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Symeon Bozapalidis



Preface

This Festschrift is published in honor of Symeon Bozapalidis (born in Thes-
saloniki, Greece on April 5, 1948) on the occasion of his retirement. Symeon
completed his undergraduate studies at the Department of Mathematics of the
Aristotle University of Thessaloniki in 1970, his doctorate at the Department of
Mathematics of the University of Ioannina in 1973, and his second doctorate, in
1976, at Université Paris 7, France. He became a full professor of algebra at the
age of 32 at the University of Ioannina, and moved to the Aristotle University
of Thessaloniki in 1982.

His initial research was focused on algebra and especially on categories the-
ory. In the 1980s he turned to theoretical computer science. His main interests
are closely connected with algebraic foundations in computer science, which is
why we chose this title for this volume. In particular, he contributed to the devel-
opment of the theory of tree languages and series, the axiomatization of graphs,
a deep consideration of picture theory, and fuzzy languages. He never stopped
working and producing seminal results despite his serious sight problems. He
was awarded twice, in 2000 and 2005, for his research by the most prestigious
organization in Greece, the Academy of Athens.

The contribution of Symeon to algebraic informatics is not limited to his
publications. He organized the Third International Conference of Developments
in Language Theory (DLT 1997), the Workshop on Current Trends and Devel-
opments in Fuzzy Logic in 1998, and he initiated the International Conference
on Algebraic Informatics (CAI) series in 2005.

Symeon is (because after his official retirement in 2010 his students are still
being taught by him) also an excellent teacher. He taught for more than 35
years several subjects such as algebra, linear algebra, mathematical logic, number
theory, and in addition, after 1982, automata theory, tree languages and series,
algebraic semantics, and fuzzy languages. Seven PhD theses were completed
under his supervision.

This Festschrift volume contains 15 invited papers which are all connected to
Symeon’s research topics. They are written by colleagues, friends, and students
of Symeon. All the papers were refereed according to the usual journal standards.
We are deeply grateful to all the authors for their kind contribution; in fact the
whole project turned out to be a nice and friendly procedure. Most of the papers
were presented at the Workshop of Algebraic Foundations in Computer Science,
held in Thessaloniki, during November 7–8, 2011. Last but not least we would
like to express our gratitude to the team at Springer for their excellent, as usual,
cooperation.

August 2011 Werner Kuich
George Rahonis
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Selected Decision Problems for

Square-Refinement Collage Grammars�

Frank Drewes

Department of Computing Science,
Ume̊a University, Sweden

drewes@cs.umu.se

Abstract. We consider collage grammars whose rules subdivide the unit
square into smaller and smaller rectangles. The decidability status of
selected decision problems for this type of grammars is surveyed: the
membership problem, the emptiness and finiteness problems, connected-
ness and disconnectedness of the generated pictures, and the question
whether a generated collage contains a rectangle whose lower-left corner
is a point on the diagonal.

1 Introduction

Picture generation by means of grammars in the tradition of Chomsky grammars
(in a wide sense) is a field that has a long history. Many different kinds of
pictures and grammatical formalisms to generate them have been studied. Array
grammars of different descriptions belong to the oldest class of models of this
kind. They were proposed in various forms in the late 1960s and early 1970s by
Rosenfeld and others (see [24] and the more recent [25]). The underlying notion
of pictures is that of a two-dimensional array of symbols, thus generalizing strings
from one to two dimensions. Although many different kinds of rules have been
proposed, the basic idea is usually to replace a rectangular sub-array by another
array.1 A problem with this kind of replacement is that a context-free notion
of replacement is not easily conceived, because it would replace a single cell (a
pixel) by an array, an operation that tends to destroy the rectangular nature of
arrays.

A type of picture-generating grammars that avoids this problem is the col-
lage grammar by Habel and Kreowski [21,22], which is inspired by hyperedge-
replacement graph grammars (see, e.g., [2,20,19,12]). Here, pictures are sets of
geometric objects in R

d (squares, triangles, circles, . . . in the case d = 2), so-
called parts. Nonterminals are labelled hyperedges, entities that are attached to
finitely many points (typically d+1 points) in R

d, and a right-hand side of a rule
replacing such a nonterminal has as many distinguished points, so-called exter-
nal points. Replacing a hyperedge e attached to points p1, . . . , pk by a right-hand
� Dedicated to Symeon Bozapalidis on the occasion of his retirement.
1 Another one is to generate arrays column-wise, by considering the individual columns

as strings.

W. Kuich and G. Rahonis (Eds.): Bozapalidis Festschrift, LNCS 7020, pp. 1–29, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 F. Drewes

side C with external points q1, . . . , qk means to remove e and add τ(C), where
τ is an affine transformation such that τ(qi) = pi for i ∈ [k].2 In this way, a
truly context-free picture generation mechanism is obtained that, moreover, is
not confined to the generation of rectangular arrays of pixels of equal size.

The formalization of collage grammars by means of hyperedges is sometimes
not very convenient. Therefore, equivalent definitions of collage grammars have
been developed. Most notably, a “tree-based” definition in terms of tree gram-
mars avoids the use of hyperedges. Instead, operations composed of affine trans-
formations are applied to collages which are now simply sets of geometric parts.
Similar tree-based definitions can be given for many other picture-generating for-
malisms as well, which has been exploited in [8] to present the area in a coherent
way.

In this article, a type of two-dimensional collages is considered that shows cer-
tain similarities with arrays: all parts are non-overlapping rectangular subsets of
the unit square, with sides parallel to the axes. In this case, (labelled) rectangles
can be used not only as terminals, but also as nonterminals (corresponding to
hyperedges attached to the four corners of the rectangle). Replacing such a non-
terminal N by a collage C now means to remove N and add τ(C), where τ is the
(non-uniform) scaling and translation that mapps the unit square onto N . Thus,
τ makes C fit into the space previously occupied by N . We call these collage
grammars square-refinement collage grammars, as they successively refine the
unit square by replacing rectangles by smaller ones.

We note here that, with a starting point in array grammars rather than in
collage grammars, Bozapalidis proposed a somewhat similar notion of picture
grammars called picture-refinement grammars [3]. These grammars are based
on elegant algebraic notions of arrays and their deformation. Intuitively, de-
formation corresponds to the transformation τ that fits a right-hand side C
into a given rectangle (i.e., a cell of the array). Consequently, pictures consist
of rectangles that are not necessarily the same size any more, similarly to the
case of square-refinement collage grammars. The algebraic definition of picture-
refinement grammars complements the geometric one of collage grammars in a
nice way, providing access to different toolboxes of proof methods.

In the literature, some undecidability, decidability, and complexity results for
square-refinement collage grammars and some of their special cases can be found.
Not all of them have originally been formulated and proved for this type of gram-
mars, but in most cases it is fairly easy to transfer them to this setting. Readers
who would like to get general introductions to the theory of collage grammars
should consult [14,8]. In the following sections, we define square-refinement col-
lage grammars and the special cases that are of interest in order to formulate
these results, and we present the decision algorithms and undecidability proofs,
including a few new or strengthened results. For complexity considerations,
we assume that the algorithms are implemented on a random-access machine

2 Usually, it is required that τ is uniquely determined by the points given, which is
the case if d + 1 points are considered, such that none of these points lies in the
sub-space spanned by the remaining ones.
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having indirect addressing and instructions that correspond to the basic arith-
metic operations on integers.

The remainder of this article is structured as follows. In Sect. 2, we define
square-refinement collage grammars and the special cases that are of interest for
this paper: partial-array collage grammars, array collage grammars, and grid col-
lage grammars. We also prove a useful normal-form result for square-refinement
collage grammars, similar to the removal of useless symbols, chain rules and ep-
silon rules from a context-free grammar. Sect. 3 discusses the decidability and
complexity of different flavours of membership, emptiness, and finiteness prob-
lems. Sect. 4 shows that it is undecidable whether all collages generated by a
partial-array collage grammar are connected, and whether all of them are dis-
connected. A decidability result for the rather special case of so-called framed
square-refinement collage grammars is also included. Sect. 5 shows the unde-
cidability of the question whether a grid collage grammar generates a (collage
containing a) part whose lower-left corner lies on the diagonal of the unit square.
Finally, Sect. 6 concludes the paper.

The examples shown throughout the rest of this paper generate coloured
pictures. These colours are visible only in the electronic version of the paper,
whereas they are converted to shades of grey in the printed version. Thus, wher-
ever particular colours are mentioned in examples, this refers to the electronic
version. The colours are, however, not central for the readability of the paper.

2 Square-Refinement Collage Grammars

Let us first compile some basic notation and conventions. The sets of all natural
numbers (including zero), rational numbers, and real numbers are denoted by N,
Q, and R, resp. For n ∈ N, [n] = {i ∈ N | 1 ≤ i ≤ n}. The set of all strings over
an alphabet Σ is denoted by Σ∗. It includes, in particular, the empty string ε.

Given a function f : A→ B, the canonical extension of f to a function from
the power set of A to the power set of B is denoted by f as well, i.e., f(A′) =
{f(a) | a ∈ A} for all A′ ⊆ A. Given a binary relation ⇒ ⊆ A2, ⇒n denotes the
n-fold composition of ⇒ with itself (for n ∈ N), where ⇒0 is the identity on A.
Moreover, ⇒+ =

⋃
n≥1⇒n and ⇒∗ =

⋃
n∈N
⇒n denote the transitive and the

reflexive and transitive closures of ⇒, respectively.
Square-refinement collage grammars are two-dimensional collage grammars

whose terminal and nonterminal parts are labelled rectangular subsets of the
unit square. Starting with a nonterminal that occupies the unit square, rules
replace nonterminal rectangles by smaller ones (which may be nonterminal or
terminal).

More formally, we work in the unit square U = [0, 1]2, where [0, 1] denotes
the closed interval of real numbers between 0 and 1. A rectangle ρ (in U) is
given by two points p = (x, y), p′ = (x′, y′) ∈ U such that x < x′ and y < y′,
where ρ = {(a, b) ∈ U | x ≤ a ≤ x′ and y ≤ b ≤ y′}. Thus, p and p′ are the
lower-left and upper-right corners of ρ. Such a rectangle is also denoted by [p : p′].
To avoid representation and computability issues encountered when dealing with
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arbitrary real numbers, we generally assume that all rectangles [p : p′] considered
in this paper are given by rational coordinates, i.e., p, p′ ∈ U∩Q

2. Two rectangles
overlap if their intersection is a rectangle, and they touch if their intersection is
nonempty. Every rectangle ρ defines a unique transformation τ consisting of a
translation and scaling, such that τ(U) = ρ. In the following, this transformation
will be denoted by τρ.

Throughout this paper, let Λ be a countably infinite set of labels. A part is a
pair P = (λ, ρ) consisting of a label λ ∈ Λ and a rectangle ρ. If geometric and set-
theoretic terminology is used in connection with parts, it refers to their second
components. Thus, for example, P overlaps with (touches) another part (λ′, ρ′)
if ρ and ρ′ overlap (touch, respectively). Given a transformation τ : R

2 → R
2, the

transformation of parts by τ is defined in the obvious way: τ((λ, ρ)) = (λ, τ(ρ)).3

A collage (over Λ) is a finite set of parts that are pairwise non-overlapping. For
T ⊆ Λ, the set of collages with labels exclusively taken from T is denoted by CT .
By abuse of notation, we shall identify a singleton collage {P} with its unique
part P .

We note here that most of the literature on collage grammars deals with black-
and-white collages, i.e., the terminal parts do not carry labels or colours. The
extension to labelled terminals is, however, small and entirely uncritical for most
of the theory of collage grammars (and, in particular, for the results discussed in
this paper) as long as only finitely many colours are considered. In [8, Chap. 7],
a much more general way do introduce and generate “real” colours is studied,
based on operations that continuously affect the colour of parts by manipulating
red-green-blue components.

Definition 1 (square-refinement collage grammar). A square-refinement
collage grammar is a quadruple G = (X, T, R, S) consisting of

– finite disjoint sets X, T ⊆ Λ of nonterminal and terminal labels,
– a finite set R of rules A ::= K, where A ∈ X and K ∈ CX∪T , and
– an initial nonterminal label S ∈ X.

A part whose label is terminal (nonterminal) is a terminal (nonterminal, resp.).
If R contains a rule r = (A ::= K) and C is a collage that contains a nonterminal
N = (A, ρ), then C derives C′ = C[K/N ] = C \ {N}∪ τρ(K). Such a derivation
step is denoted by C ⇒r C′ or C ⇒R C′. The language generated by G is

L(G) = {C ∈ CT | (S, U)⇒∗
R C},

and is called a square-refinement language.

In the following, we will write the derivation relation as ⇒, omitting the sub-
script, whenever the set R of rules in question is obvious from the context.

Example 2 (square-refinement collage grammar). An example is given in Fig. 1,
together with four of the collages it generates. Here, the conventions are as
3 We will only use transformations that preserve the property of being a rectangle.
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S ::= S

S

A

∅

A ::=

A

A

Fig. 1. A square-refinement collage grammar (top) and four of its generated collages
(bottom); the generated collages are magnified relative to the size in which the rules
are depicted

follows. Nonterminals are drawn in grey with a thin black border and the label
inside. The labels of terminals are interpreted as colours, in this case light blue
and orange. The left-hand side of the first rule is the initial nonterminal. Rules
sharing the same left-hand side are drawn by separating their right-hand sides
with vertical bars in a BNF-like manner, instead of drawing the individual rules
separately.

In the introduction, array grammars and Bozapalidis’ picture-refinement gram-
mars were briefly mentioned. As the example above illustrates, the right-hand
sides of square-refinement collage grammars are not very array like, as they do
not necessarily consist of rows and columns. We shall now define special cases
that have this property. Here, the parts are cells in a grid given by a set of hor-
izontal and vertical grid lines (though not necessarily evenly spaced). We shall
consider three types of such grammars. In the most general one, the right-hand
sides of rules are required to be partial arrays. In a partial array, the rectangles
are determined by a grid as described above. A slightly more restricted case is
the array collage grammar, in which right-hand sides are required to be total ar-
rays, in the sense that they fill all of U with rectangles, leaving no empty spaces
in between. This type of square-refinement grammars is the one among those
studied in this paper that is closest to Bozapalidis’ picture-refinement gram-
mars. The third special case of square-refinement collage grammars we consider
is the grid collage grammar, where all right-hand sides are required to be partial
arrays over the same grid.
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Definition 3 (grid and array). Let m, n ∈ N \ {0}. An m×n-grid or simply
grid is a pair Γ = (v0 · · · vm, h0 · · ·hn) consisting of two finite sequences of real
numbers v0, . . . , vm, h1, . . . , hn such that 0 = v0 < v1 < · · · < vm = 1 and
0 = h0 < h1 < · · · < hn = 1. A collage C is a partial Γ -array, if every part in
C is of the form (λ, [p : p′]), where p = (vi−1, hj−1) and p′ = (vi, hj) for suitable
(i, j) ∈ [m]× [n]. C is a Γ -array if it, in addition, contains such a part for every
(i, j) ∈ [m]× [n].

We simply speak of (partial) arrays if the particular grid Γ is understood or
irrelevant. Thus, partial arrays may contain empty spaces, whereas arrays fill all
of U with their parts. As mentioned above, we are going to consider three types
of collage grammars whose right-hand sides are (partial) arrays:

– A partial-array collage grammar is a collage grammar such that the right-
hand sides of its rules are partial arrays (possibly over different grids). If all
right-hand sides are arrays, then the grammar is an array collage grammar.

– For a grid Γ , a Γ -grid collage grammar (or simply grid collage grammar)
is a collage grammar in which each right-hand side is either a terminal unit
square or a partial Γ -array.

Grid collage grammars were originally introduced and studied in [5]. In that
original definition, the grid was required to be an evenly spaced n×n grid. Here,
we drop this restriction, using arbitrary grids instead, as was first discussed in
[8, Sect. 5.5]. Another difference between the original definition and the one em-
ployed here is that the former one allowed nonterminal squares to be rotated by
multiples of 90 degrees and possibly also reflected. Clearly, this additional de-
gree of freedom does not affect the generating power of grid collage grammars,
because we can always implement the finitely many possible rotations and reflec-
tions by additional nonterminals whose right-hand sides are accordingly rotated
and reflected versions of those the original rules (cf. Example 4 below, which
illustrates this in the case of array collage grammars). Hence, as long as we do
not limit the number of nonterminals a grammar may have, the restriction does
not really make a difference.

Example 4 (array collage grammar). Fig. 2 shows an example of an array collage
grammar whose terminals are blue, orange, and white. The difference between
the nonterminals S and A on the one hand, and S′ and A′ on the other hand
is that the latter generate collages that are rotated by 90 degrees with respect
to those generated by the former. A partial-array collage grammar (that is not
an array collage grammar) would be obtained from this one by leaving out some
of the parts, e.g., by replacing the terminating rules by S ::= ∅ and S′ ::= ∅.
Conversely, every partial-array collage grammar can be turned into an array
collage grammar by filling empty spaces with suitable white (i.e., invisible) parts
without a visible difference (provided that we omit the frames around parts).
Hence, from the point of view of pattern generation, array collage grammars are
as powerful as partial-array collage grammars. Nevertheless, the latter are more
difficult to handle in some algorithmic respects, namely if the problems to be
solved require us to distinguish between collages that yield the same pattern.
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S ::= S S A A

S′ ::= S′ S′ A′ A′

A ::= S S′ S′ S A′ ::=

S

S′

S′

S

Fig. 2. An array collage grammar and three of the collages it generates

Example 5 (grid collage grammar). An example of a grid collage grammar over
the evenly spaced 2×2-grid is shown in Fig. 3.

The types of collages that can be derived by (partial) array collage grammars
or Γ -grid collage grammars may be called nested (partial) array collages and
nested Γ -grid collages, resp. It should be clear that the generative power of the
three types of collage grammars is not affected by allowing, in their right-hand
sides, nested (partial) arrays and nested Γ -grid collages, resp. This is because,
in the usual way, we may always introduce new nonterminal labels to be able to
decompose such a rule into a finite set of rules of the non-nested kind.

A standard result that carries over from the string case in a straightforward
manner makes it possible to remove chain rules and epsilon rules from a square-
refinement collage grammar G = (X, T, R, S). Here, a chain rule is a rule whose
right-hand side is a nonterminal unit square, i.e., a rule of the form A ::=(B, U)
with B ∈ X . An epsilon rule is a rule whose right-hand side is ∅. Unfortunately,
the removal of epsilon rules may lead to an exponential size increase, which
is highly undesirable from the point of view of efficiency. Therefore, we will use
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S ::=

S

S A

A ::=

A

A

Fig. 3. A grid collage grammar and three of the collages it generates

a slightly relaxed condition. We say that a derivation (A, U) ⇒n C is a (non-
trivial) epsilon derivation if n > 1 and C = ∅.

Another standard normal-form result that is often useful concerns the removal
of useless nonterminal labels. As usual, call A ∈ X useful if there is a derivation
(S, U) ⇒∗ C ⇒∗ C′ such that (A, ρ) ∈ C for some rectangle ρ, and C′ ∈ CT .
Clearly, because of the context-free nature of collage grammars, all nonterminal
labels are useful if and only if every A ∈ X is reachable (i.e., there is a deriva-
tion (S, U) ⇒∗ C with (A, ρ) ∈ C for some rectangle ρ) and productive (i.e.,
(A, U) ⇒∗ C for a collage C ∈ CT ). For complexity considerations, it is useful
to show that both normal forms can simultaneously be achieved in time O(n4).

Lemma 6. For every square-refinement collage grammar G such that L(G) 
= ∅,
there is a square-refinement collage grammar G′ containing only useful nonter-
minals and neither chain rules nor epsilon derivations, such that L(G′) = L(G).
The computation of G′ from G can be performed in time O(n4) by an algorithm
that also detects whether L(G) = ∅.
Proof. Let G = (X, T, R, S), and consider first the removal of useless nonter-
minal labels. As in the string case, we can use iterative procedures (that run
in quadratic time) to compute the set of all productive nonterminal labels and
restrict X and R accordingly. Afterwards, we do the same with respect to reach-
ability. The resulting grammar contains only useful nonterminal labels.

Next, we remove epsilon derivations from G (where X and R now stand for
the possibly smaller sets left after the first phase of the algorithm). By the
standard iterative procedure, we first determine the set E of all A ∈ X such
that (A, U)⇒∗ ∅. This can be done in quadratic time. Now, let X ′ = X ∪ {A′ |
A ∈ X}, where A′ is a fresh nonterminal label for each A ∈ X . The idea is to use
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a guess-and-verify strategy to make A′ generate the same collages as A, except
∅. For every rule A ::=K in R, let R′ contain

– the rules A ::=K ′ and A′ ::= K ′, for all K ′ that can be obtained from K by
replacing exactly one nonterminal (B, ρ) with (B′, ρ),

– the original rule A ::= K if K ∈ CT , and
– the rule A′ ::=K if K ∈ CT \ {∅}.

The reader should easily be able to check that, for all A ∈ X ,

{C ∈ CT | (A′, U)⇒∗
R′ C} = {C ∈ CT | (A, U)⇒∗

R C} \ {∅}.

From this and the construction of rules in R′ with left-hand sides in X , it follows
that (X ′, T, R′, S) does not contain epsilon derivations and generates the same
language as G. Note that the size of the grammar increases at most quadratically.

Finally, we follow the usual strategy for removing chain rules from a context-
free Chomsky grammar. Thus, we determine the set D of all (A, B) ∈ X ′ ×X ′

such that (A, U)⇒∗
R′ (B, U). Again, this can be done by an iterative procedure

that takes quadratic time (in |R′|). Now, replace R′ by the set R′′ of all rules
of the form A ::= K, such that there is a rule B ::= K in R′ for which (A, B) ∈
D. Clearly, this modification neither affects the language generated, nor does
it re-introduce useless nonterminal labels or epsilon derivations. Thus, G′ =
(X ′, T, R′′, S) is as required, and the procedure runs in time O(n4) in total, as
claimed. ��

3 Membership, Emptiness, and Finiteness

As our first decision problem regarding square-refinement collage grammars, we
consider the most basic one for languages of any kind: the membership problem.
Thus, we are given a square-refinement collage grammar G and a collage C, and
the question to be answered is whether C ∈ L(G). Recall that there are two
flavours of this problem, namely the uniform and the non-uniform one. In the
first, G is part of the input (which means that the algorithm has to work for all
G), whereas G is arbitrary but fixed in the non-uniform case (meaning that a
family of algorithms indexed by G would do).

To the best of the author’s knowledge, the (mostly rather straightforward)
results of this section have not explicitly been stated in the literature. However,
somewhat similar results were proved without complexity analyses in [8, Chap. 5]
for the case of grid collage grammars (see also the remark following the proof of
Theorem 11).

We first observe that membership is decidable for square-refinement collage
grammars in general, by a rather straightforward (and inefficient) approach.

Theorem 7. The uniform membership problem for square-refinement collage
grammars is decidable.
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Proof. By Lemma 6, we may assume that the given square-refinement collage
grammar G = (X, T, R, S) contains neither chain nor epsilon rules. The proce-
dure for removing epsilon rules already gives us the answer to the membership
problem if C = ∅, as this is the case if and only if S ∈ E. Otherwise, let α be the
area of the largest nonterminal part appearing in the right-hand sides of rules
in R. If a derivation tree of a derivation in G (defined in the obvious way) is of
depth d, then the generated collage contains a part whose area is αd or smaller.
Thus, if α0 is the area of the smallest rectangle in C, we only have to enumerate
all derivations whose derivation trees are of depth at most logα α0 to find out
whether C ∈ L(G′′). ��
It may be worth pointing out that the argument above works for all collage
grammars (i.e., not just square-refinement collage grammars) whose parts have a
nonzero but finite area and whose rules strictly decrease the area of nonterminals.

A better result can be obtained for array collage grammars.

Theorem 8. The uniform membership problem for array collage grammars is
in P . The non-uniform variant of the problem is solvable in cubic time.

Proof. By following the well-known construction of the Chomsky normal form
for context-free Chomsky grammars, a given array collage grammar G may be
transformed into a normal form in which each right-hand side is either

– an array consisting of two nonterminals or
– an array consisting of a single terminal.

For picture-refinement grammars, this normal form was established by Boza-
palidis in [3]. The transformation can be done in polynomial time and yields
a grammar whose size is polynomial in the size of the original grammar. Now,
an adapted version of the Cocke-Younger-Kasami algorithm [27] can be used to
check whether a given collage C is in L(G). It builds a table τ whose cells τp

′
p

correspond to rectangles [p : p′] such that p and p′ are the lower-left and upper-
right corners, respectively, of parts in C. Given such a rectangle, let Cp′

p be the
sub-collage of C consisting of all parts in C which are subsets of [p : p′]. In a
bottom-up procedure similar to the ordinary CYK algorithm, the cells are filled
with nonterminal labels in such a way that τp

′
p contains the label A if and only

if (A, [p : p′]) ⇒∗ Cp′
p . When τ

(1,1)
(0,0) has been filled, we know whether C ∈ L(G),

because this is the case if and only if τ
(1,1)
(0,0) contains the initial nonterminal label.

For a fixed language, the complexity analysis of the algorithm is similar to
that of the CYK algorithm in the string case, which yields a cubic time bound.

��
It is unclear whether the membership problem for partial-array collage gram-
mars can also be solved in polynomial time. In that case, the difficulty is that,
intuitively, the corners of nonterminals may have to be placed somewhere in the
empty space between terminals, for which there may be far to many possibilities.
Hence, determining the complexity of the membership problem for partial-array
collage grammars is an interesting open problem.
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Another interesting question is whether we can also decide the membership
problem for the patterns generated. This is because, if we interpret the terminal
labels as colours and draw collages by simply drawing rectangles in their respec-
tive colours, then two distinct collages may yield identical patterns. If we are only
interested in whether or not a certain pattern is generated by a collage grammar,
we thus have to solve the pattern-membership problem. Apparently, essentially
nothing can be found in the literature about the solvability and complexity of
this problem.

Formally, for a collage C, define

pattern(C) = {(λ, p) ∈ Λ× U | ∃ρ : p ∈ ρ and (λ, ρ) ∈ C}.
C is pattern equivalent with C ′, denoted C ∼ C′, if pattern(C) = pattern(C′).
Given a collage grammar G and a collage C, the pattern-membership problem
asks whether there is a pattern-equivalent collage C′ ∈ L(G). Below, the rela-
tively easy result is proved that this problem is in P for grid collage grammars.
The reader is encouraged to have a look at the more general cases and find out
whether the problem is solvable and, if so, whether we can solve it efficiently.

In the following theorem, we assume that the input is a nested Γ -grid collage,
where Γ is the grid underlying the grammar in question. If more general collages
are allowed as input, the problem is likely to become more complex, because the
algorithm must then also convert the input into a Γ -grid collage.

Theorem 9. The uniform pattern-membership problem for grid collage gram-
mars can be solved in quadratic time. The non-uniform variant of the problem
is solvable in linear time.

Proof. Let C, C′ be collages consisting of Γ -parts. Let us say that C′ is coarser
than C if C and C′ are pattern equivalent and, for every part (λ, ρ) ∈ C, there
is a part (λ, ρ′) ∈ C′ such that ρ ⊆ ρ′. Clearly, the set of all collages that are
pattern equivalent with C has a unique coarsest element Ĉ that can be computed
in linear time by a depth-first strategy. The algorithm described below turns the
given grid collage grammar into one whose language is closed under taking Ĉ
(i.e., for each member C of the generated language, Ĉ is a member as well), and
checks whether the grammar generates Ĉ, where C is the input collage.

Let G = (X, T, R, S) be a Γ -grid collage grammar and C the input collage.
In quadratic time, using the standard iterative technique, we can compute the
set fill(A) for every A ∈ X , where

fill(A) = {λ ∈ T | (A, U)⇒∗ C for a collage C ∼ (λ, U)}.
Now, add to G all rules A ::=(λ, U) with A ∈ X and λ ∈ fill(A). Then the
resulting grammar G′ satisfies L(G′) = L̂(G). Hence, to answer the membership
question for G and C, it suffices to check whether Ĉ ∈ L(G′). This can be done
with the help of Theorem 8, but we actually do not need the full CYK for this
purpose. Since the grid Γ is fixed, every nested Γ -grid collage has a unique
structure (similar to a quadtree), and checking whether the collage is generated
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by the grammar corresponds to running a bottom-up finite-state tree automaton
on this tree, which takes linear time.

Altogether, this yields a quadratic time bound for the uniform case and a
linear one for the non-uniform one (because, in the non-uniform case, G′ is fixed
and need not be computed). ��

Besides membership, two of the most fundamental questions regarding languages
are those that concern their emptiness and finiteness. In the remainder of this
section, these will briefly be discussed.

An algorithm for deciding emptiness for square-refinement languages is eas-
ily established, using the corresponding algorithm for context-free string lan-
guages as a blueprint. In fact, one may rightfully claim that these two algo-
rithms are the same. This is because emptiness is a property independent of
what sort of objects is generated. Consider a square-refinement collage grammar
G = (X, T, R, S) and a rule A ::= K. If K contains the (pairwise distinct) non-
terminals (A1, ρ1), . . . , (Ak, ρk), then we can regard this rule as a context-free
Chomsky rule A ::= A1 · · ·Ak instead. The context-free Chomsky grammar G′

obtained in this way generates a string (namely the empty string) if and only if
L(G) 
= ∅. Thus, the following theorem just repeats well-known results from the
theory of context-free Chomsky grammars “in disguise”.

Theorem 10. The emptiness problem for square-refinement languages is

1. P -complete and
2. solvable in quadratic time.

For the finiteness problem, the situation is somewhat similar, although not en-
tirely as trivial, as we have to make use of Lemma 6 to establish it.

Theorem 11. The finiteness problem for square-refinement languages is solv-
able in time O(n4).

Proof. By Lemma 6, we have to show that the problem is solvable in linear time
for square-refinement collage grammars that have no useless symbols and contain
neither chain rules nor epsilon derivations. However, for such grammars G, L(G)
is infinite if and only if there is a nonterminal label A that admits a derivation
(A, U)⇒+ C such that C contains a nonterminal N = (A, ρ) for some rectangle
ρ. This is because, if (A, U) derives a (non-empty) terminal collage C ′ (which
it, by assumption, does), then (A, ρ) derives τρ(C′). The latter is necessarily
distinct from C′, because ρ 
= U , which means that the smallest part in τρ(C′)
is smaller than the smallest one in C′. As we can derive a collage containing A
from (S, U), by iteration, we generate more and more collages.

The question whether the required derivation (A, U)⇒+ C exists is equivalent
to checking whether a graph contains a cycle, a problem which can be decided
in linear time. (The nodes of the graph are the nonterminal labels, and there
is an edge from A to B if there is a rule A ::=K such that K contains a part
labelled with B.) ��
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It may be worth noting that Theorem 11 (without the polynomial time bound)
can, in fact, be extended to square-refinement collage grammars that employ
more powerful derivation modes than the purely context-free one considered in
this paper. This makes use of a general result from [9] stating that the finiteness
problem is decidable for the images of regular tree languages under arbitrary
compositions of macro tree transductions. In the tree-based approach to picture
generation, a collage grammar is a pair consisting of a so-called collage algebra
and a tree-generating device. A collage algebra is a set of operations on collages.
Intuitively, every collage K (such as the right-hand side of a rule) with n non-
terminals N1, . . . , Nn yields an n-ary operation that, when applied to collages
C1, . . . , Cn, returns K[C1/N1] · · · [Cn/Nn]. Then, every device that generates
trees (i.e., formal expressions) over such operations defines a collage language,
namely the set of all collages obtained by evaluating the trees generated. Collage
languages in the sense of this paper are obtained if the tree-generating device is
a regular tree grammar. By replacing regular tree grammars with more powerful
devices, such as compositions of regular tree grammars with arbitrary chains of
macro tree transducers, more sophisticated languages can be generated. Using a
generalization of Lemma 6 together with the main result of [9], it is possible to
show that the finiteness problem is decidable for this class of collage grammars
as well. For grid collage grammars, this was shown in [8, Theorem 5.3.11 and
Sect. 5.5.2].

While the preceding theorem may be useful in some cases, it is conceivable that
one will usually be interested in knowing whether the set of patterns generated
by G is finite, i.e., whether the quotient L(G)/∼ is finite. (For emptiness, the
cases of collages and patterns do, of course, coincide. Thus, we only need to
discuss finiteness.) To which extent this problem can be solved is an interesting
open question that, apparently, has not been studied in the literature on collage
grammars before. Here, we only consider the easiest case, namely that of grid
collage languages. This case can be solved by more or less the same algorithm
as in the proof of Theorem 11.

Theorem 12. For grid collage grammars G, finiteness of L(G)/∼ is decidable
in polynomial time.

Proof. Let G = (X, T, R, S). Similar to the definition of epsilon derivations,
say that a (non-trivial) filler derivation is a derivation (A, U) ⇒n C such that
n > 1 and C ∼ (λ, U) for some λ ∈ T (cf. the definition of fill(A) in the
proof of Theorem 9). Using a similar construction as for the removal of epsilon
derivations, we can extend the proof of Lemma 6 to ensure that the resulting
grammar does not contain filler derivations. Now, two generated collages are
pattern equivalent if and only if they are identical. Hence, the theorem follows
from Theorem 11.

Note that, as the removal of filler derivations is indeed entirely similar to
the removal of epsilon derivations, it comes at the expense of increasing the
degree of the polynomial time bound by another factor of 2. Hence, the time
bound becomes O(n8). This might be avoidable by a more clever construction
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that removes both epsilon and filler derivations simultaneously, but we will not
pursue this direction of thought here. ��
As mentioned above, it is unclear to what extent the preceding theorem can
be improved to cover more general types of square-refinement collage grammars.
The problem seems likely to be solvable for array languages, but to find a rigorous
proof is bound to be more difficult than in the case of Theorem 12: as the right-
hand sides of different rules may be based on different grids, the major argument
in its proof does not work any more. To see this, have a look at the (in all other
respects completely uninteresting) example in Fig. 4.Clearly, the infinitely many
collages generated by this grammar are all pattern equivalent, even though the
grammar does not contain filler derivations.

S ::= S

Fig. 4. An array collage grammar without U -derivations whose generated language is
infinite, yet it generates only one pattern

4 Connectedness

We shall now consider the question whether the language generated by a partial-
array collage grammar contains a connected collage, and whether it contains
a disconnected collage. For general collage grammars (as opposed to square-
refinement collage grammars) the disconnectedness question was shown to be
undecidable in [13]. Here, we use basically the same reduction, but strengthen
the result in two respects:

1. We show that the proof idea can be used to show the undecidability of both
the connectedness and the disconnectedness question.

2. Rather than using general collage grammars, we show the result for partial-
array collage grammars.

At the end of this section, we include a small decidability result regarding both
questions, for the case of so-called framed square-refinement collage grammars,
a result that has also been taken from [13].

We employ the obvious definition of connectedness: a collage C is said to be
connected if, for all parts P = (λ, ρ) and P ′ = (λ′, ρ′) in C, there is a n ≥ 1
and there are parts P1 = (λ1, ρ1), . . . , Pn = (λn, ρn) ∈ C such that P = P1,
P ′ = Pn, and ρi ∩ ρi+1 
= ∅ for all i ∈ [n− 1]. We shall show that this problem
is undecidable, by a reduction from a modified version of Post’s correspondence
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problem over an alphabet Σ. Let us first recall this problem, which we denote
by MPCP. An instance of MPCP consists of a finite sequence Π of pairs of
nonempty strings over Σ, say π1 = (π1

1 , π2
1), . . . , πk = (π1

k, π
2
k). The question to

be answered is whether there exists an index sequence i1 . . . il ∈ [k − 1]∗ such
that π1

i1
· · ·π1

il
π1
k = π2

i1
· · ·π2

il
π2
k. Hence, the pair πk is special, and is appended at

the end, while it is prepended at the beginning in the usual definitions of MPCP.
Clearly, this does not make a difference with respect to decidability, because we
only need to reverse all strings in Π . We call an index sequence i1 . . . ilk that
satisfies this requirement a witness. An example with Σ = [3] and k = 3 is
Π = (11, 112), (211, 1), (3, 13). This instance is a yes instance, a witness being
123, as 11 211 3 = 112 1 13.

It is well known that MPCP is undecidable; see, e.g., [23]. Given an instance
Π of MPCP as above, we shall construct a partial-array collage grammar GPCP

such that L(GPCP) contains a connected collage if and only if Π has a solution.
In the following, we shall sketch the construction of this grammar. As in the
example above, we assume without loss of generality that Σ = [m] for some
m ≥ k. Furthermore, we assume that the last symbol in the two strings in πk
does not occur anywhere else in the instance. Clearly, if this is not the case, it is
easy to achieve by choosing a new symbol and appending it to both π1

k and π2
k.

Since connectedness is independent of the labelling (or colouring) of parts,
we use only one terminal label interpreted as black, say β. Therefore, we mostly
leave out the label of terminal parts and regard them as pure rectangles. The
basic building blocks of the reduction are partial arrays that encode the numbers
in q ∈ [m] in two different ways: Let e = 1/m and 0 < d < e, and define

q = [((q − 1)e, 0) : ((q − 1)e + d, 1)] and
q = {[((q − 1)e, d) : ((q − 1)e + d, 1)], [(0, 0) : (1, d)]}.

Thus, as illustrated in Fig. 5, q is a vertical bar of height 1 and thickness d
whose position within U encodes q in such a way that the encodings of different
q ∈ [m] do not intersect. The encoding q is similar, but of the form ⊥, i.e.,
with a horizontal base.

1 2 3 1 2 3

Fig. 5. The basic building blocks of the reduction, illustrated for the case where m = 3
and d = 1/4
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Using these building blocks, we can assemble larger ones. Let σ1 be the trans-
formation that scales its argument horizontally by 1/2 (but does not affect its
vertical extension), and let σ2 be σ1 followed by a translation by (1/2, 0). Now,
for a string s ∈ [m]∗ and a collage C, we let

s −→ C =

{
C if s = ε

q ∪ s′ −→ C if s = qs′ for a q ∈ [m]

s −→ C =

{
C if s = ε

q ∪ s′ −→ C if s = qs′ for a q ∈ [m]

In the case where C consists of a single part (λ, U), we shall denote s −→ C
and s −→ C by s −→ λ and s −→ λ , resp.

The collages that will be generated consist of three rectangular regions that
contain suitably rotated and/or mirrored copies of blocks of the types defined
above. The idea is that the three regions must fit together in a certain way
for the collage to be connected. The lower-left region encodes a guessed index
sequence i1 · · · iuk at its top edge and the corresponding string π1

i1
· · ·π1

iu
π1
k at

its right edge. The lower-right region encodes a (possibly different) guessed index
sequence j1 · · · jvk at its top edge and the string π2

j1
· · ·π2

jv
π2
k at its left edge.

The idea is that the right edge of the lower-left region will fit the left edge of the
lower-right region if and only if π1

i1
· · ·π1

iu
π1
k = π2

j1
· · ·π2

jv
π2
k. The upper region

encodes two copies of a third, also guessed, index sequence, say z1, . . . , zwk. One
copy extends from the left edge to the middle, while the other one is mirrored,
extending from the right edge to the middle. The purpose of this region is to
check that the left copy coincides with i1 · · · iuk and the right copy coincides
with j1 · · · jvk, thus establishing that the three guessed index sequences are, in
fact, identical.

The collage that would be generated corresponding to the index sequence
123 of the instance mentioned above is shown on the left-hand side of Fig. 6,
where the three regions are indicated by different background colours. On the
right-hand side of the figure, a generated collage based on inconsistent guesses
is shown, that moreover, yields sequences that do not coincide. In that collage,
the top and lower-left regions both correspond to the index sequence 13. As
a consequence, these regions fit together at their common edge. However, the
guess in the lower-right square has been 123, so that the vertical bar encoding
the 3 in the top region does not fit the one encoding the 2 at the top edge of the
lower-right region. Moreover, the index sequence 13 gives rise to the (encoding
of the) string 113 at the right edge of the lower-left region, while the sequence
123 gives rise to 112113, resulting in a misfit where the 3 on the left meets the
2 on the right.

Let us now define the partial-array collage grammar GPCP obtained from an
instance Π = π1, . . . , πk. For convenience, we shall use right-hand sides that are
nested partial arrays. As mentioned earlier, this does not add power, because
such rules can be broken down into ordinary ones using a larger set of nontermi-
nals. With this we need, besides the initial nonterminal label S, three additional
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Fig. 6. A generated collage corresponding to a witness (left) and one that does not
(right)

nonterminal labels: I, A, and B. They will be responsible for generating the
upper, lower-left, and lower-right regions, resp. Thus, the only rule for with the
left-hand side S is

S ::=

I

A B

The rules with left-hand sides I, A, and B are the following, where h ranges over
[k − 1]:

I ::=
h h

I
k k

A ::=
h

π
1 h
−→

A
k

π
1 k
−→

∅

B ::=
h

π
2 h
−→

B
k

π
2 k
−→
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For a nonterminal label Z ∈ {A, B, I}, let rZ,1, . . . , rZ,k denote the k rules
whose left-hand side is Z, i.e., rZ,1, . . . , rZ,k−1 are obtained by letting h above
run from 1 to k − 1. Clearly, every derivation that generates a terminal col-
lage corresponds to three index sequences i1, . . . , iu, j1, . . . , jv, z1, . . . , zw, such
that the rules applied to A, B, and I are rA,i1 , . . . , rA,iu , rB,j1 , . . . , rB,jv , and
rI,z1 , . . . , rI,zw , resp. Moreover, iu = jv = zw = k.

Example 13. For the grammar constructed from the instance of MPCP above,
the derivation that corresponds to the index sequence 123 applies the rules rZ,1,
rZ,2, and rZ,3 (in this order) to the nonterminals labelled with Z ∈ {A, B, I}
(after the first step that replaces the initial nonterminal). This sequence of deriva-
tion steps is shown in Fig. 7, where all three nonterminals are replaced in parallel
in each step.

⇒ ⇒

⇒

Fig. 7. The steps corresponding to the witness 123 of our sample instance of MPCP

Let us say that a derivation is a witness if the three index sequences coincide
and, moreover, π1

i1 · · ·π1
iu = π2

i1 · · ·π2
iu . The following lemma shows that the

reduction works correctly.
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Lemma 14. Let GPCP be constructed from an MPCP instance as described
above. A derivation generates a connected collage if and only if it is a witness.

Proof. The reader should easily be able to check that a witness generates a con-
nected collage, because the encodings of identical symbols are placed on opposite
sides of the edges at which the regions generated by A, B, and I intersect. What
is perhaps less obvious is that every derivation that is not a witness generates a
disconnected collage. Thus, let us consider such a derivation, and let i1, . . . , iu,
j1, . . . , jv, and z1, . . . , zw be the guessed index sequences. There are two cases:

Case 1: The index sequences differ
Assume that i1 · · · iu 
= z1 · · · zw, as the other case is similar. Since iu = k =
zw, whereas k /∈ {i1, . . . , iu−1, z1, . . . , zw−1}, there necessarily has to be an l ∈
[min(u, w)] such that il 
= zl. Consequently, the vertical bar inserted by the
application of rA,il is not connected to any other part in the generated collage,
as its horizontal position does not coincide with the horizontal position of the
vertical bar inserted by the application of rI,zl

. (Note that the copies of il and

zl inserted at these steps are horizontally aligned with each other.) Hence, the
generated collage is not connected.

Case 2: The index sequences are identical, but π1
i1
· · ·π1

iu

= π2

i1
· · ·π2

iu
The arguments are similar to those used in the first case. Let π1

i1 · · ·π1
iu =

s1 · · · sn and π2
i1 · · ·π2

iu = t1 · · · tn′ . Again, the copy of sl encoding the lth

symbol in s1 · · · sn is aligned with the copy of tl encoding the lth symbol in
t1, . . . , tn′ (though this time along the vertical edge), for all l ∈ [min(n, n′)].
Since iu is the only index among i1, . . . , iu that is equal to k, and both π1

k and
π2
k end in a symbol that does not occur anywhere else, it follows that there is

an l ∈ [min(n, n′)], such that sl 
= tl. This means that the horizontal bar in the
copy of sl is not connected to any other part in the generated collage, which
proves that the collage is not connected. ��
Using Lemma 14, we obtain the desired theorem, saying that it is undecidable
whether a partial-array collage grammar generates a connected collage. By a
slight variation of the construction, we can also show that the same holds for
disconnectedness.4

Theorem 15. For partial-array collage grammars G, the following questions
are undecidable:

– Does L(G) contain a connected collage?
– Does L(G) contain a disconnected collage?

Proof. By Lemma 14, the first question is undecidable. The second can be shown
to be undecidable by modifying the reduction in two steps, as follows. In the
first step, the (patterns of the) collages generated by GPCP are inverted, i.e.,
4 This is, up to the adjustments necessary to adhere to the definition of partial-array

collage grammars, the original construction from [13].
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we modify the grammar in such a way that the parts generated cover exactly
the areas of U that the grammar above leaves uncovered. In addition, we place
a black frame around the whole collage (which means that we have to reduce
the size of the interior a bit, to fit everything into U). Thus, after this step, the
witness in Fig. 6 would look as shown in Fig. 8.

Fig. 8. Inverting the collages generated by GPCP

In the second step, we place a “skeleton” (constructed from slim parts) on
the inside of the white area in such a way that, if the collage is a witness, the
skeleton is separated from the rest of the collage by the white area. For the
witness above, the resulting collage is shown at the top of Fig. 9.5 A collage that
does not correspond to a witness is displayed at the bottom of the figure. In such
collages, the (torn apart) skeleton becomes connected to the rest of the collage,
thus yielding a connected collage altogether. Hence, the grammar generates a
disconnected collage if and only if the given MPCP instance has a witness. ��

As we can turn every partial-array collage grammar into an array collage gram-
mar by filling the empty space with appropriate terminals carrying a new label,
we obtain the following corollary.

Corollary 16. For array collage grammars and terminal labels λ, the following
questions are undecidable:

– Does L(G) contain a collage C such that {(μ, ρ) ∈ C | μ = λ} is connected?
– Does L(G) contain a collage C such that {(μ, ρ) ∈ C | μ = λ} is discon-

nected?
5 The reader may have to zoom into the pictures or look at a high-resolution printout

in order to be able to see all relevant details of the figure appropriately.
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Fig. 9. Proving that the existence of a disconnected generated collage is undecidable
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It may be interesting to note that the reductions construct grammars of finite
index, the index of a grammar being the smallest bound b such that every collage
in its language can be generated in such a way that the intermediate collages
contain at most b nonterminals. Thus, the undecidability results of this section
hold even for (partial-)array collage grammars of finite index. In fact, looking
closely at the construction of GPCP and re-writing the rules a bit to allow for
more economical derivations (in the sense of minimizing the need to use simulta-
neously active nonterminals) one easily checks that this holds even for the fixed
index b = 3.

It seems to be mostly unknown for which special cases of square-refinement
collage grammars connectedness or disconnectedness can be decided. Even for
grid collage grammars, the decidability status of these questions seems to be
unknown. To the author’s knowledge, only one positive result of this type has
been shown for collage grammars in the literature, using a very strong restriction
that makes the result become almost immediate.6 Let us say that a square-
refinement collage grammar is framed if, for every right-hand side K in that
grammar,

⋃
K contains every point that belongs to the boundary of U . Then,

we can easily prove the desired decidability result, which is [13, Theorem 4.10]
stated for square-refinement collage grammars.

Theorem 17. For framed square-refinement collage grammars G, the following
questions are decidable in quadratic time:

– Does L(G) contain a connected collage?
– Does L(G) contain a disconnected collage?

Proof. Let G = (X, T, R, S), and consider a derivation (S, U) ⇒n C. Let us
say that a part is a boundary part if it intersects the boundary of U . We show
by induction on n that C is connected if and only if the right-hand sides of
all rules applied in that derivation are connected. For n = 0, this statement is
trivially true. Now, assume that (S, U)⇒n−1 C′ ⇒ C, where C = C′[K/N ] for
a nonterminal N ∈ C ′ and a right-hand side K of an appropriate rule in R.
“⇒” Since K is nonempty, it follows that C′ is connected. By the induction
hypothesis, this means that only rules with connected right-hand sides are ap-
plied to derive C′. Now, to derive a contradiction, assume that the (framed)
right-hand side K is disconnected. Then there is a part P ∈ K that cannot be
reached from any boundary part P ′ ∈ K, because each of the boundary parts
can be reached from any other boundary part. It follows that, in C, the image of
P cannot be reached from the image of P ′ either, contradicting the assumption
that C is connected. Thus, K is connected.
“⇐” By the induction hypothesis, C′ is connected. Thus, the image of every
boundary part of K in C can be reached from every part in C′ \ {N}. Further,
since K is connected, each of its parts can be reached from each of its boundary
parts, which shows that C is connected.

6 However, see Sect. 6 for an interesting positive result regarding iterated function
systems.



Selected Decision Problems for Square-Refinement Collage Grammars 23

Now, we can decide whether L(G) contains a disconnected collage by applying
Lemma 6 to remove useless nonterminal labels. If the resulting grammar contains
a rule whose right-hand side is disconnected, G generates a disconnected collage.
Since we do not need the full Lemma 6 (for the problem at hand, there is no
use in removing chain rules and epsilon derivations), this can be implemented
to run in quadratic time.

To decide whether G generates a connected collage, we delete all rules whose
right-hand sides are disconnected and apply Theorem 10 afterwards (which,
again, takes quadratic time). ��

5 Parts Resting on the Diagonal

Let us say that a part (λ, [p : p′]) rests on its lower-left corner p, and that it
rests on the diagonal if p = (x, x) for some x. We shall now show that it is
undecidable whether a grid collage grammar generates a part that rests on the
diagonal. The proof makes use of a proof idea by Dube [15,16]. In his original
proof, Dube showed that it is undecidable whether the attractor of an iterated
function system (IFS7) contains a point on the diagonal. This was strengthened
in [8] to show that the problem is undecidable even for the special case of Γ -grid
IFSs, a grid IFS being an IFS obeying a restriction similar to that used to define
Γ -grid collage grammars. Below, we modify the construction to establish the
undecidability of the question whether a grid collage grammar generates a part
that rests on the diagonal.

For the undecidability proof, we use another variant of Post’s correspondence
problem. Recall that, in the ordinary PCP, an instance consists of a finite se-
quence Π of pairs π1 = (π1

1 , π2
1), . . . , πk = (π1

k, π
2
k) of nonempty strings over

Σ, and the question to be answered is whether there exists an index sequence
i1 . . . il ∈ [k]+ such that π1

i1 · · ·π1
il

= π2
i1 · · ·π2

il
. For our purposes, we need a

restricted version, namely the prefix-free PCP. Here, it is additionally required
that, for all distinct u, v ∈ [k], neither of π1

iu and π1
iv is a prefix of the other and,

similarly, neither of π2
iu and π2

iv is a prefix of the other. The undecidability of
PCP is usually proved by constructing an instance in which a witness simulates
to an accepting run of a Turing machine. By using reversible Turing machines
instead, i.e., Turing machines in which every configuration has exactly one pre-
decessor, Ruohonen [26] showed that even the prefix-free PCP is undecidable.
(In fact, the original result by Ruohonen concerns the version of PCP which is
both prefix- and suffix-free, but we shall not need suffix-freeness here.)

Lemma 18. The prefix-free PCP is undecidable.

Let us now assume that π1 = (π1
1 , π2

1), . . . , πk = (π1
k, π

2
k) is such a prefix-free

instance of PCP. Without loss of generality, we may assume that Σ = [k − 1].
This enables us to interpret a string w = d1 · · ·dl ∈ Σ∗ as a number in the

7 See, e.g., [1] for an introduction to the mathematical theory of iterated function
systems.
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unit interval [0, 1], namely num(w) = 0.d1 . . . dl, written in base-k notation.
In other words, num(w) =

∑
i∈[l] dik

−i. Thus, a pair (w, w′) of strings over Σ

can be encoded as a point in U , namely (num(w),num(w′)). Note that num
is injective, because 0 /∈ Σ. Hence, (num(w),num(w′)) lies on the diagonal if
and only if w = w′. We will also need to encode the lengths of w and w′.
This is done by representing (w, w′) as the rectangle rec[w, w′] = [p : p′], where
p = (num(w),num(w′)) and p′ = (num(w) + k−|w|,num(w′) + k−|w′|).

The following lemma is the reason why we have to assume prefix-freeness.

Lemma 19. Let w, w′ ∈ Σ∗ be such that neither is a prefix of the other. If
num(w) < num(w′), then num(w) + k−|w| ≤ num(w′).

Proof. Let w = d1 · · · dl and w′ = d′1 · · · d′m. Since w is not a prefix of w′, there
is a j ∈ [min(l, m)] such that d1 = d′1, . . . , dj−1 = d′j−1, and dj < d′j . Hence,

num(w) + k−|w| =
∑
i∈[l] dik

−i + k−l

=
∑
i∈[j−1] dik

−i + (dj + 1)k−j

≤∑
i∈[j] d

′
ik

−i

≤ num(w′).

��
Now, consider the collage grammar

G′
PCP = ({S}, {β}, r1, . . . , rk, r

′
1, . . . , r

′
k, S),

where ri = (S ::=(S, rec[π1
i , π

2
i ])), and r′i = (S ::= rec[π1

i , π
2
i ]) for all i ∈ [k].8 By

Lemma 19, this collage grammar is a grid collage grammar, where the grid is
determined by num(π1

1),num(π1
1) + k−|π1

1|, . . . ,num(π1
k),num(π1

k) + k−|π1
k| and

num(π2
1),num(π2

1)+k−|π2
1|, . . . ,num(π2

k),num(π2
k)+k−|π2

k| on the horizontal and
the vertical axis, respectively. The following lemma shows that derivations by
these rules correspond to concatenation of the strings encoded by the rectangles
rec[π1

i , π
2
i ].

Lemma 20. For every derivation (S, U) = C0 ⇒ri1
C1 ⇒ri2

· · · ⇒ril
Cl in

G′
PCP, it holds that Cl = (S, rec[π1

i1 · · ·π1
il
, π2
i1 · · ·π2

il
]).

Proof. By induction on l. The statement obviously holds for the case l = 0.
For the inductive step, it suffices to establish that, if C = {N} with N =
(S, rec[u, u′]), and C′ = (S, rec[w, w′]), then C[C′/N ] = (S, rec[uw, u′w′]). By
the definition of replacement and the construction of rec[u, u′], C[C′/N ] = (S, ρ),
where ρ is obtained from rec by

1. scaling it horizontally and vertically by the factors k−|u| and k−|u′|, resp.,
and

2. translating it horizontally and vertically by num(u) and num(v), resp.
8 Again, since there is only one terminal label, we identify a terminal with its second

component.
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Thus, if u = d1 . . . dl and w = d′1 . . . d′m, it follows that the left edge of ρ has the
coordinate

num(u) + num(w)k−|u| =
∑

i∈[l]

dik
−i +

∑

i∈[m]

d′ik
−(l+i) = num(uw)

and the horizontal size of the rectangle is k−(l+m), as required. Clearly, the
argument is entirely similar for the vertical direction. ��
Now, we can easily establish the correctness of the reduction.

Lemma 21. Let G′
PCP be constructed from an instance Π of the prefix-free

PCP as described above. Then Π has a witness if and only if G′
PCP generates a

terminal that rests on the diagonal.

Proof. By Lemma 20, G′
PCP generates exactly the set of all terminals of the

form rec[w, w′], such that there is a non-empty index sequence i1 · · · il with
w = π1

i1
· · ·π1

il
and w′ = π2

i1
· · ·π2

il
. If w = w′, then rec[w, w′], by its very

definition, rests on the diagonal. Otherwise, by the injectivity of num, we have
num(w) 
= num(w′), which means that rec[w, w′] does not rest on the diagonal.

��
We have thus established the undecidability of the question whether a linear
grid collage grammar generates a part that rests on the diagonal. (Recall that
a grammar is called linear if every right-hand side contains at most one non-
terminal.) By putting all the nonterminals into one right-hand side and all the
terminals into another, we obtain the same result for grid collage grammars with
only two rules.

Theorem 22. For grid collage grammars G, it is undecidable whether L(G)
generates a (collage containing a) part that rests on the diagonal. This remains
true if G is required to be linear or, alternatively, required to have at most two
rules.

Proof. For linear grid collage grammars, this is immediate from Lemma 21, be-
cause the reduction constructs a linear grammar. Alternatively, we may consider
G′′

PCP = ({S}, {β}, r, r′, S), where r = (S ::={(S, rec[π1
i , π

2
i ]) | i ∈ [k]}), and

r′ = (S ::={rec[π1
i , π

2
i ] | i ∈ [k]}). Clearly,

⋃
L(G′′

PCP) =
⋃

L(G′
PCP), which

proves the assertion for grammars with two rules. ��

6 Concluding Remarks

We have defined square-refinement collage grammars and surveyed decidabil-
ity and complexity results regarding these grammars or their special cases,
namely (partial-) array collage grammars, which are closely related to Boza-
palidis’ picture-refinement grammars, and grid collage grammars.

A result that has been excluded from the presentation in this paper, because
its proof can be formulated much more conveniently in the tree-based setting,



26 F. Drewes

concerns raster images of grid collage grammars over an evenly spaced grid.
These have been studied in [11]. Let us call such grid collage grammars uniform.
A raster is simply another evenly spaced grid, say an m×n-grid Γ . Let PixelsΓ be
the Γ -array consisting of black parts only. (As before, we shall consider PixelsΓ
to be a set of rectangles, disregarding their label.) The intuition is that PixelsΓ
corresponds to the set of pixels of a screen or another rectangular displaying
device. Now, given a collage C, we can rasterize it by selecting those pixels in
PixelsΓ that intersect with or are covered by parts in C. In this way, we get the
upper and lower raster image of C, respectively (in black and white). Formally,

upperΓ (C) = {pix ∈ PixelsΓ | pix ∩
⋃

C 
= ∅} and
lowerΓ (C) = {pix ∈ PixelsΓ | pix ⊆

⋃
C}.

Given a collage grammar G, the upper and lower galleries generated by G are
Gu
Γ (G) = {upperΓ (C) | C ∈ L(G)} and Gl

Γ (G) = {lowerΓ (C) | C ∈ L(G)},
respectively. Note that both these galleries are finite, because PixelsΓ is finite.
Now, the main result of [11] (see also [8, Theorem 5.2.2]) states that Gu

Γ (G) and
Gl
Γ (G) are computable:

Theorem 23. There is an algorithm that, given as input a uniform grid collage
grammar G and a raster Γ , computes Gu

Γ (G) and Gl
Γ (G).

It seems likely that the theorem can be extended to general grid collage grammars
(thus dropping the restriction to evenly spaced grids) and to at least certain types
of partial-array collage grammars, but this question has not been studied yet.
As a corollary to the theorem, we get the following.

Corollary 24. The following questions are decidable:

1. Given a uniform grid collage grammar G, a raster Γ , and a set img ⊆
PixelsΓ as input, is img in Gu

Γ (G)? Is img in Gl
Γ (G)?

2. Given two uniform grid collage grammars G, G′ (possibly over different grids)
and a raster Γ as input, are Gu

Γ (G) and Gu
Γ (G′) equal? Are Gl

Γ (G) and Gl
Γ (G′)

equal?

Restrictions that are similar to those applied to collage grammars in this pa-
per can also be used to restrict other picture-generating mechanisms, to make
them refine the unit square in a stepwise fashion. In particular, this includes it-
erated function systems (IFS, that were already mentioned in Sect. 5) and their
extensions. Intuitively, these are deterministic square-refinement collage gram-
mars that generate a single, usually infinitely detailed picture called a fractal,
which is the limit of an infinite derivation. In the same way, but dropping the
requirement of determinism, languages of fractals can be generated and stud-
ied. Devices of these kinds have been studied in [5,6,7,8] in the collage grammar
setting and in [3] in the algebraic setting of picture-refinement grammars.
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In view of the undecidability results of Sect. 4, it may be of interest to men-
tion that connectedness of the fractals generated by grid IFS was shown to be a
decidable problem in [5] (see also [8, Sect. 5.4.4]). The reader may perhaps won-
der why the question is undecidable for collage grammars but decidable for IFS,
even though the restriction to grids is imposed on both. There are two major
differences between the two situations. An IFS is deterministic, making it impos-
sible employ “guessing” as in the grammar GPCP used in Sect. 4, and it has only
one nonterminal, whereas the idea underlying the construction of GPCP requires
to use more than one in order to create the different regions that, together, rep-
resent a witness. Thus, there are several interesting open problems on either side
left to be studied: Can the decidability result for grid IFS be extended to so-
called networked IFS (which can make use of any number of nonterminals) or to
nondeterministic IFS? Similarly, is connectedness decidable for collage grammars
with only one nonterminal? Can we restrict the nondeterminism in a reasonable
way for connectedness to become decidable?

Most of the positive results shown here, especially those in Sect. 3, remain
correct for certain types of grammars with more powerful derivation modes, such
as ET0L, branching synchronization [10], or even the collage languages whose
underlying derivation trees are in MT∗(REGT), the closure of the class of regular
tree languages under macro tree transductions. For details, the interested reader
should consult [8].

An interesting extension of partial-array collage grammars that has been stud-
ied in the literature is the random-context picture grammar invented by Ewert
and van der Walt [18] (see [17] for further references). Random context is a form
of regulated rewriting [4], where every rule is equipped with two sets of so-called
permitting and forbidding nonterminal labels. By definition, a rule is applicable
to an occurrence of its left-hand side in the sentential form if all permitting
nonterminal labels occur elsewhere in the sentential form and none of the for-
bidding ones does. Thus, the term “random” indicates that the context may be
arbitrarily distributed in the sentential form. As a consequence, this form of con-
text dependency is well suited not only for string grammars, but also for other
types of grammars based on the replacement of nonterminal items. While there
are several structural results known for random-context picture grammars, in
particular pumping and shrinking lemmas, not much seems to be known about
decidability questions (except for the undecidability results that follow trivially
from results such as those surveyed in this paper).

Acknowledgment. I thank George Rahonis for proofreading the paper and
pointing out a number of typos.

References

1. Barnsley, M.: Fractals Everywhere. Academic Press, Boston (1988)
2. Bauderon, M., Courcelle, B.: Graph expressions and graph rewriting. Mathematical

Systems Theory 20, 83–127 (1987)



28 F. Drewes

3. Bozapalidis, S.: Picture deformation. Acta Informatica 45, 1–31 (2008)
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Abstract. Quantitative aspects of systems can be modeled by weighted
automata. Here, we deal with such automata running on finite trees.
Usually, transitions are weighted with elements of a semiring and the be-
havior of the automaton is obtained by multiplying the weights along a
run. We turn to a more general cost model: the weight of a run is now de-
termined by a global valuation function. An example of such a valuation
function is the average of the weights. We establish a characterization
of the behaviors of these weighted finite tree automata by fragments of
weighted monadic second-order logic. For bi-locally finite bimonoids, we
show that weighted tree automata capture the expressive power of sev-
eral semantics of full weighted MSO logic. Decision procedures follow as
consequences.

1 Introduction

Trees or terms are one of the most fundamental concepts both in mathematics
and in computer science. J. R. Büchi [19] wrote: “It is very easy to tell what these
terms are and why they merit an investigation. They are those famous (some
will say infamous) formulas that distinguish mathematical texts from others.
[. . . ] And of course, these very same terms make up the bulk, if not all, of mod-
ern programming languages.” The early papers by Thatcher and Wright [54]
and by Doner [25] on regular tree languages established the connection between
finite tree automata and monadic second-order logic, thus extending the cor-
responding results on string languages by Büchi [18] and Elgot [37]. Within
the last decades, the theory of tree languages developed rapidly, see [24, 42] for
surveys. Not surprisingly, also quantitative aspects gained attention since the be-
ginning of the 1980s [2]. Many authors dealt with different aspects of weighted
tree automata and their behavior [5, 31, 39, 46, 47, 38, 53]. Bozapalidis and
his co-workers contributed a huge amount of concepts and results to the theory
of formal tree series, especially concerning an algebraic treatment of the topic
[1, 6–11, 17, 12–16]. For an overview of recent results on weighted automata over
different structures including trees see [29].

W. Kuich and G. Rahonis (Eds.): Bozapalidis Festschrift, LNCS 7020, pp. 30–55, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Weighted Tree Automata and Weighted Logics over Valuation Monoids 31

In order to obtain a counterpart in terms of logic for weighted word and tree
automata, Droste and Gastin [26, 27] developed a weighted MSO logic with
weights stemming from a semiring and proved a Büchi-like characterization for
formal power series on words. The generalization of this result to tree series
followed quickly by Droste and Vogler [33]. Moreover, similar results have been
obtained for unranked trees [35], for infinite trees [52], and for trees over multi-
operator monoids [40].

Here, we present another concept of weighted tree automata and their char-
acterization by weighted logics. The conceptual difference is the following: the
weight of a run of the automaton is not any longer computed in a local way by
a binary operation (e.g., semiring multiplication), but in a global way, i.e., given
a run of the automaton we apply a valuation function to all the weights appear-
ing along the run. A natural example is the arithmetic mean of the weights; it
models, e.g., average consumption of resources. The concept of a valuation func-
tion traces back to a study by Chatterjee, Doyen, and Henzinger [20] where they
considered such functions for string automata with real numbers as weights. The
expressiveness and various decision problems for these automata were explored
in several papers [21–23]. The model of Chatterjee et al. was generalized in [30]
to a more general weight structure, called valuation monoid, and the class of
behaviors of these weighted automata was characterized by weighted MSO logic
both for finite and infinite words. In [44], this approach was extended to finite
traces.

For words, an evaluation function maps sequences of weights to a single weight.
For trees, we adapt the concept such that a tree valuation function maps trees
which are labeled with weights to a single weight. An additive monoid equipped
with a tree valuation function forms a tree valuation monoid. These structures
subsume semirings but are much more comprehensive. Concerning automata,
the weight of a run is computed by the valuation function and then the weights
of several runs on the same tree are combined by addition. We note that the
weighted tree automata over absorptive multioperator monoids recently inves-
tigated in [39, 40] can also be seen as weighted tree automata over particular
valuation monoids.

With respect to weighted MSO logic, more structure is necessary to define
the semantics. Here, we follow the approach in [30]. Negation is pushed to the
atomic level. Disjunction and existential quantification are interpreted by addi-
tion, and the formula ‘false’ is mapped to the neutral element of the monoid,
the zero element �. First-order universal quantification makes a statement about
all positions of a tree. Therefore, we will define the semantics of this quantor
by the application of the valuation function. But what about conjunction, what
about the simple formula ‘true’? For this, we will introduce an additional binary
operation, called product, and a unit for this product, the element �. Now the
semantics of ‘true’ will be � and the semantics of conjunction will be multiplica-
tion by the new product. Tree valuation monoids with these additional features
are called product tree valuation monoids. It is of interest that, first, the seman-
tics of universal quantification and of conjunction, respectively, are not defined
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by the same operation anymore and, second, the interpretation of conjunction
in general needs neither to be commutative nor associative anymore. Also, dis-
tributivity of the product over addition is not necessarily required. We would
like to stress that in our setting the loss of those properties is not substituted by
local finiteness conditions. Such non-standard properties of logics appeared also
already in lattice valued fuzzy logics [36], in multi-valued logics [45, 49], and in
quantum logics [3].

Our main result is as follows. We characterize the behavior of weighted tree
automata by three different fragments of weighted MSO logics, cf. Theorem 5.5.
Which fragment can be used depends on the properties of the underlying product
tree valuation monoid. The restrictions on the fragments are purely syntactic.
The use of universal quantification is restricted in the same way as it was already
done for semiring-weighted automata [27, 28]. The fragments differ in the way
to which extent the use of conjunction is confined. Our result generalizes both
the result of [33], also cf. [41], about semiring-weighted tree automata and the
result of [30] about weighted automata over finite words and valuation monoids.

Moreover, we consider strong bimonoids as a special case of (tree) valua-
tion monoids. Strong bimonoids can be viewed as particular semirings missing
distributivity and, in this context, as product tree valuation monoids by using
multiplication both for the product and the valuation function. However, for
the valuation function we need also an enumeration of the positions of a tree to
define in which order the weights of a run are multiplied. We show that differ-
ent enumerations may yield different classes of recognizable tree series for the
same underlying strong bimonoid, cf. Proposition 3.4. The characterization by
weighted MSO logic follows as a corollary of our main result. However, we do
not have to restrict the logic if certain local finiteness assumptions are made. In
this case, all weighted MSO formulas have a recognizable semantics, cf. Theo-
rem 6.3. In fact, for bi-locally finite bimonoids every tree series is of a simple
form: it is a so-called recognizable step function, see Theorem 6.2. In the more
general setting of tree valuation monoids, the concept of local finiteness still has
to be explored.

2 Trees and Tree Valuation Monoids

Let IN = {1, 2, . . .} be the set of all natural numbers and IN0 = IN ∪ {0}. A
ranked alphabet is a pair (Σ, rkΣ) consisting of a finite alphabet Σ and a mapping
rkΣ : Σ → IN0 which assigns to each symbol of Σ its rank. We write Σ(m) for
the set of all symbols with rank m ∈ IN0 and a(m) to denote that a ∈ Σ(m).
If rkΣ is known from the context, we just write Σ for (Σ, rkΣ). Let maxΣ =
max{rkΣ(a) | a ∈ Σ}, the maximum rank of Σ. Subsequently, we always assume
that Σ(0) �= ∅.

Let IN∗ be the set of all finite words over IN. A tree domain B is a finite,
non-empty subset of IN∗ such that for all u ∈ IN∗ and i ∈ IN, u.i ∈ B implies
u, u.1, . . . , u.(i − 1) ∈ B. Note that, since u ∈ B whenever u.i ∈ B, the tree
domain B is prefix-closed. A tree over a set M (of labels) is a mapping t : B →M
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such that dom(t) = B is a tree domain. The elements of dom(t) are called
positions of t and t(u) is called label of t at u ∈ dom(t). The set of all labels of t
is defined by the image of t, thus by im(t) = {t(u) | u ∈ dom(t)}. We denote the
set of all trees over M by TM . A tree language is a subset of TM . A tree over a
ranked alphabet (Σ, rkΣ) is a tree over the set Σ such that for all u ∈ dom(t),
| {u.i | i ≥ 1, u.i ∈ dom(t)} | = k whenever t(u) ∈ Σ(k).

Analogously to Droste and Meinecke in [30], we define a structure which we
use to describe the behavior of weighted tree automata. By abuse of notation let
d ∈ TD denote the tree only consisting of the position ε which is labeled with
d ∈ D.

Definition 2.1. A tree valuation monoid ( tv-monoid for short) is a quadruple
(D, +, Val, �) such that (D, +, �) is a commutative monoid and Val : TD → D
is a function with Val(d) = d for every tree d ∈ TD and Val(t) = � whenever
� ∈ im(t) for t ∈ TD.

Val is called a (tree) valuation function. We will use + to deal with the poten-
tial non-determinism of weighted tree automata and the valuation function to
combine the weights assigned to the positions of a run, see Section 3.

Next we give examples of tv-monoids.

Example 2.2. Qmax = (Q ∪ {−∞}, max, avg,−∞) with

avg(t) =

∑
u∈dom(t) t(u)

| dom(t)|
for all t ∈ TQ∪{−∞} is a tv-monoid. The valuation function of this tv-monoid
calculates the average of all weights of a tree. The value −∞ is the zero of the
tv-monoid Qmax.

Similarly, Qmin = (� ∪ {∞}, min, avg,∞) is a tv-monoid with ∞ as zero.

Example 2.3. Let L(t) be a longest path from the root to a leaf of a tree t. If
there is more than one such path with maximal length, we choose the leftmost
one. Then (IN0, +, Vall, 0) with

Vall(t) =

{∏
u∈L(t) t(u) if 0 /∈ im(t),

0 otherwise

for all t ∈ TIN0 is a tv-monoid. Its valuation function multiplies all values labeling
the positions of the leftmost longest path of t.

Example 2.4. The tv-monoid (Q+
0 , +, Wroot, 0) with

Wroot(t) =

{
t(ε) if 0 /∈ im(t)
0 otherwise

for all t ∈ TQ+
0

is equipped with a valuation function Wroot which returns the
weight of the root position of a tree.
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Example 2.5. We consider �disc = (� ∪ {−∞}, max, discΛ,−∞) where the tree
valuation function discΛ models a discounting on trees, cf. [50].

Here, Λ = (λi)i∈IN with λi > 0 for i ∈ IN. Now the weight of some t ∈ T�disc
at

position u = k1k2 . . . km ∈ IN∗ is defined as

wgtu(t) =

{
t(u) if u = ε,
(
∏m
i=1 λki ) · t(u) otherwise.

Then we put

discΛ(t) =
∑

u∈dom(t)

wgtu(t) .

Here, the discounting depends on the distance of the node from the root. More-
over, we allow different discount factors for different directions within the tree.
In [50], a more general setting of discounting on trees is explored.

3 Weighted Tree Automata

Now we introduce weighted automata running on finite trees with weights from
a tv-monoid. Let Σ be a ranked alphabet and (D, +, Val, �) a tv-monoid.

Definition 3.1. A weighted bottom-up tree automaton (wta for short) over a
tv-monoid D is a quadrupleM = (Q, Σ, μ, F ) where Q is a non-empty finite set
of states, Σ is a ranked alphabet, μ = (μm)0≤m≤maxΣ is a family of transition
mappings μm : Σ(m) → DQm×Q, and F ⊆ Q is a set of final states.

We define the behavior of a weighted tree automatonM by a run semantics. A
run r of M on a tree t ∈ TΣ is a mapping r : dom(t) → Q. For all positions
u ∈ dom(t) labeled with t(u) ∈ Σ(m), we call μm(t(u))r(u.1)...r(u.m).r(u) the
weight of r on t at u. Note that μm(t(u))r(u.1)...r(u.m).r(u) is an abbreviation
for μm(t(u))(r(u.1), . . . , r(u.m), r(u)) inspired by the matrix notation. Since the
domain of a run is a tree domain, each run r on t defines a tree μ(t, r) ∈ TD
where dom(μ(t, r)) = dom(t) and μ(t, r)(u) = μm(t(u)(m))r(u.1)...r(u.m).r(u) for
all u ∈ dom(t). We call r on t valid if � /∈ im(μ(t, r)) and successful if r(ε) ∈ F .
Furthermore, succ(M, t) denotes the set of all successful runs ofM on t. We call
Val(μ(t, r)) the weight of r on t. We set Val(μ(t, r)) = � if r is not valid. The
behavior of a wta M is the function ‖M‖ : TΣ → D defined by

‖M‖(t) =
∑(

Val(μ(t, r)) | r ∈ succ(M, t)
)

for all t ∈ TΣ. If no successful run on t exists, we put ‖M‖(t) = �.
A (formal) tree series is a mapping S : TΣ → D. A tree series S is called

recognizable if S = ‖M‖ for some wtaM. Then we say that M recognizes S.

Example 3.2. Let Qmax be the tv-monoid of Example 2.2. We consider the wta
M = ({q}, Σ, μ, {q}) with μ0(a).q = 1 for all a ∈ Σ(0) and μm(b)q...q.q = 0 for
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all b ∈ Σ(m) and m ≥ 1. For every tree t there is a unique run r on t that assigns
to each position the state q. This run is valid and successful. Thus, we get

‖M‖(t) = avg(μ(t, r)) =

∑
u∈dom(t) μ(t, r)(u)

| dom(t)| =
“number of leaves of t”

“size of t”

where the size of a tree is the number of all nodes of the tree. So M calculates
the leaves-to-size ratio of every tree t.

With another wta M′ over Qmax we can also calculate the height-to-size
ratio of trees. The height of a tree is the number of nodes of one of the longest
paths decremented by one. To calculate the height, a run of the wta chooses a
path from a leaf to the root non-deterministically and weights its positions with 1
except for the leaf. All other positions of the tree are weighted with 0. To achieve
this, the wta possesses two states, say, the state p to signalize that a position
belongs to the chosen path and the state n to signalize that a position does
not belong to the chosen path. Since the non-determinism of the wta is resolved
by maximum, M′ takes the run which chooses one of the longest paths and
applies the valuation function to this run. Formally, M′ = ({p, n}, Σ, μ′, {p})
with μ′

0(a).p = μ′
0(a).n = 0 for all a ∈ Σ(0) and

μ′
m(b)q1...qm.q =

{
1 if ∃i : q = qi = p ∧ ∀j �= i : qj = n,

0 otherwise

for all b ∈ Σ(m) with m ≥ 1. For t ∈ TΣ, let L(t) be a longest path in t. Then

‖M′‖(t) = max
r∈succ(M′,t)

(∑
u∈dom(t) μ(t, r)(u)

| dom(t)|

)

=

∑
u∈L(t) 1

| dom(t)| =
“height of t”
“size of t”

.

Remark 3.3. Due to Alexandrakis and Bozapalidis [1], also cf. [41, Def. 3.2],
weighted tree automata over a semiring (S, +, ·, �, �) are defined as quadruple
A = (Q, Σ, μ, ν) where Q is a non-empty finite set of states, Σ a ranked alphabet,
μ = (μm)0≤m≤maxΣ a family of transition mappings μm : Σ(m) → SQ

m×Q, and
ν ∈ SQ is a final weight vector. The behavior ‖A‖ of such an automaton A
can either be defined by an initial algebra semantics or by a run semantics
(using depth first search, see below) which turn out to be the same [41, p. 324].
Due to the distributivity of semiring multiplication over addition, weighted tree
automata can be normalized, i.e., the final weights can be replaced by final states,
cf. [41, Thm. 3.6]. Thus, it is no restriction for the class of tree series recognized
by these automata to assume that ν ∈ {�, �}Q.

Now we can construct a tv-monoid S′ = (S, +, Val, �) by setting

Val(t) =
∏

u∈dom(t)

t(u)

for all t ∈ TS where the weights are multiplied in the order induced by depth
first search (for commutative semirings the order does not matter). Then we can
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consider A also as a weighted tree automaton over the tree valuation monoid
S′ with ‖A‖S = ‖A‖S′ . Thus, wta over tree valuation monoids generalize those
over semirings.

We have defined our automata with final states instead of final weights.
Whereas this makes no difference for semirings, this is not clear for tv-momoids
because the valuation function evaluates only weights assigned to positions of
the tree and final weights are thus out of the scope of a valuation function.

Next we show that wta over tv-monoids also subsume wta over strong bimonoids
investigated recently, for words, in [32]. A bimonoid (K, +, ◦, �, �) is an alge-
braic structure where (K, +, �) and (K, ◦, �) are monoids. A strong bimonoid
is a bimonoid such that + is commutative and � is a zero for multiplication.
Hence, a semiring is a strong bimonoid in which multiplication distributes over
addition. In general, multiplication in a bimonoid is not required to be commu-
tative. Consequently, if we calculate the weight of a tree t ∈ TK as a product
of the weights at the single positions, the value depends on the order of these
weights. On words this order is given naturally, but for trees we have to pro-
vide well defined orders. Therefore, we introduce enumerations of tree positions
as mappings en : TK → [IN ��� IN∗] such that en(t) is a bijective mapping
between [1, |dom(t)|] and dom(t) for each t ∈ TK . As before, a weighted tree
automaton over a strong bimonoid K is a quadruple M = (Q, Σ, μ, F ). Using
an enumeration en of positions, we define the behavior of M as the function
‖M‖en : TΣ → K given by

‖M‖en(t) =
∑

r∈succ(M,t)

| dom(t)|∏

i=1

μ(t, r)
(

en(μ(t, r))(i)
)

for all t ∈ TΣ . We say that a wtaM over a bimonoid K recognizes a tree series
S with en if S = ‖M‖en. If K is commutative, this semantics is independent of
the chosen enumeration en.

Weighted tree automata over tv-monoids are an extension of those over bi-
monoids. In order to derive a tv-monoid K ′ = (K, +, ◦en, �) from a given strong
bimonoid K = (K, +, ◦, �, �), we define the valuation function ◦en by

◦en(t) =
|dom(t)|∏

i=1

t(en(t)(i))

for all t ∈ TK . Then ‖M‖en = ‖M‖K′ .
Now we investigate two special classes of enumerations. First, we give the

linear order ≺df on IN∗ as an example derived from depth first search. For all
positions u, v ∈ IN∗, inductively let

u ≺df v ⇐⇒ ∃x ∈ IN ∃u′ ∈ IN∗ : u = x.u′ ∧
∀y ∈ IN ∀v′ ∈ IN∗ : [v = y.v′ → (x < y ∨ (x = y ∧ u′ ≺df v′))].

The corresponding enumeration is denoted by DF and is used to define the
run semantics of bottom-up tree automata including the semantics of wta over
general (non-commutative) semirings, cf. Remark 3.3.
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The second class of enumerations is based on a linear order of the weight
structure K. Weights appearing in a run are collected and then multiplied fol-
lowing their order in K. Let < be a strict linear order on the underlying set
of a tv-monoid K. Then we obtain a linear order ≺wo (the weight ordering) on
dom(t) for t ∈ TK by requiring

t(u) < t(v)⇒ u ≺wo v

for all u, v ∈ dom(t); note that ≺wo may not be unique because a weight d can
appear at several positions. But this does not effect the valuation function. We
denote the corresponding enumeration by WO<.

Next we show that the classes of recognizable tree series for two distinct
enumerations may be different. Thus, each enumeration induces a specific class
of recognizable tree series. Henceforth, for the sake of brevity, we identify a
semiring and a bimonoid, respectively, with its derived tv-monoid. For any set
M , we let ℘ (M) be the power set of M .

Proposition 3.4. There exist a ranked alphabet Σ, a semiring K, a strict linear
order <′ on K, and two tree series S, S′ : TΣ → K such that

1. S is DF-recognizable but not WO<-recognizable for any strict linear order <
on K and

2. S′ is WO<′-recognizable but not DF-recognizable.

Proof. We consider the semiring K = (℘ ({1, 2}∗) ,∪, ·, ∅, {ε}) of languages of
finite words over the alphabet {1, 2}with set union as addition and concatenation
of languages as multiplication. Let Σ = {a(0), b(1), c(2)}. Note that maxΣ > 1.

1. For a word u = u1 . . . un ∈ {1, 2}∗ let ←−u = un . . . u1 be the reverse of u. Now
let the tree series S : TΣ → K be defined for all t ∈ TΣ by

S(t) = {←−u | u ∈ dom(t)} ,
i.e., S collects the reversed positions of the tree t.

We indicate that we can build a wta recognizing S with DF. The basic idea
for this wta is that each successful run marks a path to some single node. Now
the weight function of the wta maps each marked node at position u ∈ {1, 2}∗ to
{i} for i ∈ {1, 2} if u.i is the next marked node. In contrast, in a successful run
each unmarked node is mapped to {ε}. Thus, the evaluation of a successful run
with enumeration DF computes the position of a single node in reverse order.

Next, we make some observations on the free monoid {1, 2}∗ and eventually
apply them to K. Let π ∈ {1, 2}ω be aperiodic, i.e., there is no factorization such
that π = π1π

ω
2 for π1, π2 ∈ {1, 2}∗. Furthermore, let π1, . . . , πm with m ∈ IN be

an arbitrary sequence of words from {1, 2}∗. Then the set

Pm =
{
πk11 . . . πkm

m

∣
∣
∣ k1, . . . , km ∈ IN0

}

(where π0
i = ε) contains only a finite number of prefixes of π. This can be shown

by an induction on m. We say, the sequence π1, . . . , πm forms a finite number of
prefixes of π.
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Now we assume there is a linear order < on K and letM = (Q, Σ, μ, F ) be a
wta. Let W1 < . . . < Wm with Wi ⊆ {1, 2}∗ for i ∈ {1, . . . , m} be the sequence
of all weights from im(μ). Then we have at most |W1| · . . . · |Wm| many sequences
� = π1, . . . , πm, such that πi ∈ Wi for all i ∈ {1, . . . , m}. Next we choose some
aperiodic word π ∈ {1, 2}ω. Due to the statement above, each sequence � forms
only a finite number of prefixes of π. Let k be the length of the longest prefix of
π which a sequence � can form. Consequently, no value W ∈ im(‖M‖) contains
a word from {1, 2}∗ that is a prefix of π of length greater than k. Let u ∈ {1, 2}∗
be a prefix of π of length at least k+1 and let t ∈ TΣ be a tree with←−u ∈ dom(t).
Then u ∈ S(t) but u /∈ ‖M‖(t). Hence, ‖M‖ �= S.

2. We fix a linear order <′ on K such that {1} <′ {2}. Now we define the tree
series S′ for all t ∈ TΣ by

S′(t) =

⎧
⎪⎨

⎪⎩

{1n2n} if t ∈ T{a(0),b(1)} ∧ ∃n ∈ IN0 : |dom(t)| = 2n,
{
1n+12n

}
if t ∈ T{a(0),b(1)} ∧ ∃n ∈ IN0 : |dom(t)| = 2n + 1,

∅ otherwise.

A straightforward automaton construction shows that S′ is actually recognizable
with WO<′ .

Suppose there is a wta M = (Q, Σ, μ, F ) recognizing the series S′ with DF.
Let m = |Q| and 	max = max {|w| | w ∈W and W ∈ im(μ)}, the length of the
longest word appearing in a weight of im(μ). Subsequently, we apply a pumping
argument. Therefore, we choose x = (m + 1) · 	max and consider the tree

t = a−
x

︷ ︸︸ ︷
b− . . .− b−

x
︷ ︸︸ ︷
b− . . .− b .

Then S′(t) =
{
1x+12x

}
. Since addition of K is set union, the weight of every

valid and successful run ofM on t is
{
1x+12x

}
. Let r be such a run. The run r

assigns states to all 2x + 1 positions of t. The set Q contains m states, thus at
least two of the m+1 first positions of t (counted from the leaf) are mapped by r
to the same state. Hence, r runs through at least one cycle C within its first m+1
positions. Now recall that M uses DF as enumeration and x = (m + 1) · 	max.
Therefore, the weight WC of cycle C contains only words consisting of the letter
1, i.e., WC ⊆ {1}∗.

If WC = {ε}, we consider the run r′ constructed from r by cutting cycle C.
Then r′ is a successful run on a tree t′ ∈ T{a(0),b(1)} of size less than t. But since
WC = {ε}, the weight of r′ is still

{
1x+12x

}
. Hence,

{
1x+12x

} ⊆ ‖M‖(t′) and
thus ‖M‖ �= S′.

Now we assume that WC contains at least one non-empty word. Then we
build a new run r′ ofM which runs through cycle C twice, but apart from that
performs like r. Let t′ be the tree on which r′ runs. Since WC ⊆ {1}∗, every
word in the weight of r′ has the form 1y2x with y > x + 1, a contradiction to
the definition of S′(t′). Hence, ‖M‖ �= S′ also in this case.

Altogether, S′ is not recognizable with DF. ��
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Remark 3.5. Next we show that wta over tv-monoids also subsume wta over
(absorptive) multioperator monoids investigated recently in [39, 40]. A multi-
operator monoid (for short: a M-monoid) is a quadruple A = (A, +, �, Ω) such
that (A, +, �) is a commutative monoid and Ω = (Ω(k))k∈IN0 is a collection of
operations on A of different arity k. Especially, Ω contains for every arity k the
operations �(k) mapping each k-tuple to �. An M-monoid is called absorptive if
� is absorbing for every ω ∈ Ω.

Now a weighted tree automaton over a ranked alphabet Σ and an M-monoid
A (for short: wmta) is a tripleM = (Q, μ, F ) where Q is a finite non-empty set
of states, μ = (μk)k∈IN0 is a family of mappings μk : Qk×Σ(k)×Q→ Ω(k), and
F ⊆ Q is the set of final states. Runs and successful runs are defined in the same
way as we do. A tree t and a run r on t determine a tree ω(r, t) : dom(t) → Ω
which is defined canonically by μ. The weight of the run r on t can be computed
by evaluating ω(r, t) within the M-monoid A (apply the operation of a node to
the weights already computed for the children of this node). Finally, the weights
of all successful runs of M on t are summed up using the addition of A.

Then we can simulate a wmta M = (Q, μ, F ) over an absorptive M-monoid
(A, +, �, Ω) and a ranked alphabet Σ by a wta M′ = (Q, Σ, μ, F ) over a
tv-monoid A′ in our setting. For this, we define the tree valuation monoid
A′ = (Ω,⊕, Val, �(0)) such that the addition ⊕ simulates on Ω(0) (which we
identify with A) the addition + of A and is otherwise defined in a way such
that (Ω,⊕, �(0)) is a commutative monoid (which can be done easily). Now the
valuation function Val maps trees t ∈ TΩ to Ω(0) by evaluating t within the
M-monoid A as described above. Then it is easy to see thatM andM′ compute
the same tree series.

4 Weighted MSO Logic for Trees

Now we introduce our weighted MSO logic and its semantics over tv-monoids.
We follow [27] incorporating an idea of [4].

Let V1 and V2 be a countable, infinite set of first order and second order vari-
ables, respectively. Furthermore, let V = V1∪̇V2. Lower-case letters like x, y, . . .
denote variables of V1 and capital letters like X, Y, . . . denote variables of V2.
Furthermore, let D be a tv-monoid. The syntax of the weighted MSO logic over
D is defined by the grammar:

β ::= labela(x) | edgei(x, y) | x ∈ X | ¬β | β ∧ β | ∀xβ | ∀Xβ

ϕ ::= d | β | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃Xϕ

where d ∈ D, a ∈ Σ, 1 ≤ i ≤ maxΣ , x, y ∈ V1, and X ∈ V2. We call the
formulas β boolean formulas and the formulas ϕ weighted MSO formulas (or
wMSO formulas).

Next we like to define the semantics of the weighted MSO logic. Like a wta,
the semantics of a formula shall valuate trees by elements of D. The semantics of
boolean formulas will turn out as the usual boolean one. We will use � to define
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the semantics of the truth value ‘false’. However, it is not clear how the semantics
of ‘true’ should be defined. For this, an additional constant of the tv-monoid has
to be provided. Note that negation is only applied to boolean formulas. Hence,
we do not have to provide a quantitative semantics for negation. Now consider
weighted formulas ϕ. Since disjunction and existential quantification provide an
opportunity for non-determinism, we use the monoid operation + to define their
semantics. Since first order universal quantification makes a statement about all
positions of a tree, we will use the valuation function to define the semantics
of this quantifier. But it is not clear how to define the semantics of conjunction
so far. Thus, we have to extend the valuation monoids by an additional binary
operation.

Definition 4.1. A product tree valuation monoid (for short: a ptv-monoid)
(D, +, Val, �, �, �) consists of a valuation monoid (D, +, Val, �), a constant � ∈ D
with Val(t) = � whenever im(t) = {�} for t ∈ TD, and an operation � : D2 → D
with � � d = d � � = � and � � d = d � � = d for all d ∈ D.

The operation � has to be neither commutative nor associative. But note that
the restriction of � to {�, �} has both properties. We use � to define the semantics
of the conjunction. The unit element � will represent the truth value ‘true’.

To define the semantics of the weighted MSO logic, we follow the common
approach for MSO logics using assignments and extended alphabets to deal with
free variables, cf. [55]. The set free(ϕ) of free variables occurring in ϕ is defined
as usual. A formula without free variables is called a sentence. Let ϕ be a wMSO
formula, V a finite set of variables with free(ϕ) ⊆ V , and t ∈ TΣ . A (V , t)-
assignment is a mapping σ : V → dom(t) ∪ ℘ (dom(t)) with σ(x) ∈ dom(t) and
σ(X) ⊆ dom(t). As usual we encode (V , t)-assignments by an extended alphabet.
An extended ranked alphabet ΣV is defined by

ΣV = (Σ × {0, 1}V , rk)

with rk((a, f)) = rk(a) for all a ∈ Σ, f ∈ {0, 1}V . Now (a, f)1 = a denotes the
first component of (a, f) and (a, f)2 = f the second. We call a tree s ∈ TΣV
valid if for all first order variables x ∈ V the equation s(u)2(x) = 1 holds true
for exactly one position u ∈ dom(t). A tree s ∈ TΣV that is not valid is called
invalid. Let t be a Σ-tree, σ a (V , t)-assignment, and s ∈ TΣV . The pair (t, σ)
and s correspond to each other if dom(t) = dom(s) and s(u) = (t(u), fu) for
every u ∈ dom(t) where fu ∈ {0, 1}V is defined by

∀x ∈ V1, X ∈ V2 : (fu(x) = 1⇔ u = σ(x)) ∧ (fu(X) = 1⇔ u ∈ σ(X)).

From now on we identify s and (t, σ) if they correspond to each other. The
update s[x → u] ∈ TΣV∪{x} for position u ∈ dom(t) is defined by s[x → u] =
(t, σ[x → u]) = (t, σ′) where σ′|V\{x} = σ|V\{x} and σ′(x) = u. The update
s[X → I] ∈ TΣV∪{X} for I ⊆ dom(t) is defined similarly.

The semantics of a wMSO formula ϕ over a ptv-monoid (D, +, Val, �, �, �) and
a ranked alphabet Σ is the tree series [[ϕ]]V : TΣV → D which equals � for invalid
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Table 1. The semantics of wMSO formulas

[[labela(x)]]V(s) =

{
� if t(σ(x)) = a,

� otherwise

[[edgei(x, y)]]V(s) =

{
� if σ(y) = σ(x).i,

� otherwise

[[x ∈ X]]V(s) =

{
� if σ(x) ∈ σ(X),

� otherwise

[[¬β]]V (s) =

{
� if [[β]]V (s) = �,

� otherwise

[[d]]V (s) = d

[[ϕ ∨ ψ]]V(s) = [[ϕ]]V (s) + [[ψ]]V (s)

[[ϕ ∧ ψ]]V(s) = [[ϕ]]V (s) � [[ψ]]V (s)

[[∃xϕ]]V (s) =
∑

u∈dom(s)

[[ϕ]]V∪{x}(s[x→ u])

[[∃X ϕ]]V (s) =
∑

I⊆dom(s)

[[ϕ]]V∪{X}(s[X → I ])

[[∀X β]]V (s) =

{
� if [[β]]V∪{X}(s[X → I ]) = � for all I ⊆ dom(s),

� otherwise

[[∀xϕ]]V(s) = Val(sD) for sD ∈ TD with dom(sD) = dom(s) and
sD(u) = [[ϕ]]V∪{x}(s[x→ u]) for all u ∈ dom(s)

trees and which is defined inductively for valid trees as shown in Table 1. Note
that universal second order quantification is only applied to boolean formulas
and its semantics is defined reflecting the unweighted case.

We write [[ϕ]] for [[ϕ]]free(ϕ). Let β be a boolean wMSO formula. Then β can
be viewed as a classical MSO formula which defines the recognizable language
LV(β) and we can easily show that [[β]]V = �LV(β). Furthermore, we can prove by
induction that [[ϕ]]V (t, σ) = [[ϕ]](t, σ|free(ϕ)) for every wMSO formula ϕ, (t, σ) ∈
TΣV , and set of variables V with free(ϕ) ⊆ V .

Example 4.2. Let Qmax be the tv-monoid from Example 2.2. We extend this tv-
monoid to the ptv-monoid (Q ∪ {∞,−∞}, max, avg, min,−∞,∞) and consider
the boolean formula1 leaf(x) =

∨

a∈Σ(0) labela(x). For t ∈ TΣ and an assignment
σ we obtain:

[[leaf(x)]](t, σ) = max
a∈Σ(0)

([[labela(x)]](t, σ)) =

{
∞ if σ(x) is a leaf,
−∞ otherwise.

For the formula ϕ = ∀x((leaf(x)∧ 1)∨ (¬ leaf(x)∧ 0)) we get [[ϕ]](t, σ) = avg(t′)
where t′ ∈ TQ∪{∞,−∞} with dom(t′) = dom(t) and

t′(u) = [[(leaf(x) ∧ 1) ∨ (¬ leaf(x) ∧ 0)]](t, σ[x→ u]) =

{
1 if u is a leaf,
0 otherwise

for all u ∈ dom(t′). Thus, the semantics of this formula equals for every tree
t the leaves-to-size ratio which was previously computed by the first wta of
Example 3.2.
1 For boolean formulas, we use β1 ∨β2 as an abbreviation for ¬(¬β1 ∧ ¬β2).
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There is also a formula whose semantics calculates the same tree series as the
second wta of Example 3.2. It is easy to show that there is a boolean formula
path(X) whose semantics is ∞ if σ(X) is a path of a tree (t, σ) (without the
leaf) and −∞ if σ(X) is not such a path. Then

∃X
(
path(X) ∧ ∀x((x ∈ X ∧ 1) ∨ (x /∈ X ∧ 0)

))

is a formula defining the height-to-size ratio for every tree t.

Similarly to [30] we introduce some interesting fragments of the weighted MSO
logic. An almost boolean formula is a wMSO formula consisting of finitely many
conjunctions and disjunctions of boolean formulas and elements of D.
A wMSO formula ϕ is ∀-restricted if ψ is almost boolean for each sub-formula
∀xψ occurring in ϕ. Let const(ϕ) be the set of all d ∈ D occurring in ϕ. Two
subsets D1, D2 ⊆ D commute if d1 � d2 = d2 � d1 for all d1 ∈ D1, d2 ∈ D2. We
call ϕ

– strongly ∧-restricted if whenever ϕ contains a sub-formula ϕ1 ∧ ϕ2, then
either both ϕ1 and ϕ2 are almost boolean or ϕ1 or ϕ2 is boolean,

– ∧-restricted if whenever ϕ contains a sub-formula ϕ1 ∧ϕ2, then ϕ1 is almost
boolean or ϕ2 is boolean and

– commutatively ∧-restricted if whenever ϕ contains a sub-formula ϕ1 ∧ ϕ2,
then ϕ1 is almost boolean or const(ϕ1) and const(ϕ2) commute.

Obviously, each strongly ∧-restricted wMSO formula is ∧-restricted. If a sub-
formula ϕ2 of ϕ1∧ϕ2 is boolean, then const(ϕ2) = ∅, so const(ϕ1) and const(ϕ2)
commute. Hence, each ∧-restricted wMSO formula is commutatively ∧-restricted.

5 Weighted Tree Automata and Weighted MSO Logic

In this section, we characterize the relationship between wta over ptv-monoids
and the fragments of the weighted MSO logic which we introduced above. As we
will see later, the larger the particular fragment gets, the more restrictions on
the underlying ptv-monoid we need. So, similarly to [30] we define properties of
ptv-monoids which we will use for this purpose.

First, a ptv-monoid D is called regular if for all d ∈ D and all ranked alphabets
Σ a wtaMd exists with ‖Md‖(t) = d for each t ∈ TΣ . For every strong bimonoid
(K, +, ◦, �, �) and its associated ptv-monoid (K, +, ◦en, ◦, �, �) we can build for
all d ∈ K such a wta Md by weighting a deterministic tree automaton with
dead-end final states recognizing TΣ so that the transitions to a final state are
weighted with d and every other transition is weighted with �. Thus, we obtain
the following lemma.

Lemma 5.1. Let (K, +, ◦, �, �) be a strong bimonoid and en an enumeration of
positions. Then (K, +, ◦en, ◦, �, �) is regular.
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For the second class of ptv-monoids, we have to define several properties. A
ptv-monoid D is left-�-distributive if d � (d1 + d2) = d � d1 + d � d2 for all
d, d1, d2 ∈ D. We call D left-multiplicative if d � Val(t) = Val(t′) for all d ∈ D,
t, t′ ∈ TD with dom(t) = dom(t′), t′(ε) = d � t(ε), and t′(u) = t(u) for every
u ∈ dom(t) \ {ε}. Furthermore, D is left-Val-distributive if d � Val(t) = Val(t′)
for all d ∈ D, t, t′ ∈ TD with dom(t) = dom(t′) and t′(u) = d � t(u) for every
u ∈ dom(t). It is easy to see that each left-multiplicative or left-Val-distributive
ptv-monoid is regular. Now, a ptv-monoid D is called left-distributive if it is
left-multiplicative or left-Val-distributive and, moreover, left-�-distributive. An
example of a left-distributive ptv-monoid is given in Example 5.7.

The third class of ptv-monoids is in fact a class of certain semirings. A ptv-
monoid is right-�-distributive if (d1 +d2)�d = d1 �d+d2 �d for all d1, d2, d ∈ D.
Moreover, D is �-distributive if it is both left- and right-�-distributive, and it is
associative if � is associative. Note that, if D is associative, then (D, +, �, �, �) is a
strong bimonoid. If D is moreover �-distributive, then (D, +, �, �, �)
is a semiring. In this case, we call (D, +, Val, �, �, �) a tree valuation semiring
(tv-semiring).

Recall that D1 ⊆ D and D2 ⊆ D commute if d1 � d2 = d2 � d1 for all d1 ∈ D1,
d2 ∈ D2. We call D conditionally commutative if Val(t1) � Val(t2) = Val(t) for
all t1, t2, t ∈ TD with dom(t1) = dom(t2) = dom(t), im(t1) and im(t2) commute
and t(u) = t1(u) � t2(u) for all u ∈ dom(t). The definition of conditionally
commutative differs for trees and words. In [30] it is only necessary for two
sequences (d1, . . . , dn) and (d′1, . . . , d

′
n) that di and d′j commute for 1 ≤ i < j ≤ n.

But such a restriction would be reasonable in the case of trees only for particular
enumerations.

A cctv-semiring is a conditionally commutative tv-semiring which is, more-
over, left-multiplicative or left-Val-distributive. Obviously, each cctv-semiring is
left-distributive.

In [30] some examples for product valuation monoids are given. We apply
those examples to our setting.

Example 5.2. Let (S, +, ·, 0, 1) be a commutative semiring. Then (S, +, Val, ·, 0, 1)
with Val(t) =

∏
u∈dom(t) t(u) for all t ∈ TS is a left-multiplicative cctv-semiring.

The choice of the product � and the associated � may influence the properties
of the ptv-monoids significantly as the following example shows.

Example 5.3. Let us consider (Q ∪ {∞,−∞}, max, avg, min,−∞,∞) with avg
defined as in Example 2.2. This ptv-monoid is a regular tv-semiring, but neither
left-multiplicative nor left-Val-distributive, nor conditionally commutative.

Next we choose as the product � the average of two numbers. The resulting
ptv-monoid is (Q∪{∞,−∞}, max, avg, avg′,−∞,∞) where∞ acts as � and thus
avg′(d,∞) = avg′(∞, d) = d for every d ∈ Q ∪ {∞,−∞}. This ptv-monoid is
left-�-distributive and conditionally commutative, but neither left-multiplicative
nor left-Val-distributive, and the product � = avg′ is not associative.

Finally, the ptv-monoid (Q ∪ {∞,−∞}, max, avg, +,−∞, 0) is a left-Val-
distributive cctv-semiring.
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Example 5.4. The structure �disc = (� ∪ {−∞}, max, discΛ,−∞) from Exam-
ple 2.5 together with � = 0 and � = + is a left-multiplicative cctv-semiring.

By means of these three classes of ptv-monoids, we can characterize the rela-
tionship between wta over ptv-monoids and our fragments of weighted MSO
logic. As before, let D be a ptv-monoid and Σ a ranked alphabet. The following
theorem extends the main result of [30] concerning series on finite words to the
setting of trees.

Theorem 5.5. Let S : TΣ → D be a tree series.

1. If D is regular, then S is recognizable iff S = [[ϕ]] for a ∀-restricted and
strongly ∧-restricted wMSO sentence ϕ.

2. If D is left-distributive, then S is recognizable iff S = [[ϕ]] for a ∀-restricted
and ∧-restricted wMSO sentence ϕ.

3. If D is a cctv-semiring, then S is recognizable iff S = [[ϕ]] for a ∀-restricted
and commutatively ∧-restricted wMSO sentence ϕ.

Obviously, we need D to be regular. Otherwise, there is at least one d ∈ D
without a wta recognizing d, hence, the semantics of the ∀-restricted and strongly
∧-restricted sentence d is not recognizable.

Before we prove Theorem 5.5, we will give two examples taken from [43]
showing that it is not possible to dispose of any constraint in the above theorem.

Example 5.6. Let maxΣ ≥ 1 and (IN0, +, Vall, 0) be the tv-monoid from Exam-
ple 2.3. Then (IN0, +, Vall, ,̂ 0, 1) with (̂a, b) = ab for all a, b ∈ IN0 \ {0, 1} and
a0 = 0a = 0, a1 = 1a = a for all a ∈ IN0 is a ptv-monoid which is regular, but not
left-distributive (indeed, it has none of the other properties defined above). Due
to Theorem 5.5(1), [[∃x(

∨
a∈Σ labela(x))]] and [[2]] are recognizable. Furthermore,

[[2]](t) = 2 and

[[∃x(
∨

a∈Σ
labela(x))]](t) =

∑

u∈dom(t)

∑

a∈Σ
[[labela(x))]]{x}(t[x→ u]) = | dom(t)|

for all t ∈ TΣ. Let us consider the ∀-restricted and ∧-restricted, but not strongly
∧-restricted wMSO-formula ϕ = 2∧∃x(

∨
a∈Σ labela(x)). We show that [[ϕ]] is rec-

ognizable byM = ({q1, q2}, Σ, μ, {q1, q2}) with μm : Σ(m) → {1}{q1,q2}m×{q1,q2}

for all m ≥ 0. For each t ∈ TΣ there are 2| dom(t)| valid and successful runs ofM
on t weighted with 1. Thus,

‖M‖(t) =
∑

r∈succ(M,t)

1 = 2|dom(t)| = [[2]](t)[[∃x(
∨

a∈Σ labela(x))]](t) = [[ϕ]](t) .

However, we can show that the semantics of the ∀-restricted and ∧-restricted, but
not strongly ∧-restricted wMSO-formula ϕ′ = 2∧ (2∧∃x(

∨
a∈Σ labela(x))) is not

recognizable. Observe that [[ϕ′]] = 22| dom t|
. LetM′ = (Q′, Σ, μ′, F ′) be any wta.
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Since Q′ and Σ are finite,M′ exhibits only finitely many weights. Hence, there is
a k ∈ IN that is greater than all weights ofM′ and

‖M′‖(t) =
∑

r∈succ(M′,t)

Vall(μ′(t, r)) ≤
∑

r∈succ(M′,t)

∏

u∈dom(t)

(μ′(t, r))(u)

≤
∑

r∈succ(M′,t)

k| dom(t)| = k| dom(t)|

⎛

⎝
∑

r∈succ(M′,t)

1

⎞

⎠ = (k · |Q′|)| dom(t)| .

But obviously, 22i

> (k·|Q′|)i for i sufficiently large. Thus,M′ does not recognize
[[ϕ′]].

By the last example, we have seen that for non-left-distributive ptv-monoids
the semantics of ∧-restricted wMSO sentences are in general not recognizable
anymore. Next we show that it is not sufficient to assume the ptv-monoid to be
left-distributive to guarantee the recognizability of the semantics of ∀-restricted
and commutatively ∧-restricted wMSO sentences.

