Cuckoo Sandbox Book
Release 2.0-dev

Cuckoo Sandbox

August 27, 2016

Contents

1 Having troubles? 3
1.1 FAQ . . . e e e e e 3
2 Contents 9
2.1 Introduction e e 9
2.2 Installation e e e e e e e e 13
2.3 0 USAZE .« v v e e e e e e e e e e e e e e e 38
2.4 Customization v v it e e e e e e e e e e e e e e e e e e 73
2.5 Development e e 95
2.6 Final Remarks e 99

Cuckoo Sandbox Book, Release 2.0-dev

Cuckoo Sandbox is an Open Source software for automating analysis of suspicious files. To do so it makes use of
custom components that monitor the behavior of the malicious processes while running in an isolated environment.

This guide will explain how to set up Cuckoo, use it and customize it.

Contents 1

Cuckoo Sandbox Book, Release 2.0-dev

2 Contents

CHAPTER 1

Having troubles?

If you’re having troubles you might want to check out the FAQ as it may already have the answers to your questions.

1.1 FAQ

Frequently Asked Questions:
e Can I analyze URLs with Cuckoo?
e Can I use Volatility with Cuckoo?
* What do I need to use Cuckoo with VMware ESXi?
 After upgrade Cuckoo stops to work

* Cuckoo stumbles and produces some error I don’t understand

1.1.1 General Questions

Can | analyze URLs with Cuckoo?
Yes you can. Since version 0.5 URLSs are natively supported by Cuckoo. Additional details on how URL submissions
is documented . . /usage/submit.html#submission-utility.

$./utils/submit.py —url http://www.example.com

Can | use Volatility with Cuckoo?

Cuckoo 0.5 introduces support for optional full memory dumps, which are created at the end of the analysis process.
You can use these memory dumps to perform additional memory forensic analysis with Volatility.

Please also consider that we don’t particularly encourage this: since Cuckoo employs some rootkit-like technologies
to perform its operations, the results of a forensic analysis would be polluted by the sandbox’s components.

What do | need to use Cuckoo with VMware ESXi?

To run with VMware vSphere Hypervisor (or ESXi) Cuckoo leverages libvirt. Libivirt is currently using the VMware
API to take control over virtual machines, though these APIs are available only in the licensed version. In VMware
vSphere free edition, these APIs are read only, so you are unable to use Cuckoo with it. For the minimum license
needed, please have a look at VMware website.

http://www.example.com
http://code.google.com/p/volatility/

Cuckoo Sandbox Book, Release 2.0-dev

1.1.2 Troubleshooting

After upgrade Cuckoo stops to work
Probably you upgraded it in a wrong way. It’s not a good practice to rewrite the files due to Cuckoo’s complexity and
quick evolution.

Please follow the upgrade steps described in Upgrade from a previous release.

Cuckoo stumbles and produces some error | don’t understand
Cuckoo is a mature but always evolving project, it’s possible that you encounter some problems while running it, but
before you rush into sending emails to everyone make sure you read what follows.

Cuckoo is not meant to be a point-and-click tool: it’s designed to be a highly customizable and configurable solution
for somewhat experienced users and malware analysts.

It requires you to have a decent understanding of your operating systems, Python, the concepts behind virtualization
and sandboxing. We try to make it as easy to use as possible, but you have to keep in mind that it’s not a technology
meant to be accessible to just anyone.

That being said, if a problem occurs you have to make sure that you did everything you could before asking for time
and effort from our developers and users. We just can’t help everyone, we have limited time and it has to be dedicated
to the development and fixing of actual bugs.

* We have extensive documentation, read it carefully. You can’t just skip parts of it.

* We have a mailing list archive, search through it for previous threads where your same problem could have been
already addressed and solved.

* We have a Community platform for asking questions, use it.
* We have lot of users producing content on Internet, Google it.

* Spend some of your own time trying fixing the issues before asking ours, you might even get to learn and
understand Cuckoo better.

Long story short: use the existing resources, put some efforts into it and don’t abuse people.

If you still can’t figure out your problem, you can ask help on our online communities (see Final Remarks). Make sure
when you ask for help to:

» Use a clear and explicit title for your emails: “I have a problem”, “Help me” or “Cuckoo error”” are NOT good
titles.

» Explain in details what you’re experiencing. Try to reproduce several times your issue and write down all steps
to achieve that.

» Use no-paste services and link your logs, configuration files and details on your setup.

Eventually provide a copy of the analysis that generated the problem.

Check and restore current snapshot with KVM

If something goes wrong with virtual machine it’s best practice to check current snapshot status. You can do that with
the following:

$ virsh snapshot-current "<Name of VM>"

4 Chapter 1. Having troubles?

https://community.cuckoosandbox.org
http://www.google.com

Cuckoo Sandbox Book, Release 2.0-dev

If you got a long XML as output your current snapshot is configured and you can skip the rest of this chapter; anyway
if you got an error like the following your current snapshot is broken:

$ virsh snapshot-current "<Name of VM>"
error: domain '<Name of VM>' has no current snapshot

To fix and create a current snapshot first list all machine’s snapshots:

$ virsh snapshot-list "<Name of VM>"
Name Creation Time State

1339506531 2012-06-12 15:08:51 +0200 running

Choose one snapshot name and set it as current:

$ snapshot-current "<Name of VM>" --snapshotname 1339506531
Snapshot 1339506531 set as current

Now the virtual machine state is fixed.

Check and restore current shapshot with VirtualBox

If something goes wrong with virtual it’s best practice to check the virtual machine status and the current snapshot.
First of all check the virtual machine status with the following:

$ VBoxManage showvminfo "<Name of VM>" | grep State
State: powered off (since 2012-06-27T22:03:57.000000000)

If the state is “powered off” you can go ahead with the next check, if the state is “aborted” or something else you have
to restore it to “powered off” before:

$ VBoxManage controlvm "<Name of VM>" poweroff

With the following check the current snapshots state:

$ VBoxManage snapshot "<Name of VM>" list --details
Name: sl (UUID: 90828a77-72f4-4a5e-b9d3-bblfdd4cef5t)
Name: s2 (UUID: 97838e37-9cad4-4194-a041-5e9a40d6c205) =

If you have a snapshot marked with a star “*” your snapshot is ready, anyway you have to restore the current snapshot:

$ VBoxManage snapshot "<Name of VM>" restorecurrent

Unable to bind result server error

At Cuckoo startup if you get an error message like this one:

2014-01-07 18:42:12,686 [root] CRITICAL: CuckooCriticalError: Unable to bind result ser#er on 192.16¢

It means that Cuckoo is unable to start the result server on the IP address written in cuckoo.conf (or in machinery.conf
if you are using the resultserver_ip option inside). This usually happen when you start Cuckoo without bringing up
the virtual interface associated with the result server IP address. You can bring it up manually, it depends from one
virtualization software to another, but if you don’t know how to do, a good trick is to manually start and stop an
analysis virtual machine, this will bring virtual networking up.

In the case of VirtualBox the hostonly interface vboxnet0 can be created as follows:

1.1. FAQ 5

Cuckoo Sandbox Book, Release 2.0-dev

If the hostonly interface vboxnetO does not exist already.
$ VBoxManage hostonlyif create

Configure vboxnetO.
$ VBoxManage hostonlyif ipconfig vboxnet0 —--ip 192.168.56.1 —--netmask 255.255.255.0

Error during template rendering

Changed in version 2.0-rcl.

In our 2.0-rcl release a bug was introduced that looks as follows in the screenshot below. In order to resolve this
issue in your local setup, please open the web/analysis/urls.py file and modify the 21st line by adding an
underscore as follows:

- "/ (?P<ip>[\d\.]+)?/ (?P<host>[a-zA-Z0-9-\.]+) 2"
+ "/ (?P<ip>[\d\.]+)?/ (?P<host>[a-zA-Z0-9-_\.]+)?"

The official fixes for this issue can be found in the following commits.
Error during template rendering
In template /sxv/cuckoo/web/templates/analysis/report.himl, error at line 9

Reverse for 'analysis.views.moloch' with arguments '()' and keyword arguments '{u'host': u'_VLMCS._TCP'}' not found. 1 pattern(s) tried: ['analysis/moloch/(? P<ip>
[M\elW\]+) ?/(?P<host=[a-zA-Z0-9-\\]+) 2/(?P<src_ip>[a-zA-Z0-9\.]+)?/(?P<src_port>\\d+ None)?/(?P<dst_ip>[a-zA-Z0-9\\.]+)?/(?P<dst_port=\\d+None)?/(?P<sid>\\d+)?']

1 {% extends "base.html" %}

2 {% load staticfiles %}

3 {% load analysis tags %}

4 {% block content %}

5 <div class="row">

[} <div class="col-md=6"><p style="margin-bottom: 10px;"></p></div>

7 <div class="col=md=6" style="text-align: right;">

8 Compare this analysis to...

9 Resubmit this sample
10 </div>

M </fdiv>

12 <ul class="nav nav=-tabs">

13 <li class="active">Quick Overview

14 <li»Static Analysis</a»

15 {% if analysis.behavior.processes %}

16 <li»Behavioral Analysis ({{ analysis.behavior.processes|filter_key if has:"track”|length }})</a»</1li>
17 {% endif %)

18 {%* with suricata=analysis.suricata|custom length:"alerts tls" snort=analysis.snort|custom length:"alerts" %}

19 {%* if analysis.network.http_ex or analysis.network.https_ex %}

501 Unsupported Method (‘GET’)

Changed in version 2.0-rcl.

Since 2.0-rc1 Cuckoo supports both the legacy Cuckoo Agent as well as a new, REST API-based, Cuckoo Agent for
communication between the Guest and the Host machine. The new Cuckoo Agent is an improved Agent in the
sense that it also allows usage outside of Cuckoo. As an example, it is used extensively by VMCloak in order to
automatically create, configure, and cloak Virtual Machines.

Now in order to determine whether the Cuckoo Host is talking to the legacy or new Cuckoo Agent it does a HTTP
GET request to the root path (/). The legacy Cuckoo Agent, which is based on xmlrpc, doesn’t handle that specific
route and therefore returns an error, 501 Unsupported method.

Having said that, the message is not actually an error, it is simply Cuckoo trying to determine to which version of the
Cuckoo Agent itis talking.

Note: It should be noted that even though there is a new Cuckoo Agent available, backwards compatibility for the
legacy Cuckoo Agent is still available and working properly.

6 Chapter 1. Having troubles?

https://github.com/cuckoosandbox/cuckoo/commit/9c704f50e70227ed21ae1b79ba90540c3087fc57
https://github.com/cuckoosandbox/cuckoo/commit/558ded1787bc3377c404ac14a0b3fdce37b49bf4
https://github.com/cuckoosandbox/cuckoo/blob/master/agent/agent.py
https://github.com/jbremer/agent/blob/master/agent.py
https://github.com/jbremer/vmcloak

Cuckoo Sandbox Book, Release 2.0-dev

cuckooWindows7 - Oracle VM VirtualBox -+

L

Computer Adobe

Mozilla Firefos

[N C:\Python27\python.exe

[+]1 Starting agent on B.6.0.8: -
192.168.56.1 - — [22/Apr- 201 code 581, message Unsupported method ¢’G

EI’ >
192.168. [22/Apr/2816 "GET ~ HITP-/1.1" 581 —

— 192.168. 22/Apr/20816 4 "POST /RPC2 HITP/1.1"
Shwan 192.168. [22/0 "POST /RPC2 HITP/1.1"
192.168. [22/0 "POST /RPC2 HITP/1.1"

192.168. [22/0 "POST /RPC2 HITP/1.1"

192.168. [22/A "POST /RPC2 HITP/1.1"

192.168. [22/0 "POST /RPC2 HITP/1.1"

192 _168. [22/0 “POST /RPC2 HTTP/1.1"

192 _168. [22/0 “POST /RPC2 HTTP/1.1"

[22 /Apy “POST /RPC2 HITP/1.1"

192 168 .
192 168 . [22/Apr/ 2016 "POST /RPC2 HITPs1.1"

Tk ko o ok ok ok ok ok

Recyde Bin

Distat] @ . [0 € @ § Cipython27ipythonexe | o s 347pv W

Otherwise you can ask the developers and/or other Cuckoo users, see Join the discussion.

1.1. FAQ 7

Cuckoo Sandbox Book, Release 2.0-dev

8 Chapter 1. Having troubles?

CHAPTER 2

Contents

2.1 Introduction

This is an introductory chapter to Cuckoo Sandbox. It explains some basic malware analysis concepts, what’s Cuckoo
and how it can fit in malware analysis.

2.1.1 Sandboxing

As defined by Wikipedia, “in computer security, a sandbox is a security mechanism for separating running programs.
It is often used to execute untested code, or untrusted programs from unverified third-parties, suppliers, untrusted
users and untrusted websites.”.

This concept applies to malware analysis’ sandboxing too: our goal is to run an unknown and untrusted application or
file inside an isolated environment and get information on what it does.

Malware sandboxing is a practical application of the dynamical analysis approach: instead of statically analyzing the
binary file, it gets executed and monitored in real-time.

This approach obviously has pros and cons, but it’s a valuable technique to obtain additional details on the malware,
such as its network behavior. Therefore it’s a good practice to perform both static and dynamic analysis while inspect-
ing a malware, in order to gain a deeper understanding of it.

Simple as it is, Cuckoo is a tool that allows you to perform sandboxed malware analysis.

Using a Sandbox
Before starting to install, configure and use Cuckoo, you should take some time to think on what you want to achieve
with it and how.
Some questions you should ask yourself:
* What kind of files do I want to analyze?
¢ What volume of analyses do I want to be able to handle?
* Which platform do I want to use to run my analysis on?
* What kind of information I want about the file?

The creation of the isolated environment (for example a virtual machine) is probably the most critical and important
part of a sandbox deployment: it should be done carefully and with proper planning.

Before getting hands on the virtualization product of your choice, you should already have a design plan that defines:

http://en.wikipedia.org/wiki/Sandbox_%28computer_security%29

Cuckoo Sandbox Book, Release 2.0-dev

* Which operating system, language and patching level to use.
* Which software to install and which versions (particularly important when analyzing exploits).

Consider that automated malware analysis is not deterministic and its success might depend on a trillion of factors:
you are trying to make a malware run in a virtualized system as it would do on a native one, which could be tricky to
achieve and may not always succeed. Your goal should be both to create a system able to handle all the requirements
you need as well as try to make it as realistic as possible.

For example you could consider leaving some intentional traces of normal usage, such as browsing history, cookies,
documents, images etc. If a malware is designed to operate, manipulate or steal such files you’ll be able to notice it.

Virtualized operating systems usually carry a lot of traces with them that makes them very easily detectable. Even if
you shouldn’t overestimate this problem, you might want to take care of this and try to hide as many virtualization
traces as possible. There is a lot of literature on Internet regarding virtualization detection techniques and countermea-
sures.

Once you finished designing and preparing the prototype of system you want, you can proceed creating it and de-
ploying it. You will be always in time to change things or slightly fix them, but remember that good planning at the
beginning always means less troubles in the long run.

2.1.2 What is Cuckoo?

Cuckoo is an open source automated malware analysis system.

It’s used to automatically run and analyze files and collect comprehensive analysis results that outline what the malware
does while running inside an isolated operating system.

It can retrieve the following type of results:
* Traces of calls performed by all processes spawned by the malware.
* Files being created, deleted and downloaded by the malware during its execution.
e Memory dumps of the malware processes.
* Network traffic trace in PCAP format.
* Screenshots taken during the execution of the malware.

¢ Full memory dumps of the machines.

Some History

Cuckoo Sandbox started as a Google Summer of Code project in 2010 within The Honeynet Project. It was originally
designed and developed by Claudio “nex” Guarnieri, who is still the main developer and coordinates all efforts from
joined developers and contributors.

After initial work during the summer 2010, the first beta release was published on Feb. 5th 2011, when Cuckoo was
publicly announced and distributed for the first time.

In March 2011, Cuckoo has been selected again as a supported project during Google Summer of Code 2011 with The
Honeynet Project, during which Dario Fernandes joined the project and extended its functionality.

On November 2nd 2011 Cuckoo the release of its 0.2 version to the public as the first real stable release. On late
November 2011 Alessandro “jekil” Tanasi joined the team expanding Cuckoo’s processing and reporting functionality.

On December 2011 Cuckoo v0.3 gets released and quickly hits release 0.3.2 in early February.

In late January 2012 we opened Malwr.com, a free and public running Cuckoo Sandbox instance provided with a full
fledged interface through which people can submit files to be analysed and get results back.

10 Chapter 2. Contents

http://www.google-melange.com
http://www.honeynet.org
http://malwr.com

Cuckoo Sandbox Book, Release 2.0-dev

In March 2012 Cuckoo Sandbox wins the first round of the Magnificent7 program organized by Rapid7.

During the Summer of 2012 Jurriaan “skier” Bremer joined the development team, refactoring the Windows analysis
component sensibly improving the analysis’ quality.

On 24th July 2012, Cuckoo Sandbox 0.4 is released.
On 20th December 2012, Cuckoo Sandbox 0.5 “To The End Of The World” is released.
On 15th April 2013 we released Cuckoo Sandbox 0.6, shortly after having launched the second version of Malwr.com.

On 1st August 2013 Claudio “nex” Guarnieri, Jurriaan “skier” Bremer and Mark “rep” Schloesser presented Mo’
Malware Mo’ Problems - Cuckoo Sandbox to the rescue at Black Hat Las Vegas.

On 9th January 2014, Cuckoo Sandbox 1.0 is released.

In March 2014 Cuckoo Foundation born as non-profit organization dedicated to growth of Cuckoo Sandbox and the
surrounding projects and initiatives.

On 7th April 2014, Cuckoo Sandbox 1.1 is released.

During summer 2015 Cuckoo Sandbox started the development of Mac OS X malware analysis as a Google Summer
of Code project within The Honeynet Project. Dmitry Rodionov qualified for the project and developed a working
analyzer for Mac OS X.

Use Cases
Cuckoo is designed to be used both as a standalone application as well as to be integrated in larger frameworks, thanks
to its extremely modular design.
It can be used to analyze:
¢ Generic Windows executables
e DLL files
* PDF documents
* Microsoft Office documents
* URLs and HTML files
* PHP scripts
* CPL files
* Visual Basic (VB) scripts
o ZIP files
» Java JAR
¢ Python files
e Almost anything else
Thanks to its modularity and powerful scripting capabilities, there’s no limit to what you can achieve with Cuckoo.

For more information on customizing Cuckoo, see the Customization chapter.

2.1. Introduction 11

http://community.rapid7.com/community/open_source/magnificent7
http://www.rapid7.com
http://malwr.com
https://media.blackhat.com/us-13/US-13-Bremer-Mo-Malware-Mo-Problems-Cuckoo-Sandbox-Slides.pdf
https://media.blackhat.com/us-13/US-13-Bremer-Mo-Malware-Mo-Problems-Cuckoo-Sandbox-Slides.pdf
http://cuckoofoundation.org/
http://www.google-melange.com
http://www.google-melange.com
http://www.honeynet.org

Cuckoo Sandbox Book, Release 2.0-dev

Architecture

Cuckoo Sandbox consists of a central management software which handles sample execution and analysis.

Each analysis is launched in a fresh and isolated virtual or physical machine. The main components of Cuckoo’s
infrastructure are an Host machine (the management software) and a number of Guest machines (virtual or physical
machines for analysis).

The Host runs the core component of the sandbox that manages the whole analysis process, while the Guests are the
isolated environments where the malware samples get actually safely executed and analyzed.

The following picture explains Cuckoo’s main architecture:

Analysis Guests
A clean environment when run a

Responsible for guest and The sample behavior is reported back to
analysis management. the Cuckoo host.

Start analysis, dumps traffic
and generates reports.

Analysis VM n.1

W=t

Analysis VM n.2
(Vvirtual network () Y

e
e,
Virtual network)
Internet / Sinkhole An isolatec.l ngtwork where X
run analysis virtual
machines. Analysis VM n.3

Obtaining Cuckoo

Cuckoo can be downloaded from the official website, where the stable and packaged releases are distributed, or can
be cloned from our official git repository.

Warning: While being more updated, including new features and bugfixes, the version available
in the git repository should be considered an under development stage. Therefore its stability is not
guaranteed and it most likely lacks updated documentation.

2.1.3 License

Cuckoo Sandbox license is shipped with Cuckoo and contained in the “LICENSE” file inside the “docs” folder.

12 Chapter 2. Contents

http://www.cuckoosandbox.org
http://github.com/cuckoosandbox/cuckoo

Cuckoo Sandbox Book, Release 2.0-dev

2.1.4 Disclaimer
Cuckoo is distributed as it is, in the hope that it will be useful, but without any warranty neither the implied mer-
chantability or fitness for a particular purpose.

Whatever you do with this tool is uniquely your own responsibility.

2.1.5 Cuckoo Foundation

The Cuckoo Foundation is a non-profit organization incorporated as a Stichting in the Netherlands and it’s mainly
dedicated to support of the development and growth of Cuckoo Sandbox, an open source malware analysis system,
and the surrounding projects and initiatives.

The Foundation operates to secure financial and infrastructure support to our software projects and coordinates the
development and contributions from the community.

2.2 Installation

This chapter explains how to install Cuckoo.

Although the recommended setup is GNU/Linux (Debian or Ubuntu preferably) Cuckoo has proved to work smoothly
also on Mac OS X as host; the recommended and tested setup for guests are Windows 7 for Windows analysis, Mac OS
X Yosemite for Mac OS X analysis and Debian for Linux Analysis, although Cuckoo should work with other releases
of guest os.

Note: This documentation refers to Host as the underlying operating systems on which you are running Cuckoo
(generally being a GNU/Linux distribution) and to Guest as the Windows virtual machine used to run the isolated
analysis.

2.2.1 Preparing the Host
Even though it’s reported to run on other operating systems too, Cuckoo is originally supposed to run on a GNU/Linux

native system. For the purpose of this documentation, we chose latest Ubuntu LTS as reference system for the
commands examples.

