
yet	another	uzbl	tutorial	
not	authorized	by	the	fine	folks	at	uzbl.org	
version	1.224,	Mon	Jan	19	20:39:47	PST	2015	
***	currently	being	edited	***	
Bill	Evans,	wje@acm.org	
The	canonical	link	to	this	tutorial	is	http://uzbl.mariposabill.com.	
See	what's	new	in	this	tutorial	here.	
The	code	and	other	suggestions	in	this	tutorial	come	without	warranty,	express	or	implied.	 If	you	break	anything,	you	get	to
keep	the	pieces.	 Although	I	welcome	e-mail,	I	cannot	guarantee	to	offer	support	for	the	code	and	other	suggestions	in	this
tutorial.

go	to	top		go	to	list	of	contents

introduction

go	to	top		go	to	list	of	contents

uzbl	(pronounced	like	the	word	"usable")	is	a	lightweight	web	browser.	 The	core	browser	is	devoted	to
actual	web	browsing.	 Everything	else:	cookies,	URI	transformation,	browsing	history,	and	the	like,	is
handled	outside	the	core	browser,	in	external	programs	(typically	Python	scripts).	
Before	continuing	with	this	tutorial,	please	read	the	wikipedia	article	about	uzbl.	 Always	remember	the
baseline	reference	site,	the	home	for	uzbl:	uzbl.org.	
There's	been	some	discussion	on	whether	uzbl	is	the	best	lightweight	browser.	 Such	discussion,	in	my

opinion,	misses	the	true	advantage	of	uzbl:	the	ability	to	fine	tune	many	aspects	of	its	behavior	through	external	programs.
If	that's	not	what	you're	looking	for,	if	what	you're	looking	for	is	simply	a	small-footprint	browser,	check	out	the	list
here.	
This	tutorial	is	based	on	the	uzbl	package	provided	for	Debian	7.2.0	(Wheezy),	whose	commit	string	is	"228bc38",	and	also	the
official	release	of	uzbl	as	of	2015	Jan	15	(commit	string	"2012.05.14-1113-g69fa417").	 The	package	provided	for	your	system
may	do	things	a	little	differently,	but	there	should	be	no	major	problem	with	that.	
This	tutorial	is	not	a	complete	reference	guide	to	uzbl.	 It	merely	encourages	you	to	put	your	toes	into	the	water,	and	then
get	your	feet	wet,	and	then	splash	around	some	as	you	modify	uzbl	to	do	your	will.	 Some	of	the	suggested	changes	are	quite
sloppy,	with	a	clumsy	Python	coding	style.	 Tighten	them	up	if	you	wish.	
This	tutorial	is	divided	into	three	parts.	 The	first	part	shows	how	to	use	uzbl-tabbed	almost	straight	out	of	the	box,	with
very	few	modifications.	 The	second	part	shows	how	to	make	uzbl	do	what	you	want,	by	either	changing	the	config	file	or
changing	Python	scripts	(including	uzbl-tabbed).	 The	third	part	introduces	compiling	uzbl-core.	 Changing	the	C	source	for
uzbl-core	is	certainly	possible,	but	is	beyond	the	scope	of	this	tutorial.	
There	are	gaps	in	this	document	which	I	will	probably	never	fill,	mostly	because	of	time	constraints.	 Those	gaps	are	labeled
*****.	 Some	of	these	are	because	I	haven't	taken	the	time	to	investigate	them.	 If	you	know	how	to	fill	any	*****	in	this
document,	e-mail	me.	
To	continue	reading	past	the	list	of	contents,	click	here.

go	to	top		go	to	list	of	contents

what's	new

go	to	top		go	to	list	of	contents

Thu	Jan	15	03:21:49	PST	2015	
Added	a	section	in	which	we	download,	build,	and	install	the	latest	official	release	of	uzbl.

go	to	top		go	to	list	of	contents

list	of	contents

go	to	top		go	to	list	of	contents

introduction
what's	new
list	of	contents
basic	prerequisites
this	page	comes	in	two	editions
three	flavors
bugs
***	part	the	first:	running	uzbl-tabbed	almost	as	it	is	shipped
before	you	even	begin
running	uzbl-tabbed	for	the	first	time
the	config	file
changing	the	config	file	for	running	uzbl-tabbed
running	uzbl-tabbed	with	some	tabs
the	adventure	begins:	fixing	with	a	squirt	gun
two	kinds	of	commands
what	happens	when	I	press	this	key
key	binding	collisions
***	part	the	second:	changing	uzbl-tabbed	behavior
adding	a	new	user	command:	leaving	uzbl-tabbed
internal	uzbl	commands
more	assigned	reading
playing	with	variables
tightening	up	the	status	bar
logging	events	to	disk
fixing	two	minor	bugs	in	uzbl-tabbed
tab	control
new	window,	for	real
background	tabs,	left	to	right
URI-dependent	configuration
cellular	browsing
***	part	the	third:	compiling	the	C	source
getting	uzbl	source	code
getting	uzbl	from	uzbl.org
***	no	more	parts
primary	and	clipboard	selections
pid	files	and	you
referrer	fun	fact
thoughts	on	Python
the	difference	between	URI	and	URL
of	historical	interest
further	reading
acknowledgements
trademarks
religious	issues

go	to	top		go	to	list	of	contents

basic	prerequisites

go	to	top		go	to	list	of	contents

uzbl	runs	on	Unix-like	operating	systems.	 If	you're	running	Microsoft	Windows®(spit),	I	know	of	no	way	to	run	uzbl	there.
You	can	run	uzbl	on	a	Macintosh®	system,	but	that's	beyond	the	scope	of	this	tutorial.	
Some	claim	that	you	must	know	how	to	program	if	you	want	to	use	uzbl.	 Not	so.	 Coding	skills	will	be	useful	if	you	want	to
customize	uzbl	in	fine	detail,	but	otherwise	no.	 The	tricky	part,	though,	is	that	if	you	end	up	wanting	to	customize	uzbl,
you'll	end	up	learning	to	code	a	little,	even	though	you	don't	want	to.	 That's	fine.	 It	builds	character.	
You	need	to	be	able	to	know	your	way	around	a	shell	command	prompt,	and	how	to	edit	a	text	file.	 (This	is	not	the	same	as
using	a	word	processing	program.)	 It	would	help	if	you're	used	to	the	"vi"	text	editor,	or	workalikes	such	as	vim	or	elvis,
because	out	of	the	box,	uzbl	has	"key	bindings"	(what	happens	when	you	press	certain	keys)	similar	to	those	in	vi.	
Use	a	uzbl	package	offered	for	your	OS	(e.g.,	Linux)	distribution.	 You	could	compile	the	newest	source	from	uzbl.org	instead,
but	that	is	not	for	the	faint	of	heart,	and	how	to	do	so	is	beyond	the	scope	of	this	tutorial.	
This	will	be	a	bit	of	a	journey.	 The	rewards,	in	terms	of	both	lightness	of	weight	and	degree	of	control	over	your	browsing
experience,	are	worth	it.

go	to	top		go	to	list	of	contents

this	page	comes	in	two	editions

go	to	top		go	to	list	of	contents

When	this	tutorial	was	first	written,	uzbl	was	in	alpha.	 This	means	that	features	could	change,	and	so	they	have.	 In
particular,	the	syntax	for	some	internal	uzbl	commands	has	changed.	 This	tutorial	will	steer	you	around	some	of	the	syntax
changes.	 But	the	"set"	internal	uzbl	command	is	used	enough	in	this	tutorial	that	we'll	be	handling	that	one	specially.	
The	earlier	version	of	the	syntax	of	the	"set"	command	included	"=";	the	later	version	does	not.	 Here's	an	example	of	each:

set	status_top	=	1
set	status_top	1

A	tutorial	written	to	accommodate	both	versions	of	the	"set"	syntax	would	be	awkward	to	write	and	awkward	to	read,	so	there
are	two	editions	of	this	tutorial:	the	normal	edition,	and	the	old-set-syntax	edition.	 Which	one	do	you	need?	 The	answer	can
be	found	in	the	default	configuration	file	that	comes	with	your	uzbl	package.	 That	file	can	usually	be	found	in	one	of	two
places	(that	is,	it	has	one	of	these	two	names):

/usr/share/uzbl/examples/config/config
/usr/local/share/uzbl/examples/config/config

So	log	in	on	your	machine	and	enter	this	command	at	the	shell	prompt,	adjusting	as	necessary	for	the	proper	config	file
location:

grep	status_top	/usr/share/uzbl/examples/config/config

You	should	see	one	of	these	two	lines:

set	status_top								=	0
set	status_top								0

If	you	see	the	line	with	the	equals	sign,	you'll	be	using	the	older	syntax	for	the	"set"	internal	uzbl	command;	if	you	see	the
one	without,	you'll	be	using	the	newer	syntax.	
You	are	currently	reading	the	tutorial	for	the	newer	syntax.	 To	switch	to	the	tutorial	for	the	older	syntax,	click	here.

go	to	top		go	to	list	of	contents

three	flavors

go	to	top		go	to	list	of	contents

There	are	three	flavors	to	uzbl.	
The	first	flavor	is	called	uzbl-core.	 This	is	the	bare-bones	browser	itself,	with	no	configuration.	 It	sits	there	and
browses,	nothing	more.	 By	itself,	it's	not	usable.	
The	second	flavor	is	called	uzbl-browser.	 This	flavor	is	actually	usable,	but	it	doesn't	provide	for	tabbed	browsing.	 As	it
runs,	it	calls	on	uzbl-core.	
The	third	flavor	is	called	uzbl-tabbed.	 As	its	name	implies,	it	provides	tabbed	browsing.	 (As	it	runs,	it	calls	on	uzbl-
browser.)	 This	tutorial	will	assume	that	you	want	to	use	uzbl-tabbed.

go	to	top		go	to	list	of	contents

bugs

go	to	top		go	to	list	of	contents

I	found	a	few	bugs	as	I	started	to	use	uzbl;	this	tutorial	describes	for	you	my	workarounds.	 You	may	not	find	it	necessary	to
use	all,	or	any,	of	the	workarounds;	your	uzbl	package	may	already	have	some	or	all	of	the	bugs	fixed.	 And	you	might	find
other	bugs.	 I	hope	that	reading	about	my	workarounds	will	give	you	a	useful	perspective	for	solving	your	own	uzbl	situations.
Actually,	we're	going	to	address	one	of	those	bugs	before	we	even	begin.

go	to	top		go	to	list	of	contents

before	you	even	begin

go	to	top		go	to	list	of	contents

I	hate	to	lay	this	on	you,	but	there's	a	bug	you	need	to	address,	if	it's	in	your	version	of	uzbl.	 May	as	well	take	care	of
it	now.	 It's	in	uzbl-browser,	a	shell	script.	
If	you	can	(and	want	to)	act	as	root,	it	would	be	advisable	to	salt	away	an	unmodified	copy	of	uzbl-browser,	and	then	make
your	changes.

If	you	want	to	act	as	a	non-root	user,	copy	uzbl-browser	from	its	public	location	to	a	directory	where	your	shell	will	find	it
before	it	finds	the	official	copy.	 The	PATH	environment	variable	will	help	you	here.	 For	example,	if	you	can	change	PATH
like	this	(or	similarly):

export	PATH=~/bin:/usr/local/bin:/usr/bin:/bin

then	your	shell	will	look	in	directory	~/bin	before	it	looks	in	the	public	directories.	 So	you	need	to	copy	the	official
uzbl-browser	to	the	directory	~/bin	and	then	make	any	changes	to	the	new	copy.	 (Be	sure	to	use	the	chmod	command	to	make	this
new	copy	executable.)	 I'll	talk	about	the	actual	change	in	a	moment,	but	first	there's	something	else	you	need	to	know	about
the	PATH	environment	variable.	
If	you	changed	the	value	of	the	PATH	environment	variable,	you'll	want	to	make	that	change	happen	every	time	you	log	in.
You'll	want	to	place	into	a	shell	startup	file	the	command	that	sets	the	PATH	environment	variable.	 Where	that	startup	file
is	located	differs	from	one	shell	to	the	next;	for	bash,	for	example,	you	can	read	about	startup	files	here.	
Ok,	let's	get	down	to	the	potential	bug.	 Part	of	uzbl	is	something	called	the	event	manager.	 There	should	be	only	one	per
user.	 By	"user"	I	mean	login	name	on	your	system.	 No	matter	how	many	windows	you	have	separately	running	uzbl,	if	you're
logged	in	as	the	same	user	on	your	system	for	all	of	those	windows,	you'll	be	using	one	event	manager.	 When	the	event	manager
starts,	one	of	the	first	things	it	does	is	to	determine	(imperfectly;	go	here	for	details)	whether	there's	an	event	manager

already	running	for	this	user.	 To	do	so,	it	uses	something	called	a	pid	file.	

A	pid	file	is	a	traditional	way	to	keep	track	of	whether	something	is	already	running,	and	if	so,	what	its	process	ID	(pid)
is.	 The	file	simply	contains	the	relevant	pid.	 In	theory,	when	the	program	stops	running,	it	removes	the	pid	file.	 But	it's
quite	possible	for	the	program	to	stop	running	without	being	able	to	remove	that	pid	file.	

So	what's	the	bug?	 Take	a	look	at	the	final	few	lines	of	uzbl-browser.	 They	will	probably	look	either	something	like	this:

#	uzbl-event-manager	will	exit	if	one	is	already	running.
#	we	could	also	check	if	its	pid	file	exists	to	avoid	having	to	spawn	it.
DAEMON_SOCKET="$XDG_CACHE_HOME/uzbl/event_daemon"
if	!	[-f	"$DAEMON_SOCKET.pid"];	then
								${UZBL_EVENT_MANAGER:-uzbl-event-manager	-va	--server-socket	"$DAEMON_SO
CKET"	start}	||	\
																die_with_status	4	"Error:	Could	not	start	uzbl-event-manager"
fi

...	or	something	like	this:

#	uzbl-event-manager	will	exit	if	one	is	already	running.
#	we	could	also	check	if	its	pid	file	exists	to	avoid	having	to	spawn	it.
DAEMON_SOCKET="$XDG_CACHE_HOME"/uzbl/event_daemon
#if	[!	-f	"$DAEMON_SOCKET".pid]
#then
								${UZBL_EVENT_MANAGER:-uzbl-event-manager	-va	start}
#fi

Do	you	see	the	main	difference?	 One	version	checks	to	see	whether	the	pid	file	exists,	and	if	it	does,	then	uzbl-browser
doesn't	run	the	event	manager.	 The	other	version	comments	out	the	check	and	calls	the	event	manager	unconditionally,	letting
the	event	manager	figure	out	whether	it's	already	running.	 The	first	version	will	cause	uzbl	to	run	very	slightly	faster,	but
will	also	cause	uzbl	to	misbehave	under	some	circumstances.	 Suppose	the	event	manager	stops	running	without	being	able	to
remove	the	pid	file.	 The	next	time	you	run	uzbl,	uzbl-browser	will	see	that	a	pid	file	is	there,	and	therefore	refrain	from
running	the	event	manager.	 No	event	manager?	 Uzbl	doesn't	run	well	without	one.	
If	your	uzbl-browser	makes	the	check,	you	should	remove	that	check,	so	those	lines	look	something	like	these:

#	uzbl-event-manager	will	exit	if	one	is	already	running.
#	we	could	also	check	if	its	pid	file	exists	to	avoid	having	to	spawn	it.
DAEMON_SOCKET="$XDG_CACHE_HOME/uzbl/event_daemon"
#if	!	[-f	"$DAEMON_SOCKET.pid"];	then
								${UZBL_EVENT_MANAGER:-uzbl-event-manager	-va	--server-socket	"$DAEMON_SO
CKET"	start}	||	\
																die_with_status	4	"Error:	Could	not	start	uzbl-event-manager"
#fi

You	could,	if	you	wanted,	leave	the	check	in	but	make	it	more	thorough.	 That	would	work.	 See	my	thoughts	on	that	here

go	to	top		go	to	list	of	contents

running	uzbl-tabbed	for	the	first	time

go	to	top		go	to	list	of	contents

So	log	in	on	your	machine	and	enter	this	command	at	the
shell	prompt:

uzbl-tabbed

When	I	did	so,	I	got	a	window	that	wasn't	wide	enough	for	my
taste,	but	was	too	tall	to	fit	on	the	screen.	 My	screen
looked	like	what	you	see	here.	 In	the	screen	dump	you	see
some	"Next	Steps".	 That	fine	print	is	magnified	below	the
screen	dump.	
But	don't	do	anything	about	those	next	steps	just	yet.	 The
first	thing	to	learn	now	is	to	get	out	of	uzbl.	 At	any
point	in	uzbl,	you	can	leave	it	by	typing	these	four
characters:

