e189

Custom branches, 32e33

aftermarket firmware, 32e33

iPhone, 33

OPhone OS, 33

Custom user interfaces, 58, 58t

D
Dalvik Executable (.dex) file, 87

Dalvik VM, 54, 55f, 87

DangerOS, 3

Data at rest, 161e164

Data cables, 200e202

/data/data file, subdirectories in, 107t

366 Index

Data in motion. See Data in transit

Data in transit, 164e168

Data storage, Android device for, 168e169

Data structures, 105e124

application data storage, 106e107

storage methods, 107e124

files on external storage, 110e111

files on internal storage, 108e110

network, 112e115

shared preferences, 107e108

SQLite, 111e112

type of data stored, 106

Data theft target, android device as, 160e168

Debugging, USB, 99e100

Device

administration, 182f, 183f

audit, 183e184

target, modification of, 197e198

remote wipe of, 179e180

devpts file system, 133e136

Digital Detective, DCode time conversion utility

by, 301f

dumpstate command, 122e124

sections, 123te124t

dumpsys command, 122

E
Electronic Communications Privacy Act (ECPA),

172

Embedded MultiMediaCard (eMMC), 211

imaging, 211e218

Emulator. See Android Virtual Devices

EnCase Neutrino, 242e246

acquisition, 244, 244f

contacts, 245f

data presentation and analysis, 244e246

HTML report, 249f

installation, 243e244

MMS, 247f

SMS, 246f

web history, 248f

Error-correcting code (ECC), 130

Exchange ActiveSync (EAS) protocol, 162e163,

182

Extended file system (EXT), 140

External storage, 110e111

F
Facebook, 360e363

Fastboot, 276e278

FAT file system, time and time stamps, 287

FAT32 file system, 140e141

FAT forensic analysis, 308e321

additional analysis, 316e317

analysts, notes of, 317e321

nomedia, 321

SD card, apps on, 317e321

timeline analysis, 309e315

File carving, 291e293

YAFFS2, 332e334

File system analysis, 288e291

YAFFS2, 330e332

File systems, 132e153

extended file system, 140

FAT32/VFAT, 140e141

to include in investigation, 291t

mounted file systems, 153e157

proc, 136e137

rootfs, devpts, sysfs, and cgroup, 133e136

tmpfs, 137e140

YAFFS, 150e153

YAFFS2, 141e149

find command, 21e22

Flash Transition Layer (FTL), 131

Forensic analysis, Android application

Android app analysis, 340e364

Adobe Reader, 363

Browser, 342e343

Contacts, 347e348

Cooliris Media Gallery, 353e354

Facebook, 360e362

Gmail, 358e360

Google Maps, 354e358

Media Scanner, 349e350

messaging, 240e241

MMS Helper Application, 241e242

YouTube, 350e352

FAT forensic analysis, 308e321

timeline analysis, 309e315

techniques, 285e308

Android directory structures, 301e308

file carving, 291e293

file system analysis, 288e291

hex editor, 296e301

strings, 293e296

timeline analysis, 285e288

YAFFS2 forensic analysis, 321e340

analysts, notes of, 336e340

file carving, 332e334

file system analysis, 330e332

strings analysis, 334e335

timeline analysis, 324e330

Forensic techniques

Android device, procedures for handling,

198e211

Index 367

Forensic techniques (Continued)