Requirements

Before proceeding on configuring Cuckoo, you’ll need to install some required software and libraries.

Installing Python libraries

Cuckoo host components are completely written in Python, therefore make sure to have an appropriate version in-
stalled. For the current release Python 2.7 is preferred.

Install the basic dependencies:

$ sudo apt-get install python python-pip python-dev libffi-dev libssl-dev libxml2-dev lebxsltlfdev 1

If you want to use the Django-based web interface, you’ll have to install MongoDB too:

2.2. Installation 13

http://www.cuckoofoundation.org

Cuckoo Sandbox Book, Release 2.0-dev

‘$ sudo apt—-get install mongodb ‘

In order to properly function, Cuckoo requires some dependencies. They can all be installed through PyPI like this:

’$ sudo pip install -r requirements.txt ‘

Yara and Pydeep are optional plugins but will have to be installed manually, so please refer to their websites.

If you want to use KVM it’s packaged too and you can install it with the following command:

’$ sudo apt-get install gemu-kvm libvirt-bin ubuntu-vm-builder bridge-utils python—libvi#t

If you want to use XenServer you’ll have to install the XenAPI Python package:

’$ sudo pip install XenAPI ‘

If you want to use the mitm auxiliary module (to intercept SSL/TLS generated traffic), you need to install mitmproxy.
Please refer to its website for installation instructions.

Virtualization Software

Despite heavily relying on VirtualBox in the past, Cuckoo has moved on being architecturally independent from the
virtualization software. As you will see throughout this documentation, you’ll be able to define and write modules to
support any software of your choice.

For the sake of this guide we will assume that you have VirtualBox installed (which still is the default option), but this
does not affect anyhow the execution and general configuration of the sandbox.

You are completely responsible for the choice, configuration and execution of your virtualization software, therefore
please refrain from asking for help on it in our channels and lists: refer to the software’s official documentation and
support.

Assuming you decide to go for VirtualBox, you can get the proper package for your distribution at the official download
page. The installation of VirtualBox is outside the scope of this documentation, if you are not familiar with it please
refer to the official documentation.

Installing Tcpdump

In order to dump the network activity performed by the malware during execution, you’ll need a network sniffer
properly configured to capture the traffic and dump it to a file.

By default Cuckoo adopts tcpdump, the prominent open source solution.

Install it on Ubuntu:

’$ sudo apt-get install tcpdump ‘

Tcpdump requires root privileges, but since you don’t want Cuckoo to run as root you’ll have to set specific Linux
capabilities to the binary:

’$ sudo setcap cap_net_raw,cap_net_admin=eip /usr/sbin/tcpdump ‘

You can verify the results of last command with:

$ getcap /usr/sbin/tcpdump
/usr/sbin/tcpdump = cap_net_admin, cap_net_raw+eip

If you don’t have setcap installed you can get it with:

14 Chapter 2. Contents

http://code.google.com/p/yara-project/
https://github.com/kbandla/pydeep
https://mitmproxy.org/
http://www.virtualbox.org
https://www.virtualbox.org/wiki/Linux_Downloads
https://www.virtualbox.org/wiki/Linux_Downloads
https://www.virtualbox.org/wiki/Documentation
http://www.tcpdump.org

Cuckoo Sandbox Book, Release 2.0-dev

‘$ sudo apt-get install libcap2-bin

Or otherwise (not recommended) do:

’$ sudo chmod +s /usr/sbin/tcpdump

Please keep in mind that even the sefcap method is definitely not perfectly safe if the system has other users which
are potentially untrusted. We recommend to run Cuckoo on a dedicated system or a trusted environment where the
privileged tcpdump execution is contained otherwise.

Installing Volatility

Volatility is an optional tool to do forensic analysis on memory dumps. In combination with Cuckoo, it can automat-
ically provide additional visibility into deep modifications in the operating system as well as detect the presence of
rootkit technology that escaped the monitoring domain of Cuckoo’s analyzer.

In order to function properly, Cuckoo requires at least version 2.3 of Volatility. You can get it from the official
repository.

See the volatility documentation for detailed instructions on how to install it.
Installing Cuckoo

Proceed with download and installation. Read What is Cuckoo? to learn where you can obtain a copy of the sandbox.

Create a user

You either can run Cuckoo from your own user or create a new one dedicated just to your sandbox setup. Make sure
that the user that runs Cuckoo is the same user that you will use to create and run the virtual machines, otherwise
Cuckoo won’t be able to identify and launch them.

Create a new user:

‘$ sudo adduser cuckoo

If you’re using VirtualBox, make sure the new user belongs to the “vboxusers” group (or the group you used to run
VirtualBox):

‘$ sudo usermod —-a -G vboxusers cuckoo

If you’re using KVM or any other libvirt based module, make sure the new user belongs to the “libvirtd” group (or the
group your Linux distribution uses to run libvirt):

’$ sudo usermod —-a -G libvirtd cuckoo

Install Cuckoo

Extract or checkout your copy of Cuckoo to a path of your choice and you’re ready to go ;-).

Configuration

Cuckoo relies on six main configuration files:

* cuckoo.conf: for configuring general behavior and analysis options.

2.2. Installation 15

https://github.com/volatilityfoundation
https://github.com/volatilityfoundation

Cuckoo Sandbox Book, Release 2.0-dev

e auxiliary.conf: for enabling and configuring auxiliary modules.

e <machinery>.conf: for defining the options for your virtualization software (the file has the same name of
the machinery module you choose in cuckoo.conf).

e memory.conf: Volatility configuration.
e processing.conf: for enabling and configuring processing modules.
* reporting.conf: for enabling or disabling report formats.

To get Cuckoo working you have to edit auxiliary.conf:, cuckoo.conf and <machinery>.conf at least.

cuckoo.conf

The first file to edit is conf/cuckoo.conf, it contains the generic configuration options that you might want to verify
before launching Cuckoo.

The file is largely commented and self-explaining, but some of the options you might want to pay more attention to
are:

* machinery in [cuckoo]: this defines which Machinery module you want Cuckoo to use to interact with
your analysis machines. The value must be the name of the module without extension.

e ipand port in [resultserver]: defines the local IP address and port that Cuckoo is going to use to bind
the result server on. Make sure this matches the network configuration of your analysis machines, or they won’t
be able to return the collected results.

e connection in [database]: defines how to connect to the internal database. You can use any DBMS
supported by SQLAIchemy using a valid Database Urls syntax.

Warning: Check your interface for resultserver IP! Some virtualization software (for example Virtualbox) don’t
bring up the virtual networking interfaces until a virtual machine is started. Cuckoo needs to have the interface
where you bind the resultserver up before the start, so please check your network setup. If you are not sure about
how to get the interface up, a good trick is to manually start and stop an analysis virtual machine, this will bring
virtual networking up. If you are using NAT/PAT in your network, you can set up the resultserver IP to 0.0.0.0
to listen on all interfaces, then use the specific options resultserver_ip and resultserver_port in <machinery>.conf
to specify the address and port as every machine sees them. Note that if you set resultserver IP to 0.0.0.0 in
cuckoo.conf you have to set resultserver_ip for all your virtual machines.

auxiliary.conf

Auxiliary modules are scripts that run concurrently with malware analysis, this file defines their options.

Following is the default conf/auxiliary.conf file:

[sniffer]
Enable or disable the use of an external sniffer (tcpdump) [yes/no].
enabled = yes

Specify the path to your local installation of tcpdump. Make sure this
path is correct.
tcpdump = /usr/sbin/tcpdump

We used to define the network interface to capture on in auxiliary.conf, but
this has been moved to the "interface" field of each Virtual Machinery
configuration.

16 Chapter 2. Contents

http://www.sqlalchemy.org/
http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls

Cuckoo Sandbox Book, Release 2.0-dev

Specify a Berkeley packet filter to pass to tcpdump.

Note: packer filtering is not possible when using "nictrace" functionality
from VirtualBox (for example dumping inter-VM traffic).

bpf = not arp

[mitm]
Enable man in the middle proxying (mitmdump) [yes/no].
enabled = no

Specify the path to your local installation of mitmdump. Make sure this
path is correct.
mitmdump = /usr/local/bin/mitmdump

Listen port base. Each virtual machine will use its own port to be

able to make a good distinction between the various running analyses.
Generally port 50000 should be fine, in this case port 50001, 50002, etc
will also be used - again, one port per analyses.

port_base = 50000

E e

Script file to interact with the network traffic. Please refer to the

documentation of mitmproxy/mitmdump to get an understand of their internal
workings. (https://mitmproxy.org/doc/scripting/inlinescripts.html)

script = data/mitm.py

Path to the certificate to be used by mitmdump. This file will be
automatically generated for you if you run mitmdump once. It's Jjust that
you have to copy it from ~/.mitmproxy/mitmproxy-ca-cert.pl2 to somewhere

in the analyzer/windows/ directory. Recommended is to write the certificate
to analyzer/windows/bin/cert.pl2, in that case the following option should
be set to bin/cert.pl2.

certificate = bin/cert.pl2

S o S HE o3

[services]

Provide extra services accessible through the network of the analysis VM
provided in separate, standalone, Virtual Machines [yes/no].

enabled = no

Comma-separated list with each Virtual Machine containing said service(s).
services = honeyd

Time in seconds required to boot these virtual machines. E.g., some services
will only get online after a minute because initialization takes a while.
timeout = 0

<machinerys.conf

Machinery modules are scripts that define how Cuckoo should interact with your virtualization software of choice.

Every module should have a dedicated configuration file which defines the details on the available machines. For
example, if you created a vimware.py machinery module, you should specify vimware in conf/cuckoo.conf and have a
conf/vmware.conf file.

Cuckoo provides some modules by default and for the sake of this guide, we’ll assume you’re going to use VirtualBox.

Following is the default conf/virtualbox.conf file:

2.2. Installation 17

Cuckoo Sandbox Book, Release 2.0-dev

[virtualbox]

Specify which VirtualBox mode you want to run your machines on.

Can be "gui", "sdl" or "headless". Refer to VirtualBox's official
documentation to understand the differences.

mode = headless

Path to the local installation of the VBoxManage utility.
path = /usr/bin/VBoxManage

Default network interface.
interface = vboxnetO

Specify a comma-separated list of available machines to be used. For each
specified ID you have to define a dedicated section containing the details
on the respective machine. (E.g. cuckool, cuckoo2, cuckoo3)

machines = cuckool

[cuckool]

Specify the label name of the current machine as specified in your
VirtualBox configuration.

label = cuckool

Specify the operating system platform used by current machine
[windows/darwin/linux].
platform = windows

Specify the IP address of the current virtual machine. Make sure that the
IP address is valid and that the host machine is able to reach it. If not,
the analysis will fail.

ip = 192.168.56.101

(Optional) Specify the snapshot name to use. If you do not specify a snapshot
name, the VirtualBox MachineManager will use the current snapshot.

Example (Snapshotl is the snapshot name) :

snapshot = Snapshotl

(Optional) Specify the name of the network interface that should be used

when dumping network traffic from this machine with tcpdump. If specified,

overrides the default interface specified in auxiliary.conf

Example (vboxnetO is the interface name) :

interface = vboxnet0

(Optional) Specify the IP of the Result Server, as your virtual machine sees it.

The Result Server will always bind to the address and port specified in cuckoo.conf,
however you could set up your virtual network to use NAT/PAT, so you can specify here
the IP address for the Result Server as your machine sees it. If you don't specify an
address here, the machine will use the default value from cuckoo.conf.

NOTE: if you set this option you have to set result server IP to 0.0.0.0 in cuckoo.conf.
Example:

resultserver_ip = 192.168.56.1

(Optional) Specify the port for the Result Server, as your virtual machine sees it.

The Result Server will always bind to the address and port specified in cuckoo.conf,
however you could set up your virtual network to use NAT/PAT, so you can specify here
the port for the Result Server as your machine sees it. If you don't specify a port

here, the machine will use the default value from cuckoo.conf.

Example:

resultserver_port = 2042

18 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

(Optional) Set your own tags. These are comma separated and help to identify
specific VMs. You can run samples on VMs with tag you require.
tags = windows_xp_sp3,32_bit,acrobat_reader_6

[honeyd]

For more information on this VM please refer to the "services" section of
the conf/auxiliary.conf configuration file. This machine is a bit special
in the way that its used as an additional VM for an analysis.

*NOTE+ that if this functionality is used, the VM should be registered in
the "machines" list in the beginning of this file.

label = honeyd

platform = linux

ip = 192.168.56.102

The tags should at least contain "service" and the name of this service.
This way the services auxiliary module knows how to find this particular VM.

e

tags = service, honeyd

Not all services actually have a Cuckoo Agent running in the VM, for those

services one can specify the "noagent" option so Cuckoo will just wait until
the end of the analysis instead of trying to connect to the non-existing

Cuckoo Agent. We can't really intercept any inter-VM communication from the
host / gateway so in order to dump traffic between VMs we have to use a

different network dumping approach. For this machine we use the "nictrace"

functionality from VirtualBox (which is basically their internal tcpdump)

and thus properly dumps inter-VM traffic.

options = nictrace noagent

You can use this same configuration structure for any other machinery module, although existing ones might have
some variations or additional configuration options.

The comments for the options are self-explainatory.

Following is the default conf/kvm.conf file:

[kvm]

Specify a comma-separated list of available machines to be used. For each
specified ID you have to define a dedicated section containing the details
on the respective machine. (E.g. cuckool,cuckoo2,cuckoo3)

machines = cuckool

Specify the name of the default network interface that will be used
when dumping network traffic with tcpdump.

Example (virbr0O is the interface name):

interface = virbr0

[cuckool]

Specify the label name of the current machine as specified in your
libvirt configuration.

label = cuckool

Specify the operating system platform used by current machine
[windows/darwin/linux].
platform = windows

Specify the IP address of the current virtual machine. Make sure that the

IP address is valid and that the host machine is able to reach it. If not,
the analysis will fail. You may want to configure your network settings in
/etc/libvirt/<hypervisor>/networks/

ip = 192.168.122.105

2.2. Installation 19

Cuckoo Sandbox Book, Release 2.0-dev

(Optional) Specify the snapshot name to use. If you do not specify a snapshot

name, the KVM MachineManager will use the current snapshot.

Example (Snapshotl is the snapshot name):

snapshot = Snapshotl

(Optional) Specify the name of the network interface that should be used

when dumping network traffic from this machine with tcpdump.

Example (virbr0 is the interface name) :

interface = virbr0

(Optional) Specify the IP of the Result Server, as your virtual machine sees it.

The Result Server will always bind to the address and port specified in cuckoo.conf,
however you could set up your virtual network to use NAT/PAT, so you can specify here
the IP address for the Result Server as your machine sees it. If you don't specify an
address here, the machine will use the default value from cuckoo.conf.

NOTE: if you set this option you have to set result server IP to 0.0.0.0 in cuckoo.conf.
Example:

resultserver_ip = 192.168.122.101

(Optional) Specify the port for the Result Server, as your virtual machine sees it.

The Result Server will always bind to the address and port specified in cuckoo.conf,
however you could set up your virtual network to use NAT/PAT, so you can specify here
the port for the Result Server as your machine sees it. If you don't specify a port

here, the machine will use the default value from cuckoo.conf.

Example:

resultserver_port = 2042

(Optional) Set your own tags. These are comma separated and help to identify

specific VMs. You can run samples on VMs with tag you require.

tags = windows_xp_sp3,32_bit,acrobat_reader_6

memory.conf

The Volatility tool offers a large set of plugins for memory dump analysis. Some of them are quite slow. In volatil-
ity.conf lets you to enable or disable the plugins of your choice. To use Volatility you have to follow two steps:

* Enable it before in processing.conf
* Enable memory_dump in cuckoo.conf

In the memory.conf’s basic section you can configure the Volatility profile and the deletion of memory dumps after
processing:

Basic settings

[basic]

Profile to avoid wasting time identifying it
guest_profile WinXPSP2x86

Delete memory dump after volatility processing.
delete_memdump no

After that every plugin has an own section for configuration:

Scans for hidden/injected code and dlls

http://code.google.com/p/volatility/wiki/CommandReference#malfind

[malfind]

enabled = on

filter = on

20 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

Lists hooked api in user mode and kernel space
Expect it to be very slow when enabled
http://code.google.com/p/volatility/wiki/CommandReference#apihooks

[apihooks]
enabled = off
filter = on

The filter configuration helps you to remove known clean data from the resulting report. It can be configured separately
for every plugin.

The filter itself is configured in the [mask] section. You can enter a list of pids in pid_generic to filter out processes:

Masks. Data that should not be logged

Just get this information from your plain VM Snapshot (without running malware)

This will filter out unwanted information in the logs

[mask]

pid_generic: a list of process ids that already existed on the machine before the mal
pid_generic = 4, 680, 752, 776, 828, 840, 1000, 1052, 1168, 1364, 1428, 1476, 1808, 452

processing.conf

This file allows you to enable, disable and configure all processing modules. These modules are located under mod-
ules/processing/ and define how to digest the raw data collected during the analysis.

You will find a section for each processing module:

Enable or disable the available processing modules [on/off].

If you add a custom processing module to your Cuckoo setup, you have to add
a dedicated entry in this file, or it won't be executed.

You can also add additional options under the section of your module and

they will be available in your Python class.

[analysisinfo]
enabled = yes

[apkinfo]

enabled = no

Decompiling dex files with androguard in a heavy operation. For large dex
files it can really take quite a while - it is recommended to limit to a
certain filesize.

decompilation_threshold=5000000

[baseline]
enabled = no

[behavior]
enabled = yes

[buffer]
enabled = yes

[debug]
enabled = yes

[droidmon]
enabled = no

[dropped]

2.2. Installation 21

are was star
580, 652, 2

Cuckoo Sandbox Book, Release 2.0-dev

enabled = yes

[dumptls]
enabled = yes

[googleplay]
enabled = no
android_id =
google_login =
google_password =

[memory]

Create a memory dump of the entire Virtual Machine. This memory dump will
then be analyzed using Volatility to locate interesting events that can be
extracted from memory.

enabled = no

[network]
enabled = yes

[procmemory]

Enables the creation of process memory dumps for each analyzed process right
before they terminate themselves or right before the analysis finishes.
enabled = yes

It is possible to load these process memory dumps in IDA Pro through the

generation of IDA Python-based script files. Although currently symbols and
such are not properly recovered, it is still nice to get a quick look at

specific memory addresses of a process.

idapro = no

[screenshots]
enabled = no

tesseract = /usr/bin/tesseract

[snort]

enabled = no

Following are various configurable settings. When in use of a recent 2.9.x.y
version of Snort there is no need to change any of the following settings as
they represent the defaults.

snort = /usr/local/bin/snort
conf = /etc/snort/snort.conf

S o S o3

[static]
enabled = yes

[strings]
enabled = yes

[suricatal

enabled = no

Following are various configurable settings. When in use of a recent version
of Suricata there is no need to change any of the following settings as they
represent the defaults.

suricata = /usr/bin/suricata
conf = /etc/suricata/suricata.yaml
eve_log = eve.json

. & &

22 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

files_log = files-json.log

files_dir = files

#

Uncommenting the following line makes our processing module use the socket
mode in Suricata. This is quite the performance improvement as instead of

having to load all the Suricata rules for each time the processing module is
ran (i.e., for every task), the rules are only loaded once and then we talk
to its API. This does require running Suricata as follows or similar;

"suricata --unix-socket -D".

(Please find more information in utils/suricata.sh for now).

socket = /var/run/suricata/cuckoo.socket

[targetinfo]

enabled = yes

[virustotal]

enabled = yes

How much time we can wait to establish VirusTotal connection and get the

report.

timeout = 60

Enable this option if you want to submit files to VirusTotal not yet available
in their database.

NOTE: if you are dealing with sensitive stuff, enabling this option you could
leak some files to VirusTotal.

scan = 0

Add your VirusTotal API key here. The default API key, kindly provided

by the VirusTotal team, should enable you with a sufficient throughput

and while being shared with all our users, it shouldn't affect your use.

key = a0283a2c3d55728300d06487423905346fb991317e8449£e43c902879d758088

You might want to configure the VirusTotal key if you have an account of your own.

reporting.conf

The conf/reporting.conf file contains information on the automated reports generation.

It contains the following sections:

Enable or disable the available reporting modules [on/off].

If you add a custom reporting module to your Cuckoo setup, you have to add
a dedicated entry in this file, or it won't be executed.

You can also add additional options under the section of your module and

they will be available in your Python class.

[jsondump]

enabled = yes
indent = 4
encoding = latin-1
calls = yes

[reporthtml]
enabled = no

[mongodb]
enabled = no
host = 127.0.0.1
port = 27017

db = cuckoo

2.2. Installation 23

http://www.virustotal.com

Cuckoo Sandbox Book, Release 2.0-dev

store_memdump = yes
paginate = 100

[elasticsearch]

enabled = no

Comma-separated list of ElasticSearch hosts.

hosts = 127.0.0.1

Set to yes if we want to be able to search every API call instead of just
through the behavioral summary.

calls = no

Index of this Cuckoo instance. If multiple Cuckoo instances connect to the
same ElasticSearch host then this index (in Moloch called "instance") should
be unique for each Cuckoo instance.

#

index = cuckoo

#

Just in case we will have report updates in Cuckoo one will be able to

update to a new scheme by modifying the ElasticSearch document type.

#

type = cuckoo

[moloch]

enabled = no

If the Moloch web interface is hosted on a different IP address than the

Cuckoo Web Interface then you'll want to override the IP address here.

host = 127.0.0.1

#

Following are various configurable settings. When in use of a recent version
of Moloch there is no need to change any of the following settings as they
represent the defaults.

#

moloch_capture = /data/moloch/bin/moloch-capture

conf = /data/moloch/etc/config.ini

instance = cuckoo

By setting those option to on or off you enable or disable the generation of such reports.

Configuration (Android Analysis)

To get Cuckoo running Android analysis you should download the Android SDK and extract it in a folder Cuckoo can
access. You should also configure avd.conf with the settings of your setup.

avd.conf

The main file for Android environment settings is conf/avd.conf, it contains all the generic configuration used to launch
the Android emulator and run the analysis.