<Esc><Esc>ZZ

Try	it	now.	 You'll	get	out	of	uzbl-tabbed.	 You	didn't	have
to	type	<Esc>	<Esc>	this	time,	but	get	in	the	habit	of	doing
that;	it	did	no	harm,	and	this	simple	recipe	should	work	no
matter	where	you	are	in	uzbl,	no	matter	what	you're	doing.	
If	you	have	more	than	one	tab	open,	you'll	have	to	type	this
command	once	for	each	tab	that's	open.	 Later	in	this
tutorial,	you'll	learn	how	to	add	a	command	which	you	need
type	only	once	to	leave	uzbl-tabbed	completely.	
Now	take	a	closer	look	at	those	next	steps.	 Remember	that
the	whole	point	of	uzbl-tabbed	is	to	work	with	multiple
tabs?	 That	won't	work	out	of	the	box;	you	have	to	change	a
config	file	to	make	it	work.	 Inconvenient,	but	true.	 We're
going	to	take	care	of	that	third	step	almost	right	away.	But
first	it's	time	to	learn	something	about	the	uzbl	config
file.

go	to	top		go	to	list	of	contents

the	config	file

go	to	top		go	to	list	of	contents

There	can	be	many	files	which	affect	how	uzbl	behaves.	 A	quite	important	one	is	the	config	file.	 When	a	user	runs	uzbl,	it
checks	for	the	existence	of	that	user's	config	file;	if	the	file	doesn't	exist,	uzbl	makes	a	fresh	copy	from	elsewhere.	
If	we	can	refer	to	the	user's	home	directory	as	"~",	uzbl	expects	the	user's	config	file	to	be	at	~/.config/uzbl/config;	if
the	file	isn't	there,	then	that's	where	uzbl	will	place	a	fresh	config	file.	 The	user	can	then	exit	uzbl	and	change	that	file
as	desired.	
Where	does	uzbl	get	a	fresh	copy	of	the	config	file?	 That	depends	on	your	uzbl	installation,	but	it	will	typically	be	found
at	one	of	these	two	places:

/usr/share/uzbl/examples/config
/usr/local/share/uzbl/examples/config

And	here	I've	just	finishing	describing	the	entire	way	uzbl	config	files	work	with	each	other.	 It	could	have	been	made	more
complex,	but	uzbl	aims	to	be	simple.	
Let's	give	an	imaginary	counterexample.	 Let's	suppose	there's	a	software	product	which,	unlike	uzbl,	works	with	both	a
system-wide	config	file	and	a	user	config	file;	the	user	config	file	can	override	system-wide	values	specified	in	the	system-
wide	config	file.	 It	could	be	that	the	system-wide	file	sets,	say,	window_size	to	"800,600",	and	user	config	files,	when
first	created,	do	not	even	mention	window_size,	and	this	means	that	the	system-wide	config	file's	value	should	be	used.	 Then
suppose	a	system	administrator	sets	the	system-wide	window_size	to	"1600x1200".	 Then	all	users	who	have	not	overriden	this
value	in	their	own	config	files	will	use	the	new	value.	
This	is	exactly	what	uzbl	does	not	do.	 Once	a	user	has	a	copy	of	the	config	file,	that's	what	uzbl	uses.	 If	a	system
administrater	changes	the	copy	of	window_size	in	the	system-wide	config	file,	that	only	affects	a	new	uzbl	user	who	copies	the
new	system-wide	config	file	to	become	his	own	config	file.	

But	what	if	a	uzbl	user	always	wants	to	use	the	default	config	file,	reflecting	any	changes	the	system	administrator	makes	in
it?	 That	uzbl	user	should,	after	running	uzbl-tabbed	at	least	once,	change	file	~/.config/uzbl/config	so	it	contains	only	one
line:

include	/usr/share/uzbl/examples/config/config

(or	wherever	the	default	configuration	file	is	for	your	system),	and	then	make	any	desired	changes	after	that	one	line.	 But
if	you	do	this,	remember	that	many	parts	of	this	tutorial	rely	on	the	config	file	being	modifiable,	and	being	at
~/.config/uzbl/config,	so	you'll	have	to	make	appropriate	adjustments	as	you're	reading.	
If	you	look	inside	a	config	file,	you'll	be	asking,	"What	language	is	that	config	file	using?"	 Config	files	are	made	up	of
internal	uzbl	commands;	we'll	discuss	those	later.	
One	final	warning	if	you're	the	administrator	of	your	system	and	you're	tempted	to	change	the	main	config	file	in	directory
/usr/share:	salt	away	a	copy	of	the	original	before	you	make	any	changes.	 This	is	a	good	idea	for	two	reasons.	 The	first	is
that	if	you	mess	things	up,	you	have	something	to	fall	back	on.	 The	second	is	that	if	you	ever	update	to	a	later	version	of
uzbl,	perhaps	one	that	uses	a	different	format	of	config	file,	you	can	do	a	diff	between	the	original	config	file	and	your
changed	config	file	to	get	an	idea	of	what	you	should	change	in	the	new	config	file.

go	to	top		go	to	list	of	contents

changing	the	config	file	for	running	uzbl-tabbed

go	to	top		go	to	list	of	contents

According	to	the	screen	shot,	the	config	file	is	named:

~/.config/uzbl/config

So	edit	that	file	with	your	favorite	text	editor.	 You'll	be	making	at	least	one	change	to	this	file,	and	possibly	two	or
three	changes.	
For	the	first	change,	find	the	lines	that	look	approximately	like	this	(they	may	vary	from	one	uzbl	version	to	another):

#	===	Dynamic	event	handlers	===

#			What	to	do	when	a	website	wants	to	open	a	new	window:
#	Open	link	in	new	window
@on_event			NEW_WINDOW					sh	'uzbl-browser	${1:+-u	"$1"}'	%r
#	Open	in	current	window	(also	see	the	REQ_NEW_WINDOW	event	handler	below)
#@on_event			NEW_WINDOW					uri	%s
#	Open	in	new	tab.	Other	options	are	NEW_TAB_NEXT,	NEW_BG_TAB	and	NEW_BG_TAB_NEXT.
#@on_event			NEW_WINDOW					event	NEW_TAB	%s

Do	not	be	alarmed	if	these	lines	don't	look	exactly	like	the	ones	in	your	config	file;	simply	add	#	at	the	beginning	of	one
line,	and	remove	#	from	another	line:

#	===	Dynamic	event	handlers	===

#			What	to	do	when	a	website	wants	to	open	a	new	window:
#	Open	link	in	new	window
#@on_event			NEW_WINDOW					sh	'uzbl-browser	${1:+-u	"$1"}'	%r
#	Open	in	current	window	(also	see	the	REQ_NEW_WINDOW	event	handler	below)
#@on_event			NEW_WINDOW					uri	%s
#	Open	in	new	tab.	Other	options	are	NEW_TAB_NEXT,	NEW_BG_TAB	and	NEW_BG_TAB_NEXT.
@on_event			NEW_WINDOW					event	NEW_TAB	%s

For	the	potential	second	change,	if	your	config	file	contains	a	line	that	looks	like	this:

@on_event			REQ_NEW_WINDOW	event	NEW_WINDOW	%s

then	change	it	to	this:

@on_event			REQ_NEW_WINDOW	event	NEW_TAB	%s

But	you	can	ignore	this	change	if	instead	you	see	a	line	that	looks	somewhat	like	this:

@on_event			REQ_NEW_WINDOW	event	@-	if	(@embedded)	"NEW_TAB";	else	"NEW_WINDOW"	-@	%s

For	the	potential	third	change,	while	you're	still	in	your	text	editor,	go	to	the	very	beginning	of	the	config	file.	Then
search	for	this	string:

cbind

If	that	line	looks	somewhat	like	this	...

set	cbind					@mode_bind	command

...	then	you	don't	need	to	make	this	potential	third	change.	But	if	it	looks	roughly	like	this	...

@cbind		!ssl	=	chain	'toggle	ssl_verify'	'reload'

then	you	should	make	a	third	change.	 The	line	that	you	found	will	be	in	the	middle	of	a	paragraph	that	looks	(very	roughly)
like	this:

#	===	SSL	related	configuration	==

#	Set	it	to	certificates	store	of	your	distribution,	or	your	own	CAfile.
set	ssl_ca_file	/etc/ssl/certs/ca-certificates.crt
set	ssl_verify	1
#	Command	to	toggle	ssl_verify	value:
@cbind		!ssl	=	chain	'toggle	ssl_verify'	'reload'
#	Example	SSL	error	handler:
@on_event			LOAD_ERROR				js	var	patt=new	RegExp('SSL	handshake	failed');	if	(patt.test('%3'))	{alert	('%3');}

Move	(not	just	copy)	that	whole	paragraph	to	somewhere	after	the	"set	cbind"	line.	 It	almost	doesn't	matter	where.	 A
convenient	place	would	be	at	the	very	end	of	the	config	file.	 A	better	place	would	be	just	before	the	final	line	that
contains	"====".	
After	making	these	changes,	write	out	the	file	and	get	out	of	your	text	editor.

go	to	top		go	to	list	of	contents

running	uzbl-tabbed	with	some	tabs

go	to	top		go	to	list	of	contents

Enter	this	command	at	the	shell	prompt:

uzbl-tabbed	xkcd.com/1366

The	page	will	load.	 In	most	systems,	you	should	see	the	following	in	the	window's	title	bar:

xkcd:	Train	-	Uzbl	Browser

But	you'll	also	see	this	in	the	upper	lefthand	corner	of	the	window:

[0	xkcd:	Train]

That's	the	"tab"	in	"uzbl-tabbed".	 (Actually,	most	of	it	will	be	green,	but	I	don't	have	a	green	typewriter	ribbon,	so	there
you	are.)	 It	kinda	looks	like	a	tab,	but	if	you	have	more	than	one,	you	can't	click	on	the	one	you	want.	 You'll	use	the
keyboard.	 (We'll	discuss	this	later.)	 You'll	get	used	to	it	eventually.	
See	the	word	"ABOUT"	in	the	upper	left	corner	of	the	page?	 Right-click	it.	 A	menu	will	appear.	 The	second	alternative	is
"Open	Link	in	New	Window".	 But	since	you	changed	the	config	file,	it	really	means	"Open	Link	in	New	Tab".	 Click	on	that
choice.	 You'll	notice	that	you're	in	a	new	tab,	showing	links	to	archived	xkcd	comics.	 You'll	also	notice	that	the	title	bar
has	changed	to	show	the	new	page	you're	in.	 You'll	also	notice	that	there	are	two	tabs,	and	they	look	like	this:

[0	xkcd:	Train]	[1	xkcd	-	A	webcomic]

You	can	guess	that	the	tabs	are	numbered,	starting	at	zero.	You	can	also	guess	that	the	tab	you're	in	right	now	is	colored
green	(unless	this	tab's	protocol	is	https:,	in	which	case	the	color	is	gold);	all	others	will	be	gray.	
Now	go	back	to	the	first	tab	by	typing	this	user	command:

gT

The	letter	"g"	must	be	lower	case,	but	for	now	in	this	demo,	the	letter	"T"	can	be	either	upper	case	or	lower	case.	 As	always
when	typing	user	commands	to	uzbl,	make	sure	that	"[Cmd]"	appears	in	the	lower	left	corner	of	the	window.	 If,	instead,	you
see	"[Ins]"	or	"[Bnd]",	press	<Esc>	until	you	see	"[Cmd]",	and	then	you	can	type	your	user	command.	
Anyway,	since	you've	typed	"gT",	you'll	notice	that	you're	back	in	the	first	tab.	 Right-click	on	"ARCHIVE",	choosing	"Open
Link	In	New	Window".	 You'll	notice	that	there	are	three	tabs,	and	you're	in	tab	2	(the	rightmost	one).	 Each	time	you	add	a
tab,	the	new	tab	goes	to	the	end	of	the	list,	and	you	are	transferred	to	that	tab.	
Now	enter	this	user	command,	over	and	over,	making	sure	that	both	letters	are	lower	case:

gt

Now	enter	this	user	command,	over	and	over:

gT

See	the	difference?	 The	first	user	command	moves	you	rightward	in	the	set	of	tabs,	wrapping	around.	 The	second	user	command
moves	you	leftward,	wrapping	around.	
For	extra	credit,	do	everything	in	this	section	of	the	tutorial	again,	but	after	changing	this	line	in	your	config	file:

@on_event			NEW_WINDOW					event	NEW_TAB	%s

to:

@on_event			NEW_WINDOW					event	NEW_TAB_NEXT	%s

and	then	play	around	with	it.	 Each	new	tab	now	goes	just	to	the	right	of	the	tab	you	were	in,	rather	than	always	to	the	end.
All	tabs	after	the	new	one	get	renumbered	so	the	new	one	will	fit.	
You	can	also	add	"_BG"	before	"_TAB".	 The	effect	will	be	that	when	you	create	a	new	tab,	you'll	stay	in	the	tab	you	were	in
before,	instead	of	going	to	the	new	tab.	 (This	will	work	better	after	we	make	the	fixes	in	the	next	section.)

go	to	top		go	to	list	of	contents

the	adventure	begins:	fixing	with	a	squirt	gun

go	to	top		go	to	list	of	contents

Ok,	it's	time	to	fix	an	annoyance:	the	window	isn't	the	size	and	shape	we	want.	 I	want	it	to	be	1000	pixels	wide	and	750
pixels	tall.	 (Pick	different	numbers	if	you	want.)	 The	process	of	fixing	this	will	take	an	unexpected	turn.	
So,	first	type	<Esc>	<Esc>ZZ	to	get	out	of	uzbl-tabbed.	 Then	enter	this	command	at	the	shell	prompt:

less	$(which	uzbl-tabbed)

You'll	be	looking	at	uzbl-tabbed	itself,	which	is	a	Python	script.	 Somewhere	in	there,	you'll	find	this:

#	All	of	these	settings	can	be	inherited	from	your	uzbl	config	file.
config	=	{

...

		'window_size':												"800,800",	#	width,height	in	pixels.

Oh	ho.	 Now	we	know	what	to	do,	don't	we?	
		Look	at	our	config	file	to	discover	how	to	set	things;
		set	window_size	to	the	value	we	want;	and
		run	uzbl-tabbed	again.	
Looking	at	the	config	file,	we	discover	that	we	can	place	something	like	this	almost	anywhere	in	it:

set	window_size	"1000,750"

So	go	ahead	and	do	that	on	your	machine.	 Then	rerun	uzbl-tabbed.	 I'll	wait.

Did	it	work?	 It	doesn't	on	older	releases	of	uzbl,	but	does	on	newer	ones.	 If	it	worked	for	you,	skip	almost	to	the	end	of
this	section.	 (You'll	miss	some	choice	droll	comments	about	cats	and	squirt	guns,	but	that's	ok.)	 Otherwise,	continue
reading	here.

To	get	the	result	I	wanted,	I	treated	the	program	uzbl-tabbed	itself	as	an	extension	of	the	config	file:	I	changed	the	default
value	of	window_size	in	the	program	uzbl-tabbed	itself;	that	is,	I	searched	uzbl-tabbed	for	each	occurrence	of	window_size,
and	changed	the	value	I	found	there.

If	you	can	(and	want	to)	act	as	root,	it	would	be	advisable	to	salt	away	an	unmodified	copy	of	uzbl-tabbed,	and	then	make	your
changes.

If	you	want	to	act	as	a	non-root	user,	copy	uzbl-tabbed	from	its	public	location	to	a	directory	where	your	shell	will	find	it
before	it	finds	the	official	copy.	 The	PATH	environment	variable	will	help	you	here.	 For	example,	if	you	can	change	PATH
like	this	(or	similarly):

export	PATH=~/bin:/usr/local/bin:/usr/bin:/bin

then	your	shell	will	look	in	directory	~/bin	before	it	looks	in	the	public	directories.	 So	you	need	to	copy	the	official
uzbl-tabbed	to	the	directory	~/bin	and	then	make	any	changes	to	the	new	copy.	 (Be	sure	to	use	the	chmod	command	to	make	this
new	copy	executable.)	 In	this	case,	you'll	want	to	find	the	place	where	it	sets	window_size,	and	substitute	the	desired
value.	 This	is	what	worked	for	me.	
If	you	changed	the	value	of	the	PATH	environment	variable,	you'll	want	to	make	that	change	happen	every	time	you	log	in.
You'll	want	to	place	into	a	shell	startup	file	the	command	that	sets	the	PATH	environment	variable.	 Where	that	startup	file
is	located	differs	from	one	shell	to	the	next;	for	bash,	for	example,	you	can	read	about	startup	files	here.	
What	we've	done	here	is	to	use	an	unconventional	method	to	bend	uzbl	to	our	will.	 If	one	can	consider
uzbl	to	be	a	sort	of	cat,	we	fixed	this	with	a	squirt	gun.	 It	works	for	cats,	and	it	works	for	uzbl.
For	best	results	with	a	cat,	use	the	squirt	gun	when	the	cat	cannot	see	you.	 And	if	you're	going	to	use
this	method	with	uzbl,	make	sure	the	uzbl	icon	is	not	on	the	screen,	so	it	can't	see	you	applying	the
fix.	
The	question	arises:	when	you	create	a	new	tab,	do	you	switch	to	it	right	away,	or	do	you	stay	in	the
tab	you	were	in?	 Older	versions	of	uzbl	let	you	change	the	value	of	switch_to_new_tabs	in	the	source
for	uzbl-tabbed,	just	as	you	set	window_size	in	the	above	text;	the	newest	version	of	uzbl-tabbed	that	I	have	lets	you	change
this	variable	the	same	way,	but	you	can	also	override	its	value	in	your	config	file.	 And	other	browsers	allow	you	to	change
this	in	a	configuration	file.	 But	wouldn't	it	be	nice	to	have	it	either	way	during	the	same	browser	session,	via	a	menu
choice?	 This	tutorial	will	show	you	how	to	configure	uzbl-tabbed	to	do	that.	