Example 5.7. Let maxΣ ≥ 2 and (Q+
0 , +, Wroot, 0) be the tv-monoid from Exam-

ple 2.4. We define div : Q+
0 ×Q+

0 → Q+
0 by div(a, b) = b÷a for all a, b ∈ Q+

0 \{0, 1}
and div(a, 0) = div(0, a) = 0, div(a, 1) = div(1, a) = a for all a ∈ Q+

0 . The ptv-
monoid (Q+

0 , +, Wroot, div, 0, 1) is left-�-distributive, left-multiplicative, left-Val-
distributive and thus left-distributive. In addition, it is conditionally commuta-
tive but neither associative nor right-�-distributive and thus no cctv-semiring.
Let ϕ = ∃x(

∨
a∈Σ(0) labela(x))∧2, a ∀-restricted and commutatively ∧-restricted

wMSO sentence. Then

[[∃x(
∨

a∈Σ(0)

labela(x)) ∧ 2]](t) = div
( ∑

u∈dom(t)

a∈Σ(0)

[[labela(x))]]{x}(t[x→ u]), [[2]](t)
)

=
2

“number of leaves of t”

for all t ∈ TΣ. Let M be any wta over (Q+
0 , +, Wroot, div, 0, 1). Since the set

of weights of M is finite, there is a rational number q = 2−n > 0 smaller than
all weights from im(μ) \ {0}. Let t be a Σ-tree with 2n+1 = 2

q leaves. Hence,
either ‖M‖(t) = 0 or ‖M‖(t) > q because M sums up the positive rational
weights of the roots of all valid and successful runs of M on t. But [[ϕ]](t) = q,
so [[ϕ]] �= ‖M‖. Thus, [[ϕ]] is not recognizable in (Q+

0 , +, Wroot, div, 0, 1).

It remains to prove Theorem 5.5. For this, we first consider recognizable step
functions in Subsection 5.1. In Subsection 5.2, we derive properties of recogniz-
able tree series and, eventually, in Subsection 5.3, we give the proof of Theo-
rem 5.5.

5.1 Recognizable Step Functions

Let D be a ptv-monoid, S1, S2 two tree series, and d ∈ D. We define the scalar
product d � S1, the sum S1+S2 and the product S1�S2 pointwise by (d�S1)(t) =
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d � S1(t), (S1 + S2)(t) = S1(t) + S2(t) and (S1 � S2)(t) = S1(t) � S2(t) for all
t ∈ TΣ. For every tree language L ⊆ TΣ we call �L with �L(t) = � for all t ∈ L
and �L(t) = � for all t ∈ TΣ \ L the characteristic function of L.

Definition 5.8. A tree series S is a recognizable step function if there are recog-
nizable tree languages (Li)1≤i≤k forming a partition of TΣ and values d1, . . . , dk ∈
D such that S =

∑k
i=1 di � �Li .

Clearly, a tree series S is a recognizable step function iff im(S) is finite and
S−1(d) is a recognizable tree language for each d ∈ D. Subsequently, we will
write

∑k
i=1 di�Li instead of

∑k
i=1 di � �Li .

Lemma 5.9. The class of recognizable step functions over a ranked alphabet Σ
and a ptv-monoid (D, +, Val, �, �, �) is closed under the operations + and �.
Proof. Let S1 =

∑n
i=1 di�Li and S2 =

∑m
j=1 d′j�

′
Lj

be two recognizable step
functions. Since

S1 + S2 =
n∑

i=1

m∑

j=1

(di + d′j)�Li∩L′
j

and S1 � S2 =
n∑

i=1

m∑

j=1

(di � d′j)�Li∩L′
j

and recognizable tree languages are closed under the boolean operations, the
claim follows. ��
Recognizable step functions are indeed recognizable tree series provided the un-
derlying ptv-monoid is regular.

Theorem 5.10. Let D be a regular ptv-monoid. Each recognizable step function
S over D is a recognizable tree series.

Proof (sketch). Let S =
∑n

i=1 di�Li . Since D is regular, for each i ∈ {1, . . . , n}
there is a wta Mi with ‖Mi‖(t) = di for all t ∈ TΣ. Furthermore, there is a
deterministic tree automaton recognizing Li which we transform in the usual
way into a wtaM′

i recognizing �Li . Now by a product ofMi andM′
i, we build

automata Pi with ‖Pi‖(t) = di iff t ∈ Li for all t ∈ TΣ. Eventually, the disjoint
union of the wta Pi (i ∈ {1, . . . , n}) yields a wta recognizing S. ��
Clearly, [[ϕ]] is a recognizable step function iff [[ϕ]]V is a recognizable step function
for every wMSO formula ϕ and any finite set of variables V with free(ϕ) ⊆ V .
Next we show:

Lemma 5.11. If S : TΣ → D is a recognizable step function, then S = [[ϕ]] for
some almost boolean sentence ϕ. Conversely, if ϕ is an almost boolean formula,
then [[ϕ]] is a recognizable step function.

Proof. (⇐) If ϕ is a boolean formula, then [[ϕ]] = �L(ϕ) is a recognizable step
function. Trivially, [[d]] is also a recognizable step function for any d ∈ D. Let ϕ
and ψ be two almost boolean formulas and V = free(ϕ) ∪ free(ψ). By induction
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and due to Lemma 5.9, [[ϕ ∨ ψ]] = [[ϕ]]V + [[ψ]]V and [[ϕ ∧ ψ]] = [[ϕ]]V � [[ψ]]V are
recognizable step functions.

(⇒) Let S =
∑n

i=1 di�Li . Due to Thatcher and Wright [54], there are MSO
sentences ϕi with L(ϕi) = Li for all i ∈ [1, n]. Let ϕ = (d1∧ϕi)∨ . . .∨ (dn ∧ϕn).
Then ϕ is almost boolean and

[[ϕ]] =
n∑

i=1

di�L(ϕi) =
n∑

i=1

di�Li = S. ��

5.2 Closure Properties of Recognizable Tree Series

In this subsection, we show that under suitable conditions the operations sum,
product, and scalar product preserve the recognizability of tree series.

Theorem 5.12. 1. Let D be a ptv-monoid.
(a) The class of recognizable tree series is closed under sum.
(b) Let L be a recognizable tree language and S a recognizable tree series.

Then �L � S and S � �L are also recognizable.
2. Let D be left-distributive.

(a) The class of recognizable tree series is closed under scalar product.
(b) Let S1 be a recognizable step function and S2 a recognizable tree series.

Then S1 � S2 is also recognizable.
3. Let D be a cctv-semiring. Furthermore, letM1 = (Q1, Σ, μ1, F1) andM2 =

(Q2, Σ, μ2, F2) be two wta such that im(μ1) and im(μ2) commute. Then
‖M1‖ � ‖M2‖ is a recognizable tree series.

Proof. (sketch) 1.(a) This can be shown as usual by a disjoint union construction.
(b) We weight a classical deterministic bottom-up tree automaton recognizing

L with the values � (no transition) and � (transition exists). Then we build a
product automaton of this weighted tree automaton and a wta recognizing S.

2.(a) In case D is left-multiplicative, we construct a wta with dead-end final
states (i.e., every transition leaving a final state is weighted with �) recognizing
a tree series S and multiply the weights of every transition ending in a final
state with d ∈ D from the left. In case D is left-Val-distributive, we multiply
the weight of every transition of a wta recognizing S by d from the left. In both
cases, the resulting wta recognizes d � S.

(b) Let S1 =
∑n

i=1 di�Li for some partition (Li)1≤i≤n of TΣ . Thus, S1 � S2 =∑n
i=1 �Li � (di � S2). By parts 1 and 2(a), this series is recognizable.
3. We build a synchronized product M of M1 and M2. Since D is condi-

tionally commutative and the weights ofM1 andM2 commute, the weight of a
successful run ofM on a tree t is the product of the respective runs ofM1 and
M2 on t. Because of the �-distributivity, ‖M‖ = ‖M1‖ � ‖M2‖. ��
Next, we consider the closure under relabeling, similarly to [33, 30]. Let Σ and Γ
be two ranked alphabets and h : Σ → ℘ (Γ ) be a mapping such that h(a) ⊆ Γ (m)

for all a ∈ Σ(m). Then h can be extended inductively to a mapping h′ : TΣ →
℘ (TΓ ) via
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h′(a(t1, . . . , tm)) = {b(t′1, . . . , t′m) | b ∈ h(a) ∧ ∀i ∈ [1, m] : t′i ∈ h′(ti)}
for all m ≥ 0, a ∈ Σ(m) and t1, . . . , tm ∈ TΣ . Next, we define for every tree series
S over D and Σ the tree series h′′(S) over D and Γ by

h′′(S)(t) =
∑

s∈TΣ ∧ t∈h′(s)

S(s)

for all t ∈ TΓ . Subsequently, we denote h′ and h′′ also by h which is called a
relabeling. The proof for the following lemma works by an automaton construc-
tion already applied in [34, 30]. Surprisingly, we do not need any distributivity
of the underlying ptv-monoid.

Lemma 5.13. Recognizable tree series are closed under relabeling.

5.3 From Weighted Logics to Weighted Tree Automata and Reverse

The following result will be very useful. Using Theorem 5.12(1)(b), it can be
proved as the corresponding result in [33].

Proposition 5.14. Let ϕ be a wMSO formula and V a finite set of variables
with free(ϕ) ⊆ V. Then [[ϕ]] is recognizable iff [[ϕ]]V is recognizable.

Now we show that our logical operators preserve the recognizability of the se-
mantics of wMSO formulas.

Proposition 5.15. Let ϕ and ψ be two wMSO formulas over Σ and a ptv-
monoid D. If [[ϕ]] and [[ψ]] are recognizable, then [[ϕ∨ψ]], [[∃xϕ]], and [[∃Xϕ]] are
recognizable.

Proof (sketch). Let V = free(ϕ∨ψ) = free(ϕ)∪ free(ψ). By Proposition 5.14 and
Theorem 5.12(1)(a), [[ϕ ∨ ψ]] = [[ϕ]]V + [[ψ]]V is recognizable.

Let h : Σfree(ϕ) → Σfree(∃xϕ) be the relabeling defined by erasing the x-row in
Σfree(ϕ) (if existing). Then, for all s ∈ Tfree(∃xϕ):

[[∃xϕ]](s) =
∑

([[ϕ]]free(ϕ)∪{x}(s[x→ u]) |u ∈ dom(s))

=
∑

([[ϕ]](s[x→ u]) |u ∈ dom(s)) =
∑

([[ϕ]](s′) |h(s′) = s)

= h([[ϕ]])(s).

Since [[ϕ]] is recognizable, by Lemma 5.13 [[∃xϕ]] = h([[ϕ]]) is recognizable.
Similarly, it follows that [[∃Xϕ]] is recognizable. ��

Proposition 5.16. Let ϕ be an almost boolean formula over D and Σ. Then
[[∀xϕ]] is recognizable.

Proof (sketch). We proceed as in [30, 33] which rest on [26, 27]. Now, let W =
free(ϕ) ∪ {x} and V = free(∀xϕ) =W \ {x}. Since ϕ is almost boolean, [[ϕ]]W is
a recognizable step function (see Lemma 5.11). Thus, [[ϕ]]W =

∑n
i=1 di�Li . We

can assume that all Li only consists of valid trees, since [[ϕ]]W (s) = � for any
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invalid tree s. We introduce the ranked alphabet Σ̃ = Σ × {1, . . . , n} where the
rank is determined by the component from Σ. A tree (t, ν, σ) ∈ TΣ̃V consists of
a tree (t, σ) ∈ TΣV and a mapping ν : dom(t) → {1, . . . , n}. Next, let L̃ ⊆ TΣ̃V
be the tree language of all (t, ν, σ) such that (t, σ) is valid and

ν(u) = i⇒ (t, σ[x→ u]) ∈ Li

for all i ∈ {1, . . . , n} and u ∈ dom(t). Since (Li)1≤i≤n is a partition, for each (t, σ)
there is exactly one mapping ν satisfying the implication above, that means, ν
encodes to which Li the update of (t, σ) and x belongs. Similarly to [41] we can
show that L̃ is recognizable. Let A = (Q, Σ̃V , δ, F ) be a deterministic bottom-up
tree automaton recognizing L̃. Furthermore, let M = (Q, Σ̃V , μ, F ) with

μm((a, i, f))q1...qm.q =

{
di if δ(a,i,f)(q1, . . . , qm) = q

� otherwise

for all (a, i, f) ∈ Σ̃
(m)
V , q1, . . . , qm, q ∈ Q and m ≥ 0. We can show that

‖M‖((t, ν, σ)) = [[∀xϕ]]((t, σ)) for all trees (t, ν, σ) ∈ TΣ̃V . Now, let the rela-
beling h : Σ̃V → ΣV be defined by h((a, i, f)) = (a, f). Then

h(‖M‖)((t, σ)) =
∑(

‖M‖((t, ν, σ)) | (t, ν, σ) ∈ TΣ̃V , (t, ν, σ) ∈ h((t, σ))
)

= ‖M‖(t, ν′, σ) = [[∀xϕ]]((t, σ))

for all valid trees (t, σ). Hence, [[∀xϕ]] is recognizable by Lemma 5.13. ��
Proposition 5.17. Let ϕ and ψ be two wMSO formulas over a ptv-monoid D
and a ranked alphabet Σ. Then [[ϕ∧ψ]] is recognizable if the following is satisfied:
(a) [[ϕ]] is recognizable and ψ is boolean (then [[ψ ∧ ϕ]] is recognizable, too) or
(b) D is left-distributive, ϕ is almost boolean, and [[ψ]] is recognizable.

Proof. Let V = free(ϕ ∧ ψ).
(a) Since ψ is boolean, [[ψ]]V = �LV(ψ) and LV(ψ) is recognizable. Moreover,

[[ϕ]]V is recognizable. By Theorem 5.12(1)(b), [[ϕ∧ψ]] and [[ψ∧ϕ]] are recognizable.
(b) Since ϕ is almost boolean, [[ϕ]] and thus [[ϕ]]V are recognizable step func-

tions. Moreover, [[ψ]]V is recognizable. Hence, due to Theorem 5.12(2)(b), [[ϕ∧ψ]]
is recognizable. ��
With the propositions above, we prove our main result Theorem 5.5.

Proof of Theorem 5.5. The recognizability of the semantics of almost boolean
formulas over a regular ptv-monoid D is guaranteed by Lemma 5.11 and The-
orem 5.10. Now, in cases of (1) and (2) the tree series [[ϕ]] for a formula ϕ
from the respective fragment is recognizable by Propositions 5.15–5.17. For (3),
we show by induction on the structure of ϕ that there is a wta recognizing
[[ϕ]] whose weights are in the subsemiring 〈const(ϕ) ∪ {�, �}, +, �〉 generated by
const(ϕ)∪{�, �}. In the almost boolean case, the statement is obvious. In case of
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disjunction and quantification we proceed as in the proofs of Propositions 5.15
and 5.16 which are constructive. It is traceable that all constructions retain the
set of weights. To deal with ϕ ∧ ψ, we can show that the sets of weights of the
wta recognizing [[ϕ]] and [[ψ]], respectively, commute with each other, since D
is a cctv-semiring. By Theorem 5.12(3), [[ϕ ∧ ψ]] is recognizable (by a wta with
weights in 〈const(ϕ) ∪ const(ψ) ∪ {�, �}, +, �〉).

For the proof of the opposite direction, we build a ∀-restricted and strongly
∧-restricted wMSO sentence describing the run semantics of the weighted tree
automaton recognizing S, cf. [33, 41]. ��
Remark 5.18. Theorem 5.5 generalizes the main result of [30] on finite words.
Since we deal with wta over valuation monoids, the usual translation (cf., e.g.,
[41]) does not seem to apply, but we can proceed as follows. We translate the
alphabet Σ into a ranked alphabet Σr = {a(0) | a ∈ Σ} ∪ {a(1) | a ∈ Σ} and
define a bijection tree : Σ+ → TΣr inductively by tree(a) = a(0) and tree(wa) =
a(1)(tree(w)) for all a ∈ Σ and w ∈ Σ+. Then Theorem 5.5 can be translated
to the respective result on words (note, however, that the present definition of
being conditionally commutative is for trees a bit more restrictive than the one
of [30] for words).

Theorem 5.5 also generalizes the respective result on wta over semirings [33].

6 Strong Bimonoids and Weighted Logic

Here, we consider weighted logic and weighted tree automata over strong bi-
monoids. Syntactically, we define the logic exactly like the weighted MSO logic
for trees over ptv-monoids. The definition of the semantics differs from the one
of the wMSO logic over ptv-monoids with regard to the universal quantification.
Here, we use the multiplication of the strong bimonoid instead of the valuation
function. Thus, we have to additionally provide an enumeration of tree positions
to fix the order of the multiplication. Hence, we write [[ϕ]]en instead of [[ϕ]]. Since
every ptv-monoid resulting from a strong bimonoid is regular (see, Lemma 5.1),
Theorem 5.5(1) implies the following corollary.

Corollary 6.1. Let Σ be a ranked alphabet, (K, +, ◦, �, �) a strong bimonoid, S
a tree series over K and Σ, and en an enumeration of tree positions. Then S is
recognizable with en iff there is an ∀-restricted and strongly ∧-restricted wMSO
sentence ϕ with [[ϕ]]en = S.

Next we show that for strong bimonoids with local finiteness properties we do not
need to restrict the weighted MSO logic to characterize the class of recognizable
tree series.

A bimonoid (K, +, ◦, �, �) is called additively locally finite and multiplicatively
locally finite, respectively, if for every finite subset K ′ ⊆ K the submonoids
〈K ′ ∪ {�}, +〉 and 〈K ′ ∪ {�}, ◦〉, respectively, generated by K ′ are finite. If K
is both additively and multiplicatively locally finite, we call K bi-locally finite.
Clearly, commutative and idempotent monoids (K, +, �) (i.e., k + k = k for all
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k ∈ K) are locally finite. Hence, strong bimonoids (K, +, ◦, �, �) with a com-
mutative multiplication where both addition and multiplication are idempotent
are always bi-locally finite. A monoid (K, ◦, �) is called periodic if every element
k ∈ K generates a finite submonoid 〈{k, �}, ◦〉. We call a bimonoid bi-periodic
if it is additively and multiplicatively periodic. It is easy to prove that com-
mutative, periodic monoids are locally finite. But it is well known that there
are non-commutative periodic monoids which are not locally finite, compare [48,
Section 3.3]. Thus, the class of bi-periodic bimonoids properly contains the class
of bi-locally finite bimonoids.

Theorem 6.2. Let K be a strong bimonoid and S a tree series over K and Σ.
(a) Let K be bi-locally finite. Then S is a recognizable step function iff S is rec-
ognizable with DF.
(b) Let K be bi-periodic. Then S is a recognizable step function iff S is recogniz-
able with WO< for any linear order < on K.

Proof (sketch). The result of (a) was stated implicitly in [34, p. 162]. We indicate
how to use the idea of Droste, Stüber and Vogler [32] also for the proof of (b).

By Lemma 5.1 and Theorem 5.10, if S is a recognizable step function, then S
is recognizable with DF and WO<, respectively.

For the opposite direction of (a) and (b), let M = (Q, Σ, μ, F ) be a wta
recognizing S (either with DF or with WO<). If K is bi-locally finite, the
product closure Y = {b1 · . . . · bn | n ∈ IN ∧ b1, . . . , bn ∈ im(μ)} of all weights
of M is finite. Furthermore, if K is bi-periodic, the ordered product closure
Y ′ = {b1 · . . . · bn | n ∈ IN ∧ b1, . . . , bn ∈ im(μ), b1 ≤ · · · ≤ bn} of all weights of
M is finite. We construct for every α ∈ Y and for every α ∈ Y ′, respectively,
a wta Mα over (IN0, +, ·, 0, 1) such that for every t ∈ TΣ the value ‖Mα‖(t)
is the number of all runs r of M on t with Val(μ(t, r)) = α. The construction
of these wta differs depending on the choice of the enumeration. In case of DF,
we recall from [32] that we can use Q × Y as states to propagate the accumu-
lated product of the original wta M to the root. Then a state is marked final
if its second component is α. In case of WO<, we use multisets to count how
often a weight is used along a run in M. Since Y ′ is finite, the size of the mul-
tisets can be bounded and thus the resulting state set is finite. Again, a state
is final if the product of all attached coefficients is α. For further details see
[51, Theorem 3.2.17].

Eventually, we define tree series Sα by Sα(t) =
∑m
i=1 α where m = ‖Mα‖(t).

Since addition in K is locally finite and due to a result about recognizability
of certain pre-images of recognizable series over (IN0, +, ·, 0, 1) (cf. [33, Lemma
6.3]), we can show that the tree series Sα are recognizable step functions. By
Lemma 5.9, S = ‖M‖ =

∑
α∈Y Sα and S =

∑
α∈Y ′ Sα, respectively, is a recog-

nizable step function. ��

By Theorem 5.10, each recognizable step function is recognizable with any enu-
meration en. But currently, we do not know for which enumerations besides the
mentioned ones the reverse holds true. While a recognizable tree series S over a
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bi-locally finite, strong bimonoid always has a finite image, certain enumerations
may exist such that S is not based on recognizable tree languages.

Theorem 6.3. Let (K, +, ◦, �, �) be a strong bimonoid and S a tree series over
K and Σ.
(a) Let K be bi-locally finite. Then S is recognizable with DF iff S = [[ϕ]]DF for
a wMSO sentence ϕ.
(b) Let K be bi-periodic and < a linear order on K. Then S is recognizable with
WO< iff S = [[ϕ]]WO< for a wMSO sentence ϕ.

Proof. The result of (a) was stated (without explicit proof) in [34, p. 162], where
it was proved for the word case. We will use the same arguments for a simulta-
neous proof of (a) and (b).

Subsequently, we use that the results for ptv-monoids carry over to strong
bimonoids using the correspondence between the strong bimonoid (K, +, ◦, �, �)
with enumeration en and the associated ptv-monoid (K, +, ◦en, ◦, �, �). Now let
en be either DF or WO<.

(⇒) Immediate by Theorem 6.2 and Lemma 5.11.
(⇐) Let ϕ be a wMSO sentence. We claim that [[ϕ]]en is a recognizable step func-

tion (and hence recognizable). We proceed by induction over the structure of ϕ.
Clearly, our claim holds for all boolean formulas β and constants k. For disjunction
and conjunction we use Lemma 5.1; for existential and universal quantifications we
apply Proposition 5.15, Proposition 5.16, and Theorem 6.2. ��
As a consequence, the class of definable tree series is the same for DF and WO<.

Corollary 6.4. Let (K, +, ◦, �, �) be a bi-locally finite strong bimonoid and <
a linear order on D. A tree series S over K and Σ is definable in wMSO with
DF iff S is definable in wMSO with WO<.

All our constructions are effective. Thus, for en ∈ {DF, WO<} and a wMSO
formula ϕ we can construct classical tree automata A1, . . . ,An and d1, . . . , dn ∈
K such that [[ϕ]]en =

∑n
i=1 di � �L(Ai). Since the equivalence of classical tree

automata is decidable, we obtain the following corollary.

Corollary 6.5. Let K be an effectively given, strong bimonoid.
(a) Let K be bi-locally finite. Then for any two wMSO formulas ϕ and ψ it is
decidable whether [[ϕ]]DF = [[ψ]]DF.
(b) Let K be bi-periodic and < a linear order on K. Then for any two wMSO
formulas ϕ and ψ it is decidable whether [[ϕ]]WO< = [[ψ]]WO< .

7 Conclusion

We have presented several Büchi-like characterizations of recognizable tree series
by weighted MSO logics in the very general setting of tree valuation monoids
allowing for such new aspects like the average cost of a run. Our focus was the
equivalence of different formalisms, here automata and logics, even if the weight
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structure is very general and does not allow for rich properties. Another point
is the effective computation of the valuation function. Certainly, only valuation
functions that can be computed effectively, e.g. the average cost, are of interest.

A topic we have not addressed so far for valuation monoids is the decidability
of typical questions like emptiness, universality, inclusion, and equivalence. All
these problems have quantitative counterparts which should be considered for
concrete valuation monoids like those with average. This has been done for finite
and infinite words [20–23] and should also be explored for trees.

Some questions remain open concerning local finiteness. For bi-locally finite
strong bimonoids and bi-periodic strong bimonoids, respectively, we could show
for two kinds of enumerations that recognizable tree series are always recog-
nizable step functions. This implies the equivalence between automata and the
whole weighted MSO-logic. However, it is open whether this is true for every
enumeration. If not, we would like to characterize a class of enumerations for
which this equivalence is true. Moreover, we wonder if we can define a notion
of local finiteness for general tree valuation monoids such that weighted tree
automata and weighted MSO-logic define the same class of tree series.

Valuation functions are even more interesting for infinite words [20] where
one can consider the limit superior, the limit average, or discounting as valu-
ation functions. In [30], a similar characterization like the one shown here was
given for infinite words. We wonder: what about infinite trees? There, even a def-
inition comprising meaningful examples is not straightforward. However, results
concerning discounting were developed in [50].
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Partial Conway and Iteration

Semiring-Semimodule Pairs

Zoltán Ésik�
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Abstract. A Conway semiring is a semiring S equipped with a unary
operation ∗ : S → S, called “star”, satisfying the sum star and prod-
uct star identities. A Conway semiring-semimodule pair consists of a
Conway semiring S and a left S-semimodule V together with a func-
tion ω : S → V , called “omega power”, subject to the sum omega and
product omega identities. A Kleene type theorem holds in all Conway
semiring-semimodule pairs that can be instantiated to give the equiva-
lence of Büchi automata and regular languages over ω-words. However,
sometimes the star and omega power operations cannot be defined in an
appropriate manner on the whole semiring S. To handle this situation, we
introduce partial Conway semiring-semimodule pairs and develop their
basic theory in connection with automata. We prove a Kleene theorem,
applicable to all partial Conway semiring-semimodule pairs.

1 Semirings and Matrix Theories

A semiring [7,13,16] S = (S, +, ·, 0, 1) consists of a commutative monoid (S, +, 0)
and a monoid (S, ·, 1) such that product distributes over finite sums, so that

a(b + c) = ab + ac

(b + c)a = ba + ca

a · 0 = 0
0 · a = 0

hold for all a, b, c ∈ S. Examples of semirings include the semiring N of natural
numbers, the Boolean semiring B whose sum and product operations are dis-
junction and conjunction, and the language semiring P (Σ∗) over an alphabet
Σ, where the sum operation is set union and the product operation is concate-
nation, and where 0 = ∅ and 1 = {ε}. Morphisms of semirings preserve the
operations and the constants 0 and 1.

It is well-known that if S is a semiring, then so is the collection Sn×n of all
n × n matrices over S, equipped with the pointwise sum and the usual matrix
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product as sum and product. The matrix 0n,n whose entries are all 0 serves as
the neutral element 0, while the multiplicative identity is the usual n × n unit
matrix En.

We can associate a category MatS with every semiring S, called a matrix
theory, see [3,8]. The objects of this category are the natural numbers, and a
morphism n→ p is an n×p matrix over S, i.e., an element of Sn×p. Composition
is matrix multiplication and the matrices En serve as identity morphisms. Each
hom-set MatS(n, n) of morphisms n → p of the theory MatS is also equipped
with a commutative monoid structure (MatS(n, p), +, 0n,p), where + is defined
pointwise. The usual distributivity laws hold:

A(B + C) = AB + AC

(B + C)D = BD + CD

for all A : m→ n, B, C : n→ p and D : p→ q. Moreover,

0m,n · A = 0m,p
A · 0p,q = 0n,q

for all A : n→ p.
Every morphism h : S → S′ between semirings S and S′ may be lifted to

a functor MatS → MatS′ defined pointwise. Such functors are called matrix
theory morphisms. The category of semirings is clearly isomorphic to the category
of matrix theories. For an abstract treatment of matrix theories, we refer to [3,8].

2 Partial Conway Semirings

Conway semirings are implicit in Conway [6]. They were defined explicitly in
[2,3]. The definition of Conway semirings involves two important identities of
regular languages. A general Kleene theorem for Conway semirings is proved in
[3]. However, the applicability of Conway semirings is limited, due to the fact
that the star operation is total, whereas many important semirings only allow
for a partially defined star operation. Moreover, it is not true that all semirings
can be embedded into a Conway semiring with a totally defined star operation.
These facts led to the introduction of partial Conway semirings in [5].

Definition 1. A partial ∗-semiring is a semiring S equipped with a partially
defined star operation ∗ : S → S whose domain is an ideal of S. A ∗-semiring
is a partial ∗-semiring S such that ∗ is defined on the whole semiring S. A
morphism S → S′ of (partial) ∗-semirings is a semiring morphism h : S → S′

such that for all s ∈ S, if s∗ is defined then so is (sh)∗, and s∗h = (sh)∗.

Thus, in a partial ∗-semiring S, 0∗ is defined, and if a∗ and b∗ are defined then
so is (a + b)∗, finally, if a∗ or b∗ is defined, then so is (ab)∗. When S is a partial
∗-semiring, we let D(S) denote the domain of definition of the star operation.
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Definition 2. A partial Conway semiring is a partial ∗-semiring S satisfying
the following two axioms:

1. Sum star identity:

(a + b)∗ = a∗(ba∗)∗

for all a, b ∈ D(S).
2. Product star identity:

(ab)∗ = 1 + a(ba)∗b,

for all a, b ∈ S such that a ∈ D(S) or b ∈ D(S).

A Conway semiring is a partial Conway semiring S which is a ∗-semiring (i.e.,
D(S) = S). A morphism of (partial) Conway semirings is a (partial) ∗-semiring
morphism.

In any partial Conway semiring S,

aa∗ + 1 = a∗

a∗a + 1 = a∗

0∗ = 1

for all a ∈ D(S). Moreover, if a ∈ D(S) or b ∈ D(S), then

(ab)∗a = a(ba)∗.

It follows that also

aa∗ = a∗a
(a + b)∗ = (a∗b)∗a∗

for all a, b ∈ D(S). When a ∈ D(S), we will denote aa∗ = a∗a by a+ and call +

the plus operation.
Partial Conway semirings include the partial iterative semirings discussed

below. Conway semirings include all continuous or complete semirings [7,10] and
the inductive ∗-semirings of [10] and Kozen’s Kleene algebras [14].

Conway semirings give rise to Conway matrix theories [3]. In the same way,
partial Conway semirings give rise to partial Conway matrix theories. We say
that a collection J of matrices in MatS is a matrix ideal if there is an ideal
I ⊆ S such that a matrix is in J iff its entries are all in I. In this case we also
write J = M(I).

Definition 3. Suppose that S is a semiring and consider the matrix theory
MatS equipped with a distinguished matrix ideal M(I). We say that MatS is a
partial Conway matrix theory if it is equipped with a star operation A �→ A∗,
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defined on the square matrices A : n→ n in M(I), n ≥ 0, such that the matrix
versions of the sum and product star identities hold:

(A + B)∗ = A∗(BA∗)∗,

for all A, B : n→ n ∈M(I), and

(AB)∗ = En + A(BA)∗B,

for all A : n → m, B : m → n such that A or B is in M(I). When MatS is
a partial Conway matrix theory such that star is defined on all square matrices,
i.e., M(I) = MatS, then we call MatS a Conway matrix theory. A morphism
of (partial) matrix theories is a matrix theory morphism which preserves the
distinguished ideal and the star operation.

Note the following special cases:

A∗ = AA∗ + En

A∗ = A∗A + En

0∗nn = En

where A : n → n in M(I), n ≥ 0. Also, AA∗ = A∗A for all A : n → n in M(I).
Below we will denote AA∗ by A+.

If MatS is a (partial) Conway matrix theory, then by identifying a 1 × 1
matrix (a) in MatS with the element a ∈ S, the semiring S becomes a (par-
tial) Conway semiring. Conversely, any (partial) Conway semiring determines a
(partial) Conway matrix theory, as we show below.

Definition 4. Suppose that S is a partial Conway semiring with D(S) = I. We
define a partial star operation on the semirings Sk×k, k ≥ 0, whose domain of
definition is Ik×k, the ideal of those k × k matrices with entries in I. When
k = 0, Sk×k is trivial as is the definition of star. When k = 1, we use the star

operation on S. Assuming that k > 1, we write k = n + 1. For a matrix
(

a b
c d

)

in Ik×k, define
(

a b
c d

)∗
=
(

α β
γ δ

)

(1)

where a ∈ Sn×n, b ∈ Sn×1, c ∈ S1×n and d ∈ S1×1, and where

α = (a + bd∗c)∗ β = αbd∗

γ = δca∗ δ = (d + ca∗b)∗.

We have thus defined a star operation on the square matrices in M(I). It is
known (cf. [3]) that when S is a Conway semiring, then equipped with the above
star operation, MatS is a Conway matrix theory. More generally, but with the
same proof, we have:
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Theorem 1. Suppose that S is a partial Conway semiring with D(S) = I. Then,
equipped with the matrix ideal M(I) and the above star operation, MatS is a
partial Conway matrix theory, where the star operation is defined on the square
matrices in M(I).

Corollary 1. If S is a partial Conway semiring with D(S) = I, then so is the
semiring Sn×n with D(Sn×n) = In×n and the above star operation for each n.

See also [5].

Corollary 2. The category of (partial) Conway semirings is equivalent to the
category of (partial) Conway matrix theories.

The following result is known to hold for Conway matrix theories, see [3,5].

Theorem 2. Suppose that MatS is a partial Conway matrix theory with star
defined on the square matrices in M(I). Then the following identities hold.

1. The matrix star identity (1) for all possible decompositions of a square ma-
trix in M(I) into four blocks such that a and d are square matrices, i.e.,
where a : n→ n, b : n→ m, c : m→ n and d : m→ m, n, m ≥ 0.

2. The permutation identity

(πAπT )∗ = πA∗πT ,

for all A : n→ n in M(I) and any permutation matrix π : n→ n, where πT

denotes the transpose (inverse) of π.

The proof is the same as for Conway matrix theories, cf. [3]. For later use we
note the following. When MatS is a partial Conway matrix theory with star

operation defined on the square matrices in M(I), and if A =
(

a b
c d

)

is a matrix

with entries in M(I), partitioned as above, then

A+ =
(

(a + bd∗c)+ (a + bd∗c)∗bd∗

(d + ca∗b)∗ca∗ (d + ca∗b)+

)

(2)

By (2), A+ ∈M(I).

3 Partial Conway Semiring-Semimodule Pairs

In this section, we consider semiring-semimodule pairs (S, V ) consisting of a
semiring S and a left S-semimodule V , called a semimodule for short. We equip
(S, V ) with (partially defined) star and omega power operations, where the
omega power operation maps an ideal of S into V . We define partial Conway
semiring-semimodule pairs and develop the basic theory of these structures. In
particular, we show that partial Conway semiring-semimodule pairs give rise to
partial Conway matricial theories.
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Definition 5. A partial ∗-semiring ω-semimodule pair (S, V ) consists of a semi-
ring S and a left S-semimodule V together with partially defined operations ∗ :
S → S and ω : S → V , whose domain of definition is an ideal D(S) of S. A
partial Conway semiring-semimodule pair is a partial ∗-semiring ω-semimodule
pair (S, V ) such that S is a partial Conway semiring and the following identities
hold:

1. Sum omega identity:

(a + b)ω = (a∗b)ω + (a∗b)∗aω,

for all a, b ∈ D(S).
2. Product omega identity:

(ab)ω = a(ba)ω,

for all a, b ∈ S such that a ∈ D(S) or b ∈ D(S).

A Conway semiring-semimodule pair is a partial Conway semiring-semimodule
pair (S, V ) such that D(S) = S. A morphism of (partial) Conway semiring-
semimodule pairs (S, V )→ (S′, V ′) consists of a semiring morphism hS : S → S′

and a monoid morphism hV : V → V ′ with D(S)hS ⊆ D(S′) that jointly preserve
the action and the star and omega power operations.

Note that aω = aaω and 0ω = 0 hold in all partial Conway semiring-semimodule
pairs (S, V ), for all a ∈ D(S).

An important feature of the above definition is that star and omega are de-
fined on the same ideal. Partial Conway semiring-semimodule pairs include the
partial iterative semiring-semimodule pairs discussed below. Conway semiring-
semimodule pairs include the bi-inductive semiring-semimodule pairs of [12].

Let (S, V ) be a semiring-semimodule pair. Following Elgot [8], we can define
the matricial theory MatrS,V that is the category with the nonnegative integers
as objects, and as morphisms m→ n all ordered pairs (A, v), where A is an m×n
matrix over S, so that A : m → n in MatS , and v is an n-dimensional column
over V , i.e., an element of V n. We usually identify a morphism (, v) : n→ 0 with
v ∈ V n. The action of S on V can naturally be extended to an action

Sm×n × V n → V m, m, n ≥ 0

(A, v) �→ Av. Using this action, we define composition in MatrS,V as follows.
Given (A, u) : m→ n and (B, v) : n→ p, we let

(A, u) · (B, v) = (AB, u + Av) : m→ p.

For each n, the identity morphism n→ n is the pair (En, 0n), consisting of the
n × n identity matrix over S and the n-dimensional column 0n ∈ V n whose
components are all 0. The theory MatrS,V is also equipped with an additive
structure, where (A, u) + (B, v) = (A + B, u + v) is defined pointwise, for all
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(A, u), (B, v) : m→ n. It is clear that each hom-set MatrS,V (m, n) is a commu-
tative monoid with neutral element the pair (0m,n, 0m). Note that each m × n
matrix A in MatS can be naturally identified with the pair (A, 0m). By this iden-
tification, MatS becomes a subtheory of MatrS,V . We call MatS the underlying
matrix theory of MatrS,V .

When MatrS,V and MatrS′,V ′ are both matricial theories, a morphism h :
MatrS,V → MatrS′,V ′ is determined by a morphism (hS , hV ) : (S, V ) →
(S′, V ′) of semiring-semimodule pairs. We define (A, u)h = (Ah, uh) for all
(A, u) : n → p in MatrS,V , where Ah and uh are obtained by applying hS
and hV to the entries of A and u, respectively. (There is also a more abstract
definition, cf. [3]). The category of matricial theories is thus isomorphic to the
category of semiring-semimodule pairs.

Note that

((A, u) + (B, v)) · (C, w) = (A, u) · (C, w) + (B, v) · (C, w)
(0m,n, 0m) · (A, u) = (0m,p, 0m)

hold for all (A, u), (B, v) : n → p and (C, w) : p → q. On the other hand, the
equations

(A, u) · ((B, v) + (C, w)) = (A, u) · (B, v) + (A, u) · (C, w) (3)
(A, u) · (0p,q, 0p) = (0n,q, 0n)

do not hold. However, (3) holds whenever V is idempotent: v + v = v for all
v ∈ V .

Definition 6. Suppose that (S, V ) is a semiring-semimodule pair and consider
the matricial theory MatrS,V . We say that MatrS,V is a partial Conway ma-
tricial theory if its underlying matrix theory MatS is equipped with a partial
star operation, defined on a matrix ideal M(I), such that it is a partial Conway
matrix theory, moreover, there is an omega power operation A �→ Aω, mapping
n×n matrices A in M(I) to columns in V n, subject to the following conditions.

(A + B)ω = (A∗B)ω + (A∗B)∗Aω

for all A, B ∈M(I), A, B : n→ n, and

(AB)ω = A(BA)ω ,

for all A : n→ m, B : m→ n such that A or B is in M(I). When MatrS,V is a
partial Conway matricial theory such that the star and omega power operations
are defined on all square matrices, then we call MatrS,V a Conway matricial
theory. A morphism of (partial) Conway matricial theories is a matricial theory
morphism which preserves the star and omega power operations.

Note the following special case:

AAω = Aω,

where A : n→ n in M(I), n ≥ 0. Also, 0ωn,n = 0n, n ≥ 0.
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An important fact is that the following holds in all partial Conway matricial

theories MatrS,V with distinguished ideal M(I). Let A =
(

a b
c d

)

be a square

matrix in M(I) partitioned so that a and d are square matrices. Then

Aω =
(

(a + bd∗c)ω + (a + bd∗c)∗bdω

(d + ca∗b)ω + (d + ca∗b)∗caω

)

. (4)

Suppose now that (S, V ) is a partial Conway semiring-semimodule pair, so that S
is a partial Conway semiring. Suppose that the star and omega power operations
are defined on the ideal I = D(S). We have already extended the star operation
to all square matrices with entries in I. We now show how the omega power
operation can be extended. For this reason, let A ∈ In×n. We define Aω by
induction on n. When n = 0, we define Aω as the unique element of V 0. When
n = 1, so that A = (s) for some s ∈ I, we let Aω = (sω). Finally, when n > 1,
let us partition A as above such that d is 1 × 1, say. Then we define Aω by the
formula (4). The ω-power operation is well-defined since all entries of a, b, c, d
are in I.

Theorem 3. When (S, V ) is a partial Conway semiring-semimodule pair with
star and omega power defined on the ideal I, then MatrS,V is a partial Conway
matricial theory with distinguished matrix ideal M(I). Conversely, if MatrS,V is
a partial Conway matricial theory where star and omega power are defined on the
square matrices in M(I), then (S, V ) is a partial Conway semiring-semimodule
pair with distinguished ideal I.

In fact, the category of (partial) Conway semiring-semimodule pairs is iso-
morphic to the category of (partial) Conway matricial theories.

The proof is similar to the proof of the corresponding fact for Conway semiring-
semimodule pairs and Conway matricial theories, cf. [3].

4 Partial Iterative Semiring-Semimodule Pairs

In this section, we define a subclass of partial Conway semiring-semimodule
pairs and partial Conway matricial theories. We call a semiring-semimodule pair
(S, V ) positive if V has at least two elements, and for all a ∈ S and v, v′ ∈ V ,
if v + v′ = 0 then v = v′ = 0, and if av = 0 then a = 0 or v = 0. When
(S, V ) is positive so is S: For all a, b ∈ S, if a + b = 0 then a = b = 0, and if
ab = 0 then a = 0 or b = 0. Indeed, if (S, V ) is positive and a + b = 0, then
(a + b)v = av + bv = 0 for all v ∈ V . Thus, av = bv = 0 for all v ∈ V so that
a = b = 0. And if ab = 0 then a(bv) = (ab)v = 0 for all v. Assume that v �= 0.
Since a(bv) = 0, a = 0 or bv = 0. But if bv = 0 then b = 0, since v �= 0. We
conclude that a = 0 or b = 0.

Definition 7. Suppose that (S, V ) is a positive semiring-semimodule pair with a
distinguished ideal I ⊆ S. We call (S, V ) a partial iterative semiring-semimodule
pair if for all a ∈ I, b ∈ S and v ∈ V , the equation x = ax + b has a unique
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solution in S, moreover, the equation y = ay + v has either 0 as its unique
solution in V , when a = 0 and v = 0, or it has a unique nonzero solution in
V . A morphism of partial iterative semiring-semimodule pairs is a morphism of
semiring-semimodule pairs which preserves the distinguished ideal.

The notion of partial iterative semiring-semimodule pairs originates from the
Matricial Extension Theorem of [3].

We give some examples of partial iterative semiring-semimodule pairs. Sup-
pose that (S, V ) is a positive semiring-semimodule pair such that both S and
V − {0} are complete metric spaces. Moreover, suppose that I ⊆ S is an ideal
such that for each s, s′ ∈ I and r ∈ S with s′ �= 0, the functions

x �→ sx + r, x ∈ S

v �→ sv, v ∈ V − {0}
are proper contractions. Then (S, V ), equipped with the distinguished ideal I, is a
partial iterative semiring-semimodule pair, since proper contractions of complete
metric spaces have unique fixed points.

In particular, let Σ be an alphabet, and define the usual metric d on Σω:
For every u, v ∈ Σω, d(u, v) = 0 if u = v, and d(u, v) = 2−n if u = wax and
v = wby for some w ∈ Σ∗ of length n− 1 and for some a, b ∈ Σ and x, y ∈ Σω

with a �= b. Then Σω is a complete metric space as is the collection P ′
c(Σ

ω)
of all nonempty closed subsets of Σω equipped with the Hausdorff metric. Let
Pc(Σω) = P ′

c(Σω) ∪ {∅} and define the action LV of a language L ∈ P (Σ∗) on
V ∈ Pc(Σω) to be the closure of the set

LV = {xv : x ∈ L, v ∈ V }.
Then equipped with set union as +, Pc(Σω) is a positive P (Σ∗)-semimodule. The
semiring P (Σ∗) may also be turned into a complete metric space with distance
function

d(L, L′) = 2−min{|u|:u∈L−L′ or u∈L′−L}

for all L, L′ ⊆ Σ∗ with L �= L′, and d(L, L′) = 0 if L = L′. Let I be the ideal of
all languages in P (Σ∗) not containing the empty word. Then equipped with the
distinguished ideal I, (P (Σ∗), Pc(Σω)) is a partial iterative semiring-semimodule
pair.

Theorem 4. Suppose that (S, V ) is a partial iterative semiring-semimodule pair
with distinguished ideal I. Then (S, V ) is a partial Conway semiring-semimodule
pair with D(S) = I. More precisely, there is a unique way to turn (S, V ) into a
partial Conway semiring-semimodule pair such that the domain of definition of
the star and omega power operations is I and aω is nonzero whenever a ∈ I is
not zero.

Proof. For any a ∈ I, define a∗ as the unique solution of the equation x = ax+1,
and when a �= 0, define aω as the unique nonzero solution of the equation x = ax.
When a = 0, define aω = 0. Note that the definitions are forced.
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It was shown in [5] that, equipped with the above partial star operation, S
is a partial Conway semiring. So to complete the proof, it suffices to prove that
the sum omega and product omega identities hold.

Suppose that a, b ∈ S. If a ∈ I or b ∈ I, then ab, ba ∈ I. Moreover, a(ba)ω =
aba(ba)ω, showing that a(ba)ω is a solution of the equation x = abx. If a and b are
nonzero, then ab, ba are nonzero. Thus a(ba)ω is nonzero, so that (ab)ω = a(ba)ω,
by uniqueness. If a = 0 or b = 0 then both (ab)ω and a(ba)ω are 0.

If a, b ∈ I, then a+ b ∈ I. We show that (a∗b)ω +(a∗b)∗aω is a solution of the
equation x = (a + b)x. Indeed,

(a + b)((a∗b)∗aω + (a∗b)ω) =
= (a(a∗b)∗aω + (ba∗)∗baω) + (a(a∗b)ω + (ba∗)ω)
= (a + aa∗(ba∗)∗b + (ba∗)∗b)aω + (aa∗(ba∗)ω + (ba∗)ω)
= (aω + (aa∗ + 1)(ba∗)∗baω) + (aa∗ + 1)(ba∗)ω

= (1 + a∗(ba∗)∗b)aω + a∗(ba∗)ω

= (a∗b)∗aω + (a∗b)ω.

Now, if a+b is nonzero then a and b are also nonzero, therefore (a∗b)∗aω+(a∗b)ω

is not zero. It follows that (a + b)ω = (a∗b)∗aω + (a∗b)ω. When a + b = 0 then
a = b = 0 so that (a + b)ω = 0 = (a∗b)∗aω + (a∗b)ω. �
We also note that any morphism (S, V ) → (S′, V ′) between partial iterative
semiring-semimodule pairs is a partial Conway semiring-semimodule pair mor-
phism.

Proposition 1. Suppose that (S, V ) is a partial iterative semiring-semimodule
pair with distinguished ideal I. Then sω + sω = sω holds for all s ∈ I. Moreover,
s′sω = sω for all s ∈ I and nonzero s′ ∈ S with ss′ = s′s.

Proof. When s = 0, sω = 0, and our claims are obvious. Suppose now that
s �= 0. Since s(sω + sω) = ssω + ssω = sω + sω and sω + sω is not zero, it
follows by uniqueness that sω + sω = sω. Also, if s′ �= 0 and ss′ = s′s, then
s(s′sω) = s′(ssω) = s′sω is not zero, so that s′sω = sω. �
If (S, V ) is a partial iterative semiring-semimodule pair then it is also a partial
Conway semiring-semimodule pair, so that MatrS,V is a partial Conway ma-
tricial theory. We end this section with an important feature of these partial
Conway matricial theories, see [2].

Theorem 5. Suppose that (S, V ) is a partial iterative semiring-semimodule pair
with distinguished ideal I, so that MatrS,V is a partial Conway matricial theory
with distinguished ideal M(I). Then for all A : n → n in M(I) and B : n → p
in MatS, A∗B is the unique solution of the equation X = AX + B in MatS.
Moreover, for all A : n → n in M(I) and v ∈ V n, u = Aω + A∗v is the unique
“maximal” solution of the equation x = Ax + v in V n, so that whenever w is
another solution, then for all i ∈ [n], either the ith entry of w agrees with the
ith entry of u, or the ith entry of w is 0.
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5 Kleene Theorem

In this section, extending a result from [11], we establish a Kleene theorem for
partial Conway semiring-semimodule pairs. To this end, we first generalize the
omega power operation on matrices.

Definition 8. Suppose that (S, V ) is a partial Conway semiring-semimodule
pair and A : n→ n in D(S)n×n. When 0 ≤ k ≤ n, let us partition A as

A =
(

a b
c d

)

,

where a is k × k, etc. Then we define

Aωk =
(

(a + bd∗c)ω

d∗c(a + bd∗c)ω

)

(5)

This definition makes sense since all entries of d, bd∗c and a + bd∗c are in D(S).
Note that Aωn = Aω. For later use we note that

(
A
C D

)ωk

=
(

Aωk

D∗CAωk

)

(6)

for all A ∈ D(S)n×n, C ∈ D(S)n×m and D ∈ D(S)m×m with k ≤ n. Also,

AAωk

= Aωk (7)

for all A ∈ D(S)n×n and k ≤ n, as the reader can easily verify.
Suppose for the rest of this section that (S, V ) is a partial Conway semiring-

semimodule pair. Let S0 be a fixed subsemiring of S and let Σ ⊆ D(S). We
denote by S0Σ the set of all finite linear combinations over Σ with coefficients
in S0.

Definition 9. An automaton over (S0, Σ) (of dimension n) is a triplet A =
(α, A, β), where α ∈ S1×n

0 , A ∈ (S0Σ)n×n and β ∈ Sn×1
0 . The behavior of A is

|A| = αA∗β ∈ S.

Definition 10. A Büchi automaton over (S0, Σ) is a system A = (α, A, k),
where α ∈ S1×n

0 , A ∈ (S0Σ)n×n and 0 ≤ k ≤ n for some n. The behavior of A
is

|A| = αAωk ∈ V.

We let Rec(S,V )(S0, Σ) and Recω(S,V )(S0, Σ) respectively denote the set of all
behaviors of automata and Büchi automata over (S0, Σ).

Definition 11. We say that s ∈ S is rational over (S0, Σ) if it is of the form
s = x + a, where x ∈ S0 and a is in the least set Rat′(S,V )(S0, Σ) of elements
of S that can be constructed from Σ ∪ {0} by the operations +, · and +, and by
multiplication on the left or on the right with elements of S0.

Moreover, we say that v ∈ V is rational over (S0, Σ) if it can be generated
from the elements of Rat′(S,V )(S0, Σ) by + and ω, and by the action of rational
elements of S over (S0, Σ).
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The above definition is correct, since if s is in Rat′(S,V )(S0, Σ), then s ∈
D(S). Note that v ∈ V is rational over (S0, Σ) iff it can be written as a fi-
nite sum

∑n
i=1 sir

ω
i , where each si is rational over (S0, Σ) and each ri is in

Rat′(S,V )(S0, Σ).
We let Rat(S,V )(S0, Σ) and Ratω(S,V )(S0, Σ) respectively denote the collection

of all rational elements in S and V over (S0, Σ). The following Kleene theorem
was proved in [5]. For special cases, see also [3,11].

Theorem 6. Rat(S,V )(S0, Σ) = Rec(S,V )(S0, Σ).

Remark 1. The proof actually shows that when s ∈ Rat′(S,V )(S0, Σ), then there
is an automaton A = (α, A, β) over (S0, Σ) with αβ = 0 and |A| = s.

Our aim is to prove the corresponding fact for recognizable and rational elements
in V :

Theorem 7. Ratω(S,V )(S0, Σ) = Recω(S,V )(S0, Σ).

The proof of the inclusion Rat(S,V )(S0, Σ) ⊆ Rec(S,V )(S0, Σ) is divided into
several lemmas. Suppose that A = (α, A, k) and B = (β, B, m) are Büchi au-
tomata over (S0, Σ), where

A =
(

a b
c d

)

B =
(

e f
g h

)

where a is k × k and e is m×m. Write α = (α1, α2) and β = (β1, β2) where α1

is 1× k and β1 is 1×m. Then we define the following Büchi automaton:

A + B =

⎛

⎜
⎜
⎝
(
α1 β1 α2 β2

)
,

⎛

⎜
⎜
⎝

a b
e f

c d
g h

⎞

⎟
⎟
⎠ , k + m

⎞

⎟
⎟
⎠

Lemma 1. |A + B| = |A|+ |B|

Proof. First note that
((

a
e

)

+
(

b
f

)(
d

h

)∗(
c

g

))ω

=
(

(a + bd∗c)ω

(e + fh∗g)ω

)

and thus
⎛

⎜
⎜
⎝

a b
e f

c d
g h

⎞

⎟
⎟
⎠

ωk+m

=

⎛

⎜
⎜
⎝

(a + bd∗c)ω

(e + fh∗g)ω

d∗c(a + bd∗c)ω

h∗g(e + fh∗g)ω.

⎞

⎟
⎟
⎠
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Using this,

|A + B| =

=
(
α1 β1 α2 β2

)

⎛

⎜
⎜
⎝

(a + bd∗c)ω

(e + fh∗g)ω

d∗c(a + bd∗c)ω

h∗g(e + fh∗g)ω

⎞

⎟
⎟
⎠

= α1(a + bd∗c)ω + α2d
∗c(a + bd∗c)ω + β1(e + fh∗g)ω + β2h

∗g(e + fh∗g)ω

= |A|+ |B|.
�

Suppose next that A = (α, A, k) is a Büchi automaton as before and B =
(β, B, γ). Then we define the Büchi-automaton

B ·A =
(
(
0 β
)
,

(
A

γαA B

)

, k

)

.

Lemma 2. |B ·A| = |B||A|
Proof. First note that

(
A

γαA B

)ωk

=
(

Aωk

B∗γαAωk

)

,

by (6) and (7). Thus,

|B ·A| = (0 β
)
(

Aωk

B∗γαAωk

)

= βB∗γαAωk

= |B||A|.
�

Finally, we treat the omega power operation. Let A = (α, A, β) be an automaton
of dimension n. Then we define a Büchi automaton of dimension 2n:

Aω =
(
(
0 α
)
,

(
βαA βαA
A A

)

, n

)

.

Lemma 3. If αβ = 0 then |Aω| = |A|ω

Proof. Since αβ = 0, |A| = αA+β. Since

(βαA + βαAA∗A)ω = (βαA+)ω

= β(αA+β)ω,

we have
(

βαA βαA
A A

)ωn

=
(

β(αA+β)ω

A+β(αA+β)ω

)

.
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Thus,

|Aω| = αA+β(αA+β)ω

= (αA+β)ω

= |A|ω.

�

Corollary 3. Ratω(S,V )(S0, Σ) ⊆ Recω(S,V )(S0, Σ)

Proof. Clear from Theorem 6, Lemmas 1, 2, 3 and Remark 1. �

Proposition 2. Recω(S,V )(S0, Σ) ⊆ Ratω(S,V )(S0, Σ)

Proof. When all entries of an n × n matrix A are in Rat′(S,V )(S0, Σ), then the
same holds for all entries of A+ by (2). Using this, it follows from (2), (4) and (5)
that all entries of Aωk are in Ratω(S,V )(S0, Σ). It follows that Recω(S,V )(S0, Σ) ⊆
Ratω(S,V )(S0, Σ). �

The set Rat(S,V )(S0, Σ) may not be closed under star. But there are two
important special cases when it is: When S0 ⊆ D(S) and S0 is closed under star,
so that D(S) = S, or if whenever x + a ∈ D(S) for some x ∈ S0 and a ∈ D(S),
then it follows that x = 0, cf. [5].

Corollary 4. If either of the above two assumptions holds, then Rec(S,V )(S0, Σ)
and Recω(S,V )(S0, Σ) are the smallest sets of elements of S and V , respectively,
that can be constructed from S0 ∪Σ by the rational operations of +, ·,∗ and ω.

6 Partial Iteration Semiring-Semimodule Pairs

Most of the natural partial Conway semiring-semimodule pairs and partial Con-
way matricial theories satisfy several additional identities that do not hold in
all partial Conway semiring-semimodule pairs or partial Conway matricial theo-
ries. In [6], Conway associated an identity of regular languages with every finite
group. A generalization of Conway’s group identities meaningful in all Conway
theories was introduced in [9].

Let (S, V ) be a partial Conway semiring-semimodule pair with distinguished
ideal D(S) ⊆ S. Suppose that G is a finite group of order n with multiplication
operation denoted ◦. Without loss if generality we may assume that the elements
of G are the integers 1, . . . , n. We say that the star group identity associated with
G holds in (S, V ) or in the partial Conway matricial theory MatrS,V if for all
a1, . . . , an in D(S), the sum of the entries of the first row of M∗

G is equal to
(a1 + . . . + an)∗, where MG = MG(a1, . . . , an) is the n × n matrix over D(S)
whose (i, j)th entry is ak iff i ◦ k = j, for all i, j, k = 1, . . . , n. Thus, denoting
by 1n the n-dimensional row matrix whose first component is 1 and whose other
components are all 0, and by un the n-dimensional column matrix whose entries
are all 1, the star group identity associated with G takes the form

1n ·M∗
G · un = (a1 + . . . + an)∗.
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Moreover, we say that the omega group identity holds in (S, V ), or in MatrS,V ,
if the first component of Mω

G is equal to (a1 + . . . + an)ω, i.e. when

1n ·Mω
G = (a1 + . . . + an)ω.

Since the star and omega permutation identities

(π ·A · πT )∗ = π · A∗ · πT
(π ·A · πT )ω = π · Aω

hold for all A ∈ D(S)n×n and all n × n permutation matrices π, whether the
star and omega group identities associated with G hold do not depends on the
enumeration of the group elements.

The group identities can sometimes be simplified. For example, when G is the
cyclic group of order 2, then the star and omega group identities take the form

(a + ba∗b)∗(1 + ba∗) = (a + b)∗ (8)
(a + ba∗b)ω + (a + ba∗b)∗abω = (a + b)ω. (9)

where a and b range over D(S). Using the sum star and product star identities,
the first is equivalent to

a∗(ba∗ba∗)∗(1 + ba∗) = (a + b)∗. (10)

Now by substituting 0 for a we obtain

(b2)∗(1 + b) = b∗. (11)

Conversely, if this holds for all b ∈ D(S), then so do (10) and (8) for all a, b ∈
D(S), since

a∗(ba∗b∗a∗)∗(1 + ba∗) = a∗(ba∗)∗ = (a + b)∗.

Thus, (8) may be simplified to (11). Similarly, in partial Conway semiring-
semimodule pairs (S, V ) satisfying (11) for all b ∈ D(S), (9) may be replaced by
the simpler

(b2)ω = bω,

for all b ∈ D(S).

Proposition 3. The group identities hold in all partial iterative semiring-semi-
module pairs.

Proof. Suppose that (S, V ) is a partial iterative semiring-semimodule pair with
D(S) = I. Let A ∈ In×n, B ∈ Im×m and C ∈ Sn×m with AC = CB. Then

ACB∗ + C = CBB∗ + C = C(BB∗ + Em) = CB∗
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and

ACBω = CBBω = CBω.

Thus, A∗C = CB∗. Moreover, if no component CBω is zero, then Aω = CBω

by uniqueness of maximal solutions.
In particular, let MG = MG(a1, . . . , an), where a1, . . . , an ∈ I, and consider

the column matrix un whose components are all 1. Then MGun = un(a1 + . . . +
an), so that M∗

G = un(a1+. . .+an)∗. If ai = 0 for all i, then both all components
of Mω

G and un(a1+. . .+an)ω are 0. Otherwise no component of un(a1+. . .+an)ω

is 0 and thus Mω
G = un(a1 + . . . + an)ω by Theorem 5. �

The group identities have been utilized in several completeness results. See e.g.,
[4,15].
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with Applications
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Abstract. Partial Conway theories are algebraic theories equipped with
a partially defined dagger operation satisfying some natural identities.
We prove a Kleene type theorem for partial Conway theories and discuss
several applications of this result.

1 Introduction

Fixed point operations occur in just about all areas of theoretical computer
science including automata and languages, semantics of programming languages,
process algebra, logical theories of computational systems, programming logics,
recursive types and proof theory, computational complexity, etc. The equational
properties of the fixed point, or dagger operation can be best described in the
context of Lawvere theories of functions over a set equipped with structure, or
more generally, in the context of abstract Lawvere theories (or just theories), or
cartesian or co-cartesian categories, cf. [26,7,13,33].

Iteration theories were introduced in [5], and independently in [15] in order
to describe the equational properties of the dagger operation in iterative and
rational algebraic theories, cf. [13,35]. In an iterative theory, dagger is defined
by unique fixed points, and in rational theories, by least fixed points. In both
types of theories, the dagger operation satisfies the same set of identities. These
identities define iteration theories. In [33], it is argued that any reasonable class
of fixed point models satisfies either exactly the iteration theory identities, or
the identities of iteration theories satisfying one more extra identity.

Iteration theories can be axiomatized by the Conway theory identities and a
group identity associated with each finite (simple) group, cf. [18]. Whereas the
group identities are needed for completeness, several constructions in automata
and language theory and other areas of computer science only require the Conway
identities.

In [7], a general Kleene type theorem was proved for all Conway theories.
However, in many models of interest, the dagger operation is only partially
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defined. In this paper, we define partial Conway theories and provide a Kleene
theorem for partial Conway theories. We also discuss several application of this
generic result.

2 Basic Definitions

In this section, we review some basic concepts used in this paper. For more
details, the reader is referred to [7]. In any category whose objects are the non-
negative integers we will denote the composite of the morphisms f : n→ p and
g : p→ q in diagrammatic Al order as f ·g. The identity morphism corresponding
to object p will be denoted 1p. When n is a nonnegative integer, we will denote
the set {1, 2, . . . , n} by [n]. Thus, [0] is the empty set.

Let us recall from [7] that a (Lawvere) theory T is a small category with
objects the nonnegative integers such that each nonnegative integer n is the n-
fold coproduct of the object 1 with itself. We assume that each theory T comes
with distinguished coproduct injections in : 1 → n, i ∈ [n], called distinguished
morphisms, turning n to an n-fold coproduct of object 1 with itself. By the
coproduct property, for each finite sequence of scalar morphisms f1, . . . , fn : 1→
p there is a unique morphism f : n→ p such that in ·f = fi, for each i ∈ [n]. This
unique morphism is denoted 〈f1, . . . , fn〉. The operation implicitly defined by the
coproduct property is called tupling. In particular, when n = 0, tupling defines
a unique morphism 0p : 0 → p, for each p ≥ 0. Note that 1n = 〈1n, . . . , nn〉 for
all nonnegative integers n. In addition, we will always assume that 11 = 11, so
that 〈f〉 = f for each f : 1 → p. A theory T is termed trivial if 12 = 22. In a
trivial theory, there is at most one morphism n→ p, for each n, p ≥ 0.

Tuplings of distinguished morphisms are called base morphisms. For example,
0n and 1n are base morphisms. When ρ is a mapping [n]→ [p], there is an asso-
ciated base morphism n→ p, the tupling 〈(1ρ)p, . . . , (nρ)p〉 of the distinguished
morphisms (1ρ)p, . . . , (nρ)p. A base permutation is a base morphism associated
with a bijective mapping. Note that in any theory, a base permutation corre-
sponding to a bijection π : [n] → [n] is an isomorphism with inverse the base
permutation corresponding to the inverse function of π.

When f : n → p and g : m → p in a theory T , we define 〈f, g〉 to be the
morphism h : n + m → p with in+m · h = in · f and (n + j)n+m · h = jm · g for
all i ∈ [n] and j ∈ [m]. Moreover, for each f : n → p and g : m → q, we define
f⊕g = 〈f ·κ, g ·λ〉 : n+m→ p+q, where κ is the base morphism corresponding
to the inclusion [p] ↪→ [p + q] and λ is the base morphism corresponding to the
translated inclusion [q] ↪→ [p + q] mapping j in [q] to p + j in [p + q], for all
j ∈ [q]. Note that the pairing operation 〈f, g〉 and the separated sum operation
f ⊕ g are associative. Moreover, 〈f, 0p〉 = f = 〈0p, f〉 and f ⊕ 00 = f = 00 ⊕ p
for all f : n → p. Also, 〈f, g〉 · h = 〈f · h, g · h〉 for all f : n → p, g : m → p and
h : p→ q, and (f ⊕g) · 〈h, k〉 = 〈f ·h, g ·k〉 for all f : n→ p, g : m→ q, h : p→ r
and k : q → r. Finally, (f ⊕ g) · (h ⊕ k) = (f · h) ⊕ (g · k) for all appropriate
morphisms f, g, h, k.

A morphism T → T ′ between theories T and T ′ is a functor which pre-
serves the objects and the distinguished morphisms. It follows that any theory
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morphism preserves the pairing, tupling and separated sum operations. A the-
ory T is a subtheory of a theory T ′ if T is a subcategory of T ′ and has the
same distinguished morphisms as T , so that the inclusion T ↪→ T ′ is a theory
morphism.

Example 1. A basic example of a theory is the theory of functions over a set A.
In this theory, a morphism n → p is a function f : Ap → An. Note the reversal
of the arrow. The composite of morphisms f : n → p and g : p → q is their
function composition written from right to left, which is a function Aq → An.
The distinguished morphisms are the projection functions.

Example 2. Let S = (S, +, ·, 0, 1) be a semiring [23]. The theory of matrices
MatS over S has as morphisms n→ p all n× p matrices in Sn×p. Composition
is matrix multiplication defined in the usual way. For each i ∈ [p], p ≥ 0, the
distinguished morphism ip : 1 → p is the 1 × p row matrix with a 1 on the
ith position and 0’s elsewhere. It is known that in each matrix theory, each ob-
ject n is also the n-fold product of the object 1 with itself. The transposes iTn
of the distinguished morphisms serve as the projection morphisms n → 1, see
[7,14]. The theory MatS comes with a sum operation + defined on each hom-set
MatS(n, p) = Sn×p. For each n, p ≥ 0, (MatS(n, p), +, 0n,p) is a commutative
monoid, where 0n,p is the n× p matrix whose entries are all 0. Moreover, com-
position distributes over finite sums both on the left and on the right. Thus, for
each n, (MatS(n, n), +, ·,1n, 0n,n) is itself a semiring, since the product of two
n × n matrices is an n × n matrix. In particular, MatS(1, 1) is isomorphic to
S. We will usually identify a morphism 1 → 1 with the corresponding element
of S.

Example 3. Suppose that S is a semiring and V = (V, +, 0) is a (left) S-semi-
module, cf. [23]. Then the matricial theory MatrS,V [14,7] over (S, V ) has as
morphisms n → p all ordered pairs (A; v) consisting of a matrix A : n → p in
MatS and an n-dimensional column vector v ∈ V n. When p = 0, we usually
write (; v) or just v. Composition is defined by the rule

(A; v) · (B; w) = (AB; v + Aw)

for all (A; v) : n → p and (B; w) : p → q. For each i ∈ [p], p ≥ 0, the distin-
guished morphism ip is the ordered pair (ip; 0), where somewhat ambiguously,
ip also denotes the corresponding distinguished morphism in MatS . The the-
ory MatrS,V comes with the pointwise sum operation and the zero morphisms
0n,p = (0n,p; 0n), where 0n denotes the n-dimensional column vector of 0’s in
V n. Each hom-set MatrS,V (n, p) = (MatrS,V (n, p), +, 0n,p) is a commutative
monoid and composition distributes over finite sums on the right, but usually not
on the left. Note that MatS may be identified with the subtheory of MatrS,V
determined by the morphisms of the sort (A; 0n) : n → p, n, p ≥ 0. We call
MatS the underlying matrix theory of MatrS,V .

Example 4. A ranked alphabet Σ is a family of pairwise disjoint sets (Σn)n, where
n ranges over the nonnegative integers. We assume that the reader is familiar
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with the notion of (total) Σ-trees over a set Xp = {x1, . . . , xp} of variables,
defined as usual, see e.g. [7]. Below we will denote the collection of finite and
infinite Σ-trees over Xp by TωΣ(Xp) and the collection of just the finite trees by
TΣ(Xp). We call a tree proper if it is not one of the trees xi. Σ-trees form a theory
ΣTR whose morphisms n→ p are all n-tuples of trees in TωΣ(Xp). Composition
is defined by substitution for the variables xi, and for i ∈ [p], the tree with a
single vertex labeled xi serves as the ith distinguished morphism 1 → p. Thus,
if t : 1 → n and t′1, . . . , t′n : 1 → p in ΣTR, then t · 〈t′1, . . . , t′n〉 : 1 → p is
the tree obtained by substituting a copy of t′i for each leaf of t labeled xi, for
i ∈ [n]. See [7] for details. A tree is called regular if up to isomorphism it has
a finite number of subtrees. The subtheory of ΣTR containing only the regular
Σ-trees is denoted Σtr, and the subtheory containing only the finite Σ-trees is
denoted ΣTerm. As usual, we identify each letter σ in Σn with the corresponding
atomic tree σ(x1, . . . , xn) in TΣ(Xn) whose root is labeled σ and has n immediate
successors labeled x1, . . . , xn, respectively.

It is known that ΣTerm is freely generated by Σ in the category of theories.
In particular, when Σ is is empty, ΣTerm is an initial theory.

Example 5. The theory Θ has as morphisms n → p all functions [n] → [p].
Composition is defined by function composition written from left to right. For
each n and i ∈ [n], the distinguished morphism 1 → n is the function [1]→ [n]
selecting the integer i. When T is a nontrivial theory, the base morphisms form a
subtheory of T isomorphic to Θ. Moreover, when Σ is the empty ranked alphabet,
the theory ΣTR (or ΣTerm) is isomorphic to Θ.

3 Partial Conway Theories

Let T be a theory. A nonempty collection of morphisms I is an ideal [7] in
T if it is closed under tupling, composition with base morphisms on the left,
and composition with arbitrary morphisms on the right. Note that every ideal
contains the morphisms 0p, p ≥ 0.

Definition 1. A partial dagger theory1 is a theory T equipped with a distin-
guished ideal D(T ) and a partially defined dagger operation

† : T (n, n + p)→ T (n, p), n, p ≥ 0

defined on morphisms n → n + p in D(T ). A dagger theory is a partial dagger
theory T with D(T ) = T . (An equivalent condition is that 11, or at least one
distinguished morphism is in D(T ).)

Let T, T ′ be (partial) dagger theories. A (partial) dagger theory morphism ϕ :
T → T ′ is a theory morphism T → T ′ which preserves the distinguished ideal
and the dagger operation, so that D(T )ϕ ⊆ D(T ′) and (f †)ϕ = (fϕ)† for all
f : n→ n+p in D(T ) and n, p ≥ 0. We say that T is a (partial) dagger subtheory

1 These theories are called partial preiteration theories in [7].
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of T ′ if T is a subtheory of T ′, D(T ) = D(T ′) ∩ T , and the dagger operation of
T is the restriction of the dagger operation of T ′, so that the inclusion T ↪→ T ′

is a morphism of (partial) dagger theories.
In the sequel, we will consider partial dagger theories satisfying certain iden-

tities that we will define now. For the origins of these identities, the reader is
referred to [2,1,15,28,29,34,35].

Definition 2. We say that the partial dagger theory T satisfies:

1. the fixed point identity, if

f † = f · 〈f †,1p〉
for each f : n→ n + p in D(T ),

2. the left zero identity, if

(0n ⊕ f)† = f

for each f : n→ p in D(T ),
3. the right zero identity, if

(f ⊕ 0q)† = f † ⊕ 0q

for each f : n→ n + p in D(T ),
4. the (base) parameter identity, if

f † · g = (f · (1n ⊕ g))†

for each f : n → n + p in D(T ) and g : p → q in T (such that g is a base
morphism),

5. the permutation identity, if

(π · f · (π−1 ⊕ 1p))† = π · f †

for each f : n→ n+p in D(T ) and base permutation π : n→ n with inverse
π−1,

6. the pairing identity (or Bekić identity), if for all f : n → n + m + p and
g : m→ n + m + p in D(T ),

〈f, g〉† = 〈f † · 〈h†,1p〉, h†〉,
where h = g · 〈f †,1m+p〉 : m→ m + p,

7. the double dagger identity, if

(f · (〈1n,1n〉 ⊕ 1p))† = (f · 〈f †,1n+p〉)†

for each f : n→ n + n + p in D(T ),
8. the composition identity, if

f · 〈(g · 〈f, 0m ⊕ 1p〉)†,1p〉 = (f · 〈g, 0n ⊕ 1p〉)†

for each f : n→ m + p and g : m→ n + p in D(T ),
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9. the simplified composition identity, if

(f · g)† = f · (g · (f ⊕ 1p))†

for each f : n→ m and g : m→ n + p in D(T ).

Remark 1. Note that the composition identity implies the simplified composition
identity and the fixed point identity implies the left zero identity. If the fixed
point identity holds, then f † is in D(T ) for each f : n → n + p in D(T ), since
f † = f · 〈f †,1p〉. Then we say that T satisfies

10. the simplified form of the double dagger identity, if

(f · (〈1n,1n〉 ⊕ 1p))† = f ††

for each f : n→ n + n + p in D(T ).

If the fixed point identity holds, then the simplified form of the double dagger
identity is equivalent to the double dagger identity.

The scalar versions of the fixed point, left zero, right zero, (base) parameter and
double dagger identities are obtained by taking n = 1 in the corresponding iden-
tity. The scalar versions of the composition and simplified composition identities
are obtained by taking n = m = 1 in those identities.

Definition 3. A (partial) Conway theory is a (partial) dagger theory satisfying
the fixed point, right zero, pairing, (simplified) double dagger and permutation
identities.

A morphism of (partial) Conway theories is a (partial) dagger theory morphism.
A (partial) Conway theory T is a (partial) Conway subtheory of the partial
Conway theory T ′ if T is a (partial) dagger subtheory of T ′. The following fact
is known from [7].

Proposition 1. All of the identities listed above hold in all partial Conway the-
ories.

It is in effect shown in [7] that partial Conway theories may also be axiomatized
by the scalar versions of the fixed point, right zero, pairing and double dagger
identities and the permutation identity for morphisms f : 2 → 2 + p in the
distinguished ideal and the non-trivial base permutation π : 2→ 2.

The axioms of Conway theories may be simplified. The following fact is known,
cf. [7], Chapter 6.

Proposition 2. Suppose that T is a dagger theory. Then the following are equiv-
alent:

• T satisfies the left zero, right zero, pairing and permutation identities.
• T satisfies the base parameter, composition and double dagger identities.
• T satisfies the fixed point, base parameter, simplified composition and double

dagger identities.
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• T satisfies the scalar versions of the parameter, composition and double dag-
ger identities, and the pairing identity for m = 1.
• T satisfies the scalar versions of the fixed point, parameter, simplified com-

position and double dagger identities, and the pairing identity for m = 1.

We give several examples of (partial) Conway theories.

Example 6. A partial iterative theory is a theory T equipped with a distinguished
ideal D(T ) such that the fixed point equation

ξ = f · 〈ξ,1p〉 (1)

has a unique solution in T for each f : n→ n+p in D(T ). Each partial iterative
theory may be turned into a partial Conway theory by defining f † as the unique
solution of the above equation for each f : n → n + p in D(T ). It can be seen
that a theory T , equipped with a distinguished ideal D(T ), is a partial iterative
theory if (1) has a unique solution for each scalar f : 1 → 1 + p in D(T ), see
[11]. Partial iterative theories generalize the notion of Elgot’s iterative theories,
cf. [13].

Example 7. Examples of Conway theories are the theories of continuous or mono-
tone functions over directed complete partial orders (dcpo’s) equipped with the
least fixed point operation as dagger. In a continuous theory T , each hom-set
T (n, p) is a dcpo so that f ≤ g for f, g : n → p iff in · f ≤ in · g for all i ∈ [n].
Moreover, the composition operation preserves the suprema of nonempty di-
rected sets. When f : n→ n+p, then f † is the least solution of the equation (1).
See [7,35] for details. Continuous theories have been generalized to Park theories
in [17]. Every Park theory is a Conway theory.

Example 8. Let Σ be a ranked alphabet and let T be the theory ΣTR, or the
theory Σtr. Let the ideal D(T ) consist of those morphisms f : n → p in T
whose components in · f , i ∈ [n], are proper trees. It is known that for each
f : n → n + p in D(T ), the equation (1) has a unique solution in the variable
ξ : n → p. Denoting this unique solution by f †, T becomes a partial Conway
theory. Moreover, if Σ0 is not empty, so that there is at least one morphism
in T (1, 0), then for any choice of a morphism ⊥ : 1 → 0, the partial dagger
operation can be uniquely extended to a totally defined dagger operation such
that T becomes a Conway theory (in fact an iteration theory). See [5] and [16],
or [7].

Example 9. Suppose that Σ contains a single letter ⊥ that has rank 0. Then
any scalar morphism in ΣTR is either a distinguished morphism, or a morphism
⊥1,p = ⊥ · 0p : 1 → p. Given f : n → n + p, it holds that f † = fn · 〈⊥n,p,1p〉,
where ⊥n,p = 〈⊥1,p, . . . ,⊥1,p〉 : n→ p, f0 = 1n⊕0p and fk+1 = f · 〈fk, 0n⊕1p〉.
Let ⊥TR denote this Conway theory. It is known that ⊥TR is an initial Conway
theory (and an initial iteration theory).
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Example 10. Let Θ′ be the theory whose morphisms n → p are the partial
functions [n] → [p]. Composition is function composition and the distinguished
morphisms are defined as in the theory Θ. For each n, p ≥ 0, let ⊥n,p denote
the totally undefined partial function [n] → [p]. For each ρ : n → n + p, define
ρ† = ρn · 〈⊥n,p,1p〉. Then Θ′ is an iteration theory isomorphic to ⊥TR. Thus,
Θ′ is also an initial Conway theory.

Example 11. Each nontrivial Conway theory T contains a subtheory isomorphic
to Θ′. Given a partial function ρ : [n] → [p], let us define the corresponding
partial base morphism in T as the morphism 〈f1, . . . , fn〉, where for each i ∈ [n],
fi = jp if iρ = j is defined, and fi = ⊥ · 0p = ⊥1,p, if iρ is not defined. Here,
⊥ = 11

†.

When a matrix theory MatS is a Conway theory, the dagger operation deter-
mines a star operation mapping a matrix A : n → n to a matrix A∗ : n → n
by

A∗ = (A,1n)†.

In particular, S is equipped with a star operation ∗ : S → S. The equational
properties of the dagger operation are then reflected by corresponding properties
of the star operation. For example, the fixed point identity corresponds to the
identity A∗ = AA∗ + 1n, A : n → n, and the simplified double dagger identity
corresponds to the identity (A + B)∗ = A∗(BA∗)∗, where A, B : n → n. A
similar fact holds for those partial matrix theories T = MatS in which D(T ) is
a two-sided ideal, i.e., D(T ) is closed under (finite sums and) composition with
any matrix on either side.

Similarly, when a matricial theory MatrS,V is a Conway theory, then the
dagger operation determines a star operation on the underlying matrix theory
as well as an omega operation mapping a matrix A : n→ n in MatS to a vector
in V n, and thus also a star operation on S and a omega operation S → V . For
details, see [7].

Remark 2. An iteration theory [7] is any theory satisfying all identities true of
continuous theories, or equivalently, the tree theories ΣTR or Σtr with a total
dagger operation as in Example 8. Iteration theories can be axiomatized by the
Conway identities and an identity associated with each finite (simple) group, cf.
[18]. All of the Conway theories given above are in fact iteration theories. The free
iteration theories may be described as the theories Σtr of regular trees. The free
Conway theories have been described in [3]. It is decidable in polynomial time
whether an identity holds in all iteration theories, whereas the equational theory
of Conway theories is PSPACE-complete, cf. [3]. In [7], partial iteration theories
are also defined. Every partial iteration theory is a partial Conway theory.

4 A Kleene Theorem

Let T be a partial dagger theory, T0 a subtheory of T , and let A be a set of scalar
morphisms in D(T ). We write A(T0) for the set of morphisms 〈f1, . . . , fn〉 : n→ p,
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n, p ≥ 0 such that each fi is the composition of a morphism in A with a morphism
in T0. In particular, 0p ∈ A(T0) for all p ≥ 0. Note that if T0 is T then A(T0) is
the least ideal in T containing the morphisms in A, and if A is the set of scalar
morphisms in D(T ), then A(T0) = D(T ) for every subtheory T0 of T .

We say that (T0, A) is dagger compatible, if for each α : n → s + n + p in T0

and a : s→ s + n + p in A(T0), s, n, p ≥ 0,

α · 〈a†,1n+p〉 ∈ D(T ) =⇒ α · 〈a, 0s ⊕ 1n+p〉 ∈ A(T0).

This condition is clearly fulfilled in a partial dagger theory T if (T0, A) is strongly
dagger compatible:

1. For all α : n→ p ∈ T0 and a : p→ g ∈ A(T0), α ·a ∈ A(T0), i.e., when A(T0)
is closed under left composition with T0-morphisms.

2. If α · 〈f,1p〉 ∈ D(T ) for some α : n → m + p ∈ T0 and f : m → p ∈ D(T ),
then α = β ⊕ 0p for some β : n→ m in T0.

Indeed, if these conditions hold and α · 〈a†,1n+p〉 ∈ D(T ) for some α : n →
s + n + p in T0 and a : s→ s + n + p in A(T0), then there exists β : n→ s in T0

with α = β ⊕ 0n+p. Thus, α · 〈a, 0s ⊕ 1n+p〉 = β · a is in A(T0).
Of course, it suffices to require the above conditions when the morphism α is

scalar.

Remark 3. When (T0, A) is dagger compatible, then for every α : n → n + p in
T0, if α · 〈0†n+p,1n+p〉 = α · 〈0n+p,1n+p〉 = α is in D(T ), then it is in A(T0).

Below, when we write that (T0, A) is a basis , we will mean that T0 is a subtheory
of T and A is a set of scalar morphisms in D(T ).

Definition 4. A presentation n → p of dimension s over a basis (T0, A) is an
ordered pair:

D = (α, a) : n→ p,

where α : n→ s + p is in T0 and a : s→ s + p is in A(T0).
The behavior of D is the following morphism in T :

|D| = α · 〈a†,1p〉 : n→ p.

Definition 5

a) Let D = (α, a) : n→ p and E = (β, b) : m→ p be presentations of dimension
s and r, respectively. We define

〈D, E〉 = (γ, c) : n + m→ p

as the presentation of dimension s + r, where

γ = 〈α · (1s ⊕ 0r ⊕ 1p), 0s ⊕ β〉
c = 〈a · (1s ⊕ 0r ⊕ 1p), 0s ⊕ b〉.
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b) Let D = (α, a) : n→ p and E = (β, b) : p→ q be presentations of dimension
s and r, respectively. Let us define

D · E = (γ, c) : n→ q

as the presentation of dimension s + r, where

γ = α · (1s ⊕ β)
c = 〈a · (1s ⊕ β), 0s ⊕ b〉

c) Let D = (α, a) : n→ n+p be a presentation of dimension s with |D| ∈ D(T ).
Suppose that (T0, A) is dagger compatible. Then we define

D† = (β, b) : n→ p

as the presentation of dimension s + n, where

β = (0s ⊕ 1n ⊕ 0p)
b = 〈a, α · 〈a, 0s ⊕ 1n+p〉〉.

And if T0 ⊆ D(T ) is closed under dagger, then we define

D† = (β, b) : n→ p

as the presentation of dimension s, where

β = (α · (〈0n ⊕ 1s,1n ⊕ 0s〉 ⊕ 1p))†

b = a · 〈1s ⊕ 0p, β, 0s ⊕ 1p〉.
Note that if T0 ⊆ D(T ) then T = D(T ), so that T is a Conway theory.

Lemma 1. Let T be a partial Conway theory with basis (T0, A). Then

a) for each presentations D : n→ p, E : p→ q we have |D| · |E| = |D · E|,
b) for each presentations D : n → p and E : m → p we have 〈|D|, |E|〉 =
|〈D, E〉|, and

c) if (T0, A) is dagger compatible, or when T0 ⊆ D(T ) is closed under dagger,
then for each presentation D : n→ n + p such that |D| is in D(T ), we have
|D|† = |D†|.

Proof. Although the proofs of a) and b) are the same as the proofs of the
corresponding facts on pages 450–452 in [7], we include them for the reader’s
convenience.

Proof of a).

|〈D, E〉| = γ · 〈c†,1p〉
= γ · 〈a†, b†,1p〉
= 〈α · 〈a†,1p〉, β · 〈b†,1p〉〉
= 〈|D|, |E|〉.
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In the second line, we used the pairing and parameter identities.
Proof of b).

|D ·E| = γ · 〈c†,1q〉
= γ · 〈(a · (1s ⊕ β))† · 〈b†,1q〉, b†,1q〉
= α · (1s ⊕ β) · 〈a† · β · 〈b†,1q〉, b†,1q〉
= α · 〈a†,1p〉 · β · 〈b†,1q〉
= |D| · |E|.

In the second and third lines, we used the pairing and parameter identities.
Proof of c). First suppose that (T0, A) is dagger compatible. Using the first

definition of D† we have:

|D†| = β · 〈b†,1p〉
= (0s ⊕ 1n ⊕ 0p) · 〈b†,1p〉
= (0s ⊕ 1n) · b†
= (0s ⊕ 1n) · 〈a, α · 〈a, 0s ⊕ 1n+p〉〉†
= (α · 〈a, 0s ⊕ 1n+p〉 · 〈a†,1n+p〉)†
= (α · 〈a†,1n+p〉)†
= |D|†.

Here, we used the pairing identity in the fifth equation and the fixed point
identity in the sixth equation.

Next, suppose that T0 ⊆ D(T ) is closed under dagger. Then, using the second
definition of D†,

|D†| = β · 〈b†,1p〉
= β · 〈(a · 〈1s ⊕ 0p, β, 0s ⊕ 1p〉)†,1p〉
= β · 〈(a† · 〈β, 0s ⊕ 1p〉)†,1p〉
= (β · 〈a†, 0n ⊕ 1p〉)†
= ((α · (〈0n ⊕ 1s,1n ⊕ 0s〉 ⊕ 1p))† · 〈a†, 0n ⊕ 1p〉)†
= (α · (〈0n ⊕ 1s,1n ⊕ 0s〉 ⊕ 1p) · 〈1n ⊕ 0p, a†, 0n ⊕ 1p〉)†
= (α · 〈a†,1n ⊕ 0p, 0n ⊕ 1p〉)†
= (α · 〈a†,1n+p〉)†
= |D|†.

Here, we used the parameter identity in the third line, the composition identity
in the fourth line, and in the fifth line the identity

(f † · 〈g, 0n ⊕ 1p〉)† = (f · 〈1n ⊕ 0p, g, 0n ⊕ 1p)†,

f : n→ n + m + p, g : m→ n + p that holds in all Conway theories.
�
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Lemma 2. Let T be a partial Conway theory with basis (T0, A). Then every
T0-morphism and every morphism in A is the behavior of some presentation.

Proof. Indeed, when α : n → p is in T0, then α = |Dα| for the presentation
Dα = (α, 0p), and when a : 1→ p in A, then a = |Da| where Da = (11+p, 01⊕a).
The latter fact requires the left zero identity. �
Using the previous lemmas we obtain the following Kleene type theorem for
partial Conway theories.

Theorem 1. Let T be a partial Conway theory with basis (T0, A). Suppose that
either (T0, A) is dagger compatible or T0 ⊆ D(T ) is closed under dagger. Then
a morphism f belongs to the least partial Conway subtheory of T containing T0

and A iff f is the behavior of some presentation over (T0, A).

Proof. The necessity of our claim follows from the previous two lemmas. Sup-
pose now that f : n → p is the behavior of a presentation (α, a) : n → p over
(T0, A). Let T ′ denote the least partial Conway subtheory of T containing T0

and A, so that D(T ′) = T ′ ∩ D(T ). Since a ∈ D(T ′), a† ∈ T ′. Since T ′ is a
subtheory containing T0, it follows that f = α · 〈a†,1p〉 ∈ T ′. �

Corollary 1. Let T be a partial Conway theory with basis (T0, A). Suppose that
either (T0, A) is dagger compatible or T0 ⊆ D(T ) is closed under dagger. Then
the following are equivalent:

a) T0 ∪ A generates T , so that every morphism can be constructed from the
morphisms in T0 ∪A by the theory operations and dagger.

b) For each morphism f in T there is a presentation over (T0, A) whose behavior
is f .

c) For each scalar morphism f in T there is a presentation over (T0, A) whose
behavior is f .

Remark 4. Let T be a partial Conway theory with basis (T0, A) such that every
morphism in T is the behavior of a presentation over (T0, A). Suppose that D(T )
is closed with respect to left composition by T0-morphisms and if α · 〈f,1p〉 is
in D(T ), where α : n → s + p ∈ T0 and f : s → p ∈ D(T ), then α = β ⊕ 0p for
some β : n → s. Then D(T ) is closed with respect to left composition by every
T -morphism.

Indeed, suppose that f : n → p and g : p → q in T with g ∈ D(T ). By
assumption, there exist presentations (α, a) and (β, b) with |(α, a)| = f and
|(β, b)| = g. Since g ∈ D(T ), there exists some γ in T0 with β = γ ⊕ 0p. Thus,
g = γ · b†, and we conclude that

f · g = α · 〈a†,1p〉 · γ · b† = α · 〈a† · γ · b†, γ · b†〉

is a morphism in D(T ).
The above assumptions hold if T is generated by T0∪A and (T0, A) is strongly

dagger compatible.
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Indeed, suppose that (T0, A) is strongly dagger compatible. Then D(T ) is
closed with respect to left composition with T0-morphisms. To prove this, sup-
pose that f : n→ p in D(T ). Since (T0, A) is strongly dagger compatible, there
exist α : n → s ∈ T0 and a : s → s + p ∈ A(T0) with f = α · a†. Let β : m → n
be a T0-morphism. Then β · f = β · (α · a†) = (β · α · a) · 〈a†,1p〉 is in D(T ).

4.1 Grove Theories

In this subsection, we consider theories T equipped with additional constants
+ : 1 → 2 and # : 1 → 0. Given the constant +, let us define a sum operation
as follows. For all morphisms f, g : 1→ p in T , we define

f + g = + · 〈f, g〉.
When f, g : n→ p, then let

f + g = 〈(1n · f) + (1n · g), . . . , (nn · f) + (nn · g)〉.
Moreover, using the constant #, we define 01,p = #·0p and 0n,p = 〈01,p, . . . , 01,p〉,
for all n, p ≥ 0. Note that by definition + = 12 + 22 and # = 01,0. Below we
will follow the convention that composition has higher priority than the sum
operation.

Definition 6. A grove theory [7] is a theory equipped with the constants + :
1→ 2 and # : 1→ 0 satisfying the following equations:

12 + 22 = 22 + 12

(13 + 23) + 33 = 13 + (23 + 33)
11 + 01,1 = 11.

A grove theory morphism ϕ : T → T ′ between the grove theories T and T ′ is a
theory morphism preserving the constants, i.e. +ϕ = + and #ϕ = #. We say
that the grove theory T is a subgrove theory of the grove theory T ′ if T is a
subtheory of T ′ with the same constants + and #.

It follows that for each n, p ≥ 0, (T (n, p), +, 0n,p) is a commutative monoid.
Moreover,

(f + g) · h = (f · h) + (g · h)
0m,n · f = 0m,p

for all f, g : n → p and h : p → q. Note that distributivity on the left need not
hold. If T and T ′ are grove theories and ϕ : T → T ′ is a grove theory morphism,
then (f + g)ϕ = fϕ + gϕ and 0n,pϕ = 0n,p for all n, p ≥ 0 and f, g : n → p.
Similarly, if T ′ is a subgrove theory of T , then T ′ contains the zero morphisms
0n,p of T and is closed under the sum operation of T .

Examples of grove theories include all matrix theories MatS and all matricial
theories MatrS,V , see Examples 2 and 3. In MatS , the morphism + is the matrix
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(1, 1) : 1 → 2 and # is the unique matrix 1 → 0. In MatrS,V , + = ((1, 1); 0)
and # = (; 0).

A grove theory which is a (partial) Conway theory is a (partial) Conway
grove theory. A morphism of (partial) Conway grove theories is both a grove
theory morphism and a (partial) Conway theory morphism. A (partial) Conway
subgrove theory T ′ of a (partial) Conway grove theory T is a subgrove theory
that is a (partial) Conway subtheory of T .

Proposition 3. Suppose that T is a partial Conway grove theory with basis
(T0, A). If T0 is a subgrove theory, then the set of behaviors of presentations
over (T0, A) contains the morphisms 0n,p and is closed under the sum operation.

Proof. Every morphism in T0 is the behavior of some presentation over (T0, A).
Since # and + are in T0, this fact applies to these morphisms. �

An important special case of Theorem 1 concerns partial Conway grove theories
T with a basis (T0, A) such that T0 is a matrix theory.

Corollary 2. Suppose that T is a partial Conway grove theory with basis (T0, A)
such that T0 is a matrix theory. Suppose that one of the following two conditions
holds:

1. For all x : 1→ p in T0 and f : 1→ p ∈ D(T ), if x+f ∈ D(T ) then x = 01,p.
Moreover, for all x : 1→ 1 ∈ T0 and a, b : 1→ p ∈ A(T0), x · a ∈ A(T0) and
a + b ∈ A(T0).

2. For every x : 1→ 1 ∈ T0, x∗ is defined and belongs to T0.

Then a morphism n → p belongs to the least partial Conway subgrove theory of
T containing T0 and A iff it is the behavior of some presentation over (T0, A).

Proof. Suppose that for all x : 1 → p in T0 and f : 1 → p ∈ D(T ), if
x + f ∈ D(T ) then x = 01,p. Then if α · 〈a,1p〉 belongs to D(T ), for some
α : n→ s + p in T0 and a : s→ p ∈ D(T ), then α = β ⊕ 0p for some β : n→ s.
Since T0 is a matrix theory, A(T0) is closed under left composition with T0-
morphisms iff for each p ≥ 0, the set of morphisms 1 → p in T0 is closed under
sum and left composition with morphisms 1→ 1 in T0. The second condition is
equivalent to requiring that T0 ⊆ D(T ) and T0 is closed under dagger, or to the
condition that α∗ exists and is in T0 for all α : n→ n in T0. �

Note that the condition that for all x : 1 → p ∈ T0 and f : 1 → p in A(T0), if
x + f ∈ D(T ) then x = 01,p holds whenever each (scalar) morphism of T can be
written in at most one way as the sum of a (scalar) T0-morphism and a (scalar)
morphism in D(T ).

5 Applications

In this section we present several applications of Theorem 1.
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5.1 Trees

Suppose that Σ is a ranked alphabet and consider the partial Conway theory
T = ΣTR. Equipped with the ideal D(T ) determined by the proper trees, ΣTR
is a partial iterative theory and thus a partial Conway theory. Let T0 be the
subtheory determined by those trees not containing any vertex labeled by a
letter of Σ, and let A be the collection of all atomic trees corresponding to the
letters of Σ. Every tree in T0 may be considered as a function in the initial theory
Θ. Then A(T0) is the ideal of all proper trees and (T0, A(T0)) is a strongly dagger
compatible basis. A presentation (α, a) : n→ p of dimension s is nothing but a
flowchart scheme n → p over Σ, cf. [7]. We can write a : s → s + p in a unique
way

a = 〈σ1 · ρ1, . . . , σs · ρs〉 (2)

where each σi is in Σni for some ni ≥ 0, and each base morphism ρi corresponds
to some function [ni]→ [s+p], also denoted ρi. Such a scheme is a finite, directed,
ordered graph whose vertices are the integers in the set [s+p]. A vertex i ∈ [s] is
labeled σi and has ni linearly ordered outgoing edges so that the jth edge leads
to the vertex jρi. Each vertex s + i with i ∈ [p] is labeled xi, the ith variable in
the set {x1, . . . , xp}. The base morphism α : n→ s+p corresponds to a function,
also denoted α, that picks the ith begin vertex iα for each i ∈ [n]. The behavior
of (α, a) is the tree t = (t1, . . . , tn) : n → p obtained by unfolding the flowchart
scheme. It is known that a tree is the unfolding of a flowchart scheme iff it is
regular. Thus the Kleene theorem asserts that a tree can be constructed from
the atomic trees corresponding to the letters in Σ by the theory operations and
(scalar) dagger iff it is the behavior of a scheme.

When Σ0 contains the letter ⊥, T = ΣTR can be turned in a unique way into
a Conway theory with a totally defined dagger operation such that 11

† = ⊥,
see Example 9. Thus, D(T ) = T . Accordingly, we may choose T0 to be the
subtheory of all trees not having any vertex labeled by a symbol in Σ other
than ⊥. Then T0 is closed under dagger, in fact T0 is uniquely isomorphic to the
theory Θ′ of Example 10. The isomorphism Θ′ → T0 maps a partial function
ρ : [n] → [p] to the tree n → p whose ith component is the variable xiρ if
iρ is defined and the tree ⊥ otherwise, for all i ∈ [n]. Consider a presentation
(α, a) : n→ p of dimension s over (T0, A), where A is the collection of all atomic
trees corresponding to the letters of Σ other than ⊥. Here, α may be viewed
as a partial function [n] → [s + p] and a is given as in (2), where now each ρi
corresponds to a partial function [ni]→ [s+ p]. When jρi is undefined, for some
j ∈ [ni], then the jth outgoing edge of vertex i leads to the extra vertex labeled
⊥. Similarly, when jα is undefined for some j ∈ [n], then this means that the
jth begin vertex is the vertex labeled ⊥. The behavior of the scheme is again
the unfolding of the scheme. Since these unfoldings are again the regular trees,
the Kleene theorem asserts that a tree can be constructed from the letters in Σ
(other than ⊥) by the theory operations and the total (scalar) dagger operation
iff it is regular.
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5.2 Synchronization Trees

Suppose that Σ is an alphabet. A synchronization tree t : 1 → p over Σ is an
at most countable directed tree whose edges are labeled by the letters in the set
A∪{ex1, . . . , exp}, where the exi are referred to as the exit symbols. It is required
that whenever an edge is labeled exi, for some i, then its target is a leaf. A
morphism between trees 1 → p preserves the root, the edges and the labeling.
We identify isomorphic trees. A synchronization tree n→ p over Σ is an n-tuple
(t1, . . . , tn) of synchronization trees 1→ p over Σ.

Synchronization trees over Σ form a category STΣ with composition defined
in the following way. Suppose that t : 1 → p and t′ = (t′1, . . . , t

′
p) : p→ q. Then

t · t′ is the synchronization tree obtained from t by replacing each edge labeled
exi for some i ∈ [p] by a copy of ti. When t = (t1, . . . , tn) : n→ p, t · t′ is defined
as the tree (t1 · t′, . . . , tn · t′). With the trees 1 → n, n ≥ 0, having a single
edge labeled by an exit symbol as distinguished morphisms, STΣ is a theory.
Let + denote the tree 1 → 2 with two edges, an edge labeled ex1, and an edge
labeled ex2, and let # : 1 → 0 be the empty tree having a single vertex and no
edges. Equipped with these constants, STΣ is a grove theory. For each n, p, each
component of 0n,p is the empty tree. When t, t′ : 1→ p, t + t′ is the tree 1→ p
obtained by taking the disjoint union of t and t′ and merging the roots. When
t, t′ : n→ p, in · (t + t′) = in · t + in · t′, for all i ∈ [n]. For more details, we refer
to [7].

Let T = STΣ and define D(T ) to be the ideal determined by the guarded trees
having no exit edge originating in the root. It is known that for each t : n→ n+p,
the fixed point equation ξ = t · 〈ξ,1p〉 has a unique solution, denoted t†. When
each component of t is finitely branching, then the same holds for t†. Thus, T
equipped with the ideal D(T ) is a partial iterative theory and hence a partial
Conway grove theory.

Let T0 denote the subtheory determined by the finitely branching synchro-
nization trees with no edge labeled in Σ. Then T0 is isomorphic to the matrix
theory MatN for the semiring N of natural numbers. Let A denote the collection
of all trees 1→ 1 corresponding to letters σ in Σ that have a single path consist-
ing of two edges, labeled σ and ex1, respectively. Then a presentation D : 1→ p
over (T0, A) of dimension s is an ordered pair (α, a) consisting of a row matrix
α of dimension s + p over N and a morphism a = 〈a1 · ρ1, . . . , as · ρs〉 : s→ s + p
where each ai is in Σ and each ρi is a row matrix over N of dimension s + p:

α = (αj)j∈[s+p]

ρi = (ρi,j)j∈[s+p] .

Such a presentation (α, a) : 1→ p of dimension s determines and is determined
by a finitely branching transition system whose set of states is [s+p] together with
an external exit state ex and a begin state b. For a pair of states (i, j) ∈ [s]×[s+p],
there are ρi,j transitions labeled aj from state i to state j. In addition, there are
ρi,s+j edges labeled exj from state i to the external exit state ex, for all j ∈ [p].
Finally, for each j ∈ [s] there are αj edges labeled aj from b to state j, and for
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each j ∈ [p], there are αs+j edges labeled exj from b to the external exit state ex.
The behavior of (α, a) is the unfolding of this transition system from the begin
state b.

Now (T0, A) is a strongly dagger compatible basis and in this setting the
Kleene theorem is the assertion that a tree 1 → p can be constructed from the
trees corresponding to the letters in Σ and the empty tree by the theory opera-
tions, sum, and (scalar) dagger applied to guarded trees iff it is the unfolding of
a finitely branching transition system 1→ p. These trees are exactly the finitely
branching regular trees having a finite number of subtrees.

When T0 is the subtheory of all synchronization trees not having any edge
labeled in Σ, then T0 is isomorphic to MatN∞ for the semiring N∞ = (N ∪
{∞}, +, ·, 0, 1) obtained from N by adding a point at infinity with the usual
operations. The dagger operation defined on the guarded trees can be (uniquely)
extended to all trees t : n → n + p in such a way that STΣ becomes a Conway
grove theory with +† = ∞ · 11 being the tree 1 → 1 that has a countably
infinite number of edges leaving the root, each labeled ex1, cf. [7]. Now T0 is
closed under dagger, and corresponds to the star operation defined on N∞ by
0∗ = 1 and n∗ = ∞ for all n ∈ N∞, n �= 0. Let A denote the collection of all
trees corresponding to the letters in Σ. Then a presentation corresponds to a
transition system as before, but now α and the ρi are row matrices over N∞.
The behavior is obtained in the same way. Using the second part of Theorem 1,
we conclude that a tree 1→ p can be constructed from the trees corresponding
to the letters in Σ by the theory operations, sum and (scalar) dagger iff it is the
unfolding of a transition system. These are exactly the regular synchronization
trees.

5.3 Bisimulation

Let Σ be an alphabet and consider the Conway grove theory STΣ . For t, t′ : 1→
p, define t ∼ t′ iff t and t′ are bisimilar, i.e., when there is a bisimulation between
them [27,30]. For trees t = (t1, . . . , tn) : n → p and t′ = (t′1, . . . , t

′
n) : n → p, let

t ∼ t′ iff ti ∼ t′i for all i. Then the relation ∼ is an equivalence relation on each
hom-set T (n, p) preserved by all operations including dagger. Thus, we can form
the quotient Conway grove theory of bisimilarity equivalence classes.

Suppose now that T is the quotient partial Conway theory of STΣ with respect
to the relation ∼. We identify each letter in Σ with the bisimilarity equivalence
class of the corresponding tree. Let A denote the collection of all these equiva-
lence classes.

Let T0 be the subtheory determined by the equivalence classes of those trees
having no edge labeled in Σ, so that T0 may be identified with the theory MatB

of matrices over the boolean semiring B. The transition system corresponding to
a presentation 1→ p over (T0, A) is defined in the same way as in Subsection 5.2
but without any parallel edges labeled by the same symbol. The behavior of the
presentation is the bisimulation equivalence class of its unfolding.

The Kleene theorem asserts that a bisimilarity equivalence class of a tree 1→
p can be constructed from the equivalence classes corresponding to the letters
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in Σ by the theory operations, sum and (scalar) dagger iff it is the behavior
of a transition system. It is known that these behaviors are the bisimilarity
equivalence classes of the regular synchronization tees. For more details, see [7].

5.4 Weighted Tree Automata

Suppose that S is a semiring and Σ is a ranked alphabet. A function s :
TΣ(Xp)→ S is called a (finite) tree series [4,12,21] with coefficients in S, some-
times denoted as a formal sum

∑

t∈TΣ(Xp)

(s, t)t.

The support of s is the set of all trees mapped to a non-zero element of S. Let
S〈〈TΣ(Xp)〉〉 stand for the set of all such series. Note that each σ ∈ Σp has a
corresponding series in S〈〈TΣ(Xp)〉〉 that maps the atomic tree corresponding to
σ to 1 and all other trees to 0.

We can form a theory S〈〈ΣTerm〉〉 whose morphisms n→ p are all n-tuples of
series in S〈〈TΣ(Xp)〉〉. Composition is defined in the following way, cf. [8].

Let s : 1 → p and r = (r1, . . . , rp) : p → q, and consider a tree u ∈ TΣ(Xq).
Write u in all possible ways as

u = û · 〈u1, . . . , uk〉 (3)

where û ∈ TΣ(Xk) has exactly one leaf labeled xi for each i ∈ [k] and the label
sequence (from left to right) of these leaves is x1 . . . xk, and where u1, . . . , uk ∈
TΣ(Xq). Note that there are a finite number of such decomposition. Now for
each possible decomposition (3), and for each base morphism ρ : k → p, consider
the product

(s, û · ρ)(r1ρ, u1) · · · (rkρ, uk),
where we have identified ρ with the corresponding function [k] → [p] as usual.
Finally, (s · r, u) is the sum of all these products over all possible decompositions
of u and all possible choices of ρ. When s = (s1, . . . , sn) : n → p, define s · r =
(s1 · r, . . . , sn · r). For each i ∈ [n], n ≥ 0, the distinguished morphism in : 1→ n
is the series which maps xi to 1 and all other trees in TΣ(Xn) to 0. Let + denote
the series 1 → 2 that maps x1 and x2 to 1 and all other trees in TΣ(X2) to 0,
and let # stand for the series 1→ 0 that maps all trees in TΣ(X0) = TΣ(∅) to 0.
Equipped with these constants, S〈〈ΣTerm〉〉 is a grove theory. The sum operation
determined by the constant + is the pointwise sum, so that

(s + s′, t) = (s, t) + (s′, t)

for all s, s′ : 1→ p and t ∈ TΣ(Xp), and

s + s′ = (s1 + s′1, . . . , sn + s′n)

for all s = (s1, . . . , sn) : n→ p and s′ = (s′1, . . . , s
′
n) : n→ p.
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Consider the theory T = S〈〈ΣTerm〉〉. Call s : 1 → p proper if (s, xi) = 0 for
all xi ∈ Xp. Moreover, call s : n→ p proper if in · s is proper for all i ∈ [n]. The
proper morphisms form an ideal D(T ), and for every proper s : n→ n + p, the
equation ξ = s · 〈ξ,1p〉 has a unique solution in the set of morphisms n → p.
Thus we have a partial iterative grove theory and a partial Conway grove theory.

