
ALGORITHMIC
INFORMATION
THEORY

Third Printing

G J Chaitin
IBM, P O Box 218
Yorktown Heights, NY 10598
chaitin@us.ibm.com

April 2, 2003

This book was published in 1987 by Cambridge Uni-
versity Press as the first volume in the series Cam-
bridge Tracts in Theoretical Computer Science. In
1988 and 1990 it was reprinted with revisions. This
is the text of the third printing. However the APL
character set is no longer used, since it is not gen-
erally available.

Acknowledgments

The author is pleased to acknowledge permission to make free use of
previous publications:

Chapter 6 is based on his 1975 paper “A theory of program size
formally identical to information theory” published in volume 22 of the
Journal of the ACM, copyright c© 1975, Association for Computing
Machinery, Inc., reprinted by permission.

Chapters 7, 8, and 9 are based on his 1987 paper “Incompleteness
theorems for random reals” published in volume 8 of Advances in Ap-
plied Mathematics, copyright c© 1987 by Academic Press, Inc.

The author wishes to thank Ralph Gomory, Gordon Lasher, and
the Physics Department of the Watson Research Center.

1

2

Foreword

Turing’s deep 1937 paper made it clear that Gödel’s astonishing earlier
results on arithmetic undecidability related in a very natural way to a
class of computing automata, nonexistent at the time of Turing’s paper,
but destined to appear only a few years later, subsequently to proliferate
as the ubiquitous stored-program computer of today. The appearance
of computers, and the involvement of a large scientific community in
elucidation of their properties and limitations, greatly enriched the line
of thought opened by Turing. Turing’s distinction between computa-
tional problems was rawly binary: some were solvable by algorithms,
others not. Later work, of which an attractive part is elegantly devel-
oped in the present volume, refined this into a multiplicity of scales
of computational difficulty, which is still developing as a fundamental
theory of information and computation that plays much the same role
in computer science that classical thermodynamics plays in physics:
by defining the outer limits of the possible, it prevents designers of
algorithms from trying to create computational structures which prov-
ably do not exist. It is not surprising that such a thermodynamics of
information should be as rich in philosophical consequence as thermo-
dynamics itself.

This quantitative theory of description and computation, or Com-
putational Complexity Theory as it has come to be known, studies the
various kinds of resources required to describe and execute a computa-
tional process. Its most striking conclusion is that there exist computa-
tions and classes of computations having innocent-seeming definitions
but nevertheless requiring inordinate quantities of some computational
resource. Resources for which results of this kind have been established
include:

3

4

(a) The mass of text required to describe an object;

(b) The volume of intermediate data which a computational process
would need to generate;

(c) The time for which such a process will need to execute, either
on a standard “serial” computer or on computational structures
unrestricted in the degree of parallelism which they can employ.

Of these three resource classes, the first is relatively static, and per-
tains to the fundamental question of object describability; the others
are dynamic since they relate to the resources required for a computa-
tion to execute. It is with the first kind of resource that this book is
concerned. The crucial fact here is that there exist symbolic objects
(i.e., texts) which are “algorithmically inexplicable,” i.e., cannot be
specified by any text shorter than themselves. Since texts of this sort
have the properties associated with the random sequences of classical
probability theory, the theory of describability developed in Part II of
the present work yields a very interesting new view of the notion of
randomness.

The first part of the book prepares in a most elegant, even playful,
style for what follows; and the text as a whole reflects its author’s won-
derful enthusiasm for profundity and simplicity of thought in subject
areas ranging over philosophy, computer technology, and mathematics.

J. T. Schwartz
Courant Institute
February, 1987

Preface

The aim of this book is to present the strongest possible version of
Gödel’s incompleteness theorem, using an information-theoretic ap-
proach based on the size of computer programs.

One half of the book is concerned with studying Ω, the halting
probability of a universal computer if its program is chosen by tossing
a coin. The other half of the book is concerned with encoding Ω as
an algebraic equation in integers, a so-called exponential diophantine
equation.

Gödel’s original proof of his incompleteness theorem is essentially
the assertion that one cannot always prove that a program will fail to
halt. This is equivalent to asking whether it ever produces any output.
He then converts this into an arithmetical assertion. Over the years this
has been improved; it follows from the work on Hilbert’s 10th problem
that Gödel’s theorem is equivalent to the assertion that one cannot
always prove that a diophantine equation has no solutions if this is the
case.

In our approach to incompleteness, we shall ask whether or not
a program produces an infinite amount of output rather than asking
whether it produces any; this is equivalent to asking whether or not
a diophantine equation has infinitely many solutions instead of asking
whether or not it is solvable.

If one asks whether or not a diophantine equation has a solution
for N different values of a parameter, the N different answers to this
question are not independent; in fact, they are only log2N bits of in-
formation. But if one asks whether or not there are infinitely many
solutions for N different values of a parameter, then there are indeed
cases in which the N different answers to these questions are inde-

5

6

pendent mathematical facts, so that knowing one answer is no help in
knowing any of the others. The equation encoding Ω has this property.

When mathematicians can’t understand something they usually as-
sume that it is their fault, but it may just be that there is no pattern
or law to be discovered!

How to read this book: This entire monograph is essentially a proof
of one theorem, Theorem D in Chapter 8. The exposition is completely
self-contained, but the collection Chaitin (1987c) is a useful source
of background material. While the reader is assumed to be familiar
with the basic concepts of recursive function or computability theory
and probability theory, at a level easily acquired from Davis (1965)
and Feller (1970), we make no use of individual results from these
fields that we do not reformulate and prove here. Familiarity with
LISP programming is helpful but not necessary, because we give a self-
contained exposition of the unusual version of pure LISP that we use,
including a listing of an interpreter. For discussions of the history
and significance of metamathematics, see Davis (1978), Webb (1980),
Tymoczko (1986), and Rucker (1987).

Although the ideas in this book are not easy, we have tried to present
the material in the most concrete and direct fashion possible. We give
many examples, and computer programs for key algorithms. In partic-
ular, the theory of program-size in LISP presented in Chapter 5 and
Appendix B, which has not appeared elsewhere, is intended as an illus-
tration of the more abstract ideas in the following chapters.

Contents

1 Introduction 13

I Formalisms for Computation: Register Ma-
chines, Exponential Diophantine Equations, &
Pure LISP 19

2 Register Machines 23
2.1 Introduction . 23
2.2 Pascal’s Triangle Mod 2 26
2.3 LISP Register Machines 30
2.4 Variables Used in Arithmetization 45
2.5 An Example of Arithmetization 49
2.6 A Complete Example of Arithmetization 59
2.7 Expansion of ⇒’s . 63
2.8 Left-Hand Side . 71
2.9 Right-Hand Side . 75

3 A Version of Pure LISP 79
3.1 Introduction . 79
3.2 Definition of LISP . 81
3.3 Examples . 89
3.4 LISP in LISP I . 93
3.5 LISP in LISP II . 94
3.6 LISP in LISP III . 98

7

8 CONTENTS

4 The LISP Interpreter EVAL 103
4.1 Register Machine Pseudo-Instructions 103
4.2 EVAL in Register Machine Language 106
4.3 The Arithmetization of EVAL 123
4.4 Start of Left-Hand Side 129
4.5 End of Right-Hand Side 131

II Program Size, Halting Probabilities, Ran-
domness, & Metamathematics 135

5 Conceptual Development 139
5.1 Complexity via LISP Expressions 139
5.2 Complexity via Binary Programs 145
5.3 Self-Delimiting Binary Programs 146
5.4 Omega in LISP . 149

6 Program Size 157
6.1 Introduction . 157
6.2 Definitions . 158
6.3 Basic Identities . 162
6.4 Random Strings . 174

7 Randomness 179
7.1 Introduction . 179
7.2 Random Reals . 184

8 Incompleteness 197
8.1 Lower Bounds on Information Content 197
8.2 Random Reals: First Approach 200
8.3 Random Reals: |Axioms| 202
8.4 Random Reals: H(Axioms) 209

9 Conclusion 213

10 Bibliography 215

A Implementation Notes 221

CONTENTS 9

B S-expressions of Size N 223

C Back Cover 233

10 CONTENTS

List of Figures

2.1 Pascal’s Triangle . 26
2.2 Pascal’s Triangle Mod 2 28
2.3 Pascal’s Triangle Mod 2 with 0’s Replaced by Blanks . . 29
2.4 Register Machine Instructions 32
2.5 A Register Machine Program 35

3.1 The LISP Character Set 80
3.2 A LISP Environment . 83
3.3 Atoms with Implicit Parentheses 88

4.1 Register Machine Pseudo-Instructions 104

11

12 LIST OF FIGURES

Chapter 1

Introduction

More than half a century has passed since the famous papers Gödel

(1931) and Turing (1937) that shed so much light on the foundations
of mathematics, and that simultaneously promulgated mathematical
formalisms for specifying algorithms, in one case via primitive recursive
function definitions, and in the other case via Turing machines. The
development of computer hardware and software technology during this
period has been phenomenal, and as a result we now know much better
how to do the high-level functional programming of Gödel, and how
to do the low-level machine language programming found in Turing’s
paper. And we can actually run our programs on machines and debug
them, which Gödel and Turing could not do.

I believe that the best way to actually program a universal Turing
machine is John McCarthy’s universal function EVAL. In 1960 Mc-
Carthy proposed LISP as a new mathematical foundation for the the-
ory of computation [McCarthy (1960)]. But by a quirk of fate LISP
has largely been ignored by theoreticians and has instead become the
standard programming language for work on artificial intelligence. I
believe that pure LISP is in precisely the same role in computational
mathematics that set theory is in theoretical mathematics, in that it
provides a beautifully elegant and extremely powerful formalism which
enables concepts such as that of numbers and functions to be defined
from a handful of more primitive notions.

Simultaneously there have been profound theoretical advances.
Gödel and Turing’s fundamental undecidable proposition, the question

13

14 CHAPTER 1. INTRODUCTION

of whether an algorithm ever halts, is equivalent to the question of
whether it ever produces any output. In this monograph we will show
that much more devastating undecidable propositions arise if one asks
whether an algorithm produces an infinite amount of output or not.1

Gödel expended much effort to express his undecidable proposition
as an arithmetical fact. Here too there has been considerable progress.
In my opinion the most beautiful proof is the recent one of Jones and
Matijasevič (1984), based on three simple ideas:

(1) the observation that 110 = 1, 111 = 11, 112 = 121, 113 = 1331,
114 = 14641 reproduces Pascal’s triangle, makes it possible to
express binomial coefficients as the digits of powers of 11 written
in high enough bases,

(2) an appreciation of É. Lucas’s remarkable hundred-year-old theo-
rem that the binomial coefficient “n choose k” is odd if and only if
each bit in the base-two numeral for k implies the corresponding
bit in the base-two numeral for n,

(3) the idea of using register machines rather than Turing machines,
and of encoding computational histories via variables which are
vectors giving the contents of a register as a function of time.

Their work gives a simple straightforward proof, using almost no num-
ber theory, that there is an exponential diophantine equation with one
parameter p which has a solution if and only if the pth computer pro-
gram (i.e., the program with Gödel number p) ever halts.

Similarly, one can use their method to arithmetize my undecidable
proposition. The result is an exponential diophantine equation with
the parameter n and the property that it has infinitely many solutions
if and only if the nth bit of Ω is a 1. Here Ω is the halting probability
of a universal Turing machine if an n-bit program has measure 2−n

[Chaitin (1975b,1982b)]. Ω is an algorithmically random real number
in the sense that the first N bits of the base-two expansion of Ω cannot
be compressed into a program shorter thanN bits, from which it follows
that the successive bits of Ω cannot be distinguished from the result of
independent tosses of a fair coin. We will also show in this monograph

1These results are drawn from Chaitin (1986,1987b).

15

that an N -bit program cannot calculate the positions and values of
more than N scattered bits of Ω, not just the first N bits.2 This implies
that there are exponential diophantine equations with one parameter
n which have the property that no formal axiomatic theory can enable
one to settle whether the number of solutions of the equation is finite
or infinite for more than a finite number of values of the parameter n.

What is gained by asking if there are infinitely many solutions rather
than whether or not a solution exists? The question of whether or
not an exponential diophantine equation has a solution is in general
undecidable, but the answers to such questions are not independent.
Indeed, if one considers such an equation with one parameter k, and
asks whether or not there is a solution for k = 0, 1, 2, . . . , N − 1, the
N answers to these N questions really only constitute log2N bits of
information. The reason for this is that we can in principle determine
which equations have a solution if we know how many of them are
solvable, for the set of solutions and of solvable equations is recursively
enumerable (r.e.). On the other hand, if we ask whether the number
of solutions is finite or infinite, then the answers can be independent,
if the equation is constructed properly.

In view of the philosophical impact of exhibiting an algebraic equa-
tion with the property that the number of solutions jumps from finite
to infinite at random as a parameter is varied, I have taken the trouble
of explicitly carrying out the construction outlined by Jones and Mati-
jasevič. That is to say, I have encoded the halting probability Ω into an
exponential diophantine equation. To be able to actually do this, one
has to start with a program for calculating Ω, and the only language I
can think of in which actually writing such a program would not be an
excruciating task is pure LISP.

It is in fact necessary to go beyond the ideas of McCarthy in three
fundamental ways:

(1) First of all, we simplify LISP by only allowing atoms to be one
character long. (This is similar to McCarthy’s “linear LISP.”)

(2) Secondly, EVAL must not lose control by going into an infinite
loop. In other words, we need a safe EVAL that can execute

2This theorem was originally established in Chaitin (1987b).

16 CHAPTER 1. INTRODUCTION

garbage for a limited amount of time, and always results in an
error message or a valid value of an expression. This is similar
to the notion in modern operating systems that the supervisor
should be able to give a user task a time slice of CPU, and that
the supervisor should not abort if the user task has an abnormal
error termination.

(3) Lastly, in order to program such a safe time-limited EVAL, it
greatly simplifies matters if we stipulate “permissive” LISP se-
mantics with the property that the only way a syntactically valid
LISP expression can fail to have a value is if it loops forever.
Thus, for example, the head (CAR) and tail (CDR) of an atom
is defined to be the atom itself, and the value of an unbound
variable is the variable.

Proceeding in this spirit, we have defined a class of abstract com-
puters which, as in Jones and Matijasevič’s treatment, are register ma-
chines. However, our machine’s finite set of registers each contain a
LISP S-expression in the form of a character string with balanced left
and right parentheses to delimit the list structure. And we use a small
set of machine instructions, instructions for testing, moving, erasing,
and setting one character at a time. In order to be able to use subrou-
tines more effectively, we have also added an instruction for jumping
to a subroutine after putting into a register the return address, and an
indirect branch instruction for returning to the address contained in a
register. The complete register machine program for a safe time-limited
LISP universal function (interpreter) EVAL is about 300 instructions
long.

To test this LISP interpreter written for an abstract machine, we
have written in 370 machine language a register machine simulator.
We have also re-written this LISP interpreter directly in 370 machine
language, representing LISP S-expressions by binary trees of pointers
rather than as character strings, in the standard manner used in prac-
tical LISP implementations. We have then run a large suite of tests
through the very slow interpreter on the simulated register machine,
and also through the extremely fast 370 machine language interpreter,
in order to make sure that identical results are produced by both im-
plementations of the LISP interpreter.

17

Our version of pure LISP also has the property that in it we can
write a short program to calculate Ω in the limit from below. The
program for calculating Ω is only a few pages long, and by running it (on
the 370 directly, not on the register machine!), we have obtained a lower
bound of 127/128ths for the particular definition of Ω we have chosen,
which depends on our choice of a self-delimiting universal computer.

The final step was to write a compiler that compiles a register ma-
chine program into an exponential diophantine equation. This compiler
consists of about 700 lines of code in a very nice and easy to use pro-
gramming language invented by Mike Cowlishaw called REXX. REXX
is a pattern-matching string processing language which is implemented
by means of a very efficient interpreter.3 It takes the compiler only a
few minutes to convert the 300-line LISP interpreter into a 900,000-
character 17,000-variable universal exponential diophantine equation.
The resulting equation is a little large, but the ideas used to produce it
are simple and few, and the equation results from the straightforward
application of these ideas.

Here we shall present the details of this adventure, but not the full
equation.4 My hope is that this monograph will convince mathemati-
cians that randomness and unpredictability not only occur in nonlin-
ear dynamics and quantum mechanics, but even in rather elementary
branches of number theory.

In summary, the aim of this book is to construct a single equa-
tion involving only addition, multiplication, and exponentiation of non-
negative integer constants and variables with the following remarkable
property. One of the variables is considered to be a parameter. Take
the parameter to be 0,1,2,. . . obtaining an infinite series of equations
from the original one. Consider the question of whether each of the
derived equations has finitely or infinitely many non-negative integer
solutions. The original equation is constructed in such a manner that
the answers to these questions about the derived equations mimic coin
tosses and are an infinite series of independent mathematical facts, i.e.,
irreducible mathematical information that cannot be compressed into

3See Cowlishaw (1985) and O’Hara and Gomberg (1985).
4The full equation is available from the author: “The Complete Arithmetization

of EVAL,” November 19th, 1987, 294 pp.

18 CHAPTER 1. INTRODUCTION

any finite set of axioms. In other words, it is essentially the case that
the only way to prove such assertions is by assuming them as axioms.

To produce this equation, we start with a universal Turing machine
in the form of the LISP universal function EVAL written as a register
machine program about 300 lines long. Then we “compile” this register
machine program into a universal exponential diophantine equation.
The resulting equation is about 900,000 characters long and has about
17,000 variables. Finally, we substitute for the program variable in
the universal diophantine equation the binary representation of a LISP
program for Ω, the halting probability of a universal Turing machine if
n-bit programs have measure 2−n.

Part I

Formalisms for Computation:
Register Machines,

Exponential Diophantine
Equations, & Pure LISP

19

21

In Part I of this monograph, we do the bulk of the preparatory
work that enables us in Part II to exhibit an exponential diophantine
equation that encodes the successive bits of the halting probability Ω.

In Chapter 2 we present a method for compiling register machine
programs into exponential diophantine equations. In Chapter 3 we
present a stripped-down version of pure LISP. And in Chapter 4 we
present a register machine interpreter for this LISP, and then compile
it into a diophantine equation. The resulting equation, which unfortu-
nately is too large to exhibit here in its entirety, has a solution, and
only one, if the binary representation of a LISP expression that halts,
i.e., that has a value, is substituted for a distinguished variable in it. It
has no solution if the number substituted is the binary representation
of a LISP expression without a value.

Having dealt with programming issues, we can then proceed in Part
II to theoretical matters.

22

Chapter 2

The Arithmetization of
Register Machines

2.1 Introduction

In this chapter we present the beautiful work of Jones and Matija-

sevič (1984), which is the culmination of a half century of development
starting with Gödel (1931), and in which the paper of Davis, Put-

nam, and Robinson (1961) on Hilbert’s tenth problem was such a
notable milestone. The aim of this work is to encode computations
arithmetically. As Gödel showed with his technique of Gödel num-
bering and primitive recursive functions, the metamathematical asser-
tion that a particular proposition follows by certain rules of inference
from a particular set of axioms, can be encoded as an arithmetical or
number theoretic proposition. This shows that number theory well de-
serves its reputation as one of the hardest branches of mathematics, for
any formalized mathematical assertion can be encoded as a statement
about positive integers. And the work of Davis, Putnam, Robinson,
and Matijasevič has shown that any computation can be encoded as
a polynomial. The proof of this assertion, which shows that Hilbert’s
tenth problem is unsolvable, has been simplified over the years, but it
is still fairly intricate and involves a certain amount of number theory;
for a review see Davis, Matijasevič, and Robinson (1976).

23

24 CHAPTER 2. REGISTER MACHINES

Formulas for primes: An illustration of the power and importance
of these ideas is the fact that a trivial corollary of this work has been
the construction of polynomials which generate or represent the set of
primes; Jones et al. (1976) have performed the extra work to actu-
ally exhibit manageable polynomials having this property. This result,
which would surely have amazed Fermat, Euler, and Gauss, actually
has nothing to do with the primes, as it applies to any set of positive
integers that can be generated by a computer program, that is, to any
recursively enumerable set.

The recent proof of Jones and Matijasevič that any computation can
be encoded in an exponential diophantine equation is quite remarkable.
Their result is weaker in some ways, and stronger in others: the theorem
deals with exponential diophantine equations rather than polynomial
diophantine equations, but on the other hand diophantine equations
are constructed which have unique solutions. But the most remarkable
aspect of their proof is its directness and straightforwardness, and the
fact that it involves almost no number theory! Indeed their proof is
based on a curious property of the evenness or oddness of binomial
coefficients, which follows immediately by considering Pascal’s famous
triangle of these coefficients.

In summary, I believe that the work on Hilbert’s tenth problem
stemming from Gödel is among the most important mathematics of
this century, for it shows that all of mathematics, once formalized, is
mirrored in properties of the whole numbers. And the proof of this
fact, thanks to Jones and Matijasevič, is now within the reach of any-
one. Their 1984 paper is only a few pages long; here we shall devote
the better part of a hundred pages to a different proof, and one that is
completely self-contained. While the basic mathematical ideas are the
same, the programming is completely different, and we give many ex-
amples and actually exhibit the enormous diophantine equations that
arise. Jones and Matijasevič make no use of LISP, which plays a central
role here.

Let us now give a precise statement of the result which we shall
prove. A predicate P (a1, . . . , an) is said to be recursively enumerable
(r.e.) if there is an algorithm which given the non-negative integers
a1, . . . , an will eventually discover that these numbers have the prop-
erty P , if that is the case. This is weaker than the assertion that

2.1. INTRODUCTION 25

P is recursive, which means that there is an algorithm which will
eventually discover that P is true or that it is false; P is recursive
if and only if P and not P are both r.e. predicates. Consider func-
tions L(a1, . . . , an, x1, . . . , xm) and R(a1, . . . , an, x1, . . . , xm) built up
from the non-negative integer variables a1, . . . , an, x1, . . . , xm and from
non-negative integer constants by using only the operations of addition
A + B, multiplication A × B, and exponentiation AB. The predicate
P (a1, . . . , an) is said to be exponential diophantine if P (a1, . . . , an) holds
if and only if there exist non-negative integers x1, . . . , xm such that

L(a1, . . . , an, x1, . . . , xm) = R(a1, . . . , an, x1, . . . , xm).

Moreover, the exponential diophantine representation L = R of P is
said to be singlefold if P (a1, . . . , an) implies that there is a unique m-
tuple of non-negative integers x1, . . . , xm such that

L(a1, . . . , an, x1, . . . , xm) = R(a1, . . . , an, x1, . . . , xm)

Here the variables a1, . . . , an are referred to as parameters, and the
variables x1, . . . , xm are referred to as unknowns.

The most familiar example of an exponential diophantine equation
is Fermat’s so-called “last theorem.” This is the famous conjecture that
the equation

(x+ 1)n+3 + (y + 1)n+3 = (z + 1)n+3

has no solution in non-negative integers x, y, z and n. The reason that
exponential diophantine equations as we define them have both a left-
hand side and a right-hand side, is that we permit neither negative
numbers nor subtraction. Thus it is not possible to collect all terms on
one side of the equation.

The theorem of Jones and Matijasevič (1984) states that a pred-
icate is exponential diophantine if and only if it is r.e., and moreover, if
a predicate is exponential diophantine, then it admits a singlefold ex-
ponential diophantine representation. That a predicate is exponential
diophantine if and only if it is r.e. was first shown by Davis, Putnam,

and Robinson (1961), but their proof is much more complicated and
does not yield singlefold representations. It is known that the use of

26 CHAPTER 2. REGISTER MACHINES

0: 1

1: 1 1

2: 1 2 1

3: 1 3 3 1

4: 1 4 6 4 1

5: 1 5 10 10 5 1

6: 1 6 15 20 15 6 1

7: 1 7 21 35 35 21 7 1

8: 1 8 28 56 70 56 28 8 1

9: 1 9 36 84 126 126 84 36 9 1

10: 1 10 45 120 210 252 210 120 45 10 1

11: 1 11 55 165 330 462 462 330 165 55 11 1

12: 1 12 66 220 495 792 924 792 495 220 66 12 1

13: 1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1

14: 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1

15: 1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

16: 1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1

Figure 2.1: Pascal’s Triangle.

the exponential function AB can be omitted, i.e., a predicate is in fact
polynomial diophantine if and only if it is r.e., but it is not known
whether singlefold representations are always possible without using
exponentiation. Since singlefoldness is important in our applications of
these results, and since the proof is so simple, it is most natural for us
to use here the work on exponential diophantine representations rather
than that on polynomial diophantine representations.

2.2 Pascal’s Triangle Mod 2

Figure 2.1 shows Pascal’s triangle up to

(x+ y)16 =
16
∑

k=0

(

16

k

)

xky16−k.

This table was calculated by using the formula
(

n+ 1

k + 1

)

=

(

n

k + 1

)

+

(

n

k

)

.

That is to say, each entry is the sum of two entries in the row above it:
the entry in the same column, and the one in the column just to left.

2.2. PASCAL’S TRIANGLE MOD 2 27

(This rule assumes that entries which are not explicitly shown in this
table are all zero.)

Now let’s replace each entry by a 0 if it is even, and let’s replace
it by a 1 if it is odd. That is to say, we retain only the rightmost bit
in the base-two representation of each entry in the table in Figure 2.1.
This gives us the table in Figure 2.2.

Figure 2.2 shows Pascal’s triangle mod 2 up to (x+y)64. This table
was calculated by using the formula

(

n+ 1

k + 1

)

≡
(

n

k + 1

)

+

(

n

k

)

(mod 2).

That is to say, each entry is the base-two sum without carry (the “EX-
CLUSIVE OR”) of two entries in the row above it: the entry in the
same column, and the one in the column just to left.

Erasing 0’s makes it easier for one to appreciate the remarkable
pattern in Figure 2.2. This gives us the table in Figure 2.3.

Note that moving one row down the table in Figure 2.3 corresponds
to taking the EXCLUSIVE OR of the original row with a copy of it
that has been shifted right one place. More generally, moving down
the table 2n rows corresponds to taking the EXCLUSIVE OR of the
original row with a copy of it that has been shifted right 2n places. This
is easily proved by induction on n.

Consider the coefficients of xk in the expansion of (1 + x)42. Some
are even and some are odd. There are eight odd coefficients: since 42 =
32 + 8 + 2, the coefficients are odd for k = (0 or 32) + (0 or 8) + (0 or
2). (See the rows marked with an ∗ in Figure 2.3.) Thus the coefficient
of xk in (1 + x)42 is odd if and only if each bit in the base-two numeral
for k “implies” (i.e., is less than or equal to) the corresponding bit in
the base-two numeral for 42. More generally, the coefficient of xk in
(1 + x)n is odd if and only if each bit in the base-two numeral for k
implies the corresponding bit in the base-two numeral for n.

Let us write r ⇒ s if each bit in the base-two numeral for the non-
negative integer r implies the corresponding bit in the base-two numeral
for the non-negative integer s. We have seen that r ⇒ s if and only if
the binomial coefficient

(

s
r

)

of xr in (1 + x)s is odd. Let us express this
as an exponential diophantine predicate.

28 CHAPTER 2. REGISTER MACHINES

0: 1

1: 11

2: 101

3: 1111

4: 10001

5: 110011

6: 1010101

7: 11111111

8: 100000001

9: 1100000011

10: 10100000101

11: 111100001111

12: 1000100010001

13: 11001100110011

14: 101010101010101

15: 1111111111111111

16: 10000000000000001

17: 110000000000000011

18: 1010000000000000101

19: 11110000000000001111

20: 100010000000000010001

21: 1100110000000000110011

22: 10101010000000001010101

23: 111111110000000011111111

24: 1000000010000000100000001

25: 11000000110000001100000011

26: 101000001010000010100000101

27: 1111000011110000111100001111

28: 10001000100010001000100010001

29: 110011001100110011001100110011

30: 1010101010101010101010101010101

31: 11111111111111111111111111111111

32: 100000000000000000000000000000001

33: 1100000000000000000000000000000011

34: 10100000000000000000000000000000101

35: 111100000000000000000000000000001111

36: 1000100000000000000000000000000010001

37: 11001100000000000000000000000000110011

38: 101010100000000000000000000000001010101

39: 1111111100000000000000000000000011111111

40: 10000000100000000000000000000000100000001

41: 110000001100000000000000000000001100000011

42: 1010000010100000000000000000000010100000101

43: 11110000111100000000000000000000111100001111

44: 100010001000100000000000000000001000100010001

45: 1100110011001100000000000000000011001100110011

46: 10101010101010100000000000000000101010101010101

47: 111111111111111100000000000000001111111111111111

48: 1000000000000000100000000000000010000000000000001

49: 11000000000000001100000000000000110000000000000011

50: 101000000000000010100000000000001010000000000000101

51: 1111000000000000111100000000000011110000000000001111

52: 10001000000000001000100000000000100010000000000010001

53: 110011000000000011001100000000001100110000000000110011

54: 1010101000000000101010100000000010101010000000001010101

55: 11111111000000001111111100000000111111110000000011111111

56: 100000001000000010000000100000001000000010000000100000001

57: 1100000011000000110000001100000011000000110000001100000011

58: 10100000101000001010000010100000101000001010000010100000101

59: 111100001111000011110000111100001111000011110000111100001111

60: 1000100010001000100010001000100010001000100010001000100010001

61: 11001100110011001100110011001100110011001100110011001100110011

62: 101

63: 11

64: 10001

Figure 2.2: Pascal’s Triangle Mod 2.

2.2. PASCAL’S TRIANGLE MOD 2 29

0: 1

1: 11

2: 1 1

3: 1111

4: 1 1

5: 11 11

6: 1 1 1 1

7: 11111111

8: 1 1

9: 11 11

10: 1 1 1 1

11: 1111 1111

12: 1 1 1 1

13: 11 11 11 11

14: 1 1 1 1 1 1 1 1

15: 1111111111111111

16: 1 1

17: 11 11

18: 1 1 1 1

19: 1111 1111

20: 1 1 1 1

21: 11 11 11 11

22: 1 1 1 1 1 1 1 1

23: 11111111 11111111

24: 1 1 1 1

25: 11 11 11 11

26: 1 1 1 1 1 1 1 1

27: 1111 1111 1111 1111

28: 1 1 1 1 1 1 1 1

29: 11 11 11 11 11 11 11 11

30: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31: 11111111111111111111111111111111

*32: 1 1

33: 11 11

34: 1 1 1 1

35: 1111 1111

36: 1 1 1 1

37: 11 11 11 11

38: 1 1 1 1 1 1 1 1

39: 11111111 11111111

*40: 1 1 1 1

41: 11 11 11 11

*42: 1 1 1 1 1 1 1 1

43: 1111 1111 1111 1111

44: 1 1 1 1 1 1 1 1

45: 11 11 11 11 11 11 11 11

46: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

47: 1111111111111111 1111111111111111

48: 1 1 1 1

49: 11 11 11 11

50: 1 1 1 1 1 1 1 1

51: 1111 1111 1111 1111

52: 1 1 1 1 1 1 1 1

53: 11 11 11 11 11 11 11 11

54: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

55: 11111111 11111111 11111111 11111111

56: 1 1 1 1 1 1 1 1

57: 11 11 11 11 11 11 11 11

58: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

59: 1111 1111 1111 1111 1111 1111 1111 1111

60: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

61: 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

62: 1

63: 11

64: 1 1

Figure 2.3: Pascal’s Triangle Mod 2 with 0’s Replaced by
Blanks. Note the fractal pattern with many parts similar to the whole.
In fact, from a great distance this resembles the Sierpinski gasket de-
scribed in Mandelbrot (1982), pp. 131, 142, 329.

30 CHAPTER 2. REGISTER MACHINES

We use the fact that the binomial coefficients are the digits of the
number (1 + t)s written in base-t notation, if t is sufficiently large. For
example, in base-ten we have

110 = 1
111 = 11
112 = 121
113 = 1331
114 = 14641

but for 115 a carry occurs when adding 6 and 4 and things break down.
In fact, since the binomial coefficients of order s add up to 2s, it is
sufficient to take t = 2s. Hence

r ⇒ s iff u =

(

s

r

)

is odd iff

t = 2s

(1 + t)s = vtr+1 + utr + w
w < tr

u < t
u is odd.

Thus r ⇒ s if and only if there exist unique non-negative integers t, u,
v, w, x, y, z such that

t = 2s

(1 + t)s = vtr+1 + utr + w
w + x+ 1 = tr

u+ y + 1 = t
u = 2z + 1.

2.3 LISP Register Machines

Now let’s look at register machines! These are machines which have a
finite number of registers, each of which contains an arbitrarily large
non-negative integer, and which have programs consisting of a finite
list of labeled instructions. (Real computing machines of course have
a large number of registers with finite capacity, rather than a small
number of registers with infinite capacity.) Each of the registers is
simultaneously considered to contain a LISP S-expression in the form

2.3. LISP REGISTER MACHINES 31

of a finite string of characters. Each 8 bits of the base-two numeral for
the contents of a register represent a particular character in the LISP
alphabet, and the character string is in the register in reverse order.
We reserve the 8-bit byte consisting entirely of 0’s to mark the end of
a character string.1 Thus the rightmost 8 bits of a register are the first
character in the S-expression, and replacing the contents of a register
X by the integer part of the result of dividing it by 256 corresponds to
removing the first character of the string. Similarly, if Y is between 1
and 255, replacing X by 256X+Y corresponds to adding the character
Y at the beginning of the string X.

Figure 2.4 is a table giving all the register machine instructions.
These are the fifteen different kinds of instructions permitted in register
machine language. Note that there are only eleven different opcodes.
All instructions must be labeled.

LABEL: HALT
Halt execution.

LABEL: GOTO LABEL2
This is an unconditional branch to LABEL2. (Normally, execu-
tion flows from each instruction to the next in sequential order.)

LABEL: JUMP REGISTER LABEL2
Set REGISTER to “(NEXT_LABEL)” and go to LABEL2. Here
“(NEXT_LABEL)” denotes the LISP S-expression consisting of the
list of characters in the label of the next instruction in sequential
order. This instruction is used to jump to a subroutine and si-
multaneously save the return address (i.e., where execution will
resume after executing the subroutine) in a register.

LABEL: GOBACK REGISTER
Go to “(LABEL)” which is in REGISTER. This instruction is
used in conjunction with the JUMP instruction to return from a
subroutine. It is illegal if REGISTER does not contain the label

1It is not really necessary to have a reserved end-of-string character, but this
convention significantly simplifies the LISP interpreter that we present in Chapter
4.

32 CHAPTER 2. REGISTER MACHINES

L: HALT Halt.

L: GOTO L2 Unconditional branch to L2.

L: JUMP R L2 (label) of next instruction into R &

goto L2.

L: GOBACK R Goto (label) which is in R.

L: EQ R 0/255 L2 Compare the rightmost 8 bits of R

L: NEQ R R2 L2 with an 8-bit constant

or with the rightmost 8 bits of R2

& branch to L2 for equal/not equal.

L: RIGHT R Shift R right 8 bits.

L: LEFT R 0/255 Shift R left 8 bits & insert an 8-bit

R R2 constant or insert the rightmost

8 bits of R2. In the latter case,

then shift R2 right 8 bits.

L: SET R 0/255 Set the entire contents of R to be

R R2 equal to that of R2 or to an 8-bit

constant (extended to the left with

infinitely many 0’s).

L: OUT R Write string in R.

L: DUMP Dump all registers.

Figure 2.4: Register Machine Instructions. We use non-zero 8-
bit bytes to represent a LISP character and we represent LISP S-
expressions as reversed character strings in binary. I.e., registers con-
tain LISP S-expressions with 8 bits per character and with the order
of the characters reversed. See Figure 3.1 for the bit strings for each
character. Thus the rightmost 8 bits of a register are the first character
in an S-expression. X ← 256X + Y (0 < Y < 256) corresponds to
adding the character Y to the beginning of an S-expression. X ← the
integer part of X/256 corresponds to removing the first character of an
S-expression.

2.3. LISP REGISTER MACHINES 33

of an instruction in the program between parentheses; i.e., the
program is invalid.

LABEL: EQ REGISTER1 CONSTANT LABEL2
Conditional branch: The rightmost 8 bits of REGISTER1 are
compared with an 8-bit CONSTANT. In other words, the first
character in REGISTER1, which is the remainder of REGIS-
TER1 divided by 256, is compared with a CONSTANT from
0 to 255. If they are equal, then execution continues at LABEL2.
If they are not equal, then execution continues with the next in-
struction in sequential order.

LABEL: EQ REGISTER1 REGISTER2 LABEL2
Conditional branch: The rightmost 8 bits of REGISTER1 are
compared with the rightmost 8 bits of REGISTER2. In other
words, the first character in REGISTER1, which is the remainder
of REGISTER1 divided by 256, is compared with the first char-
acter in REGISTER2, which is the remainder of REGISTER2
divided by 256. If they are equal, then execution continues at
LABEL2. If they are not equal, then execution continues with
the next instruction in sequential order.

LABEL: NEQ REGISTER1 CONSTANT LABEL2
Conditional branch: The rightmost 8 bits of REGISTER1 are
compared with an 8-bit CONSTANT. In other words, the first
character in REGISTER1, which is the remainder of REGIS-
TER1 divided by 256, is compared with a CONSTANT from
0 to 255. If they are not equal, then execution continues at LA-
BEL2. If they are equal, then execution continues with the next
instruction in sequential order.

LABEL: NEQ REGISTER1 REGISTER2 LABEL2
Conditional branch: The rightmost 8 bits of REGISTER1 are
compared with the rightmost 8 bits of REGISTER2. In other
words, the first character in REGISTER1, which is the remainder
of REGISTER1 divided by 256, is compared with the first char-
acter in REGISTER2, which is the remainder of REGISTER2
divided by 256. If they are not equal, then execution continues

34 CHAPTER 2. REGISTER MACHINES

at LABEL2. If they are equal, then execution continues with the
next instruction in sequential order.

LABEL: RIGHT REGISTER
Shift REGISTER right 8 bits. I.e., the contents of REGISTER
is replaced by the integer part of REGISTER divided by 256. In
other words, the first character in the S-expression in REGISTER
is deleted.

LABEL: LEFT REGISTER1 CONSTANT
Shift REGISTER1 left 8 bits and add to it an 8-bit CONSTANT.
I.e., the contents of REGISTER1 is multiplied by 256, and then
a CONSTANT from 0 to 255 is added to it. In other words,
the character string in REGISTER now consists of the character
CONSTANT followed by the string of characters previously in
REGISTER.

LABEL: LEFT REGISTER1 REGISTER2
Shift REGISTER1 left 8 bits, add to it the rightmost 8 bits of
REGISTER2, and then shift REGISTER2 right 8 bits. I.e., the
contents of REGISTER1 is multiplied by 256, the remainder of
REGISTER2 divided by 256 is added to REGISTER1, and then
REGISTER2 is replaced by the integer part of REGISTER2 di-
vided by 256. In other words, the first character in REGISTER2
has been removed and added at the beginning of the character
string in REGISTER1.

LABEL: SET REGISTER1 CONSTANT
Set the entire contents of REGISTER1 to an 8-bit CONSTANT.
I.e., the contents of REGISTER1 is replaced by a CONSTANT
from 0 to 255. In other words, the previous contents of REGIS-
TER1 is discarded and replaced by a character string which is
either a single character or the empty string.

LABEL: SET REGISTER1 REGISTER2
Set the entire contents of REGISTER1 to that of REGISTER2.
I.e., the contents of REGISTER1 is replaced by the contents of

2.3. LISP REGISTER MACHINES 35

L1: SET B X’00’

L2: LEFT B A

L3: NEQ A X’00’ L2

L4: HALT

Figure 2.5: A Register Machine Program to Reverse a Charac-
ter String.

REGISTER2. In other words, the character string in REGIS-
TER1 is discarded and replaced by a copy of the character string
in REGISTER2.

LABEL: OUT REGISTER
The character string in REGISTER is written out (in the correct,
not the reversed, order!). This instruction is not really necessary;
it is used for debugging.

LABEL: DUMP
Each register’s name and the character string that it contains are
written out (with the characters in the correct, not the reversed,
order!). This instruction is not really necessary; it is used for
debugging.

Here CONSTANT, which denotes an 8-bit constant, is usually writ-
ten as a single character enclosed in apostrophes preceded by a C, e.g.,
C ′A′, C ′B′, . . . The apostrophe itself must be doubled: C ′′′′ denotes
the 8-bit constant which represents a single apostrophe. And X ′00′

denotes the 8-bit constant consisting entirely of 0’s.
Figure 2.5 is an example of a register machine program. This pro-

gram reverses the character string initially in register A. The contents
of A is destroyed, the reversed string replaces the initial contents of
register B, and then the program halts. This program depends on the
fact that the byte consisting of 8 bits of 0’s denotes the end of a char-
acter string and cannot occur inside a string. If register A starts with
the string “abc”, the program will eventually stop with A empty and
with “cba” in register B.

36 CHAPTER 2. REGISTER MACHINES

From this program we shall construct an exponential diophantine
equation with four parameters input.A, input.B, output.A, output.B
that has a solution if and only if this program halts with output.B in B
if it starts with input.A in A, that is to say, if and only if output.B is the
reversal of input.A. The solution, if it exists, is a kind of chronological
record of the entire history of a successful computation, i.e., one which
reaches a HALT instruction without executing an illegal GOBACK
after starting at the first instruction. Thus the solution, if it exists,
is unique, because computers are deterministic and a computational
history is uniquely determined by its input.

Note that if A initially contains “abc”, a total of 8 instructions will
be executed: L1, L2, L3, L2, L3, L2, L3, L4.

Let’s start by giving the solution we want the equation to have, and
then we shall construct an equation that forces this solution.

input .A = “abc”

is the initial contents of register A.

time = 8

is the total number of instructions executed.

number .of .instructions = 4

is the number of lines in the program.
The variable A encodes the contents of register A as a function of

time in the form of a base-q number in which the digit corresponding
to qt is the contents of A at time t. Similarly, the variable B encodes
the contents of register B as a function of time in the form of a base-q
number in which the digit corresponding to qt is the contents of B at
time t:

A = Λ,Λ, c, c, bc, bc, abc, abcq
B = cba, cba, ba, ba, a, a,Λ, input .Bq.

Here Λ denotes the empty string. More precisely, the rightmost digit
gives the initial contents, the next digit gives the contents after the first
instruction is executed, . . . and the leftmost digit gives the contents
after the next-to-the-last instruction is executed. (The last instruction

2.3. LISP REGISTER MACHINES 37

executed must be HALT, which has no effect on the contents.) I.e., the
digit corresponding to qt (0 ≤ t < time) gives the contents of a register
just before the (t + 1)-th instruction is executed. q must be chosen
large enough for everything to fit.

The base-q numbers L1, L2, L3, L4 encode the instruction being ex-
ecuted as a function of time; the digit corresponding to qt in LABEL
is a 1 if LABEL is executed at time t, and it is a 0 if LABEL is not
executed at time t.

L1 = 00000001q
L2 = 00101010q
L3 = 01010100q
L4 = 10000000q.

i is a base-q number consisting of time 1’s:

i = 11111111q.

Now let’s construct from the program in Figure 2.5 an equation
that forces this solution. This is rather like determining the boolean
algebra for the logical design of a CPU chip. number.of.instructions is
a constant, input.A, input.B, output.A, output.B are parameters, and
time, q, i, A, B, L1, L2, L3, L4, are unknowns (nine of them).

Let’s choose a big enough base:

q = 256input .A+input .B+time+number .of .instructions .

This implies that number.of.instructions is less than q, and also that
the contents of registers A and B are both less than q throughout the
entire course of the computation. Now we can define i:

1 + (q − 1)i = qtime .

This is the condition for starting execution at line L1:

1⇒ L1.

This is the condition for ending execution at line L4 after executing
time instructions:

qtime−1 = L4.

38 CHAPTER 2. REGISTER MACHINES

If there were several HALT instructions in the program, L4 would be
replaced by the sum of the corresponding LABEL’s. The following
conditions express the fact that at any given time one and only one
instruction is being executed:

i = L1 + L2 + L3 + L4
L1⇒ i
L2⇒ i
L3⇒ i
L4⇒ i.

For these conditions to work, it is important that number.of.instructi-
ons, the number of lines in the program, be less than q, the base being
used.