Further,	it	would	be	nice	to	be	able	to	put	a	new	tab	either	(a)	next	to	the	tab	you're	in	right	now;	or	(b)	at	the	end	of	all
tabs,	not	as	a	configuration	choice,	but	as	a	menu	choice.	 Again,	this	tutorial	will	show	you	how	to	configure	uzbl-tabbed	to
do	that.	
As	an	alternative,	it	would	be	nice	to	put	all	new	tabs	(c)	next	to	the	tab	you're	in	right	now,	but	in	left-to-right	order.
This	tutorial	will	show	you	how	to	do	that.	
Other	browsers	already	let	you	choose	between	opening	a	link	in	a	new	tab	or	a	new	window.	 This	tutorial	will	show	you	how	to
do	that.	
But	for	now,	we	won't	be	making	any	more	changes.	 The	remainder	of	the	first	part	of	this	tutorial	will	focus	on	how	to	use
uzbl-tabbed	as	it	is.	 What	a	relief,	huh?

go	to	top		go	to	list	of	contents

two	kinds	of	commands

go	to	top		go	to	list	of	contents

As	you'll	discover	in	the	next	section,	you	can	tell	uzbl	to	do	things	when	uzbl	is	in	"command	mode";	that	is,	when	"[Cmd]"
is	in	the	status	bar.	 (The	status	bar	is	the	single	line	with	a	black	background,	usually	at	the	bottom	of	the	window.)	 But
there	is	another	kind	of	command,	another	beast	entirely.	 Consider	the	ZZ	user	command.	 Enter	this	command	at	the	shell
prompt:

grep	ZZ	~/.config/uzbl/config

You'll	see	something	like	this:

@cbind		ZZ																	=	exit

Your	config	file	translates,	or	"binds",	from	the	ZZ	keystrokes	to	an	internal	uzbl	command,	the	"exit"	command.	 This
internal	uzbl	command	causes	uzbl-tabbed	to	eliminate	the	current	tab,	and	to	exit	entirely	if	no	tabs	are	left.
The	set	of	translations	from	user	commands	to	internal	uzbl	commands	is	referred	to	as	"key	bindings".	 You	can	change	the	ZZ
to	almost	anything	else;	or,	if	you	wish,	you	can	change	the	"exit"	to	some	other	internal	uzbl	command.	 What	you	can't	do
(unless	you	change	your	config	file)	is	to	type	"exit"	in	command	mode	and	expect	uzbl	to	do	anything	meaningful.	 (Yes,	you
can	type	":exit<Enter>"	in	command	mode,	but	we'll	talk	about	that	later).
The	situation	is	in	flux,	but	as	of	2014	June	10	the	thinking	is	that	what	the	user	can	type	are	"user	commands",	and	what
uzbl	uses	internally	are	"uzbl	commands".	
Why	is	what	you	type	called	a	"user	command"?	 It's	easy	to	think	it's	because	it's	a	user	that	types	it.	 But	actually	it's
called	a	user	command	because	the	user	can	modify	(reconfigure)	it,	typically	in	a	config	file.	 The	other	kind	of	command	is
called	a	"uzbl	command"	because	its	existence	is	an	inherent	part	of	uzbl;	the	user	can't	conveniently	change	it.	 To	remind
you	that	uzbl	commands	are	these	internal	things,	this	tutorial	will	call	them	"internal	uzbl	commands".	
Later	in	this	tutorial	you'll	discover	how	internal	uzbl	commands	can	be	used	in	wonderful	ways	to	put	uzbl	under	your
control,	and	to	make	it	work	like	your	very	own	browser,	not	some	big	clunky	elephant	that	behaves	at	the	whim	of	some
elephant	trainer,	where	you	must	be	content	to	observe	it	because	you	hold	a	ticket.	 (We've	all	used	browsers	which	are	like
that	elephant.)	 For	more	information	on	user	commands,	read	the	section	right	after	this	one.

go	to	top		go	to	list	of	contents

what	happens	when	I	press	this	key

go	to	top		go	to	list	of	contents

Before	we	begin,	note	that	uzbl	runs	in	one	of	two	modes:	Command	mode,	and	Insert	mode.	 (This	is	similar	to	the	way	text
editors	such	as	vi,	vim,	and	elvis	work.)	 In	Insert	mode,	what	you	key	in	will	be	interpreted	by	the	web	page	itself;	a
typical	example	of	this	is	a	form	you	might	be	filling	out	on	the	web.	 In	Command	mode,	what	you	key	in	will	be	interpreted
by	uzbl	as	part	of	a	user	command.	
While	running	uzbl,	you	can	always	find	out	what	mode	you're	in	by	looking	in	the	lower	left	corner	of	the	window.	 You'll	see
either	Ins	(meaning	Insert	mode)	or	Cmd	or	Bnd	(meaning	Command	mode).	 When	you	load	a	new	page,	you	will	end	up	in	either
Insert	mode	("Ins")	or	Command	mode	("Cmd"),	depending	on	the	page's	content.	 You'll	get	into	the	habit	of	checking	that
lower	left	corner	whenever	you	load	a	new	page.	
How	do	you	switch	from	Command	mode	to	Insert	mode?	
To	switch	from	Command	mode	to	Insert	mode,	you	can	press	the	"i"	(lower	case)	key,	as	long	as	you're	not	in	the	middle	of
entering	a	user	command	already.	 (If	you	are,	you	can	get	out	of	that	first	by	pressing	<Esc>	once	or	twice.)	 Or	instead	of
pressing	a	key,	you	can	click	in	a	field	on	the	page	where	you'd	normally	enter	data,	as	in	a	search	box	or	a	form.	
How	do	you	switch	from	Insert	mode	to	Command	mode?	
To	switch	from	Insert	mode	to	Command	mode,	press	the	<Esc>	key	once	or	twice.	
You	might	also	be	in	Command	mode	already,	but	be	in	the	middle	of	typing	a	user	command.	 If	you're	in	the	middle	of	typing	a
user	command,	you'll	see	either	"Bnd"	in	the	lower	left	corner,	or	one	or	more	red	characters	in	the	lower	left	corner.	 To
cancel	the	typing	of	that	user	command	and	start	a	new	one,	just	press	<Esc>.	
Now,	when	we	talk	about	key	bindings,	we	refer	to	what	happens	when	you	press	keys	while	in	Command	mode.	
Ok,	let's	press	onward.	 Look	at	the	key	bindings.	 See	the	part	about	uzbl-tabbed?	 As	of	when	I	wrote	this	tutorial,	it	said
"Write	me."	 What	follows	is	a	more	complete	list	of	key	bindings,	based	on	the	config	file.	 If	some	of	these	user	commands
don't	work	for	you,	you	may	have	an	older	version	of	uzbl	than	I	do.	 If	you	have	a	yet	newer	version,	you	may	have	additional
user	commands	available,	not	listed	here.	
To	see	how	I	constructed	this	list,	enter	this	command	at	the	shell	prompt:

grep	'^@cbind'	~/.config/uzbl/config	|	less

Since	the	table	below	shows	the	key	bindings	in	the	order	in	which	they	are	in	my	config	file,	you	can	easily	determine
whether	you	have	more,	or	fewer,	key	bindings	in	your	version	of	uzbl.	 (The	"!ssl"	command	might	be	at	a	different	place	in
your	config	file	than	mine.)	
In	this	table,	when	you	see	<Ctrl>,	that	means	hold	down	the	Ctrl	key	and	then	press	the	next	key.	 Same	for	<Mod1>	and	the
Alt	key,	and	<Shift>	and	the	Shift	key.	 Remember	that	upper	and	lower	case	do	different	things;	"G"	is	not	the	same	as	"g".	
To	skip	this	table	and	continue	reading	the	tutorial,	go	here.	

===	enter	internal	uzbl	commands	===
:xxx<Enter> execute	arbitrary	internal	uzbl	command	"xxx".	 Details	on	internal	uzbl	commands	are	here.

===	open	a	window	or	tab	===
w open	a	new	window	or	new	tab,	depending	on	config;	exactly	the	same	as	"gw"

===	move	around	on	this	page	===
j scroll	downward		20	pixels
k scroll	upward				20	pixels
h scroll	leftward		20	pixels
l	(ell) scroll	rightward	20	pixels
<Page	Up> scroll	upward			one	page
<Page	Down> scroll	downward	one	page
<Ctrl>f scroll	downward	one	page

<Ctrl>b scroll	upward			one	page
<< scroll	to	top				of	page

>> scroll	to	bottom	of	page
<Home> scroll	to	top				of	page
<End> scroll	to	bottom	of	page
^ scroll	to	left		edge	of	page
$ scroll	to	right	edge	of	page
<Space> scroll	to	bottom	of	page
G2345<Enter> scroll	vertically	so	that	row	2345	of	the	pixels	will	be	at	the	top	edge	of	the	window
<Underscore>G345<Enter> scroll	horizontally	so	that	column	345	of	the	pixels	will	be	at	the	left	edge	of	the	window

===	frozen	===
<Ctrl><Shift>f toggle	frozen:	when	frozen	is	set,	inhibit	networking	for	this	tab

===	navigate	===
b go	backwards	one	page	in	your	browsing	history
m	(not	f!) go	forwards		one	page	in	your	browsing	history
S	(upper	case) stop	loading	the	page	you're	in	the	middle	of	loading
r reload	the	page	you're	viewing
R reload	the	page	you're	viewing,	ignoring	what's	currently	in	your	page	cache

===	zoom	===
+ zoom	in		(increase	the	size	of	text,	and	maybe	images)
- zoom	out	(decrease	the	size	of	text,	and	maybe	images)
T toggle	the	zoom	type	(turn	on	or	off	the	changing	of	image	size)
1	(one) set	the	size	of	text	and	images	to	the	"normal"	value
2 set	the	size	of	text,	and	maybe	images,	to	double	the	"normal"	value

===	change	the	page	appearance	===
t toggle	whether	the	status	bar	is	displayed

===	search	in	this	page	===
/something<Enter> search	for	something.	 It	might	be	tempting	to	press	<Esc>	instead	of	<Enter>	at	the	end,	but	that

breaks	the	"n"	and	"N"	commands	below.
?something<Enter> search	backward	for	something.	 It	might	be	tempting	to	press	<Esc>	instead	of	<Enter>	at	the	end,	but

that	breaks	the	"n"	and	"N"	commands	below.
n search	for	the	next	occurrence	of	the	previous	search	(moving	forward,	even	if	the	previous	initial

search	command	was	"?",	which	is	not	like	vim	or	elvis)
N search	for	the	previous	occurrence	of	the	previous	search	(moving	backward,	even	if	the	previous

initial	search	command	was	"?",	which	is	not	like	vim	or	elvis)
===	print	===

<Ctrl>p print	the	current	page
===	search	the	web	===

ggxxx<Enter> search	google.com	for	xxx
ddgxxx<Enter> search	duckduckgo.com	for	xxx
\awikixxx<Enter> search	wiki.archlinux.org	for	xxx
\wikixxx<Enter> search	en.wikipedia.org	for	xxx

===	"handy	binds",	they	call	these	===
sxxx<Enter>yyy<Enter> set	uzbl	variable	xxx	to	yyy.	 This	affects	only	what	you're	doing	while	running	uzbl	now;	rerunning

uzbl	will	set	all	values	to	what	they	are	in	your	config	file.	 For	example,	set	status_top	to	1,	and
watch	your	status	bar	switch	from	the	bottom	of	the	window	to	the	top.	 Set	status_top	to	0,	and	watch
it	flip	back.	 It's	worth	browsing	through	your	config	file	to	see	what	the	status	variables	are.	 You
could	instead	type:

:set	xxx	yyy

but	this	is	faster	for	most	people.	 If	you	do	use	the	:set	way,	be	sure	to	put	a	space	before	and
after	the	=.

ZZ	(upper	case) eliminate	the	current	tab.	 If	that	was	the	final	tab,	exit	uzbl-tabbed.	 Identical	to	gC.
!dump display	the	variable	names	and	their	values	(even	those	not	mentioned	in	the	config	file)	in	the

window	in	which	you	typed	the	shell	"uzbl-tabbed"	command
!reload reset	the	values	of	all	variables	to	what	they	are	in	the	config	file.	 This	is	useful	if	you	have

been	playing	with	the	"s"	entry	in	this	table.	 Use	that	feature	to	set	status_top	to	1;	then	!reload
to	watch	status_top	get	set	back	to	0.
===	see	uzbl	events	and	enter	internal	uzbl	commands	===

<Ctrl><Mod1>t pop	up	an	xterm	window,	in	which	you	can	see	events	and	into	which	you	can	type	internal	uzbl
commands.	 Try	this,	and	see	what	appears	in	the	xterm	window	when	you	move	the	mouse	around	inside
the	uzbl	window.	 Then	move	to	the	new	xterm	window	and	type	these	internal	uzbl	commands	and	watch
the	status	bar	move	from	the	bottom	of	the	uzbl	window	to	the	top	and	back	again:

set	status_top	1
set	status_top	0

If	you	need	to	scroll	back	to	see	old	lines,	you	can	go	to	this	window,	hold	down	the	<Ctrl>	key,	and
press	the	middle	mouse	button.	 You'll	see	the	"Enable	Scrollbar"	choice	at	the	top	of	the	menu;
select	that.	 But	if	you	want	a	larger	view,	if	you	want	to	log	all	events	to	disk,	go	here.

You	can	close	this	window	by	going	to	it	and	typing	<Ctrl>D.
===	go	to	a	specific	web	page	===

oxxx<Enter> in	the	current	tab,	go	to	xxx	on	the	web	(like	http://www.nps.gov/yose)
O	(upper	case	oh) for	the	current	tab,	display	the	current	URI	in	the	status	bar.	 You	can	then	use	the	arrow	keys	to	go

back	and	forth	in	this	URI;	use	<Backspace>	to	delete	characters	from	it;	use	<Enter>	to	finish
editing	and	go	to	that	URI	in	the	current	tab;	or	use	<Esc>	to	cancel	this	operation.
===	set	Insert	mode	===

i switch	from	Command	mode	to	Insert	mode,	so	keystrokes	now	go	to	the	current	web	page	itself,	not	to
user	commands
===	use	a	quick	shortcut	===

gh "go	home":	go	to	the	default	home	page,	which	is	hard-wired	to	http://www.uzbl.org.	 You	may	wish	to
change	this	setting	in	your	config	file.
===	open	a	new	window	or	tab	===

gw open	a	new	window	or	new	tab,	depending	on	config;	exactly	the	same	as	"w"
===	change	to	https:	===

zs reload	the	current	page	the	in	current	tab,	changing	the	protocol	from	http:	(if	found)	to	https:.	 If
it	fails,	you'll	get	an	error	message.	 To	get	out	of	the	error	message,	press	the	"b"	key	(which	is
the	user	command	for	going	back	to	the	previous	page).	 Or	you	can	go	ahead	and	press	the	"Try	again"
button,	but	it's	not	likely	to	do	much	good,	and	if	it	fails,	you'll	have	to	use	the	"b"	user	command
twice	(more	generally,	one	time	for	each	time	you	tried	again,	plus	one).

Note	that	any	web	page	loaded	via	the	https:	protocol	will	have	its	title	in	the	tab	list	be	gold,
instead	of	the	usual	green.

zS load	the	current	page	in	a	new	window	or	tab,	changing	the	protocol	from	http:	(if	found)	to	https:.
If	it	fails,	you'll	get	an	error	message.	 To	get	out	of	the	error	message,	type	ZZ	(which	is	the	user
command	for	closing	the	current	tab	or	window).	 Or	you	can	go	ahead	and	press	the	"Try	again"	button,
but	it's	not	likely	to	do	much	good.

Note	that	any	web	page	loaded	via	the	https:	protocol	will	have	its	title	in	the	tab	list	be	gold,
instead	of	the	usual	green.
===	X	selection	handling	===

yu copy	the	current	URI	to	the	primary	selection
yU copy	the	URI	over	which	the	cursor	is	hovering	to	the	primary	selection
yy copy	the	title	of	the	current	document	to	the	primary	selection
ys *****

===	more	selection	user	commands	===
<Ctrl>a *****
<Ctrl>c *****

===	various	commands	===
c clone	the	current	tab	into	a	new	tab
p	(lower	case) go	to	the	URI	which	is	in	the	primary	selection
P	(upper	case) go	to	the	URI	which	is	in	the	clipboard
'p open	a	new	window	or	tab	for	the	URI	which	is	in	the	primary	selection
<Shift><Insert> press	these	keys	while	typing	a	user	command.	The	content	of	the	primary	selection	will	be	inserted	at

this	point	in	the	command	you're	typing.
===	bookmarks	and	browser	history	===

<Ctrl>msome	tag<Enter> bookmark	the	current	URI	with	the	tag	you	typed
M bookmark	the	current	URI	with	a	tag	you	will	type	into	a	dialog	box
U go	to	some	URI	from	your	browsing	history
u go	to	some	URI	from	your	bookmarks
<Ctrl>d temporarily	bookmark	the	current	URI
D go	to	some	URI	from	your	temporary	bookmarks

===	link	following	===
fl23	(lower	case	ell) in	the	current	tab,	click	on	the	item	23	shown	in	the	window.	 The	effect	depends	on	what	that	item

is.	 If	it's	a	text	field,	that	field	will	be	highlighted.	 If	it's	a	link,	treat	this	as	the	"fL"
command	shown	below.	 If	it's	a	button,	click	it.	 (If	you	change	your	mind	before	you	finish	typing
this	command,	press	the	<Esc>	key.)