Now let T0 denote the subtheory determined by those series that map ev-
ery proper tree to 0. Clearly, T0 may be identified with the theory MatS . In
particular, each element s of S may be identified with the series 1 → 1 that
maps x1 to s and all other trees to 0. Let A denote the collection of all series
whose support is finite and includes only trees of the form σ · ρ, where σ ∈ Σ
and ρ is base. Note that A(T0) = A and (T0, A) is a strongly dagger compat-
ible basis. A presentation D = (α, a) : 1 → p of weight s over (T0, A) may
be viewed as a (variant of a) weighted tree automaton, see [4,21]. Indeed, each
component ai of a is a series 1 → s + p in A, and α is a row matrix over S of
dimension s + p. The corresponding weighted tree automaton has [s + p] as its
set of states, with s + 1, . . . , s + p being the initial states corresponding to the
variables x1, . . . , xp. For a letter σ ∈ Σk and states i1, . . . , ik and i, there is a
transition from (i1, . . . , ik) to i labeled σ and having weight (ai, σ(xi1 , . . . , xik))
if this value is not 0. The row matrix α determines the final weight of each state.
The initial weights of the states s + 1, . . . , s + p are all 1, whereas the initial
weight of any state in [s] is 0. The behavior of D is the tree series recognized by
the corresponding weighted tree automaton. Thus, a tree series is recognizable
iff it can be constructed from the the series corresponding to the letters of Σ
and the series corresponding to the elements of S using the theory operations,
sum and dagger. (The dagger operation may be replaced by a generalized star
operation, see [20].)

5.5 Partial Conway Semirings

Following [10], we define a partial Conway semiring to be a semiring S equipped
with a distinguished two-sided ideal I and a star operation ∗ : I → S such that

(a + b)∗ = a∗(ba∗)∗, a, b ∈ I

(ab)∗ = 1 + a(ba)∗b, a ∈ I or b ∈ I.

The star operation can be extended to square matrices over I using the fol-
lowing well-known matrix formula (which corresponds to the pairing identity as
explained in [7]):

(
A B
C D

)∗
=

(
A∗ + A∗B(D + CA∗B)∗CA∗ A∗B(D + CA∗B)∗

(D + CA∗B)∗CA∗ (D + CA∗B)∗

)

, (4)

where A and D are square matrices. (There are several equivalent formulas, see
[7].) The star operation in turn gives rise to a dagger operation:

(
A B

)†
= A∗B
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where A is an n × n matrix and B is an n × p matrix over I. Note that the
dagger operation determines the star operation by

M∗ =
(
M M

)† + 1n,

for all n× n matrices M over I.
Let T = MatS and denote by D(T ) the ideal of those matrices all of whose

entries are in I. Then T , equipped with the above dagger operation defined on
morphisms n → n + p in D(T ), n, p ≥ 0, is a partial Conway theory, called a
partial Conway matrix theory. When I = S, T is a Conway matrix theory.

Let A ⊆ I and S0 be a subsemiring of S. An automaton over (S0, A) is a
triple (α, M, β) where α ∈ S1×n

0 , M ∈ (S0A)n×n and β ∈ Sn×1
0 , where S0A is

the set of all finite linear combinations of elements of A with coefficients in S0.
The behavior of (α, M, β) is αM∗β. Corollary 2 gives the following result, cf.
[7,10]:

Theorem 2. Suppose that either S0 ⊆ I is closed under star, or that whenever
x+ a ∈ I for some x ∈ S0 and a ∈ D(T ), then x = 0. Then an element s of S is
the behavior of some automaton over (S0, A) iff s can be generated from S0 ∪A
by the rational operations of +, · and star.

We note that if S0 ⊆ I then 1 ∈ I and I = S, so that S is a Conway semiring.
When S is the power series semiring S0〈〈Σ∗〉〉, for some alphabet Σ, I is the ideal
of proper series and A is the collection of all series associated with the letters
in Σ, this is Schützenberger’s theorem, see [31,32] or [25]. If in addition S0 is B

with star operation 0∗ = 1∗ = 1, then S0〈〈Σ∗〉〉 may be identified with the usual
Conway semiring of all subsets of Σ∗, and we have Kleene’s classical theorem
[24].

5.6 Partial Conway Semiring-Semimodule Pairs

In [19], a partial Conway semiring-semimodule pair is defined as a semiring-
semimodule pair (S, V ) equipped with a two-sided ideal I ⊆ S and star and
omega power operations ∗ : I → S and ω : I → V such that S is a partial
Conway semiring and

(a + b)ω = (a∗b)ω + (a∗b)∗aω, a, b ∈ I

(ab)ω = a(ba)ω, a ∈ I or b ∈ I.

A Conway semiring-semimodule pair [7] is a partial Conway semiring-semimodule
pair (S, V ) with S as distinguished ideal.

Suppose that (S, V ) is a partial Conway semiring-semimodule pair with distin-
guished two-sided ideal I. Then, as shown in [7,19], the omega power operation
can be extended to square matrices over I. Using star and omega power, we can
define dagger by

(
A B ; v

)†
=

(
A∗B ; Aω + A∗v

)
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where A ∈ In×n, B ∈ In×p and v ∈ V n. Note that the dagger operation in turn
determines both the star and the omega power operations, since Aω = (A; 0)†,
for all square matrices A.

It is shown in [7] that when (S, V ) is a Conway semiring-semimodule pair,
then MatrS,V is a Conway theory, called a Conway matricial theory. The same
argument proves that when (S, V ) is a Conway semiring-semimodule pair, with
distinguished two-sided ideal I, then MatrS,V is a partial Conway matricial
theory with distinguished ideal the set of those morphisms (A; v) : n → p such
that A is a matrix over I.

Suppose now that S0 is a subsemiring of S, A is a subset of I. Then a Büchi
automaton over (S0, A) is a triple (α, M, k), where α ∈ S1×n

0 , M ∈ (S0A)n×n

and k ≤ n. The behavior of (α, M, k) is αMωk , where if M =
(

A B
C D

)

such that

A is k×k and D is (n−k)× (n−k), then Mωk =
(

(A + BD∗C)ω

D∗C(A + BD∗C)ω

)

. Using

Corollary 2, we have the following result, see [19,22]:

Theorem 3. Suppose that (S, V ) is a partial Conway semiring-semimodule pair
with distinguished two-sided ideal I. Let S0 be a subsemiring of S and A ⊆ I.
Suppose that either S0 ⊆ I is closed under star, or that x + a ∈ I with x ∈ S0

and a ∈ I implies that x = 0. Then v ∈ V is the behavior of a Büchi-automaton
over (S0, I) iff v can be generated from S0 ∪A by the rational operations of +, ·,
star and omega power.
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10. Bloom, S.L., Ésik, Z., Kuich, W.: Partial Conway and iteration semirings. Funda-

menta Informaticae 86, 19–40 (2008)
11. Bloom, S.L., Ginali, S., Rutledge, J.D.: Scalar and vector iteration. J. Comput.

System Sci. 14, 251–256 (1977)



Kleene Theorem in Partial Conway Theories with Applications 93

12. Bozapalidis, S., Louscou-Bozapalidou, O.: The rank of a formal tree power series.
Theor. Comput. Sci. 27, 211–215 (1983)

13. Elgot, C.C.: Monadic computation and iterative algebraic theories. In: Logic Collo-
quium 1973, Bristol. Studies in Logic and the Foundations of Mathematics, vol. 80,
pp. 175–230. North-Holland, Amsterdam (1975)

14. Elgot, C.C.: Matricial theories. J. Algebra 42, 391–421 (1976)
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Abstract. In this paper we consider transformations on formal power
series and extend well-known results in terms of homomorphisms to ra-
tional functions. Using these results we prove a Kleene-Schützenberger
Theorem for formal power series over rational monoids. It extends a re-
sult of Sakarovitch.

1 Introduction

Kleene’s seminal result of the coincidence of rational and recognizable subsets
of a finitely generated free monoid has been extended in several directions. Let
us mention the two extensions this paper is concerned with.

The first is the characterisation of weighted automata in terms of ratio-
nal expressions, a quantitative version of Kleene’s result, which was shown by
Schützenberger already in 1961 [19].

The second example is contained in a paper from Sakarovitch from 1987 [16].
As monoids are clearly one of the most fundamental structures in theoretical
computer science, Sakarovitch investigated the natural question for which classes
of monoids Kleene’s coincidence of recognizable and rational subsets holds. He
identified the class of so-called rational monoids for which this property holds
true. These monoids possess descriptions in terms of finite state transducers and
therefore an operation which is easy to compute.

Note that already Eilenberg [9] defined weighted automata and rational ex-
pressions not only over free but over arbitrary monoids. Hence it appears
natural to raise the question whether one can combine Schützenberger’s and
Sakarovitch’s result into a Kleene result for formal power series over rational
monoids. This is the question this paper is devoted to.

We will generalize the results mentioned above and show that a Kleene Theo-
rem holds true if the underlying semiring is a principal ideal domain or a locally
finite semifield. Unfortunately we are not able to answer whether the character-
ization holds for arbitrary semirings. This difficulty may already indicate that
our proof is not a straightforward adaption of Sakarovitch’s methods and requires
different concepts making use of the characteristics of the underlying semiring. In
fact the authors conjecture that there are semirings where the characterization
is not true.

Let us outline the structure of the paper and the methods we use for our main
result. Our proof will be a reduction to the result of Schützenberger, i.e. to the
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Kleene Theorem for formal power series over free monoids. Therefore we have
to look at transformations of formal power series. Recall, that it is well known
that rational and recognizable languages over the free monoid are closed under
homomorphic images and homomorphic preimages. In fact this property does
not only hold for homomorphisms but also for the more general class of rational
functions. We will prove similar closure properties for formal power series in
Section 4. These results enable us directly to show the easier part of our main
result, namely that all recognizable formal power series over rational monoids
are indeed rational.

The converse direction is more difficult and requires us to develop algebraic
concepts in Section 3. One of these concepts is inspired by the syntactic ide-
als of Reutenauer [15] which were further developed by Symeon Bozapalidis et
al. [6,5,4]. The other concept is similar to the syntactic congruence for tree series
considered by Borchardt et al. [3,10]. These concepts constitute the part of the
proof where we have to use the restrictions that our semiring is either a principal
ideal domain or a locally finite semifield.

Finally, in the last section the results are plugged together to prove our main
result.

2 Recognizable and Rational Series

In this section we recall some basics for monoids, semirings and from the the-
ory of weighted automata. In particular we recall some basic closure properties
which we will use in the sequel. For a more detailed treatment we recommend
to consult [9,18,2,17].

Preliminaries. In the following let M be a monoid. We call a tuple
(m1, . . . , mk) with mi ∈M \ {1} for all 1 ≤ i ≤ k a factorization of m1 · . . . ·mk.
Later on we will need the following basic property. Suppose that Σ is a finite
generating set of M and let η : Σ∗ →M be the natural homomorphism. Then,
if we assume that 1 /∈ Σ, it is equivalent to say that each m ∈ M admits only
finitely many factorizations or to say that η−1(m) is finite for all m ∈ M . In-
deed, assume that η−1(m) is finite. For a factorization (m1, . . . , mk) of m ∈ M
we have that the Cartesian product

∏

1≤i≤k
η−1(mi)

is non-empty and contains only factorizations of elements in η−1(m). On the
other hand, for two different factorizations (m1, . . . , mk), (m′

1, . . . , m
′
�) of m we

have ∏

1≤i≤k
η−1(mi) ∩

∏

1≤i≤�
η−1(m′

i) = ∅.

Hence, since η−1(m) is finite and since each w ∈ Σ∗ admits only finitely many
factorizations, m admits only finitely many factorizations too.
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Conversely, assume that η−1(m) is infinite. Any two different elements
w = a1 . . . ak, w

′ = a′
1 . . . a′

� ∈ η−1(m) ∈ Σ∗ yield two different factorizations
(a1, . . . , ak) and (a′

1, . . . , a
′
�) of m. Hence there are infinitely many factorizations

of m.
Let us now turn to semirings. A semiring K is an algebraic structure

(K, +, ·, 0, 1) such that (K, +, 0) is a commutative monoid, (K, ·, 1) is a monoid,
multiplication distributes over addition and 0 is absorbing, i.e. k · 0 = 0 = 0 · k
for all elements k ∈ K. Moreover, we assume that 0 �= 1. In case the mul-
tiplication is commutative, we call K commutative. Examples for semirings
comprise the natural numbers (N, +, ·, 0, 1) as well as the tropical semiring
(N∪{∞}, min, +,∞, 0) and the arctic semiring (N∪{−∞}, max, +,−∞, 0) which
are used to model problems in operations research. Important examples are also
the probabilistic semiring ([0, 1], max, ·, 0, 1) and the semiring of formal languages
(P(Δ∗),∪,∩, ∅, Δ∗). We call a semiring locally finite if any finitely generated
subsemiring is finite. For example any Boolean algebra, the min-max semiring
(R+∪{∞}, max, min, 0,∞) and the fuzzy semiring ([0, 1], max, min, 0, 1) are each
locally finite. We denote by B the 2-valued Boolean algebra ({0, 1},∨,∧, 0, 1) and
refer to it as the Boolean semiring.

Further on, we will need the structure of a semifield. We call a semiring K a
semifield if each element k ∈ K \ {0} has a multiplicative inverse, denoted k−1.

For a semiring K and a finite set Q, we denote by KQ×Q the set of all Q×Q-
matrices over K. The set KQ×Q together with the usual matrix multiplication
forms a monoid. By K1×Q and KQ×1 we denote the set of all row resp. column
matrices. Now, let in the following K be a semiring.

Assume that K is commutative. A K-semimodule M is a commutative monoid
(M , +, 0) together with a scalar multiplication · : K ×M → M such that for
all k, l ∈ K and m, n ∈M we have

k · (m + n) = k ·m + k · n, (k + l) ·m = k ·m + l ·m,

(k · l) ·m = k · (l ·m),
1 ·m = m, 0 ·m = 0.

Observe that from these axioms we get: k · 0 = k · (0 · 0) = (k · 0) · 0 = 0 ·
0 = 0 for all k ∈ K. If K is a ring, then M is called a K-module. A module
having only finitely generated submodules is called Noetherian. Clearly, every
commutative ring is a module over itself. In the latter case, the submodules are
the ideals as considered in classical algebra and the finitely generated submodules
are precisely the finitely generated ideals. A commutative ring is Noetherian if
it is a Noetherian module over itself. A commutative ring without zero-divisors
having the property that any ideal can in fact be generated by a single element
is a called a principal ideal domain.

A formal power series is a mapping S : M → K. The image of S at m ∈ M
will be denoted by (S, m). The series is then usually denoted as a formal sum
S =

∑
m∈M (S, m).m. The support supp(S) of S is the set {m ∈M | (S, m) �= 0}.

If supp(S) is finite, then S is called a polynomial. The class of formal power series
on M with coefficients in K is denoted by K〈〈M〉〉. Polynomials are collected in
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K〈M〉. For some L ⊆M we denote by �L the characteristic series of L, i.e. the
formal power series that assumes 1 for m ∈ L and 0 otherwise. By 0 we denote
the series that assumes 0 everywhere.

Let us define some operations on formal power series. To this aim let S, S′ ∈
K〈〈Σ∗〉〉 and let k ∈ K. First, we define the scalar product k · S which is given
by (k · S, m) = k · (S, m) for all m ∈ M . Furthermore have the pointwise sum
S + S′ of S and S′, i.e. (S + S′, m) = (S, m) + (S, m′) for all m ∈M . Similarly
we define the pointwise product S � S′ of S and S′, denoted by �, i.e. (S �
S′, m) = (S, m) · (S, m′) for all m ∈M . If the monoid has the property that each
m ∈ M admits only finitely many factorizations, then we can define additional
operations. In this case we define the Cauchy product S · S′ of S and S′ by
letting for all m ∈M

(S · S′, m) =
∑

n,n′∈M
nn′=m

(S, n) · (S′, n′).

Last we define the star S∗ of S. Again we have to assume that each m ∈ M
admits only finitely many factorizations and, moreover, that (S, 1) = 0. In this
case we define:

(S∗, m) =
∑

m1,...,mk∈M
m1...mk=m

(S, m1) · . . . · (S, mk)

Rational series are those series that can be constructed from polynomials using
the pointwise sum, the Cauchy product and the star (the star only applied to
series with (S, 1) = 0). The set of rational formal power series on M over K
is denoted by Krat〈〈M〉〉. Note that over B, the mapping supp gives a bijection
between rational series and rational languages. Moreover, observe that K〈〈M〉〉,
K〈M〉 and Krat〈〈M〉〉 form semirings.

Definition 2.1 (cf. [18]). A weighted finite automaton over the monoid M
and the semiring K is a quadruple A = (Q, λ, μ, �), where

– Q is a non-empty finite set of states,
– μ : M → KQ×Q is a monoid homomorphism, and
– λ ∈ K1×Q, � ∈ KQ×1.

The automaton computes a formal power series ‖A‖ ∈ K〈〈M〉〉, given by

(‖A‖, m) = λ · μ(m) · � for all m ∈M.

Series computed by weighted automata are called recognizable and form the set
Krec〈〈M〉〉. Again, over B, the mapping supp gives a bijection between recog-
nizable series and recognizable languages. Moreover, by standard automaton
constructions it follows that if L ⊆M is recognizable and if S ∈ Krec〈〈M〉〉, then
�L ∈ Krec〈〈M〉〉 and S� �L ∈ Krec〈〈M〉〉. Clearly, Krec〈〈M〉〉 is also closed under
scalar product and pointwise sum.
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In the case that the underlying monoid is the free monoid Σ∗, the monoid
homomorphism μ is determined by the image μ(Σ) and hence by a set E ⊆
Q× Σ ×K ×Q of transitions which can naturally be interpreted as a directed
graph with vertex set Q and edges labeled with elements from Σ×K. Therefore
we sometimes call the quadruple (Q, λ, E, �) a weighted automaton. The set of
paths from a state p to state q with label w = a1 . . . an will be indicated by
q

w�A q. If λp �= 0 and �q �= 0, then we call a path p ∈ q
w�A q successful.

We define the weight weight(p) of p by multiplying the weights of the composed
transitions. The coefficient of the determined formal power series ‖A‖ for a string
w is then the sum of weights over all successful paths for w multiplied with the
corresponding values of λ and �.

Transformations of Formal Power Series. It is well known that the image
of a rational subset of a monoid under a homomorphism is again rational. This
holds also for recognizable subsets only if we require that the homomorphism
is surjective. For a recognizable subset, however, it is known that its preimage
under a homomorphism is again recognizable.

We now state similar closure properties for rational and recognizable formal
power series. To this aim let M and N be monoids and β : M → N be a function.
First, we define the transformation β−1 : K〈〈N〉〉 → K〈〈M〉〉. If T ∈ K〈〈N〉〉, then
β−1(T ) ∈ K〈〈M〉〉 is given by letting

(β−1(T ), m) = (T, β(m)) for all m ∈M.

If β has the property that β−1(n) is finite for all n ∈ N , then we also define the
transformation β̄ : K〈〈M〉〉 → K〈〈N〉〉 as follows. If S ∈ K〈〈M〉〉, then the formal
power series β̄(S) ∈ K〈〈N〉〉 is given by letting

(β̄(S), n) =
∑

β(m)=n

(S, m) for all n ∈ N.

If β is a homomorphism, then these transformations on formal power series
preserve recognizability resp. rationality under certain circumstances:

Proposition 2.2 (cf. [18]). Let β : M → N be a homomorphism. Moreover,
let S : K〈〈M〉〉 and let T ∈ K〈〈N〉〉.
(a) If T is recognizable, then β−1(T ) is recognizable.
(b) If M = Σ∗ for some finite set Σ, β has the property that β−1(n) is finite

for all n ∈ N and if S is rational, then β̄(S) is rational.

Let us mention another transformation. Let Σ be a finite monoid and let Δ ⊆ Σ.
Moreover, let β : Σ∗ → Δ∗ be a homomorphism such that β−1(w) is finite for
all w ∈ Δ∗. In [7] the transformation β̃ : K〈〈Σ∗〉〉 → K〈〈Δ∗〉〉 was introduced. It
is given for S ∈ K〈〈Σ∗〉〉 by letting

(
β̃(S), v

)
=

∑

w∈β−1(v)

(S, vw), for all v ∈ Δ∗.
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Now, in [7] it was shown that β̃ preserves recognizability if K is commutative or
locally finite.

In Section 4 we will extend the closure properties stated above to a larger
class of functions than homomorphisms, namely to functions computed by ra-
tional transducers. But first, in the next section, we will investigate under which
conditions the converse of Proposition 2.2(a) holds. This will be crucial in the
proof of our main result. For this we will need some algebraic concepts.

3 Algebraic Characterizations of Weighted Automata

Let S : M → K. We may extend S linearly to S : K〈M〉 → K. Now let
∼S= {(P1, P2) ∈ K〈M〉 × K〈M〉 | (S, uP1v) = (S, uP2v) for all u, v ∈ M}. It
is not hard to see that this is a congruence with respect to k·, + and · for all
k ∈ K. Let ∼ be any congruence contained in the kernel ker(S) = {(P1, P2) ∈
K〈M〉 ×K〈M〉 | (S, P1) = (S, P2)} and let (P1, P2) ∈∼. Then (uP1v, uP2v) ∈∼
for any u, v ∈M as ∼ is a congruence. Therefore, we have (S, uP1v) = (S, uP2v)
for all u, v ∈ M . This shows that ∼⊆∼S and, hence, that ∼S is the coarsest
congruence fully contained in ker(S). We define AS = K〈M〉/ ∼S, the syntactic
algebra of S. We say AS is of finite rank if it is finitely generated as a semimodule.

Let us note that the concept of the syntactic algebra for formal power series
goes back to Reutenauer. He considered a similar notion of a syntactic ideal
for formal power series over free monoids and rings [15]. Symeon Bozapalidis
et al. developed this concept further to the syntactic ideal of a tree series over
fields [6,5,4].

We now define a second relation ≡S similar to the syntactic congruences
defined in [3,10]. For this let m1 ≡S m2 iff there exists k ∈ K \ {0} such that for
all u, v ∈M we have (S, um1v) = k · (S, um2v). Again it is left to the reader to
verify that in case K is a semifield the relation ≡S is a monoid congruence.

We will use the congruence relations ∼S and ≡S to characterize recognizable
series.

Proposition 3.1. Let K be a be a principal ideal domain, let M be a finitely
generated monoid and let S ∈ K〈〈M〉〉. Then S is recognizable iff AS is of finite
rank.

Proof. (If ). Let AS be of finite rank finite. It is easy to see that it is a torsion
free module and hence a finitely generated free module over K (cf. e.g. [13,
Thm. 7.3]). Let {m1, . . . , mn} be a set which freely generates AS . Let ϕ be the
natural epimorphism ϕ : K〈M〉 → AS. For all 1 ≤ i, j ≤ n and m ∈ M there
are μ(m)i,j ∈ K such that mi · ϕ(m) =

∑
j μ(m)ijmj . This defines a mapping

μ : M → Kn×n. We show that μ is a homomorphism. Indeed, for all i we have
∑

j

μ(mm′)i,jmj = mi · ϕ(mm′) = mi · ϕ(m)ϕ(m′) = (
∑

k

μ(m)i,kmk)ϕ(m′) =

=
∑

k

(μ(m)i,k
∑

j

μk,j(m′)mj) =
∑

k,j

μ(m)i,kμ(m′)k,jmj .
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Since m1, . . . , mn freely generate AS, linear combinations are unique and we
conclude that μ(mm′) = μ(m)μ(m′), as required. Moreover, there are λi ∈ K
(1 ≤ i ≤ n) such that ϕ(1) =

∑
i λimi. This defines λ ∈ K1×n.

Now, let X be a finite set generating M and let α : X∗ → M be the natural
homomorphism. We show by induction on the length of w ∈ X∗ that ϕ(α(w)) =∑

i,j λiμ(α(w))ijmj . For the empty word this is clear by definition. Now for the
induction step suppose the claim holds for u and let w = ua. Then ϕ(α(ua)) =
ϕ(α(u))·ϕ(α(a)) = (

∑
i,k λiμ(u)ikmk)·ϕ(α(a)) =

∑
i,k λiμ(u)ik(mk ·ϕ(α(a))) =∑

i,k,j λiμ(α(u))ikμ(α(a))kjmj =
∑

i,j λiμ(α(ua))ijmj . Select Pi ∈ K〈M〉 (1 ≤
i ≤ n) such that ϕ(Pi) = mi. Then we have ϕ(m) = ϕ(

∑
i λiμ(m)ijPj) for all

m ∈M . Let � ∈ Kn×1 be given by �i = (S, Pi). Observe that this is well-defined.
Since ker(ϕ) ⊆ ker(S) we have (S, m) = (S,

∑
i λiμ(m)ijPj) =

∑
i,j λiμ(m)ij�j .

(Only if ). Let μ : M → Kn×n be the transition function of a weighted au-
tomaton computing S. We extend μ linearly to μ : K〈M〉 → Kn×n. Since K is
a principal ideal domain it is Noetherian and hence Kn×n is a Noetherian K-
module (see [13, Proposition X.1.4]). Thus, the K-submodule μ(K〈M〉) ⊆ Kn×n

is of finite rank. Since ker(μ) ⊆ ker(S), we have ker(μ) ⊆∼S. This shows that
AS = K〈M〉/ ∼S is of finite rank, too. ��

Proposition 3.2. Let K be a locally finite semifield, let M be a finitely gen-
erated monoid and let S ∈ K〈〈M〉〉. Then S is recognizable iff ≡S has finite
index.

Proof. (If ). The proof is similar to the proof of [10, Lemma 3.33] with small
changes in the details. We include it here for the sake of completeness. Let us
assume ≡S has finite index. We will construct an automaton A = (Q, λ, μ, �)
computing S. Let Q = M/ ≡S . Now for each equivalence class [m] (m ∈M) fix
some normal form nf([m]) ∈ [m]. Furthermore, for each m ∈ M let k(m) = 1
if (S, umv) = 0 for all u, v ∈ M , otherwise let k(m) be the unique element in
K such that (S, unf([m])v) = k(m) · (S, umv) for all u, v ∈ M . Moreover, let
LS = {m ∈M | (S, umv) = 0 for all u, v ∈M}. Now define for all m, u, v ∈M

μ(m)[u],[v] =

{
(S′, u)−1(S′, um) if [v] = [um] and um /∈ LS

0 otherwise.

Moreover for all m ∈ M , let λ([m]) = k(1) if [m] = [1] and let λ([m]) = 0
otherwise, and, let �([m]) = (S, nf(m)). It remains to show that μ is well defined,
that μ is in fact a homomorphism and that ‖A‖ = S. Let us start by showing
that μ is well defined.

Indeed, let u, v, u′, v′ ∈ M such that u ≡S u′ and v ≡S v′. Since ≡S is a
congruence we get um ≡S v iff u′m ≡S v′ and since LS is either empty or a
congruence class we also have um ∈ LS iff u′m ∈ LS. Thus, let us assume that
v ≡S um and um /∈ LS . Then there are n, n′ ∈ M such that (S, numn′) �= 0.
We conclude that

(S, numn′) = k(u) · (S, nnf(u)mn′)
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(S, numn′) = k(um) · (S, nnf(um)n′)

and similarly that

(S, nu′mn′) = k(u′) · (S, nnf(u)mn′)
(S, nu′mn′) = k(u′m) · (S, nnf(um)n′).

Now (S, numn′) �= 0 implies that (S, nu′mn′) �= 0 and hence we can infer that
k(u)−1k(um) = k(u′)−1k(u′m) as required.

Next, we show that μ is a homomorphism. Let m, m′, u, v ∈M . By definition
of μ we have

∑

[n]∈Q
μ(m)[u],[n]μ(m′)[n],[v] = μ(m)[u],[um]μ(m′)[um],[v].

Hence we need to show that μ(mm′)[u],[v] = μ(m)[u],[um]μ(m′)[um],[v]. If v �≡S
umm′ or if umm′ ∈ LS then both sides of the equation equal 0. Otherwise we
have

μ(mm′)[u],[v] = k(u)−1k(umm′)

= k(u)−1k(um)k(um)−1k(umm′) = μ(m)[u],[um]μ(m′)[um],[v].

Last we show that ‖A‖ = S. In fact, for all m ∈M we have

(‖A‖, m) =
∑

[u],[v]∈Q
λ[u]μ(m)[u],[v]�[v] =

∑

[v]∈Q
k(1)μ(m)[1],[v]�[v]

= k(1)μ(m)[1],[m]�[m] = k(1)k(1)−1k(m)(S, nf(m)) = (S, m)

(Only if ). Let A = (Q, λ, μ, �) be a weighted automaton computing S. Since
M is finitely generated, since K is locally finite and since Q is finite we get
μ(M) ⊆ KQ×Q is finite. Clearly ker(μ) ⊆≡S and hence ≡S has finite index. ��
From our algebraic characterization we get the following corollary which will be
crucial in the proof of our main result. In fact this corollary is the reason why
we considered the congruences ∼S and ≡S .

Corollary 3.3. Let K be a principal ideal domain or let K be a locally finite
semifield. Let M be a finitely generated monoid and let β : M → N be a surjective
homomorphism. Moreover, let S ∈ K〈〈N〉〉. If β−1(S) : M → K is recognizable,
then so is S.

Proof. Let β−1(S) be recognizable. Let us first consider the case where K is a
principal ideal domain. By Proposition 3.1 Aβ−1(S) is of finite rank. We may
extend β linearly to β : K〈N〉 → K〈M〉. Now we get P1 ∼β−1(S) P2 iff β(P1) ∼S
β(P2). Indeed,

P1 ∼β−1(S) P2 ⇔ (S, β(uP1v)) = (S, β(uP2v)) for all u, v ∈ N
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⇔ (S, β(u)β(P1)β(v)) = (S, β(u)β(P2)β(v)) for all u, v ∈ N

⇔ β(P1) ∼S β(P2).

Where in the last equivalence we used that β is surjective. Thus we get that
Aβ−1(S) is isomorphic to AS . We conclude from Proposition 3.1 that S is recog-
nizable.

Let us now consider the case where K is a locally finite commutative semi-
field. This case is similar but uses the congruence ≡β−1(S). In fact, by Propo-
sition 3.2 ≡β−1(S) has finite index. Similarly as in the first case we conclude
that u ≡β−1(S) v iff β(u) ≡S β(v) for all u, v ∈ N . Hence ≡S has finite index.
Applying Proposition 3.2 again shows that S must be recognizable. ��

4 String and Series Transducer

In this section we consider a particular kind of weighted automata over free
monoids, namely weighted automata over the semiring Krat〈〈Δ∗〉〉 for some finite
alphabet Δ. These automata are called series transducers. If K is the two-valued
Boolean algebra B, then they are also known as string transducers.

As we have seen in the last section, if β is a homomorphism, then the trans-
formations β−1 and β̄ preserve recognizability and rationality. In this section we
will extend this result to functions β computed by transducers. Some of these
results will be important in order to prove our main result; all of them, however,
are interesting in their own right.

Let us start with a quite intuitive definition for string transducers and after
that turn to the formal definition of series transducers.

Definition 4.1. A (string) transducer T = (Σ, Δ, Q, q−, Q+, E) consists of a
finite input alphabet Σ, a finite output alphabet Δ, a finite set Q of states, an
initial state q− ∈ Q, a set of final states Q+ ⊆ Q and a finite set of transitions
E such that E ⊆ Q×Σ∗ ×Δ∗ ×Q.

Let w ∈ Σ∗ and let u ∈ Δ∗. The transducer T computes a so called rational
transduction ‖T‖ : Σ∗ →P(Δ�), where u ∈ ‖T‖(w) iff there exists a successful
path (i.e. a path from q− to Q+) with input w and output u. Let us remark that
a function τ : Σ∗ → P(Δ∗) is a rational transduction if and only if {(w, u) ∈
Σ∗×Δ∗ | u ∈ τ(w)} is a rational subset of the monoid Σ∗×Δ∗ [1]. If a rational
transduction τ has the property that for all w ∈ Σ∗ the set τ(w) has cardinality
at most one, then we consider τ as a partial function from Σ∗ to Δ∗ and call
it a rational function. Note that for example any homomorphism is a rational
function.

A string transducer or a weighted automaton over the free monoid in gen-
eral is called unambiguous if any word is the input of at most one success-
ful path. Clearly, unambiguous transducers compute rational functions. On the
other hand, any rational function can be realized by an unambiguous transducer
as the next proposition states. For a proof of it see [1].
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Proposition 4.2 ([9]). Let τ : Σ∗ → Δ∗ be a rational function such that
τ(ε) = ε for the empty word ε. Then there exists an unambiguous transducer
T = (Σ, Δ, Q, q−, Q+, E) with E ⊆ Q × Σ ×Δ∗ ×Q and Q+ = {q+}, q+ �= q−
computing τ .

Next we turn to a generalization of string transducers, so called series transduc-
ers. The basic definitions and notations in the context of series transducers are
in [11].

Definition 4.3. A series transducer T = (Q, μ, q0, P ) is given by a finite set Q

of states, a homomorphism μ : Σ∗ → (
Krat〈〈Δ∗〉〉)Q×Q, an initial state q0 ∈ Q

and a finite state vector P ∈ (Krat〈〈Δ∗〉〉)Q×1.

The homomorphism μ is called regulated if it has the property that there exists
a k ≥ 1 such that, for all w ∈ Σ∗ with |w| ≥ k and for all p, q ∈ Q we have
(μ(w), ε)p,q = 0. In this case one can easily conclude that (μ(w)p,q , v) = 0
for all v ∈ Δ∗ with |w| ≥ k(|v| + 1). If μ is regulated we call T a regulated
series transducer. We call T polynomial if μ : Σ∗ → (K〈Δ∗〉)Q×Q and P ∈
(K〈Δ∗〉)Q×1.

Now we extend the homomorphism μ to a mapping μ : K〈〈Σ∗〉〉 →
(
Krat〈〈Δ∗〉〉)Q×Q by letting

μ(S) =
∑

w∈Σ∗
(S, w)μ(w) for all S ∈ K〈〈Σ∗〉〉, provided the sum exists.

In fact, this is well defined in case μ is regulated, since
(
μ(S)p,q, v

)
=

∑

w∈Σ∗
(S, w)

(
μ(w)p,q, v

)
=

∑

|w|<k(|v|+1)

(S, w)
(
μ(w)p,q , v

)
.

The transducer now realizes the mapping ‖T‖ : K〈〈Σ∗〉〉 → K〈〈Δ∗〉〉 given by

‖T‖(S) =
∑

w∈Σ∗
(S, w)

(
μ(w)P

)
q0

=
(
μ(S)P

)
q0

.

A mapping τ : K〈〈Σ∗〉〉 → K〈〈Δ∗〉〉 is called a (regulated) rational series trans-
duction if there exists a (regulated) series transducer T = (Q, μ, q0, P ) such that
τ(S) = ‖T‖(S) for all S ∈ K〈〈Σ∗〉〉.

Let us first mention that regulated series transducers have the important
property that they transform rational series into rational series:

Theorem 4.4 ([11]). Let K be a commutative semiring. Let T = (Q, μ, q0, P )
be a regulated series transducer. If S ∈ Krat〈〈Σ∗〉〉 then ‖T‖(S) ∈ Krat〈〈Δ∗〉〉.

Transformations of Formal Power Series. We now consider the transfor-
mation β−1, β̄ and β̃ in the case that β is a rational function. We will discuss
which of these transformations arise as regulated rational series transductions.
Since by Theorem 4.4 such series preserve rationality this will extend Proposi-
tion 2.2. In Section 5, in order to prove for rational monoids that rational series
are recognizable we will then apply the results.
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Proposition 4.5. Let β : Σ∗ → Δ∗ be a rational function with β(ε) = ε and
β−1(w) is finite, for all w ∈ Δ∗. Then

β̄ : K〈〈Σ∗〉〉 → K〈〈Δ∗〉〉
is a regulated rational series transduction.

Proof. Let T = (Σ, Δ, Q, q0, F, E) be a string transducer for β. By Proposi-
tion 4.2 we may assume that T is unambiguous and E ⊆ Q×Σ ×Δ∗ ×Q. We
may also assume that each state q ∈ Q is reachable and co-reachable, which
means that there is a path from q0 to q and that there is a path from q to some
p ∈ F . We define μ : Σ∗ → (Krat〈〈Δ∗〉〉)Q×Q by letting for all a ∈ Σ

μ(a)p,q =

{
�{w} if (p, a, w, q) ∈ E

0 otherwise.

Moreover, let (P )q = �{ε} if q ∈ F and 0 otherwise. Then μ is a morphism
which is regulated. Indeed, since each state is reachable and co-reachable and
since β−1(w) is finite for all w ∈ Δ∗ we conclude that there can not be a loop
with output ε. Thus there are only finitely many paths with output ε. Let now
k be the maximum length of a path with output ε. Then (μ(w), ε)p,q = 0 for all
w ∈ Σ∗, |w| > k. Furthermore, since T is unambiguous, we have

(μ(w)P )q0 =
∑

q∈Q
μ(w)q0,q =

∑

q∈F
μ(w)q0,q = �{β(w)} for all w ∈ Δ∗. (4.1)

Now, consider the regulated series transducer T = (Q, μ, q0, P ), let S ∈ K〈〈Σ∗〉〉
and let v ∈ Δ∗. Then

(‖T‖(S), v) =
(
(μ(S)P )q0 , v

)
=

∑

w∈Δ∗
(S, w)

(
(μ(w)P )q0 , v

)

(4.1)
=

∑

w∈Δ∗
(S, w)

∑

q∈F

(
μ(w)q0,q, v

)
=

∑

w∈Δ∗
(S, w)(�{β(w)}, v)

=
∑

w∈β−1(v)

(S, w) =
(
β̄(S), v

)
.

This shows that ‖T‖ = β̄ and hence that β̄ is a regulated rational series
transduction. ��
Next we give an example of transformations that preserve rationality but do
not arise as regulated rational series transductions. In [7] the transformation β̃
was considered in the case where β is a homomorphism. It was shown that it
preserves recognizability. Using the last proposition one can prove similar to the
proof of Theorem 3.1 in [7] the following result.

Proposition 4.6. Let K be a commutative or locally finite semiring, let Δ ⊆ Σ
and let S : Σ∗ → K be recognizable. Moreover, let β : Σ∗ → Δ∗ be a rational
function such that β−1(ε) = {ε} and β−1(w) is finite for all w ∈ Δ∗. Then
β̃(S) : Δ∗ → K is recognizable.
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However, β̃ in general is not a rational series transduction.

Proposition 4.7. Let B be the Boolean semiring. Let |Σ| ≥ 2 and let β the
identity function on Σ∗. Then β̃ : B〈〈Σ∗〉〉 → B〈〈Σ∗〉〉 is not a rational series
transduction.

Proof. Suppose for contradiction that T = (Q, μ, q0, P ) is a rational series trans-
ducer for β̃. For v, w ∈ Σ∗ we have

(‖T‖(w), v
)

=
(
(μ(w)P )qo , v

)

=
∑

w′∈Σ∗
(�{w}, w′)

(
(μ(w)P )qo , v

)
=

(‖T‖(�{w}), v
)

=
(
β̃(�{w}), v

)
=

(
�{w}, vv

)
=

{
1 w = vv

0 otherwise.

This is equivalent to say that there is a string transducer T′ computing a rational
transduction

‖T′‖(w) =

{
{v} w = vv

∅ otherwise.

Hence
{
(vv, v) | v ∈ Σ∗} ⊆ Σ∗ × Σ∗ must be a rational set [1], which is a

contradiction. ��
Consider now a polynomial series transducer T = (Q, μ, q0, P ). We define the
transformation ‖T‖−1 : K〈〈Δ∗〉〉 → K〈〈Σ∗〉〉 by letting for all S ∈ K〈〈Δ∗〉〉 and
all w ∈ Σ∗

(‖T‖−1(S), w) =
∑

v∈Δ∗
(S, v)(‖T‖(w), v)

Note that the right-hand side is a finite sum since T is polynomial.

Theorem 4.8 ([11]). Let K be a commutative semiring. If T is a polynomial
series transducer, then ‖T‖−1 is a regulated rational series transduction.

Proposition 4.9. Let K be commutative, β : Σ∗ → Δ∗ be a rational function
with β(ε) = ε and β−1(w) is finite, for all w ∈ Δ∗. Then

β−1 : K〈〈Δ∗〉〉 → K〈〈Σ∗〉〉
is a regulated rational series transduction.

Proof. Clearly, by the proof of Proposition 4.5 there exists a polynomial series
transducer T = (Q, μ, q0, P ) for β̄ : K〈〈Σ∗〉〉 → K〈〈Δ∗〉〉. With Theorem 4.8,
‖T‖−1 is a regulated rational series transduction. We compute for S ∈ K〈〈Δ∗〉〉
and w ∈ Σ∗ :

(‖T‖−1(S), w
)

=
∑

v∈Δ∗

(
S, v

)(‖T‖(w), v
)

=
∑

v∈Δ∗

(
S, v

)(
�{β(w)}, v

)

=
(
β−1S, w

)

Thus β−1 = ‖T‖−1 which is a regulated rational series transduction by Theo-
rem 4.8. ��
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The last proposition together with Theorems 4.4 and 4.8 give that β̄ and β−1

preserve rationality if β is as required and if K is commutative. Next we will
give a direct automaton-theoretic construction that shows that this holds even
if K is not commutative.

Proposition 4.10. Let β : Σ∗ → Δ∗ be a rational function with the property
that β(ε) = ε and that β−1(w) is finite for all w ∈ Δ∗.

(a) If S : Σ∗ → K is recognizable, then β̄(S) : Δ∗ → K is recognizable.
(b) If S : Δ∗ → K is recognizable, then β−1S : Σ∗ → K is recognizable.

Proof. Throughout the proof let B = (Σ, Δ, R, r−, R+, TB) be a transducer for
β. With Proposition 4.2, we may choose B unambiguous and R+ as a singleton
set {r+}. We have TB ⊆ R×Σ ×Δ∗ ×R.

(a). Let S : Σ∗ → K be recognizable. We will assume that (S, ε) = 0. Let A =
(Q, TA, λ, γ) be a weighted automaton for S satisfying λ(q−) = 1 (0 otherwise)
and γ(q+) = 1 (0 otherwise), where q−, q+ ∈ Q. We have

TA ⊆ Q×Σ ×K ×Q.

We denote Z = R×Q, z− = (r−, q−), z+ = (r+, q+) and define:

T =
{
((r, q), a, w, k, (r′, q′)) | (r, a, w, r′) ∈ TB and (q, a, k, q′) ∈ TA

}
. (4.2)

Now, let J = {(z1, u, w, k, z2)(z′1, u′, w′, k′, z′2) ∈ T 2 | z2 �= z′1} ⊆ T ∗ and consider
the following rational subset of T ∗.

P =
({z−} ×Σ ×Δ∗ ×K × Z

)
T ∗ ∩ T ∗(Z ×Σ ×Δ∗ ×K × {z+}

) \ T ∗JT ∗.

For our construction, we now need the two projections π3 : T ∗ → (Δ∗, ◦, ε) and
π4 : T ∗ → (K, ·, 1) which are given as the unique homomorphic extensions of

π3(z, σ, δ, k, z′) = δ, π4(z, σ, δ, k, z′) = k for all (z, σ, δ, k, z′) ∈ T.

Clearly, π4 is a recognizable series over T ∗, since it is homomorphic. Hence,
π4 � �P is recognizable. Now consider (4.2) and note that, for a word w ∈ Δ∗,
elements in π−1

3 (w) ∩ P arise by pairing for each u ∈ β−1(w), successful paths
for u in B (exactly one path, since B is unambiguous) with the successful paths
for u in A (finitely many).

Now, Proposition 2.2 implies π3(π4 � �P ) ∈ Krec〈〈Δ∗〉〉. Let w ∈ Δ∗. Then

(π3(π4)��P ), w) =
∑

p∈P
π3(p)=w

π4(p) =
∑

pB∈r−
u�B r+

β(u)=w

( ∑

pA∈q− u�Aq+

weight(pA)
)

Since B is unambiguous we continue

=
∑

u∈Σ∗
β(u)=w

( ∑

pA∈q− u�Aq+

weight(pA)
)

=
∑

u∈Σ∗,β(u)=w

(S, u) = (β̄(S), w).
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Hence π3(π4 � �P ) = β̄(S) and thus β̄(S) is recognizable.
(b). The proof for this part is very similar to part (a). Let S : Δ∗ → K

be recognizable. Again we assume that (S, ε) = 0. Let A = (Q, TA, λ, γ) be a
weighted automaton for S satisfying λ(q−) = 1 (0 otherwise) and γ(q+) = 1
(0 otherwise), where q−, q+ ∈ Q. Let μA : Δ∗ → KQ×Q be the corresponding
monoid morphism. Again denote Z = R × Q, z− = (r−, q−), z+ = (r+, q+) and
define this time:

T =
{
((r, q), a, w, k, (r′, q′)) | (r, a, w, r′) ∈ TB and k = μA(w)q,q′

}
.

Now, as before let J = {(z1, u, w, k, z2)(z′1, u
′, w′, k′, z′2) ∈ T 2 | z2 �= z′1} ⊆ T ∗

and consider the rational subset

P =
({z−} ×Σ ×Δ∗ ×K × Z

)
T ∗ ∩ T ∗(Z ×Σ ×Δ∗ ×K × {z+}

) \ T ∗JT ∗.

For our construction, we now need the two projections π2 : T ∗ → (Σ∗, ◦, ε) and
π4 : T ∗ → (K, ·, 1) which are given as the homomorphic extensions of

π2(z, σ, δ, k, z′) = σ, π4(z, σ, δ, k, z′) = k for all (z, σ, δ, k, z′) ∈ T.

Now, Proposition 2.2 implies π2(π4��P ) ∈ Krec〈〈Δ∗〉〉. Since B is unambiguous,
we get for w ∈ Σ∗:

(π2(π4��P ), w) =
∑

p∈P
π2(p)=w

π4(p) = (β−1S, w).

Hence β−1S is recognizable. ��
Having considered β̄ and β̃ for rational functions β, one can also consider rational
transductions in general. We extend the definition of β̄ in the following sense:
Let β : Σ∗ → P(Δ∗) be a rational transduction such that {w | v ∈ τ(w)} is
finite for all v ∈ Δ∗ and define β̄ : K〈〈Σ∗〉〉 → K〈〈Δ∗〉〉 by setting for S ∈ K〈〈Σ∗〉〉

(
β̄(S), v

)
=

∑

w:v∈β(w)

(S, w), for all v ∈ Δ∗.

This definition coincides with the considered function β̄ above, in case β is a
rational function. Similarly one can define β̃ for rational transductions with
finite preimages. It remains open whether the transformations β̄ and β̃ in this
general case preserve rationality.

5 Formal Power Series over Rational Monoids

In this section we turn to a particular class of monoids – the so-called rational
monoids. For this class Sakarovitch showed that the rational and recognizable
subsets coincide. In our main theorem we will extend this result to series.
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Definitions. We start by giving the necessary definitions for our results. For
more details see [16,14] and also [8,12].

Let M be a monoid. A generating system of M is a pair (X, α) where X is
a set and α : X∗ → M is a surjective homomorphism. The kernel of α, i.e. the
relation ker(α) = {(v, w) ∈ X∗ × X∗ | α(v) = α(w)}, is a congruence relation
on X∗. An idempotent function β : X∗ → X∗ is a description of M for (X, α)
if ker(β) = ker(α). A monoid is called rational if it has a description which is a
rational function.

We can think of β(v) as a normal form of the word v. We define a new
operation w1 ◦ w2 = β(w1w2) on β(X∗). We then have X∗/ ker(β) ∼= M ∼=
(β(X∗), ◦, β(ε)). Note, that β(X∗) ⊆ X∗ is rational, since a rational function
transforms every rational language again into a rational language.

Theorem 5.1 ([16]). Let M be a rational monoid and let L ⊆ M . Then
Kleene’s Theorem holds, i.e. L is rational iff it is recognizable.

Let us fix for the rest of this section a rational monoid M , a generating sys-
tem (X, α) and a rational description β. Furthermore, we make the following
assumption:

α−1(m) is finite for all m ∈M (5.1)

This is equivalent to assume that every congruence class of an element in X∗

induced by β is finite. Note that this implies that 1M has no proper factorisation,
i.e. m1, m2 �= 1M ⇒ m1m2 �= 1M . Hence we may also assume that α−1(1M ) =
{ε}. Note that finite monoids are rational but do not fulfil our assumption.
Schützenberger’s Theorem holds in this case anyway.

Example 5.2. Consider the monoid {a, b, c}∗ and the congruence C induced by
the equation ab = bc. Then {a, b, c}∗/C is a rational monoid which meets our as-
sumption. The monoid {a, b, c}∗/C is a divisibility monoid. In [12], it was shown
that a divisibility monoid is rational if and only if it satisfies Kleene’s Theorem
if and only if it is width-bounded. All width-bounded divisibility monoids meet
our assumption (5.1).

Example 5.3. Consider the monoid {a, b}∗ and the congruence C induced by the
equation aab = bba. Again this is a rational monoid which meets our assump-
tion (5.1). In [16] this monoid was named Fibonacci monoid.

A Kleene-Schützenberger Theorem. As promised we will now prove that
recognizable and rational series over rational monoids coincide under certain
conditions. In a first step we show that over rational monoids, recognizable series
are closed under the rational operations. Let S ∈ K〈M〉 be a polynomial. By
Theorem 5.1 we have that {m} is recognizable for all m ∈ M . Thus �{m} ∈
Krec〈〈M〉〉. Since Krec〈〈M〉〉 is closed under pointwise sum and scalar product,
we conclude that S =

∑
m∈suppS(S, m) · �{m}, is recognizable. Hence we have:

Lemma 5.4. Let K be a semiring and let M be a rational monoid. Then
K〈M〉 ⊆ Krec〈〈M〉〉.
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The next result deals with the Cauchy product.

Proposition 5.5. Let K be a principal ideal domain or let K be a locally finite
semifield. If S1, S2 ∈ Krec〈〈M〉〉 then S1 · S2 ∈ Krec〈〈M〉〉.

Proof. Since α is a homomorphism, the functions Ti = (α−1Si) � �β(X∗) (i =
1, 2) define recognizable formal power series on X∗ (Proposition 2.2). Now, let
T = T1 · T2 be the product of these two series. In other words

T : X∗ → K; w �→
∑

w1w2=w
wi∈β(X∗)

(T1, w1) · (T2, w2).

Then, applying the Kleene-Schützenberger Theorem for free monoids, we get T ∈
Krec〈〈X∗〉〉. Proposition 4.10 gives β−1(β̄(T )) ∈ Krec〈〈X∗〉〉. Now, we compute:

(
β−1(β̄(T )), w

)
=

(
β̄(T ), β(w)

)
=

∑

β(u)=w

(T, u) =
∑

β(u1u2)=w

ui∈β(X∗)

(T1, u1) · (T2, u2)

=
∑

u1◦u2=w

(T1, u1) · (T2, u2) =
(
S1 · S2, α(w)

)

This proves that β−1(β̄(T )) = α−1(S1 · S2). Using Corollary 3.3 we conclude
that S1 · S2 is recognizable. ��

Proposition 5.6. Let K be a principal ideal domain or let K be a locally finite
semifield. Let S ∈ Krec〈〈M〉〉. Then S∗ ∈ Krec〈〈M〉〉.

Proof. The proof can be done analogously to the proof of Proposition 5.5. Con-
sider T = α−1(S)��β(X∗) which is recognizable. As in the proof of Proposition
5.5 we conclude that β−1(β̄(T ∗)) is recognizable. Since β−1(β̄(T ∗)) = α−1(S∗)
we get from Corollary 3.3 that S∗ is recognizable. ��

Combining Lemma 5.4 and Propositions 5.5, 5.6 we obtain:

Theorem 5.7. Let K be a principal ideal domain or let K be a locally fi-
nite semifield. Let M be a rational monoid satisfying assumption (5.1). Then
Krat〈〈M〉〉 ⊆ Krec〈〈M〉〉.

We now prove the opposite direction, that is that recognizable series over rational
monoids are rational. Recall, that by our assumption (5.1) we have α−1(m) is
finite for all m ∈M . Since ker(α) = ker(β), all elements in α−1(m) are mapped
to the same element under β. In the proof of the next result we will denote this
element by nf(m).

Theorem 5.8. Let K be a semiring and let M be a rational monoid satisfying
assumption (5.1). Then Krec〈〈M〉〉 ⊆ Krat〈〈M〉〉.
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Proof. Let S ∈ Krec〈〈M〉〉. Again, we set T = (α−1S) � �β(X∗) ∈ Krec〈〈X∗〉〉.
Hence T ∈ Krat〈〈X∗〉〉 by Schützenberger’s Theorem. Using Proposition 2.2 we
conclude ᾱ(T ) ∈ Krat〈〈M〉〉 and compute for m ∈M :

(ᾱ(T ), m) =
∑

w∈X∗
α(w)=m

(T, w) =
∑

w∈β(X∗),α(w)=m

(
(α−1S), w

)

=
∑

w∈β(X∗),α(w)=m

(
(S, α(w)

)
=

∑

nf(m)

(
S, α(nf(m))

)
=

(
S, m

)

Thus S is rational as required. ��
Putting Theorem 5.7 and Theorem 5.8 together we obtain our main result.

Theorem 5.9. Let K be a principal ideal domain or let K be a locally finite
semifield. Let M be a rational monoid satisfying assumption (5.1). Then we
have

Krec〈〈M〉〉 = Krat〈〈M〉〉.

Conclusion. We showed a Kleene-Schützenberger result for formal power series
over rational monoids. The part showing that all recognizable series are rational
is valid for all semirings. The other directions is based on Corollary 3.3 for which
we needed the restrictions that the underlying semiring is either a principal ideal
domain or a locally finite semifield.

It remains open to relax this restriction further and show whether this result
also holds for a bigger class of semirings. The authors conjecture that it does
not hold for all semirings in general. However, unfortunately we do not have a
counterexample which remains as another open question.
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Abstract. We consider systems of equations of polynomial weighted
tree transformations over the max-plus (or: arctic) semiring Rmax =
(R+ ∪ {−∞},max,+,−∞, 0). We apply discounting with a parameter
0 ≤ d < 1 in order to guarantee the existence of the least solution,
called least d-solution, of such systems. We compute least d-solutions
under u-substitution mode, where u = [IO ] or u = OI . We define a
weighted relation over Rmax to be u-d-equational, if it is a component of
the least u-d-solution of such a system of equations in a pair of algebras.
We mainly focus on u-d-equational weighted tree transformations which
are equational relations obtained by considering the least u-d-solutions
in pairs of term algebras. We also introduce u-d-equational weighted tree
languages over Rmax. We characterize u-d-equational weighted tree
transformations in terms of weighted tree transformations defined by
weighted d-bimorphisms, which are bimorphisms from d-recognizable
weighted tree languages. Finally, we prove that a weighted relation is
u-d-equational if and only if it is, roughly speaking, the morphic image
of a weighted u-d-equational tree transformation.
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1 Introduction

Weighted tree transformations are defined as the semantics of machines called
weighted tree transducers [33,21,25]. The essence of weighing is that weights are
associated to pairs of trees of a tree transformation. The weights are taken from a
semiring [29,17] or other appropriate algebraic structure. This kind of weighting
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makes it possible to investigate tree transformations not only from a qualitative
but also from a quantitative point of view. For instance, we can compute the
probability if that an output tree is a translation of a given input tree, cf. [31].
There are two kinds of semantics, the initial algebra one [33,21,35,36], which is
suitable to make precise mathematical reasoning, and the rewriting one [26,24],
which has importance in practical applications like natural language processing
[31,30,38]. The classical theory of tree transducers [19,27,28], which we call the
unweighted case sometimes, is reobtained as the particular “weighted theory” in
which the weighting structure is the Boolean semiring.

Recently an equational definition of (unweighted) tree transformations was
given in [6] and of weighted tree transformations over continuous and commuta-
tive semirings in [7]. The authors introduced the concept of a system of equations
of weighted tree transformations with variables. Since the weighting semiring is
continuous, the space of the potential solutions of the system becomes a complete
poset and the system can be realized as a continuous mapping over that space.
Hence, the classical fixpoint theorem assures that the least solution of the sys-
tem exists [42]. A weighted tree transformation is then defined to be equational
if it is a component of the least fixpoint of a system of equations of weighted
tree transformations. We note that the above approach is the generalization of
the equational definition of recognizable tree languages given in [27,28] and that
the idea comes from [40], in which the equational definition of a recognizable
subset of an arbitrary algebra was given. Based on the same idea, recognizable
weighted tree languages were defined as least solutions of systems of equations of
weighted tree languages with variables over continuous and commutative semir-
ings, cf. [5,22,32]. We also note that several other papers in the literature deal
with different interpretations of the equational approach of [40], see [20,12,13]
for instance.

There are semirings, for instance the max-plus semiring Rmax = (R+ ∪
{−∞}, max, +,−∞, 0), in which the supremum of an infinite set may not ex-
ist. Hence such a semiring is not continuous and we cannot apply the fixpoint
theorem [42] to provide the least solution of a system of equations of weighted
tree transformations over Rmax. However, we can guarantee the existence of the
least solution by applying discounting, i.e., an appropriate multiplication with
a discounting parameter 0 ≤ d < 1. In fact, discounting is a common strategy
to face problems arising on systems with non-terminating behavior. Among oth-
ers, it is used in economic mathematics, in Markov decision processes, and in
game theory (cf. [14,23,41]). The method was adapted for weighted automata
over infinite words by Droste and Kuske in [18]. In [9,10] further properties of
weighted automata with discounting over infinite words were investigated. A
weighted MSO-logic with discounting has been introduced in [15] and a Büchi-
Elgot-type characterization of infinitary recognizable series with discounting has
been established. Kuich [34] proved Kleene theorems for weighted automata
with discounting acting on finite and infinite words over Conway semirings. In
[16] the authors investigated weighted automata with discounting over semirings
and finitely generated graded monoids. Recently, in [39] weighted tree automata
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with discounting over commutative semirings were considered and a Kleene- and
a Büchi-Elgot-type characterization was obtained for this kind of automata.

In this paper we consider systems of equations of weighted tree transforma-
tions over the semiring Rmax. We also consider a discounting parameter 0 ≤ d < 1
and generalize [IO]- and OI-substitution of weighted tree languages (cf. [8] and
[5,32], resp.) to [IO]-d- and OI-d-substitution of weighted relations over the di-
rect product of two algebras in weighted tree transformations with variables.
Then, for u = [IO ],OI we introduce u-d-equational weighted relations and, in
particular, u-d-equational weighted tree transformations in the following way.
We consider systems of equations of weighted tree transformations with vari-
ables. Such a system (E) consists of n ≥ 1 equations of the form xi = ρi,
where ρi ∈ Rmax〈TΣ(Xn)× TΔ(Xn)〉 is a weighted tree transformation of finite
support (i.e., a polynomial) over the ranked alphabets Σ, Δ; the variable set
Xn = {x1, . . . , xn}; and the commutative semiring Rmax for every 1 ≤ i ≤ n. For
any algebras A = (A, Σ) and B = (B, Δ) and discounting parameter 0 ≤ d < 1,
a u-d-solution of (E) in (A,B, Rmax) is a tuple (θ1, . . . , θn) of weighted relations
over A, B, and Rmax, i.e., an element of the poset Rmax〈〈A×B〉〉n, such that

θi = ρi [θ1, . . . , θn]
d
u ,

for all 1 ≤ i ≤ n, where the expression on the right-hand side means the u-
d-substitution of (θ1, . . . , θn) with d-discounting in ρi. At the same time, the
system (E) induces a sequence (θ1,k, . . . , θn,k)k≥0, called the u-d-approximation
sequence of (E), in the space Rmax〈A× B〉n of polynomials over Rmax which is
defined as follows. For every 1 ≤ i ≤ n, we define (θi,k)k≥0 such that

θi,0 = −̃∞, and θi,k+1 = ρi [θ1,k, . . . , θn,k]
d
u, for k ≥ 0.

We show that the u-d-approximation sequence is bounded and its limit is the
least u-d-solution of (E) (Theorem 1). A weighted relation in Rmax〈〈A × B〉〉 is
u-d-equational if it appears as a component of the least u-d-solution of a system
(E) of equations of weighted tree transformations in (A,B, Rmax).

A weighted tree transformation τ ∈ Rmax〈〈TΣ × TΔ〉〉 is u-d-equational, if
it is a component of the least u-d-solution of a system (E) of equations of
weighted tree transformations in (TΣ , TΔ, Rmax), where TΣ and TΔ are the cor-
responding term algebras over Σ and Δ, respectively. In our paper, we focus
on u-d-equational weighted tree transformations. We give a sufficient condition
for the existence and uniqueness of the u-d-solution of a system of equations
of weighted tree transformations in the corresponding term algebras (Theorem
2). We characterize u-d-equational weighted tree transformations in terms of
weighted d-bimorphisms of [25,37]. In fact, we show that the class of [IO]-
equational (resp. OI-equational) weighted tree transformations coincides with
the class of weighted tree transformations defined by ultimately complete d-
bimorphisms (resp. ultimately complete linear d-bimorphisms) (Theorem 4). Fi-
nally, we establish a Mezei-Wright like relationship [40] between u-d-equational
weighted tree transformations and u-d-equational weighted relations. Namely
we show that a weighted relation is u-d-equational if and only if it is, roughly
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speaking, the morphic image of a u-d-equational weighted tree transformation
(Theorem 6). We note that the corresponding results, for a continuous semiring
and without discounting, were obtained in [7].

The paper is organized as follows. In Section 2, we introduce the necessary no-
tions and notation. In Section 3, we define [IO]- and OI-substitution of weighted
relations with d-discounting in weighted tree transformations with variables, and
in Section 4, we prove some technical results concerning series and substitutions
in weighted tree transformations with d-discounting. In Section 5, we define the
concept of a system of equations of weighted tree transformations and of [IO]-d-
and OI-d-equational weighted relations and tree transformations. In Section 6,
we give the characterization of [IO]-d-equational and of OI-d-equational weighted
tree transformations in terms of weighted d-bimorphisms. In Section 7, we prove
the Mezei-Wright like characterization of equational weighted relations.

2 Preliminaries

2.1 General Notation

We denote by N the set of nonnegative integers and by R+ the set of nonnegative
real numbers. The usual multiplication in R+ will be denoted by concatenation.

Let V be a set. We set id(V ) = {(a, a) | a ∈ V }. For every n ≥ 1 and 1 ≤ i ≤ n,
we denote the ith component of a vector a ∈ V n by ai, hence a = (a1, . . . , an).
For n = 0, we define V n = {( )} (even if V = ∅), where ( ) is the empty vector.
Let 1 ≤ i1 < . . . < ik ≤ n, and a1, . . . , ak ∈ V . We introduce a notation for the
set of those elements of V n which have aj as their ijth component, j = 1, . . . , k.
Namely, we set

V n|(i1,a1)...(ik,ak) = {(b1, . . . , bn) ∈ V n | bi1 = a1, . . . , bik = ak}.
A partially ordered set (for short: poset) is a pair (V,≤), where V is a set and ≤
is a partial order, i.e., a reflexive, antisymmetric, and transitive relation on V .
We will write just V for (V,≤). Let (ai)i∈I be a family of elements of V . If its
least upper bound exists in V , then we denote it by supi∈I ai. An ω-chain in V
is a family (an)n≥0 such that a0 ≤ a1 ≤ . . ..

2.2 Semirings and Σ-Algebras

A semiring (S, +, ·, 0, 1) is an algebraic structure such that (S, +, 0) is a commu-
tative monoid, (S, ·, 1) is a monoid, 0 
= 1, the multiplication · distributes over
addition + from both sides, and 0 · k = k · 0 = 0 for every k ∈ S. If no confusion
arises, then we denote the semiring simply by S. Then S is called commutative
if the monoid (S, ·, 1) is commutative.

In this paper we work with the semiring Rmax = (R+∪{−∞}, max, +,−∞, 0),
which is called max-plus semiring or arctic semiring. Note that Rmax is commu-
tative. In the following we often identify Rmax with its carrier set R+ ∪ {−∞}.
We extend max for finite subsets of Rmax and we consider the supremum sup
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of arbitrary subsets of Rmax provided it exists, with the understanding that
max ∅ = sup ∅ = −∞.

A ranked alphabet is a pair (Σ, rk) (simply denoted by Σ) where Σ is a finite
set and rk : Σ → N is the rank function. As usual, we set Σk = {σ ∈ Σ | rk(σ) =
k} for every k ≥ 0.

A Σ-algebra is a pair A = (A, ΣA) where A is a nonempty set, called the
domain set of A, and ΣA is a family (σA | σ ∈ Σ) of operations on A such
that for every k ≥ 0 and σ ∈ Σk, we have σA : Ak → A. If no confusion arises,
then sometimes we drop A from ΣA and σA in what follows. Given a further Σ-
algebra B = (B, Σ), a Σ-algebra morphism from A to B is a mapping H : A→ B
such that H

(
σA(a1, . . . , ak)

)
= σB (H(a1), . . . , H(ak)) for σ ∈ Σk, k ≥ 0, and

a1, . . . , ak ∈ A. In particular, H
(
σA) = σB for every σ ∈ Σ0.

2.3 Series and Weighted Relations

Let A be a set. A series over A and Rmax (or (A, Rmax)) is a mapping η : A→
Rmax. For every a ∈ A, we write (η, a) for the value η(a) and refer to it as the
coefficient (or weight) of a in η. The support of η is the set supp(η) = {a ∈ A |
(η, a) 
= −∞}. If supp(η) is finite, then η is called a polynomial over (A, Rmax).
We write a polynomial η as the formal maximum max{k1.a1, . . . , kn.an}, where
supp(η) = {a1, . . . , an} and ki = (η, ai) for every 1 ≤ i ≤ n. In case n = 1 we
write just η = k1.a1. We denote by Rmax〈〈A〉〉 and Rmax〈A〉 the class of all series
and of all polynomials over (A, Rmax), respectively. A series η ∈ Rmax〈〈A〉〉 is
bounded if there is a K ∈ Rmax such that (η, a) ≤ K for every a ∈ A. In this case
we also write η ≤ K. The class of all bounded series is denoted by R

b
max〈〈A〉〉.

Obviously, we have Rmax〈A〉 ⊆ R
b
max〈〈A〉〉. For every k ∈ Rmax, we denote by k̃

the constant series defined by (k̃, a) = k for every a ∈ A.
Let η, η1, η2 ∈ Rmax〈〈A〉〉 and k ∈ Rmax. The maximum max(η1, η2) of η1 and

η2 and the scalar sum k + η of η with k are the series in Rmax〈〈A〉〉 which are de-
fined such that, for every a ∈ A, we have (max(η1, η2), a) = max{(η1, a) , (η2, a)}
and (k + η, a) = k + (η, a) .

Next we make Rmax〈〈A〉〉 a poset by equipping it with the partial order de-
fined in the obvious way: for η1, η2 ∈ Rmax〈〈A〉〉 we let η1 ≤ η2 iff (η1, a) ≤ (η2, a)
for every a ∈ A. A family (ηj)j∈I of elements of Rmax〈〈A〉〉 is bounded if there
is a K ∈ Rmax such that ηj ≤ K for every j ∈ I. We remark that a fam-
ily (ηj)j∈I of bounded series in R

b
max〈〈A〉〉 is not necessarily bounded (because

the family of upper bounds (Kj)j∈I may not be bounded in Rmax). How-
ever, if (ηj)j∈I is bounded, then supj∈I ηj exists in the poset Rmax〈〈A〉〉 and
(supj∈I ηj , a) = supj∈I(ηj , a) for all a ∈ A. In the particular case that (ηj)j≥0

is a bounded ω-chain, we write limj→∞ ηj for supj≥0 ηj . We can extend the
partial order on Rmax〈〈A〉〉 to Rmax〈〈A〉〉n componentwise for every n ≥ 1. We
call a family (η1,j , . . . , ηn,j)j∈I in Rmax〈〈A〉〉n bounded if (ηi,j)j∈I is bounded for
every 1 ≤ i ≤ n. If (η1,j , . . . , ηn,j)j∈I is bounded, then supj∈I(η1,j , . . . , ηn,j) =
(supj∈I η1,j , . . . , supj∈I ηn,j).
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Finally, let B be a further set. A weighted relation over A, B, and Rmax (or
(A, B, Rmax)) is a series over (A×B, Rmax).

2.4 Weighted Tree Languages and Tree Transformations

In the rest of the paper Σ, Δ, and Γ will denote ranked alphabets which
contain at least one nullary symbol.

Let V be a finite set with V ∩Σ = ∅. The set TΣ(V ) of finite trees over Σ and
V is defined by induction to be the smallest set T such that (i) Σ0 ∪ V ⊆ T
and (ii) σ(s1, . . . , sk) ∈ T for every k ≥ 1, σ ∈ Σk, and s1, . . . , sk ∈ T . We write
TΣ for TΣ(∅). Note that TΣ 
= ∅ since Σ0 
= ∅. For every V ′ ⊆ V , we define
Σ(V ′) = {σ (v1, . . . , vk) | k ≥ 0, σ ∈ Σk, and v1, . . . , vk ∈ V ′}.

A particular Σ-algebra is the term algebra TΣ(V ) = (TΣ(V ), Σ) of all trees
over Σ and V , where σTΣ(V )(s1, . . . , sk) = σ(s1, . . . , sk) for every k ≥ 0, σ ∈ Σk,
and s1, . . . , sk ∈ TΣ(V ). In fact, it is the free Σ-algebra generated by V in the
class of all Σ-algebras, i.e., for every Σ-algebra A, any mapping h : V → A
extends uniquely to a Σ-algebra morphism H : TΣ(V ) → A. If V = ∅, then we
denote the unique morphism from TΣ to A by HA and we abbreviate HA(s) by
sA for s ∈ TΣ .

Any subset of TΣ(V ) is called a tree language and any relation of the form
S ⊆ TΣ(V )× TΔ(V ) is called a tree transformation.

Let X = {x1, x2, . . .} be a countably infinite set of variables, which is disjoint
from any ranked alphabet considered in the paper. We set Xn = {x1, . . . , xn}
for n ≥ 0, hence X0 = ∅. Let s ∈ TΣ(Xn) be a tree. The height ht(s) ∈ N of s
and the set var(s) ⊆ Xn of variables in s is defined by induction as follows. If
s ∈ Σ0 ∪Xn, then ht(s) = 0 and var(s) = {s} for s ∈ Xn and var(s) = ∅ for
s ∈ Σ0. If s = σ(s1, . . . , sk) for some k ≥ 1, σ ∈ Σk, and s1, . . . , sk ∈ TΣ(Xn),
then ht(s) = 1 + max{ht(si) | 1 ≤ i ≤ k}, and var(s) =

⋃k
i=1 var(si). We

denote by |s|xi the number of occurrences of xi in s for all 1 ≤ i ≤ n. Then s
is called (Xn-)linear (resp. (Xn-)nondeleting) if |s|xi ≤ 1 (resp. |s|xi ≥ 1) for
every 1 ≤ i ≤ n. A subset L ⊆ TΣ(Xn) is linear (resp. nondeleting), if each
s ∈ L is linear (resp. nondeleting). A pair (s, t) ∈ TΣ(Xn) × TΔ(Xn) is linear
(resp. nondeleting) if both s and t are linear (resp. nondeleting). Furthermore,
it is called variable symmetric (resp. variable identical) if |s|xi = |t|xi for all
1 ≤ i ≤ n (resp. var(s) = var(t)). Of course, if (s, t) is variable symmetric, then
it is variable identical. We lift these concepts to an arbitrary tree transformation
R ⊆ TΣ(Xn)× TΔ(Xn) in the obvious way.

Let now Ξ = {ξ1, ξ2, . . .} be another set of variables, which is disjoint from
any ranked alphabet considered in the paper, and let Ξn = {ξ1, . . . , ξn} for ev-
ery n ≥ 0. We define tree substitution. For this, let V ⊆ X or V ⊆ Ξ, let
s, s1, . . . , sn ∈ TΣ(V ) and v1, . . . , vn be pairwise different elements of V . We
denote by s(s1/v1, . . . , sn/vn) the tree which we obtain by substituting simulta-
neously si for every occurrence of vi in s for every 1 ≤ i ≤ n. In particular, we
abbreviate s(s1/x1, . . . , sn/xn) by s(s1, . . . , sn).
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A tree homomorphism from Σ to Δ is a family (hk)k≥0 of mappings hk :
Σk → TΔ (Ξk). Such a tree homomorphism is called linear (for short l) (resp.
nondeleting or complete, for short c) if for every k ≥ 1 and σ ∈ Σk the tree hk(σ)
is Ξk-linear (resp. Ξk-nondeleting).

For every finite set V , the tree homomorphism (hk)k≥0 induces a mapping h :
TΣ (V )→ TΔ (V ) defined inductively in the following way. For every s ∈ TΣ (V )
we let

– h(s) = s if s ∈ V , and
– h(s) = hk(σ)(h (s1) /ξ1, . . . , h (sk) /ξk) if s = σ (s1, . . . , sk) with k ≥ 0, σ ∈

Σk, and s1, . . . , sk ∈ TΣ (V ).

As usual, we also call the induced mapping h tree homomorphism. We will use
the fact without reference that the class of all tree homomorphisms is closed un-
der composition [19]. We denote by H the class of all tree homomorphisms and,
for any combination w of l and c we denote by w-H the class of w-tree homomor-
phisms. Finally, a pair (h, h′) of tree homomorphisms h : TΓ (Xn) → TΣ (Xn)
and h′ : TΓ (Xn)→ TΔ (Xn) is called ultimately nondeleting (or ultimately com-
plete) if var(hk(γ)) ∪ var(h′

k(γ)) = {ξ1, . . . , ξk} for every γ ∈ Γk. We denote by
uc(H,H) the class of all ultimately complete pairs of tree homomorphisms.

Next we introduce weighted tree languages and tree transformations. A series
ϕ ∈ Rmax〈〈TΣ (Xn)〉〉 is called a weighted tree language over Σ, Xn, and Rmax (or
(Σ, Xn, Rmax)). In case n = 0 we call ϕ a weighted tree language over (Σ, Rmax).
We say that ϕ is linear if supp(ϕ) is linear.

A weighted relation τ ∈ Rmax〈〈TΣ (Xn) × TΔ (Xn)〉〉 is called a weighted tree
transformation over Σ, Δ, Xn, and Rmax (or (Σ, Δ, Xn, Rmax)). In case n = 0 we
call τ a weighted tree transformation over (Σ, Δ, Rmax). We say that τ is linear
(resp. variable symmetric, variable identical) if supp(τ) is linear (resp. variable
symmetric, variable identical).

Finally, we recall weighted tree automata [1,25] and recognizable weighted
tree languages with d-discounting, where 0 ≤ d < 1 is a discounting parameter
[18,39]. A weighted tree automaton (wta for short) over Γ and Rmax is a triple
M = (Q, μ, ν) where Q is a finite set of states, μ = (μk)k≥0 is a family of
transition mappings μk : Qk × Γk × Q → Rmax, and ν : Q → Rmax is the root
weight mapping.

We define the mapping hdμ : TΓ → R
Q
max by induction as follows. For every

q ∈ Q, we let

(i) hdμ(σ)q = μ0(ε, σ, q) for every σ ∈ Γ0, and
(ii) hdμ(σ(s1, . . . , sk))q = maxq1,...,qk∈Q

(
d/k(hdμ(s1)q1 + . . . + hdμ(sk)qk

)+
μk((q1, . . . , qk), σ, q))

for every k ≥ 1, σ ∈ Γk, and s1, . . . , sk ∈ TΓ .

The weighted tree language ‖M‖d ∈ Rmax〈〈TΓ 〉〉 recognized by M with d-
discounting is defined for every s ∈ TΓ by

(‖M‖d , s) = max
q∈Q

(
hdμ(s)q + ν(q)

)
.



Equational Weighted Tree Transformations with Discounting 119

It is easy to see that ‖M‖d is bounded. In fact, we can show by induction
on s that hdμ(s)q ≤ M

(∑ht(s)
i=0 di

)
for every s ∈ TΓ and q ∈ Q, where

M = max{μk((q1, . . . , qk), σ, q) | k ≥ 0, σ ∈ Γk, and q, q1, . . . , qk ∈ Q}. Hence
hdμ(s)q ≤ M/(1 − d) and thus ‖M‖d ≤ M/(1 − d) + N where N = max{ν(q) |
q ∈ Q}.

A weighted tree language ϕ ∈ R
b
max〈〈TΓ 〉〉 is called d-recognizable if there is a

wtaM over Γ and Rmax such that ϕ = ‖M‖d.
We call M finite-state normalized, if there is a q ∈ Q such that ν(q) = 0 and

for every p 
= q we have ν(p) = −∞. In this case we write M = (Q, μ, q). We
recall the following result (cf. [39], Lemma 1).

Lemma 1. For every wta M, there is a finite-state normalized wta M′ such
that ‖M‖d = ‖M′‖d for every 0 ≤ d < 1.

3 Substitutions with Discounting in Polynomial Weighted
Tree Languages

In the rest of the paper A = (A, Σ) and B = (B, Δ) will denote an
arbitrary Σ- and a Δ-algebra, respectively. Moreover, d a discounting
parameter with 0 ≤ d < 1.

In this section we generalize IO- and OI-substitution of tree languages [20] and of
weighted tree languages [8,5,32] by introducing the [IO]- and the OI -substitution
with d-discounting of weighted relations of Rmax〈〈A×B〉〉 in polynomial weighted
tree languages. The same concept without discounting and for a continuous
semiring was introduced in [7]. We begin with some elementary concepts.

Let h : Xn → A be any mapping with h(xi) = ai, 1 ≤ i ≤ n. For every
s ∈ TΣ(Xn), we denote H(s) by s(a1, . . . , an)A and call it the evaluation of s at
(a1, . . . , an) in A. Hence σ( )A = σA for every σ ∈ Σ0.

We will need another kind of evaluation. Let s ∈ TΣ(Xn) with λi = |s|xi and
a(i) =

(
a
(i)
1 , . . . , a

(i)
λi

)
∈ Aλi for every 1 ≤ i ≤ n. The OI-evaluation of s at

(a(1), . . . ,a(n)) in A is denoted by s
(
a(1), . . . ,a(n)

)
A and is defined as follows.

(i) If s = xi, then s
(
a(1), . . . ,a(n)

)
A = a

(i)
1 . (Note that in this case λi = 1,

hence a(i) = (a(i)
1 ), and a(j) = ( ) for j 
= i).

(ii) If s = σ(s1, . . . , sk) for some k ≥ 0 and s1, . . . , sk ∈ TΣ(Xn), then let
λi,1 = |s1|xi , . . . , λi,k = |sk|xi and let a(i,1), . . . ,a(i,k) be the unique decomposi-
tion of the vector a(i) into components of dimension λi,1, . . . , λi,k, respectively,
for every 1 ≤ i ≤ n. (Note that λi = λi,1 + . . . + λi,k.) Then let

s
(
a(1), . . . ,a(n)

)

A
= σA

(
s1

(
a(1,1), . . . ,a(n,1)

)

A
, . . . , sk

(
a(1,k), . . . ,a(n,k)

)

A

)
.

If no confusion arises, then sometimes we drop A from s(a1, . . . , an)A and
s
(
a(1), . . . ,a(n)

)
A.
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Now let s ∈ TΣ (Xn) and η1, . . . , ηn ∈ R
b
max〈〈A〉〉 be bounded series with

upper bounds K1, . . . , Kn ∈ Rmax, respectively. The [IO]-substitution with d-
discounting (simply [IO]-d-substitution) of η1, . . . , ηn in s is the series denoted
by s [η1, . . . , ηn]

d
[IO] and defined by case distinction as follows. If s ∈ TΣ , then

s [η1, . . . , ηn]
d
[IO] = 0.sA and if s = xi, then s [η1, . . . , ηn]d[IO] = ηi. Otherwise, we

let

(s [η1, . . . , ηn]
d
[IO] , a) = d/k

⎛

⎜
⎝ sup

a1,...,ak∈A
s(b1,...,bn)=a

((ηi1 , a1) + . . . + (ηik , ak))

⎞

⎟
⎠ ,

for every a ∈ A, where var(s) = {xi1 , . . . , xik}, and for every a1, . . . , ak ∈ A,
the sequence b1, . . . , bn is an arbitrary element of An|(i1,a1)...(ik,ak). Note that
(s [η1, . . . , ηn]

d
[IO] , a) ≤ max{K1, . . . , Kn, (d/k)(K1 + . . .+Kn)}. Hence the [IO] -

d-substitution of series is well-defined because the supremum in the right-hand
side of the defining equation exists and it is independent of the choice of the
sequences b1, . . . , bn.

The OI-substitution with d-discounting (simply OI-d-substitution) of
η1, . . . , ηn in s is the series s [η1, . . . , ηn]

d
OI defined as follows. If s ∈ TΣ , then

s [η1, . . . , ηn]
d
OI = 0.sA, and if s = xi, then s [η1, . . . , ηn]

d
OI = ηi. Otherwise, we

define

(s [η1, . . . , ηn]
d
OI , a) = d/λ

⎛

⎜
⎜
⎝ sup

a(i)∈Aλi ,1≤i≤n
s(a(1),...,a(n))=a

((
η1, a(1)

)
+ . . . +

(
ηn, a(n)

))

⎞

⎟
⎟
⎠

for every a ∈ A, where λi = |s|xi , a(i) =
(
a
(i)
1 , . . . , a

(i)
λi

)
∈ Aλi , and

(
ηi, a(i)

)
=

(
ηi, a

(i)
1

)
+ . . . +

(
ηi, a

(i)
λi

)
if λi ≥ 1 and

(
ηi, a(i)

)
= 0 if a(i) = () for every

1 ≤ i ≤ n. Finally, λ =
∑

1≤i≤n λi. Clearly, we have (s [η1, . . . , ηn]
d
OI , a) ≤

max{K1, . . . , Kn, (d/λ)(λ1K1 + . . . + λnKn)}, hence the OI -d-substitution is
well-defined.

We note that both for [IO] and OI, in case s = xi we do not apply any
discounting. This property of the substitution will be used strongly in the proof
of Lemma 9.

Finally, for every polynomial weighted tree language ϕ ∈ Rmax〈TΣ(Xn)〉 and
u=[IO], OI the u-d-substitution of η1, . . . , ηn in ϕ is the series

ϕ [η1, . . . , ηn]du = max
s∈supp(ϕ)

(
(ϕ, s) + s [η1, . . . , ηn]du

)
.

Lemma 2. If ϕ ∈ Rmax〈TΣ(Xn)〉 is a linear weighted tree language, then
ϕ [η1, . . . , ηn]

d
[IO] = ϕ [η1, . . . , ηn]dOI for every η1, . . . , ηn ∈ R

b
max〈〈A〉〉.
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Proof. It follows from the definition of the u-d-substitution in polynomial
weighted tree languages and the fact that s [η1, . . . , ηn]d[IO] = s [η1, . . . , ηn]

d
OI

for every linear tree s.

Now, let (s, t) ∈ TΣ (Xn) × TΔ (Xn) for some n ≥ 0 with λi = |s|xi , μi = |t|xi ,
and mi = max{λi, μi} for every 1 ≤ i ≤ n. Furthermore, let v(i) ∈ (A × B)mi

for every 1 ≤ i ≤ n.
The OI-evaluation of (s, t) at (v(1), . . . ,v(n)) in (A,B) is denoted by

(s, t)
(
v(1), . . . ,v(n)

)
(A,B)

and is defined by

(s, t)
(
v(1), . . . ,v(n)

)

(A,B)
=
(
s
(
a(1), . . . ,a(n)

)

A
, t
(
b(1), . . . ,b(n)

)

B

)
,

where v(i) =
((

a
(i)
1 , b

(i)
1

)
, . . . ,

(
a
(i)
mi , b

(i)
mi

))
, a(i) =

(
a
(i)
1 , . . . , a

(i)
λi

)
, and b(i) =

(
b
(i)
1 , . . . , b

(i)
μi

)
for every 1 ≤ i ≤ n.

Next, we define [IO] - and OI -substitutions with d-discounting of bounded
weighted relations in pairs of terms using evaluations of pairs of terms. Let
(s, t) ∈ TΣ (Xn)×TΔ (Xn) and θ1, . . . , θn ∈ R

b
max〈〈A×B〉〉 be bounded weighted

relations. The [IO]-substitution with d-discounting (simply [IO]-d-substitution)
of θ1, . . . , θn in (s, t) is the weighted relation (s, t) [θ1, . . . , θn]

d
[IO] defined as

follows. If (s, t) ∈ TΣ × TΔ, then (s, t) [θ1, . . . , θn]
d
[IO] = 0. (sA, tB), and if

(s, t) = (xi, xi), then (s, t) [θ1, . . . , θn]d[IO] = θi. Otherwise, we define
(
(s, t) [θ1, . . . , θn]

d
[IO] , (a, b)

)
=

d/k

⎛

⎜
⎜
⎝ sup

(a1,b1),...,(ak,bk)∈A×B
(s(c1,...,cn),t(d1,...,dn))=(a,b)

((θi1 , (a1, b1)) + . . . + (θik , (ak, bk)))

⎞

⎟
⎟
⎠ ,

for every (a, b) ∈ A × B, where var(s) ∪ var(t) = {xi1 , . . . , xik}, and for every
(a1, b1), . . . , (ak, bk) ∈ A × B, the sequence (c1, d1), . . . , (cn, dn) ∈ A × B is an
arbitrary element of (A×B)n |(i1,(a1,b1))...(ik,(ak,bk)).

The OI-substitution with d-discounting (simply OI-d-substitution) of
θ1, . . . , θn in (s, t) is the weighted relation (s, t) [θ1, . . . , θn]

d
OI defined in the

following way. If (s, t) ∈ TΣ × TΔ, then (s, t) [θ1, . . . , θn]
d
OI = 0. (sA, tB), and if

(s, t) = (xi, xi), then (s, t) [θ1, . . . , θn]dOI = θi. Otherwise
(
(s, t) [θ1, . . . , θn]

d
OI , (a, b)

)
=

d/m

⎛

⎜
⎜
⎜
⎝

sup
v(i)∈(A×B)mi ,1≤i≤n

(s,t)(v(1),...,v(n))=(a,b)

((
θ1,v(1)

)
+ . . . +

(
θn,v(n)

))

⎞

⎟
⎟
⎟
⎠
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for every (a, b) ∈ A × B, where λi = |s|xi , μi = |t|xi , mi = max{λi, μi},
v(i) =

((
a
(i)
1 , b

(i)
1

)
, . . . ,

(
a
(i)
mi , b

(i)
mi

))
, and

(
θi,v(i)

)
=
(
θi,
(
a
(i)
1 , b

(i)
1

))
+ . . . +

(
θi,
(
a
(i)
mi , b

(i)
mi

))
if mi ≥ 1, and

(
θi,v(i)

)
= 0 if v(i) = ( ) for every 1 ≤ i ≤ n.

Finally, m =
∑

1≤i≤n mi.
It is easy to see that both the [IO] -d- and the OI -d-substitution of weighted

relations is well-defined.

Remark 1. If xi 
∈ var(s) ∪ var(t), then

(s, t) [θ1, . . . , θi, . . . , θn]
d
u = (s, t) [θ1, . . . , θ, . . . , θn]

d
u

for every θ ∈ R
b
max〈〈A×B〉〉 and u=[IO],OI.

Proof. The case [IO] is clear because, by definition, neither θi nor θ contributes
to the values on the corresponding side of the equation. In case OI, we have
mi = 0. Hence v(i) = ( ) and

(
θi,v(i)

)
=
(
θ,v(i)

)
= 0. Thus we get the same

value on both sides of the equation.

In this paper we will mainly be interested in [IO] -d- and OI -d-substitutions of
bounded weighted tree transformations over (Σ, Δ, Rmax) in pairs (s, t) of terms
in TΣ(Xn) × TΔ(Xn). In this particular case we evaluate (s, t) in (TΣ , TΔ) and
thus the [IO] - and OI -evaluation becomes an [IO] - and OI -substitution of trees,
respectively. Next we give an example of such substitutions.

Example 1. (cf. [6], Example 4) Let σ ∈ Σ3, δ ∈ Δ2, and (s, t) =
(σ(x1, x1, x3), δ(x3, x1)). Moreover, let θ1 = max{1.(s1, t1), 2.(s′1, t

′
1)}, θ2 = −̃∞,

and θ3 = 1.(s3, t3) be weighted tree transformations over (Σ, Δ, Rmax). Then

(s, t) [θ1, θ2, θ3]
d
[IO] = (d/2) max{2.(σ(s1, s1, s3), δ(t3, t1)), 3.(σ(s′1, s

′
1, s3), δ(t3, t

′
1))}

and

(s, t) [θ1, θ2, θ3]
d
OI=(d/3)max{3.(σ(s1, s1, s3), δ(t3, t1)), 4.(σ(s1, s

′
1, s3), δ(t3, t1)),

5.(σ(s′1, s
′
1, s3), δ(t3, t′1)), 4.(σ(s′1, s1, s3), δ(t3, t′1))}.

However, for (s′, t) = (σ(x1, x1, x2), δ(x3, x1)), we have

(s′, t) [θ1, θ2, θ3]
d
[IO] = (s′, t) [θ1, θ2, θ3]

d
OI = −̃∞.

Finally, we define the [IO] -d- and the OI -d-substitution of bounded weighted
relations in polynomial weighted tree transformations. For every τ ∈
Rmax〈TΣ (Xn) × TΔ (Xn)〉 and u=[IO],OI, we define the u-d-substitution of
θ1, . . . , θn in τ by

τ [θ1, . . . , θn]
d
u = max

(s,t)∈supp(τ)

(
(τ, (s, t)) + (s, t) [θ1, . . . , θn]

d
u

)
.
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Lemma 3. If τ ∈ Rmax〈 TΣ (Xn)× TΔ (Xn)〉 is linear, then

τ [θ1, . . . , θn]
d
[IO] = τ [θ1, . . . , θn]

d
OI

for every θ1, . . . , θn ∈ R
b
max〈〈A ×B〉〉.

Proof. It follows from the definition of u-d-substitution in polynomial weighted
tree transformations and the fact that (s, t) [θ1, . . . , θn]

d
[IO] = (s, t) [θ1, . . . , θn]

d
OI

if (s, t) is linear.

Remark 2. The [IO]-d- and the OI -d-substitution of weighted relations in
weighted tree transformations are monotone, i.e., if τ ≤ τ ′ and θi ≤ θ′i for
every 1 ≤ i ≤ n, then τ [θ1, . . . , θn]

d
u ≤ τ ′ [θ′1, . . . , θ

′
n]
d
u for u = [IO], OI.

Proof. It trivially follows from the definition of u-d-substitution of weighted
relations in weighted tree transformations.

In the rest of the paper we shall omit, for the sake of simplicity, the
superscript d in the notation of substitutions.

4 Preliminary Results

In this section, we prove some technical results concerning series and substitu-
tions in weighted tree transformations which we will use in proving our main
results. The proof of the following statement is obvious.

Remark 3. For every bounded family (θi)i∈I in Rmax〈〈A〉〉 and k ∈ Rmax, the
family (k + θi)i∈I is also bounded and we have k + (supi∈I θi) = supi∈I (k + θi).
In particular, if (θi)i≥0 is a bounded ω-chain, then (k + θi)i≥0 is a bounded
ω-chain and k + (limi→∞ θi) = limi→∞ (k + θi).

Lemma 4. Let (θi)i≥0 be a bounded ω-chain in Rmax〈〈A〉〉. Then
limi→∞ (supa∈A (θi, a)) = supa∈A (limi→∞ (θi, a)).

Proof. By our assumptions the family (supa∈A (θi, a))i≥0 is a bounded
ω-chain in Rmax, hence limi→∞ (supa∈A (θi, a)) exists. Now, for ev-
ery a ∈ A and i ≥ 0 we have (θi, a) ≤ supa∈A (θi, a), hence
limi→∞ (θi, a) ≤ limi→∞ (supa∈A (θi, a)). Then the last approximation implies
supa∈A (limi→∞ (θi, a)) ≤ limi→∞ (supa∈A (θi, a)). The reverse approximation
can be proven similarly, starting with the one (θi, a) ≤ limi→∞ (θi, a).

Lemma 5. Let (s, t) ∈ TΣ (Xn) × TΔ (Xn) and 1 ≤ i ≤ n be such that
i ∈ var(s) ∪ var(t). Moreover, let θ1, . . . , θi−1, θi+1, . . . , θn ∈ R

b
max〈〈A × B〉〉

be bounded series, and (ηj | j ≥ 0) a bounded ω-chain of weighted relations in
Rmax〈〈A ×B〉〉. Then

(s, t)
[

θ1, . . . , lim
j→∞

ηj , . . . , θn

]

[IO]

= lim
j→∞

(s, t) [θ1, . . . , ηj , . . . , θn][IO] ,

where the limit occurs in the ith argument.
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Proof. If (s, t) ∈ id(Xn) or (s, t) ∈ TΣ×TΔ, then our claim follows by definition.
Next, let (s, t) ∈ TΣ (Xn)×TΔ (Xn)\ (id(Xn)∪TΣ×TΔ) with var(s)∪var(t) =
{xi1 , . . . , xik} and assume that i = im. In the following computation, for every
(a1, b1) . . . , (ak, bk) ∈ A × B, the sequence (c1, d1), . . . , (cn, dn) ∈ A × B is an
arbitrary element of (A×B)n |(i1,(a1,b1))...(ik,(ak,bk)). Then, for every (a, b) ∈
A×B, we have
(
(s, t) [θ1, . . . , limj→∞ ηj , . . . , θn][IO] , (a, b)

)
=

d/k

⎛

⎜
⎜
⎝ sup

(a1,b1),...,(ak,bk)∈A×B
(s(c1,...,cn),t(d1,...,dn))=(a,b)

(
(θi1 , (a1, b1)) + . . . + (limj→∞ ηj , (am, bm)) + . . . + (θik , (ak, bk))

)
)

=

d/k

⎛

⎜
⎜
⎝ sup

(a1,b1),...,(ak,bk)∈A×B
(s(c1,...,cn),t(d1,...,dn))=(a,b)

(
(θi1 , (a1, b1)) + . . . + limj→∞ (ηj , (am, bm)) + . . . + (θik , (ak, bk))

)
)

=

d/k

⎛

⎜
⎜
⎝ sup

(a1,b1),...,(ak,bk)∈A×B
(s(c1,...,cn),t(d1,...,dn))=(a,b)

limj→∞
(
(θi1 , (a1, b1)) + . . . + (ηj , (am, bm)) + . . . + (θik , (ak, bk)))

)

=

d/k

⎛

⎜
⎜
⎝limj→∞

⎛

⎜
⎜
⎝ sup

(a1,b1),...,(ak,bk)∈A×B
(s(c1,...,cn),t(d1,...,dn))=(a,b)

((θi1 , (a1, b1)) + . . . + (ηj , (am, bm)) + . . . + (θik , (ak, bk)))
))

=

limj→∞(s, t) [θ1, . . . , ηj , . . . , θn][IO]

where in the third equality we use Remark 3 and in the fourth one Lemma 4.

Next we investigate weighted tree transformations defined by means of bounded
weighted tree languages and pairs of tree homomorphisms. For this, let h :
TΓ (Xn) → TΣ(Xn) and h′ : TΓ (Xn) → TΔ(Xn) be a pair of tree homomor-
phisms. We define the mapping

〈h, h′〉 : R
b
max〈〈TΓ (Xn)〉〉 → R

b
max〈〈TΣ(Xn)× TΔ(Xn)〉〉
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by letting
(〈h, h′〉 (ϕ), (s, t)) = sup

u∈TΓ (Xn)

〈h,h′〉(u)=(s,t)

(ϕ, u)

for every weighted tree language ϕ ∈ R
b
max〈〈TΓ (Xn)〉〉 and (s, t) ∈ TΣ(Xn) ×

TΔ(Xn), where 〈h, h′〉 (u) = (h(u), h′(u)) for every u ∈ TΓ (Xn).
By the above definition we immediately see that any upper bound of ϕ is

an upper bound of 〈h, h′〉 (ϕ), hence 〈h, h′〉 (ϕ) ∈ R
b
max〈〈TΣ(Xn) × TΔ(Xn)〉〉.

Moreover, that the subsequent result holds.

Remark 4. The mapping 〈h, h′〉 : R
b
max〈〈TΓ (Xn)〉〉 → R

b
max〈〈TΣ(Xn)× TΔ(Xn)〉〉

is monotonic.

Lemma 6. Let (ϕi)i∈I be a bounded family of weighted tree languages in
Rmax〈〈TΓ (Xn)〉〉. Furthermore, let k ∈ Rmax, ϕ ∈ R

b
max〈〈TΓ (Xn)〉〉, and pairs

of tree homomorphisms h : TΓ (Xn) → TΣ(Xn) and h′ : TΓ (Xn) → TΔ(Xn).
Then, we have

〈h, h′〉 (sup
i∈I

ϕi) = sup
i∈I
〈h, h′〉 (ϕi) and 〈h, h′〉 (k + ϕ) = k + 〈h, h′〉 (ϕ).

Proof. We prove only the first equality as follows. For every (s, t) ∈ TΣ(Xn) ×
TΔ(Xn), we have
(

〈h, h′〉
(

sup
i∈I

ϕi

)

, (s, t)
)

= sup
u∈TΓ (Xn)

〈h,h′〉(u)=(s,t)

(

sup
i∈I

ϕi, u

)

= sup
u∈TΓ (Xn)

〈h,h′〉(u)=(s,t)

sup
i∈I

(ϕi, u)

= sup
i∈I

⎛

⎜
⎜
⎝ sup

u∈TΓ (Xn)

〈h,h′〉(u)=(s,t)

(ϕi, u)

⎞

⎟
⎟
⎠ = sup

i∈I
(〈h, h′〉(ϕi), (s, t)) .

Lemma 7. Let ψ ∈ Rmax〈Γ (Xn) ∪ Xn〉 and ϕ1, . . . , ϕn ∈ R
b
max〈〈TΓ (Xn)〉〉 be

bounded weighted tree languages and h : TΓ (Xn)→ TΣ(Xn) and h′ : TΓ (Xn)→
TΔ(Xn) be an ultimately complete pair of tree homomorphisms. (a) Then

〈h, h′〉 (ψ[ϕ1, . . . , ϕn][IO]

)
= 〈h, h′〉 (ψ) [〈h, h′〉 (ϕ1) , . . . , 〈h, h′〉 (ϕn)][IO].

(b) If ψ, h, and h′ are linear, then

〈h, h′〉 (ψ[ϕ1, . . . , ϕn]OI) = 〈h, h′〉 (ψ) [〈h, h′〉 (ϕ1) , . . . , 〈h, h′〉 (ϕn)]OI .

Proof. (a) Let us abbreviate Γ (Xn) ∪ Xn by Γ (Xn)∪. First we show that for
every u ∈ Γ (Xn)∪

〈h, h′〉 (u[ϕ1, . . . , ϕn][IO]

)
= 〈h, h′〉 (u) [〈h, h′〉 (ϕ1) , . . . , 〈h, h′〉 (ϕn)][IO].
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It is clear for u ∈ Xn. Hence, let u ∈ Γ (Xn) with var(u) = {xi1 , . . . , xik}. In
the next computation, for every u1, . . . , uk ∈ TΓ (Xn), the sequence v1, . . . , vn ∈
TΓ (Xn) is an arbitrary element of (TΓ (Xn))n |(i1,u1)...(ik,uk). Moreover, for every
(s1, t1), . . . , (sk, tk) ∈ TΣ(Xn)× TΔ(Xn), the sequence (s1, t1), . . . , (sn, tn) is an
arbitrary element of (TΣ(Xn)× TΔ(Xn))

n |(i1,(s1,t1))...(ik,(sk,tk)). Then for every
(s, t) ∈ TΣ(Xn)× TΔ(Xn) we have
(〈h, h′〉 (u[ϕ1, . . . , ϕn][IO]

)
, (s, t)

)
=

d/k

⎛

⎜
⎜
⎝ sup

u1,...,uk∈TΓ (Xn)

〈h,h′〉(u(v1,...,vn))=(s,t)

((ϕi1 , u1) + . . . + (ϕik , uk))

⎞

⎟
⎟
⎠ =

d/k

⎛

⎜
⎜
⎝ sup

u1,...,uk∈TΓ (Xn)

〈h,h′〉(u)(〈h,h′〉(v1),...,〈h,h′〉(vn))=(s,t)

((ϕi1 , u1) + . . . + (ϕik , uk))

⎞

⎟
⎟
⎠ =

d/k

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

sup
u1,...,uk∈TΓ (Xn)

〈h,h′〉(u1)=(s1,t1),...,〈h,h′〉(uk)=(sk,tk)

〈h,h′〉(u)((s1,t1),...,(sn,tn))=(s,t)

((ϕi1 , u1) + . . . + (ϕik , uk))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

d/k

⎛

⎜
⎜
⎜
⎝

sup
(s1,t1),...,(sk,tk)∈TΣ(Xn)×TΔ(Xn)

〈h,h′〉(u)((s1,t1),...,(sn,tn))=(s,t)
⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝ sup

u1∈TΓ (Xn)

〈h,h′〉(u1)=(s1,t1)

(ϕi1 , u1)

⎞

⎟
⎟
⎠+ . . . +

⎛

⎜
⎜
⎝ sup

uk∈TΓ (Xn)

〈h,h′〉(uk)=(sk,tk)

(ϕik , uk)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ =

d/k

⎛

⎜
⎜
⎜
⎝

sup
(s1,t1),...,(sk,tk)∈TΣ(Xn)×TΔ(Xn)

〈h,h′〉(u)((s1,t1),...,(sn,tn))=(s,t)

((〈h, h′〉(ϕi1 ), (s1, t1)) + . . . + (〈h, h′〉(ϕik), (sk, tk)))
)

=

(〈h, h′〉 (u) [〈h, h′〉 (ϕ1) , . . . , 〈h, h′〉 (ϕn)][IO], (s, t)
)

where the last equality holds because (h, h′) is an ultimately complete pair of
tree homomorphisms, hence var(h(u)) ∪ var(h′(u)) = {xi1 , . . . , xik}. Moreover,
we have
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〈h, h′〉 (ψ[ϕ1, . . . , ϕn][IO]

)

= 〈h, h′〉
(

max
u∈Γ (Xn)∪

(
(ψ, u) + u[ϕ1, . . . , ϕn][IO]

)
)

= max
u∈Γ (Xn)∪

(
(ψ, u) + 〈h, h′〉 (u[ϕ1, . . . , ϕn][IO]

))

= max
u∈Γ (Xn)∪

(
(ψ, u) + 〈h, h′〉 (u)[〈h, h′〉 (ϕ1), . . . , 〈h, h′〉 (ϕn)][IO]

)

= sup
(s,t)∈TΣ(Xn)×TΔ(Xn)

⎛

⎜
⎝

⎛

⎜
⎝ max

u∈Γ (Xn)∪

〈h,h′〉(u)=(s,t)

(ψ, u)

⎞

⎟
⎠ +

(s, t)[〈h, h′〉 (ϕ1) , . . . , 〈h, h′〉 (ϕn)][IO]

)

= max
(s,t)∈supp(〈h,h′〉(ψ))

((〈h, h′〉(ψ), (s, t)) +

(s, t)[〈h, h′〉 (ϕ1) , . . . , 〈h, h′〉 (ϕn)][IO]

)

= 〈h, h′〉 (ψ)[〈h, h′〉 (ϕ1), . . . , 〈h, h′〉 (ϕn)][IO],

where at the second equality we use Lemma 6 and the third equality is justified
above.

(b) By Lemma 2 we have

〈h, h′〉 (ψ[ϕ1, . . . , ϕn][IO]

)
= 〈h, h′〉 (ψ[ϕ1, . . . , ϕn]OI)

since ψ is linear, and by Lemma 3 we get

〈
h, h′

〉
(ψ) [

〈
h, h′

〉
(ϕ1) , . . . ,

〈
h, h′

〉
(ϕn)][IO] =

〈
h, h′

〉
(ψ) [

〈
h, h′

〉
(ϕ1) , . . . ,

〈
h, h′

〉
(ϕn)]OI

since ψ, h, and h′ are linear. Hence, we conclude the proof of (b) by (a) of this
lemma.

5 Equational Weighted Tree Transformations with
Discounting

In this section we introduce systems of equations of weighted tree transforma-
tions with finite support. We show that the least u-d-solution of such systems
exists both for u = [IO] and u = OI in any pair of algebras. We define a weighted
relation to be u-d-equational if it is a component of the least u-d-solution of a
system of equations of weighted tree transformations. Then we give some ba-
sic relationships between classes of u-d-equational weighted relations. We focus
on u-d-equational weighted tree transformations, which are equational relations
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obtained by considering the least u-d-solutions in pairs of term algebras. We
give sufficient conditions for the existence and uniqueness of the [IO] -d- and the
OI -d-solution of a system of equations of weighted tree transformations. Finally,
we recall systems of equations of weighted tree languages, and associate a sys-
tem of equations of weighted tree transformations with a system of equations of
weighted tree languages and a pair of tree homomorphisms.

A system of equations of weighted tree transformations over Σ, Δ, Xn, and
Rmax (or over (Σ, Δ, Xn, Rmax)) is a system

(E) x1 = ρ1, . . . , xn = ρn,

where ρi ∈ Rmax〈TΣ (Xn) × TΔ (Xn)〉, i.e., ρi is a polynomial over
(Σ, Δ, Xn, Rmax) for every 1 ≤ i ≤ n. Moreover, we require that for every
1 ≤ i, j ≤ n if (xj , xj) ∈ supp(ρi), then (ρi, (xj , xj)) = 0. The system (E) is
called linear (resp. variable symmetric, variable identical) if ρi is linear (resp.
variable symmetric, variable identical) for every 1 ≤ i ≤ n.

Let u=[IO] or u=OI. An u-d-solution of (E) in (A,B, Rmax) is an n-tuple
(θ1, . . . , θn) of weighted relations in R

b
max〈〈A ×B〉〉n such that

θi = ρi[θ1, . . . , θn]u for every 1 ≤ i ≤ n.

(Note that ρi[θ1, . . . , θn]u also depends on d in the known manner, cf. Sec-
tion 3.) Furthermore, it is called the least u-d-solution of (E) in (A,B, Rmax)
if (θ1, . . . , θn) ≤ (θ′1, . . . , θ′n) for every u-d-solution (θ′1, . . . , θ′n) of (E) in
(A,B, Rmax).

We will show that the least u-d-solution of (E) exists. For this, we define
the u-d-approximation sequence of (E) to be the family (θ1,k, . . . , θn,k)k≥0 in
Rmax〈A× B〉n such that

θi,0 = −̃∞, and θi,k+1 = ρi [θ1,k, . . . , θn,k]u, for 1 ≤ i ≤ n and k ≥ 0.

We can see easily that the u-d-approximation sequence of (E) is an ω-chain. In
fact, we prove by induction that θi,k ≤ θi,k+1 for every 1 ≤ i ≤ n and k ≥ 0. For
k = 0 it is obvious by definition. Then we have

θi,k+1 = ρi [θ1,k, . . . , θn,k][IO] ≤ ρi [θ1,k+1, . . . , θn,k+1][IO] = θi,k+2

where the inequality holds by the induction hypothesis and Remark 2.
We can also show that the u-d-approximation sequence of (E) is bounded.

Lemma 8. For every system

(E) x1 = ρ1, . . . , xn = ρn,

of equations of weighted tree transformations, u = [IO], OI, and 1 ≤ i ≤ n, the
family (θi,k)k≥0 is bounded.