Now let us turn our attention to the contents of registers A and B
as a function of time. First of all, the following conditions determine
the right 8 bits of A and 8-bit right shift of A as a function of time:

256shift .A⇒ A
256shift .A⇒ (q − 1− 255)i
A⇒ 256shift .A+ 255i
A = 256shift .A + char .A

The following conditions determine whether or not the first 8 bits of
register A are all 0’s as a function of time:

eq .A.X ′00′ ⇒ i
256eq .A.X ′00′ ⇒ 256i− char .A
256i− char .A⇒ 256eq .A.X ′00′ + 255i

The following conditions determine when registers A and B are set,
and to what values, as a function of time:

set .B.L1 = 0
set .B.L2⇒ 256B + char .A
set .B.L2⇒ (q − 1)L2
256B + char .A⇒ set .B.L2 + (q − 1)(i− L2)
set .A.L2⇒ shift .A
set .A.L2⇒ (q − 1)L2
shift .A⇒ set .A.L2 + (q − 1)(i− L2)

2.3. LISP REGISTER MACHINES 39

The following conditions determine the contents of registers A and B
when they are not set:

dont .set .A⇒ A
dont .set .A⇒ (q − 1)(i− L2)
A⇒ dont .set .A+ (q − 1)L2
dont .set .B ⇒ B
dont .set .B ⇒ (q − 1)(i− L1− L2)
B ⇒ dont .set .B + (q − 1)(L1 + L2)

Finally, the following conditions determine the contents of registers A
and B as a function of time:

A⇒ (q − 1)i
B ⇒ (q − 1)i
A+ output .Aqtime = input .A+ q(set .A.L2 + dont .set .A)
B + output .Bqtime = input .B + q(set .B.L1 + set .B.L2 + dont .set .B)

We also need conditions to express the manner in which control
flows through the program, i.e., the sequence of execution of steps of
the program. This is done as follows. L1 always goes to L2:

qL1⇒ L2

L2 always goes to L3:
qL2⇒ L3

L3 either goes to L4 or to L2:

qL3⇒ L4 + L2

If the right 8 bits of A are 0’s then L3 does not go to L2:

qL3⇒ L2 + q eq .A.X ′00′

There is no condition for L4 because it doesn’t go anywhere.
Above there are 8 equations and 29 ⇒’s, in 4 parameters (input.A,

input.B, output.A, output.B) and 17 unknowns. Each condition L⇒ R

40 CHAPTER 2. REGISTER MACHINES

above is expanded into the following 7 equations in 9 variables:

r = L
s = R
t = 2s

(1 + t)s = vtr+1 + utr + w
w + x+ 1 = tr

u+ y + 1 = t
u = 2z + 1.

Each time this is done, the 9 variables r, s, t, u, v, w, x, y, z must be
renamed to unique variables in order to avoid a name clash. The result
is 8 + 7 × 29 = 211 equations in 4 parameters and 17 + 9× 29 = 278
unknowns. Minus signs are eliminated by transposing terms to the
other side of the relevant equations r = L or s = R. Then all the
equations are combined into a single one by using the fact that

∑

(Ai −Bi)
2 = 0 iff Ai = Bi.

Here again, negative terms must be transposed to the other side of the
composite equation. E.g., five equations can be combined into a single
equation by using the fact that if a, b, c, d, e, f, g, h, i, j are non-negative
integers, then

a = b, c = d, e = f, g = h, i = j

if and only if

(a− b)2 + (c− d)2 + (e− f)2 + (g − h)2 + (i− j)2 = 0,

that is, if and only if

a2 + b2 + c2 + d2 + e2 + f 2 + g2 + h2 + i2 + j2

= 2ab+ 2cd+ 2ef + 2gh+ 2ij.

The result is a single (enormous!) exponential diophantine equation
which has one solution for each successful computational history, i.e.,
for each one that finally halts. Thus we have obtained a singlefold
diophantine representation of the r.e. predicate “output.B is the char-
acter string reversal of input.A”. The method that we have presented

2.3. LISP REGISTER MACHINES 41

by working through this example is perfectly general: it applies to any
predicate for which one can write a register machine computer program.
In Chapter 4 we show that this is any r.e. predicate, by showing how
powerful register machines are.

The names of auxiliary variables that we introduce are in lower-
case with dots used for hyphenation, in order to avoid confusion with
the names of labels and registers, which by convention are always in
upper-case and use underscores for hyphenation.

Above, we encountered eq .A.X ′00′. This is a somewhat special case;
the general case of comparison for equality is a little bit harder. These
are the conditions for eq .A.B, ge.A.B, and ge.B.A, which indicate
whether the rightmost 8 bits of registers A and B are equal, greater
than or equal, or less than or equal, respectively, as a function of time:

ge.A.B ⇒ i
256ge.A.B ⇒ 256i+ (char .A− char .B)
256i+ (char .A− char .B)⇒ 256ge.A.B + 255i
ge.B.A⇒ i
256ge.B.A⇒ 256i− (char .A− char .B)
256i− (char .A− char .B)⇒ 256ge.B.A + 255i
eq .A.B ⇒ i
2eq .A.B ⇒ ge.A.B + ge.B.A
ge.A.B + ge.B.A⇒ 2eq .A.B + i

Here we use the fact that the absolute value of the difference between
two characters cannot exceed 255.

As for JUMP’s and GOBACK’s, the corresponding conditions are
easily constructed using the above ideas, after introducing a variable ic
to represent the instruction counter. Our program for character string
reversal does not use JUMP or GOBACK, but if it did, the equation
defining the instruction counter vector would be:

ic = C ′(L1)′L1 + C ′(L2)′L2 + C ′(L3)′L3 + C ′(L4)′L4

Here C ′(L1)′ denotes the non-negative integer that represents the LISP
S-expression (L1), etc. Thus for the execution of this program that we
considered above,

ic = (L4), (L3), (L2), (L3), (L2), (L3), (L2), (L1)q

42 CHAPTER 2. REGISTER MACHINES

I.e., the digit corresponding to qt in ic is a LISP S-expression for the
list of the characters in the label of the instruction that is executed at
time t. Note that if labels are very long, this may require the base q to
be chosen a little larger, to ensure that the list of characters in a label
always fits into a single base-q digit.

It is amusing to look at the size of the variables in a solution of
these exponential diophantine equations. Rough estimates of the size
of solutions simultaneously serve to fix in the mind how the equations
work, and also to show just how very impractical they are. Here goes a
very rough estimate. The dominant term determining the base q that
is used is

q ≈ 28time

where time is the total number of instructions executed during the
computation, i.e., the amount of time it takes for the register machine
to halt. This is because the LEFT instruction can increase the size
of a character string in a register by one 8-bit character per “machine
cycle”, and q must be chosen so that the largest quantity that is ever
in a register during the computation can fit into a single base-q digit.
That’s how big q is. How about the register variables? Well, they are
vectors giving a chronological history of the contents of a register (in
reverse order). I.e., each register variable is a vector of time elements,
each of which is (8time)-bits long, for a total of 8time2 bits altogether.
Thus

register variable ≈ 28time2

.

And how about the variables that arise when ⇒’s are expanded into
equations? Well, very roughly speaking, they can be of the order of 2
raised to a power which is itself a register variable! Thus

expansion variable ≈ 228time
2

!!

Considering how little a LISP register machine accomplishes in one
step, non-trivial examples of computations will require on the order of
tens or hundreds of thousands of steps, i.e.,

time ≈ 100,000.

For example, in Chapter 4 we shall consider a LISP interpreter and
its implementation via a 308-instruction register machine program. To

2.3. LISP REGISTER MACHINES 43

APPEND two lists consisting of two atoms each, takes the LISP inter-
preter 238890 machine cycles, and to APPEND two lists consisting of
six atoms each, takes 1518834 machine cycles! This shows very clearly
that these equations are only of theoretical interest, and certainly not
a practical way of actually doing computations.

The register machine simulator that counted the number of ma-
chine cycles is written in 370 machine language. On the large 370
mainframe that I use, the elapsed time per million simulated register
machine cycles is usually from 1 to 5 seconds, depending on the load
on the machine. Fortunately, this same LISP can be directly imple-
mented in 370 machine language using standard LISP implementation
techniques. Then it runs extremely fast, typically one, two, or three
orders of magnitude faster than on the register machine simulator. How
much faster depends on the size of the character strings that the regis-
ter machine LISP interpreter is constantly sweeping through counting
parentheses in order to break lists into their component elements. Real
LISP implementations avoid this by representing LISP S-expressions
as binary trees of pointers instead of character strings, so that the de-
composition of a list into its parts is immediate. They also replace the
time-consuming search of the association list for variable bindings, by a
direct table look-up. And they keep the interpreter stack in contiguous
storage rather then representing it as a LISP S-expression.

We have written in REXX a “compiler” that automatically converts
register machine programs into exponential diophantine equations in
the manner described above. Solutions of the equation produced by this
REXX compiler correspond to successful computational histories, and
there are variables in the equation for the initial and final contents of
each machine register. The equation compiled from a register machine
program has no solution if the program never halts on given input, and
it has exactly one solution if the program halts for that input.

Let’s look at two simple examples to get a more concrete feeling for
how the compiler works. But first we give in Section 2.4 a complete cast
of characters, a dictionary of the different kinds of variables that appear
in the compiled equations. Next we give the compiler a 16-instruction
register machine program with every possible register machine instruc-
tion; this exercises all the capabilities of the compiler. Section 2.5 is the
compiler’s log explaining how it transformed the 16 register machine

44 CHAPTER 2. REGISTER MACHINES

instructions into 17 equations and 111 ⇒’s. Note that the compiler
uses a FORTRAN-like notation for equations in which multiplication
is ∗ and exponentiation is ∗∗.

We don’t show the rest, but this is what the compiler does. First it
expands the ⇒’s and obtains a total of 17 + 7× 111 = 794 equations,
and then it folds them together into a single equation. This equation is
unfortunately too big to include here; as the summary information at
the end of the compiler’s log indicates, the left-hand side and right-hand
side are each more than 20,000 characters long.

Next we take an even smaller register machine program, and this
time we run it through the compiler and show all the steps up to the
final equation. This example really works; it is the 4-instruction pro-
gram for reversing a character string that we discussed above (Figure
2.5). Section 2.6 is the compiler’s log explaining how it expands the
4-instruction program into 13 equations and 38 ⇒’s. This is slightly
larger than the number of equations and⇒’s that we obtained when we
worked through this example by hand; the reason is that the compiler
uses a more systematic approach.

In Section 2.7 the compiler shows how it eliminates all ⇒’s by ex-
panding them into equations, seven for each ⇒. The original 13 equa-
tions and 38⇒’s produced from the program are flush at the left mar-
gin. The 13 + 7 × 38 = 279 equations that are generated from them
are indented 6 spaces. When the compiler directly produces an equa-
tion, it appears twice, once flush left and then immediately afterwards
indented 6 spaces. When the compiler produces a ⇒, it appears flush
left, followed immediately by the seven equations that are generated
from it, each indented six spaces. Note that the auxiliary variables
generated to expand the nth⇒ all end with the number n. By looking
at the names of these variables one can determine the⇒ in Section 2.6
that they came from, which will be numbered (imp.n), and see why the
compiler generated them.

The last thing that the compiler does is to take each of the 279
equations that appear indented in Section 2.7 and fold it into the left-
hand side and right-hand side of the final equation. This is done using
the “sum of squares” technique: x = y adds x2 + y2 to the left-hand
side and 2xy to the right-hand side. Section 2.8 is the resulting left-
hand side, and Section 2.9 is the right-hand side; the final equation is

2.4. VARIABLES USED IN ARITHMETIZATION 45

five pages long. More precisely, a 4-instruction register machine pro-
gram has become an 8534 + 3 + 7418 = 15955 character exponential
diophantine equation. The “+ 3” is for the missing central equal sign
surrounded by two blanks.

The equation in Sections 2.8 and 2.9 has exactly one solution in non-
negative integers if output.B is the character-string reversal of input.A.
It has no solution if output.B is not the reversal of input.A. One can
jump into this equation, look at the names of the variables, and then
with the help of Section 2.6 determine the corresponding part of the
register machine program.

That concludes Chapter 2. In Chapter 3 we present a version of
pure LISP. In Chapter 4 we program a register machine to interpret this
LISP, and then compile the interpreter into a universal exponential dio-
phantine equation, which will conclude our preparatory programming
work and bring us to the theoretical half of this book.

2.4 Dictionary of Auxiliary Variables U-

sed in Arithmetization — Dramatis

Personae

i (vector)
This is a base-q number with time digits all of which are 1’s.

time (scalar)
This is the time it takes the register machine to halt, and it is also
the number of components in vectors, i.e., the number of base-q
digits in variables which represent computational histories.

total.input (scalar)
This is the sum of the initial contents of all machine registers.

q (scalar)
This power of two is the base used in vectors which represent
computational histories.

q.minus.1 (scalar)
This is q − 1.

46 CHAPTER 2. REGISTER MACHINES

ic (vector)
This is a vector giving the label of the instruction being executed
at any given time. I.e., if at time t the instruction LABEL is
executed, then the base-q digit of ic corresponding to qt is the
binary representation of the S-expression (LABEL).

next.ic (vector)
This is a vector giving the label of the next instruction to be ex-
ecuted. I.e., if at time t+ 1 the instruction LABEL is executed,
then the base-q digit of ic corresponding to qt is the binary rep-
resentation of the S-expression (LABEL).

longest.label (scalar)
This is the number of characters in the longest label of any in-
struction in the program.

number.of.instructions (scalar)
This is the total number of instructions in the program.

REGISTER (vector)
This is a vector giving the contents of REGISTER as a function
of time. I.e., the base-q digit corresponding to qt is the contents
of REGISTER at time t.

LABEL (logical vector)
This is a vector giving the truth of the assertion that LABEL is
the current instruction being executed as a function of time. I.e.,
the base-q digit corresponding to qt is 1 if LABEL is executed at
time t, and it is 0 if LABEL is not executed at time t.

char.REGISTER (vector)
This is a vector giving the first character (i.e., the rightmost 8
bits) in each register as a function of time. I.e., the base-q digit
corresponding to qt is the number between 0 and 255 that repre-
sents the first character in REGISTER at time t.

shift.REGISTER (vector)
This is a vector giving the 8-bit right shift of each register as a
function of time. I.e., the base-q digit corresponding to qt is the

2.4. VARIABLES USED IN ARITHMETIZATION 47

integer part of the result of dividing the contents of REGISTER
at time t by 256.

input.REGISTER (scalar)
This is the initial contents of REGISTER.

output.REGISTER (scalar)
This is the final contents of REGISTER.

eq.REGISTER1.REGISTER2 (logical vector)
This is a vector giving the truth of the assertion that the rightmost
8 bits of REGISTER1 and REGISTER2 are equal as a function
of time. I.e., the base-q digit corresponding to qt is 1 if the first
characters in REGISTER1 and REGISTER2 are equal at time t,
and it is 0 if the first characters in REGISTER1 and REGISTER2
are unequal at time t.

eq.REGISTER.CONSTANT (logical vector)
This is a vector giving the truth of the assertion that the right-
most 8 bits of REGISTER are equal to a CONSTANT as a func-
tion of time. I.e., the base-q digit corresponding to qt is 1 if the
first character in REGISTER and the CONSTANT are equal at
time t, and it is 0 if the first character in REGISTER and the
CONSTANT are unequal at time t.

ge.REGISTER1.REGISTER2 (logical vector)
This is a vector giving the truth of the assertion that the rightmost
8 bits of REGISTER1 are greater than or equal to the rightmost
8 bits of REGISTER2 as a function of time. I.e., the base-q digit
corresponding to qt is 1 if the first character in REGISTER1 is
greater than or equal to the first character in REGISTER2 at
time t, and it is 0 if the first character in REGISTER1 is less
than the first character in REGISTER2 at time t.

ge.REGISTER.CONSTANT (logical vector)
This is a vector giving the truth of the assertion that the rightmost
8 bits of REGISTER are greater than or equal to a CONSTANT
as a function of time. I.e., the base-q digit corresponding to qt

is 1 if the first character in REGISTER is greater than or equal

48 CHAPTER 2. REGISTER MACHINES

to the CONSTANT at time t, and it is 0 if the first character in
REGISTER is less than the CONSTANT at time t.

ge.CONSTANT.REGISTER (logical vector)
This is a vector giving the truth of the assertion that a CON-
STANT is greater than or equal to the rightmost 8 bits of REG-
ISTER as a function of time. I.e., the base-q digit corresponding
to qt is 1 if the CONSTANT is greater than or equal to the first
character in REGISTER at time t, and it is 0 if the CONSTANT
is less than the contents of REGISTER at time t.

goback.LABEL (vector)
This vector’s t-th component (i.e., the base-q digit corresponding
to qt) is the same as the corresponding component of next.ic if
the GOBACK instruction LABEL is executed at time t, and it is
0 otherwise.

set.REGISTER (logical vector)
This vector’s t-th component (i.e., the base-q digit corresponding
to qt) is 1 if REGISTER is set at time t, and it is 0 otherwise.

set.REGISTER.LABEL (vector)
This vector’s t-th component (i.e., the base-q digit corresponding
to qt) is the new contents of REGISTER resulting from executing
LABEL if LABEL sets REGISTER and is executed at time t, and
it is 0 otherwise.

dont.set.REGISTER (vector)
This vector’s t-th component (i.e., the base-q digit corresponding
to qt) gives the previous contents of REGISTER if the instruction
executed at time t does not set REGISTER, and it is 0 otherwise.

rNUMBER
The left-hand side of the NUMBERth implication.

sNUMBER
The right-hand side of the NUMBERth implication.

tNUMBER
The base used in expanding the NUMBERth implication.

2.5. AN EXAMPLE OF ARITHMETIZATION 49

uNUMBER
The binomial coefficient used in expanding the NUMBERth im-
plication.

vNUMBER
A junk variable used in expanding the NUMBERth implication.

wNUMBER
A junk variable used in expanding the NUMBERth implication.

xNUMBER
A junk variable used in expanding the NUMBERth implication.

yNUMBER
A junk variable used in expanding the NUMBERth implication.

zNUMBER
A junk variable used in expanding the NUMBERth implication.

2.5 An Example of Arithmetization

Program:

L1: GOTO L1

L2: JUMP C L1

L3: GOBACK C

L4: NEQ A C’a’ L1

L5: NEQ A B L1

L6: EQ A C’b’ L1

L7: EQ A B L1

L8: OUT C

L9: DUMP

L10: HALT

L11: SET A C’a’

L12: SET A B

L13: RIGHT C

L14: LEFT A C’b’

L15: LEFT A B

L16: HALT

50 CHAPTER 2. REGISTER MACHINES

Equations defining base q

(eq.1) total.input = input.A + input.B + input.C

(eq.2) number.of.instructions = 16

(eq.3) longest.label = 3

(eq.4) q = 256 ** (total.input + time +

number.of.instructions + longest.label + 3)

(eq.5) q.minus.1 + 1 = q

Equation defining i, all of whose base q digits are 1’s:

(eq.6) 1 + q * i = i + q ** time

Basic Label Variable Equations *******************************

(imp.1) L1 => i

(imp.2) L2 => i

(imp.3) L3 => i

(imp.4) L4 => i

(imp.5) L5 => i

(imp.6) L6 => i

(imp.7) L7 => i

(imp.8) L8 => i

(imp.9) L9 => i

(imp.10) L10 => i

(imp.11) L11 => i

(imp.12) L12 => i

(imp.13) L13 => i

(imp.14) L14 => i

(imp.15) L15 => i

(imp.16) L16 => i

(eq.7) i = L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8 + L9 +

L10 + L11 + L12 + L13 + L14 + L15 + L16

Equations for starting & halting:

(imp.17) 1 => L1

(eq.8) q ** time = q * L10 + q * L16

Equations for Flow of Control ********************************

2.5. AN EXAMPLE OF ARITHMETIZATION 51

L1: GOTO L1

(imp.18) q * L1 => L1

L2: JUMP C L1

(imp.19) q * L2 => L1

L3: GOBACK C

(imp.20) goback.L3 => C

(imp.21) goback.L3 => q.minus.1 * L3

(imp.22) C => goback.L3 + q.minus.1 * i - q.minus.1 * L3

(imp.23) goback.L3 => next.ic

(imp.24) goback.L3 => q.minus.1 * L3

(imp.25) next.ic => goback.L3 + q.minus.1 * i - q.minus.1 *

L3

L4: NEQ A C’a’ L1

(imp.26) q * L4 => L5 + L1

(imp.27) q * L4 => L1 + q * eq.A.C’a’

L5: NEQ A B L1

(imp.28) q * L5 => L6 + L1

(imp.29) q * L5 => L1 + q * eq.A.B

L6: EQ A C’b’ L1

(imp.30) q * L6 => L7 + L1

(imp.31) q * L6 => L7 + q * eq.A.C’b’

L7: EQ A B L1

(imp.32) q * L7 => L8 + L1

(imp.33) q * L7 => L8 + q * eq.A.B

52 CHAPTER 2. REGISTER MACHINES

L8: OUT C

(imp.34) q * L8 => L9

L9: DUMP

(imp.35) q * L9 => L10

L10: HALT

L11: SET A C’a’

(imp.36) q * L11 => L12

L12: SET A B

(imp.37) q * L12 => L13

L13: RIGHT C

(imp.38) q * L13 => L14

L14: LEFT A C’b’

(imp.39) q * L14 => L15

L15: LEFT A B

(imp.40) q * L15 => L16

L16: HALT

Instruction Counter equations (needed for GOBACK’s)

The ic vector is defined as follows:

C’(L1)’ * L1 + C’(L2)’ * L2 + C’(L3)’ * L3 +

C’(L4)’ * L4 + C’(L5)’ * L5 + C’(L6)’ * L6 +

C’(L7)’ * L7 + C’(L8)’ * L8 + C’(L9)’ * L9 +

2.5. AN EXAMPLE OF ARITHMETIZATION 53

C’(L10)’ * L10 + C’(L11)’ * L11 + C’(L12)’ * L12 +

C’(L13)’ * L13 + C’(L14)’ * L14 + C’(L15)’ * L15 +

C’(L16)’ * L16

In other words,

(eq.9) ic = 1075605632 * L1 + 1083994240 * L2 +

1079799936 * L3 + 1088188544 * L4 + 1077702784 *

L5 + 1086091392 * L6 + 1081897088 * L7 +

1090285696 * L8 + 1073901696 * L9 + 278839193728 *

L10 + 275349532800 * L11 + 277497016448 * L12 +

276423274624 * L13 + 278570758272 * L14 +

275886403712 * L15 + 278033887360 * L16

(imp.41) q * next.ic => ic

(imp.42) ic => q * next.ic + q - 1

Auxiliary Register Equations *********************************

(3 =>’s are produced whenever a register’s value is set)

(6 =>’s for a LEFT that sets 2 registers)

L1: GOTO L1

L2: JUMP C L1

Note: C’(L3)’ is 1079799936

(imp.43) set.C.L2 => 1079799936 * i

(imp.44) set.C.L2 => q.minus.1 * L2

(imp.45) 1079799936 * i => set.C.L2 + q.minus.1 * i -

q.minus.1 * L2

L3: GOBACK C

L4: NEQ A C’a’ L1

L5: NEQ A B L1

L6: EQ A C’b’ L1

54 CHAPTER 2. REGISTER MACHINES

L7: EQ A B L1

L8: OUT C

L9: DUMP

L10: HALT

L11: SET A C’a’

(imp.46) set.A.L11 => 184 * i

(imp.47) set.A.L11 => q.minus.1 * L11

(imp.48) 184 * i => set.A.L11 + q.minus.1 * i - q.minus.1 *

L11

L12: SET A B

(imp.49) set.A.L12 => B

(imp.50) set.A.L12 => q.minus.1 * L12

(imp.51) B => set.A.L12 + q.minus.1 * i - q.minus.1 * L12

L13: RIGHT C

(imp.52) set.C.L13 => shift.C

(imp.53) set.C.L13 => q.minus.1 * L13

(imp.54) shift.C => set.C.L13 + q.minus.1 * i - q.minus.1 *

L13

L14: LEFT A C’b’

(imp.55) set.A.L14 => 256 * A + 120 * i

(imp.56) set.A.L14 => q.minus.1 * L14

(imp.57) 256 * A + 120 * i => set.A.L14 + q.minus.1 * i -

q.minus.1 * L14

L15: LEFT A B

(imp.58) set.A.L15 => 256 * A + char.B

2.5. AN EXAMPLE OF ARITHMETIZATION 55

(imp.59) set.A.L15 => q.minus.1 * L15

(imp.60) 256 * A + char.B => set.A.L15 + q.minus.1 * i -

q.minus.1 * L15

(imp.61) set.B.L15 => shift.B

(imp.62) set.B.L15 => q.minus.1 * L15

(imp.63) shift.B => set.B.L15 + q.minus.1 * i - q.minus.1 *

L15

L16: HALT

Main Register Equations **************************************

Register A ...

(imp.64) A => q.minus.1 * i

(eq.10) A + output.A * q ** time = input.A + q * set.A.L11

+ q * set.A.L12 + q * set.A.L14 + q * set.A.L15 +

q * dont.set.A

(eq.11) set.A = L11 + L12 + L14 + L15

(imp.65) dont.set.A => A

(imp.66) dont.set.A => q.minus.1 * i - q.minus.1 * set.A

(imp.67) A => dont.set.A + q.minus.1 * set.A

(imp.68) 256 * shift.A => A

(imp.69) 256 * shift.A => q.minus.1 * i - 255 * i

(imp.70) A => 256 * shift.A + 255 * i

(eq.12) A = 256 * shift.A + char.A

Register B ...

(imp.71) B => q.minus.1 * i

(eq.13) B + output.B * q ** time = input.B + q * set.B.L15

+ q * dont.set.B

(eq.14) set.B = L15

(imp.72) dont.set.B => B

(imp.73) dont.set.B => q.minus.1 * i - q.minus.1 * set.B

56 CHAPTER 2. REGISTER MACHINES

(imp.74) B => dont.set.B + q.minus.1 * set.B

(imp.75) 256 * shift.B => B

(imp.76) 256 * shift.B => q.minus.1 * i - 255 * i

(imp.77) B => 256 * shift.B + 255 * i

(eq.15) B = 256 * shift.B + char.B

Register C ...

(imp.78) C => q.minus.1 * i

(eq.16) C + output.C * q ** time = input.C + q * set.C.L2

+ q * set.C.L13 + q * dont.set.C

(eq.17) set.C = L2 + L13

(imp.79) dont.set.C => C

(imp.80) dont.set.C => q.minus.1 * i - q.minus.1 * set.C

(imp.81) C => dont.set.C + q.minus.1 * set.C

(imp.82) 256 * shift.C => C

(imp.83) 256 * shift.C => q.minus.1 * i - 255 * i

(imp.84) C => 256 * shift.C + 255 * i

Equations for Compares ***************************************

Compare A C’a’ ...

Note: C’a’ is 184

(imp.85) ge.A.C’a’ => i

(imp.86) 256 * ge.A.C’a’ => 256 * i + char.A - 184 * i

(imp.87) 256 * i + char.A - 184 * i => 256 * ge.A.C’a’ +

255 * i

(imp.88) ge.C’a’.A => i

(imp.89) 256 * ge.C’a’.A => 256 * i + 184 * i - char.A

(imp.90) 256 * i + 184 * i - char.A => 256 * ge.C’a’.A +

255 * i

(imp.91) eq.A.C’a’ => i

2.5. AN EXAMPLE OF ARITHMETIZATION 57

(imp.92) 2 * eq.A.C’a’ => ge.A.C’a’ + ge.C’a’.A

(imp.93) ge.A.C’a’ + ge.C’a’.A => 2 * eq.A.C’a’ + i

Compare A B ..

(imp.94) ge.A.B => i

(imp.95) 256 * ge.A.B => 256 * i + char.A - char.B

(imp.96) 256 * i + char.A - char.B => 256 * ge.A.B + 255 *

i

(imp.97) ge.B.A => i

(imp.98) 256 * ge.B.A => 256 * i + char.B - char.A

(imp.99) 256 * i + char.B - char.A => 256 * ge.B.A + 255 *

i

(imp.100) eq.A.B => i

(imp.101) 2 * eq.A.B => ge.A.B + ge.B.A

(imp.102) ge.A.B + ge.B.A => 2 * eq.A.B + i

Compare A C’b’ ...

Note: C’b’ is 120

(imp.103) ge.A.C’b’ => i

(imp.104) 256 * ge.A.C’b’ => 256 * i + char.A - 120 * i

(imp.105) 256 * i + char.A - 120 * i => 256 * ge.A.C’b’ +

255 * i

(imp.106) ge.C’b’.A => i

(imp.107) 256 * ge.C’b’.A => 256 * i + 120 * i - char.A

(imp.108) 256 * i + 120 * i - char.A => 256 * ge.C’b’.A +

255 * i

(imp.109) eq.A.C’b’ => i

(imp.110) 2 * eq.A.C’b’ => ge.A.C’b’ + ge.C’b’.A

(imp.111) ge.A.C’b’ + ge.C’b’.A => 2 * eq.A.C’b’ + i

Summary Information **

58 CHAPTER 2. REGISTER MACHINES

Number of labels in program..... 16

Number of registers in program.. 3

Number of equations generated... 17

Number of =>’s generated........ 111

Number of auxiliary variables... 43

Equations added to expand =>’s.. 777 (7 per =>)

Variables added to expand =>’s.. 999 (9 per =>)

Characters in left-hand side.... 24968

Characters in right-hand side... 21792

Register variables:

A B C

Label variables:

L1 L10 L11 L12 L13 L14 L15 L16 L2 L3 L4 L5 L6 L7

L8 L9

Auxiliary variables:

char.A char.B dont.set.A dont.set.B dont.set.C

eq.A.B eq.A.C’a’ eq.A.C’b’ ge.A.B ge.A.C’a’

ge.A.C’b’ ge.B.A ge.C’a’.A ge.C’b’.A goback.L3 i

ic input.A input.B input.C longest.label next.ic

number.of.instructions output.A output.B output.C

q q.minus.1 set.A set.A.L11 set.A.L12 set.A.L14

set.A.L15 set.B set.B.L15 set.C set.C.L13 set.C.L2

shift.A shift.B shift.C time total.input

Variables added to expand =>’s:

r1 s1 t1 u1 v1 w1 x1 y1 z1 ... z111

Elapsed time is 22.732864 seconds.

2.6. A COMPLETE EXAMPLE OF ARITHMETIZATION 59

2.6 A Complete Example of Arithmetiza-

tion

Program:

L1: SET B X’00’

L2: LEFT B A

L3: NEQ A X’00’ L2

L4: HALT

Equations defining base q

(eq.1) total.input = input.A + input.B

(eq.2) number.of.instructions = 4

(eq.3) longest.label = 2

(eq.4) q = 256 ** (total.input + time +

number.of.instructions + longest.label + 3)

(eq.5) q.minus.1 + 1 = q

Equation defining i, all of whose base q digits are 1’s:

(eq.6) 1 + q * i = i + q ** time

Basic Label Variable Equations *******************************

(imp.1) L1 => i

(imp.2) L2 => i

(imp.3) L3 => i

(imp.4) L4 => i

(eq.7) i = L1 + L2 + L3 + L4

Equations for starting & halting:

(imp.5) 1 => L1

(eq.8) q ** time = q * L4

Equations for Flow of Control ********************************

L1: SET B X’00’

60 CHAPTER 2. REGISTER MACHINES

(imp.6) q * L1 => L2

L2: LEFT B A

(imp.7) q * L2 => L3

L3: NEQ A X’00’ L2

(imp.8) q * L3 => L4 + L2

(imp.9) q * L3 => L2 + q * eq.A.X’00’

L4: HALT

Auxiliary Register Equations *********************************

(3 =>’s are produced whenever a register’s value is set)

(6 =>’s for a LEFT that sets 2 registers)

L1: SET B X’00’

(imp.10) set.B.L1 => 0 * i

(imp.11) set.B.L1 => q.minus.1 * L1

(imp.12) 0 * i => set.B.L1 + q.minus.1 * i - q.minus.1 * L1

L2: LEFT B A

(imp.13) set.B.L2 => 256 * B + char.A

(imp.14) set.B.L2 => q.minus.1 * L2

(imp.15) 256 * B + char.A => set.B.L2 + q.minus.1 * i -

q.minus.1 * L2

(imp.16) set.A.L2 => shift.A

(imp.17) set.A.L2 => q.minus.1 * L2

(imp.18) shift.A => set.A.L2 + q.minus.1 * i - q.minus.1 *

L2

L3: NEQ A X’00’ L2

L4: HALT

2.6. A COMPLETE EXAMPLE OF ARITHMETIZATION 61

Main Register Equations **************************************

Register A ...

(imp.19) A => q.minus.1 * i

(eq.9) A + output.A * q ** time = input.A + q * set.A.L2

+ q * dont.set.A

(eq.10) set.A = L2

(imp.20) dont.set.A => A

(imp.21) dont.set.A => q.minus.1 * i - q.minus.1 * set.A

(imp.22) A => dont.set.A + q.minus.1 * set.A

(imp.23) 256 * shift.A => A

(imp.24) 256 * shift.A => q.minus.1 * i - 255 * i

(imp.25) A => 256 * shift.A + 255 * i

(eq.11) A = 256 * shift.A + char.A

Register B ...

(imp.26) B => q.minus.1 * i

(eq.12) B + output.B * q ** time = input.B + q * set.B.L1

+ q * set.B.L2 + q * dont.set.B

(eq.13) set.B = L1 + L2

(imp.27) dont.set.B => B

(imp.28) dont.set.B => q.minus.1 * i - q.minus.1 * set.B

(imp.29) B => dont.set.B + q.minus.1 * set.B

Equations for Compares ***************************************

Compare A X’00’ ..

Note: X’00’ is 0

(imp.30) ge.A.X’00’ => i

(imp.31) 256 * ge.A.X’00’ => 256 * i + char.A - 0 * i

(imp.32) 256 * i + char.A - 0 * i => 256 * ge.A.X’00’ + 255

62 CHAPTER 2. REGISTER MACHINES

* i

(imp.33) ge.X’00’.A => i

(imp.34) 256 * ge.X’00’.A => 256 * i + 0 * i - char.A

(imp.35) 256 * i + 0 * i - char.A => 256 * ge.X’00’.A + 255

* i

(imp.36) eq.A.X’00’ => i

(imp.37) 2 * eq.A.X’00’ => ge.A.X’00’ + ge.X’00’.A

(imp.38) ge.A.X’00’ + ge.X’00’.A => 2 * eq.A.X’00’ + i

Summary Information **

Number of labels in program..... 4

Number of registers in program.. 2

Number of equations generated... 13

Number of =>’s generated........ 38

Number of auxiliary variables... 23

Equations added to expand =>’s.. 266 (7 per =>)

Variables added to expand =>’s.. 342 (9 per =>)

Characters in left-hand side.... 8534

Characters in right-hand side... 7418

Register variables:

A B

Label variables:

L1 L2 L3 L4

Auxiliary variables:

char.A dont.set.A dont.set.B eq.A.X’00’ ge.A.X’00’

ge.X’00’.A i input.A input.B longest.label

number.of.instructions output.A output.B q

q.minus.1 set.A set.A.L2 set.B set.B.L1 set.B.L2

shift.A time total.input

2.7. EXPANSION OF ⇒’S 63

Variables added to expand =>’s:

r1 s1 t1 u1 v1 w1 x1 y1 z1 ... z38

Elapsed time is 9.485622 seconds.

2.7 A Complete Example of Arithmetiza-

tion: Expansion of ⇒’s

total.input = input.A + input.B

total.input = input.A+input.B

number.of.instructions = 4

number.of.instructions = 4

longest.label = 2

longest.label = 2

q = 256 ** (total.input + time + number.of.instructions + lon

gest.label + 3)

q = 256**(total.input+time+number.of.instructions+longe

st.label+3)

q.minus.1 + 1 = q

q.minus.1+1 = q

1 + q * i = i + q ** time

1+q*i = i+q**time

L1 => i

r1 = L1

s1 = i

t1 = 2**s1

(1+t1)**s1 = v1*t1**(r1+1) + u1*t1**r1 + w1

w1+x1+1 = t1**r1

u1+y1+1 = t1

u1 = 2*z1+ 1

L2 => i

r2 = L2

s2 = i

t2 = 2**s2

(1+t2)**s2 = v2*t2**(r2+1) + u2*t2**r2 + w2

w2+x2+1 = t2**r2

u2+y2+1 = t2

u2 = 2*z2+ 1

64 CHAPTER 2. REGISTER MACHINES

L3 => i

r3 = L3

s3 = i

t3 = 2**s3

(1+t3)**s3 = v3*t3**(r3+1) + u3*t3**r3 + w3

w3+x3+1 = t3**r3

u3+y3+1 = t3

u3 = 2*z3+ 1

L4 => i

r4 = L4

s4 = i

t4 = 2**s4

(1+t4)**s4 = v4*t4**(r4+1) + u4*t4**r4 + w4

w4+x4+1 = t4**r4

u4+y4+1 = t4

u4 = 2*z4+ 1

i = L1 + L2 + L3 + L4

i = L1+L2+L3+L4

1 => L1

r5 = 1

s5 = L1

t5 = 2**s5

(1+t5)**s5 = v5*t5**(r5+1) + u5*t5**r5 + w5

w5+x5+1 = t5**r5

u5+y5+1 = t5

u5 = 2*z5+ 1

q ** time = q * L4

q**time = q*L4

q * L1 => L2

r6 = q*L1

s6 = L2

t6 = 2**s6

(1+t6)**s6 = v6*t6**(r6+1) + u6*t6**r6 + w6

w6+x6+1 = t6**r6

u6+y6+1 = t6

u6 = 2*z6+ 1

q * L2 => L3

r7 = q*L2

s7 = L3

2.7. EXPANSION OF ⇒’S 65

t7 = 2**s7

(1+t7)**s7 = v7*t7**(r7+1) + u7*t7**r7 + w7

w7+x7+1 = t7**r7

u7+y7+1 = t7

u7 = 2*z7+ 1

q * L3 => L4 + L2

r8 = q*L3

s8 = L4+L2

t8 = 2**s8

(1+t8)**s8 = v8*t8**(r8+1) + u8*t8**r8 + w8

w8+x8+1 = t8**r8

u8+y8+1 = t8

u8 = 2*z8+ 1

q * L3 => L2 + q * eq.A.X’00’

r9 = q*L3

s9 = L2+q*eq.A.X’00’

t9 = 2**s9

(1+t9)**s9 = v9*t9**(r9+1) + u9*t9**r9 + w9

w9+x9+1 = t9**r9

u9+y9+1 = t9

u9 = 2*z9+ 1

set.B.L1 => 0 * i

r10 = set.B.L1

s10 = 0*i

t10 = 2**s10

(1+t10)**s10 = v10*t10**(r10+1) + u10*t10**r10 + w10

w10+x10+1 = t10**r10

u10+y10+1 = t10

u10 = 2*z10+ 1

set.B.L1 => q.minus.1 * L1

r11 = set.B.L1

s11 = q.minus.1*L1

t11 = 2**s11

(1+t11)**s11 = v11*t11**(r11+1) + u11*t11**r11 + w11

w11+x11+1 = t11**r11

u11+y11+1 = t11

u11 = 2*z11+ 1

0 * i => set.B.L1 + q.minus.1 * i - q.minus.1 * L1

r12 = 0*i

66 CHAPTER 2. REGISTER MACHINES

s12+q.minus.1*L1 = set.B.L1+q.minus.1*i

t12 = 2**s12

(1+t12)**s12 = v12*t12**(r12+1) + u12*t12**r12 + w12

w12+x12+1 = t12**r12

u12+y12+1 = t12

u12 = 2*z12+ 1

set.B.L2 => 256 * B + char.A

r13 = set.B.L2

s13 = 256*B+char.A

t13 = 2**s13

(1+t13)**s13 = v13*t13**(r13+1) + u13*t13**r13 + w13

w13+x13+1 = t13**r13

u13+y13+1 = t13

u13 = 2*z13+ 1

set.B.L2 => q.minus.1 * L2

r14 = set.B.L2

s14 = q.minus.1*L2

t14 = 2**s14

(1+t14)**s14 = v14*t14**(r14+1) + u14*t14**r14 + w14

w14+x14+1 = t14**r14

u14+y14+1 = t14

u14 = 2*z14+ 1

256 * B + char.A => set.B.L2 + q.minus.1 * i - q.minus.1 * L2

r15 = 256*B+char.A

s15+q.minus.1*L2 = set.B.L2+q.minus.1*i

t15 = 2**s15

(1+t15)**s15 = v15*t15**(r15+1) + u15*t15**r15 + w15

w15+x15+1 = t15**r15

u15+y15+1 = t15

u15 = 2*z15+ 1

set.A.L2 => shift.A

r16 = set.A.L2

s16 = shift.A

t16 = 2**s16

(1+t16)**s16 = v16*t16**(r16+1) + u16*t16**r16 + w16

w16+x16+1 = t16**r16

u16+y16+1 = t16

u16 = 2*z16+ 1

set.A.L2 => q.minus.1 * L2

2.7. EXPANSION OF ⇒’S 67

r17 = set.A.L2

s17 = q.minus.1*L2

t17 = 2**s17

(1+t17)**s17 = v17*t17**(r17+1) + u17*t17**r17 + w17

w17+x17+1 = t17**r17

u17+y17+1 = t17

u17 = 2*z17+ 1

shift.A => set.A.L2 + q.minus.1 * i - q.minus.1 * L2

r18 = shift.A

s18+q.minus.1*L2 = set.A.L2+q.minus.1*i

t18 = 2**s18

(1+t18)**s18 = v18*t18**(r18+1) + u18*t18**r18 + w18

w18+x18+1 = t18**r18

u18+y18+1 = t18

u18 = 2*z18+ 1

A => q.minus.1 * i

r19 = A

s19 = q.minus.1*i

t19 = 2**s19

(1+t19)**s19 = v19*t19**(r19+1) + u19*t19**r19 + w19

w19+x19+1 = t19**r19

u19+y19+1 = t19

u19 = 2*z19+ 1

A + output.A * q ** time = input.A + q * set.A.L2 + q * dont.s

et.A

A+output.A*q**time = input.A+q*set.A.L2+q*dont.set.A

set.A = L2

set.A = L2

dont.set.A => A

r20 = dont.set.A

s20 = A

t20 = 2**s20

(1+t20)**s20 = v20*t20**(r20+1) + u20*t20**r20 + w20

w20+x20+1 = t20**r20

u20+y20+1 = t20

u20 = 2*z20+ 1

dont.set.A => q.minus.1 * i - q.minus.1 * set.A

r21 = dont.set.A

s21+q.minus.1*set.A = q.minus.1*i

68 CHAPTER 2. REGISTER MACHINES

t21 = 2**s21

(1+t21)**s21 = v21*t21**(r21+1) + u21*t21**r21 + w21

w21+x21+1 = t21**r21

u21+y21+1 = t21

u21 = 2*z21+ 1

A => dont.set.A + q.minus.1 * set.A

r22 = A

s22 = dont.set.A+q.minus.1*set.A

t22 = 2**s22

(1+t22)**s22 = v22*t22**(r22+1) + u22*t22**r22 + w22

w22+x22+1 = t22**r22

u22+y22+1 = t22

u22 = 2*z22+ 1

256 * shift.A => A

r23 = 256*shift.A

s23 = A

t23 = 2**s23

(1+t23)**s23 = v23*t23**(r23+1) + u23*t23**r23 + w23

w23+x23+1 = t23**r23

u23+y23+1 = t23

u23 = 2*z23+ 1

256 * shift.A => q.minus.1 * i - 255 * i

r24 = 256*shift.A

s24+255*i = q.minus.1*i

t24 = 2**s24

(1+t24)**s24 = v24*t24**(r24+1) + u24*t24**r24 + w24

w24+x24+1 = t24**r24

u24+y24+1 = t24

u24 = 2*z24+ 1

A => 256 * shift.A + 255 * i

r25 = A

s25 = 256*shift.A+255*i

t25 = 2**s25

(1+t25)**s25 = v25*t25**(r25+1) + u25*t25**r25 + w25

w25+x25+1 = t25**r25

u25+y25+1 = t25

u25 = 2*z25+ 1

A = 256 * shift.A + char.A

A = 256*shift.A+char.A

2.7. EXPANSION OF ⇒’S 69

B => q.minus.1 * i

r26 = B

s26 = q.minus.1*i

t26 = 2**s26

(1+t26)**s26 = v26*t26**(r26+1) + u26*t26**r26 + w26

w26+x26+1 = t26**r26

u26+y26+1 = t26

u26 = 2*z26+ 1

B + output.B * q ** time = input.B + q * set.B.L1 + q * set.B.