Fl23	(lower	case	ell) same	as	in	the	"fL"	command,	shown	next,	but	in	a	new	tab
fL23 in	the	current	tab,	go	to	link	23	shown	in	the	window.	 When	you	type	"fL",	a	number	will	be	displayed

in	a	small	circle	to	the	left	of	each	link.	 Enter	the	number	corresponding	to	the	link	you	want.	 The
current	tab	will	go	to	that	link.	 If	there	are	leading	zeroes	in	the	link	number,	be	sure	to	type
them.	 If	you	change	your	mind	in	midstream,	press	the	<Esc>	key.

FL23 same	as	the	"fL"	command,	shown	previously,	but	instead	of	following	the	link,	just	copy	the	URI	to
the	primary	selection

fi *****
fs *****
fS *****
Fs *****
FS *****
ft *****
fT *****
Ft *****

FT *****
===	filling	in	forms	automatically	(e.g.,	logging	in)	===

ze formfiller	edit	(I	have	not	tested	this)
zn formfiller	new	(I	have	not	tested	this)
zl formfiller	load	(I	have	not	tested	this)
zo formfiller	once	(I	have	not	tested	this)

===	tab	opening	===
gn "go	new":	open	a	new	tab	after	all	the	others,	loading	the	URI	indicated	in	the	config	file's	line

beginning	with	"set	uri	".
gN open	a	new	tab	immediately	to	the	right	of	the	current	one,	loading	the	URI	indicated	in	the	config

file's	line	beginning	with	"set	uri	".
goxxx<Enter> open	a	new	tab	after	all	the	others	and	load	URI	xxx	(like	http://www.nps.gov/yose)
gOxxx<Enter> open	a	new	tab	immediately	to	the	right	of	the	current	one	and	load	URI	xxx	(like

http://www.nps.gov/yose)
===	tab	closing	and	resetting	===

gC eliminate	the	current	tab.	 If	that	was	the	final	tab,	exit	uzbl-tabbed.	 Identical	to	ZZ.
gQ eliminate	all	tabs,	and	load	the	default	tab.	 Quite	similar	to	getting	completely	out	of	uzbl-tabbed

and	then	running	it	again.
===	tab	navigating	===

g< switch	to	the	first				tab
g> switch	to	the	final				tab
gt switch	to	the	next					tab
gT switch	to	the	previous	tab
gi3<Enter> switch	to	tab	3
<Ctrl><Left> move	current	tab	to	the	left
<Ctrl><Right> move	current	tab	to	the	right

gm3<Enter> move	current	tab	to	position	3
===	tab	presets	===

gsxxx<Enter> save	the	current	set	of	tabs,	naming	the	set	xxx
gloxxx<Enter> load	the	set	of	tabs	whose	name	is	xxx,	without	removing	any	of	the	tabs	you	currently	have	open
gdxxx<Enter> delete	the	set	of	tabs	whose	name	is	xxx

===	manage	Secure	Sockets	Layer	===
!ssl toggle	the	ssl_verify	value;	if	on,	don't	connect	to	an	https:	URI	without	first	validating	a

certificate	presented	by	the	remote	server	against	your	local	certificate	authority	file.	 In	my	case,
that	file	is	at	/etc/ssl/certs/ca-certificates.crt.	 The	default	for	this	switch	is	"on".

go	to	top		go	to	list	of	contents

key	binding	collisions

go	to	top		go	to	list	of	contents

At	some	point,	you	may	be	inspired	to	add	a	new	keyboard	command;	that	is,	a	new	binding	between	what	the	user	types	in
Command	mode	and	what	happens.	 If	so,	please	keep	in	mind	that	a	command	typed	by	a	user	takes	effect	usually	without	him
having	to	press	<Enter>	afterwards.	 This	will	be	a	problem	if	you	want	to	introduce,say,	a	new	user	command	"bar".	 When	the
user	wants	to	type	that	user	command,	as	soon	as	he	types	the	"b",	the	"b"	comand	will	take	effect.	 He'll	never	get	as	far	as
the	"ar".	 Arrrgh.	
The	easiest	way	to	avoid	this	is	to	look	at	the	@cbind	statements	in	the	config	file	in	alphabetical	order.	 Then	you'll	be
able	to	see	easily	whether	your	proposed	user	command	conflicts	with	a	new	shorter	(or	longer)	user	command.	 To	do	so,	enter
the	following	at	the	shell	prompt:

grep	'^	*@cbind'	~/.config/uzbl/config	|	sed	-e	's/^	*//'	-e	's/^@cbind	*/@cbind	/'	|	sort	|	less

If	you	add	new	bindings,	be	careful	the	next	time	you	update	to	a	later	version	of	uzbl.	 New	key	bindings	may	have	been	added
to	the	example	config	file.	 Check	that	these	new	bindings	do	not	conflict	with	your	own.

go	to	top		go	to	list	of	contents

adding	a	new	user	command:	leaving	uzbl-tabbed

go	to	top		go	to	list	of	contents

We	now	swing	into	a	part	of	the	tutorial	which	requires	a	little	more	geekiness.	 You	can	leave	the	tutorial	right	now	and
find	uzbl	quite	usable.	 Or	you	can	continue	and	get	more	out	of	uzbl's	flexibility.	 There	be	no	dragons	here.	
We'll	start	with	something	relatively	easy.	 We	mentioned	earlier	that	we'd	add	a	user	command	that	would	get	the	user	out	of
uzbl-tabbed	completely,	even	if	more	than	one	tab	was	open.	 We'll	do	that	now.	
First	we	need	to	see	whether	uzbl-tabbed	will	support	this	new	user	command.	 Enter	this	command	at	the	shell	prompt:

grep	exit_all_tabs	$(which	uzbl-tabbed)

If	the	result	is	absolutely	nothing	except	the	next	shell	prompt,	then	your	version	of	uzbl	is	older,	and	there	is	no	super-
simple	way	to	add	a	full	exit	user	command.	 (You	can	still	do	it,	but	it's	left	as	an	exercise	for	you.)	 But	if	the	result
is	a	line	of	code,	you	can	continue.	
Edit	your	config	file.	 Look	for	the	line	that	contains	the	two	characters	"gQ".	 It	will	look	something	like	this:

@cbind		gQ														=	event	CLEAN_TABS

After	that	line,	put	a	line	that	says	this:

@cbind		gz														=	event	EXIT_ALL_TABS

Then	write	out	the	config	file.	 Run	uzbl-tabbed	again,	and	the	"gz"	user	command	will	exit	uzbl-tabbed	when	entered	once,	no
matter	how	many	tabs	are	open.

go	to	top		go	to	list	of	contents

internal	uzbl	commands

go	to	top		go	to	list	of	contents

uzbl	receives	internal	uzbl	commands	from	various	sources.	 Internal	uzbl	commands	are	not	to	be	confused	with	user	commands,
as	described	in	the	previous	section.	 But	you	can	enter	an	internal	uzbl	command	as	a	user	command	when	you're	in	Command
mode	by	typing	a	colon	(":")	followed	by	the	internal	uzbl	command,	followed	by	the	<Enter>	key.	
The	documentation	on	internal	commands	is	quite	detailed	in	the	README	file	that	should	have	come	with	your	distribution	of
uzbl,	or	on	the	uzbl.org	site	itself;	search	for	COMMAND	SYNTAX.

go	to	top		go	to	list	of	contents

more	assigned	reading

go	to	top		go	to	list	of	contents

While	you're	looking	at	the	README	file	that	should	have	come	with	your	distribution	of	uzbl,	or	on	the	uzbl.org	site	itself,
browse	through	the	whole	thing.	 You'll	find	documentation	on	variables,	events,	and	more.	 Don't	be	disheartened	by	all	the
detail;	as	we	go	through	several	examples	of	enhancing	uzbl,	you'll	gradually	become	familiar	with	the	details.

go	to	top		go	to	list	of	contents

playing	with	variables

go	to	top		go	to	list	of	contents

Among	the	many,	many	variables	listed	in	the	README	file	that	should	have	come	with	your	distribution	of	uzbl,	or	on	the
uzbl.org	site	itself,	is	enable_scripts.	 As	of	2014	Jul	7,	it	was	documented	as	"disable	embedded	scripting	languages",	with
0	as	the	default	value.	 A	more	accurate	description	would	be	"enable	embedded	scripting	languages",	and	its	default	is	1.
(It's	as	though	it	had	been	originally	named	"disable_scripts"	and	gotten	renamed	and	re-implemented,	without	a	through
rewriting	of	this	line	in	the	document.)	
When	your	browser	loaded	this	tutorial,	it	had	JavaScript	enabled.	 If	you're	reading	the	tutorial	with	uzbl,	you	can	disable
JavaScript	with	one	of	these	two	user	commands:

:toggle	enable_scripts
:set	enable_scripts	0

Try	one	of	those	user	commands	now,	and	then	reload	the	tutorial	(positioning	yourself	at	this	section	of	it)	by	clicking	here
and	then	pressing	the	R	key	(upper	case)	to	reload	the	page	disregarding	its	cached	copy.	 Then	look	at	how	the	text	has
changed.	 Go	ahead,	I'll	wait.	
Like	what	you	see?	 Then	consider	adding	this	user	command	to	your	config	file	(watching	out	for	user	command	collisions,	as
usual):

@cbind	Ajs	=	toggle	enable_scripts

Note,	though,	that	there	is	a	copy	of	this	variable	for	each	tab.	 If	you	set	enable_scripts	to	0,	and	then	open	a	new	tab,
that	tab	will	see	enable_scripts	as	1,	the	default	value.	 If	you	want	this	variable	to	be	set	to	0	for	each	tab	when	you
first	open	it,	then	simply	place	this	line	in	your	config	file:

set	enable_scripts	0

By	the	way,	you	can	also	add	the	current	state	of	the	enable_scripts	switch	to	the	status	bar.	 In	your	config	file,	look	for
the	first	occurrence	of	a	line	containing

status_format

Before	that	line,	insert	a	line	like	this:

set	script_section				scripts:\@enable_scripts

...	and	then	change	the	line	that	might	look	like	this:

set	status_format_right	uri:	@uri_section

...	to	a	line	that	looks	something	like	this:

set	status_format_right	@script_section	uri:	@uri_section

You	can	set	variable	enable_scripts	to	0	in	one	tab	and	1	in	another	tab,	and	then	flit	from	tab	to	tab,	watching	the	value
displayed	in	the	status	bar	change.	
Another	interesting	variable	you	may	wish	to	display	on	the	status	line	is	is	enable_plugins.	 When	its	value	is	0,	then	for
that	tab,	no	plugins	will	work.	 This	includes	Java	and	Adobe®	Flash®.	
A	quite	different	variable	is	request_handler.	 For	this	one,	you	need	to	have	have	experience	coding	simple	scripts,	in	just
about	any	commonly	used	language.	 A	shell	script	is	fine,	or	Python	or	Perl	or	something	else.	 Straight	out	of	the	box,	your
config	file	should	contain	something	like	one	of	these	two	lines:

#set	request_handler					sync_spawn	@scripts_dir/request.py
#set	request_handler								spawn_sync	@scripts_dir/request.py

You	can	remove	the	"#"	to	change	this	line	in	your	config	file	from	a	comment	to	a	real	command.	 Then,	instead	of
"@scripts_dir/request.py",	you	can	place	the	full	/path/to/your/request/handler.	 (You	won't	want	to	use	"@scripts_dir"	if
you're	not	root,	because	it's	almost	certain	that	you	won't	be	able	to	change	anything	in	that	directory.)	
The	script	that	you	write	to	act	as	your	request	handler	should	take	a	single	command	line	argument.	 That	argument	is	a	URI
that	uzbl	wants	to	access.	 If	that	URI	is	fine	with	you,	then	your	script	can	simply	exit	after	examining	that	argument,
without	writing	anything	to	standard	output.	 But	if	you	wish	to	redirect	to	a	different	URI,	have	your	script	write	that	new
URI	to	standard	output	before	exiting.	

go	to	top		go	to	list	of	contents

tightening	up	the	status	bar

go	to	top		go	to	list	of	contents

The	status	bar	contains	quite	a	few	items.	 In	my	view,	the	two	most	important	ones	are	the	URI	of	the	current	page,	and	the
URI	of	the	link	over	which	the	mouse	is	hovering.	 There	often	isn't	enough	room	to	show	both	of	these	completely.	 So	it
would	help	to	shorten	everything	else.	 Along	the	way,	let's	increase	the	contrast	of	the	low-contrast	items.	 But	if	you're
satisfied	with	the	status	bar	as	it	is,	you	should	skip	this	section.	
Let's	start	at	the	left	end	and	shorten	the	mode	indicator.	 In	the	config	file,	look	for	the	only	occurrence	of	"Cmd"	and
change	it	to	"C".	 Similarly	on	the	other	two	mode_indicator	lines	in	the	file,	change	"Ins"	to	"I"	and	"Bnd"	to	"B".	
Then	let's	remove	the	square	brackets	which	surround	the	mode	indicator.	 On	the	line	which	defines	the	mode_section,	remove
the	first	left	square	bracket	and	the	final	right	square	bracket.	
Let's	say	you've	typed	the	"o"	or	"go"	command,	and	you're	being	prompted	for	the	new	URI.	 That	prompt	is	almost	unreadable.
Change	its	color	to	white.	 Locate	the	definition	of	prompt_style	that's	in	the	@stack	statement,	not	in	the	set	statement.
Change	the	foreground	color	to	white	with

foreground="white"

While	we're	at	it,	change	the	progress_section	definition	so	the	foreground	is	white.	 Change	the	foreground	of	other	items	in
that	paragraph	of	the	configuration	file	to	suit.	
If	you	think	that	the	progress	display	is	too	spacious	and	should	simply	show	the	percent	complete,	change	the	"set
progress.format"	definition	to	a	simple	%c.	
One	item	in	the	status	bar	is	the	process	ID	of	uzbl-tabbed,	followed	by	a	hyphen,	followed	by	a	unique	numerical	identifier.
The	end	user	almost	never	needs	this	info.	 Find	the	"set	status_format"	line	in	the	config	file,	and	remove	the	@name_section
part,	leaving	only	a	single	space	there	(not	two	spaces).	 While	you're	at	it,	if	you're	so	inclined,	similarly	remove	the
@scroll_section,	which	shows	in	percentage	terms	how	far	you've	scrolled	through	the	current	page.	 The	scroll	bar	shold
suffice	for	most	users.	
To	make	the	URI	of	the	link	over	which	the	mouse	is	hovering	more	readable,	locate	the	"set	selected_section"	statement	and
change	the	foreground	to	white.	
You	already	know	that	the	URI	in	green	at	the	right	end	of	the	status	bar	is	a	URI;	you	don't	need	it	to	be	labeled.	 So	in
the	line	that	sets	status_format_right,	remove	the	"uri:"	and	the	space	that	precedes	it.

go	to	top		go	to	list	of	contents

logging	events	to	disk

go	to	top		go	to	list	of	contents

You	may	recall	from	here	that	you	can	pop	up	a	window	which	shows	all	events	as	they	happen.	 That's	quite	a	few	events;	even
moving	the	mouse	around	in	the	uzbl	window	while	that	window	is	active	generates	a	zillion	events.	 To	find	the	events	you're
interested	in,	it	would	be	nice	to	be	able	to	log	all	events	to	disk.	
To	do	so,	find	the	line	in	the	config	file	which	defines	the	<Ctrl><Mod1>t	user	command.	 (That	shouldn't	be	too	difficult,
because	there	are	not	many	user	commands	which	use	Mod1.	 Keep	in	mind	that	this	ends	with	the	number	"1",	not	the	lower	case
"l".	 And	remember	that	on	most	keyboards,	Mod1	means	Alt.)	 Then	in	that	neighborhood	of	the	config	file,	add	one	of	the
following,	depending	on	whether	the	line	you	found	contains	"sh"	or	"spawn_sh":

@cbind		<Ctrl><Mod1>s		=	sh	'xterm	-e	script	-c	\"socat	unix-connect:\\\"$UZBL_SOCKET\\\"	-\"	-f	~/.local/share/uzbl/typescript.`date	\"+%Y%m%d%H%M%S\"`'
@cbind		<Ctrl><Mod1>s		=	spawn_sh	'xterm	-e	script	-c	\"socat	unix-connect:\\\"$UZBL_SOCKET\\\"	-\"	-f	~/.local/share/uzbl/typescript.`date	\"+%Y%m%d%H%M%S\"`'

You'll	probably	find	it	easier	to	make	a	copy	of	the	line	you	searched	for,	and	modify	it.	 Don't	forget	to	change	the	first	t
to	s.	
Then	when	you	type	<Ctrl><Mod1>s	the	window	will	pop	up	as	before,	but	you'll	also	get	a	log	file	in	directory
~/.local/share/uzbl,	whose	name	includes	the	time	of	day	that	the	file	was	created.