Proof. Let M = max{(ρi, (s, t)) | (s, t) ∈ supp(ρi), 1 ≤ i ≤ n}.
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Case [IO] : We show by induction on k that θi,k ≤M/(1−d) for every 1 ≤ i ≤ n
and k ≥ 0. For k = 0 it is clear by definition. Next, for every (a, b) ∈ A×B and
k ≥ 1 we have

(θi,k, (a, b)) =
(
ρi [θ1,k−1, . . . , θn,k−1][IO] , (a, b)

)
= max {SUP, MX1, MX2}

where

SUP = sup
(s,t)∈supp(ρi)\(id(Xn)∪TΣ×TΔ)

var(s)∪var(t)={xj1 ,...,xjp}
(a1,b1),...,(ap,bp)∈A×B

(s(c1,...,cn),t(d1,...,dn))=(a,b)

(

(ρi, (s, t)) + d/p

(
(θj1,k−1, (a1, b1)) + . . .
+
(
θjp,k−1, (ap, bp)

)
))

≤ sup
(s,t)∈supp(ρi)\(id(Xn)∪TΣ×TΔ)

var(s)∪var(t)={xj1 ,...,xjp}
(a1,b1),...,(ap,bp)∈A×B

(s(c1,...,cn),t(d1,...,dn))=(a,b)

(M + (d/p) (pM/(1 − d)))

= M + d (M/(1 − d)) = M/(1 − d),

and for every (a1, b1), . . . , (ap, bp) ∈ A× B, the sequence (c1, d1), . . . , (cn, dn) is
an arbitrary element of (A×B)n |(i1,(a1,b1))...(ip,(ap,bp)). Moreover,

MX1 = max
(xj ,xj)∈supp(ρi)

(
(ρi, (xj , xj)) +

(
(xj , xj) [θ1,k−1, . . . , θn,k−1][IO] , (a, b)

))

= max
(xj ,xj)∈supp(ρi)

(θj,k−1, (a, b)) ≤M/(1− d)

and

MX2 = max
(s,t)∈supp(ρi)∩TΣ×TΔ

(
(ρi, (s, t)) +

(
(s, t) [θ1,k−1, . . . , θn,k−1][IO] , (a, b)

))

= max
(s,t)∈supp(ρi)∩TΣ×TΔ

((ρi, (s, t)) + (0.(sA, tB), (a, b))) ≤M.

Altogether, this proves that (θi,k, (a, b)) ≤M/(1− d).

Case OI : We prove again that θi,k ≤M/(1 − d) for every 1 ≤ i ≤ n and k ≥ 0.
For k = 0 it is clear by definition. Next for every (a, b) ∈ A × B and k ≥ 1 we
have

(θi,k, (a, b)) =
(
ρi [θ1,k−1, . . . , θn,k−1]OI , (a, b)

)
= max{SP, NX1, NX2},



130 Z. Fülöp and G. Rahonis

where

SP = sup
(s,t)∈supp(ρi)\(id(Xn)∪TΣ×TΔ)

mj=max{|s|xj
,|t|xj

},1≤j≤n
m=

∑n
j=1 mj

v(j)∈(A×B)mj ,1≤j≤n
(s,t)(v(1),...,v(n))=(a,b)

(

(ρi, (s, t) + d/m

((
θ1,k−1,v(1)

)
+ . . .

+
(
θn,k−1v(n)

)
))

≤ sup
(s,t)∈supp(ρi)\(id(Xn)∪TΣ×TΔ)

mj=max{|s|xj
,|t|xj

},1≤j≤n
m=

∑
n
j=1 mj

v(j)∈(A×B)mj ,1≤j≤n
(s,t)(v(1),...,v(n))=(a,b)

(M + (d/m) (m (M/(1− d))))

= M + d (M/(1− d)) = M/(1− d),

NX1 = max
(xj ,xj)∈supp(ρi)

((ρi, (xj , xj)) + (θj,k−1, (a, b))) ≤M/(1− d),

and

NX2 = max
(s,t)∈supp(ρi)∩TΣ×TΔ

((ρi, (s, t)) + (0.(sA, tB), (a, b))) ≤M.

Again, we obtain that (θi,k, (a, b)) ≤M/(1− d).

Now we are able to show that the last u-d-solution of (E) exists.

Theorem 1. Let
(E) x1 = ρ1, . . . , xn = ρn,

be a system of equations of weighted tree transformations, u = [IO] or
u = OI, and let (θ1,k, . . . , θn,k)k≥0 the u-d-approximation sequence of (E).
Then limk→∞(θ1,k, . . . , θn,k) exists and it is the least u-d-solution of (E) in
(A,B, Rmax).

Proof. We prove the case u=[IO] because the proof of the other case is similar.

Since (θ1,k, . . . , θn,k)k≥0 is an ω-chain and by Lemma 8 each component of it
is a bounded family, limk→∞(θ1,k, . . . , θn,k) exists and each component of it is
bounded. We let (θ1, . . . , θn) = limk→∞(θ1,k, . . . , θn,k) and show that (θ1, . . . , θn)
is the least [IO]-d-solution of (E). For every 1 ≤ i ≤ n and (a, b) ∈ A × B, we
have

(θi, (a, b)) =
(

lim
k→∞

θi,k, (a, b)
)

= lim
k→∞

(θi,k, (a, b))

= lim
k→∞

(
ρi [θ1,k−1, . . . , θn,k−1][IO] , (a, b)

)

= lim
k→∞

(max {SUP, MX1, MX2})

= max
{

lim
k→∞

SUP, lim
k→∞

MX1, lim
k→∞

MX2

}

,
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where SUP , MX1, and MX2 are defined in the proof of Lemma 8. Then we
have

limk→∞ SUP =

sup
(s,t)∈supp(ρi)\(id(Xn)∪TΣ×TΔ)

var(s)∪var(t)={xj1 ,...,xjp}
(a1,b1),...,(ap,bp)∈A×B

(s(c1,...,cn),t(d1,...,dn))=(a,b)

(

(ρi, (s, t)) + d/p

(
limk→∞

(
θj1,k−1, (a1, b1)

)
+ . . .

+limk→∞
(
θjp,k−1, (ap, bp)

)

))

=

sup
(s,t)∈supp(ρi)\(id(Xn)∪TΣ×TΔ)

var(s)∪var(t)={xj1 ,...,xjp}
(a1,b1),...,(ap,bp)∈A×B

(s(c1,...,cn),t(d1,...,dn))=(a,b)

(

(ρi, (s, t)) + d/p

( (
limk→∞ θj1,k−1, (a1, b1)

)
+ . . .

+
(
limk→∞ θjp,k−1, (ap, bp)

)

))

=

sup
(s,t)∈supp(ρi)\(id(Xn)∪TΣ×TΔ)

var(s)∪var(t)={xj1 ,...,xjp}
(a1,b1),...,(ap,bp)∈A×B

(s(c1,...,cn),t(d1,...,dn))=(a,b)

(
(ρi, (s, t)) + d/p

(
(θj1 , (a1, b1)) + . . .+

(
θjp , (ap, bp)

)))

where the first equality holds by Lemma 4. Moreover

lim
k→∞

MX1 = max
(xj,xj)∈supp(ρi)

(

lim
k→∞

(θj,k−1, (a, b))
)

= max
(xj,xj)∈supp(ρi)

((θj, (a, b))) ,

and

lim
k→∞

MX2 = max
(s,t)∈supp(ρi)∩TΣ×TΔ

((ρi, (s, t)) + (0.(sA, tB), (a, b))) .

Hence, we get

(θi, (a, b)) =
(
ρi [θ1, . . . , θn][IO] , (a, b)

)

which proves that (θ1, . . . , θn) is an [IO]-d-solution of (E).
Now assume that

(
θ
′
1, . . . , θ

′
n

)
is another [IO] -d-solution of (E). We show by

induction on k that (θi,k, (a, b)) ≤ (θ′i, (a, b)) for every 1 ≤ i ≤ n, (a, b) ∈ A×B,
and k ≥ 0. For k = 0 it is clear by definition. Furthermore, we have that

(θi,k+1, (a, b)) =
(
ρi [θ1,k, . . . , θn,k][IO] , (a, b)

)

≤
(
ρi [θ′1, . . . , θ

′
n][IO] , (a, b)

)
= (θ′i, (a, b))

where the first inequality holds by the induction hypothesis and Remark 2. This
finishes the proof of the theorem.
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A weighted relation θ ∈ R
b
max〈〈A × B〉〉 is called u-d-equational (resp. l-u-d-

equational, vs-u-d-equational, and vi-u-d-equational) if it is a component of the
least u-d-solution in (A,B, Rmax) of a system (resp. linear, variable symmetric,
and variable identical system) of equations of weighted tree transformations
over (Σ, Δ, Xn, Rmax). We will denote by EQUAdu (resp. l -EQUAdu, vs-EQUAdu,
and vi -EQUAdu) the class of all u-d-equational (resp. l-u-d-equational, vs-u-d-
equational, and vi-u-d-equational) weighted relations.

Next we show some equalities between certain classes of equational weighted
relations. The first one immediately follows from Lemma 3.

Corollary 1. l -EQUAd[IO] = l -EQUAdOI .

In the following, we show that OI -d-equational weighted relations are the same
as l -OI -d-equational ones. For this, we introduce the notion of the rank of a
system (E) of equations of weighted tree transformations. Firstly, we recall (cf.
[6]) that the rank of a pair (s, t) ∈ TΣ(Xn) × TΔ(Xn) is given by rk((s, t)) =
card({j | 1 ≤ j ≤ n, |s|xj > 1 or |t|xj > 1}). Then, the rank of the system (E) is
given by rk(E) =

∑n
i=1 rk(ρi), where rk(ρi) =

∑
(s,t)∈supp(ρi)

rk((s, t)).

Lemma 9. EQUAdOI = l -EQUAdOI .

Proof. We apply the same technique as in the proof of Lemma 12 in [6], and
show that EQUAdOI ⊆ l -EQUAdOI . For this, let

(E) x1 = ρ1, . . . , xn = ρn,

be a system of equations of weighted tree transformations over (Σ, Δ, Xn, Rmax)
such that the least OI-d-solution (ϕ1, . . . , ϕn) of (E) exists. We effec-
tively construct a linear system (F) of weighted tree transformations over
(Σ, Δ, Xn+m, Rmax) for some m ≥ 0 such that the least OI-d-solution of (F)
exists and the least OI-d-solution of (E) is the first n components of the least
OI -d-solution of (F).

If (E) is linear, then obviously (F)=(E). Otherwise, there is an 1 ≤ i0 ≤ n such
that supp(ρi0 ) contains a nonlinear pair (s, t) ∈ TΣ(Xn)× TΔ(Xn). This means
that for some 1 ≤ j ≤ n, λ = |s|xj , and μ = |t|xj we have mx = max{λ, μ} > 1.

We first transform (E) to a system

(E′) x1 = ρ′1, . . . , xn+mx = ρ′n+mx,

such that rk(E′) = rk(E) − 1, the least OI -d-solution of (E′) exists, and
(ϕ1, . . . , ϕn) is the first n components of the least OI -d-solution of (E′). Let
the first n equations of (E′) be those of (E) except that

(ρ′i0 , (u, v)) =

⎧
⎨

⎩

(ρi0 , (s, t)) if (u, v) = (s′, t′)
−∞ if (u, v) = (s, t)
(ρi0 , (u, v)) otherwise,

where we obtain (s′, t′) by replacing the occurrences of xj in s and t from left
to right by xn+1, . . . , xn+λ and by xn+1, . . . , xn+μ, respectively. Moreover, let
ρ′n+k = 0.(xj , xj) for every 1 ≤ k ≤ mx.
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To prove the statement concerning the least OI -d-solution of (E) and of (E′),
we observe that the first n components of any element of the OI -d approximation
sequence of (E’) form an element of the OI -d approximation sequence of (E).
Moreover, any element of the OI -d approximation sequence of (E) is the first n
components of some element of the OI -d approximation sequence of (E’). Hence,
by Theorem 1 and the fact that (ϕ1, . . . , ϕn) is the least OI -d-solution of (E),
the least OI -d-solution of (E′) exists, and (ϕ1, . . . , ϕn) is its first n components.

Since rk(E′) = rk(E) − 1, we can obtain the desired linear system (F) by
applying the above procedure a finite number of times.

Corollary 2. EQUAdOI = l -EQUAd[IO].

If the system (E) in the proof of Lemma 9 is variable symmetric, then the linear
system (F) will also be variable symmetric. Hence we obtain the following result.

Corollary 3. vs-EQUAOI = l -vs-EQUAOI .

In the rest of the paper we will focus on u-d-equational weighted tree transforma-
tions over (Σ, Δ, Rmax), i.e., u-d-equational weighted relations in Rmax〈〈TΣ×TΔ〉〉
for u = [IO], OI. They are obtained by considering the least u-d-solution of sys-
tems (E) of equations of weighted tree transformations over (Σ, Δ, Xn, Rmax)
in (TΣ , TΔ, Rmax). For the sake of simplicity, we call a u-d-solution (resp. the
least u-d-solution) of such an (E) in (TΣ , TΔ, Rmax) just a u-d-solution (resp. the
least u-d-solution) of (E). We define u-d-equational (resp. l-u-d-equational, vs-u-
d-equational, and vi-u-d-equational) weighted tree transformations as we defined
the corresponding concepts for weighted relations. We will denote by EQUT d

u

(resp. l -EQUT d
u, vs-EQUT q

u, and vi -EQUT d
u) the class of all u-d-equational

(resp. l-u-d-equational, vs-u-d-equational, and vi-u-d-equational) weighted tree
transformations.

In the next theorem we give sufficient conditions for the existence and
uniqueness of the [IO] -d- and the OI -d-solution of a system of equations of
weighted tree transformations. Hereby, we generalize the corresponding result
for systems of equations of weighted tree languages obtained in [4], Propo-
sition 6.1, cf. also [25], Lemma 3.37. For this, we define a system xi = ρi,
1 ≤ i ≤ n of equations of weighted tree transformations to be proper if
supp(ρi) ⊆ (TΣ (Xn) \Xn)× (TΔ (Xn) \Xn) for every 1 ≤ i ≤ n.

Theorem 2. Any proper and variable identical (resp. variable symmetric) sys-
tem of equations of weighted tree transformations has a unique [IO]-d-solution
(resp. OI-d-solution).

Proof. Let

(E) x1 = ρ1, . . . , xn = ρn,

be a system of equations of weighted tree transformations over (Σ, Δ, Xn, Rmax).
Let (τ1, . . . , τn) be an [IO] -d-solution of (E). Then, for every (u, v) ∈ TΣ × TΔ,
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we have

(τi, (u, v)) = (ρi [τ1, . . . , τn][IO] , (u, v)) =

max
(s,t)∈supp(ρi)

var(s)=var(t)={xi1 ,...,xik
}

(s1,t1),...,(sk,tk)∈TΣ×TΔ

(s(s1,...,sn),t(t1,...,tn))=(u,v)

((ρi, (s, t)) + d/k ((τi1 , (s1, t1)) + . . . + (τik , (sk, tk)))) =

max
(s,t)∈supp(ρi)

var(s)=var(t)={xi1 ,...,xik
}

(s1,t1),...,(sk,tk)∈(sub(u)\{u})×(sub(v)\{v})
(s(s1,...,sn),t(t1,...,tn))=(u,v)

(

(ρi, (s, t)) + d/k

(
(τi1 , (s1, t1)) + . . .
+ (τik , (sk, tk))

))

,

where for every (s1, t1), . . . , (sk, tk) ∈ TΣ×TΔ, the sequence (s1, t1), . . . , (sn, tn)
is an arbitrary element of (TΣ × TΔ)n|(i1,(s1,t1))...(ik,(sk,tk)). In the first sum-
mation, we can write var(s) = var(t) = {xi1 , . . . , xik} because (E) is variable
identical, and the third equality is justified by the fact that (E) is proper. Hence
(τi, (u, v)) is uniquely determined by ρi and by the values of the τj ’s on pairs, of
which the components are proper subtrees of u and v, respectively.

Next, let (τ1, . . . , τn) be an OI -d-solution of (E) and (u, v) ∈ TΣ × TΔ. Then

(τi, (u, v)) = (ρi [τ1, . . . , τn]OI , (u, v)) =

max
(s,t)∈supp(ρi)

|s|xi
=|t|xi

=λi,1≤i≤n
m=

∑
1≤i≤n λi

v(i)∈(TΣ×TΔ)λi ,1≤i≤n
(s(s(1),...,s(n)),t(t(1),...,t(n)))=(u,v)

(

(ρi, (s, t)) + d/m

((
τ1,v(1)

)
+ . . .

+
(
τn,v(n)

)
))

=

max
(s,t)∈supp(ρi)

|s|xi
=|t|xi

=λi,1≤i≤n
m=

∑
1≤i≤n λi

v(i)∈((sub(u)\{u})×(sub(v)\{v}))λi ,1≤i≤n
(s(s(1),...,s(n)),t(t(1),...,t(n)))=(u,v)

(

(ρi, (s, t)) + d/m

((
τ1,v(1)

)
+ . . .

+
(
τn,v(n)

)
))

,

where the vectors s(i) and t(i) are made of the first and the second components
of v(i), respectively (cf. page 121, OI-evaluation). The second equality follows
from that (E) is variable symmetric, and the third from that (E) is proper. Hence
again, (τi, (u, v)) is uniquely determined by ρi and by the values of the τj ’s on
pairs, of which the components are proper subtrees of u and v, respectively.

On the other hand, the above calculations can be used as defining equalities
for the [IO] -d- and the OI -d-solution, respectively, provided the conditions of
the theorem hold.
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Finally, we introduce equational weighted tree languages with discounting.
A system of equations of weighted tree languages over Γ , Xn, and Rmax (or
(Γ, Xn, Rmax)) is a system

(G) x1 = ψ1, . . . , xn = ψn,

where ψi ∈ Rmax〈TΓ (Xn)〉 for every 1 ≤ i ≤ n. The system (G) is called linear
(resp. simple) if ψi is linear (resp. ψi ∈ Rmax〈Γ (Xn)〉) for every 1 ≤ i ≤ n.
The concept of the least OI -d-solution of (G) can be defined as for systems of
equations of weighted tree transformations using OI -d-substitution of weighted
tree languages rather than that of weighted tree transformations. Obviously, the
least OI -d-solution of (G) is an n-tuple (ϕ1, . . . , ϕn) ∈ R

b
max〈〈TΓ 〉〉n of weighted

tree languages. Similarly to weighted tree transformations, a weighted tree lan-
guage is called OI-d-equational (resp. l-OI-d-equational, s-OI-d-equational) if it
is a component of the least OI -d-solution of a system (resp. linear, simple) of
equations of weighted tree languages.

In the following we relate recognizable weighted tree languages with d-disco-
unting and s-OI-d-equational weighted tree languages. For this, we recall the
following concept, cf. [25]. A simple system (G) of equations of weighted tree
languages and a finite-state normalized wta M = (Q, μ, x1) are related if Q =
Xn, and for every 1 ≤ i ≤ n, k ≥ 0, σ ∈ Σk, and xi1 , . . . , xik ∈ Xn we have

(ρi, σ(xi1 , . . . , xik )) = μk((xi1 , . . . , xik ), σ, xi).

It is obvious that, given a simple system (G) of equations of weighted tree lan-
guages, we can construct a finite-state normalized wtaM such that (G) andM
related, and vice versa.

Lemma 10. If (G) and M are related, then (ϕ1, . . . , ϕn) is the least OI -d-
solution of (G), where (ϕi, s) = hdμ(s)xi for every 1 ≤ i ≤ n.

Proof. Let us consider a tree σ(s1, . . . , sk) for some k ≥ 0, σ ∈ Γk, and
s1, . . . , sk ∈ TΓ . Then we have

(ρi[ϕ1, . . . , ϕn]OI , σ(s1, . . . , sk)) =
(

sup
u∈TΣ(Xn)

((ρi, u) + u[ϕ1, . . . , ϕn]OI) , σ(s1, . . . , sk)

)

=

sup
u∈TΣ(Xn)

((ρi, u) + (u[ϕ1, . . . , ϕn]OI , σ(s1, . . . , sk))) =

max
xi1 ,...,xik

∈Xn

{(ρi, σ(xi1 , . . . , xik)) + (σ(xi1 , . . . , xik)[ϕ1, . . . , ϕn]OI , σ(s1, . . . , sk))} =

max
xi1 ,...,xik

∈Xn

{

(ρi, σ(xi1 , . . . , xik)) + d/k

(
k∑

j=1

(ϕij , sj)

)}

=
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max
xi1 ,...,xik

∈Xn

⎧
⎨

⎩
(ρi, σ(xi1 , . . . , xik )) + d/k

⎛

⎝
k∑

j=1

hdμ(sj)xij

⎞

⎠

⎫
⎬

⎭
=

max
xi1 ,...,xik

∈Xn

⎧
⎨

⎩
d/k

⎛

⎝
k∑

j=1

hdμ(sj)xij

⎞

⎠+ μk((xi1 , . . . , xik ), σ, xi)

⎫
⎬

⎭
=

hdμ(σ(s1, . . . , sk))xi = (ϕi, σ(s1, . . . , sk)).

The third equality is justified by the fact that for every decomposition of the
form u(v(1), . . . ,v(n)) of σ(s1, . . . , sk) such that (ρi, u) 
= −∞, we have that
u = σ(xi1 , . . . , xik) for some xi1 , . . . , xik ∈ Xn. The fourth one holds by the
definition of the OI-d-substitution, the fifth one by the definition of ϕij , and the
sixth one because (G) and M are related. This proves that (ϕ1, . . . , ϕn) is an
OI -d-solution of (G). Moreover, it is the least solution, because, by an obvious
adaptation of Theorem 2, (G) has a unique d-solution.

Theorem 3. A weighted tree language is d-recognizable if and only if it is s-OI-
d-equational.

Proof. Let ϕ be a d-recognizable weighted tree language. We may assume that
ϕ = ‖M‖d for some finite-state normalized wtaM = (Q, μ, x1) with Q = Xn. In
particular, (ϕ, s) = hdμ(s)x1 for every s ∈ TΣ . Now consider the simple equation
system (G) of weighted tree languages such that (G) and M are related. By
Lemma 10, ϕ is the first component of the least d-OI-solution of (G), hence it
is s-OI -d-equational. The other direction can be proved similarly.

Lemma 11. If a weighted tree language ϕ ∈ Rmax〈〈TΓ 〉〉 is d-recognizable, then
it is a component of the least OI -d-solution of a linear system

x1 = ψ1, . . . , xn = ψn,

of equations of weighted tree languages over (Γ, Xn, Rmax) with ψi ∈
Rmax〈Γ (Xn) ∪Xn〉, 1 ≤ i ≤ n.

Proof. By Theorem 3 there is a simple system (G) of equations of weighted
tree languages over (Γ, Xn, Rmax) such that ϕ is a component of the least OI -d-
solution of (G). We apply (the adapted version of) the linearization algorithm
appearing in the proof of Lemma 9 to (G). Then we obtain a system with the
desired properties.

Now, let
(G) x1 = ψ1, . . . , xn = ψn,

be a system of weighted tree languages over (Γ, Xn, Rmax), and h : TΓ → TΣ and
h′ : TΓ → TΔ be tree homomorphisms. The system of equations of tree transfor-
mations over (Σ, Δ, Xn, Rmax) associated with (G), h and h′ is the system

〈h, h′〉 (G) x1 = 〈h, h′〉 (ψ1) , . . . , xn = 〈h, h′〉 (ψn) .
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Lemma 12. Let
(G) x1 = ψ1, . . . , xn = ψn,

be a linear system of equations of weighted tree languages over (Γ, Xn, Rmax)
such that ψi ∈ Rmax〈Γ (Xn) ∪ Xn〉 for every 1 ≤ i ≤ n and (ϕ1, . . . , ϕn) be
its least OI -d-solution. Moreover, let h : TΓ → TΣ and h′ : TΓ → TΔ be an
ultimately complete pair of tree homomorphisms.

(a) Then the least [IO] -d-solution of 〈h, h′〉 (G) is (〈h, h′〉 (ϕ1) , . . . , 〈h, h′〉 (ϕn)).
(b) If in addition the tree homomorphisms h and h′ are linear, then the least

OI -d-solution of 〈h, h′〉 (G) is (〈h, h′〉 (ϕ1) , . . . , 〈h, h′〉 (ϕn)).
Proof. First we prove (a) as follows. We have

〈h, h′〉 (ϕi) = 〈h, h′〉 (ψi[ϕ1, . . . , ϕn]OI)

= 〈h, h′〉 (ψi[ϕ1, . . . , ϕn][IO]

)

= 〈h, h′〉 (ψi) [〈h, h′〉 (ϕ1) , . . . , 〈h, h′〉 (ϕn)][IO],

for every 1 ≤ i ≤ n, where the second equality follows from Lemma 2 and the fact
that (G) is linear, and the third one from Lemma 7(a). Hence (〈h, h′〉 (ϕ1) , . . . ,
〈h, h′〉 (ϕn)) is an [IO] -d-solution of 〈h, h′〉 (G).

Now assume that (ζ1, . . . , ζn) is another [IO] -d-solution of 〈h, h′〉 (G). By The-
orem 1 we may assume that (ϕ1, . . . , ϕn) = limk→∞ ((ϕ1,k, . . . , ϕn,k)), where
(ϕ1,k, . . . , ϕn,k)k≥0 is the [IO]-d-approximation sequence of (E).

We show by induction that, for every 1 ≤ i ≤ n and k ≥ 0, we have
〈h, h′〉 (ϕi,k) ≤ ζi. For k = 0 this is true by definition. Then, for every k ≥ 0, we
have

〈h, h′〉 (ϕi,k+1) = 〈h, h′〉 (ψi[ϕ1,k, . . . , ϕn,k]OI)

= 〈h, h′〉 (ψi[ϕ1,k, . . . , ϕn,k][IO]

)

= 〈h, h′〉 (ψi) [〈h, h′〉 (ϕ1,k) , . . . , 〈h, h′〉 (ϕn,k)][IO]

≤ 〈h, h′〉 (ψi) [ζ1, . . . , ζn][IO] = ζi,

where the second equality follows from Lemma 2 and the fact that (G) is linear,
and the third one from Lemma 7(a). Finally, the inequality holds by the induction
hypothesis and Remark 2. Hence, by Remark 4, we get 〈h, h′〉 (ϕi) ≤ ζi for every
1 ≤ i ≤ n, therefore (〈h, h′〉 (ϕ1) , . . . , 〈h, h′〉 (ϕn)) is the least [IO] -d-solution of
〈h, h′〉 (G).

Next we prove (b). We have

〈h, h′〉 (ϕi) = 〈h, h′〉 (ψi[ϕ1, . . . , ϕn]OI)
= 〈h, h′〉 (ψi) [〈h, h′〉 (ϕ1) , . . . , 〈h, h′〉 (ϕn)]OI

where the second equality follows from Lemma 7(b) because ψi is linear and
(h, h′) is an ultimately complete pair of linear tree homomorphisms. Thus,
(〈h, h′〉 (ϕ1) , . . . , 〈h, h′〉 (ϕn)) is an OI -d-solution of 〈h, h′〉 (G). We complete the
proof in the same way as in (a), where again we use Lemma 7(b).
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6 Characterizations in Terms of Weighted Bimorphisms

In this section we give a characterization of the classes EQUT d
[IO], EQUT d

OI ,
vi -EQUT d

[IO], and vs-EQUT d
OI of d-equational weighted tree transformation

classes in terms of weighted d-bimorphisms. The concept of an (unweighted)
bimorphisms for tree languages was introduced in [2,3], and of weighted bimor-
phisms for weighted tree languages in [25,37]. Moreover, we show that in fact
the class vi -EQUT d

[IO] is the closure of vs-EQUT d
OI under complete tree homo-

morphisms.
A weighted d-bimorphism (over Γ, Σ, Δ, and Rmax) is a triple (h, ϕ, h′), where

ϕ ∈ Rmax〈〈TΓ 〉〉 is a d-recognizable weighted tree language, and h : TΓ → TΣ and
h′ : TΓ → TΔ are the input and the output tree homomorphism, respectively.
The weighted tree transformation computed by (h, ϕ, h′) is 〈h, h′〉(ϕ). For any
combinations w1 and w2 of l, c, we denote by Bd(w1-H, w2-H) the class of all
weighted tree transformations computed by weighted d-bimorphisms with input
tree homomorphism of type w1 and output tree homomorphism of type w2.
Furthermore, we denote by Bd(uc(H,H)) (resp. Bd(uc(l-H, l-H))) the class of
all weighted tree transformations computed by weighted d-bimorphisms whose
input and output tree homomorphism constitute an ultimately complete pair
of tree homomorphisms (resp. linear tree homomorphisms). We characterize the
mentioned four classes as follows.

Theorem 4

(a) EQUT d
[IO] = Bd(uc(H,H)) (a1) vi-EQUT d

[IO] = B(c-H, c-H)

(b) EQUT d
OI = Bd(uc(l-H, l-H)) (b1) vs-EQUT d

OI = B(lc-H, lc-H)

Proof. (a) and (a1): First we prove the inclusions from right to left. In case (a)
let τ = 〈h, h′〉(ϕ) for some d-recognizable weighted tree language ϕ ∈ Rmax〈〈TΓ 〉〉,
and the pair of tree homomorphisms h : TΓ → TΣ and h′ : TΓ → TΔ is ultimately
complete. If ϕ = −̃∞, then obviously τ = −̃∞ ∈ EQUT d

[IO].
Otherwise, by Lemma 11, we can assume that ϕ is a component of the least

OI -d-solution (ϕ1, . . . , ϕn) of a linear system

(G) x1 = ψ1, . . . , xn = ψn,

of weighted tree languages over (Γ, Xn, Rmax) which satisfies ψi ∈ Rmax〈Γ (Xn)∪
Xn〉 for every 1 ≤ i ≤ n. Furthermore (h, h′) is an ultimately com-
plete pair of tree homomorphisms, hence by Lemma 12(a) we get that
(〈h, h′〉 (ϕ1) , . . . , 〈h, h′〉 (ϕn)) is the least [IO] -d-solution of 〈h, h′〉 (G). This im-
plies that τ is a component of the least [IO] -d-solution of 〈h, h′〉 (G), hence
τ ∈ EQUT d

[IO].
In case (a1) the tree homomorphisms h and h′ are nondeleting (and thus the

pair (h, h′) is ultimately complete). This implies that the system 〈h, h′〉 (G) is
variable identical. Hence we get that τ ∈ vi -EQUT [IO].
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Now we prove the inclusion from left to right. In case (a) let τ ∈ Rmax〈〈TΣ ×
TΔ〉〉 be a component of the least [IO] -d-solution of a system

(E) x1 = ρ1, . . . , xn = ρn,

of equations of weighted tree transformations over (Σ, Δ, Xn, Rmax).
For every 1 ≤ i ≤ n and every (s, t) ∈ supp(ρi), we specify a new symbol σs,t

with rank m = |var(s) ∪ var(t)|. Let Γ be the ranked alphabet consisting of all
such symbols. Consider the system of equations

(G) x1 = ψ1, . . . , xn = ψn,

of weighted tree languages over (Γ, Xn, Rmax), where

supp(ψi)={σs,t(xi1 , . . . , xim) |(s, t) ∈ supp(ρi), var(s) ∪ var(t) = {xi1 , . . . , xim},
1 ≤ i1 < . . . < im ≤ n}

for every 1 ≤ i ≤ n, and

(ψi, σs,t(xi1 , . . . , xim)) = (ρi, (s, t)) .

Clearly, the system (G) is linear and simple. Now consider the tree homo-
morphisms h : TΓ → TΣ and h′ : TΓ → TΔ determined by hm (σs,t) =
s(ξ1/xi1 , . . . , ξm/xim) and h′

m (σs,t) = t(ξ1/xi1 , . . . , ξm/xim) for every m ≥ 0 and
σs,t ∈ Γm. Obviously, 〈h, h′〉 (σs,t(xi1 , . . . , xim)) = (s, t), and hence 〈h, h′〉 (ψi) =
ρi for every 1 ≤ i ≤ n, i.e., (E) = 〈h, h′〉 (G). Moreover, by definition, (h, h′) is
an ultimately complete pair of tree homomorphisms, hence by Lemma 12(a) we
obtain that τ = 〈h, h′〉 (ϕ), where ϕ is a component of the least OI -d-solution of
(G). Since ϕ is a d-recognizable series, our proof is completed.

The proof of (a1) is analogous, we just add the following. Since the system (E)
is variable identical, the tree homomorphisms h and h′ are nondeleting. Hence
again Lemma 12(a) holds and we conclude τ ∈ B(c-H, c-H), as required.

(b) and (b1): The proof of the inclusion from right to left in both cases is the
same as in (a), except that we write OI for [IO] and Lemma 12(b) for Lemma
12(a). Moreover, in case (b1) we observe that the system 〈h, h′〉 (G) is variable
symmetric because the tree homomorphisms h and h′ are linear and nondeleting.

For the proof of the other inclusion in case (b), we adapt the corresponding
proof in (a) in the following way. Let us write OI for [IO]. By Lemma 9, we can
assume that (E) is linear. This yields that (h, h′) is an ultimately complete pair
of linear tree homomorphisms. Then we can finish the proof by writing Lemma
12(b) for Lemma 12(a).

In case (b1), by Corollary 3, we can assume that (E) is linear. This yields that
the tree homomorphisms h and h′ are linear (and nondeleting).

Finally, we show that the class of vi-[IO] -d-equational weighted tree transfor-
mations is the closure of the class of vs-OI -d-equational weighted tree transfor-
mations under nondeleting tree homomorphisms. We will need the subsequent
notation.
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Let (s, t) ∈ TΣ ×TΔ and g : TΣ → TΣ′ and g′ : TΔ → TΔ′ two tree homomor-
phisms. We set 〈g, g′〉 ((s, t)) = (g(s), g′(t)). Furthermore, for every weighted tree
transformation τ ∈ R

d
max〈〈TΣ×TΔ〉〉, we define the weighted tree transformation

〈g, g′〉 (τ) over (Σ′, Δ′, Rmax), such that

(〈g, g′〉 (τ), (u, v)) = sup
(s,t)∈TΣ×TΔ

〈g,g′〉((s,t))=(u,v)

(τ, (s, t))

for every (u, v) ∈ TΣ′ ×TΔ′ . For a class C of bounded weighted tree transforma-
tions over Rmax, we let

〈c-H, c-H〉 (C) ={〈g, g′〉 (τ) | τ ∈ C, τ ∈ R
b
max〈〈TΣ × TΔ〉〉, and g : TΣ → TΣ′

and g′ : TΔ → TΔ′ are nondeleting tree homomorphisms}.

Theorem 5. 〈c-H, c-H〉
(
vs-EQUT d

OI

)
= vi -EQUT d

[IO].

Proof. We observe that 〈c-H, c-H〉 (B(lc-H, lc-H)) = B(c-H, c-H). The proof
follows from the following obvious facts. The composition of a complete tree
homomorphism and a linear and complete tree homomorphism is a complete
tree homomorphism. Moreover, any complete tree homomorphism appears as the
composition of a complete tree homomorphism and a linear and complete tree
homomorphism (which may be, e.g, the complete tree homomorphism itself and
the identity mapping, respectively). Then the statement follows from Theorem
4(a1) and (b1).

7 A Mezei-Wright Like Relationship

In this section, we give a Mezei-Wright type result which relates u-d-equational
weighted tree transformations and u-d-equational weighted relations both for
u=[IO] and u=OI. Namely, we show that a weighted relation is u-d-equational
if and only if it is, roughly speaking, the morphic image of a u-d-equational
weighted tree transformation. First we recall a preparatory result from [6].

Lemma 13. (cf. [6], Lemma 29) Let s ∈ TΣ(Xn) for some n ≥ 0 with |s|xi = λi,
1 ≤ i ≤ n. Moreover, let s1, . . . , sn ∈ TΣ and s(i) =

(
s
(i)
1 , . . . , s

(i)
λi

)
∈ T λi

Σ for
every 1 ≤ i ≤ n. Then

(a) HA (s (s1, . . . , sn)) = s (HA(s1), . . . , HA(sn)) and
(b) HA

(
s
(
s(1), . . . , s(n)

))
= s
(
HA(s(1)), . . . , HA(s(n))

)
,

where HA
(
s(i)
)

=
(
HA
(
s
(i)
1

)
, . . . , HA

(
s
(i)
λi

))
for every 1 ≤ i ≤ n.

Next we define the mapping H(A,B) : R
b
max〈〈TΣ × TΔ〉〉 → R

b
max〈〈A × B〉〉 such

that for any τ ∈ Rmax〈〈TΣ × TΔ〉〉 and (a, b) ∈ A×B, we have

(H(A,B)(τ), (a, b)) = sup
(s,t)∈TΣ×TΔ

H(A,B)((s,t))=(a,b)

(τ, (s, t)),
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where H(A,B)((s, t)) = (HA(s), HB(t)) for all (s, t) ∈ TΣ × TΔ. We note that
H(A,B) is monotonic. We will need the subsequent lemmas.

Lemma 14. Let (τn)n≥0 be an ω-chain in Rmax〈〈TΣ × TΔ〉〉 such that the
set {(τn, (s, t)) | n ≥ 0, (s, t) ∈ TΣ × TΔ} is bounded in Rmax. Then
limn→∞

(
H(A,B)(τn)

)
exists in Rmax〈〈A × B〉〉 and limn→∞

(
H(A,B)(τn)

)
=

H(A,B)(limn→∞ τn).

Proof. By our assumption and by the definition of H(A,B), the set
{(H(A,B)(τn), (a, b)

) | n ≥ 0, (a, b) ∈ A × B} is bounded in Rmax, hence
limn→∞

(
H(A,B) (τn)

)
exists. Moreover, for every (a, b) ∈ A×B we have

(
lim
n→∞

(
H(A,B) (τn)

)
, (a, b)

)
= lim

n→∞
(
H(A,B) (τn) , (a, b)

)
=

lim
n→∞

⎛

⎜
⎜
⎝ sup

(s,t)∈TΣ×TΔ

H(A,B)((s,t))=(a,b)

(τn, (s, t))

⎞

⎟
⎟
⎠ =

sup
(s,t)∈TΣ×TΔ

H(A,B)((s,t))=(a,b)

(
lim
n→∞(τn, (s, t))

)
= sup

(s,t)∈TΣ×TΔ

H(A,B)((s,t))=(a,b)

(
lim
n→∞ τn, (s, t)

)

=
(
H(A,B)

(
lim
n→∞ τn

)
, (a, b)

)
,

where the third equality holds by Lemma 4.

Lemma 15. For every n ≥ 0, τ ∈ Rmax〈TΣ(Xn) × TΔ(Xn)〉, τ1, . . . , τn ∈
R
b
max〈〈TΣ × TΔ〉〉, and u = [IO], OI, we have

H(A,B) (τ [τ1, . . . , τn]u) = τ
[
H(A,B)(τ1), . . . , H(A,B)(τn)

]
u

.

Proof. We show the equality for the [IO] -d-substitution only because the proof
for the OI - one is similar. Firstly, we prove that

H(A,B)

(
(s, t) [τ1, . . . , τn][IO]

)
= (s, t)

[
H(A,B)(τ1), . . . , H(A,B)(τn)

]
[IO]

for every (s, t) ∈ TΣ(Xn)× TΔ(Xn). Let var(s) ∪ var(t) = {xi1 , . . . , xik}. Then
for every (a, b) ∈ A×B we have
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(
H(A,B)

(
(s, t) [τ1, . . . , τn][IO]

)
, (a, b)

)

= d/k

⎛

⎜
⎜
⎝ sup

(si,ti)∈TΣ×TΔ,1≤i≤k

H(A,B)(s(u1,...,un),t(v1,...,vn))=(a,b)

((τi1 , (s1, t1)) + . . .+ (τik , (sk, tk)))

⎞

⎟
⎟
⎠

= d/k

⎛

⎜
⎜
⎝ sup

(si,ti)∈TΣ×TΔ,1≤i≤k

(HA(s(u1,...,un)),HB(t(v1,...,vn)))=(a,b)

((τi1 , (s1, t1)) + . . .+ (τik , (sk, tk)))

⎞

⎟
⎟
⎠

= d/k

⎛

⎜
⎜
⎝ sup

(si,ti)∈TΣ×TΔ,1≤i≤k

(s(HA(u1),...,HA(un)),t(HB(v1),...,HB(vn)))=(a,b)

((τi1 , (s1, t1)) + . . .+ (τik , (sk, tk)))

)

= d/k

⎛

⎜
⎜
⎜
⎝

sup
(si,ti)∈TΣ×TΔ,1≤i≤k

(s,t)(H(A,B)(u1,v1),...,H(A,B)(u1,vn))=(a,b)

((τi1 , (s1, t1)) + . . .+ (τik , (sk, tk)))

)

= (s, t)
[
H(A,B)(τ1), . . . ,H(A,B)(τn)

]
[IO]

where for every ((s1, t1), . . . , (sk, tk)), the sequence ((u1, v1), . . . , (un, vn)) is an
arbitrary element of (TΣ × TΔ)n|(i1,(s1,t1))...(ik,(sk,tk)). Moreover, at the third
equality we use Lemma 13(a). Finally, we have

H(A,B)

(
τ [τ1, . . . , τn][IO]

)

= H(A,B)

(

max
(s,t)∈supp(τ)

(
(τ, (s, t)) + (s, t) [τ1, . . . , τn][IO]

))

= max
(s,t)∈supp(τ)

(
(τ, (s, t)) + H(A,B)

(
(s, t) [τ1, . . . , τn][IO]

))

= max
(s,t)∈supp(τ)

(
(τ, (s, t)) + (s, t)

[
H(A,B)(τ1), . . . , H(A,B)(τn)

]
[IO]

)

= τ
[
H(A,B)(τ1), . . . , H(A,B)(τn)

]
[IO]

.

Now we are ready to state and prove the mentioned Mezei-Wright like cor-
respondence (cf. [40], Theorem 5.5) between u-d-equational weighted relations
and u-d-equational weighted tree transformations for u = [IO], OI.
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Theorem 6. Let u = [IO] or u=OI. A weighted relation θ ∈ Rmax〈〈A × B〉〉
is u-d-equational iff there exists a u-d-equational weighted tree transformation
τ ∈ Rmax〈〈TΣ × TΔ〉〉 such that H(A,B)(τ) = θ.

Proof. Assume first that θ is u-d-equational. Then there is a system

(E) x1 = ρ1, . . . , xn = ρn,

of equations of weighted tree transformations over (Σ, Δ, Xn, Rmax) such that
θ is a component of its least u-d-solution (θ1, . . . , θn) in (A,B, Rmax). Let
(τ1, . . . , τn) be the least u-d-solution of (E). We show that H(A,B)(τi) = θi for
every 1 ≤ i ≤ n. By Lemma 15 we have

H(A,B)(τi) = H(A,B) (ρi [τ1, . . . , τn]u) = ρi
[
H(A,B) (τ1) , . . . , H(A,B) (τn)

]
u

,

i.e.,
(
H(A,B) (τ1) , . . . , H(A,B) (τn)

)
is a u-d-solution of (E) in (A,B, Rmax). We

show that in fact it is the least u-d-solution of (E). For this let

(τ1, . . . , τn) = lim
k→∞

(τ1,k, . . . , τn,k) ,

where (τ1,k, . . . , τn,k)k≥0 is the u-d-approximation sequence of (E). We show by
induction that, for every 1 ≤ i ≤ n and k ≥ 0, we have H(A,B)(τi,k) ≤ θi. For
k = 0 this is true by definition. Then, for every k ≥ 0, we have

H(A,B)(τi,k+1) = H(A,B)

(
ρi [τ1,k, . . . , τn,k]u

)

= ρi
[
H(A,B) (τ1,k) , . . . , H(A,B) (τn,k)

]
u

≤ ρi [θ1, . . . , θn]u = θi,

where the second equality holds by Lemma 15 and the inequality holds by the
induction hypothesis and Remark 2. By Lemma 14 we conclude H(A,B)(τi) = θi
for every 1 ≤ i ≤ n and this proves one half of our theorem. The other direction
can be proved similarly.

Acknowledgment. The authors are grateful to Andreas Maletti for his valuable
remarks on an earlier version of this paper.
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Abstract. In the first part of this survey paper, the notions of finite
automata and regular languages are reviewed from various points of view.
The middle part contains an introduction to the Hilbert space formalism
of finite-level quantum systems, and the final part is a presentation of the
most notable quantum finite automata models introduced up to date.

1 Finite Automata

The theory of finite automata is one of the cornerstones of theoretical computer
science. Finite automata were introduced in 1940’s and 1950’s via a series of
papers: notable ones include those of McCulloch and Pitts [31], Kleene [28],
Mealy [32], Moore [33], and Rabin and Scott [37]. The notion of finite automaton,
as well as the other notions of this section, are formally defined in the next
section, but to understand the meaning and importance of finite automata, it
may be necessary to consider various points of view.

Finite automata are theoretical models for real-time computing with a finite
memory. By real-time computing we mean here that the automaton reads its
input once, and gives the answer immediately when the whole input is read.
Such a model is evidently an important object of research by itself, but seeing
finite automata merely as computing machines gives only a part of the picture.
More points of view arise from the language theory: As a language accepted by
a finite automaton we understand the set of inputs the automaton “permits”
in a sense defined later. It turns out that the languages accepted by finite au-
tomata are exactly regular languages, which can be built from finite languages
by using concatenation, union, and Kleene star. The third point of view arises
from formal power series: The supports of power series of rational functions are
exactly regular languages. The fourth point of view is connected to the monoids:
Rational languages are exactly the languages having a finite syntactic monoid.

Listed as such, the aforementioned viewpoints are merely mathematically
provable equivalences, but the most important point lies among them: finite
automata and languages they accept have many faces. It is true that finite
automata have various applications from compiling and parsing [2] to image
compression [15], [16], but the applications only are hardly the propelling force
which has made finite automata an interesting research object for researchers
over the decades. Instead, the significance of finite automata most likely arises
� Dedicated to Symeon Bozapalidis on his very special occasion.

W. Kuich and G. Rahonis (Eds.): Bozapalidis Festschrift, LNCS 7020, pp. 146–167, 2011.
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from the fact that they, and the languages they determine are mathematically
extremely fascinating objects: Regular languages are closed under union, inter-
section, complementation, concatenation and Kleene star, and all the closure
properties can be proven true constructively from the automata point of view.
Multiple characterizations for a single object from different viewpoints almost
always enriches mathematics, and here the theory of finite automata serves as
an exemplar of elegance.

1.1 Formal Definitions

The literature on automata theory is very rich, and it is certainly possible to
exhaust all pages (and far more) of a short article like this by only listing all
notable work on the topic, hence there is no point in trying to do so. Instead,
we just mention a classic work by Eilenberg [19], and another recommendable
presentation by Sheng Yu [43] from language theory viewpoint. The same min-
imalistic line will be followed when introducing automata theory notions: only
those of major importance to this article will be presented.

This presentation does not follow literally any particular source, but the def-
initions presented in this section are generally recognized anyway.

Definition 1. An alphabet Σ is a finite set. Taking concatenation as the oper-
ation, Σ∗ denotes the free monoid generated by Σ. Elements of Σ∗ are called
words. The neutral element of Σ∗ is denoted by 1 and called the empty word.
The length of a word w is defined as |w| = 0, if w = 1 is the empty word, and n,
if w = a1 . . . an, where ai ∈ Σ. For any word w = a1a2 . . . an, its mirror image
is defined as wR = an . . . a2a1. Any subset of Σ∗ is called a language over Σ.

Definition 2 (Regular languages). A language L ⊆ Σ∗ is regular, if 1) L
is finite or 2) L is obtained from regular languages L1 and L2 by either union
L1 ∪ L2, concatenation L1L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}, or Kleene star:
L∗

1 = {w1w2 . . . wk | k ≥ 0, wi ∈ L1}.
Any language constructed by using the above rules can be proven regular simply
by showing the derivation tree. Such an expression is called regular expression.

Example 1. The language over alphabet Σ = {a, b} consisting of words which
contain an even number of letters a or at least one b is regular, as it can be
presented as a regular expression (Σ∗aΣ∗aΣ∗)∗ ∪Σ∗bΣ∗.

Definition 3 (DFA). A deterministic finite automaton (DFA) F is a quintuple

F = (Q, Σ, δ, qI , F ),

where Q is a finite set of states, Σ an alphabet, δ : Q × Σ → Q the transition
function1, qI ∈ Q the initial state, and F ⊆ Q the set of final states.
1 In this article, we always assume the automata complete, meaning that the transition

function is total. This can always be achieved by adding an extra state.
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The transition function δ can be extended into a function δ : Q × Σ∗ → Q
by δ(q, 1) = q and if w = aw1, where a ∈ Σ and w1 ∈ Σ∗, then δ(q, w) =
δ(δ(a, q), w1).

Definition 4. The Boolean semiring B = {0, 1} is equipped with obvious multi-
plication and addition, but 1 + 1 = 1.

Definition 5. A DFA F computes a function fF : Σ∗ → B defined as

fF (w) =
{

1 if δ(qI , w) ∈ F
0 otherwise.

Definition 6 (Recognizable Languages). The language recognized (accepted)
by finite automaton F is

L(F) = {w ∈ Σ∗ | fF(w) = 1}.
The following characterization is well known (see [19], for instance).

Theorem 1. A language L is regular if and only if it is recognized by a DFA.

It turns out that the matrix formalism is very useful for introducing generaliza-
tions and variants of DFA. We fix an order Q = {q1, . . . , qn} on the state set
and for each letter a ∈ Σ, define a matrix

(Ma)ij =
{

1 if δ(qj , a) = qi
0 otherwise.

over the Boolean semiring. From the definition it is clear that Ma has exactly
one 1 in each column. The initial vector x ∈ B

n is defined so that xi = 1, if qi
is the initial state, and xi = 0 otherwise. The final state vector y ∈ B

n is then
defined so that yi = 1 if and only if qi ∈ F . Both x and y are regarded as row
vectors.

Now if z is any vector with only one 1 at position k and δ(qk, a) = ql, then
(Ma)lk = 1 is the only nonzero element in the kth column, and hence

(MzT )m =
n∑

j=1

(Ma)mjzj = (Ma)mk =
{

1 if m = l
0 otherwise.

This simply means that Ma moves the nonzero element of z from position k to
position l, as the automaton moves from state qk to state ql when reading letter
a. If we now define recursively

Mw =
{

I if w = 1,
MaMw1 if w = aw1, where a ∈ Σ,

it is then clear that (MxT )m = 1 if and only if δ(qI , w) = qm, and we see that

fF(w) = yMwRxT . (1)

Equation (1) offers a good starting point for generalizations.
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1.2 Classical Variants

Definition 7 (NFA). A nondeterministic finite automaton N is defined exactly
as DFA, but instead of a transition function, the dynamics is determined by a
transition relation δ ⊆ Q×Σ ×Q, and there may be many initial states.

The matrix representation of an NFA is as simple as that of DFA: (Ma)ij = 1 if
and only if (qj , a, qi) ∈ δ, and the initial vector x has 1 exactly at the positions
corresponding to the initial states. The function computed by an NFA N is

fN (w) = yMwRxT ,

and the languages recognized by NFA are defined as those recognized by DFA.
In principle, nondeterminism does not bring any advantage for the language

recognition; the following fact is well-known [19], [43].

Theorem 2. For each NFA N with n states there is a DFA F with at most 2n

states so that fN = fF .

Even though NFAs does not bring any advantage for language recognition, the
complexity (number of states needed) may change essentially: It is known that
for any n ∈ N, there are n-state NFAs recognizing languages which cannot be
recognized by any DFA with less than 2n states [19].

For a general treatment of probabilistic automata, the reader is advised to
consult [36], here the introduction is short:

Definition 8 (PFA). A probabilistic finite automaton P is defined as DFA,
but instead of transition function, there is a transition probability function δ :
Σ × Q × Σ → [0, 1], and the initial state is replaced by an initial distribution
x ∈ R

n so that xj ≥ 0 and
∑n
j=1 xj = 1.

The matrix form consists now of matrices over R defined as

(Ma)ij = δ(qj , a, qi),

which stands for the transition probability: (Ma)ij is the probability that being
in state qj and reading a symbol a, the automaton will enter state qj . The evident
requirement is then that

n∑

i=1

δ(qj , a, qi) =
n∑

i=1

(Ma)ij = 1,

meaning that each column is a probability distribution. Matrices satisfying these
requirements are called Markov matrices.

A PFA computes a function fP : Σ∗ → [0, 1] defined as

fP(w) = yMwRxT ,
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but as this function is not anymore {0, 1}-valued, it is not so straightforward
how to define the language recognized (or accepted) by a PFA. The most evident
approach begins with a cut-point λ ∈ [0, 1] and continues with a definition

L>λ(P) = {w ∈ Σ∗ | fP(w) > λ}
or

L≥λ(P) = {w ∈ Σ∗ | fP(w) ≥ λ}.
In other words, L>λ(P) (resp. L≥λ(P)) consists of words with acceptance prob-
ability greater (resp. equal or greater) than λ.

Such languages are no longer necessarily regular [38], [35], [42], but the regu-
larity can be guaranteed by assuming that the cut-point is isolated.

Definition 9. Let P be a probabilistic automaton and ε > 0. A cut-point λ ∈
(0, 1) is ε-isolated, if fP(w) /∈ (λ− ε, λ + ε) whenever w ∈ Σ∗.

The notion of isolated cut-point is very desirable for practical reasons: if values
fP(w) can get arbitrarily close to the cut-point, it is difficult in practice to decide
whether the automaton accepts w. Indeed, the cases when a final state is reached
with a probability of 1

2 + 1
2|w| and 1

2 − 1
2|w| cannot be separated reliably with

less than Ω(2|w|) attempts. Unfortunately the isolation of the cut-point should
usually emerge intentionally from the construction of the automaton, since, given
an automaton P and cut-point λ, there is no way to determine whether the cut-
point is isolated, but it is an undecidable problem [10].

On the other hand, if the cut-point is ε-isolated, then only a constant number
(depends on ε) of runs is enough to determine the acceptance question with
probability as close to one as desired.

The following theorem, due to Rabin [38], shows that PFA with isolated cut-
point cannot recognize more languages than DFA.

Theorem 3. Let P be a probabilistic automaton with n states and one final
state.2 Let also λ be an ε-isolated cut-point. Then there exists a DFA with at
most (1 + 1

ε )
n−1 states recognizing language L≥λ(P) = L>λ(P).

In [38] Rabin also demonstrated that the probabilistic automata can be more
succinct than the deterministic ones. He indeed constructed a sequence Ln of
languages and the corresponding cut-points λn so that each Ln is accepted by
a 2-state PFA with isolated cut-point λn, but a DFA recognizing Ln requires at
least n states.

Theorem 3 shows that if the cut-point is isolated, then PFAs can be at most
exponentially more succinct than DFAs. In [21] R. Freivalds presented a subex-
ponential gap: A sequence of languages Ln accepted by a PFA with n states and
fixed cut-point isolation, whereas any DFA accepting Ln requires Ω(2

√
n) states.

Eventually in [22] R. Freivalds proved the existence of a language sequence where
the separation between PFA and DFA sizes is exponential.
2 A probabilistic automaton P can be always translated into P1 with one more state

and only one final state.
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2 Syntactic Monoids

The notion of a syntactic monoid was presented by Rabin and Scott in [37] and
it brings another aspect to the languages accepted by finite automata. In fact,
the main idea connecting automata to monoids has been already presented: Any
DFA can be represented as a set of matrices Ma over B. As B is finite, it is clear
that the matrices Ma generate a finite monoid. This can be represented in a bit
more abstract form as follows.

Definition 10. Let L be a language over Σ. We say that words v and u are
(syntactically) congruent (with respect to L), denoted u ∼L v, if for all x, y ∈ Σ∗

we have
xuy ∈ L ⇐⇒ xvy ∈ L.

It is straightforward to verify that the syntactic congruence is an equivalence
relation, and that it is compatible with the concatenation, meaning that if u1 ∼L
u2 and v1 ∼L v2, then also u1v1 ∼L u2v2.3 This implies that the multiplication
on equivalence classes

[u] = {v ∈ Σ∗ | v ∼L u}
defined as [u][v] = [uv] is a well-defined operation.

Definition 11. The syntactic monoid of language L is the quotient

M(L) = Σ∗/ ∼= {[u] | u ∈ Σ∗}
equipped with operation [u][v] = [uv].

Notice that the notion of syntactic monoid is defined for each language L inde-
pendently of regularity or other assumptions.

Definition 12. Let M1 and M2 be monoids. Mapping ϕ : M1 → M2 is a mor-
phism, if ϕ(m1m2) = ϕ(m1)ϕ(m2) holds for all m1, m2 ∈M1 and ϕ(1) = 1.

Definition 13. Language L is recognized by a monoid M , if there exists a mor-
phism ϕ : Σ∗ →M and a subset B ⊆M so that L = ϕ−1(B).

For each language L ⊆ Σ∗ there are some obvious choices for recognizing
monoids. For instance taking M = Σ∗, ϕ the identity mapping and B = L
gives obviously a recognizing monoid. Another choice is M = M(L) (the syn-
tactic monoid), ϕ the projection ϕ(w) = [w], and B = ϕ(L).

In a very true sense, the syntactic monoid is the smallest one recognizing L:
If N is another monoid recognizing L, then M(L) is a quotient of a submonoid
of N . To see this, let ϕ : Σ∗ → N be a morphism and L = ϕ−1(B). Now for any
words u and v for which ϕ(u) = ϕ(v) we have also ϕ(xuy) = ϕ(x)ϕ(u)ϕ(y) =
ϕ(x)ϕ(v)ϕ(y) = ϕ(xvy), and hence xuy ∈ L ⇐⇒ xvy ∈ L. This shows that in
3 In general, a congruence on an algebraic structure is an equivalence relation ∼ com-

patible with the algebraic operations. For monoids, this means that ∼ must satisfy
u ∼ v ⇒ xuy ∼ xvy.
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the first place, relation ϕ(u) = ϕ(v) is a congruence, and on the second hand,
that ϕ(u) = ϕ(v) implies u ∼L v, meaning that relation ∼L is coarser than
relation ϕ(u) = ϕ(v). The remaining details are left to reader.

For any monoid M recognizing language L there is a straightforward way to
construct an automaton (not necessarily with a finite state set) of recognizing
L. In fact, we can define

F = (M, Σ, δ, 1, B),

where δ(m, a) = mϕ(a) for each m ∈ M and a ∈ Σ. It is then straightforward
to see that δ(1, w) = ϕ(w), hence δ(1, w) ∈ B ⇐⇒ ϕ(w) ∈ B, so the language
accepted by this automaton is indeed L = ϕ−1(B).

The aforementioned circumstances justify the following theorem, which was
introduced in [37].

Theorem 4. A language L is recognized by a finite automaton if and only if its
syntactic monoid is finite.

Definition 14. A language L is called recognizable, if it is recognized by a finite
monoid.

Schützenberger was the first to characterize a highly nontrivial property of reg-
ular languages in terms of their syntactic monoids. He demonstrated that a
language is star-free if and only if its syntactic monoid is aperiodic. For the no-
tions and proofs, see [41]. Decades later, the properties of a certain subclass of
quantum automata have been characterized by so-called forbidden constructions,
which can be naturally interpreted as properties of the syntactic monoids [7].

3 Formal Power Series

We will shortly present the basics of formal power series here. For a detailed
exposition, we refer to [30].

Definition 15. Let Σ be an alphabet. A formal power series over a semiring R
is a function S : Σ∗ → R. It is usual to write S as

S =
∑

w∈Σ∗
S(w)w,

and the elements of Σ are understood as (noncommutative) variables.

Example 2.

1
1− ab

= 1 + ab + abab + ababab + abababab + . . .

is a formal power series over R so that S(w) = 1, if w is of form (ab)i, and
S(w) = 0 otherwise.
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For a PFA P (DFA can be viewed as a subcase) we define

S =
∑

w∈Σ∗
fP(w)w, (2)

and recall that fP can be represented as fP(w) = yMwRxT = (x(MwR)TyT )T .
This implies that

∑

|w|=n
fP(w)w = (x

∑

|w|=n
w(MwR)TyT )T = (x(

∑

a∈Σ
aMT

a )nyT )T

= (x(MT )nyT )T = yMnxT ,

where we have denoted MT =
∑
a∈Σ aMT

a . Hence

S =
∑

w∈σ∗
fP(w)w =

∞∑

n=0

∑

|w|=n
fP(w)w = y

∞∑

n=0

MnxT = y(1 −M)−1xT ,

which shows that S is a rational function in variables a ∈ Σ. Especially we see
that if L is a recognizable language, then

S =
∑

w∈L
w

is a rational function. This connection was initially presented by Kleene [28] and
Schützenberger [40] (in fact, Schützenberger’s theorem is a generalization of the
below theorem):

Theorem 5. A formal power series

S =
∑

w∈L
w

is rational if and only if L is a recognizable language.

4 Formalism of Finite Quantum Systems

Before introducing quantum automata, it is necessary to present the formalism
shortly. For more details, see [23].

4.1 Hilbert Space Preliminaries

Mathematical description of finite-level quantum systems is built on Hilbert
spaces of finite dimension. As an n-dimensional Hilbert space Hn we under-
stand the complex vector space C

n equipped with Hermitian inner product
〈x | y〉 = x∗

1y1+. . .+x∗
nyn. The inner product induces norm by ||x|| =√〈x | x〉.
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For each x = (x1, . . . , xn) in Hn we define | x〉 to be a column vector (n × 1-
matrix)

|x〉 =

⎛

⎜
⎝

x1

...
xn

⎞

⎟
⎠

and 〈x |= (x∗
1, . . . , x

∗
n) a row vector (1 × n-matrix). | x〉 is called a ket-vector

and 〈x | a bra-vector. If necessary, we can identify Hn either with column vector
space or row vector space. The set of all linear mappings Hn → Hn is denoted
by L(Hn). For x, y ∈ Hn we define a mapping | x〉〈y |: Hn → Hn by setting
|x〉〈y || z〉 = 〈y | z〉 |x〉. Clearly | x〉〈y | is a linear mapping, and in a special
case y = x, ||x|| = 1 we see that | x〉〈x || z〉 = 〈x | z〉 | x〉, meaning that
|x〉〈x | is an orthogonal projection onto a one-dimensional subspace spanned by
|x〉. It is straightforward to interpret |x〉〈y | as a Kronecker product: If A is an
r × s-matrix and B an t× u-matrix, then A⊗B is an rt× su-matrix

A⊗B =

⎛

⎜
⎜
⎜
⎝

a11B a12B . . . a1sB
a21B a22B . . . a2sB

...
...

. . .
...

ar1B ar2B . . . arsB

⎞

⎟
⎟
⎟
⎠

.

Now

|x〉 ⊗ 〈y |=

⎛

⎜
⎜
⎜
⎝

x1

x2

...
xn

⎞

⎟
⎟
⎟
⎠
⊗ (y∗

1 , y∗
2 , . . . , y∗

n) =

⎛

⎜
⎜
⎜
⎝

x1y
∗
1 x1y

∗
2 . . . x1y

∗
n

x2y
∗
1 x2y

∗
2 . . . x2y

∗
n

...
...

. . .
...

xny
∗
1 xny∗

2 . . . xny∗
n

⎞

⎟
⎟
⎟
⎠

is the matrix of mapping |x〉〈y | in the natural basis.
It is worth noticing that if {x1, . . ., xn} is an orthonormal basis, then the

matrix representation of | xi〉〈xj | in this orthonormal basis consists only of
zeros but a single one in the intersection of the ith row and the jth column.
The trace of a mapping is the sum of diagonal elements of the matrix: Tr(A) =∑n

j=1〈xj | Axj〉. It can be shown that the trace is independent of the choice of
the orthonormal basis {x1, . . . ,xn}.

The mapping A is positive, if 〈x | Ax〉 ≥ 0 for each x ∈ Hn. The adjoint
mapping A∗ is defined by condition 〈x | Ay〉 = 〈A∗x | y〉, and it is easy to see
that the matrix presentation for A∗ is obtained from that of A by transposing and
taking complex conjugates. Mapping A is normal, if AA∗ = A∗A, self-adjoint,
if A∗ = A, and unitary, if A∗ = A−1. All normal mappings have a remarkable
representation introduced in the following theorem, whose proof can be found
in [27], for instance.

Theorem 6. For each normal mapping A there is an orthonormal basis {x1,
. . ., xn} of Hn consisting of the eigenvectors of A so that

A = λ1 |x1〉〈x1 | + . . . + λn |xn〉〈xn | . (3)
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The numbers λi are the eigenvalues of A, and representation (3) is called a
spectral representation of A.

In terms of matrices, a spectral representation corresponds to a diagonal form.
Thus the above theorem states that all normal matrices can be diagonalized uni-
tarily, meaning that there is an orthonormal basis on which the matrix becomes
diagonal. Self-adjointness then means that all the eigenvalues in (3) are real,
positivity means that they are nonnegative, and unitarity that they lie in the
unit circle.

4.2 States and Observables

In this article, we will not define the physical notions state or observable in a
rigorous manner, but they are understood only intuitively.

Definition 16. As an n-level quantum system we understand a physical system
whose mechanics is depicted according to quantum physics and that has exactly
n (but no more) perfectly distinguishable values for some observable.

Definition 17 (States). The states of an n-level quantum system are described
as self-adjoint positive mappings of Hn with unit trace. A matrix representation
of a state is called a density matrix. Hn is called the state space of the system.

According to Theorem 6, any state S has a presentation

S = λ1 |x1〉〈x1 | + . . . + λn |xn〉〈xn |,
where {x1, . . . ,xn} is an orthonormal basis of Hn, 1 = Tr(S) = λ1 + . . . + λn
(unit trace), and λj ≥ 0 (positivity). It is evident that if S1 and S2 are states, so
is also λS1 + (1− λ)S2 for any λ ∈ (0, 1), meaning that the state set is convex.

Definition 18. The state S is pure, if representation S = λS1 +(1−λ)S2 with
S1 
= S2 implies λ ∈ {0, 1}.
According to the previous definition, pure states are the extremals of the state
set, i.e., states that cannot be represented as a convex combination in a nontrivial
way. The following theorem is well-known.

Theorem 7. The state S is pure if and only if S =|x〉〈x | is a projection onto
a one-dimensional subspace (recall that then ||x|| = 1 must hold).

Pure states are also called vector states, since to describe S =|x〉〈x | it is enough
to give x ∈ Hn. It is required that ||x|| = 1, but unfortunately this does not
fix x uniquely, as any eiθx with θ ∈ R also satisfies

∣
∣
∣
∣eiθx

∣
∣
∣
∣ = 1 and belongs to

the subspace generated by x. Nevertheless, it is easy to see that all such vector
states generate the same state, meaning that |eiθx〉〈eiθx |=|x〉〈x |.
Definition 19 (Observable). A (sharp) observable of a quantum system is a
self-adjoint mapping Hn → Hn.
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As a self-adjoint mapping, any observable A has a spectral representation

A = μ1 |y1〉〈y1 | + . . . + μn |yn〉〈yn |, (4)

where μi ∈ R. The eigenvalues of A are the potential values of observable A. For
any set X of real numbers we define

EA(X) =
∑

{j|μj∈X}
|yj〉〈yj |,

hence EA(X) is a projection onto the subspace spanned by those vectors yj
whose eigenvalues belong to X .

States and observables are the primary objects of quantum theory, but they
have to be connected for a meaningful interpretation. This connection is pre-
sented as an axiom referred as to the minimal interpretation of quantum me-
chanics. Quantum mechanics is ultimately a probabilistic theory, meaning that
the outcome, when measuring the value of an observable, is not necessarily de-
termined even if the system is in a pure state.

Definition 20 (Minimal Interpretation). Let notations be as before. If A
is an observable and S a state of quantum system, then the probability that the
observed value of A is in set X is given by

PS(X) = Tr(SEA(X)).

Example 3. Let Hn be a state space of an n-level quantum system and {x1,
. . ., xn} an orthonormal basis. Then any unit-length vector y ∈ Hn can be
represented as

y = α1x1 + . . . + αnxn,

where |α1|2 + . . .+ |αn|2 = 1. Numbers αi are called amplitudes and we say that
y is a superposition of x1, . . ., xn. Let S =|y〉〈y | be a pure state and

A = 1· |x1〉〈x1 | +2· |x2〉〈x2 | + . . . + n· |xn〉〈xn | (5)

be an observable. Then the probability of observing value k is given by

PS(j) = Tr(S |xj〉〈xj |) = |αj |2 .

This can be interpreted so that if a pure state is expanded using the eigenvectors
of observable A, then the coefficient αj (which is called the amplitude of xj)
induces the probability of measuring value j by P(j) = |αj |2 (this is known as
Born probability rule). In fact, observing a vector state

y = α1x1 + . . . + αnxn

is a common term in quantum computing, and it refers to measuring observable
(5). The probability of seeing j as the value of A is then given as |αj |2, and
the usual terminology speaks about “observing xj”, which is a synonym for
measuring value j.

It may be noted that the numerical values 1, 2, . . ., n as potential values of
observable (5) are not important, but can be replaced by an arbitrary set of
distinct values.
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4.3 Compound Systems

To form a description of two quantum systems with state spaces Hn and Hm, we
use the tensor product construction. Hence the state space of the joint system is
mn-dimensional space Hn ⊗Hm, and the principal objects (states, observables)
can be constructed as tensor products.4

Especially, if S1 and S2 are states of subsystems, then S1 ⊗ S2 is a state
of the joint system. Analogously it is possible to construct an observable of the
whole system from observables A1 and A2 of the subsystems. It is however worth
noticing that space Hn⊗Hm contains much more states than those ones of form
S1 ⊗ S2. Indeed, a state S is called decomposable, if there is a representation

S =
∑

piS
(1)
i ⊗ S

(2)
i ,

otherwise S is entangled.
The subsystem states of a compound system state are defined via statistical

basis: We say that S1 and S2 are obtained from S via partial trace, and are
formally defined as

S1 = Tr1(S) ⇐⇒ Tr(S1A) = Tr(S(A⊗ I))

whenever A ∈ L(Hn) is an observable. The state S2 = Tr2(S) of the second
subsystem is defined analogously. For an explicit formula for S1 and S2, see [23].

4.4 State Transformations

States and observables are sufficient to give a description of a quantum system
at a fixed time. For the purposes of quantum computing, we need to describe
how quantum systems change in time. In so-called Schrödinger picture, the state
depends on the time and the observables remain, whereas the Heisenberg picture
is built on time-dependent observables. Both representations are mathematically
equivalent, and here we choose the usual Schrödinger picture.

The task is then to describe how quantum systems change in time. Recall
that a state of a quantum system is a positive, unit-trace mapping in L(Hn). We
should then find out the following: if S1 and S2 are states of a quantum system,
which properties a mapping V : L(Hn)→ L(Hn) taking S1 to S2 should satisfy?
As both S1 and S2 are states (unit-trace positive mappings), V should preserve
the unit trace. In the same spirit, V should preserve positivity. This serves a
good basis when characterizing mappings V : state transformations should be
trace-preserving, and positivity-preserving mappings on the state set.

Mapping V : L(Hn) → L(Hn) is called positive, if V (S) is always a positive
mapping when S is. Unfortunately it turns out that trace-preserving property
and the positivity are not enough to characterize all acceptable state trans-
formations. Instead, we need to take care of the environment, and say that
4 In the matrix representations, tensor products are represented as Kronecker prod-

ucts.
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V : L(Hn) → L(Hn) is completely positive, if V ⊗ I is a positive mapping in
Hn ⊗Hm → Hn ⊗ Hm, where I is an identity mapping on any potential envi-
ronment Hm of Hn.

The proof of the following theorem can be found in [23].

Theorem 8. The following are equivalent:

1. The mapping V : L(Hn) → L(Hn) is completely positive, trace-preserving
mapping.

2. V (S) =
∑n2

j=1 ViSV ∗
i , where Vi ∈ L(Hn) satisfy

∑n2

j=1 V ∗
i Vi = I.

3. V (S) = Tr1(U(S ⊗ E)U∗), where E is a pure state of the “environment”
system and U ∈ L(Hn ⊗Hm) a unitary mapping.

Definition 21. A quantum system is called closed, if its state transformations
are of form V (S) = USU∗, where U is a unitary mapping, i.e., U∗U = 1.

Notice that the “closedness” is a subcase of both conditions 2 and 3 of the
previous theorem: When the system is closed, there is only one single mapping
V1 = U in condition 2, and in condition 3, either the “environment system” is
nonexistent or U = U1 ⊗ I does not change the environment state space Hm

at all.
For all mappings A, B ∈ L(Hn) it is easy to see that A |x〉〈y | B =|Ax〉〈B∗y |

holds. Hence the state transformation on a pure state |x〉〈x | of a closed system
is described as follows: V (|x〉〈x |= U |x〉〈x | U∗ =|Ux〉〈Ux |. This means that
a vector state x is transformed into Ux, if the system is closed. A frequently
occurring phrase “quantum time evolution is unitary” simply refers to closed
systems beginning at a pure state. It is also important to notice that state
transformations in a closed quantum system are always reversible: from Ux one
can always recover x by Ux �→ U−1Ux = x.

4.5 Projection Postulate

The case of the measurement theory of quantum mechanics is far from being
closed. In fact, the measurement problem of quantum mechanics is a profound
and fundamental problem for which a satisfactory resolution is not in sight [13].

The projection postulate describes the state transformation in a measurement
process in an simple way, but there is no easy way to embed the projection
postulate into the theory of quantum mechanics consistently. To introduce the
projection postulate, consider a vector state

x = α1x1 + . . . + αnxn

and an observable A = 1· |x1〉〈x1 | + . . . + n· |xn〉〈xn |. Now the probability of
seeing value j is |αj |2, and, according to the projection postulate, if value j is
observed, then the post-observation state is xj . Projection postulate, as presented
here can be naturally extended to non-pure states, too, but here we will not need
such an extension. Notice that in the definition of observable A, numbers 1, 2,
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. . ., n are not important, but can be replaced with any set of distinct numbers
(which would then become the potential values of the observable).

In the theory of quantum computing, it is usually possible to avoid referring
to the projection postulate, but sometimes using it makes the notations simpler.

5 Finite Quantum Automata

The theory of quantum computing was implicitly launched by Richard Feyn-
man in 1982, when he suggested that it may be impossible to simulate quantum
mechanical systems with a classical computer without an exponential slowdown
[20]. Quantum computing attracted only little attention in the beginning, but
nevertheless, important theoretical works were conducted by David Deutsch [17],
[18]. In 1994 Peter Shor succeeded in raising the theory of quantum computing
from the margin by introducing his famous quantum algorithms for factoring
integers and extracting discrete logarithms in polynomial time [39]. However,
the early research on quantum computing was mainly focused on quantum algo-
rithms with unlimited computing space, and the first studies of finite memory
quantum computing were presented as late as 1997.

5.1 Early Models

Quantum finite automata (QFA) were introduced in 1997 by A. Kondacs and J.
Watrous [29], and independently by C. Moore and J. P. Crutchfield (although
the journal version [34] we cite here appeared later). The model of Kondacs and
Watrous is frequently referred as to “Measure-Many” model (MM), and that one
by Moore and Crutchfield as “Measure-Once” (MO). The models are crucially
different, and formally, MO-QFA seems to be the model more faithful to DFA.

More QFA variants have been introduced later, and in the sequel, we will
present some of the most notable ones. When presenting the notion of QFA,
the matrix formalism is evidently the most useful way to choose. The intuition
behind MO-QFA is that the state set of the automaton is a closed quantum
mechanical system, and all state transformation are determined by the input
letters.

Let Q = {q1, . . . , qn} be the state set of the automaton. There is a “canonical”
way to introduce a “quantum model” for any classical one, and here it works as
follows: We introduce an n-dimensional Hilbert space with an orthonormal basis
{|q1〉, |q2〉, . . . , |qn〉}. A general state of the automaton is hence a superposition
of basis states |qi〉:

|q〉 = α1 |q1〉+ α2 |q2〉+ . . . + αn |qn〉, (6)

where |α1|2 + . . .+ |αn|2 = 1. It is possible to select a model with an initial state
| qI〉, but also a superposition over all states | qi〉 is equally acceptable for an
initial state of the automaton.

The dynamics of an MO-automaton is that one of a closed quantum system,
meaning that for any input letter a, there is a unitary mapping Ua : Hn → Hn
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describing how (6) changes under a read input letter. Finally, if states in F are
specified to be final, then the probability of observing

|q〉 = α1 |q1〉+ . . . + αn |qn〉

in a final state is
∑

q∈F |αq|2. By writing P =
∑
q∈F |q〉〈q | we notice that P is

a projection onto the final states, and that

P |q〉 =
∑

q∈F
αq |q〉.

Hence the observation probability can be written in form
∑

q∈F
|αq|2 = ||P |q〉||2 .

The definition of MO-QFA follows these outlines, but the generalization allows
the initial state and the final projection to be chosen more generally.

Definition 22 (MO-QFA). A measurement-once quantum finite automaton Q
with n states over the alphabet Σ is a triplet (x, {Ua | a ∈ Σ}, P ) where x ∈ Hn

is the initial vector, {Ua | a ∈ Σ} is the set of unitary transition matrices, and
P is the final projection.

Remark 1. It also is possible to define an MO-QFA as a fivetuple (Q, Σ, δ, qI , F ),
where other components are as in the definition of DFA, but δ : Σ → L(Hn)
is a transition function so that each δ(a) is a unitary mapping in L(Hn). The
definition we used here is then obtained from this different one by specifying
x =|qI〉, Ua = δ(a), and the final projection as P =

∑
f∈F |f〉〈f |.

As in the case of probabilistic automata, the primary function of an MO-QFA is
to compute a probability for every word w ∈ Σ∗, and in the MO-case it is done
as follows:

fQ(w) =
∣
∣
∣
∣PUwRxT

∣
∣
∣
∣2 .

This is a quantum analogue of the probability computed by PFA. In the article
presenting the Moore-Crutchfield model, the authors demonstrated that many
properties of classical automata also hold for MO-QFA [34]. For instance, they
prove that for any QFA Q, the series

∑

w∈Σ∗
fQ(w)w

is rational, and that the following closure properties hold: Let f and g : Σ∗ →
[0, 1] be functions computed by MO-QFA and |α|2 + |β|2 = 1. Then also αf +βg
is a function Σ∗ → [0, 1] computed by an MO-QFA (convexity). Moreover, fg
(intersection) and 1−f (complement) are computed by an MO-QFA. The closure
under inverse morphism was also demonstrated: if h : Σ∗

1 → Σ∗ is a morphism,
then fh : Σ1 → [0, 1] is again a function computed by an MO-QFA. All the
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aforementioned properties are well-known for regular languages. In [34], Moore
and Crutchfield use the compactness of the unit sphere of Hn to prove also a
version of the pumping lemma. On the other hand that version is very different
from the classical pumping lemma: in the MO-QFA case, it is shown that for
any w ∈ Σ∗ and each ε > 0, there exists k ∈ N so that for all u, v ∈ Σ∗,∣
∣fQ(uwkv)− fQ(uv)

∣
∣ ≤ ε.

The studies of Moore and Crutchfield can be understood within a generalized
notion of a language. Whereas the basic definition simply means a subset of
Σ∗, the generalized notion refers to a fuzzy subset of Σ∗, i.e., a function f :
Σ∗ → [0, 1]. The traditional notion of a (crisp) language then means that f is
actually onto {0, 1}. From any fuzzy language f : Σ∗ → [0, 1] it is then possible
to obtain a traditional language by discretizing f , and that can be done exactly
in the same way as for the probabilistic automata to obtain cut-point languages
L>λ(Q) and L≥λ(Q).

Now if the cut-point is not isolated, languages recognized by MO-QFA need
not to be regular. For a concrete example, the reader is invited to design a
two-state MO-QFA Q over the binary alphabet Σ = {a, b} with the following
property: fQ(w) = 0, if |w|a = |w|b (the number of as and bs in w coincide), and
fQ > 0 otherwise.

On the other hand, it was noted in [1] that the technique of Rabin can be used
also for QFA (in fact, Rabin’s technique applies to Hn more elegantly than to
the classical probability polyhedra) to show that quantum cut-point languages
with isolated cut-points are all regular (If not explicitly mentioned otherwise,
the language recognition by automata will here and hereafter mean recognition
of a cut-point language with an isolated cut-point). Most regularity proofs for
isolated cut-point model, including the first one by Rabin [38], are based on the
compactness of the state set. It is therefore interesting to notice that Symeon
Bozapalidis has shown that the regularity of cut-point languages can be derived
also in a different way, which applies for a large class of languages containing
those recognized by MO-QFA [11].

For language recognition, the unitarity of the evolution matrices turns out
to be an essential restriction. All unitary matrices are invertible, and that may
lead to a sophisticated guess that the syntactic monoid of a cut-point language
of QFAs should also contain the inverses of its elements. This guess turns out to
be true: In [34] Moore and Crutchfield already point out that if the characteristic
function of a regular language L equals to fQ for some quantum automaton Q,
then L is a group language, meaning that its syntactic monoid is a group. This
result was extended to all isolated cut-point languages recognized by MO-QFA
in [12].

The aforementioned results show that MO-QFA and their related languages
are mathematically very elegant objects: They satisfy a number of closure prop-
erties, and the model itself seems to be a satisfactory “quantum counterpart”
of a probabilistic model. Unfortunately their language recognition power is very
weak: isolated cut-point languages of MO-QFA are all group languages, which
is a small subset of all regular languages. This is essentially different from PFA,
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which are in fact genuine generalizations of DFA and can accept all regular lan-
guages (in the cut-point acceptance model). Therefore MO-QFA cannot be seen
as generalizations of DFA, but rather as “variants”.

The other model, MM-QFA has almost inverse properties: Language recogni-
tion power is greater, but the closure properties and mathematical elegancy are
weak. In [29] Kondacs and Watrous introduced 1-way and 2-way MM-QFA, and
studied mainly their language recognition power in the isolated cut-point model.

Definition 23 (MM-QFA). A measure-many (1-way) quantum finite automa-
ton Q consists of a state set Q, set of unitary transition mappings {Ua | a ∈ Σ},
and an initial vector x ∈ Hn. The state set Q is divided into disjoint sets of
accepting, rejecting, and neutral states: Q = Qa ∪Qr ∪Qn.

To describe the computation of, let first Pa, Pr and Pn be projections onto the
subspaces Ha, Hr, and Hn spanned by the accepting, rejecting, and neutral
states, respectively.

The computation of a MM-QFA goes as follows: The automaton begins at the
state x, and the input word w is scanned one letter at time. When letter a is
read, transition Ua is applied to the state of the automaton, and then the state
is observed to see whether the automaton is in an accepting, rejecting or neutral.
This means measuring the value of three-valued observable A = 1·Pa+2·Pr+3·Pn
(numbers 1, 2, and 3 are not important and can be replaced with any set of
distinct numbers). If the state was observed to be accepting (resp. rejecting), then
the input word is accepted (resp. rejected), and if the state seen was neutral, then
the computation goes on, and the next input letter is read. The post-observation
state after each observation is determined according to the projection postulate,
meaning that the state

∑

q∈Qa

αq |q〉+
∑

q∈Qr

αq |q〉+
∑

q∈Qn

αq |q〉 (7)

collapses into

1
√

P(a)

∑

q∈Qa

αq |q〉, 1
√

P(r)

∑

q∈Qr

αq |q〉, or
1

√
P(n)

∑

q∈Qn

αq |q〉,

according to which type of state was seen. Here P(a) =
∑

q∈Qa
|αq|2, P(r) =

∑
q∈Qr

|αq|2, and P(n) =
∑
q∈Qn

|αq|2 are the probabilities of seeing the au-
tomaton in state (7) in an accepting, rejecting, or neutral state, respectively.
It is assumed that the input word is surrounded by special endmarkers which
do not belong to the actual input alphabet, and that when reading the right
endmarker, the automaton cannot any more stay in a neutral state, but must
decide whether the word is accepted or rejected. Unlike the other models previ-
ously presented in this article, the MM-QFA can accept or reject a word without
reading all letters of it.

The computational process is more complicated than for MO-QFA, but nev-
ertheless, an MM-QFA Q also computes a function fQ : Σ∗ → [0, 1] (the ac-
ceptance probability for each word w ∈ Σ∗). It was noted already in [29], that
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in the isolated cut-point model, all languages recognized by MM-QFA are also
regular. This follows by applying the technique of Rabin [37] or Bozapalidis [11].
However, even MM-QFAs with isolated cut-point are not powerful enough to rec-
ognize all regular languages. In fact, it was noted in [29] that even the language
L = {a, b}∗a cannot be recognized with a MM-QFA with isolated cut-point.

In this paper, we are not going to treat 2-way finite automata capable of
scanning the input various times, but it may be worth emphasizing that in
[29], the authors demonstrated that 2-way MM-QFA with isolated cut-point can
indeed recognize all regular languages, and even more: The non-regular language
{anbn | n ∈ N} can be accepted with a 2-way MM-QFA with an isolated cut-
point. This may appear somewhat surprising, as 2-way DFA are known equally
as powerful as ordinary DFAs.

Subsequent studies have revealed rather strange behaviours of MM-QFA. It
was shown in [3], that if MM-QFA are required to work it a high probability (at
least 7

9 ), then there is a classical reversible automaton doing the same job (see
[3] for the definitions). But for weaker correctness probabilities, MM-QFA are
more powerful than the classical automata. In [3] it was also demonstrated that
in some cases, MM-QFA can be exponentially smaller than PFA recognizing the
same language. The aforementioned probability 7

9 was subsequently improved to
0.7726 . . . in [6].

A direction of [3] was followed in [4], where the authors constructed a hierar-
chy of languages recognizable by MM-QFA with isolated cut-point, but whose
potential isolation tends to zero.

More troublesome news for MM-QFA were brought forth in [5], where it was
shown that the class of languages recognized by MM-QFA is not closed un-
der union, intersection, or under any genuinely binary Boolean operation. Very
interestingly, the authors of [5] also launched the study of so-called forbidden
constructions. Forbidden constructions are properties of the graph of the mini-
mal DFA for the language in question which prohibit the language to be accepted
by an MM-QFA (with isolated cut-point, of course).

The forbidden constructions can be translated into the properties of syntactic
monoids, and this course of research was followed in [7]. However, any good
description to syntactic monoids of languages recognized by MM-QFA is not
known.

From the aforementioned description it is obvious that MM-QFA is not very
elegant model mathematically, but more satisfactory models have been intro-
duced subsequently.

5.2 Latvian QFA

In [7] the authors introduced another variant of quantum automata called Lat-
vian QFA. A Latvian QFA Q is a sixtuple Q = (Q, Σ, {Ua | a ∈ Σ}, {Ma | a ∈
Σ}, qI , F ), Q and Σ are as for DFA, Ua is an unitary transition associated to
letter a, and Ma is a measurement determined by an orthogonal decomposition
Hn = V a

1 ⊕ . . . ⊕ V a
k . The automaton starts in state | qI〉, then reads the input

one letter at time. When reading the input letter a, transition Ua is applied,
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and then the measurement Ma is performed. The procedure continues until the
right endmarker is read. It is required that the measurement associated to the
right endmarker projects either to the subspace generated by the final states or
to its orthogonal complement, the subspace generated by non-final states. The
probability function computed by the automaton is then the probability that a
final state is seen.

In [7] it is demonstrated that Latvian QFA have far more elegant closure
properties than MM-QFA. Indeed, languages recognized by Latvian QFA are
closed under union, intersection, complement, and inverse morphishms. It was
also shown that the languages recognized by Latvian automata are exactly those
whose syntactic monoid is of wreath product form J ∗G, where J is a J -trivial
monoid and G group (for the definitions, see [7]). As form J ∗G does not cover
all finite monoids, this characterization shows also that even the Latvian QFA
are not sufficient to recognize all regular languages.

To enrich the model, Bertoni & al. introduced a QFA model with a control
language, where also the state is measured after each transition, and the accep-
tance depends on whether the sequence of the measurement results belong to
the control language [9], thus obtaining an QFA model capable of recognizing a
set of regular languages closed under Boolean operations. In [14] Ciamarra intro-
duced a reversibility construction using extra space to provide a model capable
of accepting all regular languages.

5.3 Open Quantum Automata

We have seen that sometimes QFAs can provide some advantage over DFA or
PFA, when the efficiency is measured in the number of states needed to recognize
a language. On the other hand, many models of QFA are unfortunately restricted
very heavily, implying that they cannot recognize even all regular languages. The
reason for the restrictions has been correctly located by the aforementioned au-
thors: Unitary time evolution is always reversible, and the real-time computation
of 1-way finite automaton does not allow any reversibility construction: It was
shown by Charles Bennett that all computation can be made reversible [8], but
the price to be paid for this is to introduce an extra memory to write the history
of the computation. Such a construction is not applicable to finite automata.

On the other hand, the state transformations in quantum systems need not to
be reversible, but reversibility is just a property of closed quantum systems. In
the classical theory of computation irreversibility (and subsequent information
loss) is perfectly acceptable, and hence there is no reason to assume quantum
systems closed when studied in the context of computability. Therefore, the most
general QFA model should be naturally based on open system state transitions
(completely positive, trace-preserving mapping, see definitions in section 4.4).

Such a model was introduced in [24] and [25], and its properties were studied
in [26].
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Definition 24. A QFA with open time evolution (or shortly open QFA) is a
quintuple Q = (Q, Σ, δ, qI , F ), where Q and Σ are as before, qI is the initial
state, and F ⊆ Q is the set of final states, and δ : Σ → L(L(Hn)) is a transition
function associating to each letter a ∈ Σ a trace-preserving completely positive
mapping L(Hn)→ L(Hn), δ(a) = Va.

The computation of an open QFA begins in (pure) state | qI〉〈qI |, and each
read input letter changes the state by Va : L(Hn) → L(Hn). The acceptance
probability of the word is then given by

fQ(w) = Tr(PVwR |qI〉〈qI |),
where P =

∑
f∈F | f〉〈f | is the projection onto the subspace generated by the

final states.
In [24] it was shown that PFA (and subsequently DFA), is a subcase of open

QFA, and in [26] it was shown that MM-QFA (and subsequently MO-QFA),
and Latvian QFA can considered as subcases of QFA with open time evolution.
Hence it is justified to say that QFAs with open time evolution are the genuine
quantum extensions of DFAs.

In [26], it was also demonstrated the functions fQ : Σ∗ → [0, 1] computed
by QFA with open time evolution satisfy the same closure properties as those
computed by MO-QFA, and that the formal power series

∑

w∈Σ∗
fQ(w)w

is rational. As open QFA is an extension of all other automata models mentioned
in this paper, it follows that there are cut-point languages accepted by open QFA
which are not regular. The question of regularity with isolated cut-point was not
studied in [26]. But as the set of all unit-trace, positive linear mappings Hn → Hn

is evidently compact, the technique of Rabin obviously applies and the isolated
cut-point languages accepted by open QFA are evidently regular.

Another possibility to settle the regularity question is to notice that Bozapa-
lidis’ theorem [11] evidently covers also the dynamics of open QFAs.

References

1. Ablayev, F., Gainutdinova, A.: On the Lower Bounds for One-Way Quantum Au-
tomata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 132–140.
Springer, Heidelberg (2000)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading (1986)

3. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses
and generalizations. In: Proceedings of the 39th FOCS, pp. 376–383 (1998)

4. Ambainis, A., Bonner, R.F., Freivalds, R., Ķikusts, A.: Probabilities to Accept Lan-
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Abstract. Automata operating on arbitrary graphs were introduced in
a previous paper by virtue of a particular instance of an abelian relational
graphoid. As it is indicated in the same paper, in order to construct a
graph automaton it is necessary and sufficient that the relations over the
Kleene star of the state set constitute a graphoid. In this respect, various
different versions of graph automata arise corresponding to the specific
relational graphoid that is employed. We prove that the generation of an
abelian graphoid by a set Q implies the partitioning of Q into disjoint
abelian groups and vise versa.

1 Introduction

The last 40 years several types of automata operating on restricted classes of
graphs (rooted, planar, acyclic, etc) have been introduced in the literature (cf.
[1], [9], [4]). Automata on general (hyper)graphs are constructed for the first time
in [6] by utilizing the algebraic properties of graphoids, i.e., magmoids satisfying
the 15 equations of graphs which are specified in [5].

The notion of magmoids, introduced by Arnold and Dauchet (cf. [2],[3]), is
the algebraic structure which is employed to generate graphs from a finite alpha-
bet in a role similar to the one that monoids play for the generation of strings.
Recall that a magmoid is a doubly ranked set M = (Mm,n)m,n≥0 equipped with
two operations ◦ and � which are associative, unitary and mutually coherent
in a canonical way. Engelfriet and Vereijken, in [7], proved that the set of (hy-
per)graphs GR(Σ), with hyperedges labeled over a finite doubly ranked alphabet
Σ, can be organized into a magmoid with ◦ being the graph product and � the
graph sum, and that every graph can be built from a specific finite set of ele-
mentary graphs D, together with the elements of Σ, by using the two operations
of product and sum (Theorem 7 of [7]). In this construction every hypergraph is
represented by an infinite number of expressions; this ambiguity was settled by
determining a finite set of equations E , involving the elements of D and Σ, with
the property that two expressions represent the same hypergraph, if and only if,
one can be transformed into the other through these equations (cf. [5]). Deriving
from this result, a graphoid M is defined to be a magmoid with a designated set
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of elements that satisfy the equations E . Hence GR(Σ) can be structured into a
graphoid by virtue of the previously mentioned set D of elementary graphs.

Given a set Q, the relational magmoid over Q is constructed by defining the
operations of composition and sum on the set of all relations from Qm to Qn,
m, n ≥ 0. This set is structured into a relational graphoid over Q, by specifying
a set D of relations that satisfy the equations E . A relational graphoid is called
abelian when a particular relation of D consists of all the transpositions in
Q. In [6] graph automata, over a state set Q, were introduced by virtue of a
specific abelian relational graphoid over Q and by exploiting the fact that GR(Σ)
is the free graphoid generated by Σ. As it is indicated by this construction,
different kinds of graphoids produce graph automata with diverse operation and
recognizability capacity.

We show that all abelian relational graphoids, generated from a given set, can
be determined by virtue of the following characterization. A set Q generates an
abelian relational graphoid, if and only if, Q is partitioned into disjoint abelian
groups. In other words it is proved that the structuring of Rel(Q) into a relational
graphoid results in the partitioning of the set Q, and the endowment of every
class with the group axioms.

2 Magmoids

Recall that a doubly ranked set - or doubly ranked alphabet - (Am,n)m,n∈N is
a set A together with a function rank : A → N × N, where N is the set of
natural numbers. For m, n ∈ N, Am,n is the set {a ∈ A | rank(a) = (m, n)}. In
what follows we will drop the subscript m, n ∈ N and denote a doubly ranked
set simply by (Am,n). A semi-magmoid is a doubly ranked set M = (Mm,n)
equipped with two operations

◦ : Mm,n ×Mn,k →Mm,k, m, n, k � 0

� : Mm,n ×Mm′,n′ →Mm+m′,n+n′ , m, n, m′, n′ � 0

which are associative in the obvious way and satisfy the distributivity law

(f ◦ g) � (f ′ ◦ g′) = (f � f ′) ◦ (g � g′)

whenever all the above operations are defined. A magmoid is a semi-magmoid
M = (Mm,n), equipped with a sequence of constants en ∈ Mn,n (n � 0), called
units, such that

em ◦ f = f = f ◦ en, e0 � f = f = f � e0

for all f ∈Mm,n and all m, n � 0, and the additional condition

em � en = em+n, for all m, n � 0
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holds. Notice that, due to the last equation, the element en (n ≥ 2) is uniquely
determined by e1. From now on e1 will be simply denoted by e.

The sets Relm,n(Q) of all relations from Qm to Qn

Relm,n(Q) = {R | R ⊆ Qm ×Qn}
can be structured into a magmoid with ◦ being the usual relation compo-
sition, while the operation � is defined as follows: for R ∈ Relm,n(Q) and
S ∈ Relm′,n′(Q)

R � S = {(u1u2, v1v2) | (u1, v1) ∈ R and (u2, v2) ∈ S)},
where u1 ∈ Qm, u2 ∈ Qm′

, v1 ∈ Qn, v2 ∈ Qn′
. Notice that Q0 = {ε}, where ε is

the empty word of Q∗. The units of this magmoid are given by e0 = {(ε, ε)} and

e = {(g, g) | g ∈ Q}. (1)

We denote by Rel(Q) = (Relm,n(Q)) the magmoid constructed in this way and
call it the relational magmoid of Q.

Let Σ be a doubly ranked alphabet. We denote by SM(Σ) = (SMm,n(Σ))
the smallest doubly ranked set satisfying the next items:

- Σm,n ⊆ SMm,n(Σ) for all m, n ≥ 0,
- if p ∈ SMm,n(Σ) and q ∈ SMn,k(Σ) then their horizontal concatenation

p q ∈ SMm,k(Σ),
- if p ∈ SMm,n(Σ) and p′ ∈ SMm′,n′(Σ) then their vertical concatenation

p
p′ ∈ SMm+m′,n+n′(Σ).

Let ∼= (∼m,n) be the doubly ranked equivalence on SM(Σ), compatible with
horizontal and vertical concatenation, generated by the relations

p1 p′1

p2 p′2
∼ p1

p2

p′1
p′2

for all pi, p
′
i of suitable ranks. The quotient

SM(Σ)/ ∼= (SMm,n(Σ)/ ∼m,n)
is denoted by smag(Σ) and obviously is a semi-magmoid. The elements of
smagm,n(Σ) are called (m, n)-patterns or patterns of rank (m, n). They are
analogous with the unsorted abstract dags of [9], [10] and [4]; for another formal-
ization see also [8]. Subsets of smag(Σ) are called pattern languages. In order

to avoid confusion in the pattern calculus instead of
p
p′ we write

(
p
p′

)

. Actually

smag(Σ) is the free semi-magmoid generated by Σ as confirms the next result.

Proposition 1. For every semi-magmoid M = (Mm,n) and every doubly ranked
function f : Σ → M , there exists a unique morphism of semi-magmoids f̄ :
smag(Σ)→M making the following triangle commutative.
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Σ

j
smag(Σ)

M

f̄
f

j(x) = x, x ∈ Σ

Actually, f̄ is given by the clauses,

- f̄(x) = f(x), for all x ∈ Σ,

- f̄(p q) = f̄(p) ◦ f̄(q), f̄

(
p
p′

)

= f̄(p) � f̄(p′),

for all p, q, p′ ∈ smag(Σ) of suitable rank.

The construction of the free magmoid follows naturally. Let (en)n≥0 be a se-
quence of symbols not in Σ and denote by mag(Σ) the free semi-magmoid
smag(Σ ∪ {en | n ≥ 0}) divided by the congruence generated by the relations

em p ≡ p ≡ p en,

(
e0

p

)

≡ p ≡
(

p
e0

)

, em en ≡ em+n

for all m, n ≥ 0 and all patterns p of suitable rank, then mag(Σ) clearly consti-
tutes a magmoid which has a universal property analogous to the one stated in
Proposition 1, i.e., mag(Σ) is the free magmoid generated by Σ (cf. [5]).

The set of all hypergraphs can be structured into a magmoid in the following
way. Given a finite alphabet X , we denote by X∗ the set of all words over X and
for every word w ∈ X∗, |w| denotes its length. Formally, a concrete (m, n)-graph,
with hyperedges labeled over a doubly ranked alphabet Σ = (Σm,n), is a tuple

G = (V, E, s, t, l, begin, end)

where

- V is the finite set of nodes,
- E is the finite set of hyperedges,
- s : E → V ∗ is the source function,
- t : E → V ∗ is the target function,
- l : E → Σ is the labelling function such that rank(l(e)) = (|s(e)|, |t(e)|) for

every e ∈ E,
- begin ∈ V ∗ with |begin| = m is the sequence of begin nodes and
- end ∈ V ∗ with |end| = n is the sequence of end nodes.

Notice that according to this definition vertices can be duplicated in the begin
and end sequences of the graph and also at the sources and targets of an edge.
For an edge e of a hypergraph G we simply write rank(e) to denote rank(l(e)).
The specific sets V and E chosen to define a concrete graph G are actually
irrelevant. We shall not distinguish between two isomorphic graphs. Hence we
have the following definition of an abstract graph. Two concrete (m, n)-graphs
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G = (V, E, s, t, l, begin, end) and G′ = (V ′, E′, s′, t′, l′, begin′, end′) over Σ are
isomorphic iff there exist two bijections hV : V → V ′ and hE : E → E′ commut-
ing with source, target, labelling, begin and end in the usual way.

An abstract (m, n)-graph is defined to be the equivalence class of a concrete
(m, n)-graph with respect to isomorphism. We denote by GRm,n(Σ) the set of
all abstract (m, n)-graphs over Σ. Since we shall mainly be interested in abstract
graphs we simply call them graphs except when it is necessary to emphasize that
they are defined up to an isomorphism. Any graph G ∈ GRm,n(Σ) having no
edges is called a discrete (m, n)-graph.

If G is an (m, n)-graph represented by (V, E, s, t, l, begin, end) and H is an
(n, k)-graph represented by (V ′, E′, s′, t′, l′, begin′, end′) then their product G◦H
is the (m, k)-graph represented by the concrete graph obtained by taking the
disjoint union of G and H and then identifying the ith end node of G with the
ith begin node of H , for every i ∈ {1, ..., n}; also, begin(G ◦H) = begin(G) and
end(G ◦H) = end(H).

The sum G�H of arbitrary graphs G and H is their disjoint union with their
sequences of begin nodes concatenated and similarly for their end nodes.

For instance let Σ = {a, b, c}, with rank(a) = (2, 1), rank(b) = (1, 1) and
rank(c) = (1, 2). In the following pictures, edges are represented by boxes, nodes
by dots, and the sources and targets of an edge by directed lines that enter and
leave the corresponding box, respectively. The order of the sources and targets
of an edge is the vertical order of the directed lines as drawn in the pictures. We
display two graphs G ∈ GR3,4(Σ) and H ∈ GR4,2(Σ), where the ith begin node
is indicated by bi, and the ith end node by ei.

b

a

b3

b2

e1

e4

b1

G

e3

e2 b1

b2

b3

a c

b4

e1

e2

H

Then their product G ◦H is the (3, 2)-graph

a c
e2

b

a

b3

b2

b1 e1

and, their sum G � H is the (7, 6)-graph
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b

a e2

e3b3

b2

e1

e4

b1

b4

b5

b6

a c

b7

e5

e6

For every n ∈ N we denote by En the discrete graph of rank (n, n) with nodes
x1, ..., xn and begin(En) = end(En) = x1 · · ·xn; we write E for E1. Note that
E0 is the empty graph.

It is straightforward to verify that GR(Σ) = (GRm,n(Σ)) with the operations
defined above is a magmoid, whose units are the graphs En, n ≥ 0, see Lemma 6
of [7]. Subsets of GR(Σ) are referred to as graph languages. The discrete graphs
of GR(Σ) form obviously a sub-magmoid DISC of GR(Σ) and the function
sending each graph G ∈ GR(Σ) to its underlying discrete graph is indeed an
epimorphism of magmoids

discΣ : GR(Σ)→ DISC.

Engelfriet and Vereijken proved that, GR(Σ) is finitely generated, that is, any
graph can be built from a specific finite set of elementary graphs (cf. [7]). More
precisely, let us denote by Ip,q the discrete (p, q)-graph having a single node x
and whose begin and end sequences are x · · ·x (p times) and x · · ·x (q times)
respectively. Note that I1,1 is equal with E. Let also Π be the discrete (2, 2)-
graph having two nodes x and y and whose begin and end sequences are xy and
yx, respectively. Finally, for every σ ∈ Σm,n, we denote again by σ the (m, n)-
graph having only one edge and m + n nodes x1, . . . , xm, y1, . . . , yn. The edge is
labelled by σ, and the begin (resp. end sequence) of the graph is the sequence
of sources (resp. targets) of the edge, viz. x1 · · ·xm (resp. y1 · · · yn).

Now let us introduce the alphabet D, formed by the following five symbols

i21 : 2→ 1 i01 : 0→ 1 i12 : 1→ 2 i10 : 1→ 0 π : 2→ 2

where x : m → n indicates that symbol x has first rank m and second rank n,
and denote by mag(Σ ∪D) the free magmoid generated by the doubly ranked
alphabet Σ ∪D. We denote by

valΣ : mag(Σ ∪D)→ GR(Σ)

the unique magmoid morphism extending the function described by the
assignments

i21 
→ I2,1, i01 
→ I0,1, i12 
→ I1,2, i10 
→ I1,0, π 
→ Π,

σ 
→ σ, for all σ ∈ Σ, en 
→ En, for all n ∈ N.
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Theorem 1 (cf. [7]). The magmoid GR(Σ) is generated by the set

Σ ∪ {I12, I10, I21, I01, Π}.
The previous theorem implies that the morphism valΣ is a surjection. However,
valΣ is not an injection and in fact, for any given hypergraph, there are infinitely
many patterns representing it. This ambiguity was settled by constructing a
finite set of equations with the property that two patterns represent the same
hypergraph, if and only if, one can be transformed into the other through these
equations (cf. [5]). More precisely, we denote by πn,1 the pattern inductively
defined by

π1,0 = e, πn,1 =
(

πn−1,1

e

) (
en−1

π

)

which will represent the graph associated with the permutation
(

1 2 . . . n + 1
2 . . . n + 1 1

)

interchanging the last n numbers with the first one (see below). Notice that for
n = 1, π1,1 = π. Given a finite doubly ranked alphabet Σ, the set of equations
E :

ππ = e2,

(
e
π

) (
π
e

) (
e
π

)

=
(

π
e

) (
e
π

) (
π
e

)

,

(
e

i21

)

i21 =
(

i21
e

)

i21,

(
e

i01

)

i21 = e,

πi21 = i21,

(
e

i01

)

π =
(

i01
e

)

,

(
π
e

) (
e
π

) (
i21
e

)

=
(

e
i21

)

π,

i12

(
e

i12

)

= i12

(
i12
e

)

, i12

(
e

i10

)

= e,

i12π = i12, π

(
e

i10

)

=
(

i10
e

)

,

(
i12
e

) (
e
π

) (
π
e

)

= π

(
e

i12

)

,

i12 i21 = e,

(
i12
e

)(
e

i21

)

= i21 i12,

πm,1

(
σ
e

)

=
(

e
σ

)

πn,1, where σ ∈ Σm,n, m, n ≥ 0,

has the following property: for all patterns p and q,

valΣ(p) = valΣ(q) if and only if p =
E

q.
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3 Graphoids and Graph Automata

As we have seen in the previous section, the equations E are satisfied in GR(Σ)
by replacing π by Π and iκλ by Iκ,λ. Magmoids with such a property are called
graphoids. Formally, a graphoid M = (M, D) consists of a magmoid M with
units e0 and e and a set D = {s, d01, d21, d10, d12}, where s ∈M2,2, d01 ∈ M0,1,
d21 ∈M2,1, d10 ∈M1,0, d12 ∈M1,2 such that the following equations hold:

s ◦ s = e2 (2) (s � e) ◦ (e � s) ◦ (s � e) = (e � s) ◦ (s � e) ◦ (e � s) (3)

(e � d21) ◦ d21 = (d21 � e) ◦ d21 (4) (e � d01) ◦ d21 = e (5)

s ◦ d21 = d21 (6) (e � d01) ◦ s = (d01 � e) , (7)

(s � e) ◦ (e � s) ◦ (d21 � e) = (e � d21) ◦ s, (8)

d12 ◦ (e � d12) = d12 ◦ (d12 � e) (9) d12 ◦ (e � d10) = e, (10)

d12 ◦ s = d12 (11) s ◦ (e � d10) = (d10 � e) , (12)

(d12 � e) ◦ (e � s) ◦ (s � e) = s ◦ (e � d12) , (13)

d12 ◦ d21 = e (14) (d12 � e) ◦ (e � d21) = d21 ◦ d12 (15)

sm,1 ◦ (f � e) = (e � f) ◦ sn,1, for all f ∈ magm,n(Σ ∪D), (16)

where sm,1 is defined inductively by s analogously with πm,1 (see Section 2).
We point out that the last equation holds in GR(Σ) since it holds for all

the letters of the doubly ranked alphabet Σ (cf. [5]). Thus the pair GR(Σ) =
(GR(Σ), D), where D = {Π, I0,1, I2,1, I1,0, I1,2} is a graphoid. Given graphoids
(M, D) and (M ′, D′), a magmoid morphism H : M → M ′ preserving D-sets,
i.e., H(s) = s′ and H(dκλ) = d′κλ, is called a morphism of graphoids. Graphoids
Rel(Q) = (Rel(Q), D) constructed from the magmoid of relations over a given
set Q are called relational graphoids and a relational graphoid is called abelian
when s = {(g1g2, g2g1) | g1, g2 ∈ Q}.
Example 1. One way to construct an abelian relational graphoid is by setting s
as above and

d01 = {(ε, g) | g ∈ Q}, d21 = {(gg, g) | g ∈ Q},
d10 = {(g, ε) | g ∈ Q}, d12 = {(g, gg) | g ∈ Q}.