network isolation, 200e203, 201t

pass code, circumventing, 203e211

securing the device, 199e200

Android USB mass storage device, imaging

SD card vs. eMMC, 211e218

investigations, types of, 195e196

JTAG, 268e270

AFPhysical Technique, 278e284

chip-off, 270

software-based physical techniques and

privileges, 270e278

logical techniques, 196e197, 218e266

ADB pull, 218e219

backup analysis, 219e220

AFLogical, 220e228

commercial providers, 228e266

physical techniques, 196, 266e284

hardware-based, 268e270

target device, modification of, 197e198

G
Global positioning system (GPS), 43, 49

Global System for Mobile Communications

(GSM), 5

Gmail, 358e360

userername/password, 210

GNU Public License v2 (GPLv2), 26

Goggles, 45

Google, 34

strategy of, 7e10

Google Maps, 354e358

Google TV, 48

Google USB driver package, for Windows,

78f, 79f

grep command, 24e25

Gyroscope, 46

H
Hardware-based physical techniques,

268e270

Hardware platforms

accelerometer and gyroscope, 46

Android updates, 57e58

aftermarket Android devices, 58

custom user interfaces, 58, 58t

baseband modem and radio, 42

battery, 45e46

boot loader, 50e51, 52f

camera, 44e45

central processing unit, 41e42

device types, 47e49

Google TV, 48

netbook, 48

smartphone, 47

tablet, 47, 48

vehicles, in-board, 48, 49

global positioning system, 43

init process, 51e54, 55f

keyboard, 45

Linux Kernel, 51, 52f

manufacturers, 56e57

memory, 42, 43

“power on” and on-chip boot ROM code

execution, 50, 51f

screen, 44

secure digital card, 44

speaker and microphone, 46, 47

system server, 54e55, 56f

universal serial bus, 46

wireless, 43e44

Zygote and Dalvik, 54, 55f

help command, 17

Hex editor, 296e301

HTC Incredible, 60, 61f

connect to PC options, 94f

Nexus OneI, 9f, 60e62, 61f

I
Initial program load (IPL), 50e51

Init process, 51e54, 55f

Integers

decimal, hex, and binary representation of,

130t

Integrated Digital Enhanced Network (iDEN), 5

Internal storage, 108e110

Internationalization, 31

custom branches, 32e33

keyboards, 31e32

unicode, 31

Investigations

file systems in, 291t

types of, 195e196

IP address lookup, results of, 336

iPhone, android on, 33

Is command, 18e19

J
JSON format, 127

JTAG, 268e270

AFPhysical Technique, 278e284

chip-off, 210, 270

software-based physical techniques and

privileges, 270e278

368 Index

boot loaders, 273e275

fastboot, 276e278

recovery mode, 272

root privileges, researching, 272e273

sbf_flash, 275e276

su command, 271e272

K
Keyboards, 31e32, 45

L
less command, 20e21

Linux, 74f

automount, disabling, 15

and forensics, basic commands, 15

history of, 11e12

installation in VirtualBox, 12e14

SDK for

downloading, 72f

extracting, 73f

installation, 72e76

Linux kernel, 51, 52f

logging, 115e116

Log, method types, 117t

log2timeline, 309

logcat, 116e119

Logical techniques, 218e266

ADB pull, 218e219

AFLogical, 220e228

backup analysis, 219e220

commercial providers, 228e266

vs. physical techniques, difference between,

196e197

Loopback device, 312

M
MACB, meaning by file system, 288t

man command, 16

Man-in-the-middle SSL attack, 167f

md5.txt, 3

Media Scanner, 349e350

Memory, 42e43

types, 125e132

Memory Technology Device (MTD) system,

130e132

partitions, size conversions, 132t

Messaging (sms and mms), 340e341

Microphone, 46e47

Microsoft Developers Network (MSDN), 286

Micro Systemation XRY, 246e251

acquisition, 250

call log, 253f

contacts, 252f

data presentation and analysis, 250e251

data types available for Droid extraction,

251f

extraction complete, 252f

images, 254f

installation, 249

search device type, 250f

SMS, 253f

Minix OS, 11e12

mkdir command, 1

MMS Helper Application, 341e342

Mobile app security testing, 184e186

Mobile directory number (MDN), 108

Mobile Equipment Identifier (MEID), 120

Motorola Droid, 59e60, 60f

Mounted file systems, 153e156, 155t

Multichip package (MCP), 42e43

architecture, 43f

Multilevel cells (MLC), 128

N
NAND Flash, 42e43, 105

blank file on, 150t

encrypted, 175e176

saving file’s new ObjectHeader in,

150te153t

nano command, 18, 19f

Native Code Development, 88

Netbook, 48

Network(s)