go	to	top		go	to	list	of	contents

fixing	two	minor	bugs	in	uzbl-tabbed

go	to	top		go	to	list	of	contents

You	might	have	a	version	of	uzbl-tabbed	which	contains	a	typo,	and	this	typo	will	need	to	be	fixed	before	continuing	with	this
tutorial.	 You	already	modified	uzbl-tabbed	here,	so	take	a	look	at	the	copy	of	uzbl-tabbed	that	you	modified.	 Enter	this

command	at	the	shell	prompt:

grep	new_bg_tab	$(which	uzbl-tabbed)

If	that	command	causes	a	line	of	code	to	be	output,	you're	fine.	 Otherwise,	you'll	need	to	change	your	copy	of	uzbl-tabbed.
Look	for	a	line	that	contains	the	word	"new_tab_bg",	and	change	that	word	to	"new_bg_tab".	 Be	careful	not	to	change	the
number	of	spaces	at	the	beginning	of	the	line,	and	don't	accidentally	remove	the	colon	at	the	end	of	the	line.	
And	one	more	bug,	if	you	please.	 I	have	occasionally	noticed	that	when	I	first	run	uzbl-tabbed,	it	immediately	crashes	with	a
message	like	this:

Traceback	(most	recent	call	last):
		File	"/usr/bin/uzbl-tabbed",	line	367,	in	_socket_closed
				self.uzbl.close()
AttributeError:	'NoneType'	object	has	no	attribute	'close'

That	doesn't	mean	that	there's	a	bug	at	line	367.	 There	might	be	a	bug	there,	but	the	bug	might	be	elsewhere.	 At	any	rate,
removing	the	symptom	seems	harmless.	 To	so,	find	this	code	in	uzbl-tabbed:

				def	_socket_closed(self,	fd,	condition):
								'''Remote	client	exited'''
								self.uzbl.close()
								return	False

Change	it	so	it	looks	like	this:

				def	_socket_closed(self,	fd,	condition):
								'''Remote	client	exited'''
								if	self.uzbl:
												self.uzbl.close()
								return	False

go	to	top		go	to	list	of	contents

tab	control

go	to	top		go	to	list	of	contents

A	uzbl-tabbed	user	might	want	to	follow	a	link	on	a	page	by	opening	into	a	new	tab,	but	might	want	to	either:	(a)	open	the	new
tab	just	to	the	right	of	the	current	tab,	and	go	to	it	immediately;	(b)	the	same,	but	stay	in	the	current	tab;	(c)	open	the
new	tab	at	the	end	of	all	tabs,	and	go	to	it	immediately;	or	(d)	the	same,	but	stay	in	the	current	tab.	
You	could	configure	uzbl-tabbed	to	do	one	of	these	four	things,	but	suppose	you	want	more	than	one	of	these	choices	available
in	the	currently	running	uzbl-tabbed	session.	 What	if	you	want	all	of	them	available	in	a	menu?	 We'll	do	that	here.	
In	your	config	file,	look	for	the	line	that	contains	these	words:

Print	Link

If	the	line	looks	like	this:

menu_link_add	Print	Link	=	print	\@SELECTED_URI

then	you	are	working	with	the	older	menu	syntax.	 After	that	line,	add	these	five	lines:

menu_link_separator	sep_xx
menu_link_add	Open	Link	to	Right					=	event	NEW_TAB_NEXT				\@SELECTED_URI
menu_link_add	Open	Link	at	End							=	event	NEW_TAB									\@SELECTED_URI
menu_link_add	Open	Link	to	Right,	bg	=	event	NEW_BG_TAB_NEXT	\@SELECTED_URI
menu_link_add	Open	Link	at	End,	bg			=	event	NEW_BG_TAB						\@SELECTED_URI
If	the	line	looks	like	this:

menu	add	link	"Print	Link"	"print	\@SELECTED_URI"

then	you	are	working	with	the	newer	menu	syntax.	 After	that	line,	add	these	five	lines:

menu	add_separator	link	sep_xx
menu	add	link	"Open	Link	to	Right"					"event	NEW_TAB_NEXT				\@SELECTED_URI"
menu	add	link	"Open	Link	at	End"							"event	NEW_TAB									\@SELECTED_URI"
menu	add	link	"Open	Link	to	Right,	bg"	"event	NEW_BG_TAB_NEXT	\@SELECTED_URI"
menu	add	link	"Open	Link	at	End,	bg"			"event	NEW_BG_TAB						\@SELECTED_URI"

Then	take	uzbl-tabbed	out	for	a	spin.	 Right	click	on	a	link.	 See	those	familiar-looking	new	items	at	the	bottom	of	the	menu?
Those	are	yours!	 The	"bg"	means	"background";	that	is,	when	opening	the	new	tab,	don't	switch	to	it,	but	stay	in	the	current
tab.

go	to	top		go	to	list	of	contents

new	window,	for	real

go	to	top		go	to	list	of	contents

Of	course,	using	the	menu	as	we've	modified	it	above	is	not	the	only	way	we	create	new	tabs.	 There	are	the	"c"	and	"go"
commands,	for	example.	 There	are	also	times	when	JavaScript	running	in	the	current	tab	will	attempt	to	create	a	new	window,
and	end	up	creating	a	new	tab	(at	least	using	the	configuration	as	we've	modified	it).	 In	any	of	these	cases,	where	does	this
new	tab	go,	and	do	we	switch	to	it	immediately?	 The	content	of	the	"@on_event	NEW_WINDOW"	line	in	the	config	file	shows	where
the	new	tab	goes,	and	whether	it's	in	background	mode.	 Incidentally,	the	"Open	Link	in	New	Window"	menu	item	when	you	right
click	on	a	link	also	heeds	this	line	in	the	config	file.	
But	what	if	we	want	actually	to	create	a	new	window?	 The	easiest	way	is	to	clone	a	new	instance	of	uzbl-tabbed.	 We'll	do
that	here.	 We	could	change	the	behavior	of	the	"Open	Link	in	New	Window"	item	in	the	right-click	menu,	but	that's	more
involved	than	it	looks.	 To	keep	things	simple,	let's	just	add	a	new	menu	item	to	the	end.	 In	your	config	file:

if	you're	using	the	old	syntax,	add	this	line,	just	after	the	final	menu_link_add	line	you	added:

menu_link_add	New	Window	For	Real	=	event	CRY_WOLF	\@SELECTED_URI
...	but	if	you're	using	the	new	syntax,	add	this	line,	just	after	the	final	"menu	add	link"	line	you	added:

menu	add	link	"New	Window	For	Real"	"event	CRY_WOLF	\@SELECTED_URI"

We've	invented	a	new	event.	 Let's	define	its	behavior.	 In	your	config	file,	just	after	the	"@on_event	NEW_WINDOW"	line,

if	you're	using	the	old	syntax,	add	this	line:

@on_event	CRY_WOLF	sh	'uzbl-tabbed	${1:+	"$1"}'	%r
...	but	if	you're	using	the	new	syntax,	add	this	line:

@on_event	CRY_WOLF	spawn_sh	'uzbl-tabbed	${0:+-u	"$0"}'	%r

Now	try	it	out.

go	to	top		go	to	list	of	contents

background	tabs,	left	to	right

go	to	top		go	to	list	of	contents

Now	we	move	into	a	place	where	you'll	be	doing	some	Python	coding.	 There	be	no	dragons	here,	but	there	are	a	few	dragon	eggs,
waiting	to	hatch	if	you're	not	careful.	 Remember	the	following	two	items.	
First,	indentation	counts.	 To	avoid	headaches	later,	don't	use	tabs;	just	use	spaces.	 And	how	far	a	line	is	indented
matters.	 Look	around	through	uzbl-tabbed	and	you'll	get	an	idea	how	it	works.	 Note	that	if	a	line	ends	in	a	colon	(":"),
then	the	next	line	(or	several	lines)	will	be	indented	further.	 Lines	that	end	in	a	colon	announce	a	new	block	of	code:	what
is	to	be	executed	if	a	condition	is	true,	or	what	is	to	be	executed	as	part	of	the	function	named	on	the	line	with	the	colon,
and	so	on.	
Second,	punctuation	counts.	 If	you're	going	to	insert	a	new	line	of	code	that	ends	in	a	colon	(see	previous	paragraph),	see
that	the	colon	isn't	missing!	
Ready	to	roll	up	your	sleeves?	 Good!	
Let's	say	you	have	five	tabs	open,	and	you're	positioned	at	the	third	one.	 We	can	represent	this	situation	thus:

AAA	BBB	CCC	DDD	EEE

Ok,	you're	on	page	CCC.	 Let's	say	that	on	this	page	you're	interested	in	three	links:	XXX,	YYY,	and	ZZZ.	 You	follow	each	of
those	links,	in	that	order,	using	the	"Open	Link	to	Right,	bg"	item	of	the	right-click	menu.	 After	the	first	click,	you	have:

AAA	BBB	CCC	XXX	DDD	EEE

After	the	second	click,	you	have:

AAA	BBB	CCC	YYY	XXX	DDD	EEE

After	the	third	click,	you	have:

AAA	BBB	CCC	ZZZ	YYY	XXX	DDD	EEE

Well,	that's	fine,	and	the	"Open	Link	to	Right,	bg"	item	is	working	as	advertised.	 But	let's	say	that	what	you	really	wanted
was	to	have	those	links	from	left	to	right,	thus:

AAA	BBB	CCC	XXX	YYY	ZZZ	DDD	EEE

That's	the	way	some	browsers	actually	work,	and	it's	arguably	more,	um,	usable	for	the	ordinary	user.	 Let's	add	another	menu
item	to	make	it	work	that	way.	
The	first	step	is	to	add	a	new	menu	item	to	the	link	right-click	menu;	the	best	place	for	it	seems	to	be	just	before	the	New
Window	For	Real	item	we	just	added.	 So	before	that	item	in	your	config	file:

if	you're	using	the	old	syntax,	add	this	line:

menu_link_add	Open	Link	LTOR,	bg	=	event	NEW_BG_TAB_LTOR	\@SELECTED_URI
...	but	if	you're	using	the	new	syntax,	add	this	line:

menu	add	link	"Open	Link	LTOR,	bg"	"event	NEW_BG_TAB_LTOR	\@SELECTED_URI"

The	remaining	part	of	this	change	is	far	more	complex:	changing	uzbl-tabbed.	 Before	you	begin,	make	a	copy	of	uzbl-tabbed	and
set	it	aside.	 If	you're	human,	there's	a	chance	you'll	mess	up	the	code,	and	you'll	want	to	be	able	to	start	over.	
The	following	changes	to	uzbl-tabbed	are	simple,	and	I	made	them	that	way	to	make	the	tutorial	easier	to	understand.	 But	from
the	viewpoint	of	long-term	maintainability	of	the	code,	the	changes	are	messy.	 There	are	better	ways	to	do	what	we're	about
to	do	here.	 When	you	get	more	familiar	with	the	internals	of	uzbl,	go	and	implement	one	of	those	ways.	
The	changes	center	around	a	global	variable	we	will	be	inventing	which	we'll	call	ltor_tab.	 At	any	given	time,	this
variable's	value	will	be	either	None,	or	some	integer.	 If	the	value	is	None,	then	when	you	select	the	menu	item
"Open	Link	LTOR,	bg",	the	new	tab	will	be	created	immediately	to	the	right	of	the	current	one.	 But	if	the	value	is	an
integer,	then	the	new	tab	will	be	created	just	to	the	right	of	the	tab	numbered	with	that	value:	if	ltor_tabbed	is	3,	for
example,	then	the	new	tab	will	be	numbered	4.	
So	ltor_tab	contains	the	tab	number	of	the	tab	most	recently	created	with	the	menu	item	"Open	Link	LTOR,	bg",	provided	that
this	tab	creation	was	done	recently.	 What	does	"recently"	mean?	 The	definition	(and	implementation)	of	"recently"	is	the
most	involved	part	of	the	changes	we're	about	to	make	to	uzbl-tabbed.	
The	first	step	is	to	define	the	global	variable	ltor_tab.	 Do	so	just	before	the	"Default	configuration	section",	with	the
following	line,	making	sure	you	do	not	indent	it:

ltor_tab	=	None

The	second	step	is	to	change	the	definition	of	method	create_tab.	 Search	for	"def	create_tab".	 The	content	of	that	method
seems	fairly	stable;	it	seems	unlikely	that	it	will	be	changed	much	in	future	versions	of	uzbl-tabbed.	 In	my	version,	it
looks	like	this,	and	in	yours	it's	probably	the	same:

				def	create_tab(self,	beside	=	False):
								tab	=	gtk.Socket()
								tab.show()

								if	beside:
												pos	=	self.notebook.get_current_page()	+	1
												self.notebook.insert_page(tab,	position=pos)
								else:
												self.notebook.append_page(tab)

								self.notebook.set_tab_reorderable(tab,	True)
								return	tab

Now	change	it	so	it	looks	like	this:

				def	create_tab(self,	beside	=	False):

								'''beside	is	False,	True,	None	(which	implies	True),	or	tab	number	'''

								global	ltor_tab

								tab	=	gtk.Socket()
								tab.show()

								if	beside	==	None:
												beside=True;

								if	beside	==	True:
												beside=self.notebook.get_current_page()	+	1

								if	beside:
												ltor_tab	=	beside	+	1
												self.notebook.insert_page(tab,	position=beside)
								else:
												self.notebook.append_page(tab)

								self.notebook.set_tab_reorderable(tab,	True)
								return	tab

The	third	step	is	to	add	a	new	method	which	handles	the	event	NEW_BG_TAB_LTOR.	 First,	search	for	method	new_bg_tab_next	by
searching	for	"def	new_bg_tab_next".	 That	method	is	short	and	sweet,	and	should	look	like	this:

				def	new_bg_tab_next(self,	uri	=	''):
								self.uzbl_tabbed.new_tab(uri,	switch	=	False,	next	=	True)

After	that	method,	add	this	new	one:

				def	new_bg_tab_ltor(self,	uri	=	''):
								global	ltor_tab
								self.uzbl_tabbed.new_tab(uri,	switch	=	False,	next	=	ltor_tab)

Recall	that	we	reset	ltor_tab	to	None	when	we	haven't	done	an	LTOR	tab	creation	"recently".	 Now	comes	the	tricky	part:
defining	"recently".	 "Recently"	means	"since	the	most	recent	occurrence	of	any	of	these	happenings".	 What	happenings	are
those?	 Aye,	there's	the	rub.	
One	occasion	to	reset	ltor_tab	is	if	we	move	from	one	tab	to	another.	 To	do	this,	change	method	goto_tab.	 Don't	change
method	goto_tab	in	class	GlobalEventDispatcher:

				def	goto_tab(self,	index):
								self.uzbl_tabbed.goto_tab(int(index))

Leave	that	one	alone.	 Instead,	change	method	goto_tab	in	class	UzblTabbed:

				def	goto_tab(self,	index):
								'''Goto	tab	n	(supports	negative	indexing).'''

								global	ltor_tab

								ltor_tab	=	None

								title_format	=	"%s	-	Uzbl	Browser"

								tabs	=	list(self.notebook)
								[...	and	so	on	...]

Another	occasion	to	reset	ltor_tab	is	if	we	close	any	tab.	 To	be	safe	(see	how	fragile	this	change	is?),	change	three
methods.	 First,	change	method	exit:

				def	exit(self):
								'''	Ask	the	Uzbl	instance	to	close	'''

								global	ltor_tab
								ltor_tab	=	None

								if	self._client:
												self._client.send('exit')

Then,	change	method	close_tab:

				def	close_tab(self,	tabn=None):
								'''Closes	current	tab.	Supports	negative	indexing.'''

								global	ltor_tab
								ltor_tab	=	None

								if	tabn	is	None:
												tabn	=	self.notebook.get_current_page()
								[...	and	so	on	...]

Then,	change	method	tab_closed:

				def	tab_closed(self,	notebook,	tab,	index):
								'''Close	the	window	if	no	tabs	are	left.	Called	by	page-removed
								signal.'''

								global	ltor_tab
								ltor_tab	=	None

								if	tab	in	self.tabs.keys():
								[...	and	so	on	...]