L2 + q * dont.set.B

B+output.B*q**time = input.B+q*set.B.L1+q*set.B.L2+q*do

nt.set.B

set.B = L1 + L2

set.B = L1+L2

dont.set.B => B

r27 = dont.set.B

s27 = B

t27 = 2**s27

(1+t27)**s27 = v27*t27**(r27+1) + u27*t27**r27 + w27

w27+x27+1 = t27**r27

u27+y27+1 = t27

u27 = 2*z27+ 1

dont.set.B => q.minus.1 * i - q.minus.1 * set.B

r28 = dont.set.B

s28+q.minus.1*set.B = q.minus.1*i

t28 = 2**s28

(1+t28)**s28 = v28*t28**(r28+1) + u28*t28**r28 + w28

w28+x28+1 = t28**r28

u28+y28+1 = t28

u28 = 2*z28+ 1

B => dont.set.B + q.minus.1 * set.B

r29 = B

s29 = dont.set.B+q.minus.1*set.B

t29 = 2**s29

(1+t29)**s29 = v29*t29**(r29+1) + u29*t29**r29 + w29

w29+x29+1 = t29**r29

u29+y29+1 = t29

u29 = 2*z29+ 1

ge.A.X’00’ => i

70 CHAPTER 2. REGISTER MACHINES

r30 = ge.A.X’00’

s30 = i

t30 = 2**s30

(1+t30)**s30 = v30*t30**(r30+1) + u30*t30**r30 + w30

w30+x30+1 = t30**r30

u30+y30+1 = t30

u30 = 2*z30+ 1

256 * ge.A.X’00’ => 256 * i + char.A - 0 * i

r31 = 256*ge.A.X’00’

s31+0*i = 256*i+char.A

t31 = 2**s31

(1+t31)**s31 = v31*t31**(r31+1) + u31*t31**r31 + w31

w31+x31+1 = t31**r31

u31+y31+1 = t31

u31 = 2*z31+ 1

256 * i + char.A - 0 * i => 256 * ge.A.X’00’ + 255 * i

r32+0*i = 256*i+char.A

s32 = 256*ge.A.X’00’+255*i

t32 = 2**s32

(1+t32)**s32 = v32*t32**(r32+1) + u32*t32**r32 + w32

w32+x32+1 = t32**r32

u32+y32+1 = t32

u32 = 2*z32+ 1

ge.X’00’.A => i

r33 = ge.X’00’.A

s33 = i

t33 = 2**s33

(1+t33)**s33 = v33*t33**(r33+1) + u33*t33**r33 + w33

w33+x33+1 = t33**r33

u33+y33+1 = t33

u33 = 2*z33+ 1

256 * ge.X’00’.A => 256 * i + 0 * i - char.A

r34 = 256*ge.X’00’.A

s34+char.A = 256*i+0*i

t34 = 2**s34

(1+t34)**s34 = v34*t34**(r34+1) + u34*t34**r34 + w34

w34+x34+1 = t34**r34

u34+y34+1 = t34

u34 = 2*z34+ 1

2.8. LEFT-HAND SIDE 71

256 * i + 0 * i - char.A => 256 * ge.X’00’.A + 255 * i

r35+char.A = 256*i+0*i

s35 = 256*ge.X’00’.A+255*i

t35 = 2**s35

(1+t35)**s35 = v35*t35**(r35+1) + u35*t35**r35 + w35

w35+x35+1 = t35**r35

u35+y35+1 = t35

u35 = 2*z35+ 1

eq.A.X’00’ => i

r36 = eq.A.X’00’

s36 = i

t36 = 2**s36

(1+t36)**s36 = v36*t36**(r36+1) + u36*t36**r36 + w36

w36+x36+1 = t36**r36

u36+y36+1 = t36

u36 = 2*z36+ 1

2 * eq.A.X’00’ => ge.A.X’00’ + ge.X’00’.A

r37 = 2*eq.A.X’00’

s37 = ge.A.X’00’+ge.X’00’.A

t37 = 2**s37

(1+t37)**s37 = v37*t37**(r37+1) + u37*t37**r37 + w37

w37+x37+1 = t37**r37

u37+y37+1 = t37

u37 = 2*z37+ 1

ge.A.X’00’ + ge.X’00’.A => 2 * eq.A.X’00’ + i

r38 = ge.A.X’00’+ge.X’00’.A

s38 = 2*eq.A.X’00’+i

t38 = 2**s38

(1+t38)**s38 = v38*t38**(r38+1) + u38*t38**r38 + w38

w38+x38+1 = t38**r38

u38+y38+1 = t38

u38 = 2*z38+ 1

2.8 A Complete Example of Arithmetiza-

tion: Left-Hand Side

(total.input)**2+(input.A+input.B)**2 + (number.of.instruction

s)**2+(4)**2 + (longest.label)**2+(2)**2 + (q)**2+(256**(total

72 CHAPTER 2. REGISTER MACHINES

.input+time+number.of.instructions+longest.label+3))**2 + (q.m

inus.1+1)**2+(q)**2 + (1+q*i)**2+(i+q**time)**2 + (r1)**2+(L1)

2 + (s1)2+(i)**2 + (t1)**2+(2**s1)**2 + ((1+t1)**s1)**2+(v

1*t1**(r1+1)+u1*t1**r1+w1)**2 + (w1+x1+1)**2+(t1**r1)**2 + (u1

+y1+1)**2+(t1)**2 + (u1)**2+(2*z1+1)**2 + (r2)**2+(L2)**2 + (s

2)**2+(i)**2 + (t2)**2+(2**s2)**2 + ((1+t2)**s2)**2+(v2*t2**(r

2+1)+u2*t2**r2+w2)**2 + (w2+x2+1)**2+(t2**r2)**2 + (u2+y2+1)**

2+(t2)**2 + (u2)**2+(2*z2+1)**2 + (r3)**2+(L3)**2 + (s3)**2+(i

)**2 + (t3)**2+(2**s3)**2 + ((1+t3)**s3)**2+(v3*t3**(r3+1)+u3*

t3**r3+w3)**2 + (w3+x3+1)**2+(t3**r3)**2 + (u3+y3+1)**2+(t3)**

2 + (u3)**2+(2*z3+1)**2 + (r4)**2+(L4)**2 + (s4)**2+(i)**2 + (

t4)**2+(2**s4)**2 + ((1+t4)**s4)**2+(v4*t4**(r4+1)+u4*t4**r4+w

4)**2 + (w4+x4+1)**2+(t4**r4)**2 + (u4+y4+1)**2+(t4)**2 + (u4)

2+(2*z4+1)2 + (i)**2+(L1+L2+L3+L4)**2 + (r5)**2+(1)**2 + (

s5)**2+(L1)**2 + (t5)**2+(2**s5)**2 + ((1+t5)**s5)**2+(v5*t5**

(r5+1)+u5*t5**r5+w5)**2 + (w5+x5+1)**2+(t5**r5)**2 + (u5+y5+1)

2+(t5)2 + (u5)**2+(2*z5+1)**2 + (q**time)**2+(q*L4)**2 + (

r6)**2+(q*L1)**2 + (s6)**2+(L2)**2 + (t6)**2+(2**s6)**2 + ((1+

t6)**s6)**2+(v6*t6**(r6+1)+u6*t6**r6+w6)**2 + (w6+x6+1)**2+(t6

r6)2 + (u6+y6+1)**2+(t6)**2 + (u6)**2+(2*z6+1)**2 + (r7)**

2+(q*L2)**2 + (s7)**2+(L3)**2 + (t7)**2+(2**s7)**2 + ((1+t7)**

s7)**2+(v7*t7**(r7+1)+u7*t7**r7+w7)**2 + (w7+x7+1)**2+(t7**r7)

2 + (u7+y7+1)2+(t7)**2 + (u7)**2+(2*z7+1)**2 + (r8)**2+(q*

L3)**2 + (s8)**2+(L4+L2)**2 + (t8)**2+(2**s8)**2 + ((1+t8)**s8

)**2+(v8*t8**(r8+1)+u8*t8**r8+w8)**2 + (w8+x8+1)**2+(t8**r8)**

2 + (u8+y8+1)**2+(t8)**2 + (u8)**2+(2*z8+1)**2 + (r9)**2+(q*L3

)**2 + (s9)**2+(L2+q*eq.A.X’00’)**2 + (t9)**2+(2**s9)**2 + ((1

+t9)**s9)**2+(v9*t9**(r9+1)+u9*t9**r9+w9)**2 + (w9+x9+1)**2+(t

9**r9)**2 + (u9+y9+1)**2+(t9)**2 + (u9)**2+(2*z9+1)**2 + (r10)

2+(set.B.L1)2 + (s10)**2+(0*i)**2 + (t10)**2+(2**s10)**2 +

((1+t10)**s10)**2+(v10*t10**(r10+1)+u10*t10**r10+w10)**2 + (w

10+x10+1)**2+(t10**r10)**2 + (u10+y10+1)**2+(t10)**2 + (u10)**

2+(2*z10+1)**2 + (r11)**2+(set.B.L1)**2 + (s11)**2+(q.minus.1*

L1)**2 + (t11)**2+(2**s11)**2 + ((1+t11)**s11)**2+(v11*t11**(r

11+1)+u11*t11**r11+w11)**2 + (w11+x11+1)**2+(t11**r11)**2 + (u

11+y11+1)**2+(t11)**2 + (u11)**2+(2*z11+1)**2 + (r12)**2+(0*i)

2 + (s12+q.minus.1*L1)2+(set.B.L1+q.minus.1*i)**2 + (t12)*

*2+(2**s12)**2 + ((1+t12)**s12)**2+(v12*t12**(r12+1)+u12*t12**

r12+w12)**2 + (w12+x12+1)**2+(t12**r12)**2 + (u12+y12+1)**2+(t

2.8. LEFT-HAND SIDE 73

12)**2 + (u12)**2+(2*z12+1)**2 + (r13)**2+(set.B.L2)**2 + (s13

)**2+(256*B+char.A)**2 + (t13)**2+(2**s13)**2 + ((1+t13)**s13)

2+(v13*t13(r13+1)+u13*t13**r13+w13)**2 + (w13+x13+1)**2+(t

13**r13)**2 + (u13+y13+1)**2+(t13)**2 + (u13)**2+(2*z13+1)**2

+ (r14)**2+(set.B.L2)**2 + (s14)**2+(q.minus.1*L2)**2 + (t14)*

*2+(2**s14)**2 + ((1+t14)**s14)**2+(v14*t14**(r14+1)+u14*t14**

r14+w14)**2 + (w14+x14+1)**2+(t14**r14)**2 + (u14+y14+1)**2+(t

14)**2 + (u14)**2+(2*z14+1)**2 + (r15)**2+(256*B+char.A)**2 +

(s15+q.minus.1*L2)**2+(set.B.L2+q.minus.1*i)**2 + (t15)**2+(2*

*s15)**2 + ((1+t15)**s15)**2+(v15*t15**(r15+1)+u15*t15**r15+w1

5)**2 + (w15+x15+1)**2+(t15**r15)**2 + (u15+y15+1)**2+(t15)**2

+ (u15)**2+(2*z15+1)**2 + (r16)**2+(set.A.L2)**2 + (s16)**2+(

shift.A)**2 + (t16)**2+(2**s16)**2 + ((1+t16)**s16)**2+(v16*t1

6**(r16+1)+u16*t16**r16+w16)**2 + (w16+x16+1)**2+(t16**r16)**2

+ (u16+y16+1)**2+(t16)**2 + (u16)**2+(2*z16+1)**2 + (r17)**2+

(set.A.L2)**2 + (s17)**2+(q.minus.1*L2)**2 + (t17)**2+(2**s17)

2 + ((1+t17)s17)**2+(v17*t17**(r17+1)+u17*t17**r17+w17)**2

+ (w17+x17+1)**2+(t17**r17)**2 + (u17+y17+1)**2+(t17)**2 + (u

17)**2+(2*z17+1)**2 + (r18)**2+(shift.A)**2 + (s18+q.minus.1*L

2)**2+(set.A.L2+q.minus.1*i)**2 + (t18)**2+(2**s18)**2 + ((1+t

18)**s18)**2+(v18*t18**(r18+1)+u18*t18**r18+w18)**2 + (w18+x18

+1)**2+(t18**r18)**2 + (u18+y18+1)**2+(t18)**2 + (u18)**2+(2*z

18+1)**2 + (r19)**2+(A)**2 + (s19)**2+(q.minus.1*i)**2 + (t19)

2+(2s19)**2 + ((1+t19)**s19)**2+(v19*t19**(r19+1)+u19*t19*

*r19+w19)**2 + (w19+x19+1)**2+(t19**r19)**2 + (u19+y19+1)**2+(

t19)**2 + (u19)**2+(2*z19+1)**2 + (A+output.A*q**time)**2+(inp

ut.A+q*set.A.L2+q*dont.set.A)**2 + (set.A)**2+(L2)**2 + (r20)*

*2+(dont.set.A)**2 + (s20)**2+(A)**2 + (t20)**2+(2**s20)**2 +

((1+t20)**s20)**2+(v20*t20**(r20+1)+u20*t20**r20+w20)**2 + (w2

0+x20+1)**2+(t20**r20)**2 + (u20+y20+1)**2+(t20)**2 + (u20)**2

+(2*z20+1)**2 + (r21)**2+(dont.set.A)**2 + (s21+q.minus.1*set.

A)**2+(q.minus.1*i)**2 + (t21)**2+(2**s21)**2 + ((1+t21)**s21)

2+(v21*t21(r21+1)+u21*t21**r21+w21)**2 + (w21+x21+1)**2+(t

21**r21)**2 + (u21+y21+1)**2+(t21)**2 + (u21)**2+(2*z21+1)**2

+ (r22)**2+(A)**2 + (s22)**2+(dont.set.A+q.minus.1*set.A)**2 +

(t22)**2+(2**s22)**2 + ((1+t22)**s22)**2+(v22*t22**(r22+1)+u2

2*t22**r22+w22)**2 + (w22+x22+1)**2+(t22**r22)**2 + (u22+y22+1

)**2+(t22)**2 + (u22)**2+(2*z22+1)**2 + (r23)**2+(256*shift.A)

2 + (s23)2+(A)**2 + (t23)**2+(2**s23)**2 + ((1+t23)**s23)*

74 CHAPTER 2. REGISTER MACHINES

*2+(v23*t23**(r23+1)+u23*t23**r23+w23)**2 + (w23+x23+1)**2+(t2

3**r23)**2 + (u23+y23+1)**2+(t23)**2 + (u23)**2+(2*z23+1)**2 +

(r24)**2+(256*shift.A)**2 + (s24+255*i)**2+(q.minus.1*i)**2 +

(t24)**2+(2**s24)**2 + ((1+t24)**s24)**2+(v24*t24**(r24+1)+u2

4*t24**r24+w24)**2 + (w24+x24+1)**2+(t24**r24)**2 + (u24+y24+1

)**2+(t24)**2 + (u24)**2+(2*z24+1)**2 + (r25)**2+(A)**2 + (s25

)**2+(256*shift.A+255*i)**2 + (t25)**2+(2**s25)**2 + ((1+t25)*

*s25)**2+(v25*t25**(r25+1)+u25*t25**r25+w25)**2 + (w25+x25+1)*

*2+(t25**r25)**2 + (u25+y25+1)**2+(t25)**2 + (u25)**2+(2*z25+1

)**2 + (A)**2+(256*shift.A+char.A)**2 + (r26)**2+(B)**2 + (s26

)**2+(q.minus.1*i)**2 + (t26)**2+(2**s26)**2 + ((1+t26)**s26)*

*2+(v26*t26**(r26+1)+u26*t26**r26+w26)**2 + (w26+x26+1)**2+(t2

6**r26)**2 + (u26+y26+1)**2+(t26)**2 + (u26)**2+(2*z26+1)**2 +

(B+output.B*q**time)**2+(input.B+q*set.B.L1+q*set.B.L2+q*dont

.set.B)**2 + (set.B)**2+(L1+L2)**2 + (r27)**2+(dont.set.B)**2

+ (s27)**2+(B)**2 + (t27)**2+(2**s27)**2 + ((1+t27)**s27)**2+(

v27*t27**(r27+1)+u27*t27**r27+w27)**2 + (w27+x27+1)**2+(t27**r

27)**2 + (u27+y27+1)**2+(t27)**2 + (u27)**2+(2*z27+1)**2 + (r2

8)**2+(dont.set.B)**2 + (s28+q.minus.1*set.B)**2+(q.minus.1*i)

2 + (t28)2+(2**s28)**2 + ((1+t28)**s28)**2+(v28*t28**(r28+

1)+u28*t28**r28+w28)**2 + (w28+x28+1)**2+(t28**r28)**2 + (u28+

y28+1)**2+(t28)**2 + (u28)**2+(2*z28+1)**2 + (r29)**2+(B)**2 +

(s29)**2+(dont.set.B+q.minus.1*set.B)**2 + (t29)**2+(2**s29)*

*2 + ((1+t29)**s29)**2+(v29*t29**(r29+1)+u29*t29**r29+w29)**2

+ (w29+x29+1)**2+(t29**r29)**2 + (u29+y29+1)**2+(t29)**2 + (u2

9)**2+(2*z29+1)**2 + (r30)**2+(ge.A.X’00’)**2 + (s30)**2+(i)**

2 + (t30)**2+(2**s30)**2 + ((1+t30)**s30)**2+(v30*t30**(r30+1)

+u30*t30**r30+w30)**2 + (w30+x30+1)**2+(t30**r30)**2 + (u30+y3

0+1)**2+(t30)**2 + (u30)**2+(2*z30+1)**2 + (r31)**2+(256*ge.A.

X’00’)**2 + (s31+0*i)**2+(256*i+char.A)**2 + (t31)**2+(2**s31)

2 + ((1+t31)s31)**2+(v31*t31**(r31+1)+u31*t31**r31+w31)**2

+ (w31+x31+1)**2+(t31**r31)**2 + (u31+y31+1)**2+(t31)**2 + (u

31)**2+(2*z31+1)**2 + (r32+0*i)**2+(256*i+char.A)**2 + (s32)**

2+(256*ge.A.X’00’+255*i)**2 + (t32)**2+(2**s32)**2 + ((1+t32)*

*s32)**2+(v32*t32**(r32+1)+u32*t32**r32+w32)**2 + (w32+x32+1)*

*2+(t32**r32)**2 + (u32+y32+1)**2+(t32)**2 + (u32)**2+(2*z32+1

)**2 + (r33)**2+(ge.X’00’.A)**2 + (s33)**2+(i)**2 + (t33)**2+(

2**s33)**2 + ((1+t33)**s33)**2+(v33*t33**(r33+1)+u33*t33**r33+

w33)**2 + (w33+x33+1)**2+(t33**r33)**2 + (u33+y33+1)**2+(t33)*

2.9. RIGHT-HAND SIDE 75

*2 + (u33)**2+(2*z33+1)**2 + (r34)**2+(256*ge.X’00’.A)**2 + (s

34+char.A)**2+(256*i+0*i)**2 + (t34)**2+(2**s34)**2 + ((1+t34)

s34)2+(v34*t34**(r34+1)+u34*t34**r34+w34)**2 + (w34+x34+1)

2+(t34r34)**2 + (u34+y34+1)**2+(t34)**2 + (u34)**2+(2*z34+

1)**2 + (r35+char.A)**2+(256*i+0*i)**2 + (s35)**2+(256*ge.X’00

’.A+255*i)**2 + (t35)**2+(2**s35)**2 + ((1+t35)**s35)**2+(v35*

t35**(r35+1)+u35*t35**r35+w35)**2 + (w35+x35+1)**2+(t35**r35)*

*2 + (u35+y35+1)**2+(t35)**2 + (u35)**2+(2*z35+1)**2 + (r36)**

2+(eq.A.X’00’)**2 + (s36)**2+(i)**2 + (t36)**2+(2**s36)**2 + (

(1+t36)**s36)**2+(v36*t36**(r36+1)+u36*t36**r36+w36)**2 + (w36

+x36+1)**2+(t36**r36)**2 + (u36+y36+1)**2+(t36)**2 + (u36)**2+

(2*z36+1)**2 + (r37)**2+(2*eq.A.X’00’)**2 + (s37)**2+(ge.A.X’0

0’+ge.X’00’.A)**2 + (t37)**2+(2**s37)**2 + ((1+t37)**s37)**2+(

v37*t37**(r37+1)+u37*t37**r37+w37)**2 + (w37+x37+1)**2+(t37**r

37)**2 + (u37+y37+1)**2+(t37)**2 + (u37)**2+(2*z37+1)**2 + (r3

8)**2+(ge.A.X’00’+ge.X’00’.A)**2 + (s38)**2+(2*eq.A.X’00’+i)**

2 + (t38)**2+(2**s38)**2 + ((1+t38)**s38)**2+(v38*t38**(r38+1)

+u38*t38**r38+w38)**2 + (w38+x38+1)**2+(t38**r38)**2 + (u38+y3

8+1)**2+(t38)**2 + (u38)**2+(2*z38+1)**2

2.9 A Complete Example of Arithmetiza-

tion: Right-Hand Side

2*(total.input)*(input.A+input.B) + 2*(number.of.instructions)

(4) + 2(longest.label)*(2) + 2*(q)*(256**(total.input+time+n

umber.of.instructions+longest.label+3)) + 2*(q.minus.1+1)*(q)

+ 2*(1+q*i)*(i+q**time) + 2*(r1)*(L1) + 2*(s1)*(i) + 2*(t1)*(2

s1) + 2*((1+t1)s1)*(v1*t1**(r1+1)+u1*t1**r1+w1) + 2*(w1+x1

+1)*(t1**r1) + 2*(u1+y1+1)*(t1) + 2*(u1)*(2*z1+1) + 2*(r2)*(L2

) + 2*(s2)*(i) + 2*(t2)*(2**s2) + 2*((1+t2)**s2)*(v2*t2**(r2+1

)+u2*t2**r2+w2) + 2*(w2+x2+1)*(t2**r2) + 2*(u2+y2+1)*(t2) + 2*

(u2)*(2*z2+1) + 2*(r3)*(L3) + 2*(s3)*(i) + 2*(t3)*(2**s3) + 2*

((1+t3)**s3)*(v3*t3**(r3+1)+u3*t3**r3+w3) + 2*(w3+x3+1)*(t3**r

3) + 2*(u3+y3+1)*(t3) + 2*(u3)*(2*z3+1) + 2*(r4)*(L4) + 2*(s4)

(i) + 2(t4)*(2**s4) + 2*((1+t4)**s4)*(v4*t4**(r4+1)+u4*t4**r

4+w4) + 2*(w4+x4+1)*(t4**r4) + 2*(u4+y4+1)*(t4) + 2*(u4)*(2*z4

+1) + 2*(i)*(L1+L2+L3+L4) + 2*(r5)*(1) + 2*(s5)*(L1) + 2*(t5)*

(2**s5) + 2*((1+t5)**s5)*(v5*t5**(r5+1)+u5*t5**r5+w5) + 2*(w5+

76 CHAPTER 2. REGISTER MACHINES

x5+1)*(t5**r5) + 2*(u5+y5+1)*(t5) + 2*(u5)*(2*z5+1) + 2*(q**ti

me)*(q*L4) + 2*(r6)*(q*L1) + 2*(s6)*(L2) + 2*(t6)*(2**s6) + 2*

((1+t6)**s6)*(v6*t6**(r6+1)+u6*t6**r6+w6) + 2*(w6+x6+1)*(t6**r

6) + 2*(u6+y6+1)*(t6) + 2*(u6)*(2*z6+1) + 2*(r7)*(q*L2) + 2*(s

7)*(L3) + 2*(t7)*(2**s7) + 2*((1+t7)**s7)*(v7*t7**(r7+1)+u7*t7

r7+w7) + 2*(w7+x7+1)*(t7r7) + 2*(u7+y7+1)*(t7) + 2*(u7)*(2

z7+1) + 2(r8)*(q*L3) + 2*(s8)*(L4+L2) + 2*(t8)*(2**s8) + 2*(

(1+t8)**s8)*(v8*t8**(r8+1)+u8*t8**r8+w8) + 2*(w8+x8+1)*(t8**r8

) + 2*(u8+y8+1)*(t8) + 2*(u8)*(2*z8+1) + 2*(r9)*(q*L3) + 2*(s9

)*(L2+q*eq.A.X’00’) + 2*(t9)*(2**s9) + 2*((1+t9)**s9)*(v9*t9**

(r9+1)+u9*t9**r9+w9) + 2*(w9+x9+1)*(t9**r9) + 2*(u9+y9+1)*(t9)

+ 2*(u9)*(2*z9+1) + 2*(r10)*(set.B.L1) + 2*(s10)*(0*i) + 2*(t

10)*(2**s10) + 2*((1+t10)**s10)*(v10*t10**(r10+1)+u10*t10**r10

+w10) + 2*(w10+x10+1)*(t10**r10) + 2*(u10+y10+1)*(t10) + 2*(u1

0)*(2*z10+1) + 2*(r11)*(set.B.L1) + 2*(s11)*(q.minus.1*L1) + 2

(t11)(2**s11) + 2*((1+t11)**s11)*(v11*t11**(r11+1)+u11*t11**

r11+w11) + 2*(w11+x11+1)*(t11**r11) + 2*(u11+y11+1)*(t11) + 2*

(u11)*(2*z11+1) + 2*(r12)*(0*i) + 2*(s12+q.minus.1*L1)*(set.B.

L1+q.minus.1*i) + 2*(t12)*(2**s12) + 2*((1+t12)**s12)*(v12*t12

(r12+1)+u12*t12r12+w12) + 2*(w12+x12+1)*(t12**r12) + 2*(u1

2+y12+1)*(t12) + 2*(u12)*(2*z12+1) + 2*(r13)*(set.B.L2) + 2*(s

13)*(256*B+char.A) + 2*(t13)*(2**s13) + 2*((1+t13)**s13)*(v13*

t13**(r13+1)+u13*t13**r13+w13) + 2*(w13+x13+1)*(t13**r13) + 2*

(u13+y13+1)*(t13) + 2*(u13)*(2*z13+1) + 2*(r14)*(set.B.L2) + 2

(s14)(q.minus.1*L2) + 2*(t14)*(2**s14) + 2*((1+t14)**s14)*(v

14*t14**(r14+1)+u14*t14**r14+w14) + 2*(w14+x14+1)*(t14**r14) +

2*(u14+y14+1)*(t14) + 2*(u14)*(2*z14+1) + 2*(r15)*(256*B+char

.A) + 2*(s15+q.minus.1*L2)*(set.B.L2+q.minus.1*i) + 2*(t15)*(2

s15) + 2*((1+t15)s15)*(v15*t15**(r15+1)+u15*t15**r15+w15)

+ 2*(w15+x15+1)*(t15**r15) + 2*(u15+y15+1)*(t15) + 2*(u15)*(2*

z15+1) + 2*(r16)*(set.A.L2) + 2*(s16)*(shift.A) + 2*(t16)*(2**

s16) + 2*((1+t16)**s16)*(v16*t16**(r16+1)+u16*t16**r16+w16) +

2*(w16+x16+1)*(t16**r16) + 2*(u16+y16+1)*(t16) + 2*(u16)*(2*z1

6+1) + 2*(r17)*(set.A.L2) + 2*(s17)*(q.minus.1*L2) + 2*(t17)*(

2**s17) + 2*((1+t17)**s17)*(v17*t17**(r17+1)+u17*t17**r17+w17)

+ 2*(w17+x17+1)*(t17**r17) + 2*(u17+y17+1)*(t17) + 2*(u17)*(2

z17+1) + 2(r18)*(shift.A) + 2*(s18+q.minus.1*L2)*(set.A.L2+q

.minus.1*i) + 2*(t18)*(2**s18) + 2*((1+t18)**s18)*(v18*t18**(r

18+1)+u18*t18**r18+w18) + 2*(w18+x18+1)*(t18**r18) + 2*(u18+y1

2.9. RIGHT-HAND SIDE 77

8+1)*(t18) + 2*(u18)*(2*z18+1) + 2*(r19)*(A) + 2*(s19)*(q.minu

s.1*i) + 2*(t19)*(2**s19) + 2*((1+t19)**s19)*(v19*t19**(r19+1)

+u19*t19**r19+w19) + 2*(w19+x19+1)*(t19**r19) + 2*(u19+y19+1)*

(t19) + 2*(u19)*(2*z19+1) + 2*(A+output.A*q**time)*(input.A+q*

set.A.L2+q*dont.set.A) + 2*(set.A)*(L2) + 2*(r20)*(dont.set.A)

+ 2*(s20)*(A) + 2*(t20)*(2**s20) + 2*((1+t20)**s20)*(v20*t20*

*(r20+1)+u20*t20**r20+w20) + 2*(w20+x20+1)*(t20**r20) + 2*(u20

+y20+1)*(t20) + 2*(u20)*(2*z20+1) + 2*(r21)*(dont.set.A) + 2*(

s21+q.minus.1*set.A)*(q.minus.1*i) + 2*(t21)*(2**s21) + 2*((1+

t21)**s21)*(v21*t21**(r21+1)+u21*t21**r21+w21) + 2*(w21+x21+1)

*(t21**r21) + 2*(u21+y21+1)*(t21) + 2*(u21)*(2*z21+1) + 2*(r22

)*(A) + 2*(s22)*(dont.set.A+q.minus.1*set.A) + 2*(t22)*(2**s22

) + 2*((1+t22)**s22)*(v22*t22**(r22+1)+u22*t22**r22+w22) + 2*(

w22+x22+1)*(t22**r22) + 2*(u22+y22+1)*(t22) + 2*(u22)*(2*z22+1

) + 2*(r23)*(256*shift.A) + 2*(s23)*(A) + 2*(t23)*(2**s23) + 2

*((1+t23)**s23)*(v23*t23**(r23+1)+u23*t23**r23+w23) + 2*(w23+x

23+1)*(t23**r23) + 2*(u23+y23+1)*(t23) + 2*(u23)*(2*z23+1) + 2

(r24)(256*shift.A) + 2*(s24+255*i)*(q.minus.1*i) + 2*(t24)*(

2**s24) + 2*((1+t24)**s24)*(v24*t24**(r24+1)+u24*t24**r24+w24)

+ 2*(w24+x24+1)*(t24**r24) + 2*(u24+y24+1)*(t24) + 2*(u24)*(2

z24+1) + 2(r25)*(A) + 2*(s25)*(256*shift.A+255*i) + 2*(t25)*

(2**s25) + 2*((1+t25)**s25)*(v25*t25**(r25+1)+u25*t25**r25+w25

) + 2*(w25+x25+1)*(t25**r25) + 2*(u25+y25+1)*(t25) + 2*(u25)*(

2*z25+1) + 2*(A)*(256*shift.A+char.A) + 2*(r26)*(B) + 2*(s26)*

(q.minus.1*i) + 2*(t26)*(2**s26) + 2*((1+t26)**s26)*(v26*t26**

(r26+1)+u26*t26**r26+w26) + 2*(w26+x26+1)*(t26**r26) + 2*(u26+

y26+1)*(t26) + 2*(u26)*(2*z26+1) + 2*(B+output.B*q**time)*(inp

ut.B+q*set.B.L1+q*set.B.L2+q*dont.set.B) + 2*(set.B)*(L1+L2) +

2*(r27)*(dont.set.B) + 2*(s27)*(B) + 2*(t27)*(2**s27) + 2*((1

+t27)**s27)*(v27*t27**(r27+1)+u27*t27**r27+w27) + 2*(w27+x27+1

)*(t27**r27) + 2*(u27+y27+1)*(t27) + 2*(u27)*(2*z27+1) + 2*(r2

8)*(dont.set.B) + 2*(s28+q.minus.1*set.B)*(q.minus.1*i) + 2*(t

28)*(2**s28) + 2*((1+t28)**s28)*(v28*t28**(r28+1)+u28*t28**r28

+w28) + 2*(w28+x28+1)*(t28**r28) + 2*(u28+y28+1)*(t28) + 2*(u2

8)*(2*z28+1) + 2*(r29)*(B) + 2*(s29)*(dont.set.B+q.minus.1*set

.B) + 2*(t29)*(2**s29) + 2*((1+t29)**s29)*(v29*t29**(r29+1)+u2

9*t29**r29+w29) + 2*(w29+x29+1)*(t29**r29) + 2*(u29+y29+1)*(t2

9) + 2*(u29)*(2*z29+1) + 2*(r30)*(ge.A.X’00’) + 2*(s30)*(i) +

2*(t30)*(2**s30) + 2*((1+t30)**s30)*(v30*t30**(r30+1)+u30*t30*

78 CHAPTER 2. REGISTER MACHINES

r30+w30) + 2(w30+x30+1)*(t30**r30) + 2*(u30+y30+1)*(t30) + 2

(u30)(2*z30+1) + 2*(r31)*(256*ge.A.X’00’) + 2*(s31+0*i)*(256

i+char.A) + 2(t31)*(2**s31) + 2*((1+t31)**s31)*(v31*t31**(r3

1+1)+u31*t31**r31+w31) + 2*(w31+x31+1)*(t31**r31) + 2*(u31+y31

+1)*(t31) + 2*(u31)*(2*z31+1) + 2*(r32+0*i)*(256*i+char.A) + 2

(s32)(256*ge.A.X’00’+255*i) + 2*(t32)*(2**s32) + 2*((1+t32)*

s32)(v32*t32**(r32+1)+u32*t32**r32+w32) + 2*(w32+x32+1)*(t32

**r32) + 2*(u32+y32+1)*(t32) + 2*(u32)*(2*z32+1) + 2*(r33)*(ge

.X’00’.A) + 2*(s33)*(i) + 2*(t33)*(2**s33) + 2*((1+t33)**s33)*

(v33*t33**(r33+1)+u33*t33**r33+w33) + 2*(w33+x33+1)*(t33**r33)

+ 2*(u33+y33+1)*(t33) + 2*(u33)*(2*z33+1) + 2*(r34)*(256*ge.X

’00’.A) + 2*(s34+char.A)*(256*i+0*i) + 2*(t34)*(2**s34) + 2*((

1+t34)**s34)*(v34*t34**(r34+1)+u34*t34**r34+w34) + 2*(w34+x34+

1)*(t34**r34) + 2*(u34+y34+1)*(t34) + 2*(u34)*(2*z34+1) + 2*(r

35+char.A)*(256*i+0*i) + 2*(s35)*(256*ge.X’00’.A+255*i) + 2*(t

35)*(2**s35) + 2*((1+t35)**s35)*(v35*t35**(r35+1)+u35*t35**r35

+w35) + 2*(w35+x35+1)*(t35**r35) + 2*(u35+y35+1)*(t35) + 2*(u3

5)*(2*z35+1) + 2*(r36)*(eq.A.X’00’) + 2*(s36)*(i) + 2*(t36)*(2

s36) + 2*((1+t36)s36)*(v36*t36**(r36+1)+u36*t36**r36+w36)

+ 2*(w36+x36+1)*(t36**r36) + 2*(u36+y36+1)*(t36) + 2*(u36)*(2*

z36+1) + 2*(r37)*(2*eq.A.X’00’) + 2*(s37)*(ge.A.X’00’+ge.X’00’

.A) + 2*(t37)*(2**s37) + 2*((1+t37)**s37)*(v37*t37**(r37+1)+u3

7*t37**r37+w37) + 2*(w37+x37+1)*(t37**r37) + 2*(u37+y37+1)*(t3

7) + 2*(u37)*(2*z37+1) + 2*(r38)*(ge.A.X’00’+ge.X’00’.A) + 2*(

s38)*(2*eq.A.X’00’+i) + 2*(t38)*(2**s38) + 2*((1+t38)**s38)*(v

38*t38**(r38+1)+u38*t38**r38+w38) + 2*(w38+x38+1)*(t38**r38) +

2*(u38+y38+1)*(t38) + 2*(u38)*(2*z38+1)

Chapter 3

A Version of Pure LISP

3.1 Introduction

In this chapter we present a “permissive” simplified version of pure
LISP designed especially for metamathematical applications. Aside
from the rule that an S-expression must have balanced ()’s, the only
way that an expression can fail to have a value is by looping forever.
This is important because algorithms that simulate other algorithms
chosen at random, must be able to run garbage safely.

This version of LISP developed from one originally designed for
teaching [Chaitin (1976a)]. The language was reduced to its essence
and made as easy to learn as possible, and was actually used in several
university courses. Like APL, this version of LISP is so concise that
one can write it as fast as one thinks. This LISP is so simple that
an interpreter for it can be coded in three hundred and fifty lines of
REXX.

How to read this chapter: This chapter can be quite difficult to
understand, especially if one has never programmed in LISP before.
The correct approach is to read it several times, and to try to work
through all the examples in detail. Initially the material will seem
completely incomprehensible, but all of a sudden the pieces will snap
together into a coherent whole. Alternatively, one can skim Chapters 3,
4, and 5, which depend heavily on the details of this LISP, and proceed
directly to the more theoretical material in Chapter 6, which could be

79

80 CHAPTER 3. A VERSION OF PURE LISP

()

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz0123456789

_+-.’,!=*&?/:"$%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Figure 3.1: The LISP Character Set. These are the 128 characters
that are used in LISP S-expressions: the left and right parentheses and
the 126 one-character atoms. The place that a character appears in this
list of all 128 of them is important; it defines the binary representation
for that character. In this monograph we use two different represen-
tations: (1) The first binary representation uses 8 bits per character,
with the characters in reverse order. The 8-bit string corresponding
to a character is obtained by taking the 1-origin ordinal number of its
position in the list, which ranges from 1 to 128, writing this number as
an 8-bit string in base-two, and then reversing this 8-bit string. This is
the representation used in the exponential diophantine version of the
LISP interpreter in Part I. (2) The second binary representation uses 7
bits per character, with the characters in the normal order. The 7-bit
string corresponding to a character is obtained by taking the 0-origin
ordinal number of its position in the list, which ranges from 0 to 127,
writing this number as a 7-bit string in base-two, and then reversing
this 7-bit string. This is the representation that is used to define a
program-size complexity measure in Part II.

3.2. DEFINITION OF LISP 81

based on Turing machines or any other formalism for computation.
The purpose of Chapters 3 and 4 is to show how easy it is to imple-

ment an extremely powerful and theoretically attractive programming
language on the abstract register machines that we presented in Chap-
ter 2. If one takes this for granted, then it is not necessary to study
Chapters 3 and 4 in detail. On the other hand, if one has never ex-
perienced LISP before and wishes to master it thoroughly, one should
write a LISP interpreter and run it on one’s favorite computer; that is
how the author learned LISP.

3.2 Definition of LISP

LISP is an unusual programming language created around 1960 by John
McCarthy [McCarthy (1960,1962,1981)]. It and its descendants are
frequently used in research on artificial intelligence [Abelson, Suss-

man and Sussman (1985), Winston and Horn (1984)]. And it
stands out for its simple design and for its precisely defined syntax
and semantics.

However LISP more closely resembles such fundamental subjects as
set theory and logic than its does a programming language [see Levin

(1974)]. As a result LISP is easy to learn with little previous knowledge.
Contrariwise, those who know other programming languages may have
difficulty learning to think in the completely different fashion required
by LISP.

LISP is a functional programming language, not an imperative lan-
guage like FORTRAN. In FORTRAN the question is “In order to do
something what operations must be carried out, and in what order?”
In LISP the question is “How can this function be defined?” The LISP
formalism consists of a handful of primitive functions and certain rules
for defining more complex functions from the initially given ones. In a
LISP run, after defining functions one requests their values for specific
arguments of interest. It is the LISP interpreter’s task to deduce these
values using the function’s definitions.

LISP functions are technically known as partial recursive functions.
“Partial” because in some cases they may not have a value (this situa-
tion is analogous to division by zero or an infinite loop). “Recursive”

82 CHAPTER 3. A VERSION OF PURE LISP

because functions re-occur in their own definitions. The following defi-
nition of factorial n is the most familiar example of a recursive function:
if n = 0, then its value is 1, else its value is n by factorial n− 1. From
this definition one deduces that factorial 3 = (3 by factorial 2) = (3 by
2 by factorial 1) = (3 by 2 by 1 by factorial 0) = (3 by 2 by 1 by 1) =
6.

A LISP function whose value is always true or false is called a predi-
cate. By means of predicates the LISP formalism encompasses relations
such as “x is less than y.”

Data and function definitions in LISP consist of S-expressions (S
stands for “symbolic”). S-expressions are made up of characters called
atoms that are grouped into lists by means of pairs of parentheses.
The atoms are most of the characters except blank, left parenthesis,
right parenthesis, left bracket, and right bracket in the largest font of
mathematical symbols that I could find, the APL character set. The
simplest kind of S-expression is an atom all by itself. All other S-
expressions are lists. A list consists of a left parenthesis followed by
zero or more elements (which may be atoms or sublists) followed by a
right parenthesis. Also, the empty list () is considered to be an atom.

Here are two examples of S-expressions. C is an atom.

(d(ef)d((a)))

is a list with four elements. The first and third elements are the atom
d. The second element is a list whose elements are the atoms e and f,
in that order. The fourth element is a list with a single element, which
is a list with a single element, which is the atom a.

The formal definition is as follows. The class of S-expressions is
the union of the class of atoms and the class of lists. A list consists
of a left parenthesis followed by zero or more S-expressions followed
by a right parenthesis. There is one list that is also an atom, the
empty list (). All other atoms are found in Figure 3.1, which gives the
complete 128-character set used in writing S-expressions, consisting of
the 126 one-character atoms and the left and right parenthesis. The
total number of characters is chosen to be a power of two in order to
simplify the theoretical analysis of LISP in Part II.

In LISP the atom 1 stands for “true” and the atom 0 stands for
“false.” Thus a LISP predicate is a function whose value is always 0 or

3.2. DEFINITION OF LISP 83

(t1 f0 wa xa y(bcd) z((ef)))

Figure 3.2: A LISP Environment.

1.
It is important to note that we do not identify 0 and (). It is usual

in LISP to identify falsehood and the empty list; both are usually called
NIL. This would complicate our LISP and make it harder to write the
LISP interpreter that we give in Chapter 4, because it would be harder
to determine if two S-expressions are equal. This would also be a serious
mistake from an information-theoretic point of view, because it would
make large numbers of S-expressions into synonyms. And wasting the
expressive power of S-expressions in this manner would invalidate large
portions of Chapter 5 and Appendix B. Thus there is no single-character
synonym in our LISP for the empty list (); 2 characters are required.

The fundamental semantical concept in LISP is that of the value
of an S-expression in a given environment. An environment consists
of a so-called “association list” in which variables (atoms) and their
values (S-expressions) alternate. If a variable appears several times,
only its first value is significant. If a variable does not appear in the
environment, then it itself is its value, so that it is in effect a literal
constant. (xa x(a) x((a)) F(&(x)(/(.x)x(F(+x))))) is a typical
environment. In this environment the value of x is a, the value of F
is (&(x)(/(.x)x(F(+x)))), and any other atom, for example Q, has
itself as value.

Thus the value of an atomic S-expression is obtained by searching
odd elements of the environment for that atom. What is the value of a
non-atomic S-expression, that is, of a non-empty list? In this case the
value is defined recursively, in terms of the values of the elements of the
S-expression in the same environment. The value of the first element
of the S-expression is the function, and the function’s arguments are
the values of the remaining elements of the expression. Thus in LISP
the notation (fxyz) is used for what in FORTRAN would be written
f(x,y,z). Both denote the function f applied to the arguments xyz.

There are two kinds of functions: primitive functions and defined

84 CHAPTER 3. A VERSION OF PURE LISP

functions. The ten primitive functions are the atoms . = + - * ,

’ / ! and ?. A defined function is a three-element list (tradition-
ally called a LAMBDA expression) of the form (&vb), where v is a
list of variables. By definition the result of applying a defined func-
tion to arguments is the value of the body of the function b in the
environment resulting from concatenating a list of the form (variable1
argument1 variable2 argument2. . .) and the environment of the origi-
nal S-expression, in that order. The concatenation of an n-element list
and an m-element list is defined to be the (n + m)-element list whose
elements are those of the first list followed by those of the second list.

The primitive functions are now presented. In the examples of their
use the environment in Figure 3.2 is assumed.

• Name Atom

Symbol .

Arguments 1

Explanation The result of applying this function to an argu-
ment is true or false depending on whether or not the argu-
ment is an atom.

Examples (.x) has value 1

(.y) has value 0

• Name Equal

Symbol =

Arguments 2

Explanation The result of applying this function to two argu-
ments is true or false depending on whether or not they are
the same S-expression.

Examples (=wx) has value 1

(=yz) has value 0

• Name Head/First/Take 1/CAR

Symbol +

Arguments 1

3.2. DEFINITION OF LISP 85

Explanation The result of applying this function to an atom is
the atom itself. The result of applying this function to a
non-empty list is the first element of the list.

Examples (+x) has value a

(+y) has value b

(+z) has value (ef)

• Name Tail/Rest/Drop 1/CDR

Symbol -

Arguments 1

Explanation The result of applying this function to an atom is
the atom itself. The result of applying this function to a
non-empty list is what remains if its first element is erased.
Thus the tail of an (n+ 1)-element list is an n-element list.

Examples (-x) has value a

(-y) has value (cd)

(-z) has value ()

• Name Join/CONS

Symbol *

Arguments 2

Explanation If the second argument is not a list, then the result
of applying this function is the first argument. If the second
argument is an n-element list, then the result of applying
this function is the (n + 1)-element list whose head is the
first argument and whose tail is the second argument.

Examples (*xx) has value a

(*x()) has value (a)

(*xy) has value (abcd)

(*xz) has value (a(ef))

(*yz) has value ((bcd)(ef))

• Name Output

86 CHAPTER 3. A VERSION OF PURE LISP

Symbol ,

Arguments 1

Explanation The result of applying this function is its argu-
ment, in other words, this is an identity function. The side-
effect is to display the argument. This function is used to
display intermediate results. It is the only primitive function
that has a side-effect.

Examples Evaluation of (-(,(-(,(-y))))) displays (cd) and
(d) and yields value ()

• Name Quote

Symbol ’

Arguments 1

Explanation The result of applying this function is the uneval-
uated argument expression.

Examples (’x) has value x

(’(*xy)) has value (*xy)

• Name If-then-else

Symbol /

Arguments 3

Explanation If the first argument is not false, then the result
is the second argument. If the first argument is false, then
the result is the third argument. The argument that is not
selected is not evaluated.

Examples (/zxy) has value a

(/txy) has value a

(/fxy) has value (bcd)

Evaluation of (/tx(,y)) does not have the side-effect of
displaying (bcd)

• Name Eval

Symbol !

3.2. DEFINITION OF LISP 87

Arguments 1

Explanation The expression that is the value of the argument is
evaluated in an empty environment. This is the only primi-
tive function that is a partial rather than a total function.

Examples (!(’x)) has value x instead of a, because x is evalu-
ated in an empty environment.

(!(’(.x))) has value 1

(!(’((’(&(f)(f)))(’(&()(f)))))) has no value.

• Name Safe Eval/Depth-limited Eval

Symbol ?

Arguments 2

Explanation The expression that is the value of the second ar-
gument is evaluated in an empty environment. If the evalua-
tion is completed within “time” given by the first argument,
the value returned is a list whose sole element is the value
of the value of the second argument. If the evaluation is
not completed within “time” given by the first argument,
the value returned is the atom ?. More precisely, the “time
limit” is given by the number of elements of the first argu-
ment, and is zero if the first argument is not a list. The
“time limit” actually limits the depth of the call stack, more
precisely, the maximum number of re-evaluations due to de-
fined functions or ! or ? which have been started but have
not yet been completed. The key property of ? is that it is a
total function, i.e., is defined for all values of its arguments,
and that (!x) is defined if and only if (?tx) is not equal to
? for all sufficiently large values of t. (See Section 3.6 for a
more precise definition of ?.)