controls

circumventing, android device for,

169e170

as file storage mechanism, 112e115

isolation, 200e203, 201t

power and data cables, 200e202

powered-off devices, 203

Nexus phones, 9e10

Nexus One (HTC), 9f, 60e62, 61f

Nexus S (Samsung), 10f

NTFS file system, time and time stamps, 287f

O
Open Handset Alliance (OHA), 1e10

members of, 6te7t

Open Mobile Phone OS (OPhone OS), 33

Open Office’s Calc program, 314f, 315f

viewing timeline in, 315f

Open source software, 10e25, 173e175

Oracle VM VirtualBox Manager

for OS X, 12e13, 13f

Index 369

OS X, 80f

SDK for

extracting, 80f

installation, 79e81, 81f

Out of band (OOB), 131

P
Paraben Device Seizure, 251e260

acquisition, 255e256, 256f, 257f

call logs, 259f

contacts, 258f

data presentation and analysis, 256e260

Droid directory structure, 257f

file sorter, 260f

identification, 256f

installation, 255

SMS, 258f

web history, 259f

Pass code

circumventing, 203e211

ADB for USB debugging, 208

GMail user/pass, 210

JTAG and chip-off, 210

recovery mode, 207

recovery partition, flashing, 208

screen lock bypass app, 209

smudge attack, 207, 207f

procedures, 199

Passwords, 178, 186

Pattern lock, 178, 204f

Payment Card Industry Data Security Standard

(PCI DSS), 188, 189

Personal identification number (PIN), 203

Physical techniques, 266

hardware-based, 268

vs. logical techniques, difference between,

196

PIN lock, 178, 204f

Pipe character (“j”), 25

Policies, security, 178

Portable digital media interface (PDMI),

200e201

Power cables, 200

Powered-off devices, 203

Power on and on-chip boot ROM code execution,

50, 51f

proc file system, 136

R
Radio, 42

Random-access memory (RAM), 42, 125

NAND Flash, 105

Recording device, android device as,

169

Recovery mode, 207, 272

key combinations to boot into, 208t

partition, flashing, 208

Red Hat, 11

Relational database management systems

(RDBMS), 111

Remote device management features, 181

Remote Desktop Protocol (RDP) viewer, 14

rmdir/rm command, 18

rootfs file system, 133

Root privileges, researching, 272

RSD Lite, 274f

Rubin, Andy, 3, 8

S
Samsung

Nexus S, 10f

sbf_flash, 275

Scalpel, viewing images recovered using,

334f

Screen, of Android device, 44

Screen lock bypass app, 209

sdcard-timeline.csv file, 314f

Second program loader (SPL), 50

Secure digital (SD) card, 44, 96

apps on, 315f, 317, 319f

imaging, 211, 212

Secure Sockets Layer (SSL), 86, 190, 191f

Security, 170

corporate strategies, 178

application and device audit, 183e184

latest software upgradation, 183

passwords, pattern, and PIN lock,

178

policies, 178

remote device management features,

181

remote wipe of device, 179

encrypted NANS Flash, 175

individual strategies, 176

open source vs. closed source, 173

philosophy, 170

US Federal Computer Crime Laws and

Regulations, 172

Sensitive app data, 189

Shared preferences, 107

Sleuth Kit, The (TSK), 14

Smali/baksmali, 87

SmartCarving, 292

Smartphone, 47

370 Index

U.S. subscribers, 2t

worldwide sales to end users, 2t

Smudge attack, 207, 207f

Software

-based physical techniques, 270

boot loaders, 273

fastboot, 276

recovery mode, 272

root privileges, researching, 272

sbf_flash, 275

su command, 271

closed source, 207

open source, 207

upgradation, 211

Software development kit (SDK), 3e4, 71

additional packages, selecting, 74f

Android OS architecture, 86

Android virtual devices, 81

Dalvik VM, 87

and forensics, 90

installation, 72, 75f

for Linux, 74f

downloading, 72f

extracting, 73f

installation, 72

Native Code Development, 88

for OS X, 80f

extracting, 80f

installation, 79, 81f

release history, 71

for Windows, 77f

installation, 76

Speaker, 46

Sprint Nextel, 5e7

SQLite, 111

Storage device, android device as, 168

Strings, 293

Subscriber identity module (SIM), 5

su command, 271

sudo command, 23

Swype, 32

sysfs file system, 133

System server., 54, 56f

T
Tablet, 47

Target device, modification of, 197

Timeline analysis, 285

FAT, 309

YAFFS2, 324

T-Mobile, 5

T-Mobile G1, 4, 59, 59f, 269f

tmpfs file system, 137

Torvalds, Linex, 11

Transport Layer Security (TLS), 190, 191f

tree command, 19

U
Ubuntu, 12

automount, disabled, 15f

remote desktop protocol, install VBox additions

over on, 92f

webviewCache in, 139f

Unicode, 31

Universal serial bus (USB), 46

debugging, 99e100, 99f, 100f

interfaces, 94e100

CD-ROM interface, 94e96

SD cards, 96e99

Universal subscriber identity module (USIM), 5

Unix Epoch, time conversion, 301f

User names, 186

US Federal Computer Crime Laws and

Regulations, 172e173

V
Vehicles. See Automobiles, android devices in

VFAT file system, 140e141

viaForensics’ ViaExtract, 260, 261f, 262f, 265f

acquisition, 261e263

browser history and bookmarks, 264f

call logs, 265f

data extraction, 262f

data presentation and analysis, 263e266

device information, 264f

forensic analysis and report, 263f

installation, 260e261

PDF export, 267f

video media metadata, 266f

VirtualBox (Oracle)