The file is largely commented and self-explaining, but some of the options you might want to pay more attention to
are:

e emulator_path: this defines the Android emulator path (it is located inside Android SDK)
e adb_path: this defines the ADB path (it is located inside Android SDK)

* avd_path: this defines where AVD images are located

24 Chapter 2. Contents

https://developer.android.com

Cuckoo Sandbox Book, Release 2.0-dev

2.2.2 Preparing the Guest
At this point you should have configured the Cuckoo host component and you should have designed and defined the
number and the names of the virtual machines you are going to use for malware execution.

Now it’s time to create such machines and to configure them properly.

Creation of the Virtual Machine
Once you have properly installed your virtualization software, you can proceed on creating all the virtual machines
you need.

Using and configuring your virtualization software is out of the scope of this guide, so please refer to the official
documentation.

Note: You can find some hints and considerations on how to design and create your virtualized environ-
ment in the Sandboxing chapter.

Note: For analysis purposes you are recommended to use Windows XP Service Pack 3, but Cuckoo
Sandbox also proved to work with Windows 7 with User Access Control disabled.

Note: KVM Users - Be sure to choose a hard drive image format that supports snapshots. See Saving the
Virtual Machine for more information.

When creating the virtual machine, Cuckoo doesn’t require any specific configuration. You can choose the options
that best fit your needs.

Requirements

In order to make Cuckoo run properly in your virtualized Windows system, you will have to install some required
software and libraries.

Install Python

Python is a strict requirement for the Cuckoo guest component (analyzer) in order to run properly.

You can download the proper Windows installer from the official website. Also in this case Python 2.7 is preferred.

Some Python libraries are optional and provide some additional features to Cuckoo guest component. They include:
* Python Image Library: it’s used for taking screenshots of the Windows desktop during the analysis.

They are not strictly required by Cuckoo to work properly, but you are encouraged to install them if you want to have
access to all available features. Make sure to download and install the proper packages according to your Python
version.

Additional Software

At this point you should have installed everything needed by Cuckoo to run properly.

2.2. Installation 25

http://www.python.org/getit/
http://www.pythonware.com/products/pil/

Cuckoo Sandbox Book, Release 2.0-dev

Depending on what kind of files you want to analyze and what kind of sandboxed Windows environment you want to
run the malware samples in, you might want to install additional software such as browsers, PDF readers, office suites
etc. Remember to disable the “auto update” or “check for updates” feature of any additional software.

This is completely up to you and to what your needs are. You can get some hints by reading the Sandboxing chapter.

Network Configuration

Now it’s time to setup the network for your virtual machine.

Windows Settings

Before configuring the underlying networking of the virtual machine, you might want to tweak some settings inside
Windows itself.

One of the most important things to do is disabling Windows Firewall and the Automatic Updates. The reason behind
this is that they can affect the behavior of the malware under normal circumstances and that they can pollute the
network analysis performed by Cuckoo, by dropping connections or including irrelevant requests.

You can do so from Windows’ Control Panel as shown in the picture:

Help protect your PC

ETTn -
Generd | Ewceptions | Sdverced |

Ahutomatic Updates |£|

fradowd z Fitewsall bt e pontect your compuler by presesiirg usauthoized ses
frioen gainng acssees i pour cnmpliet thiough fe nkemet ar 2 nehamk,

Wirdows cen regulary chack for important updaces and install tham For you,
{Turning on Autoratc Lpdatas may automatically updats Windows Update

@ O lrecommanded) st Aest, bafiore ang oEer upcates,)

Trie selling Lloces ol oubsade sovnczs lom correchng bo e Uoye clogs fu b fHe 1 peorkd

compuler, valb e sceplion of hove sabkeched on The Excaplion: 1ab,) Aukomatic { Sermae,

auoratealby dowrloac recommended updaces far my
Dian't allow exceptions comzuter snd retal them:

Sekezt this when pou comnect b publiz nelvarks in ez secue ey d ab | 300 A
Iazations, suzh 2z aiports, Vou il ol be rodlied when Windowe
Firzwasll Hocks programs. Selections on the Exceplicens babowil be (o Dowarlwed updabes for e, bk bt me choogs when b iagl el tem,
ignoied,

@ E 00 (ol recommended)

Bocord usrg e selhng, Twirng oll Wirdows Fieved | map maks s vaur computer will be more sunerabke uess vou instal
cempulen mas whisizble o viuses and rbudsic, undates regulars.

C}Hntfp me= but don't automabcally downlosd or nstal them.

(0 Tuen of f Automatic Lindatas,

Irstalupdates from the windows Upcate Web ste,

At Microsolt, we cars sbout your grivacy. Pleass resd our privacy statemsnt.

Virtual Networking

Now you need to decide how to make your virtual machine able to access Internet or your local network.

While in previous releases Cuckoo used shared folders to exchange data between the Host and Guests, from release
0.4 it adopts a custom agent that works over the network using a simple XMLRPC protocol.

26 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

In order to make it work properly you’ll have to configure your machine’s network so that the Host and the Guest can
communicate. Testing the network access by pinging a guest is a good practice, to make sure the virtual network was
set up correctly. Use only static IP addresses for your guest, as today Cuckoo doesn’t support DHCP and using it will
break your setup.

This stage is very much up to your own requirements and to the characteristics of your virtualization software.

Warning: Virtual networking errors! Virtual networking is a vital component for Cuckoo, you must
be really sure to get connectivity between host and guest. Most of the issues reported by users are
related to a wrong setup of their networking. If you aren’t sure about that check your virtualization
software documentation and test connectivity with ping and telnet.

The recommended setup is using a Host-Only networking layout with proper forwarding and filtering configuration
done with iptables on the Host.

For example, using VirtualBox, you can enable Internet access to the virtual machines using the following iptables
rules (assuming that ethQ is your outgoing interface, vboxnetO is your virtual interface and 192.168.56.0/24 is your
subnet address):

iptables —-A FORWARD -o eth0O -i vboxnetO -s 192.168.56.0/24 -m conntrack --ctstate NEW -]

iptables -A FORWARD -m conntrack --ctstate ESTABLISHED,RELATED -3j ACCEPT
iptables -A POSTROUTING -t nat —-j MASQUERADE

And adding IP forwarding:

sysctl -w net.ipvéd.ip_forward=1

Installing the Agent

From release 0.4 Cuckoo adopts a custom agent that runs inside the Guest and that handles the communication and
the exchange of data with the Host. This agent is designed to be cross-platform, therefore you should be able to use
it on Windows as well as on Linux and OS X. In order to make Cuckoo work properly, you’ll have to install and start
this agent.

It’s very simple.

In the agent/ directory you will find and agent.py file, just copy it to the Guest operating system (in whatever way you
want, perhaps a temporary shared folder or by downloading it from a Host webserver) and run it. This will launch the
XMLRPC server which will be listening for connections.

On Windows simply launching the script will also spawn a Python window, if you want to hide it you can rename the
file from agent.py to agent.pyw which will prevent the window from spawning.

If you want the script to be launched at Windows’ boot, just place the file in the Startup folder.

Saving the Virtual Machine

Now you should be ready to save the virtual machine to a snapshot state.

Before doing this make sure you rebooted it softly and that it’s currently running, with Cuckoo’s agent running
and with Windows fully booted.

Now you can proceed saving the machine. The way to do it obviously depends on the virtualization software you
decided to use.

If you follow all the below steps properly, your virtual machine should be ready to be used by Cuckoo.

2.2. Installation 27

ACCEPT

Cuckoo Sandbox Book, Release 2.0-dev

VirtualBox

If you are going for VirtualBox you can take the snapshot from the graphical user interface or from the command line:

$ VBoxManage snapshot "<Name of VM>" take "<Name of snapshot>" --pause

After the snapshot creation is completed, you can power off the machine and restore it:

$ VBoxManage controlvm "<Name of VM>" poweroff
$ VBoxManage snapshot "<Name of VM>" restorecurrent

KVM

If decided to adopt KVM, you must first of all be sure to use a disk format for your virtual machines which supports
snapshots. By default libvirt tools create RAW virtual disks, and since we need snapshots you’ll either have to use
QCOW?2 or LVM. For the scope of this guide we adopt QCOW?2, which is easier to setup than LVM.

The easiest way to create such a virtual disk correctly is using the tools provided by the libvirt suite. You can either
use virsh if you prefer command-line interfaces or virt-manager for a nice GUI You should be able to directly
create it in QCOW?2 format, but in case you have a RAW disk you can convert it like this:

$ cd /your/disk/image/path
$ gemu-img convert -0 gcow?2 your_disk.raw your_disk.gcow?2

Now you have to edit your VM definition as follows:

S virsh edit "<Name of VM>"

Find the disk section, it looks like this:

<disk type='file' device='disk'>
<driver name='gemu' type='raw'/>
<source file='/your/disk/image/path/your_disk.raw'/>
<target dev='hda' bus='ide'/>
<address type='drive' controller='0' bus='0' unit='0"'/>
</disk>

And change “type” to qcow2 and “source file” to your qcow?2 disk image, like this:

<disk type='file' device='disk'>
<driver name='gemu' type='qgcow2'/>
<source file='/your/disk/image/path/your_disk.gcow2'/>
<target dev='hda' bus='ide'/>
<address type='drive' controller='0' bus='0' unit='0"'/>
</disk>

Now test your virtual machine, if everything works prepare it for snapshotting while running Cuckoo’s agent. This
means the virtual machine needs to be running while you are taking the snapshot. Then you can shut it down. You can
finally take a snapshot with the following command:

‘$ virsh snapshot-create "<Name of VM>"

Having multiple snapshots can cause errors:

’ERROR: No snapshot found for virtual machine VM-Name

VM snapshots can be managed using the following commands:

28 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

$ virsh snapshot-list "VM-Name"
$ virsh snapshot-delete "VM-Name" 1234567890

VMware Workstation

If you decided to adopt VMware Workstation, you can take the snapshot from the graphical user interface or from the
command line:

‘$ vmrun snapshot "/your/disk/image/path/wmware_image_name.vmx" your_snapshot_name

Where your_snapshot_name is the name you choose for the snapshot. After that power off the machine from the GUI
or from the command line:

‘$ vmrun stop "/your/disk/image/path/wmware_image_name.vmx" hard

XenServer

If you decided to adopt XenServer, the XenServer machinery supports starting virtual machines from either disk or a
memory snapshot. Creating and reverting memory snapshots require that the Xen guest tools be installed in the virtual
machine. The recommended method of booting XenServer virtual machines is through memory snapshots because
they can greatly reduce the boot time of virtual machines during analysis. If, however, the option of installing the guest
tools is not available, the virtual machine can be configured to have its disks reset on boot. Resetting the disk ensures
that malware samples cannot permanently modify the virtual machine.

Memory Snapshots The Xen guest tools can be installed from the XenCenter application that ships with XenServer.
Once installed, restart the virtual machine and ensure that the Cuckoo agent is running.

Snapshots can be taken through the XenCenter application and the command line interface on the control domain
(Dom0). When creating the snapshot from XenCenter, ensure that the “Snapshot disk and memory” is checked. Once
created, right-click on the snapshot and note the snapshot UUID.

To snapshot from the command line interface, run the following command:

’$ xe vm-checkpoint vm="vm_uuid_or_name" new-name-label="Snapshot Name/Description"

The snapshot UUID is printed to the screen once the command completes.

Regardless of how the snapshot was created, save the UUID in the virtual machine’s configuration section. Once the
snapshot has been created, you can shutdown the virtual machine.

Booting from Disk If you can’t install the Xen guest tools or if you don’t need to use memory snapshots, you will
need to ensure that the virtual machine’s disks are reset on boot and that the Cuckoo agent is set to run at boot time.

Running the agent at boot time can be configured in Windows by adding a startup item for the agent.
The following commands must be run while the virtual machine is powered off.

To set the virtual machine’s disks to reset on boot, you’ll first need to list all the attached disks for the virtual machine.
To list all attached disks, run the following command:

$ xe vm-disk-list vm="vm_name_or_uuid"

Ignoring all CD-ROM and read-only disks, run the following command for each remaining disk to change it’s behavior
to reset on boot:

2.2. Installation 29

Cuckoo Sandbox Book, Release 2.0-dev

‘$ xe vdi-param-set uuid="vdi_uuid" on-boot=reset

After the disk is set to reset on boot, no permanent changes can be made to the virtual machine’s disk. Modifications
that occur while a virtual machine is running will not persist past shutdown.

Cloning the Virtual Machine
In case you planned to use more than one virtual machine, there’s no need to repeat all the steps done so far: you can
clone it. In this way you’ll have a copy of the original virtualized Windows with all requirements already installed.

The new virtual machine will also contain all the settings of the original one, which is not good. Now you need to
proceed repeating the steps explained in Network Configuration, Installing the Agent and Saving the Virtual Machine
for this new machine.

2.2.3 Preparing the Guest (Physical Machine)
At this point you should have configured the Cuckoo host component and you should have designed and defined the
number and the names of the physical machines you are going to use for malware execution.

Now it’s time to create such machines and to configure them properly.

Creation of the Physical Machine
Once you have properly installed your imaging software, you can proceed on creating all the physical machines you
need.

Using and configuring your imaging software is out of the scope of this guide, so please refer to the official documen-
tation.

Note: You can find some hints and considerations on how to design and create your virtualized environ-
ment in the Sandboxing chapter.

Note: For analysis purposes you are recommended to use Windows XP Service Pack 3, but Cuckoo
Sandbox also proved to work with Windows 7 with User Access Control disabled.

When creating the physical machine, Cuckoo doesn’t require any specific configuration. You can choose the options
that best fit your needs.

Requirements

In order to make Cuckoo run properly in your physical Windows system, you will have to install some required
software and libraries.

Install Python

Python is a strict requirement for the Cuckoo guest component (analyzer) in order to run properly.
You can download the proper Windows installer from the official website. Also in this case Python 2.7 is preferred.

Some Python libraries are optional and provide some additional features to Cuckoo guest component. They include:

30 Chapter 2. Contents

http://www.python.org/getit/

Cuckoo Sandbox Book, Release 2.0-dev

» Python Image Library: it’s used for taking screenshots of the Windows desktop during the analysis.

They are not strictly required by Cuckoo to work properly, but you are encouraged to install them if you want to have
access to all available features. Make sure to download and install the proper packages according to your Python
version.

Additional Software

At this point you should have installed everything needed by Cuckoo to run properly.

Depending on what kind of files you want to analyze and what kind of sandboxed Windows environment you want to
run the malware samples in, you might want to install additional software such as browsers, PDF readers, office suites
etc. Remember to disable the “auto update” or “check for updates” feature of any additional software.

This is completely up to you and to what your needs are. You can get some hints by reading the Sandboxing chapter.

Additional Host Requirements

The physical machine manager uses RPC requests to reboot physical machines. The net command is required for this
to be accomplished, and is available from the samba-common-bin package.

On Debian/Ubuntu you can install it with:

$ sudo apt-get install samba-common-bin

In order for the physical machine manager to work, you must have a way for physical machines to be returned to a
clean state. In development/testing Fog was used as a platform to handle re-imaging the physical machines. However,
any re-imaging platform can be used (Clonezilla, Deepfreeze, etc) to accomplish this.

Network Configuration

Now it’s time to setup the network for your physical machine.

Windows Settings

Before configuring the underlying networking of the sandbox, you might want to tweak some settings inside Windows
itself.

One of the most important things to do is disabling Windows Firewall and the Automatic Updates. The reason behind
this is that they can affect the behavior of the malware under normal circumstances and that they can pollute the
network analysis performed by Cuckoo, by dropping connections or including irrelevant requests.

You can do so from Windows’ Control Panel as shown in the picture:

2.2. Installation 31

http://www.pythonware.com/products/pil/
http://www.fogproject.org/

Cuckoo Sandbox Book, Release 2.0-dev

= Windows Security Center | ||_||?|

¥ Security Center

Help protect your PC

ETn -
Gereid | Ewcepicrz | Advarced |

Autamatic Lpdates []

Ayomebc Updaoss

fradowd z Fitewsall bt e pontect your compuler by presesiirg usauthoized ses
frioen gainng acssees i pour cnmpliet thiough fe nkemet ar 2 nehamk,

'(H.lrd:-ns cmr&;.laﬁ'zm;dafw it ark Ll:ddyl"-r'ﬁ'-;jrd hstalﬂam fﬁm.
Turnirg on Automats Lndakes may sukomatin b Winicow s Lpoabe
@ O 0n lrecommendsd) soitvaa first, befioes any ober upcates, |

Tk gellng blocks Al oubsade sowces lom correchng o e Uoye clogs fu b fHe 1 peorkd

coigdler, valk b sacephon of thase sskectad on the Excaption: L) Ruskomatic {recommendid)

auoratealby dowrloac recommended updaces far my
Dion't allow exceptions computer snd retal them:

Sekezt this when pou comnect b publiz nelvarks in ez secue 3100 A
lazations, suzh az aports, Vou vl nol be rotlied when Windows
Firzwasll Hocks programs. Selections on the Exceplicens babowil be (o Dowarlwed updabes for e, bk bt me choogs when b iagl el tem,
ignoted

01l [rot d
@ R (0 Tuen of f Automatic Lindatas,

Bocord usrg e selhng, Twirng oll Wirdows Fieved | map maks s vaur computer will be more sunerabke uess vou instal
compulel mave vdnaieble Lo viuses and nludais undates requlars.

C}Hntfp me= but don't automabcally downlosd or nstal them.

Irstalupdates from the windows Upcate Web ste,

statemsnt.

Using a physical machine manager requires a few more configuration options than the virtual machine managers in
order to run properly. In addition to the steps laid out in the regular Preparing the Guest section, some settings need to
be changed for physical machines to work properly.

* Enable auto-logon (Allows for the agent to start upon reboot)

* Enable Remote RPC (Allows for Cuckoo to reboot the sandbox using RPC)

* Turn off paging (Optional)

 Disable Screen Saver (Optional)

In Windows 7 the following commands can be entered into an Administrative command prompt to enable auto-logon

and Remote RPC.

reg add "hklm\software\Microsoft\Windows NT\CurrentVersion\WinLogon" /v DefaultUserName
reg add "hklm\software\Microsoft\Windows NT\CurrentVersion\WinLogon" /v DefaultPassword
reg add "hklm\software\Microsoft\Windows NT\CurrentVersion\WinLogon" /v AutoAdminLogon
reg add "hklm\system\CurrentControlSet\Control\TerminalServer" /v AllowRemoteRPC /d 0x01
reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System"
Networking

Now you need to decide how to make your physical machine able to access Internet or your local network.

While in previous releases Cuckoo used shared folders to exchange data between the Host and Guests, from release
0.4 it adopts a custom agent that works over the network using a simple XMLRPC protocol.

In order to make it work properly you’ll have to configure your machine’s network so that the Host and the Guest can
communicate. Testing the network access by pinging a guest is a good practice, to make sure the virtual network was
set up correctly. Use only static IP addresses for your guest, as today Cuckoo doesn’t support DHCP and using it will
break your setup.

32

Chapter 2. Contents

/d <USERNAME
/d <PASSWORD:
d 1 /t REG_S!
/t REG_DWORI
v LocalAccout

Cuckoo Sandbox Book, Release 2.0-dev

This stage is very much up to your own requirements and to the characteristics of your virtualization software.

For physical machines, make sure when setting the IP address of the guest to also set the Gateway and DNS server to
be the IP address of the Cuckoo server on the physical network. For example, if your Cuckoo server has the IP address
of 192.168.1.1, then you would set the Gateway and DNS server in Windows Settings to be 192.168.1.1 as well.

—

- -

-i- Local Area Connection Status

i_ Local Area Connection Properties Internet Protocol (TCP/IP) Properties

General | Advanced !

General |

Y'ou can get [P sethngs assigned automatically if your nebwork supports
thiz capability. Othenwize, you need to ask pour network. adminiztrator for
the appropriate IF gettings.

Connect using:

‘ E® AMD PONET Famiy POI Ethemet Ad |

This conmection uzes the following items:

g Clignt for Microgoft Networks
Q File: and Printer Sharing for Microsaft N

(") Obtain an IP address automatically
(%) Uge the following IP address:

1P address: 192 0168, 1 .10

.Q (a5 Packet 5cheduler
S Inkeret Protacal [TCPAP)

Install...

Diescription

2685 286 285 . 0

192 01680 1 1

Subret magk:

Diefault gateway:

Uninstall
Obtain DMS zerver address automnatically

(%) Uze the fallawing DMS server addresses:
Preferred DNS server: 192 168 . 1

Transmission Control Protocol/nternet Proto
wide area network protocol that pravides con
across diverse interconnected networks.

Alternate DMS zerver:
[Shaw icon in notifization area when connec

Matify me when this connection has limited o

][Cancel

Ok OF.

L Local Area Connectio. ..

77 start

i Local Area Connectio.,

Saving the Guest
Now you should be ready to save the physical machine to a clean state. In order for the physical machine manager to
work, you must have a way for physical machines to be returned to a clean state.

Before doing this make sure you rebooted it softly and that it’s currently running, with Cuckoo’s agent running
and with Windows fully booted.

Now you can proceed saving the machine. The way to do it obviously depends on the imaging software you decided
to use.

In development/testing Fog (http://www.fogproject.org/) was used as a platform to handle re-imaging the physical
machines. However, any re-imaging platform can be used (Clonezilla, Deepfreeze, etc.) to accomplish this.

If you follow all the below steps properly, your virtual machine should be ready to be used by Cuckoo.

Fog

After installing Fog, you will need to create an image and add an image and a host to the Fog server.