This graphoid was introduced in [6] where it was used in the construction of
graph automata.
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We have already discussed how the set GR(Σ) can be structured into a graphoid;
in fact it is the free graphoid generated by Σ.

Theorem 2 ([6]). The doubly ranked function j : Σ → GR(Σ), with j(σ) = σ,
for all σ ∈ Σ, has the following universal property: for any graphoid M =
(M, D), D = {η0, η, s, d10, d12, d01, d21} and any doubly ranked function f : Σ →
M , there exists a unique morphism of graphoids f̄ : GR(Σ)→M making com-
mutative the following triangle.

Σ

j
GR(Σ)

M

f̄
f

The morphism f̄ is defined by the clauses

- f̄(σ) = f(σ), σ ∈ Σ,
- f̄(E0) = η0, f̄(E) = η, f̄(Π) = s, f̄(Iij) = dij ,
- f̄(G1 ◦G2) = f̄(G1) ◦ f̄(G2),
- f̄(G1 � G2) = f̄(G1) � f̄(G2),

for all graphs G1, G2 of suitable rank.

A graph homomorphism H : GR(Σ)→ GR(Σ′) is just a morphism of graphoids.
Hence, by virtue of the previous theorem it is completely determined by its
values H(σ), σ ∈ Σ. A graph homomorphism H : GR(Σ)→ GR(Σ′) is called a
projection whenever H(Σ) ⊆ Σ′.

Automata operating on arbitrary (hyper)graphs were introduced in [6]. A
graph automaton is a structure A = (Σ, Q,Rel(Q), δA, IA, TA), where:

- Σ is the doubly ranked alphabet of hyperedge labels;
- Q is the finite set of states;
- Rel(Q) is a relational graphoid over Q;
- δA : Σ → Rel(Q) is the doubly ranked transition function;
- IA, TA are initial and final rational subsets of Q∗.

According to Theorem 2 the function

δA : Σ → Rel(Q)

is uniquely extended into a morphism of graphoids

δ̄A : GR(Σ)→ Rel(Q).

The behavior of A is given by

|A| = {F | F ∈ GRm,n(Σ), δ̄A(F ) ∩ (I(m)
A × T

(n)
A ) �= ∅, m, n ∈ N}
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where I
(m)
A = IA ∩ Qm and T

(n)
A = TA ∩ Qn. From their construction, graph

automata are finite machines due to the fact that the set of equations (2)-(16)
is finite. A graph language is called recognizable whenever it is obtained as the
behavior of a graph automaton. The class of all such languages over the doubly
ranked alphabet Σ is denoted by Rec(Σ).

Example 2. Let Σ = Σ1,1 = {a, b}, and Q = {q1, q2}, the graph automaton

A = (Σ, Q,Rel(Q), δA, IA, TA)

where Rel(Q) is as in Example 1, IA = {q1}, TA = {q1}, δA(a) = {(q1, q2)},
δA(b) = {(q2, q1)}, clearly computes the graph language L ⊆ GR1,1(Σ), consist-
ing of exactly those graphs that have at least one path labeled (ab)∗ from their
initial to their final node.

4 The Structure of Abelian Relational Graphoids

From the construction of the graph automata it is evident that the selection of
the particular graphoid is crucial in the sense that it determines the behavior
of the automaton. In this respect, we determine the properties that a set Q
inherits from the structuring of Rel(Q) into a graphoid. In what follows, let Q
be a finite set and Rel(Q) = (Rel(Q), D), with D = {s, d01, d21, d10, d12} an
abelian relational graphoid over Q.

By using the fact that for Rel(Q) it holds

e = {(g, g) | g ∈ Q} (17) and s = {(g1g2, g2g1) | g1, g2 ∈ Q} (18)

we obtain the following two lemmata.

Lemma 1. i) If (h, fg) ∈ d12 then (h, gf) ∈ d12.
ii) If (fg, h) ∈ d21 then (gf, h) ∈ d21.

Proof. We combine Equations (11) and (6) with Equation (18).

Lemma 2. i) If (f, ag) ∈ d12 or (f, ga) ∈ d12 and (a, ε) ∈ d10, then f = g.
ii) If (ag, f) ∈ d21 or (ga, f) ∈ d21 and (ε, a) ∈ d01, then f = g.

Proof. i) From Lemma 1

(f, ag) ∈ d12 implies (f, ga) ∈ d12

from this and (a, ε) ∈ d10 we get

(f, g) ∈ d12 ◦ (e � d10)

which from Equation (10) gives (f, g) ∈ e and from (1) we obtain the desired
result.

ii) Similarly from using Equation (5).
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By this result we obtain the following Lemma.

Lemma 3. If (f, fa) ∈ d12, with (a, ε) ∈ d10 and (f, fb) ∈ d12, with (b, ε) ∈ d10,
then a = b.

Proof. Since (f, fa) ∈ d12 and (f, fb) ∈ d12 we get that

(f, fba) ∈ d12 ◦ (d12 � e).

Now from Equation (9) it must also hold

(f, fba) ∈ d12 ◦ (e � d12).

Hence there exists an element c ∈ Q such that (f, fc) ∈ d12 and (c, ba) ∈ d12.
This together with (a, ε) ∈ d10 and Lemma 2 i) gives c = b. By the same lemma
and (b, ε) ∈ d10 we get that c = a which concludes the proof.

At this point we are able to define a partition inside Q.

Proposition 2. The relation ≈ defined for f, g ∈ Q by f ≈ g if and only if
there exists a ∈ Q with (a, ε) ∈ d10 such that

(f, fa) ∈ d12 and (g, ga) ∈ d12,

is an equivalence.

Proof. By Equations (10) and (1) we deduce that for every f ∈ Q there exists
an element a ∈ Q such that

(f, fa) ∈ d12 and (a, ε) ∈ d10.

Hence f ≈ f . The relation is obviously reflexive and from Lemma 3 it is easily
seen that it is also transitive.

The equivalence ≈ defined in the above proposition partitions Q into sets Qi

which, as we shall prove, have the structure of an abelian group with operations
induced by d21 and d12 and units by d10 and d01. The following two lemmata
are a valuable step towards this direction.

Lemma 4. If (a, ε) ∈ d10, then

i) (a, aa) ∈ d12,
ii) (aa, a) ∈ d21, and
iii) (ε, a) ∈ d01.

Proof. i) From Equations (10) and (1) there exists an element b ∈ Q with
(b, ε) ∈ d10 such that (a, ab) ∈ d12 and by Lemma 2 i) we obtain a = b.

ii) From Equation (14) there are elements f, g ∈ Q such that

(a, fg) ∈ d12 and (fg, a) ∈ d21.

From the first of the above and Equation (11) we have (a, gf) ∈ d12 and this
together with (g, g) ∈ e and (fg, a) ∈ d21 gives

(ag, ga) ∈ (d12 � e) ◦ (e � d21).



Graph Automata: The Algebraic Properties of Abelian Relational Graphoids 179

Hence by virtue of Equation (15) it also holds (ag, ga) ∈ d21 ◦ d12. This means
that there exists an element k ∈ Q with (ag, k) ∈ d21 and (k, ag) ∈ d12 and this
by Lemma 2 gives k = g. Thus

(ag, g) ∈ d21 and (g, ag) ∈ d12,

or by Lemma 1
(ga, g) ∈ d21 and (g, ga) ∈ d12,

hence (ga, ga) ∈ d21 ◦ d12 and from Equation (15)

(ga, ga) ∈ (d12 � e) ◦ (e � d21) .

From this we deduce that there exists an element b ∈ Q with

(g, gb) ∈ d12 and (ba, a) ∈ d21.

The second of the above together with (a, aa) ∈ d12 gives

(ba, aa) ∈ d21 ◦ d12

which again by Equation (15) means that

(ba, aa) ∈ (d12 � e) ◦ (e � d21) .

Hence there exists an element k such that

(b, ak) ∈ d12 and (ka, a) ∈ d21.

The first of the above from Lemma 2 gives k = b so the above equation are
rewritten as

(b, ab) ∈ d12 and (ba, a) ∈ d21,

and from these and Lemma 1 it holds (b, a) ∈ d12 ◦ d21, which from Equations
(14) and (1) gives b = a which concludes the proof.

iii) From Equation (5) there exists an element b ∈ Q with (ε, b) ∈ d01 such
that (ab, a) ∈ d21 and by using the same argument we used in the end of the
previous item we get a = b as wanted.

Lemma 5. If (f, fa) ∈ d12, and (a, ε) ∈ d10 then (fa, f) ∈ d21.

Proof. From (f, fa) ∈ d12 and (aa, a) ∈ d21 (obtained from Lemma 4) we get

(fa, fa) ∈ (d12 � e) ◦ (e � d21)

and by Equation (15) there exists an element k such that (fa, k) ∈ d21 which by
Lemma 4 iii) and Lemma 2 ii) gives f = k.

The next lemma guarantees that the group operations are always defined for two
elements of the same group.
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Lemma 6. If for f, g ∈ Q, f ≈ g, then there exists k ∈ Q such that (fg, k) ∈ d21

and (k, fg) ∈ d12.

Proof. Let (f, fa) ∈ d12 and (g, ga) ∈ d12 with (a, ε) ∈ d10. By Lemma 5
(ag, g) ∈ d21 and hence by using (f, fa) ∈ d12 and Equation (15)

(fg, fg) ∈ d21 ◦ d12,

which gives the desired result.

The following result states that the operations are closed and defined only for
elements of the same group.

Lemma 7. If for f, g, k ∈ Q, (fg, k) ∈ d21 or (k, fg) ∈ d12, then f ≈ g ≈ k.

Proof. Let (fg, k) ∈ d21 and (f, af) ∈ d12 with (a, ε) ∈ d10. Then

(fg, ak) ∈ (d12 � e) ◦ (e � d21)

and by Equation (15) there exists an element h ∈ Q with (h, ak) ∈ d12. This
by Lemma 2 i) gives h = k so (k, ak) ∈ d12 and hence k ≈ f . Similarly we get
k ≈ g. By an argument akin to the above we can also prove the second case.

We are now ready to state the following theorem.

Theorem 3. If the set Q is structured into an abelian relational graphoid by the
set of relations D = {s, d01, d21, d10, d12}, then Q is partitioned by the equivalence
≈ into abelian groups Qi with operation for f, g ∈ Qi

f · g = k, where (fg, k) ∈ d21

and unit the unique element a ∈ Qi with the property (a, ε) ∈ d10.

Proof. First we will show that the operation is well defined for every set Qi.
From Lemma 6 we get that for all f, g ∈ Qi there exists an element k with

(fg, k) ∈ d21 and (k, fg) ∈ d12

At this point assume that there exists a second element k′ with (fg, k′) ∈ d21;
from this and the second of the above together with Equation (14) we obtain
that (k, k′) ∈ e, thus k = k′.

From Lemma 7 we see that the operation is closed for every set Qi.
For every Qi there is exactly one element a ∈ Qi with the property (a, ε) ∈ d10.

Indeed from Proposition 2 and from Lemma 4 i) we get that there is at least
one such element a ∈ Qi. Now let b ∈ Qi with (b, ε) ∈ d10. We have (b, ba) ∈ d12

and from (b, ε) ∈ d10 and Lemma 2 we get a = b. This element is the unit of Qi

as asserts Lemma 5.
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Associativity is obtained from Equation (4) in a straightforward way.
Now let f ∈ Qi, with a the unit of Qi, to prove invertibility we have to show

that there exists an element g ∈ Qi with (fg, a) ∈ d21. From (af, f) ∈ d21 and
(f, fa) ∈ d12 we obtain (af, fa) ∈ d21 ◦ d12 which from Equation (15) gives

(af, fa) ∈ (d12 � e) ◦ (e � d21) .

This means that there exists an element g with (a, fg) ∈ d12 and (gf, a) ∈ d21

and from Lemma 7 it holds g ∈ Qi.
Every group Qi is commutative as it is asserted by Lemma 1 ii).

It is straightforward to prove that the opposite direction of the above theorem
also holds, i.e., every partition of a set Q into abelian groups instructs a struc-
turing of Q into an abelian relational graphoid. Hence, we have specified all the
possible abelian relational graphoids that can be constructed from a given set.
Since the role of the graphoid is instrumental in the construction of a graph
automaton, this result actually determines all the possible types of (abelian)
graph automata with a given state set Q. Furthermore, it introduces previously
unknown graphoids considerably more sophisticated than the existing ones. In-
deed, the graphoid of Example 1 that was used for the construction of graph
automata in [6] corresponds to the partitioning of the state set into singleton
sets each one being the trivial group. Further research directions include the
following.

- Determine the function and the behavior of graph automata utilizing the
discovered graphoids.

- Compare the new types of graph automata with the present version as well
as with other kinds of graph recognizability.

- Examine weather non-abelian relational graphoids exist.
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A Survey on Picture-Walking Automata�

Jarkko Kari and Ville Salo
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University of Turku, FI-20014 Turku, Finland

Abstract. Picture walking automata were introduced by M. Blum and
C. Hewitt in 1967 as a generalization of one-dimensional two-way fi-
nite automata to recognize pictures, or two-dimensional words. Several
variants have been investigated since then, including deterministic, non-
deterministic and alternating transition rules; four-, three- and two-way
movements; single- and multi-headed variants; automata that must stay
inside the input picture, or that may move outside. We survey results
that compare the recognition power of different variants, consider their
basic closure properties and study decidability questions.

Keywords: Picture-walking automata, 2-dimensional automata, picture
languages.

1 Introduction

Informally, a picture is a matrix over a finite alphabet, and a picture language
is a set of matrices over the same alphabet. A picture-walking automaton is a
finite state automaton moving on the cells of the given picture according to a
local rule, accepting if it reaches a final state [1].

The theory of picture languages is a branch of formal language theory which
studies natural picture language families and connections between them. Most
of this theory has concentrated on classes having to do with ‘finite state’, in an
effort to find a natural counterpart for the one-dimensional regular languages.
The classes obtained from picture-walking automata are usually not considered
to be a very natural counterpart due to their rather weak closure properties,
but the recognizable picture languages take this place instead. In fact, many
interesting proofs about picture-walking automata have more of a ‘navigational’
than a language-theoretic feel to them.

In the first section, we deal with very basic and natural questions. We only
consider Boolean closure properties and the lattice of inclusions between the
four basic automata classes we define: DFA, NFA, UFA and AFA, that is, deter-
ministic, non-deterministic, universally quantifying and alternating finite state
automata, respectively. We present a slightly more refined view to these questions
by considering unary rectangles and non-unary square pictures separately with
the aim of clarifying the strengths and weaknesses of each approach. In each case
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we obtain a slightly different set of non-closure properties, which taken together
give a rather complete set of results for the class of all pictures.

The second section introduces a very modest-looking change to the definition
of an automaton: allowing it to exit the picture. We will see that this change is
relevant for AFA, but not for the other classes, although this is not altogether
straightforward to prove. In the third and fourth sections, we introduce much
greater changes to the definition. In the third section, we restrict the directions
in which the automaton is allowed to move. We give a brief introduction to the
results known for these classes. In particular, for three-way automata, we give
a complete set of Boolean closure properties and complete comparison results
between all three- and four-way automata classes, mostly without proofs. In the
fourth section we give our automata a finite set of markers they can move around
the picture. In Section 5, we review decidability results, and recall connections
between 2-dimensional DFA and Minsky machines.

Finally, we mention that a survey on two-dimensional picture-walking au-
tomata theory already exists [6], although it’s main focus is not on finite state
automata but on general Turing machines. Since few papers on picture-walking
automata have been published after [6], it is still mostly up-to-date, except for
some open problems which have since been solved (many of which are presented
here). There is also a good survey of general two-dimensional language theory
in the Handbook of Formal Languages [2].

2 Definitions

A picture is the two-dimensional analog of a finite word: a not necessarily square
matrix over a finite alphabet. We may usually assume a binary alphabet Σ =
{0, 1}. We write Σ∗

∗ for the full language of all matrices over Σ, and define a
picture language as a subset of a full language. A class of picture languages,
usually called a picture class, is a collection of picture languages.

For p ∈ Σ∗
∗ we write p[(i, j)] = pi,j for the contents of the cell in position (i, j)

in p, with the usual matrix indexing. We also draw p as a matrix, and thus,
for instance, the cell with index (1, 1) is considered the top left cell and the
first axis is the vertical one, ascending downward. If (i, j) is not a cell of p, we
define p[(i, j)] to be a special symbol # (that is, in practise we index pictures
by Z

2). We write dom(p) for the set of indexes of (non-#) cells in p, called the
domain of p, and edom(p) for the cells of dom(p) and all their neighbors. The
width and height of a picture p are denoted by |p| and p, respectively. The set
edom(p)− dom(p) is called the border of p.

Let us start by defining the main picture-walking automata considered in
this survey, and their corresponding picture classes. Our automata have a single
head, and they walk on the positions of the picture according to a local rule,
accepting if they reach a final state. Existential and universal states can be used
to make (perfect) guesses and to check multiple local properties ‘simultaneously’,
respectively.
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Definition 1. An alternating finite state automaton (an AFA) A is a tuple
(Q, Σ, E, U, I, F, δ) where Q is the set of states partitioned into E and U , the
sets of universal and existential states. The sets I, F ⊂ Q are called the sets of
initial and final states. The function δ is called the transition function or the
local rule and it has type δ : Q×Σ → 2Q×{(1,0),(−1,0),(0,1),(0,−1)}.

If Q = E (and thus U = ∅), the automaton is said to be non-deterministic
(an NFA), and if Q = U and |I| = 1, it is said to be universally quantifying (a
UFA). If all images of δ are singletons or empty sets and |I| = 1, the automaton
is called deterministic (a DFA). We use the variable XFA to state things for all
the automata classes simultaneously.

Definition 2. Let A = (Q, Σ, E, U, I, F, δ) be an AFA. An instantaneous de-
scription (an ID) of A on a picture p ∈ Σ∗

∗ is a pair (q, x) ∈ Q × edom(p).
An ID l2 = (q2, x2) is a successor of another ID l1 = (q1, x1) if (q2, x2 − x1) ∈
δ(q1, p[x1]). We then write l1 → l2. For a vertex-labeled tree r, we write a1 → a2

if a2 is a child of a1 in r, and we write l(a) for the label of node a ∈ r.
Now, an accepting run of A on p is a finite tree r labeled with ID’s such that

– the root of r has its label in I × {(1, 1)}.
– if a1 ∈ r is not a leaf and l(a1) ∈ E × edom(p), then

∃a2 ∈ r : a1 → a2 ∧ l(a1)→ l(a2).

– if a1 ∈ r is not a leaf and l1 = l(a1) ∈ U × edom(p), then

∀l2 : l1 → l2 =⇒ ∃a2 ∈ r : a1 → a2 ∧ l(a2) = l2.

– the leaves of r have labels in F × edom(p).

We write L(A) for the set of pictures p over Σ for which there exists an accepting
run of A.

The restriction |I| = 1 is important for UFA, since otherwise I provides the
automaton with existential quantification. For DFA, NFA and UFA, we may
leave E and U out of the definition, and for DFA, we take δ to have the type
δ : Q×Σ → Q× {(1, 0), (−1, 0), (0, 1), (0,−1)}, with the obvious meaning.

Note that an accepting run for an NFA is just a sequence of ID’s. For UFA,
an accepting run can look complicated, but we may – in an obvious way – define
non-accepting runs for them, that is, possibly infinite sequences of ID’s that prove
no accepting run exists. This is possible since all choices of transitions must lead
to acceptance or a picture is rejected by a UFA. Of course, a non-accepting run
exists if and only if the picture is not accepted.

Note that our automata cannot sense if the border of the picture is next to
them, but must step on it and read the special symbol # in order to obtain
this information. We will also need 1-dimensional automata. These are always
two-way automata, that is, they move both left and right. The left and right
ends of the input word are again observed by reading a bordering #.

For each automata class XFA, the picture class corresponding to XFA will
also be called XFA. That is, asking whether there exists an XFA for a picture
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language L is equivalent to asking whether L ∈ XFA. This should not cause
confusion.

We use the naming scheme of [11] and [22] for the XFA classes. DFA and
NFA were defined already in [1] in 1967 and were simply called ‘automata’,
while the most used names for DFA and NFA seem to have been ‘2-DA’ and
‘2-NA’, respectively. UFA and AFA were discussed at least in [10], as a subset of
Turing machines, and were given the names ‘2-UFA’ and ‘2-AFA’ in [3]. Slightly
confusingly, we will later write 2XFA to refer to two-way automata instead of
two-dimensional automata. Two- and three-way restrictions of automata have
often been denoted by having ‘TR’ and ‘TW’ somewhere in the name of the class,
respectively. We do not consider probabilistic automata in this article: see [17]
for a incomparability result between probabilistic automata and AFA.

The square pictures and the unary pictures are natural subclasses of the set
of all pictures (also called the general pictures). Some negative results (results of
the type L /∈ CLS for some picture class CLS) are easier to prove in the square
world (content results) and some are easier to prove in the unary world (shape
results).

Definition 3. For each automata class XFA, we write XFAs for the languages
of square pictures accepted by some automaton in XFA. We write XFAu for the
unary languages of the XFA automata. Complements of languages in XFAs and
XFAu are usually taken with respect to the set of all square pictures and all unary
pictures, respectively.

The theory of picture languages has not been primarily concerned with these
kinds of automata, but a different model of computation known as recogniz-
ability. We will not discuss the recognizable picture languages (REC) in length,
but we do show some connections between the two worlds, and obtain some
results for picture-walking automata from non-closure properties of REC. For
more information on REC, see [2] or [22].

Definition 4. A Wang tile is an element of C4 for some set of colors C con-
taining a special element #. A set T of Wang tiles with the same C defines a
picture language over T by taking the pictures where neighboring colors match,
and #’s occur (only) facing the border of the picture. Such a language is called
a local picture language. A recognizable picture language is the image of a local
picture language through a symbol-to-symbol projection. We denote the class of
recognizable picture languages by REC.

We may also think of an REC grammar (tileset and projection) as ‘accept-
ing’ languages instead of generating them, by taking a picture p, and assigning
‘states’ (elements of T ) on top of the cells of p, which agree in their colors with
the neighboring states. When picture-walking automata are involved, we will,
however, avoid the term ‘state’ in this context, and simply say tiles are assigned
on top of the cells.
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3 Basic Results on 4-Way Automata

As is often the case in mathematics, the main results in the theory of picture-
walking automata tend to be of one of two types: ‘positive’ or ‘negative’. A
positive result says a class is a subset of another, or that a language belongs to
a class, while a negative result tells us a class is a proper subset of another, or
that a language cannot be accepted by some type of machine.

Many negative results are known for both XFAu and XFAs, and taken to-
gether, one could say the natural questions for XFA have mostly been answered.
However, the intersection of these classes is not understood at all. We repeat
the following two conjectures, which were made in [12] in 2004, and are still
unanswered.

Conjecture 1. The language of unary squares with prime side length are not in
DFA.

Conjecture 2. DFA is a proper subset of NFA when restricted to unary squares.

As we mentioned, by varying either shape or content, we can build the beginning
of a (proper) polynomial hierarchy and prove basic non-closure properties for
all the automata classes involved. We first show positive results for the class
of all picture languages and then devote a subsection for negative results in
both the case of varying shape with unary alphabet and varying content with
square shape. In the unary case, a proper diamond of inclusions is shown to exist
between the four classes. As for the square case, proper inclusions are known to
hold between DFAs, NFAs and AFAs, but little is known about UFAs. In each
case a slightly different set of Boolean closure properties is obtained.

Figure 3 summarizes the known results. All inclusions drawn are proper, and
dashed lines signify incomparable classes. On the right side, UFAs is known to
be between DFAs and AFAs, but not between DFAs and NFAs.

Picture languages

?

Unary

DFAu

NFAu UFAu

AFAu

Square

DFAs

NFAs UFAs

AFAs
?

?

Fig. 1. A diagram of inclusions of the automata classes in the unary and square case
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In the following sections, we will see that DFA is closed under complementa-
tion, while NFA, UFA and AFA are not. We prove non-closure under complement
separately for the unary and square cases for NFA and UFA. Non-closure in the
case of all pictures can easily be inferred from either proof. The case of comple-
menting AFAu is unknown, but we prove non-closure for AFAs, from which the
general case of AFA easily follows. Figure 3 summarizes the closure properties
known for the different types of automata, where we write XFAx for XFA, XFAu

and XFAs.

DFAx NFA NFAu NFAs UFAx AFA AFAu AFAs

¬ Yes No No ? No No ? No

∩ Yes Yes Yes Yes Yes Yes Yes Yes

∪ Yes Yes Yes Yes ? Yes Yes Yes

Fig. 2. Refined table of Boolean closure properties of the XFA classes

Note that for general pictures, all Boolean closure properties except for the
closure of UFA under union are known. In [22], a negative answer is conjectured.

Conjecture 3. UFA is not closed under union.

3.1 Positive Results

Obviously, DFA ⊂ NFA ⊂ AFA and DFA ⊂ UFA ⊂ AFA with not necessarily
proper inclusions. It is also clear that all the classes are closed under rotation
around the center of the picture, vertical and horizontal flips and matrix trans-
pose. We can also prove natural Boolean closure properties for these classes with
simple constructions outlined below.

The following observation has been used in numerous articles, including
[3,11,22]. The proof is a direct modification of [23].

Theorem 1. For every DFA A, there is a DFA A′ with L(A′) = L(A) such that
A′ halts on every input. �

Corollary 1. DFA is closed under complementation, that is, DFA = co-DFA.
�

Theorem 2. All the XFA classes are closed under intersection and DFA, NFA
and AFA are closed under union.

Proof. Since an accepting computation is necessarily halting in all branches of
the accepting run, intersection can be implemented for any machine by simply
testing inclusion in the languages in question one by one. As for union, NFA
and AFA can use an existential state, and for a halting DFA (guaranteed by
Theorem 1), union can be implemented like intersection. �



A Survey on Picture-Walking Automata 189

3.2 Negative Results for Varying Shape and Unary Alphabet

The shape-based approach is more recent than the content-based one, and gives
better results for connections between classes. It is based on 1-dimensional au-
tomata. The tools we need are a reduction from 2D to 1D (Lemma 1) and a
lemma connecting the number of states in a 1-dimensional automata, and the
period and threshold of its language (Lemma 2). After this, a single concrete
language is enough to separate all the four automata classes. We also obtain
non-closure under complementation for NFAu and UFAu.

Let A be an XFA running on unary input, with language L = L(A). For
each height h, we may, in a natural way, associate a 1-dimensional XFA Ah

accepting the unary language of the corresponding widths. Furthermore, Ah has
O(h) states where the invisible constant only depends on A.

Lemma 1. [11] Let A be an AFA with ku universal states and ke existential
states recognizing the unary picture language L ⊂ {1}∗∗. Then, for each h, the
language Lh = {1|p| | p ∈ L, p = h} is recognized by a one-dimensional two-way
AFA Ah with ku(h + 2) universal states and ke(h + 2) existential states.

Proof. Let A = (Q, {1}, E, U, I, F, δ) and X = [0, h + 1]. Then

Ah = (Q×X, {1}, E ×X, U ×X, I × {1}, F ×X, δh)

where δh simulates the local rule of A, interpreting the location of Ah as the
horizontal location of A, and the X component of the state of Ah as the vertical
location of A. It is clear that Ah correctly recognizes Lh. �

Of course, each Ah accepts a unary regular language, and thus an eventually
periodic language. Since the Ah have linearly many states with respect to h, it
will be useful to prove a lemma which tells us something about the connection
between the number of states in a (one-dimensional) automaton, and the period
and threshold of the unary language it accepts.

Lemma 2. [11,22] Let A be a 1D (two-way) AFA with k states over a unary
alphabet with language L ⊂ 1∗. Let n > k. Then

– if A is an NFA, 1n ∈ L =⇒ 1n+k! ∈ L.
– if A is a UFA, 1n ∈ L⇐= 1n+k! ∈ L.

In particular, if A is a DFA, an equivalence holds, since if the transition relation
is a function, we may change between universal and existential states without
changing the language.

Proof. First, assume all states are existential, and let 1n ∈ L. Consider a subse-
quence s of an accepting run r for 1n, which visits border symbols # at s1 and
s|s| or possibly ends with the automaton halting in the middle of the word (we
think of the automaton as being on the left border just before starting its run).
We will translate such ‘partial runs’ to corresponding partial runs for the longer
input 1n+k!, which we then glue together to obtain 1n+k! ∈ L.
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If a partial run moves from the left border back to the left border, the same
partial run can be used for the longer input, and similarly for the right border.
If a partial run ends in the middle of the word, it can also directly be translated
for the longer word.

If s moves from the left border to the right border, we note that there must
be a repetition of states such that the automaton moved some number of steps
0 < l ≤ k to the right in between. But l divides k!, so we may repeat this partial
run an additional k!l times to obtain a corresponding partial run for the longer
input. A similar claim holds for partial runs from right to left.

The claim for UFA follows by considering non-accepting runs instead. The
fact that these runs can be infinite does not lead to complications. �
We will now separate NFA and UFA by using the duality between existential and
universal quantification found in Lemma 2. For this, we will use the following
‘billiard ball language’ from [11].

Definition 5. The billiard ball language Lbilliard is defined as

Lbilliard = {p ∈ {1}∗∗ | |p| ∈ 〈p, p + 1〉} = {mp + n(p + 1) | m, n ∈ (N ∪ 0)}

Fig. 3. The movement of an NFA accepting the unary 3x10 picture, which is in Lbilliard

That is, for each height h, the widths must be some linear combination of h
and h + 1. It is easy to make an NFA accepting this language by having it move
to the right diagonally, bouncing off the walls as in Figure 3.2. Just as easily,
we can make a UFA accepting its (unary) complement. Using the lemmas we
proved, we can also prove the converse claims: a UFA cannot accept Lbilliard and
an NFA cannot accept its complement:

Lemma 3. Lbilliard /∈ UFAu, Lcbilliard /∈ NFAu

Proof. We will only prove Lbilliard /∈ UFAu, the proof for NFAu is symmetric. So
assume on the contrary that A is a UFA with k states accepting Lbilliard, and for
each h let Ah with L(Ah) = Lh be the 1-dimensional UFA given by Lemma 1.

By looking at the definition of Lbilliard, it is not hard to see that for each h,
h2−h− 1 = h(h− 2)+ (h− 1) is not in Lh, but h2−h is. Let h be large enough
that h2−h−1 > k(h+2). Here, k(h+2) = kh is the number of states of Ah, and
1h

2−h−1 /∈ Lh, so by Lemma 2, also 1h
2−h−1+mkh! /∈ Lh for all m. But obviously

Lh contains every word longer than some threshold t, a contradiction. �
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Corollary 2. NFAu �� UFAu. �
Corollary 3.

DFAu � NFAu � AFAu
and

DFAu � UFAu � AFAu
�

Thus, we have built the diamond on the left in Figure 3. As a side product, we
obtained that NFA and UFA are not closed under complement, completing the
unary part of Figure 3.

Corollary 4. NFAu and UFAu are not closed under complement. �

3.3 Negative Results for Varying Content and Square Shape

The separation of DFA and NFA on binary squares was done already in [1], and
it is based on a pigeonhole argument.

Definition 6. The language Lcenter consists of square pictures p of odd side
length over {0, 1} containing a 1 in the middle cell.

Theorem 3. Lcenter is in NFAs −DFAs.

Proof. It is easy to see that Lcenter is in NFAs: An NFA for it follows the main
diagonal southeast, and can turn northeast at any 1 it sees. It accepts if it reaches
the northeast corner. (Checking that the picture has square shape is trivial.)

Now, consider a hypothetical DFA A = (Q, Σ, I, F, δ) for it. We may assume
A always leaves the domain of the picture before accepting it, and that it always
halts by Theorem 1. To each binary n × n picture p we can then associate a
function fp characterizing the behavior of A inside the picture p. The function
fp has the type

fp : Q× E(p)→ Q× (edom(p)− dom(p)),

where E(p) is the set of cells of p with a neighbor outside dom(p), and fp((q, x)) =
(q′, x′) if from the ID (q, x), A eventually leaves the domain of p in ID (q′, x′)
(this is well-defined by the assumptions we made).

For some constant C depending only on A, we have that for any n there are
less than Cn elements in Q × E(p), and there are less than Cn elements in
Q × (edom(p) − dom(p)). Therefore, there are less than CnCn different func-
tions fp for a fixed side length n. Of course, there are 2n

2
pictures p with side

length n.
By taking n large enough that CnCn < 2n

2
, we thus obtain two pictures of

side length n with p[x] �= q[x] for some x, but fp = fq. Now we can construct two
larger pictures p′ and q′ that agree everywhere except at a subpicture where p′

has a translated copy of p and q′ has q such that the position x is moved to the
middle of the larger pictures. One of these pictures is in Lcenter and the other is
not, but A will obviously accept p′ if and only if it accepts q′, a contradiction. �
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By Theorem 1, we then have the following.

Corollary 5. DFAs � NFAs. �

The proofs involving universal states use non-closure properties of REC. Of
course, we will first need to prove some connections between the automata classes
and REC. Theorem 5 and its natural corollaries first appeared in [3], and inde-
pendently in [11] where also Theorem 4 and its natural corollaries were proven.
We will only scetch these proofs, more details can be found in [3] and [22]. The
proofs are for general pictures.

Theorem 4. NFA ⊂ REC.

Proof. For an NFA, we construct a set of Wang tiles whose valid tilings draw
accepting runs of the NFA on top of the picture. This is done by carrying the
set of states the NFA can reach at each tile. The top left corner must contain an
initial state, and some tile must contain a final state. The problem is we need
to make sure a final state can only occur if there is a path to it from the top
left corner. To achieve this, every state contained in a tile (except the initial
state at the top left corner) will have a single predecessor, and a final state is
the predecessor of no state. Then no loops containing a final state can occur, so
a chain of successor links ending in a final state must have started at the initial
state at the top left cell – and thus represents a valid loopless computation of
the NFA. �

Theorem 5. co-AFA ⊂ REC.

Proof. For this, we construct a set of Wang tiles whose valid tilings depict failed
computations. Again, tiles contain a set of states, and a tile contains a state if
there is no accepting computation from that state. The top left tile must contain
all the initial states, a universal state must have at least one successor in the
neighboring tiles (at least one choice of action leads to a failing computation),
and an existential state must have all its successors in neighboring tiles (every
possible choice of action leads to a failing computation). No final states may
occur. It is then easy to believe that a tiling exists if and only if the automaton
doesn’t accept the input picture. �

Next, we will need a concrete language. Let Lacyclic be the language of (not
necessarily planar) acyclic graphs. Any representation of graphs where the graphs
are somehow ‘drawn’ on the (square) picture will do. We will assume a node can
be contained in every cell, an edge can go through multiple cells, edges can cross
each other freely, and a large (but fixed) number of them can move through a
single cell.

We note that Lacyclic is in UFAs, since an automaton can use universal states
to check that every possible run along the forward edges of the graph leads to
a dead end. However, a standard pigeonhole argument shows it is not in REC
[11]: Split pictures of side length n in two, with a vertical border in the middle,
containing n nodes. On both sides, implement the same total order, connecting
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each node to its immediate successor. For large enough n, there are more partial
orders than there are possible tilings of the middle column in tilings accepting
the pictures representing the partial orders. Therefore, some two pictures can
swap their right sides, necessarily resulting in a picture with a valid tiling, but
which contains a cycle.

By the previous paragraph, UFAs cannot be a subset of NFAs, or it would
also be a subset of REC, which is contradicted by Lacyclic ∈ UFAs − REC. We
thus obtain the partial diamond on the right side in Figure 3.

Theorem 6.
DFAs � NFAs � AFAs,

DFAs � UFAs

and
UFAs �⊂ NFAs

Theorem 7. UFAs and AFAs are not closed under complement.

Proof. Otherwise,
UFAs = co-UFAs ⊂ REC,

which is a contradiction. The case of AFAs is proved similarly. �

Using the connection with REC, it is also easy to show certain non-closure prop-
erties for all of the classes XFA simultaneously. We outline the idea for an opera-
tion that inherently works on general pictures instead of squares: concatenation.
Consider the following lemma, which directly follows from Theorem 5.

Lemma 4. If f is an operation on languages, L1, . . . , Lk ∈ DFA but
f(L1, . . . , Lk)c /∈ REC, then none of the classes XFA are closed under the
operation f . �

This implies that we can prove certain non-closure properties working completely
within REC – and REC is very easy to work with!

Theorem 8. None of the classes XFA are closed under concatenation.

Proof. We prove the claim for horizontal concatenation. Consider the language
Ll=r = {p ∈ Σ∗

∗ | p[∗, 1] = p[∗, |p|]}, where Σ = {a, b, c}. Clearly, Ll=r is in DFA,
and therefore in all of the classes. Consider the language L = Ll=rLl=rLl=r. If
one of the classes XFA were closed under concatenation, then L would be in this
class. We show that L is not even in the class AFA. If it were, then Lc would
be in co-AFA, and therefore also in REC by Theorem 5. We will show, however,
that Lc is outside REC, proving the claim. Suppose, on the contrary, that Lc

were in REC.
The language Lc is the the language of pictures p such that

∀i, j such that 3 ≤ i < j ≤ |p| − 2 :
p[∗, i] = p[∗, j] =⇒ p[∗, 1] �= p[∗, i− 1] ∨ p[∗, j + 1] �= p[∗, |p|] ,
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where p[∗, k] means the kth column of p. It looks kind of hard to work with,
so we use the many well-known closure properties of REC to simplify it: First
we restrict to the subset of pictures with columns alternatingly over {c} and
{a, b} and with additional borders over {c}. In other words, the rows will be in
the regular language given by the expression c(c(a + b))∗cc. This restriction is
obtained by intersecting with a recognizable language. On this subset of Lc, the
constraint simply forbids equal columns over {a, b}. We then erase the columns
over {c} using further closure properties to obtain that the simpler language

Lc �=c = {p | � ∃i �= j : p[∗, i] = p[∗, j]}

is in REC. But it is proven in [22] that Lc �=c is in fact not in REC, a contradiction.
See [22] for the details. �

4 Moving Outside the Picture

In this section, we think of pictures as being embedded on the plane Z
2 in the

position indicated by the indexes. Thus, extending the indexing of matrices, the
plane will be drawn with the first axis being the vertical one, and the second the
horizontal one, with the first coordinate increasing as we move down, and the
second as we move to the right.

So far, we have considered automata that are not allowed to exit the picture
they are accepting. It is easy to see that a DFA does not gain any extra strength
if it is allowed to exit a picture [21]. The corresponding question of whether
NFA are strengthened if they are allowed to exit the picture was solved for
pictures of height 1 in [21] in the negative. The question remained open for
arbitrary shapes [21,15,11], until a negative answer was given recently in [22].
The solution is based on a theorem from [12] characterizing the languages of
non-deterministic automata that are not allowed to enter the picture they are
accepting, and we will outline the proof in Section 4.2. Also the case of AFA
was solved in [22]. In this case, a simple example shows automata are in fact
strengthened if they can exit the picture.

Definition 7. FNFA is the class of picture languages accepted by NFA that are
allowed to exit the pictures they are accepting. FAFA is the corresponding picture
class for AFA.

Formally, this just means redefining the set of ID’s as Q × Z
2 instead of Q ×

edom(p). As already mentioned, we will also need the following ‘dual’ automata.

Definition 8. ONFA is the class of unary picture languages accepted by NFA
that cannot enter the picture they are accepting. ONFA can sense the border of
the picture next to them, and they are started at (0, 1), that is, just above the top
left cell.
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4.1 AFA Is Not FAFA

In the one-dimensional case, it is well-known that two-way alternating finite
state automata accept exactly the regular languages [14]. On the other hand,
even two-headed one-way deterministic automata clearly accept non-regular lan-
guages. We use the natural embedding of words into pictures by considering the
sublanguages of Lwords = {p ∈ Σ∗

∗ : p = 1}, and show that even restricted
to such languages, alternating finite state automata become stronger if allowed
to exit the domain of the picture. We denote by 2HAFA the class of picture
languages accepted by 2-headed AFA that are not allowed to exit the picture.

Theorem 9. AFA � FAFA. More precisely,

∅ �= (2HAFA−AFA) ∩ Lwords ⊆ FAFA−AFA.

Proof. Clearly AFA ⊆ FAFA. To prove proper inclusion, we will simulate an
arbitrary 2-headed AFA on strings, which are represented as 1 × n pictures,
using the space above the string to remember the distance between the two
heads. This proves the claim, because a two-headed one-dimensional AFA can
recognize, for instance, the non-regular language {anbn | n ∈ N}, while a one-
headed AFA restricted to a string will only recognize (embeddings of) regular
languages.

Given a one-dimensional language L ⊆ Σ∗ recognized by a 2-headed AFA A,
we construct a 1-headed FAFA A′ recognizing the picture language L′ = {p ∈
Σ∗

∗ | p = 1, p[1, ∗] ∈ L}.
We may assume A’s first head is always to the left of its second head. When

the first head of the one-dimensional 2HAFA is at p1 and its second head is at
p2, the head of A′ hovers over the input string at (1 + p1 − p2, p1). The moves
of A are directly translatable to moves of A′, so the only problem is to read the
contents of the cells under the two heads. But an AFA can do this by guessing
the contents, and using a universal state to branch two heads that check that
the guess was correct. A third head then continues the simulation. �

4.2 NFA Is FNFA

We give a proof of this result based on ‘landing sequences’ of an FNFA, the
information of which states and cells it can reach when it returns to the domain
of the picture after exiting it. That is, we simulate the run of an FNFA by
an NFA while it stays inside the picture, and when it leaves, we predict its
landing without leaving the picture. When considering the behavior of an FNFA
outside the domain of the picture, we only need to consider transition functions
δ : Q→ 2Q×Z

2
where the Z

2 part is the move of the automaton in the transition,
which we can assume to be in {(0, 1), (0,−1), (1, 0), (−1, 0)}. This is because
an FNFA reads only unary input outside the picture. We give some further
definitions to simplify the following discussion.
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Definition 9. A run of an FNFA A on unary input is a sequence ((qi, xi))i of
pairs (q, x) where q is a state of A and x ∈ Z

2, such that ∀i : δ(qi) � (qi+1, xi+1−
xi) where δ is the transition rule of A.

We assume an FNFA never accepts outside the picture, since it can always
navigate back to the picture in order to accept.

Definition 10. A state configuration is a subset of Q × Z
2 (that is, a set of

ID’s).

Definition 11. Let A be an FNFA with states Q. Then, if X, Y, Z are state
configurations, we define

A(X, Y, Z) = {z ∈ Z | ∃ run r of A : r ∈ XY ∗z}
referred to as a set of landings (which is also a state configuration). We also
use the syntactic conventions that if a tuple is used in place of one of X, Y, Z,
the tuple is enclosed in a singleton set, which is then used as the argument. If
one of X, Y, Z is not a subset of Q × Z

2, but a subset of Z
2, then its cartesian

product with Q is used instead.

The proof relies crucially on the following Landing Lemma, from [12], which
is interesting in its own right. It says that, while moving one step downward,
the possible moves to the left and to the right form an eventually periodic set.
We call a run that ends right after moving one step downward from the initial
position a south landing run.

In the proof, we use the following basic definitions and results from automata
theory: A semilinear subset of a commutative monoid M is a finite union of
linear sets, which are sets of the form x + N0x1 + · · ·+ N0xk for x, xi ∈M . The
Parikh set corresponding to L ⊂ Σ∗ is

{x ∈ N
Σ
0 | ∃w ∈ L : ∀a ∈ Σ : |w|a = xa}.

Lemma 5 (Landing Lemma). For all s, f ∈ Q, the set

A((s, (−1, 0)), {(y, x) ∈ Z
2 | y < 0}, {f} × ({0} × Z)),

considered as a Z-indexed sequence, is eventually periodic in both directions.

Proof. Let s ∈ {0, 1}Z be the corresponding binary sequence containing a 1 in
the positions A can reach in state f . To show si is eventually periodic in both
directions, we construct a PDA accepting the language Lmoves of words

w ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}∗

such that some south landing run r of A has exactly this sequence as its sequence
of moves.

The PDA accepts when the stack becomes empty. It originally has one symbol
Z on the stack, representing the fact that the NFA starts at height 1. The finite
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control makes state transitions just as the NFA would, always reading the current
move from the input word, rejecting the word if a different move is read. A Z ′

is pushed on top of the stack whenever the NFA moves up, and a Z ′ or Z is
popped whenever it moves down. However, the automaton may only pop a Z
if it is about to enter state f . The stack is not changed when the NFA moves
horizontally. It is clear that such a PDA accepts exactly Lmoves, since when the
stack become empty, the NFA being simulated would have entered state f , and
would have, altogether, moved one step down from its initial position.

Because this language is context-free, its Parikh set Lp is a semilinear subset
of N

4
0 [18] and thus also a semilinear subset of Z

4. But then, by well-known
closure properties of semilinear sets,

{r − l | (d, u, r, l) ∈ Lp}
is semilinear in Z, where r and l are the amounts of right and left moves, respec-
tively. But this is exactly the set {i | si = 1}, and a semilinear subset of Z must
be eventually periodic in both directions. �

Of course, symmetric claims hold for landings in other directions than down.
The problem of whether NFA = FNFA essentially boils down to proving such a
lemma for landings on the border of a rectangle instead of a straight line.

Definition 12. The fundamental threshold and fundamental period of an
ONFA A are the smallest possible t and q such that its landing sequences in
all directions from any state s to any state f all have t as a threshold and q as
a period in both directions. More precisely, we let q be the smallest period, and t
is then chosen to be the smallest threshold for this particular q.

The proof we present is based on the following characterization of the class
ONFA. This result is also interesting in its own right, and was also proven in
[12].

Definition 13. An eventually periodic subset of N
2 is a set X such that there

exist t, q such that

∀w > t : (h, w) ∈ X ⇐⇒ (h, w + q) ∈ X

and
∀h > t : (h, w) ∈ X ⇐⇒ (h + q, w) ∈ X.

We state two characterizations of the eventually periodic sets without proof, see
[22] or [12].

Lemma 6. A subset X of N
2 is eventually periodic if and only if there exist t, q

such that
∀w > t : (h, w) ∈ X =⇒ (h, w + q) ∈ X

and
∀h > t : (h, w) ∈ X =⇒ (h + q, w) ∈ X.

�
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Lemma 7. A subset X of N
2 is eventually periodic if and only if the language

{0m1n | (m, n) ∈ X} is a regular language. �

Theorem 10. The shapes of languages of ONFA are exactly the eventually pe-
riodic sets.

Proof. It is not hard to see that ONFA can accept all the eventually periodic
sets using Lemma 7. For the other direction, we will use Lemma 6. We consider a
language L′ in ONFA accepted by some automaton A, and let L = {(p, |p|) | p ∈
L′}, which uniquely determines the language. We prove both the widths and
heights of pictures in the language can be pumped, that is, there is a threshold
t and a period q such that

∀(h, w) ∈ L : h > t =⇒ (h + q, w) ∈ L

∀(h, w) ∈ L : w > t =⇒ (h, w + q) ∈ L

It is enough to find such t and q that work for widths, since a symmetric argument
will work for heights, and we can use the larger of the thresholds and a least
common period of the periods to find the threshold and the period of the whole
language.

Let q′ and t′ be the fundamental period and fundamental threshold of A. We
will prove that q = (|Q|t′)!q′ and t = (|Q|+ 1)t′, work as pumping constants for
L. We start by naming some areas of the plane. We define the top left ray, the
top right ray, the bottom left ray and the bottom right ray as the sets of cells

{(0,−n) | n ∈ N0},

{(0, |p|+ n + 1) | n ∈ N0},
{(p + 1,−n) | n ∈ N0},

and
{(p + 1, |p|+ n + 1) | n ∈ N0},

respectively. Note that the top and bottom rays do not coincide even if the
picture has height 1.

Now consider a run r accepting the picture of shape (h, w), where w > t. We
split the run into partial runs r1, . . . , rk between the points of intersection with
one of the four rays, that is, we partition the run into semiopen intervals by
cutting the run at the points where a ray is crossed (we may assume A accepts
on a ray).

These partial runs are transformed into a run of the automaton on the larger
picture of shape (h, w + q). There is an obvious way to identify the rays of
the small picture with the rays of the large picture, and each partial run is
transformed into a run that starts and ends at the corresponding cell in the cor-
responding ray. It is then clear that by gluing together the partial runs obtained
for the larger picture, a valid accepting run for the larger picture is obtained,
proving (h, w + q) ∈ L.
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For partial runs between two cells both in left rays, or two cells both in right
rays, it is obvious how to find a corresponding partial run for the larger picture.
Now, all we need to do is apply the Landing Lemma 5 to transform the partial
runs that move between the two sides of the small picture to such runs on the
large picture. For this, consider such a partial run rj = u on the small picture.
By symmetry, we may assume u starts just above a cell of the top left ray, and
ends on a cell of the top right ray. We split u further into subpartial runs uj

exactly as we did for r, but this time at the positions where the automaton
senses that it is next to the picture. Let J the sequence of indices of u where the
automaton senses p.

We now have two cases to consider:

– One of the subpartial runs uj moves the automaton to the right more than
t′ cells.

– All subpartial runs uj move the automaton at most t′ to the right.

In the first case, we are done, since the automaton’s fundamental threshold has
been exceeded, so the subpartial run uj can be made mq′ cells longer to the
right, for any m ∈ N. In particular, it can be made q = (|Q|t′)!q′ cells longer,
proving the claim in this case.

In the latter case, we note that there must be at least than w/t′ of these
subpartial runs, where we chose w > t = (|Q|+ 1)t′, and thus |J | > |Q|. Then,
we may take an ascending subsequence K of J such that

– the sequence of positions of (ui)i∈K is ascending to the right.
– between each two indices of K the automaton has moved at most t′ cells to

the right.
– |K| > |Q|.

Now note that there must be a repetition of states in (ui)i∈K , say at a, b ∈
K, a < b, and the distance d between ua and ub satisfies 1 ≤ d ≤ |Q|t′. Then the
partial run of length d between ua and ub can be repeated q

d = (|Q|t′)!q′
d times

to obtain a partial run for the picture (h, w + q).
This means that in both cases, we were able to make the partial run work for

a picture q wider, as long as the picture had width at least t, and thus t and q
as we chose them are a threshold and period for pumping the widths of pictures
in L. �

Let us now give more notation for parts of a picture, and the space around it.
Given a picture p, we call the cells (i, j) such that j < 1 the west half-plane
Hw(p), and similarly we get the east, north and south half-planes He(p), Hn(p)
and Hs(p). These cover all the positions outside the picture. In what follows,
we use a slightly different definition of rays: the top left west ray Rtlw(p) is the
set {(1, x) : x < 1} and similarly we define Rtln(p), Rtrn(p), Rtre(p), Rbre(p),
Rbrs(p), Rbls(p) and Rblw(p). The west edge of p is the set Ew(p) of cells on its
domain with a left neighbor outside its domain. Similarly we obtain En(p), Ee(p)
and Es(p). We define the edge of p as E(p) = Ew(p) ∪ En(p) ∪ Ee(p) ∪ Es(p).
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We define the west line of p as Lw(p) = Rtln(p)∪Ew(p)∪Rbls(p), and similarly
we get Ln(p), Le(p) and Ls(p). We define the outside of p as O(p) = Hw(p) ∪
He(p) ∪Hn(p) ∪Hs(p). Finally, we define Cm(p) as the subset of E(p) of cells
at most distance m away from some corner of p.

Given a run of an FNFA starting from just outside the edge of a picture and
ending at an edge, staying outside the picture during the run, we call the unique
half-plane on which it starts the initial half-plane. The part of the run before
exiting the initial half-plane for the first time is called the initial segment of the
run. Similarly, we define the final half-plane and the final segment of the run.
Note that the initial and final segments can partially overlap, or be equivalent
if the initial half-plane is never exited.

In what follows, we will use the terms ‘landing’ and ‘computing a state con-
figuration’ somewhat informally. Implicitly, one of the following two definitions
will then apply.

Definition 14. Let Q be a finite set of states. For any Z ⊂ Z
2 and FNFA A

with unique initial state s, the set of landings of A from x onto Z is defined as
the state configuration c on Z given by

A((s, x), Q ×O(Z), Q× Z).

Let A be an FNFA with state set Q′ ⊃ Q and with a unique initial state s ∈
Q′ −Q. We say A computes the state configuration c over Q from x within Z
if c is the state configuration

A((s, x), (Q′ −Q)× Z, Q× Z).

Now, we can prove the main theorem of this section: NFA = FNFA. First, let us
compute the sub-landing sequences ‘near the corners‘ of pictures, assuming the
FNFA leaves the picture at one of its corners.

Lemma 8. Let A be an FNFA with states Q. Then, for every i ∈ Q and m > 0
there exists an NFA A′ with states Q′ ⊃ Q such that

∀p : A((i, (0, 1)), O(p), C(p, m)) = A′((s′, (1, 1)), dom(p), Q× C(p, m))

Proof. C(p, m) is a finite set, so A′ simply needs to guess one of the landing
possibilities (s, x) ∈ Q × C(p, m) and check if it’s a possible landing of A. If it
is, A′ finds x and enters s on it. But it’s easy to check if (s, x) is a landing of A:
There exists an ONFA B that simulates A until it tries to enter the picture, and
accepts if it would’ve entered the correct cell x in the correct state s. The set
{(h, w) | ∃p ∈ L(L(B)) : (p, |p|) = (h, w)} is eventually periodic, so A′ can easily
check if p belongs to L(B). Since p ∈ L(B) if and only if (s, x) is a landing of A,
we are done. �

Using the previous lemma, we can now characterize all landings of runs that
start near a corner.
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Lemma 9. Let A be an FNFA with states Q. Then, for every i ∈ Q there exists
an NFA A′ with states Q′ ⊃ Q such that

∀p : A((i, (0, 1)), O(p), E(p)) = A′((s′, (1, 1)), dom(p), Q× E(p))

Proof. Let t and q be the fundamental threshold and period of A, respectively,
and assume (s, x) ∈ Z = A((i, (0, 1)), O(p), E(p)). First assume x ∈ Ew(p). Then

x /∈ C(p, t + q + 1) =⇒ (s, x + (q, 0)) ∈ Z

by the Landing Lemma 5, since A’s run with landing (s, x) must have entered the
west half-plane for the last time at some point, and we may thus pump the final
segment of the run before landing, by q steps in either direction. By repeating
the argument, (s, y) is also in Z for some y ∈ C(p, t + q + 1)− C(p, t + 1).

Conversely, if (s, y) is a landing of A onto C(p, t+q+1)−C(p, t+1), on the west
side, then also all other (s, y+(mq, 0)) such that y+(mq, 0) ∈ E(p)−C(p, t+1)
are landings of A, again by the Landing Lemma 5, in particular if y is obtained
from pumping x onto C(p, t+q+1)−C(p, t+1), then the landing (s, x) is found
by pumping y the same distance in the other direction.

Now, for landings of A on C(p, t + q + 1), we apply Lemma 8. As for other
landings, consider again landings on the west side of p. For all landings of A onto
(s, x), where x ∈ C(p, t + q + 1)−C(p, t + 1), we let A′ move q steps up or down
as many times as it likes before entering s, while staying inside E(p)−C(p, t+1).
By the argument of the first paragraph, we obtain all landings of A on Ew this
way. The other edges are handled similarly. �

Finally, the result is obtained by handling runs that never exit the initial half-
plane separately, and then using Lemma 9 for those that exit it.

Theorem 11. NFA = FNFA.

Proof. Given FNFA A, we construct an NFA A′ that has states Q ∪ Q′ where
Q are the states of A and Q′ are helper states used in the simulation. The NFA
A′ uses only states of Q when inside p, and has the same transition function
as A when restricted to these states. Of course, this means A might try to exit
p during its accepting run of p. When it tries to exit p, x being the first cell
outside p it would’ve entered, it instead enters a special search state in Q′ that
computes the landing sequence of A′ from x onto the edges of the picture inside
dom(p). We assume A never accepts a picture p while outside dom(p).

If we can accomplish this, then it should be clear that the languages of A and
A′ are the same. We do not give a formal construction of A′, but an informal
algorithm for obtaining such an automaton from the behavior of A. So assume A
exits p during a run, and let x be the first cell outside p it sees. We may assume
x is on the west side of p, since the other cases are symmetric. First, we note
that

A((s, x), O, E) = A((s, x), Hw , Ew)∪
A(A((s, x), Hw , Rtln), O, E)∪
A(A((s, x), Hw , Rbls), O, E)



202 J. Kari and V. Salo

where we write X instead of X(p) for brevity. We explain how A′ can com-
pute each of the three parts within dom(p), in which case the pointwise union
is also computable. By symmetry, it’s enough to handle A((s, x), Hw , Ew) and
A(A((s, x), Hw , Rtln), O, E).

Case 1: Computing A((s, x), Hw , Ew) inside dom(p).

Consider the landing sequence s1 of A from (s, x) upwards, that is, s1
i is the

set of landing states on the cell x + (−i, 1). By the Landing Lemma 5, this
sequence s1 is eventually periodic. Therefore A′ can compute this sequence
inside Ew, since the sequence does not depend on the picture. This concludes
the first case.

Case 2: Computing A(A((s, x), Hw , Rtln), O, E) inside dom(p).

Let x = (i, j). Then,

A((s, x), Hw , Rtln) = s1
[i+1,...) = s2,

where s1 is as in Case 1. Let Bs2 be an FNFA with initial state s′′ that
computes this sequence onto Rtln, and then simulates A. That is, Bs2 has
states Q ∪Q′′, with Q′′ and Q disjoint, and

Bs2((s′′, (0, 1)), Q′′ ×Rtln, Q×Rtln) = A((s, x), Hw , Rtln)

for the unique initial state s′′ of Bs2 , and Bs2 has the same transition function
as A, when restricted to states in Q, which implies

Bs2((s′′, (0, 1)), O, E) = A(A((s, x), Hw , Rtln), O, E).

By Lemma 9, there is an inner NFA with the same landings as Bs2 . Therefore,
A′ can move up the side of p, determine the sequence s2, and depending on
this sequence, compute the landing sequence of Bs2 onto E inside dom(p).
This is possible, because the sequence s2 is a final segment of the eventually
periodic sequence s1, and thus one of a finite amount of possibilities. This
concludes the second case. �

The techniques presented here do not generalize for 3- or more-dimensional pic-
tures (with the obvious definitions). We end this section with the following con-
jecture from [22].

Conjecture 4. NFA = FNFA on three-dimensional pictures.

5 Restricting the Directions of Movement

We will now turn to automata for which some directions of movement are for-
bidden. We define the 2XFA as XFA that cannot use the directions up and left
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(recall that our automata are started from the top left corner). The classes 3XFA
are defined by forbidding only upward moves. Although results will still be used
from both the unary and the square worlds, we will only give results for general
pictures in this section. We will first collect results from the literature to give
the Boolean closure properties for each 3XFA. We then compare the three-way
classes with each other and the four-way classes and give a strong connection
between 2AFA and a deterministic version of REC.

Analysis of three-way automata is somewhat simpler than that of four-way
automata. Interestingly, now 3AFA can be shown to be closed under comple-
ment [3], and so can 3DFA [24], while 3NFA and 3UFA still lack this property
[11] (proof below). Now our proofs for the other Boolean closure properties break
down, and in fact the class 3DFA is not closed under either intersection or union,
and 3NFA is not closed under intersection [4]. Also the question for 3UFA cor-
responding to Conjecture 3 has a positive answer – 3UFA is not closed under
union [10]. Of course, 3NFA is closed under union, 3UFA is closed under in-
tersection and 3AFA is still closed under both operations. Thus, we obtain the
rather natural situation of Figure 5.

3DFA 3NFA 3UFA 3AFA

¬ Yes No No Yes

∩ No No Yes Yes

∪ No Yes No Yes

Fig. 4. Boolean closure properties of the 3XFA classes

It is clear that 2XFA ⊂ 3XFA ⊂ XFA for all the XFA classes. From the con-
siderations of Section 3.2, we obtain that the second inclusion is always proper,
and a stronger separation of NFA and UFA:

Theorem 12. The sets 3NFA−UFA and 3UFA−NFA are nonempty and neither
of 3NFA and 3UFA is closed under complement.

Proof. The 90◦ rotation of the billiard ball language from Definition 5 is in the
first set, and the complement of this language is in the other one. The non-
closures under complement follow similarly. �

The theorem implies that a four-way automaton cannot recognize the languages
of three-way automata of a ‘stronger’ type. In fact, no non-trivial inclusions exist
between four-way and three-way automata classes, as is implied by the following
result, which is proven in [8] in a stronger form.

Theorem 13. The set DFA− 3AFA is nonempty. �

So by combining results of [8] with the results obtained by using the billiard
ball language from [11], we have obtained a complete picture of the relations
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between three- and four-way automata classes, on general pictures. We depict
this in Figure 5, where all inclusions are proper, all inclusions between classes
are given by diagram chasing, and all other pairs of classes are incomparable.

3DFA

3NFA 3UFA

3AFA

DFA

NFA UFA

AFA

Fig. 5. Diagram of inclusions for three-way and four-way automata classes

In Section 3.3, we showed some connections between REC and the XFA classes
(namely Theorems 4 and 5). It seems to be unknown whether co-AFA is actually
equal to REC [3], although this seems unlikely. However, for 2-way automata,
we have a natural connection between the two worlds: 2AFA is equal to a deter-
ministic version of REC [9]. However, due to bad luck, the way the classes are
usually defined we have to rotate one of them by 180◦ to make them coincide.

Definition 15. DREC is the subfamily of REC obtained by using north-west
deterministic tiles, that is, tilesets such that no two Wang tiles in the set may
share both their north and west colors.

With the interpretation that REC accepts a language by assigning states on the
cells of a picture, this means when assigning states of a DREC grammar, knowing
the north and west neighbors uniquely determines the state of the current cell.
We next prove the following [9]:

Theorem 14. 2AFAR = DREC.

We split the proof into two inclusions. Given a picture p and a position y, we
define top left rectangle at y to be the rectangle between (1, 1) and y. Given such
a rectangle, we define its north child and west child as the rectangles that start
from (1, 1) and end at y − (1, 0) and y − (0, 1), respectively. Note that 2AFAR

is of course just the class of languages accepted by 2-way AFA that start at the
bottom right corner and can only move up and to the left.

Lemma 10. 2AFAR ⊆ DREC.

Proof. We construct a DREC grammar G simulating the given 2AFAR A. At
each tile of G, the subset of states of A is held from which there is an ac-
cepting computation of A for the top left rectangle at the position. At the top
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left corner, the correct subset of states of A is enforced, based on the symbol at
that position. It should be obvious how to inductively find the correct state sets
elsewhere, north-west deterministically, based on how the acceptance of an AFA
is defined. �

Lemma 11. DREC ⊆ 2AFAR.

Proof. Given a DREC grammar G, we find a 2AFAR A with the same language.
The automaton A has the states T×S where T is the tileset of G, and S is a small
set of helper states needed in the construction (which we leave unspecified). Let
us distinquish a state s ∈ S. When A is started in state (q, s) in cell x, it accepts
if and only if there is a consistent assignment of DREC states onto the cells of
the top left rectangle at x such that the tile q is used as the state of cell x.

The top left corner can easily be detected by a 2AFAR. In the top left corner,
A simply checks whether such a consistent assignment (of one tile) exists using
a look-up table. In the general case, A guesses the north and west neighbors q1

and q2 of q with colors matching those of q. It then recursively checks these that
the north and west children can be consistently colored in such a way that the
corresponding qi is used in the bottom right corner.

The algorithm works because in the recursion, in addition to consistent place-
ments of states for the subpictures starting from the north and west neighbors
existing, they must also have the same tiles in the overlapping zone due to the
determinism of DREC.

Then, the initial states of A simply start such searches from all tiles q ∈ T . �

6 Markers

In this section, we only consider deterministic automata, and work on general
pictures. However, we give our automata a finite set of markers, which the au-
tomaton can carry around, drop on the cells of the picture, and later lift up
again. The main results we present are from [1], although we will prove slightly
stronger claims. There are many ways to formalize this idea, but most of these
can be shown equivalent [1]. We choose the definition of ‘physical markers’, which
need to be lifted before reusing, and which can be stacked on top of each other.

Of course, once k markers are given to our automata, we will obtain a hierarchy
of languages based on how many markers are needed for a DFA to accept them.
This hierarchy is proven infinite in [1] with a diagonalization argument. We
will investigate only the beginning of this hierarchy, using concrete and natural
picture languages.

The language Lcenter shows us DFA is already strengthened by the addition
of one marker, since we can use the marker to implement essentially the same al-
gorithm we used to prove Lcenter ∈ NFA. Denoting the class of picture languages
accepted by DFA with n markers by nmDFA, we then have the following.
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Theorem 15. DFA � 1mDFA. �

We will devote the main part of this section to separating DFA with two markers
from those with just one, illustrating interesting programming techniques for
DFA with markers, and an extended pigeonhole argument for DFA with one
marker.

Definition 16. For each n, Lnc is the language of pictures over {0, 1} contain-
ing exactly n connected components over 1 (connected components of the graph
where the vertices are the cells containing a 1, and there are edges between ad-
jacent cells). We write Lc = L1c. For each n, we define Lneq as the subset
of Lnc containing exactly n components which are all translations of a single
component.

In [1], in order to separate 1mDFA and 2mDFA, it is proven that there exists a
language L ∈ 2mDFA whose intersection with L2c is exactly L2eq, but there is
no such language in 1mDFA. We will instead prove the perhaps more interesting
new result that L2eq ∈ 2mDFA− 1mDFA.

The language Lc has been of interest to many authors in both the case of
picture-walking automata and recognizability. In [20], Lc was proved to be in
REC, while [8] proved it to be outside 3AFA. In [1], it was shown that a DFA
can accept Lc with one marker, and it was implicitly conjectured that this is
not possible with a regular DFA.

Conjecture 5. [1] The connected patterns are not in DFA.

Note that a proof through REC will certainly not work, since it is easy to write
an AFA for Lc [7]. Neither does a direct pigeonhole argument seem possible.

Let us explain the construction of [1] for Lc with a one marker DFA, since
it also nicely illustrates some of the techniques we will need for showing L2eq ∈
2mDFA. First, we give some slightly informal terminology. By a local property
P we mean a set of (p, x, m1, . . . , mk), where x, mi ∈ dom(p), x representing the
head of the automaton and mi the positions of markers. We say P is an n-marker
property, if a DFA with n unused markers started in cell x of picture p with some
fixed k markers of its at m1, . . . , mk can check whether (p, x, m1, . . . , mk) ∈ P ,
then returning to x carrying again the n markers.

So, let p ∈ Σ∗∗ be a binary picture. We say a column j of p is left separating
if it contains a 1, there is a 1 in p somewhere to the left of column j, and

� ∃i : p[i, j] = 1 ∧ p[i, j − 1] = 1.

That is, left separating columns contain 1’s all of which are separated from all
1’s to the left of them. Similarly, we define right separating columns. It is clear
that the 1’s of p are connected if and only if there are no left or right separating
columns, and on each column, two 1’s with only 0’s between them are connected.

Theorem 16. L1c ∈ 1mDFA.
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Proof. Checking that no column is left or right separating is easy. Next, the
automaton reads the columns top-down, from left to right. At each 1 which is
not the last in its column, we check that it is in the same component as the next
1 in the column. More precisely, we note that the local property ‘The current cell
x contains a 1 and the next 1 in this column (at y) is in the same component.’ is
a 1-marker property: the automaton drops the marker and then follows the edge
of the area of 1’s (using the classical labyrinth algorithm) until it either returns
to x, or it finds a 1 under the marker at x with only 0’s in between. Note that
the latter is a 0-marker property and thus checkable during the search. In the
first case, y is not in the same component, and we conclude p /∈ Lc. If the second
case always occurs, we conclude p ∈ Lc. �

We will first count that there are exactly two components, by extending the pre-
vious argument. This technique can be used to prove Lnc ∈ nmDFA, although,
as in the case of one component, it is unknown whether this is optimal.

Theorem 17. L2c ∈ 2mDFA.

Proof. We define the shoulder of p as the cell containing a 1 seen first during a
columnwise top-down left to right search, and similarly we define the shoulder
of a component of 1’s in p. We define the top left component as the component
of 1’s that the shoulder of p belongs to. Note that being on the outer border
of the top left component is a 1-marker property, since whether the current
cell is the shoulder is a 0-marker property. For brevity, we call the top left
component A.

We now start a columnwise top-down left to right search over the picture.
At each column, we continue down without permanently dropping any markers,
while staying in A. This is possible since we can check whether the first cell we
see is in A (since it is necessarily on the outer border of its component), and
we can check whether the component changes as we move down the column. If
another component is not seen during the whole search, we conclude there is
just one component, and thus p /∈ L2c.

If a different component is seen at any time, we drop one of the markers. Note
that it is then dropped at the outer border Y of some component B. The marker
will not be moved again, so in effect, whether a cell is on the outer border of
either A or B has turned into a 1-marker property. Just as importantly, if B
is completely within A, whether a cell belongs to the edge of the corresponding
hole of A is now also a 1-marker property. Let X be the set of cells on this edge,
or the outer border of A if B is not within A. We obtain that belonging to X
and belonging to Y are both one-marker properties.

After marking X and Y , we continue the search as previously, now essentially
with a one marker automaton. When we enter the first component on a column
at x, we immediately conclude p /∈ L2c if this x is not in A or B (since, again,
x is at the outer border of some component). After either A or B has been
entered, the automaton continues down the column while the component does
not change. When it does change, we immediately reject if it does not go from X
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to Y or from Y to X . If there are exactly two components, only such transitions
happen, and if only such transitions happen, A and B are of course the only
components. �

Next, let us compare these two components.

Theorem 18. L2eq ∈ 2mDFA.

Proof. By the previous theorem, we can assume there are exactly two compo-
nents. Again, let A be the top left component and B the other one. Now, B
cannot be inside A or we can directly reject p. This is easy to check during the
previous algorithm, and even easier to do directly. Knowing this, we first locate
the shoulder of B: we do a columnwise search until either the first component
seen is not A or the component changes after a cell of A. We keep the other
marker – the B marker – here, and move the other marker to the shoulder of
A. The two markers will stay exactly this vector v away from each other during
the rest of the search.

Now, consider the components as sets of vectors and p as the set of indices
where it contains a 1. We will check that A+ v ⊂ p and B− v ⊂ p, which clearly
implies A+ v = B. For the first inclusion, we do a columnwise search using both
markers at once, and whenever the A-marker is in a cell of A, we check that the
B-marker is on top of a 1. The second inclusion is done symmetrically.

In order to keep track of when the A-marker is on a cell of A, we start with
the markers at the shoulders of the corresponding components. Both markers
are moved down simultaneously while the A-marker stays within A, skipping 0’s
in the usual way, and we check the B-marker is on top of a 1 whenever the A-
marker is. When the A-marker changes component, the head must have entered
B. We then continue until the component changes again: we must have returned
to A, and the search continues normally. �

Now, let us prove also the negative result – that two markers are in fact necessary
for L2eq.

Theorem 19. L2eq /∈ 1mDFA.

Proof. Suppose A is a 1mDFA with L(A) = L2eq and let A have k states. We
assume A directly returns to the domain of the picture if it enters its border.

We will use a similar argument as the one in the proof of Theorem 3. For each
picture p we define the function fp mapping ‘incoming ID’s’ to ‘outgoing ID’s’,
although this time we also allow ‘accept’, ‘reject’ and ‘loop’ in the codomain.
(We could avoid this by repeating the argument of [23] for one-marker DFA.)
The function fp completely characterizes the behavior of A on p as long as the
automaton enters the picture without carrying the marker. We say that two
pictures p and q are A-equivalent if fp = fq.

The basic idea for applying the pigeonhole principle here is that while the
marker stays on one side of the picture, the original partition into A-equivalent
pictures applies to the other side, and the marker cannot be moved across the
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middle of the picture more than a linear amount of times without the automaton
entering a cycle. Let us make this idea more precise.

Let n be fixed, and let X be the set of all pictures of size n × n containing
exactly one connected component with 0’s around it. To each element of X2 we
naturally associate a picture of shape n × 2n where the two elements of X are
simply concatenated (note that such a picture is in L2c). The left- and right-
hand sides of these pictures p are called the LHS and the RHS. We will show
that for large enough n, A will accept all pictures in Y × Y for some subset Y
of X with more than one element, which is a contradiction.

We note that for some n-independent D, |X | ≥ 2Dn
2

for large enough n
by using a suitable skeleton of 1’s to allow rows on which bits can be chosen
freely while keeping the pattern connected. Let P be the partition of X into
A-equivalence classes, and again note that there are at most CnCn components
in P for some C depending only on A. We write X/P for a maximal subset Z
of X containing only A-equivalent elements (tie-breaking in some natural way).
Of course, |Z| ≥ |X|

|P | .
Let us restrict our attention to Y0 = X/P . Consider the pictures Y 2

0 . The
automaton cannot accept any of the pictures in this set without moving the
marker on the right side, since the RHS are all A-equivalent. For some subset
Y ′

0 ⊂ Y0 of size at least |Y0|
kn , A exits the LHS with the marker the first time

the same way in all pictures of Y ′
0
2. Note that the content of the RHS does not

influence how the marker leaves the LHS, since all pictures in Y0 are A-equivalent.
If Y ′

0 has more than one element, A must eventually move the marker back to
the LHS. Again, it does this the same way on some subset Y1 ⊂ Y ′

0 of size |Y ′
0 |
kn .

If Y1 has more than one element, the marker eventually has to be moved on
the right side, but now this can be done in only kn − 1 ways, since otherwise
the automaton enters an infinite loop on all pictures of Y 2

1 , which is impossible
because Y 2

1 ∩L2eq �= ∅. We thus obtain sets Y ′
1 and Y2, and similarly Y ′

i and Yi+1

for all i until the size of one of these reaches 0 or 1. Note that |Yi+1| ≥ |Yi|
(kn−i)2 .

Since the automaton necessarily loops when i reaches kn, we have obtained
|X/P | ≤ (kn)!2. But we can show this is false for large enough n, using a
standard argument:

2Dn
2

CnCn(kn)!2
≤ |X/P |

(kn)!2
≤ 1 ⇐⇒

Dn2 − Cn log Cn− 2 log(kn)! ≤ log
|X/P |
(kn)!2

≤ 0

which is clearly not the case, using String’s approximation for log(kn)!. This is
a contradiction, and thus L2eq /∈ 1mDFA. �

Corollary 6. 1mDFA � 2mDFA. �
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7 Algorithmic Questions

Picture walking automata admit efficient parsing of pictures. Pictures of a lan-
guage can be recognized in linear time on the size n = |p| × p of the
picture p.

In the case of DFA, the linear time recognition can be done using logarithmic
space: By Theorem 1 we can assume the DFA halts on every input picture so it
is enough to run the DFA until it halts. This happens within O(n) steps, and
during the computation one stores the current state and position of the DFA
using O(log n) space.

In the cases of NFA, UFA and AFA, linear space is enough. Consider the
directed graph whose vertices are the instantaneous descriptions (q, x) of the
automaton, and edges are given by the successor relation l1 −→ l2. For NFA,
picture recognition amounts to finding a path from an initial ID to an accepting
ID, which can be solved using standard depth-first search. In AFA, the vertices
are classified as universal and existential. A simple linear-time algorithm executes
a DFS search from the final ID’s backwards, progressively marking new vertices
that lead to acceptance. A universal vertex is marked only when all its followers
become marked, while for existential vertices it is enough to have one follower
marked. A picture is in the language iff an initial ID gets marked.

Another family of algorithmic questions concern the languages recognized by
given automata. Here the situation is quite different, and undecidability usually
prevails. The basic question is the emptiness problem: does the given automaton
accept any pictures ? It was mentioned already in [1] that unary emptiness for
DFA is undecidable because Minsky machines can be simulated. Recall that
Minsky’s two-counter machine without an input tape consists of a deterministic
finite automaton and two counters, each storing one non-negative integer. The
machine can detect when either counter is zero. The machine changes its state
according to a deterministic transition rule. The new state only depends on the
old state and on the results of the tests that check whether either counter is
equal to zero. The transition rule also specifies whether to increment, decrement
or keep unchanged the counters.

It is well known that two-counter machines can simulate Turing machines [16].
In particular, it is undecidable whether a given machine reaches a specified halt-
ing state h when started in its initial state i with both counters initialized to
value 0.

A 2-counter machine can be interpreted as a DFA that operates on the (infi-
nite) quadrant of the plane and has the same finite states as the 2-counter ma-
chine. The position of the DFA encodes the two counter values: Position (x, y)
represents counter values x and y. Increments and decrements of the counters
correspond to horizontal and vertical steps of the DFA on the plane.

Any computation of a 2-counter machine can therefore be simulated by a
DFA inside a sufficiently large rectangle. The dimensions of the rectangle have
to be at least as large as the largest counter values used during the accepting
computation. Zero values of the counters can be recognized as these correspond
to the machine stepping on the top or left boundary of the rectangle. If the DFA
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tries to step on the right or the bottom border, it enters an error state e that
indicates that the rectangle was not large enough.

It is clear that the DFA outlined above accepts exactly the rectangles of sizes
w × h where w and h are greater than the largest values in the two counters,
respectively, used during the accepting run of the Minsky machine. If the Minsky
machine does not halt, the DFA does not accept any rectangle. Hence we have
the following.

Theorem 20. It is undecidable if a given unary DFA accepts any rectangles [1].
�

In the restricted models the situation is more interesting, and various decidability
questions have been investigated among three-way automata [5,13,19]. In [5],
the unary emptiness was shown to be decidable among 3NFA, and in [19] the
result was extended to arbitrary alphabets. It was also shown in [19] that unary
emptiness is undecidable among 3AFA, and even among 2AFA.

Theorem 21. The emptiness problem is

– decidable among 3NFA [5,19],
– undecidable among unary 2AFA [19]. �

Finally, we mention another application of the Minsky machine simulation by
DFA, stating that the sizes of unary squares recognized by DFA can form a very
sparse set [12].

Theorem 22. Let {a1, a2, . . .} be any recursively enumerable set of positive in-
tegers. There exists a DFA that recognizes the language of unary squares of sizes
bi × bi for i = 1, 2, . . . where bi > ai for all i = 1, 2, . . .. �

The theorem is proved easily using the DFA simulation of a two-counter ma-
chine. First, an NFA is build where non-determinism is used to select the initial
counter values for the Minsky machine. Such limited non-determinism can then
be removed using the trick from [23]. See [12] for the details.

8 Conclusions

To conclude, we collect the open problems from the text into a single list.

Conjecture 1. The language of unary squares with prime side length are not
in DFA.

Conjecture 2. DFA is a proper subset of NFA when restricted to unary squares.

Conjecture 3. UFA is not closed under union.

Conjecture 4. NFA = FNFA on three-dimensional pictures.

Conjecture 5. The connected patterns are not in DFA.
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Abstract. In this survey we consider three kinds of algorithmic ques-
tions concerning varieties of semigroups. We are interested in identity
problems, in the solvability of a system of equations and in the struc-
ture of all solutions of a given system. We study them in significant
varieties of semigroups, monoids, groups, completely simple semigroups,
completely regular semigroups (in particular semigroups satisfying the
identity xr ≈ x) and involutary semigroups (in particular star regular
semigroups and inverse semigroups).
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1 Introduction

Everybody knows how to solve a system of linear equations over real numbers
or how to solve a quadratic equation over complex numbers. In many parts
of mathematics and their applications (in particular in theoretical computer
science) there is a strong need to solve various kinds of equations in various
domains. The sides of equations are certain terms, the domain can be specified
basically in two ways.

Firstly, it could be a concrete finite algebra. It this case the solvability prob-
lem is decidable and one is interested in the complexity of the decision problem
– see e.g. [18] for results in the case of finite semigroups. We do not consider such
questions in this contribution. Secondly, we can specify our domain by identi-
ties it satisfies; in fact we discuss the solvability problem for the corresponding
variety. Here we need to understand the free algebras, i.e., we have to solve the
identity problems there.
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After this introductory section, we start to formalize our concepts. We will
use semigroups, monoids, unary semigroups and unary monoids. We recall what
kind of terms are appropriate in those situations.

In Section 3 we consider the identity problems for particular varieties, we
mention how rewriting of terms can be used.

We study successively groups, completely simple semigroups, completely reg-
ular semigroups (in particular semigroups satisfying the identity xr ≈ x), involu-
tary semigroups (in particular star regular semigroups and inverse semigroups).

The last two sections of our paper are devoted to the unification. In Section 4
we consider the solvability (of systems) of equations with constants in varieties
mentioned above. The final section deals with the structure of all solutions of a
given system of equations. Often, like in Abelian groups, there is the most general
solution. Other possibility, which can happen, is to have finite or countable set of
independent solutions such that each other solution can be derived from them.
In some cases such set does not exist.

Summarizing there are three kinds of questions for each particular variety:

– the identity problem,
– the solvability of systems of equations (with constants),
– the unification type.

Of course, the first question should be solved first, since it is needed for consid-
ering the second and the third question. Note that the first question is trivial
in semigroups whereas the second one is extremely deep result by Makanin. It
seems that there is no significant relationship between the second and the third
question.

Our choice of varieties is strongly influenced by authors interests and by the
significance of those structures for theoretical computer science (in particular
for automata theory and automated deduction). There are no new results in our
paper. We tried to collect and comment results which are interesting for us in a
transparent way.

We will touch only several results concerning unification. We advise the reader
to extremely valuable surveys of Baader and Siekmann [4] and Baader and Sny-
der [5]. Another source worth to study algorithmic problems in varieties is a
survey by Kharlampovich and Sapir [13].

We considered various types of semigroups. Notice that the famous 10th
Hilbert’s problem is nothing else as deciding solvability of equations with con-
stants in commutative rings with 1.

2 Preliminaries: Terms and Free Algebras

In our paper we will meet numerous classes of algebras being varieties in a sense
of universal algebra. They are of the following signatures consisting of

1. binary operation · in case of semigroups,
2. binary · and nullary 1 in case of monoids,
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3. binary · and unary ( )−1 in case of unary semigroups, and
4. binary ·, nullary 1 and unary ( )−1 in case of unary monoids.

We speak about varieties of algebras of type 1 – 4. In all considered algebras the
binary operation · is associative and 1 is the neutral element, we do not mention
this fact any more.

Let X = {x1, x2, . . . } be a fixed set of variables (one uses x, y, z, . . . in concrete
situations). Our terms (often called words) over X in cases 1 – 4 will be from
the

1. semigroup X+,
2. monoid X∗ = X+ ∪ {1},
3. unary semigroup U (defined below), and
4. unary monoid U1 = U ∪ {1} (the neutral element 1 adjoined).

Let U be the smallest subsemigroup of (X ∪ {(, )−1})+ containing X satisfying
u ∈ U implies (u)−1 ∈ U .

Morphisms between members of a given variety (of a type 1 – 4) are mappings
preserving multiplication, the neutral element for types 2 and 4, and the unary
operation for types 3 and 4.

An algebra F is free over X in a variety V (of a type 1 – 4) if

• F ∈ V ,
• X ⊆ F and X generates F ,
• for each A ∈ V , each mapping α : X → A extends to a morphism F → A.

It is well-known that the free algebras in varieties always exist and that they are
determined uniquely up to isomorphism. For

1. the variety S of all semigroups,
2. the varietyM of all monoids,
3. the variety of all unary semigroups,
4. the variety of all unary monoids,

the free algebras over X have very transparent models, namely X+, X∗, U, U1,
respectively.

3 Identity Problems

For a variety V (of type 1 – 4) let ∼V be the relation on the corresponding free
algebra F of all terms consisting of all identities valid in V . It is well-known that
the corresponding quotient algebra F/∼V is free over X in V .

A solution of the identity problem for a given variety V consists in an effective
description of the relation ∼V . Basically, our algorithms are of two kinds:

– they compare certain invariants (often a kind of induction is used),
– they use rewriting.
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We recall the basics of rewriting in case of varieties of semigroups. Consider
a relation → on X+, called the rewrite relation. (Below we denote by ρ∗ the
reflexive transitive closure of ρ ⊆ X+ ×X+.) The relation → is

– terminating if there is no infinite sequence u1 → u2 → . . . , u1, u2, . . . ∈ X+,
– confluent if for each u, v, w ∈ X+ with v ←∗ u →∗ w, there exists t ∈ X+

such that
v →∗ t←∗ w ,

– canonical if it is terminating and confluent.

For a canonical relation→, each u ∈ X+ has exactly one canonical form −→u , i.e.,
u→∗ −→u and there is no v ∈ X+ such that −→u → v.

Given a variety V of semigroups, our goal is to find an effectively described
canonical rewrite relation → such that the equivalence relation generated by →
is exactly ∼V . In this case, for all u, v ∈ X+, we have u ∼V v if and only if−→u = −→v .

For varieties of type 2 – 4 we use obvious modifications.

Note that the identity problem is absolute trivial for S andM: two terms are
related if and only if they are equal.

3.1 Groups and Completely Regular Semigroups

We consider the class of all groups as a variety of unary monoids; we denote it
by G. It is determined by identities

x · (x)−1 ≈ 1 and (x)−1 · x ≈ 1 .

A well-known solution of the identity problem in G follows.

Proposition 1. The rules

– u(pq)−1v → u(q)−1(p)−1v, p ∈ U, u, v ∈ U1,
– u((p)−1)−1v → upv, p ∈ U, u, v ∈ U1,
– up(p)−1v → uv, p ∈ U, u, v ∈ U1,
– u(p)−1pv → uv, p ∈ U, u, v ∈ U1

determine a canonical rewrite relation on U1 such that the equivalence relation
it generates is exactly ∼G.

The identity problem for Abelian groups (AG, in notation) and Abelian groups
with xs ≈ 1 are easy to solve: u ∼AG v iff the numbers of occurrences of each
variable in canonical forms of u and v in G are the same. In AG(xs ≈ 1) one
counts the occurrences modulo s.

There is extensive literature dealing with famous problems and numerous
deep results concerning the Burnside groups G(xs ≈ 1). One could start from [7]
and follow the items quoted there. Effective descriptions of the identity problem
for the varieties G(xs ≈ 1), for s = 2, 3, 4, 6 is presented in Hall’s book [12],
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Chapter 18. Moreover, it is shown there that these varieties are locally finite,
i.e., finitely generated members are finite. The case s odd, s ≥ 665, is positively
treated in Adian’s book [1]. Note that these varieties are not locally finite.

Natural generalizations of groups are completely regular semigroups CR and
inverse semigroups I (see Subsection 3.3). Completely regular semigroups are,
by definition, unions of groups. They are given by the identities

x(x)−1 ≈ (x)−1x, x(x)−1x ≈ x and ((x)−1)−1 ≈ x .

A prominent subvariety of CR is CS formed by all completely simple semigroups
which are defined by the additional identity xyx(xyx)−1 ≈ x(x)−1. Note that a
completely regular semigroup is a semilattice of completely simple semigroups.
For a variety V of groups, one can consider the varieties CR(V) and CS(V) of
all completely regular (completely simple, respectively) semigroups with sub-
groups in V . For a solution of the identity problem for CS(V), see Gerhard and
Petrich [8].

3.2 Semigroups Satisfying xr ≈ x

For a fixed r ≥ 2, we denote the class of all semigroups satisfying the identity
xr ≈ x, by S(xr ≈ x). These are exactly the completely regular semigroups with
subgroups satisfying xr−1 ≈ 1. Therefore the inverses of elements are exactly
the (r − 2)-th powers. Thus we can remain in the signature of semigroups.

We translate the identity problem for this variety S(xr ≈ x) to the identity
problem for the variety G(xr−1 ≈ 1) of all groups satisfying the identity xr−1 ≈ 1
as follows. For u ∈ X+, we define:

– c(u) – the set of all variables in u,
– 0(u) – the longest initial segment of u in |c(u)| − 1 variables,
– 1(u) – the longest final segment of u in |c(u)| − 1.

Moreover, if n = |c(u)| ≥ 2, we define its characteristic sequence [u] as the
sequence of all maximal segments of u in n− 1 variables.

Example 1. For u = xyxyztyzxztx, we have

[u] = (xyxyz, yztyz, yzxz, zxztx) .

Theorem 1 (Kad’ourek, Polák [16]). Let p, q ∈ X+ and let ∼ = ∼S(xr≈x).
Then

(i) For |c(p)| = 1, it holds p ∼ q if and only if

c(p) = c(q) and G(xr−1 ≈ 1) |= p ≈ q .

(ii) If |c(p)| ≥ 2, then it holds p ∼ q if and only if

c(p) = c(q), 0(p) ∼ 0(q), 1(p) ∼ 1(q) ,

and G(xr−1 ≈ 1) |= φ(p0)φ(p1) . . . φ(pm) ≈ φ(q0)φ(q1) . . . φ(qn)

where [p] = (p0, . . . , pm), [q] = (q0, . . . , qn) and φ maps words into new variables
such that φ(s) = φ(t) iff s ∼ t.
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Note that the case of idempotent semigroups, i.e., r = 2, was previously solved
by Green and Rees [9]. Other possibility of solving the identity problem in idem-
potent semigroups is a usage of rewriting.

Theorem 2 (Siekmann and Szabó [31]). Let B = S(x2 ≈ x) be the variety
of all idempotent semigroups. Then the rules

– up2v → upv, p ∈ X+, u, v ∈ X∗,
– upqrv → uprv, p, q, r ∈ X+, u, v ∈ X∗, c(q) ⊆ c(p) = c(r)

determine a canonical rewrite relation on X+ such that the equivalence relation
it generates is exactly ∼B.

A recent paper [16] discusses the possibilities of using rewriting in varieties of
idempotent semigroups. Numerous valuable references can be found there, in
particular references to several works by Baader.

A solution of the identity problem for CR is a more advanced version of
Theorem 1 – see [15]. Similarly for CR(V).

3.3 Involutary Semigroups

In this subsection the unary operation is denoted by ′. An involutary semigroup
is a unary semigroup (S, ·,′ ) satisfying the identities

(xy)′ ≈ y′x′ and (x′)′ ≈ x .

There is a natural model of a free involutary semigroup. Let X ′ = {x′
1, x

′
2, . . . }

be a disjoint copy of X . Let I be free semigroup over X ∪ X ′ with the unary
operation ′ given by (y1 . . . yk)′ = y′

k . . . y′
1, (x′)′ = x for y1, . . . , yk ∈ X ∪ X ′,

x ∈ X . Terms for involutary semigroups can be taken from U but it is more
convenient to consider the elements of I.

Star regular semigroups, in notation SR, are involutary semigroups satisfying
the identity xx′x ≈ x.

Theorem 3 (Polák [26]). The rule

– upp′pv → upv, p ∈ I, u, v ∈ I1

determine a canonical rewrite relation on I such that the equivalence relation it
generates is exactly ∼SR.

Completely simple star regular semigroups are given by an additional iden-
tity xyy′x′ ≈ xx′. Similarly as above one gets a canonical rewrite relation for
them by orienting the identity, i.e., one uses the rule upqq′p′v → upp′v, p, q ∈
I, u, v ∈ I1. Clearly, for groups one can use only upp′v → uv, p ∈ I, u, v ∈ I1.
Denote the canonical form of u ∈ I by −→u G .

Inverse monoids IM are given by the identities for star regular semigroups
and by the additional identity xx′yy′ ≈ yy′xx′. They are up to isomorphism
exactly unary submonoids of the monoids of all partial bijections of a set into
itself. They also play very significant rule in automata theory. A solution of the
identity problem follows.
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Theorem 4 (Scheiblich [30] and Munn [23])
Let y1, . . . , ym, z1, . . . , zn ∈ X ∪X ′. Then y1 . . . ym ∼IM z1 . . . zn, if and only if

−−−−→y1...ym
G = −−−−→z1...zn

G and {−→y1
G , . . . ,−−−−→y1...ym

G} = {−→z1
G , . . . ,−−−−→z1...zn

G} .

4 Equations

In this section we overview some results concerning solvability of equations with
constants in significant varieties of (unary) semigroups and monoids. We as-
sume that our alphabet X is a disjoint union of two countable sets of constants
C = {c1, c2, . . . } and unknowns W = {w1, w2, . . . }. Thus we work in a free semi-
group/monoid of terms FX , which is the free semigroup X+, or the free monoid
X∗, or the free unary semigroup U over X , or the free unary monoid U1 over
X . In every case, FC is a subalgebra of FX .

A substitution is a mapping σ : X → FX non-identical only on a finite set of
unknowns from W . Its extension to an endomorphism of FX is again denoted by
σ. An equation L =? R is a pair of terms L, R ∈ FX . For a variety V of semigroups
(of type 1 – 4) we say that a substitution σ is a V-solution of the equation L =? R
if σ(L) ∼V σ(R), i.e., V |= σ(L) ≈ σ(R). Note that there exists a solution of
the equation L =? R if and only if there exists a solution σ : FX → FX such that
σ(x) ∈ FC for all x ∈ X .

For a finite set of equations

E = {L1 =? R1, . . . , Lk =? Rk}, where L1, . . . , Lk, R1, . . . , Rk ∈ FX ,

a substitution σ is a V-solution of the system E if

σ(L1) ∼V σ(R1), . . . , σ(Lk) ∼V σ(Rk) .

Then we denote by UV(E) the set of all V−solutions of E.
For a given variety V (of type 1 – 4) we consider the first basic problem,

namely a solvability problem, where an instance of the problem is a finite system
of equations E and the question is whether UV(E) 
= ∅ or not.

Apart from the solvability problem there is the so-called elementary solvability
problem, where only equations without constants are considered. Such equations
are uninteresting in the case of varieties which are studied in this paper. Namely,
whenever we have some idempotent in our free algebra we can substitute this
idempotent for all unknowns and therefore every equation has a solution.

A final general remark is that it is natural to assume that the system can
contain also inequalities. Here for a pair of terms L, R a solution σ must satisfy
that σ(L) 
∼V σ(R).

4.1 Equations in Free Semigroups

Although the identity problem for the variety S is trivial, the solvability problem
is very difficult and the problem was opened for many years. Finally, it was solved
by Makanin.
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Theorem 5 (Makanin [20]). The solvability problem for a single equation for
variety S is decidable.

On the first sight, one can think that the systems of equations are more com-
plicated to be solved but there is an easy trick how one can reduce a system of
equations to a single equation. Namely, a system E = {L1 =? R1, . . . , Lk =? Rk}
has the same set of S-solutions as a single equation

L1a . . . LkaL1b . . . Lkb =? R1a . . .RkaR1b . . .Rkb ,

see Proposition 12.1.8 in [11]. Further, there is no significant difference when one
solves equations in the free semigroup X+ or in the free monoid X∗; one needs
only to discuss separately several cases given by sets of unknowns mapped to 1 in
a potential solution. Thus the famous Makanin result implies that the solvability
problems for varieties S andM are decidable. A reader who is interested in the
topic is referred to a presentation [11] of the Makanin’s proof, where a certain
generalization of the result is proved, namely rational constrains can be given
for every unknown.

Example 2. Let us consider the equation xauzau =? yzbxaaby. To demonstrate
that S-solutions and M-solutions are quite complicated, we only show some
examples of solutions. FirstM-solution is σ1 given by rules σ1(x) = σ1(y) = 1,
σ1(z) = a, σ1(u) = b. Further σ2 given by rules σ2(x) = σ2(y) = σ2(z) = a,
σ2(u) = ba is a S-solution. But we have also, for any natural numbers k, �, a
S-solution τk,� given by τk,�(x) = (xab)kx, τk,�(y) = (xab)�x, τk,�(z) = abxa,
τk,�(u) = b(xab)�x.

Note that the equation in the previous example is taken from [11]. It is an
example of a quadratic equation (every unknown occurs at most twice) for which
a certain algorithm is presented there.

4.2 Equations in Locally Finite Varieties

Let V be a locally finite variety of semigroups (of type 1) and assume that we
can solve the identity problem for this variety. Let E be an arbitrary system
of equations and let CE denote the finite set of constants and WE denote the
finite set of unknowns occurring in E. The system E has a V-solution if and
only if there exists a V-solution σ such that σ(x) ∈ C+

E for every x ∈ WE and
σ(x) = x for x 
∈ WE . Since V is a locally finite variety, the free semigroup F
over the set CE in the variety V is finite. Even, we can construct a model of F
in the following way. We consider a length-lexicographical ordering1 ≤ on the
set C+

E . We construct, step by step, the finite subset F ′ of C+
E . In every step we

consider the minimal word u in ≤ which was not considered yet and we add u to
the actual list F ′ whenever u is not ∼V-equivalent to any word in F ′. This can

1 Here u ≤ v if and only if (i) u is shorter word than v or (ii) u and v have the same
length and u is smaller in lexicographical ordering.
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be effectively tested because we know how to solve the identity problem for the
variety V . Since F is finite we know that once we discover a natural number n
such that in the process we do not add to F ′ any word of a length n. But if such
a situation occurs then every word of length greater then n is ∼V -equivalent to
a shorter word and we know that we can stop our procedure.

Thus for every unknown x ∈ WE we need to test only finitely many values
σ(x) ∈ F ′. Thus there are only finitely many substitutions which must be checked
whether they are solutions.

The varieties of types 2 – 4 can be considered similarly.

Proposition 2. Let V be a locally finite variety of type 1 – 4 such that we know
the solution of the identity problem for V. Then the solvability problem for the
variety V is decidable.

From Section 3 it follows the decidability of the problem for the variety of idem-
potent semigroups S(x2 ≈ x), for the group varieties G(xs ≈ 1) for s = 2, 3, 4, 6
and consequently, by [9], for the varieties of semigroups S(xr ≈ x) for r =
3, 4, 5, 7.

4.3 Equations in Varieties of Groups

Solvability of equations in the variety of all groups G is the second very deep
result of Makanin.

Theorem 6 (Makanin [21]). The solvability problem for the variety G is de-
cidable.

We refer to final remarks in the paper [11] and to the paper by Razborov [27]
for more information on equations in free groups.

In contrast to the previous case the result concerning the variety of all Abelian
groups is quite easy to prove.

Proposition 3. The solvability problem for the variety AG is decidable.

Completely different results were obtained for varieties of nilpotent groups. Let
Nc denote the variety of all nilpotent groups of class c. It was proved by Ro-
mankov [28] that the solvability problem for the varieties Nc, c ≥ 9, is undecid-
able. This result was extended to c ≥ 3 by Truss [32]. Look there for the whole
history.

Theorem 7 (Truss [32]). The solvability problem for a single equation for the
varieties Nc, c ≥ 3, is undecidable.

For the case c = 2 there are some partial results (see [6] for details) which
suggests that the solvability problem is decidable. For example in [32] it is shown
that it is decidable whether a single equation with two unknowns has a N2-
solution.
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4.4 Equations in Varieties of Completely Regular Semigroups

First we state a result on varieties of completely simple semigroups.

Theorem 8 (Polák [25]). If the solvability problem is decidable for a variety
of groups V then the solvability problem is decidable for the variety of completely
simple semigroups CS(V).

Note that the reduction is given in such a way that for each unknown x we
prescribe the first and the last letter of σ(x). In each such case we create a new
system of equations which has a V-solution if and only if the original system has
a CS(V)-solution. This means that a system of equations in n unknowns with m
constants in CS(V) is equivalent to considering disjunction of m2n systems in n
variables with m constants in V .

In the case of varieties S(xr ≈ x) one can apply a result from subsection 4.2.
But one can also hope that the solvability problem for S(xr ≈ x) can be reduce
to the solvability problem for G(xr−1 ≈ 1). This is true only partially.

Theorem 9 (Kĺıma [17]). Let r be such that the solvability problem in the va-
riety G(xr−1 ≈ 1) is decidable. Then it is decidable whether a system of equations
with two constants has a S(xr ≈ x)-solution.

The idea behind the proof of this result is that we need to distinguish, for
each unknown x, whether σ(x) contains only one constant or both and which
power of which constant is the initial and final segment of σ(x). Thus a system of
equations in n variables with 2 constants in S(xr ≈ x) is equivalent to considering
disjunction of (4(r − 1)2 + 2(r − 1))n systems of equations in n variables in
G(xr−1 ≈ 1). The interesting point is that the number of constants in a new
system is 2r because new constants correspond to elements in a free semigroup
in the variety S(xr ≈ x) over single element set, i.e., to different powers of the
original constants.

In the paper [17] we have suggested how one can proceed by induction with
respect to number of constants. The technical problem is that considering three
constants one need to know which segments in two constants in different σ(x)
are equal. These segments correspond to new constants in a new system over
G(xr−1 ≈ 1), and, in fact, we need to know which are equal and which are
different. In other words we need to know whether certain auxiliary systems of
equations and inequalities (over two constants) have solutions in S(xr ≈ x).
Thus we need to have a generalization of Theorem 9 for system of equations and
inequalities which is also given in [17].

Theorem 10 (Kĺıma [17]). Let r be such that the solvability problem for a
system of equations and inequalities in the variety G(xr−1 ≈ 1) is decidable.
Then it is decidable whether a system of equations with three constants has a
S(xr ≈ x)-solution.
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4.5 Equations in Free Inverse Monoids

Let IM denote variety (of type 4) of all inverse monoids.

Theorem 11 (Rozenblat [29]). The solvability problem for the variety IM
is undecidable.

To prove this result, Rozenblat needs only two constants and it was also proved
there that systems over one constant are decidable. Another special case of
equations containing one variable is studied in the paper [10], where the following
natural idea is used. A solution of the system in an arbitrary variety V can be
found in two steps. First, one can find a U-solution σ for some smaller variety
U and then one can try to modify σ to a V-solution α which is ∼U -related to σ.
Surprisingly, Deis et al. [10] proved that it is decidable whether a given G-solution
of a system of equations has ∼G-related IM-solution of the same system. This
idea can not be used to prove decidability of the solvability problem for the
variety IM, because system of equations in groups can have infinitely many
solutions as we will see in the next section.

5 Unification Type

For Y ⊆ W there is a quasiorder (i.e., reflexive and transitive relation) ≤YV on
substitutions, namely σ ≤YV τ iff there exists a substitution λ such that

( ∀ y ∈ Y ) (λ ◦ σ)(y) ∼V τ(y) .

In this case, we say that σ is more general than τ .
Let E = {L1 =? R1, . . . , Lk =? Rk} be a system of equations and let

Y = (c(L1) ∪ · · · ∪ c(Lk) ∪ c(R1) ∪ · · · ∪ c(Rk)) ∩W .

A set U ⊆ UV(E) is complete if

( ∀ τ ∈ UV(E) )( ∃ σ ∈ U ) σ ≤YV τ .

It is minimal if
( ∀ σ, τ ∈ U )( σ ≤YV τ =⇒ σ = τ ) .

Note that ∅ is a minimal complete set of V-solutions for a system E without
any solution. Further, any two minimal complete sets of V-solutions of a given
system are of the same cardinality. A variety V is of unification type

(1) unitary if any system of equations has a minimal complete set of V-solutions
of cardinality ≤ 1,

(ω) finitary if any system of equations has a minimal complete set of V-solutions
of a finite cardinality,

(∞) infinitary if V is not finitary and any system of equations has a minimal
complete set of V-solutions,
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(0) nullary if there exists a system of equations without any minimal complete
set of V-solutions.

The second basic problem for a variety V is to determine its unification type.
We can speak also about a unification type for a single system E.

Theorem 12 (Plotkin [24]). The variety S has the unification type infinitary.

In fact, Plotkin introduced a procedure generating all minimal solutions. The
type is not unitary nor finitary as the following example shows.

Example 3. The equation ax=? xa in S has an infinite minimal complete set of
S-solution. Namely, for every natural number k, we have S-solution σk given by
σk(x) = ak.

In the previous example, we used the well-known fact from combinatorics on
words that two words commute if and only if they are powers of the same word.
The same is true in free groups. Therefore the variety G of all groups is of type
infinitary or nullary. In [2] it is shown that in the case of equations without
constants we have unification type infinitary. Unfortunately we have not found
an answer for the general case.

The situation becomes more simple for Abelian groups.

Theorem 13 (Lankford et al. [19]). The variety AG is of unitary type.

Example 4. The most general solution of the equation x5y7 =? a8b2c3 AG is:

σ(x) = a−4b−1c−5z−7, σ(y) = a4bc4z5 .

To get all other solutions, one substitutes for z arbitrarily.

On the other hand, the situation for varieties of nilpotent groups is again quite
advanced.

Theorem 14 (Albert and Lawrence [2]). Every system of equations without
constants in Nc, c ≥ 2, is of unification type unitary or nullary.

For varieties of completely simple semigroups, we can state the following.

Theorem 15 (Polák [25]). The variety CS(V) is of unification type finitary
(infinitary, nullary, respectively) if and only if the same holds for the variety V.

Example 5. The equation
x2y2z2y2 =? abcabc

in CS(AG) has a minimal complete set of solutions of cardinality 5.

Kisielewicz in [14] determines the unification types for all varieties of commuta-
tive semigroups considering equations without constants. By Baader [3], almost
all varieties of idempotent semigroups and many varieties of completely regular
semigroups are of type nullary. Also Mashevitzky shows in [22] that not to be of
type nullary is very restrictive for a variety of completely regular semigroups.
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Abstract. This survey paper serves two purposes: Firstly, we consider
cycle-free algebraic systems (with respect to a given strong convergence)
as a generalization of the usually considered proper systems (with respect
to the discrete convergence). Secondly, we develop in a parallel manner
the theory of these cycle-free algebraic systems over an arbitrary semiring
and the theory of arbitrary algebraic systems over a continuous semiring.
In both cases we prove that algebraic systems and weighted pushdown
automata are mechanisms of equal power.

1 Introduction and Preliminaries

In this paper we develop the theories of algebraic systems and weighted push-
down automata by an algebraic treatment using semirings, formal power series
and matrices. We prove that algebraic systems and weighted pushdown automata
are mechanisms of equal power.

The paper consists of this and three more sections. In Section 1 we intro-
duce the algebraic structures needed: semirings, especially continuous semirings,
formal power series and matrices over these semirings.

In Section 2 we consider the axiomatic definition for the notion of conver-
gence of a special type as developed in Kuich, Salomaa [15]. Examples of such
a convergence are: the discrete convergence, the Cauchy convergence, the Euler
convergence, the complete convergence and the supremum convergence. More-
over, we show how to transfer a convergence over a semiring to convergences
over formal power series and (possibly infinite) matrices.