Examples (?0(’x)) has value (x)

(?0(’((’(&(x)x))a))) has value ?

(?(’(1))(’((’(&(x)x))a))) has value (a)

The argument of ’ and the unselected argument of / are exceptions
to the rule that the evaluation of an S-expression that is a non-empty

88 CHAPTER 3. A VERSION OF PURE LISP

Atom . = + - * , ’ / ! ? & :

Arguments 1 2 1 1 2 1 1 3 1 2 2 3

Figure 3.3: Atoms with Implicit Parentheses.

list requires the previous evaluation of all its elements. When evaluation
of the elements of a list is required, this is always done one element at
a time, from left to right.

M-expressions (M stands for “meta”) are S-expressions in which
the parentheses grouping together primitive functions and their argu-
ments are omitted as a convenience for the LISP programmer. See
Figure 3.3. For these purposes, & (“function/del/LAMBDA/define”)
is treated as if it were a primitive function with two arguments, and
: (“LET/is”) is treated as if it were a primitive function with three
arguments. : is another meta-notational abbreviation, but may be
thought of as an additional primitive function. :vde denotes the value
of e in an environment in which v evaluates to the current value of d,
and :(fxyz)de denotes the value of e in an environment in which f

evaluates to (&(xyz)d). More precisely, the M-expression :vde denotes
the S-expression ((’(&(v)e))d), and the M-expression :(fxyz)de de-
notes the S-expression ((’(&(f)e))(’(&(xyz)d))), and similarly for
functions with a different number of arguments.

A " is written before a self-contained portion of an M-expression
to indicate that the convention regarding invisible parentheses and the
meaning of : does not apply within it, i.e., that there follows an S-
expression “as is”.

Input to the LISP interpreter consists of a list of M-expressions.
All blanks are ignored, and comments may be inserted anywhere by
placing them between balanced [’s and]’s, so that comments may
include other comments. Two kinds of M-expressions are read by the
interpreter: expressions to be evaluated, and others that indicate the
environment to be used for these evaluations. The initial environment
is the empty list ().

Each M-expression is transformed into the corresponding S-expres-
sion and displayed:

3.3. EXAMPLES 89

(1) If the S-expression is of the form (&xe) where x is an atom and
e is an S-expression, then (xv) is concatenated with the current
environment to obtain a new environment, where v is the value
of e. Thus (&xe) is used to define the value of a variable x to be
equal to the value of an S-expression e.

(2) If the S-expression is of the form (&(fxyz)d) where fxyz is one or
more atoms and d is an S-expression, then (f(&(xyz)d)) is con-
catenated with the current environment to obtain a new environ-
ment. Thus (&(fxyz)d) is used to establish function definitions,
in this case the function f of the variables xyz.

(3) If the S-expression is not of the form (&...) then it is evaluated
in the current environment and its value is displayed. The prim-
itive function , may cause the interpreter to display additional
S-expressions before this value.

3.3 Examples

Here are five elementary examples of expressions and their values.

• The M-expression *a*b*c() denotes the S-expression

(*a(*b(*c())))

whose value is the S-expression (abc).

• The M-expression +---’(abcde) denotes the S-expression

(+(-(-(-(’(abcde))))))

whose value is the S-expression d.

• The M-expression *"+*"=*"-() denotes the S-expression

(*+(*=(*-())))

whose value is the S-expression (+=-).

90 CHAPTER 3. A VERSION OF PURE LISP

• The M-expression

(’&(xyz)*z*y*x()abc)

denotes the S-expression

((’(&(xyz)(*z(*y(*x())))))abc)

whose value is the S-expression (cba).

• The M-expression

:(Cxy)/.xy*+x(C-xy)(C’(abcdef)’(ghijkl))

denotes the S-expression

((’(&(C)(C(’(abcdef))(’(ghijkl)))))

(’(&(xy)(/(.x)y(*(+x)(C(-x)y))))))

whose value is the S-expression (abcdefghijkl). In this example
C is the concatenation function. It is instructive to state the
definition of concatenation, usually called APPEND, in words:
“Let concatenation be a function of two variables x and y defined
as follows: if x is an atom, then the value is y; otherwise join the
head of x to the concatenation of the tail of x with y.”

In the remaining three sections of this chapter we give three serious
examples of programs written in this LISP: three increasingly sophis-
ticated versions of EVAL, the traditional definition of LISP in LISP,
which is of course just the LISP equivalent of a universal Turing ma-
chine. I.e., EVAL is a universal partial recursive function.

The program in Section 3.4 is quite simple; it is a stripped down
version of EVAL for our version of LISP, greatly simplified because it
does not handle ! and ?. What is interesting about this example is
that it was run on the register machine LISP interpreter of Chapter 4,

3.3. EXAMPLES 91

and one of the evaluations took 720 million simulated register machine
cycles!1

The program in Section 3.5 defines a conventional LISP with atoms
that may be any number of characters long. This example makes an
important point, which is that if our LISP with one-character atoms can
simulate a normal LISP with multi-character atoms, then the restriction
on the size of names is not of theoretical importance: any function that
can be defined using long names can also be defined using our one-
character names. In other words, Section 3.5 proves that our LISP is
computationally universal, and can define any computable function. In
practice the one-character restriction is not too serious, because one
style of using names is to give them only local significance, and then
names can be reused within a large function definition.2

The third and final example of LISP in LISP in this chapter, Section
3.6, is the most serious one of all. It is essentially a complete definition
of the semantics of our version of pure LISP, including ! and ?. Almost,
but not quite. We cheat in two ways:

(1) First of all, the top level of our LISP does not run under a time
limit, and the definition of LISP in LISP in Section 3.6 omits
this, and always imposes time limits on evaluations. We ought to
reserve a special internal time limit value to mean no limit; the
LISP interpreter given in Chapter 4 uses the underscore sign for
this purpose.

(2) Secondly, Section 3.6 reserves a special value, the dollar sign, as an
error value. This is of course cheating; we ought to return an atom
if there is an error, and the good value wrapped in parentheses if
there is no error, but this would complicate the definition of LISP
in LISP given in Section 3.6. The LISP interpreter in Chapter 4
uses an illegal S-expression consisting of a single right parenthesis
as the internal error value; no valid S-expression can begin with
a right parenthesis.

1All the other LISP interpreter runs shown in this book were run directly on a
large mainframe computer, not on a simulated register machine; see Appendix A
for details.

2Allowing long names would make it harder to program the LISP interpreter on
a register machine, which we do in Chapter 4.

92 CHAPTER 3. A VERSION OF PURE LISP

But except for these two “cheats,” we take Section 3.6 to be our
official definition of the semantics of our LISP. One can immediately
deduce from the definition given in Section 3.6 a number of important
details about the way our LISP achieves its “permissiveness.” Most
important, extra arguments to functions are ignored, and empty lists
are supplied for missing arguments. E.g., parameters in a function def-
inition which are not supplied with an argument expression when the
function is applied will be bound to the empty list (). This works this
way because when EVAL runs off the end of a list of arguments, it
is reduced to the empty argument list, and head and tail applied to
this empty list will continue to give the empty list. Also if an atom
is repeated in the parameter list of a function definition, the binding
corresponding to the first occurrence will shadow the later occurrences
of the same variable. Section 3.6 is a complete definition of LISP se-
mantics in the sense that there are no hidden error messages and error
checks in it: it performs exactly as written on what would normally
be considered “erroneous” expressions. Of course, in our LISP there
are no erroneous expressions, only expressions that fail to have a value
because the interpreter never finishes evaluating them: it goes into an
infinite loop and never returns a value.

That concludes Chapter 3. What lies ahead in Chapter 4? In the
next chapter we re-write the LISP program of Section 3.6 as a register
machine program, and then compile it into an exponential diophantine
equation. The one-page LISP function definition in Section 3.6 becomes
a 308-instruction register machine LISP interpreter, and then a 308 +
19 + 448 + 16281 = 17056-variable equation with a left-hand side and a
right-hand side each about half a million characters long. This equation
is a LISP interpreter, and in theory it can be used to get the values of S-
expressions. In Part II the crucial property of this equation is that it has
a variable input.EXPRESSION, it has exactly one solution if the LISP
S-expression with binary representation3 input.EXPRESSION has a
value, and it has no solution if input.EXPRESSION does not have a
value. We don’t care what output.VALUE is; we just want to know if
the evaluation eventually terminates.

3Recall that the binary representation of an S-expression has 8 bits per character
with the characters in reverse order (see Figures 2.4 and 3.1).

3.4. LISP IN LISP I 93

3.4 LISP in LISP I

LISP Interpreter Run

[[[LISP semantics defined in LISP]]]

[(Vse) = value of S-expression s in environment e.

If a new environment is created it is displayed.]

& (Vse)

/.s /.es /=s+e+-e (Vs--e)

(’&(f) [f is the function]

/=f"’ +-s

/=f". .(V+-se)

/=f"+ +(V+-se)

/=f"- -(V+-se)

/=f", ,(V+-se)

/=f"= =(V+-se)(V+--se)

/=f"* *(V+-se)(V+--se)

/=f"/ /(V+-se)(V+--se)(V+---se)

(V+--f,(N+-f-se)) [display new environment]

(V+se)) [evaluate function f]

V: (&(se)(/(.s)(/(.e)s(/(=s(+e))(+(-e))(Vs(-(-e)))))(

(’(&(f)(/(=f’)(+(-s))(/(=f.)(.(V(+(-s))e))(/(=f+)(

+(V(+(-s))e))(/(=f-)(-(V(+(-s))e))(/(=f,)(,(V(+(-s

))e))(/(=f=)(=(V(+(-s))e)(V(+(-(-s)))e))(/(=f*)(*(

V(+(-s))e)(V(+(-(-s)))e))(/(=f/)(/(V(+(-s))e)(V(+(

-(-s)))e)(V(+(-(-(-s))))e))(V(+(-(-f)))(,(N(+(-f))

(-s)e)))))))))))))(V(+s)e))))

[(Nxae) = new environment created from list of

variables x, list of unevaluated arguments a, and

previous environment e.]

& (Nxae) /.xe *+x*(V+ae)(N-x-ae)

N: (&(xae)(/(.x)e(*(+x)(*(V(+a)e)(N(-x)(-a)e)))))

94 CHAPTER 3. A VERSION OF PURE LISP

[Test function (Fx) = first atom in the S-expression x.]

& (Fx)/.xx(F+x) [end of definitions]

F: (&(x)(/(.x)x(F(+x))))

(F’(((ab)c)d)) [direct evaluation]

expression (F(’(((ab)c)d)))

value a

cycles 1435274

(V’(F’(((ab)c)d))*’F*F()) [same thing but using V]

expression (V(’(F(’(((ab)c)d))))(*(’F)(*F())))

display (x(((ab)c)d)F(&(x)(/(.x)x(F(+x)))))

display (x((ab)c)x(((ab)c)d)F(&(x)(/(.x)x(F(+x)))))

display (x(ab)x((ab)c)x(((ab)c)d)F(&(x)(/(.x)x(F(+x)))))

display (xax(ab)x((ab)c)x(((ab)c)d)F(&(x)(/(.x)x(F(+x)))))

value a

cycles 719668657

End of LISP Run

Elapsed time is 2953.509742 seconds.

3.5 LISP in LISP II

LISP Interpreter Run

[[[Normal LISP semantics defined in "Sub-Atomic" LISP]]]

[(Vse) = value of S-expression s in environment e.

If a new environment is created it is displayed.]

& (Vse)

/.+s /=s+e+-e (Vs--e)

/=+s’(QUOTE) +-s

3.5. LISP IN LISP II 95

/=+s’(ATOM) /.+(V+-se)’(T)’(NIL)

/=+s’(CAR) +(V+-se)

/=+s’(CDR) : x -(V+-se) /.x’(NIL)x

/=+s’(OUT) ,(V+-se)

/=+s’(EQ) /=(V+-se)(V+--se)’(T)’(NIL)

/=+s’(CONS) : x (V+-se) : y (V+--se) /=y’(NIL) *x() *xy

/=+s’(COND) /=’(NIL)(V++-se) (V*+s--se) (V+-+-se)

: f /.++s(V+se)+s [f is ((LAMBDA)((X)(Y))(BODY))]

(V+--f,(N+-f-se)) [display new environment]

V: (&(se)(/(.(+s))(/(=s(+e))(+(-e))(Vs(-(-e))))(/(=(+

s)(’(QUOTE)))(+(-s))(/(=(+s)(’(ATOM)))(/(.(+(V(+(-

s))e)))(’(T))(’(NIL)))(/(=(+s)(’(CAR)))(+(V(+(-s))

e))(/(=(+s)(’(CDR)))((’(&(x)(/(.x)(’(NIL))x)))(-(V

(+(-s))e)))(/(=(+s)(’(OUT)))(,(V(+(-s))e))(/(=(+s)

(’(EQ)))(/(=(V(+(-s))e)(V(+(-(-s)))e))(’(T))(’(NIL

)))(/(=(+s)(’(CONS)))((’(&(x)((’(&(y)(/(=y(’(NIL))

)(*x())(*xy))))(V(+(-(-s)))e))))(V(+(-s))e))(/(=(+

s)(’(COND)))(/(=(’(NIL))(V(+(+(-s)))e))(V(*(+s)(-(

-s)))e)(V(+(-(+(-s))))e))((’(&(f)(V(+(-(-f)))(,(N(

+(-f))(-s)e)))))(/(.(+(+s)))(V(+s)e)(+s)))))))))))

))

[(Nxae) = new environment created from list of

variables x, list of unevaluated arguments a, and

previous environment e.]

& (Nxae) /.xe *+x*(V+ae)(N-x-ae)

N: (&(xae)(/(.x)e(*(+x)(*(V(+a)e)(N(-x)(-a)e)))))

[FIRSTATOM

(LAMBDA (X)

(COND ((ATOM X) X)

((QUOTE T) (FIRSTATOM (CAR X)))))

]

& F ’

((FIRSTATOM)

96 CHAPTER 3. A VERSION OF PURE LISP

((LAMBDA) ((X))

((COND) (((ATOM) (X)) (X))

(((QUOTE) (T)) ((FIRSTATOM) ((CAR) (X))))))

)

expression (’((FIRSTATOM)((LAMBDA)((X))((COND)(((ATOM)(X))(X)

)(((QUOTE)(T))((FIRSTATOM)((CAR)(X))))))))

F: ((FIRSTATOM)((LAMBDA)((X))((COND)(((ATOM)(X))(X))(

((QUOTE)(T))((FIRSTATOM)((CAR)(X)))))))

[APPEND

(LAMBDA (X Y) (COND ((ATOM X) Y)

((QUOTE T) (CONS (CAR X)

(APPEND (CDR X) Y)))))

]

& C ’

((APPEND)

((LAMBDA) ((X)(Y)) ((COND) (((ATOM) (X)) (Y))

(((QUOTE) (T)) ((CONS) ((CAR) (X))

((APPEND) ((CDR) (X)) (Y))))))

)

expression (’((APPEND)((LAMBDA)((X)(Y))((COND)(((ATOM)(X))(Y)

)(((QUOTE)(T))((CONS)((CAR)(X))((APPEND)((CDR)(X))

(Y))))))))

C: ((APPEND)((LAMBDA)((X)(Y))((COND)(((ATOM)(X))(Y))(

((QUOTE)(T))((CONS)((CAR)(X))((APPEND)((CDR)(X))(Y

)))))))

(V’

((FIRSTATOM) ((QUOTE) ((((A)(B))(C))(D))))

F)

expression (V(’((FIRSTATOM)((QUOTE)((((A)(B))(C))(D)))))F)

display ((X)((((A)(B))(C))(D))(FIRSTATOM)((LAMBDA)((X))((C

OND)(((ATOM)(X))(X))(((QUOTE)(T))((FIRSTATOM)((CAR

)(X)))))))

3.5. LISP IN LISP II 97

display ((X)(((A)(B))(C))(X)((((A)(B))(C))(D))(FIRSTATOM)(

(LAMBDA)((X))((COND)(((ATOM)(X))(X))(((QUOTE)(T))(

(FIRSTATOM)((CAR)(X)))))))

display ((X)((A)(B))(X)(((A)(B))(C))(X)((((A)(B))(C))(D))(

FIRSTATOM)((LAMBDA)((X))((COND)(((ATOM)(X))(X))(((

QUOTE)(T))((FIRSTATOM)((CAR)(X)))))))

display ((X)(A)(X)((A)(B))(X)(((A)(B))(C))(X)((((A)(B))(C)

)(D))(FIRSTATOM)((LAMBDA)((X))((COND)(((ATOM)(X))(

X))(((QUOTE)(T))((FIRSTATOM)((CAR)(X)))))))

value (A)

(V’

((APPEND) ((QUOTE)((A)(B)(C))) ((QUOTE)((D)(E)(F))))

C)

expression (V(’((APPEND)((QUOTE)((A)(B)(C)))((QUOTE)((D)(E)(F

)))))C)

display ((X)((A)(B)(C))(Y)((D)(E)(F))(APPEND)((LAMBDA)((X)

(Y))((COND)(((ATOM)(X))(Y))(((QUOTE)(T))((CONS)((C

AR)(X))((APPEND)((CDR)(X))(Y)))))))

display ((X)((B)(C))(Y)((D)(E)(F))(X)((A)(B)(C))(Y)((D)(E)

(F))(APPEND)((LAMBDA)((X)(Y))((COND)(((ATOM)(X))(Y

))(((QUOTE)(T))((CONS)((CAR)(X))((APPEND)((CDR)(X)

)(Y)))))))

display ((X)((C))(Y)((D)(E)(F))(X)((B)(C))(Y)((D)(E)(F))(X

)((A)(B)(C))(Y)((D)(E)(F))(APPEND)((LAMBDA)((X)(Y)

)((COND)(((ATOM)(X))(Y))(((QUOTE)(T))((CONS)((CAR)

(X))((APPEND)((CDR)(X))(Y)))))))

display ((X)(NIL)(Y)((D)(E)(F))(X)((C))(Y)((D)(E)(F))(X)((

B)(C))(Y)((D)(E)(F))(X)((A)(B)(C))(Y)((D)(E)(F))(A

PPEND)((LAMBDA)((X)(Y))((COND)(((ATOM)(X))(Y))(((Q

UOTE)(T))((CONS)((CAR)(X))((APPEND)((CDR)(X))(Y)))

))))

value ((A)(B)(C)(D)(E)(F))

End of LISP Run

Elapsed time is 16.460641 seconds.

98 CHAPTER 3. A VERSION OF PURE LISP

3.6 LISP in LISP III

LISP Interpreter Run

[[[LISP semantics defined in LISP]]]

[

Permissive LISP:

head & tail of atom = atom,

join of x with nonzero atom = x,

initially all atoms evaluate to self,

only depth exceeded failure!

(Vsed) =

value of S-expression s in environment e within depth d.

If a new environment is created it is displayed.

d is a natural number which must be decremented

at each call. And if it reaches zero, evaluation aborts.

If depth is exceeded, V returns a special failure value $.

Evaluation cannot fail any other way!

Normally, when get value v, if bad will return it as is:

/=$vv

To stop unwinding,

one must convert $ to ? & wrap good v in ()’s.

]

& (Vsed)

/. s : (Ae) /.e s /=s+e+-e (A--e)

[A is "Assoc"]

(Ae) [evaluate atom; if not in e, evals to self]

: f (V+sed) [evaluate the function f]

/=$ff [if evaluation of function failed, give up]

/=f"’ +-s [do "quote"]

/=f"/ : p (V+-sed) /=$pp /=0p (V+---sed) (V+--sed)

[do "if"]

: (Wl) /.ll : x (V+led) /=$xx : y (W-l) /=$yy *xy

[W is "Evalst"]

: a (W-s) [a is the list of argument values]

/=$aa [evaluation of arguments failed, give up]

: x +a [pick up first argument]

3.6. LISP IN LISP III 99

: y +-a [pick up second argument]

/=f". .x [do "atom"]

/=f"+ +x [do "head"]

/=f"- -x [do "tail"]

/=f", ,x [do "out"]

/=f"= =xy [do "eq"]

/=f"* *xy [do "join"]

/.d $ [fail if depth already zero]

: d -d [decrement depth]

/=f"! (Vx()d) [do "eval"; use fresh environment]

/=f"? [do "depth-limited eval"]

: (Lij) /.i1 /.j0 (L-i-j)

[natural # i is less than or equal to j]

/(Ldx) : v (Vy()d) /=$vv *v()

[old depth more limiting; keep unwinding]

: v (Vy()x) /=$v"? *v()

[new depth limit more limiting;

stop unwinding]

[do function definition]

: (Bxa) /.xe *+x*+a(B-x-a)

[B is "Bind"]

(V+--f,(B+-fa)d) [display new environment]

V: (&(sed)(/(.s)((’(&(A)(Ae)))(’(&(e)(/(.e)s(/(=s(+e)

)(+(-e))(A(-(-e))))))))((’(&(f)(/(=$f)f(/(=f’)(+(-

s))(/(=f/)((’(&(p)(/(=$p)p(/(=0p)(V(+(-(-(-s))))ed

)(V(+(-(-s)))ed)))))(V(+(-s))ed))((’(&(W)((’(&(a)(

/(=$a)a((’(&(x)((’(&(y)(/(=f.)(.x)(/(=f+)(+x)(/(=f

-)(-x)(/(=f,)(,x)(/(=f=)(=xy)(/(=f*)(*xy)(/(.d)$((

’(&(d)(/(=f!)(Vx()d)(/(=f?)((’(&(L)(/(Ldx)((’(&(v)

(/(=$v)v(*v()))))(Vy()d))((’(&(v)(/(=$v)?(*v()))))

(Vy()x)))))(’(&(ij)(/(.i)1(/(.j)0(L(-i)(-j)))))))(

(’(&(B)(V(+(-(-f)))(,(B(+(-f))a))d)))(’(&(xa)(/(.x

)e(*(+x)(*(+a)(B(-x)(-a))))))))))))(-d)))))))))))(

+(-a)))))(+a)))))(W(-s)))))(’(&(l)(/(.l)l((’(&(x)(

/(=$x)x((’(&(y)(/(=$y)y(*xy))))(W(-l))))))(V(+l)ed

)))))))))))(V(+s)ed))))

100 CHAPTER 3. A VERSION OF PURE LISP

[Test function (Cxy) = concatenate list x and list y.]

[Define environment for concatenation.]

& E ’(C &(xy) /.xy *+x(C-xy))

expression (’(C(&(xy)(/(.x)y(*(+x)(C(-x)y))))))

E: (C(&(xy)(/(.x)y(*(+x)(C(-x)y)))))

(V ’(C’(ab)’(cd)) E ’())

expression (V(’(C(’(ab))(’(cd))))E(’()))

value $

(V ’(C’(ab)’(cd)) E ’(1))

expression (V(’(C(’(ab))(’(cd))))E(’(1)))

display (x(ab)y(cd)C(&(xy)(/(.x)y(*(+x)(C(-x)y)))))

value $

(V ’(C’(ab)’(cd)) E ’(11))

expression (V(’(C(’(ab))(’(cd))))E(’(11)))

display (x(ab)y(cd)C(&(xy)(/(.x)y(*(+x)(C(-x)y)))))

display (x(b)y(cd)x(ab)y(cd)C(&(xy)(/(.x)y(*(+x)(C(-x)y)))

))

value $

(V ’(C’(ab)’(cd)) E ’(111))

expression (V(’(C(’(ab))(’(cd))))E(’(111)))

display (x(ab)y(cd)C(&(xy)(/(.x)y(*(+x)(C(-x)y)))))

display (x(b)y(cd)x(ab)y(cd)C(&(xy)(/(.x)y(*(+x)(C(-x)y)))

))

display (x()y(cd)x(b)y(cd)x(ab)y(cd)C(&(xy)(/(.x)y(*(+x)(C

(-x)y)))))

3.6. LISP IN LISP III 101

value (abcd)

End of LISP Run

Elapsed time is 21.745667 seconds.

102 CHAPTER 3. A VERSION OF PURE LISP

Chapter 4

The LISP Interpreter EVAL

In this chapter we convert the definition of LISP in LISP given in
Section 3.6 into a register machine program. Then we compile this
register machine program into an exponential diophantine equation.

4.1 Register Machine Pseudo-Instructio-

ns

The first step to program an interpreter for our version of pure LISP
is to write subroutines for breaking S-expressions apart (SPLIT) and
for putting them back together again (JOIN). The next step is to use
SPLIT and JOIN to write routines that push and pop the interpreter
stack. Then we can raise the level of discourse by defining register
machine pseudo-instructions which are expanded by the assembler into
calls to these routines; i.e., we extend register machine language with
pseudo-machine instructions which expand into several real machine in-
structions. Thus we have four “microcode” subroutines: SPLIT, JOIN,
PUSH, and POP. SPLIT and JOIN are leaf routines, and PUSH and
POP call SPLIT and JOIN.

Figure 4.1 is a table giving the twelve register machine pseudo-
instructions.

Now a few words about register usage; there are only 19 registers!
First of all, the S-expression to be evaluated is input in EXPRESSION,
and the value of this S-expression is output in VALUE. There are three

103

104 CHAPTER 4. THE LISP INTERPRETER EVAL

* Comment Comment is ignored; for documentation only.

R REGISTER Declare the name of a machine register.

L LABEL Declare the name of the next instruction.

SPLIT T1,T2,S Put the head and tail of S into T1 and T2.

HD T,S Put the head of S into T.

TL T,S Put the tail of S into T.

EMPTY T Set T to be the empty list ().

ATOM S,L Branch to L if S contains an atom.

JN T,S1,S2 Join S1 to S2 and put the result into T.

PUSH S Push S into the STACK.

(This is equivalent to JN STACK,S,STACK.)

POP T Pop T from the STACK.

(This is equivalent to POPL T,STACK.)

POPL T,S Pop T from the list S:

put the head of S into T and then

replace S by its tail.

Figure 4.1: Register Machine Pseudo-Instructions. In the table
above source registers all start with an S, and target registers with a T.
“Head,” “tail,” and “join” refer to the LISP primitive functions applied
to the binary representations of S-expressions, as defined in Figure 2.4.

4.1. REGISTER MACHINE PSEUDO-INSTRUCTIONS 105

large permanent data structures used by the interpreter:

(1) the association list ALIST which contains all variable bindings,

(2) the interpreter STACK used for saving and restoring information
when the interpreter calls itself, and

(3) the current remaining DEPTH limit on evaluations.

All other registers are either temporary scratch registers used by the
interpreter (FUNCTION, ARGUMENTS, VARIABLES, X, and Y),
or hidden registers used by the microcode rather than directly by the
interpreter. These hidden registers include:

(1) the two in-boxes and two out-boxes for micro-routines: SOURCE,
SOURCE2, TARGET, and TARGET2,

(2) the two scratch registers for pseudo-instruction expansion and
micro-routines: WORK and PARENS, and

(3) the three registers for return addresses from subroutine calls:
LINKREG, LINKREG2, and LINKREG3

Section 4.2 is a complete listing of the register machine pseudo-code
for the interpreter, and the 308 real register machine instructions that
are generated by the assembler from the pseudo-code. A few words of
explanation: Register machine pseudo-instructions that declare a reg-
ister name or instruction label start flush left, and so do comments.
Other pseudo-instructions are indented 2 spaces. The operands of
pseudo-instructions are always separated by commas. The real regis-
ter machine instructions generated from these pseudo-instructions are
indented 6 spaces. Their operands are separated by spaces instead of
commas. And real instructions always start with a label and a colon.

Section 4.3 is the summary information produced at the end of the
compilation of the interpreter into an exponential diophantine equa-
tion, including the name of each of the 17056 variables in the equation.
Section 4.4 is the first five thousand characters of the left-hand side of
the resulting equation, and Section 4.5 is the last five thousand char-
acters of the right-hand side of the equation. Unfortunately we are

106 CHAPTER 4. THE LISP INTERPRETER EVAL

forced to only give these excerpts; the full compiler log and equation
are available from the author.1

4.2 EVAL in Register Machine Language

*

* The LISP Machine! ..

*

* input in EXPRESSION, output in VALUE

EMPTY ALIST initial association list

L1: SET ALIST C’)’

L2: LEFT ALIST C’(’

SET STACK,ALIST empty stack

L3: SET STACK ALIST

SET DEPTH,C’_’ no depth limit

L4: SET DEPTH C’_’

JUMP LINKREG,EVAL evaluate expression

L5: JUMP LINKREG EVAL

HALT finished !

L6: HALT

*

* Recursive Return ...

*

RETURNQ LABEL

SET VALUE,C’?’

RETURNQ: SET VALUE C’?’

GOTO UNWIND

L8: GOTO UNWIND

*

RETURN0 LABEL

SET VALUE,C’0’

RETURN0: SET VALUE C’0’

GOTO UNWIND

L10: GOTO UNWIND

*

RETURN1 LABEL

SET VALUE,C’1’

1“The Complete Arithmetization of EVAL,” November 19th, 1987, 294 pp.

4.2. EVAL IN REGISTER MACHINE LANGUAGE 107

RETURN1: SET VALUE C’1’

*

UNWIND LABEL

POP LINKREG pop return address

UNWIND: JUMP LINKREG2 POP_ROUTINE

L13: SET LINKREG TARGET

GOBACK LINKREG

L14: GOBACK LINKREG

*

* Recursive Call ...

*

EVAL LABEL

PUSH LINKREG push return address

EVAL: SET SOURCE LINKREG

L16: JUMP LINKREG2 PUSH_ROUTINE

ATOM EXPRESSION,EXPRESSION_IS_ATOM

L17: NEQ EXPRESSION C’(’ EXPRESSION_IS_ATOM

L18: SET WORK EXPRESSION

L19: RIGHT WORK

L20: EQ WORK C’)’ EXPRESSION_IS_ATOM

GOTO EXPRESSION_ISNT_ATOM

L21: GOTO EXPRESSION_ISNT_ATOM

*

EXPRESSION_IS_ATOM LABEL

SET X,ALIST copy alist

EXPRESSION_IS_ATOM: SET X ALIST

ALIST_SEARCH LABEL

SET VALUE,EXPRESSION variable not in alist

ALIST_SEARCH: SET VALUE EXPRESSION

ATOM X,UNWIND evaluates to self

L24: NEQ X C’(’ UNWIND

L25: SET WORK X

L26: RIGHT WORK

L27: EQ WORK C’)’ UNWIND

POPL Y,X pick up variable

L28: SET SOURCE X

L29: JUMP LINKREG3 SPLIT_ROUTINE

L30: SET Y TARGET

L31: SET X TARGET2

108 CHAPTER 4. THE LISP INTERPRETER EVAL

POPL VALUE,X pick up its value

L32: SET SOURCE X

L33: JUMP LINKREG3 SPLIT_ROUTINE

L34: SET VALUE TARGET

L35: SET X TARGET2

EQ EXPRESSION,Y,UNWIND right one ?

L36: EQ EXPRESSION Y UNWIND

GOTO ALIST_SEARCH

L37: GOTO ALIST_SEARCH

*

EXPRESSION_ISNT_ATOM LABEL expression is not atom

SPLIT EXPRESSION,ARGUMENTS,EXPRESSION

* split into function & arguments

EXPRESSION_ISNT_ATOM: SET SOURCE EXPRESSION

L39: JUMP LINKREG3 SPLIT_ROUTINE

L40: SET EXPRESSION TARGET

L41: SET ARGUMENTS TARGET2

PUSH ARGUMENTS push arguments

L42: SET SOURCE ARGUMENTS

L43: JUMP LINKREG2 PUSH_ROUTINE

JUMP LINKREG,EVAL evaluate function

L44: JUMP LINKREG EVAL

POP ARGUMENTS pop arguments

L45: JUMP LINKREG2 POP_ROUTINE

L46: SET ARGUMENTS TARGET

EQ VALUE,C’)’,UNWIND abort ?

L47: EQ VALUE C’)’ UNWIND

SET FUNCTION,VALUE remember value of function

L48: SET FUNCTION VALUE

*

* Quote ..

*

NEQ FUNCTION,C’’’’,NOT_QUOTE

L49: NEQ FUNCTION C’’’’ NOT_QUOTE

* ’ Quote

HD VALUE,ARGUMENTS return argument "as is"

L50: SET SOURCE ARGUMENTS

L51: JUMP LINKREG3 SPLIT_ROUTINE

L52: SET VALUE TARGET

4.2. EVAL IN REGISTER MACHINE LANGUAGE 109

GOTO UNWIND

L53: GOTO UNWIND

*

NOT_QUOTE LABEL

*

* If ...

*

NEQ FUNCTION,C’/’,NOT_IF_THEN_ELSE

NOT_QUOTE: NEQ FUNCTION C’/’ NOT_IF_THEN_ELSE

* / If

POPL EXPRESSION,ARGUMENTS pick up "if" clause

L55: SET SOURCE ARGUMENTS

L56: JUMP LINKREG3 SPLIT_ROUTINE

L57: SET EXPRESSION TARGET

L58: SET ARGUMENTS TARGET2

PUSH ARGUMENTS remember "then" & "else" clauses

L59: SET SOURCE ARGUMENTS

L60: JUMP LINKREG2 PUSH_ROUTINE

JUMP LINKREG,EVAL evaluate predicate

L61: JUMP LINKREG EVAL

POP ARGUMENTS pick up "then" & "else" clauses

L62: JUMP LINKREG2 POP_ROUTINE

L63: SET ARGUMENTS TARGET

EQ VALUE,C’)’,UNWIND abort ?

L64: EQ VALUE C’)’ UNWIND

NEQ VALUE,C’0’,THEN_CLAUSE predicate considered true

* if not 0

L65: NEQ VALUE C’0’ THEN_CLAUSE

TL ARGUMENTS,ARGUMENTS if false, skip "then" clause

L66: SET SOURCE ARGUMENTS

L67: JUMP LINKREG3 SPLIT_ROUTINE

L68: SET ARGUMENTS TARGET2

THEN_CLAUSE LABEL

HD EXPRESSION,ARGUMENTS pick up "then" or "else" clause

THEN_CLAUSE: SET SOURCE ARGUMENTS

L70: JUMP LINKREG3 SPLIT_ROUTINE

L71: SET EXPRESSION TARGET

JUMP LINKREG,EVAL evaluate it

L72: JUMP LINKREG EVAL

110 CHAPTER 4. THE LISP INTERPRETER EVAL

GOTO UNWIND return value "as is"

L73: GOTO UNWIND

*

NOT_IF_THEN_ELSE LABEL

*

* Evaluate Arguments ...

*

PUSH FUNCTION

NOT_IF_THEN_ELSE: SET SOURCE FUNCTION

L75: JUMP LINKREG2 PUSH_ROUTINE

JUMP LINKREG,EVALST

L76: JUMP LINKREG EVALST

POP FUNCTION

L77: JUMP LINKREG2 POP_ROUTINE

L78: SET FUNCTION TARGET

EQ VALUE,C’)’,UNWIND abort ?

L79: EQ VALUE C’)’ UNWIND

SET ARGUMENTS,VALUE remember argument values

L80: SET ARGUMENTS VALUE

SPLIT X,Y,ARGUMENTS pick up first argument in x

L81: SET SOURCE ARGUMENTS

L82: JUMP LINKREG3 SPLIT_ROUTINE

L83: SET X TARGET

L84: SET Y TARGET2

HD Y,Y & second argument in y

L85: SET SOURCE Y

L86: JUMP LINKREG3 SPLIT_ROUTINE

L87: SET Y TARGET

*

* Atom & Equal ...

*

NEQ FUNCTION,C’.’,NOT_ATOM

L88: NEQ FUNCTION C’.’ NOT_ATOM

* . Atom

ATOM X,RETURN1 if argument is atomic return true

L89: NEQ X C’(’ RETURN1

L90: SET WORK X

L91: RIGHT WORK

L92: EQ WORK C’)’ RETURN1

4.2. EVAL IN REGISTER MACHINE LANGUAGE 111

GOTO RETURN0 otherwise return nil

L93: GOTO RETURN0

*

NOT_ATOM LABEL

*

NEQ FUNCTION,C’=’,NOT_EQUAL

NOT_ATOM: NEQ FUNCTION C’=’ NOT_EQUAL

* = Equal

COMPARE LABEL

NEQ X,Y,RETURN0 not equal !

COMPARE: NEQ X Y RETURN0

RIGHT X

L96: RIGHT X

RIGHT Y

L97: RIGHT Y

NEQ X,X’00’,COMPARE

L98: NEQ X X’00’ COMPARE

GOTO RETURN1 equal !

L99: GOTO RETURN1

*

NOT_EQUAL LABEL

*

* Head, Tail & Join ..

*

SPLIT TARGET,TARGET2,X get head & tail of argument

NOT_EQUAL: SET SOURCE X

L101: JUMP LINKREG3 SPLIT_ROUTINE

SET VALUE,TARGET

L102: SET VALUE TARGET

EQ FUNCTION,C’+’,UNWIND + pick Head

L103: EQ FUNCTION C’+’ UNWIND

SET VALUE,TARGET2

L104: SET VALUE TARGET2

EQ FUNCTION,C’-’,UNWIND - pick Tail

L105: EQ FUNCTION C’-’ UNWIND

*

JN VALUE,X,Y * Join first argument

* to second argument

L106: SET SOURCE X

112 CHAPTER 4. THE LISP INTERPRETER EVAL

L107: SET SOURCE2 Y

L108: JUMP LINKREG3 JN_ROUTINE

L109: SET VALUE TARGET

EQ FUNCTION,C’*’,UNWIND

L110: EQ FUNCTION C’*’ UNWIND

*

* Output ...

*

NEQ FUNCTION,C’,’,NOT_OUTPUT

L111: NEQ FUNCTION C’,’ NOT_OUTPUT

* , Output

OUT X write argument

L112: OUT X

SET VALUE,X identity function!

L113: SET VALUE X

GOTO UNWIND

L114: GOTO UNWIND

*

NOT_OUTPUT LABEL

*

* Decrement Depth Limit

*

EQ DEPTH,C’_’,NO_LIMIT

NOT_OUTPUT: EQ DEPTH C’_’ NO_LIMIT

SET VALUE,C’)’

L116: SET VALUE C’)’

ATOM DEPTH,UNWIND if limit exceeded, unwind

L117: NEQ DEPTH C’(’ UNWIND

L118: SET WORK DEPTH

L119: RIGHT WORK

L120: EQ WORK C’)’ UNWIND

NO_LIMIT LABEL

PUSH DEPTH push limit before decrementing it

NO_LIMIT: SET SOURCE DEPTH

L122: JUMP LINKREG2 PUSH_ROUTINE

TL DEPTH,DEPTH decrement it

L123: SET SOURCE DEPTH

L124: JUMP LINKREG3 SPLIT_ROUTINE

L125: SET DEPTH TARGET2

4.2. EVAL IN REGISTER MACHINE LANGUAGE 113

*

* Eval ...

*

NEQ FUNCTION,C’!’,NOT_EVAL

L126: NEQ FUNCTION C’!’ NOT_EVAL

* ! Eval

SET EXPRESSION,X pick up argument

L127: SET EXPRESSION X

PUSH ALIST push alist

L128: SET SOURCE ALIST

L129: JUMP LINKREG2 PUSH_ROUTINE

EMPTY ALIST fresh environment

L130: SET ALIST C’)’

L131: LEFT ALIST C’(’

JUMP LINKREG,EVAL evaluate argument again

L132: JUMP LINKREG EVAL

POP ALIST restore old environment

L133: JUMP LINKREG2 POP_ROUTINE

L134: SET ALIST TARGET

POP DEPTH restore old depth limit

L135: JUMP LINKREG2 POP_ROUTINE

L136: SET DEPTH TARGET

GOTO UNWIND

L137: GOTO UNWIND

*

NOT_EVAL LABEL

*

* Evald ..

*

NEQ FUNCTION,C’?’,NOT_EVALD

NOT_EVAL: NEQ FUNCTION C’?’ NOT_EVALD

* ? Eval depth limited

SET VALUE,X pick up first argument

L139: SET VALUE X

SET EXPRESSION,Y pick up second argument

L140: SET EXPRESSION Y

* First argument of ? is in VALUE and

* second argument of ? is in EXPRESSION.

* First argument is new depth limit and

114 CHAPTER 4. THE LISP INTERPRETER EVAL

* second argument is expression to safely eval.

PUSH ALIST save old environment

L141: SET SOURCE ALIST

L142: JUMP LINKREG2 PUSH_ROUTINE

EMPTY ALIST fresh environment

L143: SET ALIST C’)’

L144: LEFT ALIST C’(’

* Decide whether old or new depth restriction is stronger

SET X,DEPTH pick up old depth limit

L145: SET X DEPTH

SET Y,VALUE pick up new depth limit

L146: SET Y VALUE

EQ X,C’_’,NEW_DEPTH no previous limit,

* so switch to new one

L147: EQ X C’_’ NEW_DEPTH

CHOOSE LABEL

ATOM X,OLD_DEPTH old limit smaller, so keep it

CHOOSE: NEQ X C’(’ OLD_DEPTH

L149: SET WORK X

L150: RIGHT WORK

L151: EQ WORK C’)’ OLD_DEPTH

ATOM Y,NEW_DEPTH new limit smaller, so switch

L152: NEQ Y C’(’ NEW_DEPTH

L153: SET WORK Y

L154: RIGHT WORK

L155: EQ WORK C’)’ NEW_DEPTH

TL X,X

L156: SET SOURCE X

L157: JUMP LINKREG3 SPLIT_ROUTINE

L158: SET X TARGET2

TL Y,Y

L159: SET SOURCE Y

L160: JUMP LINKREG3 SPLIT_ROUTINE

L161: SET Y TARGET2

GOTO CHOOSE

L162: GOTO CHOOSE

*

NEW_DEPTH LABEL NEW depth limit more restrictive

SET DEPTH,VALUE pick up new depth limit

4.2. EVAL IN REGISTER MACHINE LANGUAGE 115

NEW_DEPTH: SET DEPTH VALUE

NEQ DEPTH,C’_’,DEPTH_OKAY

L164: NEQ DEPTH C’_’ DEPTH_OKAY

SET DEPTH,C’0’ only top level has no depth limit

L165: SET DEPTH C’0’

DEPTH_OKAY LABEL

JUMP LINKREG,EVAL evaluate second argument

* of ? again

DEPTH_OKAY: JUMP LINKREG EVAL

POP ALIST restore environment

L167: JUMP LINKREG2 POP_ROUTINE

L168: SET ALIST TARGET

POP DEPTH restore depth limit

L169: JUMP LINKREG2 POP_ROUTINE

L170: SET DEPTH TARGET

EQ VALUE,C’)’,RETURNQ convert "no value" to ?

L171: EQ VALUE C’)’ RETURNQ

WRAP LABEL

EMPTY SOURCE2

WRAP: SET SOURCE2 C’)’

L173: LEFT SOURCE2 C’(’

JN VALUE,VALUE,SOURCE2 wrap good value in parentheses

L174: SET SOURCE VALUE

L175: JUMP LINKREG3 JN_ROUTINE

L176: SET VALUE TARGET

GOTO UNWIND

L177: GOTO UNWIND

*

OLD_DEPTH LABEL OLD depth limit more restrictive

JUMP LINKREG,EVAL evaluate second argument

* of ? again

OLD_DEPTH: JUMP LINKREG EVAL

POP ALIST restore environment

L179: JUMP LINKREG2 POP_ROUTINE

L180: SET ALIST TARGET

POP DEPTH restore depth limit

L181: JUMP LINKREG2 POP_ROUTINE

L182: SET DEPTH TARGET

EQ VALUE,C’)’,UNWIND if bad value, keep unwinding

116 CHAPTER 4. THE LISP INTERPRETER EVAL

L183: EQ VALUE C’)’ UNWIND

GOTO WRAP wrap good value in parentheses

L184: GOTO WRAP

*

NOT_EVALD LABEL

*

* Defined Function ...

*

* Bind

*

TL FUNCTION,FUNCTION throw away &

NOT_EVALD: SET SOURCE FUNCTION

L186: JUMP LINKREG3 SPLIT_ROUTINE

L187: SET FUNCTION TARGET2

POPL VARIABLES,FUNCTION pick up variables

* from function definition

L188: SET SOURCE FUNCTION

L189: JUMP LINKREG3 SPLIT_ROUTINE

L190: SET VARIABLES TARGET

L191: SET FUNCTION TARGET2

PUSH ALIST save environment

L192: SET SOURCE ALIST

L193: JUMP LINKREG2 PUSH_ROUTINE

JUMP LINKREG,BIND new environment

* (preserves function)

L194: JUMP LINKREG BIND

*

* Evaluate Body

*

HD EXPRESSION,FUNCTION pick up body of function

L195: SET SOURCE FUNCTION

L196: JUMP LINKREG3 SPLIT_ROUTINE

L197: SET EXPRESSION TARGET

JUMP LINKREG,EVAL evaluate body

L198: JUMP LINKREG EVAL

*

* Unbind

*

POP ALIST restore environment

4.2. EVAL IN REGISTER MACHINE LANGUAGE 117

L199: JUMP LINKREG2 POP_ROUTINE

L200: SET ALIST TARGET

POP DEPTH restore depth limit

L201: JUMP LINKREG2 POP_ROUTINE

L202: SET DEPTH TARGET

GOTO UNWIND

L203: GOTO UNWIND

*

* Evalst ...