To add an image to the fog server, open the Image Management
(http://<your_fog_server>/fog/management/index.php?node=images) and click “Create New Image.”

window
Provide

2.2. Installation 33

http://www.fogproject.org/

Cuckoo Sandbox Book, Release 2.0-dev

the proper inputs for your OS configuration and click “Add”

&

o
8
¥
i

2 8 F 2 B © 8

Main Menu

Image Management

New Image

Add new image definition

Image Name WinXP

Image Description

Storage Group default - (1) j

Operating System Windows 2000/XP - (1) j

Image Path fimages/ | winxp

Image Type Multiple Partition Image - Single Disk (Not Resizable) - (2) j

Next you will need to add the host you plan to re-image to Fog. To add a host, open a web browser and navigate to
the Host Management page of Fog (http://<your_fog_server>/fog/management/index.php?node=host). Click “Create
New Host.” Provide the proper inputs for your host configuration. Be sure to select the image you created above from
the “Host Image” option, when finished click the “Add” button.

34 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

@ &8 82 f 3B & Lo F @B OB8

Main Menu

Host Management

New Host

Add new host definition

*

Host Name WinxXpP
Primary MAC 00:01:02:03:04:05

Host Description

Host Image WinXP_v1.00 - (1) j

Host Kernel
Hosk Kernel Arguments

Host Primary Disk

Active Directory

Join Domain after image task

Domain Name

Domain QU
Domain Username
Domain Password
Must be encrypted il
At this point you should be ready to take an image from the guest machine. In order to

take an image you will need to navigate to the Task Management page and list all hosts
(http://<your_fog_server>/fog/management/index.php ’node=tasks&sub=listhosts). From here you should be
able to click the Upload icon (Green up arrow), which should instantly add a task to the queue to take an image. Now
you should reboot your Cuckoo guest image and it should PXE boot into Fog and capture the base image from the
cuckoo guest.

After you have successfully taken an image of the guest machine, you can use that image as one to deploy
to the Cuckoo physical sandbox as needed. It is recommended to use a scheduled task to accomplish this.
In order to create a scheduled task to re-image sandboxes, navigate to the Host Management page on Fog
(http://<your_fog_server>/fog/management/index.php?node=host&sub=list). Then click “Download” the machine
you wish to schedule the re-image task for. From this menu, select “Schedule Cron-style Deployment” and put in
the values you wish for the schedule to apply to (x/5 * % =«) in the case shown in the screenshot below, but you
may need to tweak these times for your environment.

2.2. Installation 35

http:/

Cuckoo Sandbox Book, Release 2.0-dev

Setup using VMWare (Bonus!)

© &8 bbb F 2B OH8

Main Menu

Host

WinxpP

MAC

Host Management
Create Download task for Host WinXP

Are you sure you wish to deploy these machines?

Advanced Settings

(7] Schedule Shutdown after task completion

) schedule Instant Deployment
) schedule Delayed Deployment
@ schedule Cron-style Deployment

5 * * *

Hosts in Task

WinXpP 00:25:90:6b:a4:3F WinXP_v1.01

Traditionally Cuckoo requires to be running some sort of virtualization software (e.g. VMware, Virtualbox, etc). The
physical machine manager will also work with other virtual machines, so long as they are configured to revert to a snap-
shot on shutdown/reboot, and running the agent.py script. A use case for this functionality would be to run the cuckoo
server and the guest sandboxes each in their own virtual machine on a single host, allowing for development/testing of
Cuckoo without requiring a dedicated Linux host.

2.2.4 Upgrade from a previous release

Cuckoo Sandbox grows really fast and in every release new features are added and some others are fixed or removed.
There are two ways to upgrade your Cuckoo: start from scratch or migrate your “old” setup (migration is supported
only starting from Cuckoo 0.6). The suggested way to upgrade Cuckoo is to start from a fresh setup because it’s easier
and faster than migrate your old setup.

Upgrade starting from scratch

To start from scratch you have to perform a fresh setup as described in Installation. The following steps are suggested:

1. Backup your installation.

2. Read the documentation shipped with the new release.
3. Make sure to have installed all required dependencies, otherwise install them.

4. Do a Cuckoo fresh installation of the Host components.

36

Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

7.

Reconfigure Cuckoo as explained in this book (copying old configuration files is not safe because options can
change between releases).

If you are using an external database instead of the default or you are using the MongoDb reporting module is
suggested to start all databases from scratch, due to possible schema changes between Cuckoo releases.

Test it!

If something goes wrong you probably failed to do some steps during the fresh installation or reconfiguration. Check
again the procedure explained in this book.

It’s not recommended to rewrite an old Cuckoo installation with the latest release files, as it might raise some problems
because:

You are overwriting Python source files (.py) but Python bytecode files (.pyc) are still in place.

There are configuration files changes across the two versions, check our CHANGELOG file for added or re-
moved configuration options.

The part of Cuckoo which runs inside guests (agent.py) may change.

If you are using an external database like the reporting module for MongoDb a change in the data schema may
corrupt your database.

Migrate your Cuckoo

Data migration is shipped starting from Cuckoo 1.1 and supports migration starting from Cuckoo 0.6. If your Cuckoo
release is older than 0.6 you can’t migrate your data.

The following steps are suggested as requirement to migrate your data:

1.

2
3
4.
5

Backup your installation.

. Read the documentation shipped with the new release.

. Make sure to have installed all required dependencies, otherwise install them.

Download and extract the latest Cuckoo.

. Reconfigure Cuckoo as explained in this book (copying old configuration files is not safe because options can

change between releases), and update agent in your virtual machines.

Copy from your backup “storage” and “db” folders. (Reports and analyses already present in “storage” folder
will keep the old format.)

Now setup Alembic (the framework used for migrations) and dateutil with:

pip install alembic
pip install python-dateutil

Enter the alembic migration directory in “utils/db_migration” with:

cd utils/db_migration

Before starting the migration script you must set your database connection in “cuckoo.conf” if you are using a custom
one. Alembic migration script will use the database connection parameters configured in cuckoo.conf.

Again, please remember to backup before launching migration tool! A wrong configuration may corrupt your data,
backup should save kittens!

Run the database migrations with:

alembic upgrade head

2.2. Installation 37

Cuckoo Sandbox Book, Release 2.0-dev

2.3 Usage

This chapter explains how to use Cuckoo.

2.3.1 Starting Cuckoo

To start Cuckoo use the command:

‘$ python cuckoo.py

Make sure to run it inside Cuckoo’s root directory.

You will get an output similar to this:

ceee e e eeee e e eceeee eeecece
8 8 8 8 8 8 8 8 8 88 8 88
8e 8e 8 8e 8eee8e 8 8 8 8
88 88 8 88 88 8 8 8 8 8
88e8 88ee8 88e8 88 8 8eee8 8eeel

Cuckoo Sandbox 1.2
www.cuckoosandbox.org
Copyright (c) 2010-2015

Checking for updates...
Good! You have the latest version available.

2013-04-07 15:57:17,459 [lib.cuckoo.core.scheduler] INFO: Using "virtualbox" machine manager
2013-04-07 15:57:17,861 [lib.cuckoo.core.scheduler] INFO: Loaded 1 machine/s
2013-04-07 15:57:17,862 [lib.cuckoo.core.scheduler] INFO: Waiting for analysis tasks...

Note that Cuckoo checks for updates on a remote API located at api.cuckoosandbox.org. You can avoid this by
disabling the version_check option in the configuration file.

Now Cuckoo is ready to run and it’s waiting for submissions.

cuckoo.py accepts some command line options as shown by the help:

usage: cuckoo.py [-h] [-g] [-d] [-v] [-a] [-t] [-m MAX_ANALYSIS_COUNT]
[-u USER] [--clean]

optional arguments:

-h, —--help show this help message and exit

-g, ——quiet Display only error messages

-d, ——-debug Display debug messages

-v, —-version show program's version number and exit
-a, ——artwork Show artwork

-t, ——test Test startup

-m MAX_ANALYSIS_COUNT, --max—analysis-count MAX_ANALYSIS_COUNT
Maximum number of analyses
-u USER, —--user USER Drop user privileges to this user
-—-clean Remove all tasks and samples and their associated data

Most importantly ——debug and ——quiet respectively increase and decrease the logging verbosity.

2.3.2 Submit an Analysis

* Submission Utility

38 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

o AP]
e Distributed Cuckoo

e Python Functions

Submission Utility

The easiest way to submit an analysis is to use the provided submit.py command-line utility. It currently has the

following options available:

usage: submit.py [-h] [-d] [-—-remote REMOTE] [--url] [--package PACKAGE]
[-—custom CUSTOM] [—--owner OWNER] [--timeout TIMEOUT]
[-0 OPTIONS] [--priority PRIORITY] [--machine MACHINE]

[-—platform PLATFORM] [--memory] [—-—enforce-timeout]

[-—clock CLOCK] [--tags TAGS] [--max MAX] [--pattern PATTERN]
[-—shuffle] [--unique] [-—-quiet]

target

positional arguments:
target

optional arguments:
-h, —-help
-d, —--debug
——remote REMOTE

—--url

—-package PACKAGE
——custom CUSTOM
——owner OWNER
—-—timeout TIMEOUT

-o OPTIONS, --options

—-priority PRIORITY

—--machine MACHINE
—-—platform PLATFORM

——memory
-—enforce-timeout

——clock CLOCK
—-—tags TAGS

——-max MAX
—-—pattern PATTERN
—--shuffle
——unique

-—quiet

URL, path to the file or folder to analyze

show this help message and exit

Enable debug logging

Specify IP:port to a Cuckoo API server to submit
remotely
Specify
Specify
Specify
Specify
Specify
OPTIONS
Specify options for the analysis package
"name=value, name2=valuel2")

Specify a priority for the analysis represented by an
integer

Specify the identifier of a machine you want to use
Specify the operating system platform you want to use
(windows/darwin/linux)

Enable to take a memory dump of the analysis machine
Enable to force the analysis to run for the full
timeout period

Set virtual machine clock

Specify tags identifier of a machine you want to use
Maximum samples to add in a row

Pattern of files to submit

Shuffle samples before submitting them

Only submit new samples, ignore duplicates

Only print text on failure

whether the target is an URL
an analysis package

any custom value

the task owner

an analysis timeout

(e.qg.

If you specify a directory as path, all the files contained in it will be submitted for analysis.

The concept of analysis packages will be dealt later in this documentation (at Analysis Packages). Following are some

usage examples:

Example: submit a local binary:

2.3. Usage

Cuckoo Sandbox Book, Release 2.0-dev

‘$./utils/submit.py /path/to/binary ‘

Example: submit an URL:

’$./utils/submit.py —--url http://www.example.com ‘

Example: submit a local binary and specify an higher priority:

’$./utils/submit.py —--priority 5 /path/to/binary ‘

Example: submit a local binary and specify a custom analysis timeout of 60 seconds:

‘$./utils/submit.py —-timeout 60 /path/to/binary ‘

Example: submit a local binary and specify a custom analysis package:

‘$./utils/submit.py —--package <name of package> /path/to/binary

Example: submit a local binary and specify a custom analysis package and some options (in this case a command line
argument for the malware):

’$./utils/submit.py —-package exe —--options arguments=--dosomething /path/to/binary.exe‘

Example: submit a local binary to be run on virtual machine cuckool:

’$./utils/submit.py —-machine cuckool /path/to/binary ‘

Example: submit a local binary to be run on a Windows machine:

‘$./utils/submit.py —--platform windows /path/to/binary ‘

Example: submit a local binary and take a full memory dump of the analysis machine:

‘$./utils/submit.py —-memory /path/to/binary

Example: submit a local binary and force the analysis to be executed for the full timeout (disregarding the internal
mechanism that Cuckoo uses to decide when to terminate the analysis):

‘$./utils/submit.py —--enforce-timeout /path/to/binary ‘

Example: submit a local binary and set virtual machine clock. Format is %m-%d-%Y %H:%M:%S. If not specified,
the current time is used. For example if we want run a sample the 24 january 2001 at 14:41:20:

‘$./utils/submit.py —--clock "01-24-2001 14:41:20" /path/to/binary

Example: submit a sample for Volatility analysis (to reduce side effects of the cuckoo hooking, switch it off with
options free=True):

’$./utils/submit.py —-memory —--options free=True /path/to/binary ‘

API

Detailed usage of the REST API interface is described in REST API.

Distributed Cuckoo

Detailed usage of the Distributed Cuckoo API interface is described in Distributed Cuckoo.

40 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

Python Functions

In order to keep track of submissions, samples and overall execution, Cuckoo uses a popular Python ORM called
SQLAIchemy that allows you to make the sandbox use SQLite, MySQL, PostgreSQL and several other SQL database
systems.

Cuckoo is designed to be easily integrated in larger solutions and to be fully automated. In order to automate analysis
submission we suggest to use the REST API interface described in REST API, but in case you want to write your own
Python submission script, you can also use the add_path () and add_url () functions.

add_path (file _path[, timeout:O[, package:None[, options:None[, priority:][, custom:None[,

”

owner= [, machine=None| , platform:None[, memory:False[, enforce_timeout:False],

clock=None[]] 11111111

Add a local file to the list of pending analysis tasks. Returns the ID of the newly generated task.
Parameters
* file_ path (string) - path to the file to submit
* timeout (integer)— maximum amount of seconds to run the analysis for
* package (string or None) - analysis package you want to use for the specified file

* options (string or None) - list of options to be passed to the analysis package (in
the format key=value, key=value)

* priority (integer) — numeric representation of the priority to assign to the specified
file (1 being low, 2 medium, 3 high)

* custom (string or None) — custom value to be passed over and possibly reused at
processing or reporting

e owner (string or None) - task owner

* machine (string or None) — Cuckoo identifier of the virtual machine you want to
use, if none is specified one will be selected automatically

* platform(string or None)-operating system platform you want to run the analysis
one (currently only Windows)

* memory (True or False)-setto True to generate a full memory dump of the analysis
machine

e enforce_timeout (True or False)-setto True to force the execution for the full
timeout

* clock (string or None)-provide a custom clock time to set in the analysis machine
Return type integer

Example usage:

>>> from lib.cuckoo.core.database import Database

1

2 >>> db = Database ()

3 >>> db.add_path("/tmp/malware.exe™)
4 1

50 >>>

add url (url[, timeout:O[, package:None[, options:None[, priority=1 [custom:None[, owner=" “[, ma-
chine:None[, platform:None[, memory:False[, enforce_timeout=False], clock=None[]]]]]]

)
Add a local file to the list of pending analysis tasks. Returns the ID of the newly generated task.

Parameters

2.3. Usage 41

http://www.sqlalchemy.org

Cuckoo Sandbox Book, Release 2.0-dev

* url (string)— URL to analyze
* timeout (integer)— maximum amount of seconds to run the analysis for
* package (string or None)-— analysis package you want to use for the specified URL

* options (string or None) — list of options to be passed to the analysis package (in
the format key=value, key=value)

* priority (integer) — numeric representation of the priority to assign to the specified
URL (1 being low, 2 medium, 3 high)

* custom (string or None) — custom value to be passed over and possibly reused at
processing or reporting

* owner (string or None) - task owner

* machine (string or None) — Cuckoo identifier of the virtual machine you want to
use, if none is specified one will be selected automatically

* platform(string or None)-operating system platform you want to run the analysis
one (currently only Windows)

* memory (True or False)-setto True to generate a full memory dump of the analysis
machine

e enforce_timeout (True or False)-setto True to force the execution for the full
timeout

* clock (string or None)-provide a custom clock time to set in the analysis machine
Return type integer

Example Usage:

>>> from lib.cuckoo.core.database import Database
>>> db = Database()

>>> db.add_url ("http://www.cuckoosandbox.org")

2

>>>

2.3.3 Web interface

Cuckoo provides a full-fledged web interface in the form of a Django application. This interface will allow you to
submit files, browse through the reports as well as search across all the analysis results.

Configuration

The web interface pulls data from a Mongo database, so having the Mongo reporting module enabled in
reporting.conf is mandatory for this interface. If that’s not the case, the application won’t start and it will
raise an exception.

The interface can be configured by editing local_settings.py under web/web/:

If you want to customize your cuckoo path set it here.
CUCKOO_PATH = "/where/cuckoo/is/placed/"

Maximum upload size.
MAX_UPLOAD_SIZE = 26214400

Override default secret key stored in secret_key.py

42 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

Make this unique, and don't share it with anybody.
SECRET_KEY = "YOUR_RANDOM _KEY"

Language code for this installation. All choices can be found here:
http://www.il8nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = "en-us"

ADMINS = (
("Your Name", "your_emailfexample.com"),

MANAGERS = ADMINS

Allow verbose debug error message 1in case of application fault.

It's strongly suggested to set it to False if you are serving the
web application from a web server front—-end (i.e. Apache).

DEBUG = True

A list of strings representing the host/domain names that this Django site

can serve.

Values in this list can be fully qualified names (e.g. 'www.example.com').

When DEBUG is True or when running tests, host validation is disabled; any

host will be accepted. Thus it's usually only necessary to set it in production.
ALLOWED_HOSTS = ["%"]

In production deploys it is suggested to disable verbose error reporting setting DEBUG to False, it could lead to an
information disclosure vulnerability. It is also suggested to set at least one administrator email address in the ADMIN
variable to enable error notification by mail.

In some cases, if you are submitting large files, it is suggested to increase the maximum file size limit editing
MAX_UPLOAD_SIZE.

Usage

In order to start the web interface, you can simply run the following command from the web/ directory:

‘$ python manage.py runserver

If you want to configure the web interface as listening for any IP on a specified port, you can start it with the following
command (replace PORT with the desired port number):

‘$ python manage.py runserver 0.0.0.0:PORT

You can serve Cuckoo’s web interface using WSGI interface with common web servers: Apache, Nginx, Unicorn and
so on. Please refer both to the documentation of the web server of your choice as well as Django documentation.

2.3.4 REST API

As mentioned in Submit an Analysis, Cuckoo provides a simple and lightweight REST API server implemented in
Flask, therefore in order to make the service work you’ll need it installed.

On Debian/Ubuntu with pip:

$ pip install flask

2.3. Usage 43

https://docs.djangoproject.com/
http://flask.pocoo.org/

Cuckoo Sandbox Book, Release 2.0-dev

Starting the API server

In order to start the API server you can simply do:

‘$./utils/api.py ‘

By default it will bind the service on localhost:8090. If you want to change those values, you can for example do this:

’$./utils/api.py ——-host 0.0.0.0 —-port 1337

Web deployment

While the default method of starting the API server works fine for many cases, some users may wish to deploy the
server in a robust manner. This can be done by exposing the API as a WSGI application through a web server. This
section shows a simple example of deploying the API via uWSGI and Nginx. These instructions are written with
Ubuntu GNU/Linux in mind, but may be adapted for other platforms.

This solution requires uWSGI, the uWSGI Python plugin, and Nginx. All are available as packages:

$ sudo apt-get install uwsgi uwsgi-plugin-python nginx

uWSGI setup First, use uWSGI to run the API server as an application.

To begin, create a uWSGI configuration file at /etc/uwsgi/apps—-available/cuckoo-api.ini:

[uwsgi]
plugins = python
chdir = /home/cuckoo/cuckoo

file = utils/api.py
uid = cuckoo

gid = cuckoo
callable = app

This configuration inherits a number of settings from the distribution’s default uWSGI configuration, loading api . py
from the Cuckoo installation directory. In this example we installed Cuckoo in /home/cuckoo/cuckoo, if Cuckoo is in-
stalled in a different path, adjust the configuration (the chdir setting, and perhaps the uid and gid settings) accordingly.

Enable the app configuration and start the server:

$ sudo 1ln -s /etc/uwsgi/apps-available/cuckoo-api.ini /etc/uwsgi/apps—-enabled/
$ sudo service uwsgi start cuckoo-api # or reload, if already running

Note: Logs for the application may be found in the standard directory for distribution app instances, i.e.:
/var/log/uwsgi/app/cuckoo—-api.log
The UNIX socket is created in a conventional location as well:

/run/uwsgi/app/cuckoo-api/socket

Nginx setup With the API server running in uWSGI, Nginx can now be set up to run as a web server/reverse proxy,
backending HTTP requests to it.

To begin, create a Nginx configuration file at /etc/nginx/sites-available/cuckoo—-api:

44 Chapter 2. Contents

http://uwsgi-docs.readthedocs.org/en/latest/
http://nginx.org/

Cuckoo Sandbox Book, Release 2.0-dev

upstream _uwsgi_cuckoo_api {
server unix:/run/uwsgi/app/cuckoo—-api/socket;

HTTP server

#
server {
listen 8090;
listen [::]:8090 ipvéonly=on;

REST API app

location / {
uwsgi_pass _uwsgi_cuckoo_api;
include uwsgi_params;

}

Make sure that Nginx can connect to the uWSGI socket by placing its user in the cuckoo group:

$ sudo adduser www-data cuckoo

Enable the server configuration and start the server:

$ sudo 1ln -s /etc/nginx/sites-available/cuckoo-api /etc/nginx/sites—enabled/
$ sudo service nginx start # or reload, if already running

At this point, the API server should be available at port 8090 on the server. Various configurations may be applied to

extend this configuration, such as to tune server performance, add authentication, or to secure communications using
HTTPS.

Resources

Following is a list of currently available resources and a brief description of each one. For details click on the resource
name.

2.3. Usage 45

Cuckoo Sandbox Book, Release 2.0-dev

Resource Description

POST Adds a file to the list of pending tasks to be processed and analyzed.

/tasks/create/file

POST Adds an URL to the list of pending tasks to be processed and analyzed.

/tasks/create/utl

GET Returns the list of tasks stored in the internal Cuckoo database. You can optionally specify a limit

/tasks/list of entries to return.

GET Returns the details on the task assigned to the specified ID.

/tasks/view

GET Reschedule a task assigned to the specified ID.

/tasks/reschedyle

GET Removes the given task from the database and deletes the results.

/tasks/delete

GET Returns the report generated out of the analysis of the task associated with the specified ID. You

/tasks/report | can optionally specify which report format to return, if none is specified the JSON report will be
returned.

GET Retrieves one or all screenshots associated with a given analysis task ID.

/tasks/screenshots

GET Re-run reporting for task associated with a given analysis task ID.

/tasks/rereport

GET Returns a list of memory dump files associated with a given analysis task ID.

/memory/list

GET Retrieves one memory dump file associated with a given analysis task ID.

/memory/get

GET Search the analyzed binaries by MD5 hash, SHA256 hash or internal ID (referenced by the tasks

/files/view details).