In Section 3 we consider algebraic systems and their approximation sequences.
If the approximation sequence of an algebraic system is convergent with respect
to a certain convergence, then its limit is called strong solution. It is proved that
this strong solution is really a solution to the algebraic system if the convergence
is multiplicative. This is valid e. g. for the discrete convergence, the Cauchy
convergence and the supremum convergence.

In Section 4 we introduce weighted pushdown automata and prove the main
result of this paper: a formal power series is algebraic, i. e., its proper part is a
solution of a proper algebraic system, iff this formal power series is the behavior
of a proper weighted pushdown automaton.

In Ésik, Kuich [8] we unified two variants of the Theorem of Kleene-Schützen-
berger by help of partial Conway semirings: one for arbitrary semirings and
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proper finite automata; the other for Conway semirings and arbitrary finite au-
tomata. In this paper, we do the same for two variants of the equivalence of
algebraic systems and weighted pushdown automata: one for cycle-free alge-
braic systems (with respect to a given strong convergence) and proper weighted
pushdown automata (see Kuich, Salomaa [15], Petre, Salomaa [17]); the other
for arbitrary algebraic systems (with respect to the supremum convergence) and
proper weighted pushdown automata over a continuous semiring (see Kuich [13],
Ésik, Kuich [7]).

We note that parts of the main result of this paper can be generalized to
tree automata: algebraic tree systems and weighted pushdown tree automata
are equivalent (see Bozapalidis [3], Kuich [14], Ésik, Kuich [6]).

We make the following notational conventions valid throughout the paper. A,
Σ, Q and I, possibly indexed, always denote a semiring, an alphabet, a finite
index set and an arbitrary index set, respectively.

A monoid consists of a nonempty set M , an associative binary operation · on
M and of a neutral element 1 such that m · 1 = 1 ·m = m for every m ∈ M . A
monoid M is called commutative if m1 ·m2 = m2 ·m1 for every m1, m2 ∈M . The
binary operation is usually denoted by juxtaposition and often called product.

If the operation and the neutral element of M are understood then we denote
the monoid simply by M . Otherwise, we use the triple notation 〈M, ·, 1〉. A
commutative monoid M is often denoted by 〈M, +, 0〉.

A morphism h of a monoid M into a monoid M ′ is a mapping h : M → M ′

compatible with the neutral elements and operations in 〈M, ·, 1〉 and 〈M ′, ◦, 1′〉,
i. e., h(1) = 1′ and h(m1 ·m2) = h(m1) ◦ h(m2) for all m1, m2 ∈M .

A commutative monoid 〈A, +, 0〉 is called ordered if it is equipped with a
partial order ≤ preserved by the + operation such that 0 ≤ a holds for all
a ∈ A. It then follows that a ≤ a+b, for all a, b ∈ A. In particular, a commutative
monoid 〈A, +, 0〉 is called naturally ordered iff the relation � defined by: a � b
iff there exists a c such that a + c = b, is a partial order. Morphisms of ordered
monoids preserve the order.

A monoid 〈A, +, 0〉 is called complete if it has sums for all families (ai | i ∈ I)
of elements of A, where I is an arbitrary index set, such that the following
conditions are satisfied:

(i)
∑

i∈∅ ai = 0,
∑

i∈{j} ai = aj ,
∑

i∈{j,k} ai = aj + ak, for j 	= k,
(ii)

∑
j∈J (

∑
i∈Ij

ai) =
∑
i∈I ai, if

⋃
j∈J Ij = I and Ij ∩ Ij′ = ∅ for j 	= j′.

A morphism of complete monoids preserves all sums. Note that any complete
monoid is commutative.

Recall that a non-empty subset D of a partially ordered set P is called directed
iff each pair of elements of D has an upper bound in D. Moreover, a function
f : P → Q between partially orderet sets is continuous iff it preserves the least
upper bound of any directed set, i.e., when f(sup D) = sup f(D), for all directed
sets D ⊆ P such that supD exists. It follows that any continuous function
preserves the order.
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An ordered commutative monoid 〈A, +, 0〉 is called a continuous monoid if
each directed subset of A has a least upper bound and the + operation preserves
the least upper bound of directed sets, i.e., when

a + sup D = sup(a + D) ,

for all directed sets D ⊆ A and for all a ∈ A. Here, a+D is the set {a+x | x ∈ D}.
A morphism of continuous monoids is a continuous monoid homomorphism.

It is known that an ordered commutative monoid A is continuous iff each
chain in A has a least upper bound and the + operation preserves least upper
bounds of chains, i. e., when a + supC = sup(a + C) holds for all non-empty
chains C in A. (See Markowsky [16].)

Proposition 1. Any continuous monoid 〈A, +, 0〉 is a complete monoid equipped
with the following sum operation:

∑

i∈I
ai = sup{

∑

i∈E
ai | E ⊆ I, E finite} ,

for all index sets I and all families (ai | i ∈ I) in A. Any morphism between
continuous monoids is a complete monoid morphism.

By a semiring we mean a set A together with two binary operations + and ·
and two constant elements 0 and 1 such that

(i) 〈A, +, 0〉 is a commutative monoid,
(ii) 〈A, ·, 1〉 is a monoid,
(iii) the distributivity laws s1 · (s2 + s3) = s1 · s2 + s1 · s3 and (s1 + s2) · s3 =

s1 · s3 + s2 · s3 hold for every s1, s2, s3 ∈ S,
(iv) 0 · s = s · 0 = 0 for every s ∈ A.

A semiring A is called commutative if s1 · s2 = s2 · s1 for every s1, s2 ∈ A.
If the operations and the constant elements of A are understood then we

denote the semiring simply by A. Otherwise, we use the notation 〈A, +, ·, 0, 1〉.
Intuitively, a semiring is a ring (with unity) without subtraction. A typical

example is the semiring of nonnegative integers N. A very important semiring
in connection with language theory is the Boolean semiring B = {0, 1} where
1+1 = 1 ·1 = 1. Clearly, all rings (with unity), as well as all fields, are semirings,
e. g., integers Z, rationals Q, reals R, complex numbers C etc.

Let N
∞ = N ∪ {∞} and N = N ∪ {−∞,∞}. Then 〈N∞, +, ·, 0, 1〉,

〈N∞, min, +,∞, 0〉 and 〈N, max, +,−∞, 0〉, where +, ·, min and max are defined
in the obvious fashion (observe that 0 · ∞ =∞ · 0 = 0 and (−∞) +∞ = −∞),
are semirings.

Let R+ = {a ∈ R | a ≥ 0}, R
∞
+ = R+ ∪ {∞} and R+ = R+ ∪ {−∞,∞}.

Then 〈R+, +, ·, 0, 1〉, 〈R∞
+ , +, ·, 0, 1〉 and 〈R∞

+ , min, +,∞, 0〉 are semirings. The
semirings 〈N∞

+ , min, +,∞, 0〉, 〈R∞
+ , min, +,∞, 0〉 are called tropical semirings.

Similarly, the semirings 〈N, max, +,−∞, 0〉 and 〈R+, max, +,−∞, 0〉 are called
max-plus semirings or arctic semirings. A further example is provided by the
semiring 〈[0, 1], max, ·, 0, 1〉.
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Let Σ be a finite alphabet. Then each subset of Σ∗ is called formal language
over Σ. We define, for formal languages L1, L2 ⊆ Σ∗, the product of L1 and L2

by
L1 · L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}.

Then 〈2Σ∗
,∪, ·, ∅, {ε}〉 is a semiring, called the semiring of formal languages over

Σ. Here 2U denotes the power set of a set U and ∅ denotes the empty set.
If U is a set, 2U×U is the set of binary relations over U . Define, for two relations

R1 and R2, the product R1 ·R2 ⊆ U × U by

R1 ·R2 = {(u1, u2) |
(u1, u) ∈ R1 and (u, u2) ∈ R2}
there exists an u ∈ U such that

and, furthermore, define
Δ = {(u, u) | u ∈ U}.

Then 〈2U×U ,∪, ·, ∅, Δ〉 is a semiring, called the semiring of binary relations
over U .

We now consider morphisms between semirings. Let A and A′ be semirings.
Then a mapping h : A → A′ is a morphism from A into A′ if h(0) = 0, h(1) =
1, h(s1 + s2) = h(s1) + h(s2) and h(s1 · s2) = h(s1) · h(s2) for all s1, s2 ∈
A. That is, a morphism of semirings is a mapping that preserves the semiring
operations and constants. A bijective morphism is called an isomorphism. For
instance, the semirings 〈R∞

+ , min, +,∞, 0〉 and 〈[0, 1], max, ·, 0, 1〉 are isomorphic
via the mapping x �→ e−x, and the semiring 〈R∞

+ , max, min, 0,∞〉 is isomorphic
to 〈[0, 1], max, min, 0, 1〉 via the mapping x �→ 1− e−x.

A semiring 〈A, +, ·, 0, 1〉 is called ordered if 〈A, +, 0〉 is an ordered monoid
and multiplication preserves the order. When the order on A is the natural
order, 〈A, +, ·, 0, 1〉 is automatically an ordered semiring. A morphism of ordered
semirings is an order preserving semiring morphism.

A semiring 〈A, +, ·, 0, 1〉 is called continuous if 〈A, +, 0〉 is a continuous monoid
and if multiplication is continuous, i.e.,

a · (sup
i∈I

ai) = sup
i∈I

(a · ai) and (sup
i∈I

ai) · a = sup
i∈I

(ai · a)

for all directed sets {ai | i ∈ I}. It follows that the distribution laws hold for
infinite sums:

a · (
∑

i∈I
ai) =

∑

i∈I
(a · ai) and (

∑

i∈I
ai) · a =

∑

i∈I
(ai · a)

for all families (ai | i ∈ I).
A morphism of continuous semirings is a semiring morphism which is a con-

tinuous function. Note that every continuous semiring is an ordered semiring
and every continuous semiring morphism is an ordered semiring morphism.

Corollary 1. Any continuous semiring is complete.
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We now define formal power series (for expositions, see Salomaa, Soittola [19],
Kuich, Salomaa [15], Berstel, Reutenauer [1], Sakarovitch [18], Ésik, Kuich [7],
Droste, Kuich [5]). Let Σ be an alphabet and A a semiring. Mappings r from Σ∗

into A are called (formal) power series. The values of r are denoted by (r, w),
where w ∈ Σ∗, and r itself is written as a formal sum

r =
∑

w∈Σ∗
(r, w)w.

The values (r, w) are also referred to as the coefficients of the series. The collec-
tion of all power series r as defined above is denoted by A〈〈Σ∗〉〉.

This terminology reflects the intuitive ideas connected with power series. We
call the power series “formal” to indicate that we are not interested in summing
up the series but rather, for instance, in various operations defined for series.

Given r ∈ A〈〈Σ∗〉〉, the support of r is the set

supp(r) = {w ∈ Σ∗ | (r, w) 	= 0}.

A series r ∈ A〈〈Σ∗〉〉, where every coefficient equals 0 or 1, is termed the charac-
teristic series of its support L, in symbols, r = char(L). The subset of A〈〈Σ∗〉〉
consisting of all series with a finite support is denoted by A〈Σ∗〉. Series of
A〈Σ∗〉 are referred to as polynomials. It will be convenient to use the nota-
tions A〈Σ ∪ {ε}〉, A〈Σ〉 and A〈{ε}〉 for the collection of polynomials having
their supports in Σ ∪ {ε}, Σ and {ε}, respectively.

Examples of polynomials belonging to A〈Σ∗〉 for every S are 0 and aw, where
a ∈ A and w ∈ Σ∗, defined by:

(0, w) = 0 for all w,
(aw, w) = a and (aw, w′) = 0 for w 	= w′.

Often 1w is denoted by w.
We now introduce several operations on power series. For r1, r2, r ∈ S〈〈Σ∗〉〉

and s ∈ A we define the sum r1 +r2, the (Cauchy) product r1 ·r2, the Hadamard
product r1 � r2 and scalar products sr, rs, each as a series belonging to A〈〈Σ∗〉〉,
as follows:

– (r1 + r2, w) = (r1, w) + (r2, w)
– (r1 · r2, w) =

∑
w1w2=w(r1, w1)(r2, w2)

– (r1 � r2, w) = (r1, w)(r2, w)
– (sr, w) = s(r, w)
– (rs, w) = (r, w)s

for all w ∈ Σ∗.
It can be checked that 〈A〈〈Σ∗〉〉, +, ·, 0, ε〉 and 〈A〈Σ∗〉, +, ·, 0, ε〉 are semirings,

the semirings of formal power series resp. of polynomials over Σ and A.
We just note that the structure 〈A〈〈Σ∗〉〉, +,�, 0, char(Σ∗)〉 is also a semiring

(the full Cartesian product of Σ∗ copies of the semiring 〈A, +, ·, 0, 1〉).
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Clearly, the formal language semiring 〈2Σ∗
,∪, ·, ∅, {ε}〉 is isomorphic to

〈B〈〈Σ∗〉〉, +, ·, 0, ε〉. Essentially, a transition from 2Σ
∗

to B〈〈Σ∗〉〉 and vice versa
means a transition from L to char(L) and from r to supp(r), respectively.

We now introduce (possibly infinite) matrices. Consider two non-empty index
sets I and I ′ and a set S. Mappings M of I × I ′ into S are called matrices. The
values of M are denoted by Mi,i′ , where i ∈ I and i′ ∈ I ′. The values Mi,i′ are
also referred to as the entries of the matrix M . In particular, Mi,i′ is called the
(i, i′)-entry of M . The collection of all matrices as defined above is denoted by
SI×I

′
.

If both I and I ′ are finite, then M is called a finite matrix. If I or I ′ is a
singleton, M is called a row or column vector, respectively. If M ∈ SI×1 (resp.
M ∈ S1×I′) then we often denote the i-th entry of M , i ∈ I (resp. i ∈ I ′), by
Mi instead of Mi,1 (resp. M1,i).

Let A be a semiring. For each i ∈ I and i′ ∈ I ′, consider the sets of indices
R(i) = {i′ |Mi,i′ 	= 0} and C(i′) = {i |Mi,i′ 	= 0}, respectively. Then M ∈ AI×I′

is called a row finite (resp. column finite) matrix if R(i) (resp. C(i′)) is finite
for all i ∈ I (resp. i′ ∈ I ′). The collection of all row finite (resp. column finite)
matrices defined above is denoted by AI×I′

R (resp. AI×I′
C ).

We introduce some operations and special matrices inducing a monoid or
semiring structure to matrices. For M1, M2 ∈ AI×I′ we define the sum M1+M2 ∈
AI×I′ by (M1 + M2)i,i′ = (M1)i,i′ + (M2)i,i′ for all i ∈ I, i′ ∈ I ′. Furthermore,
we introduce the zero matrix 0 ∈ AI×I′ . All entries of the zero matrix 0 are 0.
By these definitions, 〈AI×I′ , +, 0〉 is a commutative monoid.

If M1 is row finite or if M2 is column finite or if A is complete, then, for
M1 ∈ AI1×I2 and M2 ∈ AI2×I3 , we define the product M1M2 ∈ AI1×I3 by

(M1M2)i1,i3 =
∑

i2∈I2
(M1)i1,i2(M2)i2,i3 for all i1 ∈ I1, i3 ∈ I3.

Furthermore, we introduce the matrix of unity E ∈ AI×I . The diagonal entries
Ei,i of E are equal to 1, the off-diagonal entries Ei1,i2 , i1 	= i2, of E are equal to
0, i, i1, i2 ∈ I.

It is easily shown that matrix multiplication is associative, the distribu-
tion laws are valid for matrix addition and multiplication, E is a multiplica-
tive unit and 0 is a multiplicative zero. So we infer that 〈AI×I

R , +, ·, 0, E〉 and
〈AI×I

C , +, ·, 0, E〉 are semirings and that 〈AI×I , +, ·, 0, E〉 is a semiring if A is
complete.

If A is complete, infinite sums can be extended to matrices. Consider AI×I′

and define, for Mj ∈ AI×I′ , j ∈ J , where J is an index set,
∑

j∈J Mj by its
entries: (∑

j∈J
Mj

)

i,i′
=
∑

j∈J
(Mj)i,i′ , i ∈ I, i′ ∈ I ′.

By this definition, AI×I is a complete semiring.
If A is ordered, the order on A is extended pointwise to matrices M1 and M2

in AI×I′ :

M1 ≤M2 iff (M1)i,i′ ≤ (M2)i,i′ for all i ∈ I, i′ ∈ I ′.
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If A is continuous then so is AI×I .
We now introduce blocks of matrices. Consider a matrix M in AI×I . Assume

the existence of a non-empty index set J and of non-empty index sets Ij for
j ∈ J such that I =

⋃
j∈J Ij and Ij1 ∩ Ij2 = ∅ for j1 	= j2. The mapping M ,

restricted to the domain Ij1 × Ij2 , i. e., M : Ij1 × Ij2 → A is, of course, a matrix
in AIj1×Ij2 . We denote it by M(Ij1 , Ij2) and call it the (Ij1 , Ij2)-block of M .

We can compute the blocks of the sum and the product of matrices M1 and
M2 (if M1M2 is defined) from the blocks of M1 and M2 in the usual way:

(M1 + M2)(Ij1 , Ij2 ) = M1(Ij1 , Ij2) + M2(Ij1 , Ij2 ),

(M1M2)(Ij1 , Ij2 ) =
∑

j∈J
M1(Ij1 , Ij)M2(Ij , Ij2 ).

In a similar manner the matrices of AI×I′ can be partitioned into blocks. This
yields the computational rule

(M1 + M2)(Ij , I ′j′) = M1(Ij , I ′j′ ) + M2(Ij , I ′j′ ).

If we consider matrices M1 ∈ AI×I′ and M2 ∈ AI′×I′′ partitioned into compati-
ble blocks, i. e., I ′ is partitioned into the same index sets for both matrices, then
we obtain the computational rule

(M1M2)(Ij , I ′′j′′ ) =
∑

j′∈J′
M1(Ij , I ′j′ )M2(I ′j′ , I

′′
j′′ ).

If the semiring A is complete, there exist the following isomorphisms:

(i) The semirings

(AQ×Q)
I×I

, A(I×Q)×(I×Q), A(Q×I)×(Q×I), (AI×I)
Q×Q

are isomorphic by the correspondences between

(Mi1,i2)q1,q2 , M(i1,q1),(i2,q2), M(q1,i1),(q2,i2), (Mq1,q2)i1,i2

for all i1, i2 ∈ I, q1, q2 ∈ Q.
(ii) The semirings AI×I〈〈Σ∗〉〉 and (A〈〈Σ∗〉〉)I×I are isomorphic by the correspon-

dence between (M, w)i1,i2 and (Mi1,i2 , w) for all i1, i2 ∈ I, w ∈ Σ∗.

Observe that these correspondences are isomorphisms of complete semirings,
i. e., they respect infinite sums. We will use these isomorphisms without further
mention. Moreover, we will use the notation Mi1,i2 , i1 ∈ I1, i2 ∈ I2, where
M ∈ AI1×I2〈〈Σ∗〉〉: Mi1,i2 is the power series in A〈〈Σ∗〉〉 such that the coefficient
(Mi1,i2 , w) of w ∈ Σ∗ is equal to (M, w)i1,i2 . Similarly, we will use the notation
(M, w), w ∈ Σ∗, where M ∈ (A〈〈Σ∗〉〉)I1×I2 : (M, w) is the matrix in AI1×I2
whose (i1, i2)-entry (M, w)i1,i2 , i1 ∈ I1, i2 ∈ I2, is equal to (Mi1,i2 , w).

Furthermore, with analogous correspondences, there exist the following iso-
morphisms:
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(i) The semirings (AQ×Q)I×IR , A
(I×Q)×(I×Q)
R , A

(Q×I)×(Q×I)
R and (AI×I

R )Q×Q

and the semirings (AQ×Q)I×IC , A
(I×Q)×(I×Q)
C , A

(Q×I)×(Q×I)
C and (AI×I

C )Q×Q

are isomorphic.
(ii) The semiring (A〈〈Σ∗〉〉)I×IR is isomorphic to a subsemiring of AI×I

R 〈〈Σ∗〉〉 and
the semiring (A〈〈Σ∗〉〉)I×IC is isomorphic to a subsemiring of AI×I

C 〈〈Σ∗〉〉.

2 Convergence

We introduce an axiomatic definition for the notion of convergence of a special
type due to Kuich, Salomaa [15]. The notion is particularly suitable for han-
dling equations arising in automata theory. It also gives rise to some important
identities needed later on.

A mapping α : N → A is called a sequence in A. By AN we denote the set of
all such sequences. If α ∈ AN we use the notation α = (α(n)).

We denote by o and η the sequences defined by o(n) = 0 and η(n) = 1, for all
n ≥ 0, respectively. For α ∈ AN, c ∈ A, we define cα and αc in AN by (cα)(n) =
cα(n) and (αc)(n) = α(n)c, for all n ≥ 0, respectively. For α1, α2 ∈ AN, we define
α1+α2 and α1 ·α2 by (α1+α2)(n) = α1(n)+α2(n) and (α1 ·α2)(n) = α1(n)α2(n),
for all n ≥ 0, respectively.

Observe that 〈AN, +, ·, o, η〉 is a semiring. We need one further operation be-
fore giving the basic definitions of convergence.

Consider α ∈ AN and a ∈ A. Then αa ∈ AN denotes the sequence defined by

αa(0) = a , αa(n + 1) = α(n) , for all n ≥ 0 .

A convergence is given by a pair 〈D, lim〉, where D is a set of convergent se-
quences and lim : D → A is a limit function. Here, each set D ⊆ AN satisfying
the conditions (D1)–(D3) is called a set of convergent sequences in A.
(D1) η ∈ D.
(D2) (i) If α1, α2 ∈ D then α1 + α2 ∈ D.

(ii) If α ∈ D and c ∈ A then cα, αc ∈ D.
(D3) If α ∈ D and a ∈ A then αa ∈ D.

Furthermore, each mapping lim : D → A satisfying the following conditions
(lim1)–(lim3) is called a limit function (on D).
(lim1) limη = 1.
(lim2) (i) If α1, α2 ∈ D then lim(α1 + α2) = limα1 + limα2.

(ii) If α ∈ D and c ∈ A then limcα = climα and lim(αc) = (limα)c.
(lim3) If α ∈ D and a ∈ A then limαa = limα.

Observe that, for all c ∈ A, the sequence cη = ηc is convergent independently
of D and converges to c.

In what follows we often use the term “convergence in A” without explicitly
specifying D and lim. Sets of convergent sequences will be considered only in the
case that a limit function is defined. We also use the notation limn→∞α(n) for
limα. Let h be an isomorphism between A1 and A2, extended in the natural fash-
ion to an isomorphism between AN

1 and AN
2 . If, moreover, the sets of convergent
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sequences D1 and D2 and the limit functions lim1 and lim2 are corresponding
with respect to this isomorphism then isomorphic sequences have isomorphic
limits.

A notion of convergence definable for every A, referred to as discrete con-
vergence, will now be discussed. This notion of convergence is the classical one
considered in connection with semirings. The discrete convergence is given by
the pair 〈Dd, limd〉, where Dd = {α ∈ AN | there exists an nα ≥ 0 such that, for
all k ≥ 0, α(nα + k) = α(nα)} and limdα = α(nα).

Theorem 1. (Kuich, Salomaa [15]) Dd is the smallest subset of AN for which
(D1)–(D3) are satisfied. If 〈D, lim〉 is a convergence then Dd ⊆ D and limα =
limdα for all α ∈ Dd.

Example 2.1. A sequence α ∈ R
N is called a Cauchy sequence if for all ε > 0,

there exists an nε ≥ 0 such that |α(n1)− α(n2)| < ε holds for all n1, n2 ≥ nε.
One possible choice for the set D of convergent sequences in R is the set of

Cauchy sequences with the usual convergence in R. This notion of convergence
in R is called the Cauchy convergence. �

Example 2.2. A sequence α ∈ R
N is called an Euler sequence if the sequence(∑

0≤j≤n
(
n
j

)
α(j)/2n

)
is a Cauchy sequence.

One possible choice for the set D of convergent sequences in R is the set of
Euler sequences with the following notion of convergence:

limEα = limn→∞
∑

0≤j≤n

(
n

j

)

α(j)/2n ,

where the limit on the right side denotes the Cauchy convergence.
This notion of convergence in R is called the Euler convergence. It can be

shown that, for all a ∈ R with −3 < a < 1, limE

∑
0≤j≤n ai = 1/(1 − a) and

limEan = 0.
Let a = −1. Then 1,−1, 1,−1, . . . converges to 0 and 1, 0, 1, 0, . . . converges

to 1
2 . (The reader is referred to Knopp [12] for more information concerning this

example.) �

Example 2.3. Let A be a continuous semiring. Dsup is the set of sequences that
are ultimately nondecreasing sequences, i. e., α ∈ Dsup iff there exists an nα such
that α(nα + k) ≤ α(nα + k + 1) for all k ≥ 0. Since in an continuous semiring
addition and multiplication are continuous, the function limsup : Dsup → A
defined by limsupα = sup{α(nα + k) | k ≥ 0} is a limit function. 〈Dsup, limsup〉
is called supremum convergence. �

Example 2.4. Let A be a complete semiring. Define Dcompl ⊆ AN by β ∈ Dcompl

if there exist an α ∈ AN and an nβ such that β(nβ + k) =
∑

0≤i≤k α(i). The
function limcompl : Dcompl → A defined by limcomplβ =

∑
i≥0 α(i) is a limit

function. 〈Dcompl, limcompl〉 is called complete convergence.
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Each continuous semiring is complete (see Ésik, Kuich [7]) and if A is contin-
uous then limsupβ = limcomplβ for all β ∈ Dcompl. �

A convergence 〈D, lim〉 in A is called strong if the condition
⎛

⎝
∑

0≤j≤n
ajα(n− j)

⎞

⎠ ∈ D

is satisfied for each α ∈ D and each a ∈ A such that (an) ∈ D and limn→∞an =
0. If (an) ∈ D with limn→∞an = 0 then a∗ exists.

Theorem 2. (Kuich, Salomaa [15]) The discrete convergence, the Cauchy con-
vergence and the Euler convergence are strong convergences.

A convergence 〈D, lim〉 in A is called multiplicative if, for all α, β ∈ D, α ·β ∈ D
and lim(α · β) = (limα) · (limβ).

Theorem 3. The discrete convergence, the Cauchy convergence, the supremum
convergence and the complete convergence are multiplicative convergences.

Proof. The proof is obvious for the discrete convergence. The Cauchy conver-
gence is multiplicative by Knopp [12], Theorem II.8.10. Since multiplication in a
continuous semiring is continuous, the supremum convergence is multiplicative.
Since multiplication of sums is distributive in complete semirings, the complete
convergence is multiplicative. �

The powers ai, i ≥ 0, of an element a in a semiring A are defined in the natural
way, whereby a0 = 1.

If (
∑

1≤j≤n ai) ∈ D then we write limn→∞
∑

1≤j≤n ai = a+.
If (
∑

0≤j≤n ai) ∈ D then we write limn→∞
∑

0≤j≤n ai = a∗ and call it the
star of a (with respect to the given notion of convergence).

(For n = 0 the range of j is empty in the sum defining a+. In this case we
consider the sum to be equal to 0.)

The next theorem shows the close interconnection between a+ and a∗.

Theorem 4. (Kuich, Salomaa [15]) Let a ∈ A. Then a∗ exists iff a+ exists, and
1 + a+ = a∗, aa∗ = a∗a = a+.

Corollary 2. If a∗ exists then

a∗ =
∑

0≤j≤n
aj + an+1a∗ and a∗ =

∑

0≤j≤n
aj + a∗an+1

for all n ≥ 0.

If the complete convergence in a complete semiring A is considered, a∗ and a+

exist for all a ∈ A:
a∗ =

∑

j≥0

aj , a+ =
∑

j≥1

aj .
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The same holds true for continuous semirings.
We now consider equations of the form

y = ay + b , a, b ∈ A , (∗)
where y is a variable. An element s ∈ A is called a solution of (*) iff s = as + b.

Theorem 5. (Kuich, Salomaa [15]) If a∗ exists then s = a∗b is a solution of (*).
If, moreover, limn→∞an = 0 then s is the unique solution of (*).

Example 2.5. Let y = ay + 1, −3 < a < 1. We work with the Euler convergence.
Then limn→∞an = 0 and a∗ = 1/(1−a). Hence, the unique solution of y = ay+1
is 1/(1− a). �

Theorem 6. Let A be a continuous semiring and consider the supremum con-
vergence. Then s = a∗b is the least solution of (*).

Proof. By a well-known fixed point theorem, see, e. g., Bloom, Ésik [2], Guessar-
ian [10], Ésik, Kuich [7], Theorem 2.9. �

We now turn to the discussion of some important identities. The letters a, b
stand for elements of A.

Theorem 7. (Kuich, Salomaa [15]) (i) Assume the existence of (a+b)∗, a∗ and
(a∗b)∗ and, furthermore, limn→∞(a + b)n = 0. Then the sum-star-identity

(a + b)∗ = (a∗b)∗a∗

holds for a and b.
(ii) (ab)∗ exists if (ba)∗ exists. Whenever (ab)∗ exists, the product-star-identity

(ab)∗ = 1 + a(ba)∗b

holds for a and b.

We now will show how to transfer a notion of convergence in A into A〈〈Σ∗〉〉.
Observe first that AN〈〈Σ∗〉〉 and (A〈〈Σ∗〉〉)N are isomorphic. This isomorphism

will be used in the notation below without further mention. It also follows that
D〈〈Σ∗〉〉 can be considered as a subset of the set of sequences (A〈〈Σ∗〉〉)N.

Our next theorem shows explicitly how a notion of convergence in A can
be transferred to A〈〈Σ∗〉〉. The main idea is that a sequence of power series
determines, for each w ∈ Σ∗, a sequence of coefficients of w. The limits of the
latter sequences determine the coefficients in the limit of our sequence of power
series.

Theorem 8. (Kuich, Salomaa [15]) Assume that lim : D → A is a limit func-
tion. Then also the mapping lim : D〈〈Σ∗〉〉 → A〈〈Σ∗〉〉 defined by

limα =
∑

w∈Σ∗
lim(α, w)w

is a limit function.
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In the sequel we will use the method of Theorem 8 to transfer the notion of
convergence from A to A〈〈Σ∗〉〉 unless stated otherwise.

The next theorem is similar to Theorem 1.

Theorem 9. (Kuich, Salomaa [15]) Assume that limdα =
∑

w∈Σ∗ limd(α, w)w
and limα =

∑
w∈Σ∗ lim(α, w)w are limit functions on Dd〈〈Σ∗〉〉 and D〈〈Σ∗〉〉,

respectively. If α ∈ Dd〈〈Σ∗〉〉 then limα = limdα.

For k ≥ 0, we consider the truncation operator Rk defined for power series
r ∈ A〈〈Σ∗〉〉 by

Rk(r) =
∑

|w|≤k
(r, w)w .

Consider the discrete convergence in A transferred to A〈〈Σ∗〉〉. Then, for α ∈
(A〈〈Σ∗〉〉)N, α ∈ Dd〈〈Σ∗〉〉 and limα = r iff for all k ≥ 0, there exists an mk ≥
0 such that, for all j ≥ 0, Rk(α(mk + j)) = Rk(α(mk)) and then (r, w) =
(Rk(α(mk)), w) for all w ∈ Σ∗.

Corollary 3. Consider a convergence 〈D, lim〉 in A transferred to a convergence
〈D〈〈Σ∗〉〉, lim〉 in A〈〈Σ∗〉〉. Assume that, for α ∈ (A〈〈Σ∗〉〉)N, there exists, for all
k ≥ 0, an mk ≥ 0 such that, for all j ≥ 0, Rk(α(mk + j)) = Rk(α(mk)). Then
α ∈ D〈〈Σ∗〉〉 and limα = r, where (r, w) = (Rk(α(mk)), w) for all w ∈ Σ∗.

Proof. By Theorem 9. �

Theorem 10. (Kuich, Salomaa [15]) A strong convergence in A transferred to
a convergence in A〈〈Σ∗〉〉 is again strong.

Theorem 11. A multiplicative convergence in A transferred to a convergence
in A〈〈Σ∗〉〉 is again multiplicative.

Proof. We use for the limit functions in A and in A〈〈Σ∗〉〉 the same notation lim
and get, for convergent seqences α and β,

limαlimβ = (
∑

w1∈Σ∗ lim(α, w1)w1)(
∑

w2∈Σ∗ lim(β, w2)w2) =∑
w1,w2∈Σ∗ lim(α, w1)lim(β, w2)w1w2 =

∑
w∈Σ∗(

∑
w=w1w2

lim(α, w1)lim(β, w2))w =∑
w∈Σ∗ lim(

∑
w=w1w2

(α, w1)(β, w2))w =∑
w∈Σ∗ lim(αβ, w)w = limαβ .

�

A power series r ∈ A〈〈Σ∗〉〉 is called proper if (r, ε) = 0. For a power series r, the
power series

∑
w∈Σ+(r, w)w is called the proper part of r.

Theorem 12. (Kuich, Salomaa [15]) If r ∈ A〈〈Σ∗〉〉 is proper then limn→∞rn =
0 and r∗ exists. Moreover,

r∗ =
∑

w∈Σ∗
(
∑

0≤j≤|w|
rj , w)w .
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In case of a strong convergence, the coefficient of ε has a great influence on the
convergence behavior of a power series and gives rise to the definition of a cycle-
free power series: a power series is called cycle-free (with respect to the given
strong convergence) if limn→∞(r, ε)n = 0.

Theorem 13. (Kuich, Salomaa [15]) Assume a strong convergence in A. For
each cycle-free power series r, limn→∞rn = 0 and r∗ exists.

We transfer the term cycle-free to equations. An equation

y = ry + s , r, s ∈ A〈〈Σ∗〉〉 , (∗)
is termed cycle-free if r is cycle-free.

Theorem 14. (Kuich, Salomaa [15]) Assume a strong convergence in A. Every
cycle-free equation (*) has the unique solution r∗s.

Theorem 15. (Kuich, Salomaa [15]) Assume a strong convergence in A. For
each cycle-free power series r,

r∗ = (r∗0r1)∗r∗0 = r∗0(r1r
∗
0)∗ ,

where r0 = (rε)ε and r1 is the proper part of r.

We now turn to infinite matrices.
Assume that A is provided with a notion of convergence. We now transfer this

notion of convergence in A to AI×I
C where I is an arbitrary index set.

We define the set DC ⊆ (AI×I
C )N of convergent sequences in AI×I

C as follows.
A sequence μ is in DC iff

(i) for all i, j ∈ I, the sequence μi,j is in D,
(ii) for all j ∈ I, there exists a finite set I(j) ⊆ I such that μi,j = o, for all

i ∈ I \ I(j).

Intuitively, a sequence μ ∈ AI×I
C is convergent iff μi,j is a convergent sequence

in A, for all i ∈ I(j) and j ∈ I, and μi,j = o for all i ∈ I \ I(j) and j ∈ I.

Theorem 16. (Kuich, Salomaa [15]) Assume that lim : D → A is a limit func-
tion. Then also the mapping limC : DC → AI×I

C defined by

(limCμ)i,j = limμi,j

is a limit function on DC. Furthermore, 〈DC , limC〉 is a strong convergence if
〈D, lim〉 is strong.

A clearifying remark about matrices in (A〈〈Σ∗〉〉)I×IC is now in order. Let M be in
(A〈〈Σ∗〉〉)I×IC and let M ′ be its isomorphic copy in AI×I

C 〈〈Σ∗〉〉. By definition, M
is called C-cycle-free if its isomorphic copy M ′ is cycle-free with respect to the
strong convergence 〈DC〈〈Σ∗〉〉, lim〉. Then M ′∗ is in AI×I

C 〈〈Σ∗〉〉. But in general,
the copy of M ′∗ in (A〈〈Σ∗〉〉)I×I is not in (A〈〈Σ∗〉〉)I×IC . (See Kuich, Salomaa [15],
Theorem 4.2 and the discussion on pages 55/56.)
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3 Algebraic Systems

In this section we consider, as a generalization of context-free grammars, alge-
braic systems. The defining equations are algebraic in the classical sense, i. e.,
are polynomial equations. Throughout this section, A denotes a commutative
semiring.

An A〈Σ ∪ {ε}〉-algebraic system (briefly algebraic system) with variables in
Y = {y, . . . , yn}, Y ∩Σ = ∅, is a system of equations

yi = pi , 1 ≤ i ≤ n ,

where each pi is a polynomial in A〈(Σ ∪ Y )∗〉.
Defining the two column vectors

y =

⎛

⎜
⎝

y1

...
yn

⎞

⎟
⎠ and p =

⎛

⎜
⎝

p1

...
pn

⎞

⎟
⎠ ,

we can write our algebraic system in the matrix notation

y = p .

Intuitively, a solution to the algebraic system y = p is given by n power series
σ1, . . . , σn in A〈〈Σ∗〉〉 “satisfying” the algebraic system in the sense that if each
variable yi is replaced by the series σi then valid equations result.

More formally, consider

σ =

⎛

⎜
⎝

σ1

...
σn

⎞

⎟
⎠ ∈ (A〈〈(Σ ∪ Y )∗〉〉)n×1 .

Then we can define a morphism hσ : (Σ ∪ Y )∗ → A〈〈(Σ ∪ Y )∗〉〉 by hσ(yi) = σi,
1 ≤ i ≤ n and hσ(x) = x, x ∈ Σ.

As usual, extend hσ to a mapping hσ : A〈(Σ ∪ Y )∗〉 → A〈〈(Σ ∪ Y )∗〉〉 by the
definition

hσ(p) =
∑

γ∈(Σ∪Y )∗
(p, γ)hσ(γ) ,

where p is in A〈(Σ ∪ Y )∗〉. Observe that hσ(ap) = ahσ(p), hσ(p + p′) = hσ(p) +
hσ(p′) and hσ(p · p′) = hσ(p) · hσ(p′) for all p, p′ ∈ A〈(Σ ∪ Y )∗〉 and a ∈ A.
Hence, hσ is a morphism. Furthermore, because p is a polynomial, we will have
no difficulties with infinite sums.

A solution to the algebraic system yi = pi, 1 ≤ i ≤ n, is given by a column
vector σ ∈ (A〈〈Σ∗〉〉)n×1 such that σi = hσ(pi), 1 ≤ i ≤ n.

Matrix notation can be used by extending the mapping hσ entrywise to vectors
and matrices. In this fashion, a solution to the algebraic system y = p is given
by a column vector σ such that σ = hσ(p).
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An algebraic system yi = pi, 1 ≤ i ≤ n, or y = p is also written in the
form yi = pi(y1, . . . , yn), 1 ≤ i ≤ n, or y = p(y), respectively. Then hσ(pi) and
hσ(p) can be written as pi(σ1, . . . , σn) or p(σ), respectively. Sometimes, we write
pi[σ1|y1, . . . , σn|yn] and p[σ|y] for hσ(pi) and hσ(p), respectively.

The approximation sequence

σ0, σ1, σ2, . . . , σj , . . . , where each σj ∈ (A〈Σ∗〉)n×1 ,

associated to an algebraic system y = p(y) is defined as follows:

σ0 = 0 , σj+1 = p(σj), j ≥ 0 .

If the approximation sequence converges with respect to some given convergence
in A, i. e.,

lim
j→∞

σj = σ ,

then σ is referred to as the strong solution (with respect to the given convergence
in A). In our next theorem we show that this strong solution is really a solution
to the algebraic system if the given convergence is multiplicative. A lemma is
needed before the theorem.

Lemma 1. Let 〈D, lim〉 be a multiplicative convergence in A. Then, for α ∈
(D〈〈(Σ ∪ Y )∗〉〉) and p(y) ∈ A〈(Σ ∪ Y )∗〉,

lim
j→∞

p[α(j)|y] = p[ lim
j→∞

α(j)|y] .

Proof. Consider first a term t(y) = aw0yi1w1 . . . wk−1yikwk, a ∈ A, wi ∈ Σ∗,
0 ≤ i ≤ k, k ≥ 0. Then we obtain

limj→∞(t[α(j)|y]) = limj→∞(aw0αi1(j)w1 . . . wk−1αik(j)wk) =
aw0(limj→∞ αi1(j))w1 . . . wk−1(limj→∞ αik(j))wk = t[limj→∞ α(j)|y] .

Since each polynomial in A〈(Σ ∪ Y )∗〉 is a finite sum of such terms, we obtain,
for p(y) =

∑
1≤i≤m ti(y),

lim
j→∞

(p[α(j)|y]) = lim
j→∞

(
∑

1≤i≤m
ti[α(j)|y]) =

∑

1≤i≤m
lim
j→∞

(ti[α(j)|y]) =

∑

1≤i≤m
ti[ lim
j→∞

α(j)|y] = p[ lim
j→∞

α(j)|y] .

�

Theorem 17. Let 〈D, lim〉 be a multiplicative convergence in A. Consider an
algebraic system y = p(y) and its approximation sequence σ0 = 0, σj+1 =
p[σj |y], j ≥ 0. Assume that this approximation sequence is convergent with limit
σ. Then σ is a solution to y = p(y).
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Proof. We obtain

p[σ|y] = p[ lim
j→∞

σj |y] = lim
j→∞

(p[σj |y]) = lim
j→∞

σj+1 = lim
j→∞

σj = σ .

Here we have applied Lemma 1 in the second equality and axiom (D3) in the
fourth equality. �

An algebraic system yi = pi, 1 ≤ i ≤ n, is called linear algebraic system if
supp(pi) ⊆ Σ∗Y Σ∗ ∪ Σ∗. Observe now that Lemma 1 and hence Theorem 17
are valid for linear algebraic systems without the assumption that 〈D, lim〉 is
multiplicative.

Theorem 18. Consider a linear algebraic system and assume that its approxi-
mation sequence is convergent. Then its limit is a solution to the linear algebraic
system.

In a continuous semiring, the approximation sequence of an algebraic system is
always convergent in the supremum convergence and is the least solution of this
algebraic system (see Ésik, Kuich [7], Theorem 2.9).

Theorem 19. Consider an algebraic system y = p(y) over a continuous semi-
ring. Then its approximation sequence

0, p(0), p2(0), . . . , pj(0), . . .

is convergent in the supremum convergence and its limit

sup{pj(0) | j ≥ 0}
is the unique least solution of y = p.

In the theorem, pj(0) denotes the j-fold application of p to the vector 0.
A remark on equations over matrices is in order. Consider equations of the

form
y = My + P , M, P ∈ (A〈〈(Σ ∪ Y )∗〉〉)n×n . (1)

Such an equation can be considered in two ways. On the one hand, it is an equa-
tion of the type (*) below Corollary 2. On the other hand, y can be considered to
be a matrix of variables yij , 1 ≤ i, j ≤ n, and the equation yields, for 1 ≤ j ≤ n,
the n linear systems

yij =
∑

1≤k≤n
Mikykj + Pij , 1 ≤ i ≤ n . (2)

Clearly, each solution τ of (1) yields, for 1 ≤ j ≤ n,

τij =
∑

1≤k≤n
Mikτkj + Pij , 1 ≤ i ≤ n ,

i. e., (τij)1≤i≤n is a solution to the j-th linear system, 1 ≤ j ≤ n, and vice versa.
This means that, when dealing with solutions, we may consider the equation
from either point of view.
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Moreover, we consider equations of the form

y = My + p , M ∈ (A〈(Σ ∪ Y )∗〉)n×n , p ∈ (A〈(Σ ∪ Y )∗〉)n×1 . (3)

Such an equation can be seen as a short version of an equation

z =
(

M 0
0 0

)

z +
(

0 p
0 0

)

or, written with matrix variables u, y, v, x,

u = Mu , y = My + p ,
v = 0 , x = 0 .

We observe that

lim
j→∞

(
M 0
0 0

)j
= 0 iff lim

j→∞
M j = 0

and (
M 0
0 0

)∗
exists iff M∗ exists .

Hence, we can apply all our results on equations of type (*) to equations of
type (3).

We did not treat the theory of equations of the form

y = My + p , M ∈ (A〈(Σ ∪ Y )∗〉)n×n , p ∈ (A〈(Σ ∪ Y )∗〉)n×j .

The reason is that we did not want to introduce A-semimodules compatible with
the semiring A as regards the given convergence in A (see Kuich, Salomaa [15]).

In the next theorem we consider an algebraic system of the form y = My +
p(y), where M ∈ (A〈ε〉)n×n and p(y) ∈ (A〈(Σ∪Y )∗〉)n×1. This means that some
or all linear terms of the form ay, a ∈ A, y ∈ Y , are put together to form the
matrix M .

Theorem 20. Let M ∈ (A〈ε〉)n×n and assume that M∗ exists. If σ is a solution
to the algebraic system y = M∗p(y), p(y) ∈ (A〈(Σ ∪ Y )∗〉)n×1, then σ is also a
solution to the algebraic system y = My + p(y).

Proof. Since σ is a solution of y = M∗p(y), we infer σ = M∗p(σ) and obtain

(My + p(y))[σ|y] = Mσ + p(σ) = MM∗p(σ) + p(σ) =
(MM∗ + E)p(σ) = M∗p(σ) = σ

by Corollary 2. �

Theorem 21. Let M ∈ (A〈ε〉)n×n. Assume that limj→∞M j = 0 and that M∗

exists. If σ is a solution to the algebraic system y = My + p(y), p(y) ∈ (A〈(Σ ∪
Y )∗〉)n×1, then σ is also a solution to the algebraic system y = M∗p(y).
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Proof. Since σ is a solution to the algebraic system y = My + p(y), we obtain,
for all j ≥ 0,

σ = Mσ + p(σ) = . . . = M j+1σ +
∑

0≤i≤j
M ip(σ) .

Since limj→∞M j = 0, we have M limj→∞M j = limj→∞M j+1 = 0. Furthermore
M j+1σ +

∑
0≤i≤j M ip(σ) = σ implies

(M j+1)σ + (
∑

0≤i≤j
M i)p(σ) = ησ .

Hence, taking limits,

( lim
j→∞

M j+1)σ + ( lim
j→∞

∑

0≤i≤j
M i)p(σ) = M∗p(σ) = σ .

and σ is a solution of y = M∗p(y). �

Consider a strong convergence in A. Then, by Kuich, Salomaa [15], the conver-
gence in An×n transferred from the convergence in A is again strong. Let y =
My + p(y), where M ∈ (A〈ε〉)n×n, p(y) ∈ (A〈(Σ ∪ Y )∗〉)n×1 and supp(pi(y)) ⊆
(Σ ∪Y )+ \Y , 1 ≤ i ≤ n, be an algebraic system. This algebraic system is called
cycle-free (with respect to the given strong convergence) if limj→∞M j = 0.

Corollary 4. Consider a strong convergence in A and a cycle-free algebraic
system y = My+p(y). Then the solutions of the algebraic systems y = My+p(y)
and y = M∗p(y) coincide.

Theorem 22. (Kuich [13], Ésik, Kuich [7], Ésik, Leiß [9]) Let A be a continuous
semiring. Then the least solution of the algebraic systems y = My + p(y) and
y = M∗p(y), M ∈ (A〈ε〉)n×n, p(y) ∈ (A〈(Σ ∪ Y )∗〉)n×1, coincide.

Example 3.1. Consider the cycle-free probabilistic R〈〈Σ∗〉〉-algebraic system

y1 = 1
4y2 + 1

4y3 + 1
3u1y1v1 + 1

6x1 ,

y2 = 1
4y1 + 1

4y3 + 1
3u2y2v2 + 1

6x2 ,

y3 = 1
4y1 + 1

4y2 + 1
3u3y3v3 + 1

6x3 ,

ui, vi, xi ∈ Σ∗, uivi 	= ε, xi 	= ε, 1 ≤ i ≤ 3. It can be written in the form
y = My + p(y), where

M =

⎛

⎜
⎝

0 1
4

1
4

1
4 0 1

4

1
4

1
4 0

⎞

⎟
⎠ and p(y) =

⎛

⎜
⎝

1
3u1y1v1 + 1

6x1

1
3u2y2v2 + 1

6x2

1
3u3y3v3 + 1

6x3

⎞

⎟
⎠ .
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An easy proof by induction yields

Mn =
1

3 · 2nU +
(−1)n

3 · 4n V , n ≥ 0 ,

where

U =

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ and V =

⎛

⎝
2 −1 −1
−1 2 −1
−1 −1 2

⎞

⎠ .

M∗ exists in the Cauchy convergence and is given by
⎛

⎜
⎝

6
5

2
5

2
5

2
5

6
5

2
5

2
5

2
5

6
5

⎞

⎟
⎠ .

We infer by Corollary 4 that σ ∈ (R〈〈Σ∗〉〉)3×1 is a solution to y = My + p(y) iff
it is a solution to y = M∗p(y). �

Theorem 23. Assume that σ is a solution to the algebraic system
yi = pi(y1, . . . , yn), 1 ≤ i ≤ n. Then there exists an algebraic system yi = qi,
where each qi is proper, with solution τ =

∑
w∈Σ+(σ, w)w.

If the semiring A is continuous and σ is the least solution to yi = pi, 1 ≤ i ≤ n,
then τ is the least solution of yi = qi, 1 ≤ i ≤ n.

Proof. We define the polynomial qi to be the proper part of the polynomial

pi((σ1, ε)ε + y1, . . . , (σn, ε)ε + yn) .

The comparison of the proper parts of the equalities σi = pi(σ1, . . . , σn), 1 ≤
i ≤ n, yields the equalities

(σi, ε)ε = pi((σ1, ε)ε, . . . , (σn, ε)ε) and
τi = qi(τ1, . . . , τn) , 1 ≤ i ≤ n .

Hence, τ is a solution to yi = qi, 1 ≤ i ≤ n.
Assume now that A is continuous and consider an arbitrary solution τ ′ of

yi = qi, 1 ≤ i ≤ n. Then σ′ = (σ, ε)ε + τ ′ is a solution of yi = pi, 1 ≤ i ≤ n.
Since σ is the least solution of yi = pi, 1 ≤ i ≤ n, we infer that σ ≤ σ′. But this
implies τ ≤ τ ′. Hence, τ is the least solution of yi = qi, 1 ≤ i ≤ n. �

An algebraic system yi = pi, 1 ≤ i ≤ n, pi ∈ A〈(Σ ∪ Y )∗〉, is termed proper if
supp(pi) ⊆ (Σ ∪ Y )+ \ Y for all 1 ≤ i ≤ n.

Theorem 24. (Kuich, Salomaa [15]) Let y = p be a proper algebraic system.
Then its strong solution σ exists with respect to a multiplicative convergence.
Moreover, σ is proper and it is the only proper solution.
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Proof. Let σk, k ≥ 0, be the elements of the approximation sequence associated
to the proper algebraic system y = p. We claim that for all k, j ≥ 0,

Rk(σk+j+1) = Rk(σk+1) .

(Here the truncation operator Rk is applied to vectors componentwise.) The
proof of the claim is by induction on k. Clearly, the elements of σj , j ≥ 0, are
proper. This proves our claim for k = 0. For k > 0 we obtain, for all j ≥ 0,

Rk(σk+1) = Rk(p(σk)) = Rk(p(Rk(σk)) = Rk(p(Rk−1(σk)) =
Rk(p(Rk−1(σk+j)) = Rk(p(σk+j)) = Rk(σk+j+1) .

The third equation follows by the special form of the terms in the polynomials
in p. The fourth equation follows by the induction hypothesis.

Hence, by Theorems 17 and 9, the strong solution exists with respect to the
given multiplicative convergence.

Let τ be a proper solution to the proper algebraic system y = p. We claim
that, for k ≥ 0,

Rk(τ) = Rk(σ) .

The proof of the claim is by induction on k. Clearly, we obtain R0(τ) = R0(σ) =
0. For k ≥ 0, we obtain

Rk(σ) = Rk(p(σ)) = Rk(p(Rk−1(σ)) =
Rk(p(Rk−1(τ)) = Rk(p(τ)) = Rk(τ) .

Consequently, τ = σ. �

The next theorem is analogous to Theorem 22.

Theorem 25. Consider a strong convergence in the semiring A. Then a cycle-
free algebraic system y = My + p(y) has a unique proper solution that coincides
with the unique proper solution of the proper algebraic system y = M∗p(y).

Proof. By Theorem 24 and Corollary 4. �

A power series in A〈〈Σ∗〉〉 is called A-algebraic if r = (r, ε)ε + r1, where r1 is
some component of the strong solution of a proper A〈Σ ∪{ε}〉-algebraic system.
The collection of all A-algebraic power series is denoted by Aalg〈〈Σ∗〉〉. If the
semiring is clear, we call r algebraic power series.

Corollary 5. Consider a strong convergence in the semiring A and let r1 be
some component of the proper solution of a cycle-free algebraic system. Then
r = (r, ε)ε + r1 is an algebraic power series.

Theorem 26. Let A be a continuous semiring. Then the components of the least
solution of an A-algebraic system are A-algebraic power series.

Proof. Given an algebraic system with least solution σ, we perform the construc-
tion of Theorem 23. By Theorem 23, the proper part of σ is the least solution of
this constructed system. Now we write this system in the form y = My + p(y),
where M ∈ (A〈ε〉)n×n, p(y) ∈ (A〈(Σ∪Y )∗〉)n×1 and supp(pi(y)) ⊆ (Σ∪Y )+\Y .
Then by Theorem 22, the least solution of the proper algebraic system y =
M∗p(y) is again the proper part of σ. Hence, by the definition of algebraic
power series, σ is an algebraic power series. �
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4 Pushdown Automata and Algebraic Systems

In this section we generalize finite automata, and the equations introduced in
Section 2. Finite automata are generalized in the following direction: An infinite
set of states will be allowed in the general definition. When dealing with push-
down automata this will enable us to store the contents of the pushdown tape
in the states.

Then we define A〈Σ ∪ {ε}〉-pushdown automata and consider their relation
to A〈Σ ∪ {ε}〉-algebraic systems. It turns out that a ∈ Aalg〈Σ∗〉 iff it is the
behavior of an A〈Σ ∪ {ε}〉-pushdown automaton. This generalizes the language
theoretic result due to Chomsky [4] that a formal language is context-free iff it
is accepted by a pushdown automaton.

Our model of an automaton will be defined in terms of a (possibly infinite)
transition matrix. The semiring element generated by the transition of the auto-
maton from one state i to another state i′ in exactly k computation steps equals
the (i, i′)-entry in the k-th power of the transition matrix. Consider now the star
of the transition matrix. Then the semiring element generated by the automaton,
also called the behavior of the automaton, can be expressed by the entries (mul-
tiplied by the initial and final weights of the states) of the star of the transition
matrix.

An A〈Σ ∪ {ε}〉-automaton

A = (I, M, S, P )

is given by

(i) a non-empty set I of states,
(ii) a matrix M ∈ A〈Σ ∪ {ε}〉I×I , called the transition matrix,
(iii) S ∈ A〈Σ ∪ {ε}〉1×I , called the initial state vector,
(iv) P ∈ A〈Σ ∪ {ε}〉I×1, called the final state vector.

An A〈Σ ∪ {ε}〉-automaton A = (I, M, S, P ) is called C-cycle-free if M is in
(A〈Σ ∪ {ε}〉)I×IC and is C-cycle-free.

If A is complete or A is C-cycle-free then the behavior ‖A‖ ∈ A〈〈Σ∗〉〉 of the
A〈Σ ∪ {ε}〉-automaton A is defined by

‖A‖ =
∑

i1,i2∈I
Si1(M

∗)i1,i2Pi2 = SM∗P .

We now consider equations of the form

y = My + P ,

where y is a variable, M is in A〈Σ ∪ {ε}〉I×IC and P is in A〈Σ ∪ {ε}〉I×1. The
remark on equations of the form (3) in Section 3 is in an analogous manner also
valid for these equations.

Theorem 27. Let M ∈ (A〈Σ ∪ {ε}〉)I×IC and P ∈ (A〈Σ ∪ {ε}〉)I×J . Assume
that M∗ exists. Then M∗P is a solution of y = My + P .



Algebraic Systems and Pushdown Automata 249

If limn→∞ Mn = 0 then M∗P is the unique solution of y = My + P .
If A is a continuous semiring then M∗P is the least solution of y = My + P .

Proof. By Theorems 5 and 6. �

A〈Σ ∪ {ε}〉-pushdown automata are finite automata (with state set Q) aug-
mented by a pushdown tape. The contents of the pushdown tape is a word
over the pushdown alphabet Γ . We consider an A〈Σ ∪ {ε}〉-pushdown automa-
ton to be an A〈Σ ∪ {ε}〉-automaton: the state set is given by Γ ∗ × Q and its
transition matrix is in A〈Σ ∪ {ε}〉(Γ∗×Q)×(Γ∗×Q). This allows us to store the
contents of the pushdown tape and the states of the finite automaton in the
states of the A〈Σ ∪{ε}〉-pushdown automaton. Because of technical reasons, we
do not work in the semiring A〈〈Σ∗〉〉(Γ∗×Q)×(Γ∗×Q) but in the isomorphic semi-
ring (A〈〈Σ∗〉〉Q×Q)Γ

∗×Γ∗
. A matrix M ∈ (A〈Σ ∪ {ε}〉Q×Q)Γ

∗×Γ∗
is termed an

A〈Σ ∪ {ε}〉-pushdown transition matrix if

(i) for each p ∈ Γ there exist only finitely many blocks Mp,π, π ∈ Γ ∗, that are
unequal to 0;

(ii) for all π1, π2 ∈ Γ ∗,

Mπ1,π2 =

⎧
⎨

⎩

Mp,π if there exist p ∈ Γ , π′ ∈ Γ ∗ with
π1 = pπ′ and π2 = ππ′,

0 otherwise.

The above definition implies that M is row and column finite and that an A〈Σ∪
{ε}〉-pushdown transition matrix has a finitary specification: it is completely
specified by its non-null blocks of the form Mp,π, p ∈ Γ , π ∈ Γ ∗, and only the
following transitions are possible: if the contents of the pushdown tape is given
by pπ′, the contents of the pushdown tape after a transition has to be of the
form ππ′; moreover, the transition does only depend on the leftmost (topmost)
pushdown sympol p and not on π′. In this sense the A〈Σ ∪ {ε}〉-pushdown
transition matrix represents a proper formalization of the principle “last in—
first out”.

An A〈Σ ∪ {ε}〉-pushdown automaton

P = (Q, Γ, M, S, p0, P )

is given by

(i) a finite set Q of states,
(ii) a finite alphabet Γ of pushdown symbols,
(iii) an A〈Σ ∪ {ε}〉-pushdown transition matrix M ∈ (A〈Σ ∪ {ε}〉Q×Q)Γ

∗×Γ∗
,

(iv) S ∈ A〈{ε}〉1×Q, called the initial state vector,
(v) p0 ∈ Γ , called the initial pushdown symbol,
(vi) P ∈ A〈{ε}〉Q×1, called the final state vector.

An A〈Σ ∪ {ε}〉-pushdown automaton P = (Q, Γ, M, S, p0, P ) is called C-cycle-
free if its transition matrix M is C-cycle-free.
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If A is complete or P is C-cycle-free then the behavior ‖P‖ of the A〈Σ∪{ε}〉-
pushdown automaton P is defined by

‖P‖ = S(M∗)p0,εP.

We now describe the computations of an A〈Σ ∪ {ε}〉-pushdown automaton.
Initially, the pushdown tape contains the special symbol p0. The A〈Σ ∪ {ε}〉-
pushdown automaton now performs transitions governed by the A〈Σ ∪ {ε}〉-
pushdown transition matrix until the pushdown tape is emptied. The result of
these computations is given by (M∗)p0,ε. Multiplications by the initial state vec-
tor and by the final state vector yield the behavior of the A〈Σ ∪ {ε}〉-pushdown
automaton.

Assume now that P(Σ∗), the semiring of formal languages over Σ, is our
basic semiring. We connect our definition of a B〈Σ ∪ {ε}〉-pushdown automaton
P = (Q, Γ, M, I, p0, P ) by the isomorphism of P(Σ∗) and B〈〈Σ∗〉〉 to the usual
definition of a pushdown automaton P′ = (Q, Σ, Γ, δ, q0, p0, F ) (see e. g., Harri-
son [11]), where Σ is the input alphabet, δ, a function from Q× (Σ ∪ {ε})× Γ
to the set of all finite subsets of Q×Γ ∗, is the transition function, q0 ∈ Q is the
initial state and F ⊆ Q is the set of final states.

Assume that a pushdown automaton P′ is given as above. The transition
function δ defines the pushdown transition matrix M of P by

x ∈ (Mp,π)q1,q2 iff (q2, π) ∈ δ(q1, x, p)

for all q1, q2 ∈ Q, p ∈ Γ , π ∈ Γ ∗, x ∈ Σ∪{ε}. Let now � be the move relation over
the instantaneous descriptions of P′ in Q×Σ∗×Γ ∗. Then (q1, w, π1) �k (q2, ε, π2)
iff w ∈ ((Mk)π1,π2

)
q1,q2

and (q1, w, π1) �∗ (q2, ε, π2) iff w ∈ ((M∗)π1,π2
)
q1,q2

for
all k ≥ 0, q1, q2 ∈ Q, π1, π2 ∈ Γ ∗, w ∈ Σ∗. Hence, (q0, w, p0) �∗ (q, ε, ε) iff
w ∈ ((M∗)p0,ε)q0,q. Define the initial state vector S and the final state vector
P by Sq0 = {ε}, Sq = ∅ if q 	= q0, Pq = {ε} if q ∈ F , Pq = ∅ if q 	∈ F . Then
a word w is accepted by the pushdown automaton P′ by both final state and
empty store iff w ∈ S(M∗)p0,εP = ‖P‖.

In our first theorem we show that an A〈Σ ∪ {ε}〉-pushdown automaton can
be regarded as an A〈Σ ∪ {ε}〉-automaton.

Theorem 28. Consider an A〈Σ∪{ε}〉-pushdown automaton P. If A is complete
or P is C-cycle-free then there exists an A〈Σ ∪ {ε}〉-automaton A such that
‖A‖ = ‖P‖.
Proof. Let P = (Q, Γ, M, S, p0, P ). We define the A〈Σ ∪ {ε}〉-automaton A =
(Γ ∗ ×Q, M ′, S′, P ′) by M ′

(π1,q1),(π2,q2) = (Mπ1,π2)q1,q2 , S′
(p0,q)

= Sq, S′
(π,q) = 0,

if π 	= p0, P ′
(ε,q) = Pq, P ′

(π,q) = 0, if π 	= ε. Then

‖A‖ = S′M ′∗P ′

=
∑

(π1,q1),(π2,q2)∈Γ∗×Q
S′

(π1,q1)
(M ′∗)(π1,q1),(π2,q2)P

′
(π2,q2)
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=
∑

q1,q2∈Q
S′

(p0,q1)
(M ′∗)(p0,q1),(ε,q2)

P ′
(ε,q2) =

=
∑

q1,q2∈Q
Sq1((M

∗)p0,ε)q1,q2Pq2 = S(M∗)p0,εP = ‖P‖.
�

An A〈Σ ∪{ε}〉-pushdown transition matrix M ∈ ((A〈〈Σ∗〉〉)Q×Q)Γ
∗×Γ∗

is called
proper if, for all p ∈ Γ and π ∈ Γ ∗, (Mp,π, ε) 	= 0 implies |π| ≥ 2. An A〈Σ∪{ε}〉-
pushdown automaton is called proper if its A〈Σ ∪ {ε}〉-pushdown transition
matrix is proper.

Theorem 29. Consider a strong convergence in A. Then every proper A〈Σ ∪
{ε}〉-pushdown transition matrix M is C-cycle-free. Moreover, (M∗)p,ε is proper
for all p ∈ Γ .

Proof. For the proof we show at first that limCn→∞(Mn, ε) = 0, where the basic
convergence in A is the discrete convergence.

By the definition of limC this means that the following conditions (i) and (ii)
are satisfied.

(i) For all π2 ∈ Γ ∗, there exists an n(π2) ≥ 0 such that

(Mn(π2)+k, ε)π1,π2 = 0

holds for all π1 ∈ Γ ∗ and all k ≥ 0.
(ii) For all π2 ∈ Γ ∗, there exists a finite set I(π2) ⊆ Γ ∗ such that

(Mk, ε)π1,π2 = 0

holds for all π1 ∈ Γ ∗ \ I(π2) and all k ≥ 0.
We claim that (i) and (ii) are satisfied with n(π2) = |π2|+ 1 and I(π2) = {π |

|π| ≤ |π2|}.
We show first that, for all k ≥ 0,

(Mk, ε)π1,π2 = 0 if |π2| ≤ |π1|+ k − 1 .

This is obviously true for k = 0 or π1 = ε.
Assume that k > 0 and |π2| ≤ |π1|+ k. Then

(Mk, ε)pπ1,π2 =
∑

π∈Γ∗, |π|≥2

(M, ε)p,π(Mk−1, ε)ππ1,π2 .

Since |π2| ≤ |π1|+k ≤ |ππ1|+k−2 for |π| ≥ 2, it follows that (Mk−1, ε)ππ1,π2 = 0
for |π| ≥ 2, implying (Mk, ε)pπ1,π2 = 0.

Condition (i) is now a consequence of the fact that |π2| ≤ |π1|+ n(π2)+ k− 1
holds for all k ≥ 0. Similarly, the condition (ii) is a consequence of the fact that
|π2| ≤ |π1|+ k − 1 holds for all π1 ∈ Γ ∗ \ I(π2) and all k ≥ 0.

The second sentence is proved by the fact that |ε| ≤ |p|+ k − 1 for all k ≥ 0.
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For an arbitrary strong convergence in A, the theorem is now proved by
Theorem 9. �

Because of this theorem, we always use C-convergence in connection with proper
A〈Σ ∪ {ε}〉-pushdown transition matrices.

Consider an A〈Σ ∪ {ε}〉-pushdown automaton with A〈Σ ∪ {ε}〉-pushdown
transition matrix M and let π = π1π2 be a word over the pushdown alphabet
Γ . Then our next proposition states that emptying the pushdown tape with
contents π has the same effect (i. e., (M∗)π,ε) as emptying first the pushdown
tape with contents π1 (i. e., (M∗)π1,ε

) and afterwards (i. e., multiplying) the
pushdown tape with contents π2 (i. e., (M∗)π2,ε

).

Proposition 2. (Kuich, Salomaa [15], Ésik, Kuich [7])
Let M ∈ (A〈Σ ∪ {ε}〉Q×Q)Γ

∗×Γ∗
be an A〈Σ ∪ {ε}〉-pushdown transition matrix.

Assume that A is a continuous semiring or M is a proper A〈Σ ∪{ε}〉-pushdown
matrix. Then

(M∗)π1π2,ε
= (M∗)π1,ε

(M∗)π2,ε

holds for all π1, π2 ∈ Γ ∗.

Let M ∈ (A〈Σ∪{ε}〉Q×Q)Γ
∗×Γ∗

be an A〈Σ∪{ε}〉-pushdown transition matrix
and let {yp | p ∈ Γ} be an alphabet of variables. We define yε = ε and ypπ = ypyπ
for p ∈ Γ , π ∈ Γ ∗, and consider the A〈Σ ∪ {ε}〉Q×Q-algebraic system

yp =
∑

π∈Γ∗
Mp,πyπ, p ∈ Γ.

Given matrices Tp ∈ A〈〈Σ∗〉〉Q×Q for all p ∈ Γ , we define matrices Tπ ∈
A〈〈Σ∗〉〉Q×Q for all π ∈ Γ ∗ as follows: Tε = E, Tpπ = TpTπ, p ∈ Γ , π ∈ Γ ∗.
By these matrices we define a matrix T̃ ∈ (A〈〈Σ∗〉〉Q×Q)Γ

∗×1: the π-block of T̃
is given by Tπ, π ∈ Γ ∗, i. e., T̃π = Tπ.

In the sequel, F ∈ (A〈Σ ∪ {ε}〉Q×Q)Γ
∗×1 is defined by Fε = E and Fπ = 0 if

π ∈ Γ+.

Theorem 30. (Kuich, Salomaa [15], Ésik, Kuich [7])
Let M ∈ ((A〈Σ∪{ε}〉)Q×Q)Γ

∗×Γ∗
be an A〈Σ∪{ε}〉-pushdown transition matrix.

If (Tp)p∈Γ , Tp ∈ AQ×Q, is a solution of yp =
∑

π∈Γ∗ Mp,πyπ, p ∈ Γ , then
T̃ ∈ (AQ×Q)Γ

∗×1 is a solution of y = My + F .

Proof. Since M is an A〈Σ ∪ {ε}〉-pushdown transition matrix, we obtain, for all
p ∈ Γ and π ∈ Γ ∗,

(MT̃ )pπ =
∑

π1∈Γ∗
Mpπ,π1 T̃π1 =

∑

π2∈Γ∗
Mpπ,π2πT̃π2π =

=
∑

π2∈Γ∗
Mp,π2 T̃π2 T̃π = (MT̃ )pT̃π.
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Since (Tp)p∈Γ is a solution of yp =
∑
π∈Γ∗ Mp,πyπ, p ∈ Γ , we infer that

T̃p = Tp =
∑
π∈Γ∗ Mp,πTπ =

∑
π∈Γ∗ Mp,πT̃π = (MT̃ )p. Hence, (MT̃ + F )pπ =

(MT̃ )pπ = T̃pT̃π = T̃pπ, p ∈ Γ , π ∈ Γ ∗. Additionally, we have T̃ε = E and
(MT̃ + F )ε = Fε = E. This implies that T̃ is a solution of y = My + F . �

Theorem 31. Let M ∈ ((A〈Σ ∪ {ε}〉)Q×Q)Γ
∗×Γ∗

be an A〈Σ ∪ {ε}〉-pushdown
transition matrix and assume that M∗ exists. Then ((M∗)p,ε)p∈Γ is a solution
to the A〈〈Σ∗〉〉-algebraic system yp =

∑
π∈Γ∗ Mp,πyπ.

If the semiring A is continuous it is the least solution. If M is a proper
A〈Σ ∪ {ε}〉-pushdown matrix then it is the unique proper solution.

Proof. We first show that ((M∗)p,ε)p∈Γ is a solution of the A〈Σ ∪ {ε}〉Q×Q-
algebraic system by substituting (M∗)π,ε for yπ:

∑

π∈Γ∗
Mp,π(M∗)π,ε = (M+)p,ε = (M∗)p,ε, p ∈ Γ.

Assume now that A is continuous and (Tp)p∈Γ is a solution of yp =
∑

π∈Γ∗ Mp,πyπ.
Then, byTheorem30, T̃ is a solution of y = My+F . SinceM∗F is the least solution
of this equation, we infer that M∗F ≤ T̃ . This implies (M∗F )π = (M∗)π,ε ≤ T̃π =
Tπ for all π ∈ Γ ∗. Hence, (M∗)p,ε ≤ Tp for all p ∈ Γ , and ((M∗)p,ε)p∈Γ is the least
solution of yp =

∑
π∈Γ∗ Mp,πyπ, p ∈ Γ .

If M is proper then, by Theorem 29, (M∗)p,ε is proper for all p ∈ Γ . More-
over, by the definition of a proper pushdown matrix, the algebraic system yp =∑

π∈Γ∗ Mp,πyπ is proper. Hence, by Theorem 24, ((M∗)p,ε)p∈Γ is the unique
proper solution to the proper algebraic system. �

Let P = (Q, Γ, M, S, p0, P ) be an A〈Σ∪{ε}〉-pushdown automaton and consider
the A〈Σ ∪ {ε}〉-algebraic system

y0 = S(
∑

π∈Γ∗
Mp0,πyπ)P,

yp =
∑

π∈Γ∗
Mp,πyπ, p ∈ Γ,

written in matrix notation: yp is a Q × Q-matrix whose (q1, q2)-entry is the
variable [q1, p, q2], p ∈ Γ , q1, q2 ∈ Q; if π = p1 . . . pr, r ≥ 1, then the (q1, q2)-
entry of yπ is given by the (q1, q2)-entry of yp1 . . . ypr , p1, . . . , pr ∈ Γ ; y0 is a
variable. Hence, the variables of the above A〈Σ ∪ {ε}〉-algebraic system are y0,
[q1, p, q2], p ∈ Γ , q1, q2 ∈ Q.
Corollary 6. Let P = (Q, Γ, M, S, p0, P ) be an A〈Σ ∪ {ε}〉-pushdown automa-
ton and assume that M∗ exists. Then ‖P‖, ((M∗)p,ε)p∈Γ is a solution of the
A〈Σ ∪ {ε}〉-algebraic system

y0 = S(
∑

π∈Γ∗
Mp0,πyπ)P,

yp =
∑

π∈Γ∗
Mp,πyπ, p ∈ Γ.
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If the semiring A is continuous it is the least solution. If P is proper it is the
unique proper solution.

Corollary 7. Let P be an A〈Σ ∪ {ε}〉-pushdown automaton. Assume that A is
a continuous semiring or that P is proper. Then the behavior of P is an element
of Aalg〈〈Σ∗〉〉.
We now want to show the converse to Corollary 7.

Theorem 32. Let r ∈ Aalg〈〈Σ∗〉〉. Then there exists a proper A〈Σ ∪ {ε}〉-
pushdown automaton P such that ||P|| equals the proper part of r.

Proof. By definition, the proper part r1 of r is a component of the unique proper
solution of a proper algebraic system. Consider the proper algebraic system
yi = pi, 1 ≤ i ≤ n, with unique proper solution σ and assume σ1 = r1.

We now define the A〈Σ ∪ {ε}〉-pushdown automaton

P = ({q}, Σ ∪ Y, M, q, y1, {ε})

by

Myi,yjγ = (pi, yjγ)ε +
∑

x∈Σ
(pi, xyjγ)x for γ ∈ (Σ ∪ Y )∗, 1 ≤ i, j ≤ n ,

Myi,xγ =
∑

x′∈Σ
(pi, x′xγ)x′ for γ ∈ (Σ ∪ Y )∗, x ∈ Σ, 1 ≤ i ≤ n ,

Myi,ε =
∑

x∈Σ
(pi, x)x for 1 ≤ i ≤ n ,

Mx,ε = x for x ∈ Σ ,
Mp,π = 0 , p ∈ Σ ∪ Y, π ∈ (Σ ∪ Y )∗, in all other cases.

Observe that P has a single state only. Hence, the entries of M defined above
are in A〈Σ ∪ {ε}〉. Since P is proper, by Theorem 29, M∗ exists and (M∗)yi,ε,
1 ≤ i ≤ n, is proper.

We write our algebraic system yi = pi, 1 ≤ i ≤ n, in the form

yi =
∑

1≤j≤n

∑

γ∈(Σ∪Y )+

(pi, yjγ)yjγ +
∑

1≤j≤n

∑

γ∈(Σ∪Y )∗

∑

x∈Σ
(pi, xyjγ)xyjγ

+
∑

γ∈(Σ∪Y )∗

∑

x∈Σ

∑

x′∈Σ
(pi, x′xγ)x′xγ +

∑

x∈Σ
(pi, x)x .

Replacing now (pi, yjγ)ε+
∑
x∈Σ(pi, xyjγ)x,

∑
x′∈Σ(pi, x′xγ)x′ and

∑
x∈Σ(pi, x)x

according to the definitions given above, we obtain

yi =
∑

1≤j≤n

∑

γ∈(Σ∪Y )∗
Myi,yjγyjγ +

∑

x∈Σ

∑

γ∈(Σ∪Y )∗
Myi,xγxγ + Myi,ε .

We now replace the variables yi by (M∗)yi,ε and observe that x = (M∗)x,ε.
Then, by Theorems 29 and 31, we conclude that (M∗)yi,ε, 1 ≤ i ≤ n, is a
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proper solution to our proper algebraic system. Therefore, by Theorem 31, σi =
(M∗)yi,ε, 1 ≤ i ≤ n.

Hence,
||P|| = (M∗)y1,ε = σ1 .

�

Corollary 8. The power series r is in Aalg〈〈Σ∗〉〉 iff there exists a proper A〈Σ∪
{ε}〉-pushdown automaton P such that ||P|| equals the proper part of r.

Corollary 9. Let A be a continuous semiring. Then r ∈ Aalg〈〈Σ∗〉〉 iff there
exists an A〈Σ ∪ {ε}〉-pushdown automaton P such that ||P|| = r.

Corollary 10. (Chomsky [4]) A formal language is context-free iff it is accepted
by a pushdown automaton.

If our basic semiring is N
∞〈〈Σ∗〉〉, we can draw some even stronger conclu-

sions. In our next result we consider, for a given pushdown automaton P′ =
(Q, Σ, Γ, δ, q0, p0, F ), the number of distinct computations from the initial in-
stantaneous description (q0, w, p0) for w to an accepting instantaneous descrip-
tion (q, ε, ε), q ∈ F .

Theorem 33. (Kuich [13]) Let L be a formal language over Σ and let d : Σ∗ →
N

∞. Then the following two statements are equivalent:

(i) There exists a context-free grammar with terminal alphabet Σ such that the
number (possibly ∞) of distinct leftmost derivations of w, w ∈ Σ∗, from the
start variable is given by d(w).

(ii) There exists a pushdown automaton with input alphabet Σ such that the
number (possibly ∞) of distinct computations from the initial instantaneous
description for w, w ∈ Σ∗, to an accepting instantaneous description is
given by d(w).

A pushdown automaton with input alphabet Σ is termed unambiguous iff, for
each word w ∈ Σ∗ that is accepted, there exists a unique computation from the
initial instantaneous description for w to some accepting instantaneous descrip-
tion.

Corollary 11. A formal language is generated by an unambiguous context-free
grammar iff it is accepted by an unambiguous pushdown automaton.
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2. Bloom, S.L., Ésik, Z.: Iteration Theories. EATCS Monographs on Theoretical Com-
puter Science. Springer, Heidelberg (1993)

3. Bozapalidis, S.: Context-free series on trees. Information and Computation 169,
186–229 (2001)



256 W. Kuich

4. Chomsky, N.: Context-free grammars and pushdown storage. MIT Res. Lab. of
Elect., Quarterly Prog. Rep. 65, 187–194 (1962)

5. Droste, M., Kuich, W.: Semirings and formal power series. In: Droste, M., Kuich,
W., Vogler, H. (eds.) Handbook of Weighted Automata, pp. 3–28. Springer, Hei-
delberg (2009)
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Where Automatic Structures Benefit from

Weighted Automata
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Technische Universität Ilmenau, Germany

Abstract. In this paper, we report on applications of weighted au-
tomata in the theory of automatic structures. All (except one) result
were known before, but their proof using weighted automata is novel.
More precisely, we prove that the extension of first-order logic by the
infinity ∃∞, the modulo ∃(p,q), and the (new) boundedness quantifier

B

is decidable. The first two quantifiers are handled using closure proper-
ties of the class of recognizable formal power series and the fact that the
preimage of a value under a recognizable formal power series is regular if
the semiring is finite. Our reasoning regarding the boundedness quantifier
uses Weber’s decidability result of finite-valued rational transductions.
We also show that the isomorphism problem of automatic structures is
undecidable using an undecidability result on recognizable formal power
series due to Honkala.

1 Introduction

The idea of an automatic structure goes back to Büchi and Elgot who used
finite automata to decide, e.g., Presburger arithmetic [12]. In essence, a struc-
ture is automatic if the elements of the universe can be represented as strings
from a regular language and every relation of the structure can be recognized by
a finite automaton with several heads that proceed synchronously. Automaton
decidable theories [17] and automatic groups [13] are similar concepts. A sys-
tematic study was initiated by Khoussainov and Nerode [19] who also coined
the name “automatic structure”. They received increasing interest over the
last years [4,5,9,21,22,28,1,20,25,3,32,26,24,6]; the surveys [29,2] give excellent
overviews of the results in this area. One of the main motivations for investi-
gating automatic structures is that their first-order theories are decidable. From
the beginning, researchers were also interested in possible extensions of this re-
sult to stronger logics. The first part of this paper contributes to this search by
(1) providing a new proof technique and (2) providing a further extension of
first-order logic with this favorable property.

Another natural line of research dealt with the question which structures from
a given class C are automatic, i.e., can be represented by finite automata. There
are only very few results in this direction (for instance, the characterisations are
known for ordinals [10], Boolean algebras [20], and finitely generated groups [28])
and, as it turns out, the first two characterisations are accompanied by the

W. Kuich and G. Rahonis (Eds.): Bozapalidis Festschrift, LNCS 7020, pp. 257–271, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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decidability of the isomorphism problem of the automatic members in the given
class C. On the other hand, it was shown that the isomorphism problem for
all automatic structures is undecidable and even Σ1

1 -complete [20]. But these
undecidability proofs depend crucially on binary non-transitive relations. The
second part of this paper shows that weighted automata can be used to prove this
undecidability for equivalence relations, a class of structures with a particularly
simple transitive relation [24]. Honkala proved that it is undecidable whether a
weighted automaton over (N, +, ·, 0, 1) takes on all values from N. We reduce this
to our isomorphism problem. This proof technique differs from the original one
in [24] only in that it makes the role of the weighted automata more transparent.

2 Preliminaries

Let Γ be an alphabet and w ∈ Γ ∗ be a finite word over Γ . The length of w is
denoted by |w|.

2.1 Structures

A signature is a finite set τ of relational symbols, where every symbol R ∈ τ
has some fixed arity mR. Then a τ-structure A consists of a non-empty universe
A and, for every R ∈ τ , an mR-ary relation RA ⊆ AmR . Note that we only
consider relational structures. Let us fix a τ -structure A = (A, (RA)R∈τ ), where
RA ⊆ AmR . To simplify notation, we will write a ∈ A for a ∈ A. In the rest of
the paper, we will often identify a symbol R ∈ τ with its interpretation RA.

2.2 Automatic Structures

Let us fix m ∈ N and a finite alphabet Γ . Let # �∈ Γ be an additional padding
symbol and set Γ# = Γ ∪ {#}. We will write Γm

# for (Γ#)m. For words wi ∈ Γ ∗

(1 ≤ i ≤ n) we define the convolution w1 ⊗ w2 ⊗ · · · ⊗ wm, which is a word
over the alphabet Γm

# , as follows: Let wi = ai,1ai,2 · · · ai,ki with ai,j ∈ Γ and
k = max{k1, . . . , km}. For ki < j ≤ k define ai,j = #. Then

w1 ⊗ · · · ⊗ wm = (a1,1, . . . , am,1) · · · (a1,k, . . . , am,k) .

Thus, for instance aba⊗ bbabb = (a, b)(b, b)(a, a)(#, b)(#, b).
An m-dimensional (synchronous) automaton over Γ is just a finite automaton

A over the alphabet Γm
# such that L(A) ⊆ {w1 ⊗ · · · ⊗ wm | w1, . . . , wm ∈ Γ ∗}.

Such an automaton defines an m-ary relation

R(A) = {(w1, . . . , wm) | w1 ⊗ · · · ⊗ wm ∈ L(A)} .

An m-ary relation R ⊆ (Γ ∗)m is automatic if it is accepted by some m-dimen-
sional automaton or, equivalently, if the language R⊗ = {w1 ⊗ · · · ⊗ wm |
(w1, . . . , wm) ∈ R} ⊆ (Γm

# )∗ is regular.
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An automatic presentation is a tuple P = (Γ, A0, (AR)R∈τ ), where:
– Γ is an alphabet.
– A0 is a finite automaton over the alphabet Γ .
– τ is a signature, as before mR is the arity of the symbol R ∈ τ .
– For every R ∈ τ , AR is an mR-dimensional automaton over the alphabet Γ

such that R(AR) ⊆ L(A0)mR .
The structure presented by P is

A(P ) = (L(A0), (R(AR))R∈τ ) .

A structure A is called automatic if there exists an automatic presentation P
such that A ∼= A(P ).

By SA, we denote the set of all automatic presentations. Similar notions of
automaticity can be based on finite tree automata, on ω-string, and on ω-tree
automata. The corresponding sets of presentations are denoted TA, ωSA, and
ωTA, resp., but this paper will only be concerned with the set SA.

Examples

– All finite structures A are automatic with alphabet the universe of A. While
there are many infinite automatic structures (see below), there are no infinite
automatic fields [20].

– The complete binary tree with universe {0, 1}∗, together with the binary
relations “first son” S0, “second son” S1, “prefix” ≤, and “equal length” is
automatic.

– Presburger arithmetic (N, +) is automatic: the alphabet is {0, 1}, the lan-
guage of A0 is {0, 1}∗1 where the word a0a1 . . . an represents the number∑

0≤i≤n ai2i. Differently Skolem arithmetic (N, ·) is not automatic [4]. Blu-
mensath also showed that Skolem arithmetic is tree-automatic [4].

– The linear order (Q,≤) is automatic: the universe is {0, 1}∗ with u < v if and
only if (u∧ v)0 is a prefix of u or (u∧ v)1 is a prefix of v (where u∧ v is the
longest common prefix of u and v). This presentation is even “automatic-
homogeneous”: Let u1, . . . , un and v1, . . . , vn be increasing sequences of equal
length. Then there is an automatic automorphism f of ({0, 1}∗,≤) mapping
ui to vi [23]. The rational line is a particular Fräıssé-limit, other examples
are the random graph and the universal and homogeneous poset [16]. It is
known that many such limits are not automatic [9,20].

– The rewrite graph (Σ∗,→) of every semi-Thue system and therefore the
configuration graph of every Turing machine are automatic.

– The extension of this configuration graph by the binary relation of reacha-
bility is in general not automatic. But for pushdown automata, the config-
uration graph with reachability (QΓ ∗,→,→∗) is automatic: a configuration
is represented by the control state followed by the stack content.

– The theory of automatic structures was preceded by that of automatic groups
[13] and semigroups [7]. In terms of automatic structures, a semigroup is au-
tomatic (in the original sense) if its Cayley-graph has an automatic presenta-
tion such that L(A0) forms a rational cross-section of the (semi-)group. Many
natural groups and semigroups were shown to be automatic and therefore
to have automatic Cayley-graphs:
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• rational monoids [30],
• virtually free finitely generated, virtually free Abelian finitely generated,

and hyperbolic groups [13],
• singular Artin monoids of finite type [8], and
• graph products of such monoids [15].

In contrast, it seems that not many infinite groups are automatic in the
sense of this article. For instance, a finitely generated group is automatic if
and only if it is virtually Abelian [28]. Braun and Strüngmann showed that
every automatic torsion-free Abelian group is the extension of (Zk, +) for
some k ∈ N by a direct sum of finitely many Prüfer groups [6]. This implies
Tsankov’s celebrated result that (Q, +) is not automatic [32].

– An ordinal α is automatic if and only if α < ωω [10]. This proof was later
generalized to show that the Hausdorff rank of every automatic linear order
is finite [22]. This characterization (together with Theorem 3.2 below) can
be used to show that the isomorphism of automatic ordinals is decidable.
But note that this does not hold for automatic linear orders [24].

– Let B denote the Boolean algebra of all finite and co-finite subsets of N. Then
an infinite Boolean algebra is automatic if and only if it is a finite power of B.
Again, this characterisation leads to the decidability of the isomorphism of
automatic Boolean algebras [20].

3 Definable Relations

3.1 The Classical Result on First-Order Logic FO

Fix a signature τ . Then let V be a countably infinite set of variables. Formulas of
FO are then built according to the following formation rules (where α and β are
formulas, x, y, y1, . . . , yk ∈ V are variables, and R is a k-ary relation symbol):

(L1) x = y
(L2) R(y1, . . . , yk)
(L3) α ∨ β

(L4) ¬α
(L5) ∃x : α

We next recall the semantics of formulas from FO. To this aim, let A be a
τ -structure with universe A. An interpretation in A is a function f : V → A.
Given such an interpretation, we set A |=f ϕ (read as “ϕ holds in A under the
interpretation f”) if and only if one of the following hold

(S1) ϕ = (x = y) and f(x) = f(y).
(S2) ϕ = (R(y1, . . . , yk)) and (f(y1), . . . , f(yk)) ∈ RA.
(S3) ϕ = (α ∨ β) and A |=f α or A |=f β.
(S4) ϕ = ¬α and not A |=f α.
(S5) ϕ = ∃x : α and there exists a ∈ A with A |=f [ax]

α where f [ax] is the
interpretation that differs from f only in that it maps x to a.

It is an easy exercise to show the following: let A be a τ -structure, ϕ a formula,
and suppose f(y) = g(y) for all y ∈ free(ϕ), the set of variables occurring
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freely in ϕ. Then A |=f ϕ if and only if A |=g ϕ. Assuming a fixed tuple of
variables (y1, . . . , yn) with free(ϕ) ⊆ {y1, . . . , yn}, we can therefore simply write
A |= ϕ(f(y1), . . . , f(yn)) for A |=f ϕ. In particular, for sentences (i.e., formulas
without free variables), it makes sense to write A |= ϕ.

Let ϕ ∈ FO be some formula with free(ϕ) ⊆ {x1, . . . , xn} and let A be some
τ -structure. Then

ϕA = {(u1, . . . , un) ∈ An | A |= ϕ(u1, . . . , un)}
is a relation on the universe of the structure A that represents the semantics of
the formula ϕ. The study of this relation is central in model theory [16] as well as
in computable model theory (for computable instead of arbitrary structures) [14].
Consequently, they have also been studied in the context of automatic structures
in which case ϕA is a relation on the set of words Γ ∗ for some alphabet Γ . The
most important result is that they are effectively automatic (see below). Before
we prove this result, we make the following definition: for a relation R ⊆ Xn+1

with n ≥ 0, define the relation (∃R) ⊆ Xn by

(∃R) = {(x1, . . . , xn) ∈ Xn | there exists x ∈ X with (x1, . . . , xn, x) ∈ R} .

Let X = Γ ∗ and n = 0. Then we get (∃R) ⊆ (Γ ∗)0 = {()} and consequently
(∃R)⊗ ⊆ {ε}. We then have the following:

Proposition 3.1. If R ⊆ (Γ ∗)n+1 is automatic with n ≥ 0, then (∃R) is auto-
matic and an automaton accepting (∃R)⊗ can be computed from an automaton
accepting R⊗.

Proof. Let proj: Γn+1
# → Γn

# be the projection that deletes the last component.
We naturally extend it to a monoid homomorphism proj: (Γn+1

# )∗ → (Γn
#)∗.

Now let u1, . . . , un ∈ Γ ∗. Then we have

u1 ⊗ · · · ⊗ un ∈ (∃R)⊗ ⇐⇒ (u1, u2, . . . , un) ∈ (∃R)
⇐⇒ there is some u ∈ Γ ∗ with (u1, u2, . . . , un, u) ∈ R

⇐⇒ there is some u ∈ Γ ∗ with u1 ⊗ · · · ⊗ un ⊗ u ∈ R⊗

⇐⇒ (u1 ⊗ · · · ⊗ un)(#, . . . , #)∗ ∩ proj(R⊗) �= ∅
⇐⇒ (u1 ⊗ · · · ⊗ un) ∈ proj(R⊗)((#, . . . , #)∗)−1

where KL−1 = {x | there is some y ∈ L with xy ∈ K} for two languages K
and L. Hence (∃R)⊗ = proj(R⊗)((#, . . . , #)∗)−1. Since R⊗ is regular and proj is
a monoid morphism, it follows that (∃R)⊗ is regular, i.e., that (∃R) is automatic.

��
Using this proposition, we easily get the following central result.

Theorem 3.2 (cf. [17,19]). Let P = (Γ, A0, (AR)R∈τ ) be an automatic pre-
sentation and ϕ ∈ FO a formula with free(ϕ) ⊆ {y1, . . . , yn} ⊆ V . Then the
relation ϕA(P ) is automatic. Even more, an n-dimensional automaton for this
relation can be computed from P and ϕ.
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Proof (sketch). The automaton is constructed by induction on the structure of
the formula ϕ (where we assume that α and β are formulas such that αA(P ) and
βA(P ) are effectively regular):

– if ϕ = (xi = xj), then an automaton for ϕA(P ) is obtained from A0.
– if ϕ = R(x1, . . . , xn), then ϕA(P ) = R(AR) is effectively automatic.
– if ϕ = (α ∨ β), then ϕA(P ) = αA(P ) ∪ βA(P ) is effectively automatic.
– if ϕ = ¬α, then ϕA(P ) = L(A0)n \ αA(P ) is effectively automatic.
– if ϕ = ∃x : α, then ϕA(P ) = (∃αA(P )) which is effectively automatic by

Prop. 3.1. ��
Our principal aim is to extend first-order logic by additional quantifiers and
prove the corresponding extension of Theorem 3.2. To simplify terminology, we
introduce the following notation.

Definition 3.3. Let

F

be a function that maps 2(Γ∗)n+k

to 2(Γ∗)n

for all n ∈
N and some fixed k ∈ N. Then

F

preserves automaticity effectively if one
can compute an n-dimensional automaton accepting

F

(R(A)) from the (n + k)-
dimensional automaton A.

For n = 0, we have

F

(R(A)) ⊆ {()}, i.e., (

F

(R(A)))⊗ ⊆ {ε} and therefore
ε ∈ (

F

(R(A)))⊗ if and only if

F

(R(A)) �= ∅. Thus, to show that

F

(R(A)) is
effectively regular (at least for n = 0), we have to device an algorithm that
decides whether

F

(R(A)) is empty or not. In other words, the property that

F

preserves automaticity effectively is a generalization of the decidability of the
emptiness problem for

F
(R(A)).

Using this definition, Prop. 3.1 can now be phrased more concisely: The func-
tion ∃ that maps R ⊆ (Γ ∗)n+1 to (∃R) ⊆ (Γ ∗)n preserves automaticity effec-
tively.

3.2 The Infinity Quantifier

For a relation R ⊆ Xn+1 with n ≥ 0 let

(∃∞R) = {(x1, . . . , xn) ∈ Xn | there are infinitely many x ∈ X with
(x1, . . . , xn, x) ∈ R} .

We will show that ∃∞ preserves automaticity effectively. A short proof of this
fact was given by Blumensath [4] using Theorem 3.2. Our admittedly longer
proof uses classical results from the theory of weighted automata and therefore
fits into the setting of this paper.

Consider the complete semiring N∞ = (N ∪ {∞}, +, ·, 0, 1) with 0 · ∞ = ∞ ·
0 = 0.

Lemma 3.4. From an n + 1-dimensional automaton A, one can construct an
N∞-weighted automaton B over the alphabet Γn

# such that

(||B||, V ) =

{
|{u | (u1, u2, . . . , un, u) ∈ R}| if V = u1 ⊗ u2 ⊗ · · · ⊗ un ,

0 otherwise .
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Proof. Since R⊗ is regular, the mapping

1R⊗ : (Γn+1
# )∗ → N∞ : U �→

{
1 if U ∈ R⊗

0 otherwise

is a recognizable and therefore rational formal power series. Recall that the
projection morphism proj from the proof of Prop. 3.1 is length-preserving. Hence
the formal power series 1R⊗ ◦ proj−1 defined by

S1 = 1R⊗ ◦ proj−1 : (Γn
#)∗ → N∞ : V �→

∑(
(1R⊗ , U) | proj(U) = V

)

is rational by [11, Prop. 3.6(ii)]. Note that (S1, V ) = |proj−1(V ) ∩ R⊗|. Hence,
for V = (u1 ⊗ u2 ⊗ · · · ⊗ un)(#, . . . , #)k, we have

(S1, V ) = |{u ∈ Γ ∗ | (u1, . . . , un, u) ∈ R and |u| = max(|u1|, |u2|, . . . , |un|)+k}| .
If V is not of this form, then (S1, V ) = 0.

Next let del : (Γn
#)∗ → (Γn

#)∗ be the monoid morphism with del(#, . . . #) = ε
and del(A) = A for all other letters A ∈ Γn

#. In other words, del deletes all
occurrences of (#, . . . , #) from a word. Since the semiring N∞ is complete, the
formal power series

S2 = S1 ◦ del−1 : (Γn
#)∗ → N∞ : V �→

∑(
(S1, W ) | del(W ) = V

)

is rational and therefore recognizable by [11, Prop. 3.6(ii)]. Note that (S2, u1 ⊗
u2 ⊗ · · · ⊗ un) is the number of words u with (u1, . . . , un, u) ∈ R.

All the results cited have effective proofs, so from the above arguments we
can extract an algorithm for the construction of a weighted automaton B for the
series S2. ��
We now come to the central result on ∃∞:

Proposition 3.5 ([4]). The function ∃∞ that maps R ⊆ (Γ ∗)n+1 to (∃∞R)
preserves automaticity effectively.

Proof. Let B be the weighted automaton from Lemma 3.4.
Now consider the semiring ({0, 1,∞}, max, ·, 0, 1) with 0 ·∞ =∞·0 = 0. Then

h : N∞ → {0, 1,∞} with h(0) = 0, h(∞) =∞, and h(m) = 1 for all 0 < m <∞
is a semiring homomorphism. Hence, by [31, Prop. 4.5],

S = h ◦ ||B|| : (Γn
#)∗ → {0, 1,∞} : V �→ h((||B||, V ))

is a recognizable formal power series into a finite semiring. Therefore the set

{V ∈ (Γn
#)∗ | (S, V ) =∞}

is effectively regular [31, Prop. 6.3]. Since the set ((Γ ∗)n)⊗ of convolutions of n
words over Γ is regular, also the set

{V ∈ (Γn
#)∗ | (S, V ) =∞} ∩ ((Γ ∗)n)⊗

is effectively regular.
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It remains to verify that this set equals (∃∞R)⊗: So let V = (u1 ⊗ · · · ⊗ un).
Then (||B||, V ) is the number of words u with (u1, . . . , un, u) ∈ R. Hence (S, V ) =
∞ if and only if (||B||, V ) = ∞ if and only if V ∈ (∃∞R)⊗ which proves the
claim. ��

3.3 The Modulo Quantifier

For a relation R ⊆ Xn+1 with n ≥ 0 and 0 ≤ p < q let

(∃(p,q)R) = {(x1, . . . , xn) ∈ Xn | |{x ∈ X | (x1, . . . , xn, x) ∈ R}| is
finite and congruent p modulo q} .

Proposition 3.6 ([21]). The function ∃(p,q) that maps R ⊆ (Γ ∗)n+1 to the
relation (∃(p,q)R) preserves automaticity effectively uniformly in (p, q). In other
words, there exists one algorithm that takes as input p, q, and an automaton for
R and returns an automaton for (∃(p,q)R).

The result was first stated in [21] where one finds a proof for the case q = 2,
a proof of the general case can be found in [29, Thm. 3.19]. Both these proofs
construct the automaton for (∃(p,q)R) directly. Differently, the new proof below
is based on the theory of weighted automata.

Proof. First note that R \ ((∃∞R)× Γ ∗) is the set of tuples (u1, . . . , un+1) ∈ R
such that there are only finitely many u ∈ Γ ∗

# that can replace un+1, i.e., that
satisfy (u1, . . . , un, u) ∈ R. Hence

(∃(p,q)R) = (∃(p,q)(R \ ((∃∞R)× Γ ∗))) .

Since R\((∃∞R)×Γ ∗) is effectively automatic by Prop. 3.5 (in conjunction with
the effective closure of automatic relations under Boolean operations and direct
products), it suffices to consider the case R = R \ ((∃∞R)× Γ ∗).

Let B be the weighted automaton from Lemma 3.4.
If V is the convolution of n words, then (||B||, V ) ∈ N by our assumption on R.

If V is not a convolution of n words, then (||B||, V ) = 0 ∈ N. It follows that ||B||
is even a rational formal power series over the natural semiring (N, +, ·, 0, 1)
(simply replace all weights ∞ in B by 0 or any other natural number).

We now consider the (semi)ring Z/qZ = ({0, 1, . . . , q−1}, +, ·, 0, 1). Applying
[11, Prop. 3.5], we find that

S : (Γn
#)∗ → Z/qZ : V �→ (||B||, V ) mod q

is a rational formal power series into a finite semiring. As in the proof of Prop. 3.5,
it follows that the set

{V ∈ (Γn
#)∗ | (S, V ) = p} ∩ ((Γ ∗)n)⊗

is effectively regular.
It remains to verify that this set equals (∃(p,q)R)⊗: So let V = (u1⊗· · ·⊗un).

Then (||B||, V ) is the number of words u with (u1, . . . , un, u) ∈ R. Hence (S, V ) =
p if and only if (||B||, V ) ≡ p (mod q) if and only if V ∈ (∃(p,q)R)⊗ which proves
the claim. ��
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3.4 The Boundedness Quantifier

For a relation R ⊆ Xn+2 with n ≥ 0 let

(

B

R) = {(x1, . . . , xn) ∈ Xn | there is some m ∈ N such that
|{z | (x1, . . . , xn, y, z) ∈ R}| ≤ m for all y ∈ X} .

We will show that (

B

R) is effectively automatic if R is automatic. A central
notion in this proof is that of a finite valued function f : X → 2Y by which we
mean that there is some m ∈ N such that |f(y)| ≤ m for all y ∈ X . We first
handle the case n = 0.

Lemma 3.7. If R ⊆ (Γ ∗)2 is automatic, then (

B

R) is automatic and an au-
tomaton accepting (

B

R)⊗ can be computed from an automaton accepting R⊗.

Proof. As explained after Definition 3.3, we have to decide whether the function

Γ ∗ → 2Γ
∗
: y �→ {z ∈ Γ ∗ | (y, z) ∈ R}

is finite valued. Since R is an automatic relation, it is a rational transduction.
Hence the result follows from [33]. ��
From now on, let n ≥ 1. It will be convenient to consider (

B

R) as the intersection
of the following two relations:

(

B

≤R) = {(x1, . . . , xn) ∈ (Γ ∗)n | there is some m ∈ N such that
|{z | (x1, . . . , xn, y, z) ∈ R}| ≤ m for all y ∈ Γ ∗
with |y| ≤ |xi| for all 1 ≤ i ≤ n}

(

B

>R) = {(x1, . . . , xn) ∈ (Γ ∗)n | there is some m ∈ N such that
|{z | (x1, . . . , xn, y, z) ∈ R}| ≤ m for all y ∈ Γ ∗
with |y| > |xi| for all 1 ≤ i ≤ n}

Lemma 3.8. The function

B

≤ that maps R ⊆ (Γ ∗)n+2 to (

B

≤R) preserves
automaticity effectively.

Proof. For notational convenience, we only prove this lemma for n = 1, the
general case can easily be shown along the same lines.

Let A be a deterministic finite automaton accepting R⊗. Let Q denote its set
of states, ι the initial state, and F the set of accepting states. For three words
x, y, z ∈ Γ ∗ and a state q ∈ Q, we write q.(x, y, z) for the state reached from q
when executing x ⊗ y ⊗ z. Finally, let �q = |{z′′ ∈ Γ+ | q.(ε, ε, z′′) ∈ F}| ∈ N∞
for q ∈ Q.

Now let x, y ∈ Γ ∗ with |y| ≤ |x|. Then we have

|{z | (x, y, z) ∈ R}| = |{z ∈ Γ≤|x| | (x, y, z) ∈ R}|+ |{z ∈ Γ>|x| | (x, y, z) ∈ R}|

≤ |Γ≤|x||+
∑

q∈Q

( |{z′ ∈ Γ=|x| | ι.(x, y, z′) = q}|
· |{z′′ ∈ Γ+ | q.(ε, ε, z′′) ∈ F}|

)

≤ |Γ≤|x||+ |Γ=|x|| ·
∑

q∈H
�q

where H is the set of all states ι.(x, y, z′) for some z′ ∈ Γ=|x|.
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Hence x /∈ (

B

≤R) if and only if there exist some y, z′ ∈ Γ ∗ with |y| ≤ |x| = |z′|
and �ι.(x,y,z′) =∞. But this is a regular property, so also (

B

≤R) is regular.
Note that �q can be computed from the automaton A and the state q. Hence

an automaton for (

B

≤R) can be computed. ��
Lemma 3.9. The function

B

> that maps R ⊆ (Γ ∗)n+2 to (

B

>R) ⊆ (Γ ∗)n

preserves automaticity effectively.

Proof. We use the notation from the first paragraph of the proof of Lemma 3.8
(except for �q). Now let x, y ∈ Γ ∗ with |y| > |x| and write y = y′y′′ with
|y′| = |x|. Then we have

|{z | (x, y, z) ∈ R}| = |{z ∈ Γ≤|x| | (x, y, z) ∈ R}|+ |{z ∈ Γ>|x| | (x, y, z) ∈ R}|

≤ |Γ≤|x||+
∑

q∈Q

( |{z′ ∈ Γ=|x| | ι.(x, y′, z′) = q}|
· |{z′′ ∈ Γ+ | q.(ε, y′′, z′′) ∈ F}|

)

≤ |Γ≤|x||+ |Γ |x|| ·
∑

q∈H
|{z′′ ∈ Γ+ | q.(ε, y′′, z′′) ∈ F}|

where H is the set of all states ι.(x, y′, z′) for some z′ ∈ Γ=|x|.
We now define a set F ′ ⊆ Q of states (that plays the role of the set of states q

with �q ∈ N from the proof of Lemma 3.8). Let q ∈ F ′ if the mapping

Γ ∗ → 2Γ
∗
: y′′ �→ {z′′ ∈ Γ+ | q.(ε, y′′, z′′) ∈ F} (1)

is finite valued. Then it is easily seen that x /∈ (

B

>R) if and only if there are
words y′, z′ ∈ Γ=|x| with ι.(x, y′, z′) /∈ F ′. But this is a regular property, so also
(

B

>R) is regular.
By [33], one can decide from the automaton A and the state q whether the

mapping (1) is finite valued. Hence an automaton for (

B

>R) can be computed.
��

Proposition 3.10. The function

B

that maps R ⊆ (Γ ∗)n+2 to (

B

R) preserves
automaticity effectively.

Proof. The proof is immediate by Lemmas 3.7, 3.8, and 3.9 since, for n ≥ 1, we
have (

B

R) = (

B

≤R)∩ (

B

>R) and since automatic relations are effectively closed
under intersection. ��
This proposition and consequently its proof are genuinely new, the case n = 2
was used in [24] to show that the set of presentations of trees of finite height is
decidable.

3.5 Summary and Model Checking

Recall that first-order formulas were defined by the formation rules (L1-5). The
central theorem on first-order logic was proved using that the existential quanti-
fier preserves automaticity effectively. This statement was also shown for other
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“quantifiers”. We will now extend first-order logic by these quantifiers, state the
extended version of Theorem 3.2, and infer that the model checking problem for
this large logic and automatic structures is decidable.

Formulas of FOext are built according to the formation rules (L1-9) (where α
is a formula):

(L6) ∃∞x : α
(L7) ∃(p,q)x : α for 0 ≤ p < q

(L8)

B

(y, z) : α

(L9)

Qk(y1, . . . , yk) : α for k ≥ 1
We set A |=f ϕ if and only if one of (S1-9) hold:

(S6) ϕ = ∃∞x : α and there exist infinitely many a ∈ A with A |=f [ax]
α. For

instance, ∀y¬∃∞z : E(y, z) says of a directed graph that it has finite out-
degree.

(S7) ϕ = ∃(p,q)x : α and the number of elements a ∈ A with A |=f [ax]
α is finite

and congruent p modulo q. For instance, ∃(0,2)x : x = x expresses that a
structure is finite and has an even number of elements.