*

* input in ARGUMENTS, output in VALUE

EVALST LABEL loop to eval arguments

PUSH LINKREG push return address

EVALST: SET SOURCE LINKREG

L205: JUMP LINKREG2 PUSH_ROUTINE

SET VALUE,ARGUMENTS null argument list has

L206: SET VALUE ARGUMENTS

ATOM ARGUMENTS,UNWIND null list of values

L207: NEQ ARGUMENTS C’(’ UNWIND

L208: SET WORK ARGUMENTS

L209: RIGHT WORK

L210: EQ WORK C’)’ UNWIND

POPL EXPRESSION,ARGUMENTS pick up next argument

L211: SET SOURCE ARGUMENTS

L212: JUMP LINKREG3 SPLIT_ROUTINE

L213: SET EXPRESSION TARGET

L214: SET ARGUMENTS TARGET2

PUSH ARGUMENTS push remaining arguments

L215: SET SOURCE ARGUMENTS

L216: JUMP LINKREG2 PUSH_ROUTINE

JUMP LINKREG,EVAL evaluate first argument

L217: JUMP LINKREG EVAL

POP ARGUMENTS pop remaining arguments

L218: JUMP LINKREG2 POP_ROUTINE

L219: SET ARGUMENTS TARGET

EQ VALUE,C’)’,UNWIND abort ?

L220: EQ VALUE C’)’ UNWIND

PUSH VALUE push value of first argument

L221: SET SOURCE VALUE

118 CHAPTER 4. THE LISP INTERPRETER EVAL

L222: JUMP LINKREG2 PUSH_ROUTINE

JUMP LINKREG,EVALST evaluate remaining arguments

L223: JUMP LINKREG EVALST

POP X pop value of first argument

L224: JUMP LINKREG2 POP_ROUTINE

L225: SET X TARGET

EQ VALUE,C’)’,UNWIND abort ?

L226: EQ VALUE C’)’ UNWIND

JN VALUE,X,VALUE add first value to rest

L227: SET SOURCE X

L228: SET SOURCE2 VALUE

L229: JUMP LINKREG3 JN_ROUTINE

L230: SET VALUE TARGET

GOTO UNWIND

L231: GOTO UNWIND

*

* Bind ...

*

* input in VARIABLES, ARGUMENTS, ALIST, output in ALIST

BIND LABEL must not ruin FUNCTION

PUSH LINKREG

BIND: SET SOURCE LINKREG

L233: JUMP LINKREG2 PUSH_ROUTINE

ATOM VARIABLES,UNWIND any variables left to bind?

L234: NEQ VARIABLES C’(’ UNWIND

L235: SET WORK VARIABLES

L236: RIGHT WORK

L237: EQ WORK C’)’ UNWIND

POPL X,VARIABLES pick up variable

L238: SET SOURCE VARIABLES

L239: JUMP LINKREG3 SPLIT_ROUTINE

L240: SET X TARGET

L241: SET VARIABLES TARGET2

PUSH X save it

L242: SET SOURCE X

L243: JUMP LINKREG2 PUSH_ROUTINE

POPL X,ARGUMENTS pick up argument value

L244: SET SOURCE ARGUMENTS

L245: JUMP LINKREG3 SPLIT_ROUTINE

4.2. EVAL IN REGISTER MACHINE LANGUAGE 119

L246: SET X TARGET

L247: SET ARGUMENTS TARGET2

PUSH X save it

L248: SET SOURCE X

L249: JUMP LINKREG2 PUSH_ROUTINE

JUMP LINKREG,BIND

L250: JUMP LINKREG BIND

POP X pop value

L251: JUMP LINKREG2 POP_ROUTINE

L252: SET X TARGET

JN ALIST,X,ALIST (value ALIST)

L253: SET SOURCE X

L254: SET SOURCE2 ALIST

L255: JUMP LINKREG3 JN_ROUTINE

L256: SET ALIST TARGET

POP X pop variable

L257: JUMP LINKREG2 POP_ROUTINE

L258: SET X TARGET

JN ALIST,X,ALIST (variable value ALIST)

L259: SET SOURCE X

L260: SET SOURCE2 ALIST

L261: JUMP LINKREG3 JN_ROUTINE

L262: SET ALIST TARGET

GOTO UNWIND

L263: GOTO UNWIND

*

* Push & Pop Stack ...

*

PUSH_ROUTINE LABEL input in source

JN STACK,SOURCE,STACK stack = join source to stack

PUSH_ROUTINE: SET SOURCE2 STACK

L265: JUMP LINKREG3 JN_ROUTINE

L266: SET STACK TARGET

GOBACK LINKREG2

L267: GOBACK LINKREG2

*

POP_ROUTINE LABEL output in target

SPLIT TARGET,STACK,STACK target = head of stack

POP_ROUTINE: SET SOURCE STACK

120 CHAPTER 4. THE LISP INTERPRETER EVAL

L269: JUMP LINKREG3 SPLIT_ROUTINE

L270: SET STACK TARGET2

GOBACK LINKREG2 stack = tail of stack

L271: GOBACK LINKREG2

*

* Split S-exp into Head & Tail

*

SPLIT_ROUTINE LABEL input in source,

* output in target & target2

SET TARGET,SOURCE is argument atomic ?

SPLIT_ROUTINE: SET TARGET SOURCE

SET TARGET2,SOURCE if so, its head & its tail

L273: SET TARGET2 SOURCE

ATOM SOURCE,SPLIT_EXIT are just the argument itself

L274: NEQ SOURCE C’(’ SPLIT_EXIT

L275: SET WORK SOURCE

L276: RIGHT WORK

L277: EQ WORK C’)’ SPLIT_EXIT

SET TARGET,X’00’

L278: SET TARGET X’00’

SET TARGET2,X’00’

L279: SET TARGET2 X’00’

*

RIGHT SOURCE skip initial (of source

L280: RIGHT SOURCE

SET WORK,X’00’

L281: SET WORK X’00’

SET PARENS,X’00’ p = 0

L282: SET PARENS X’00’

*

COPY_HD LABEL

NEQ SOURCE,C’(’,NOT_LPAR if (

COPY_HD: NEQ SOURCE C’(’ NOT_LPAR

LEFT PARENS,C’1’ then p = p + 1

L284: LEFT PARENS C’1’

NOT_LPAR LABEL

NEQ SOURCE,C’)’,NOT_RPAR if)

NOT_LPAR: NEQ SOURCE C’)’ NOT_RPAR

RIGHT PARENS then p = p - 1

4.2. EVAL IN REGISTER MACHINE LANGUAGE 121

L286: RIGHT PARENS

NOT_RPAR LABEL

LEFT WORK,SOURCE copy head of source

NOT_RPAR: LEFT WORK SOURCE

EQ PARENS,C’1’,COPY_HD continue if p not = 0

L288: EQ PARENS C’1’ COPY_HD

*

REVERSE_HD LABEL

LEFT TARGET,WORK reverse result into target

REVERSE_HD: LEFT TARGET WORK

NEQ WORK,X’00’,REVERSE_HD

L290: NEQ WORK X’00’ REVERSE_HD

*

SET WORK,C’(’ initial (of tail

L291: SET WORK C’(’

COPY_TL LABEL

LEFT WORK,SOURCE copy tail of source

COPY_TL: LEFT WORK SOURCE

NEQ SOURCE,X’00’,COPY_TL

L293: NEQ SOURCE X’00’ COPY_TL

*

REVERSE_TL LABEL

LEFT TARGET2,WORK reverse result into target2

REVERSE_TL: LEFT TARGET2 WORK

NEQ WORK,X’00’,REVERSE_TL

L295: NEQ WORK X’00’ REVERSE_TL

*

SPLIT_EXIT LABEL

GOBACK LINKREG3 return

SPLIT_EXIT: GOBACK LINKREG3

*

* Join X & Y ...

*

JN_ROUTINE LABEL input in source & source2,

* output in target

SET TARGET,SOURCE

JN_ROUTINE: SET TARGET SOURCE

NEQ SOURCE2,C’(’,JN_EXIT is source2 a list ?

L298: NEQ SOURCE2 C’(’ JN_EXIT

122 CHAPTER 4. THE LISP INTERPRETER EVAL

SET TARGET,X’00’ if not, join is just source1

L299: SET TARGET X’00’

*

SET WORK,X’00’

L300: SET WORK X’00’

LEFT WORK,SOURCE2 copy (at beginning of source2

L301: LEFT WORK SOURCE2

*

COPY1 LABEL

LEFT WORK,SOURCE copy source1

COPY1: LEFT WORK SOURCE

NEQ SOURCE,X’00’,COPY1

L303: NEQ SOURCE X’00’ COPY1

*

COPY2 LABEL

LEFT WORK,SOURCE2 copy rest of source2

COPY2: LEFT WORK SOURCE2

NEQ SOURCE2,X’00’,COPY2

L305: NEQ SOURCE2 X’00’ COPY2

*

REVERSE LABEL

LEFT TARGET,WORK reverse result

REVERSE: LEFT TARGET WORK

NEQ WORK,X’00’,REVERSE

L307: NEQ WORK X’00’ REVERSE

*

JN_EXIT LABEL

GOBACK LINKREG3 return

JN_EXIT: GOBACK LINKREG3

*

* Declare Registers ..

*

EXPRESSION REGISTER

VALUE REGISTER

ALIST REGISTER

STACK REGISTER

DEPTH REGISTER

FUNCTION REGISTER

ARGUMENTS REGISTER

4.3. THE ARITHMETIZATION OF EVAL 123

VARIABLES REGISTER

X REGISTER

Y REGISTER

SOURCE REGISTER

SOURCE2 REGISTER

TARGET REGISTER

TARGET2 REGISTER

WORK REGISTER

PARENS REGISTER

LINKREG REGISTER

LINKREG2 REGISTER

LINKREG3 REGISTER

*

4.3 The Arithmetization of EVAL: Sum-

mary Information

Number of labels in program..... 308

Number of registers in program.. 19

Number of equations generated... 59

Number of =>’s generated........ 1809

Number of auxiliary variables... 448

Equations added to expand =>’s.. 12663 (7 per =>)

Variables added to expand =>’s.. 16281 (9 per =>)

Characters in left-hand side.... 475751

Characters in right-hand side... 424863

Register variables:

ALIST ARGUMENTS DEPTH EXPRESSION FUNCTION LINKREG

LINKREG2 LINKREG3 PARENS SOURCE SOURCE2 STACK

TARGET TARGET2 VALUE VARIABLES WORK X Y

Label variables:

ALIST_SEARCH BIND CHOOSE COMPARE COPY_HD COPY_TL

COPY1 COPY2 DEPTH_OKAY EVAL EVALST

124 CHAPTER 4. THE LISP INTERPRETER EVAL

EXPRESSION_IS_ATOM EXPRESSION_ISNT_ATOM JN_EXIT

JN_ROUTINE L1 L10 L101 L102 L103 L104 L105 L106

L107 L108 L109 L110 L111 L112 L113 L114 L116 L117

L118 L119 L120 L122 L123 L124 L125 L126 L127 L128

L129 L13 L130 L131 L132 L133 L134 L135 L136 L137

L139 L14 L140 L141 L142 L143 L144 L145 L146 L147

L149 L150 L151 L152 L153 L154 L155 L156 L157 L158

L159 L16 L160 L161 L162 L164 L165 L167 L168 L169

L17 L170 L171 L173 L174 L175 L176 L177 L179 L18

L180 L181 L182 L183 L184 L186 L187 L188 L189 L19

L190 L191 L192 L193 L194 L195 L196 L197 L198 L199

L2 L20 L200 L201 L202 L203 L205 L206 L207 L208

L209 L21 L210 L211 L212 L213 L214 L215 L216 L217

L218 L219 L220 L221 L222 L223 L224 L225 L226 L227

L228 L229 L230 L231 L233 L234 L235 L236 L237 L238

L239 L24 L240 L241 L242 L243 L244 L245 L246 L247

L248 L249 L25 L250 L251 L252 L253 L254 L255 L256

L257 L258 L259 L26 L260 L261 L262 L263 L265 L266

L267 L269 L27 L270 L271 L273 L274 L275 L276 L277

L278 L279 L28 L280 L281 L282 L284 L286 L288 L29

L290 L291 L293 L295 L298 L299 L3 L30 L300 L301

L303 L305 L307 L31 L32 L33 L34 L35 L36 L37 L39 L4

L40 L41 L42 L43 L44 L45 L46 L47 L48 L49 L5 L50 L51

L52 L53 L55 L56 L57 L58 L59 L6 L60 L61 L62 L63 L64

L65 L66 L67 L68 L70 L71 L72 L73 L75 L76 L77 L78

L79 L8 L80 L81 L82 L83 L84 L85 L86 L87 L88 L89 L90

L91 L92 L93 L96 L97 L98 L99 NEW_DEPTH NO_LIMIT

NOT_ATOM NOT_EQUAL NOT_EVAL NOT_EVALD

NOT_IF_THEN_ELSE NOT_LPAR NOT_OUTPUT NOT_QUOTE

NOT_RPAR OLD_DEPTH POP_ROUTINE PUSH_ROUTINE

RETURNQ RETURN0 RETURN1 REVERSE REVERSE_HD

REVERSE_TL SPLIT_EXIT SPLIT_ROUTINE THEN_CLAUSE

UNWIND WRAP

Auxiliary variables:

char.ARGUMENTS char.DEPTH char.EXPRESSION

char.FUNCTION char.PARENS char.SOURCE char.SOURCE2

char.VALUE char.VARIABLES char.WORK char.X char.Y

dont.set.ALIST dont.set.ARGUMENTS dont.set.DEPTH

4.3. THE ARITHMETIZATION OF EVAL 125

dont.set.EXPRESSION dont.set.FUNCTION

dont.set.LINKREG dont.set.LINKREG2

dont.set.LINKREG3 dont.set.PARENS dont.set.SOURCE

dont.set.SOURCE2 dont.set.STACK dont.set.TARGET

dont.set.TARGET2 dont.set.VALUE dont.set.VARIABLES

dont.set.WORK dont.set.X dont.set.Y

eq.ARGUMENTS.C’(’ eq.DEPTH.C’(’ eq.DEPTH.C’_’

eq.EXPRESSION.C’(’ eq.EXPRESSION.Y

eq.FUNCTION.C’.’ eq.FUNCTION.C’+’ eq.FUNCTION.C’!’

eq.FUNCTION.C’*’ eq.FUNCTION.C’-’ eq.FUNCTION.C’/’

eq.FUNCTION.C’,’ eq.FUNCTION.C’?’

eq.FUNCTION.C’’’’ eq.FUNCTION.C’=’ eq.PARENS.C’1’

eq.SOURCE.C’(’ eq.SOURCE.C’)’ eq.SOURCE.X’00’

eq.SOURCE2.C’(’ eq.SOURCE2.X’00’ eq.VALUE.C’)’

eq.VALUE.C’0’ eq.VARIABLES.C’(’ eq.WORK.C’)’

eq.WORK.X’00’ eq.X.C’(’ eq.X.C’_’ eq.X.X’00’

eq.X.Y eq.Y.C’(’ ge.ARGUMENTS.C’(’

ge.C’.’.FUNCTION ge.C’(’.ARGUMENTS ge.C’(’.DEPTH

ge.C’(’.EXPRESSION ge.C’(’.SOURCE ge.C’(’.SOURCE2

ge.C’(’.VARIABLES ge.C’(’.X ge.C’(’.Y

ge.C’+’.FUNCTION ge.C’!’.FUNCTION ge.C’*’.FUNCTION

ge.C’)’.SOURCE ge.C’)’.VALUE ge.C’)’.WORK

ge.C’-’.FUNCTION ge.C’/’.FUNCTION ge.C’,’.FUNCTION

ge.C’_’.DEPTH ge.C’_’.X ge.C’?’.FUNCTION

ge.C’’’’.FUNCTION ge.C’=’.FUNCTION ge.C’0’.VALUE

ge.C’1’.PARENS ge.DEPTH.C’(’ ge.DEPTH.C’_’

ge.EXPRESSION.C’(’ ge.EXPRESSION.Y

ge.FUNCTION.C’.’ ge.FUNCTION.C’+’ ge.FUNCTION.C’!’

ge.FUNCTION.C’*’ ge.FUNCTION.C’-’ ge.FUNCTION.C’/’

ge.FUNCTION.C’,’ ge.FUNCTION.C’?’

ge.FUNCTION.C’’’’ ge.FUNCTION.C’=’ ge.PARENS.C’1’

ge.SOURCE.C’(’ ge.SOURCE.C’)’ ge.SOURCE.X’00’

ge.SOURCE2.C’(’ ge.SOURCE2.X’00’ ge.VALUE.C’)’

ge.VALUE.C’0’ ge.VARIABLES.C’(’ ge.WORK.C’)’

ge.WORK.X’00’ ge.X.C’(’ ge.X.C’_’ ge.X.X’00’

ge.X.Y ge.X’00’.SOURCE ge.X’00’.SOURCE2

ge.X’00’.WORK ge.X’00’.X ge.Y.C’(’ ge.Y.EXPRESSION

ge.Y.X goback.JN_EXIT goback.L14 goback.L267

goback.L271 goback.SPLIT_EXIT i ic input.ALIST

126 CHAPTER 4. THE LISP INTERPRETER EVAL

input.ARGUMENTS input.DEPTH input.EXPRESSION

input.FUNCTION input.LINKREG input.LINKREG2

input.LINKREG3 input.PARENS input.SOURCE

input.SOURCE2 input.STACK input.TARGET

input.TARGET2 input.VALUE input.VARIABLES

input.WORK input.X input.Y longest.label next.ic

number.of.instructions output.ALIST

output.ARGUMENTS output.DEPTH output.EXPRESSION

output.FUNCTION output.LINKREG output.LINKREG2

output.LINKREG3 output.PARENS output.SOURCE

output.SOURCE2 output.STACK output.TARGET

output.TARGET2 output.VALUE output.VARIABLES

output.WORK output.X output.Y q q.minus.1

set.ALIST set.ALIST.L1 set.ALIST.L130

set.ALIST.L131 set.ALIST.L134 set.ALIST.L143

set.ALIST.L144 set.ALIST.L168 set.ALIST.L180

set.ALIST.L2 set.ALIST.L200 set.ALIST.L256

set.ALIST.L262 set.ARGUMENTS set.ARGUMENTS.L214

set.ARGUMENTS.L219 set.ARGUMENTS.L247

set.ARGUMENTS.L41 set.ARGUMENTS.L46

set.ARGUMENTS.L58 set.ARGUMENTS.L63

set.ARGUMENTS.L68 set.ARGUMENTS.L80 set.DEPTH

set.DEPTH.L125 set.DEPTH.L136 set.DEPTH.L165

set.DEPTH.L170 set.DEPTH.L182 set.DEPTH.L202

set.DEPTH.L4 set.DEPTH.NEW_DEPTH set.EXPRESSION

set.EXPRESSION.L127 set.EXPRESSION.L140

set.EXPRESSION.L197 set.EXPRESSION.L213

set.EXPRESSION.L40 set.EXPRESSION.L57

set.EXPRESSION.L71 set.FUNCTION set.FUNCTION.L187

set.FUNCTION.L191 set.FUNCTION.L48

set.FUNCTION.L78 set.LINKREG

set.LINKREG.DEPTH_OKAY set.LINKREG.L13

set.LINKREG.L132 set.LINKREG.L194 set.LINKREG.L198

set.LINKREG.L217 set.LINKREG.L223 set.LINKREG.L250

set.LINKREG.L44 set.LINKREG.L5 set.LINKREG.L61

set.LINKREG.L72 set.LINKREG.L76

set.LINKREG.OLD_DEPTH set.LINKREG2

set.LINKREG2.L122 set.LINKREG2.L129

set.LINKREG2.L133 set.LINKREG2.L135

4.3. THE ARITHMETIZATION OF EVAL 127

set.LINKREG2.L142 set.LINKREG2.L16

set.LINKREG2.L167 set.LINKREG2.L169

set.LINKREG2.L179 set.LINKREG2.L181

set.LINKREG2.L193 set.LINKREG2.L199

set.LINKREG2.L201 set.LINKREG2.L205

set.LINKREG2.L216 set.LINKREG2.L218

set.LINKREG2.L222 set.LINKREG2.L224

set.LINKREG2.L233 set.LINKREG2.L243

set.LINKREG2.L249 set.LINKREG2.L251

set.LINKREG2.L257 set.LINKREG2.L43

set.LINKREG2.L45 set.LINKREG2.L60 set.LINKREG2.L62

set.LINKREG2.L75 set.LINKREG2.L77

set.LINKREG2.UNWIND set.LINKREG3 set.LINKREG3.L101

set.LINKREG3.L108 set.LINKREG3.L124

set.LINKREG3.L157 set.LINKREG3.L160

set.LINKREG3.L175 set.LINKREG3.L186

set.LINKREG3.L189 set.LINKREG3.L196

set.LINKREG3.L212 set.LINKREG3.L229

set.LINKREG3.L239 set.LINKREG3.L245

set.LINKREG3.L255 set.LINKREG3.L261

set.LINKREG3.L265 set.LINKREG3.L269

set.LINKREG3.L29 set.LINKREG3.L33 set.LINKREG3.L39

set.LINKREG3.L51 set.LINKREG3.L56 set.LINKREG3.L67

set.LINKREG3.L70 set.LINKREG3.L82 set.LINKREG3.L86

set.PARENS set.PARENS.L282 set.PARENS.L284

set.PARENS.L286 set.SOURCE set.SOURCE.BIND

set.SOURCE.COPY_TL set.SOURCE.COPY1

set.SOURCE.EVAL set.SOURCE.EVALST

set.SOURCE.EXPRESSION_ISNT_ATOM set.SOURCE.L106

set.SOURCE.L123 set.SOURCE.L128 set.SOURCE.L141

set.SOURCE.L156 set.SOURCE.L159 set.SOURCE.L174

set.SOURCE.L188 set.SOURCE.L192 set.SOURCE.L195

set.SOURCE.L211 set.SOURCE.L215 set.SOURCE.L221

set.SOURCE.L227 set.SOURCE.L238 set.SOURCE.L242

set.SOURCE.L244 set.SOURCE.L248 set.SOURCE.L253

set.SOURCE.L259 set.SOURCE.L28 set.SOURCE.L280

set.SOURCE.L32 set.SOURCE.L42 set.SOURCE.L50

set.SOURCE.L55 set.SOURCE.L59 set.SOURCE.L66

set.SOURCE.L81 set.SOURCE.L85 set.SOURCE.NO_LIMIT

128 CHAPTER 4. THE LISP INTERPRETER EVAL

set.SOURCE.NOT_EQUAL set.SOURCE.NOT_EVALD

set.SOURCE.NOT_IF_THEN_ELSE set.SOURCE.NOT_RPAR

set.SOURCE.POP_ROUTINE set.SOURCE.THEN_CLAUSE

set.SOURCE2 set.SOURCE2.COPY2 set.SOURCE2.L107

set.SOURCE2.L173 set.SOURCE2.L228 set.SOURCE2.L254

set.SOURCE2.L260 set.SOURCE2.L301

set.SOURCE2.PUSH_ROUTINE set.SOURCE2.WRAP

set.STACK set.STACK.L266 set.STACK.L270

set.STACK.L3 set.TARGET set.TARGET.JN_ROUTINE

set.TARGET.L278 set.TARGET.L299 set.TARGET.REVERSE

set.TARGET.REVERSE_HD set.TARGET.SPLIT_ROUTINE

set.TARGET2 set.TARGET2.L273 set.TARGET2.L279

set.TARGET2.REVERSE_TL set.VALUE

set.VALUE.ALIST_SEARCH set.VALUE.L102

set.VALUE.L104 set.VALUE.L109 set.VALUE.L113

set.VALUE.L116 set.VALUE.L139 set.VALUE.L176

set.VALUE.L206 set.VALUE.L230 set.VALUE.L34

set.VALUE.L52 set.VALUE.RETURNQ set.VALUE.RETURN0

set.VALUE.RETURN1 set.VARIABLES set.VARIABLES.L190

set.VARIABLES.L241 set.WORK set.WORK.COPY_TL

set.WORK.COPY1 set.WORK.COPY2 set.WORK.L118

set.WORK.L119 set.WORK.L149 set.WORK.L150

set.WORK.L153 set.WORK.L154 set.WORK.L18

set.WORK.L19 set.WORK.L208 set.WORK.L209

set.WORK.L235 set.WORK.L236 set.WORK.L25

set.WORK.L26 set.WORK.L275 set.WORK.L276

set.WORK.L281 set.WORK.L291 set.WORK.L300

set.WORK.L301 set.WORK.L90 set.WORK.L91

set.WORK.NOT_RPAR set.WORK.REVERSE

set.WORK.REVERSE_HD set.WORK.REVERSE_TL set.X

set.X.EXPRESSION_IS_ATOM set.X.L145 set.X.L158

set.X.L225 set.X.L240 set.X.L246 set.X.L252

set.X.L258 set.X.L31 set.X.L35 set.X.L83 set.X.L96

set.Y set.Y.L146 set.Y.L161 set.Y.L30 set.Y.L84

set.Y.L87 set.Y.L97 shift.ARGUMENTS shift.DEPTH

shift.EXPRESSION shift.FUNCTION shift.PARENS

shift.SOURCE shift.SOURCE2 shift.VALUE

shift.VARIABLES shift.WORK shift.X shift.Y time

total.input

4.4. START OF LEFT-HAND SIDE 129

Variables added to expand =>’s:

r1 s1 t1 u1 v1 w1 x1 y1 z1 ... z1809

Elapsed time is 491.678602 seconds.

4.4 The Arithmetization of EVAL: Start

of Left-Hand Side

(total.input)**2+(input.ALIST+input.ARGUMENTS+input.DEPTH+inpu

t.EXPRESSION+input.FUNCTION+input.LINKREG+input.LINKREG2+input

.LINKREG3+input.PARENS+input.SOURCE+input.SOURCE2+input.STACK+

input.TARGET+input.TARGET2+input.VALUE+input.VARIABLES+input.W

ORK+input.X+input.Y)**2 + (number.of.instructions)**2+(308)**2

+ (longest.label)**2+(20)**2 + (q)**2+(256**(total.input+time

+number.of.instructions+longest.label+3))**2 + (q.minus.1+1)**

2+(q)**2 + (1+q*i)**2+(i+q**time)**2 + (r1)**2+(L1)**2 + (s1)*

*2+(i)**2 + (t1)**2+(2**s1)**2 + ((1+t1)**s1)**2+(v1*t1**(r1+1

)+u1*t1**r1+w1)**2 + (w1+x1+1)**2+(t1**r1)**2 + (u1+y1+1)**2+(

t1)**2 + (u1)**2+(2*z1+1)**2 + (r2)**2+(L2)**2 + (s2)**2+(i)**

2 + (t2)**2+(2**s2)**2 + ((1+t2)**s2)**2+(v2*t2**(r2+1)+u2*t2*

*r2+w2)**2 + (w2+x2+1)**2+(t2**r2)**2 + (u2+y2+1)**2+(t2)**2 +

(u2)**2+(2*z2+1)**2 + (r3)**2+(L3)**2 + (s3)**2+(i)**2 + (t3)

2+(2s3)**2 + ((1+t3)**s3)**2+(v3*t3**(r3+1)+u3*t3**r3+w3)*

*2 + (w3+x3+1)**2+(t3**r3)**2 + (u3+y3+1)**2+(t3)**2 + (u3)**2

+(2*z3+1)**2 + (r4)**2+(L4)**2 + (s4)**2+(i)**2 + (t4)**2+(2**

s4)**2 + ((1+t4)**s4)**2+(v4*t4**(r4+1)+u4*t4**r4+w4)**2 + (w4

+x4+1)**2+(t4**r4)**2 + (u4+y4+1)**2+(t4)**2 + (u4)**2+(2*z4+1

)**2 + (r5)**2+(L5)**2 + (s5)**2+(i)**2 + (t5)**2+(2**s5)**2 +

((1+t5)**s5)**2+(v5*t5**(r5+1)+u5*t5**r5+w5)**2 + (w5+x5+1)**

2+(t5**r5)**2 + (u5+y5+1)**2+(t5)**2 + (u5)**2+(2*z5+1)**2 + (

r6)**2+(L6)**2 + (s6)**2+(i)**2 + (t6)**2+(2**s6)**2 + ((1+t6)

s6)2+(v6*t6**(r6+1)+u6*t6**r6+w6)**2 + (w6+x6+1)**2+(t6**r

6)**2 + (u6+y6+1)**2+(t6)**2 + (u6)**2+(2*z6+1)**2 + (r7)**2+(

RETURNQ)**2 + (s7)**2+(i)**2 + (t7)**2+(2**s7)**2 + ((1+t7)**s

7)**2+(v7*t7**(r7+1)+u7*t7**r7+w7)**2 + (w7+x7+1)**2+(t7**r7)*

*2 + (u7+y7+1)**2+(t7)**2 + (u7)**2+(2*z7+1)**2 + (r8)**2+(L8)

2 + (s8)2+(i)**2 + (t8)**2+(2**s8)**2 + ((1+t8)**s8)**2+(v

130 CHAPTER 4. THE LISP INTERPRETER EVAL

8*t8**(r8+1)+u8*t8**r8+w8)**2 + (w8+x8+1)**2+(t8**r8)**2 + (u8

+y8+1)**2+(t8)**2 + (u8)**2+(2*z8+1)**2 + (r9)**2+(RETURN0)**2

+ (s9)**2+(i)**2 + (t9)**2+(2**s9)**2 + ((1+t9)**s9)**2+(v9*t

9**(r9+1)+u9*t9**r9+w9)**2 + (w9+x9+1)**2+(t9**r9)**2 + (u9+y9

+1)**2+(t9)**2 + (u9)**2+(2*z9+1)**2 + (r10)**2+(L10)**2 + (s1

0)**2+(i)**2 + (t10)**2+(2**s10)**2 + ((1+t10)**s10)**2+(v10*t

10**(r10+1)+u10*t10**r10+w10)**2 + (w10+x10+1)**2+(t10**r10)**

2 + (u10+y10+1)**2+(t10)**2 + (u10)**2+(2*z10+1)**2 + (r11)**2

+(RETURN1)**2 + (s11)**2+(i)**2 + (t11)**2+(2**s11)**2 + ((1+t

11)**s11)**2+(v11*t11**(r11+1)+u11*t11**r11+w11)**2 + (w11+x11

+1)**2+(t11**r11)**2 + (u11+y11+1)**2+(t11)**2 + (u11)**2+(2*z

11+1)**2 + (r12)**2+(UNWIND)**2 + (s12)**2+(i)**2 + (t12)**2+(

2**s12)**2 + ((1+t12)**s12)**2+(v12*t12**(r12+1)+u12*t12**r12+

w12)**2 + (w12+x12+1)**2+(t12**r12)**2 + (u12+y12+1)**2+(t12)*

*2 + (u12)**2+(2*z12+1)**2 + (r13)**2+(L13)**2 + (s13)**2+(i)*

*2 + (t13)**2+(2**s13)**2 + ((1+t13)**s13)**2+(v13*t13**(r13+1

)+u13*t13**r13+w13)**2 + (w13+x13+1)**2+(t13**r13)**2 + (u13+y

13+1)**2+(t13)**2 + (u13)**2+(2*z13+1)**2 + (r14)**2+(L14)**2

+ (s14)**2+(i)**2 + (t14)**2+(2**s14)**2 + ((1+t14)**s14)**2+(

v14*t14**(r14+1)+u14*t14**r14+w14)**2 + (w14+x14+1)**2+(t14**r

14)**2 + (u14+y14+1)**2+(t14)**2 + (u14)**2+(2*z14+1)**2 + (r1

5)**2+(EVAL)**2 + (s15)**2+(i)**2 + (t15)**2+(2**s15)**2 + ((1

+t15)**s15)**2+(v15*t15**(r15+1)+u15*t15**r15+w15)**2 + (w15+x

15+1)**2+(t15**r15)**2 + (u15+y15+1)**2+(t15)**2 + (u15)**2+(2

*z15+1)**2 + (r16)**2+(L16)**2 + (s16)**2+(i)**2 + (t16)**2+(2

s16)2 + ((1+t16)**s16)**2+(v16*t16**(r16+1)+u16*t16**r16+w

16)**2 + (w16+x16+1)**2+(t16**r16)**2 + (u16+y16+1)**2+(t16)**

2 + (u16)**2+(2*z16+1)**2 + (r17)**2+(L17)**2 + (s17)**2+(i)**

2 + (t17)**2+(2**s17)**2 + ((1+t17)**s17)**2+(v17*t17**(r17+1)

+u17*t17**r17+w17)**2 + (w17+x17+1)**2+(t17**r17)**2 + (u17+y1

7+1)**2+(t17)**2 + (u17)**2+(2*z17+1)**2 + (r18)**2+(L18)**2 +

(s18)**2+(i)**2 + (t18)**2+(2**s18)**2 + ((1+t18)**s18)**2+(v

18*t18**(r18+1)+u18*t18**r18+w18)**2 + (w18+x18+1)**2+(t18**r1

8)**2 + (u18+y18+1)**2+(t18)**2 + (u18)**2+(2*z18+1)**2 + (r19

)**2+(L19)**2 + (s19)**2+(i)**2 + (t19)**2+(2**s19)**2 + ((1+t

19)**s19)**2+(v19*t19**(r19+1)+u19*t19**r19+w19)**2 + (w19+x19

+1)**2+(t19**r19)**2 + (u19+y19+1)**2+(t19)**2 + (u19)**2+(2*z

19+1)**2 + (r20)**2+(L20)**2 + (s20)**2+(i)**2 + (t20)**2+(2**

s20)**2 + ((1+t20)**s20)**2+(v20*t20**(r20+1)+u20*t20**r20+w20

4.5. END OF RIGHT-HAND SIDE 131

)**2 + (w20+x20+1)**2+(t20**r20)**2 + (u20+y20+1)**2+(t20)**2

+ (u20)**2+(2*z20+1)**2 + (r21)**2+(L21)**2 + (s21)**2+(i)**2

+ (t21)**2+(2**s21)**2 + ((1+t21)**s21)**2+(v21*t21**(r21+1)+u

21*t21**r21+w21)**2 + (w21+x21+1)**2+(t21**r21)**2 + (u21+y21+

1)**2+(t21)**2 + (u21)**2+(2*z21+1)**2 + (r22)**2+(EXPRESSION_

IS_ATOM)**2 + (s22)**2+(i)**2 + (t22)**2+(2**s22)**2 + ((1+t22

)**s22)**2+(v22*t22**(r22+1)+u22*t22**r22+w22)**2 + (w22+x22+1

)**2+(t22**r22)**2 + (u22+y22+1)**2+(t22)**2 + (u22)**2+(2*z22

+1)**2 + (r23)**2+(ALIST_SEARCH)**2 + (s23)**2+(i)**2 + (t23)*

*2+(2**s23)**2 + ((1+t23)**s23)**2+(v23*t23**(r23+1)+u23*t23**

r23+w23)**2 + (w23+x23+1)**2+(t23**r23)**2 + (u23+y23+1)**2+(t

23)**2 + (u23)**2+(2*z23+1)**2 + (r24)**2+(L24)**2 + (s24)**2+

(i)**2 + (t24)**2+(2**s24)**2 + ((1+t24)**s24)**2+(v24*t24**(r

4.5 The Arithmetization of EVAL: End of

Right-Hand Side

E.X’00’) + 2*(s1790)*(ge.SOURCE.X’00’+ge.X’00’.SOURCE) + 2*(t1

790)*(2**s1790) + 2*((1+t1790)**s1790)*(v1790*t1790**(r1790+1)

+u1790*t1790**r1790+w1790) + 2*(w1790+x1790+1)*(t1790**r1790)

+ 2*(u1790+y1790+1)*(t1790) + 2*(u1790)*(2*z1790+1) + 2*(r1791

)*(ge.SOURCE.X’00’+ge.X’00’.SOURCE) + 2*(s1791)*(2*eq.SOURCE.X

’00’+i) + 2*(t1791)*(2**s1791) + 2*((1+t1791)**s1791)*(v1791*t

1791**(r1791+1)+u1791*t1791**r1791+w1791) + 2*(w1791+x1791+1)*

(t1791**r1791) + 2*(u1791+y1791+1)*(t1791) + 2*(u1791)*(2*z179

1+1) + 2*(r1792)*(ge.SOURCE2.C’(’) + 2*(s1792)*(i) + 2*(t1792)

*(2**s1792) + 2*((1+t1792)**s1792)*(v1792*t1792**(r1792+1)+u17

92*t1792**r1792+w1792) + 2*(w1792+x1792+1)*(t1792**r1792) + 2*

(u1792+y1792+1)*(t1792) + 2*(u1792)*(2*z1792+1) + 2*(r1793)*(2

56*ge.SOURCE2.C’(’) + 2*(s1793+128*i)*(256*i+char.SOURCE2) + 2

(t1793)(2**s1793) + 2*((1+t1793)**s1793)*(v1793*t1793**(r179

3+1)+u1793*t1793**r1793+w1793) + 2*(w1793+x1793+1)*(t1793**r17

93) + 2*(u1793+y1793+1)*(t1793) + 2*(u1793)*(2*z1793+1) + 2*(r

1794+128*i)*(256*i+char.SOURCE2) + 2*(s1794)*(256*ge.SOURCE2.C

’(’+255*i) + 2*(t1794)*(2**s1794) + 2*((1+t1794)**s1794)*(v179

4*t1794**(r1794+1)+u1794*t1794**r1794+w1794) + 2*(w1794+x1794+

1)*(t1794**r1794) + 2*(u1794+y1794+1)*(t1794) + 2*(u1794)*(2*z

1794+1) + 2*(r1795)*(ge.C’(’.SOURCE2) + 2*(s1795)*(i) + 2*(t17

132 CHAPTER 4. THE LISP INTERPRETER EVAL

95)*(2**s1795) + 2*((1+t1795)**s1795)*(v1795*t1795**(r1795+1)+

u1795*t1795**r1795+w1795) + 2*(w1795+x1795+1)*(t1795**r1795) +

2*(u1795+y1795+1)*(t1795) + 2*(u1795)*(2*z1795+1) + 2*(r1796)

*(256*ge.C’(’.SOURCE2) + 2*(s1796+char.SOURCE2)*(256*i+128*i)

+ 2*(t1796)*(2**s1796) + 2*((1+t1796)**s1796)*(v1796*t1796**(r

1796+1)+u1796*t1796**r1796+w1796) + 2*(w1796+x1796+1)*(t1796**

r1796) + 2*(u1796+y1796+1)*(t1796) + 2*(u1796)*(2*z1796+1) + 2

(r1797+char.SOURCE2)(256*i+128*i) + 2*(s1797)*(256*ge.C’(’.S

OURCE2+255*i) + 2*(t1797)*(2**s1797) + 2*((1+t1797)**s1797)*(v

1797*t1797**(r1797+1)+u1797*t1797**r1797+w1797) + 2*(w1797+x17

97+1)*(t1797**r1797) + 2*(u1797+y1797+1)*(t1797) + 2*(u1797)*(

2*z1797+1) + 2*(r1798)*(eq.SOURCE2.C’(’) + 2*(s1798)*(i) + 2*(

t1798)*(2**s1798) + 2*((1+t1798)**s1798)*(v1798*t1798**(r1798+

1)+u1798*t1798**r1798+w1798) + 2*(w1798+x1798+1)*(t1798**r1798

) + 2*(u1798+y1798+1)*(t1798) + 2*(u1798)*(2*z1798+1) + 2*(r17

99)*(2*eq.SOURCE2.C’(’) + 2*(s1799)*(ge.SOURCE2.C’(’+ge.C’(’.S

OURCE2) + 2*(t1799)*(2**s1799) + 2*((1+t1799)**s1799)*(v1799*t

1799**(r1799+1)+u1799*t1799**r1799+w1799) + 2*(w1799+x1799+1)*

(t1799**r1799) + 2*(u1799+y1799+1)*(t1799) + 2*(u1799)*(2*z179

9+1) + 2*(r1800)*(ge.SOURCE2.C’(’+ge.C’(’.SOURCE2) + 2*(s1800)

*(2*eq.SOURCE2.C’(’+i) + 2*(t1800)*(2**s1800) + 2*((1+t1800)**

s1800)*(v1800*t1800**(r1800+1)+u1800*t1800**r1800+w1800) + 2*(

w1800+x1800+1)*(t1800**r1800) + 2*(u1800+y1800+1)*(t1800) + 2*

(u1800)*(2*z1800+1) + 2*(r1801)*(ge.SOURCE2.X’00’) + 2*(s1801)

(i) + 2(t1801)*(2**s1801) + 2*((1+t1801)**s1801)*(v1801*t180

1**(r1801+1)+u1801*t1801**r1801+w1801) + 2*(w1801+x1801+1)*(t1

801**r1801) + 2*(u1801+y1801+1)*(t1801) + 2*(u1801)*(2*z1801+1

) + 2*(r1802)*(256*ge.SOURCE2.X’00’) + 2*(s1802+0*i)*(256*i+ch

ar.SOURCE2) + 2*(t1802)*(2**s1802) + 2*((1+t1802)**s1802)*(v18

02*t1802**(r1802+1)+u1802*t1802**r1802+w1802) + 2*(w1802+x1802

+1)*(t1802**r1802) + 2*(u1802+y1802+1)*(t1802) + 2*(u1802)*(2*

z1802+1) + 2*(r1803+0*i)*(256*i+char.SOURCE2) + 2*(s1803)*(256

*ge.SOURCE2.X’00’+255*i) + 2*(t1803)*(2**s1803) + 2*((1+t1803)

s1803)*(v1803*t1803(r1803+1)+u1803*t1803**r1803+w1803) + 2

(w1803+x1803+1)(t1803**r1803) + 2*(u1803+y1803+1)*(t1803) +

2*(u1803)*(2*z1803+1) + 2*(r1804)*(ge.X’00’.SOURCE2) + 2*(s180

4)*(i) + 2*(t1804)*(2**s1804) + 2*((1+t1804)**s1804)*(v1804*t1

804**(r1804+1)+u1804*t1804**r1804+w1804) + 2*(w1804+x1804+1)*(

t1804**r1804) + 2*(u1804+y1804+1)*(t1804) + 2*(u1804)*(2*z1804

4.5. END OF RIGHT-HAND SIDE 133

+1) + 2*(r1805)*(256*ge.X’00’.SOURCE2) + 2*(s1805+char.SOURCE2

)*(256*i+0*i) + 2*(t1805)*(2**s1805) + 2*((1+t1805)**s1805)*(v

1805*t1805**(r1805+1)+u1805*t1805**r1805+w1805) + 2*(w1805+x18

05+1)*(t1805**r1805) + 2*(u1805+y1805+1)*(t1805) + 2*(u1805)*(

2*z1805+1) + 2*(r1806+char.SOURCE2)*(256*i+0*i) + 2*(s1806)*(2

56*ge.X’00’.SOURCE2+255*i) + 2*(t1806)*(2**s1806) + 2*((1+t180

6)**s1806)*(v1806*t1806**(r1806+1)+u1806*t1806**r1806+w1806) +

2*(w1806+x1806+1)*(t1806**r1806) + 2*(u1806+y1806+1)*(t1806)

+ 2*(u1806)*(2*z1806+1) + 2*(r1807)*(eq.SOURCE2.X’00’) + 2*(s1

807)*(i) + 2*(t1807)*(2**s1807) + 2*((1+t1807)**s1807)*(v1807*

t1807**(r1807+1)+u1807*t1807**r1807+w1807) + 2*(w1807+x1807+1)

*(t1807**r1807) + 2*(u1807+y1807+1)*(t1807) + 2*(u1807)*(2*z18

07+1) + 2*(r1808)*(2*eq.SOURCE2.X’00’) + 2*(s1808)*(ge.SOURCE2

.X’00’+ge.X’00’.SOURCE2) + 2*(t1808)*(2**s1808) + 2*((1+t1808)

s1808)*(v1808*t1808(r1808+1)+u1808*t1808**r1808+w1808) + 2

(w1808+x1808+1)(t1808**r1808) + 2*(u1808+y1808+1)*(t1808) +

2*(u1808)*(2*z1808+1) + 2*(r1809)*(ge.SOURCE2.X’00’+ge.X’00’.S

OURCE2) + 2*(s1809)*(2*eq.SOURCE2.X’00’+i) + 2*(t1809)*(2**s18

09) + 2*((1+t1809)**s1809)*(v1809*t1809**(r1809+1)+u1809*t1809

r1809+w1809) + 2*(w1809+x1809+1)*(t1809r1809) + 2*(u1809+y

1809+1)*(t1809) + 2*(u1809)*(2*z1809+1)

134 CHAPTER 4. THE LISP INTERPRETER EVAL

Part II

Program Size, Halting
Probabilities, Randomness,

& Metamathematics

135

137

Having done the bulk of the work necessary to encode the halting
probability Ω as an exponential diophantine equation, we now turn to
theory. In Chapter 5 we trace the evolution of the concepts of program-
size complexity. In Chapter 6 we define these concepts formally and
develop their basic properties. In Chapter 7 we study the notion of a
random real and show that Ω is a random real. And in Chapter 8 we
develop incompleteness theorems for random reals.

138

Chapter 5

Conceptual Development

The purpose of this chapter is to introduce the notion of program-size
complexity. We do this by giving a smoothed-over story of the evolution
of this concept, giving proof sketches instead of formal proofs, starting
with program size in LISP. In Chapter 6 we will start over, and give
formal definitions and proofs.