GET Returns the content of the binary with the specified SHA256 hash.

[files/get

GET Returns the content of the PCAP associated with the given task.

/pcap/get

GET /ma- Returns the list of analysis machines available to Cuckoo.

chines/list

GET /ma- Returns details on the analysis machine associated with the specified name.

chines/view

GET Returns the basic cuckoo status, including version and tasks overview.

/cuckoo/status

GET Returns VPN status.

/vpn/status

/tasks/create/file

POST /tasks/create/file
Adds a file to the list of pending tasks. Returns the ID of the newly created task.

Example request:

curl -F file=@/path/to/file http://localhost:8090/tasks/create/file

Example request using Python:

import requests
import json

46 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

REST_URL = "http://localhost:8090/tasks/create/file"
SAMPLE_FILE = "/path/to/malwr.exe"

with open (SAMPLE_FILE, "rb") as sample:
multipart_file = {"file": ("temp_file_name", sample)}
request = requests.post (REST_URL, files=multipart_file)

Add your code to error checking for request.status_code.

json_decoder = json.JSONDecoder ()
task_id = Jjson_decoder.decode (request.text) ["task_id"]

Add your code for error checking if task_id is None.

Example response:

{
"task_id" : 1

Form parameters:
» file (required) - sample file (multipart encoded file content)
* package (optional) - analysis package to be used for the analysis
* timeout (optional) (int) - analysis timeout (in seconds)
* priority (optional) (int) - priority to assign to the task (1-3)
* options (optional) - options to pass to the analysis package
* machine (optional) - label of the analysis machine to use for the analysis

* platform (optional) - name of the platform to select the analysis machine from
(e.g. “windows”)

* tags (optional) - define machine to start by tags. Platform must be set to use that.
Tags are comma separated

* custom (optional) - custom string to pass over the analysis and the process-
ing/reporting modules

* owner (optional) - task owner in case multiple users can submit files to the same
cuckoo instance

* memory (optional) - enable the creation of a full memory dump of the analysis ma-
chine

* enforce_timeout (optional) - enable to enforce the execution for the full timeout
value

* clock (optional) - set virtual machine clock (format %m-%d-%Y %H:%M:%S)
Status codes:

* 200 - no error

/tasks/create/url

POST /tasks/create/url

2.3. Usage 47

Cuckoo Sandbox Book, Release 2.0-dev

Adds a file to the list of pending tasks. Returns the ID of the newly created task.

Example request:

curl -F url="http://www.malicious.site" http://localhost:8090/tasks/create/url

Example request using Python:

import requests
import json

REST_URL = "http://localhost:8090/tasks/create/url"
SAMPLE_URL = "http://example.org/malwr.exe"
multipart_url = {"url": ("", SAMPLE_URL) }

request = requests.post (REST_URL, files=multipart_url)
Add your code to error checking for request.status_code.

json_decoder = json.JSONDecoder ()
task_id = Jjson_decoder.decode (request.text) ["task_id"]

Add your code toerror checking if task_id is None.

Example response:

{
"task_id" : 1
}

Form parameters:
* url (required) - URL to analyze (multipart encoded content)
* package (optional) - analysis package to be used for the analysis
* timeout (optional) (int) - analysis timeout (in seconds)
* priority (optional) (int) - priority to assign to the task (1-3)
* options (optional) - options to pass to the analysis package
* machine (optional) - label of the analysis machine to use for the analysis

* platform (optional) - name of the platform to select the analysis machine from
(e.g. “windows”)

* tags (optional) - define machine to start by tags. Platform must be set to use that.
Tags are comma separated

* custom (optional) - custom string to pass over the analysis and the process-
ing/reporting modules

* owner (optional) - task owner in case multiple users can submit files to the same
cuckoo instance

* memory (optional) - enable the creation of a full memory dump of the analysis ma-
chine

* enforce_timeout (optional) - enable to enforce the execution for the full timeout
value

* clock (optional) - set virtual machine clock (format %m-%d-%Y %H:%M:%S)

Status codes:

48

Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

/tasks/list

* 200 - no error

GET /tasks/list/ (int: limit) / (int: offset)

Returns list of tasks.

Example request:

curl http://localhost:8090/tasks/list

Example response:

{

"tasks":

{

[

"category": "url",

"machine": null,

"errors": [],

"target": "http://www.malicious.site",

"package": null,
"sample_id": null,
"guest": {1},
"custom": null,
"owner": "",
"priority": 1,
"platform": null,

"options": null,

"status": "pending",
"enforce_timeout": false,
"timeout": O,

"memory": false,

"tags": []

"id": 1,

"added_on": "2012-12-19 14:18:25",

"completed_on": null

"category": "file",
"machine": null,

"errors": [],

"target": "/tmp/malware.exe",

"package": null,
"sample_id": 1,
"guest": {},
"custom": null,
"owner": "",
"priority": 1,
"platform": null,

"options": null,
"status": "pending",
"enforce_timeout": false,
"timeout": O,
"memory": false,
"tags": [

"32bit",

"acrobat_6",

1,

2.3. Usage

49

Cuckoo Sandbox Book, Release 2.0-dev

"id": 2,
"added_on": "2012-12-19 14:18:25",
"completed_on": null

Parameters:
e limit (optional) (int) - maximum number of returned tasks
* offset (optional) (int) - data offset

Status codes:

e 200 - no error

/tasks/view

GET /tasks/view/ (int: id)
Returns details on the task associated with the specified ID.

Example request:

curl http://localhost:8090/tasks/view/1

Example response:

{

"task": {
"category": "url",
"machine": null,
"errors": [1,
"target": "http://www.malicious.site",

"package": null,
"sample_id": null,
"guest": {1},
"custom": null,
"owner": "",
"priority": 1,
"platform": null,

"options": null,
"status": "pending",
"enforce_timeout": false,
"timeout": O,
"memory": false,
"tags": [

"32bit",

"acrobat_o6",
]I
"id": 1,
"added_on": "2012-12-19 14:18:25",
"completed_on": null

Note: possible value for key status:

* pending

50

Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

* running

s completed

* reported
Parameters:

* id (required) (int) - ID of the task to lookup
Status codes:

* 200 - no error

e 404 - task not found

/tasks/reschedule

GET /tasks/reschedule/ (int: id) / (int: priority)
Reschedule a task with the specified ID and priority (default priority is 1).

Example request:

curl http://localhost:8090/tasks/reschedule/1

Example response:

{
"status": "OK"

}

Parameters:
* id (required) (int) - ID of the task to reschedule
* priority (optional) (int) - Task priority
Status codes:
e 200 - no error

e 404 - task not found

/tasks/delete

GET /tasks/delete/ (int: id)

Removes the given task from the database and deletes the results.

Example request:

curl http://localhost:8090/tasks/delete/1

Parameters:

* id (required) (int) - ID of the task to delete
Status codes:

* 200 - no error

* 404 - task not found

¢ 500 - unable to delete the task

2.3. Usage 51

Cuckoo Sandbox Book, Release 2.0-dev

/tasks/report

GET /tasks/report/ (int: id) | (str: format)
Returns the report associated with the specified task ID.

Example request:

curl http://localhost:8090/tasks/report/1

Parameters:
* id (required) (int) - ID of the task to get the report for

e format (optional) - format of the report to retrieve
[json/html/all/dropped/package_files]. If none is specified the JSON report will
be returned. all returns all the result files as tar.bz2, dropped the dropped files as
tar.bz2, package_files files uploaded to host by analysis packages.

Status codes:
¢ 200 - no error
* 400 - invalid report format

* 404 - report not found

/tasks/screenshots

GET /tasks/screenshots/ (int: id) / (str: number)
Returns one or all screenshots associated with the specified task ID.

Example request:

wget http://localhost:8090/tasks/screenshots/1

Parameters:
* id (required) (int) - ID of the task to get the report for

* screenshot (optional) - numerical identifier of a single screenshot (e.g. 0001,
0002)

Status codes:

e 404 - file or folder not found

/tasks/rereport

GET /tasks/rereport/ (int: id)
Re-run reporting for task associated with the specified task ID.

Example request:

curl http://localhost:8090/tasks/rereport/1

Example response:

52 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

{

"success": true

}

Parameters:

* id (required) (int) - ID of the task to re-run report
Status codes:

* 200 - no error

e 404 - task not found

/memory/list

GET /memory/list/ (int: id)

Returns a list of memory dump files or one memory dump file associated with the specified
task ID.

Example request:

wget http://localhost:8090/memory/list/1

Parameters:
* id (required) (int) - ID of the task to get the report for
Status codes:

e 404 - file or folder not found

/memory/get

GET /memory/get/ (int: id) / (str: number)
Returns one memory dump file associated with the specified task ID.

Example request:

wget http://localhost:8090/memory/get/1/1908

Parameters:
* id (required) (int) - ID of the task to get the report for

* pid (required) - numerical identifier (pid) of a single memory dump file (e.g. 205,
1908)

Status codes:

e 404 - file or folder not found

[files/view

GET /files/view/md5/ (str: md5)
GET /files/view/sha256/ (str: sha256)
GET /iles/view/id/ (int: id)

2.3. Usage 53

Cuckoo Sandbox Book, Release 2.0-dev

Returns details on the file matching either the specified MD5 hash, SHA256 hash or ID.

Example request:

curl http://localhost:8090/files/view/id/1

Example response:

{

855",
e9ced7d0d13ct

"sample": {
"shal": "da39%a3ee5e6b4b0d3255bfef95601890afd80709",
"file_type": "empty",
"file_size": O,
"crc32": "00000000",
"ssdeep": "3::",
"sha256": "e3b0c44298fclcld49afbf4c8996£fb92427ae41e46490934ca495991b7852
"shab512": "cf83el1357eefb8bdf1542850d66d8007d620e405005715dc83f4a921d36d
"id": 1,
"md5": "d41d8cd98f00b204e9800998ecf8427e"
}
}
Parameters:

* md5 (optional) - MDS hash of the file to lookup

* sha256 (optional) - SHA256 hash of the file to lookup

* id (optional) (int) - ID of the file to lookup

Status codes:

e 200 - no error

* 400 - invalid lookup term

e 404 - file not found

[files/get

GET /files/get/ (str: sha256)

Returns the binary content of the file matching the specified SHA256 hash.

Example request:

curl http://localhost:8090/files/get/83b0c44298fclcl49afbf408996fb92427ae4le4649b934ca495991

Status codes:

* 200 - no error

e 404 - file not found

/pcap/get

GET /pcap/get/ (int: task)

Returns the content of the PCAP associated with the given task.

Example request:

54

Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

curl http://localhost:8090/pcap/get/1 > dump.pcap

Status codes:
e 200 - no error

e 404 - file not found

/machines/list

GET /machines/list

Returns a list with details on the analysis machines available to Cuckoo.

Example request:

curl http://localhost:8090/machines/list

Example response:

{

"machines": [
{
"status": null,
"locked": false,
"name": "cuckool",

"resultserver_ip":

"192.168.56.

l",

"ip": "192.168.56.101",
"tags": [
"32bit",
"acrobat_o6",
J 14
"label": "cuckool",

"locked_changed_on":

null,

"platform": "windows",
"snapshot": null,
"interface": null,
"status_changed_on": null,
"id": 1,
"resultserver_port": "2042"

Status codes:

* 200 - no error

/machines/view

GET /machines/view/ (str: name)

Returns details on the analysis machine associated with the given name.

Example request:

curl http://localhost:8090/machines/view/cuckool

Example response:

2.3. Usage

55

Cuckoo Sandbox Book, Release 2.0-dev

"machine": {
"status": null,
"locked": false,
"name": "cuckool",
"resultserver_ip": "192.168.56.1",
"ip": "192.168.56.101",
"tags": [
"32bit",
"acrobat_o6",
]I
"label": "cuckool",
"locked_changed_on": null,
"platform": "windows",
"snapshot": null,
"interface": null,
"status_changed_on": null,
"id": 1,
"resultserver_port": "2042"

}

Status codes:
* 200 - no error

¢ 404 - machine not found

/cuckoo/status

GET /cuckoo/status/

Returns status of the cuckoo server. In version 1.3 the diskspace entry was added. The
diskspace entry shows the used, free, and total diskspace at the disk where the respective
directories can be found. The diskspace entry allows monitoring of a Cuckoo node through
the Cuckoo API. Note that each directory is checked separately as one may create a symlink
for $CUCKOO/storage/analyses to a separate harddisk, but keep $CUCKOO/storage/binaries

as-is. (This feature is only available under Unix!)

In version 1.3 the cpuload entry was also added - the cpuload entry shows the CPU load for
the past minute, the past 5 minutes, and the past 15 minutes, respectively. (This feature is only

available under Unix!)
Diskspace directories:
* analyses - $CUCKOO/storage/analyses/
* binaries - $CUCKOO/storage/binaries/
* temporary - tmppath as specified in conf/cuckoo.conf

Example request:

curl http://localhost:8090/cuckoo/status

Example response:

{
"tasks": {
"reported": 165,

56

Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

"running":
"total": 167,
"completed": O,
"pending":
}I
"diskspace": {
"analyses": {
"total": 491271233536,
"free": 71403470848,
"used": 419867762688
}V
"binaries": {
"total": 491271233536,
"free": 71403470848,
"used": 419867762688
}I
"temporary": {
"total": 491271233536,
"free": 71403470848,
"used": 419867762688
}
}I
"version": "1.0",
"protocol_version": 1,
"hostname": "PatientO",
"machines": {
"available": 4,
"total": 5

}

Status codes:

* 200 - no error

¢ 404 - machine not found

/vpn/status

GET /vpn/status
Returns VPN status.

Example request:

curl http://localhost:8090/vpn/status

Status codes:

e 200 - show status

¢ 500 - not available

2.3.5 Distributed Cuckoo

As mentioned in Submit an Analysis, Cuckoo provides a REST API for Distributed Cuckoo usage. The distributed
script allows one to setup a single REST API point to which samples and URLSs can be submitted which will then, in

turn, be submitted to one of the configured Cuckoo nodes.

2.3. Usage

57

Cuckoo Sandbox Book, Release 2.0-dev

A typical setup thus includes a machine on which the distributed script is run and one or more machines running an
instance of the Cuckoo daemon (. /cuckoo.py) and the Cuckoo REST API.

A few notes;
* Using the distributed script makes more sense when running at least two cuckoo nodes.

* The distributed script can be run on a machine that also runs a Cuckoo daemon and REST API, however, make
sure it has enough disk space if the intention is to submit a lot of samples.

Dependencies

The distributed script uses a few Python libraries which can be installed through the following command (on De-
bian/Ubuntu):

$ sudo pip install flask flask-sglalchemy requests

Starting the Distributed REST API

The Distributed REST API requires a few commandline options in order to run. Following is a listing of all available
commandline options:

$./distributed/app.py —h
usage: app.py [-h] [-s SETTINGS] [-v] [host] [port]

positional arguments:
host Host to listen on.
port Port to listen on.

optional arguments:
-h, --help show this help message and exit
-s SETTINGS, --settings SETTINGS
Settings file.
-v, —-verbose Enable verbose logging.

The various configuration options are described in the configuration file, but following we have more in-depth descrip-
tions as well.

Report Formats

The reporting formats denote which reports you’d like to retrieve later on. Note that all task-related data will be
removed from the Cuckoo nodes once the related reports have been fetches so that the machines are not running out of
disk space. This does, however, force you to specify all the report formats that you’re interested in, because otherwise
that information will be lost.

Reporting formats include, but are not limited to and may also include your own reporting formats, json, html, etc.

Samples Directory

The samples directory denotes the directory where the submitted samples will be stored temporarily, until they’re
passed on to a Cuckoo node and processed.

58 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

Reports Directory

Much like the Samples Directory the Reports Directory defines the directory where reports will be stored until
they’re fetched and deleted from the Distributed REST API.

RESTful resources

Following are all RESTful resources. Also make sure to check out the Quick usage section which documents the most
commonly used commands.

Resource Description

GET GET /api/node Get a list of all enabled Cuckoo nodes.
POST POST /api/node Register a new Cuckoo node.

GET GET /api/node/<name> Get basic information about a node.

PUT PUT /api/node/<name> Update basic information of a node.
DELETE DELETE /api/node/<name> | Disable (not completely remove!) a node.
GET GET /api/task Get a list of all (or a part) of the tasks in the database.
POST POST /api/task Create a new analysis task.

GET GET /api/task/<id> Get basic information about a task.
DELETE DELETE /api/task/<id> Delete all associated information of a task.
GET GET /api/report/<id>/<format> Fetch an analysis report.

GET /api/node

Returns all enabled nodes. For each node its associated name, API url, and machines are returned:

$ curl http://localhost:9003/api/node
{

"success": true,
"nodes": {
"localhost": {
"machines": [
{
"name": "cuckool",
"platform": "windows",
"tags": []
}
1,
"name": "localhost",
"url": "http://localhost:8090/"
}
}
}
POST /api/node

Register a new Cuckoo node by providing the name and the URL:

$ curl http://localhost:9003/api/node -F name=localhost \
-F url=http://localhost:8090/
{

2.3. Usage 59

Cuckoo Sandbox Book, Release 2.0-dev

"success": true

GET /api/node/<name>

Get basic information about a particular Cuckoo node:

$ curl http://localhost:9003/api/node/localhost
{

"success": true,
"nodes": [
{
"name": "localhost",
"url": "http://localhost:8090/"
"machines": [
{
"name": "cuckool",
"platform": "windows",
"tags": []

PUT /api/node/<name>

Update basic information of a Cuckoo node:

$ curl -XPUT http://localhost:9003/api/node/localhost —-F name=newhost \
-F url=http://1.2.3.4:8090/

"success": true

DELETE /api/node/<name>

Disable a Cuckoo node, therefore not having it process any new tasks, but keeping its history in the Distributed’s
database:

$ curl -XDELETE http://localhost:9003/node/localhost
{

"success": true

GET /api/task

Get a list of all tasks in the database. In order to limit the amount of results, there’s an of fset, 1imit, finished,
and owner field available:

$ curl http://localhost:9003/api/task?limit=1
{

60 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

"success": true,

"tasks":
lll":

{
{

"clock": null,

"custom": null,

"owner": "",

"enforce_timeout": null,

"machine": null,

"memory": null,

"options": null,

"package": null,

"path": "/tmp/dist-samples/tmphal8mS",
"platform": "windows",

"priority": 1,
"tags": null,
"task_id": 1,
"timeout": null

POST /api/task

Submit a new file or URL to be analyzed:

$ curl http:
{

//localhost:9003/api/task -F file=@sample.exe

"success": true,
"task_id": 2

GET /api/task/<id>

Get basic information about a particular task:

$ curl http:

{
"success
"tasks":
ll2|l:

//localhost:9003/api/task/2

": true,

{

{
"id": 2,
"clock": null,
"custom": null,

"owner": "",
"enforce_timeout": null,
"machine": null,
"memory": null,
"options": null,
"package": null,

"path": "/tmp/tmpPwUeXm",
"platform": "windows",

"priority": 1,
"tags": null,
"timeout": null,
"task_id": 1,

2.3. Usage

61

Cuckoo Sandbox Book, Release 2.0-dev

"node_id": 2,
"finished": false

DELETE /api/task/<id>

Delete all associated data of a task, namely the binary and the reports:

$ curl -XDELETE http://localhost:9003/api/task/2
{
"success": true

}

GET /api/report/<id>/<format>

Fetch a report for the given task in the specified format:

Defaults to the JSON report.
$ curl http://localhost:9003/report/2

Quick usage

For practical usage the following few commands will be most interesting.

Register a Cuckoo node - a Cuckoo API running on the same machine in this case:

$ curl http://localhost:9003/api/node \
—-F name=localhost -F url=http://localhost:8090/

Disable a Cuckoo node:

‘$ curl —-XDELETE http://localhost:9003/api/node/localhost

Submit a new analysis task without any special requirements (e.g., using Cuckoo tags, a particular machine, etc):

‘$ curl http://localhost:9003/api/task -F file=@/path/to/sample.exe

Get the report of a task has been finished (if it hasn’t finished you’ll get an error with code 420). Following example
will default to the JSON report:

‘$ curl http://localhost:9003/api/report/1

Proposed setup

The following description depicts a Distributed Cuckoo setup with two Cuckoo machines, cuckoo0 and cuckool. In
this setup the first machine, cuckoo0, also hosts the Distributed Cuckoo REST API.

Configuration settings

Our setup will require a couple of updates with regards to the configuration files.

62 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

conf/cuckoo.conf Update process_results tooff as we will be running our own results processing script (for
performance reasons).

Update tmppath to something that holds enough storage to store a few hundred binaries. On some servers or setups
/tmp may have a limited amount of space and thus this wouldn’t suffice.

Update connection to use something not sqlite3. Preferably PostgreSQL or MySQL. SQLite3 doesn’t support
multi-threaded applications that well and this will give errors at random if used.

You should create your own empty database for the distributed cuckoo setup. Do not be tempted to use any existing
cuckoo database in order to avoid update problems with the DB scripts. In the config use the new database name, the
remaining stuff like usernames , servers can be the same as for your cuckoo install.Dont forget to use one DB per node
and another one more for the first machine which run the distributed script (so the say the “management machine”).

conf/processing.conf You may want to disable some processing modules, such as virustotal.

conf/reporting.conf Depending on which report(s) are required for integration with your system it might make sense
to only make those report(s) that you’re going to use. Thus disable the other ones.

conf/virtualbox.conf Assuming VirtualBox is the Virtual Machine manager of choice, the mode will have to be
changed to headless or you will have some restless nights.