adding USB filter on Linux host running, 91f

connecting USB device on Linux host running,

92f

Linux installation in, 12e14

VMWare Fusion, connecting USB device to

Ubuntu VM in, 91f

Voice over IP (VoIP) service, 10

W
Wear-leveling, 130e131

Wi-Fi, 7e10

Windows

SDk for, 77f

installation, 76e79

Index 371

Wireless, 43e44

Workstation, connecting Android device to,

90e94

X
XACT, SMS message in, 254f

Xargs, 3

XDA Developers, 33

Y
Yet Another Flash File System (YAFFS),

150e153, 150t

Yet Another Flash File System2 (YAFFS2), 27,

141e153

forensic analysis, 321e340

analysts, notes of, 335e340

file carving, 332e334

file system analysis, 330e332

strings analysis, 334e335

timeline analysis, 324e330

Nanddump, artifacts from, 329t

YouTube, 350e352

Z
Zygote, 54, 55f

372 Index

	title
	front matter
	Android Forensics

	Copyright
	 Copyright

	Dedication
	 Dedication

	Acknowledgements
	 Acknowledgements

	Introduction
	 Introduction
	 Chapter 1
	 Chapter 2
	 Chapter 3
	 Chapter 4
	 Chapter 5
	 Chapter 6
	 Chapter 7
	 Website

	About the Author
	 About the Author
	 About the Technical Editor

	About the Technical Editor
	 About the Technical Editor

	Chapter 1 - Android and mobile forensics
	1 Android and mobile forensics
	Introduction
	Android platform
	History of Android
	Open Handset Alliance
	Android Features
	Supported Cellular Networks

	Google's Strategy
	Apps
	Nexus Phones

	Linux, open source software, and forensics
	Brief History of Linux
	Installing Linux in VirtualBox
	The Sleuth Kit (TSK)

	Disable Automount
	Linux and Forensics—Basic Commands
	man
	help
	cd
	mkdir
	rmdir/rm
	nano
	ls
	tree
	less
	cat
	find
	chmod
	chown
	sudo
	apt-get
	grep
	Piping and Redirecting Files (| and ﹥)

	Android Open Source Project
	AOSP Licenses
	Development Process
	Value of Open Source in Forensics
	Downloading and Compiling AOSP

	Internationalization
	Unicode
	Keyboards
	Custom Branches
	Aftermarket Firmware
	OPhone OS
	Android on iPhone (and Other non-Android Devices)

	Android Market
	Installing an app
	Application Statistics

	Android forensics
	Challenges

	Summary
	References

	Chapter 2 - Android hardware platforms
	2 Android hardware platforms
	Introduction
	Overview of core components
	Central Processing Unit
	Baseband Modem/Radio
	Memory (Random-Access Memory and NAND Flash)
	Global Positioning System
	Wireless (Wi-Fi.com and Bluetooth)
	Secure Digital Card
	Screen
	Camera
	Keyboard
	Battery
	Universal Serial Bus
	Accelerometer/Gyroscope
	Speaker/Microphone

	Overview of different device types
	Smartphone
	Tablet
	Netbook
	Google TV
	Vehicles (In-board)
	Global Positioning System
	Other Devices

	ROM and boot loaders
	Power On and On-chip Boot ROM Code Execution
	Boot Loader (Initial Program Load/Second Program Loader)
	Linux Kernel
	The Init Process
	Zygote and Dalvik
	System Server

	Manufacturers
	Android updates
	Custom User Interfaces
	Aftermarket Android Devices

	Specific devices
	T-Mobile G1
	Motorola Droid
	HTC Incredible
	Google Nexus One

	Summary
	References

	Chapter 3 - Android software development kit and android debug bridge
	3 Android software development kit and android debug bridge
	Introduction
	Android platforms
	Android Platform Highlights Through 2.3.3 (Gingerbread)
	Android 1.5
	Android 1.6
	Androids 2.0 and 2.1
	Android 2.2
	Android 2.3
	Android 2.3.3

	Software development kit (SDK)
	SDK Release History
	SDK Install
	Linux SDK Install
	Windows SDK Install
	OS X SDK

	Android Virtual Devices (Emulator)
	Android OS Architecture
	Dalvik VM
	Native Code Development

	Android security model
	Forensics and the SDK
	Connecting an Android Device to a Workstation
	USB Interfaces
	CD-ROM Interface
	SD Cards (Removable and Virtual)
	USB Debugging