(S8) ϕ =

B

(y, z) : α and there exists m ∈ N such that, for all a ∈ A, the set

{b ∈ A | A |=
f [abyz]

α}

contains at most m elements. In other words,

B

(y, z) : α expresses the ex-
istence of some natural number m such that any element y has at most m
partners z that make α true. For instance,

B
(y, z) : E(y, z) says of a directed

graph that it has bounded out-degree.
(S9)

Qk(y1, . . . , yk) : α for some k ≥ 1 and there exists some infinite set X ⊆ A
such that A |=g α for all a1, . . . , ak ∈ X with g = f [a1...ak

y1...yk]. For instance,

Q2(y, z) : (y = z ∨ (E(y, z) ∧ E(z, y)) expresses that a directed graph has
an infinite clique. For this reason,

Qk is called Ramsey quantifier. In [29],
it is shown that the Ramsey quantifier preserves automaticity effectively
(uniformly in k).

Theorem 3.11. Let P = (Γ, A0, (AR)R∈τ ) be an automatic presentation and
ϕ ∈ FOext a formula with free(ϕ) ⊆ {y1, . . . , yn} ⊆ V . Then the relation ϕA(P )

is automatic. Even more, an n-dimensional automaton for this relation can be
computed from P and ϕ.

Proof. The proof is an immediate extension of the proof of Theorem 3.2 using
in addition Prop. 3.5, 3.6, 3.10 and [29, Thm. 3.20]. ��

Corollary 3.12. The set of pairs (P, ϕ) where P is an automatic presentation
and ϕ a sentence from FOext with A(P ) |= ϕ is decidable.

Proof. From Theorem 3.11, we get an automaton A accepting (ϕA(P ))⊗ ⊆ {ε}.
Then ε is accepted by A if and only if A(P ) |= ϕ. ��
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Open question. In [26], we present a generalisation of the Ramsey quantifier and
show Corollary 3.12 for the extension of first-order logic by all the infinity, the
modulo, and this generalized quantifier (and therefore the Ramsey quantifier).
In other words, we have two extensions of the logic with infinity, modulo, and
Ramsey quantifier (namely by the boundedness quantifier and by the generalized
Ramsey quantifier) such that Corollary 3.12 holds. But it is not clear whether
these two extensions together give decidability.

4 Isomorphism

The isomorphism problem for automatic structures is the set of pairs of auto-
matic presentations P and Q such that A(P ) ∼= A(Q). Using a result by Honkala
on weighted automata over (N, +, ·, 0, 1), we show in this section that the iso-
morphism problem for automatic structures is not decidable. More precisely, we
present a single structure Egood = (V,∼) where ∼ is an equivalence relation on V
such that the set of automatic presentations of Egood is not decidable.

An equivalence structure is a structure E = (V,∼) such that V is at most
countably infinite and ∼ is an equivalence relation on V . Let Egood be the equiv-
alence structure with universe a∗b∗c∗ and akb�cm ∼ ak

′
b�

′
cm

′
if and only if

k + � = k′ + �′ and m = m′. It has, for every n ∈ N, infinitely many equivalence
classes of size n + 1, and no infinite equivalence class.

Now let B be a weighted automaton over the natural semiring (N, +, ·, 0, 1)
and the alphabet Σ. Without changing the behavior of B, i.e., the formal power
series ||B|| : Σ∗ → N, we can assume B to be normalized, i.e., all the initial and
final weights are 0 or 1.

From B, we now construct an equivalence structure as follows: Let m ∈ N be
the maximal weight appearing in B. Let Γ be the set of states of B together with
all pairs (a, k) where a ∈ Σ and 0 ≤ k < m. Then the universe of the equivalence
structure EB is the set of sequences

ρ = q0 (a1, k1) q1 (a1, k1) q1 . . . (an, kn) qn $�

such that ki is properly smaller than the weight of the transition (qi−1, ai, qi)
in B (for 1 ≤ i ≤ n), the entry weight of q0 and the final weight of qn are 1. The
sequence ρ and the sequence

ρ′ = q′0 (b′1, k
′
1) q′1 (b′1, k

′
1) q′1 . . . (bn′ , kn′) qn′ $�

′

are equivalent (ρ ∼ ρ′) if

a1a2 . . . an = b1b2 . . . bn′ and � = �′ .

Then the equivalence class of ρ with respect to ∼ has precisely (||B||, a1a2 . . . an)
elements. If ∼ has one equivalence class of size k, then it has infinitely many
such equivalence classes because of the suffix from $∗. Hence we get

Egood
∼= EB ⇐⇒ ∀n ∈ N ∃u ∈ Σ∗ : (||B||, u) = n + 1 .

By [18], this latter question is undecidable. Hence we showed
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Theorem 4.1 ([24]). The isomorphism for automatic equivalence structures is
undecidable (more precisely: Π0

1 -complete since it is in Π0
1 by [29]).

One can easily transform an equivalence structure E = (V,∼) into a tree TE of
height 2: V is the root, V/∼ is the set of children of the root, and V is the set of
leaves. A leaf v ∈ V is a child of a ∈ V/∼ if and only if v ∈ a. It is even possible
to construct an automatic presentation of this tree. Then

E ∼= E ′ ⇐⇒ TE ∼= TE′

implies

Corollary 4.2 ([24]). The isomorphism problem for automatic trees of height 2
is undecidable (more precisely: Π0

1 -hard).

In [24], we showed that the isomorphism problem for automatic trees of height
n is complete for Π0

2n−3 and the isomorphism problem for all order trees is Σ1
1 -

complete; the above result is the (idea of the) base case. Prior to these results,
it was known that the isomorphism problem for automatic successor trees is
Σ1

1 -complete [20,27].

Open question. In [24], we also show that the isomorphism problem for automatic
linear orders is Σ1

1 -complete. Recall that a linear order is scattered if it does not
contain a copy of (Q,≤). We also showed that the isomorphism problem for
scattered automatic linear orders is significantly simpler (namely, in Δ0

ω, i.e.,
reducible to true first order arithmetic). But it is still not known whether this
problem is decidable (we only have an undecidability proof for tree-automatic
scattered linear orders).

Acknowledgement. I thank Martin Huschenbett for reading two earlier ver-
sions of this paper very carefully.

References
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5. Blumensath, A., Grädel, E.: Automatic Structures. In: LICS 2000, pp. 51–62. IEEE

Computer Society Press, Los Alamitos (2000)



270 D. Kuske
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Abstract. In this survey (functional) compositions of weighted tree
transformations computable by weighted extended top-down tree trans-
ducers are investigated. The existing results in the literature are ex-
plained and illustrated. It is argued, why certain compositions are not
possible in the general case, and 3 informed conjectures provide an insight
into potentially 3 new composition results that extend and complement
the existing results. In particular, if all were true, then the beautiful sym-
metry in the composition results for weighted top-down and bottom-up
tree transducers would be recovered.

Keywords: weighted tree transducer, top-down tree transducer, com-
position, deletion, copying.

1 Motivation

Weighted tree transducers [32,14,19] (also called ‘tree series transducers’) are
a joint generalization of the unweighted tree transducer (such as the top-down
tree transducer [41,42] or the bottom-up tree transducer [43]) and the weighted
tree automaton [6,9,1,30,17,8,7]. A good overview over both predecessors is pre-
sented in [20]. For a more detailed historic account and an in-depth introduction
into weighted extended top-down tree transducers, we refer the reader to the
first part [36] of this survey. A popular application area that has driven tree
transducer research in the past few years is (syntax-based) machine transla-
tion [28,27]. The second part [37] of this survey attempts to present a high-level
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In this part of the survey, we will investigate compositions of weighted ex-
tended (top-down) tree transducers. Such a tree transducer computes a weighted
relation between input and output trees (i.e., it assigns a weight to each pair
of input and output trees). Two such relations can be composed in the usual
manner with the only difference that a weight (for example, a confidence or a
probability) is returned each time “membership is tested”. Using the real num-
bers as weight structure, we compose two weighted relations τ1 : A × B → IR
and τ2 : B × C → IR by requiring that

(τ1 ; τ2)(a, c) =
∑

b∈B
τ1(a, b) · τ2(b, c) (1)

for all a ∈ A and c ∈ C. For the sake of simplicity, let us assume that B is
finite. Equation (1) can be imagined in an operational manner. The first process
transforms the input a into an intermediate product b at a certain cost τ1(a, b).
This intermediate product is then fed into the second process, which transforms
it into a final product at cost τ2(b, c). Thus, the components are executed in a se-
quential manner. Traditionally, the multiplicative operation of the weight struc-
ture (typically, a semiring [25,23]) is used to combine weights of processes that
are executed in series (or in sequence). Consequently, we multiply the weights
τ1(a, b) · τ2(b, c) to obtain the cost of producing c from a via the intermediate
product b. Naturally, there might be a choice of intermediate products that are
all suitable to some degree to produce the output c. Thus, we sum over all the
possibilities of producing c from a.

Compositions have been and are used in a number of application areas as
diverse as machine translation [46] and functional program optimization [29].
The complexity of a given tree transformation problem can be tackled and broken
down into smaller pieces with the help of (de-)composition in a divide-and-
conquer approach. Once all the subproblems have been solved, the individual
solutions can be recombined with the help of composition. This approach is used
in [46], where a translation model is broken into 3 smaller pieces:

– a reordering component, which changes the order of subtrees but keeps the
trees otherwise intact,

– an insertion component, which has the ability to spontaneously add subtrees
to the output of the translation, and

– a translation component, which just translates the words (or phrases) occur-
ring in the input tree.

These components can now be trained and optimized individually (even from
different resources). However, since the evaluation of composition chains can be
very inefficient [40], automatic procedures that “compose” finite representations
of such weighted relations are desirable. Naturally, the obtained finite represen-
tation should compute the composition of the weighted relations computed by
the input representations. As expected, the finite representation discussed in this
survey is the weighted extended top-down tree transducer (xtt) together with
its variants.
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In contrast to the first part [36] of this survey, we do not require a complete
semiring [25,23] here, which yields that we have to avoid infinite summations.
This change prompts a minor change in the definition of the model because
we have to disallow rules that contain no input and output symbol at all. In
fact, infinite sums also restrict the potential compositions because we have to
guarantee that the sum in (1) is finite. This is achieved by two simple conditions,
of which each is sufficient to guarantee the finiteness of the sum in (1). Moreover,
we introduce a simple variant of our main model that has rule identifiers in
order to simplify the composition constructions. The additional indirection via
identifiers allows us to construct the same rule several times under different
names. In this way we can obtain a closer and more direct relationship between
the rules of the input xtt and the composed xtt.

In the main part of this survey, we investigate compositions of xtt. In other
words, given two xtt M and N , we want to construct another xtt that com-
putes the composition of the weighted tree transformations computed by the xtt
M and N . It is known that already in the unweighted setting, this cannot always
be achieved, and we will consider two important cases:

– compositions of an xtt with a top-down tree transducer, and
– compositions of selected xtt with top-down tree transducers that can addi-

tionally have ε-rules.

The former case has been investigated in the unweighted case by [12,5] and these
results were partially lifted to the weighted setting in [14,33,34]. We recall all the
relevant results and complement them by three conjectured results that handle
the missing cases. More precisely, we conjecture:

– that a constant xtt can be composed with a linear top-down tree transducer
(see Conjecture 11), where the property ‘constant’ will be introduced here,

– that a deterministic xtt can be composed with a nondeleting top-down tree
transducer (see Conjecture 13), and

– that a constant and deterministic xtt can be composed with any top-down
tree transducer (see Conjecture 14).

We explain why these conjectured cases cause additional problems, which are
due to the presence of weights. While we will not present a formal construction
for each case, we present a generic composition construction and then indicate
how to modify it to obtain a formal construction for the individual cases.

The latter case, in which we compose an xtt with a top-down tree transducer
with ε-rules, was investigated in [39] in the unweighted setting. Here, we extend
the results of [39] to the weighted setting and conjecture a new result (see Con-
jecture 23), which is again based on the new property ‘constant’. Overall, our
conjectured results complement the existing results nicely, and if all were true,
then we would obtain the beautiful symmetry in the weighted setting that is
known from compositions [12,5] for unweighted top-down and bottom-up tree
transducers [43].
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2 Notation

The set of all nonnegative integers is IN, and we let [n] = {i ∈ IN | 1 ≤ i ≤ n}
for every n ∈ IN. We fix the set X = {xi | i ∈ IN} of (formal) variables. The
set of all finite words (or sequences) over a set S is S∗, where ε is the empty
word. The concatenation of the words v, w ∈ S∗ is v.w or simply vw. The
length of a word w ∈ S∗ is denoted by |w|. An alphabet Σ is a nonempty and
finite set, of which the elements are called symbols. For every alphabet Q, we
let Q(S) = {q(s) | q ∈ Q, s ∈ S}. The set TΣ(S) of Σ-trees1 with leaf labels S
is the smallest set T such that S ⊆ T and σ(t1, . . . , tk) ∈ T for every k ∈ IN,
σ ∈ Σ, and t1, . . . , tk ∈ T . We often omit qualifications like ‘for all k ∈ IN’ if it is
obvious from the context that k is a nonnegative integer. Moreover, we generally
assume that Σ ∩ S = ∅, and thus we write σ() simply as σ for every σ ∈ Σ.
Given another alphabet Δ, we treat elements of TΔ(TΣ(S)) and Q(TΣ(S)) as
particular trees of TQ∪Σ∪Δ(S).2 Finally, we write TΣ for TΣ(∅).

Next, we define a few operations on trees. The set pos(t) ⊆ IN∗ of positions
of a tree t ∈ TΣ(S) is inductively defined by pos(s) = {ε} for every s ∈ S and

pos(σ(t1, . . . , tk)) = {ε} ∪ {i.w | i ∈ [k], w ∈ pos(ti)}

for every σ ∈ Σ and t1, . . . , tk ∈ TΣ(S). The set pos(t) of positions is (totally)
ordered by the lexicographic order on IN∗. Let t, t′ ∈ TΣ(S) and w ∈ pos(t). The
label of t at position w is t(w), and the w-rooted subtree of t is t|w. Formally,
these notions can be defined by s(ε) = s|ε = s for every s ∈ S and

σ(t1, . . . , tk)(ε) = σ σ(t1, . . . , tk)(i.v) = ti(v)
σ(t1, . . . , tk)|ε = σ(t1, . . . , tk) σ(t1, . . . , tk)|i.v = ti|v

for every σ ∈ Σ, t1, . . . , tk ∈ TΣ(S), i ∈ [k], and v ∈ pos(ti). For every subset
L ⊆ Σ ∪ S of labels and s ∈ S, we let posL(t) = {w ∈ pos(t) | t(w) ∈ L}
and poss(t) = pos{s}(t). The expression t[u]w denotes the tree that is obtained
from t ∈ TΣ(S) by replacing the subtree t|w at position w by u ∈ TΔ(S).

The following operations implicitly always use the fixed set X of variables.
We let var(t) = {x ∈ X | posx(t) 	= ∅}. The tree t is linear if every x ∈ X
occurs at most once in t. A substitution θ : X → TΣ(S) can be applied to a
tree t ∈ TΣ(S), and returns the tree tθ that is obtained by replacing (in parallel)
all occurrences of each variable x ∈ X by θ(x). Formally, (i) xθ = θ(x) for every
x ∈ X, (ii) sθ = s for every s ∈ S \ X, and (iii) σ(t1, . . . , tk)θ = σ(t1θ, . . . , tkθ)
for every σ ∈ Σ and t1, . . . , tk ∈ TΣ(S).

A (commutative) semiring [25,23] is an algebraic structure (A, +, ·, 0, 1) con-
sisting of two commutative monoids (A, +, 0) and (A, ·, 1) such that · distributes

1 These are actually unranked trees, but our operational tree transformation model
will only have finitely many rules that prescribe (and limit) the ranks of symbols,
so that we could have used a ranked alphabet as well.

2 A benefit of our approach without explicit ranks for symbols is that we can always
take the union of two alphabets.
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over finite sums (including the empty sum, which yields a · 0 = 0 for all a ∈ A).
The semiring A is idempotent if 1 + 1 = 1.3 Examples of semirings include

– the Boolean semiring ({0, 1}, max, min, 0, 1), which is idempotent,
– the powerset4 semiring (P(S),∪,∩, ∅, S) for some set S, which is idempotent,
– the tropical semiring (IR ∪ {∞}, min, +,∞, 0), which is also idempotent,
– the nonnegative integers (IN, +, ·, 0, 1), and
– the semiring of real numbers (IR, +, ·, 0, 1).

Let S and T be sets, and let (A, +, ·, 0, 1) be a semiring. A weighted relation r
from S to T is a mapping r : S×T → A. Moreover, for every mapping f : S → A,
we let supp(f) = {s ∈ S | f(s) 	= 0}. Thus, supp(r) ⊆ S × T .

From now on, let (A, +, ·, 0, 1) be an arbitrary semiring such that 0 	= 1.

Next, let us recall the weighted extended (top-down) tree transducer [11,2,26,24].
We essentially follow the definitions of [35,38], in which the corresponding un-
weighted device is discussed in detail. An in-depth presentation of the weighted
device can be found in the first part [36] of this survey. A (weighted) extended
(top-down) tree transducer (xtt) is a tuple (Q, Σ, Δ, I, R), where

– Q is a finite set of states,
– Σ and Δ are alphabets of input and output symbols such that Q∩(Σ∪Δ) = ∅,
– I ⊆ Q is a set of initial states, and
– R : Q(TΣ(X)) × TΔ(Q(X)) → A assigns rule weights such that supp(R) is

finite and for every (l, r) ∈ supp(R) we have that {l, r} 	⊆ Q(X), l is linear,
and var(r) ⊆ var(l).5

For the following discussion, let M = (Q, Σ, Δ, I, R) be an xtt. The elements
of supp(R) are called rules (of M), and we often write them as l→ r instead of
(l, r). We call l and r of a rule l → r the left- and right-hand side, respectively.
Moreover, we write l→ r ∈ R instead of (l, r) ∈ supp(R), and we write l

a→ r ∈ R
instead of R(l, r) = a. A rule l→ r ∈ R is (i) linear if r is linear, (ii) nondeleting
if var(r) = var(l), and (iii) simple if |posΣ(l)| = 1. In addition, the rule l → r is

– consuming if |posΣ(l)| ≥ 1, and an ε-rule otherwise, and
– producing if |posΔ(r)| ≥ 1, and erasing otherwise.6

The xtt M is (i) linear, (ii) nondeleting, and (iii) a top-down tree transducer
[32,14] (tdtt) if every rule l → r ∈ R is (i) linear, (ii) nondeleting, and (iii) simple,
respectively. Moreover, the xtt M is Boolean if R(l, r) = 1 for every l → r ∈ R.

The semantics of the xtt M is given by term rewriting [13,4,38]. To simplify
our composition constructions later on, we immediately present a semantics that
3 By distributivity, this yields a+ a = a for all a ∈ A.
4 The powerset P(S) of a set S is the set of its subsets; i.e., P(S) = {U | U ⊆ S}.
5 The restriction {l, r} �⊆ Q(X), which is not present in [36], disallows rules of the form

(q(xi), p(xi)). This additional restriction is necessary because we do require complete
semirings [25,23], which yields that we have to avoid infinite summations.

6 The name ‘erasing’ is justified by the fact that each erasing rule is consuming.
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can handle “foreign” symbols, which are symbols that are not in Q∪Σ∪Δ.7 Let
Σ′ and Δ′ be such that Σ ⊆ Σ′ and Δ ⊆ Δ′. The elements of TΔ′(Q(TΣ′(X))) are
called sentential forms. A position w ∈ posQ(ξ) in a sentential form ξ is reducible
(for M) if there exists a rule l → r ∈ R and a substitution θ : X→ TΣ′(X) such
that ξ|w = lθ. Let ξ, ζ ∈ TΔ′(Q(TΣ′(X))) be sentential forms and l → r ∈ R be
a rule. We say that ξ rewrites to ζ using l → r, denoted by ξ ⇒(l,r)

M ζ, if there
exists a substitution θ : X → TΣ′(X) such that ξ|w = lθ and ζ = ξ[rθ]w where
w is the least reducible position in posQ(ξ) with respect to the lexicographic
total ordering on IN∗.8 As usual, we use ‘;’ for relation composition, thus for
example,

(⇒ρ1
M ;⇒ρ2

M ) = {(ξ, ζ) | ∃ξ′ : ξ ⇒ρ1
M ξ′ ⇒ρ2

M ζ} .

The (extended) weighted relation τ ′
M (or weighted tree transformation) computed

by M is given by

τ ′
M (ξ, ζ) =

∑

ρ1,...,ρk∈supp(R)

ξ⇒ρ1
M ;···;⇒ρk

M ζ

( k∏

i=1

R(ρi)
)

for every ξ, ζ ∈ TΔ′(Q(TΣ′(X))). The semantics τM of the xtt M is the weighted
relation τM : TΣ × TΔ → A such that τM (t, u) =

∑
q∈I τ ′

M (q(t), u) for every
t ∈ TΣ and u ∈ TΔ.9 Finally, the xtt M is deterministic10 (respectively, total) if
for all q ∈ Q and t ∈ TΣ there exists at most (respectively, at least) one u ∈ TΔ
such that (q(t), u) ∈ supp(τ ′

M ).11

3 An Example Composition

We start our investigation into compositions of xtt with an example to illustrate
the problem and the general principle used to solve it. Roughly speaking, given
two xtt M and N we want to construct a single xtt that behaves like the two xtt
M and N in sequence. Before we move to the formal definition of composition,
let us introduce two example xtt and demonstrate derivations (i.e., term rewrite
steps).

7 A definition of the semantics without this extension can be found in [36].
8 Given a sentential form ξ and a rule ρ ∈ R, there exists at most one sentential form ζ

such that ξ ⇒ρ
M ζ.

9 Since the xtt M cannot consume symbols from Σ′ \Σ and cannot produce symbols
from Δ′\Δ, the semantics τM does not depend on the particular choice of Σ′ and Δ′.

10 This property should correctly be called ‘unambiguous’, but for historical reasons
we use ‘deterministic’ in the following.

11 For top-down tree transducers these properties are typically defined using syntactic
restrictions [12,5], which imply our corresponding semantic conditions. It requires a
significant technical overhead to generalize the syntactic conditions faithfully to xtt,
so we chose to present only the semantic property.
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Fig. 1. The rules of the xtt M (see Example 1)

Example 1. We assume that the used semiring is the semiring (IR, +, ·, 0, 1) of
real numbers. Let M = ({q0, q1}, Σ, Γ, {q0}, R) be the xtt with input alphabet
Σ = {σ, α}, output alphabet Γ = {f, h, b}, and the following rules:

ρ1 : q0(σ(σ(x1, x2), α)) 2−→ f(q1(x1), q0(x2)) ρ4 : q1(x1)
2−→ h(q0(x1))

ρ2 : q0(σ(α, x1))
3−→ q0(x1) ρ5 : q1(x1)

5−→ h(q1(x1))

ρ3 : q0(α) 1−→ b .

We illustrate these rules in Fig. 1 and demonstrate their properties in the fol-
lowing table. Since all rules are linear and nondeleting, the xtt M is linear and
nondeleting.

ε-rule consuming erasing producing linear nondeleting
ρ4, ρ5 ρ1–ρ3 ρ2 ρ1, ρ3–ρ5 ρ1–ρ5 ρ1–ρ5

Next, let us demonstrate a derivation using M . As input and output tree we
consider

s = σ(σ(α, σ(α, σ(α, α))), α) and t = f(h(h(b)), b) .

Figure 2 shows a derivation from q0(s) to t. Its weight is

R(ρ1) · R(ρ5) ·R(ρ4) ·R(ρ3) · R(ρ2) ·R(ρ2) · R(ρ3) = 2 · 5 · 2 · 1 · 3 · 3 · 1 = 180

It is easy to verify that this is the only possible derivation from q0(s) to t. Since
q0 is the only initial state, we can conclude that τM (s, t) = 180. ��

Example 2. We keep the semiring of real numbers as our used semiring. A second
xtt is given by N = ({p}, Γ, Δ, {p}, R′), where Γ = {f, h, b}, Δ = {λ, γ, δ, β},
and R′ contains the rules:

μ1 : p(x1)
2−→ γ(p(x1)) μ4 : p(h(x1))

8−→ δ(p(x1))

μ2 : p(f(x1, x2))
5−→ λ(p(x1), p(x2)) μ5 : p(b) 1−→ β

μ3 : p(f(x1, x2))
5−→ λ(β, λ(p(x1), p(x2))) .

Again, the properties of the rules are documented in the following table. We
observe that the xtt N is linear and nondeleting.
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Fig. 2. A derivation from q0(s) to t in M (see Example 1)

ε-rule consuming erasing producing linear nondeleting
μ1 μ2–μ5 μ1–μ5 μ1–μ5 μ1–μ5

This time we illustrate a derivation for the input and output tree

t = f(h(h(b)), b) and u = λ(β, λ(δ(δ(β)), β)) .

Figure 3 shows the unique derivation from p(t) to u. It has the weight

R′(μ3) · R′(μ4) ·R′(μ4) ·R′(μ5) · R′(μ5) = 5 · 8 · 8 · 1 · 1 = 320 . ��

Composition is the process of running two xtt one after the other. In this way,
the output tree of the first xtt becomes the input tree of the second xtt. For
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Fig. 3. A derivation from p(t) to u in N (see Example 2)
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example, the output tree t generated by the xtt M in Example 1 can be processed
by the xtt N of Example 2, which is demonstrated in Example 2. Thus, in a
composition of M and N (see Examples 1 and 2) we can transform the input
tree s of Example 1 immediately to the output tree u of Example 2 by first
running the xtt M on s to produce the intermediate tree t, which can then be
transformed into u by N .

Formally, two weighted tree relations (of suitable type) are composed as fol-
lows. Let τ1 : TΣ × TΓ → A and τ2 : TΓ × TΔ → A be weighted relations. Their
composition (τ1 ; τ2) : TΣ × TΔ → A is the weighted relation such that

(τ1 ; τ2)(s, u) =
∑

t∈TΓ

τ1(s, t) · τ2(t, u) (2)

for every s ∈ TΣ and u ∈ TΔ. Clearly, this definition generalizes the classical
definition of composition for relations. Whereas the infinite sum is not a problem
in the unweighted case (where it is an infinite disjunction that becomes true
once one element is true), we have to address it in the weighted case. There are
essentially two options:

(i) to permit infinite sums and require that the semiring is suitably rich to
handle infinite sums [25,23], which was done in [14,18,19,33,34,20] and also
in the first part [36] of this survey, or

(ii) to avoid the infinite sums by restricting the weighted relations (and thus the
xtt) that we allow in compositions.

In this part of the survey, we will follow the second approach by requiring that
in a composition τ1 ; τ2 we have that

{t | (s, t) ∈ supp(τ1)} or {t | (t, u) ∈ supp(τ2)} (3)

is finite for every s ∈ TΣ and u ∈ TΔ. It is clear that in both cases the sum (2)
in the definition of the composition τ1 ; τ2 is finite.

Let us illustrate the general approach that is used in most composition con-
structions. To construct an xtt that computes the composition τM ; τN of the
weighted relations computed by two xtt M and N , we need to make sure that
the intermediate tree t (in Examples 1 and 2) is never constructed explicitly.
To achieve this, the second xtt has to immediately consume every intermediate
symbol that is produced by the first xtt M . Let us illustrate this approach by
combining the two derivations of Figs. 2 and 3 such that intermediate symbols
(from Γ ) are consumed as soon as possible. The obtained derivation that now
uses rules of both M and N is displayed in Fig. 4.

Once we have reordered the rule applications as indicated in the previous
paragraph, we “glue” all rule applications that produce intermediate symbols
together with the rule applications that consume these symbols. In this step,
we also interpret two adjacent states (one of M and one of N) as in p(q(s))
as a single state 〈p, q〉. For example, based on Fig. 4 we glue the first two rule
applications (of the rules ρ1 and μ3) together to obtain a single rule application
of the rule



Compositions of Weighted Extended Top-Down Tree Transducers 281

p

q0

σ

σ

α σ

α σ

α α

α ⇒ρ1
M

p

f

q1

α

q0

σ

α σ

α α

⇒μ3
N

λ

β λ

p

q1

α

p

q0

σ

α σ

α α

⇒ρ5
M

λ

β λ

p

h

q1

α

p

q0

σ

α σ

α α

⇒μ4
N

λ

β λ

δ

p

q1

α

p

q0

σ

α σ

α α

⇒ρ4
M

λ

β λ

δ

p

h

q0

α

p

q0

σ

α σ

α α

⇒μ4
N

λ

β λ

δ

δ

p

q0

α

p

q0

σ

α σ

α α

⇒ρ3
M

λ

β λ

δ

δ

p

b

p

q0

σ

α σ

α α

⇒μ5
N

λ

β λ

δ

δ

β

p

q0

σ

α σ

α α

⇒ρ2
M

λ

β λ

δ

δ

β

p

q0

σ

α α

⇒ρ2
M

λ

β λ

δ

δ

β

p

q0

α

⇒ρ3
M

λ

β λ

δ

δ

β

p

b

⇒μ5
N

λ

β λ

δ

δ

β

β

Fig. 4. Intertwined derivation from p(q0(s)) to u in M and N (see Examples 1 and 2)
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〈p, q0〉(σ(σ(x1, x2), α)) 2·5−−→ λ(β, λ(〈p, q1〉(x1), 〈p, q0〉(x2))) ,

which is displayed in Fig. 5. For the rest of the discussion, we drop the distinction
between rule applications and rules. In general, several rules of the first xtt need
to be “glued” with several rules of the second xtt. However, it was already shown
in [3] (and in the second part [37] of this survey) that this strategy does not work
in general (even if both xtt M and N are linear and nondeleting). In the rest of
this survey, we will thus focus on simpler cases, in which the left-hand sides of
the rules of the second xtt N contain at most one input symbol. In Sect. 5 we
consider compositions of an xtt M with a top-down tree transducer N . Thus, in
Sect. 5 the second xtt N is such that every rule has exactly one input symbol
in its left-hand side. We relax this requirement slightly in Sect. 6, where we
investigate compositions of an xtt M with a top-down tree transducer N with
ε-rules [39], which is an xtt in which each rule contains at most one input symbol
in its left-hand side. However, before we proceed with the mentioned composition
constructions we first introduce a modification of our xtt model that will prove
to be useful in Sections 5 and 6.

〈p, q0〉
σ

σ

x1 x2

α

2·5−→

λ

β λ

〈p, q1〉
x1

〈p, q0〉
x2

Fig. 5. Composed rule constructed from ρ1 and μ3 of Examples 1 and 2

4 An Equivalent Model

In this section, we introduce an alternative description for weighted extended
top-down tree transducers that will be useful for our composition constructions.
Essentially, we introduce explicit rule identifiers (like ρ1–ρ5 used in Example 1)
that stand for a specific rule. A mapping that becomes part of the specification
assigns weighted rules to identifiers. This indirection allows us to use multiple
rules with the same left- and right-hand side and even the same weight. In our
composition constructions we use this facility to establish a more concise and
simpler relation between the constructed rules of the composed xtt and the
original rules of the input xtt.

Definition 3. A weighted extended (top-down) tree transducer with rule iden-
tifiers is a system (Q, Σ, Δ, I,R, χ), where
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– Q, Σ, Δ, and I are the same as the corresponding elements of an xtt,
– R is a finite set of rule identifiers, and
– χ : R→ Q(TΣ(X))×A×TΔ(Q(X)) is a rule assignment that maps each rule

identifier ρ ∈ R to its content χ(ρ) = (l, a, r) such that {l, r} 	⊆ Q(X), l is
linear, and var(r) ⊆ var(l).

In accordance with our notation for rules, we often write l
a−→ r for elements

(l, a, r) ∈ Q(TΣ(X))×A×TΔ(Q(X)). Moreover, we let wt : R → A be such that
wt(ρ) = a for all ρ ∈ R with χ(ρ) = l

a−→ r. Intuitively, ‘wt’ maps a rule identifier
to the weight of its identified rule.

The semantics of the xtt M = (Q, Σ, Δ, I,R, χ) with rule identifiersR is given
by rewriting in essentially the same way as before. Let Σ′ and Δ′ be two alphabets
such that Σ ⊆ Σ′ and Δ ⊆ Δ′ and Q ∩ (Σ′ ∪ Δ′) = ∅. Again, we call a posi-
tion w ∈ posQ(ξ) in a sentential form ξ ∈ TΔ′(Q(TΣ′(X))) reducible (for M) if
there exists a rule ρ ∈ R with χ(ρ) = l

a−→ r and a substitution θ : X → TΣ′(X)
such that ξ|w = lθ. Now, let ξ, ζ ∈ TΔ′(Q(TΣ′(X))), ρ ∈ R, and χ(ρ) = l

a−→ r.
We say that ξ rewrites to ζ using ρ, denoted by ξ ⇒ρ

M ζ, if there exists a substi-
tution θ : X → TΣ′(X) such that ξ|w = lθ and ζ = ξ[rθ]w where w is the least
reducible position in posQ(ξ) with respect to the lexicographic total order on IN∗.
The (extended) weighted relation τ ′

M computed by M is given by

τ ′
M (ξ, ζ) =

∑

ρ1,...,ρk∈R
ξ⇒ρ1

M ;···;⇒ρk
M ζ

( k∏

i=1

wt(ρi)
)

for every ξ, ζ ∈ TΔ′(Q(TΣ′(X))). As for xtt, the semantics τM of the xtt M with
rule identifiers is the weighted relation τM : TΣ × TΔ → A such that τM (t, u) =∑

q∈I τ ′
M (q(t), u) for every t ∈ TΣ and u ∈ TΔ. The properties of rules and xtt

defined in Sect. 2 generalize straightforwardly to xtt with rule identifiers.

Example 4. Let N = ({p}, Γ, Δ, {p},R, χ) be the xtt with rule identifiers such
that

– Γ = {f, h, b} and Δ = {λ, γ, δ, β},
– R = {μ1, . . . , μ7}, and
– the rule assignment χ is given by

χ(μ1) = p(x1)
2−→ γ(p(x1)) χ(μ5) = p(h(x1))

4−→ δ(p(x1))

χ(μ2) = p(f(x1, x2))
2−→ λ(p(x1), p(x2)) χ(μ6) = p(h(x1))

4−→ δ(p(x1))

χ(μ3) = p(f(x1, x2))
3−→ λ(p(x1), p(x2)) χ(μ7) = p(b) 1−→ β

χ(μ4) = p(f(x1, x2))
5−→ λ(β, λ(p(x1), p(x2))) .

ε-rule consuming erasing producing linear nondeleting
μ1 μ2–μ7 μ1–μ7 μ1–μ7 μ1–μ7
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Let t = f(h(h(b)), b) and u = λ(β, λ(δ(δ(β)), β)) as in Example 2. Figure 6
shows a derivation from p(t) to u with weight

wt(μ4) · wt(μ5) · wt(μ5) · wt(μ7) · wt(μ7) = 5 · 4 · 4 · 1 · 1 = 80 .

We can construct exactly three other derivations from p(t) to u using the rule
sequences μ4μ5μ6μ7μ7, μ4μ6μ5μ7μ7, and μ4μ6μ6μ7μ7. All of these derivations
have the same weight. Consequently, τN (t, u) = 80 + 80 + 80 + 80 = 320. ��

p

f

h

h

b

b ⇒μ4
N

λ

β λ

p

h

h

b

p

b
⇒μ5
N

λ

β λ

δ

p

h

b

p

b

⇒μ5
N

λ

β λ

δ

δ

p

b

p

b

⇒μ7
N

λ

β λ

δ

δ

β

p

b

⇒μ7
N

λ

β λ

δ

δ

β

β

Fig. 6. One possible derivation from p(t) to u in N of Example 4

We can easily see that the two models of xtt are equally expressive. For every
xtt (Q, Σ, Δ, I, R) we can construct an equivalent xtt (Q, Σ, Δ, I, R, χ) with rule
identifiers by setting χ = idR, where idR is the identity on R. Conversely, given
an xtt M = (Q, Σ, Δ, I,R, χ) with rule identifiers we can obtain an equivalent
xtt (Q, Σ, Δ, I, R) by setting

R(l, r) =
∑

ρ∈R : χ(ρ)=(l,a,r)

wt(ρ) (4)

for all l ∈ Q(TΣ(X)) and r ∈ TΔ(Q(X)).12 The construction is illustrated in
Example 5.

Example 5. Let N be the xtt with rule identifiers of Example 4. To obtain an
equivalent xtt N ′ = (Q, Γ, Δ, I, R), we

– merge the rules μ2 and μ3 to form the rule p(f(x1, x2))
2+3−−→ λ(p(x1), p(x2)),

– merge the rules μ5 and μ6 to form the rule p(h(x1))
4+4−−→ δ(p(x1)), and

– keep the rules μ1, μ4, and μ7 with their original weight.

In this manner, we obtain exactly the xtt of Example 2, for which we only have
one derivation from p(t) to u, which is shown in Fig. 3. Naturally, its weight
is 320. ��
12 The sum (4) returns 0, as desired, if M has no rules with left-hand side l and right-

hand side r.
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5 Composition with a Top-Down Tree Transducer

In this section, we will discuss compositions τM ;τN for xtt M = (Q, Σ, Γ, I1, R1)
and N = (P, Γ, Δ, I2, R2), in which the xtt N is actually a top-down tree trans-
ducer (tdtt). Moreover, we require that the xtt M does not have any ε-rules.
This restriction ensures that the set {t | (s, t) ∈ supp(τM )} is finite for ev-
ery s ∈ TΣ [see (3)] because each rule application consumes at least one input
symbol. Hence there can only be finitely many rule applications to q(s) given a
state q ∈ Q and an input tree s, which yields an upper bound on the number of
potential derivations, which in turn limits the number of output symbols in each
output tree. We already demonstrated in Sect. 3 that this restriction is sufficient
to ensure that the sum over all intermediate trees t occurring in (2):

(τM ; τN )(s, u) =
∑

t∈TΓ

τM (s, t) · τN (t, u)

is finite for all s ∈ TΣ and u ∈ TΔ. Thus, composition is well-defined in all cases
discussed in this section.

5.1 Construction

Now we are ready to present the generic composition construction. For the sake
of uniformity, we will construct more rules than strictly necessary. As already
indicated in Fig. 4, the states of the composed xtt will be pairs of states with
one state from each input xtt. Next, let us fix an important constant m.

– Let c ≥ |posx(r)| for all l → r ∈ R2 and x ∈ X. Roughly speaking, c is
larger than the maximal copying degree of N , which is the maximal number
of times a variable occurs on some right-hand side of a rule of N . To keep
the presentation simple, we assume that c ≥ 1.

– Let s ≥ |posΓ (r)| for all l → r ∈ R1. Consequently, s is larger than the
maximal number of output symbols in a right-hand side of a rule of M .

– Finally, let m ≥ cs. The constant m provides an upper bound to the number
of steps required by N to process a right-hand side of a rule of M .

Recall that given a sentential form ξ ∈ TΔ(P (TΓ (Q(TΣ(X))))) and a rule ρ ∈ R1

there exists at most one ζ ∈ TΔ(P (TΓ (Q(TΣ(X))))) such that ξ ⇒ρ
M ζ.13 Nat-

urally, the same property holds for the tdtt N . To avoid an explicit conversion,
we identify elements of TΔ(P (Q(TΣ(X)))) with elements of TΔ((P ×Q)(TΣ(X)))
in the obvious manner. Finally, we let

⇒w
N = (⇒μ1

N ; · · · ;⇒μk

N )

if w = μ1 · · ·μk with μ1, . . . , μk ∈ R2.

13 To match this statement to the earlier one, we have to set Δ′ = Δ ∪ P ∪ Γ .
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Definition 6. The composed xtt M ; N is the xtt (P × Q, Σ, Δ, I2 × I1,R, χ)
with rule identifiers

R = {〈ρ, p, w〉 | ρ ∈ R1, p ∈ P, w ∈ R∗
2, |w| ≤ m}

such that χ(〈l → r, p, μ1 · · ·μk〉) = (p(l), a, r′) for every l → r ∈ R1, p ∈ P , and
rule sequence μ1, . . . , μk ∈ R2 with k ≤ m, where r′ ∈ TΔ(P (Q(X))) and

a =

{
R1(l→ r) ·∏k

i=1 R2(μi) if p(l)⇒(l,r)
M ;⇒μ1···μk

N r′

0 otherwise.

Clearly, the construction might return a lot of rule identifiers whose associated
rules have weight 0. These rules are useless, and we typically will not report them
in our examples. Moreover, we can easily see that the constructed rules never
have the forbidden shape l → r with {l, r} ⊆ P (Q(X)) because the left-hand
side l equals p(l′) for some left-hand side l′ of a rule of M , which does not have
ε-rules. Let us illustrate the construction on two example xtt, which we will use
throughout this section.

Example 7. We again use the semiring of real numbers in this example. More-
over, let us consider the xtt M and N , which are given as follows:

M = ({q}, Σ, Σ, {q}, R1) and N = ({p0, p}, Σ, Δ, {p0}, R2) ,

where

– Σ = {γ, α} and Δ = {σ} ∪Σ,
– R1 contains the rules

ρ1 : q(γ(x1))
2−→ γ(γ(q(x1))) ρ2 : q(α) 2−→ α ,

– and R2 contains the rules

μ1 : p0(γ(x1))
4−→ σ(p0(x1), p0(x1)) μ6 : p(γ(x1))

1−→ γ(p(x1))

μ2 : p0(γ(x1))
2−→ σ(p0(x1), p(x1)) μ7 : p(γ(x1))

3−→ α

μ3 : p0(γ(x1))
2−→ σ(p(x1), p0(x1)) μ8 : p(α) 1−→ α

μ4 : p0(γ(x1))
1−→ σ(p(x1), p(x1))

μ5 : p0(α) 1−→ α .

ε-rule consuming erasing producing linear nondeleting
ρ1, ρ2 ρ1, ρ2 ρ1, ρ2 ρ1, ρ2

μ1–μ8 μ1–μ8 μ5–μ8 μ1–μ6, μ8

Both M and N are tdtt, M is linear and nondeleting, whereas N is neither
linear nor nondeleting. Additionally, the xtt M is deterministic and total. We
can set c = 2 and s = 2, and thus, we can select m = 4. To increase readability,
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p

q

γ

x1

⇒ρ1
M

p

γ

γ

q

x1

⇒μ6
N

γ

p

γ

q

x1

⇒μ7
N

γ

α

Fig. 7. Derivation for rule 〈ρ1, p, μ6μ7〉 (see Example 7)

let Rγp0 = {μ1, μ2, μ3, μ4} and Rγp = {μ6, μ7}. Intuitively, Rγp0 and Rγp are the
sets of rules that consume the input symbol γ in state p0 and p, respectively.
Now let us construct the composition M ; N . It is the xtt

M ; N = (Q′, Σ, Δ, I ′,R, χ)

with rule identifiers such that

– Q′ = {〈p0, q〉, 〈p, q〉} and I ′ = {〈p0, q〉},
– R = {〈ρ2, p0, μ5〉, 〈ρ2, p, μ8〉, 〈ρ1, p, μ6μ6〉, 〈ρ1, p, μ6μ7〉, 〈ρ1, p, μ7〉} ∪ R′ with

R′ = {〈ρ1, p0, μ1μμ′〉 | μ, μ′ ∈ Rγp0} ∪
∪ {〈ρ1, p0, μ2μμ′〉 | μ ∈ Rγp0 , μ′ ∈ Rγp} ∪
∪ {〈ρ1, p0, μ3μμ′〉 | μ ∈ Rγp , μ′ ∈ Rγp0} ∪
∪ {〈ρ1, p0, μ4μμ′〉 | μ, μ′ ∈ Rγp} .

In total we have 5 + 16 + 8 + 8 + 4 = 41 (meaningful) rule identifiers. We will
not present all 41 corresponding rules, but we will show two example rules to
demonstrate the construction. Let us first construct the rule for the identifier
〈ρ1, p, μ6μ7〉. To this end, we need to build a derivation starting at p(q(γ(x1)))
using the rule sequence ρ1μ6μ7. This derivation is illustrated in Fig. 7. We obtain
the rule

χ(〈ρ1, p, μ6μ7〉) =
(
〈p, q〉(γ(x1)), 2 · 1 · 3, γ(α)

)
.

Secondly, let us construct the rule for the identifier 〈ρ1, p0, μ3μ7μ2〉. This time
we need to build a derivation that starts with p0(q(γ(x1))) and uses the rule
sequence ρ1μ3μ7μ2. We illustrate the derivation in Fig. 8. Consequently, we
obtain the rule

χ(〈ρ1, p0, μ3μ7μ2〉) =
(
〈p0, q〉(γ(x1)), 2 · 2 · 3 · 2, σ(α, σ(〈p0, q〉(x1), 〈p, q〉(x1)))

)
.

��
Our general composition construction allows us to compose an xtt with a tdtt.
As we have seen, it closely follows the intuition provided in Sect. 3 and uses
the xtt with rule identifiers that we introduced in Sect. 4. This has the benefit
that we can obtain a direct correspondence between rule sequences of the xtt



288 A. Lagoutte and A. Maletti

p0

q

γ

x1

⇒ρ1
M

p0

γ

γ

q

x1

⇒μ3
N

σ

p

γ

q

x1

p0

γ

q

x1

⇒μ7
N

σ

α p0

γ

q

x1

⇒μ2
N

σ

α σ

p0

q

x1

p

q

x1

Fig. 8. Derivation for rule 〈ρ1, p0, μ3μ7μ2〉 (see Example 7)

M and N and a rule in the composed xtt M ; N . In the standard xtt (without
rule identifiers) this direct correspondence is lost since several derivations might
create the same rule.14

Naturally, we would expect that the composed xtt M ; N computes the
weighted tree transformation τM ; τN ; i.e., the composition of the weighted
tree transformations computed by M and N . In other words, we hope that
τM ;N = τM ; τN . Although the rule aggregation and intertwining approach fol-
lowed in the construction (and shown in Sect. 3) is reasonable, it fails to produce
a correct xtt (i.e., an xtt that computes τM ; τN ) in a number of cases. This is
already true in the unweighted case [12,5] and the presence of weights adds a
few more problematic cases, which we will discuss in the next section.

5.2 Correctness

In this section, we will investigate in which cases the composition construction
(see Definition 6) actually produces an xtt that computes the composition τM ;τN .
In principle, the xtt M need not be a tdtt, but for the following discussion we
assume that it is. The generalization to the general case is simple in almost
all cases (see [38,16] for a few notable differences). Consequently, let us look
at compositions of tdtt. Top-down tree transducers have been studied quite
extensively in the unweighted case (see [21,22,10] for an overview). The following
two slogans are known to represent properties that are unavailable in a single
tdtt [12,5]:

– Nondeterminism followed by copying (non-linearity), and
– Checking (non-totality) followed by deletion.

A composition τM ; τN of two tdtt M and N can implement both properties
mentioned in the slogans. Thus, these properties already restrict the potential
successful compositions of tdtt. In fact, in all remaining cases shown in Table 1
the composition of the tdtt M and N is possible in the unweighted case [5,
Theorem 1]. A detailed explanation of those restrictions on compositions is pre-
sented in [12,5]. Here we will focus on the particular problems that occur in
the generalization of those results to the weighted case because the limitations
14 The interested reader can compare our construction to [33,34].
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Table 1. Cases for unweighted tdtt composition

Case M N

(a) linear and nondeleting
(b) total linear
(c) deterministic nondeleting
(d) deterministic and total

on compositions in the unweighted case transfer immediately to our setting.15

Thus, we will not investigate compositions that do not fulfill the requirements
in Table 1.16

Case (a) has been partially generalized in [31, Theorem 2.4] to weighted tdtt.
More precisely, it was shown that the composition succeeds if both M and N are
linear and nondeleting.17 This result was further (partially) generalized in [14,
Theorem 5.18], which covers the case in which M and N are deterministic and
only N is linear and nondeleting. Finally, [33, Theorem 26] presents the full
generality and matches Case (a) of the unweighted setting exactly.

Theorem 8 (see [33, Theorem 26]). If the tdtt N is linear and nondeleting,
then τM ;N = τM ; τN .

Case (b) is slightly problematic in the weighted setting, and the only known
generalizations are actually instances of Case (d). Let us illustrate the problem.
The tdtt N can delete an intermediate subtree t′ that was output by M as the
result of processing an input subtree s′. In the composed tdtt, the input sub-
tree s′ is deleted right away without processing it. This phenomenon is abstractly
illustrated in Fig. 9. In addition, we showcase a derivation using our example
xtt of Example 7 in Fig. 10 (note that only linear rules of N are used in this
derivation). Thus, the actual input subtree s′ and the intermediate subtree t′

are not relevant in the composed tdtt. In the unweighted setting, this indepen-
dence is guaranteed by the totality of M , which yields that for each input tree s
there exists a translation t of it. In other words, for each input tree s ∈ TΣ and
state q ∈ Q, we have

∑

t∈TΓ

( ∑

ρ1,...,ρk∈R1

q(s)⇒ρ1
M ;···;⇒ρk

M t

( k∏

i=1

R1(ρi)
))

= 1 .

15 More precisely, the restrictions only transfer to xtt over non-rings due to a result
by Wang [44,45]. A ring is a semiring that has additive inverses; i.e., there exists an
element −1 such that 1 + (−1) = 0.

16 Although such compositions can, in principle, succeed. Mind that the counter-
examples of [12,5] only generalize to non-rings. In fact, given a suitably strong ring,
any composition might become possible.

17 In fact, [31] proves closure under composition for a slightly more general class, but
the mentioned result can be obtained easily by instantiating the more general con-
struction to our weighted tdtt model.
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Composition:

s s′

a·b==⇒M

t t′
c=⇒N

u

Composed tdtt:

s s′

a·c==⇒M ;N

u

Fig. 9. Difference between composition and the composed tdtt. Atop the arrows we
mark the weight and next to it the tdtt, in which the derivation happens. More precisely,
weight a is charged for processing s (without s′), weight b is charged for processing s′,
and weight c is charged for processing t (without t′).

Composition:
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〈p, q〉
γ

γ

α

⇒〈ρ1,p,μ7〉
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Fig. 10. Difference between composition and the composed tdtt on the tdtt M and N
of Example 7. The composition charges weight R1(ρ1)·R1(ρ1)·R1(ρ2)·R2(μ7) = 22 ·2·3,
whereas the composed tdtt only charges 2 ·3, which is the weight of the rule 〈ρ1, p, μ7〉.
The charge R1(ρ1) ·R1(ρ2) = 2 · 2 for processing the input subtree γ(α) is lost.
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Clearly, in the Boolean semiring, the previous equation is fulfilled if there is
at least one derivation from q(s) to some t. To obtain a generalization of the
requirement for the weighted setting, we observe that the composed tdtt also
ignores the input subtree s.

Definition 9. A state q ∈ Q is constant if there exists a semiring element a ∈ A
such that for every s ∈ TΣ we have

∑

t∈TΓ

( ∑

ρ1,...,ρk∈R1

q(s)⇒ρ1
M ;···;⇒ρk

M t

( k∏

i=1

R1(ρi)
))

= a . (5)

We also say that q is a-constant if q is constant using the semiring element a.
The xtt M is constant if all its states q ∈ Q are constant.

Note that the sums in (5) are always finite, which we already showed at the
beginning of Sect. 5. Let us demonstrate some constant tdtt, in which all states
are 1-constant. In general, different states of a constant tdtt can have different
semiring elements for which they are constant.

Example 10. All of the following tdtt have only 1-constant states:

– every total tdtt over the Boolean semiring,
– every Boolean and total tdtt over an idempotent semiring, and
– every deterministic, total, and Boolean tdtt over any semiring.

Clearly, the total tdtt M of Example 7 is not constant, which is also shows that
a total tdtt is not necessarily constant. If the tdtt M is constant, then we can
perfectly predict the missing weight b in the derivation of the composed tdtt
in Fig. 9 and charge it for the rule that actually performs the deletion.18 Note
that our presented composition construction (see Definition 6) might fail, but
the authors believe that it can be modified as indicated to obtain the following
result.

Conjecture 11. If the xtt M is constant and the tdtt N is linear, then τM ; τN
can be computed by an xtt.

Note that Conjecture 11 covers all the cases (for M) mentioned in Example 10.
It remains to be determined whether the indicated adjustment actually works.
Moreover, depending on the semiring, it might be difficult to determine whether
a state is constant, so additional syntactic requirements that lead to constant
states (potentially with a weight different from 0 and 1) would be desirable.

Case (c) is also problematic and has not been addressed in the literature.
This is due to the fact that an intermediate output tree t′ can be copied by N .
In the composition, the weight charged for generating the tree t′ from an input
18 In fact, we can only predict the aggregated weight (as opposed to the weights of

single deleted derivations), but that is sufficient.
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Composition:

s s′

a·b==⇒M

t t′
c·d·e===⇒N

u u′′u′

Composed tdtt:

s s′

a·b2·c·d·e======⇒M ;N

u u′′u′

Fig. 11. Another difference between composition and the composed tdtt. Atop the
arrow we mark the weight and next to it the tdtt, in which the derivation happens.
More precisely, weight a is charged for processing s (without s′), weight b is charged
for processing s′, weight c is charged for processing t (without t′), and weights d and e
are charged for processing t′ (producing u′ and u′′, respectively).

subtree s′ is charged once, but in the composed tdtt this weight is charged
twice since the input subtree s′ will be copied and processed twice. The process
is illustrated in Fig. 11. In addition, we provide derivations using the xtt of
Example 7 that demonstrate the phenomenon in Fig. 12 (note that the tdtt M
of Example 7 is deterministic and we only used nondeleting rules of N in these
derivations).

So again our generic composition construction (see Definition 6) might fail,
but contrary to the previous case, the authors believe that this can be addressed
without any further requirement. Instead of using the original state of M in all
copies, the authors propose to use the corresponding state from an unweighted
copy of M in all but one copies. Thus, the weight that M charges for processing
the input tree would only be charged in the single copy and the other copies,
which run using the unweighted copy of M , do not cause additional charges for
processing the input. Since the input tdtt M is deterministic, we know that the
copies will behave equally in all aspects besides the weight that they charge. Let
us provide some detail.

Definition 12. An unweighted copy of M is a Boolean xtt (Q, Σ, Γ, I1, R
′
1)

such that
l→ r ∈ R′

1 ⇐⇒ l → r ∈ R1 .

We will not formalize the modified construction, but we will present the essential
steps. First, we take the (disjoint) union of M and an unweighted copy M ′ of M
(by renaming all states of the copy from q to q). Let us assume that a state q ∈ Q
corresponds to a state q in M ′, and similarly, a rule ρ ∈ R1 corresponds to a
rule ρ in M ′. When processing a rule in which the tdtt N copies, we modify
all but one copies to use the corresponding state from M ′. Let us illustrate this
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Composition:
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Composed tdtt:

〈p0, q〉
γ

α
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M ;N

σ

σ

〈p0, q〉
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Fig. 12. Difference between composition and the composed tdtt on the tdtt
M and N of Example 7. The composition (upper display) charges the weight
R1(ρ1) · R1(ρ2) ·R2(μ1)

3 ·R2(μ5)
4 = 2 · 2 · 43 · 14, whereas the composed tdtt charges

2 · 43 · (2 · 1)4. The additional weight R1(ρ2)
3 = 23 is charged by M ;N for processing

the input subtree α (using ρ2) three more times.
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adjustment on an example rule of Example 7. Figure 13 shows the original and
the modified derivation that lead to the rule ν = 〈ρ1, p0, μ3μ6μ1〉 of M ; N and
our new rule

χ(ν) =
(
〈p0, q〉(γ(x1)), 16, σ(γ(〈p, q〉(x1)), σ(〈p0, q〉(x1), 〈p0, q〉(x1)))

)

χ′(ν) =
(
〈p0, q〉(γ(x1)), 16, σ(γ(〈p, q〉(x1)), σ(〈p0, q〉(x1), 〈p0, q〉(x1)))

)
.

Figure 14 shows the modified derivation corresponding to the derivation of the
composed tdtt, which is displayed in Fig. 12.

Original derivation:
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Modified derivation:

p0

q

γ

x1

⇒ρ1
M

p0

γ

γ

q

x1

⇒μ3
N

σ

p

γ

q

x1

p0

γ

q

x1

⇒μ6
N

σ

γ

p

q

x1

p0

γ

q

x1

⇒μ1
N

σ

γ

p

q

x1

σ

p0

q

x1

p0

q

x1

Fig. 13. Two derivations that yield rules. The upper one follows our composition con-
struction, whereas the lower one is adjusted to address the problem of Case (c). We
boxed the states that are adjusted due to copying of N . We selected to mark the left
copies, but the choice is arbitrary.

Conjecture 13. If the xtt M is deterministic and the tdtt N is nondeleting, then
τM ; τN can be computed by an xtt.

Finally, Case (d) is essentially a combination of Cases (b) and (c). This case was
first addressed by [14, Theorem 5.18], in which it was shown that a Boolean,
deterministic, and total tdtt M can be composed with a deterministic tdtt N .
A similar statement was obtained in [33, Theorem 30], where (i) the same re-
strictions are placed on M and (ii) N is required to be linear. The result of [33]
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Fig. 14. Derivation using the new rules (see Fig. 12). The derivation now correctly
charges the weight R′

1(ρ1) ·R′
2(μ1)

3 ·R2(μ5)
4 ·R′

1(ρ2) ·R′
1(ρ2)

3 = 2 ·43 ·14 ·2 ·13 because
overlined rules charge weight 1.

clearly avoids the problematic Case (c) by requiring N to be linear. The result
of [14] allows non-linear tdtt N , and it could thus be reasoned that they also had
to handle the problematic Case (c). However, the requirement that the tdtt M
is Boolean already enforces that the additional weights (see Figs. 11 and 12)
charged by the composed tdtt (constructed according to the general composition
construction of Definition 6) are all 1. Thus, no modification was necessary
under their assumptions. Using the indicated improvements suggested in Cases
(b) and (c), the authors conjecture the following result, which covers both known
results. Essentially, the authors believe that a constant and deterministic xtt M
can be composed with any tdtt N .

Conjecture 14. If the xtt M is constant and deterministic and N is a tdtt, then
τM ; τN can be computed by an xtt.

This concludes our investigation of compositions of tdtt. Table 2 shows the
various results obtained in the weighted case. It is interesting that if Conjectures
11, 13, and 14 were true, then we would recover the beautiful symmetry that is
present in the composition results [12,5] for unweighted top-down and bottom-up
tree transducers [43] also in the weighted case. A summary of the composition
results for weighted bottom-up tree transducers [14] can be found in Table 3,
but the reader is referred to [14,33,34] for the detailed results.

6 Allowing ε-rules

This section is devoted to compositions of tree transformations computed by xtt
M and N , of which the xtt N is a top-down tree transducer with ε-rules [39].
Roughly speaking, a top-down tree transducer with ε-rules is an xtt, in which
simple and ε-rules are allowed. In other words, this section investigates the effect
of ε-rules in N to the results of Sect. 5. In the unweighted setting, this scenario
was investigated in [39], and we essentially report the results of [39], which we
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Table 2. Composition results for weighted tdtt (‘nondel.’ abbreviates ‘nondeleting’
and ‘det.’ abbreviates ‘deterministic’)

Case M N Reference

(a) linear and nondel. linear and nondel. [31, Theorem 2.4]
deterministic det., linear, nondel. [14, Theorem 5.18]

linear and nondel. [33, Theorem 26]

(b) constant linear Conjecture 11

(c) deterministic nondeleting Conjecture 13

(d) Boolean, det., total deterministic [14, Theorem 5.18]
Boolean, det., total linear [33, Theorem 30]

constant and det. Conjecture 14

adjusted to our weighted setting. Let us start with the formal definition of the
requirements of this section. For the rest of this section, let M = (Q, Σ, Γ, I1, R1)
and N = (P, Γ, Δ, I2, R2) be the xtt that we want to compose.

Definition 15 (cf. [15, Definition 4] and [39, Definition 1])

– The xtt M is shallow if |posΓ (r)| ≤ 1 for every l→ r ∈ R1.
– The xtt N is a tdtt with ε-rules if |posΓ (l)| ≤ 1 for every l → r ∈ R2.

Clearly, each tdtt is a tdtt with ε-rules, but a tdtt need not be shallow. Let us
examine these properties for the xtt in our examples.

xtt tdtt with ε-rules shallow
M of Example 1 no (due to rule ρ1) yes
N of Example 2 yes no (due to rule μ3)
M of Example 7 yes (because it is a tdtt) no (due to rule ρ1)
N of Example 7 yes (because it is a tdtt) yes

Now we can formally define the goal of this section. We will investigate com-
positions of xtt M and N such that M is shallow and N is a tdtt with ε-rules.

Table 3. Composition results for weighted bottom-up tree transducers [14] (‘nondel.’
abbreviates ‘nondeleting’ and ‘det.’ abbreviates ‘deterministic’) for comparison. Note
that every weighted bottom-up tree transducer can be made total.

Case M N Reference

(a) linear, nondel. linear and nondel. [31, Theorem 2.4]
linear, nondel. homomorphism [14, Corollary 5.5]
linear, nondel. [33, Theorem 13]

(b) linear [total] [33, Theorem 20]

(c) nondeleting Boolean, deterministic [33, Theorem 24]
nondeleting constant, deterministic conjectured

(d) Boolean, homomorphism [14, Corollary 5.5]
Boolean, det., [total] [33, Theorem 24]
constant, det., [total] conjectured
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To show that the condition that ensures well-definedness of the sum in the def-
inition (2) of composition does not influence the results much, we additionally
assume here that N does only have producing rules. In this case, there can only
be finitely many rule applications generating the output tree u, which limits the
size of the intermediate tree [see (3)]. Thus, all compositions are well-defined in
the cases of this section.

6.1 Construction

Before we present an adaptation of the generic construction in Sect. 5.1, let
us demonstrate that the generic construction fails to handle ε-rules of N in a
meaningful manner.

Example 16. Let M and N be the xtt of Examples 1 and 2. Using the notions of
Sect. 5, we can select c = 1 and s = 1. Consequently, we consider m = 1, which
yields that all rule identifiers constructed in Definition 6 use at most one rule
of N .19 A derivation like the one depicted in Fig. 15, which starts with a rule
of N , cannot be simulated by M ; N because the rules constructed for M ; N
always trigger a rule of M first. ��

p
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γ
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γ

γ
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b
⇒μ1
N
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p

b

⇒μ1
N

γ

γ

p

b

⇒μ5
N

γ

γ

β

Fig. 15. Two derivations using the xtt M and N of Examples 1 and 2. The upper
derivation cannot be simulated by M ;N since it starts with a rule of N . In principle, an
unbounded number of rule applications of rule μ1 could happen before the intermediate
symbol b is consumed in the lower derivation. Thus, such derivations can, in general,
also not be simulated by M ;N .

Thus, we need to adjust our construction. To avoid the problem in the lower
derivation of Fig. 15, we restrict the rules of N that can be used when pro-
cessing the right-hand side r of a rule ρ ∈ R1. As in [39] we require that r is
19 We could not avoid the problem, even if we would consider larger values for m.
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processed only with consuming rules of N . The ε-rules of N need to fire either
before ρ or after all intermediate symbols of r are fully consumed by N . This
creates a problem, if the rule ρ creates 2 intermediate symbols at the same time,
and the original derivation uses ε-rules after consuming one intermediate symbol
but before consuming the second intermediate symbol. To avoid this problem,
we already assumed in this section that M is shallow. Consequently, m = 1
provides an upper bound to the number of consuming rules required by N to
process the right-hand side of a rule of M . This is due to the fact that there
is at most one intermediate symbol in any right-hand side of a rule of M , and
we can only use consuming rules of N to process it. As before, for any senten-
tial form ξ ∈ TΔ(P (TΓ (Q(TΣ(X))))) and rule ρ ∈ R there exists at most one
ζ ∈ TΔ(P (TΓ (Q(TΣ(X))))) such that ξ ⇒ρ

M ζ, which also holds for the xtt N .
Similarly, we recall that we identify elements of TΔ(P (Q(TΣ(X)))) with elements
of TΔ((P ×Q)(TΣ(X))) in the obvious manner.

Definition 17 (cf. [39, Definition 9]). The ε-composition M ;εN of M and N
is the xtt (P ×Q, Σ, Δ, I2 × I1,R, χ) with rule identifiers

R = {〈ρ, p, ε〉 | erasing ρ ∈ R1, p ∈ P} ∪
∪ {〈ρ, p, μ〉 | producing ρ ∈ R1, p ∈ P, consuming μ ∈ R2} ∪
∪ {〈ε, q, μ〉 | q ∈ Q, ε-rule μ ∈ R2}

such that

– χ(〈l → r, p, ε〉) = (p(l), R1(l → r), p(r)) for every erasing rule l → r ∈ R1

and p ∈ P ,
– χ(〈l → r, p, μ〉) = (p(l), a, r′), where

a =

{
R1(l → r) · R2(μ) if p(l)⇒(l,r)

M ;⇒μ
N r′

0 otherwise

for every producing l→ r ∈ R1, p ∈ P , and consuming μ ∈ R2, and
– χ(〈ε, q, l → r〉) = (lθ, R2(l → r), rθ), where θ(x) = q(x) for every x ∈ X,

q ∈ Q, and ε-rule l→ r ∈ R2.

Note that the only differences to the construction of [39] are the presence of
(i) non-simple left-hand sides in rules of M and (ii) weights. Let us discuss the
three sets of rule identifiers mentioned in Definition 17. Rule identifiers of the
form 〈ρ, p, ε〉 refer to variants of an erasing rule ρ of R1. For each state p ∈ P , we
obtain a variant by annotating the two states (in the left- and right-hand side)
by p. In other words, we perform a step using M , but since no intermediate sym-
bol is produced, we do not perform a step using N . Second, the rule identifiers of
the form 〈ρ, p, μ〉 contain rules that are obtained in the usual way by processing
the right-hand side of a producing rule of M by consuming rules of N . Since
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M is shallow and N is a tdtt with ε-rules, each producing rule of M contains
exactly one intermediate symbol and each consuming rule of N contains exactly
one intermediate symbol. Thus, the derivation only succeeds if the producing rule
of M produces exactly the symbol that the consuming rule of N consumes. These
two types of rules were also present in the generic composition construction of
Sect. 5.1. Finally, rule identifiers of the form 〈ε, q, μ〉 refer to a variant of an
ε-rule μ of N that is annotated with the state q ∈ Q.

Let us quickly check whether the obtained rules l → r are admissible; i.e.,
whether {l, r} 	⊆ P (Q(X)). Clearly, identifiers of the form 〈ρ, p, ε〉 yield admis-
sible rules because they contain just copies of rules of M . The same reasoning
applies to rules with identifiers of the form 〈ε, q, μ〉, which are copies of rules
of N . Finally, rules with identifiers like 〈ρ, p, μ〉 are always producing because
each rule μ ∈ R2 is producing. Clearly, producing rules are admissible. Next, let
us illustrate the construction.

Example 18. Let M = ({q0, q1}, Σ, Γ, {q0}, R) and N = ({p}, Γ, Δ, {p}, R′) be
the xtt of Examples 1 and 2, respectively. The composition construction of Defi-
nition 17 yields the xtt M ;εN = (P×Q, Σ, Δ, {〈p, q0〉},R, χ) with rule identifiers

R = {〈ρ2, p, ε〉, 〈ρ1, p, μ2〉, 〈ρ1, p, μ3〉, 〈ρ3, p, μ5〉, 〈ρ4, p, μ4〉, 〈ρ5, p, μ4〉,
〈ε, q0, μ1〉, 〈ε, q1, μ1〉}

such that

χ(〈ρ2, p, ε〉) = 〈p, q0〉(σ(α, x1))
3−→ 〈p, q0〉(x1)

χ(〈ρ1, p, μ2〉) = 〈p, q0〉(σ(σ(x1, x2), α)) 2·5−→ λ(〈p, q1〉(x1), 〈p, q0〉(x2))

χ(〈ρ1, p, μ3〉) = 〈p, q0〉(σ(σ(x1, x2), α)) 2·5−→ λ(β, λ(〈p, q1〉(x1), 〈p, q0〉(x2)))

χ(〈ρ3, p, μ5〉) = 〈p, q0〉(α) 1·1−→ β

χ(〈ρ4, p, μ4〉) = 〈p, q1〉(x1)
2·8−→ δ(〈p, q0〉(x1))

χ(〈ρ5, p, μ4〉) = 〈p, q1〉(x1)
5·8−→ δ(〈p, q1〉(x1))

χ(〈ε, q0, μ1〉) = 〈p, q0〉(x1)
2−→ γ(〈p, q0〉(x1))

χ(〈ε, q1, μ1〉) = 〈p, q1〉(x1)
2−→ γ(〈p, q1〉(x1)) .

The construction of the rule corresponding to the rule identifier 〈ρ1, p, μ2〉 is
illustrated in Fig. 16. ��

6.2 Correctness

Let us start by recalling the two cases, in which the composition construction
of [39], of which our construction in Definition 17 is an adaptation, is successful
in the unweighted setting. Recall that M is shallow and N is a tdtt with ε-rules.
If
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Fig. 16. Construction of the rule with identifier 〈ρ1, p, μ2〉 in Example 18

Table 4. Cases for unweighted xtt composition of M and N , where M is shallow and
N is a tdtt with ε-rules

Case M N Reference

(a) linear and nondeleting [39, Theorem 17]
(b) total linear [39, Theorem 17]

– N is linear, and
– M is total or N is nondeleting,

then τM ; τN can be computed by an xtt [39, Theorem 17]. Table 4 shows these
two cases, which correspond to the equally named cases in Sect. 5.

Let us start with Case (a). As in the previous section, this case does not cause
further problems in the weighted setting, and we will sketch the correctness proof
for our composition construction of Definition 17.

Theorem 19. If M is shallow and N is a linear and nondeleting tdtt with
ε-rules, then τM ;εN = τM ; τN .

Proof (sketch). Let ξ ∈ P (Q(TΣ)) and u ∈ TΔ. We claim that there is a weight-
preserving bijection between the derivations of the form

ξ (⇒ρ1
M ; · · · ;⇒ρk

M ) ; (⇒μ1
N ; · · · ;⇒μn

N ) u ,

and the derivations of the form ξ ⇒ν1
M ;εN

; · · · ;⇒ν�

M ;εN
u.

We construct the bijection by induction on k. Let s ∈ TΣ, p ∈ P , and q ∈ Q
be such that ξ = p(q(s)). Next, we distinguish whether the first applied rule ρ1 is
erasing. If it is, then we start the derivation using M ;εN with the rule 〈ρ1, p, ε〉,
which has the same weight as ρ1. Otherwise, the rule ρ1 produces exactly one
intermediate symbol γ ∈ Γ that will be consumed by exactly one rule μi for some
i ∈ IN. The symbol γ is consumed by exactly one rule because N is linear and
nondeleting. Clearly, all rules μ1, . . . , μi−1 before μi must be ε-rules because oth-
erwise they would consume the symbol γ. In M ;ε N we simulate this derivation
by starting with the ε-rules 〈ε, q, μ1〉, . . . , 〈ε, q, μi−1〉 followed by the consuming
rule 〈ρ1, p

′, μi〉, where p′ is the (unique) state that occurs in the right-hand side
of the rule μi−1.20 Clearly, this part of the derivation has the same weight as the
20 If i = 1, then we let p′ = p.
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product of the weight of rule ρ1 and the weights of the rules μ1, . . . , μi. Now we
covered all three cases and shortened the derivation using M . The remainder of
the derivation can then be processed using the induction hypothesis. Thus, our
construction relates derivations bijectively and preserves the weight. Given this
bijective and weight-preserving relation, the main statement follows trivially. ��

Let us illustrate the construction used in the proof of Theorem 19.

Example 20. Let M and N be the xtt of Examples 1 and 2, and recall that
M ;ε N is shown in Example 18. Moreover, let

s = σ(σ(α, σ(α, σ(α, α))), α) and t = f(h(h(b)), b)

be an input and output tree for M as in Example 1. Figure 2 shows a deriva-
tion dM with weight 180 from q0(s) to t using M . Moreover, let

u = λ(β, λ(δ(δ(β)), γ(γ(β)))) .

Figure 17 shows a derivation dN with weight 5 · 82 · 1 · 22 · 1 = 1 280 from p(t)
to u using N . The concatenation of the two derivations gives us a derivation d
from p(q0(s)) to u using rules of M and N . Clearly, the weight of this derivation
is 180 · 1 280 = 230 400.

The image of the derivations dM and dN by the bijection constructed in
the proof of Theorem 19 is shown in Fig. 18. The first four rules in the deriva-
tion dM are producing, and the produced symbol is immediately consumed in the
corresponding step in the derivation dN . The fifth and sixth rules in the deriva-
tion dM are erasing rules, which are simulated by the corresponding erasing rules
in the derivation d. The last rule in the derivation dM is another producing rule,
whose produced symbol b is not immediately consumed in the current step of the
derivation dN . Rather the ε-rule μ1 is applied twice before rule μ5 consumes the
symbol b. Consequently, we have to defer the application of the rule 〈ρ3, p, μ5〉
to first allow the applications of the rule 〈ε, q0, μ1〉. The following table lists the
rule applications for all three derivations and shows the correspondence.

Step 1 2 3 4 5 6 7
dM : ρ1 ρ5 ρ4 ρ3 ρ2 ρ2 ρ3

dN : μ3 μ4 μ4 μ5 μ1 μ1 μ5

d: 〈ρ1, p, μ3〉 〈ρ5, p, μ4〉 〈ρ4, p, μ4〉 〈ρ3, p, μ5〉 〈ρ2, p, ε〉 〈ρ2, p, ε〉 〈ε, q0, μ1〉 〈ε, q0, μ1〉 〈ρ3, p, μ5〉

The weight of the derivation d is

(2 · 5) · (5 · 8) · (2 · 8) · (1 · 1) · 3 · 3 · 2 · 2 · (1 · 1) = 230 400 ,

which coincides with the expected result. ��
Let us move on to Case (b), in which we experience the same problem with
deleted subtrees as in Sect. 5. We refer the reader to the discussion of Case (b)
in Sect. 5 for an illustration of the problem and examples. Here, we avoid the
problem by requiring (i) that the xtt M is Boolean and (ii) that the semi-
ring A is idempotent (i.e., 1 + 1 = 1). This yields that the xtt M is essentially
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Fig. 17. A derivation from p(t) to u using N (see Example 20)

unweighted and constant (with weight 1). We observe that τM (s, t) = 1 for all
(s, t) ∈ supp(τM ) because M is Boolean and A is idempotent, and for every
s ∈ TΣ there exists t ∈ TΓ such that (s, t) ∈ supp(τM ) due to the totality of M .

Theorem 21. If the shallow xtt M is total and Boolean, the tdtt N with
ε-rules is linear, and the semiring A is idempotent, then τM ;εN = τM ; τN .

Proof (sketch). Let ξ ∈ P (Q(TΣ)) and u ∈ TΔ. We claim that there is a weight-
preserving surjective mapping f from the derivations of the form

ξ (⇒ρ1
M ; · · · ;⇒ρk

M ) ; (⇒μ1
N ; · · · ;⇒μn

N ) u ,

and the derivations of the form ξ ⇒ν1
M ;εN

; · · · ;⇒ν�

M ;εN
u.

Clearly, the derivation sequence ρ1 · · · ρkμ1 · · ·μn is successful. Let ⊥ be a
fresh symbol, and let l → r ∈ R1 be a rule of M . The mutilated copy of l → r is
the rule l→ ⊥(r). We denote the mutilated copy of ρ ∈ R1 by ρ. Next, we obtain
a rule sequence ρ′1 · · · ρ′k from ρ1 · · · ρk by replacing maximally many rules ρi by
their mutilated copy ρi such that

ξ (⇒ρ′1
M ; · · · ;⇒ρ′k

M ) ; (⇒μ1
N ; · · · ;⇒μn

N ) u .

In order words, the new rule sequence is still a successful derivation from ξ to u.
Clearly, this derivation can only be successful if N ignores (i.e., deletes) the sub-
trees created by mutilated rules because N cannot process the symbol ⊥. In the
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Fig. 18. The matching derivation from 〈p, q0〉(s) to u using M ;ε N (see Example 20)
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next step we drop all mutilated rules from the rule sequence ρ′1 · · · ρ′k and relate
the obtained rule sequence in the same way as in the proof of Theorem 19 to the
derivation of the composed xtt. The obtained derivation using the composed xtt
has the same weight as the original derivation because we only dropped rules
of R1, which have weight 1 because M is Boolean. It is not difficult to see that
this mapping is surjective because we can always recover one subderivation for
parts that we dropped due to the totality of M . This approach is illustrated in
an example following the proof.

Now we complete the proof as follows:

(τ ′
M ; τ ′

N )(ξ, u) =
∑

ρ1,...,ρk∈R1
μ1,...,μn∈R2

ξ(⇒ρ1
M ;···;⇒ρk

M );(⇒μ1
N ;···;⇒μn

N )u

( k∏

i=1

R1(ρi) ·
n∏

i=1

R2(μi)
)

=
∑

ν1,...,ν�∈R
d : ξ⇒ν1

M;εN ;···;⇒ν�
M;εNu

( ∑

d′∈f−1(d)

( 
∏

i=1

wt(νi)
))

(because the second sum is never empty due to surjectivity of f)

=
∑

ν1,...,ν�∈R
ξ⇒ν1

M;εN ;···;⇒ν�
M;εNu

( 
∏

i=1

wt(νi)
)

= τ ′
M ;εN (ξ, u)

because A is idempotent and f−1(d) 	= ∅. Thus, we conclude that M ;ε N com-
putes τM ; τN . ��
Let us illustrate the construction in the proof of Theorem 21 on an example.

Example 22. Let us consider Fig. 19, which is a minor variation of Fig. 10.
Figure 19 displays two derivations that we want to relate. Obviously, the rule
sequence of M is ρ1ρ1ρ2. Now we need to mutilate the rules in the rule se-
quence. We start with the most aggressive attempt and mutilate every rule in
the sequence to obtain ρ1ρ1ρ2. Figure 20 shows that the derivation is no longer
successful for this rule sequence. Thus, we try the sequence ρ1ρ1ρ2, which indeed
still delivers a successful derivation as depicted in Fig. 20. Next, we reduce the
sequence by taking out all mutilated rules. We obtain just ρ1. Now we combine
the producing rule ρ1 as usual with the consuming rule μ7 of the second rule
sequence and relate them to the rule 〈ρ1, p, μ7〉 of the composed tdtt. ��
Following the ideas of Sect. 5, the authors suspect that instead of idempotence
and a total and Boolean xtt M , we can simply require that M is constant. This
leads to our final conjecture, which would generalize Theorem 21. We collect all
obtained results of this section in Table 5.

Conjecture 23. If the shallow xtt M is constant and the tdtt N with ε-rules is
linear, then τM ; τN can be computed by an xtt.
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Composition:
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Fig. 19. Relating rule sequences

Sequence ρ1ρ1ρ2:
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⊥
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γ

⊥
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Fig. 20. Testing two mutilated sequences. The upper one is too aggressive and the
rule μ7 of N is not applicable anymore. The lower sequence represents the sought
sequence because the derivation is still successful. After the deletion of the mutilated
rules, we thus obtain just ρ1.
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Table 5. Cases for weighted xtt composition, where M is a shallow xtt and N is a
tdtt with ε-rules. In the second line (which uses Theorem 21), we additionally need to
require that the semiring is idempotent.

Case M N Reference

(a) linear and nondeleting Theorem 19

(b) total and Boolean linear Theorem 21
constant linear Conjecture 23
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22. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Languages, vol. 3, ch. 1, pp. 1–68. Springer, Heidelberg (1997)
23. Golan, J.S.: Semirings and their Applications. Kluwer Academic, Dordrecht (1999)
24. Graehl, J., Knight, K., May, J.: Training tree transducers. Comput. Linguist. 34(3),

391–427 (2008)
25. Hebisch, U., Weinert, H.J.: Semirings — Algebraic Theory and Applications in

Computer Science. Algebra, vol. 5. World Scientific, Singapore (1998)
26. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natu-

ral language processing. In: Gelbukh, A.F. (ed.) CICLing 2005. LNCS, vol. 3406,
pp. 1–24. Springer, Heidelberg (2005)

27. Koehn, P.: Statistical Machine Translation. Cambridge University Press, Cam-
bridge (2010)

28. Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: NAACL
2003, pp. 48–54. Association for Computational Linguistics (2003)
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Abstract. We study Kleene’s theorem about the equivalence of automata and
expressions in a quantitative setting both for finite and infinite words. The quan-
tities originate from valuation monoids and ω-indexed valuation monoids which
cover not only semirings but also cost models like average cost, long-run peaks
of resource consumption, or discounting sums of rewards. For finite words we
deduce the characterization of weighted automata by regular weighted expres-
sions directly from Kleene’s theorem. For infinite words we define three different
behaviors of weighted Büchi automata depending on the way runs are evaluated.
Depending on the properties of the underlying ω-indexed valuation monoid, we
explore the connections between the different behaviors of weighted Büchi au-
tomata and ω-regular weighted expressions. Again, we use classical results on
ω-languages to derive results in the quantitative setting.

1 Introduction

There are some results in theoretical computer science which seem to last forever. One
is Kleene’s theorem stating that finite automata and regular expressions define the same
class of languages [31]. Certainly, regular expressions are a popular formalism to de-
scribe properties and patterns. We use them e.g. in the Emacs editor when writing this
article. As far as theoretical aspects are concerned, the equivalence between automata
and expressions is very useful because the two concepts are of different nature (graphs
and well-structured terms) and can be applied to different problems. Thus, it is not
surprising that variants and generalizations of Kleene’s theorem were shown both in a
qualitative and in a quantitative setting. We skip the qualitative results for numerous
discrete structures and turn immediately to the quantitative ones.

A theorem by Schützenberger [39] generalized Kleene’s theorem for weighted
automata and weighted expressions over finite words with weights from a semiring.
Semirings are a very powerful concept because they comprise many instances like the
natural numbers with addition and multiplication or the tropical semiring important in
optimization. In the 1980s, results analog to the one of Schützenberger were also ob-
tained for trees by Berstel and Reutenauer [3] and by Alexandrakis and Bozapalidis [1].
Later on, the theorem was shown for a semiring weighted setting for traces [11], pic-
tures [4,36], or series-parallel posets [33], to give just a few examples. An overview of
these results and their proofs can be found in the chapters [27,28,29,38] of the Hand-
book of Weighted Automata [13].

W. Kuich and G. Rahonis (Eds.): Bozapalidis Festschrift, LNCS 7020, pp. 309–346, 2011.
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Here, we confine ourselves to finite and infinite words. For infinite words several
Kleene-Schützenberger results can be found in the literature: for ω-languages by Büchi
[5] and for the weighted setting by Ésik and Kuich [25,27] for semiring-semimodule
pairs, by Droste, Kuske, and Kuich [14,32] for discounting, and by Droste and Vogler
[23] for bounded lattices. Especially the semiring-semimodule setting by Ésik and
Kuich is a very general one relying on an algebraic and equatioal approach.

In 2008, another kind of weighted automata which does not fit into the semiring set-
ting was suggested by Chatterjee, Doyen, and Henzinger [7]. In these automata, real
numbers are attached to the transitions and then the whole finite or infinite run, i.e.,
a finite or infinite sequence of weights, is evaluated by a function. Such a function
can compute the average or the limit superior of the values occuring along the run.
Chatterjee, Doyen, and Henzinger [7,8,9,10] were mainly interested in decidability is-
sues for concrete valuation functions as well as in comparing the expressive power
of their automata models for different valuation functions. This opened another way
of thinking about weighted automata. Instead of multiplying weights locally by semi-
ring multiplication, the weight of a run is computed globally by a valuation function.
Non-determinism is still resolved by a commutative monoid operation as it is done for
semiring weighted automata.

In [20,21], Droste and Meinecke generalized and unified such settings by introduc-
ing valuation monoids (for finite words) and ω-indexed valuation monoids (for infinite
words). These concepts comprise semirings, average, limit superior, limit average, or
discounting as considered in [7] as well as the complete star-omega-semirings [25,27]
or the semirings used in [15,37]. One interesting point about (ω-indexed) valuation
monoids is the fact that nothing else than a commutative monoid (or a complete one for
infinite words) and a valuation function is needed to define the behavior of weighted
automata. But in the course of giving a characterization by weighted MSO logic [20] or
by weighted regular expressions [21,22], additional operations and properties have to
be amended for the underlying valuation monoid. However, these operations and prop-
erties are quite different for logic on one side and expressions on the other one. In a
semiring setting, this is somehow hidden because “everything” is defined by semiring
multiplication. Most comprehensive properties are needed for a characterization by ex-
pressions. The defining equations of these Cauchy valuation monoids as we call them
have close resemblance to properties of semirings. Nevertheless, we cover structures
which are not semirings.

In this paper, we deal with the characterization of weighted automata by expressions.
Our contribution is twofold. First, we extend the work started in [21,22]. Especially, we
explore weighted Büchi automata over ω-indexed automata in more detail. In [21], we
suggested to evaluate an infinite run as follows: Use (i) a Büchi condition, (ii) a valua-
tion function for finite sequences, and (iii) an ω-indexed valuation function for infinite
sequences. Then evaluate the finite sequences of weights between two consecutive ac-
ceptance states by the valuation function and, finally, combine these infinitely many
intermediate results by the ω-indexed valuation function. This procedure defines the
(Büchi) behavior of a weighted Büchi automaton and guarantees the necessary link be-
tween finite and ω-automata in order to establish a Kleene-like result also for infinite
words. However, in [7] the value of an infinite run was computed without intermediate
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results. We refer to such a kind of valuation as the unconditional behavior. To show
that the Büchi behavior of a weighted Büchi automaton is ω-rational, i.e., definable by
ω-regular weighted expressions, we were in need of a property which we called the
partition property [21]. Now we use the defining equation of this property to define a
third behavior, the so-called cumulative behavior.1 This is similar to the first one but
this time the run is partitioned with regard to only one single accepting state. This is
done for all accepting states appearing infinitely often within the run. Now the possible
occurence of different accepting states is seen as non-determinism and resolved by the
sum, i.e., the monoid operation. Hence, the weight of a run is a sum of m weights if m
different accepting states appear infinitely often along the run.

We explore the connections between these three behaviors of weighted Büchi au-
tomata and ω-rationality, recall the results of [21,22], and obtain several new results
depending on the properties of the ω-indexed valuation monoid. One such property is
uniformity which is very similar to an infinitary associativity law for the product of
complete star-omega semirings [25,27]. It states that the valuation of an ω-sequence
of weights does not depend on the chosen intermediate points. This is the case when
valuating finite runs by supremum and infinite ones by limit superior. However, if
we take average and limit superior average, then this property is not satisfied. Using
uniformity, we can show a Kleene-Schützenberger-like result for ω-indexed valuation
monoids comprising all complete star-omega semirings. In [21,22], we could do so only
for structures covering idempotent complete star-omega semirings. Last but not least,
we show that weighted Büchi and weighted Muller automata define the same class of
(Büchi) behaviors provided the ω-indexed valuation monoid is uniform.

Another focus of this paper is the proof method which is of combinatoric nature
and tries to make as much use as possible of the classical results for languages and
ω-languages. Kuske [34] showed that Schützenberger’s theorem can be derived directly
from Kleene’s theorem without repeating the proofs of Kleene’s theorem in the semiring
setting. Here, we apply this method to our result for finite words and give this way an
alternative proof compared to the one in [21,22]. The proof is very similar to the one
in [34] and shows once again that Kleene’s early result somehow already contains a
lot of other results in its very concepts and arguments. For infinite words we apply this
approach at least for one result using unambiguous ω-regular expressions [2].

Certainly, the Kleene-like results obtained here are not the end of the line. There
are settings in discounting where the discount factor depends also on the action exe-
cuted [16,17]. This cannot be covered by our approach. Another line of research are lo-
cally finite structures missing distributivity [23]. A notion of local finiteness is not yet
clear for valuation monoids. We guess: “Kleeneism” is here to stay.

2 Weighted Automata and Expressions on Finite Words

In this chapter, we introduce the basic concepts: valuation monoids, weighted automata,
rational operations, and regular weighted expressions – for finite words. We show that
weighted automata and expressions define the same class of series even in a very general
quantitative setting. This result was already shown in [21,22] but here we give another

1 The first idea of this notion is due to Manfred Droste.
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proof following the one in [34] for semiring weighted automata. It turns out that the
equivalence between automata and expressions over valuation monoids follows from
Kleene’s result for languages of finite words.

2.1 Weighted Automata over Valuation Monoids

Let � denote the positive integers and �0 the non-negative integers. Let Σ be an alpha-
bet. By Σ+ we denote the set of non-empty finite words. For w = a1 . . . an ∈ Σ+ with
ai ∈ Σ for i ∈ {1, . . . , n}, let |w| = n be the length of w and dom(w) = {1, . . . , |w|}
be the domain of w.

Weights in a weighted automaton A will be attached to transitions. To compute the
weight of a word w inA, the runs ofA on w have to be evaluated and, then, the obtained
values have to be summarized to a single weight. For this, we introduce quantitative
structures which will cover exactly these two requests.

Definition 2.1. A valuation monoid � = (D, +, val, �) consists of a commutative
monoid (D, +, �) and a valuation function val : D+ → D such that

– val(d) = d for all d ∈ D and
– val(d1, . . . , dn) = � whenever di = � for some i ∈ {1, . . . , n}.

Now we can define weighted automata and their behavior.

Definition 2.2. A weighted (finite) automaton A = (Q, I, T, F, μ) (for short: a wfa)
over the alphabet Σ and a valuation monoid � = (D, +, val, �) consists of a finite
state set Q, a set I ⊆ Q of initial states, a set F ⊆ Q of final states, a set of transitions
T ⊆ Q×Σ ×Q, and a weight function μ : T → D.

A weighted automaton is a usual finite automaton equipped with weights for the tran-
sitions. Moreover, the automaton can be assumed to be total as in [7], i.e., for every
q ∈ Q and every a ∈ Σ there is some q′ ∈ Q with (q, a, q′) ∈ T . This can be achieved
by adding transitions with weight �. Runs R = (ti)1≤i≤n with ti = (qi−1, ai, qi) ∈ T
are defined as finite sequences of matching transitions. We call the word w = �(R) =
a1a2 . . . an the label of the run R and R a run on w. For a run R, μ(R) =

(
μ(ti)

)
1≤i≤n

is the sequence of the transition weights of R and wgt(R) = val(μ(R)) is the weight
of R. A run is successful if it starts in an initial state q0 ∈ I and ends in a final state
qn ∈ F . We denote the set of successful runs of A by succ(A). The behavior of A is
the function ‖A‖ : Σ+ → D defined by

‖A‖(w) =
∑

R∈succ(A)
�(R)=w

val
(
μ(R)

)

for every w ∈ Σ+. If there is no successful run on w, then ‖A‖(w) = �. Every function
S : Σ+ → D is called a series (or a quantitative language as in [7]) over Σ+. If S is
the behavior of some weighted automaton, then S is called recognizable.
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Remark 2.3. Classical weighted automata are defined over semirings [39,24,13].
� = (K, +, ·, �, �) is a semiring if (K, +, ·) is a commutative monoid, (K, ·, �) is
a monoid, multiplication · distributes over addition +, and � is absorbing for multipli-
cation, i.e., k · � = � · k = � for all k ∈ K . Semirings can be modeled by valuation
monoids: We define val(d1, . . . , dn) = d1 · . . . · dn. Then � � = (K, +, val, �) is a
valuation monoid.

A weighted automaton A� = (Q, λ, μ, γ) over an alphabet Σ and a semiring �
consists of a finite state set Q, the transitional weight function μ : Q × Σ × Q → K ,
and the initial and final weights λ, γ : Q → K , respectively. Note that μ can also be
considered as a mapping from Σ to KQ×Q and, thus, be extended to a homomorphism
μ : Σ+ → KQ×Q. Then the behavior ofA� is defined as ‖A� ‖(w) = λ·μ(w)·γ where
λ and γ are understood as a row and column vector of dimension |Q|, respectively.
Thus, weights are multiplied along a run and the weights of all runs over one word are
summed up.

Since we consider only non-empty words, A� can be normalized. This comprises
λ(Q), γ(Q) ⊆ {�, �}. Let I = {q ∈ Q | λ(q) = �}, F = {q ∈ Q | γ(q) = �}, and
T = {(p, a, q) ∈ Q × Σ × Q | μ(p, a, q) �= �}. Then A = (Q, I, T, F, μ�T ) is a wfa
over Σ and the valuation monoid � � with ‖A‖ = ‖A� ‖.
Remark 2.4. A bimonoid, cf. [18], is a structure � = (K, +, ·, �, �) consisting of two
monoids (K, +, �) and (K, ·, �). If (K, +, �) is a commutative monoid and � is absorb-
ing for the second operation ·, we call � a strong bimonoid. Every strong bimonoid can
be seen as a valuation monoid � � = (K, +, val, �) with val(k1, . . . , kn) = k1 · . . . kn.
A range of examples of strong bimonoids not being semirings can be found in [18]. One
class of examples for strong bimonoids are non-distributive bounded lattices.

In [18,23], weighted automata over strong bimonoids were considered. Their be-
havior is defined similarly to the ones over semirings. Along a run the weights are
multiplied and the weights of all successful runs on a word w ∈ Σ+ are summed up.
Similarly to the case of semirings, we can construct for a weighted automatonA� over
the strong bimonoid � a wfa A over � � such that ‖A‖ = ‖A� ‖.
Example 2.5. Consider (� ∪ {−∞}, max, last,−∞) with last(d1, . . . , dn) = dn if
di �= −∞ for i ∈ {1, . . . , n} and last(d1, . . . , dn) = −∞ otherwise. This structure
yields a valuation monoid where the weight of the last transition determines the weight
of the whole run. In fact, this valuation monoid can be derived from a strong bimonoid
(where a neutral element for last has to be added).

However, there are important examples for valuation monoids which do not fit neither
into the semiring nor the bimonoid setting.

Example 2.6. (� ∪ {−∞}, max, avg,−∞) with avg(d1, . . . , dn) = 1
n

∑n
i=1 di is a

valuation monoid. A weighted automaton over this valuation monoid takes the arith-
metic mean of the weights of the transitions and resolves non-determinism by max. To
take the average of the weights along a run was suggested in [7].
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Example 2.7. (�∪{∞}, min, maj,∞) is a valuation monoid. Here, the valuation func-
tion is a majority function. Let most(d1, . . . , dn) be the set of values occuring most
often in (d1, . . . , dn) (note that there may be several ones). Then maj(d1, . . . , dn) =
max

(
most(d1, . . . , dn)

)
whenever all di �=∞, otherwise it is∞.

Another example is discounting. Weighted automata with discounting were already ex-
plored extensively in the literature [7,14,16,17,32].

Example 2.8. (�∪ {−∞}, max, discλ,−∞) with discλ(d0, . . . , dn) =
∑n

i=0 λidi for
some λ > 0 is a valuation monoid. A weighted automaton over this valuation monoid
evaluates a run by the discounted sum of the weights appearing along the run, i.e.,
the later the weight occurs the greater is its discounting. This kind of discounting is
normally referred to as exponential discounting.

More general notions of discounting using semiring endomorphisms were considered
in the literature, cf. [14,16,17]. In [16,17], the discount factors depend also from the
actions executed. This kind of discounting is not covered by valuation monoids because
a valuation function depends only on the weights of the transitions taken by the machine
but not on the actions. However, if we choose the endomorphisms independent of the
actions we can model this situation by valuation monoids.

Example 2.9. Let � = (K, +, ·, �, �) be a semiring and ϕ : � → � a semiring en-
domorphism, i.e., ϕ(�) = �, ϕ(�) = �, ϕ(k + k′) = ϕ(k) + ϕ(k′), and ϕ(k · k′) =
ϕ(k) ·ϕ(k′) for all k, k′ ∈ K . Let ϕ0 be the identity. Then � ϕ = (K, +, discϕ, �) with

discϕ(k0, . . . , kn) =
n∏

i=0

ϕi(ki)

is a valuation monoid. The valuation monoid of Example 2.8 is an instance of such a
valuation monoid because ϕ : d 	→ λd with λ > 0 is an endomorphism of the max-
plus-semiring (� ∪ {−∞}, max, +,−∞, 0).

Another concept of discounting considered in psychologic and economic literature is
hyperbolic discounting.

Example 2.10. Let λ > 0. Then (� ∪ {−∞}, max, hypλ,−∞) with

hypλ(d0, . . . , dn) =
n∑

i=0

1
1 + λ · i · di

is a valuation monoid. Now the discounting along a run of a wfa is of hyperbolic nature.

2.2 Product and Iteration

Kleene’s theorem about the equivalence of recognizable and rational languages
[31] states that the recognizable languages can be build from atomic components, the
letters, by non-deterministic choice, concatenation, and iteration. Over valuation
monoids, non-deterministic choice is modeled by the sum of the valuation monoid as it
was done for semirings. But what about the two other operations?
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For semirings the analog of concatenation is the Cauchy product of two series. One
considers all possible factorizations of a word and multiplies the values of the factors.
So far, we do not have any multiplication for valuation monoids but only a global valua-
tion function which suffices to define the behavior of weighted automata. One could try
to define a product by means of the valuation function, i.e., to put d·d′ = val(d, d′). But
if we consider Example 2.6, then the product of avg(d1, . . . , dm) and avg(d′1, . . . , d

′
n)

would be

d1 + · · ·+ dm
m

+
d′1 + · · ·+ d′n

n
2

whereas the weight of the concatenation of two runs with weights d1, . . . , dm and

d′1, . . . , d
′
n would be d1+···+dm+d′1+···+d′n

m+n which is different from the value above.
Therefore, we will introduce products which have two positive integers as parameters.
These parameters represent the length of two runs to be concatenated.

Definition 2.11. The structure � =
(
D, +, val, (·m,n | m, n ∈ �), �

)
is a Cauchy

valuation monoid if (D, +, val, �) is a valuation monoid and ·m,n : D ×D → D with
m, n ∈ � is a family of products such that for all d, di, d

′
j ∈ D and all finite subsets

A, B ⊆fin D:

� ·m,n d = d ·m,n � = �, (1)

val(d1, . . . , dm, d′1, . . . , d
′
n) =val(d1, . . . , dm) ·m,n val(d′1, . . . , d

′
n), (2)

(∑

d∈A
d
)
·m,n

(∑

d′∈B
d′
)

=
∑

d∈A,d′∈B
(d ·m,n d′) . (3)

For the sake of notational simplicity, we will often omit the explicit notation of the
parameterized products for a Cauchy valuation monoid.

Property (1) ensures that � is absorbing for all products. The correct concatenation
of two sequences of weights is guaranteed by property (2). Finally, property (3) states
distributivity of the parameterized products over sum.

Remark 2.12. Whenever the valuation monoid � � = (D, +, val, �) is derived from
a semiring � = (K, +, ·, �, �) where val(d1, . . . , dm) = d1 · . . . · dm, then we can
choose the products just as semiring multiplication, i.e., ·m,n := · for all m, n ∈ �.
Now (2) follows immediately and (3) is just the distributivity of the semiring. Hence,
all valuation monoids derived from semirings are Cauchy.

Example 2.13. Let (� ∪ {−∞}, max, avg,−∞) be the valuation monoid from Exam-
ple 2.6. With

d ·m,n d′ =
m · d + n · d′

m + n

for all m, n ∈ � and d, d′ ∈ � ∪ {−∞}, this valuation monoid yields a Cauchy one.
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Example 2.14. We consider the valuation monoid (� ∪ {−∞}, max, last,−∞) from
Example 2.5. Recall that we defined last(d, d′) = d′ if d �= −∞ and last(−∞, d′) =
−∞. Now we put d ·m,n d′ = last(d, d′) for all m, n ∈ � and d, d′ ∈ �∪{−∞}. With
these products we obtain a Cauchy valuation monoid.

Example 2.15. Let � ϕ = (K, +, discϕ, �) be the valuation monoid of Example 2.9
which uses an endomorphism ϕ : � → � for a semiring � = (K, +, ·, �, �). We put
k ·m,n k′ = k · ϕm(k′) for all m, n ∈ � and k, k′ ∈ K . Together with these products
� ϕ is a Cauchy valuation monoid.

The discounting valuation monoid (� ∪ {−∞}, max, discλ,−∞) with λ > 0 from
Example 2.8 with d ·m,n d′ = d + λmd′ for all m, n ∈ � and d, d′ ∈ � ∪ {−∞} is an
instance of such a Cauchy valuation monoid.

For the valuation monoids from Examples 2.7 (majority function) and 2.10 (hyperbolic
discounting) we cannot define products such that we could turn these valuation monoids
into Cauchy ones. Here, property (2) cannot be guaranteed since we would need explicit
knowledge of the sequences of weights themselves and not only about their lengths and
their valuations as it is demanded for the products of Cauchy valuation monoids.

By using parameterized products of a Cauchy valuation monoid, we can define
Cauchy product and iteration of series.

Definition 2.16. Let � = (D, +, val, �) be a Cauchy valuation monoid and let S, S′ :
Σ+ → D be two series. Then we define the sum S + S′ and the Cauchy product S · S′

of S and S′ by (S + S′)(w) = S(w) + S′(w) and

(S · S′)(w) =
∑

w=uv
u,v∈Σ+

(
S(u) ·|u|,|v| S′(v)

)

for all w ∈ Σ+ where we sum up over all factorizations of w into u, v ∈ Σ+. We put
S1 = S and Sn+1 = Sn · S for all n ≥ 1.

Now the iteration S+ is defined for every w ∈ Σ+ by the finite sum

S+(w) =
|w|∑

n=1

Sn(w) .

Sum, Cauchy product, and iteration are called rational operations on series. They de-
termine the semantics of the regular weighted expressions E which are defined by the
grammar, cf. [13,39],

E ::= d.a | (E + E) | (E ·E) | (E)+

where d ∈ D and a ∈ Σ. Let da : Σ+ → D denote the series da(w) = d if w = a and
da(w) = � otherwise. Then we put

[[ d.a ]] = da, [[ (E + E′) ]] = [[ E ]] + [[ E′ ]],

[[ (E ·E′) ]] = [[ E ]] · [[ E′ ]], [[ (E)+ ]] = [[ E ]]+ .
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For n ∈ � and a regular weighted expression E we denote by En the weighted expres-
sion ((. . . ((E · E) · E) . . .) ·E)

︸ ︷︷ ︸
ntimes

. We will omit parentheses in regular expressions if the

bracketing is obvious.
For semirings the definition of Cauchy product and iteration coincides with the clas-

sical definitions, cf. Remark 2.12. In this case, the Cauchy product is associative. But in
the setting of valuation monoids, this is in general not the case. But using property (3),
we can show easily the distributivity of the Cauchy product over sum:

Proposition 2.17 ([21]). Let � be a Cauchy valuation monoid and S, S1, S2 : Σ+ →
D. Then S · (S1 + S2) = S · S1 + S · S2 and (S1 + S2) · S = S1 · S + S2 · S.

For Cauchy valuation monoids normalized automata suffice to recognize all recognizable
series. Borrowing the notion of normalized finite automata, a wfa A = (Q, I, T, F, μ)
is normalized if I = {q0} and F = {qf} are singletons, and

(p, a, q) ∈ T =⇒ (q �= q0 ∧ p �= qf )

for all (p, a, q) ∈ Q×Σ ×Q. Then we have

Lemma 2.18. Let � be a Cauchy valuation monoid. If S : Σ+ → D is recognizable,
then there is a normalized wfa A with ‖A‖ = S.

Proof. Let B = (Q, I, T, F, μ) be a wfa recognizing S. We define a normalized wfa
A = (Q ∪̇ {q0, qf}, {q0}, T ′, {qf}, μ′) by

T ′ = T ∪ {(q0, a, p) | p ∈ Q ∧ ∃q ∈ I : (q, a, p) ∈ T }
∪ {(p, a, qf) | p ∈ Q ∧ ∃q ∈ F : (p, a, q) ∈ T }
∪ {(q0, a, qf ) | ∃p ∈ I, q ∈ F : (p, a, q) ∈ T } and

μ′(p′, a, q′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ(p′, a, q′) if p′, q′ ∈ Q,
∑

p∈I μ(p, a, q′) if p′ = q0, q
′ ∈ Q,

∑
q∈F μ(p′, a, q) if p′ ∈ Q, q′ = qf ,

∑
p∈I,q∈F μ(p, a, q) if p′ = q0, q

′ = qf .

Obviously,A is normalized. For w = a ∈ Σ we have immediately ‖A‖(w) = ‖B‖(w)
by the definition of A. Now let w ∈ Σ+ with |w| > 1. Then

‖A‖(w) =
∑

R′∈succ(A)
�(R′)=w

val(μ′(R′))

with R′ = (q0, a1, p1)(p1, a2, p2) . . . (pn−1, an, qf ) and w = a1 . . . an

=
∑

R′∈succ(A)
�(R′)=w

val
(∑

p∈I
μ(p, a1, p1), μ(p1, a2, p2), . . . ,

∑

q∈F
μ(pn−1, an, q)

)
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by applying properties (2) and (3) several times

=
∑

R′∈succ(A)
�(R′)=w

∑

p∈I
μ(p, a1, p1) ·1,n−1 val

(
μ(p1, a2, p2), . . . ,

∑

q∈F
μ(pn−1, an, q)

)

=
∑

R′∈succ(A)
�(R′)=w

∑

p∈I
q∈F

μ(p, a1, p1)·1,n−1

(
val
(
μ(pi, ai+1, pi+1)1≤i≤n−2

) ·n−2,1 μ(pn−1, an, q)
)

=
∑

R′∈succ(A)
�(R′)=w

∑

p∈I
q∈F

val
(
μ(p, a1, p1), μ(p1, a2, p2), . . . , μ(pn−1, an, q)

)

=
∑

R∈succ(B)
�(R)=w

val(μ(R)) = ‖B‖(w)

Hence, ‖A‖ = ‖B‖. ��

2.3 A First Kleene-Like Result

To show that the class of recognizable series coincides with the one definable by regular
weighted expressions, we use a method which was demonstrated in [34] for semiring
weighted automata and conclude the equivalence in the weighted setting from the clas-
sical boolean result by Kleene [31].

A language L ⊆ Γ+ is recognizable if there is a finite automatonA = (Q, I, T, F )
over Γ recognizing L. Recall that a finite automaton A is defined like a wfa in Defi-
nition 2.2 but omitting the weight function. A word w is recognized by A if there is a
successful run of A on w. The language L(A) recognized by A is the set of all words
w ∈ Γ+ recognized by A. The finite automaton A = (Q, I, T, F ) is deterministic if
(p, a, q), (p, a, q′) ∈ T imply q = q′ for all (p, a, q), (p, a, q′) ∈ Q× Γ ×Q.

Recall that a regular (language) expression H over the alphabet Γ is defined by the
grammar H ::= Ø | a | H + H | H ·H | H+ with a ∈ Γ . The semantics L(H) ⊆ Γ+

of H is defined by

L(Ø) =Ø, L(a) = {a}, L(H + H ′) = L(H) ∪ L(H ′),

L(H ·H ′) =L(H) · L(H ′) = {uv ∈ Γ+ | u ∈ L(H), v ∈ L(H ′)},
L(H+) =L(H)+ = {u1 . . . un ∈ Γ+ | n ∈ �, ui ∈ L(H)} .