Setup Cuckoo

On each machine the following three scripts should be ran:

./cuckoo.py
./utils/api.py -H 1.2.3.4 # IP accessible by the Distributed script.
./utils/process.py auto

One way to do this is by placing each script in its own screen (1) session as follows, this allows one to check back
on each script to ensure it’s (still) running successfully:

$ screen -S cuckoo ./cuckoo.py
$ screen -S api ./utils/api.py
$ screen -S process ./utils/process.py auto

Setup Distributed Cuckoo

On the first machine (so the say the “management machine”) start a few separate screen (1) sessions for the
Distributed Cuckoo scripts with all the required parameters (see the rest of the documentation on the parameters for
this script):

screen -S distributed ./distributed/app.py

SCREEN -S dist_scheduler ./distributed/instance.py dist.scheduler
SCREEN -S dist_status ./distributed/instance.py dist.status
SCREEN -S cuckoo0O ./distributed/instance.py -v cuckoo0

SCREEN -S cuckool ./distributed/instance.py -v cuckool

Uy W A

The -v parameter enables verbose output and the cuckool parameter is the name assigned to the actual cuckoo instance
running the virtual machine while registering the node as outlined below.It’s mandatory to register the nodes before
run the instance.py due to the script check the DB.

2.3. Usage 63

Cuckoo Sandbox Book, Release 2.0-dev

Register Cuckoo nodes

As outlined in Quick usage the Cuckoo nodes have to be registered with the Distributed Cuckoo script:

$ curl http://localhost:9003/api/node —-F name=cuckool -F url=http://localhost:8090/
$ curl http://localhost:9003/api/node -F name=cuckool —-F url=http://1.2.3.4:8090/

Having registered the Cuckoo nodes all that’s left to do now is to submit tasks and fetch reports once finished. Doc-
umentation on these commands can be found in the Quick usage section. In case you are not using localhost, replace
localhost with the IP of the node where there distributed.py is running and the -F url parameter points to the nodes
running the actual virtual machines.

If you want to experiment a real load balancing between the nodes you should use a lower value for the threshold
parameter in the distributed/settings.py file, the default value is 500.

2.3.6 Analysis Packages
The analysis packages are a core component of Cuckoo Sandbox. They consist in structured Python classes which,
when executed in the guest machines, describe how Cuckoo’s analyzer component should conduct the analysis.

Cuckoo provides some default analysis packages that you can use, but you are able to create your own or modify the
existing ones. You can find them at analyzer/windows/modules/packages/.

As described in Submit an Analysis, you can specify some options to the analysis packages in the form of
keyl=valuel, key2=value?2. The existing analysis packages already include some default options that can be
enabled.

Following is the list of existing packages in alphabetical order:
* applet: used to analyze Java applets.
Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

— class: specify the name of the class to be executed. This option is mandatory for a correct
execution.

— procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

* bin: used to analyze generic binary data, such as shellcodes.
Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

— procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

e cpl: used to analyze Control Panel Applets.
Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

— procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

64 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

e d11: used to run and analyze Dynamically Linked Libraries.

Options:

free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

function: specify the function to be executed. If none is specified, Cuckoo will try to run
D11Main.

arguments: specify arguments to pass to the DLL through commandline.

loader: specify a process name to use to fake the DLL launcher name instead of
rundll32.exe (this is used to fool possible anti-sandboxing tricks of certain malware)

procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

* doc: used to run and analyze Microsoft Word documents.

Options:

free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

* exe: default analysis package used to analyze generic Windows executables.

Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be

executed freely.

— arguments: specify any command line argument to pass to the initial process of the sub-

mitted malware.

— procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-

cesses.

* generic: used to run and analyze generic samples via cmd.exe.

Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be

executed freely.

— procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-

CEsses.

e html: used to analyze Internet Explorer‘s behavior when opening the given HTML file.

Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be

executed freely.

— procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-

CESSES.

* ie: used to analyze Internet Explorer‘s behavior when opening the given URL.

Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be

executed freely.

2.3. Usage

65

Cuckoo Sandbox Book, Release 2.0-dev

— procmemdump [yes/no]J: if enabled, take memory dumps of all actively monitored pro-
cesses.

e jar: used to analyze Java JAR containers.
Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

— class: specify the path of the class to be executed. If none is specified, Cuckoo will try to
execute the main function specified in the Jar’s MANIFEST file.

— procmemdump [yes/no]J: if enabled, take memory dumps of all actively monitored pro-
cesses.

e msi: used to run and analyze MSI windows installer.
Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

— procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

e pdf: used to run and analyze PDF documents.
Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

— procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

¢ ppt: used to run and analyze Microsoft PowerPoint documents.
Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

— procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

* psl: used to run and analyze PowerShell scripts.
Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

— procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

e python: used to run and analyze Python scripts.
Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

— procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

* vbs: used to run and analysis VBSecript files.

66 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

— procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

e x1s: used to run and analyze Microsoft Excel documents.
Options:

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

— procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

e zip: used to run and analyze Zip archives.
Options:

— file: specify the name of the file contained in the archive to execute. If none is specified,
Cuckoo will try to execute sample.exe.

— free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

— arguments: specify any command line argument to pass to the initial process of the sub-
mitted malware.

— password: specify the password of the archive. If none is specified, Cuckoo will try to
extract the archive without password or use the password “infected”.

— procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

You can find more details on how to start creating new analysis packages in the Analysis Packages customization
chapter.

As you already know, you can select which analysis package to use by specifying its name at submission time (see
Submit an Analysis) as follows:

$./utils/submit.py --package <package name> /path/to/malware ‘

If none is specified, Cuckoo will try to detect the file type and select the correct analysis package accordingly. If the
file type is not supported by default the analysis will be aborted, therefore we encourage to specify the package name
whenever possible.

For example, to launch a malware and specify some options you can do:

‘$./utils/submit.py —-package dll —--options function=FunctionName, loader=explorer.exe /éath/to/malwaj

2.3.7 Analysis Results

Once an analysis is completed, several files are stored in a dedicated directory. All the analyses are stored under the
directory storage/analyses/ inside a subdirectory named after the incremental numerical ID that represents the analysis
task in the database.

Following is an example of an analysis directory structure:

2.3. Usage 67

Cuckoo Sandbox Book, Release 2.0-dev

|-— analysis.conf

|-— analysis.log

|-— binary

| —— dump.pcap

| —— memory.dmp

|-— files

| |-— 1234567890

| ' —— dropped.exe

|-— logs

| |-—— 1232.raw

| |-— 1540.raw

| —— 1118.raw

| -— reports

| |-— report.html

| | -— report.json

"—— shots
|-— 0001.jpg
|-— 0002. jpg
|-— 0003.Jjpg
"—-— 0004.jpg

analysis.conf

This is a configuration file automatically generated by Cuckoo to give its analyzer some details about the current
analysis. It’s generally of no interest to the end-user, as it’s used internally by the sandbox.

analysis.log

This is a log file generated by the analyzer and that contains a trace of the analysis execution inside the guest environ-
ment. It will report the creation of processes, files and eventual errors occurred during the execution.

dump.pcap

This is the network dump generated by tcpdump or any other corresponding network sniffer.

memory.dmp

In case you enabled it, this file contains the full memory dump of the analysis machine.

files/

This directory contains all the files the malware operated on and that Cuckoo was able to dump.

logs/

This directory contains all the raw logs generated by Cuckoo’s process monitoring.

reports/

This directory contains all the reports generated by Cuckoo as explained in the Configuration chapter.

68 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

shots/

This directory contains all the screenshots of the guest’s desktop taken during the malware execution.

2.3.8 Clean all Tasks and Samples

Since Cuckoo 1.2 a built-in —clean feature has been added, it drops all associated information of the tasks and samples
in the database. If you submit a task after running —clean then you’ll start with Task #1 again.

To clean your setup, run:

$./cuckoo.py --clean

To sum up, this command does the following:
* Delete analysis results.
* Delete submitted binaries.
¢ Delete all associated information of the tasks and samples in the configured database.

¢ Delete all data in the configured MongoDB (if configured and enabled in reporting.conf).

Warning: If you use this command you will delete permanently all data stored by Cuckoo in all storages: file
system, SQL database and MongoDB database. Use it only if you are sure you would clean up all the data.

2.3.9 Utilities

Cuckoo comes with a set of pre-built utilities to automate several common tasks. You can find them under the “utils”
folder.

Submission Utility

Submits samples to analysis. This tool is already described in Submit an Analysis.

Web Utility

Cuckoo’s web interface. This tool is already described in Submit an Analysis.

Processing Utility

Run the results processing engine and optionally the reporting engine (run all reports) on an already available analysis
folder, in order to not re-run the analysis if you want to re-generate the reports for it. This is used mainly in debugging
and developing Cuckoo. For example if you want run again the report engine for analysis number 1:

‘$./utils/process.py 1

If you want to re-generate the reports:

’$./utils/process.py —-report 1

Following are the usage options:

2.3. Usage 69

Cuckoo Sandbox Book, Release 2.0-dev

$./utils/process.py -h
usage: process.py [-h] [-d] [-r] [-p PARALLEL] [-u USER] [-m MODULES] id

positional arguments:
id ID of the analysis to process (auto for continuous

processing of unprocessed tasks).

optional arguments:

-h, —--help show this help message and exit
-d, ——-debug Display debug messages
-r, ——-report Re—generate report

-p PARALLEL, —--parallel PARALLEL
Number of parallel threads to use (auto mode only).

-u USER, —--user USER Drop user privileges to this user
-m MODULES, —--modules MODULES
Path to signature and reporting modules - overrides

default modules path.

As best practice we suggest to adopt the following configuration if you are running Cuckoo with many virtual ma-
chines:

* Run a stand alone process.py in auto mode (you choose the number of parallel threads)
 Disable Cuckoo reporting in cuckoo.conf (set process_results to off)
This could increase the performance of your system because the reporting is not yet demanded to Cuckoo.

With Cuckoo 2 a new processing utility was introduced, it is more stable and with better performance. It is dubbed
process2.py, following are the usage options:

$./utils/process2.py -h
usage: process2.py [-h] [-d] [-u USER] [-m MODULES] instance

positional arguments:
instance Task processing instance.

optional arguments:

-h, —-help show this help message and exit
-d, ——-debug Display debug messages
-u USER, —--user USER Drop user privileges to this user
-m MODULES, —--modules MODULES
Path to signature and reporting modules - overrides

default modules path.

Community Download Utility

This utility downloads signatures from Cuckoo Community Repository and installs specific additional modules in your
local setup and for example update it with all the latest available signatures. Following are the usage options:

$./utils/community.py -h
usage: community.py [-h] [-a] [-s] [-p] [-m] [-r] [-f] [-w] [-b BRANCH]

optional arguments:

-h, —--help show this help message and exit
-a, ——all Download everything

-s, ——-signatures Download Cuckoo signatures

-p, ——processing Download processing modules

70 Chapter 2. Contents

https://github.com/cuckoosandbox/community

Cuckoo Sandbox Book, Release 2.0-dev

-m, —--machinery Download machine managers

-n, ——analyzer Download analyzer modules

-g, ——agent Download agent modules

-r, —--reporting Download reporting modules

-f, ——force Install files without confirmation
-w, ——rewrite Rewrite existing files

-b BRANCH, --branch BRANCH
Specify a different branch

Example: install all available signatures:

$./utils/community.py --signatures --force

Database migration utility
This utility is developed to migrate your data between Cuckoo’s release. It’s developed on top of the Alembic frame-

work and it should provide data migration for both SQL database and Mongo database. This tool is already described
in Upgrade from a previous release.

Stats utility

This is a really simple utility which prints some statistics about processed samples:

$./utils/stats.py

1 samples in db

1 tasks in db

pending 0 tasks

running 0 tasks
completed 0 tasks
recovered 0 tasks
reported 1 tasks
failed_analysis 0 tasks
failed_processing 0 tasks
roughly 32 tasks an hour
roughly 778 tasks a day

Machine utility

The machine.py utility is designed to help you automatize the configuration of virtual machines in Cuckoo. It takes a
list of machine details as arguments and write them in the specified configuration file of the machinery module enabled
in cuckoo.conf. Following are the available options:

$./utils/machine.py -h

usage: machine.py [-h] [--debug] [--add] [--delete] [--ip IP]
[--platform PLATFORM] [--tags TAGS] [-—-interface INTERFACE]
[-—-snapshot SNAPSHOT] [--resultserver RESULTSERVER]
vmname

positional arguments:
vmname Name of the Virtual Machine.

optional arguments:
-h, —--help show this help message and exit
—-—debug Debug log in case of errors.

2.3. Usage 71

http://alembic.readthedocs.org/en/latest/

Cuckoo Sandbox Book, Release 2.0-dev

—-—add Add a Virtual Machine.
—-—delete Delete a Virtual Machine.

-—-ip IP Static IP Address.

——platform PLATFORM Guest Operating System.

--tags TAGS Tags for this Virtual Machine.

—-—interface INTERFACE

Sniffer interface for this machine.
—-—-snapshot SNAPSHOT Specific Virtual Machine Snapshot to use.
——resultserver RESULTSERVER

IP:Port of the Result Server.

Distributed scripts

There are a couple of shell scripts used to automate distributed utility:
* “start-distributed” is used to start distributed Cuckoo

* “stop-distributed” is used to stop distributed Cuckoo
Mac OS X Bootstrap scripts
A couple of bootstrap scripts used for Mac OS X analysis are located in utils/darwin folder, they are used to bootstrap

the guest and host system for Mac OS X malware analysis. Some settings are defined as constants inside them, so it is
suggested to have a look at them and configure them for your needs.

SMTP Sinkhole

The smtp_sinkhole.py utility is designed to provide an easy to use SMTP sinkhole to catch all the emails going out of
virtual machines network. This is typically used to dump all emails when you run an analysis of sample used for spam
purposes. You can use it also to prevent sending spam on internet. Following are the available options:

$./utils/smtp_sinkhole.py -h
usage: smtp_sinkhole.py [host [port]]

SMTP Sinkhole

positional arguments:
host
port

optional arguments:
-h, —--help show this help message and exit
--dir DIR Directory used to dump emails.

By default, if you run it without arguments, it will listen for incoming mails on localhost port 1025. Yoy can bind it
on different address and port, as in the following example:

[$./utils/smtp_sinkhole.py 192.168.56.1 1025

If you want to save the dumped emails to disk, just use the —dir argument and specify an existent directory where save
them, as in the following example:

’$./utils/smtp_sinkhole.py —-dir /home/dumpmail

72 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

You have to use iptables to route all mails generated from your analysis virtual machine network to the sinkhole
script, for example if 192.168.56.0/24 is the address of your virtual network and smtp_sinkhole.py is listening on
192.168.56.1 port 1025 you can use the following command:

$ sudo iptables -t nat —-A PREROUTING -i vboxnet0 -p tcp -m tcp —-dport 25 —-3j REDIRECT 7+tofports 102!

Setup script
Cuckoo setup script is a tool to setup a whole Cuckoo environment on a Debian based OS (i.e. Ubuntu or Debian).

Actually it is a working in progress, but it is suggested to give it a try! It is located in utils/setup.sh and it is configured
by some constants, so you should edit it if you want to customize the behaviour.

2.4 Customization

This chapter explains how to customize Cuckoo. Cuckoo is written in a modular architecture built to be as customizable
as it can, to fit the needs of all users.

2.4.1 Auxiliary Modules

Auxiliary modules define some procedures that need to be executed in parallel to every single analysis process. All
auxiliary modules should be placed under the modules/auxiliary/ directory.

The skeleton of a module would look something like this:

from lib.cuckoo.common.abstracts import Auxiliary

class MyAuxiliary (Auxiliary):

Do something.

def stop(self):
Stop the execution.

1
2
3
4
5 def start (self):
6
7
8
9

The function start () will be executed before starting the analysis machine and effectively executing the submitted
malicious file, while the stop () function will be launched at the very end of the analysis process, before launching
the processing and reporting procedures.

For example, an auxiliary module provided by default in Cuckoo is called sniffer.py and takes care of executing
tcpdump in order to dump the generated network traffic.

2.4.2 Machinery Modules

Machinery modules define how Cuckoo should interact with your virtualization software (or potentially even with
physical disk imaging solutions). Since we decided to not enforce any particular vendor, from release 0.4 you are able
to use your preferred solution and, in case it’s not supported by default, write a custom Python module that defines
how to make Cuckoo use it.

Every machinery module should be located inside modules/machinery/.

A basic machinery module would look like this:

2.4. Customization 73

Cuckoo Sandbox Book, Release 2.0-dev

1 from lib.cuckoo.common.abstracts import Machinery
2 from lib.cuckoo.common.exceptions import CuckooMachineError

4+ class MyMachinery (Machinery) :

5 def start(self, label):

6 try:

7 revert (label)

8 start (label)

9 except SomethingBadHappens as e:

10 raise CuckooMachineError ("OPS!")
11

12 def stop(self, label):

13 try:

14 stop (label)

15 except SomethingBadHappens as e:

16 raise CuckooMachineError ("OPS!")

The only requirements for Cuckoo are that:
¢ The class inherits from Machinery.
* You have a start () and stop () functions.
* You raise CuckooMachineError when something fails.

As you understand, the machinery module is a core part of a Cuckoo setup, therefore make sure to spend enough time
debugging your code and make it solid and resistant to any unexpected error.

Configuration

Every machinery module should come with a dedicated configuration file located in conf/<machinery module
name>.conf. For example for modules/machinery/kvm.py we have a conf/kvm.conf.

The configuration file should follow the default structure:

[kvm]

Specify a comma-separated list of available machines to be used. For each
specified ID you have to define a dedicated section containing the details
on the respective machine. (E.g. cuckool,cuckoo2, cuckoo3)

machines = cuckool

[cuckool]

Specify the label name of the current machine as specified in your
libvirt configuration.

label = cuckool

Specify the operating system platform used by current machine
[windows/darwin/linux].
platform = windows

Specify the IP address of the current machine. Make sure that the IP address
is valid and that the host machine is able to reach it. If not, the analysis
will fail.

ip = 192.168.122.105

A main section called [<name of the module>] with amachines field containing a comma-separated list of
machines IDs.

For each machine you should specify a 1abel,aplatformandits ip.

74 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

These fields are required by Cuckoo in order to use the already embedded initialize () function that generates
the list of available machines.

If you plan to change the configuration structure you should override the initialize () function (inside your own
module, no need to modify Cuckoo’s core code). You can find its original code in the Machinery abstract inside
lib/cuckoo/common/abstracts.py.

LibVirt

Starting with Cuckoo 0.5 developing new machinery modules based on LibVirt is easy. Inside
lib/cuckoo/common/abstracts.py you can find LibVirtMachinery that already provides all the functionality for
a LibVirt module. Just inherit this base class and specify your connection string, as in the example below:

1 from lib.cuckoo.common.abstracts import LibVirtMachinery
2

3 class MyMachinery (LibVirtMachinery) :

4 # Set connection string.

5 dsn = "my:///connection"

This works for all the virtualization technologies supported by LibVirt. Just remember to check if your LibVirt package
(if you are using one, for example from your Linux distribution) is compiled with the support for the technology you
need.

You can check it with the following command:

S virsh -V
Virsh command line tool of libvirt 0.9.13
See web site at http://libvirt.org/

Compiled with support for:

Hypervisors: QEmu/KVM LXC UML Xen OpenVZ VMWare Test

Networking: Remote Daemon Network Bridging Interface Nwfilter VirtualPort
Storage: Dir Disk Filesystem SCSI Multipath iSCSI LVM

Miscellaneous: Nodedev AppArmor Secrets Debug Readline Modular

If you don’t find your virtualization technology in the list of Hypervisors, you will need to recompile LibVirt with
the specific support for the missing one.

2.4.3 Analysis Packages

As explained in Analysis Packages, analysis packages are structured Python classes that describe how Cuckoo’s ana-
lyzer component should conduct the analysis procedure for a given file inside the guest environment.

As you already know, you can create your own packages and add them along with the default ones. Designing new
packages is very easy and requires just a minimal understanding of programming and of the Python language.

Getting started

As an example we’ll take a look at the default package for analyzing generic Windows executables (located at ana-
lyzer/windows/packages/exe.py):

1 from lib.common.abstracts import Package
2

3 class Exe (Package):

4 ""N"EXE analysis package.

moon

5

2.4. Customization 75

Cuckoo Sandbox Book, Release 2.0-dev

6 def start(self, path):
7 args = self.options.get ("arguments")
8 return self.execute (path, args)

It seems really easy, thanks to all method inherited by Package object. Let’s have a look as some of the main methods
an analysis package inherits from Package object:

1 from lib.api.process import Process
> from lib.common.exceptions import CuckooPackageError

4+ class Package (object):

5 def start (self):

6 raise NotImplementedError
7

8 def check(self):

9 return True

1 def execute(self, path, args):

12 dll = self.options.get ("dll")

13 free = self.options.get ("free")

14 suspended = True

15 if free:

16 suspended = False

17

18 p = Process|()

19 if not p.execute (path=path, args=args, suspended=suspended) :
20 raise CuckooPackageError ("Unable to execute the initial process, "
21 "analysis aborted.")
22

23 if not free and suspended:

2% p.inject (dll)

25 p.resume ()

26 p.close()

27 return p.pid

28

29 def finish(self):

30 if self.options.get ("procmemdump") :

31 for pid in self.pids:

k) p = Process (pid=pid)

33 p.dump_memory ()

34 return True

Let’s walk through the code:
* Line 1: import the Process API class, which is used to create and manipulate Windows processes.

* Line 2: import the CuckooPackageError exception, which is used to notify issues with the execution
of the package to the analyzer.

¢ Line 4: define the main class, inheriting object.

* Line 5: define the start () function, which takes as argument the path to the file to execute. It should be
implemented by each analysis package.

* Line 8: define the check () function.
¢ Line 13: acquire the free option, which is used to define whether the process should be monitored or not.
* Line 18: initialize a Process instance.

* Line 19: try to execute the malware, if it fails it aborts the execution and notify the analyzer.

76 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

* Line 23: check if the process should be monitored.

* Line 24: inject the process with our DLL.

 Line 25: resume the process from the suspended state.

 Line 27: return the PID of the newly created process to the analyzer.
* Line 29: define the finish () function.

e Line 30: check if the procmemdump option was enabled.

e Line 31: loop through the currently monitored processes.

* Line 32: open a Process instance.