	Introduction to Android Debug Bridge

	Summary
	References

	Chapter 4 - Android file systems and data structures
	4 Android file systems and data structures
	Introduction
	Data in the Shell
	What Data are Stored
	App Data Storage Directory Structure
	How Data are Stored
	Shared Preferences
	Files on Internal Storage
	Files on External Storage
	SQLite
	Network
	Kernel, System, and Application Logs
	Linux kernel logging
	logcat
	dumpsys
	dumpstate
	bugreport

	Type of memory
	RAM
	NAND Flash

	File systems
	rootfs, devpts, sysfs, and cgroup File Systems
	proc
	tmpfs
	Extended File System (EXT)
	FAT32/VFAT
	YAFFS2
	YAFFS Example

	Mounted file systems
	Mounted File Systems

	Summary
	References

	Chapter 5 - Android device, data, and app security
	5 Android device, data, and app security
	Introduction
	Data theft targets and attack vectors
	Android Devices as a Target
	Data at Rest
	Data in Transit

	Android Devices as an Attack Vector
	Data Storage
	Recording Devices
	Circumventing Network Controls

	Security considerations
	Security Philosophy
	US Federal Computer Crime Laws and Regulations
	Open Source Versus Closed Source
	Encrypted NAND Flash

	Individual security strategies
	Corporate security strategies
	Policies
	Password/Pattern/PIN Lock
	Remote Wipe of Device
	Upgrade to Latest Software
	Remote Device Management Features
	Application and Device Audit

	App development security strategies
	Mobile App Security Testing
	App Security Strategies
	User Names
	Passwords
	Credit Card Data
	Sensitive App Data
	SSL/TLS

	Summary
	References

	Chapter 6 - Android forensic techniques
	6 Android forensic techniques
	Introduction
	Types of Investigations
	Difference Between Logical and Physical Techniques
	Modification of the Target Device

	Procedures for handling an Android device
	Securing the Device
	Pass Code Procedures

	Network Isolation
	Power and Data Cables
	Powered-off Devices

	How to Circumvent the Pass Code
	Utilize ADB if USB Debugging is Enabled
	Smudge Attack
	Recovery Mode
	Flash a New Recovery Partition
	Screen Lock Bypass App
	How it Works
	Use Gmail User/Pass
	JTAG and Chip-off

	Imaging Android USB mass storage devices
	SD Card Versus eMMC
	How to Forensically Image the SD Card/eMMC

	Logical techniques
	ADB Pull
	Backup Analysis
	AFLogical
	Commercial Providers
	Cellebrite UFED
	Installation
	Acquisition
	Data presentation and analysis

	Compelson MOBILedit!
	Installation
	Acquisition
	Data presentation and analysis

	EnCase Neutrino
	Installation
	Acquisition
	Data presentation and analysis

	Micro Systemation XRY
	Installation
	Acquisition
	Data presentation and analysis

	Paraben Device Seizure
	Installation
	Acquisition
	Data presentation and analysis

	viaForensics' ViaExtract
	Installation
	Acquisition
	Data presentation and analysis

	Physical techniques
	Hardware-Based Physical Techniques
	JTAG
	Chip-off
	Software-Based Physical Techniques and Privileges
	su
	Researching Root Privilege Exploits
	Recovery Mode
	Boot Loaders
	sbf_flash
	fastboot

	AFPhysical Technique

	Summary
	References

	Chapter 7 - Android application and forensic analysis
	7 Android application and forensic analysis
	Introduction
	Analysis techniques
	Timeline Analysis
	File System Analysis
	File Carving
	Strings
	Hex: A Forensic Analyst's Good Friend
	Android Directory Structures

	FAT forensic analysis
	FAT Timeline Analysis
	FAT Additional Analysis
	FAT Analysts Notes
	Apps on the SD Card
	nomedia

	YAFFS2 forensic analysis
	YAFFS2 Timeline Analysis
	YAFFS2 File System Analysis
	YAFFS2 File Carving
	YAFFS2 Strings Analysis
	YAFFS2 Analyst Notes

	Android app analysis and reference
	Messaging (sms and mms)
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	MMS Helper Application
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Browser
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Contacts
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Media Scanner
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	YouTube
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Cooliris Media Gallery
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Google Maps
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Gmail
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Facebook
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Adobe Reader
	App Info
	Directories, Files, and File Types
	Important Database Tables and Files
	Analyst Notes

	Summary
	References

	Index
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