If there is a regular expression H with L(H) = L, then the language L ⊆ Γ+ is called
rational. However, one can restrict the use of the operators +, ·, and + in an unambigu-
ous way. Unambiguous regular (language) expressions are defined semantically:

– Ø and a for every a ∈ Γ are unambiguous regular expressions,
– if H1 and H2 are unambiguous regular expressions with L(H1)∩L(H2) = Ø, then

H1 + H2 is an unambiguous regular expression,
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– if H1 and H2 are unambiguous regular expressions such that, for every ui, vi ∈
L(Hi) (i ∈ {1, 2}) with u1u2 = v1v2, we have u1 = v1 (and, thus, u2 = v2), then
H1 ·H2 is an unambiguous regular expression,

– if H is an unambiguous regular expression such that for all ui, vj ∈ L(H) for
i ∈ {1, . . . , m} and j ∈ {1, . . . , n} with u1u2 . . . um = v1v2 . . . vn, we have
m = n and u1 = v1 (and, thus, ui = vi for every i ∈ {1, . . . , m}), then H+ is an
unambiguous regular expression.

The following result by Kleene is one of the fundamental theorems about recognizable
languages:

Theorem 2.19 (Kleene [31]). Let L ⊆ Γ+ be a language of finite words over Γ . Then
the following are equivalent

1. L is recognizable,
2. L is recognized by a deterministic finite automatonA,
3. L is rational,
4. L = L(H) for some unambiguous regular language expression H .

We will lift the equivalence between recognizability and rationality to a quantitative
setting over valuation monoids. First, we show that recognizability implies rationality.

Proposition 2.20. Let � be a Cauchy valuation monoid and S : Σ+ → � . If S is
recognizable, then S = [[ E ]] for some regular weighted expression E.

Proof. Let A = (Q, I, T, F, μ) be a wfa recognizing S. We put Γ = T and, thus,
succ(A) ⊆ Γ+. Let T ′ =

{(
p, (p, a, q), q

) | (p, a, q) ∈ T
}

. Then A′ = (Q, I, T ′, F )
is a finite automaton over the alphabet Γ recognizing succ(A). By Kleene’s theorem,
there is an unambiguous regular (language) expression H with L(H) = succ(A). By
induction on the sub-expressions of H , we define how to translate the regular expression
H over Γ into a regular weighted expression � (H) over � and Σ:

� (Ø) = �.a, �
(
(p, a, q)

)
= μ(p, a, q).a, � (H + H ′) = � (H) + � (H ′),

� (H ·H ′) =� (H) · � (H ′), � (H+) = � (H)+

where for � (Ø) the letter a ∈ Σ is chosen arbitrarily. Moreover, we define the ho-
momorphism π : Γ+ → Σ+ by π(p, a, q) = a. Recall that μ : Γ+ → D+ is the
homomorphic extension of μ : T → D. Then we have for every sub-expression G of
H that

[[� (G) ]](w) =
∑

W∈L(G)∩π−1(w)

val
(
μ(W )

)
. (4)

Indeed, the claim is true for G = Ø and G = (p, a, q). Let G = G1 + G2. Then

[[� (G1 + G2) ]](w) = [[� (G1) + � (G2) ]](w) = [[� (G1) ]](w) + [[� (G2) ]](w)

=
∑

W∈L(G1)∩π−1(w)

val
(
μ(W )

)
+

∑

W∈L(G2)∩π−1(w)

val
(
μ(W )

)
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=
∑

W∈(L(G1)∩π−1(w))∪(L(G2)∩π−1(w))

val
(
μ(W )

)
(since G is unambiguous)

=
∑

W∈L(G)∩π−1(w)

val
(
μ(W )

)

for all w ∈ Σ+. For G = G1 ·G2 we get

[[� (G1 ·G2) ]](w) = [[� (G1) · � (G2) ]](w)

=
∑

w=uv

[[� (G1) ]](u) ·|u|,|v| [[� (G2) ]](v)

=
∑

w=uv

⎛

⎝
∑

U∈L(G1)∩π−1(u)

val(μ(U))

⎞

⎠ ·|u|,|v|

⎛

⎝
∑

V ∈L(G2)∩π−1(v)

val(μ(V ))

⎞

⎠

=
∑

w=uv

∑

U∈L(G1)∩π−1(u)
V ∈L(G2)∩π−1(v)

(val(μ(U)) ·|U|,|V | val(μ(V ))) (due to Eq. (3))

=
∑

w=uv

∑

U∈L(G1)∩π−1(u)
V ∈L(G2)∩π−1(v)

val(μ(UV )) (due to Eq. (2))

=
∑

W∈L(G1·G2)∩π−1(w)

val(μ(W )) (since G is unambiguous)

for all w ∈ Σ+. Finally, we consider a sub-expression of the form G+. Since G+ is
unambiguous, L(Gi) ∩ L(Gj) = Ø for all i �= j and Equation (4) holds true for every
Gn with n ∈ � (due to the case of the Cauchy product shown above). Now we get

[[� (G+) ]](w) = [[� (G)+ ]](w) =
|w|∑

n=1

[[� (G) ]]n(w) =
|w|∑

n=1

[[� (Gn) ]](w)

=
|w|∑

n=1

∑

W∈L(Gn)∩π−1(w)

val(μ(W ))

=
∑

W∈(L(G1)∪···∪L(G|w|))∩π−1(w)

val(μ(W )) (since L(Gi) ∩ L(Gj) = Ø for i �= j)

=
∑

W∈L(G+)∩π−1(w)

val(μ(W ))

for every w ∈ Σ+. This shows Equation (4). Using (4), we conclude

‖A‖(w) =
∑

R∈succ(A)
�(R)=w

val(μ(R)) =
∑

R∈L(H)∩π−1(w)

val(μ(R)) = [[� (H) ]](w)

for every w ∈ Σ+ and, thus, ‖A‖ = [[� (H) ]] for the regular weighted expression
� (H). ��
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To show the converse, we have to translate arbitrary regular weigthed expressions into
regular language expressions having in mind that addition in valuation monoids is in
general not idempotent (but it is in the boolean semiring). This calls for a sophisticated
treatment of sum, product, and iteration as it was already observed in [34]. To this end,
let Σ and Γ be two alphabets and let π : Γ+ → Σ+ and μ : Γ+ → D+ be homo-
morphisms. For a regular language expression H over Γ , let alph(H) be the letters
of Γ occuring in H . We define inductively a relation ∼π,μ between regular weighted
expressions over � and Σ and regular language expressions over Γ as follows:

– d.a ∼π,μ H if and only if H = A for a letter A ∈ Γ with π(A) = a and μ(A) = d,
– E1 + E2 ∼π,μ H if and only if there are regular language expressions H1 and H2

over Γ with alph(H1) ∩ alph(H2) = Ø, H = H1 + H2, and Ei ∼π,μ Hi for
i ∈ {1, 2},

– E1 · E2 ∼π,μ H if and only if there are regular language expressions H1 and H2

over Γ with alph(H1) ∩ alph(H2) = Ø, H = H1 · H2, and Ei ∼π,μ Hi for
i ∈ {1, 2},

– E+ ∼π,μ H if and only if there are regular language expressions H1 and H0 over Γ
with alph(H1)∩alph(H0) = Ø such that H = H1+(H1 ·H0)++(H1 ·H0)+ ·H1

and E ∼π,μ Hi for i ∈ {1, 0}.
Note that if E ∼π,μ H for some regular weighted expression E, then the regular lan-
guage expression H is unambiguous.

Proposition 2.21. For E ∼π,μ H we have

[[ E ]](w) =
∑

W∈L(H)∩π−1(w)

val(μ(W ))

for all w ∈ Σ+.

Proof. The proof is by induction on the structure of E. It is obvious for E = d.a.
For E1 + E2 and E1 · E2 the claim can be shown as Equation (4) in the proof of
Proposition 2.20. Thus, we have still to consider E+. Then there are regular language
expressions H1 and H0 with alph(H1) ∩ alph(H0) = Ø, E ∼π,μ Hi for i ∈ {1, 0},
and H = H1 + (H1 ·H0)+ + (H1 ·H0)+ ·H1. By induction on n, we can show that

[[ E ]]n(w) =
∑

w=w1...wn

∑

Wi∈L(Hi mod 2)∩π−1(wi)
i∈{1,...,n}

val(μ(W1 . . . Wn))

for every w ∈ Σ+. Indeed, for n = 1 the claim is true by induction hypothesis for E.
Let the equation be true for [[ E ]]n. Then, for every w ∈ Σ+,

[[ E ]]n+1(w)
= ([[ E ]]n · [[ E ]])(w)

=
∑

w=uwn+1

[[ E ]]n(u) ·|u|,|wn+1| [[ E ]](wn+1)
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=
∑

w=uwn+1

( ∑

u=w1...wn

∑

Wi∈L(Hi mod 2)∩π−1(wi)
i∈{1,...,n}

val(μ(W1 . . .Wn))
)

·|u|,|wn+1|
( ∑

Wn+1∈L(Hn+1 mod 2)∩π−1(wn+1)

val(μ(Wn+1))
)

and by applying first Eq. (3) and then Eq. (2)

=
∑

w=w1...wnwn+1

∑

Wi∈L(Hi mod 2)∩π−1(wi)
i∈{1,...,n+1}

val(μ(W1 . . .WnWn+1))

which shows the claim for [[ E ]]n+1. Since alph(H1) ∩ alph(H0) = Ø, every W ∈
L(H) has a unique factorization W = W1W2 . . . Wn into alternating factors from
L(H1) and L(H0). Now we get for every w ∈ Σ+

[[ E+ ]](w) =
|w|∑

n=1

[[ E ]]n(w)

=
|w|∑

n=1

∑

w=w1...wn

∑

Wi∈L(Hi mod 2)∩π−1(wi)
i∈{1,...,n}

val(μ(W1 . . . Wn))

and due to the unique factorization of every W ∈ L(H)

=
∑

W∈L(H)∩π−1(w)

val(μ(W ))

which shows the statement for E+. ��
To prove the next lemma, which was stated for a semiring setting in [34], we apply a
different automaton construction than in [34]. This technique was already used in [23]
to show closure of recognizable series under projections.

Lemma 2.22. Let � = (D, +, val, �) be a Cauchy valuation monoid, L ⊆ Γ+ a
recognizable language, and π : Γ+ → Σ+ and μ : Γ+ → D+ homomorphisms. Then
the series S : Σ+ → D with

S(w) =
∑

W∈L∩π−1(w)

val(μ(W ))

for all w ∈ Σ+ is recognizable.

Proof. Let A = (Q, I, T, F ) be a deterministic finite automaton over Γ with L(A) =
L. Let A′ = (Q× Γ, I ×A0, T

′, F ′, μ′) be the wfa over Σ and � where A0 ∈ Γ is an
arbitrary but fixed letter and

(p, A) ∈ F ′ ⇐⇒ p ∈ F,
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(
(p, B), a, (q, A)

) ∈ T ′ ⇐⇒ π(A) = a ∧ (p, A, q) ∈ T , and

μ′((p, B), a, (q, A)
)

= μ(A)

for every (p, B), (q, A) ∈ Q× Γ and a ∈ Σ.
Let R′ =

(
(pi, Ai), ai+1, (pi+1, Ai+1)

)
0≤i≤n−1

∈ succ(A′). By definition of
T ′, π(A1 . . . An) = a1 . . . an. Moreover, μ′(R′) = μ(A1 . . . An). If we put R =(
(pi, Ai+1, pi+1)

)
0≤i≤n−1

, then R is a successful run of A on A1 . . . An. Vice versa,

for every successful run R =
(
(pi, Ai+1, pi+1)

)
0≤i≤n−1

in A on A1 . . . An, the run

R′ =
(
(pi, Ai), ai+1, (pi+1, Ai+1)

)
0≤i≤n−1

is a successful run of A′ on a1 . . . an.
Thus, there is a bijection between the set of successful runs of A′ on w = a1 . . . an ∈
Σ+ and the set of successful runs of A on some W = A1 . . . An ∈ Γ+ with
π(W ) = w. Hence, for every w = a1 . . . an ∈ Σ+

‖A′‖(w) =
∑

R′∈succ(A′),�(R′)=w

val(μ′(R))

=
∑

R∈succ(A),�(R)=W,π(W )=w

val(μ(W ))

=
∑

W∈L∩π−1(w)

val(μ(W )) (since A is deterministic)

=S(w) .

Thus, the series S is recognized by the wfa A′. ��
As a consequence, we get

Theorem 2.23 ([21]). Let � = (D, +, val, �) be a Cauchy valuation monoid and S :
Σ+ → D. Then S is recognizable if and only if S = [[ E ]] for some regular weighted
expression E.

Proof. By Proposition 2.20, recognizability of S implies rationality. If S = [[ E ]] for a
regular weighted expression E, then we can construct a regular language expression H
over an alphabet Γ and two homomorphisms π : Γ+ → Σ+ and μ : Γ+ → D+ such
that E ∼π,μ H . Due to Proposition 2.21,

S(w) = [[ E ]](w) =
∑

W∈L(H)∩π−1(w)

val(μ(W ))

for every w ∈ Σ+. By Kleene’s Theorem, L(H) is a recognizable language. By
Lemma 2.22, S is recognizable. ��
By Remark 2.12, the above result includes the one for semiring weighted automata by
Schützenberger [39].

Corollary 2.24 ([39]). Let � be a semiring and S : Σ+ → � . Then S is recognizable
if and only if S is rational.
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Also series with discounting (using the same endomorphism independent of the ac-
tion executed) [14] are instances of our setting, cf. Example 2.15. Thus, we obtain as a
consequence of Theorem 2.23 also a characterization of weighted automata by regular
weighted expressions in the case of discounting [14].

3 Valuations of Infinite Words

For an alphabet Σ we denote by Σω the set of infinite words. For w ∈ Σω we put
dom(w) = �. A monoid (D, +, �) is complete [24] if it has infinitary sum operations∑

I : DI → D for any index set I such that

∑

i∈Ø

di = �,
∑

i∈{k}
di = dk,

∑

i∈{j,k}
di = dj + dk for j �= k,

∑

j∈J

(∑

i∈Ij

di

)
=
∑

i∈I
di if

⋃

j∈J
Ij = I and Ij ∩ Ik = Ø for j �= k.

Note that every complete monoid is commutative.
For a set D let (�×D)ω = {(ni, di)i∈� | ∀i ∈ � : ni ∈ �, di ∈ D}.

Definition 3.1. An ω-indexed valuation monoid� = (D, +, val, valω, �) is a complete
valuation monoid (D, +, val, �) equipped with an ω-indexed valuation function valω :
(�×D)ω → D such that valω(nk, dk)k∈� = � whenever dk = � for some k ∈ �.

We give a few examples of ω-indexed valuation monoids. Omega-automata over these
structures were already studied in [7]. Let � = � ∪ {−∞,∞} be the extended reals.

Example 3.2. We extend the valuation monoid of Example 2.6 to the ω-indexed valua-
tion monoid (�, sup, avg, lim sup avg,−∞) where we put

lim sup avg(ni, di)i∈� = lim sup
k∈�

(
n1d1 + . . . + nkdk

n1 + . . . + nk

)

with the exception that lim sup avg(ni, di)i∈� = −∞ if there is either a di = −∞
or if there is a j ∈ � such that di �= ∞ for all i ≥ j and lim supk≥j

(
njdj+...+nkdk

nj+...+nk

)

= −∞. With a similar definition of lim inf avg also (�, inf, avg, lim inf avg,∞) yields
an ω-indexed valuation monoid.

Example 3.3. For d1, . . . , dm ∈ � we put sup−∞(d1, . . . , dm) = sup(d1, . . . , dm) if
di �= −∞ for i ∈ {1, . . . , m} and sup−∞(d1, . . . , dm) = −∞ otherwise. Moreover,
we define

lim sup(ni, di)i∈� =

{
lim supi(di)i∈� if di �= −∞ for all i ∈ �,

−∞ otherwise.

Then (�, sup, sup−∞, lim sup,−∞) is an ω-indexed valuation monoid. Similarly, we
can define the ω-indexed valuation monoid (�, inf, inf∞, lim inf,∞).
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Example 3.4. Extending Example 2.5, (�, sup, last, lim sup,−∞) yields an ω-indexed
valuation monoid.

Example 3.5 (discounting [7,14]). Let 0 < λ < 1 and �+ = {r ∈ � | r ≥ 0} ∪
{−∞,∞}. For (ni, di)i∈� ∈ (�× �+)ω we put

lim discλ(ni, di)i∈� = lim
k→∞

(
λ0d1 + λn1d2 + . . . + λn1+...+nk−1dk

)
.

Then (�+, sup, discλ, lim discλ,−∞) is an ω-indexed valuation monoid.

Weighted ω-automata with a Büchi acceptance condition are defined in the same way
as wfa.

Definition 3.6. A weighted Büchi automaton (for short: wba) A=(Q, I, T, F, μ) over
the alphabet Σ and an ω-indexed valuation monoid � = (D, +, val, valω, �) consists
of a finite state set Q, a set I ⊆ Q of initial states, a set F ⊆ Q of accepting states, a
set T ⊆ Q×Σ ×Q of transitions, and a weight function μ : T → D.

However, the definition of the behavior of a weighted Büchi automaton over ω-indexed
valuation monoids is more complex than for weighted finite automata. In the following,
we will define three behaviors of wba depending on different valuations of the runs.

3.1 How to Run a Weighted Automaton on Infinite Words

Let A = (Q, I, T, F, μ) be a wba over the alphabet Σ and the ω-indexed valuation
monoid � = (D, +, val, valω, �). A run R = (ti)i∈� is an infinite sequence of match-
ing transitions ti = (qi−1, ai, qi) with label σ = �(R) = a1a2 · · · ∈ Σω. We say R is a
run of A on σ.

Let F (R) = {j ∈ � | qj ∈ F}. Note that F (R) can be finite or infinite. The run R
is successful if q0 ∈ I and F (R) is infinite, i.e., R starts in an initial state and satisfies
a Büchi condition with regard to the acceptance set F . The set of successful runs of A
is denoted by succ(A). So far, the notions are the usual ones for Büchi automata.

But how to define the weight of a run R? A first possibility is quite simple. We just
put wgtu(R) = valω(1, μ(ti))i∈�, i.e., we apply the ω-indexed valuation function to
the sequence of weights appearing along R (the ‘u’ in wgtu(R) stands for uncondi-
tional). Basically, this was done both in [7], where, however, no acceptance condition
was defined at all, and in [20] where a characterization of weighted ω-automata by
means of weighted MSO-logics was given. However, this approach is not successful
for general ω-indexed valuation monoids when we aim for a characterization by regular
expressions. To do so, the weight of an infinite run has to be computed in a way that
uses weights of finite sub-runs. These sub-runs will be determined by the acceptance
states. Therefor, we consider two more valuations of runs.

So, a second possible valuation of a run, introduced in [21], is the following: Sup-
pose F (R) is infinite. Then we enumerate F (R) by j1 < j2 < j3 < . . . and put
j0 = 0. Let Rk = (ti)jk−1<i≤jk be the finite sub-run of R starting in qjk−1 and ter-
minating in the k-th acceptance state qjk . We call (Rk)k∈� the F -partition of R. Let
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μ(Rk) = (μ(ti))jk−1<i≤jk be the finite sequence of weights from Rk. Now the weight
of R is defined as

wgt(R) = valω
(|Rk|, val(μ(Rk))

)
k∈� (5)

if F (R) is infinite, and wgt(R) = � otherwise. Intuitively, the automaton checks the
weight at every acceptance state of the run, i.e., it computes the weight of the sub-
runs Rk between two consecutive acceptance states by means of val and combines
these values by the ω-indexed valuation function valω. For general ω-indexed valuation
monoids, e.g. for the one given in Example 3.2, it is of importance for the value of
wgt(R) at which positions in R the acceptance states are located.

A third way to compute the weight of a run is as follows: This time, different ac-
ceptance states which appear infinitely often along the run are understood as a source
of non-determinism. For every q ∈ F let Fq(R) = {j ∈ � | qj = q}. Again, if
Fq(R) is infinite, we enumerate Fq(R) by j1 < j2 < j3 < . . . and put j0 = 0.
Let Rq

k = (ti)jk−1<i≤jk be the finite sub-run of R starting in qjk−1 and terminat-
ing in the k-th state qjk which equals q. (Rq

k)k∈� is called a q-partition of R. Let
μ(Rq

k) = (μ(ti))jk−1<i≤jk be the finite sequence of weights from Rq
k. We define the

cumulated weight of R as

wgtc(R) =
∑

q∈F
|Fq(R)|=ω

valω
(|Rq

k|, val(μ(Rq
k))
)
k∈� (6)

if F (R) is infinite, and wgtc(R) = � otherwise. Here, we compute for every acceptance
state q ∈ F appearing infinitely often in R the weight as before but now we consider q
as the only acceptance state. Finally, we sum up over all such q ∈ F , i.e., we resolve dif-
ferent accepting states as we resolve non-determinism. In general, wgt(R) �= wgtc(R)
even if + is idempotent because the way R is splitted may influence the weight.

Now we can define three behaviors of the wba A which all will be functions from
Σω to D. ‖A‖u, ‖A‖, ‖A‖c : Σω → D are given by

‖A‖u(σ) =
∑

R∈succ(A)
�(R)=σ

wgtu(R), ‖A‖(σ) =
∑

R∈succ(A)
�(R)=σ

wgt(R), and

‖A‖c(σ) =
∑

R∈succ(A)
�(R)=σ

wgtc(R)

for σ ∈ Σω; if σ has no successful run inA, then ‖A‖u(σ) = ‖A‖(σ) = ‖A‖c(σ) = �.
We will call ‖A‖u the unconditional behavior, ‖A‖ the (Büchi) behavior, and ‖A‖c the
cumulative behavior of A.

A function S : Σω → D is called an ω-series. S is

– unconditionally ω-recognizable if S = ‖A‖u for some wba A,
– ω-recognizable if there is a wba A with ‖A‖ = S, and
– cumulative ω-recognizable if there is a wba A with ‖A‖c = S.
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Under certain conditions, the different behaviours coincide. First, we define a property
of ω-indexed valuation functions valω stating that all partitions of an ω-sequence of
weights result into the same value under valω. Let (Dfin )ω =

⋃
C⊆finD

Cω be the set
of ω-sequences over D such that only finitely many values of D occur in the sequence.

Definition 3.7. Let � = (D, +, val, valω, �) be an ω-indexed valuation monoid. Then
both � and valω are called uniform if the following holds:

For every (di)i∈� ∈ (Dfin)ω and for all 0 = n0 < n1 < n2 < . . . we have

valω
(
nk − nk−1, val(dnk−1+1 . . . dnk

)
)
k∈� = valω(1, di)i∈� . (7)

In the sequel, we will denote valω(1, di)i∈� also by valω(di)i∈�.
The operation + is idempotent if d + d = d for all d ∈ D. An ω-indexed valuation

monoid � = (D, +, val, valω, �) is idempotent if + is idempotent.

Lemma 3.8. Let � = (D, +, val, valω, �) be a uniform ω-indexed valuation monoid
andA a wba over Σ and � . Then ‖A‖u = ‖A‖.

If � is uniform and idempotent, then ‖A‖u = ‖A‖ = ‖A‖c.
Proof. Let � be uniform. For every run R of A we show that wgt(R) = wgtu(R).
Indeed, for R = (ti)i∈� having the F -partition (Rk)k∈� we get

wgt(R) = valω
(|Rk|, val(μ(Rk))

)
k∈�

= valω
(
1, μ(ti)

)
i∈� (since � is uniform)

= wgtu(R) .

If now � is uniform and idempotent, then with (Rq
k)k∈� being the q-partition of R

wgtc(R) =
∑

q∈F,|Fq(R)|=ω
valω

(|Rq
k|, val(μ(Rq

k))
)
k∈�

=
∑

q∈F,|Fq(R)|=ω
valω

(
1, μ(ti)

)
i∈� (since � is uniform)

= valω
(
1, μ(ti)

)
i∈� (since � is idempotent)

= wgtu(R)

which shows wgtc(R) = wgtu(R) for every run R of A and, thus, the assertion. ��
Example 3.9. The ω-indexed valuation monoids (�, sup, sup−∞, lim sup,−∞) of Ex-
ample 3.3 and (R+, sup, discλ, lim discλ,−∞) with 0 < λ < 1 of Example 3.5 are
uniform and, moreover, idempotent.

However, the ω-indexed valuation monoids (�, sup, avg, lim sup avg,−∞) of Ex-
ample 3.2 and (�, sup, last, lim sup,−∞) of Example 3.4 are not uniform as we have
shown already in [22, Ex. 13]. For the sake of completeness, we repeat the arguments.

First, consider (�, sup, avg, lim sup avg,−∞). We define infinetely many finite se-
quences di and d′i of real numbers. Let di = 1 . . . 1︸ ︷︷ ︸

22i−1

−1 . . .− 1
︸ ︷︷ ︸

22i

for all i ∈ �, d′1 = 11,
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and d′i = −1 . . .− 1
︸ ︷︷ ︸

22i−2

1 . . . 1︸ ︷︷ ︸
22i−1

for all i ≥ 2. Then d1 d2 . . . = d′1 d′2 . . . ∈ �
ω

with

avg(di) = − 1
3 for all i ∈ � and avg(d′i) = 1

3 for all i ≥ 2. Thus,

lim sup avg
(|di|, avg(di)

)
i∈� = −1

3
and lim sup avg

(|d′i|, avg(d′i)
)
i∈� =

1
3

.

Hence, (�, sup, avg, lim sup avg,−∞) is not uniform.
For (�, sup, last, lim sup,−∞) consider the finite sequences di = 10 for all i ∈ �,

d′0 = 1, and d′1 = 01 for all i ≥ 1. Then again d0 d1 . . . = d′0 d′1 . . . ∈ �
ω

, but
lim sup

(|di|, last(di)
)
i∈� = 0 whereas lim sup

(|d′i|, last(d′i)
)
i∈� = 1.

3.2 Towards an Omega-Iteration

To characterize recognizable ω-series by expressions, our next task is to define suitable
operations generating ω-series. Especially, a Cauchy product of two series, the first
series over finite words, the second one over infinite words, and an ω-iteration of series
over finite words have to be specified. As for valuation monoids, such operations require
additional operations and properties of the ω-indexed valuation monoid which we will
define next.

Definition 3.10. � =
(
D, +, val, valω, (·m,n | m ∈ �, n ∈ � ∪ {ω}), �) is a Cauchy

ω-indexed valuation monoid if
(
D, +, val, (·m,n | m, n ∈ �), �

)
is a Cauchy valuation

monoid,
(
D, +, val, valω, �

)
is an ω-indexed valuation monoid, and ·m,ω : D×D → D

for every m ∈ � such that for all d, d′, di ∈ D, all finite subsets A ⊆fin D, and all
subsets B ⊆ D

� ·m,ω d = d ·m,ω � = �, (8)

valω
(
ni, di

)
i≥1

= d1 ·n1,ω valω
(
ni, di

)
i≥2

, (9)
(∑

d∈A
d
)
·m,ω

(∑

d′∈B
d′
)

=
∑

d∈A,d′∈B
(d ·m,ω d′), (10)

and for every C ⊆fin D, nk ∈ �, finite index sets Ik , and all dik ∈ C (ik ∈ Ik)

valω
(
nk,

∑

ik∈Ik

dik

)

k∈�
=

∑

(ik)k∈I1×I2×...
valω

(
nk, dik

)
k∈� . (11)

Moreover, we will call � associative if

valω
(
(n1 + n2, d1 ·n1,n2 d2), (n3, d3), (n4, d4), . . .

)
= valω(ni, di)i∈� (12)

for all (ni, di)i∈� ∈ (�×D)ω.

For an interpretation of these conditions it is useful to understand valω as a parameter-
ized infinitary product on D where the parameters are ω-sequences over�. Property (9)
is a kind of finitary associativity for valω and the products ·n,ω. Distributivity of the pa-
rameterized products ·n,ω over sum is given by property (10) whereas property (11)
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states distributivity of valω over finite sums. Equation (12) states a kind of associativity
within the arguments of the function valω. By (9) and (12), we conclude

d1 ·n1,ω

(
d2 ·n2,ω valω(ni, di)i≥3

)
= (d1 ·n1,n2 d2) ·n1+n2,ω valω(ni, di)i≥3 (13)

for all (ni, di)i∈� ∈ (� × D)ω which states a kind of associativity between different
parameterized products. This justifies the name associativity for property (12).

Now we can define the ω-rational operations sum, Cauchy product, and ω-iteration.

Definition 3.11. Let � be a Cauchy ω-indexed valuation monoid, S : Σ+ → D, and
S′, S′′ : Σω → D. The sum S′ + S′′ and the Cauchy product S · S′ are defined for all
σ ∈ Σω by (S′ + S′′)(σ) = S′(σ) + S′′(σ) and

(S · S′)(σ) =
∑

σ=uσ′
u∈Σ+,σ′∈Σω

S(u) ·|u|,ω S′(σ′) .

The ω-iteration Sω of S : Σ+ → D is defined for every σ ∈ Σω by

Sω(σ) =
∑

σ=u1u2...
uk∈Σ+,k∈�

valω
(|uk|, S(uk)

)
k∈�

where the sum is taken over all infinite factorizations u1u2 . . . of σ.

By property (10), the Cauchy product distributes from the left over sums.

Proposition 3.12 ([21]). Let � be a Cauchy ω-indexed valuation monoid, S : Σ+ →
D, and S1, S2 : Σω → D. Then S · (S1 + S2) = S · S1 + S · S2.

The class of ω-regular weighted expressions over Σ and a Cauchy ω-indexed valua-
tion monoid � is given by the grammar

E ::= E + E | G · E | Gω

where G is any regular weighted expression. The semantics of E is an ω-series [[ E ]] :
Σω → D defined inductively by

[[ E1 + E2 ]] = [[ E1 ]] + [[ E2 ]], [[ G ·E ]] = [[ G ]] · [[ E ]], [[ Gω ]] = [[ G ]]ω .

We call an ω-series S : Σω → D ω-rational if there is an ω-regular weighted expres-
sion E with [[ E ]] = S.

Next, we give examples of Cauchy ω-valuation monoids. Here, we do not verify the
single properties. Those interested in more details are referred to [22].

Example 3.13. (�, sup, avg, lim sup avg,−∞) from Example 3.2 with the products

d ·m,n d′ =
m · d + n · d′

m + n
, d ·m,ω d′ =

{
d′ if d /∈ {−∞,∞} or d′ = −∞,

d otherwise,

is an associative Cauchy ω-indexed valuation monoid.
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Recall that last(d, d′) = d′ if d �= � and last(�, d′) = �.

Example 3.14. Let (�, sup, sup−∞, lim sup,−∞) be the ω-indexed valuation
monoid from Example 3.3. We define d ·m,n d′ = sup−∞(d, d′) and d ·m,ω d′ =
last(d, d′). Together with these products the structure is associative and Cauchy.

Example 3.15. Consider (�, sup, last, lim sup,−∞) from Example 3.4. We define the
parameterized products as follows: d ·m,n d′ = d ·m,ω d′ = last(d, d′). This way, we
obtain again an associative Cauchy ω-indexed valuation monoid.

Example 3.16. Let (�+, sup, discλ, lim discλ,−∞) with 0 < λ < 1 be the discounting
ω-indexed valuation monoid from Example 3.5. If we put d ·m,n d′ = d ·m,ω d′ =
d + λmd′, we get an associative Cauchy ω-indexed valuation monoid.

Remark 3.17. Ésik and Kuich [25,26] define complete semiring-semimodule pairs and
complete star-omega-semirings. Those semirings are equipped with infinite sums

∑

and products
∏

satisfying conditions similar to our properties (7) (uniformity), (9), and
(11), see [26,27] for a formal definition. These semirings fit into the frame of Cauchy
ω-indexed valuation monoids. We associate an ω-indexed valuation monoid as follows:
The finite and infinite sums together with the zero element of the semiring are those
of the ω-indexed valuation monoid. The valuation function val and the parameterized
products are just semiring multiplication. The ω-indexed valuation function is given
by the infinite product: valω(ni, di)i∈� =

∏
i∈� di. The ω-indexed valuation monoid

defined this way is Cauchy, associative, and uniform.
A concrete instance of complete star-omega-semirings is the semiring �∞

0 = (�0 ∪
{∞}, +, ·, 0, 1). Here, an infinite sum equals∞ if and only if either a summand is∞
or there is an infinite number of non-zero summands. The infinite product is defined as

∏

i∈�
ni =

⎧
⎪⎨

⎪⎩

0 if ∃j ∈ � : nj = 0,

n1 · . . . · nk if ∀j > k : nj = 1,

∞ otherwise.

Note that this semiring is not idempotent. By abuse of notation, we will denote the
associated ω-indexed valuation monoid also by �∞

0 .

Let us have a look at an ω-regular weighted expession and its semantics for different
ω-indexed valuation monoids.

Example 3.18. Let Σ = {a, b} and E = (1.a + 0.b)ω. For the ω-indexed valuation
monoid

– (�, sup, sup−∞, lim sup,−∞) from Example 3.14 we have

[[ E ]](σ) =

{
1 if there are infinitely many a in σ,

0 otherwise

for all σ ∈ Σω, i.e., E indicates if there are infinitely or only finitely many a in σ,
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– for (�, sup, avg, lim sup avg,−∞) from Example 3.13, E describes the long-run
ratio of occurences of a in some σ ∈ Σω, e.g., [[ E ]](aaaabababa . . . ) = 1

2 and
[[ E ]](abbabbabb . . . ) = 1

3 ,
– for (�+, sup, disc 1

2
, lim disc 1

2
,−∞) from Example 3.16 we count with a discount

factor 1
2 the occurences of a in σ ∈ Σω, e.g., [[ E ]](ababab . . . ) =

∑∞
i=0

1
4i = 4

3 ,
– for �∞

0 from Remark 3.17, [[ E ]](aω) = 1 and for all σ ∈ Σω containing at least
one b we have [[ E ]](σ) = 0.

As for weighted finite automata, we can normalize a weighted Büchi automaton. A wba
A = (Q, I, T, F, μ) is normalized if I = {q0} and whenever (p, a, q) ∈ T then q �= q0.

Lemma 3.19. Let A be a wba over Σ and a Cauchy ω-indexed valuation monoid � .
Then there is a normalized wba A′ over Σ and � such that ‖A‖u = ‖A′‖u.

If � is moreover associative, there is also a normalized wba A′ with ‖A‖ = ‖A′‖
and ‖A‖c = ‖A′‖c.
Proof. Let A = (Q, I, T, F, μ). Then we put A′ = (Q ∪̇ {q0}, {q0}, T ′, F, μ′) where
T ′ = T ∪ {(q0, a, q) | q ∈ Q ∧ ∃p ∈ I : (p, a, q) ∈ T }, μ′(p, a, q) = μ(p, a, q)
if (p, a, q) ∈ T and μ′(q0, a, q) =

∑
p∈I μ(p, a, q) otherwise. Let R′ = (t′i)i∈� ∈

succ(A′) with t′i = (qi−1, ai, qi). Then we put

I(R′) = {R = (ti)i∈� | t1 = (p, a1, q1) for some p ∈ I and ti = t′i for all i ≥ 2} .

Note that I(R′
1) ∩ I(R′

2) = Ø for R′
1 �= R′

2 and
⋃
R′∈succ(A′) I(R′) = succ(A).

For every Cauchy ω-indexed valuation monoid � we can show, by using proper-
ties (9) and (10), that

wgtu(R′) =
∑

R∈I(R′)

wgtu(R)

for every R′ ∈ succ(A′) which implies immediately ‖A′‖u = ‖A‖u. If� is, moreover,
associative, then we have also

wgt(R′) =
∑

R∈I(R′)

wgt(R) and wgtc(R
′) =

∑

R∈I(R′)

wgtc(R)

for every R′ ∈ succ(A′) which shows the other assertions. We give the details for
wgt(R′). Let (R′

k)k∈� be the F -partition of R. Then

wgt(R′) = valω
(|R′

k|, val(μ′(R′
k)
)
k∈�

with n1 = |R′
1| and by property (9)

= val(μ′(R′
1)) ·n1,ω valω

(|R′
k|, val(μ′(R′

k)
)
k≥2

with R′
1 = (q0, a1, q1)R̂′

1 and, thus, μ′(R′
1) =

(∑
p∈I μ(p, a1, q1)

)
μ(R̂′

1), and by (2)

=

⎡

⎣
(∑

p∈I
μ(p, a1, q)

)
·1,n1−1 val(μ(R̂′

1))

⎤

⎦ ·n1,ω valω
(|R′

k|, val(μ′(R′
k)
)
k≥2
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and now by associativity, and, thus, (13)

=
(∑

p∈I
μ(p, a1, q)

)
·1,ω

[
val(μ(R̂′

1)) ·n1−1,ω valω
(|R′

k|, val(μ′(R′
k)
)
k≥2

]

next applying property (10)

=
∑

p∈I

(
μ(p, a1, q) ·1,ω

[
val(μ(R̂′

1)) ·n1−1,ω valω
(|R′

k|, val(μ′(R′
k)
)
k≥2

])

and then by (13), (2), and (9), and with Rp
1 = (p, a1, q1)R̂′

1 and Rk = R′
k for k ≥ 2

=
∑

p∈I
valω

(
(|Rp

1|, val(μ(Rp
1))), (|R2|, val(μ(R2))), (|R3|, val(μ(R3))), . . .

)

=
∑

R∈I(R′)

wgt(R)

which shows the claim. ��

3.3 Omega-Rational Series Are Recognizable

Now we explore if the ω-rational series are behaviors of weighted Büchi automata or,
to put it another way, whether the different behaviors of wba are closed under the ω-
rational operations. This question was already solved in [21,22] for Büchi behaviors.

Theorem 3.20 ([21,22]). Let � be a Cauchy ω-indexed valuation monoid and S :
Σω → D. If S is ω-rational, then there is a wba A with S = ‖A‖.
The proof of this theorem is by induction on the structure of an ω-regular weighted
expression E defining S and can be found in [22]. It makes use of Theorem 2.23 and of
properties (9), (10), and (11).

Together with Lemma 3.8 we get

Corollary 3.21. Let � be a uniform Cauchy ω-indexed valuation monoid and S :
Σω → D. If S is ω-rational, then there is a wba A with S = ‖A‖u.

Let � be a uniform and idempotent Cauchy ω-indexed valuation monoid. If S :
Σω → D is ω-rational, then there is a wba A with S = ‖A‖c.
But what about the cumulative behavior if � is not uniform and idempotent? We will
show that for associative Cauchy ω-indexed valuation monoids ω-rationality implies
also cumulative recognizability by a wba.

Theorem 3.22. Let � be an associative Cauchy ω-indexed valuation monoid and S :
Σω → D. If S is ω-rational, then there is a wba A with S = ‖A‖c.
Proof. Let E be an ω-regular weighted expression over Σ and � with [[ E ]] = S.
We show that [[ E ]] is cumulative ω-recognizable by induction on the structure of E.
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First, let E = Gω for a regular weighted expression G. Due to Theorem 2.23 and
Lemma 2.18, there is for every regular weighted expression G a normalized wfa A =
(Q, {q0}, T, {qf}, μ) with ‖A‖ = [[ G ]]. Let A′ = (Q′, {q0}, T ′, {q0}, μ′) be a wba
with Q′ = Q \ {qf}, the unique initial state q0, T ′ = {(p, a, q) ∈ T | q �= qf} ∪
{(p, a, q0) | (p, a, qf ) ∈ T }, the acceptance set {q0}, and

μ′(p, a, q) =

{
μ(p, a, q) if (p, a, q) ∈ T ,

μ(p, a, qf ) if q = q0.

Let σ ∈ Σω. For R ∈ succ(A′) let (Rq0
k )k∈� be the q0-partition of R. Then

‖A′‖c(σ) =
∑

R∈succ(A′)
�(R)=σ

wgtc(R) =
∑

R∈succ(A′)
�(R)=σ

∑

q∈{q0}
valω

(|Rq
k|, val(μ′(Rq

k))
)
k∈�

=
∑

R∈succ(A′)
�(R)=σ

valω
(|Rq0

k |, val(μ′(Rq0
k ))

)
k∈�

=
∑

σ=u1u2...
uk∈Σ+

∑

(Rk)k∈�∈(succ(A))�

�(Rk)=uk

valω
(|Rk|, val(μ(Rk))

)
k∈�

and due to property (11)

=
∑

σ=u1u2...
uk∈Σ+

valω
(
|uk|,

∑

Rk∈succ(A)
�(Rk)=uk

val(μ(Rk))
)

k∈�

=
∑

σ=u1u2...
uk∈Σ+

valω
(|uk|, [[ G ]](uk)

)
k∈� = [[ G ]]ω(σ)

and, thus, [[ G ]]ω is cumulative ω-recognizable.
Next, we consider E · E′ where E is a regular weighted expression and E′ an

ω-regular weighted expression such that [[ E′ ]] is cumulative ω-recognizable. Due to
Theorem 2.23, Lemma 2.18, the induction hypothesis, and Lemma 3.19, there are a
normalized wfa A = (Q, {q0}, T, {qf}, μ) with ‖A‖ = [[ E ]] and a normalized wba
B = (P, {p0}, TB, F, μB) with ‖B‖c = [[ E′ ]]. We define a wba C = (Q \ {qf} ∪̇
P, {q0}, T ′, F, μ′) by

T ′ = {(q, a, q′) ∈ T | q′ �= qf} ∪ {(q, a, p0) | (q, a, qf ) ∈ T } ∪ TB,

μ′(q, a, q′) =

⎧
⎪⎨

⎪⎩

μ(q, a, q′) if (q, a, q′) ∈ T ,

μ(q, a, qf ) if q ∈ Q, q′ = p0,

μB(q, a, q′) if (q, a, q′) ∈ TB .

With (Rq
k)k∈� being the q-partition of a run R, we get for every σ ∈ Σω

‖C‖c(σ) =
∑

R∈succ(C)
�(R)=σ

wgtc(R) =
∑

R∈succ(C)
�(R)=σ

∑

q∈F
valω

(|Rq
k|, val(μ′(Rq

k))
)
k∈�
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with n1 = |Rq
1| and by (9)

=
∑

R∈succ(C)
�(R)=σ

∑

q∈F
val(μ′(Rq

1)) ·n1,ω valω
(|Rq

k|, val(μ′(Rq
k))
)
k≥2

with Rq
1 = Rf R̂

q
1 where Rf is the sub-run of Rq

1 from q0 to p0 and R̂q
1 the one from p0

to q, we get by (2)

=
∑

R∈succ(C)
�(R)=σ

∑

q∈F

(
val(μ′(Rf )) ·|Rf |,|R̂q

1| val(μ′(R̂q
1))
) ·n1,ω valω

(|Rq
k|, val(μ′(Rq

k))
)
k≥2

and now, due to associativity, applying (13)

=
∑

R∈succ(C)
�(R)=σ

∑

q∈F
val(μ′(Rf )) ·|Rf |,ω

(
val(μ′(R̂q

1)) ·|R̂q
1|,ω valω

(|Rq
k|, val(μ′(Rq

k))
)
k≥2

)

replacing Rf from q0 to p0 by the corresponding run R̃ ∈ succ(A) from q0 to qf ,
putting R̂q

k = Rq
k for k ≥ 2, and applying (10) and (9)

=
∑

σ=uσ̂
u∈Σ+,σ̂∈Σω

∑

R̃∈succ(A)

�(R̃)=u

∑

R̂∈succ(B)

�(R̂)=σ̂

val(μ(R̃)) ·|R̃|,ω

(∑

q∈F
valω

(|R̂q
k|, val(μB(R̂q

k))
)
k∈�

)

and applying (10) once again

=
∑

σ=uσ̂
u∈Σ+,σ̂∈Σω

∑

R̃∈succ(A)

�(R̃)=u

val(μ(R̃)) ·|u|,ω

∑

R̂∈succ(B)

�(R̂)=σ̂

(∑

q∈F
valω

(|R̂q
k|, val(μB(R̂q

k))
)
k∈�

)

=
∑

σ=uσ̂
u∈Σ+,σ̂∈Σω

‖A‖(u) ·|u|,ω ‖B‖c(σ̂) =
(‖A‖ · ‖B‖c

)
(σ) =

(
[[ E ]] · [[ E′ ]]

)
(σ)

which shows [[ E ]] · [[ E′ ]] = ‖C‖c.
Finally, if [[ E ]] and [[ E′ ]] for ω-regular weighted expressions E and E′ are cumu-

lative behaviors of wba A and A′, then [[ E + E′ ]] is the cumulative behavior of the
disjoint union of A andA′.

Thus, for every ω-regular weighted expression E there is a weighted Büchi automa-
ton A with ‖A‖c = [[ E ]]. ��
Theorem 3.22 applies to all ω-indexed valuation monoids from Examples 3.13, 3.14,
3.15, and 3.16 as well as for all ω-indexed valuation monoids derived from complete
star-omega-semirings like �∞

0 .
Now we turn to the converse: Describing behaviors of wba by expressions.
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3.4 From Weighted Büchi-Automata to Omega-Expressions

The characterization of behaviors of weighted Büchi automata by means of ω-regular
weighted expressions is more difficult than for finite words. However, for the cumulative
behavior of a wba, the proof is rather straightforward.

Theorem 3.23. Let � be a Cauchy ω-indexed valuation monoid and A a wba over Σ
and � . Then there is an ω-regular weighted expression E with [[ E ]] = ‖A‖c.
Proof. Let A = (Q, I, T, F, μ) be a weighted Büchi automaton over Σ and � . We
define for p, q ∈ Q the following wba Apq = (Q, {p}, T, {q}, μ), i.e., Apq can be
entered in p only and the only acceptance state is q. Then we have for every σ ∈ Σω

‖A‖c(σ) =
∑

R∈succ(A)
�(R)=σ

wgtc(R) =
∑

R∈succ(A)
�(R)=σ

∑

q∈F
|Fq(R)|=ω

valω
(|Rq

k|, val(μ(Rq
k))
)
k∈�

=
∑

p∈I,q∈F
‖Apq‖c(σ) =

∑

p∈I,q∈F
‖Apq‖(σ) .

Now we show that ‖Apq‖ can be described by an ω-regular weighted expression. Let
Bpq = (Q, {p}, T ′, {q}, μ′) and Cq = (Q ∪̇ {qI}, {qI}, T ′′, {q}, μ′′) be weighted
finite automata with T ′ = {(p′, a, q′) | (p′, a, q′) ∈ T ∧ p′ �= q}, μ′(p′, a, q′) =
μ(p′, a, q′), T ′′ = {(p′, a, q′) | (p′, a, q′) ∈ T ∧ p′ �= q} ∪ {(qI , a, q′) | (q, a, q′) ∈ T },
and μ′′(p′, a, q′) = μ(p′, a, q′) if p′, q′ ∈ Q, and μ′′(p′, a, q′) = μ(q, a, q′) if p′ = qI .

The successful runs in Cq simulate the runs in Apq which go from q to q without
passing q in between. Using properties (9) and (11), it is easy to show that ‖Apq‖ =
‖Bpq‖ · ‖Cq‖ω whenever p �= q and ‖Apq‖ = ‖Cq‖ω if p = q. Due to Theorem 2.23
there are regular weighted expressions Gpq and Hq with [[ Gpq ]] = ‖Bpq‖ and [[ Hq ]] =
‖Cq‖ and, thus, ‖Apq‖ can be described by Gpq · (Hq)ω for p �= q and by (Hq)ω for
p = q. Finally, we have ‖A‖c = [[ E ]] for the ω-regular weighted expression

E =
∑

q∈I∩F
(Hq)ω +

∑

p∈I,q∈F,p�=q
Gpq · (Hq)ω .

which shows that ‖A‖c is ω-rational. ��
Together with Lemma 3.8 we get

Corollary 3.24. Let � be a uniform and idempotent Cauchy ω-indexed valuation
monoid and let A be a wba over Σ and � . Then ‖A‖u and ‖A‖ are ω-rational.

Idempotency and uniformity are strong conditions. They hold for instance for
(�, sup, sup−∞, lim sup,−∞) from Example 3.14. But the Cauchy ω-index valuation
monoid from Example 3.2 with limit average as ω-valuation function is idempotent but
not uniform, cf. Example 3.9. Nevertheless, we can succeed in showing that ‖A‖ is ω-
rational for every wba over this ω-index valuation monoid. However, for this, we need
an additional property called the partition property which we will define next.

Recall that (Dfin)ω =
⋃
C⊆finD

Cω. Let α = n1n2 . . . ∈ �� with n1 < n2 < . . .

be an ω-sequence of strictly increasing positive integers and Im(α) be the image of α.
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Let αj = mj
1m

j
2 · · · ∈ Im(α)� be infinite sub-sequences of α for every j ∈ J where J

is an arbitrary index set. We say that (αj)j∈J is a finite partition of α if J is a finite set,
Im(αj1 ) ∩ Im(αj2) = Ø for j1 �= j2, and

⋃
j∈J Im(αj) = Im(α). This means that the

sequence α is partitioned into finitely many infinite sub-sequences αj .
In [21], we introduced the following property.

Definition 3.25. An ω-indexed valuation monoid � has the partition property if the
following holds:

– for every (di)i∈� ∈ (Dfin)ω,
– for every α = n1n2 . . . ∈ �� with n1 < n2 < . . .,
– for every finite partition (αj)j∈J of α with αj = mj

1m
j
2 . . .

we have with n0 = mj
0 = 0 (j ∈ J) that

valω
(
nk − nk−1, val(dnk−1+1 . . . dnk

)
)
k∈�

=
∑

j∈J
valω

(
mj
k −mj

k−1, val(dmj
k−1+1 . . . dmj

k
)
)
k∈� . (14)

In automata-theoretic terms, the partition property (14) guarantees that the weight
wgt(R) of a run R is the same as the cumulated weight wgtc(R). The sequence α
collects the positions of the run where an accepting state q ∈ F is passed. Let J be such
that {qj | j ∈ J} ⊆ F is the set of accepting states which appear infinitely often in R.
For every j ∈ J the sequence αj compasses the positions where the single accepting
state qj is traversed. Now the left hand side of (14) gives wgt(R) whereas the right
hand side equals wgtc(R).

Remark 3.26. Note that every uniform and idempotent ω-indexed valuation
monoid satisfies the partition property [22, Prop. 12].

Example 3.27. The ω-indexed valuation monoids (�, sup, avg, lim sup avg,−∞) from
Example 3.13 and (�, sup, last, lim sup,−∞) from Example 3.15 are not uniform but
have the partition property [22].

On the other side, �∞
0 from Remark 3.17 is uniform but not idempotent and does not

have the partition property.

Satisfaction of the partition property implies that the behavior of weighted Büchi au-
tomata is ω-rational.

Theorem 3.28 ([21,22]). Let � be a Cauchy ω-indexed valuation monoid having the
partition property (14). Let A be a wba over Σ and � . Then ‖A‖ is ω-rational.

Proof sketch. The proof follows exactly the lines of the one for Theorem 3.23. If A =
(Q, I, T, F, μ), then we put againApq = (Q, {p}, T, {q}, μ) for p, q ∈ Q. Now we can
show

‖A‖ =
∑

p∈I,q∈F
‖Apq‖ .

To do so, we have to use the partition property (14) of � , see [21,22] for details. Now
we carry on as before showing that ‖Apq‖ is ω-rational. ��
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Remark 3.29. Theorems 3.20 and 3.28 generalize previous Kleene-like results for dis-
counting [14], for idempotent, o-complete, infinitely distributive semirings [15], and for
idempotent complete star-omega-semirings [25,27].

Ésik and Kuich give in [25,27] a general Kleene-like result even for non-idempotent
semiring-semimodule pairs. The direction from ω-regular weighted expressions to
weighted Büchi automata is covered by Theorem 3.20. However, the proof of the other
direction needs an infinitary associativity for the product (as it is satisfied by e.g. �∞

0 )
similar to our notion of uniformity. Next, we will show that behaviors of wba are ω-
rational even if the underlying ω-indexed valuation monoid is neither idempotent nor
satisfies the partition property. However, we have to assume uniformity. This will cover
the result for arbitrary (also non-idempotent) complete star-omega semirings [25,27]
like �∞

0 .
We will prove the result in a similar manner like we have shown Proposition 2.20.

Thus, we need unambiguous ω-regular language expressions. Recall that an ω-regular
(language) expression H over the alphabet Γ is defined by the grammar

H ::= H + H | G ·H | Gω

where G is an arbitrary regular expression over Γ . The semantics L(H) ⊆ Σω of an
ω-regular language expression H is given by

L(H1 + H2) =L(H1) ∪ L(H2),
L(G ·H) =L(G) · L(H) = {uσ ∈ Σω | u ∈ L(G), σ ∈ L(H)},
L(Gω) =L(G)ω = {u1u2 . . . ∈ Σω | ui ∈ L(G) for all i ∈ �} .

A language L ⊆ Σω is called ω-rational if there is an ω-regular expression H with
L(H) = L. As Büchi showed [5], L ⊆ Σω is ω-rational if and only if there is a Büchi
automatonA with behaviour L(A) = L.

Next, we define unambiguous ω-regular (language) expressions semantically:

– if H1 and H2 are unambiguous ω-regular expressions and L(H1) ∩ L(H2) = Ø,
then H1 + H2 is unambiguous,

– if G is an unambiguous regular expression, H an unambiguous ω-regular expres-
sion, and u1σ1 = u2σ2 for ui ∈ L(G), σi ∈ L(H) for i ∈ {1, 2} implies u1 = u2

(and, thus, also σ1 = σ2), then G ·H is unambiguous,
– if G is an unambiguous regular expression and u1u2 . . . = v1v2 . . . with ui, vj ∈
L(G) for all i, j ∈ � implies u1 = v1 (and, thus, ui = vi for all i ∈ �), then Gω is
unambiguous.

The next result is stated in [2] as a consequence of the fact that every ω-rational lan-
guage is recognized by an non-ambiguous Büchi automaton which can be shown using
the famous Büchi-MacNaughton theorem about the equivalence of Büchi and deter-
ministic Muller automata (see also [6] for a sophisticated study of unambiguous Büchi
automata). Since the description of ω-regular languages by unambiguous ω-regular ex-
pressions may be not so common as the one for finite words and in [2] the arguments
are not given in detail, we state the result here together with its proof.
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Lemma 3.30 ([2]). Let L ⊆ Γω. Then L is recognizable by a Büchi automaton if and
only if there is an unambiguous ω-regular language expression H with L(H) = L.

Proof. It follows from Büchi’s result [5] that if H is an unambiguous ω-regular lan-
guage expression, then L(H) is recognizable by a Büchi automaton.

Vice versa, let L ⊆ Γω be recognizable by a Büchi automaton. Then there is an
non-ambiguous Büchi automaton A recognizing L [2]. Here, a Büchi automaton is
non-ambiguous if for each σ ∈ L(A) there is only one accepting run of A on σ. Let
A = (Q, I, T, F, μ) with F = {q1, . . . , qm}. Moreover, we can assume that I ∩F = Ø
(otherwise introduce copies for initial states) and that every qj ∈ F is reachable from
I . Now we partition the set of successful states as suggested in [25]. Let succj(A) ⊆
succ(A) for j ∈ {1, . . . , m} be the set of those successful runs

– which pass qj ∈ F infinitely often and
– which traverse {q1, . . . , qj−1} ⊂ F only finitely often.

Then we have

succ(A) = succ1(A) ∪̇ succ2(A) ∪̇ . . . ∪̇ succm(A) . (15)

Let Lj = {σ ∈ Γω | ∃R ∈ succj(A) : �(R) = σ}. Note that every run R ∈ succj(A)
can be decomposed into R = R1R2 where

– R1 is a finite run from some q ∈ I to qj ∈ F such that
• either qj is not passed in between q ∈ I to qj ∈ F
• or between the last two consecutive occurences of qj at least one state from
{q1, . . . , qj−1} is passed,

– R2 is an infinite run starting in qj , passing qj infinitely often, and which is not
running through {q1, . . . , qj−1} at all.

So, the decomposition R = R1R2 splits R at the first occurence of qj such that af-
terwards no state from {q1, . . . , qj−1} is traversed anymore. Note that R1 is always
non-empty since I ∩F = Ø. It is not difficult to show that the set LIj of labels u ∈ Γ+

of finite runs of the form of R1 is a rational language. Due to Kleene’s Theorem 2.19,
there is an unambiguous regular expression HIj with L(HIj) = LIj . Let Ljj be the set
of finite words which are labels of finite runs from qj to qj without passing {q1, . . . , qj}
in between. Again, Ljj is rational and can be denoted by an unambiguous rational ex-
pression Hjj . Moreover, Lj = LIj ·Lωjj and, hence, Lj = L(HIj ·Hω

jj). We will show
that Hj := HIj ·Hω

jj is unambiguous.
Recall that Hjj is unambiguous. Now assume ui, vi ∈ L(Hjj) for i ∈ � such that

u1u2 . . . = v1v2 . . .. Since qj is reachable from I , there is a w ∈ Γ+ and a finite run on
w from I to qj . Hence, σ = wu1u2 . . . = wv1v2 . . . ∈ L(A). Assume u1 �= v1. Then
|u1| �= |v1|. But both u1 and v1 label runs from qj to qj without passing qj in between.
Hence, there have to be two different accepting runs of A on σ. This contradicts A
being a non-ambiguous Büchi automaton. Thus, u1 = v1 and Hω

jj is unambiguous.
Now consider HIq ·Hω

qq where both HIq and Hω
qq are unambiguous. Let u1σ1 = u2σ2

with ui ∈ L(HIq) and σi ∈ L(Hω
qq) for i ∈ {1, 2}. If u1 �= u2 and so |u1| �= |u2|, then

we obtain two different accepting runs of A on u1σ1 = u2σ2 because u1 and u2 label
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two different finite runs from I to the first occurence of qj such that afterwards no state
from {q1, . . . , qj−1} is passed anymore. Again, this contradicts the non-ambiguity of
A. Hence, u1 = u2 and Hj = HIj ·Hω

jj is unambiguous.
Now let H := H1 + . . . + Hm. Since succi(A) ∩ succj(A) = Ø for i �= j and

A is non-ambiguous, the ω-expression H is unambiguous. Moreover, L = L(A) =
L1 ∪ . . . ∪ Lm = L(H1) ∪ . . . ∪ L(Hm) = L(H). Thus, L can be defined by the
ω-regular language expression H . ��
Using unambiguous ω-regular language expressions, we will show

Theorem 3.31. Let � be a uniform Cauchy ω-indexed valuation monoid andA a wba
over Σ and � . Then ‖A‖ and ‖A‖u are ω-rational.

Proof. Let A = (Q, I, T, F, μ). By Lemma 3.8, ‖A‖= ‖A‖u. Let A′ = (Q, I, T ′, F )
be the Büchi automaton over the alphabet Γ = T with T ′ =

{(
p, (p, a, q), q

) |
(p, a, q) ∈ T

}
. We have L(A′) = succ(A). Due to Lemma 3.30, there is an unam-

biguous ω-regular language expression H with L(H) = succ(A). In the proof of
Proposition 2.20, we have already defined for every unambiguous regular language
expression G an associated weighted regular expression � (G) such that with the ho-
momorphism π : Γ+ → Σ+ where π(p, a, q) = a and the homomorphic extension
μ : Γ+ → D+ of μ : T → D

� (G)(w) =
∑

W∈L(G)∩π−1(w)

val
(
μ(W )

)
(16)

for every w ∈ Σ+. First, we extend by induction the translation of sub-expressions of
the ω-regular expression H to ω-regular weighted expressions over Σ as follows:

� (H ′ + H ′′) = � (H ′) + � (H ′′), � (G ·H ′) = � (G) · � (H ′), � (Gω) = � (G)ω

for regular sub-expression G and ω-regular sub-expression H ′ and H ′′ of H . Moreover,
let π : Γω → Σω and μ : Γω → Dω be the extensions of the homomorphisms above.

Recall that for W = W1W2 · · · ∈ Γω the term valω
(
μ(W )

)
is an abbreviation for

valω
(
1, μ(Wi))i∈�. Now we show that for any ω-regular sub-expression H ′ of H and

any σ ∈ Σω

[[� (H ′) ]](σ) =
∑

W∈L(H′)∩π−1(σ)

valω
(
μ(W )

)
. (17)

The case H ′ = H1 +H2 is handled exactly the same way as for regular sub-expression,
cf. the proof of Proposition 2.20. Next let H ′ = G · Ĥ. For every σ ∈ Σω we have

[[� (G · Ĥ) ]](σ) = [[� (G) · � (Ĥ) ]](σ)

=
∑

σ=uσ̂

[[� (G) ]](u) ·|u|,ω [[� (Ĥ) ]](σ̂)

=
∑

σ=uσ̂

⎛

⎝
∑

U∈L(G)∩π−1(u)

val(μ(U))

⎞

⎠ ·|u|,ω

⎛

⎝
∑

V ∈L(Ĥ)∩π−1(σ̂)

valω(μ(V ))

⎞

⎠
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=
∑

σ=uσ̂

∑

U∈L(G)∩π−1(u)

V ∈L(Ĥ)∩π−1(σ̂)

(val(μ(U)) ·|U|,ω valω(μ(V ))) (due to Eq. (10))

and now applying Eq. (9) and uniformity

=
∑

σ=uσ̂

∑

U∈L(G)∩π−1(u)

V ∈L(Ĥ)∩π−1(σ̂)

valω(μ(UV ))

=
∑

W∈L(G·Ĥ)∩π−1(w)

valω(μ(W )) (since G · Ĥ is unambiguous)

which shows (17) for H ′ = G · Ĥ .
Finally, let H ′ = Gω . Then we get

[[� (Gω) ]](σ) = [[� (G)ω ]](σ)

=
∑

σ=u1u2...

valω
(|uk|, [[� (G) ]](uk)

)
k∈�

=
∑

σ=u1u2...

valω
(|uk|,

∑

Uk∈L(G)∩π−1(uk)

val(μ(Uk))
)
k∈�

=
∑

σ=u1u2...

∑

(Uk)k∈�∈
(L(G)∩π−1(uk))k∈�

valω
(|Uk|, val(μ(Uk))

)
k∈� (by Eq. (11))

and since H ′ = Gω is unambiguous and � is uniform

=
∑

W∈L(Gω)∩π−1(σ)

valω
(
μ(W )

)

for every σ ∈ Σω and, thus, (17) is shown. Now we conclude that for any σ ∈ Σω

‖A‖u(σ) =
∑

R∈succ(A)
�(R)=σ

wgtu(R) =
∑

R∈L(H)∩π−1(σ)

valω
(
μ(R)

)
= [[� (H) ]](σ)

where the last equality is due to (17). Hence ‖A‖u = ‖A‖ is ω-rational. ��
In the last section, we draw our attention to weighted Muller automata.

3.5 Weighted Muller Automata

Automata on infinite words can run with different acceptance conditions. One promi-
nent condition which was used in [20] for a logical characterization of weighted au-
tomata is Muller acceptance.
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Definition 3.32. A weighted Muller automaton M = (Q, I, T,F , μ) (for short: a
wma) over an alphabet Σ and an ω-indexed valuation monoid � consists of a finite
state set Q, a set I ⊆ Q of initial states, a set T ⊆ Q×Σ ×Q of transitions, a weight
function μ : T → D, and a set F ⊆ 2Q of accepting sets.

The behavior of weighted Muller automata is defined similarly as the one of weighted
Büchi automata but the set of successful runs is a different one. Let R = (ti)i∈� be a
run ofM with ti = (qi−1, ai, qi). Then we put

Inf(R) = {q ∈ Q | qi = q for infinitely many i ∈ �},
i.e., Inf(R) is the set of states appearing infinitely often in R. Now a run R is successful
if R starts in a state q0 ∈ I and Inf(R) ∈ F . We denote the set of successful runs of
a wmaM by succM (M). Let R = (ti)i∈� ∈ succM (M). Then Inf(R) ∈ F . We put
F(R) = {j ∈ � | qj ∈ Inf(R)} and Fq(R) = {j ∈ � | qj = q} for every q ∈ Inf(R).
The F -partition R = (Rk)k∈� and the q-partition R = (Rq

k)k∈� into finite sub-runs
going from one acceptance state to the next one are defined as for wba but now with
respect to F(R) and Fq(R), respectively. Then we put for every σ ∈ Σω

‖M‖u(σ) =
∑

R∈succM (M)
�(R)=σ

wgtu(R) =
∑

R∈succM (M)
�(R)=σ

valω(1, μ(ti))i∈�,

‖M‖(σ) =
∑

R∈succM (M)
�(R)=σ

wgt(R) =
∑

R∈succM (M)
�(R)=σ

valω
(|Rk|, val(μ(Rk))

)
k∈�,

‖M‖c(σ) =
∑

R∈succM (M)
�(R)=σ

wgtc(R) =
∑

R∈succM (M)
�(R)=σ

( ∑

q∈Inf(R)

valω
(|Rq

k|, val(μ(Rq
k))
)
k∈�

)
.

As for weighted Büchi automata, cf. Lemma 3.8, we can show

Lemma 3.33. Let � be an ω-indexed valuation monoid andM a wma over � .
If � is uniform, then ‖M‖u = ‖M‖.
If � is idempotent and uniform, then ‖M‖u = ‖M‖ = ‖M‖c.

For the unconditional behavior wba and wma recognize the same class of ω-series.

Theorem 3.34. Let � be an ω-indexed valuation monoid.

(a) For every wba A over � there is a wmaM over � with ‖A‖u = ‖M‖u.
(b) For every wmaM over � there is a wba A over � with ‖A‖u = ‖M‖u.

Proof. (a) If A= (Q, I, T, F, μ) is a wba over Σ and � , then letM=(Q, I, T,F , μ)
with F = {F ′ ⊆ Q | F ′ ∩ F �= Ø}. Then we have succ(A) = succM (M) and, thus,
‖A‖u = ‖M‖u.

(b) LetM = (Q, I, T,F , μ) be a wma over � with F = {F1, . . . , Fm}. We con-
struct an equivalent wba as it is done in the qualitative setting of ω-languages, cf. [30,
Satz 7.17]. Let A = (Q′, I ′, T ′, F ′, μ′) with

Q′ = Q ∪̇
m⋃

i=1

({i} × Fi × 2Fi
)
, I ′ = I,
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T ′ = T ∪ {(q, a, (i, q̂, Ø)
) | q ∈ Q, i ∈ {1, . . . , m}, (q, a, q̂) ∈ T, q̂ ∈ Fi

}

∪ {((i, q, S), a, (i, q̂, S ∪ {q})) | (q, a, q̂) ∈ T, q, q̂ ∈ Fi, S �= Fi
}

∪ {((i, q, S), a, (i, q̂, Ø)
) | (q, a, q̂) ∈ T, q, q̂ ∈ Fi, S = Fi

}

μ′(p′, a, q′) =

⎧
⎪⎨

⎪⎩

μ(p′, a, q′) if p′, q′ ∈ Q,

μ(p′, a, q) if p ∈ Q, q′ = (i, q, Ø),
μ(p, a, q) if p′ = (i, p, S), q′ = (i, q, Ŝ),

F = {(i, q, Fi) | i ∈ {1, . . . , m}, q ∈ Fi} .

There is a one-to-one correspondence between succM (M) and succ(A). For this, let
R = (tj)j∈� ∈ succM (M) with tj = (qj−1, aj , qj) and Inf(R) = Fi. Then let
kR ∈ � be the unique position for which

(
qkR−1 /∈ Fi ∨ kR − 1 = 0

) ∧ (∀k ≥ kR : qk ∈ Fi) .

We define the run R′ = (t′j)j∈� of A with t′j = (q′j−1, aj, q
′
j) where q′j = qj for all

j < kR and q′j = (i, qj , Sj) for j ≥ kR (note that for a run R′ the sets Sj are uniquely
determined). Since Inf(R) = Fi, R′ passes the set {(i, q, Fi) | q ∈ Q} infinitely often.
Hence, R′ ∈ succ(A). Moreover, μ′(R′) = μ(R). Vice versa, for every R′ ∈ succ(A)
the projection of R′ to the Q-component yields a successful run inM. Thus, we have

‖A‖(σ) =
∑

R′∈succ(A)
�(R′)=σ

wgtu(R′) =
∑

R′=(t′j)j∈�∈succ(A)

�(R′)=σ

valω(1, μ′(t′j))j∈�

=
∑

R∈succM (M)
�(R)=σ

valω(1, μ(tj))j∈� =
∑

R∈succM (M)
�(R)=σ

wgtu(R) = ‖M‖(σ)

for every σ ∈ Σω. ��
Note that the constructions of the last proof do not yield equivalent automata without
� being uniform. This is due to the fact that the acceptance states in the wba A are
distributed differently along a run than in the wmaM.

Lemma 3.8, Lemma 3.33, and Theorem 3.34 imply two more results.

Corollary 3.35. Let � be a uniform ω-indexed valuation monoid.

(a) For every wba A over � there is a wmaM over � with ‖A‖ = ‖M‖.
(b) For every wmaM over � there is a wba A over � with ‖A‖ = ‖M‖.
Corollary 3.36. Let � be an idempotent uniform ω-indexed valuation monoid.

(a) For every wba A over � there is a wmaM over � with ‖A‖c = ‖M‖c.
(b) For every wmaM over � there is a wba A over � with ‖A‖c = ‖M‖c.
For non-uniform ω-indexed valuation monoids like (�, sup, avg, lim sup avg,−∞)
from Example 3.13 the expressive power of wma compared to the one of wba has still
to be clarified.
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4 Conclusion

We have explored weighted automata and weighted expressions for valuation
monoids and ω-indexed valuation monoids. We have shown several Kleene-like results
in this very general setting both for finite and infinite words. An overview of our results

Table 1. An overview on weighted ω-recognizability and ω-rationality

Properties of � Results & Examples

– uniform
– idempotent
– Cauchy

The following holds:

– ω-recognizability (in any running mode) and ω-rationality
coincide,

– ‖A‖u = ‖A‖ = ‖A‖c for every wba A,
– Büchi and Muller automata define the same class of series

in every running mode.

Examples:

– (�, sup, sup−∞, lim sup,−∞)

– (�+, sup,discλ, lim discλ,−∞)

– uniform
– associative
– Cauchy

The following holds:

– ω-recognizability (in any running mode) and ω-rationality
coincide,

– ‖A‖u = ‖A‖ for every wba A,
– Büchi and Muller automata define the same class of series

for the unconditional and the Büchi running mode.

Example:

– �
∞
0 = (� ∪ {∞},+, ·,∏, 0)

– associative
– Cauchy
– partition property

The following holds:

– ω-recognizability (in the Büchi and the cumulated running
mode) and ω-rationality coincide,

– Büchi and Muller automata define the same class of series
for the unconditional running mode.

Example:

– (�, sup, avg, lim sup avg,−∞)
– (�, sup, last, lim sup,−∞)
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for infinite words and some classes of ω-indexed valuation monoids is given in Table 1
on page 343.

Several questions remain open. First, we would be interested in more example struc-
tures, especially for the class of uniform non-idempotent Cauchy ω-indexed valuation
monoids where the example �∞

0 is derived from a semiring. Is there a “nice” structure
in this class which is not derived from a semiring? Other examples would be welcomed
to show sharpness of results.

There are a few concepts not yet considered for valuation monoids. One such notion
is local finiteness used e.g. for bimonoids [23]. Certainly, it is not complicated to define
something like a locally finite valuation function. But in order to show a Kleene-like
result as in [23] one has to consider also the parameterized products. For them, it is not
obvious how to define local finiteness because of the parameters representing the length
of words.

An important class of expressions in the Boolean setting are star-free expressions.
Such expressions were considered in a semiring setting [19] and a similar approach
could be tried in our setting.

With regard to expressions, the construction of small automata for a given expression
is a vital topic. In this context, the method of partial derivatives was also transferred
to the weighted setting [35]. It is not clear if such an approach can be successful for
Cauchy valuation monoids. If not, is there another way to construct small automata?

There are notions of discounting where the discount factors depend on the action
executed. Can our concept of a valuation function be generalized in a way, e.g. by
putting val : (Σ ×D)+ → D, such that those scenarios are also covered?

Finally, there are trees. A first step to consider weighted tree automata over tree
valuation monoids was done in [12]. There, a characterization by weighted MSO logic
was given for finite trees. What about expressions?

But first and foremost, the work done by Chatterjee, Doyen, and Henzinger
[7,8,9,10] should be combined with our results. Such a combination could open the way
to quantitative specification languages (using logics and expressions) having good prop-
erties concerning decidability and complexity of problems like satisfiability or equiva-
lence.
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Abstract. Consider a universal set M and a vertex set V and suppose
that to each vertex in V we assign independently a subset of M chosen at
random according to some probability distribution over subsets of M. By
connecting two vertices if their assigned subsets have elements in com-
mon, we get a random instance of a random intersection graphs model. In
this work, we overview some results concerning the existence and efficient
construction of Hamilton cycles in random intersection graph models. In
particular, we present and discuss results concerning two special cases
where the assigned subsets to the vertices are formed by (a) choosing
each element of M independently with probability p and (b) selecting
uniformly at random a subset of fixed cardinality.

1 Introduction

Random graphs, introduced by P. Erdös and A. Rényi, still continue to attract
a large amount of research and interest in the communities of Theoretical Com-
puter Science, Graph Theory and Discrete Mathematics.

There exist various models of random graphs. The most famous is the Gn,p

random graph, a sample space whose points are graphs produced by randomly
sampling the edges of a graph on n vertices independently, with the same proba-
bility p. Other models have also been quite a lot investigated: Gn,r (the “random
regular graphs”, produced by randomly and equiprobably sampling a graph from
all regular graphs of n vertices and vertex degree r) and Gn,k (produced by ran-
domly and equiprobably selecting an element of the class of graphs on n vertices
having k edges). For an excellent survey of these models, see [1,4].

In this work we overview some results concerning the existence and efficient
construction of Hamilton cycles in random intersection graphs models. In gen-
eral, a random instance of these models is constructed by first assigning inde-
pendently to each vertex a random subset of a predefined universal set and then
connecting two vertices if their assigned subsets have elements in common.

1.1 Motivation

Random intersection graphs may be used to model several real-life applications
characterized by local interactions quite accurately (compared to the Gn,p̂ model
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where edges appear independently with probability p̂). In particular, the Gn,p̂

model seems inappropriate for describing some real world networks (like sensor
and social networks) because it lacks certain features of those networks, such as
a scale free degree distribution and the emergence of local clusters. One of the
underlying reasons for this mismatch is its independence of the edges, in other
words the missing transitivity that characterizes such networks: if vertices x and
y exhibit a relationship of some kind in a real world network and so do vertices
y and z, then this suggests a connection between vertices x and z, too.

For example, we consider the following scenario concerning efficient and secure
communication in sensor networks: The vertices in our model correspond to
sensor devices that blindly choose a limited number of resources among a globally
available set of shared resources (such as communication channels, encryption
keys etc). Whenever two sensors select at least one resource in common (e.g. a
common communication channel, a common encryption key), a communication
link is implicitly established (represented by a graph edge); this gives rise to
communication graphs that look like random intersection graphs. Particularly
for security purposes, the random selection of elements in our graphs can be seen
as a way to establish local common keys on-line, without any global scheme for
predistribution of keys. In such a case, the set of labels can be a global set of
large primes (known to all) but each node selects uniformly at random only a
few. Two nodes that have selected a common prime can communicate securely.
Notice that no other node can know what numbers a different node has selected.
Thus, the local communication is guaranteed to be secure. In the case when the
shared resource is the wireless spectrum, then two nodes choosing the same label
(frequency) may interfere, and the corresponding link in the intersection graph
abstracts a conflict, while an independent set (vertices with no edges between
them) abstracts a set of sensors that can simultaneously access the wireless
medium.

Random intersection graphs in general and in particular the uniform random
intersection graphs model are also relevant to and capture quite nicely social
networking. Indeed, a social network is a structure made of nodes (individuals
or organizations) tied by one or more specific types of interdependency, such
as values, visions, financial exchange, friends, conflicts, web links etc. Social
network analysis views social relationships in terms of nodes and ties. Nodes are
the individual actors within the networks and ties are the relationships between
the actors.

Other applications may include oblivious resource sharing in a (general) dis-
tributed setting, interactions of mobile agents traversing the web etc. Even epi-
demiological phenomena (like spread of disease) tend to be more accurately
captured by these “interaction-sensitive” random graph models.

1.2 Background

Random intersection graphs Gn,m,p were introduced by M. Karoński, E.R. Shein-
erman and K.B. Singer-Cohen [11] and K.B. Singer-Cohen [18]. In such graphs,
each one of m labels is chosen independently with probability p by each one of



Selected Combinatorial Properties of Random Intersection Graphs 349

n vertices, and there are edges between any vertices with overlaps in the labels
chosen. Fill, Sheinerman and Singer-Cohen in [9] proved that the Gn,m,p becomes
statistically equivalent to a Bernoulli random graph (in which every edge appears
independently with some probability p̂), when the number of labels m is quite
large (in fact for m ≥ n6, but it was conjectured that the same holds for smaller
m). However, the two models seem to behave quite differently when the number
of labels is less than the number of vertices. The authors of [8] find thresholds
(that are optimal up to a constant factor) for the appearance of Hamilton cy-
cles in random intersection graphs. Their approach is non-constructive, which
is the essential difference between their result and the results presented here.
The efficient construction of large independent sets in Gn,m,p was studied in
[13]. Also, by using a sieve method, Stark [19] gives exact formulas for the de-
gree distribution of an arbitrary fixed vertex of Gn,m,p for a quite wide range of
the parameters of the model. In [14] the authors show that a random instance of
the random intersection graphs model is a vertex expander with high probability
(whp) and also provide bounds on the second largest eigenvalue of random walks
on such graphs. Furthermore, using a technique due to [6], the authors provide
tight bounds on the cover time of random walks on random intersection graphs.
The component evolution in general random intersection graphs was studied
quite recently in [5], where the authors used branching process techniques to
give conditions on the existence and uniqueness of a giant component.

Godehardt and Jaworski [10] defined a different model called uniform random
intersection graphs model Gn,m,λ. In this model, to each of the n vertices of the
graph, a random subset of λ elements of a universal set of m elements in total
is independently assigned. Two vertices u, v are then adjacent in the Gn,m,λ

graph if and only if their assigned sets of elements have at least one element in
common. The Gn,m,λ seems to behave similarly to Gn,m,p when one can show
concentration on the number of labels chosen by a vertex in the latter (which
can happen for quite large λ). However, notice that for small values of λ such
concentration results do not hold, and the statistical behavior of the two models
is quite different. In their paper [10], the authors focused on the distribution of
the number of isolated vertices in Gn,m,λ, as well as the distribution of vertex
degrees. The vertex degree distribution of general random intersection graphs
(where the choice of the label sets Sv is made according to a general distribution)
was studied independently by Blonzelis [3] and Deijfen and Kets [7]. Connectivity
and communication security aspects of Gn,m,λ in various important settings was
studied in [16,2]. A tight characterization of the independence number of Gn,m,λ

in the case m < n was given in [12].

1.3 Roadmap

In this work, we overview some results concerning the efficient construction of
Hamilton cycles in random intersection graphs and uniform random intersec-
tion graphs. These results first appeared in [12] and [17] (for additional non-
constructive results see [8]).
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In particular, in Section 2, we give formal definitions of the the random inter-
section graphs model Gn,m,p and the uniform random intersection graphs model
Gn,m,λ. In Section 3 we present a reduction of the Gn,m,p model to the model
Gn,k (i.e. the model where we randomly and equiprobably select an element of
the class of graphs on n vertices and k edges) in the case where m = nα, α > 1.
In particular, for this range of m and p this reduction enables the application
of any result (algorithmic and combinatoric) concerning increasing properties of
Gn,k graphs to the Gn,m,p graphs.

In Section 4 we present a polynomial expected time algorithm for finding
Hamilton cycles in a Gn,m,p random graph, in the case where p is constant and
the number of labels is at most α

√
n

logn for some constant α. The algorithm uses

first a randomized greedy algorithm and if it fails it then uses an exhaustive algo-
rithm to solve the problem. Furthermore, in Section 5 we present a result showing
that the greedy approach gives an algorithm that succeeds with high probability
in the case m = o( n

logn ) and p is not constant. We also present a polynomial
time randomized algorithm that finds with high probability a Hamilton cycle in
the case where p is just above the connectivity threshold for these graphs. This
algorithm also serves as a way to find a quite tight bound on the probability p
that ensures that with high probability the uniform random intersection graph
has a Hamilton cycle.

Section 6 is concerned with the hamiltonicity of uniform random intersec-
tion graphs. We present a result showing that when the number of vertices n
is at least (1 + ε)

(
m
λ

)
ln

(
m
λ

)
, for some constant ε > 0 as small as possible, then

Gn,m,λ, with λ ≥ 2, has a Hamiltonian cycle with high probability (whp), i.e. a
very small constant number of labels suffices to yield hamiltonicity. The proof
uses the coupon collector’s problem together with an interesting combinatorial
construction. It also leads to a polynomial time randomized algorithm for con-
structing Hamiltonian cycles whp for this range of values for the parameters of
the model.

Finally, we give some concluding remarks in Section 7.

2 Notation and Definition of the Models

We now formally define the two models that we study in this work. The following
definition was given in [11,18].

Definition 1 (Random intersection graph). LetM be a universe of m dis-
tinct elements which will be called labels and let V be a set of vertices. A random
instance of the random intersection graph model Gn,m,p is constructed as follows:
assign independently to each vertex v ∈ V a subset Sv of the universe M by
choosing each label l ∈ M independently with probability p. Then, connect two
vertices v, u if and only if Sv ∩Su �= ∅, i.e. their assigned label sets have at least
one label in common. In this model we also denote by Ll the set of vertices that
have chosen label l ∈M . The degree of v ∈ V (G) will be denoted by dG(v). Also,
the set of edges of Gn,m,p will be denoted by e(G).
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Consider now the bipartite graph with vertex set V (G) ∪ M and edge set
{(vj , i) : i ∈ Svj} = {(vj , i) : vj ∈ Li}. We will refer to this graph as the
bipartite random graph Bn,m,p associated to Gn,m,p.

It is easy to see that a specific graph may be produced by more than one asso-
ciated bipartite graphs. Furthermore, if the number of labels is too small, then
there can be some graphs that are impossible to appear in this model.

A slightly more general definition was given in [13], namely the general random
intersection graphs model Gn,m,p. In this model, the probability of label selection
pl is label dependent.

When we assume that every vertex is allowed to choose exactly λ labels, then
a completely different kind of randomization to intersection graphs is introduced.
The following definition was given in [10].

Definition 2 (Uniform Random Intersection Graph). Let M be a uni-
verse of m distinct elements which will be called labels and let V be a set of
vertices. A random instance of the uniform random intersection graph model
Gn,m,λ is constructed as follows: assign independently to each vertex v ∈ V a
subset Sv of the universe M, chosen uniformly at random among all subsets of
M of size λ. Then, connect two vertices v, u if and only if Sv ∩Su �= ∅, i.e. their
assigned label sets have at least one label in common.

It is worth noting that the distributions Gn,m,p and Gn,m,λ are quite different,
especially in the case where the number of labels chosen by a vertex in the first
is not concentrated around its mean value.

3 A Reduction to the Gn,k Model

We now present a translation result between the Gn,m,p model and the Gn,k

model of random graphs with exactly k edges, which first appeared in [17].
Let Gn,1,p be a random intersection graph with only one label. It is obvious

from the definition of the random intersection graphs model that this graph will
either contain a single clique, or it will be the empty graph. We note that given
that the Gn,1,p graph has a clique of size k, then this clique is equiprobably any
of the

(
n
k

)
cliques of size k. Let now p̂ denote the probability that the Gn,1,p

graph has at least one edge. Then, for np→ 0 we get

p̂
def= P{Gn,1,p is non-empty} = 1− (1 − p)n − np(1− p)n−1 ∼ 1

2
n2p2.

Now, let us return to the case of m labels. We construct a graph in the following
way:

1. Initially is the empty graph with n vertices.
2. In each step i = 1, 2, . . . , m we independently add a single edge to with

probability 1
2n2(1 + ε)2p2. This edge can be any of the

(
n
2

)
possible edges

of H with equal probability. Also, with probability 1− 1
2n2(1 + ε)2p2 we do

nothing.
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We note that the graph H constructed above is a multigraph, since a single edge
may appear more than once. Furthermore, given that has exactly k edges, then
the graph is with equal probability any of the multigraphs with k edges. The
mean number of all edges of H is m 1

2n2(1+ ε)2p2. By using Chernoff bounds we
get for any constant β in (0, 1) that

P{# of all edges of H ≤ (1− β)m 1
2n2(1 + ε)2p2 } ≤ e−β

2mn2(1+ε)2p2/4.

So, if we choose mn2(1 + ε)2p2 → ∞, then with high probability H will have
at least (1 − β)m 1

2n2(1 + ε)2p2 edges (counting multiple eges as many times as
their multiplicity).

Let now e(H) be the number of different edges of H (i.e. we count multiple
edges as one). Then, by a slightly modified coupon collector’s problem, we can see
that e(H) must satisfy the inequality e(H) ≥ 1−β

1+γmn2(1+ε)2p2, with probability

at least 1− e−β
2mn2(1+ε)2p2/4 − 1

γ2(n
2)
→ 1, where γ is any positive constant.

We note here that given that e(H) = k, the graph H is with equal probability
any graph with n vertices and k edges, hence it is distributed like Gn,k. We can
therefore prove the following:

Theorem 1 ([17]). Let Q be an increasing property on the number of edges
and suppose that for some integer k we have

P{Gn,k has property Q} = 1− g(n)

where g(n) = o(1). Let also m, p, ε be such that m = nα, α > 1, np → 0, ε is a
(small) positive constant and

k ≤ 1− β

1 + γ
mn2(1 + ε)2p2 (1)

where β, γ are any two small positive constants. Then

P{H has property Q} ≥ 1− g(n)− e−β
2mn2(1+ε)2p2/4 − 1

γ2
(
n
2

) → 1

We now use Theorem 1 for the case where Q is the property “existence of a
Hamilton cycle”. We can prove the following

Corollary 1. If m = nα, α > 1, p =
√

logn
nm and ε is a small constant 1, then

P{Gn,m,(1+2ε)p has a Hamilton cycle}≥1−g(n)−e−β
2mn2(1+ε)2p2/4− 1

γ2
(
n
2

) → 1.

1 In fact the constant ε can be as small as to ensure that the constant quantity 1−β
1+γ

(1+

ε)2 is as close to 1 as possible (but greater than 1). Since β, γ are small (and can be
controlled to become as small as possible), we can get a quite small value for ε.
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Proof. It is obvious that np→ 0. Moreover, for k = 1
2n logn + o(n log n) (which

ensures that Gn,k has a Hamilton cycle with high probability) inequality (1) is
satisfied. Since all the conditions of Theorem 1 are satisfied, we then have

P{H has a Hamilton cycle} ≥ 1− g(n)− e−β
2mn2(1+ε)2p2/4 − 1

γ2
(
n
2

) → 1.

Let us now consider a Gn,m,(1+2ε)p graph. Because of independence, we can
construct such a graph by “putting together” m independent Gn,1,(1+2ε)p graphs.
As in the beginning of this section, the probability that each such graph has at
most one edge is

P{Gn,1,(1+2ε)p is non-empty} = 1 − (1 − (1 + 2ε)p)n − n(1 + 2ε)p(1 − (1 + 2ε)p)n−1

∼ 1

2
n2(1 + 2ε)2p2 + o(n2p2) ≥ 1

2
n2(1 + ε)2p2).

Notice now that if we associate each of the m independent Gn,1,(1+2ε)p graphs
with the m steps in the construction of the graph H , we see that not only do the
first ones add an edge to the Gn,m,(1+2ε)p graph with higher probability than
their corresponding steps do to H , but they are also likely to add more than one
edge (i.e. a clique). Put more simply, the graph H can be simply derived from a
sparser random intersection graph than Gn,m,(1+2ε)p by simply removing some
edges (i.e. when there is a set Ll with more than two vertices in it, we simply
delete some vertices from it so that it finally has exactly two). Hence the result
follows. �


We finally note that, as shown in [18], the value p =
√

logn
nm is exactly the

connectivity threshold of a random intersection graph with m = nα, α > 1.

4 Hamilton Cycles in Gn,m,p with Constant p

In this section we present an expected polynomial time algorithm for con-
structing Hamilton Cycles in random intersection graphs with constant p and
m ≤ α

√
n

logn , where α < βp√
2

and β ∈ (0, 1) are positive constants. This algo-

rithm was first described in [17]. It can be shown that even in this restricted
range of values of p, m the problem of finding a Hamilton cycle in Gn,m,p is
non-trivial. Before presenting the algorithm we give some preliminary results.

It is easy to see that if the Gn,m,p has a Hamilton cycle, then there exists a
sequence

HC := l1 → v1 → l2 → · · · → lk → vk → lk+1(= l1) (2)

that satisfies the following four conditions:
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1. li ∈M and vi ∈ V ,
2.

⋃k
i=1 Lli = V ,

3. li, li+1 ∈ Svi , i = 1, 2, . . . , k and
4. vi �= vj , for any i �= j.

We note here that given an HC sequence of the form (2) that satisfies the four
constraints above we can construct a Hamilton cycle in time Θ(n ·m) (we give
such a construction in the algorithm that follows this section).

Suppose now that our graph has a Hamilton cycle hence there is a sequence
HC of the form (2) satisfying the four constraints above. We will refer to the
integer k as the size of the sequence HC. Let x denote the number of different
labels used by HC and let HCmin be a sequence of the form (2) that satisfies the
four conditions, uses exactly the labels used by HC and has minimum length. If
we denote by kmin the size of HCmin then it is obvious that x ≤ kmin. We can
also prove the following:

Lemma 1. If kmin and x are defined as above, then kmin ≤ 1 + x(x−1)
2 .

Proof. Suppose that we start “following” the sequence HCmin and that at some
point t we have (just) met y ≥ 1 different labels. In order to meet the next label
that is different than the y seen so far we will have to make at most y steps. This
is true because if we make y+1 or more steps then we will have met some of the y
labels at least twice (from point t and on). But this would mean that the sequence
HCmin can be shortened, which is a contradiction because HCmin is of minimum
size. So, the size of HCmin can be no more than 1+1+2+· · ·+(x−1) = 1+ x(x−1)

2 .
�


Suppose now that we are interested in the number of different sequences HCmin
that use x specific labels. Because of Lemma 1 we know that their size must be
at most 1 + x(x−1)

2 . We now suppose that we have to fill in 1 + x(x−1)
2 label-cells

by choosing for each one any of x different labels and 1 + x(x−1)
2 vertex-cells by

choosing for each any of n different vertices. In that way, sequences with size
less than the maximum will correspond to some sequence of size 1+ x(x−1)

2 that
has at least one label that repeats itself in the following label-cell. We easily see
then that the total number of ways to fill in these cells is an upper bound to the
number of different HCmin sequences.

In view of the above, the number of sequences of the form (2) that an
exhaustive algorithm that searches for a Hamilton cycle needs to check is
at most

m∑

x=1

(
m

x

)

(x · n)1+
x(x−1)

2 ≤
m∑

x=1

mx

x!
(x · n)

x2
2 ≤ exp

{
m2 log n

}
= nm

2
. (3)

where in the last inequality we used the upper bound on m.
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4.1 Expected Polynomial Time Algorithm for Constant p

In this section we use the previous results in order to present an algorithm for
finding Hamilton Cycles in a Gn,m,p graph with constant p and m ≤ α

√
n

log n ,

where α < βp√
2

and β ∈ (0, 1) are positve constants.
The algorithm first uses a greedy algorithm (steps 1-10) to form a sequence

HC of the form (2) that uses all the labels and if this fails (which happens with
some small probability of failure) it runs the exhaustive algorithm (step 12) im-
plied in the previous section. Both the randomized algorithm and the exhaustive
algorithm try to find a sequence HC of the form (2) that satisfies all four con-
straints. If either of them succeeds in finding one, then they run the following
procedure that constructs a Hamilton cycle.

procedure CONSTRUCT HAM(HC)

1. let HC := l1 → v1 → l2 → · · · → lk → vk → lk+1(= l1);
2. i = 1; A = V \⋃k

i=1{vi};
3. while i ≤ k do
4. let Di be any ordered list of Lli ∩A;
5. A = A\{Di}; i = i + 1;
6. output D1 → v1 → D2 → · · ·Dk → vk;

We now show that if the HC sequence satisfies all four constraints, then the
output of procedure CONSTRUCT HAM(HC) is a Hamilton cycle. First, we
note that since HC satisfies the 2nd constraint, all vertices are contained at
most once in the output. Second, because of the definition of the sets Di, step 5
of the algorithm and the 4th condition, each vertex is contained exactly once in
the output. Third, because of the definition of the sets Di and the 3rd condition,
every two consecutive vertices of the output have at least one label in common,
hence they are connected. Finally, we close the Hamilton cycle by noting that
vk has at least one label in common with any vertex in D1 (i.e. label l1).

The expected polynomial time algorithm is shown below. We denote by Ly
the set of vertices having chosen label y ∈M .

Algorithm I:
Input: The representation matrix Rn,m,p of a graph Gn,m,p.
Output: A Hamilton cycle of the graph corresponding to Rn,m,p.

1. let l1, l2, . . . , lm be a random ordering of the labels;
2. consider the sequence l1, l2, . . . , lm, lm+1 = l1;
3. if

⋃m
i=1 Lli �= V then

4. output “The graph has no Hamilton Cycle”; exit;
5. i = 1; A = V ; HC = empty list;
6. while i < m + 1 do
7. if Lli ∩ Lli+1 ∩A = ∅ then goto L1;
8. select a random vertex vi ∈ Lli ∩ Lli+1 ∩A;
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9. set HC = HC → {li} → {vi};
10. set A = A\{vi}; i = i + 1;
11. goto L2

12. L1: if there is a sequence of the form (2) and size k ≤ 1 + m(m−1)
2 that

satisfies all four costraints then
13. let HC be such a sequence; goto L2;
14. else
15. output “The graph has no Hamilton Cycle”; exit;
16. L2: CONSTRUCT HAM(HC);

4.2 Analysis of Algorithm I

We will first find an upper bound for the probability of failure of the greedy part
of the algorithm (lines 1-10). Notice that the greedy algorithm can fail to output
a solution only because of step 7. That is, the algorithm fails only in the case
where two consecutive labels in the sequence l1, l2, . . . , lm, lm+1 = l1 do not have
a common vertex that is also not used to “connect” two previous consecutive
labels.

Let us now denote by Xij the number of vertices having chosen both labels
i, j ∈M . Obviously, Xij is a random variable that is binomially distributed with
parameters n and p2. So, E[Xij ] = np2. But from Chernoff bounds we have that
for any constant β in (0, 1)

P{Xij ≤ (1− β)np2} ≤ e−β
2p2n/2

and by applying Boole’s inequality

P{∃i, j ∈M : Xij ≤ (1− β)np2} ≤
(

m

2

)

e−β
2p2n/2 def= φ.

We have thus proven that with probability at least 1− (
m
2

)
e−β

2p2n/2 every pair
of labels has Θ(n) vertices in common. Bearing in mind that the vertices used
by the greedy algorithm are exactly m = o(n), every pair of labels is left with
at least Θ(n) − o(n) = Θ(n) vertices in common. So, the probability that the
greedy algorithm fails is at most

(
m
2

)
e−β

2p2n/2. Moreover, it is easy to see that
the running time of the greedy algorithm is O(n ·m) in the worst case.

If the greedy algorithm fails (which means that it does not output a Hamilton
cycle nor does it output “The graph has no Hamilton Cycle”), then we run the
exhaustive part of the algorithm (included in step 12). In order to check if a
particular sequence of the form (2) and of size at most 1 + x(x−1)

2 satisfies the
four constraints we need O(n ·m) time in the worst case.

Finally, the running time of the procedure CONSTRUCT HAM is O(n · k) in
the worst case, where k is the size of the HC sequence. If the HC sequence is the
one produced by the greedy algorithm, then k = m, otherwise k ≤ 1 + m(m−1)

2 .
Therefore, by using inequality (3), it is easy to see that
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E[running time of Algorithm I] ≤ (1− φ)O(n ·m) + φnm
2
O(n ·m)

which becomes O(n ·m) for m ≤ α
√

n
log n , where α < βp√

2
is a constant. It follows

then that Algorithm I runs in polynomial expected time.

5 A Second Greedy Algorithm for Smaller p

In this section we will see that the greedy approach still works quite well for
smaller p, in the case where m is at most o( n

log n ). This was pointed out in [17].
More specifically, we will present an algorithm that with high probability finds
a Hamilton cycle in a Gn,m,p graph, in the case where m = o( n

logn ) and p is just

above the connectivity threshold of Gn,m,p, i.e. p = logn+h(n)
m , for any function

h(n) that goes to ∞ as slowly as possible (see [18]).
Suppose that we partition the set of vertices V into two sets V1, V2 of n

2
vertices each. We then use only vertices in V1 to make an HL sequence of the
form

HL := l1 → v1 → l2 → · · · → lk (4)

that is as long as possible and satisfies the following conditions:

1. li ∈M and vi ∈ V1,
2. li, li+1 ∈ Svi , i = 1, 2, . . . , k − 1,
3. vi �= vj , for any i �= j and
4. lx �= ly, for any x �= y.

We use the following procedure in order to construct a sufficiently large HL
sequence:

procedure MAKE HL(V1, M)

1. set FV = V1; set FM = M ;
2. select a random label l ∈M ; set FM = FM\{l}; set HL = l;
3. L1: if |Ll ∩ FV | < log n then goto Lo;
4. else
5. let v1, . . . , vlogn ∈ Ll ∩ FV ;
6. if ∃l′, v : l′ ∈ FM , v ∈ {v1, . . . , vlog n} and l′ ∈ Sv then
7. set FM = FM\{l′}; FV = FV \{v1, . . . , vlog n};
8. set HL = HL→ v → l′; set l = l′; goto L1;
9. else goto Lo;

10. Lo: output HL

If we assume that we can perform a random selection of an element in a set of
n items in constant time, the above procedure runs obviously in polynomial time.
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Indeed, the loop between steps 3 to 9 is executed at most n
2 logn times because in

step 7 we reduce the set FV by log n vertices. Furthermore, the most expensive
steps of the loop are the if-condition of step 3 which can take at most n2/4 time
steps (because FV and FM have at most n/2 vertices each) and the if-condition
of step 6 which can take at most m2 log n time steps (because FM has at most
m labels and each set Sv has at most m labels). Hence, taking into consideration
that m = o( n

logn ), we have proved the following:

Lemma 2. Procedure MAKE HL terminates in at most O( n3

logn ) time steps.

As we will now see, procedure MAKE HL produces with high probability an HL
sequence of the form (4) that has the following additional properties:

1. The size of HL is at least m− m
logn and

2.
⋃k
i=1 li = V .

We will prove these in that order. First we note that steps 6-9 of the procedure
can be executed at most m times, since each time step 7 is executed, the set
FM loses one label. Hence, whenever step 3 is executed, the set FV will always
consist of at least |V1| − m log n = n

2 − o(n) vertices. Also, it is easy to see
that the label l selected in step 6 of the procedure chooses each vertex in FV
independently with probability p. So, |Ll| is stochastically greater than a random
variable X ∼ B(|V1| − m log n, p). Clearly, E[X ] = μ = (|V1| − m log n)p ≥
(n2 − m log n) logn

m = Θ(n logn
2m ).By Chernoff bounds and Boole’s inequality we

then have, for any constant β,

P{an execution of step 3 finds |Ll ∩ FV | ≤ (1− β)μ} ≤ me−β
2μ/2 → 0.

We have thus proved that with probability at least 1 − exp
{
−β2n logn

6m

}
→ 1,

the procedure never stops due to the if-condition of step 3.
The only other way to end the procedure is by step 6 (and as we said before

the number of executions of step 7 is at most m). Suppose then that at some
point of the execution of the procedure the HL sequence has been extended so as
to contain m− k labels (i.e. the test of step 6 has been passed m− k− 1 times),
leaving exactly k “free” labels in FM . It is true that these labels continue to
select each member of FV independently with probability p. This means that the
probability that none of the free labels contains some of the vertices v1, . . . , vlog n

of step 5 is exactly (1 − p)k log n. Now, by Boole’s inequality, for k = m
logn , the

probability that some of the m− k − 1 first tests of step 6 fails is at most

m(1− p)k logn ≤ exp {log m− pm} ≤ exp {log m− log n} → 0.

So, with probability 1− exp {log m− log n} → 1 the HL sequence of procedure
MAKE HL(V1, M) has size at least m− m

logn .



Selected Combinatorial Properties of Random Intersection Graphs 359

Given now that the size of the HL sequence is at least m − m
logn we can see

that the mean number of vertices not covered by (i.e. not contained in) any label
of HL is at most

E[# vertices not covered by HL] ≤ n(1− p)m− m
log n

≤ exp
{

log n−mp +
mp

log n

}

→ 0

for the values of m, p we have assumed. So, by Markov’s inequality, the HL
sequence of procedure MAKE HL(V1, M) covers all the vertices in V with prob-
ability at least 1− exp

{
−h(n) + 1 + h(n)

logn

}
→ 1. We have thus proved the fol-

lowing:

Theorem 2 ([17]). With probability at least

1− exp
{

−β2n log n

6m

}

− exp {log m− log n} − exp
{

−h(n) + 1 +
h(n)
log n

}

→ 1

procedure MAKE HL(V1, M) constructs an HL sequence of the form (4) that
covers all the vertices of the graph.

We now notice that if we manage to “close” the sequence HL in order to get a
sequence HC of the form (2), then we can run CONSTRUCT HAM(HC) to get
a Hamlilton cycle. This is where we use the set of vertices V2. Suppose that we run
MAKE HL(V2, M) but instead of choosing a random label to begin with at step
2, we select label l1 of the HL sequence constructed by MAKE HL(V1, M). By
symmetry, a theorem similar to Theorem 2 is also true in this case. This means
that all the vertices of V will be covered by the HL′ sequence constructed by
MAKE HL(V2, M). Also, by Chernoff bounds we can see that if lf is the last
label of HL, then

P{|Ll ∩ V2| ≤ (1− β)
np

2
} ≤ e−β

2np/4 → 0

for any constant β. Hence, label l has almost definitely some vertices in V2.
Suppose then that at some point of the execution of MAKE HL(V2, M) HL′

has the form

HL′ := l1 → v′1 → · · · → l′k

and that Llf ∩ Ll′k ∩ FV �= ∅ (because of Theorem 2 such a point always exists
with high probability). Then, if v ∈ Llf ∩ Ll′

k
∩ FV , we can stop the procedure

and set

HC := HL→ v → l′k → · · · → v′1 → l1.

Then it is easy to see that the sequence HC is of the form (2) and satisfies all four
conditions specified in Section 4 so that we may run CONSTRUCT HAM(HC)
to get a Hamilton cycle.
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Consequently, we have shown a polynomial (due to Lemma 2) greedy way
of finding a Hamilton cycle in a Gn,m,p graph with probability at least 1 −
2 exp

{
−h(n) + 1 + h(n)

log n

}
→ 1.

6 Hamiltonicity in Gn,m,λ

We now turn to the hamiltonicity of uniform random intersection graphs. In this
section, we present a result in [12], which states that Gn,m,λ has a Hamiltonian
cycle (i.e. a cycle including all n vertices) with high probability (whp) when the
number of vertices is large enough, even for a very small constant λ ≥ 2.

Theorem 3 ([12]). Let e0 =
(
m
λ

)
. If n ≥ (1+ε)e0 ln e0, for some constant ε > 0

as small as possible, then Gn,m,λ, with λ ≥ 2, is Hamiltonian whp as n→∞.

Proof. For simplicity, we will refer to a set of λ labels as an Element. The total
number of possible Elements in Gn,m,λ is then obviously e0. Let Ee be the event
that no vertex chooses e. By independence,

Pr(Ee) =
(

1− 1
e0

)n
.

Let X denote the mean number of Elements not chosen by any vertex. Then

E[X ] = e0 Pr(Ee) ≤ e
ln e0− n

e0 → 0

for any n ≥ (1 + ε)e0 ln e0. Hence, the vertices of Gn,m,λ will have chosen all
available Elements (choosing exactly 1 Element each) whp.

The proof is completed by showing in the following how this implies the
existence of a Hamiltonian cycle in the case λ ≥ 2. Consider an arbitrary ordering
of the labels of the graph {l1, l2, . . . , lm} and construct the sets D1, D2, . . . , Dm,
where Di = {v ∈ V : li ∈ Sv and lj /∈ Sv, for all j ≤ i − 1}, i.e. Di is the set
of vertices that have chosen label li and none of the labels l1, . . . , li−1. We now
establish two properties that these sets have.

1. First of all, note that since the vertices of Gn,m,λ have chosen every available
Element, we will have that the only empty sets will be all Di with i =
m−λ+2, . . . , m. Indeed, for all i ≤ m−λ+1, there will be at least one vertex u
that has i ∈ Su and Su ⊆ {li, . . . lm}. Also, since every vertex chooses exactly
λ distinct labels, every vertex that has chosen li, for i = m− λ + 2, . . . , m,
must belong to exactly one of D1, . . . , Dm−λ+1.

2. Second, note that by construction (of the Dis), and because of the fact
that the vertices of Gn,m,λ have chosen every available Element, there will
be at least one edge between Di and Dj, for all i = 1, . . . , m − λ and all
j = i + 1, . . . , m − λ + 1. Also, for every edge {xi, yi+1} between Di and
Di+1, i = 1, . . . , m− λ− 1, there is an edge {xi+1, yi+2} between Di+1 and
Di+2 that satisfies {xi, yi+1} ∩ {xi+1, yi+2} = ∅, unless |Di+1| = 1, where
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yi+1 ≡ xj+1. Indeed, this is a consequence of the fact that the vertices of
Gn,m,λ have chosen every available Element (i.e. every combination of λ
labels) whp. Finally, all edges {xj , yj+1} between Dj and Dj+1, for every
j = i + 2, . . . , m− λ, satisfy {xi, yi+1} ∩ {xj , yj+1} = ∅, by the construction
of the sets Di.

These two properties allow us to fix a sequence of pairs {xi, yi+1}, for all i =
1, 2, . . . , m−λ, that are disjoint, except for the case where some |Di| = 1, which
does not change our proof. As a final step, let y1 be a vertex that satisfies
{l1, lm−λ+1} ⊆ Sy1 , and Sy1\{l1, lm−λ+1} ⊆ {lm−λ+2, . . . , lm}. Such a vertex
exists whp and it is easy to see that it is connected to all vertices in Dm−λ+1.

Let now σi, i = 1, . . . , m − λ be an arbitrary ordering or the set Di, that
begins with yi and ends with xi. Also, let σm−λ+1 be an arbitrary ordering or
the set Dm−λ+1, that begins with ym−λ+1. Since every Di is a clique, it is easy
to verify that the sequence σ1σ2 · · ·σm−λσm−λ+1 is indeed a Hamiltonian cycle.

�

Note here that λ = 2 is in fact as small as one can have in order to achieve
Hamiltonicity. Indeed, for λ = 1 the graph is disconnected (see also [2]). In this
sense, the above result is optimal. Finally, note that the proof of Theorem 3 leads
naturally to a randomized polynomial time (in terms of n and m) algorithm for
constructing Hamiltonian cycles whp in this case.

7 Conclusions

In this work, we presented some existing results concerning the existence and
efficient construction of Hamilton cycles in random intersection graphs and uni-
form random intersection graphs. There are several other open algorithmic and
combinatorial problems concerning these two models. To name just a few, very
little is known about the size of the minimum dominating set of Gn,m,p, let alone
the existence of efficient algorithms that can approximate it. Furthermore, the
problems of approximating the clique number or that of finding a large planted
clique are also not yet investigated in random intersection graphs.
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Kĺıma, Ondřej 214
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