¢ Line 33: take a dump of the process memory.

start ()

In this function you have to place all the initialization operations you want to run. This may include running the
malware process, launching additional applications, taking memory snapshots and more.

check ()

This function is executed by Cuckoo every second while the malware is running. You can use this function to perform
any kind of recurrent operation.

For example if in your analysis you are looking for just one specific indicator to be created (e.g. a file) you could place
your condition in this function and if it returns False, the analysis will terminate straight away.

Think of it as “should the analysis continue or not?”.

For example:

def check(self):
if os.path.exists("C:\\config.bin"):
return False
else:
return True

This check () function will cause Cuckoo to immediately terminate the analysis whenever C:\config.bin is created.

execute ()

Wraps the malware execution and deal with DLL injection.

finish()

This function is simply called by Cuckoo before terminating the analysis and powering off the machine. By default,
this function contains an optional feature to dump the process memory of all the monitored processes.

2.4. Customization 77

Cuckoo Sandbox Book, Release 2.0-dev

Options

Every package have automatically access to a dictionary containing all user-specified options (see Submit an Analysis).

Such options are made available in the attribute self.options. For example let’s assume that the user specified
the following string at submission:

foo=1,bar=2

The analysis package selected will have access to these values:

from lib.common.abstracts import Package
class Example (Package) :

def start(self, path):

foo = self.options["foo"]
bar = self.options["bar"]
def check () :

return True

def finish{():
return True

These options can be used for anything you might need to configure inside your package.

Process API

The Process class provides access to different process-related features and functions. You can import it in your
analysis packages with:

‘from lib.api.process import Process

You then initialize an instance with:

’p = Process|()

In case you want to open an existing process instead of creating a new one, you can specify multiple arguments:
* pid: PID of the process you want to operate on.
* h_process: handle of a process you want to operate on.
* thread_id: thread ID of a process you want to operate on.
* h_thread: handle of the thread of a process you want to operate on.

This class implements several methods that you can use in your own scripts.

Methods

Process.open ()
Opens an handle to a running process. Returns True or False in case of success or failure of the operation.

Return type boolean

Example Usage:

78 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

1 p = Process (pid=1234)
2 p.open()
3 handle = p.h_process

Process.exit_code ()
Returns the exit code of the opened process. If it wasn’t already done before, exit_code () will perform a
call to open () to acquire an handle to the process.

Return type ulong
Example Usage:

I p = Process(pid=1234)
> code = p.exit_code()

Process.is_alive ()
Calls exit_code () and verify if the returned code is STILL_ACTIVE, meaning that the given process is
still running. Returns True or False.

Return type boolean

Example Usage:

1 p = Process (pid=1234)
> if p.is_alive():
3 print ("Still running!")

Process.get_parent_pid()
Returns the PID of the parent process of the opened process. If it wasn’t already done before,
get_parent_pid () will perform a call to open () to acquire an handle to the process.

Return type int

Example Usage:

1 p = Process (pid=1234)
> ppid = p.get_parent_pid()

Process.execute (path[, args=N0ne[, suspended=False]])
Executes the file at the specified path. Returns True or False in case of success or failure of the operation.

Parameters

* path (string)— path to the file to execute

* args (string)— arguments to pass to the process command line

* suspended (boolean) — enable or disable suspended mode flag at process creation
Return type boolean

Example Usage:

1 = Process ()

p
2 p.execute (path="C:\\WINDOWS\\system32\\calc.exe", args="Something", suspended=True)

Process.resume ()
Resumes the opened process from a suspended state. Returns True or False in case of success or failure of
the operation.

Return type boolean

Example Usage:

2.4. Customization 79

Cuckoo Sandbox Book, Release 2.0-dev

1 p = Process()
2 p.execute (path="C:\\WINDOWS\\system32\\calc.exe", args="Something", suspended=True)
3 p.resume()

Process.terminate ()
Terminates the opened process. Returns True or False in case of success or failure of the operation.

Return type boolean

Example Usage:

I p = Process (pid=1234)
> if p.terminate():

3 print ("Process terminated!")
4+ else:
5 print ("Could not terminate the process!")

Process.inject ([dll[, apczFalse]])
Injects our DLL into the opened process. Returns True or False in case of success or failure of the operation.

Parameters
* dl11 (string)— path to the DLL to inject into the process

* apc (boolean) - enable to use QueueUserAPC () injection instead of
CreateRemoteThread (), beware that if the process is in suspended mode, Cuckoo
will always use QueueUserAPC ()

Return type boolean

Example Usage:

p = Process|()

p.execute (path="C:\\WINDOWS\\system32\\calc.exe", args="Something", suspended=True)
3 p.inject ()

p.resume ()

Process.dump_memory ()
Takes a snapshot of the given process’ memory space. Returns True or False in case of success or failure of
the operation.

Return type boolean

Example Usage:

1 p = Process (pid=1234)
2 p.dump_memory ()

2.4.4 Processing Modules

Cuckoo’s processing modules are Python scripts that let you define custom ways to analyze the raw results generated
by the sandbox and append some information to a global container that will be later used by the signatures and the
reporting modules.

You can create as many modules as you want, as long as they follow a predefined structure that we will present in this
chapter.

80 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

Global Container
After an analysis is completed, Cuckoo will invoke all the processing modules available in the modules/processing/
directory. Any additional module you decide to create must be placed inside that directory.

Every module should also have a dedicated section in the file conf/processing.conf: for example if you create a module
module/processing/foobar.py you will have to append the following section to conf/processing.conf:

[foobar]
enabled = yes

Every module will then be initialized and executed and the data returned will be appended in a data structure that we’ll
call global container.

This container is simply just a big Python dictionary that includes the abstracted results produced by all the modules
classified by their identification key.

Cuckoo already provides a default set of modules which will generate a standard global container. It’s important for
the existing reporting modules (HTML report etc.) that these default modules are not modified, otherwise the resulting
global container structure would change and the reporting modules wouldn’t be able to recognize it and extract the
information used to build the final reports.

The currently available default processing modules are:

* AnalysisInfo (modules/processing/analysisinfo.py) - generates some basic information on the current anal-
ysis, such as timestamps, version of Cuckoo and so on.

* BehaviorAnalysis (modules/processing/behavior.py) - parses the raw behavioral logs and perform some
initial transformations and interpretations, including the complete processes tracing, a behavioral summary
and a process tree.

* Debug (modules/processing/debug.py) - includes errors and the analysis.log generated by the analyzer.

* Dropped (modules/processing/dropped.py) - includes information on the files dropped by the malware and
dumped by Cuckoo.

* Memory (modules/processing/memory.py) - executes Volatility on a full memory dump.

* NetworkAnalysis (modules/processing/network.py) - parses the PCAP file and extracts some network
information, such as DNS traffic, domains, IPs, HTTP requests, IRC and SMTP traffic.

e ProcMemory (modules/processing/procmemory.py) - performs analysis of process memory dump. Note:
the module is able to process user defined Yara rules from data/yara/memory/index_memory.yar. Just edit
this file to add your Yara rules.

 StaticAnalysis (modules/processing/static.py) - performs some static analysis of PE32 files.
e Strings (modules/processing/strings.py) - extracts strings from the analyzed binary.
o TargetInfo (modules/processing/targetinfo.py) - includes information on the analyzed file, such as hashes.

* VirusTotal (modules/processing/virustotal.py) - searches on VirusTotal.com for antivirus signatures of the
analyzed file. Note: the file is not uploaded on VirusTotal.com, if the file was not previously uploaded on
the website no results will be retrieved.

Getting started

In order to make them available to Cuckoo, all processing modules must be placed inside the folder at mod-
ules/processing/.

A basic processing module could look like:

2.4. Customization 81

Cuckoo Sandbox Book, Release 2.0-dev

1 from lib.cuckoo.common.abstracts import Processing

)

3 class MyModule (Processing) :

5 def run(self):

6 self.key = "key"

7 data = do_something()
8 return data

Every processing module should contain:
* A class inheriting Processing.
* A run () function.
* A self.key attribute defining the name to be used as a sub container for the returned data.
* A set of data (list, dictionary, string, etc.) that will be appended to the global container.

You can also specify an order value, which allows you to run the available processing modules in an ordered se-
quence. By default all modules are set with an order value of 1 and are executed in alphabetical order.

If you want to change this value your module would look like:

1 from lib.cuckoo.common.abstracts import Processing

3 class MyModule (Processing) :

4 order = 2

5

6 def run(self):

7 self.key = "key"

8 data = do_something()
9 return data

You can also manually disable a processing module by setting the enabled attribute to False:

1 from lib.cuckoo.common.abstracts import Processing

)

3 class MyModule (Processing) :

4 enabled = False

5

6 def run(self):

7 self.key = "key"

8 data = do_something()
9 return data

The processing modules are provided with some attributes that can be used to access the raw results for the given
analysis:

* self.analysis_path: path to the folder containing the results (e.g. storage/analysis/I)
e self.log_path: path to the analysis.log file.

e self.conf_path: path to the analysis.conf file.

* self.file_path: path to the analyzed file.

* self.dropped_path: path to the folder containing the dropped files.

* self.logs_path: path to the folder containing the raw behavioral logs.

* self.shots_path: path to the folder containing the screenshots.

* self.pcap_path: path to the network pcap dump.

82 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

e self.memory_path: path to the full memory dump, if created.
* self.pmemory_path: path to the process memory dumps, if created.

With these attributes you should be able to easily access all the raw results stored by Cuckoo and perform your analytic
operations on them.

As alast note, a good practice is to use the CuckooProcessingError exception whenever the module encounters
an issue you want to report to Cuckoo. This can be done by importing the class like this:

1 from lib.cuckoo.common.exceptions import CuckooProcessingError
2 from lib.cuckoo.common.abstracts import Processing

3

4+ class MyModule (Processing) :

5

6 def run(self):

7 self.key = "key"

8

9 try:

10 data = do_something()

1 except SomethingFailed:

12 raise CuckooProcessingError ("Failed")
13

14 return data

2.4.5 Signatures

With Cuckoo you’re able to create some customized signatures that you can run against the analysis results in order to
identify some predefined pattern that might represent a particular malicious behavior or an indicator you’re interested
in.

These signatures are very useful to give a context to the analyses: both because they simplify the interpretation of the
results as well as for automatically identifying malware samples of interest.

Some examples of what you can use Cuckoo’s signatures for:

¢ Identify a particular malware family you’re interested in by isolating some unique behaviors (like file
names or mutexes).

* Spot interesting modifications the malware performs on the system, such as installation of device drivers.

¢ Identify particular malware categories, such as Banking Trojans or Ransomware by isolating typical ac-
tions commonly performed by those.

* Classify samples into the categories malware/unknown (it is not possible to identify clean samples)

You can find signatures created by us and by other Cuckoo users on our Community repository.

Getting started

Creation of signatures is a very simple process and requires just a decent understanding of Python programming.
First things first, all signatures must be located inside modules/signatures/.

The following is a basic example signature:

1 from lib.cuckoo.common.abstracts import Signature
2

3 class CreatesExe (Signature) :

4 name = "creates_exe"

2.4. Customization 83

https://github.com/cuckoosandbox/community

Cuckoo Sandbox Book, Release 2.0-dev

5 description = "Creates a Windows executable on the filesystem"
6 severity = 2

7 categories = ["generic"]

8 authors = ["Cuckoo Developers"]

9 minimum = "2.0"

1 def on_complete (self):
12 return self.check_file(pattern=".x\\.exes$",
13 regex=True)

As you can see the structure is really simple and consistent with the other modules. We’re going to get into details
later, but since version 1.2 Cuckoo provides some helper functions that make the process of creating signatures much
easier.

In this example we just walk through all the accessed files in the summary and check if there is anything ending with
“.exe”: in that case it will return True, meaning that the signature matched, otherwise return False.

the function on_complete is called at the end of the cuckoo signature process. Other function will be called before
on specific events and help you to write more sophisticated and faster signatures.

In case the signature gets matched, a new entry in the “signatures” section will be added to the global container as
follows:

"signatures": [

{

"severity": 2,

"description": "Creates a Windows executable on the filesystem",
"alert": false,
"references": [],
"data": [

{

"file_name": "C:\\d.exe"

}
] 4
"name": "creates_exe"

Creating your new signature

In order to make you better understand the process of creating a signature, we are going to create a very simple
one together and walk through the steps and the available options. For this purpose, we’re simply going to create a
signature that checks whether the malware analyzed opened a mutex named “i_am_a_malware”.

The first thing to do is import the dependencies, create a skeleton and define some initial attributes. These are the ones
you can currently set:

* name: an identifier for the signature.

* description: a brief description of what the signature represents.

* severity: anumber identifying the severity of the events matched (generally between 1 and 3).

* categories: alist of categories that describe the type of event being matched (for example “banker”, “injec-
tion” or “anti-vm”).

e families: alist of malware family names, in case the signature specifically matches a known one.

* authors: alist of people who authored the signature.

84 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

references: alist of references (URLs) to give context to the signature.
enable: if set to False the signature will be skipped.

alert: if set to True can be used to specify that the signature should be reported (perhaps by a dedicated
reporting module).

minimum: the minimum required version of Cuckoo to successfully run this signature.

maximum: the maximum required version of Cuckoo to successfully run this signature.

In our example, we would create the following skeleton:

1

from lib.cuckoo.common.abstracts import Signature

class BadBadMalware (Signature): # We initialize the class inheriting Signature.

name = "badbadmalware" # We define the name of the signature

description = "Creates a mutex known to be associated with Win32.BadBadMalware"| # We provide
severity = 3 # We set the severity to maximum

categories = ["trojan"] # We add a category

families = ["badbadmalware"] # We add the name of our fictional malware family

authors = ["Me"] # We specify the author

minimum = "2.0" # We specify that in order to run the signature, the user will |simply need (

def on_complete (self):
return

This is a perfectly valid signature. It doesn’t really do anything yet, so now we need to define the conditions for the
signature to be matched.

As we said, we want to match a particular mutex name, so we proceed as follows:

1

2

3

from lib.cuckoo.common.abstracts import Signature

class BadBadMalware (Signature) :

name = "badbadmalware"

description = "Creates a mutex known to be associated with Win32.BadBadMalware"
severity = 3

categories = ["trojan"]

families = ["badbadmalware"]

authors = ["Me"]

minimum = "2.0"

def on_complete (self):
return self.check mutex("i _am a malware")

Simple as that, now our signature will return True whether the analyzed malware was observed opening the specified

mutex.

If you want to be more explicit and directly access the global container, you could translate the previous signature in
the following way:

1

from lib.cuckoo.common.abstracts import Signature

class BadBadMalware (Signature) :

name = "badbadmalware"

description = "Creates a mutex known to be associated with Win32.BadBadMalware"
severity = 3

categories = ["trojan"]

families = ["badbadmalware"]

authors = ["Me"]

minimum = "2.0"

2.4. Customization 85

Cuckoo Sandbox Book, Release 2.0-dev

def on_complete (self):
for process in self.get_processes_by_pid():
if "summary" in process and "mutexes" in process|["summary"]:
for mutex in process|["summary"] ["mutexes"]:
if mutex == "i_am_a malware":
return True

return False

Evented Signatures

Since version 1.0, Cuckoo provides a way to write more high performance signatures. In the past every signature was
required to loop through the whole collection of API calls collected during the analysis. This was necessarily causing
some performance issues when such collection would be of a large size.

Since 1.2 Cuckoo only supports the so called “evented signatures”. The old signatures based on the run function
can be ported to using on_complete. The main difference is that with this new format, all the signatures will be
executed in parallel and a callback function called on_call () will be invoked for each signature within one single
loop through the collection of API calls.

An example signature using this technique is the following:

1

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

from lib.cuckoo.common.abstracts import Signature

class SystemMetrics (Signature) :

name = "generic_metrics"

description = "Uses GetSystemMetrics"
severity = 2

categories = ["generic"]

authors = ["Cuckoo Developers"]
minimum = "2.0"

Evented signatures can specify filters that reduce the amount of
API calls that are streamed in. One can filter Process name, API
name/identifier and category. These should be sets for faster lookup.

filter_processnames = set ()

filter_apinames = set (["GetSystemMetrics"])

filter_categories = set ()

This is a signature template. It should be used as a skeleton for
creating custom signatures, therefore is disabled by default.

The on_call function is used in "evented" signatures.

These use a more efficient way of processing logged API calls.

enabled = False

def on_complete (self):
In the on_complete method one can implement any cleanup code and
decide one last time if this signature matches or not.
Return True in case it matches.
return False

This method will be called for every logged API call by the loop

in the RunSignatures plugin. The return value determines the "state"
of this signature. True means the signature matched and False it did not thif
Use self.deactivate() to stop streaming in API calls.

def on_call(self, call, pid, tid):

This check would in reality not be needed as we already make use

HH H W H

86

Chapter 2. Contents

time.

Cuckoo Sandbox Book, Release 2.0-dev

36 # of filter_ _apinames above.

37 if call["api"] == "GetSystemMetrics":
38 # Signature matched, return True.
39 return True

40

41 # continue

42 return None

The inline comments are already self-explanatory.

Another event is triggered when a signature matches.

1 def on_signature(self, matched_sig):

2 required = ["creates_exe", "badmalware"]
3 for sig in required:

4 if not sig in self.list_signatures():
5 return

6 return True

This kind of signature can be used to combine several signatures identifying anomalies into one signature classifying
the sample (malware alert).

Two more events can be used to write more complex signatures. They are called when new processes are processed
or new threads. on_process and on_thread. They can be used to reset the state of flags when a new process
is entered. Allowing to write signatures that take into account if a series of events happened in one thread/process or
globally.

def on_process(self, pid):
pass

def on_thread(self, pid, tid):
pass

Quickout

Additionally to the filters you can use a quickout function to determine if the signature can be matched at all. For
example if a signature is written to identify behavior of malicious PDFs you could test for the file type to be PDF. Re-
turning True will remove the signature from the list of potential candidates (reducing False Positives and processing
time).

You can find many more example of signatures in our community repository.

Matches

Starting from version 1.2, signatures are able to log exactly what triggered the signature. This allows users to better
understand why this signature is present in the log, and to be able to better focus malware analysis.

Two helpers have been included in order to specify matching data.

Signature.add_match (process, type, match)
Adds a match to the signature. Can be called several times for the same signature.

Parameters

* process (dict)—process dictionary (same as the on_call argument). Should be None
except when used in evented signatures.

2.4. Customization 87

https://github.com/cuckoosandbox/community

Cuckoo Sandbox Book, Release 2.0-dev

* type (string) — nature of the matching data. Can be anything (ex: ’file’,
"registry’, etc.). If match is composed of api calls (when used in evented signatures),
should be " api’.

* match — matching data. Can be a single element or a list of elements. An element can be a
string, a dict or an API call (when used in evented signatures).

Example Usage, with a single element:

1 self.add_match (None, "url", "http://malicious_url_detected.com")

Example Usage, with a more complex signature, needing several API calls to be triggered:

1 self.signs = []
self.signs.append(first_api_call)

3 self.signs.append(second_api_call)

4 self.add_match (process, 'api', self.signs)

)

Signature.has_matches ()
Checks whether the current signature has any matching data registered. Returns True in case it does, otherwise
returns False.

This can be used to easily add several matches for the same signature. If you want to do so, make sure that all
the api calls are scanned by making sure that on_call never returns True. Then, use on_complete with
has_matches so that the signature is triggered if any match was previously added.

Return type boolean

Example Usage, from the network_tor signature:

1 def on_call(self, call, process):

2 if self.check_argument_call(call,

3 pattern="Tor Win32 Service",
4 api="CreateServiceA",

5 category="services"):

6 self.add_match (process, "api", call)

s def on_complete (self):
9 return self.has_matches ()

Helpers

As anticipated, from version 0.5 the Signature base class also provides some helper methods that simplify the
creation of signatures and avoid the need for you having to access the global container directly (at least most of the
times).

With Cuckoo 1.2 the amount of information extracted from a sample grew another step and the resulting data format
got more complex. To avoid having to port your signatures with every extension and to reduce errors we strongly
suggest to use the helpers to access data.

Following is a list of available methods.

Signature.check_file (pattern[, regex=False])
Checks whether the malware opened or created a file matching the specified pattern. Returns True in case it
did, otherwise returns False.

Parameters
* pattern (string) - file name or file path pattern to be matched

* regex (boolean) — enable to compile the pattern as a regular expression

88 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

Return type boolean

Example Usage:
1 self.check_file(pattern=".x\.exe$", regex=True)
Signature.check_key (pattern[, regex:False[, actions=["regkey_written”, “regkey_opened”,

“regkey_read”] [, pidzNone]]])
Checks whether the malware opened or created a registry key matching the specified pattern. Returns True in
case it did, otherwise returns False.

Parameters
* pattern (string) - registry key pattern to be matched
* regex (boolean) — enable to compile the pattern as a regular expression
* actions (1ist)—alist of key-access-actions to search the key in
* pid (int) - process id to filter for
Return type boolean

Example Usage:

1 self.check_key (pattern=".x«CurrentVersion\\Runs", regex=True)

Signature.check_mutex (pattern [, regex=False])

Checks whether the malware opened or created a mutex matching the specified pattern. Returns True in case
it did, otherwise returns False.

Parameters

* pattern (string)— mutex pattern to be matched

* regex (boolean)— enable to compile the pattern as a regular expression
Return type boolean

Example Usage:

1 self.check_mutex ("mutex_name™)

Signature.check_api (pattern[, process=None [, regex=False]])
Checks whether Windows function was invoked. Returns True in case it was, otherwise returns False.

Parameters

* pattern (string) - function name pattern to be matched

* process (string)—name of the process performing the call

* regex (boolean) —enable to compile the pattern as a regular expression
Return type boolean

Example Usage:

1 self.check_api (pattern="URLDownloadToFileW", process="AcroRd32.exe") ‘

Signature.check_argument_call (call, pattern][, name=Name[, api=None[, category=None/,

regex=False]]])
Checks whether the malware invoked a function with a specific argument value. Returns True in case it did,
otherwise returns False.