Yet	another	occasion	to	reset	ltor_tab	is	if	we	open	a	tab,	not	LTOR,	without	going	to	it.	 To	do	so,	change	this	method:

				def	new_bg_tab(self,	uri	=	''):
								global	ltor_tab
								self.uzbl_tabbed.new_tab(uri,	switch	=	False)
								ltor_tab	=	None

...	and	also	this	method:

				def	new_bg_tab_next(self,	uri	=	''):
								global	ltor_tab
								self.uzbl_tabbed.new_tab(uri,	switch	=	False,	next	=	True)
								ltor_tab	=	None

And	that's	it!	 Probably.	 There's	a	possibility	that	I	missed	a	spot	where	ltor_tab	should	be	reset.	 If	you're	inclined,	now
would	be	a	good	time	to	browse	through	uzbl-tabbed	for	yourself	to	see.

go	to	top		go	to	list	of	contents

URI-dependent	configuration

go	to	top		go	to	list	of	contents

It	would	be	nice	to	have	more	than	one	configuration,	depending	on	the	URI	you're	visiting.	 This	has	been	actually	attempted.
It's	instructive	to	look	at	the	attempt	described	here	(unless	the	fine	folks	at	uzbl.org	have	reorganized	their	web	pages	so
that	this	link	no	longer	exists).	
That	page	describes	a	contributed	Python	script	which	turns	on	JavaScript	for	certain	URIs,	and	turns	it	off	for	all	others.
It	sounds	good;	evidently	this	script	works	better	than	another	solution,	because	that	other	solution	doesn't	run	fast	enough:
the	page	is	often	completely	loaded	before	the	configuration	change	can	take	effect.	 But	even	the	solution	shown	in	this	link
only	works	(by	the	author's	estimate)	on	90%	of	pages,	because	even	with	this	script	some	pages	load	too	fast.	 This	is	just
wrong.	 A	web	browser	ought	not	have	race	coditions	like	this.	 This	section	of	this	tutorial	seeks	to	eliminate	the	race
condition	completely	by	loading	a	custom	configuration	before	informing	uzbl	of	the	desired	URI.	
There	are	two	tradeoffs	here.	 First,	this	feature	will	work	only	when	new	windows	and	tabs	are	created.	 If	you	just	click	on
a	link	and	go	to	a	different	URI	in	the	current	tab,	this	change	will	not	affect	your	configuration	in	that	tab.	
The	second	tradeoff	is	that	like	the	change	we	made	in	the	previous	section	of	this	tutorial,	this	one	involves	changing	not
just	a	config	file,	but	uzbl-tabbed	itself.	 But,	as	with	the	previous	change,	you're	dealing	with	open	source	here.	 There's
nothing	wrong	with	getting	your	fingernails	dirty.	 This	feature	does	require	that	you	be	familiar	with	regular	expressions.
If	you	are,	but	only	(say)	in	Perl,	that's	fine;	you'll	catch	on	quickly.	
The	first	step	is	to	figure	out	what	your	usual	configuration	should	be;	by	now	you've	probably	done	that.	 The	second	step	is
to	figure	out	some	alternate	configuration	files,	and	which	URIs	each	one	should	affect.	 For	example,	you	might	decide	that
certain	URIs	should	be	loaded	with	scripting	(for	example,	JavaScript)	disabled.	
In	each	of	these	alternate	config	files,	it's	a	good	idea	to	comment	out	any	line	that	has	a	"uri"	or	"set	uri"	command.	 The
change	you're	about	to	make	will	find	the	right	alternative	config	file,	create	a	temporary	copy	of	that	config	file,	and
place	the	relevant	URI	in	a	uri	statement	at	the	end	of	that	temporary	copy.	
The	third	step	is	to	create	a	file	and	fill	it	with	pairs	of	lines.	 The	first	line	in	each	pair	is	a	regular	expression.	 The
second	line	in	each	pair	is	the	full	pathname	of	the	config	file	which	is	to	be	used	if	the	URI	of	the	new	tab	or	window
matches	the	regular	expression	in	the	first	line.	 Here's	what	such	a	file	might	look	like.

(https?\:\/\/)?(www\.)?fark\.com([\/\?].*)?$
/config/path/1
(https?\:\/\/)?(www\.)?google\.com([\/\?].*)?$
/config/path/2

(https?\:\/\/)?(www\.)?youtube\.com([\/\?].*)?$
/config/path/3

Where	do	you	place	this	file?	 Just	about	anywhere,	but	our	crude	implementation	of	this	idea	puts	this	file	at
~/.config/config_list.txt.	
And	now	it's	time	to	let	you	in	on	a	dirty	little	secret.	 Some	readers	of	this	tutorial	are	dealing	with	both	an	old-syntax
config	file	(for	use	with	an	older,	root-installed	uzbl)	and	a	new-syntax	config	file	(for	a	newer	uzbl	which	they	are
installing	as	non-root).	 They	may	wish	to	switch	between	the	two	uzbl	releases.	 They	should	have	two	files:
~/.config/config_list.txt,	and	~/.config1/config_list.txt.	 The	even-numbered	lines	in	the	first	of	those	files	should	point
to	config	files	that	are	in	the	old	format;	the	even-numbered	lines	in	the	second	of	those	files	should	point	to	config	files
that	are	in	the	new	format.	
Ok,	let's	take	a	breather	here	and	look	at	the	first	of	those	regular	expressions.	 It	accepts	any	string	that	contains
"fark.com",	optionally	preceded	by	"www.",	optionally	preceded	by	"http://"	or	"https://".	 After	the	"fark.com"	there	can	be
any	other	characters,	as	long	as	those	characters	begin	with	"/"	or	"?".	
Now,	continuing	with	our	project,	the	fourth	(and	final)	step	is	to	make	changes	to	uzbl-tabbed.	 First,	salt	away	a	good	copy
of	uzbl-tabbed;	it's	easy	while	editing	to	mess	things	up,	and	you	want	to	have	something	to	go	back	to.	
Near	the	beginning	of	uzbl-tabbed,	there	are	several	"import"	statements.	 Add	this	one	somewhere:

import	tempfile

Then	look	for	a	paragraph	of	code	that	looks	like	this:

#	Ensure	uzbl	xdg	paths	exist
if	not	os.path.exists(DATA_DIR):
				os.makedirs(DATA_DIR)

After	that	code,	insert	this	somewhat	lengthy	chunk	of	code.	 You'll	notice	that	it	sets	environment	variables
XDG_CONFIG_HOME.	 You'll	also	notice	that	the	setting	of	this	environment	variable	is	done	in	more	than	one	part	of	this
tutorial.	 It's	done	in	more	than	one	place	so	you	can	pick	and	choose	which	of	this	tutorial's	suggested	changes	you	want	to
make.	 All	these	settings	of	XDG_CONFIG_HOME	are	identical,	except	the	one	you	make	if	you	choose	to	reinstall	uzbl	as	non-
root;	in	that	case,	that	different	setting	of	XDG_CONFIG_HOME	will	actually	override	all	the	others.	 Anyway,	here's	the	code
to	insert:

#	This	is	the	config	list	file	location.

os.environ.setdefault("XDG_CONFIG_HOME",os.path.join(os.environ["HOME"],".config"))
CONFIG_LIST_FILE	=	os.path.join(os.environ['XDG_CONFIG_HOME'],'config_list.txt')

config_list	=	[];
line_number	=	0;
first_line		=	None;

try:
				for	in_line	in	open(CONFIG_LIST_FILE):
								line_number	+=	1

								if	first_line:
												config_list	+=	[[first_line,	in_line.rstrip("\n")]]
												first_line	=	None
								else:
												try:
																first_line	=	re.compile(in_line.rstrip("\n"))
												except:
																sys.stderr.write("file	"
																																+CONFIG_LIST_FILE
																																+",	line	"
																																+str(line_number)
																																+"	contains	an	invalid	regular	expression\n"
)
																exit(1)
except	IOError:
				sys.stderr.write("["
																				+CONFIG_LIST_FILE
																				+"	not	found;	no	dynamic	configuration	will	be	done]\n"
)

if	first_line:
				sys.stderr.write("file	"
																				+CONFIG_LIST_FILE
																				+"	contains	an	odd	number	of	lines\n"
);
				exit(1)

def	config_search(uri):
		try:
				return	[x[1]	for	x	in	config_list	if	x[0].match(uri)][0]
		except:
				return	None

Now	look	for	the	"class	UzblInstance"	definition.	 Within	that,	the	first	method	is	called	__init__,	and	the	second	is	called
set_tab.	 Place	the	following	code	at	the	end	of	method	__init__,	being	careful	to	line	up	the	left	edge	of	the	code	with	the
left	edge	of	the	preceding	statements.

								override_config	=	config_search(uri);

								self.named_config_file	=	None
								if	override_config:
												with	tempfile.NamedTemporaryFile("w+t",delete=False)	as	f:
																self.named_config_file	=	f.name
																with	open(override_config,"rt")	as	g:
																				f.write(g.read())
																				f.write("uri	")
																				f.write(uri)
																				f.write("\n")

The	following	two	changes	will	cause	the	temporary	config	files	to	be	deleted	after	they're	no	longer	needed.	
Look	for	"def	exit",	which	begins	the	definition	of	the	"exit"	method	of	class	UzblInstance.	 Change	it	so	it	ends	like	this;
the	red	lines	are	the	ones	you'll	be	adding.

								if	self.named_config_file:
												try:
																os.remove(self.named_config_file)
												except:
																pass

								if	self._client:
												self._client.send('exit')

Right	after	that	is	class	UzblInstance's	"close"	method.	 (It	is	important	not	to	confuse	this	with	class	SocketClient's
"close"	method,	which	looks	similar.)	 Change	it	so	it	looks	like	this.	 The	red	lines	are	the	ones	you'll	be	adding.

				def	close(self):
								'''The	remote	instance	exited'''

								if	self.named_config_file:
												try:
																os.remove(self.named_config_file)
												except:

																pass

								if	self._client:
												self._client.close()
												self._client	=	None

The	final	changes	are	in	method	new_tab:	not	the	method	new_tab	in	class	GlobalEventDispatcher,	but	the	method	new_tab	in
class	UzblTabbed.	 (The	method	we're	interested	already	contains	a	couple	of	dozen	lines;	the	other	one	is	a	two-liner.)	
First,	delete	the	paragraph	that	looks	approximately	like	this:

								if(uri):
										cmd	=	cmd	+	['--uri',	str(uri)]

Then,	if	you	see	a	paragraph	that	looks	like	this,	delete	it.	 (Older	verions	of	uzbl-tabbed	will	not	have	this	paragraph.)

								if	config['explicit_config_file']	is	not	None:
												cmd	+=	['-c',	config['explicit_config_file']]

Where	you	just	made	your	code	deletion,	add	these	lines:

								if	uzbl.named_config_file:
												cmd	=	cmd	+	['-c',uzbl.named_config_file]
								elif	uri:
												cmd	=	cmd	+	['--uri',	str(uri)]

Finally,	consider	two	sets	of	lines	in	this	method.	 We'll	call	one	set	Fred,	and	the	other	set	Barney.	 Here's	Fred:

								uzbl	=	UzblInstance(self,	name,	uri,	title,	switch)
								uzbl.set_tab(tab)

...	and	here's	Barney:

								cmd	=	['uzbl-browser',	'-n',	name,	'-s',	str(sid),
															'--connect-socket',	self.socket_path]

So	what	you	do	is	take	the	code	named	Fred,	and	move	(not	copy)	it	up	a	bit	in	the	source	file,	to	just	before	Barney.	 That's
it.	 You're	done.

go	to	top		go	to	list	of	contents

cellular	browsing

go	to	top		go	to	list	of	contents

Private	browsing	mode	is	useful	if	you	don't	want	your	computer	to	keep	long-term	track	of	where	you've	been	on	the	web.	 In
uzbl,	private	browsing	mode	is	implemented	in	WebKit.	
There	are	limitations	to	private	browsing.	 First	and	possibly	foremost,	server-side	tracking	of	your	activities	and	tracking
by	your	Internet	service	provider	are	not	limited	by	private	browsing.	 Second,	users	of	private	browsing	are	relying	on	the
kindness	of	any	browser	extensions	they	may	be	using.	 Third,	there	may	be	bugs	in	the	way	your	browsing	engine	(such	as
WebKit)	implements	private	browsing.	
If	you	want	to	enable	private	browsing,	you	can	set	uzbl's	"enable_private"	variable	to	1.	 But	another	approach	is	to	use
what	I	call	cellular	browsing.	 Here's	the	general	idea:	
Suppose	each	time	you	opened	a	new	tab	or	window,	you	actually	ran	uzbl	with	the	HOME	environment	variable	defined	to	point	to
a	fresh,	new	directory,	with	certain	data	(like	the	.config	subdirectory)	copied	into	it.	 I	refer	to	this	as	"cellular
browsing".	 It's	good	for	starting	with	a	clean	cookie	sheet	and	browsing	history,	and	no	cruft	from	using	anything	from
Adobe.	
Let's	review	the	limitations	we	discussed	a	couple	of	paragraphs	above.	 Server-side	and	ISP	tracking	of	your	activities	won't
be	reduced	in	the	slightest	with	cellular	browsing.	 But	browser	extensions	won't	be	able	to	get	away	with	simply	ignoring
your	preference	for	private	browsing;	they'll	have	to	be	really	malicious	and	sly	to	get	around	cellular	browsing.	 And
cellular	browsing	should	transcend	any	bugs	your	browsing	engine	has	in	its	implementation	of	private	browsing.	
Before	continuing,	note	that	this	tutorial's	implementation	of	this	idea	relies	on	your	having	already	made	some	of	the
changes	suggested	in	previous	sections	of	this	tutorial.	 If	you	grep	for	the	string	"uzbl-browser"	(without	the	quotation
marks)	in	your	config	file,	and	the	only	match	is	one	which	is	commented	out	(that	is,	it	has	"#"	at	the	beginning	of	the
line),	you'll	be	fine;	otherwise,	you	haven't	made	the	changes	required.	
Now,	here's	what	happens	with	cellular	browsing:	
Every	time	you	run	uzbl-tabbed,	either	you	use	cellular	browsing	throughout	that	run,	or	you	do	not	use	cellular	browsing	at
all.	
You	use	cellular	browsing	if	two	conditions	are	met:	(a)	you've	created	a	script	which	initializes	a	new	home	directory	the
way	you	want;	and	(b)	you	haven't	disabled	cellular	browsing	for	this	run	of	uzbl-tabbed.	
So	the	first	step	is	to	create	a	script	which	initializes	a	new	home	directory,	given	the	old	home	directory	specified	in
environment	variable	ORIG_HOME	and	the	new	home	directory	specified	in	environment	variable	NEW_HOME.	 Here's	a	sample:

#!/bin/sh

set	-e
umask	077
mkdir	-p	$NEW_HOME
cp	-prd	$ORIG_HOME/.config	$NEW_HOME
if	[-e	$ORIG_HOME/.config1]
then
		cp	-prd	$ORIG_HOME/.config1	$NEW_HOME
fi
mkdir	-p	$NEW_HOME/.local/share/uzbl
touch				$NEW_HOME/.local/share/uzbl/cookies.txt
touch				$NEW_HOME/.local/share/uzbl/session-cookies.txt

"Wait,	you're	thinking.	 "What's	that	config1	stuff	doing	in	there?"	 As	explained	in	the	previous	section,	some	readers	of
this	tutorial	are	dealing	with	an	"official"	uzbl	for	their	system,	which	uses	an	old-syntax	config	file,	and	a	newer	uzbl,
which	they	are	installing	as	non-root	and	which	uses	a	new-syntax	config	file.	 That	config1	stuff	is	for	them.	 If	this
bothers	you,	take	out	the	four	lines	prtaining	to	config1.	 But	it	won't	hurt	to	leave	them	there.	
And	those	final	three	lines	suppress	a	silly	error	message	that	occurs	in	some	versions	of	uzbl	under	some	circumstances.	
So	make	that	script	executable	using	the	chmod	command,	and	place	it	in	your	HOME	directory,	at	~/.config/uzbl-cell-init.	 And
also	at	~/.config1/uzbl-cell-init,	if	you're	a	dual-uzbl-config-syntax	person.	
Once	you've	created	this	script,	when	you	run	uzbl-tabbed	with	your	current	value	of	the	HOME	environment	variable	(which	most
users	never	change),	you	will	be	doing	cellular	browsing.	
But	the	occasion	may	arise	when	you	don't	want	to	do	cellular	browsing.	 For	example,	if	you	go	to	a	site	and	want	to	log	in,
and	that	particular	site	handles	this	by	popping	up	a	new	window	(or	tab)	to	handle	the	logging	in,	then	with	cellular
browsing	the	new	tab	would	have	nothing	to	do	with	your	original	tab;	any	cookies	would	be	kept	entirely	separate,	and	the
logging	in	will	be	ineffective.	 So	how	do	you	turn	off	cellular	browsing?	
If	you	want	to	turn	off	cellular	browsing	permanently	for	future	runs	of	uzbl-tabbed,	rename	the	script	you	created	above	to
something	else.	 If	you	wish	to	temporarily	run	uzbl-tabbed	without	cellular	browsing,	you	don't	need	to	rename	this	script;
simply	define	the	environment	variable	UZBL_CELL_DISABLE	before	running	uzbl-tabbed.	 In	most	shells,	enter	this	command	at
the	shell	prompt:

export	UZBL_CELL_DISABLE	1

Spelling	is	important;	if	you	misspell	"UZBL_CELL_DISABLE",	then	the	"export"	command	will	not	do	what	you	want,	you	will	get
no	warning,	and	you	will	be	doing	cellular	browsing.	