5.1 Complexity via LISP Expressions

Having gone to the trouble of defining a particularly clean and elegant
version of LISP, one in which the definition of LISP in LISP really
is equivalent to running the interpreter, let’s start using it to prove
theorems! The usual approach to program-size complexity is rather
abstract, in that no particular programming language is directly visible.
Eventually, we shall have to go a little bit in this direction. But we can
start with a very straightforward concrete approach, namely to consider
the size of a LISP expression measured by the number of characters
it has. This will help to build our intuition before we are forced to
use a more abstract approach to get stronger theorems. The path we
shall follow is similar to that in my first paper [Chaitin (1966,1969a)],
except that there I used Turing machines instead of LISP.

So we shall now study, for any given LISP object, its program-size
complexity, which is the size of the smallest program (i.e., S-expression)
for calculating it. As for notation, we shall use HLISP (“information

139

140 CHAPTER 5. CONCEPTUAL DEVELOPMENT

content measured using LISP”), usually abbreviated in this chapter
by omitting the subscript for LISP. And we write |S| for the size in
characters of an S-expression S. Thus

HLISP(x) ≡ min
x=value(p)

|p|.

Thus the complexity of an S-expression is the size of the smallest S-
expression that evaluates to it,1 the complexity of a function is the
complexity of the simplest S-expression that defines it,2 and the com-
plexity of an r.e. set of S-expressions is the complexity of the simplest
partial function that is defined iff its argument is an S-expression in the
r.e. set.

We now turn from the size of programs to their probabilities. In
the probability measure on the programs that we have in mind, the
probability of a k-character program is 128−k. This is the natural choice
since our LISP “alphabet” has 128 characters (see Figure 3.1), but let’s
show that it works.

Consider the unit interval. Divide it into 128 intervals, one for
each 7-bit character in the LISP alphabet. Divide each interval into
128 subintervals, and each subinterval into 128 subsubintervals, etc.
Thus an S-expression with k characters corresponds to a piece of the
unit interval that is 128−k long. Now let’s consider programs that are
syntactically valid, i.e., that have parentheses that balance. Since no
extension of such a program is syntactically valid, it follows that if we
sum the lengths of the intervals associated with character strings that
have balanced parentheses, no subinterval is counted more than once,
and thus this sum is between 0 and 1, and defines in a natural manner
the probability that an S-expression is syntactically valid.

In fact, we shall now show that the probability of a syntactically
correct LISP S-expression is 1, if we adopt the convention that the
invalid S-expression “)” consisting just of a right parenthesis actually
denotes the empty list “()”. I.e., in Conway’s terminology [Conway

(1986)], “LISP has no syntax,” except for a set of measure zero. For

1Self-contained S-expression; i.e., the expression is evaluated in an empty envi-
ronment, and all needed function definitions must be made locally within it.

2The expressions may evaluate to different function definitions, as long as these
definitions compute the same function.

5.1. COMPLEXITY VIA LISP EXPRESSIONS 141

if one flips 7 coins for each character, eventually the number of right
parentheses will overtake the number of left parentheses, with probabil-
ity one. This is similar to the fact that heads versus tails will cross the
origin infinitely often, with probability one. I.e., a symmetrical random
walk on a line will return to the origin with probability one. For a more
detailed explanation, see Appendix B.

Now let’s select from the set of all syntactically correct programs,
which has measure 1, those that give a particular result. I.e., let’s
consider PLISP(x) defined to be the probability that an S-expression
chosen at random evaluates to x. In other words, if one tosses 7 coins
per character, what is the chance that the LISP S-expression that one
gets evaluates to x?

Finally, we define ΩLISP to be the probability that an S-expression
“halts”, i.e., the probability that it has a value. If one tosses 7 coins
per character, what is the chance that the LISP S-expression that one
gets halts? That is the value of ΩLISP.

Now for an upper bound on LISP complexity. Consider the S-
expression (’x) which evaluates to x. This shows that

H(x) ≤ |x|+ 3.

The complexity of an S-expression is bounded from above by its size +
3.

Now we introduce the important notion of a minimal program. A
minimal program is a LISP S-expression having the property that no
smaller S-expression has the same value. It is obvious that there is
at least one minimal program for any given LISP S-expression, i.e., at
least one p with |p| = HLISP(x) which evaluates to x. Consider the S-
expression (!q) where q is a minimal program for p, and p is a minimal
program for x. This expression evaluates to x, and thus

|p| = H(x) ≤ 3 + |q| = 3 +H(p),

which shows that if p is a minimal program, then

H(p) ≥ |p| − 3.

It follows that all minimal programs p, and there are infinitely many
of them, have the property that

|H(p)− |p|| ≤ 3.

142 CHAPTER 5. CONCEPTUAL DEVELOPMENT

I.e., LISP minimal programs are algorithmically incompressible, at least
if one is programming in LISP.

Minimal programs have three other fascinating properties:

(1) Large minimal programs are “normal”, that is to say, each of the
128 characters in the LISP character set appears in it with a rel-
ative frequency close to 1/128. The longer the minimal program
is, the closer the relative frequencies are to 1/128.

(2) There are few minimal programs for a given object; minimal pro-
grams are essentially unique.

(3) In any formal axiomatic theory, it is possible to exhibit at most
a finite number of minimal programs. In other words, there is a
version of Gödel’s incompleteness theorem for minimal programs:
to prove that a program is minimal is extremely hard.

Let’s start by showing how to prove (3). We derive a contradiction
from the assumption that a formal theory enables one to prove that
infinitely many programs are minimal. For if this were the case, we
could define a LISP function f as follows: given the positive integer
k as argument as a list of k 1’s, look for the first proof in the formal
theory that an S-expression p is a minimal program of size greater than
2k, and let p be the value of f(k). Then it is easy to see that

2k − 3 < |p| − 3 ≤ H(p) = H(f(k)) ≤ k +O(1),

which gives a contradiction for k sufficiently large. For a more refined
version of this result, see Theorem LB in Section 8.1.

How are (1) and (2) established? Both make use of the following
asymptotic estimate for the number of LISP S-expressions of size n,
which is demonstrated in Appendix B:

Sn ∼
1

2
√
π
k−1.5128n−2

where
k ≡ n

128
.

5.1. COMPLEXITY VIA LISP EXPRESSIONS 143

The reason this estimate is fundamental, is that it implies the following.
Consider the set X of S-expressions of a given size. If we know that a
specific S-expression x in X must be contained in a subset of X that is
less than a fraction of 128−n of the total size of the set X, then there
is a program for that improbable S-expression x that has n−O(logn)
fewer characters than the size of x.

Then (1) follows from the fact that most S-expressions are nor-
mal, and (2) follows from the observation that at most 128−k of the S-
expressions of size n can have the same value as 128k other S-expressions
of the same size. For more details on how to prove (2), see Chaitin

(1976b).
Now we turn to the important topic of the subadditivity of program-

size complexity.
Consider the S-expression (pq) where p is a minimal program for the

function f , and q is a minimal program for the data x. This expression
evaluates to f(x). This shows that

H(f(x)) ≤ H(f) +H(x) + 2

because two characters are added to programs for f and x to get a
program for f(x).

Consider the S-expression (*p(*q())) where p and q are minimal
programs for x and y, respectively. This expression evaluates to the
pair (xy), and thus

H(x, y) ≡ H((xy)) ≤ H(x) +H(y) + 8

because 8 characters are added to p and q to get a program for (xy).
Considering all programs that calculate x and y instead of just the
minimal ones, we see that

P (x, y) ≡ P ((xy)) ≥ 2−8P (x)P (y).

We see that LISP programs are self-delimiting syntactically, be-
cause parentheses must balance. Thus they can be concatenated, and
the semantics of LISP also helps to make it easy to build programs
from subroutines. In other words, in LISP algorithmic information is
subadditive. This is illustrated beautifully by the following example:

144 CHAPTER 5. CONCEPTUAL DEVELOPMENT

Consider the M-expression :(Ex)/.x()*!+x(E-x) (E’(L)) where L
is a list of expressions to be evaluated, which evaluates to the list of
values of the elements of the list L. I.e., E is what is known in nor-
mal LISP as EVLIS. This works syntactically because expressions can
be concatenated because they are delimited by balanced parentheses,
and it works semantically because we are dealing with pure functions
and there are no side-effects of evaluations. This yields the following
remarkable inequality:

HLISP(x1, x2, . . . , xn) ≤
n
∑

k=1

HLISP(xk) + c.

What is remarkable here is that c is independent of n. This is better
than we will ultimately be able to do with our final, definitive complex-
ity measure, self-delimiting binary programs, in which c would have
to be about H(n) ≈ log2 n, in order to be able to specify how many
subroutines there are.

Let B(n) be the maximum of HLISP(x) taken over all finite binary
strings x of size n, i.e., over all x that are a list consisting only of 0’s
and 1’s, with n elements altogether. Then it can be shown from the
asymptotic estimate for the number of S-expressions of a given size that

B(n) =
n

7
+O(logn).

Another important consequence of this asymptotic estimate for the
number of S-expressions of a given size is that ΩLISP is normal. More
precisely, if the real number ΩLISP is written in any base b, then all
digits will occur with equal limiting frequency 1/b. To show this, one
needs the following

Theorem: The LISP program-size complexity of the first 7n bits of
ΩLISP is greater than n − c. Proof: Given the first 7n bits of ΩLISP in
binary, we could in principle determine all LISP S-expressions of size
≤ n that have a value, and then all the values, by evaluating more and
more S-expressions for more and more time until we find enough that
halt to account for the first 7n bits of Ω. Thus we would know each
S-expression of complexity less than or equal to n. This is a finite set,
and we could then pick an S-expression P (n) that is not in this set, and

5.2. COMPLEXITY VIA BINARY PROGRAMS 145

therefore has complexity greater than n. Thus there is a computable
partial function P such that

2 +HLISP(P) +HLISP(Ω7n) ≥ HLISP(P (Ω7n)) > n

for all n, where Ω7n denotes the first 7n bits of the base-two numeral
for Ω, which implies the assertion of the theorem. The 2 is the number
of parentheses in (Pq) where q is a minimal program for Ω7n. Hence,

HLISP(Ω7n) ≥ n−HLISP(P)− 2.

5.2 Complexity via Binary Programs

The next major step in the evolution of the concept of program-size
complexity was the transition from the concreteness of using a real
programming language to a more abstract definition in which

B(n) = n+O(1),

a step already taken at the end of Chaitin (1969a). This is easily done,
by deciding that programs will be bit strings, and by interpreting the
start of the bit string as a LISP S-expression defining a function, which
is evaluated and then applied to the rest of the bit string as data to give
the result of the program. The binary representation of S-expressions
that we have in mind uses 7 bits per character and is described in Figure
3.1. So now the complexity of an S-expression will be measured by the
size in bits of the shortest program of this kind that calculates it. I.e.,
we use a universal computer U that produces LISP S-expressions as
output when it is given as input programs which are bit strings of the
following form: programU = (self-delimiting LISP program for function
definition f) binary data d. Since there is one 7-bit byte for each LISP
character, we see that

HU(x) = min
x=f(d)

[7HLISP(f) + |d|] .

Here “|d|” denotes the size in bits of a bit string d.
Then the following convenient properties are immediate:

146 CHAPTER 5. CONCEPTUAL DEVELOPMENT

(1) There are at most 2n bit strings of complexity n, and less than
2n strings of complexity less than n.

(2) There is a constant c such that all bit strings of length n have
complexity less than n + c. In fact, c = 7 will do, because the
LISP function ’ (QUOTE) is one 7-bit character long.

(3) Less than 2−k of the bit strings of length n have H < n− k. And
more than 1−2−k of the bit strings of length n have n−k ≤ H <
n+ c. This follows immediately from (1) and (2) above.

This makes it easy to prove statistical properties of random strings,
but this convenience is bought at a cost. Programs are no longer self-
delimiting. Thus the halting probability Ω can no longer be defined in
a natural way, because if we give measure 2−n to n-bit programs, then
the halting probability diverges, since now for each n there are at least
2n/c n-bit programs that halt. Also the fundamental principle of the
subadditivity of algorithmic information

H(x, y) ≤ H(x) +H(y) + c

no longer holds.

5.3 Complexity via Self-Delimiting Bi-

nary Programs

The solution is to modify the definition yet again, recovering the prop-
erty that no valid program is an extension of another valid program
that we had in LISP. This was done in Chaitin (1975b). So again
we shall consider a bit string program to start with a (self-delimiting)
LISP function definition f that is evaluated and applied to the rest d
of the bit string as data.

But we wish to eliminate f with the property that they produce
values when applied to d and e if e is an extension of d. To force f to
treat its data as self-delimiting, we institute a watch-dog policy that
operates in stages. At stage k of applying f to d, we simultaneously
consider all prefixes and extensions of d up to k bits long, and apply f

5.3. SELF-DELIMITING BINARY PROGRAMS 147

to d and to these prefixes and extensions of d for k time steps. We only
consider f of d to be defined if f of d can be calculated in time k, and
none of the prefixes or extensions of d that we consider at stage k gives a
value when f is applied to it for time k. This watch-dog policy achieves
the following. If f is self-delimiting, in that f(d) is defined implies f(e)
is not defined if e is an extension of d, then nothing is changed by the
watch-dog policy (except it slows things down). If however f does not
treat its data as self-delimiting, the watch-dog will ignore f(e) for all e
that are prefixes or extensions of a d which it has already seen has the
property that f(d) is defined. Thus the watch-dog forces f to treat its
data as self-delimiting.

The result is a “self-delimiting universal binary computer,” a func-
tion V (p) where p is a bit string, with the following properties:

(1) If V (p) is defined and p′ is an extension of p, then V (p′) is not
defined.

(2) If W (p) is any computable partial function on the bit strings with
the property in (1), then there is a bit string prefix w such that
for all p,

V (wp) = W (p).

In fact, w is just a LISP program forW , converted from characters
to binary.

(3) Hence
HV (x) ≤ HW (x) + 7HLISP(W).

Now we get back most of the nice properties we had before. For
example, we have a well-defined halting probability ΩV again, result-
ing from assigning the measure 2−n to each n-bit program, because no
extension of a program that halts is a program that halts, i.e., no ex-
tension of a valid program is a valid program. And information content
is subadditive again:

HV (x, y) ≤ HV (x) +HV (y) + c.

However, it is no longer the case that BV (n), the maximum of HV (x)
taken over all n-bit strings x, is equal to n +O(1). Rather we have

BV (n) = n +HV (n) +O(1),

148 CHAPTER 5. CONCEPTUAL DEVELOPMENT

because in general the best way to calculate an n-bit string in a self-
delimiting manner is to first calculate its length n in a self-delimiting
manner, which takes HV (n) bits, and to then read the next n bits of
the program, for a total of HV (n) + n bits. HV (n) is usually about
log2 n.

A complete LISP program for calculating ΩV in the limit from below

ωk ≤ ωk+1 → ΩV

is given in Section 5.4. ωk, the kth lower bound on ΩV , is obtained
by running all programs up to k bits in size on the universal computer
U of Section 5.2 for time k. More precisely, a program p contributes
measure

2−|p|

to ωk if |p| ≤ k and (Up) can be evaluated within depth k, and there
is no prefix or extension q of p with the same property, i.e., such that
|q| ≤ k and (Uq) can be evaluated within depth k.

However as this is stated we will not get ωk ≤ ωk+1, because a
program may contribute to ωk and then be barred from contributing
to ωk+1. In order to fix this the computation of ωk is actually done in
stages. At stage j = 0, 1, 2, . . . , k all programs of size ≤ j are run on
U for time j. Once a program is discovered that halts, no prefixes or
extensions of it are considered in any future stages. And if there is a
“tie” and two programs that halt are discovered at the same stage and
one of them is an extension of the other, then the smaller program wins
and contributes to ωk.

ω10, the tenth lower bound on ΩV , is actually calculated in Section
5.4, and turns out to be 127/128. The reason we get this value, is
that to calculate ω10, every one-character LISP function f is applied
to the remaining bits of a program that is up to 10 bits long. Of
the 128 one-character strings f , only “(” fails to halt, because it is
syntactically incomplete; the remaining 127 one-character possibilities
for f halt because of our permissive LISP semantics and because we
consider “)” to mean “()”.

5.4. OMEGA IN LISP 149

5.4 Omega in LISP

LISP Interpreter Run

[

Make a list of strings into a prefix-free set

by removing duplicates. Last occurrence is kept.

]

& (Rx)

[P-equiv: are two bit strings prefixes of each other ?]

: (Pxy) /.x1 /.y1 /=+x+y (P-x-y) 0

[is x P-equivalent to a member of l ?]

: (Mxl) /.l0 /(Px+l) 1 (Mx-l)

[body of R follows:]

/.xx : r (R-x) /(M+xr) r *+xr

R: (&(x)((’(&(P)((’(&(M)(/(.x)x((’(&(r)(/(M(+x)r)r(*(

+x)r))))(R(-x))))))(’(&(xl)(/(.l)0(/(Px(+l))1(Mx(-

l)))))))))(’(&(xy)(/(.x)1(/(.y)1(/(=(+x)(+y))(P(-x

)(-y))0)))))))

[

K th approximation to Omega for given U.

]

& (WK)

: (Cxy) /.xy *+x(C-xy) [concatenation (set union)]

: (B)

: k ,(*"&*()*,’k()) [write k & its value]

: s (R(C(Hk)s)) [add to s programs not P-equiv which halt]

: s ,(*"&*()*,’s()) [write s & its value]

/=kK (Ms) [if k = K, return measure of set s]

: k *1k [add 1 to k]

(B)

: k () [initialize k to zero]

: s () [initialize s to empty set of programs]

(B)

W: (&(K)((’(&(C)((’(&(B)((’(&(k)((’(&(s)(B)))())))())

150 CHAPTER 5. CONCEPTUAL DEVELOPMENT

))(’(&()((’(&(k)((’(&(s)((’(&(s)(/(=kK)(Ms)((’(&(k

)(B)))(*1k)))))(,((*&(*()(*(,(’s))()))))))))(R(C(H

k)s)))))(,((*&(*()(*(,(’k))())))))))))))(’(&(xy)(/

(.x)y(*(+x)(C(-x)y)))))))

[

Subset of computer programs of size up to k

which halt within time k when run on U.

]

& (Hk)

[quote all elements of list]

: (Qx) /.xx **"’*+x()(Q-x)

[select elements of x which have property P]

: (Sx) /.xx /(P+x) *+x(S-x) (S-x)

[property P

is that program halts within time k when run on U]

: (Px) =0.?k(Q*U*x())

[body of H follows:

select subset of programs of length up to k]

(S(Xk))

H: (&(k)((’(&(Q)((’(&(S)((’(&(P)(S(Xk))))(’(&(x)(=0(.

(?k(Q(*U(*x())))))))))))(’(&(x)(/(.x)x(/(P(+x))(*(

+x)(S(-x)))(S(-x)))))))))(’(&(x)(/(.x)x(*(*’(*(+x)

()))(Q(-x))))))))

[

Produce all bit strings of length less than or equal to k.

Bigger strings come first.

]

& (Xk)

/.k ’(())

: (Zy) /.y ’(()) **0+y **1+y (Z-y)

(Z(X-k))

X: (&(k)(/(.k)(’(()))((’(&(Z)(Z(X(-k)))))(’(&(y)(/(.y

)(’(()))(*(*0(+y))(*(*1(+y))(Z(-y))))))))))

5.4. OMEGA IN LISP 151

& (Mx) [M calculates measure of set of programs]

[S = sum of three bits]

: (Sxyz) =x=yz

[C = carry of three bits]

: (Cxyz) /x/y1z/yz0

[A = addition (left-aligned base-two fractions)

returns carry followed by sum]

: (Axy) /.x*0y /.y*0x : z (A-x-y) *(C+x+y+z) *(S+x+y+z) -z

[M = change bit string to 2**-length of string

example: (111) has length 3, becomes 2**-3 = (001)]

: (Mx) /.x’(1) *0(M-x)

[P = given list of strings,

form sum of 2**-length of strings]

: (Px)

/.x’(0)

: y (A(M+x)(P-x))

: z /+y ,’(overflow) 0 [if carry out, overflow !]

-y [remove carry]

[body of definition of measure of a set of programs follows:]

: s (Px)

*+s *". -s [insert binary point]

M: (&(x)((’(&(S)((’(&(C)((’(&(A)((’(&(M)((’(&(P)((’(&

(s)(*(+s)(*.(-s)))))(Px))))(’(&(x)(/(.x)(’(0))((’(

&(y)((’(&(z)(-y)))(/(+y)(,(’(overflow)))0))))(A(M(

+x))(P(-x))))))))))(’(&(x)(/(.x)(’(1))(*0(M(-x))))

)))))(’(&(xy)(/(.x)(*0y)(/(.y)(*0x)((’(&(z)(*(C(+x

)(+y)(+z))(*(S(+x)(+y)(+z))(-z)))))(A(-x)(-y))))))

))))(’(&(xyz)(/x(/y1z)(/yz0)))))))(’(&(xyz)(=x(=yz

))))))

[

If k th bit of string x is 1 then halt, else loop forever.

Value, if has one, is always 0.

]

& (Oxk) /=0.,k (O-x-k) [else]

152 CHAPTER 5. CONCEPTUAL DEVELOPMENT

/.x (Oxk) [string too short implies bit = 0, else]

/+x 0 (Oxk)

O: (&(xk)(/(=0(.(,k)))(O(-x)(-k))(/(.x)(Oxk)(/(+x)0(O

xk)))))

[[[Universal Computer]]]

& (Us)

[

Alphabet:

]

: A ’"

((((((((leftparen)(rightparen))(AB))((CD)(EF)))(((GH)(IJ))((KL

)(MN))))((((OP)(QR))((ST)(UV)))(((WX)(YZ))((ab)(cd)))))(((((ef

)(gh))((ij)(kl)))(((mn)(op))((qr)(st))))((((uv)(wx))((yz)(01))

)(((23)(45))((67)(89))))))((((((_+)(-.))((’,)(!=)))(((*&)(?/))

((:")($%))))((((%%)(%%))((%%)(%%)))(((%%)(%%))((%%)(%%)))))(((

((%%)(%%))((%%)(%%)))(((%%)(%%))((%%)(%%))))((((%%)(%%))((%%)(

%%)))(((%%)(%%))((%%)(%%)))))))

[

Read 7-bit character from bit string.

Returns character followed by rest of string.

Typical result is (A 1111 000).

]

: (Cs)

/.--- ---s (Cs) [undefined if less than 7 bits left]

: (Rx) +-x [1 bit: take right half]

: (Lx) +x [0 bit: take left half]

*

(/+s R L

(/+-s R L

(/+--s R L

(/+---s R L

(/+----s R L

(/+-----s R L

(/+------s R L

5.4. OMEGA IN LISP 153

A)))))))

---- ---s

[

Read zero or more s-exp’s until get to a right parenthesis.

Returns list of s-exp’s followed by rest of string.

Typical result is ((AB) 1111 000).

]

: (Ls)

: c (Cs) [c = read char from input s]

/=+c’(right paren) *()-c [end of list]

: d (Es) [d = read s-exp from input s]

: e (L-d) [e = read list from rest of input]

**+d+e-e [add s-exp to list]

[

Read single s-exp.

Returns s-exp followed by rest of string.

Typical result is ((AB) 1111 000).

]

: (Es)

: c (Cs) [c = read char from input s]

/=+c’(right paren) *()-c [invalid right paren becomes ()]

/=+c’(left paren) (L-c) [read list from rest of input]

c [otherwise atom followed by rest of input]

[end of definitions; body of U follows:]

: x (Es) [split bit string into function followed by data]

! *+x**"’*-x()() [apply unquoted function to quoted data]

U: (&(s)((’(&(A)((’(&(C)((’(&(L)((’(&(E)((’(&(x)(!(*(

+x)(*(*’(*(-x)()))())))))(Es))))(’(&(s)((’(&(c)(/(

=(+c)(’(rightparen)))(*()(-c))(/(=(+c)(’(leftparen

)))(L(-c))c))))(Cs)))))))(’(&(s)((’(&(c)(/(=(+c)(’

(rightparen)))(*()(-c))((’(&(d)((’(&(e)(*(*(+d)(+e

))(-e))))(L(-d)))))(Es)))))(Cs)))))))(’(&(s)(/(.(-

(-(-(-(-(-s)))))))(Cs)((’(&(R)((’(&(L)(*((/(+s)RL)

((/(+(-s))RL)((/(+(-(-s)))RL)((/(+(-(-(-s))))RL)((

/(+(-(-(-(-s)))))RL)((/(+(-(-(-(-(-s))))))RL)((/(+

(-(-(-(-(-(-s)))))))RL)A)))))))(-(-(-(-(-(-(-s))))

154 CHAPTER 5. CONCEPTUAL DEVELOPMENT

))))))(’(&(x)(+x))))))(’(&(x)(+(-x)))))))))))(’(((

(((((leftparen)(rightparen))(AB))((CD)(EF)))(((GH)

(IJ))((KL)(MN))))((((OP)(QR))((ST)(UV)))(((WX)(YZ)

)((ab)(cd)))))(((((ef)(gh))((ij)(kl)))(((mn)(op))(

(qr)(st))))((((uv)(wx))((yz)(01)))(((23)(45))((67)

(89))))))((((((_+)(-.))((’,)(!=)))(((*&)(?/))((:")

($%))))((((%%)(%%))((%%)(%%)))(((%%)(%%))((%%)(%%)

))))(((((%%)(%%))((%%)(%%)))(((%%)(%%))((%%)(%%)))

)((((%%)(%%))((%%)(%%)))(((%%)(%%))((%%)(%%)))))))

)))

[Omega !]

(W’(1111 111 111))

expression (W(’(1111111111)))

display k

display ()

display s

display ()

display k

display (1)

display s

display ()

display k

display (11)

display s

display ()

display k

display (111)

display s

display ()

display k

display (1111)

display s

display ()

display k

display (11111)

display s

5.4. OMEGA IN LISP 155

display ()

display k

display (111111)

display s

display ()

display k

display (1111111)

display s

display ()

display k

display (11111111)

display s

display ()

display k

display (111111111)

display s

display ()

display k

display (1111111111)

display (000)

display (100)

display (010)

display (110)

display (001)

display (101)

display (011)

display (111)

display (00)

display (10)

display (01)

display (11)

display (0)

display (1)

display ()

display s

display ((1000000)(0100000)(1100000)(0010000)(1010000)(011

0000)(1110000)(0001000)(1001000)(0101000)(1101000)

(0011000)(1011000)(0111000)(1111000)(0000100)(1000

100)(0100100)(1100100)(0010100)(1010100)(0110100)(

156 CHAPTER 5. CONCEPTUAL DEVELOPMENT

1110100)(0001100)(1001100)(0101100)(1101100)(00111

00)(1011100)(0111100)(1111100)(0000010)(1000010)(0

100010)(1100010)(0010010)(1010010)(0110010)(111001

0)(0001010)(1001010)(0101010)(1101010)(0011010)(10

11010)(0111010)(1111010)(0000110)(1000110)(0100110

)(1100110)(0010110)(1010110)(0110110)(1110110)(000

1110)(1001110)(0101110)(1101110)(0011110)(1011110)

(0111110)(1111110)(0000001)(1000001)(0100001)(1100

001)(0010001)(1010001)(0110001)(1110001)(0001001)(

1001001)(0101001)(1101001)(0011001)(1011001)(01110

01)(1111001)(0000101)(1000101)(0100101)(1100101)(0

010101)(1010101)(0110101)(1110101)(0001101)(100110

1)(0101101)(1101101)(0011101)(1011101)(0111101)(11

11101)(0000011)(1000011)(0100011)(1100011)(0010011

)(1010011)(0110011)(1110011)(0001011)(1001011)(010

1011)(1101011)(0011011)(1011011)(0111011)(1111011)

(0000111)(1000111)(0100111)(1100111)(0010111)(1010

111)(0110111)(1110111)(0001111)(1001111)(0101111)(

1101111)(0011111)(1011111)(0111111)(1111111))

value (0.1111111)

End of LISP Run

Elapsed time is 127.585399 seconds.

Chapter 6

Program Size

6.1 Introduction

In this chapter we present a new definition of program-size complex-
ity. H(A,B/C,D) is defined to be the size in bits of the shortest
self-delimiting program for calculating strings A and B if one is given
a minimal-size self-delimiting program for calculating strings C and D.
As is the case in LISP, programs are required to be self-delimiting, but
instead of achieving this with balanced parentheses, we merely stipulate
that no meaningful program be a prefix of another. Moreover, instead
of being given C and D directly, one is given a program for calculating
them that is minimal in size. Unlike previous definitions, this one has
precisely the formal properties of the entropy concept of information
theory.

What train of thought led us to this definition? Following [Chaitin

(1970a)], think of a computer as decoding equipment at the receiving
end of a noiseless binary communications channel. Think of its pro-
grams as code words, and of the result of the computation as the de-
coded message. Then it is natural to require that the programs/code
words form what is called a “prefix-free set,” so that successive messages
sent across the channel (e.g. subroutines) can be separated. Prefix-free
sets are well understood; they are governed by the Kraft inequality,
which therefore plays an important role in this chapter.

One is thus led to define the relative complexity H(A,B/C,D) of

157

158 CHAPTER 6. PROGRAM SIZE

A and B with respect to C and D to be the size of the shortest self-
delimiting program for producing A and B from C and D. However,
this is still not quite right. Guided by the analogy with information
theory, one would like

H(A,B) = H(A) +H(B/A) + ∆

to hold with an error term ∆ bounded in absolute value. But, as is
shown in the Appendix of Chaitin (1975b), |∆| is unbounded. So
we stipulate instead that H(A,B/C,D) is the size of the smallest self-
delimiting program that produces A and B when it is given a minimal-
size self-delimiting program for C and D. We shall show that |∆| is
then bounded.

For related concepts that are useful in statistics, see Rissanen

(1986).

6.2 Definitions

In this chapter, Λ = LISP () is the empty string. {Λ, 0, 1, 00, 01,
10, 11, 000, . . .} is the set of finite binary strings, ordered as indicated.
Henceforth we say “string” instead of “binary string;” a string is un-
derstood to be finite unless the contrary is explicitly stated. As before,
|s| is the length of the string s. The variables p, q, s, and t denote
strings. The variables c, i, k, m, and n denote non-negative integers.
#(S) is the cardinality of the set S.

Definition of a Prefix-Free Set
A prefix-free set is a set of strings S with the property that no string

in S is a prefix of another.
Definition of a Computer
A computer C is a computable partial function that carries a pro-

gram string p and a free data string q into an output string C(p, q) with
the property that for each q the domain of C(., q) is a prefix-free set;
i.e., if C(p, q) is defined and p is a proper prefix of p′, then C(p′, q) is
not defined. In other words, programs must be self-delimiting.

Definition of a Universal Computer
U is a universal computer iff for each computer C there is a constant

sim(C) with the following property: if C(p, q) is defined, then there is

6.2. DEFINITIONS 159

a p′ such that U(p′, q) = C(p, q) and |p′| ≤ |p|+ sim(C).
Theorem
There is a universal computer U .
Proof
U first reads the binary representation of a LISP S-expression f

from the beginning of its program string p, with 7 bits per character
as specified in Figure 3.1. Let p′ denote the remainder of the program
string p. Then U proceeds in stages. At stage t, U applies for t time
units the S-expression f that it has read to two arguments, the rest of
the program string p′, and the free data string q. And U also applies
f for t time units to each string of size less than or equal to t and the
free data string q. More precisely, “U applies f for time t to x and y”
means that U uses the LISP primitive function ? to evaluate the triple
(f(’x)(’y)), so that the unquoted function definition f is evaluated
before being applied to its arguments, which are quoted. If f(p′, q)
yields a value before any f(a prefix or extension of p′, q) yields a value,
then U(p, q) = f(p′, q). Otherwise U(p, q) is undefined, and, as before,
in case of “ties”, the smaller program wins. It follows that U satisfies
the definition of a universal computer with

sim(C) = 7HLISP(C).

Q.E.D.
We pick this particular universal computer U as the stan-

dard one we shall use for measuring program-size complexities
throughout the rest of this book.

Definition of Canonical Programs, Complexities, and Prob-
abilities

(a) The canonical program.

s∗ ≡ minU(p,Λ)=s p.

I.e., s∗ is the shortest string that is a program for U to
calculate s, and if several strings of the same size have this
property, we pick the one that comes first when all strings
of that size are ordered from all 0’s to all 1’s in the usual
lexicographic order.

160 CHAPTER 6. PROGRAM SIZE

(b) Complexities.

HC(s) ≡ minC(p,Λ)=s |p| (may be ∞),

H(s) ≡ HU(s),

HC(s/t) ≡ minC(p,t∗)=s |p| (may be ∞),

H(s/t) ≡ HU(s/t),

HC(s : t) ≡ HC(t)−HC(t/s),

H(s : t) ≡ HU(s : t).

(c) Probabilities.

PC(s) ≡ ∑C(p,Λ)=s 2−|p|,

P (s) ≡ PU(s),

PC(s/t) ≡ ∑C(p,t∗)=s 2−|p|,

P (s/t) ≡ PU(s/t),

Ω ≡ ∑U(p,Λ) is defined 2−|p|.

Remark on Omega
Note that the LISP program for calculating Ω in the limit from

below that we gave in Section 5.4 is still valid, even though the notion
of “free data” did not appear in Chapter 5. Section 5.4 still works,
because giving a LISP function only one argument is equivalent to
giving it that argument and the empty list Λ as a second argument.

Remark on Nomenclature
The names of these concepts mix terminology from information the-

ory, from probability theory, and from the field of computational com-
plexity. H(s) may be referred to as the algorithmic information content
of s or the program-size complexity of s, and H(s/t) may be referred to
as the algorithmic information content of s relative to t or the program-
size complexity of s given t. Or H(s) and H(s/t) may be termed the
algorithmic entropy and the conditional algorithmic entropy, respec-
tively. H(s : t) is called the mutual algorithmic information of s and t;
it measures the degree of interdependence of s and t. More precisely,
H(s : t) is the extent to which knowing s helps one to calculate t,
which, as we shall see in Theorem I9, also turns out to be the extent to

6.2. DEFINITIONS 161

which it is cheaper to calculate them together than to calculate them
separately. P (s) and P (s/t) are the algorithmic probability and the
conditional algorithmic probability of s given t. And Ω is of course the
halting probability of U (with null free data).

Theorem I0

(a) H(s) ≤ HC(s) + sim(C),

(b) H(s/t) ≤ HC(s/t) + sim(C),

(c) s∗ 6= Λ,

(d) s = U(s∗,Λ),

(e) H(s) = |s∗|,

(f) H(s) 6=∞,

(g) H(s/t) 6=∞,

(h) 0 ≤ PC(s) ≤ 1,

(i) 0 ≤ PC(s/t) ≤ 1,

(j) 1 ≥ ∑s PC(s),

(k) 1 ≥ ∑s PC(s/t),

(l) PC(s) ≥ 2−HC(s),

(m) PC(s/t) ≥ 2−HC(s/t),

(n) 0 < P (s) < 1,

(o) 0 < P (s/t) < 1,

(p) # ({s : HC(s) < n}) < 2n,

(q) # ({s : HC(s/t) < n}) < 2n,

(r) #
({

s : PC(s) > n
m

})

< m
n
,

(s) #
({

s : PC(s/t) > n
m

})

< m
n
.

162 CHAPTER 6. PROGRAM SIZE

Proof
These are immediate consequences of the definitions. Q.E.D.
Extensions of the Previous Concepts to Tuples of Strings
We have defined the program-size complexity and the algorithmic

probability of individual strings, the relative complexity of one string
given another, and the algorithmic probability of one string given an-
other. Let’s extend this from individual strings to tuples of strings:
this is easy to do because we have used LISP to construct our universal
computer U , and the ordered list (s1s2 . . . sn) is a basic LISP notion.
Here each sk is a string, which is defined in LISP as a list of 0’s and 1’s.
Thus, for example, we can define the relative complexity of computing
a triple of strings given another triple of strings:

H(s1, s2, s3/s4, s5, s6) ≡ H((s1s2s3)/(s4s5s6)).

H(s, t) ≡ H((st)) is often called the joint information content of s and
t.

Extensions of the Previous Concepts to Non-Negative In-
tegers

We have defined H and P for tuples of strings. This is now extended
to tuples each of whose elements may either be a string or a non-
negative integer n. We do this by identifying n with the list consisting
of n 1’s, i.e., with the LISP S-expression (111. . . 111) that has exactly
n 1’s.

6.3 Basic Identities

This section has two objectives. The first is to show that H satisfies
the fundamental inequalities and identities of information theory to
within error terms of the order of unity. For example, the information
in s about t is nearly symmetrical. The second objective is to show
that P is approximately a conditional probability measure: P (t/s) and
P (s, t)/P (s) are within a constant multiplicative factor of each other.

The following notation is convenient for expressing these approxi-
mate relationships. O(1) denotes a function whose absolute value is less
than or equal to c for all values of its arguments. And f ≃ g means that

6.3. BASIC IDENTITIES 163

the functions f and g satisfy the inequalities cf ≥ g and f ≤ cg for all
values of their arguments. In both cases c is an unspecified constant.

Theorem I1

(a) H(s, t) = H(t, s) +O(1),

(b) H(s/s) = O(1),

(c) H(H(s)/s) = O(1),

(d) H(s) ≤ H(s, t) +O(1),

(e) H(s/t) ≤ H(s) +O(1),

(f) H(s, t) ≤ H(s) +H(t/s) +O(1),

(g) H(s, t) ≤ H(s) +H(t) +O(1),

(h) H(s : t) ≥ O(1),

(i) H(s : t) ≤ H(s) +H(t)−H(s, t) +O(1),

(j) H(s : s) = H(s) +O(1),

(k) H(Λ : s) = O(1),

(l) H(s : Λ) = O(1).

Proof
These are easy consequences of the definitions. The proof of The-

orem I1(f) is especially interesting, and is given in full below. Also,
note that Theorem I1(g) follows immediately from Theorem I1(f,e),
and Theorem I1(i) follows immediately from Theorem I1(f) and the
definition of H(s : t).

Now for the proof of Theorem I1(f). We claim (see the next para-
graph) that there is a computer C with the following property. If

U(p, s∗) = t and |p| = H(t/s)

(i.e., if p is a minimal-size program for calculating t from s∗), then

C(s∗p,Λ) = (s, t).

164 CHAPTER 6. PROGRAM SIZE

By using Theorem I0(e,a) we see that

HC(s, t) ≤ |s∗p| = |s∗|+ |p| = H(s) +H(t/s),

and
H(s, t) ≤ HC(s, t) + sim(C) ≤ H(s) +H(t/s) +O(1).

It remains to verify the claim that there is such a computer. C
does the following when it is given the program s∗p and the free data
Λ. First C pretends to be U . More precisely, C generates the r.e. set
V = {v : U(v,Λ) is defined}. As it generates V , C continually checks
whether or not that part r of its program that it has already read is
a prefix of some known element v of V . Note that initially r = Λ.
Whenever C finds that r is a prefix of a v ∈ V , it does the following.
If r is a proper prefix of v, C reads another bit of its program. And if
r = v, C calculates U(r,Λ), and C’s simulation of U is finished. In this
manner C reads the initial portion s∗ of its program and calculates s.

Then C simulates the computation that U performs when given the
free data s∗ and the remaining portion of C’s program. More precisely,
C generates the r.e. set W = {w : U(w, s∗) is defined}. As it generates
W , C continually checks whether or not that part r of its program that
it has already read is a prefix of some known element w of W . Note
that initially r = Λ. Whenever C finds that r is a prefix of a w ∈ W ,
it does the following. If r is a proper prefix of w, C reads another bit
of its program. And if r = w, C calculates U(r, s∗), and C’s second
simulation of U is finished. In this manner C reads the final portion p
of its program and calculates t from s∗. The entire program has now
been read, and both s and t have been calculated. C finally forms the
pair (s, t) and halts, indicating this to be the result of the computation.
Q.E.D.

Remark
The rest of this section is devoted to showing that the “≤” in The-

orem I1(f) and I1(i) can be replaced by “=.” The arguments used have
a strong probabilistic as well as an information-theoretic flavor.

Theorem I2
(Extended Kraft inequality condition for the existence of a prefix-

free set).

6.3. BASIC IDENTITIES 165

Hypothesis. Consider an effectively given list of finitely or infinitely
many “requirements”

{(sk, nk) : k = 0, 1, 2, . . .}

for the construction of a computer. The requirements are said to be
“consistent” if

1 ≥
∑

k

2−nk ,

and we assume that they are consistent. Each requirement (sk, nk)
requests that a program of length nk be “assigned” to the result sk. A
computer C is said to “satisfy” the requirements if there are precisely
as many programs p of length n such that C(p,Λ) = s as there are pairs
(s, n) in the list of requirements. Such a C must have the property that

PC(s) =
∑

sk=s

2−nk

and
HC(s) = min

sk=s
nk.

Conclusion. There are computers that satisfy these requirements.
Moreover, if we are given the requirements one by one, then we can
simulate a computer that satisfies them. Hereafter we refer to the par-
ticular computer that the proof of this theorem shows how to simulate
as the one that is “determined” by the requirements.

Proof

(a) First we give what we claim is the definition of a particular com-
puter C that satisfies the requirements. In the second part of the
proof we justify this claim.

As we are given the requirements, we assign programs to results.
Initially all programs for C are available. When we are given the
requirement (sk, nk) we assign the first available program of length
nk to the result sk (first in the usual ordering Λ, 0, 1, 00, 01, 10,
11, 000, . . .). As each program is assigned, it and all its prefixes
and extensions become unavailable for future assignments. Note
that a result can have many programs assigned to it (of the same
or different lengths) if there are many requirements involving it.

166 CHAPTER 6. PROGRAM SIZE

How can we simulate C? As we are given the requirements, we
make the above assignments, and we simulate C by using the
technique that was given in the proof of Theorem I1(f), reading
just that part of the program that is necessary.

(b) Now to justify the claim. We must show that the above rule for
making assignments never fails, i.e., we must show that it is never
the case that all programs of the requested length are unavailable.

A geometrical interpretation is necessary. Consider the unit inter-
val [0, 1) ≡ {real x : 0 ≤ x < 1}. The kth program (0 ≤ k < 2n)
of length n corresponds to the interval

[

k2−n, (k + 1)2−n
)

.

Assigning a program corresponds to assigning all the points in
its interval. The condition that the set of assigned programs be
prefix-free corresponds to the rule that an interval is available for
assignment iff no point in it has already been assigned. The rule
we gave above for making assignments is to assign that interval

[

k2−n, (k + 1)2−n
)

of the requested length 2−n that is available that has the smallest
possible k. Using this rule for making assignments gives rise to
the following fact.

Fact. The set of those points in [0, 1) that are unassigned can
always be expressed as the union of a finite number of intervals

[

ki2
−ni, (ki + 1)2−ni

)

with the following properties: ni > ni+1, and

(ki + 1)2−ni ≤ ki+12
−ni+1.

I.e., these intervals are disjoint, their lengths are distinct powers
of 2, and they appear in [0, 1) in order of increasing length.

We leave to the reader the verification that this fact is always
the case and that it implies that an assignment is impossible

6.3. BASIC IDENTITIES 167

only if the interval requested is longer than the total length of
the unassigned part of [0, 1), i.e., only if the requirements are
inconsistent. Q.E.D.

Note
The preceding proof may be considered to involve a computer mem-

ory “storage allocation” problem. We have one unit of storage, and all
requests for storage request a power of two of storage, i.e., one-half
unit, one-quarter unit, etc. Storage is never freed. The algorithm given
above will be able to service a series of storage allocation requests as
long as the total storage requested is not greater than one unit. If the
total amount of storage remaining at any point in time is expressed as
a real number in binary, then the crucial property of the above storage
allocation technique can be stated as follows: at any given moment
there will be a block of size 2−k of free storage if and only if the binary
digit corresponding to 2−k in the base-two expansion for the amount of
storage remaining at that point is a 1 bit.

Theorem I3
(Computing HC and PC “in the limit”).
Consider a computer C.

(a) The set of all true propositions of the form

“HC(s) ≤ n”

is recursively enumerable. Given t∗ one can recursively enumerate
the set of all true propositions of the form

“HC(s/t) ≤ n”.

(b) The set of all true propositions of the form

“PC(s) >
n

m
”

is recursively enumerable. Given t∗ one can recursively enumerate
the set of all true propositions of the form

“PC(s/t) >
n

m
”.

168 CHAPTER 6. PROGRAM SIZE

Proof
This is an easy consequence of the fact that the domain of C is an

r.e. set. Q.E.D.
Remark
The set of all true propositions of the form

“H(s/t) ≤ n”

is not r.e.; for if it were r.e., it would easily follow from Theorems I1(c)
and I0(q) that Theorem 5.1(f) of Chaitin (1975b) is false.

Theorem I4
For each computer C there is a constant c such that

(a) H(s) ≤ − log2 PC(s) + c,

(b) H(s/t) ≤ − log2 PC(s/t) + c.

Proof
First a piece of notation. By lg x we mean the greatest integer less

than the base-two logarithm of the real number x. I.e., if 2n < x ≤
2n+1, then lg x = n. Thus 2lgx < x as long as x is positive. E.g.,
lg 2−3.5 = lg 2−3 = −4 and lg 23.5 = lg 24 = 3.

It follows from Theorem I3(b) that one can eventually discover every
lower bound on PC(s) that is a power of two. In other words, the set
of all true propositions

T ≡
{

“PC(s) > 2−n” : PC(s) > 2−n
}

is recursively enumerable. Similarly, given t∗ one can eventually dis-
cover every lower bound on PC(s/t) that is a power of two. In other
words, given t∗ one can recursively enumerate the set of all true propo-
sitions

Tt ≡
{

“PC(s/t) > 2−n” : PC(s/t) > 2−n
}

.