Parameters

2.4. Customization 89

Cuckoo Sandbox Book, Release 2.0-dev

* call - the call to check to check the argument in
* pattern (string) - argument value pattern to be matched

* name (string)—name of the argument to be matched

* api (string)—name of the Windows function associated with the argument value

* category (string)—name of the category of the function to be matched
* regex (boolean)— enable to compile the pattern as a regular expression
Return type boolean

Example Usage:

1 self.check_argument_call (call, pattern=".xcuckoo.x", category="filesystem",

regex=True)

Signatures.list_signatures()

Returns a list of signature names that matched so far. It can be used to write meta-signatures combining several

signatures on anomalies into a classification.

Return type list

Example Usage:
1 def on_signature(self, matched_sig):
2 required = ["creates_exe", "badmalware"]
3 for sig in required:
4 if not sig in self.list_signatures():
5 return
6 return True

Signatures.get_processes ([name:None])
An iterator returning the processes monitored. If name is given, they will be filtered for the name

Parameters name (string)— Name of the process to filter for
Return type iterator

Example Usage:

1 for process in self.get_processes ("foo"):
2 pass

Signatures.get_processes_by pid([pid:None])

An iterator returning the processes monitored. If pid is given, they will be filtered for the process id

Parameters pid (int)— Process ID of the process to filter for

Return type iterator

1 for process in self.get_processes_by_pid(4):
2 pass

Signatures.get_threads ([pid:None])

An iterator returning the threads monitored. If pid is given, they will be filtered for the process id.

Parameters pid (int)— Name of the process to filter for

Return type iterator

1 for thread in self.get_threads():
2 pass

90 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

Signatures.get_files ([pid:None[, actions:None]])
Iterates over the files accessed by a process (or all processes). Access type can be a list of “file_written”,

“file_read”, “file_deleted”. Default is all.
Parameters
* pid (int)— Name of the process to filter for

* actions (1ist)—access types of the files to return

Return type iterator

1 for afile in self.get_files():
2 pass

Signatures.get_keys ([pid:Nane[, actions:None]])
Iterates over the registry keys accessed by a process (or all processes). Access type can be a list of

“regkey_written”, “regkey_opened”, “regkey_read”. Default is all.

Parameters

* pid (int)— Name of the process to filter for
* actions (1ist)— access types of the registry keys to return

Return type iterator

1 for akey in self.get_keys():
2 pass

Signatures.get_mutexes ([pidzNone])
Returns a list of mutexes. Optionally filtered by process id

Parameters pid (int)— Name of the process to filter for

Return type list

1 for mutex in self.get_mutexes():
2 pass

Signature.get_net_hosts ()
Returns a list of hosts from the network sniffing part of the collected data

Return type list

1 for host in self.get_net_hosts():
2 pass

Signature.get_net_domains ()
Returns a list of domains from the network sniffing part of the collected data

Return type list

1 for domain in self.get_net_domains{() :
2 pass

Signature.get_net_http ()
Returns a list of http information blocks from the network sniffing part of the collected data

Return type list

1 for http_data in self.get_net_http():
2 pass

2.4. Customization 91

Cuckoo Sandbox Book, Release 2.0-dev

Signature.get_net_udp ()
Returns a list of udp information blocks from the network sniffing part of the collected data

Return type list

1 for udp_data in self.get_net_udp():
2 pass

Signature.get_net_icmp ()
Returns a list of icmp information blocks from the network sniffing part of the collected data

Return type list

1 for icmp_data in self.get_net_icmp():
2 pass

Signature.get_net_irc()
Returns a list of irc information blocks from the network sniffing part of the collected data

Return type list

1 for irc_data in self.get_net_irc():
2 pass

Signature.get_net_smtp ()
Returns a list of smtp information blocks from the network sniffing part of the collected data

Return type list

1 for smtp_data in self.get_net_smtp() :
2 pass

Signature.check_ip (pattem[, regex=False])
Checks whether the malware contacted the specified IP address. Returns True in case it did, otherwise returns
False.

Parameters

* pattern (string) - IP address to be matched

* regex (boolean)— enable to compile the pattern as a regular expression
Return type boolean

Example Usage:

1 self.check_ip("123.123.123.123")

Signature.check_domain (pattern[, regex:False])
Checks whether the malware contacted the specified domain. Returns True in case it did, otherwise returns
False.

Parameters

e pattern (string)- domain name to be matched

* regex (boolean) —enable to compile the pattern as a regular expression
Return type boolean

Example Usage:

1 self.check_domain (pattern=".+cuckoosandbox.org$", regex=True)

92 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

Signature.check_url (pattern[, regex:False])
Checks whether the malware performed an HTTP request to the specified URL. Returns True in case it did,
otherwise returns False.

Parameters

* pattern (string)— URL pattern to be matched

* regex (boolean) — enable to compile the pattern as a regular expression
Return type boolean

Example Usage:

1 self.check_url (pattern="".+\/load\.php\?file=[0-9a-zA-2]+S$", regex=True)

Signature.flags.set (name[, pid:None[, tid:None[, timestamp:None]]])
Flags can be used to collect information in the on_call section of a signature and react (decide to alert) in the
on_complete part if all required flags are set. Flags are signature specific. They are identified by their name.
PID, TID and timestamp can be later used to identify if a flag was set in a specific process/thread or at a specific
time.

Parameters
* name (string)— Name of the flag to set
e pid (int)— process id
e tid (int) - thread id

* timestamp (int) - timestamp in the log to mark this flag for

1 def on_call(self, call, pid, tid):
2 self.flags.set ("foo", 1, 2, 2345)

Signature.flags. find ([name=None[, pid=None[, tid=None[, before=None/[, after=None]]]])
Returns a list of flags matching the given criteria

Parameters
* name (string) - Name of the flag look for
* pid (int) - process id to filter for
e tid (int) - thread id to filter for
* before (int) - flag timestamp must be <= before-timestamp

* after (int) - flag timestamp must be >= after-timestamp

1 def on_complete(self):

2 if self.flags.find("foo"):
3 self.data.append({"Flag found matching name": "foo"})
4 return True

Signature.mark_start ()
Mark the start of a api-call region relevant for the signature. This way the report can contain a link to the API
call that triggered the signature. As soon as the signature returns True this mark will be stored in the report.
Subsequent start marks will overwrite the old one till it is stored in the results with the triggering of the signature.
So you can set a start mark “on suspicion” and overwrite it several times till the signature triggers.

It is marking the api call. So the only reasonable signatures to use it is in on_call evented ones

2.4. Customization 93

Cuckoo Sandbox Book, Release 2.0-dev

1 def on_call(self, call, pid, tid):

2 if self.check_argument_call (call, pattern=".xcuckoo.x", category="filesystem",
3 self.mark_start ()
4 return True

Signature.mark_end()
A complementary function to mark_start. It is optional and marks the end of a api call range that triggered the
signature. It should be called before returning the True result.

Without a prior mark_start, the end-mark will not be stored in the result.

1 def on_call(self, call, pid, tid):

2 if self.check_argument_call (call, pattern=".xfoo.x", category="filesystem", req
3 self.mark_start ()

4 return None

5 if self.check_argument_call (call, pattern=".xcuckoo.x", category="filesystem",
6 self.mark_end()

7 return True

Signature.deactivate ()
Deactivate a signature. Deactivated signatures will not be notified in on_call events. This can be used after a
signature triggered (just before the return) to match this signature only once.

1 def on_call(self, call, pid, tid):

2 if call["api"] == "LdrGetProcedureAddress":
3 self.deactivate ()
4 return True

regex=True) :

ex=True) :

regex=True) :

Signature.activate ()
Re-activates a signature after it has been de-activated.

1 def on_process(self, pid):
2 self.activate ()

2.4.6 Reporting Modules

After the raw analysis results have been processed and abstracted by the processing modules and the global container
is generated (ref. Processing Modules), it is passed over by Cuckoo to all the reporting modules available, which will
make use of it and will make it accessible and consumable in different formats.

Getting Started

All reporting modules must be placed inside the directory modules/reporting/.

Every module must also have a dedicated section in the file conf/reporting.conf: for example if you create a module
module/reporting/foobar.py you will have to append the following section to conf/reporting.conf:

[foobar]
enabled = on

Every additional option you add to your section will be available to your reporting module in the self.options
dictionary.

Following is an example of a working JSON reporting module:

1 import os
2 import json

3 import codecs

94 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

s from lib.cuckoo.common.abstracts import Report
¢ from lib.cuckoo.common.exceptions import CuckooReportError

8 class JsonDump (Report) :
9 """Saves analysis results in JSON format."""

1 def run(self, results):

12 """Writes report.

13 @param results: Cuckoo results dict.

14 @raise CuckooReportError: if fails to write report.

15 e

16 try:

17 report = codecs.open(os.path.join(self.reports_path, "report.json"), "w
18 json.dump (results, report, sort_keys=False, indent=4)

19 report.close()

20 except (UnicodeError, TypeError, IOError) as e:

21 raise CuckooReportError ("Failed to generate JSON report: "% e)

This code is very simple, it basically just receives the global container produced by the processing modules, converts

it into JSON and writes it to a file.
There are few requirements for writing a valid reporting module:
* Declare your class inheriting from Report.
* Have a run () function performing the main operations.
* Try to catch most exceptions and raise CuckooReportError to notify the issue.

All reporting modules have access to some attributes:

* self.analysis_path: path to the folder containing the raw analysis results (e.g. storage/analyses/1/)

e self.reports_path: path to the folder where the reports should be written (e.g.

age/analyses/1/reports/)

* self.conf_path: path to the analysis.conf file of the current analysis
age/analyses/1/analysis.conf)

(e.g.

stor-

stor-

* self.options: a dictionary containing all the options specified in the report’s configuration section in

conf/reporting.conf.

2.5 Development
This chapter explains how to write Cuckoo’s code and how to contribute.

2.5.1 Development Notes

Git branches

Cuckoo Sandbox source code is available in our official git repository.

Up until version 1.0 we used to coordinate all ongoing development in a dedicated “development” branch and we’ve
been exclusively merging pull requests in such branch. Since version 1.1 we moved development to the traditional
“master” branch and we make use of GitHub’s tags and release system to reference development milestones in time.

2.5. Development

95

n
14

"Utf_8")

https://github.com/cuckoosandbox/cuckoo

Cuckoo Sandbox Book, Release 2.0-dev

Release Versioning

Cuckoo releases are named using three numbers separated by dots, such as 1.2.3, where the first number is the release,
the second number is the major version, the third number is the bugfix version. The testing stage from git ends with
“-beta” and development stage with “-dev”.

Warning: If you are using a “beta” or “dev” stage, please consider that it’s not meant to be an official
release, therefore we don’t guarantee its functioning and we don’t generally provide support. If you
think you encountered a bug there, make sure that the nature of the problem is not related to your
own misconfiguration and collect all the details to be notified to our developers. Make sure to specify
which exact version you are using, eventually with your current git commit id.

Ticketing system

To submit bug reports or feature requests, please use GitHub’s Issue tracking system.

Contribute

To submit your patch just create a Pull Request from your GitHub fork. If you don’t now how to create a Pull Request
take a look to GitHub help.

2.5.2 Coding Style

In order to contribute code to the project, you must diligently follow the style rules describe in this chapter. Having a
clean and structured code is very important for our development lifecycle, and not compliant code will most likely be
rejected.

Essentially Cuckoo’s code style is based on PEP 8 - Style Guide for Python Code and PEP 257 — Docstring Conven-
tions.

Formatting

Copyright header

All source code files must start with the following copyright header:

Copyright (C) 2010-2013 Claudio Guarnieri.

Copyright (C) 2014-2016 Cuckoo Foundation.

This file is part of Cuckoo Sandbox - http://www.cuckoosandbox.org
See the file 'docs/LICENSE' for copyling permission.

HH HH W W

Indentation

The code must have a 4-spaces-tabs indentation. Since Python enforce the indentation, make sure to configure your
editor properly or your code might cause malfunctioning.

Maximum Line Length

Limit all lines to a maximum of 79 characters.

96 Chapter 2. Contents

https://github.com/cuckoosandbox/cuckoo/issues
https://help.github.com/articles/using-pull-requests/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0257/
http://www.python.org/dev/peps/pep-0257/

Cuckoo Sandbox Book, Release 2.0-dev

Blank Lines

Separate the class definition and the top level function with one blank line. Methods definitions inside a class are
separated by a single blank line:

class MyClass:
"""Doing something."""

def _ init__ (self):
mmn "IHitialiZe mmn
pass

def do_it(self, what):
”""DO lt.
@param what: do what.

mnn

pass

Use blank lines in functions, sparingly, to isolate logic sections. Import blocks are separated by a single blank line,
import blocks are separated from classes by one blank line.

Imports

Imports must be on separate lines. If you’re importing multiple objects from a package, use a single line:

from lib import a, b, c

NOT:

from lib import a
from lib import b
from 1lib import c

Always specify explicitly the objects to import:

’from lib import a, b, c ‘

NOT:

’from lib import =« ‘

Strings

Strings must be delimited by double quotes ().

Printing and Logging

We discourage the use of print (): if you need to log an event please use Python’s 1Logging which is already

initialized by Cuckoo.

In your module add:

import logging
log = logging.getLogger (__name__)

2.5. Development 97

Cuckoo Sandbox Book, Release 2.0-dev

And use the 1o0g handle, for more details refer to the Python documentation.

In case you really need to print a string to standard output, use the print () function:

’print("foo")

NOT the statement:

’print "foo"

Checking for keys in data structures

When checking for a key in a data structure use the clause “in” instead of methods like “has_key()”, for example:

if "bar" in foo:
do_something (foo["bar"])

Exceptions

Custom exceptions must be defined in the lib/cuckoo/common/exceptions.py file or in the local module if the exception
should not be global.

The following is the current Cuckoo exceptions chain:

.—— CuckooCriticalError

| | —— CuckooStartupError

| | == CuckooDatabaseError

| | —=— CuckooMachineError

| ' —— CuckooDependencyError
| -—— CuckooOperationalError

| | -— CuckooAnalysisError

| | -— CuckooProcessingError
| ' —— CuckooReportError

' —— CuckooGuestError

Beware that the use of CuckooCriticalError and its child exceptions will cause Cuckoo to terminate.

Naming

Custom exception names must start with “Cuckoo” and end with “Error” if it represents an unexpected malfunction.

Exception handling

When catching an exception and accessing its handle, use as e:

try:
foo ()

except Exception as e:
bar ()

NOT:

try:
foo ()

except Exception, something:
bar ()

98 Chapter 2. Contents

Cuckoo Sandbox Book, Release 2.0-dev

It’s a good practice use “e” instead of “e.message”.

Documentation

All code must be documented in docstring format, see PEP 257 — Docstring Conventions. Additional comments may
be added in logical blocks to make the code easier to understand.

Automated testing

We believe in automated testing to provide high quality code and avoid dumb bugs. When possible, all code must be
committed with proper unit tests. Particular attention must be placed when fixing bugs: it’s good practice to write unit
tests to reproduce the bug. All unit tests and fixtures are placed in the tests folder in the Cuckoo root. We adopted
Nose as unit testing framework.

2.6 Final Remarks

2.6.1 Links

* www.cuckoosandbox.org
e community.cuckoosandbox.org
* github.com/cuckoosandbox

¢ www.malwr.com

2.6.2 Join the discussion

You can get in contact with the Cuckoo developers and users through the Community portal or on IRC at the official
#cuckoosandbox channel.

If you are encountering an issue you can’t solve and are looking for some help, go to our Community website.

Please read the following rules before posting:

* Before posting, read the Community archives, the Cuckoo blog, the documentation and Google about your issue.
DO NOT post questions that have already been answered over and over everywhere.

* Posting messages saying just something like “Doesn’t work, help me” are completely useless. If something is
not working report the error, paste the logs, the config file, the information on the virtual machine, the results of
the troubleshooting, etc. Give context. We are not wizards and we don’t have a crystal ball.

» Use a proper title. Stuff like “Doesn’t work”, “Help me”, “Error” are not proper titles.

2.6.3 Support Us

Cuckoo Sandbox is a completely open source software, released freely to the public and developed mostly during free
time by volunteers. If you enjoy it and want to see it kept developed and updated, please consider supporting us.

We are always looking for financial support, hardware support and contributions of any sort. If you’re interested in
cooperating, feel free to contact us.

2.6. Final Remarks 99

http://www.python.org/dev/peps/pep-0257/
http://nose.readthedocs.org/en/latest/
http://www.cuckoosandbox.org
https://community.cuckoosandbox.org
http://github.com/cuckoosandbox
http://www.malwr.com
https://community.cuckoosandbox.org
https://community.cuckoosandbox.org
https://community.cuckoosandbox.org

Cuckoo Sandbox Book, Release 2.0-dev

2.6.4 People

Cuckoo Sandbox is an open source project result of the efforts and contributions of a lot of people who enjoyed

volunteering some of their time for a greater good :).

Active Developers

Name Role

Contact

Claudio nex Guarnieri | Lead Developer

nex at nex dot sx

Alessandro jekil Tanasi | Developer

alessandro at tanasi dot it

Jurriaan skier Bremer Developer

jurriaanbremer at gmail dot com

Mark rep Schloesser Developer

ms at mwcollect dot org

Contributors

It’s hard at this point to keep track of all individual contributions. Following is the list of people who contributed code

to our GitHub repository:

$ git shortlog -s -n
1226 Jurriaan Bremer
1119 Nex
1076 Jjekil
372 Dmitry Rodionov
305 rep
185 nex
117 Thorsten Sick
85 1Ivan Kirillov
50 Alessandro Tanasi
24 Mark Schloesser
24 Pietro Delsante
24 Charlie Hanner
22 David Maciejak
15 Adam Meily
14 Justin Roberts
13 Greg Back
11 r3complle
10 lehmz
9 Script Kiddie
Christopher Schmitt
Hugh Pearse
SpoonBoy
KillerInstinct
Tal Jerome
init99
Jjamu
Rajiv Subrahmanyam
David Francos
Nicky
Chris Boettcher
Adam Pridgen
Ben Small
Darren Spruell
Thibault Margquand
Allen Swackhamer
Espen Fjellvar Olsen

W W W DD 0101 0oy oYy O O

100

Chapter 2. Contents

https://twitter.com/botherder
https://twitter.com/jekil
https://twitter.com/skier_t
https://twitter.com/repmovsb

Cuckoo Sandbox Book, Release 2.0-dev

Jerome Marty

Nagy Ferenc Laszld
Stephen DiCato
mak

robertsijw

WZT

zOmbiehunt3r
Roberto Abdelkader Martinez
kholbrook1303
Will Metcalf
bcyrill

upsidedwn
mcpacosy

mt00at

Henrique Menezes
nsmfoo

SecTecRes
Shane-Carr

Mario Vilas

Gael Muller

Jacob Gajek
Richard Harman
Mark Woan

Max Taube
Neriberto C.Prado
Thomas Penteker
Claudio Guarnieri
Nitzan Carmel
jvoisin
l0Ongestever

Ben Lyon

Andrea De Pasquale
Alexander J

Aitor Gémez

vacmf

sabri
sharvilkatariya
shendo

Maxim Muzafarov
Micha Lenk
Michael George
ssobr

Michal Marek

John Davison
Jesus Hernandez Gormaz
Riddlelei

Ryan Peck
SnakeByte Lab
tsmolka

Fedele Mantuano
Edouard Chamillard
Valter Santos
bladeswords
chimerhapsody
chort

chrestme

consen

PP R R R RPRPRPRRRPRPRERERRPRPRERERRPEPEREPERERERLEREERENMNMDDNNNMNMNOMMNNNNMNMNODMONNNDNODODODNWWWWWWW

Pérez

2.6. Final Remarks

101

Cuckoo Sandbox Book, Release 2.0-dev

dewiestr

dspruell

flo-vienna

Crashmanl983

Benjamin Vanheuverzwiijn

R e e e

There is a number of friends who provided feedback, ideas and support during the years of development of this project,
including:

e Felix Leder

¢ Tillmann Werner
* Georg Wicherski
* David Watson

e Christian Seifert

2.6.5 Supporters

* The Honeynet Project

¢ The Shadowserver Foundation

102 Chapter 2. Contents

http://www.honeynet.org
http://www.shadowserver.org

Index

A

add_path() (built-in function), 41
add_url() (built-in function), 41

P

Process.dump_memory() (built-in function), 80
Process.execute() (built-in function), 79
Process.exit_code() (built-in function), 79
Process.get_parent_pid() (built-in function), 79
Process.inject() (built-in function), 80
Process.is_alive() (built-in function), 79
Process.open() (built-in function), 78
Process.resume() (built-in function), 79
Process.terminate() (built-in function), 80

S

Signature.activate() (built-in function), 94
Signature.add_match() (built-in function), 87
Signature.check_api() (built-in function), 89

Signature.check_argument_call() (built-in function), 89

Signature.check_domain() (built-in function), 92
Signature.check_file() (built-in function), 88
Signature.check_ip() (built-in function), 92
Signature.check_key() (built-in function), 89
Signature.check_mutex() (built-in function), 89
Signature.check_url() (built-in function), 92
Signature.deactivate() (built-in function), 94
Signature.flags.find() (built-in function), 93
Signature.flags.set() (built-in function), 93
Signature.get_net_domains() (built-in function), 91
Signature.get_net_hosts() (built-in function), 91
Signature.get_net_http() (built-in function), 91
Signature.get_net_icmp() (built-in function), 92
Signature.get_net_irc() (built-in function), 92
Signature.get_net_smtp() (built-in function), 92
Signature.get_net_udp() (built-in function), 91
Signature.has_matches() (built-in function), 88
Signature.mark_end() (built-in function), 94
Signature.mark_start() (built-in function), 93
Signatures.get_files() (built-in function), 90

Signatures.get_keys() (built-in function), 91
Signatures.get_mutexes() (built-in function), 91
Signatures.get_processes() (built-in function), 90
Signatures.get_processes_by_pid() (built-in function), 90
Signatures.get_threads() (built-in function), 90
Signatures.list_signatures() (built-in function), 90

103

	Having troubles?
	FAQ

	Contents
	Introduction
	Installation
	Usage
	Customization
	Development
	Final Remarks