After	entering	that	command,	run	uzbl-tabbed.	 When	you	exit	from	uzbl-tabbed,	be	sure	to	enter	this	command	at	the	shell
prompt	to	re-enable	cellular	browsing:

unset	UZBL_CELL_DISABLE

If	you	neglect	to	do	this,	then	the	next	time	you	run	uzbl-tab,	you	will	probably	run	without	using	cellular	browsing,	but
mistakenly	think	that	you	are	indeed	using	cellular	browsing.	 This	obviously	could	be	a	security	issue	for	you.	 So	each	time
you	run	uzbl-tabbed	with	a	good	"uzbl-cell-init"	file,	if	uzbl-tabbed	notices	that	cellular	browsing	has	been	disabled,	it
will	ask	you	if	that	is	your	intention.	
Asking	this	question	actually	serves	another	purpose,	too.	 If	you	attempt	to	disable	cellular	browsing,	but	mis-spell
"UZBL_CELL_DISABLE",	and	do	not	see	this	question	when	you	run	uzbl-tabbed,	you	know	that	you're	still	using	cellular
browsing.	
When	you	leave	a	uzbl-tabbed	session	with	cellular	browsing,	the	temporary	HOME	directory	is	not	actually	deleted	from	disk;
you	may	wish	to	inspect	it	later.	 But	this	can	easily	lead	to	proliferation	of	unwanted	duff.	 So	when	you	run	uzbl-tabbed
with	cellular	browsing,	it	first	checks	for	HOME	directories	created	by	uzbl-tabbed	which	are	no	longer	in	use.	 If	it	finds
any,	it	asks	whether	you	want	to	delete	them	all.	 After	you	answer	this	question,	uzbl-tabbed	will	then	proceed	to	come	up	as
usual.	
Where	are	these	temporary	home	directories?	 Each	is	formed	like	this	example:

/tmp/uzbl-cell-fred/20140804.075222.2345/000007

As	you	see,	they're	all	stored	in	the	/tmp	directory.	 Usually	in	FreeBSD	and	in	most	Linux	distributions,	the	/tmp	directory
is	cleared	when	you	reboot.	 You	can	change	the	value	of	the	cell_base	variable	in	the	changes	shown	below	to	/var/tmp	if	you
wish	to	have	these	old	home	directories	persist	across	reboots.	
The	"fred"	is	whatever	name	you're	logged	in	as	when	you	run	uzbl-tabbed;	it's	taken	from	the	LOGNAME	environment	variable.	
After	the	"fred"	come	the	date	and	time	that	uzbl-tabbed	started,	and	its	process	identification	(PID).	 The	final	six-digit
number	is	the	serial	number	uzbl-tabbed	assigned	to	this	particular	tab	or	window.	
Ok,	it's	time	to	start	changing	uzbl-tabbed.	 The	first	change	is	the	largest	by	far.	 To	make	it	a	little	easier	to	spot	the
end	of	this	change	as	you	read	it	here,	I've	typed	the	whole	change	in	red.	 I've	sprinkled	seven	marks	through	the	change	to
make	it	easier	to	copy	and	paste	the	change	in	smaller	chunks.	 All	this	code	should	go	just	before	the	"Default	configuration
section".

#	mark	1	----------	>8	----------	>8	----------	>8	----------	>8	----------

def	yesno(question):
		later	=	False;
		while	True:
				if	later:
						sys.stdout.write("Please	answer	yes	or	no.\n")
				sys.stdout.write(question+"	")
				sys.stdout.flush()
				answer=sys.stdin.readline().rstrip("\n")
				if	re.search(r'^yes$',answer,re.IGNORECASE):
						return	True
				if	re.search(r'^no$',answer,re.IGNORECASE):
						return	False
				later	=	True;

#	mark	2	----------	>8	----------	>8	----------	>8	----------	>8	----------

cell_base												=	"/tmp"
cell_cellbase								=	os.path.join(cell_base,
																																				'uzbl-cell-'+os.environ['LOGNAME']
)
cell_cwd													=	os.getcwd()
cell_proc												=	"/proc"			#	change	to	elsewhat	to	use	test	data
os.environ.setdefault("XDG_CONFIG_HOME",os.path.join(os.environ["HOME"],".config"))
cell_script_location	=	os.path.join(os.environ['XDG_CONFIG_HOME'],'uzbl-cell-init')

#	mark	3	----------	>8	----------	>8	----------	>8	----------	>8	----------

cell_switch										=	False		#	{{{---------------------+
																																																		#					|
if	os.path.exists(cell_script_location):										#					|
				#																																																			|
				try:																																										#					|
								os.environ['UZBL_CELL_DISABLE']											#					|
				except	KeyError:																														#					|
								cell_switch	=	True																								#					|
				else:																																									#					|
								cell_switch	=	False			#	redundant,	but	hey!	}}}-+
								if	yesno("File	"
																	+cell_script_location
																	+"	exists,\n"
																	+"but	you	have	set	environment	variable	UZBL_CELL_DISABLE.\n"
																	+"Are	you	sure	you	want	to	disable	cellular	browsing?		>"
):
												pass
								else:
												sys.stdout.write(
																"Ok,	so	\"unset	UZBL_CELL_DISABLE\"	and	rerun	uzbl-tabbed\n")
												exit(0)

#	mark	4	----------	>8	----------	>8	----------	>8	----------	>8	----------

if	cell_switch:
				if	not(os.access(cell_script_location,os.X_OK)):
								sys.stdout.write("File	"
																								+cell_script_location
																								+"	is	not	executable.\n"
																								+"Use	chmod	to	fix	this,"
																								"	and	then	re-run	uzbl-tabbed.\n"
)
								exit(1)

				cell_time=time.localtime()
				cell_session=os.path.join(cell_cellbase,
																														"%04d%02d%02d.%02d%02d%02d.%d"
																														%	(cell_time.tm_year,
																																		cell_time.tm_mon,
																																		cell_time.tm_mday,
																																		cell_time.tm_hour,
																																		cell_time.tm_min,
																																		cell_time.tm_sec,
																																		os.getpid()
)
)

				cell_serial=-1

				os.environ['ORIG_HOME']=os.environ['HOME']

#	mark	5	----------	>8	----------	>8	----------	>8	----------	>8	----------

#	We	may	want	to	delete	all	directories	in	cell_cellbase	except	those
#	associated	with	currently	running	instances	of	uzbl-tabbed.		The	name	of
#	each	subdirectory	of	cell_cellbase	includes	the	date	and	time	that

#	uzbl-tabbed	started,	and	also	the	process	identification	(PID).		We	use
#	the	PID	part	of	the	subdirectory	name	to	see	whether	uzbl-tabbed	is
#	running	with	the	same	PID.		But	if	we	might	be	cleaning	up	many,	many
#	subdirectories	for	many,	many	prior	runs	of	uzbl-tabbed,	we	might	have	more
#	than	one	directory	indicating	the	same	PID.		(Consider	the	birthday
#	paradox.)		If	there's	more	than	one	entry	for	a	given	PID,	we	should
#	consider	only	the	most	recently	created	directory	for	that	PID.		To	do
#	this,	we	create	a	dictionary	whose	keys	are	PIDs.		We	place	each
#	directory	name	into	that	dictionary	in	chronological	order,	with	the	key
#	being	the	PID,	so	for	a	given	PID,	only	the	most	recent	entry	will
#	remain.		When	the	smoke	clears,	the	dictionary	will	show	which	entries
#	should	not	be	deleted	because	uzbl-tabbed	is	still	running.

#	mark	6	----------	>8	----------	>8	----------	>8	----------	>8	----------

if	cell_switch	and	os.path.exists(cell_cellbase):

				cell_pid_directory						={}
				cell_deletion_candidates=[]
				cell_dirname_pattern				=re.compile("^\\d{8}\\.\\d{6}\.(\\d+)$")
				cell_uzbl_tabbed_pattern=re.compile("uzbl-tabbed")

				for	name	in	sorted(os.listdir(cell_cellbase)):
								cell_found=cell_dirname_pattern.search(name)
								if	cell_found:
												cell_deletion_candidates+=[name];
												cell_pid=cell_found.group(1)
												if	os.path.exists(os.path.join(cell_proc,cell_pid)):
																if	cell_uzbl_tabbed_pattern.search(
																				os.path.realpath(os.path.join(cell_proc,cell_pid,"exe"))):

																				cell_pid_directory[cell_pid]=name

				cell_deletion_candidates=[x	for	x	in	cell_deletion_candidates
								if	x	not	in	cell_pid_directory.values()]

								if	os.environ.get('UZBL_REMOVE_OLD')	==	"no":
												pass;
								else:
										if	os.environ.get('UZBL_REMOVE_OLD')	==	"yes"	or	\
										yesno(cell_q1+cell_q2+cell_q3):
												for	name	in	cell_deletion_candidates:
																subprocess.call(["rm","-rf",os.path.join(cell_cellbase,name)])

				if	len(cell_deletion_candidates)	>	0:
								if	len(cell_deletion_candidates)	>	1:
												cell_q1="There	are	"
												cell_q2=str(len(cell_deletion_candidates))
												cell_q3="	old	session	directories.		Should	I	delete	them?"
								else:
												cell_q1="There	is	"
												cell_q2=str(len(cell_deletion_candidates))
												cell_q3="	old	session	directory.		Should	I	delete	it?"
								if	yesno(cell_q1+cell_q2+cell_q3):
												for	name	in	cell_deletion_candidates:
																subprocess.call(["rm","-rf",os.path.join(cell_cellbase,name)])

#	mark	7	----------	>8	----------	>8	----------	>8	----------	>8	----------

The	other	three	changes	are	in	method	new_tab:	not	the	method	new_tab	in	class	GlobalEventDispatcher,	but	the	method	new_tab
in	class	UzblTabbed.	 (The	method	we're	interested	already	contains	a	couple	of	dozen	lines;	the	other	one	is	a	two-liner.)	
First,	add	these	three	"global"	statements	near	the	beginning	of	method	new-tab:

								when	you	need	to	load	multiple	tabs	at	a	time	(I.e.	like	when
								restoring	a	session	from	a	file).'''

								global	cell_switch
								global	cell_session
								global	cell_serial

								tab	=	self.create_tab(next)
								sid	=	tab.get_id()

Second,	add	this	"if	cell_switch:"	chunk	of	code,	shown	in	red,	after	the	call	to	method	uzbl.set_tab():

								uzbl	=	UzblInstance(self,	name,	uri,	title,	switch)
								uzbl.set_tab(tab)

								if	cell_switch:
												cell_serial+=1
												cell_home=os.path.join(cell_session,
																																			"%06d"	%	cell_serial
)

												os.environ['HOME']=cell_home
												os.environ['NEW_HOME']=cell_home

												if	not(subprocess.call(["mkdir","-p",cell_home])==0):
																sys.stdout.write("failed	to	create	temporary	home	directory	%s"
																																	%
																																	cell_home
)
																exit(1)

												os.chdir(cell_home)

												if	not(subprocess.call(cell_script_location,shell=True)==0):
																sys.stdout.write(
																		"temporary	home	directory	initialization	failed")
																exit(1)

								cmd	=	['uzbl-browser',	'-n',	name,	'-s',	str(sid),
															'--connect-socket',	self.socket_path]

Finally,	add	this	"if	cell_switch:"	chunk	of	code,	shown	in	red,	at	the	end	of	method	new_tab:

								gobject.spawn_async(cmd,	flags=gobject.SPAWN_SEARCH_PATH)

								SocketClient.instances_queue[name]	=	uzbl

								if	cell_switch:
										os.environ['HOME']=os.environ['ORIG_HOME']
										os.chdir(cell_cwd)

										os.environ.pop('NEW_HOME',None)

				def	clean_slate(self):
								'''Close	all	open	tabs	and	open	a	fresh	brand	new	one.'''

That's	it.	 You're	done.

go	to	top		go	to	list	of	contents

getting	uzbl	source	code

go	to	top		go	to	list	of	contents

Almost	all	uzbl	users	will	have	no	reason	to	change	and	recompile	the	C	source	code	for	uzbl-core.	 But	in	case	you	need	to,
here's	how.	
The	most	valuable	place	to	get	the	C	source	code,	in	my	opinion,	is	wherever	you	got	the	uzbl	package,	because	you'll	want	the
source	code	which	matches	the	behavior	of	your	version	of	uzbl,	and	it's	the	easiest	to	actually	change	and	recompile	with
minimized	chances	of	descending	into	dependency	hell.	 You	may	have	to	wander	around	your	uzbl	package's	site	of	origin	a
little.	 I	found	the	source	code	for	the	version	of	uzbl	I'm	running,	for	example,	at

https://packages.debian.org/wheezy/web/uzbl

On	that	page,	I	looked	at	the	sidebar	section	entitled	"Download	Source	Package	uzbl",	and	downloaded:

[uzbl_0.0.0~git.20120514.orig.tar.gz]
[uzbl_0.0.0~git.20120514-1.1.diff.gz]

This	left	me	with	two	files:

uzbl_0.0.0~git.20120514.orig.tar.gz
uzbl_0.0.0~git.20120514-1.1.diff.gz

I	then	transformed	the	"orig"inal	code	(the	raw	material	for	the	Debian	developers)	into	the	Debianized	source	code	by	running
the	following	shell	commands.	 I	didn't	type	them	in	and	execute	them	one	by	one;	I	put	them	in	a	shell	script	in	the	same
directory	as	the	two	files	listed	above,	and	then	executed	it.

rm	-rf	work
mkdir	work
cd	work
cp	-prd	../*.gz	.
tar	-xovzf	*.tar.gz
gunzip	*.diff.gz
patch	<	*.diff
less	control

That	final	"less"	command	showed	me	which	other	packages	I	needed	to	install	before	I	could	compile	uzbl;	in	particular,	these
lines	were	of	interest:

Build-Depends:	debhelper	(>=	7.0.50),
																quilt,
																libgtk2.0-dev	(>=	2.14),
																libwebkitgtk-dev	(>=	1.2.5-2.1),
																libsoup2.4-dev	(>=	2.24),
																pkg-config,
																python-support	(>=	0.5.3)

Of	all	the	packages	whose	names	were	displayed,	I	installed	the	ones	I	hadn't	installed	already	and	updated	any	whose	versions
were	too	low,	except	that	I	didn't	bother	to	install	quilt,	the	one	package	that	wasn't	needed.	 I	then	made	the	"work"
directory	my	current	directory,	and	then:

cd	Dieter*
cd	src

At	this	point	I	was	able	to	make	any	changes	I	wanted	to	any	of	the	dozen	or	so	.c	source	files.	 Then:

cd	..				#	back	to	the	Dieter*	directory
make
find	.	-name	uzbl-core

This	compiled	the	code.	 I	moved	the	uzbl-core	file	(if	you	know	what	a	core	file	is,	don't	worry,	this	isn't	one	of	those)
into	a	directory	that's	mentioned	in	my	PATH	environment	variable.	 In	my	case,	the	directory	was	~/bin,	which	I	was	careful
to	make	sure	was	in	my	PATH	environment	variable.	 (For	more	info	on	the	PATH	environment	variable,	look	here.)	
Well,	that's	the	end	of	the	discussion	of	downloading	from	Debian	and	compiling.	 Obviously,	FreeBSD	and	Linux	distributions
other	than	Debian	handle	this	differently.	
Now	that	you	have	the	source	that	corresponds	to	the	uzbl	provided	by	your	OS	distribution,	do	a	dry	run	of	compiling	and
running	it.	Make	sure	you're	running	the	uzbl-core	you've	just	compiled,	not	the	stock	one	on	your	system.

go	to	top		go	to	list	of	contents

getting	uzbl	from	uzbl.org

go	to	top		go	to	list	of	contents

This	section	describes	how	to	download,	build,	and	install	the	latest	official	release	of	uzbl.	 The	description	will	have	you
do	everything	as	non-root,	including	installation	of	the	new	uzbl	(but	not	including	the	installation	of	any	other	packages	on
which	uzbl	depends),	so	that	the	new	installation	can	coexist	with	the	official	one	for	your	system.	
Caution:	I'm	still	testing	this	section.	 I	ought	to	finish	that	in	February	2015	or	earlier.	 Stay	tuned.	
Before	you	start,	be	sure	you	know	what	you're	getting	yourself	into.	 If	you	made	the	nodifications	described	in	the	earlier
sections	of	this	tutorial,	you'll	have	to	make	them	all	over	again	for	this	new	version	of	uzbl.	 You	up	for	that?	 Good,	I
thought	so.	 And	changing	the	config	file	will	be	rather	easy,	because	you	originally	read	this	warning	and	saved	the	original
stock	config	file	so	you	can	diff	it	against	your	current	config	file	to	see	all	the	changes	you	made,	right?	 Good,	I	thought
so.	 Let's	begin.	
The	first	step	in	building	the	latest	release	of	uzbl	from	uzbl.org	is	to	install	all	the	software	packages	on	which	it
depends.	 You	can	find	a	list	of	them	by	going	here	and	searching	for	the	strings	"Dependencies"	and	"Make	dependencies".	
Another	(implied)	dependency	is	the	"git"	program,	which	you	should	use	to	download	the	latest	official	uzbl	release.	
The	next	step	in	getting	the	latest	official	release	of	uzbl	is	to	make	a	working	subdirectory	(we'll	call	it	"work"),	and
enter	these	shell	commands:

git	clone	git://github.com/uzbl/uzbl.git	work
cd	work				#	<---	Don't	skip	this,	or	the	tutorial	won't	mean	anything	to	you.