This will enable us to use Theorem I2 to show that there is a computer
D with these properties:

{

HD(s) = − lgPC(s) + 1,
PD(s) = 2lgPC(s) < PC(s),

(6.1)

6.3. BASIC IDENTITIES 169

{

HD(s/t) = − lgPC(s/t) + 1,
PD(s/t) = 2lgPC(s/t) < PC(s/t).

(6.2)

By applying Theorem I0(a,b) to (6.1) and (6.2), we see that Theorem
I4 holds with c = sim(D) + 2.

How does the computer D work? First of all, it checks whether the
free data that it has been given is Λ or t∗. These two cases can be
distinguished, for by Theorem I0(c) it is impossible for t∗ to be equal
to Λ.

(a) If D has been given the free data Λ, it enumerates T without
repetitions and simulates the computer determined by the set of
all requirements of the form

{(s, n+ 1) : “PC(s) > 2−n” ∈ T}
= {(s, n+ 1) : PC(s) > 2−n} . (6.3)

Thus (s, n) is taken as a requirement iff n ≥ − lgPC(s)+1. Hence
the number of programs p of length n such that D(p,Λ) = s is 1
if n ≥ − lgPC(s)+1 and is 0 otherwise, which immediately yields
(6.1).

However, we must check that the requirements (6.3) on D satisfy
the Kraft inequality and are consistent.

∑

D(p,Λ)=s

2−|p| = 2lgPC(s) < PC(s).

Hence
∑

D(p,Λ) is defined

2−|p| <
∑

s

PC(s) ≤ 1

by Theorem I0(j). Thus the hypothesis of Theorem I2 is satis-
fied, the requirements (6.3) indeed determine a computer, and the
proof of (6.1) and Theorem I4(a) is complete.

(b) If D has been given the free data t∗, it enumerates Tt without
repetitions and simulates the computer determined by the set of
all requirements of the form

{(s, n+ 1) : “PC(s/t) > 2−n” ∈ Tt}
= {(s, n+ 1) : PC(s/t) > 2−n} . (6.4)

170 CHAPTER 6. PROGRAM SIZE

Thus (s, n) is taken as a requirement iff n ≥ − lgPC(s/t) + 1.
Hence the number of programs p of length n such thatD(p, t∗) = s
is 1 if n ≥ − lgPC(s/t)+1 and is 0 otherwise, which immediately
yields (6.2).

However, we must check that the requirements (6.4) on D satisfy
the Kraft inequality and are consistent.

∑

D(p,t∗)=s

2−|p| = 2lgPC(s/t) < PC(s/t).

Hence
∑

D(p,t∗) is defined

2−|p| <
∑

s

PC(s/t) ≤ 1

by Theorem I0(k). Thus the hypothesis of Theorem I2 is sat-
isfied, the requirements (6.4) indeed determine a computer, and
the proof of (6.2) and Theorem I4(b) is complete. Q.E.D.

Theorem I5
For each computer C there is a constant c such that

(a)

{

P (s) ≥ 2−cPC(s),
P (s/t) ≥ 2−cPC(s/t).

(b)

{

H(s) = − log2 P (s) +O(1),
H(s/t) = − log2 P (s/t) +O(1).

Proof
Theorem I5(a) follows immediately from Theorem I4 using the fact

that
P (s) ≥ 2−H(s)

and
P (s/t) ≥ 2−H(s/t)

(Theorem I0(l,m)). Theorem I5(b) is obtained by taking C = U in
Theorem I4 and also using these two inequalities. Q.E.D.

Remark
Theorem I4(a) extends Theorem I0(a,b) to probabilities. Note that

Theorem I5(a) is not an immediate consequence of our weak definition
of a universal computer.

6.3. BASIC IDENTITIES 171

Theorem I5(b) enables one to reformulate results about H as re-
sults concerning P , and vice versa; it is the first member of a trio of
formulas that will be completed with Theorem I9(e,f). These formulas
are closely analogous to expressions in classical information theory for
the information content of individual events or symbols [Shannon and
Weaver (1949)].

Theorem I6
(There are few minimal programs).

(a) # ({p : U(p,Λ) = s& |p| ≤ H(s) + n}) ≤ 2n+O(1).

(b) # ({p : U(p, t∗) = s& |p| ≤ H(s/t) + n}) ≤ 2n+O(1).

Proof
This follows immediately from Theorem I5(b). Q.E.D.
Theorem I7

P (s) ≃
∑

t

P (s, t).

Proof
On the one hand, there is a computer C such that

C(p,Λ) = s if U(p,Λ) = (s, t).

Thus
PC(s) ≥

∑

t

P (s, t).

Using Theorem I5(a), we see that

P (s) ≥ 2−c
∑

t

P (s, t).

On the other hand, there is a computer C such that

C(p,Λ) = (s, s) if U(p,Λ) = s.

Thus
∑

t

PC(s, t) ≥ PC(s, s) ≥ P (s).

172 CHAPTER 6. PROGRAM SIZE

Using Theorem I5(a), we see that
∑

t

P (s, t) ≥ 2−cP (s).

Q.E.D.
Theorem I8
There is a computer C and a constant c such that

HC(t/s) = H(s, t)−H(s) + c.

Proof
By Theorems I7 and I5(b) there is a c independent of s such that

2H(s)−c
∑

t

P (s, t) ≤ 1.

Given the free data s∗, C computes s = U(s∗,Λ) and H(s) = |s∗|, and
then simulates the computer determined by the requirements

{(t, |p| −H(s) + c) : U(p,Λ) = (s, t)}
Thus for each p such that

U(p,Λ) = (s, t)

there is a corresponding p′ such that

C(p′, s∗) = t

and
|p′| = |p| −H(s) + c.

Hence
HC(t/s) = H(s, t)−H(s) + c.

However, we must check that these requirements satisfy the Kraft in-
equality and are consistent:

∑

C(p,s∗) is defined

2−|p| =
∑

U(p,Λ)=(s,t)

2−|p|+H(s)−c

= 2H(s)−c
∑

t

P (s, t) ≤ 1

because of the way c was chosen. Thus the hypothesis of Theorem I2 is
satisfied, and these requirements indeed determine a computer. Q.E.D.

Theorem I9

6.3. BASIC IDENTITIES 173

(a) H(s, t) = H(s) +H(t/s) +O(1),

(b) H(s : t) = H(s) +H(t)−H(s, t) +O(1),

(c) H(s : t) = H(t : s) +O(1),

(d) P (t/s) ≃ P (s,t)
P (s)

,

(e) H(t/s) = log2
P (s)
P (s,t)

+O(1),

(f) H(s : t) = log2
P (s,t)
P (s)P (t)

+O(1).

Proof
Theorem I9(a) follows immediately from Theorems I8, I0(b), and

I1(f). Theorem I9(b) follows immediately from Theorem I9(a) and
the definition of H(s : t). Theorem I9(c) follows immediately from
Theorems I9(b) and I1(a). Thus the mutual information H(s : t) is the
extent to which it is easier to compute s and t together than to compute
them separately, as well as the extent to which knowing s makes t easier
to compute. Theorem I9(d,e) follow immediately from Theorems I9(a)
and I5(b). Theorem I9(f) follows immediately from Theorems I9(b)
and I5(b). Q.E.D.

Remark
We thus have at our disposal essentially the entire formalism of

information theory. Results such as these can now be obtained effort-
lessly:

H(s1) ≤ H(s1/s2) +H(s2/s3) +H(s3/s4) +H(s4) +O(1),

H(s1, s2, s3, s4)
= H(s1/s2, s3, s4) +H(s2/s3, s4) +H(s3/s4) +H(s4) +O(1).

However, there is an interesting class of identities satisfied by our H
function that has no parallel in classical information theory. The sim-
plest of these is

H(H(s)/s) = O(1)

(Theorem I1(c)), which with Theorem I9(a) immediately yields

H(s,H(s)) = H(s) +O(1).

174 CHAPTER 6. PROGRAM SIZE

In words, “a minimal program tells us its size as well as its output.”
This is just one pair of a large family of identities, as we now proceed
to show.

Keeping Theorem I9(a) in mind, consider modifying the computer
C used in the proof of Theorem I1(f) so that it also measures the lengths
H(s) and H(t/s) of its subroutines s∗ and p, and halts indicating (s, t,
H(s), H(t/s)) to be the result of the computation instead of (s, t). It
follows that

H(s, t) = H(s, t, H(s), H(t/s)) +O(1)

and
H(H(s), H(t/s)/s, t) = O(1).

In fact, it is easy to see that

H(H(s), H(t), H(t/s), H(s/t), H(s, t)/s, t) = O(1),

which implies
H(H(s : t)/s, t) = O(1).

And of course these identities generalize to tuples of three or more
strings.

6.4 Random Strings

In this section we begin studying the notion of randomness or algorith-
mic incompressibility that is associated with the program-size complex-
ity measure H .

Theorem I10
(Bounds on the complexity of positive integers).

(a)
∑

n 2−H(n) ≤ 1.

Consider a computable total function f that carries positive in-
tegers into positive integers.

(b)
∑

n 2−f(n) =∞⇒ H(n) > f(n) infinitely often.

(c)
∑

n 2−f(n) <∞⇒ H(n) ≤ f(n) +O(1).

6.4. RANDOM STRINGS 175

Proof

(a) By Theorem I0(l,j),
∑

n

2−H(n) ≤
∑

n

P (n) ≤ 1.

(b) If
∑

n

2−f(n)

diverges, and
H(n) ≤ f(n)

held for all but finitely many values of n, then
∑

n

2−H(n)

would also diverge. But this would contradict Theorem I10(a),
and thus

H(n) > f(n)

infinitely often.

(c) If
∑

n

2−f(n)

converges, there is an n0 such that
∑

n≥n0

2−f(n) ≤ 1.

Thus the Kraft inequality that Theorem I2 tells us is a necessary
and sufficient condition for the existence a computer C deter-
mined by the requirements

{(n, f(n)) : n ≥ n0}

is satisfied. It follows that

H(n) ≤ f(n) + sim(C)

for all n ≥ n0. Q.E.D.

176 CHAPTER 6. PROGRAM SIZE

Remark
H(n) can in fact be characterized as a minimal function computable

in the limit from above that lies just on the borderline between the
convergence and the divergence of

∑

2−H(n).

Theorem I11
(Maximal complexity finite bit strings).

(a) max|s|=nH(s) = n +H(n) +O(1).

(b) # ({s : |s| = n&H(s) ≤ n+H(n)− k}) ≤ 2n−k+O(1).

Proof
Consider a string s of length n. By Theorem I9(a),

H(s) = H(n, s) +O(1) = H(n) +H(s/n) +O(1).

We now obtain Theorem I11(a,b) from this estimate for H(s). There
is a computer C such that

C(p, |p|∗) = p

for all p. Thus
H(s/n) ≤ n+ sim(C),

and
H(s) ≤ n+H(n) +O(1).

On the other hand, by Theorem I0(q), fewer than 2n−k of the s satisfy

H(s/n) < n− k.

Hence fewer than 2n−k of the s satisfy

H(s) < n− k +H(n) +O(1).

This concludes the proof of Theorem I11. Q.E.D.
Definition of Randomness (Finite Case)
In the case of finite strings, randomness is a matter of degree. To

the question “How random is s?” one must reply indicating how close

6.4. RANDOM STRINGS 177

H(s) is to the maximum possible for strings of its size. A string s is
most random if H(s) is approximately equal to |s|+H(|s|). As we shall
see in the next chapter, a good cut-off to choose between randomness
and non-randomness is H(s) ≈ |s|.

The natural next step is to define an infinite string to be random if
all its initial segments are finite random strings. There are several other
possibilities for defining random infinite strings and real numbers, and
we study them at length in Chapter 7. To anticipate, the undecidability
of the halting problem is a fundamental theorem of recursive function
theory. In algorithmic information theory the corresponding theorem
is as follows: The base-two representation of the probability Ω that U
halts is a random (i.e., maximally complex) infinite string.

178 CHAPTER 6. PROGRAM SIZE

Chapter 7

Randomness

Our goal is to use information-theoretic arguments based on the size of
computer programs to show that randomness, chaos, unpredictability
and uncertainty can occur in mathematics. In this chapter we construct
an equation involving only whole numbers and addition, multiplication
and exponentiation, with the property that if one varies a parameter
and asks whether the number of solutions is finite or infinite, the an-
swer to this question is indistinguishable from the result of independent
tosses of a fair coin. In the next chapter, we shall use this to obtain
a number of powerful Gödel incompleteness type results concerning
the limitations of the axiomatic method, in which entropy/information
measures are used.

7.1 Introduction

Following Turing (1937), consider an enumeration r1, r2, r3, . . . of all
computable real numbers between zero and one. We may suppose that
rk is the real number, if any, computed by the kth computer program.
Let .dk1dk2dk3 . . . be the successive digits in the decimal expansion of
rk. Following Cantor, consider the diagonal of the array of rk:

r1 = .d11d12d13 . . .
r2 = .d21d22d23 . . .
r3 = .d31d32d33 . . .

179

180 CHAPTER 7. RANDOMNESS

This gives us a new real number with decimal expansion .d11d22d33
Now change each of these digits, avoiding the digits zero and nine.
The result is an uncomputable real number, because its first digit is
different from the first digit of the first computable real, its second
digit is different from the second digit of the second computable real,
etc. It is necessary to avoid zero and nine, because real numbers with
different digit sequences can be equal to each other if one of them ends
with an infinite sequence of zeros and the other ends with an infinite
sequence of nines, for example, .3999999. . . = .4000000. . . .

Having constructed an uncomputable real number by diagonalizing
over the computable reals, Turing points out that it follows that the
halting problem is unsolvable. In particular, there can be no way of
deciding if the kth computer program ever outputs a kth digit. Be-
cause if there were, one could actually calculate the successive digits
of the uncomputable real number defined above, which is impossible.
Turing also notes that a version of Gödel’s incompleteness theorem is
an immediate corollary, because if there cannot be an algorithm for
deciding if the kth computer program ever outputs a kth digit, there
also cannot be a formal axiomatic system which would always enable
one to prove which of these possibilities is the case, for in principle one
could run through all possible proofs to decide. As we saw in Chapter
2, using the powerful techniques which were developed in order to solve
Hilbert’s tenth problem,1 it is possible to encode the unsolvability of
the halting problem as a statement about an exponential diophantine
equation. An exponential diophantine equation is one of the form

P (x1, . . . , xm) = P ′(x1, . . . , xm),

where the variables x1, . . . , xm range over non-negative integers and
P and P ′ are functions built up from these variables and non-negative
integer constants by the operations of additionA+B, multiplication A×
B, and exponentiation AB. The result of this encoding is an exponential
diophantine equation P = P ′ in m+ 1 variables n, x1, . . . , xm with the
property that

P (n, x1, . . . , xm) = P ′(n, x1, . . . , xm)

1See Davis, Putnam and Robinson (1961), Davis, Matijasevič and Robin-

son (1976), and Jones and Matijasevič (1984).

7.1. INTRODUCTION 181

has a solution in non-negative integers x1, . . . , xm if and only if the nth
computer program ever outputs an nth digit. It follows that there can
be no algorithm for deciding as a function of n whether or not P = P ′

has a solution, and thus there cannot be any complete proof system for
settling such questions either.

Up to now we have followed Turing’s original approach, but now
we will set off into new territory. Our point of departure is a remark
of Courant and Robbins (1941) that another way of obtaining a
real number that is not on the list r1, r2, r3, . . . is by tossing a coin.
Here is their measure-theoretic argument that the real numbers are
uncountable. Recall that r1, r2, r3, . . . are the computable reals between
zero and one. Cover r1 with an interval of length ǫ/2, cover r2 with an
interval of length ǫ/4, cover r3 with an interval of length ǫ/8, and in
general cover rk with an interval of length ǫ/2k. Thus all computable
reals in the unit interval are covered by this infinite set of intervals, and
the total length of the covering intervals is

∞
∑

k=1

ǫ

2k
= ǫ.

Hence if we take ǫ sufficiently small, the total length of the covering
is arbitrarily small. In summary, the reals between zero and one con-
stitute an interval of length one, and the subset that are computable
can be covered by intervals whose total length is arbitrarily small. In
other words, the computable reals are a set of measure zero, and if we
choose a real in the unit interval at random, the probability that it is
computable is zero. Thus one way to get an uncomputable real with
probability one is to flip a fair coin, using independent tosses to obtain
each bit of the binary expansion of its base-two representation.

If this train of thought is pursued, it leads one to the notion of a
random real number, which can never be a computable real. Follow-
ing Martin-Löf (1966), we give a definition of a random real using
constructive measure theory. We say that a set of real numbers X is a
constructive measure zero set if there is an algorithm A which given n
generates a (possibly infinite) set of intervals whose total length is less
than or equal to 2−n and which covers the set X. More precisely, the

182 CHAPTER 7. RANDOMNESS

covering is in the form of a set C of finite binary strings s such that

∑

s∈C

2−|s| ≤ 2−n

(here |s| denotes the length of the string s), and each real in the covered
set X has a member of C as the initial part of its base-two expansion.
In other words, we consider sets of real numbers with the property that
there is an algorithm A for producing arbitrarily small coverings of the
set. Such sets of reals are constructively of measure zero. Since there are
only countably many algorithms A for constructively covering measure
zero sets, it follows that almost all real numbers are not contained in
any set of constructive measure zero. Such reals are called (Martin-Löf)
random reals. In fact, if the successive bits of a real number are chosen
by coin flipping, with probability one it will not be contained in any set
of constructive measure zero, and hence will be a random real number.

Note that no computable real number r is random. Here is how we
get a constructive covering of arbitrarily small measure. The covering
algorithm, given n, yields the n-bit initial sequence of the binary digits
of r. This covers r and has total length or measure equal to 2−n. Thus
there is an algorithm for obtaining arbitrarily small coverings of the set
consisting of the computable real r, and r is not a random real number.
We leave to the reader the adaptation of the argument in Feller

(1970) proving the strong law of large numbers to show that reals in
which all digits do not have equal limiting frequency have constructive
measure zero.2 It follows that random reals are normal in Borel’s sense,
that is, in any base all digits have equal limiting frequency.

Let us consider the real number p whose nth bit in base-two nota-
tion is a zero or a one depending on whether or not the exponential
diophantine equation

P (n, x1, . . . , xm) = P ′(n, x1, . . . , xm)

has a solution in non-negative integers x1, . . . , xm. We will show that p
is not a random real. In fact, we will give an algorithm for producing
coverings of measure (n + 1)2−n, which can obviously be changed to
one for producing coverings of measure not greater than 2−n. Consider

2A self-contained proof is given later. See Theorem R7 in the following section.

7.1. INTRODUCTION 183

the first N values of the parameter n. If one knows for how many of
these values of n, P = P ′ has a solution, then one can find for which
values of n < N there are solutions. This is because the set of solutions
of P = P ′ is recursively enumerable, that is, one can try more and
more solutions and eventually find each value of the parameter n for
which there is a solution. The only problem is to decide when to give
up further searches because all values of n < N for which there are
solutions have been found. But if one is told how many such n there
are, then one knows when to stop searching for solutions. So one can
assume each of the N+1 possibilities ranging from p has all of its initial
N bits off to p has all of them on, and each one of these assumptions
determines the actual values of the first N bits of p. Thus we have
determined N + 1 different possibilities for the first N bits of p, that
is, the real number p is covered by a set of intervals of total length
(N + 1)2−N , and hence is a set of constructive measure zero, and p
cannot be a random real number.

Thus asking whether an exponential diophantine equation has a
solution as a function of a parameter cannot give us a random real
number. However asking whether or not the number of solutions is
infinite can give us a random real. In particular, there is an exponential
diophantine equation Q = Q′ such that the real number q is random
whose nth bit is a zero or a one depending on whether or not there are
infinitely many different m-tuples of non-negative integers x1, . . . , xm
such that

Q(n, x1, . . . , xm) = Q′(n, x1, . . . , xm).

The equation P = P ′ that we considered before encoded the halting
problem, that is, the nth bit of the real number p was zero or one
depending on whether the nth computer program ever outputs an nth
digit. To construct an equation Q = Q′ such that q is random, we
use instead the halting probability Ω of a universal Turing machine;
Q = Q′ has finitely or infinitely many solutions depending on whether
the nth bit of the base-two expansion of the halting probability Ω is a
zero or a one.

Q = Q′ is quite a remarkable equation, as it shows that there is a
kind of uncertainty principle even in pure mathematics, in fact, even
in the theory of whole numbers. Whether or not Q = Q′ has infinitely

184 CHAPTER 7. RANDOMNESS

many solutions jumps around in a completely unpredictable manner as
the parameter n varies. It may be said that the truth or falsity of the
assertion that there are infinitely many solutions is indistinguishable
from the result of independent tosses of a fair coin. In other words, these
are independent mathematical facts with probability one-half! This is
where our search for a probabilistic proof of Turing’s theorem that
there are uncomputable real numbers leads us, to a dramatic version
of Gödel’s incompleteness theorem.

7.2 Random Reals

We have seen (Theorem I11) that the most complex n-bit strings x
have H(x) = n+H(n) +O(1), and that the number of n-bit strings is
halved each time the complexity is reduced by one bit. I.e., there are
less than

2n−k+O(1)

n-bit strings x with H(x) ≤ n + H(n) − k. With finite bit strings
randomness is a question of degree. What is the right place to draw
the cut-off between random and non-random for an n-bit string x?
Somewhere around H(x) = n. Thus minimal programs are right on the
boundary, for if U(p) = s and |p| = H(s), then it is easy to see that
H(p) = |p|+O(1).

There are two reasons for choosing this cut-off. One is that it per-
mits us to still say that a string is random if any program for calculating
it is larger (within O(1)) than it is. The other reason, is that it permits
us to define an infinite random bit string as one having the property
that all its initial segments are finite random bit strings.

Now we show that this complexity-based definition of an infinite
random string is equivalent to a definition of randomness that seems
to have nothing to do with complexity, Martin-Löf’s definition of a
random real number using constructive measure theory. To do this, we
shall make use of another measure-theoretic definition of randomness
due to Solovay, which has the advantage that it does not require a
regulator of convergence.

The advantage of this approach is demonstrated by Theorem R7,
which asserts that any total recursive scheme for predicting the next bit

7.2. RANDOM REALS 185

of an infinite random string from the preceding ones, must fail about
half the time. Previously we could only prove this to be the case if
(the number of bits predicted among the first n) / log n → ∞; now
this works as long as infinitely many predictions are made. So by going
from considering the size of LISP expressions to considering the size
of self-delimiting programs in a rather abstract programming language,
we lose the concreteness of the familiar, but we gain extremely sharp
theorems.

Definition [Martin-Löf (1966)]
Speaking geometrically, a real r is Martin-Löf random if it is never

the case that it is contained in each set of an r.e. infinite sequence Ai
of sets of intervals with the property that the measure3 of the ith set
is always less than or equal to 2−i:

µ(Ai) ≤ 2−i. (7.1)

Here is the definition of a Martin-Löf random real r in a more compact
notation:

∀i
[

µ(Ai) ≤ 2−i
]

⇒ ¬∀i [r ∈ Ai] .
An equivalent definition, if we restrict ourselves to reals in the unit
interval 0 ≤ r ≤ 1, may be formulated in terms of bit strings rather
than geometrical notions, as follows. Define a covering to be an r.e. set
of ordered pairs consisting of a positive integer i and a bit string s,

Covering = {(i, s)},
with the property that if (i, s) ∈ Covering and (i, s′) ∈ Covering, then
it is not the case that s is an extension of s′ or that s′ is an extension
of s.4 We simultaneously consider Ai to be a set of (finite) bit strings

{s : (i, s) ∈ Covering}
3I.e., the sum of the lengths of the intervals, being careful to avoid counting

overlapping intervals twice.
4This is to avoid overlapping intervals and enable us to use the formula (7.2). It

is easy to convert a covering which does not have this property into one that covers
exactly the same set and does have this property. How this is done depends on the
order in which overlaps are discovered: intervals which are subsets of ones which
have already been included in the enumeration of Ai are eliminated, and intervals
which are supersets of ones which have already been included in the enumeration
must be split into disjoint subintervals, and the common portion must be thrown
away.

186 CHAPTER 7. RANDOMNESS

and to be a set of real numbers, namely those which in base-two nota-
tion have a bit string in Ai as an initial segment.5 Then condition (7.1)
becomes

µ(Ai) =
∑

(i,s)∈Covering

2−|s| ≤ 2−i, (7.2)

where |s| = the length in bits of the string s.
Note
This is equivalent to stipulating the existence of an arbitrary “reg-

ulator of convergence” f → ∞ that is computable and nondecreasing
such that

µ(Ai) ≤ 2−f(i).

Definition [Solovay (1975)]
A real r is Solovay random if for any r.e. infinite sequence Ai of sets

of intervals with the property that the sum of the measures of the Ai
converges

∑

µ(Ai) <∞,
r is contained in at most finitely many of the Ai. In other words,

∑

µ(Ai) <∞⇒ ∃N∀(i > N) [r 6∈ Ai] .

Definition [Chaitin (1975b)]
A real r is weakly Chaitin random if (the information content of the

initial segment rn of length n of the base-two expansion of r) does not
drop arbitrarily far below n: lim infH(rn)− n > −∞. In other words,

∃c∀n [H(rn) ≥ n− c]

A real r is Chaitin random if (the information content of the initial seg-
ment rn of length n of the base-two expansion of r) eventually becomes
and remains arbitrarily greater than n: limH(rn) − n = ∞. In other
words,

∀k∃Nk∀(n ≥ Nk) [H(rn) ≥ n + k]

Note

5I.e., the geometrical statement that a point is covered by (the union of) a set of
intervals, corresponds in bit string language to the statement that an initial segment
of an infinite bit string is contained in a set of finite bit strings.

7.2. RANDOM REALS 187

All these definitions hold with probability one (see Theorem R5
below).

Theorem R1 [Schnorr (1974)]
Martin-Löf random ⇔ weakly Chaitin random.
Proof ¬Martin-Löf ⇒ ¬(weak Chaitin)
Suppose that a real number r has the property that

∀i
[

µ(Ai) ≤ 2−i & r ∈ Ai
]

.

The series

∑

2n/2n
2

=
∑

2−n
2+n = 2−0 + 2−0 + 2−2 + 2−6 + 2−12 + 2−20 + · · ·

obviously converges, and define N so that:

∑

n≥N

2−n
2+n ≤ 1.

(In fact, we can take N = 2.) Let the variable s range over bit strings,
and consider the following inequality:

∑

n≥N

∑

s∈A
n2

2−[|s|−n] =
∑

n≥N

2nµ(An2) ≤
∑

n≥N

2−n
2+n ≤ 1.

Thus the requirements

{(s, |s| − n) : s ∈ An2 &n ≥ N}

for constructing a computer C such that

HC(s) = |s| − n if s ∈ An2 &n ≥ N

satisfy the Kraft inequality and are consistent (Theorem I2). It follows
that

s ∈ An2 &n ≥ N ⇒ H(s) ≤ |s| − n+ sim(C).

Thus, since r ∈ An2 for all n ≥ N , there will be infinitely many initial
segments rk of length k of the base-two expansion of r with the property
that rk ∈ An2 and n ≥ N , and for each of these rk we have

H(rk) ≤ |rk| − n + sim(C).

188 CHAPTER 7. RANDOMNESS

Thus the information content of an initial segment of the base-two
expansion of r can drop arbitrarily far below its length.

Proof ¬(weak Chaitin) ⇒ ¬Martin-Löf
Suppose that H(rn)− n can go arbitrarily negative. There are less

than
2n−k+c

n-bit strings s such that H(s) < n+H(n)−k. Thus there are less than

2n−H(n)−k

n-bit strings s such that H(s) < n− k− c. I.e., the probability that an
n-bit string s has H(s) < n− k − c is less than

2−H(n)−k.

Summing this over all n, we get
∑

n

2−H(n)−k = 2−k
∑

n

2−H(n) ≤ 2−kΩ ≤ 2−k,

since Ω ≤ 1. Thus if a real r has the property that H(rn) dips below
n− k − c for even one value of n, then r is covered by an r.e. set Ak of
intervals with µ(Ak) ≤ 2−k. Thus if H(rn)−n goes arbitrarily negative,
for each k we can compute an Ak with µ(Ak) ≤ 2−k and r ∈ Ak, and r
is not Martin-Löf random. Q.E.D.

Theorem R2 [Solovay (1975)]
Martin-Löf random ⇔ Solovay random.
Proof ¬Martin-Löf ⇒ ¬Solovay
We are given that ∀i [r ∈ Ai] and ∀i [µ(Ai) ≤ 2−i]. Thus

∑

µ(Ai) ≤
∑

2−i <∞.

Hence
∑

µ(Ai) converges and r is in infinitely many of the Ai and
cannot be Solovay random.

Proof ¬Solovay ⇒ ¬Martin-Löf
Suppose

∑

µ(Ai) ≤ 2c

and the real number r is in infinitely many of the Ai. Let

Bn =
{

x : x is in at least 2n+c of the Ai
}

.

7.2. RANDOM REALS 189

Then µ(Bn) ≤ 2−n and r ∈ Bn for all n, so r is not Martin-Löf random.
Q.E.D.

Theorem R3
Solovay random ⇔ Chaitin random.
Proof ¬Solovay ⇒ ¬Chaitin
Suppose that a real number r has the property that it is in infinitely

many Ai, and
∑

µ(Ai) <∞.
Then there must be an N such that

∑

i≥N

µ(Ai) ≤ 1.

Hence
∑

i≥N

∑

s∈Ai

2−|s| =
∑

i≥N

µ(Ai) ≤ 1.

Thus the requirements

{(s, |s|) : s ∈ Ai & i ≥ N}

for constructing a computer C such that

HC(s) = |s| if s ∈ Ai & i ≥ N

satisfy the Kraft inequality and are consistent (Theorem I2). It follows
that

s ∈ Ai & i ≥ N ⇒ H(s) ≤ |s|+ sim(C),

i.e., if a bit string s is in Ai and i is greater than or equal to N , then
s’s information content is less than or equal to its size in bits +sim(C).
Thus

H(rn) ≤ |rn|+ sim(C) = n+ sim(C)

for infinitely many initial segments rn of length n of the base-two ex-
pansion of r, and it is not the case that H(rn)− n→∞.

Proof ¬Chaitin ⇒ ¬Solovay
¬Chaitin says that there is a k such that for infinitely many values

of n we have H(rn)−n < k. The probability that an n-bit string s has
H(s) < n+ k is less than

2−H(n)+k+c.

190 CHAPTER 7. RANDOMNESS

Let An be the r.e. set of all n-bit strings s such that H(s) < n+ k.

∑

µ(An) ≤
∑

n

2−H(n)+k+c = 2k+c
∑

2−H(n) ≤ 2k+cΩ ≤ 2k+c,

since Ω ≤ 1. Hence
∑

µ(An) < ∞ and r is in infinitely many of the
An, and thus r is not Solovay random. Q.E.D.

Theorem R4
A real number is Martin-Löf random ⇔ it is Solovay random ⇔ it

is Chaitin random ⇔ it is weakly Chaitin random.
Proof
The equivalence of all four definitions of a random real number

follows immediately from Theorems R1, R2, and R3. Q.E.D.
Note
That weak Chaitin randomness is coextensive with Chaitin random-

ness, reveals a complexity gap. I.e., we have shown that ifH(rn) > n−c
for all n, necessarily H(rn)− n→∞.

Theorem R5
With probability one, a real number r is Martin-Löf/Solovay/

Chaitin random.
Proof 1
Since Solovay randomness ⇒ Martin-Löf and Chaitin randomness,

it is sufficient to show that r is Solovay random with probability one.
Suppose

∑

µ(Ai) <∞,
where the Ai are an r.e. infinite sequence of sets of intervals. Then (this
is the Borel–Cantelli lemma [Feller (1970)])

lim
N→∞

µ(
⋃

i≥N

Ai) ≤ lim
N→∞

∑

i≥N

µ(Ai) = 0

and the probability is zero that a real r is in infinitely many of the Ai.
But there are only countably many choices for the r.e. sequence of Ai,
since there are only countably many algorithms. Since the union of a
countable number of sets of measure zero is also of measure zero, it
follows that with probability one r is Solovay random.

Proof 2

7.2. RANDOM REALS 191

We use the Borel–Cantelli lemma again. This time we show that the
Chaitin criterion for randomness, which is equivalent to the Martin-Löf
and Solovay criteria, is true with probability one. Since for each k,

∑

n

µ({r : H(rn) < n+ k}) ≤ 2k+c

and thus converges,6 it follows that for each k with probability one
H(rn) < n+ k only finitely often. Thus, with probability one,

lim
n→∞

H(rn)− n =∞.

Q.E.D.
Theorem R6
Ω is a Martin-Löf/Solovay/Chaitin random real number.7

Proof
It is easy to see that Ω can be computed as a limit from below. We

gave a LISP program for doing this at the end of Chapter 5. Indeed,

{p : U(p,Λ) is defined} ≡ {p1, p2, p3, . . .}

is a recursively enumerable set. Let

ωn ≡
∑

k≤n

2−|pk|.

Then ωn < ωn+1 → Ω.
It follows that given Ωn, the first n bits of the non-terminating base-

two expansion of the real number Ω,8 one can calculate all programs of
size not greater than n that halt, then the finite set of all S-expressions
x such that H(x) ≤ n, and finally an S-expression x with H(x) > n.
For compute ωk for k = 1, 2, 3, . . . until ωk is greater than Ωn. Then

Ωn < ωk ≤ Ω ≤ Ωn + 2−n,

6See the second half of the proof of Theorem R3.
7Incidentally, this implies that Ω is not a computable real number. Since alge-

braic numbers are computable, it follows that Ω must be transcendental.
8I.e., if there is a choice between ending the base-two expansion of Ω with in-

finitely many consecutive zeros or with infinitely many consecutive ones (i.e., if
Ω is a dyadic rational), then we must choose the infinity of consecutive ones. Of
course, it will follow from this theorem that Ω must be an irrational number, so
this situation cannot actually occur, but we don’t know that yet!

192 CHAPTER 7. RANDOMNESS

so that all objects with complexity H less than or equal to n are in the
set

{U(pi,Λ) : i ≤ k} ,
and one can calculate this set and then pick an arbitrary object that
isn’t in it.

Thus there is a computable partial function ψ such that

ψ(Ωn) = an S-expression x with H(x) > n.

But
H(ψ(Ωn)) ≤ H(Ωn) + cψ.

Hence
n < H(ψ(Ωn)) ≤ H(Ωn) + cψ,

and
H(Ωn) > n− cψ.

Thus Ω is weakly Chaitin random, and by Theorem R4 it is Martin-
Löf/Solovay/Chaitin random. Q.E.D.

Note
More generally, if X is an infinite r.e. set of S-expressions, then

∑

x∈X

2−H(x)

and
∑

x∈X

P (x)

are both Martin-Löf/Solovay/Chaitin random reals.
Theorem R7
Ω is unpredictable. More precisely, consider a total recursive pre-

diction function F , which given an arbitrary finite initial segment of an
infinite bit string, returns either “no prediction”, “the next bit is a 0”,
or “the next bit is a 1”. Then if F predicts infinitely many bits of Ω, it
does no better than chance, because in the limit the relative frequency
of correct and incorrect predictions both tend to 1

2
.

Proof Sketch

7.2. RANDOM REALS 193

Consider the set An of all infinite bit strings for which F makes at
least n predictions and the number of correct predictions k among the
first n made satisfies

∣

∣

∣

∣

∣

1

2
− k

n

∣

∣

∣

∣

∣

> ǫ.

We shall show that

µ(An) ≤ n(1− ǫ)int[ǫn/2].

Here int[x] is the integer part of the real number x. Thus

∑

µ(An)

essentially converges like a geometric series with ratio less than one.
Since Ω satisfies the Solovay randomness criterion, it follows that Ω is
in at most finitely many of the An. I.e., if F predicts infinitely many
bits of Ω, then, for any ǫ > 0, from some point on the number of correct
predictions k among the first n made satisfies

∣

∣

∣

∣

∣

1

2
− k

n

∣

∣

∣

∣

∣

≤ ǫ,

which was to be proved.
It remains to establish the upper bound on µ(An). This follows

from the following upper bound on binomial coefficients:

(

n

k

)

≡ n

1

n− 1

2

n− 2

3
· · · n− k + 1

k
≤ 2n(1− ǫ)int[ǫn/2]

if
∣

∣

∣

∣

∣

1

2
− k

n

∣

∣

∣

∣

∣

> ǫ.

To prove this, note that the binomial coefficients “n choose k” sum to
2n, and that the coefficients start small, grow until the middle, and
then decrease as k increases beyond n/2. Thus the coefficients that
we are interested in are obtained by taking the large middle binomial
coefficient, which is less than 2n, and multiplying it by at least ǫn
fractions, each of which is less than unity. In fact, at least ǫn/2 of the

194 CHAPTER 7. RANDOMNESS

fractions that the largest binomial coefficient is multiplied by are less
than 1− ǫ. Q.E.D.

Note
Consider an F that always predicts that the next bit of Ω is a 1.

Applying Theorem R7, we see that Ω has the property that 0’s and
1’s both have limiting relative frequency 1

2
. Next consider an F that

predicts that each 0 bit in Ω is followed by a 1 bit. In the limit this
prediction will be right half the time and wrong half the time. Thus 0
bits are followed by 0 bits half the time, and by 1 bits half the time. It
follows by induction that each of the 2k possible blocks of k bits in Ω
has limiting relative frequency 2−k. Thus, to use Borel’s terminology,
Ω is “normal” in base two.

The question of how quickly relative frequencies approach their lim-
iting values is studied carefully in probability theory [Feller (1970)];
the answer is known as “the law of the iterated logarithm.” The law
of the iterated logarithm also applies to the relative frequency of cor-
rect and incorrect predictions of bits of Ω. For Feller’s proof of the
law of the iterated logarithm depends only on the first Borel–Cantelli
lemma, which is merely the Martin-Löf/Solovay randomness property
of Ω, and on the second Borel–Cantelli lemma, which we shall show
that Ω satisfies in Section 8.3.

Theorem R8
There is an exponential diophantine equation

L(n, x1, . . . , xm) = R(n, x1, . . . , xm)

which has only finitely many solutions x1, . . . , xm if the nth bit of Ω is
a 0, and which has infinitely many solutions x1, . . . , xm if the nth bit of
Ω is a 1. I.e., this equation involves only addition A+B, multiplication
A × B, and exponentiation AB of non-negative integer constants and
variables, the number of different m-tuples x1, . . . , xm of non-negative
integers which are solutions of this equation is infinite if the nth bit
of the base-two representation of Ω is a 1, and the number of different
m-tuples x1, . . . , xm of non-negative integers which are solutions of this
equation is finite if the nth bit of the base-two representation of Ω is a
0.

Proof

7.2. RANDOM REALS 195

By combining the definitions of the functions W and O that were
given in Section 5.4, one obtains a LISP definition of a function ϕ of
two variables such that ϕ(n, k) is undefined for all sufficiently large
values of k if the nth bit of Ω is a 0, and ϕ(n, k) is defined for all
sufficiently large values of k if the nth bit of Ω is a 1. I.e., the definition
of ϕ(n, k) loops forever for all sufficiently large values of k if the nth bit
of Ω is a 0, and the definition of ϕ(n, k) terminates for all sufficiently
large values of k if the nth bit of Ω is a 1.

Now let’s plug the LISP expression for ϕ(n, k) into the variable
input.EXPRESSION in that 900,000-character exponential diophan-
tine equation that is a LISP interpreter that we went to so much
trouble to construct in Part I. I.e., we substitute for the variable in-
put.EXPRESSION the 8-bit-per-character binary representation (with
the characters in reverse order) of an S-expression of the form

((’(&(nk)...)) (’(11...11)) (’(11...11))) (7.3)

where there are n 1’s in the first list of 1’s and k 1’s in the second list of
1’s. The resulting equation will have a solution in non-negative integers
if and only if ϕ(n, k) is defined, and for given n and k it can have at
most one solution.

We are almost at our goal; we need only point out that the binary
representation of the S-expression (7.3) can be written in closed form
as an algebraic function of n and k that only uses +,×,−, and expo-
nentiation. This is easy to see; the essential step is that the binary
representation of a character string consisting only of 1’s is just the
sum of a geometric series with multiplier 256. Then, proceeding as in
Chapter 2, we eliminate the minus signs and express the fact that s is
the binary representation of the S-expression (7.3) with given n and k
by means of a few exponential diophantine equations. Finally we fold
this handful of equations into the left-hand side and the right-hand side
of our LISP interpreter equation, using the same “sum of squares” trick
that we did in Chapter 2.

The result is that our equation has gotten a little bigger, and that
the variable input.EXPRESSION has been replaced by three new vari-
ables s, n and k and a few new auxiliary variables. This new monster
equation has a solution if and only if ϕ(n, k) is defined, and for given n

196 CHAPTER 7. RANDOMNESS

and k it can have at most one solution. Recall that ϕ(n, k) is defined
for all sufficiently large values of k if and only if the nth bit of the base-
two representation of Ω is a 1. Thus our new equation has infinitely
many solutions for a given value of n if the nth bit of Ω is a 1, and it
has finitely many solutions for a given value of n if the nth bit of Ω is
a 0. Q.E.D.

Chapter 8

Incompleteness

Having developed the necessary information-theoretic formalism in
Chapter 6, and having studied the notion of a random real in Chapter
7, we can now begin to derive incompleteness theorems.

The setup is as follows. The axioms of a formal theory are consid-
ered to be encoded as a single finite bit string, the rules of inference
are considered to be an algorithm for enumerating the theorems given
the axioms, and in general we shall fix the rules of inference and vary
the axioms. More formally, the rules of inference F may be considered
to be an r.e. set of propositions of the form

“Axioms⊢FTheorem”.

The r.e. set of theorems deduced from the axiom A is determined by
selecting from the set F the theorems in those propositions which have
the axiom A as an antecedent. In general we’ll consider the rules of
inference F to be fixed and study what happens as we vary the axioms
A. By an n-bit theory we shall mean the set of theorems deduced from
an n-bit axiom.

8.1 Incompleteness Theorems for Lower

Bounds on Information Content

Let’s start by rederiving within our current formalism an old and very
basic result, which states that even though most strings are random,

197

198 CHAPTER 8. INCOMPLETENESS

one can never prove that a specific string has this property.
As we saw when we studied randomness, if one produces a bit string

s by tossing a coin n times, 99.9% of the time it will be the case that
H(s) ≈ n+H(n). In fact, if one lets n go to infinity, with probability
one H(s) > n for all but finitely many n (Theorem R5). However,

Theorem LB [Chaitin (1974a,1974b,1975a,1982b)]
Consider a formal theory all of whose theorems are assumed to be

true. Within such a formal theory a specific string cannot be proven to
have information content more than O(1) greater than the information
content of the axioms of the theory. I.e., if “H(s) ≥ n” is a theorem
only if it is true, then it is a theorem only if n ≤ H(axioms) + O(1).
Conversely, there are formal theories whose axioms have information
content n+O(1) in which it is possible to establish all true propositions
of the form “H(s) ≥ n” and of the form “H(s) = k” with k < n.

Proof
The idea is that if one could prove that a string has no distinguish-

ing feature, then that itself would be a distinguishing property. This
paradox can be restated as follows: There are no uninteresting numbers
(positive integers), because if there were, the first uninteresting number
would ipso facto be interesting! Alternatively, consider “the smallest
positive integer that cannot be specified in less than a thousand words.”
We have just specified it using only fourteen words.

Consider the enumeration of the theorems of the formal axiomatic
theory in order of the size of their proofs. For each positive integer
k, let s∗ be the string in the theorem of the form “H(s) ≥ n” with
n > H(axioms)+k which appears first in the enumeration. On the one
hand, if all theorems are true, then

H(axioms) + k < H(s∗).

On the other hand, the above prescription for calculating s∗ shows that

s∗ = ψ(axioms, H(axioms), k) (ψ partial recursive),

and thus
H(s∗) ≤ H(axioms, H(axioms), k) + cψ

≤ H(axioms) +H(k) +O(1).

8.1. LOWER BOUNDS ON INFORMATION CONTENT 199

Here we have used the subadditivity of information H(s, t) ≤ H(s) +
H(t) + O(1) and the fact that H(s,H(s)) ≤ H(s) + O(1). It follows
that

H(axioms) + k < H(s∗) ≤ H(axioms) +H(k) +O(1),

and thus
k < H(k) +O(1).

However, this inequality is false for all k ≥ k0, where k0 depends only
on the rules of inference. A contradiction is avoided only if s∗ does not
exist for k = k0, i.e., it is impossible to prove in the formal theory that
a specific string has H greater than H(axioms) + k0.

Proof of Converse
The set T of all true propositions of the form “H(s) ≤ k” is re-

cursively enumerable. Choose a fixed enumeration of T without repe-
titions, and for each positive integer n, let s∗ be the string in the last
proposition of the form “H(s) ≤ k” with k < n in the enumeration.
Let

∆ = n−H(s∗) > 0.

Then from s∗, H(s∗), and ∆ we can calculate n = H(s∗) + ∆, then all
strings s with H(s) < n, and then a string sn with H(sn) ≥ n. Thus

n ≤ H(sn) = H(ψ(s∗, H(s∗),∆)) (ψ partial recursive),

and so

n ≤ H(s∗, H(s∗),∆) + cψ ≤ H(s∗) +H(∆) +O(1)
≤ n+H(∆) +O(1)

(8.1)

using the subadditivity of joint information and the fact that a program
tells us its size as well as its output. The first line of (8.1) implies that

∆ ≡ n−H(s∗) ≤ H(∆) +O(1),

which implies that ∆ and H(∆) are both bounded. Then the second
line of (8.1) implies that

H(s∗, H(s∗),∆) = n+O(1).

200 CHAPTER 8. INCOMPLETENESS

The triple (s∗, H(s∗),∆) is the desired axiom: it has information con-
tent n+O(1), and by enumerating T until all true propositions of the
form “H(s) ≤ k” with k < n have been discovered, one can immedi-
ately deduce all true propositions of the form “H(s) ≥ n” and of the
form “H(s) = k” with k < n. Q.E.D.

Note
Here are two other ways to establish the converse, two axioms that

solve the halting problem for all programs of size ≤ n:

(1) Consider the program p of size ≤ n that takes longest to halt. It
is easy to see that H(p) = n +O(1).

(2) Consider the number hn of programs of size ≤ n that halt. Solovay
has shown1 that

hn = 2n−H(n)+O(1),

from which it is easy to show that H(hn) = n+O(1).

Restating Theorem LB in terms of the halting problem, we have shown
that if a theory has information content n, then there is a program of
size ≤ n+O(1) that never halts, but this fact cannot be proved within
the theory. Conversely, there are theories with information content
n+O(1) that enable one to settle the halting problem for all programs
of size ≤ n.

8.2 Incompleteness Theorems for Ran-

dom Reals: First Approach

In this section we begin our study of incompleteness theorems for ran-
dom reals. We show that any particular formal theory can enable one
to determine at most a finite number of bits of Ω. In the following
sections (8.3 and 8.4) we express the upper bound on the number of
bits of Ω which can be determined, in terms of the axioms of the the-
ory; for now, we just show that an upper bound exists. We shall not
use any ideas from algorithmic information theory until Section 8.4;

1For a proof of Solovay’s result, see Theorem 8 [Chaitin (1976c)].

8.2. RANDOM REALS: FIRST APPROACH 201

for now (Sections 8.2 and 8.3) we only make use of the fact that Ω is
Martin-Löf random.

If one tries to guess the bits of a random sequence, the average
number of correct guesses before failing is exactly 1 guess! Reason: if
we use the fact that the expected value of a sum is equal to the sum
of the expected values, the answer is the sum of the chance of getting
the first guess right, plus the chance of getting the first and the second
guesses right, plus the chance of getting the first, second and third
guesses right, et cetera:

1

2
+

1

4
+

1

8
+

1

16
+ · · · = 1.

Or if we directly calculate the expected value as the sum of (the number
right till first failure) × (the probability):

0× 1

2
+ 1× 1

4
+ 2× 1

8
+ 3× 1

16
+ 4× 1

32
+ · · ·

= 1×
∑

k>1

2−k + 1×
∑

k>2

2−k + 1×
∑

k>3

2−k + · · ·

=
1

2
+

1

4
+

1

8
+ · · · = 1.

On the other hand (see the next section), if we are allowed to try 2n

times a series of n guesses, one of them will always get it right, if we
try all 2n different possible series of n guesses.

Theorem X
Any given formal theory T can yield only finitely many (scattered)

bits of (the base-two expansion of) Ω. When we say that a theory yields
a bit of Ω, we mean that it enables us to determine its position and its
0/1 value.

Proof
Consider a theory T , an r.e. set of true assertions of the form

“The nth bit of Ω is 0.”

“The nth bit of Ω is 1.”

202 CHAPTER 8. INCOMPLETENESS

Here n denotes specific positive integers.
If T provides k different (scattered) bits of Ω, then that gives us

a covering Ak of measure 2−k which includes Ω: Enumerate T until
k bits of Ω are determined, then the covering is all bit strings up to
the last determined bit with all determined bits okay. If n is the last
determined bit, this covering will consist of 2n−k n-bit strings, and will
have measure 2n−k/2n = 2−k.

It follows that if T yields infinitely many different bits of Ω, then
for any k we can produce by running through all possible proofs in T a
covering Ak of measure 2−k which includes Ω. But this contradicts the
fact that Ω is Martin-Löf random. Hence T yields only finitely many
bits of Ω. Q.E.D.

Corollary X
Since by Theorem R8 Ω can be encoded into an exponential dio-

phantine equation

L(n, x1, . . . , xm) = R(n, x1, . . . , xm), (8.2)

it follows that any given formal theory can permit one to determine
whether (8.2) has finitely or infinitely many solutions x1, . . . , xm, for
only finitely many specific values of the parameter n.

8.3 Incompleteness Theorems for Ran-

dom Reals: |Axioms|
Theorem A

If
∑

2−f(n) ≤ 1

and f is computable, then there is a constant cf with the property that
no n-bit theory ever yields more than n+ f(n) + cf bits of Ω.

Proof
Let Ak be the event that there is at least one n such that there is

an n-bit theory that yields n+ f(n) + k or more bits of Ω.

µ(Ak) ≤
∑

n

2n

n-bit
theories

2−[n+f(n)+k]

probability that yields
n+ f(n) + k bits of Ω

8.3. RANDOM REALS: |AXIOMS| 203

= 2−k
∑

n

2−f(n) ≤ 2−k

since
∑

2−f(n) ≤ 1.

Hence µ(Ak) ≤ 2−k, and
∑

µ(Ak) also converges. Thus only finitely
many of the Ak occur (Borel–Cantelli lemma [Feller (1970)]). I.e.,

lim
N→∞

µ(
⋃

k>N

Ak) ≤
∑

k>N

µ(Ak) ≤ 2−N → 0.

More detailed proof
Assume the opposite of what we want to prove, namely that for

every k there is at least one n-bit theory that yields n + f(n) + k bits
of Ω. From this we shall deduce that Ω cannot be Martin-Löf random,
which is impossible.

To get a covering Ak of Ω with measure ≤ 2−k, consider a specific n
and all n-bit theories. Start generating theorems in each n-bit theory
until it yields n+ f(n) + k bits of Ω (it doesn’t matter if some of these
bits are wrong). The measure of the set of possibilities for Ω covered
by the n-bit theories is thus

≤ 2n2−n−f(n)−k = 2−f(n)−k.

The measure µ(Ak) of the union of the set of possibilities for Ω covered
by n-bit theories with any n is thus

≤
∑

n

2−f(n)−k = 2−k
∑

n

2−f(n) ≤ 2−k (since
∑

2−f(n) ≤ 1).

Thus Ω is covered by Ak and µ(Ak) ≤ 2−k for every k if there is always
an n-bit theory that yields n+ f(n) + k bits of Ω, which is impossible.
Q.E.D.

Corollary A
If

∑

2−f(n)

converges and f is computable, then there is a constant cf with the
property that no n-bit theory ever yields more than n+ f(n) + cf bits
of Ω.

204 CHAPTER 8. INCOMPLETENESS

Proof
Choose c so that

∑

2−f(n) ≤ 2c.

Then
∑

2−[f(n)+c] ≤ 1,

and we can apply Theorem A to f ′(n) = f(n) + c. Q.E.D.
Corollary A2
Let

∑

2−f(n)

converge and f be computable as before. If g(n) is computable, then
there is a constant cf,g with the property that no g(n)-bit theory ever
yields more than g(n) + f(n) + cf,g bits of Ω. E.g., consider N of the
form

22n

.

For such N , noN -bit theory ever yields more thanN+f(log logN)+cf,g
bits of Ω.

Note
Thus for n of special form, i.e., which have concise descriptions, we

get better upper bounds on the number of bits of Ω which are yielded
by n-bit theories. This is a foretaste of the way algorithmic information
theory will be used in Theorem C and Corollary C2 (Section 8.4).

Lemma for Second Borel–Cantelli Lemma!
For any finite set {xk} of non-negative real numbers,

∏

(1− xk) ≤
1

∑

xk
.

Proof
If x is a real number, then

1− x ≤ 1

1 + x
.

Thus
∏

(1− xk) ≤
1

∏

(1 + xk)
≤ 1
∑

xk
,

8.3. RANDOM REALS: |AXIOMS| 205

since if all the xk are non-negative

∏

(1 + xk) ≥
∑

xk.

Q.E.D.
Second Borel–Cantelli Lemma [Feller (1970)]
Suppose that the events An have the property that it is possible to

determine whether or not the event An occurs by examining the first
f(n) bits of Ω, where f is a computable function. If the events An are
mutually independent and

∑

µ(An) diverges, then Ω has the property
that infinitely many of the An must occur.

Proof
Suppose on the contrary that Ω has the property that only finitely

many of the events An occur. Then there is an N such that the event
An does not occur if n ≥ N . The probability that none of the events
AN , AN+1, . . . , AN+k occur is, since the An are mutually independent,
precisely

k
∏

i=0

(1− µ(AN+i)) ≤
1

[

∑k
i=0 µ(AN+i)

] ,

which goes to zero as k goes to infinity. This would give us arbitrarily
small covers for Ω, which contradicts the fact that Ω is Martin-Löf
random. Q.E.D.

Theorem B
If

∑

2n−f(n)

diverges and f is computable, then infinitely often there is a run of f(n)
zeros between bits 2n and 2n+1 of Ω (2n ≤ bit < 2n+1). Hence there
are rules of inference which have the property that there are infinitely
many N -bit theories that yield (the first) N + f(logN) bits of Ω.

Proof
We wish to prove that infinitely often Ω must have a run of k = f(n)

consecutive zeros between its 2nth and its 2n+1th bit position. There
are 2n bits in the range in question. Divide this into non-overlapping
blocks of 2k bits each, giving a total of int[2n/2k] blocks, where int[x]
denotes the integer part of the real number x. The chance of having a

206 CHAPTER 8. INCOMPLETENESS

run of k consecutive zeros in each block of 2k bits is

≥ k2k−2

22k
. (8.3)

Reason:

(1) There are 2k − k + 1 ≥ k different possible choices for where to
put the run of k zeros in the block of 2k bits.

(2) Then there must be a 1 at each end of the run of 0’s, but the
remaining 2k − k − 2 = k − 2 bits can be anything.

(3) This may be an underestimate if the run of 0’s is at the beginning
or end of the 2k bits, and there is no room for endmarker 1’s.

(4) There is no room for another 10k1 to fit in the block of 2k bits, so
we are not overestimating the probability by counting anything
twice.

If 2k is a power of two, then int[2n/2k] = 2n/2k. If not, there is
a power of two that is ≤ 4k and divides 2n exactly. In either case,
int[2n/2k] ≥ 2n/4k. Summing (8.3) over all int[2n/2k] ≥ 2n/4k blocks
and over all n, we get

≥
∑

n

[

k2k−2

22k

2n

4k

]

=
1

16

∑

n

2n−k =
1

16

∑

2n−f(n) =∞.

Invoking the second Borel–Cantelli lemma (if the events Ai are indepen-
dent and

∑

µ(Ai) diverges, then infinitely many of the Ai must occur),
we are finished. Q.E.D.

Corollary B
If

∑

2−f(n)

diverges and f is computable and nondecreasing, then infinitely often
there is a run of f(2n+1) zeros between bits 2n and 2n+1 of Ω (2n ≤
bit < 2n+1). Hence there are infinitely many N -bit theories that yield
(the first) N + f(N) bits of Ω.

Proof

8.3. RANDOM REALS: |AXIOMS| 207

Recall the Cauchy condensation test [Hardy (1952)]: if φ(n) is a
nonincreasing function of n, then the series

∑

φ(n) is convergent or
divergent according as

∑

2nφ(2n) is convergent or divergent. Proof:

∑

φ(k) ≥
∑

[

φ(2n + 1) + · · ·+ φ(2n+1)
]

≥
∑

2nφ(2n+1)

=
1

2

∑

2n+1φ(2n+1).

On the other hand,

∑

φ(k) ≤
∑

[

φ(2n) + · · ·+ φ(2n+1 − 1)
]

≤
∑

2nφ(2n).

If
∑

2−f(n)

diverges and f is computable and nondecreasing, then by the Cauchy
condensation test

∑

2n2−f(2n)

also diverges, and therefore so does

∑

2n2−f(2n+1).

Hence, by Theorem B, infinitely often there is a run of f(2n+1) zeros
between bits 2n and 2n+1. Q.E.D.

Corollary B2
If

∑

2−f(n)

diverges and f is computable, then infinitely often there is a run of
n + f(n) zeros between bits 2n and 2n+1 of Ω (2n ≤ bit < 2n+1).
Hence there are infinitely many N -bit theories that yield (the first)
N + logN + f(logN) bits of Ω.

Proof
Take f(n) = n+ f ′(n) in Theorem B. Q.E.D.
Theorem AB
First a piece of notation. By logx we mean the integer part of the

base-two logarithm of x. I.e., if 2n ≤ x < 2n+1, then log x = n.

208 CHAPTER 8. INCOMPLETENESS

(a) There is a c with the property that no n-bit theory ever yields
more than

n+ log n+ log logn + 2 log log log n+ c

(scattered) bits of Ω.

(b) There are infinitely many n-bit theories that yield (the first)

n + logn + log log n+ log log logn

bits of Ω.

Proof
Using the Cauchy condensation test, we shall show below that

(a)
∑ 1

n logn(log log n)2
<∞,

(b)
∑ 1

n logn log log n
=∞.

The theorem follows immediately from Corollaries A and B.
Now to use the condensation test:

∑ 1

n2

behaves the same as
∑

2n
1

22n
=
∑ 1

2n
,

which converges.
∑ 1

n(log n)2

behaves the same as
∑

2n
1

2nn2
=
∑ 1

n2
,

which converges. And

∑ 1

n logn(log log n)2

8.4. RANDOM REALS: H(AXIOMS) 209

behaves the same as

∑

2n
1

2nn(log n)2
=
∑ 1

n(log n)2
,

which converges.
On the other hand,

∑ 1

n

behaves the same as
∑

2n
1

2n
=
∑

1,

which diverges.
∑ 1

n log n

behaves the same as
∑

2n
1

2nn
=
∑ 1

n
,

which diverges. And
∑ 1

n log n log log n

behaves the same as

∑

2n
1

2nn logn
=
∑ 1

n log n
,

which diverges. Q.E.D.

8.4 Incompleteness Theorems for Ran-

dom Reals: H(Axioms)

Theorem C is a remarkable extension of Theorem R6:

(1) We have seen that the information content of knowing the first n
bits of Ω is ≥ n− c.

(2) Now we show that the information content of knowing any n bits
of Ω (their positions and 0/1 values) is ≥ n− c.

210 CHAPTER 8. INCOMPLETENESS

Lemma C

∑

n

#{s : H(s) < n}2−n ≤ 1.

Proof

1 ≥ Ω ≥
∑

s

2−H(s)

=
∑

n

#{s : H(s) = n}2−n =
∑

n

#{s : H(s) = n}2−n
∑

k≥1

2−k

=
∑

n

∑

k≥1

#{s : H(s) = n}2−n−k =
∑

n

#{s : H(s) < n}2−n.

Q.E.D.
Theorem C
If a theory has H(axiom) < n, then it can yield at most n + c

(scattered) bits of Ω.
Proof
Consider a particular k and n. If there is an axiom withH(axiom) <

n which yields n + k scattered bits of Ω, then even without knowing
which axiom it is, we can cover Ω with an r.e. set of intervals of measure

≤

#{s : H(s) < n}
of axioms
with H < n

2−n−k

measure of set of
possibilities for Ω

= #{s : H(s) < n}2−n−k.
But by the preceding lemma, we see that

∑

n

#{s : H(s) < n}2−n−k = 2−k
∑

n

#{s : H(s) < n}2−n ≤ 2−k.

Thus if even one theory with H < n yields n+k bits of Ω, for any n, we
get a cover for Ω of measure ≤ 2−k. This can only be true for finitely
many values of k, or Ω would not be Martin-Löf random. Q.E.D.

Corollary C
No n-bit theory ever yields more than n+H(n) + c bits of Ω.
Proof

8.4. RANDOM REALS: H(AXIOMS) 211

This follows immediately from Theorem C and the fact that

H(axiom) ≤ |axiom|+H(|axiom|) + c,

which is an immediate consequence of Theorem I11(a). Q.E.D.
Lemma C2
If g(n) is computable and unbounded, then H(n) < g(n) for in-

finitely many values of n.
Proof
Define the inverse of g as follows:

g−1(n) = min
g(k)≥n

k.

Then it is easy to see that for all sufficiently large values of n:

H(g−1(n)) ≤ H(n) +O(1) ≤ O(logn) < n ≤ g(g−1(n)).

I.e., H(k) < g(k) for all k = g−1(n) and n sufficiently large. Q.E.D.
Corollary C2
Let g(n) be computable and unbounded. For infinitely many n, no

n-bit theory yields more than n + g(n) + c bits of Ω.
Proof
This is an immediate consequence of Corollary C and Lemma C2.

Q.E.D.
Note
In appraising Corollaries C and C2, the trivial formal systems in

which there is always an n-bit axiom that yields the first n bits of
Ω should be kept in mind. Also, compare Corollaries C and A, and
Corollaries C2 and A2.

In summary,
Theorem D
There is an exponential diophantine equation

L(n, x1, . . . , xm) = R(n, x1, . . . , xm) (8.4)

which has only finitely many solutions x1, . . . , xm if the nth bit of Ω is
a 0, and which has infinitely many solutions x1, . . . , xm if the nth bit of
Ω is a 1. Let us say that a formal theory “settles k cases” if it enables
one to prove that the number of solutions of (8.4) is finite or that it
is infinite for k specific values (possibly scattered) of the parameter n.
Let f(n) and g(n) be computable functions.

212 CHAPTER 8. INCOMPLETENESS

(a)
∑

2−f(n) <∞⇒ all n-bit theories settle ≤ n+f(n)+O(1) cases.

(b)
∑

2−f(n) = ∞ & f(n) ≤ f(n + 1) ⇒ for infinitely many n, there
is an n-bit theory that settles ≥ n+ f(n) cases.

(c) H(theory) < n ⇒ it settles ≤ n+O(1) cases.

(d) n-bit theory ⇒ it settles ≤ n+H(n) +O(1) cases.

(e) g unbounded ⇒ for infinitely many n, all n-bit theories settle
≤ n+ g(n) +O(1) cases.

Proof
The theorem combines Theorem R8, Corollaries A and B, Theorem

C, and Corollaries C and C2. Q.E.D.

Chapter 9

Conclusion

In conclusion, we see that proving whether particular exponential dio-
phantine equations have finitely or infinitely many solutions, is abso-
lutely intractable (Theorem D). Such questions escape the power of
mathematical reasoning. This is a region in which mathematical truth
has no discernible structure or pattern and appears to be completely
random. These questions are completely beyond the power of human
reasoning. Mathematics cannot deal with them.

Nonlinear dynamics [Ford (1983) and Jensen (1987)] and quan-
tum mechanics have shown that there is randomness in nature. I be-
lieve that we have demonstrated in this book that randomness is al-
ready present in pure mathematics, in fact, even in rather elementary
branches of number theory. This doesn’t mean that the universe and
mathematics are lawless, it means that sometimes laws of a different
kind apply: statistical laws.

More generally, this tends to support what Tymoczko (1986) has
called a “quasi-empirical” approach to the foundations of mathematics.
To quote from Chaitin (1982b), where I have argued this case at
length, “Perhaps number theory should be pursued more openly in the
spirit of experimental science!” To prove more, one must sometimes
assume more.

I would like to end with a few speculations on the deep problem of
the origin of biological complexity, the question of why living organisms

213

214 CHAPTER 9. CONCLUSION

are so complicated, and in what sense we can understand them.1 I.e.,
how do biological “laws” compare with the laws of physics?2

We have seen that Ω is about as random, patternless, unpredictable
and incomprehensible as possible; the pattern of its bit sequence de-
fies understanding. However with computations in the limit, which is
equivalent to having an oracle for the halting problem,3 Ω seems quite
understandable: it becomes a computable sequence. Biological evolu-
tion is the nearest thing to an infinite computation in the limit that we
will ever see: it is a computation with molecular components that has
proceeded for 109 years in parallel over the entire surface of the earth.
That amount of computing could easily produce a good approximation
to Ω, except that that is not the goal of biological evolution. The goal
of evolution is survival, for example, keeping viruses such as those that
cause AIDS from subverting one’s molecular mechanisms for their own
purposes.

This suggests to me a very crude evolutionary model based on the
game of matching pennies, in which players use computable strategies
for predicting their opponent’s next play from the previous ones.4 I
don’t think it would be too difficult to formulate this more precisely
and to show that prediction strategies will tend to increase in program-
size complexity with time.

Perhaps biological structures are simple and easy to understand only
if one has an oracle for the halting problem.

1Compare my previous thoughts on theoretical biology, Chaitin (1970b) and
Chaitin (1979). There I suggest that mutual information H(s : t) can be used to
pick out the highly correlated regions of space that contain organisms. This view is
static; here we are concerned with the dynamics of the situation. Incidentally, it is
possible to also regard these papers as an extremely abstract discussion of musical
structure and metrics between compositional styles.

2In Chaitin (1985) I examine the complexity of physical laws by actually pro-
gramming them, and the programs turn out to be amazingly small. I use APL
instead of LISP.

3See Chaitin (1977a,1976c).
4See the discussion of matching pennies in Chaitin (1969a).

Chapter 10

Bibliography

The author’s papers on algorithmic information theory are collected in
the book Chaitin (1987c).

• H. Abelson, G.J. Sussman, and J. Sussman (1985), Struc-
ture and Interpretation of Computer Programs, Cambridge,
Mass.: MIT Press.

• G.J. Chaitin (1966), “On the length of programs for computing
finite binary sequences,” Journal of the ACM 13, pp. 547–569.

• G.J. Chaitin (1969a), “On the length of programs for computing
finite binary sequences: statistical considerations,” Journal of the
ACM 16, pp. 145–159.

• G.J. Chaitin (1969b), “On the simplicity and speed of programs
for computing infinite sets of natural numbers,” Journal of the
ACM 16, pp. 407–422.

• G.J. Chaitin (1970a), “On the difficulty of computations,”
IEEE Transactions on Information Theory 16, pp. 5–9.

• G.J. Chaitin (1970b), “To a mathematical definition of ‘life’,”
ACM SICACT News 4, pp. 12–18.

• G.J. Chaitin (1974a), “Information-theoretic computational
complexity,” IEEE Transactions on Information Theory 20, pp.
10–15. Reprinted in Tymoczko (1986).

215

216 CHAPTER 10. BIBLIOGRAPHY

• G.J. Chaitin (1974b), “Information-theoretic limitations of for-
mal systems,” Journal of the ACM 21, pp. 403–424.

• G.J. Chaitin (1975a), “Randomness and mathematical proof,”
Scientific American 232 (5), pp. 47–52. Also published in the
French, Japanese, and Italian editions of Scientific American.

• G.J. Chaitin (1975b), “A theory of program size formally iden-
tical to information theory,” Journal of the ACM 22, pp. 329–340.

• G.J. Chaitin (1976a), “A toy version of the LISP language,”
Report RC 5924, Yorktown Heights: IBM Watson Research Cen-
ter.

• G.J. Chaitin (1976b), “Information-theoretic characterizations
of recursive infinite strings,” Theoretical Computer Science 2, pp.
45–48.

• G.J. Chaitin (1976c), “Algorithmic entropy of sets,” Computers
& Mathematics with Applications 2, pp. 233–245.

• G.J. Chaitin (1977a), “Program size, oracles, and the jump
operation,” Osaka Journal of Mathematics 14, pp. 139–149.

• G.J. Chaitin (1977b), “Algorithmic information theory,” IBM
Journal of Research and Development 21, pp. 350–359, 496.

• G.J. Chaitin and J.T. Schwartz (1978), “A note on Monte
Carlo primality tests and algorithmic information theory,” Com-
munications on Pure and Applied Mathematics 31, pp. 521–527.

• G.J. Chaitin (1979), “Toward a mathematical definition of
‘life’,” in R.D. Levine and M. Tribus (1979), The Maximum
Entropy Formalism, Cambridge, Mass.: MIT Press, pp. 477–498.

• G.J. Chaitin (1982a), “Algorithmic information theory,” in En-
cyclopedia of Statistical Sciences I, New York: Wiley, pp. 38–41.

• G.J. Chaitin (1982b), “Gödel’s theorem and information,”
International Journal of Theoretical Physics 22, pp. 941–954.
Reprinted in Tymoczko (1986).

217

• G.J. Chaitin (1985), “An APL2 gallery of mathematical
physics—a course outline,” Proceedings Japan 85 APL Sympo-
sium, Publication N:GE18-9948-0, IBM Japan, pp. 1–56.

• G.J. Chaitin (1986), “Randomness and Gödel’s theorem,” Mon-
des en Développement 14 (54–55), pp. 125–128, 356.

• G.J. Chaitin (1987a), “Computing the busy beaver function,”
in T.M. Cover and B. Gopinath (1987), Open Problems in
Communication and Computation, New York: Springer, pp. 108–
112.

• G.J. Chaitin (1987b), “Incompleteness theorems for random
reals,” Advances in Applied Mathematics 8, pp. 119–146.

• G.J. Chaitin (1987c), Information, Randomness & Incomplete-
ness — Papers on Algorithmic Information Theory, Singapore:
World Scientific.

• J.H. Conway (1986), private communication.

• R. Courant and H. Robbins (1941), What is Mathematics?,
Oxford: Oxford University Press.

• M.F. Cowlishaw (1985), The REXX Language, Englewood
Cliffs, NJ: Prentice-Hall.

• M. Davis, H. Putnam and J. Robinson (1961), “The deci-
sion problem for exponential diophantine equations,” Annals of
Mathematics 74, pp. 425–436.

• M. Davis (1965), The Undecidable—Basic Papers on Undecid-
able Propositions, Unsolvable Problems and Computable Func-
tions, Hewlett: Raven Press.

• M. Davis, Y.V. Matijasevič and J. Robinson (1976),
“Hilbert’s tenth problem. Diophantine equations: positive as-
pects of a negative solution,” in Mathematical Developments Aris-
ing from Hilbert Problems, Providence: American Mathematical
Society, pp. 323–378.

218 CHAPTER 10. BIBLIOGRAPHY

• M. Davis (1978), “What is a computation?,” in L.A. Steen

(1978), Mathematics Today, New York: Springer, pp. 241–267.

• S. Feferman et al. (1986), Kurt Gödel: Collected Works I: Pub-
lications 1929-1936, New York: Oxford University Press.

• W. Feller (1970), An Introduction to Probability Theory and
Its Applications I, New York: Wiley.

• J. Ford (1983), “How random is a coin toss?,” Physics Today
36 (4), pp. 40–47.

• K. Gödel (1931), “On formally undecidable propositions of
Principia mathematica and related systems I,” Monatshefte für
Mathematik und Physik 38, pp. 173–198. Reprinted in Fefer-

man (1986).

• G.H. Hardy (1952), A Course of Pure Mathematics, Cambridge:
Cambridge University Press.

• R.V. Jensen (1987), “Classical chaos,” American Scientist 75,
pp. 168–181.

• J.P. Jones et al. (1976), “Diophantine representation of the set
of prime numbers,” American Mathematical Monthly 83, pp. 449–
464.

• J.P. Jones and Y.V. Matijasevič (1984), “Register machine
proof of the theorem on exponential diophantine representation
of enumerable sets,” Journal of Symbolic Logic 49, pp. 818–829.

• M. Levin (1974), “Mathematical Logic for Computer Scientists,”
Report TR-131, Cambridge, Mass.: MIT Project MAC.

• B.B. Mandelbrot (1982), The Fractal Geometry of Nature,
San Francisco: Freeman.

• P. Martin-Löf (1966), “The definition of random sequences,”
Information and Control 9, pp. 602–619.

219

• J. McCarthy (1960), “Recursive functions of symbolic expres-
sions and their computation by machine I,” ACM Communica-
tions 3, pp. 184–195.

• J. McCarthy et al. (1962), LISP 1.5 Programmer’s Manual,
Cambridge, Mass.: MIT Press.

• J. McCarthy (1981), “History of LISP,” in R.L. Wexelblat

(1981), History of Programming Languages, New York: Academic
Press, pp. 173–197, 710–713.

• R.P. O’Hara and D.R. Gomberg (1985), Modern Program-
ming Using REXX, Englewood Cliffs, NJ: Prentice-Hall.

• G. Pólya (1954), Induction and Analogy in Mathematics,
Princeton, NJ: Princeton University Press.

• J. Rissanen (1986), “Stochastic complexity and modeling,” An-
nals of Statistics 14, pp. 1080–1100.

• R. Rucker (1987), Mind Tools, Boston: Houghton Mifflin.

• C.P. Schnorr (1974), private communication.

• C.E. Shannon and W. Weaver (1949), The Mathematical
Theory of Communication, Urbana: University of Illinois Press.

• R.M. Solovay (1975), private communication.

• A.M. Turing (1937), “On computable numbers, with an appli-
cation to the Entscheidungsproblem,” Proceedings London Math-
ematical Society 42, pp. 230–265. Reprinted in Davis (1965).

• T. Tymoczko (1986), New Directions in the Philosophy of Math-
ematics, Boston: Birkhäuser.

• J.C. Webb (1980), Mechanism, Mentalism, and Metamathemat-
ics, Dordrecht: Reidel.

• P.H. Winston and B.K.P. Horn (1984), LISP, Reading,
Mass.: Addison-Wesley.

220 CHAPTER 10. BIBLIOGRAPHY

Appendix A

Implementation Notes

The programs in this book were run under the VM/CMS time-sharing
system on a large IBM 370 mainframe, a 3090 processor. A virtual
machine with 4 megabytes of storage was used.

The compiler for converting register machine programs into expo-
nential diophantine equations is a 700-line1 REXX program. REXX is
a very nice and easy to use pattern-matching string processing language
implemented by means of a very efficient interpreter.2

There are three implementations of our version of pure LISP:

(1) The first is in REXX, and is 350 lines of code. This is the sim-
plest implementation of the LISP interpreter, and it serves as an
“executable design document.”

(2) The second is on a simulated register machine. This imple-
mentation consists of a 250-line REXX driver that converts M-
expressions into S-expressions, remembers function definitions,
and does most input and output formating, and a 1000-line 370
Assembler H expression evaluator. The REXX driver wraps each
expression in a lambda expression which binds all current defi-
nitions, and then hands it to the assembler expression evaluator.
The 1000 lines of assembler code includes the register machine
simulator, many macro definitions, and the LISP interpreter in

1Including comments and blank lines.
2See Cowlishaw (1985) and O’Hara and Gomberg (1985).

221

222 APPENDIX A. IMPLEMENTATION NOTES

register machine language. This is the slowest of the three imple-
mentations; its goals are theoretical, but it is fast enough to test
and debug.

(3) The third LISP implementation, like the previous one, has a 250-
line REXX driver; the real work is done by a 700-line 370 As-
sembler H expression evaluator. This is the high-performance
evaluator, and it is amazingly small: less than 8K bytes of 370
machine language code, tables, and buffers, plus a megabyte of
storage for the stack, and two megabytes for the heap, so that
there is another megabyte left over for the REXX driver. It gets
by without a garbage collector: since all information that must
be preserved from one evaluation to another (mostly function def-
initions) is in the form of REXX character strings, the expression
evaluator can be reinitialized after each evaluation. Another rea-
son for the simplicity and speed of this interpreter is that our
version of pure LISP is “permissive;” error checking and the pro-
duction of diagnostic messages are usually a substantial portion
of an interpreter.

All the REXX programs referred to above need to know the set of
valid LISP characters, and this information is parameterized as a small
128-character file.

An extensive suite of tests has been run through all three LISP
implementations, to ensure that the three interpreters produce identical
results.

This software is available from the author on request.

Appendix B

The Number of S-expressions
of Size N

In this appendix we prove the results concerning the number of S-
expressions of a given size that were used in Chapter 5 to show that
there are few minimal LISP programs and other results. We have post-
poned the combinatorial and analytic arguments to here, in order not
to interrupt our discussion of program size with material of a rather dif-
ferent mathematical nature. However, the estimates we obtain here of
the number of syntactically correct LISP programs of a given size, are
absolutely fundamental to a discussion of the basic program-size char-
acteristics of LISP. And if we were to discuss another programming
language, estimates of the number of different possible programs and
outputs of a given size would also be necessary. In fact, in my first paper
on program-size complexity [Chaitin (1966)], I go through an equiv-
alent discussion of the number of different Turing machine programs
with n-states and m-tape symbols, but using quite different methods.

Let us start by stating more precisely what we are studying, and by
looking at some examples. Let α be the number of different characters
in the alphabet used to form S-expressions, not including the left and
right parentheses. In other words, α is the number of atoms, excluding
the empty list. In fact α = 126, but let’s proceed more generally. We
shall study Sn, the number of different S-expressions n characters long
that can be formed from these α atoms by grouping them together with
parentheses. The only restriction that we need to take into account is

223

224 APPENDIX B. S-EXPRESSIONS OF SIZE N

that left and right parentheses must balance for the first time precisely
at the end of the expression. Our task is easier than in normal LISP
because we ignore blanks and all atoms are exactly one character long,
and also because NIL and () are not synonyms.

Here are some examples. S0 = 0, since there are no zero-character
S-expressions. S1 = α, since each atom by itself is an S-expression.
S2 = 1, because the empty list () is two characters. S3 = α again:

(a)

S4 = α2 + 1:

(aa)

(())

S5 = α3 + 3α:

(aaa)

(a())

(()a)

((a))

S6 = α4 + 6α2 + 2:

(aaaa)

(aa())

(a()a)

(a(a))

(()aa)

(()())

((a)a)

((aa))

((()))

S7 = α5 + 10α3 + 10α:

(aaaaa)

(aaa())

(aa()a)

(aa(a))

225

(a()aa)

(a()())

(a(a)a)

(a(aa))

(a(()))

(()aaa)

(()a())

(()()a)

(()(a))

((a)aa)

((a)())

((aa)a)

((())a)

((aaa))

((a()))

((()a))

(((a)))

Our main result is that Sn/Sn−1 tends to the limit α + 2. More
precisely, the following asymptotic estimate holds:

Sn ∼
1

2
√
π
k−1.5(α+ 2)n−2 where k ≡ n

α + 2
.

In other words, it is almost, but not quite, the case that each character
in an n-character S-expression can independently be an atom or a left
or right parenthesis, which would give Sn = (α+2)n. The difference, a
factor of (α+2)−2k−1.5/2

√
π, is the extent to which the syntax of LISP

S-expressions limits the multiplicative growth of possibilities. We shall
also show that for n ≥ 3 the ratio Sn/Sn−1 is never less than α and is
never greater than (α + 2)2. In fact, numerical computer experiments
suggest that this ratio increases from α to its limiting value α+2. Thus
it is perhaps the case that α ≤ Sn/Sn−1 ≤ α + 2 for all n ≥ 3.

Another important fact about Sn is that one will always eventu-
ally obtain a syntactically valid S-expression by successively choosing
characters at random, unless one has the bad luck to start with a right
parenthesis. Here it is understood that successive characters are chosen
independently with equal probabilities from the set of α+2 possibilities

226 APPENDIX B. S-EXPRESSIONS OF SIZE N

until an S-expression is obtained. This will either happen immediately
if the first character is not a left parenthesis, or it will happen as soon
as the number of right parentheses equals the number of left paren-
theses. This is equivalent to the well-known fact that with probability
one a symmetrical random walk in one dimension will eventually re-
turn to the origin [Feller (1970)]. Stated in terms of Sn instead of in
probabilistic terminology, we have shown that

∞
∑

n=0

Sn(α + 2)−n = 1− 1

α + 2
.

Moreover, it follows from the asymptotic estimate for Sn that this infi-
nite series converges as

∑

n−1.5.
In fact, the asymptotic estimate for Sn stated above is derived by

using the well-known fact that the probability that the first return to
the origin in a symmetrical random walk in one dimension occurs at
epoch 2n is precisely

1

2n− 1

(

2n

n

)

2−2n ∼ 1

2n
√
πn

.

This is equivalent to the assertion that if α = 0, i.e., we are forming
S-expressions only out of parentheses, then

S2n =
1

2

1

2n− 1

(

2n

n

)

∼ 1

4n
√
πn

22n.

For we are choosing exactly half of the random walks, i.e., those that
start with a left parenthesis not a right parenthesis.

Accepting this estimate for the moment (we shall give a proof later)
[or see Feller (1970)], we now derive the asymptotic estimate for
Sn for unrestricted α. To obtain an arbitrary n-character S-expression,
first decide the number 2k (0 ≤ 2k ≤ n) of parentheses that it contains.
Then choose which of the n characters will be parentheses and which
will be one of the α atoms. There are n − 2 choose 2k − 2 ways of
doing this, because the first and the last characters must always be a
left and a right parenthesis, respectively. There remain αn−2k choices
for the characters that are not parentheses, and one-half the number of

227

ways a random walk can return to the origin for the first time at epoch
2k ways to choose the parentheses. The total number of n-character
S-expressions is therefore

∑

0≤2k≤n

αn−2k

(

n− 2

2k − 2

) [

1

2

1

2k − 1

(

2k

k

)]

.

This is approximately equal to

∑

0≤2k≤n

(

n

2k

)[

2k

n

]2

αn−2k22k

[

1

4
√
πk1.5

]

.

To estimate this sum, compare it with the binomial expansion of (α +
2)n. Note first of all that we only have every other term. The effect
of this is to divide the sum in half, since the difference between the
two sums, the even terms and the odd ones, is (α − 2)n. I.e., for
large n the binomial coefficients approach a smooth gaussian curve,
and therefore don’t vary much from one term to the next. Also, since
we are approaching a gaussian bell-shaped curve, most of the sum is
contributed by terms of the binomial a few standard deviations around
the mean.1 In other words, we can expect there to be about twice

k =
n

α+ 2
+O(

√
n)

parentheses in the n characters. The correction factor between the
exact sum and our estimate is essentially constant for k in this range.
And this factor is the product of (2k/n)2 to fix the binomial coefficient,
which is asymptotic to 4/(α + 2)2, and k−1.5/4

√
π due to the random

walk of parentheses. Thus our estimate for Sn is essentially every other
term, i.e., one-half, of the binomial expansion for (α + 2)n multiplied
by this correction factor:

1

2
(α + 2)n

4

(α+ 2)2

1

4
√
πk1.5

with k = n/(α + 2). I.e.,

Sn ∼
(α + 2)n−2

2
√
πk1.5

,

1Look at the ratios of successive terms [see Feller (1970) for details].

228 APPENDIX B. S-EXPRESSIONS OF SIZE N

which was to be proved.
Now we turn from asymptotic estimates to exact formulas for Sn,

via recurrences.
Consider an n-character S-expression. The head of the S-expression

can be an arbitrary (n − k)-character S-expression and its tail can be
an arbitrary k-character S-expression, where k, the size of the tail, goes
from 2 to n− 1. There are Sn−kSk ways this can happen. Summing all
the possibilities, we get the following recurrence for Sn:

S0 = 0,
S1 = α,
S2 = 1,
Sn =

∑n−1
k=2 Sn−kSk (n ≥ 3).

(B.1)

Thus Sn ≥ αSn−1 for n ≥ 3, since one term in the sum for Sn is
S1Sn−1 = αSn−1.

To proceed, we use the method of generating functions.2 Note that
each of the n characters in an n-character S-expression can be one of
the α atoms or a left or right parenthesis, at most α + 2 possibilities
raised to the power n:

Sn ≤ (α + 2)n.

This upper bound shows that the following generating function for Sn
is absolutely convergent in a neighborhood of the origin

F (x) ≡
∞
∑

n=0

Snx
n
(

|x| < 1

α + 2

)

.

The recurrence (B.1) for Sn and its boundary conditions can then be
reformulated in terms of the generating function as follows:

F (x) = F (x)2 − αxF (x) + αx+ x2.

I.e.,
F (x)2 + [−αx− 1]F (x) +

[

αx+ x2
]

= 0.

2For some of the history of this method, and its use on a related problem, see
“A combinatorial problem in plane geometry,” Exercises 7–9, Chapter VI, p. 102,
Pólya (1954).

229

We now replace the above (n− 2)-term recurrence for Sn by a two-
term recurrence.3

The first step is to eliminate the annoying middle term by com-
pleting the square. We replace the original generating function F by a
new generating function whose coefficients are the same for all terms
of degree 2 or higher:

G(x) ≡ F (x) +
1

2
(−αx− 1) .

With this modified generating function, we have

G(x)2 = F (x)2 + [−αx− 1]F (x) + 1
4
[−αx− 1]2

= −αx− x2 + 1
4
[−αx− 1]2 ≡ P (x),

where we introduce the notation P for the second degree polynomial
on the right-hand side of this equation. I.e.,

G(x)2 = P (x).

Differentiating with respect to x, we obtain

2G(x)G′(x) = P ′(x).

Multiplying both sides by G(x),

2G(x)2G′(x) = P ′(x)G(x),

and thus
2P (x)G′(x) = P ′(x)G(x),

from which we now derive a recurrence for calculating Sn from Sn−1

and Sn−2, instead of needing all previous values.
We have

G(x)2 = P (x),

that is,

G(x)2 = −αx− x2 +
1

4
[−αx− 1]2 .

3I am grateful to my colleague Victor Miller for suggesting the method we use
to do this.

230 APPENDIX B. S-EXPRESSIONS OF SIZE N

Expanding the square,

P (x) = −αx− x2 +
1

4

[

α2x2 + 2αx+ 1
]

.

Collecting terms,

P (x) =
[

1

4
α2 − 1

]

x2 − α

2
x+

1

4
.

Differentiating,

P ′(x) =
[

1

2
α2 − 2

]

x−
[

α

2

]

.

We have seen that

2P (x)
∑

(n + 1)Sn+1x
n = P ′(x)

∑

Snx
n,

where it is understood that the low order terms of the sums have been
“modified.” Substituting in P (x) and P ′(x), and multiplying through
by 2, we obtain
[

(α2 − 4)x2 − 2αx+ 1
]

∑

(n+ 1)Sn+1x
n =

[

(α2 − 4)x− α
]

∑

Snx
n.

I.e.,
∑

[(α2 − 4)(n− 1)Sn−1 − 2αnSn + (n+ 1)Sn+1] x
n

=
∑

[(α2 − 4)Sn−1 − αSn] xn.
We have thus obtained the following remarkable recurrence for n ≥ 3:

nSn = −
[

(α2 − 4)(n− 3)
]

Sn−2 + [2α(n− 1)− α]Sn−1. (B.2)

If exact rather than asymptotic values of Sn are desired, this is an
excellent technique for calculating them.

We now derive Sn ≤ (α + 2)2Sn−1 from this recurrence. For n ≥ 4
we have, since we know that Sn−1 is greater than or equal to Sn−2,

Sn ≤
[

(α2 + 4) + (2α + α)
]

Sn−1 ≤
[

(α + 2)2
]

Sn−1.

In the special case that α = 0, one of the terms of recurrence (B.2)
drops out, and we have

Sn = 4
n− 3

n
Sn−2.

231

From this it can be shown by induction that

S2n =
1

2

1

2n− 1

(

2n

n

)

=
1

2

1

2n− 1

(2n)!

n!n!
,

which with Stirling’s formula [see Feller (1970)]

n! ∼
√

2πnn+ 1
2e−n

yields the asymptotic estimate we used before. For

S2n =
1

2

1

2n− 1

(2n)!

n!n!
∼ 1

4n

√
2π(2n)2n+ 1

2e−2n

[√
2πnn+ 1

2e−n
]2 =

1

4n

22n

√
πn

.

For large n recurrence (B.2) is essentially

(α2 − 4)Sn−2 − 2αSn−1 + Sn = 0 (n very large). (B.3)

Recurrences such as (B.3) are well known. See, for example, the dis-
cussion of “Recurring series,” and “Solution of difference equations,”
Exercises 15–16, Chapter VIII, pp. 392–393, Hardy (1952). The lim-
iting ratio Sn/Sn−1 → ρ must satisfy the following equation:

(α2 − 4)− 2αx+ x2 = 0.

This quadratic equation factors nicely:

(x− (α + 2)) (x− (α− 2)) = 0.

Thus the two roots ρ are:

ρ1 = α− 2,
ρ2 = α + 2.

The larger root ρ2 agrees with our previous asymptotic estimate for
Sn/Sn−1.

232 APPENDIX B. S-EXPRESSIONS OF SIZE N

Appendix C

Back Cover

• G.J. Chaitin, the inventor of algorithmic information theory,
presents in this book the strongest possible version of Gödel’s
incompleteness theorem, using an information theoretic approach
based on the size of computer programs.

An exponential diophantine equation is explicitly constructed
with the property that certain assertions are independent mathe-
matical facts, that is, irreducible mathematical information that
cannot be compressed into any finite set of axioms.

This is the first book on this subject and will be of interest to
computer scientists, mathematicians, physicists and philosophers
interested in the nature of randomness and in the limitations of
the axiomatic method.

• “Gregory Chaitin. . . has proved the ultimate in undecidability
theorems. . . , that the logical structure of arithmetic can be ran-
dom. . . The assumption that the formal structure of arithmetic
is precise and regular turns out to have been a time-bomb, and
Chaitin has just pushed the detonator.” Ian Stewart in Nature

• “No one, but no one, is exploring to greater depths the amaz-
ing insights and theorems that flow from Gödel’s work on un-
decidability than Gregory Chaitin. His exciting discoveries and
speculations invade such areas as logic, induction, simplicity, the

233

234 APPENDIX C. BACK COVER

philosophy of mathematics and science, randomness, proof the-
ory, chaos, information theory, computer complexity, diophantine
analysis, and even the origin and evolution of life. If you haven’t
yet encountered his brilliant, clear, creative, wide-ranging mind,
this is the book to read and absorb.” Martin Gardner