If,	instead,	you	want	the	source	code	for	the	leading	edge	"next"	version,	the	one	not	released	yet:

git	clone	git://github.com/uzbl/uzbl.git	work
cd	work
git	checkout	next

Now	that	you	have	the	source,	you	get	to	decide	where	the	installed	files	go.	 They	will	be	in	three	directories:	bin,	lib,
and	share.	 If	you're	root,	you	may	be	happy	to	know	that	the	default	location	for	these	directories	is	/usr/local;	if	you
want	to	change	that	to	simply	/usr,	for	example,	it's	easy.	 And	if	you're	not	root,	changing	the	destination	directory	is	not
only	easy,	it's	mandatory!	 In	this	tutorial,	the	examples	will	assume	you	want	the	destination	directory	to	be	/u/home/uzbl3,
but	you'll	almost	certainly	want	to	use	a	different	location.	
So	if	you	want	to	change	the	directory	location,	create	a	file	called	local.mk	containing	the	following	line	(you	already	did
the	cd	into	the	work	directory,	didn't	you?):

PREFIX=/u/home/uzbl3

In	theory,	you	should	now	be	able	to	just	let	'er	rip.	 But	the	official	release	I'm	using,	2012.05.14-1113-g69fa417,	has	an
installation	problem.	 To	see	whether	yours	does,	finish	the	installation	with	the	following	shell	commands:

make
make	install

Then	inspect	the	installed	files	with	this	shell	command:

ls	-lR	/u/home/uzbl3			#	or	wherever	the	installed	files	went

Are	all	the	files	world-readable?	 If	not,	and	you	want	them	to	be,	you'll	need	to	create	a	patch	for	the	Makefile.	 I	like	to
put	this	patch	not	in	the	work	directory,	but	in	its	parent,	so	that	it	won't	be	wiped	out	the	next	time	I	clear	out	the	work
directory	and	"git"	the	source.	 So	go	back	to	the	parent	directory	and	create	a	file	called	Makefile.patch	that	looks	like
this.	 You	can	copy	this	one	verbatim	if	you	like	(but	no	guarantees,	obviously).

***	Makefile				Mon	May	26	02:07:28	2014
---	Makefile.new								Mon	May	26	02:16:03	2014

***	262,267	****
---	262,268	----
								#$(INSTALL)	-m644	README.event-manager.md	$(DOCDIR)/README.event-manager.md
								cp	-rv	examples	$(INSTALLDIR)/share/uzbl/examples
								chmod	755	$(INSTALLDIR)/share/uzbl/examples/data/scripts/*.sh	$(INSTALLDIR)/share/uzbl/examples/data/scripts/*.py
+							chmod	-R	u=rwX,go=rX	$(INSTALLDIR)
								$(INSTALL)	-m644	uzbl.desktop	$(INSTALLDIR)/share/applications/uzbl.desktop
								$(INSTALL)	-m644	uzbl-browser.1	$(MANDIR)/man1/uzbl-browser.1

Then	enter	these	shell	commands:

cd	work
patch	-p0	<	../Makefile.patch
make	clean
make
make	install

Then	you'll	need	to	let	the	event	manager	know	where	the	newly	built	Python	packages	are.	 To	do	so,	first	enter	this	command
at	the	shell	prompt:

find	/u/home/uzbl3/lib	-mindepth	2	-maxdepth	2

You'll	get	something	that	looks	like	this:

/u/home/uzbl3/lib/python3.2/site-packages

That's	where	the	event	manager	should	look	for	uzbl	packages.	 We'll	add	that	directory	name	to	the	(very	short)	uzbl-manager
script.	 So	look	at	file	/u/home/uzbl3/bin/uzbl-event-manager.	 It	will	look	something	like	this:

#!/usr/bin/python3
from	uzbl	import	event_manager
event_manager.main()

Change	it	so	it	looks	like	this:

#!/usr/bin/python3
import	sys
sys.path.insert(0,"/u/home/uzbl3/lib/python3.2/site-packages")
from	uzbl	import	event_manager
event_manager.main()

Then	you	need	to	make	sure	that	the	bin	directory	to	which	you've	just	installed	uzbl	(for	example,	/u/home/uzbl3/bin)	is	in
your	PATH	environment	variable;	for	more	info,	look	here.	
At	this	point,	you'd	be	tempted	to	take	the	new	uzbl	out	for	a	spin,	right?	 That's	ok	if	the	old	uzbl	and	the	new	uzbl	have
the	same	format	for	the	config	files.	 If	they	do,	you	can	skip	the	rest	of	this	section,	and	go	right	to	working	through	the
tutorial	again	to	make	any	desired	changes	to	the	new	uzbl	or	its	config	file.	
But	if	the	format	of	the	config	files	has	changed,	you	don't	want	to	take	the	new	uzbl	out	for	a	spin	just	yet.	 If	you're
using	a	newer	uzbl	but	you	have	a	config	file	that	has	an	older	syntax,	things	won't	work	so	well.	
But	you	went	ahead	and	did	it,	right?	 If	you	did,	you'll	notice	at	least	three	things.	 The	first	thing	is	that	you	got	a
boatload	of	error	messages	on	your	xterm	screen	(or	your	local	equivalent).	 The	second	thing	is	that	uzbl	didn't	seem	to	pay
enough	attention	to	your	config	file,	so	that	uzbl	misbehaved.	 The	third	thing,	which	you	might	not	have	noticed	until	you
exited	this	premature	running	of	uzbl,	is	that	you	now	probably	have	a	new	directory	in	your	current	working	directory.	 It
looks	like	it's	named	"=",	but	there's	a	space	after	the	"="	in	the	directory	name.	 If	you	see	this	new	directory,	you	should
remove	it	thus:

rm	-r	"=	"

So	now	would	be	a	good	time	to	customize	your	new	version	of	uzbl	by	working	through	this	tutorial	again	and	customizing	the
Python	script	uzbl-tabbed	and	your	new-format	config	file,	which	you	should	copy	from	(for	example)
/u/home/uzbl3/share/uzbl/examples/config/config.	
But	wait,	before	you	go:	 You	might	want	to	switch	back	and	forth	between	the	old	and	new	versions	of	uzbl,	with	the	old	and
new	formats	of	the	config	file.	 How	do	you	have	both	the	old	and	new	config	files	at	~/.config/uzbl/config?	 You	don't,
obviously.	 You	have	to	put	one	of	them	somewhere	else.	 How	is	this	done?	 Take	the	two	simple	steps	described	here.	
The	first	step	is	to	modify	uzbl-tabbed	so	that	just	after	the	first	line	(the	shebang	line,	"#!")	you	insert	these	two	lines:

import	os
os.environ.setdefault("XDG_CONFIG_HOME",os.path.join(os.environ["HOME"],".config1"))

Note	that	we're	hijacking	an	environment	variable	from	freedesktop.org	(formerly	known	as	the	X	Desktop	Group,	hence	"XDG").
When	you	go	back	and	make	other	changes	suggested	by	this	tutorial,	you'll	notice	that	several	other	changes,	later	in	the
code,	are	similar	to	this,	but	use	.config	instead	of	.config1.	 You	can	make	those	other	changes	to	be	either	.config	or
.config1;	the	above	change	you've	just	made	will	override	those	other	changes.	
The	second	step	is	to	modify	uzbl-browser	(in	case	you	ever	run	it)	so	that	just	after	the	first	line	(the	shebang	line,	"#!")
you	insert	these	lines:

if	["$XDG_CONFIG_HOME"	=	""]
then
		XDG_CONFIG_HOME=$HOME/.config1
fi

When	you	next	run	the	new	uzbl,	you'll	notice	that	the	user	config	files	are	stored	under	not	~/.config,	but	~/.config1.	 When
you	go	back	through	this	tutorial	and	modify	the	user	config	files,	these	are	the	ones	you	want	to	modify.	 So	wherever	you
see	.config,	read	.config1.

go	to	top		go	to	list	of	contents

primary	and	clipboard	selections

go	to	top		go	to	list	of	contents

There	are	two	places	you	can	store	selected	text:	as	the	primary	selection,	and	as	the	clipboard	selection.	
You	store	text	from	a	web	page	as	the	primary	selection	by	dragging	over	the	text.	 You	drag	over	text	by	moving	the	mouse
pointer	to	one	end	of	the	text,	clicking	and	holding	down	the	mouse	button,	moving	the	mouse	pointer	to	the	other	end	of	that
text,	and	releasing	the	mouse	pointer.	 You'll	discover	that	the	background	area	around	the	selected	text	is	now	of	a
different	color.	 Even	if	you	now	click	elsewhere	so	that	the	background	area	has	reverted	to	its	original	color,	your
selected	text	will	be	the	primary	selection.	 You	can	perform	this	operation	on	the	currently	displayed	web	page	regardless	of
whether	you're	in	Command	mode	or	Insert	mode.	
You	copy	the	primary	selection	to	the	clipboard	selection	by	pressing	<Ctrl>C.	 This	must	be	done	in	Insert	mode.	
You	can	paste	text	into	a	web	form	from	either	the	primary	selection	or	the	clipboard	selection.	 This	must	be	done	in	Insert

mode,	as	follows:	
Paste	text	from	the	primary	selection	by	clicking	where	in	the	web	form	you	want	to	insert	and	clicking	the	middle	button	of
your	mouse.	
Paste	text	from	the	clipboard	selection	by	clicking	where	in	the	web	form	you	want	to	insert	and	pressing	<Ctrl>V.

go	to	top		go	to	list	of	contents

pid	files	and	you

go	to	top		go	to	list	of	contents

A	pid	file	is	a	file	which	exists	in	a	conventional	place	(or	doesn't	exist	at	all).	 Some	programs	should	have	only	one	copy
running	at	a	time,	or	one	copy	per	user,	or	some	similar	restriction.	 Such	a	program	finds	its	own	process	ID	(pid)	and
writes	that	into	a	pid	file.	 When	the	program	stops	running,	it	usually	removes	the	pid	file.	 I	say	"usually"	because
sometimes	the	program	stops	so	abruptly	that	it	cannot	remove	the	pid	file.	 It	could	be	killed	with	a	SIGKILL	signal	(9),	or
the	system	could	crash	or	lose	electrical	power.	
So	when	a	program	starts	running	and	wants	to	see	whether	that	instance	of	the	program	is	a	duplicate	and	therefore	not
needed,	the	program	should	check	whether	the	pid	file	exists.	 If	it	doesn't	exist,	then	the	program	should	indeed	run.	 But
if	the	pid	file	exists,	the	program	should	check	whether	there's	an	actual	process	with	that	pid.	 If	not,	then	the	program
should	indeed	run.	 But	if	the	pid	file	exists	and	a	process	with	that	pid	exists,	the	program	should	check	whether	that	other
process	is	actually	running	this	program.	 It's	unlikely,	but	possible,	since	the	system	will	recycle	pids	which	are	no	longer
in	use.	 And	even	this	third	check	is	vulnerable,	because	there	could	be	some	other	program	with	the	same	name.	 This
objection,	however,	should	be	considered	only	by	the	most	paranoid	among	you.	
The	event	manager	uses	the	first	two	of	these	three	checks.	 That's	usually	enough.	 It	could	be	argued,	though,	that	the
third	check,	whether	the	other	process	is	actually	running	the	event	manager,	should	be	made.	
But	the	event	manager	is	not	the	only	program	which	checks	its	pid	file.	 Some	versions	of	usbl-browser	also	check	the	event
manager's	pid	file,	and	if	it	exists,	then	uzbl-browser	doesn't	bother	to	run	the	event	manager.	 Unfortunately,	it	only	makes
the	first	of	the	three	checks,	so	when	the	system	recovers	from	abrupt	death,	uzbl-browser	will	mistakenly	fail	to	run	the
event	manager.	 The	simplest	solution	is	to	modify	uzbl-browser	so	it	doesn't	check	the	pid	file	at	all,	as	we	recommend	here.
But	if	you	don't	disable	that	check,	you	should	at	least	make	uzbl-browser	make	the	first	two	checks	of	the	event	manager's
pid	file	described	above.	
Four	final	observations.	 The	first	is	that	if	you	want	to	extend	either	the	event	manager	or	uzbl-browser	to	make	the	third
check,	don't	use	the	/proc	filesystem	to	do	so	if	you	want	your	change	to	be	universally	usable.	 Although	Linux	has	the	/proc
filesystem,	other	Unixen,	such	as	FreeBSD,	don't	normally	have	that.	
The	second	observation	is	that	it	is	really	wisest	to	remove	the	check	entirely	from	uzbl-browser.	 The	only	advantage	to	have
the	check	in	uzbl-browser	is	to	make	the	machine	run	faster.	 But	the	percentage	gain	in	speed	for	your	system	is	so
negligible	as	to	be	not	worth	the	additional	code	complexity.	 As	just	an	example	of	why	the	additionaly	complexity	is	bad,
what	if	in	some	future	version	of	uzbl	the	event-manager	is	changed	so	that	the	pid	file	is	placed	somewhere	else?	 Then	you
have	this	code	in	uzbl-browser	which	misleads	anyone	wishing	to	maintain	it,	because	the	code	now	does	nothing.	 So	don't
complicate	the	code	just	to	avoid	a	negligible	slowdown	of	the	program.	 This	calls	to	mind	two	rules	for	optimizing	code.
The	first	rule	is:	do	not	optimize.	 The	second	rule	is	for	expert	coders:	do	not	optimize	yet.	
The	third	observation	is	that	using	pid	files	is	not	a	bulletproof	way	to	synchronize	things	so	that	only	one	copy	of	the
event	manager	is	running	per	user.	 There	is	a	race	condition.	 Two	copies	of	the	event	manager	could	be	started	up	almost
simultaneously.	 Both	of	them	can	then	check	whether	the	pid	file	exists;	both	of	them	find	that	it	does	not	exist;	and	both
of	them	create	it.	 It's	better	to	use	some	sort	of	lock	file	to	synchronize	things.	 (The	fcntl	module	could	be	used	for	this
for	event	managers	written	in	Python,	for	example.)	 No	need	to	write	the	pid	into	that	lock	file	or	into	any	file.	
The	fourth	observation	is	that	most	of	this	stuff	is	a	tempest	in	a	teapot.	 The	only	important	thing	is	to	yank	the	event
manager	pid	file	check	out	of	uzbl-browser.	 The	rest	could	be	considered	overkill.	 Nothing	here	is	mission	critical.	 It's
only	a	browser,	not	a	nuclear	reactor.

go	to	top		go	to	list	of	contents

referrer	fun	fact

go	to	top		go	to	list	of	contents

When	you're	on	a	web	page	and	click	on	a	link	to	another	one,	the	software	running	on	the	new	web	site	has	knowledge	of	which
web	site	you	have	just	come	from.	 This	previous	web	site	is	known	as	the	referrer,	and	the	relevant	URI	is	passed	to	the	new
web	site's	software	as	environment	variable	HTTP_REFERER	(yep,	only	three	R's).	 This	is	also	true,	for	most	browsers,	if	you
open	the	new	URI	in	a	new	tab	or	new	window.	
But	it	isn't	true	for	uzbl.	 At	least	the	version	that	I've	tested,	opening	in	a	new	tab	or	window	will	cause	the	information
about	the	referrer	to	be	lost.	 I	consider	this	to	be	a	feature,	not	a	bug.

go	to	top		go	to	list	of	contents

thoughts	on	Python

go	to	top		go	to	list	of	contents

One	major	advantage	of	Python	is	that	it's	a	quite	readable	language.	 A	Python	script	meant	for	use	with	uzbl	is	likely	to	be
simple	enough	that	if	you	know	any	programming	language,	you'll	be	able	to	understand	that	script,	and	will	probably	learn
some	Python	along	the	way.	
A	detailed	look	at	the	transition	from	Python	2	to	Python	3	is	here.	 It	all	seems	reasonable,	but	I'm	still	leery	of
investing	much	effort	in	serious	new	software	development	using	Python.	 (Hobby	development,	yes.	 Serious	development,	no.)
Don't	be	telling	me	that	Python	4	will	never	cause	Python	3	to	freeze.	 It	probably	won't	happen,	but	with	Python	you	can't
say	"never"	with	a	straight	face.	
A	good,	but	not	perfect,	resource	for	learning	Python	is,	um,	Learning	Python,	by	Mark	Lutz.	 He's	quite	thorough,	and	the
book	is	deliciously	long,	but	you	need	to	check	his	work	as	you	go.	 For	example,	he	says:

Dictionaries	aren't	sequences	like	lists	and	strings,	but	if	you	need	to	step	through	the	items	in	a	dictionary,	it's	easy	-
-	calling	the	dictionary	keys	method	returns	all	stored	keys,	which	you	can	iterate	through	with	a	for.

But	in	Python	3,	the	keys	method	returns	not	all	stored	keys,	but	an	iterator	over	the	keys.	 The	difference	is	that	if	you
get	this	iterator,	add	a	new	item	to	the	dictionary,	and	use	the	iterator,	it	will	reflect	the	presence	of	the	new	key.	 (Lutz
does	point	this	out	at	other	places	in	the	book.)	 So	read	the	book	(or	as	much	of	it	as	you	need),	but	if	something	doesn't
seem	quite	right,	stop	and	test	it.

go	to	top		go	to	list	of	contents

the	difference	between	URI	and	URL

go	to	top		go	to	list	of	contents

What's	the	difference	between	URI	and	URL?	 It's	this:

p(URI-URL)

where	p	ranges	from	0	to	1,	and	is	the	degree	to	which	you	wish	to	be	pedantic.	 In	other	words,	if	you	have	no	desire	to	be
pedantic,	the	value	of	the	expression	is	zero.	
For	a	less	flippant	discussion	of	this	issue,	go	here.

go	to	top		go	to	list	of	contents

of	historical	interest

go	to	top		go	to	list	of	contents

